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Preface

Plant taxonomy is an ancient discipline facing new challenges with the availability of a vast
array of modern molecular technologies. The literature reviews and protocols that appear as
chapters in this book were selected to provide conceptual as well as technical guidelines to
plant taxonomists and geneticists. This second edition of Molecular Plant Taxonomy
appeared necessary to take into account the increasing use of next-generation sequencing
(NGS) technologies for many applications in plant taxonomy.

The introductive Chapter 1 allows the reader to travel through the historical aspects of
plant taxonomy with a focus on the strengths, limitations, and the future of molecular
techniques. Chapter 2 then proposes guidelines to choose the best sequence and molecular
technique to be used according to the taxonomic question addressed. A temporal landscape
of the most commonly used techniques is also provided. Both chapters are prerequisite
readings to understand the concepts underlying the “plant taxonomy” discipline and to fully
appreciate the strengths and limits of each molecular technique presented in this book.

DNA extraction protocols specifically focused on recalcitrant plant species (Chapter 3)
and herbarium specimens (Chapter 4) are proposed. The latter will ensure the development
of an “integrative” taxonomic approach by allowing the use of ancient DNA references from
herbarium specimens together with present-date accessions in DNA analyses.

Next-generation sequencing technologies have opened a new era for molecular plant
taxonomy. This revised edition provides literature review and wet-lab protocols and/or
decision flowcharts covering whole chloroplast (Chapter 5) and mitochondrial (Chapter 6)
genome sequencing, now more and more replacing the Sanger sequencing of specific
regions described in the earlier version of this book. We also chose to present an updated
protocol for microsatellite markers isolation based on Illumina sequencing (Chapter 11) to
complement classical enriched library construction described in the first version. This
NGS-based method is powerful enough to reveal numerous microsatellite loci, which are
markers of choice for molecular plant taxonomy. Newmethods to discover single nucleotide
polymorphism (SNP) markers from sequenced pangenomes (Chapter 9) are also described,
together with the simple and powerful genotyping-by-sequencing (GBS) method to
develop SNP markers without any need for whole genome sequencing and assembly,
perfectly suited for many plant species (Chapter 10).

This book still provides detailed literature reviews and detailed wet-lab protocols for
many multilocus PCR-based profiling methods that have been shown to be very efficient in
resolving many molecular plant taxonomy issues: amplified fragment length polymorphism
(AFLP, Chapter 12), random amplified polymorphic DNA (RAPD, Chapter 13) and their
multiple derived techniques, inter-simple sequence repeats (ISSR, Chapter 14), and the use
of a range of methods tagging retrotransposable elements (Chapter 15). It also provides a
protocol for Sanger sequencing and data analysis of the widely used internal transcribed
spacer (ITS) nuclear region in plants (Chapter 7), and the usefulness and power of this ITS
region together with that of various chloroplast regions as a “DNA barcoding” tool is
reviewed and assessed (Chapter 8): it is now clear that using these simple “barcode tools” as
defined by the CBOL (consortium for the barcoding of life) for resolving plant taxonomy
will not be sufficient, particularly in some plant groups. We rather highly recommend that
molecular approaches are used within an “integrative taxonomy” framework, combining a
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range of nucleic acid and cytogenetic data together with other crucial information (taxon-
omy, morphology, anatomy, ecology, reproductive biology, biogeography, paleobotany,
etc.), which will help not only to best circumvent species delimitation but also to resolve
the evolutionary processes in play. In this respect, Chapters 17, 18, and 19, covering
cytogenetic techniques such as flow cytometry, chromosome banding, fluorescent in situ
hybridization (FISH), and genomic in situ hybridization (GISH), are essential to provide
tools allowing the assessment of plant genome size, ploı̈dy, aneuploidy, reproductive mode,
species relationships, and interspecific hybrids. Moreover, the generation of large sets of
SNP markers through NGS technologies now allows detailed population genomics studies
(Chapter 16) that can help to resolve the evolutionary processes in play in natural popula-
tions through the analysis of population structure, the inference of population splits and
exchanges, and the detection of footprints of natural or artificial selection. Although the
primary focus of plant taxonomy is on the delimitation of species, molecular approaches now
provide a better understanding of evolutionary processes, at species and population level, a
particularly important issue for some taxonomic complex groups and a prerequisite to
resolve speciation processes. This is essential when one wants to apply plant taxonomy to
conservation issues.

St Pierre, Réunion, France Pascale Besse
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MONICA F. DANILEVICZ • School of Biological Sciences, University of Western Australia,

Perth, Australia
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QUENTIN ROUGEMONT • Département de Biologie, Institut de Biologie Intégrative et des
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Chapter 1

Plant Taxonomy: A Historical Perspective, Current
Challenges, and Perspectives

Germinal Rouhan and Myriam Gaudeul

Abstract

Taxonomy is the science that explores, describes, names, and classifies all organisms. In this introductory
chapter, we highlight the major historical steps in the elaboration of this science, which provides baseline
data for all fields of biology and plays a vital role for society but is also an independent, complex, and sound
hypothesis-driven scientific discipline.
In a first part, we underline that plant taxonomy is one of the earliest scientific disciplines that emerged

thousands of years ago, even before the important contributions of the Greeks and Romans (e.g., Theo-
phrastus, Pliny the Elder, and Dioscorides). In the fifteenth–sixteenth centuries, plant taxonomy benefited
from the Great Navigations, the invention of the printing press, the creation of botanic gardens, and the use
of the drying technique to preserve plant specimens. In parallel with the growing body of morpho-
anatomical data, subsequent major steps in the history of plant taxonomy include the emergence of the
concept of natural classification, the adoption of the binomial naming system (with the major role of
Linnaeus) and other universal rules for the naming of plants, the formulation of the principle of subordina-
tion of characters, and the advent of the evolutionary thought. More recently, the cladistic theory (initiated
by Hennig) and the rapid advances in DNA technologies allowed to infer phylogenies and to propose true
natural, genealogy-based classifications.
In a second part, we put the emphasis on the challenges that plant taxonomy faces nowadays. The still

very incomplete taxonomic knowledge of the worldwide flora (the so-called taxonomic impediment) is
seriously hampering conservation efforts that are especially crucial as biodiversity has entered its sixth
extinction crisis. It appears mainly due to insufficient funding, lack of taxonomic expertise, and lack of
communication and coordination. We then review recent initiatives to overcome these limitations and to
anticipate how taxonomy should and could evolve. In particular, the use of molecular data has been
era-splitting for taxonomy and may allow an accelerated pace of species discovery. We examine both
strengths and limitations of such techniques in comparison to morphology-based investigations, we give
broad recommendations on the use of molecular tools for plant taxonomy, and we highlight the need for an
integrative taxonomy based on evidence from multiple sources.

Key words Classification, Floras, DNA, History, Molecular taxonomy, Molecular techniques, Mor-
pho-anatomical investigations, Plant taxonomy, Species, Taxonomic impediment

Pascale Besse (ed.), Molecular Plant Taxonomy: Methods and Protocols, Methods in Molecular Biology, vol. 2222,
https://doi.org/10.1007/978-1-0716-0997-2_1, © Springer Science+Business Media, LLC, part of Springer Nature 2021
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1 Introduction

Adapting the famous aphorism of Theodosius Dobzhansky [1],
could we dare to say that nothing in biology makes sense except
in the light of taxonomy? Maybe yes, considering that most of
biology relies on identified—and so described—species that are
end products of taxonomy. Taxonomic information is obviously
crucial for studies that analyze the distribution of organisms on
Earth, since they need taxonomic names for inventories and
surveys. But names are also needed to report empirical results
from any other biological study dealing with, e.g., biochemistry,
cytology, ecology, genetics, or physiology: even if working an entire
life on a single species, e.g., Arabidopsis thaliana (L.) Heynh., a
molecular biologist will focus all his/her research on numerous
plants that all represent this species as delimited by taxonomy.
Thus, taxonomy provides names, but it is not only a ‘biodiversity-
naming’ service: it is also a scientific discipline requiring theoretical,
empirical, and epistemological rigor [2]. Names represent scientific
hypotheses on species boundaries, and to put forward such hypoth-
eses involves gathering information from characters of the organ-
isms and adopting a species concept (see Note 1 for an overview of
the main species concepts). Morphology, anatomy, and genetics are
the main sources of characters used in today’s plant taxonomy. Not
without noting that these types of characters all bring potentially
valuable evidence, the focus of this book is on the use of nucleic
acids—and genome size and chromosomes—for a reliable and
efficient taxonomy.

Before discussing how to choose genomic regions to be studied
in order to best deal with particular taxonomic issues (Chapter 2),
this chapter aims to summarize the history of taxonomy and to
highlight that plant molecular taxonomy emerged from an ancient
discipline that has been, and is still, central to other scientific
disciplines and plays a vital role for society. We will also give a
brief overview of the general background into which plant taxon-
omy is performed today and propose some general considerations
about molecular taxonomy.

2 Taxonomy and Taxon: Terminology and Fluctuating Meanings

It is not before 1813 that the Swiss botanist Augustin Pyramus De
Candolle (1778–1841) invented the neologism ‘taxonomy’ from
the Greek ταξις (order) and ν�oμoς (law, rule) and published it for
the first time in his book Théorie élémentaire de la Botanique (‘Ele-
mentary Theory of Botany,’ [3]). He defined this scientific disci-
pline as the ‘theory of the classifications applied to the vegetal
kingdom,’ which he considered as one of the three components

2 Germinal Rouhan and Myriam Gaudeul



of botany along with glossology—‘the knowledge of the terms used
to name plant organs,’ and phytography—‘the description of plants
in the most useful way for the progress of science.’

Much later, the Global Biodiversity Assessment of the United
Nations Environment Programme (UNEP; [4]) defined taxonomy
as ‘the theory and practice of classifying organisms,’ including the
classification itself but also the delimitation and description of taxa,
their naming, and the rules that govern the scientific nomenclature.
Today, depending on the authors, taxonomy is viewed either as a
synonym for the ‘systematics’ science—also called biosystematics
[5, 6]—including the task of classifying species, or only as a com-
ponent of systematics restricted to the delimitation, description,
and identification of species. This latter meaning of taxonomy
emerged lately, with the advent of phylogenetics as another com-
ponent of systematics that allows classifications based on the evolu-
tionary relationships among taxa [7].

Thus, it is ironical that taxonomy and systematics, which deal in
particular with classifications and relationships between organisms,
often themselves require clarifications on their relative circumscrip-
tions and meanings before being used [8]. This book will consider
plant taxonomy in the broadest sense, from, e.g., species delimita-
tion based on different molecular techniques—to focuses on popu-
lation genomics methods, or studies resolving interspecific and
intergeneric hybrids.

Incidentally, it is interesting to note that the word ‘taxon’—
plural: taxa—was invented much later (Lam, in [9]) than ‘taxon-
omy’: a taxon is a theoretical entity intended to replace terms such
as ‘taxonomic group’ or ‘biodiversity unit’ [10], and ‘taxon’ refers
to a group of any rank in the hierarchical classification, e.g., species,
genus, or family.

3 A Historical Perspective to Plant Taxonomy

3.1 One

of the Earliest

Scientific Disciplines

Delimiting, describing, naming, and classifying organisms are activ-
ities whose origins are obviously much older than the word ‘taxon-
omy’—which dates back to the nineteenth century; see above. The
use of oral classification systems likely even predated the invention
of the written language ca. 5600 years ago. Then, as for all vernac-
ular classifications, the precision of the words used to name plants
was notably higher for plants that were used by humans. There was
no try to link names and organisms in hierarchical classifications
since the known plants were all named following their use: some
were for food, others for medicines, poisons, or materials. As early
as that time, several hundreds of plant organisms of various kinds
were identified, while relatively few animals were known and
named—basically those that were hunted or feared [11].
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These early classifications, that were exclusively utilitarian, per-
sisted until the fifteenth–sixteenth centuries although some major
advances were achieved, mainly by ancient Greeks and Romans. It
was perceptible that the Greeks early considered plants not just as
useful, but also as beautiful, taking a look at paintings in Knossos
(1900 BC) that indeed show useful plants like barley, fig, and olive,
but also narcissus, roses, and lilies. The Greek Theophrastus
(372–287 BC), famous as the successor of Aristotle at the head of
the Lyceum, is especially well known as the first botanist and the
author of the first written works on plants. Interested in naming
plants and finding an order in the diversity of plants, he could have
been inspired by Aristotle who started hisMetaphysics book with the
sentence: ‘All men by nature desire to know.’ Theophrastus is
indeed the first one to provide us with a philosophical overview of
plants, pointing out important fundamental questions for the
development of what will be later called taxonomy, such as ‘what
have we got?’ or ‘how do we differentiate between these things?’
He was moreover the first one to discuss relationships among
plants, and to suggest ways to group them not just based on their
usefulness or uses. Thus, in his book Enquiry into Plants, he
described ca. 500 plants—probably representing all known plants
at that time—that he classified as trees, shrubs, undershrubs, and
herbs. He also established a distinction between flowering and
nonflowering plants, between deciduous and evergreen trees, and
between plants that grew in water and those that did not. Even if
80% of the plants included in his works were cultivated, he had
realized that ‘most of the wild kinds have no names, and few know
about them,’ highlighting the need to recognize, describe, and
name plants growing in the wild [12]. Observing and describing
the known plants, he identified many characters that were valuable
for later classifications. For instance, based on his observations of
plants sharing similar inflorescences—later named ‘umbels’—he
understood that, generally, floral morphology could help to cluster
plants into natural groups and, several centuries later, most of these
plants showing umbels were indeed grouped in the family Umbel-
liferae—nowadays Apiaceae.

Theophrastus was way ahead of his time, to such a point that his
botanical ideas and concepts became lost during many centuries in
Europe. But his works survived in Persia and Arabia, before being
translated back into Greek and Latin and rediscovered in Europe in
the fifteenth century. During this long Dark Age for botany—like
for all other natural sciences—in Europe, the Roman Pliny the
Elder (23–79 AD) and the Greek Dioscorides (~40–90 AD), in
first century AD, have however been two important figures.
Although they did not improve the existing knowledge and meth-
ods about the description, naming, or classifications of plants, they
compiled the available knowledge and their written works were
renowned and widely used. The Naturalis Historia of Pliny
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(77 AD) was indeed a rich encyclopedia of the natural world,
gathering 20,000 facts and observations reported by other authors,
mostly from Greeks like Theophrastus. At the same time in Greece,
plants were almost only considered and classified in terms of their
medical properties. The major work of Dioscorides De Materia
Medica (ca. 77 AD) was long the sole source of botanical informa-
tion (but at that time, botany was only considered in terms of
pharmacology) and was repeatedly copied until the fifteenth cen-
tury in Europe. Juliana’s book—Juliana Anicia Codex, sixth cen-
tury; Fig. 1—is the most famous of these copies, well known
because it innovated by adding beautiful and colorful plants illus-
trations to the written work of Dioscorides. If some paintings could
be seen as good visual aids to identification—which should be
considered as an advance for taxonomy—others, however, were
fanciful [12]. All those plant books, called ‘herbals’ and used by
herbalists—who had some knowledge about remedies extracted
from plants—throughout the Middle Ages, did not bring any
other substantial progress.

3.2 Toward

a Scientific

Classification of Plants

With the Renaissance, the fifteenth and sixteenth centuries saw the
beginning of the Great Navigations—e.g., C. Columbus discovered
the New World from 1492; Vasco da Gama sailed all around Africa
to India from 1497; F. Magellan completed the first circumnavi-
gation of Earth in 1522—allowing to start intensive and large-scale
naturalist explorations around the world: most of the major terri-
tories, except Australia and New Zealand, were discovered as soon
as the middle of the sixteenth century, greatly increasing the num-
ber of plants that were brought back in Europe either by sailors
themselves or naturalists on board. At that time, herbalists still
played a major role in naming and describing plants, in association
with illustrators who were producing realistic illustrations. But
naming and classifying so numerous exotic and unknown plants
from the entire world would not have been possible without three
major inventions. Firstly, the invention of the Gutenberg’s printing
press with moveable type system (1450–1455) made written works
on plants largely available in Europe—the first Latin translation of
Theophrastus’ books came out in 1483. Secondly, the first botanic
gardens were created in Italy in the 1540s, showing the increasing
interest of the population for plants and allowing teaching botany.
Thirdly, in the botanic garden of Pisa, the Italian Luca Ghini
(1490–1556) invented a revolutionary method for preserving—
and so studying—plants, consisting in drying and pressing plants
to permanently store them in books as ‘hortus siccus’ (dried gar-
den), today known as ‘herbaria’—or ‘herbarium specimens.’ These
perennial collections of dried plants were—and are still—a keystone
element for plant taxonomy and its development: from that time,
any observation and experimental result could be linked to specific
plant specimens available for further identification, study of
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morphology, geographic distribution, ecology, or any other fea-
tures. In short, Ghini provided with herbaria the basis of reproduc-
ibility that is an essential part of the scientific method [13].

A student of Ghini, Andrea Cesalpino (1519–1603), was the
first one since the Ancient Greeks to take over the work of Theo-
phrastus, and to discuss it. He highlighted that plants should be

Fig. 1 Painting of a Cyclamen plant, taken from the Juliana’s book, showing the flowering stems rising from
the upper surface of the rounded corm. According to Dioscorides, those plants were used as purgatives,
antitoxins, skin cleansers, labor inducers, and aphrodisiacs
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classified in a more natural and rational way than the solely utilitar-
ian thinking. Convinced that all plants have to reproduce, he
provided a new classification system primarily based on seeds and
fruits: inDe Plantis libri XVI (1583), he described 1500 plants that
he organized into 32 groups such as the Umbelliferae and Compo-
sitae—currently Apiaceae and Asteraceae, respectively. Cesalpino
also made a contribution to the naming of plant names, sometimes
adding adjectives to nouns designing a plant, e.g., he distinguished
Edera spinosa (spiny ivy) from Edera terrestris (creeping ivy). This
could be seen as a prefiguration of the binomial naming system that
was established in the eighteenth century and is still used in taxon-
omy. But the science of scientific naming was only starting and
plants—like other living beings—were usually characterized by
several words forming polynomial Latin names: for instance,
tomato was designed as Solanum caule inermi herbaceo, foliis pin-
natis incisis, which means ‘Solanum with a smooth herbaceous
stem and incised pinnate leaves’ [14] (Fig. 2).

Cesalpino contributed to the emergence of the concept of
natural classification, i.e., a classification reflecting the ‘order of
Nature.’ This latter expression involved different interpretations
and classifications through the history of taxonomy, but a natural
classification was always intended to reflect the relationships among
plants. Because the Evolutionary thought was not developed yet, it
basically resulted in clustering plants with similar morphological
features. So, it must be noted that the distinction between artificial
and natural classifications—respectively named ‘systems’ and
‘methods’ at the end of the eighteenth century—is a modern
interpretation of the past classifications. Taking advantage of both
technical progresses like microscopy—in the seventeenth century—
and scientific methods inspired by Descartes (1596–1650), several
attempts were made to reach such a natural classification. For
example, Bachmann—also known as Rivin or Rivinus
(1652–1723)—based his classification on the corolla shape in
Introductio ad rem herbariam in 1690. Altogether, the major inter-
est of these classifications is that they triggered investigations on
many morpho-anatomical characters that could be used by later
taxonomists to describe and circumscribe plant species. The British
John Ray (1627–1705) innovated by not relying anymore on a
single characteristic to constitute groups of plants: he suggested
natural groupings ‘from the likeliness and agreement of the princi-
pal parts’ of the plants, based on many characters—mostly relative
to leaves, flowers, and fruits. He documented more than 17,000
worldwide species in Historia Plantarum (1686–1704) and distin-
guished flowering vs. nonflowering plants, and plants with one
cotyledon, which he named ‘monocotyledons,’ vs. plants with
two cotyledons, ‘dicotyledons.’ Ray also played a major role in
the development of plant taxonomy—and more generally of plant
science—by creating the first text-based dichotomous keys that he
used as a means to classify plants [15].
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In contrast to Ray and his method intended to be natural, his
French contemporary Joseph Pitton de Tournefort (1656–1708)
explored, in his Elements de Botanique (1694), the possibility of
classifying plants based on only a few characteristics related to the
corolla of flowers, creating an artificial system. The success of
Tournefort’s system resulted from the ease to identify groups of
plants based on the number and relative symmetry of the petals of a

Fig. 2 Herbarium specimen from the Tournefort’s Herbarium (housed at the Paris
national Herbarium, Muséum national d’Histoire naturelle, MNHN) displaying a
label with the hand-written polynomial name ‘Aconitum caeruleum, glabrum,
floribus consolid(ae) regalis’
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flower. Within his system, Tournefort precisely defined 698 enti-
ties—‘Institutiones rei herbariae,’ 1700—each being called a genus,
plural: genera. The genus concept was new and contributed to a
better structuration of the classification.

3.3 Naming Plant

Names: Major

Advances by Linnaeus

In spite of the numerous new ideas and systems produced from the
16th to the middle of the eighteenth century, names of plants still
consisted in polynomial Latin names, i.e., a succession of descrip-
tors following the generic name. This led to a rather long, compli-
cated, and inoperative means to designate plants and became
problematic in the context of the Great Explorations, which
allowed the discovery of more and more plants from all over the
world (major explorations with naturalists on board included, e.g.,
the circumnavigation of La Boudeuse under Bougainville from
1766 to 1769, and the travels to the Pacific of J. Cook between
1768 and 1779). To overcome this impediment involving the
naming of plants, the Swedish Carolus Linnaeus (1707–1778)
took a critical step forward for the development of taxonomy.

He suggested dissociating the descriptors of the plant from the
name itself, because according to him, the name should only serve
to designate the plant. Therefore, he assigned a ‘trivial name’ to
each plant (more than 6000 plants in Species Plantarum, 1753)
[16] and this name was binomial, only consisting of two words: the
‘genus’ followed by the ‘species,’ e.g., Adiantum capillus-veneris is
a binomen created by Linnaeus that is still known and used as such
to designate the Venus-hair fern. Although there had been some
attempts of binomials as early as Theophrastus (followed by Cesal-
pino and a few others), Linnaeus succeeded in popularizing his
system as new, universal—applied for all plants and, later on, even
for animals in SystemaNaturae [17], and long-lasting. Truly, Species
Plantarum [16] has been a starting point for setting rules in plant
taxonomy. Used since Linnaeus until today, the binomial system
along with other principles for the naming of plants were devel-
oped, standardized, synthesized, and formally accepted by taxono-
mists into a code of nomenclature—initially called ‘Laws of
botanical nomenclature’ [18] and nowadays called the Interna-
tional Code of Nomenclature for algae, fungi, and plants (ICN).
The current code is slightly evolving every 6 years, after revisions
are adopted at an international botanical congress.

Linnaeus also proposed his own artificial classification. With the
goal to describe and classify all plants—and other living beings—
that were ‘put on Earth by the Creator,’ he grouped them based on
the number and arrangement of stamens and pistils within flow-
ers—contrary to Tournefort, who only focused on petals. He called
this classification a ‘sexual system,’ referring to the fundamental
role of flowers in sexual reproduction (Fig. 3). This system included
five hierarchical categories: varieties, species, genera, orders—
equivalent to current families, and classes.
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Fig. 3 Linnaeus’s sexual system as drawn by G. D. Ehret for the Hortus Cliffortianus (1735–1748); this
illustration shows the 24 classes of plants that were defined by Linnaeus according to the number and
arrangements of stamens
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3.4 The Advent

of the Theory

of Evolution and Its

Decisive Impact

on Taxonomy

The end of the eighteenth century was conducive to revolutionary
ideas in France, including new principles to reach the natural classi-
fication. Studying how to arrange plants in space for creating the
new royal garden of the Trianon in the Palace of Versailles, Bernard
de Jussieu (1699–1777) applied the key principle of subordination
of characters, which will be published in 1789 by his nephew
Antoine Laurent de Jussieu (1748–1836) in Genera Plantarum
[19]. Bernard and A. L. de Jussieu stated that a species, genus, or
any other taxon of the hierarchical classification should group
plants showing character constancy within the given taxon, as
opposed to the character variability observed among taxa. Since
not all characters are useful at the same level of the classification, the
principle of subordination led to a character hierarchy: characters
displaying higher variability should be given less weight than more
conserved ones in plant classifications. As a result, B. and A. L. de
Jussieu subordinated the characters of flowers—judged more vari-
able and therefore less suitable at higher levels—to the more con-
served characters of seeds and embryos. It was the first application
of this principle in taxonomy, and it could be interpreted today as a
way to limit homoplasy, though the concept of homoplasy had not
been elaborated yet [20].

Whereas botanical taxonomy had long been preponderant and
faster in its development than its zoological counterpart, the trend
was reversed at the beginning of the nineteenth century, especially
with the application of the principle of subordination of characters
to animals by the French biologists Jean-Baptiste de Lamarck
(1744–1829) and Georges Cuvier (1769–1832). New questions
then arose in the mind of taxonomists, who were not only inter-
ested in naming, describing, and classifying organisms anymore,
but also in elucidating how the observed diversity had been gener-
ated. Early explanatory theories included the theory of the trans-
mutation of species, proposed by Jean-Baptiste de Lamarck in 1809
in his Philosophie zoologique [21]. This was the first theory to
suggest the evolution of species, although it involved several mis-
leading assumptions such as the notion of spontaneous genera-
tions. Charles Darwin (1809–1882) published his famous theory
of evolution in On the Origin of Species (1859) [22], and intro-
duced the central concept of descent with modification that later
received extensive support and is still accepted today. This implied
that useful characters in taxonomy, the so-called homologous char-
acters, are those inherited from a common ancestor. Darwin indeed
predicted that ‘our classifications will come to be, as far as they can
be so made, genealogies’ (Darwin 1859, p. 486) [22]. In other
words, since the history of life is unique, only one natural classifica-
tion is possible that reflects the phylogeny. This latter word was
however not coined by Darwin himself, but in 1866 in hisGenerelle
Morphologie der Organismen [23] by Ernst Haeckel (1834–1919),
who is commonly known for the first illustration of a phylogeny,
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although Dayrat [24] evidenced that all Haeckel’s illustrations
should not be interpreted as real evolutionary-based phylogenetic
trees [23] (Fig. 4). However, Darwin did not provide any new
techniques or approaches to reconstruct the phylogeny or assist
practicing taxonomists in their work [25] and, in spite of his major
contributions, plant taxonomists therefore kept applying the
method of classification described by B. and A. L. de Jussieu even
after the onset of the evolutionary thought.

3.5 New Methods

and New Sources

of Characters

for a Modern

Taxonomy

In the 1960s, facing the subjectivity of the existing methods to
reconstruct phylogenies, the new concept of numerical taxonomy
proposed an entirely new way of examining relationships among
taxa. Robert Sokal (1926–2012) and Peter Sneath (1923–2011)
started developing this concept in 1963 [26], and elaborated it as
an objective method of classification. The method consisted in a
quantitative analysis of overall similarities between taxa, based on a
characters-by-taxa data matrix—with characters divided into char-
acter states—and resulting in pairwise distances among taxa. But
this method was not based on any evolutionary theory and the
resulting diagrams could therefore not be reasonably interpreted
in an evolutionary context, or as an evolutionary classification.
Nevertheless, this theory flourished for a while, greatly benefiting
from rapid advances in informatics.

A crucial change in the way botanists practice taxonomy
occurred with the development of the cladistic theory and recon-
struction of phylogenies—using diagrams called cladograms—to
infer the evolutionary history of taxa. Willi Hennig (1913–1976)
initiated this revolution with his book Grundzüge einer Theorie der
Phylogenetischen Systematik, published in 1950 [27], but his ideas
were much more widely diffused in 1966 with the English transla-
tion entitled Phylogenetic Systematics [28]. The primary principle of
cladism, or cladistics, is not to use the overall similarity among taxa
to reconstruct the phylogeny, since similarity does not necessarily
reflect an actual close evolutionary relationship. Instead, Hennig
only based the phylogenetic classification on derived characters,
i.e., the characters that are only inherited from the last common
ancestor to two taxa—as opposed to the primitive characters. Every
taxonomic decision, from a species definition to a system of higher
classification, was to be treated as a provisional hypothesis, poten-
tially falsifiable by new data [29]. This new method benefited from
an increasing diversity of sources of characters to be considered,
thanks to the important technological advances accomplished in
the 1940s and 1950s in cytology, ecology, and especially in
genetics.

The discovery of the double helical structure of the DNA
molecule in 1953, by James Watson and Francis Crick, followed
by the possibility to target specific fragments of the genome for
selectively amplifying DNA—the Polymerase Chain Reaction
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Fig. 4 Illustration from ‘Monophyletischer Stammbaum der Organismen’ (Haeckel 1866): plants form one of
the three main branches of the monophyletic genealogical tree of organisms
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(PCR) was invented by Karry Mullis in 1986 [30]—have dramati-
cally changed biology. In particular, the introduction of DNA
sequence data has been era-splitting for plant taxonomy, offering
access to numerous characters and statistical approaches. Thus, at
the turn of the twenty-first century, the use of molecular data and
new tree-building algorithms—with probabilistic approaches—led
the Angiosperm Phylogeny Group (APG) to better circumscribe all
orders and families of flowering plants [31–34]. Similarly, the Pte-
ridophyte Phylogeny Group reached a consensual classification for
free-sporing vascular plants (ferns and lycophytes) to the genus
level [35]. Such collaborative initiatives have improved to a great
extent our understanding of the plant classification based on evo-
lutionary relationships. Many long-standing views of deep-level
relationships were drastically modified at the ordinal level, and to
a lesser extent at the familial level in flowering plants. One of the
most striking changes is the abandonment of the long-recognized
monocot-dicot split, since monocots—class Liliopsida—were
found to be derived from within a basal grade of families that
were traditionally considered as dicots—class Magnoliopsida.
Another outstanding finding resulting from analyses of molecular
data has been that horsetails and ferns together are the closest
relatives to seed plants, necessitating the abandonment of the pre-
vailing view that ferns and horsetails represent paraphyletic succes-
sive grades of increasing complexity in early vascular plant
evolution, which eventually led to the more complex seed plants,
and ultimately to angiosperms [36]. Thus, the more or less intuitive
classifications proposed since the beginning of the twentieth cen-
tury [37–41] have progressively been less used, as a consequence of
the modifications brought to the classification by molecular
results [42].

Taxonomy took advantage of molecular data not only for
improving plant classification or species delineation, but also for
species-level identification with the development of the DNA bar-
coding initiative since the early 2000s. DNA barcoding is based on
the premise that a short standardized DNA sequence can allow
distinguishing individuals of different species because genetic vari-
ation between species is expected to exceed that within species. It
was first promoted by Paul Hebert for animals [43] and later
supported by international alliances of research organizations like
the Consortium for Barcoding of Life (CBOL; http://barcoding.si.
edu), which includes a Plant working group, or the China Plant
Barcoding of Life Group.

The long history of plant taxonomic research and its numerous
contributors, both for theoretical concepts and the practical accu-
mulation of knowledge, allowed the development of an indepen-
dent, complex, and sound hypothesis-driven scientific discipline
that explores, describes, documents the distribution of, and classi-
fies taxa. It is clearly not restricted to, e.g., identifying specimens
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and establishing species lists, but it nevertheless also provides basic
knowledge that is required to address a wide range of research
questions and serve stakeholders in government agencies and inter-
national biodiversity organizations (for management of agriculture
pests, development of new pharmaceutical compounds, control of
trade in endangered species, management of natural resources, etc.;
[29, 44–48]). However, taxonomy is faced with the enormous
existing plant diversity, and one still unanswered question resides
in the extent of plant diversity: how many species are there on
Earth?

4 Plant Taxonomy Today: Current Challenges, Methods, and Perspectives

4.1 How Many Plant

Species Are There?

Linnaeus’ Species Plantarum, published in 1753, was one of the
first key attempts to document the diversity of plants on a global
scale [16]. In this work, Linnaeus recognized more than 6000
species but erroneously concluded that ‘the number of plants in
the whole world is much less than commonly believed, I ascertained
by fairly safe calculation [. . .] it hardly reaches 10,000’ [16]. Later
on, in 1824, the Swiss A.P. de Candolle, in his Prodromus Systematis
Naturalis Regni Vegetabilis [49], aimed to produce a flora of the
world: he included 58,000 species in seven volumes. Today, we
know that the magnitude of plant diversity is much larger, although
we are uncertain of the exact number of plant species.

There are two questions in estimating the total number of plant
species: the first one is how many species have already been described;
the second one is how many more species are presently unknown to
science.

Our uncertainty about the number of described species is
mostly due to the fact that taxonomists sometimes gave different
names to the same species inadvertently, especially in the past due to
poor communication means between distant scientists. This led to
the existence of multiple names for a single biological entity, a
phenomenon called synonymy. As a consequence, we know that
more than 1,064,908 vascular plant names were published, as
evidenced by the International Plant Names Index (IPNI)
[50, 51], but they would actually represent only 223,000 to
422,000 accepted species—depending on the method of calcula-
tion ([46, 52] and references therein, [53, 54]), with the most
recent estimates of 383,671 [51] and 351,176 according to
The Leipzig Catalogue of Vascular Plants (LCVP) v.1.0.2 by
Freiberg et al. (unpublished). In addition, the disagreement on a
single species concept (seeNote 1) among plant taxonomists means
that species counts can easily differ by an order of magnitude or
more when the same data are examined by different botanists
[55]. This leads to a taxonomic inflation, i.e., an increased number
of species in a given group that is not due to an actual discovery of
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new species [56–58]. In practice, this can occur when, e.g., differ-
ent botanists do not recognize the same number of species in a
given taxonomic group—the ‘splitters’ vs. the ‘lumpers’—or when
one botanist describes subspecies while another one elevates them
to the rank of species.

The estimation of the total number of plant species on Earth is
also obviously hampered by our uncertainty about the extent of the
unknown plant diversity: how many more species there are to
discover? The exploration of plant diversity allows the description
of ca. 2000 new plant species every year [46, 47, 59] although part
of which may turn out to be synonyms based on future thorough
monographic revisions. Based on a model of the rates of plant
species description, Joppa et al. [60] estimated that there should
be an increase of 10–20% in the current number of flowering plant
species. This means that, based on the estimation of 352,000
flowering plant species [46], they predicted the actual diversity
between 390,000 and 420,000 species for this group. Meanwhile,
Mora et al. [61] used higher taxonomy data, i.e., they extrapolated
the global number of plant species based on the strong negative
correlation between the taxonomic rank and the number of higher
taxa—which is better known than the total number of species. As a
result, focusing on land plants, they suggested an expected increase
of 38% in the number of species, from 215,000 in Catalogue of Life
[62] to 298,000 predicted species.

These numbers make clear that our knowledge of plant diver-
sity is still very incomplete and that even estimates of its magnitude
remain highly controversial and speculative, highlighting the need
for more taxonomic studies.

4.2 Current Threats

on Plant Diversity,

the Taxonomic

Impediment, and Some

Initiatives

to Overcome It

At the Sixth Conference of the Parties to the Convention on
Biological Diversity (CBD) held in 2002, more than 180 countries
adopted the Global Strategy for Plant Conservation (GSPC). It
included 16 specific targets that were to be achieved by 2010,
with the goal to halt the loss of plant diversity [46]. The Strategy
was updated in 2010 (at the Tenth meeting of the Conference of
the Parties) and it is now implemented within the broader frame-
work of the Strategic Plan for Biodiversity 2011–2020. The first
and most fundamental target of the Strategy was initially to com-
plete a ‘widely accessible working list of known plant species, as a
step towards a complete world flora’ [46, 59]. After the completion
of this list in 2010 [53], Target 1 was slightly modified to develop-
ing ‘an online flora of all know plants’ (http://www.cbd.int/gspc/
targets.shtml; http://www.worldfloraonline.org/). This target
aims to provide baseline taxonomic information, i.e., a list of the
accepted names for all known plant species, linked to their syno-
nyms but also to biological information such as geographic distri-
bution and basic identification tools. Since species are basic units of
analysis in several areas of biogeography, ecology, and
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macroevolution and also the currency for global biodiversity assess-
ments [63], the lack of such taxonomic information is a critical
bottleneck for research, conservation, and sustainable use of plant
diversity [46], and was called the ‘taxonomic impediment’ at the
Second Conference of the Parties to the CBD (decision II/8). This
is especially critical at a time when biodiversity faces its sixth extinc-
tion crisis: most newly described species occur in hotspots of diver-
sity, often in tropical dense forests, where protected areas are scarce,
the level of habitat destruction (due to anthropic activities) is high,
and the impact of climate change is strong. Newly described species
are also likely to be characterized by locally low abundance and
small geographic ranges, enhancing their risk of extinction
[64]. Therefore, botanists must engage into a race to describe and
name species before they go extinct. This is especially true since
plants still lag far behind many animal groups in contributing to
global conservation planning, despite their essential role in struc-
turing most ecosystems [65]. In addition to the major conservation
concern, there are a multitude of possible concrete examples of
beneficial application of taxonomic discovery such as the identifica-
tion of new wild species adaptable for agriculture, timber or fibers;
new genes for enhancement of crop productivity; and new classes of
pharmaceuticals. Also, basic taxonomic knowledge is a prerequisite
to monitor and anticipate the spread of invasive plants, and to
better understand ecosystem services [45, 47].

Several factors limit the efficiency of botanists in documenting
plant diversity. However, recent improvements and future optimis-
tic perspectives must also be underlined, and numerous contribu-
tions have been made to imagine and propose what the ‘Taxonomy
for the twenty-first century’ should and could be (see, e.g., [29, 66],
and the whole Theme Issue of the Philosophical Transactions of the
Royal Society of London, Series B that they coordinated; see also [67–
69]), and what roles, challenges, and opportunities should be for
the ‘Botanists of the twenty-first century’ (https://unesdoc.
unesco.org/ark:/48223/pf0000243791.locale¼fr).

First, one limiting factor is the general lack of funding and, in
particular, the lack of resources devoted to the basic field activity of
collecting new material [55, 66, 67, 70]. Field explorations are also
made difficult by practical limitations such as ease of access to
remote areas or safety concerns in some parts of the world that
may be politically unstable [44, 45, 59]. However, we currently
know a renewed age of exploration and discovery, supported by
several national or international initiatives. This is particularly true
in the United States, where the ‘Planetary Biodiversity Inventories:
Mission to an (Almost) Unknown Planet’ program, was launched
in 2003, aiming to complete the world species inventory for some
selected taxa, with individual project awards of ca. US$3 million
over a 5-year duration (http://nsf.gov/pubs/2006/nsf06500/
nsf06500.htm) [55, 71]. Other leading initiatives like ‘Our Planet
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Reviewed’ (http://www.laplaneterevisitee.org/en) much contrib-
ute to inventories in hotspots. In Europe, several major museums
and botanical gardens established the Consortium of European
Taxonomic Facilities (CETAF) in 1996, which in turn created the
European Distributed Institute of Taxonomy (EDIT) in 2006, for
a 5-year period, under the European Union sixth Framework
Programme. This worldwide network of excellence brought
together 29 leading European, but also North American and
Russian, institutions with the goal to increase both the scientific
basis and capacity for biodiversity conservation. Developing
countries also participated to this international effort by developing
similar national or multinational programs, e.g., in Brazil, Mexico,
and Africa [72]. On a global scale, the Global Taxonomic Initiative
(GTI) was launched in 1998 by the Conference of the Parties to the
CBD, and was later related to the GSPC, in order to remove or
reduce the ‘taxonomic impediment.’ In addition to institutional
breakthroughs, modern means of travel have facilitated access to
remote places where many species occur. As a result, although today
botanical expeditions could probably not be as prolific as those
reported during the great naturalists explorations of the eighteenth
and nineteenth centuries in terms of new species descriptions (e.g.,
in 1770, Sir Joseph Banks collected specimens representing as many
as 110 new genera and 1300 new species in Australia; White 1772
in [59]), important discoveries occurred in the recent past and
provide evidence for the vitality of contemporary botanists: for
instance, the Malagasy endemic Takhtajania perrieri (Capuron)
Baranova & J.-F.Leroy (Winteraceae) was first collected in 1909
and thought to have gone extinct, but was rediscovered in 1994
[73], i.e., almost 90 years after its first collection. Other examples
suggest that some showy, sometimes abundant plants still remain to
be described, even in geographical areas that are supposed to be
well prospected: a new genus and species of conifer, Wollemia
nobilis W.G.Jones, K.D.Hill & J.M.Allen, was observed in the
1990s only ca. 150 km from Sydney (Australia), and was shown
to belong to a well-known family of charismatic trees (Araucaria-
ceae), including only two other genera [74]. In 2007, Thulin and
collaborators reported the discovery of a conspicuous and domi-
nating tree in the Somali National Regional State (Ogaden) in
eastern Ethiopia [75, 76]. This tree, Acacia fumosa Thulin (Faba-
ceae), covers an area as large as Crete but was hitherto unknown to
science. The location of this species in an African war zone and the
inaccessibility of the area probably explain that it had never been
collected and remained undescribed so far. To cite a last example of
recent striking botanical discovery, we can mention the description
of a new palm genus and species from Madagascar, Tahina spect-
abilis J.Dransf. & Rakotoarin. [77]. The trees grow to 18 m high
and leaves reach 5 m in diameter, making them the most massive
palms ever found in Madagascar. However, the small census size

18 Germinal Rouhan and Myriam Gaudeul

http://www.laplaneterevisitee.org/en


(less than a hundred individuals), limited habitat, and rare repro-
duction events lead to serious conservation concerns for the
species.

A second crucial issue for enhancing our knowledge of plant
diversity is the lack of taxonomic expertise. This is at least partly due
to the lack of credit given to works of descriptive taxonomy (e.g.,
species lists, floras, or monographs) compared to peer-reviewed
publications in high-impact journals [46, 70, 78, 79]. The global
number of species described over time has increased over the past
250 years [60, 80], but this remains clearly not sufficient to coun-
teract the increasing rate of species extinctions, and many species
are at risk of disappearing before being described. Although taxo-
nomists have most likely increased the efficiency of their efforts
since the mid-1700s, the involvement of more numerous people
into the tasks of exploring and describing the biodiversity is needed:
in the United States, the NSF’s Partnerships for Enhancing Exper-
tise in Taxonomy (PEET) program allowed the training of new
generations of taxonomists since 1995 [78, 81], and enjoyed much
success. In addition, in some regions (e.g., in Costa Rica or Papua
New Guinea), local people called ‘parataxonomists’ contribute to
specimens collection and species recognition based on rough mor-
phological criteria, in collaboration with taxonomic experts
[45]. This is also in line with the growing body of ‘citizen scien-
tists,’ who are often amateurs and offer their help to accumulate
data, e.g., on the presence/absence of a given species in a given
region, or the distribution of a morphological character across
space. Because they are usually organized as large networks, they
represent an immense and increasingly important workforce and
make possible some tasks that would otherwise not have been
possible because of, e.g., limited time and funding [80]. However,
sound knowledge and experience of professional taxonomists
remain critical [46, 66, 67, 70, 82] and capacity building in tropical
countries—where the greatest diversity of life is concentrated—
should therefore be a priority [59].

A third identified impediment to our taxonomic knowledge
was—and still is, to a certain extent—the problem of communica-
tion and coordination, of tracing the accumulated publication
records, of deciphering the complex synonymy, and of chasing the
scattered (and sometimes in poor condition) material, especially
type specimens that are housed in herbaria around the world
[59, 66, 67]. Worldwide natural history collections contain
390 million plant specimens [83] and their importance has recently
been made even more prominent by the finding that they house
many new species that remain to be described [84]: researchers
analyzing the time lapse between flowering plant sample collection
and new species recognition estimated that only 16% were
described within 5 years of being collected for the first time, and
that nearly 25% of new species descriptions involved specimens of
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more than 50 years old. The median time lag between the earliest
specimen collection and the publication of the new plant species
description was ca. 30 [84] or 32 years [85]. Such a lag time (also
called ‘shelf life’) is longer for herbarium specimens than for all
other taxonomic groups [85]. Natural History Collections thus act
as a reservoir of potential new species. Therefore, although one
limiting step of species discovery may be the capacity to undertake
field work (as suggested above), access and examination of existing
herbarium collections by experts are another bottleneck. This is
however now partly overcome by programs such as the European
SYNTHESIS (from 2004 to 2017 superseded by SYNTHESIS+ in
2019; https://www.synthesys.info/about-synthesys.html) that
provide funded researcher visits to specimens housed by diverse
institutions, or by increased international collaborations and a bet-
ter access to information and specimens, thanks to modern data-
sharing technologies [46–48, 61, 69]. As an example, a major step
was accomplished thanks to funding from the Andrew W. Mellon
Foundation and subsequent institutional commitments to database
and image name-bearing type specimens—on which the species
original descriptions are based—and deposit these data in the cen-
tral repository JSTOR Plant Science [82]. At an even larger scale,
several major herbaria—including the Paris Herbarium, which is
one of the biggest/richest in the world with ca. eight million
specimens [86]—achieved large-scale digitization of all their vascu-
lar plant specimens, in order to make them freely available as high-
quality photographs on the web—through both the herbarium
database https://science.mnhn.fr/ and the platform e-ReColNat
https://www.recolnat.org/fr/—that gather images for all natural
history collections from France (and see Note 2). In the United
States, the National Science Foundation (NSF), through its
Advancing Digitization of Biological Collections (ADBC) pro-
gram, developed a strategic plan for a 10-year coordinated effort
to digitize and mobilize images and data associated with all
biological research collections of the country in a freely available
online platform. This will ensure increased accessibility of all valu-
able information and is being made possible by the establishment of
a central National Resource for Digitization of Biological Collec-
tions (called iDigBio for ‘Integrated Digitized Biocollections’;
https://www.idigbio.org/).

For a better diffusion of taxonomic revisions, Godfray [66]
claimed the need for a ‘unitary web-based and modernized taxon-
omy’ (see also [87]). Without opting for such a drastic evolution, a
revision of the International Code of Nomenclature (ICN) has
nevertheless encouraged a change dynamics toward electronic pub-
lications: at the International Botanical Congress held in Mel-
bourne in July 2011, purely electronic descriptions were judged
valid for the publication of new species (Art. 29), as opposed to the
previous requirement to publish in traditional, printed publication
[88]. But based on the following 8 years, it must be concluded that
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the new applicable rule did not accelerate the rate of plant species
description or participation in biodiversity discovery as was hoped
[89]. Also, whereas the current taxonomic knowledge is mostly
made available in paper format as monographs, floras, and field
guides, many internet taxonomy initiatives exist and catalogue
species names, lists of museums specimens, and identification keys
and/or other biological information. These websites include, e.g.,
IPNI (www.ipni.org), The Plant List (www.theplantlist.org), GBIF
(www.gbif.org), Species 2000/ITIS Catalogue of Life (www.cata
logueoflife.org), Tree of Life (www.tolweb.org), and Encyclopedia
of Life (www.eol.org), to cite only a few (see [55, 66]).

4.3 Molecular

Taxonomy

and the Need for an

Accelerated Pace

of Species Discovery

In addition to increased efforts towards exploration in the field,
various initiatives to promote and develop taxonomic expertise,
generalization of collaborative work, and improved access to natu-
ral history collections and literature, major advances in technology
also provide new opportunities to facilitate and accelerate the rate
of species discovery at a time of increasing need to monitor and
manage biodiversity. The goal of accelerating the pace of species
discovery was made especially clear by the promoters of the DNA
barcode initiative [90, 91], but more generally, the use of molecular
tools for taxonomic purpose emerged in the 1990s—or even in the
1970s if considering allozyme markers—and has quickly become an
area of intense activity.

Today, most recognized species have been delineated and
described based on morphological evidence: in general, they have
been delimited based on one or more qualitative or quantitative
morphological characters that show no—or very little—overlap
with other species [92]. The initial enthusiasm for molecular tax-
onomy most probably came from the additional and complemen-
tary information that it provided. Also, molecular taxonomy
requires an expertise that is nowadays more broadly distributed
than that for thorough morphological investigations, it makes use
of tools that are not specific to a particular group of plants, and it
may appear more prone to scientific publications in peer-reviewed
journals than more traditional, taxonomic studies. We synthesize,
here, several other characteristics—both strengths and limita-
tions—of molecular taxonomy that one should keep in mind
when initiating taxonomic studies using molecular tools.

4.3.1 Strengths

and Limitations

of Molecular Taxonomy

First, it must be noted that the resemblance criterion within a
species, on which is based the morphological approach to delimit
species, suffers exceptions and can lead to erroneous conclusions.
Before the various reproductive systems of plants were well under-
stood, male and female individuals from a single—e.g., dioecious—
species were sometimes described as two distinct species based on
morphological investigations. For example, in the orchid genus
Catasetum Rich. ex Kunth plants are functionally dioecious (i.e.,
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with female and male flowers situated on distinct individuals) and
can morphologically differ so much from each other that taxono-
mists of the nineteenth century assigned individuals of the same
species to different genera (Monachanthus Lindl. and Myanthus
Lindl.) [93]. Other species descriptions incorporated characters
that were in fact due to anther-smut disease caused by the fungus
Microbotryum violaceum (Pers.) G. Deml & Oberw.: anthers of
infected plants are filled with dark-violet fungal spores instead of
yellow pollen [94]. As a result, Silene cardiopetala Franch., for
example, was distinguished from Silene tatarinowii Regel by its
dark anthers but should likely be treated as the same species.
More generally, because the phenotype of a plant is influenced
both by its genotype but also by its environment—and the interac-
tion between the genotype and the environment, called phenotypic
plasticity—the observations of herbarium specimens collected in
the field may be somewhat misleading. Molecular taxonomy should
avoid this possible bias since it is based on neutral markers that are
in principle independent of environmental conditions. However,
the influence of the environment is mostly true for vegetative
characters and usually less problematic for reproductive characters.
In addition, the use of several morphological characters should
limit the problem since all traits are unlikely to be affected in the
same way [95].

Second, several studies showed that, in comparison to the
traditional morphological criterion for delimiting species, molecu-
lar tools sometimes allow the detection of additional, so-called
‘cryptic’ species that could not be distinguished on morphological
grounds only. This may happen when species emerged in the recent
past, due to morphological stasis, or to morphological conver-
gences [96]. The existence of such cryptic species was reported,
e.g., on temperate or tropical plants ([97, 98] and references
therein; for an animal example, see [99]).

Third, in addition to the primary goal of species delimitation,
the use of genetic tools may allow to better understand the evolu-
tionary process at work within taxonomically complex groups,
where taxa are sometimes difficult—or even impossible—to delin-
eate. These groups are often characterized by uniparental repro-
duction, e.g., self-fertilization or apomixis, and reticulate
evolution, due to, e.g., hybridization and introgression, which
preclude the delineation of discrete and unambiguous taxonomic
entities. In such cases—e.g., in the genera Sorbus, Epipactis, and
Taraxacum ( [100–102] respectively, cited in [103])—principles of
conservation biology suggest that the evolutionary processes that
generate and maintain diversity should themselves be preserved
because they are even more important than the presently observed
taxa [103, 104]. In this perspective, molecular tools can yield very
useful information, usually based on a population sampling.
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Fourth, from a practical point of view, a key strength of molec-
ular taxonomy is that it can be performed on any life stage—even
some that bear no or only few morphological characters such as
seeds, seedlings, or fern gametophytes [105, 106]—and almost any
type of material, e.g., leaves, cambium [107–110], bark [111], dry
wood [112], and roots [113, 114]. Therefore, the use of molecular
characters for taxonomic purposes appears especially suitable for
organisms that require years before flowering and/or fully devel-
oping, or when access to some other key—e.g., reproductive—
characters is difficult.

The ubiquitous character of the DNAmolecule in living beings
can also become a problem, and care should be taken to only isolate
DNA from the target material and exclude DNAs of any other
animal, vegetal, or fungal organisms living around or in the plant
under study—e.g., parasitic insects, epiphyllous mosses, and endo-
phytic fungi.

Another practical limitation of molecular taxonomy is the cost,
as molecular lab facilities and often rather expensive consumables
are needed. This cost may be especially limiting in developing
countries [115, 116], although it is ever decreasing thanks to the
spread of molecular analyses, which are more and more commonly
employed, and to technological advances that allow cheaper and
less time-consuming analyses, see below.

An important parameter that is shared by ‘traditional’ and
molecular taxonomy studies is sampling strategy and sampling
effort. Taxonomy is based on a comparative approach that requires
the investigation of as many specimens/samples as possible in order
to catch all the extent of natural variation. Therefore, the quality of
taxonomic studies partly relies on a thorough sampling of speci-
mens/samples to be surveyed, and a biased sampling may cause
erroneous conclusions. As an example,Marsilea azorica Launert &
Paiva, which was thought to be a local endemic and critically
endangered species of the Azores archipelago, was recently shown
to be conspecific to an Australian native species that is widely
cultivated and invasive in Florida, Marsilea hirsuta R.Br [117]:
because the spread of M. hirsuta out of Australia was not docu-
mented when the Marsilea specimens from the Azores were exam-
ined by Launert and Paiva in 1983 [118], the botanists did not
include the Australian taxa into their survey, and erroneously
described the species as new to science.

On more theoretical and conceptual grounds, some claim that,
in comparison with ‘traditional’—typically morphology-based—
taxonomy, the use of molecular tools may avoid bias due to the
subjectivity of a given taxonomist, who could have a priori ideas on
species delimitation. However, the acquisition of a molecular
dataset also implies some more or less subjective choices, e.g., on
the distinction of orthologs vs. paralogs, on defining character
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homology when sequences of different lengths must be aligned to
form a square matrix, or on the statistical analysis to carry out after
the data are produced (see e.g. [95, 119–121]); the latter choice, on
data analysis, is closely related to the adoption of a given species
concept (see Note 1). Also, because our current technological
capacities do not allow the routine inclusion of the whole genome
in taxonomic analyses, choices must be made on the genomic
compartment(s) to survey—nuclear, mitochondrial, or chloroplas-
tic, the molecular technique(s) to use, and the precise, individual
marker(s) to consider (Chapter 2). The choice of a limited number
of markers is required, in practice, although multiple independent
loci might often be necessary to solve the possible disagreement
between gene trees and species trees, and to uncover the common
reticulate evolution—due to horizontal DNA transfer, hybridiza-
tion, and polyploidization events—and incomplete lineage sorting
in plants [55, 95, 121–123]. The extent of genome coverage by
molecular markers is partly dependent on the molecular technique
that is used, and there is often a trade-off between the possibility—
due to time and cost limitations—of surveying numerous markers
and the information content provided by each marker. For exam-
ple, it is usually achievable to include a large number of anonymous
markers based on length polymorphism—such as RAPD or AFLP
markers—but the number of DNA regions that could be
sequenced, representing highly informative data, is much more
limited with the traditional Sanger method. However, rapid
advances in Next-Generation Sequencing (NGS) technologies
have resulted in huge cost reduction and offer incredible new
opportunities for producing billions of base pairs of accurate
DNA sequence data in a few hours [124–126]. Studying whole
chloroplast genomes or multiple nuclear loci might therefore
become routine even in non-model species, and begin, obviously,
to revolutionize plant molecular taxonomy [127]. Then, the main
bottleneck is probably cleaning up and assembling the sequence
reads to generate useable data, and major improvements in bioin-
formatics would be needed to deal with such huge amounts of data
[124, 125].

Another limitation of molecular taxonomy is the possible lack
of genetic divergence when sister-species have very recent origins
because they will share alleles due to recent ancestry and, if repro-
ductive isolation is not complete, to ongoing gene flow, i.e., hybri-
dization. This lack of genetic variation can nevertheless be
accompanied by some level of morphological differentiation, lead-
ing to the exact symmetrical situation to cryptic taxa—where one
could observe genetic but no morphological distinction; see above.
The absence or extremely weak genetic divergence was observed,
e.g., in the young and species-rich neotropical genus Inga Mill.
(Fabaceae) [128], and striking examples of such morphological
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diversification but weak genetic variation are also provided by cases
of adaptive radiations, where species rapidly adapt to different
environments—e.g., in the Hawaiian silverswords (Asteraceae)
[129], the Asian genus Rheum L. [130], or the widespread colum-
bine genus Aquilegia L. [131]; for more examples, see [132]. In
such cases of recent diversification, the delimitation of species will
usually be based on allele frequency changes rather than diagnostic
changes [133] and can benefit from recently developed coalescent-
based methods (e.g., [134, 135]). The time required for genetic
divergence to build up after speciation will depend on the mutation
and fixation rates—and the fixation rate depends on the number of
reproductively effective individuals. Because of different fixation
rates between (diploid) nuclear and (haploid) organelle genomes,
studies based on nuclear vs. organelle DNA markers may yield
contrasted results on species limits. Such contrasted results are
also made likely by the horizontal organelle DNA transfers that
occasionally occur, especially among closely related species.

Molecular markers can also suffer from homoplasy, i.e., markers
can show similar character states that, however, do not derive from
a common ancestor. In this case, they do not inform on the geneal-
ogy of taxa and, because they do not reflect a shared evolutionary
history, they may be misleading on evolutionary and, as a conse-
quence, on taxonomic relationships. This is especially problematic
for highly variable markers, e.g., microsatellites, and for DNA
sequences that are only composed of four types of monomer
(A, C, G, and T): as a result, a substitution at any one position
has a high probability of being a reversal or a convergence, i.e., of
being homoplasic [95, 121]. It is therefore critical to take this
caveat into account when analyzing and interpreting
molecular data.

Another drawback of molecular taxonomy is that name-bearing
type specimens often do not permit DNA analyses because of
nonoptimal drying and storage conditions, resulting in DNA dete-
rioration ( [136]; the same limit also obviously applies to most plant
fossils, which do not contain DNA). Consequently, a comparison of
the supposedly new species with known species may not be possible
on a molecular basis and prevent a rigorous taxonomic, compara-
tive approach. As part of their ‘plea for DNA taxonomy,’ Tautz
et al. [133] proposed to identify neotypes for all known species in
cases of unavailable genetic information from the original types, so
that these neotypes could constitute new reference records for
further studies. However, this proposal received very limited sup-
port (see, e.g., [119, 137]). Besides, recent progresses have been
made in the extraction of DNA from herbarium specimens
[138, 139] and the genetic analysis of such material will very likely
benefit from NGS technologies [126]. But so far, given the usually
low-quantity and often degraded DNA that is extracted from
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herbarium specimens, the most commonly employed molecular
techniques are microsatellite markers—because their short length
makes amplification more likely than that of longer DNA stretches
(see e.g. [140]), and organelle DNA sequencing, because their
multiple copies per cell represent more abundant template DNA
for PCR than nuclear loci. Most of the published studies report the
successful exploitation of specimens up to ca. 100–150 years old,
with DNA sequences produced usually ca. 500 pb long [141–
145]. But the kind of material—e.g., presence of PCR-inhibiting
substances [146]—and the speed and method of drying appear
more important than the actual age of the sample [141–143,
147], and some botanists managed to obtain DNA sequences
from even older specimens and/or longer DNA regions, e.g.,
Ames & Spooner sequenced ca. 440-bp DNA fragments from
potato material from the early eighteenth century [148], and
Andreasen et al. [147] sequenced 800-bp DNA fragments from a
specimen collected in the late eighteenth century. The successful
use of aged seeds has also been reported [138, 149].

4.3.2 The Definitive Need

for an Integrative

Taxonomy

The use of molecular data in plant taxonomy has been era-splitting
and highly successful in many instances, but we also highlighted
some limits and cautions to consider when adopting this approach.
Most importantly, a species description solely based on molecular
evidence would obviously seem critically disconnected from the
natural history of the species, i.e., its life-history traits, ecological
requirements, co-occurring species, biotic interactions, etc. As
such, molecular tools may indeed accelerate the rate of species
discovery but would actually be a poor contribution to our knowl-
edge and understanding of plant diversity and evolution. Such a use
of molecular taxonomy could even end up with the exact opposite
of the expected outcome if funders only aim to basically delineate
and count species with no other ambition; indeed, gathering fur-
ther biological information is an essential prerequisite to make a
general use of the taxonomic knowledge, efficiently preserve the
existing diversity, and allow its continued evolution. Botanists have
long realized this and promoted the use of multiple independent
sources of data, and/or the use of several analytical methods on the
same dataset to corroborate the delimitation and provide a thor-
ough and detailed description of species. As early as 1961, Simpson
(p. 71) wrote ‘It is an axiom of modem taxonomy that the variety of
data should be pushed as far as possible to the limits of practicabil-
ity’ [6]. In agreement, Alves and Machado [150] wrote that ‘Tax-
onomy should be based on all available evidence.’ This awareness
gave rise to the advent of what is now called ‘integrative taxonomy,’
where taxonomic hypotheses are cross-validated by several lines of
evidence ( [29, 121, 150–155], and many others). As sources of
relevant characters, many fields of biology might contribute to

26 Germinal Rouhan and Myriam Gaudeul



taxonomic studies: they include morpho-anatomy which takes
advantage of new techniques such as Scanning Electron Micros-
copy (SEM), remotely operable digital microscopy, computer-
assisted tomography, confocal laser microscopy, and automatic
image processing for morphometry [155, 156], cytometry and
cytogenetics (see Chapters 17–19) but also palynology, physiology,
chemistry (production of secondary compounds), breeding rela-
tionships, and ecological niche modelling—we are not aware of
currently available examples in plant taxonomy but for animals, see
[157–159]. Other sources of information will also most probably
be more widely used in the future, such as transcriptomics
[160, 161], metabolomics [162], proteomics [95], and even phe-
nomics—Munck et al. [163] showed, in barley, that the fingerprint
of a near-infrared spectrum from an individual represents a coarse-
grained overview of the whole physiochemical composition of its
phenome, with the phenomic profile resulting from the combined
effects of the entire genome, proteome, and metabolome
[164]. The diversity of approaches involved in modern plant tax-
onomy is consistent with the observations by Joppa et al. [80] that
(a) today’s biologists who describe species are not only contribut-
ing to the field of taxonomy, but also active in other fields/disci-
plines, and (b) most new species are nowadays described by several
authors whereas descriptions by a single author were common
around 1900.

It is also clear that end users of taxonomy such as conservation
planners need an operational, character-based, and cheap way to
discriminate species [91, 115, 150]. This could tend to diminish
the perceived potential of molecular taxonomy, but in this perspec-
tive and in spite of the shortcomings that we have just underlined,
molecular taxonomy obviously has a great role to play. DNA can aid
to delimit taxa, and to group specimens among which to find
morphological—or other types of—affinities in further investiga-
tions (see, e.g., [165, 166]). Such clusters of individuals, character-
ized by close genetic relationships, are sometimes referred to as
‘molecular operational taxonomic units’ (MOTU) [167], before
their genuine taxonomic statuses are evaluated by gathering addi-
tional data. Markmann and Tautz [168] called this approach, based
on an initial molecular assessment, the ‘reverse taxonomy’ (see also
[151, 152]). The fruitful link between ‘traditional’ and molecular
taxonomy should be accompanied by an analogous link between
herbarium vouchers, plant samples for DNA extraction, and DNA
extracts [169, 170]. The curation of such collections and the
maintenance of a dynamic link between them will provide a long-
lasting and reliable framework for taxonomic investigations, and
will permit the critical re-evaluation of taxa delimitations at any
time, based on both herbarium and DNA material.
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Duminil and Di Michele [95] reviewed studies comparing
species delimitations based on morphological traits and molecular
markers. They found both cases of congruence and incongruence
between the two types of data. As suggested above, cases of incon-
gruence were either due to stronger molecular discrimination
between species—suggesting the existence of cryptic species—or,
on the contrary, to stronger morphological differentiation, due to
processes like local adaptation, phenotypic plasticity, or neutral
morphological polymorphism (e.g., [171]). Conflicting results
often trigger more in-depth studies using as many loci as possible
and, if possible, loci that originate from different genomes, with the
goal to better understand the patterns and processes of plant evo-
lution and diversification (e.g. [172–178]).

Taxonomic circumscriptions are scientific hypotheses, which
are ideally validated by evidence from multiple sources, and molec-
ular methods offer the opportunity to yield high-potential infor-
mation. However, there is not a single, best method to be used in all
plant groups and the molecular taxonomist will have to face multi-
ple questions: before anything, it is necessary to identify the optimal
sampling strategy, the most suited genomic compartment(s) to
examine, the right technique(s) to use, and the adequate method
(s) of statistical analysis to extract the relevant information about
species limits and relationships [120, 121]. In addition to the
complementarity of ‘traditional’ and genetic approaches, molecular
taxonomy itself will often require to gather and compare patterns
based on several types of data—e.g., nuclear vs. cytoplasmic mar-
kers or markers with different rates of evolution. The goal of this
book is to present the possible alternatives of molecular taxonomy,
their practical implications in the lab, current analytical tools that
are available, and theoretical consequences for data interpretation.
The empirical and analytical approaches used for a molecular taxo-
nomic study, together with the conclusions drawn from the data,
will also obviously depend on the species concept that is adopted
and on the choice of operational criteria to delimit species—see
Note 1).

5 Notes

1. Species concepts and contemporary criteria for species
delimitation.

Species delimitation obviously depends on what a species is
and, although the species is often seen as the fundamental unit
of evolution, its definition has long remained highly debated.

The existence of species itself is somewhat controversial,
especially in plants where asexuality, hybridization, and poly-
ploidy may render the definition and delimitation of species
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complex and fuzzy. Some argue that species are ‘arbitrary con-
structs of the human mind’ while others claim that they are
objective, discrete entities. Reviewing the available data (both
in plants and animals), Rieseberg et al. [179] showed that
discrete phenotypic clusters exist in most genera (>80%),
although the correspondence of taxonomic species to these
clusters is poor (<60% and not different between plants and
animals). In addition, crossability experiments indicate that as
much as 70% of plant taxonomic species and 75% of plant
phenotypic clusters correspond to reproductively independent
lineages.

The proliferation of alternative species concepts really
started in the 1970s. It gave rise to several decades of debate
and taxonomic instability because many concepts were incom-
patible in that they lead to the recognition of different species
boundaries and different number of species. This was called the
‘species problem.’

Morphological approaches have dominated species delimi-
tation for centuries, starting with the purely typological (i.e.,
essentialist) pre-Darwinian view. But most contemporary biol-
ogists are familiar with the idea that species are groups of
actually or potentially interbreeding natural populations,
which are reproductively isolated from other such groups (the
‘Biological Species Concept’), whether or not they differ in
phenotypic characters that are readily apparent.

However, another, unified species concept has now
emerged. It originated as early as the beginning of the twenti-
eth century (with, e.g., E. B. Poulton), became well established
during the period of the Modern Evolutionary Synthesis (with
the great leaders T. Dobzhansky, E. Mayr, G. G. Simpson, and
S. Wright), and was recently largely promoted by de Queiroz
[180, 181]. This unified concept reconciles previous, at least
partially incompatible species concepts. It considers species as
separately evolving metapopulation lineages and is called the
‘General (metapopulation) Lineage Concept.’ Other proper-
ties of species, which used to be treated as necessary (and
sufficient) properties to recognize a species as such (e.g., repro-
ductive isolation, monophyly; see Table 1), are now only seen as
different lines of evidence, or ‘operational criteria,’ relevant to
assessing lineage separation. The unified species concept is
actually not a new concept, but simply the clear separation of
the theoretical concept from the operational criteria that are
used for the empirical application of this concept.

Operational criteria can be either tree-based or non-tree
based (e.g., direct tests of crossability, indirect estimates of
gene flow, statistical clustering algorithms) [198], and new
methods are still being developed (e.g., analyzing multilocus
genetic data in a coalescent framework). Criteria differ in their
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Table 1
Some alternative contemporary species concepts/criteria

Name of the species concept/
criterion Definition of the species

Major
contributor(s) Ref.

Interbreeding species concept
[forms the basis for the general
(metapopulation) lineage
concept]

A group of potentially interbreeding
populations

Wright 1940,
Mayr 1942,
Dobzhansky
1950

[182–184]

aIsolation species concept [often
called the biological species
concept]

A group of potentially interbreeding
populations that is reproductively
isolated from other such groups

Poulton 1904,
Mayr 1942,
Dobzhansky
1970

[184–186]

Phenetic species concept A group that forms a phenetic cluster
(quantitative difference)

Sokal and
Crovello
1970

[187]

Ecological species concept A group that shares the same niche or
adaptive zone

Van Vaalen
1976

[188]

aEvolutionary species concept
[corresponds closely to the
general (metapopulation)
lineage concept]

A lineage (i.e., an ancestral-
descendant sequence of
populations) evolving separately
from others and with its own
evolutionary role and tendencies

Simpson 1951,
Wiley 1978

[189, 190]

Phylogenetic species concept—
character diagnosability version

An irreducible (basal) cluster of
organisms, diagnosably distinct
from other such clusters, and
within which there is a parental
pattern of ancestry and descent
(fixed qualitative character)

The diagnostic character can be from
any trait (e.g., morphological or
molecular) and of any significance
(e.g., a single base pair)

Cracraft 1989 [191]

Phylogenetic species concept—
reciprocal monophyly version

A group that shows monophyly
(consisting of an ancestor and all of
its descendants, and commonly
inferred from the possession of
shared derived character states)

Rosen 1979,
Donoghue
1985,
Mishler 1985

[192–194]

Genealogical species concept A group that shows monophyly for
all (or at a consensus of) gene
genealogies in the genome

Baum and Shaw
1995

[195]

Genotypic species concept A group recognizable on the basis of
multiple, unlinked, inherited
genetic markers

A pair of such genotypic clusters is
recognizable if the frequency
distribution of genotypes is
bimodal or multimodal, and

Mallet 1995 [196]

(continued)
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suitability to some particular species (e.g., sexual vs. asexual),
their requirements in terms of type of data and sampling, and
their strengths and limitations. It must also be noted that most
of them will require researchers to make some qualitative judg-
ments at some point.

The commonly observed incompatibility between various
criteria stems from the fact that various properties actually arise
at different stages in the process of speciation: as lineages
diverge, they become distinguishable in terms of quantitative
traits, diagnosable in terms of fixed character states, reproduc-
tively incompatible, they evolve distinct ecologies, they pass
through polyphyletic, paraphyletic, and monophyletic stages,
etc. These changes commonly do not occur at the same time,
and they are not even necessarily expected to occur in a specific
order. De Queiroz [180] qualifies this transition period, from
one ancestral species to two divergent species, a ‘grey zone,’
where alternative species definitions can come into conflict. But
as lineages diverge, the number of species criteria satisfied will
increase and allow a highly corroborated hypothesis of lineage
separation and species delimitation.

2. A new world-class research Infrastructure is now being built in
Europe, the Distributed System of Scientific Collections (DiS-
SCo), that will work for the digital unification of all natural
science assets under common curation, access, policies and
practices, and that aims to ensure that the data is easily Find-
able, Accessible, Interoperable and Reusable.

Table 1
(continued)

Name of the species concept/
criterion Definition of the species

Major
contributor(s) Ref.

strong heterozygote deficits and
linkage disequilibria are evident
between the clusters

aCohesion species concept A group that is characterized by
cohesion mechanisms, including
reproductive isolation, recognition
mechanisms, and ecological
selection, as well as by genealogical
distinctiveness

Templeton
1998

[197]

aCombined species concepts, i.e., concepts using a combination of morphological, ecological, phylogenetic, and repro-

ductive criteria
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Chapter 2

Guidelines for the Choice of Sequences for Molecular Plant
Taxonomy

Pascale Besse

Abstract

This chapter presents an overview of the major plant DNA sequences and molecular methods available for
plant taxonomy. Guidelines are provided for the choice of sequences and methods to be used, based on the
DNA compartment (nuclear, chloroplastic, mitochondrial), evolutionary mechanisms, and the level of
taxonomic differentiation of the plants under survey.

Key words Nuclear DNA, Chloroplast DNA, Mitochondrial DNA, Repeated DNA, Low copy DNA,
Evolution, Molecular plant taxonomy

1 The Plant Genome and Regions Targeted for Molecular Plant Taxonomy

The nuclear genome in plants is very complex as in many eukar-
yotes, as illustrated by the “C-value enigma” [1, 2]: although the
overall haploid DNA content (C-value) increases with apparent
biological complexity, some species have more DNA in their hap-
loid genome than somemore complex organisms. Also, for a similar
level of biological complexity, some species, such as plants, exhibit a
surprisingly wide range of C-values (Fig. 1). This apparent discrep-
ancy can be in part explained by the occurrence of variable amounts
of repetitive DNA in the genomes (Fig. 1), most of which is con-
stituted by noncoding sequences [4].

1.1 Repeated

Nuclear DNA

Sequences

Most nuclear sequences targeted in molecular taxonomy experi-
ments belong to the category of highly repetitive DNA. Nuclear
ribosomal RNA genes (nrDNA) are tandemly (side by side)
repeated and located at a few loci in plant genomes [5–7]
(Fig. 2). These, and particularly the ITS (internal transcribed
spacers) [8, 9], have long been widely used for resolving plant
taxonomic issues, initially using restriction analysis and then
sequencing (Chapter 7). Microsatellite markers, also called STR
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(simple tandem repeats) or SSR (simple sequence repeats), are
tandem repeats of small stretches of noncoding DNA sequences,
discovered in 1989 and named after the discovery of minisatellite
and satellite DNA, which exhibited a similar tandem structure [10]
(Fig. 2). Microsatellites are also widely used for diversity studies in
plants, either as powerful single locus markers easily amplified by
PCR (Chapter 11) or in multi-locus profiling methods revealing
regions between adjacent SSRs (inter-simple sequence repeats,
ISSR) by PCR amplification (Fig. 3)(Chapter 14).

Transposable elements (TEs) represent another class of
repeated DNA, but the elements are dispersed across the genome
instead of being tandemly repeated and these also can represent an
important part of the plant nuclear genome. Two main classes of
TEs exist in plants: class I retrotransposons (which transpose
through an RNA copy which is then reverse transcribed into
DNA and inserted at a new site—in a “copy/paste” mode) and
class II transposons (which are excised and transposed directly as

Fig. 1 Haploid genome size and composition for different plant species (graph built from data taken in [3])
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DNA—in a “cut/paste” mode) (Fig. 4). Class I retrotransposons
are more numerous in genomes than class II as the original copy of
the transposon is retained after transposition. In maize for example,
LTR (Long Terminal Repeats) retrotransposons represent up to
70% of the nuclear genome [11]. Class I transposons (either
LTR-retrotransposons or non LTR-SINEs, Short Interspersed
Nuclear Elements) are now commonly used for phylogenetic and
taxonomic studies. Many studies use multi-locus PCR-based
profiling methods such as Inter-Retrotransposons Amplified Poly-
morphism (IRAP) (Fig. 3), which amplifies regions between

Fig. 2 Tandem repeat sequences used for molecular plant taxonomy: structure and number of tandem repeats

Fig. 3 : Multi-locus profiling methods using either SSR or retrotransposons as
anchors
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adjacent LTR repeats of LTR-retrotransposons (Chapter 15). As
described for eukaryotes [12], SINE elements are considered as
perfect makers and are also being sequenced to build robust plant
phylogenies although these studies are restricted to a limited num-
ber of plant species (mainly cultivated species) for which SINEs
have been described and isolated [13, 14].

1.2 Low Copy

Nuclear Genes

and SNPs

Contrary to ribosomal DNA nuclear genes, low-copy nuclear genes
(LCNG) do not suffer the possible disadvantages of concerted
evolution, paralogy and homoplasy [8, 9, 15, 16] that can be
particularly limiting for taxonomic studies in recent hybrids or
polyploids (Chapter 7). However, care must be taken if using
low-copy genes belonging to multigenic families for which paral-
ogy and concerted evolution issues might still be problematic [17].

Despite their advantages, single-copy nuclear genes have not,
for a long time, so much been used for plant taxonomy as they are
much more difficult to isolate and characterize, contrary to chloro-
plast DNA or ribosomal nuclear DNA which have been extensively
used because they are easily amplified using universal primers
(as described in the earlier version of this book [18]) (and see
Chapter 5). This situation has however changed rapidly [16, 17,
19]. With the availability and affordability of new sequencing tech-
nologies [20, 21] [22], it is now becoming feasible to assess varia-
tions at a wide range of single or low copy genes in nuclear genomes
giving access to powerful phylogenomic analyses [23, 24]. The
availability of an increasing number of complete plant genome
sequences [25] now allows single nucleotide polymorphisms
(SNPs) to be searched for and analyzed (Fig. 5) (Chapter 9).
Even without a complete genome sequence, various sequence-
based SNP assays can be designed [26]. Simple methods such as
GBS (Genotyping By Sequencing) now allow to reveal numerous
SNPs markers without sequencing whole genomes [27]
(Chapter 10). GBS technique is now often preferred to the high-
throughput DNA-array technology DArT (Diversity Array Tech-
nology) [28, 29].

Fig. 4 Transposable elements in plants
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1.3 Anonymous

Sequences

Many molecular technologies also rely on revealing variations at
randomly picked anonymous sequences in genomes. In such tech-
niques, the importance is not the nature of the target sequence
itself, but rather the high throughput of the technology, which
allows revealing numerous markers (loci) covering the genome.
The aim is to give an as-accurate-as-possible view of the genome
diversity. This is the case for Amplified Fragment Length Polymor-
phism (AFLP) (Chapter 12), Randomly Amplified Polymorphic
DNA (RAPD) (Chapter 13), and associated techniques (Fig. 6)
which use primers with arbitrary sequence to amplify genomic
regions. Some multi-locus profiling techniques use a combination
of AFLP associated with the revelation of either SSR loci (Selective
Amplification of Microsatellite Polymorphic Loci, SAMPL) [30]
(Chapter 12) or LTR-retrotransposons (Sequence-Specific Ampli-
fied Polymorphism, SSAP) (Chapter 15), others combine anchor
primers in both SSR- and LTR-retrotransposons conserved regions
(Retrotransposon-Microsatellite Amplification Polymorphism,
REMAP) (Chapter 15) (Fig. 7).

1.4 Organellar DNA In plants, genetic information is also carried in the mitochondrial as
well as chloroplast genomes (organellar DNA). Although mito-
chondrial genome (mtDNA) has received little attention in plant

Fig. 5 SNPs in plants

Fig. 6 Markers revealed by RAPD and AFLP
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taxonomic studies (but see Chapter 6) because of numerous rear-
rangements and low levels of sequence variation, chloroplast DNA
(cpDNA) has been widely used in molecular plant phylogeny
(Chapter 5). When in earlier years the use of these sequences simply
relied on PCR Sanger sequencing of target mitochondrial [31] or
chloroplast genes or intergenic regions [18], as described in the
earlier version of this book, nowadays with the affordability of NGS
(next-generation sequencing) techniques, researchers are more and
more engaged in whole chloroplast and mitochondrial genome
sequencing (Chapters 5 and 6).

2 Evolutionary Considerations

The molecular clock hypothesis suggests that nucleotide substitu-
tions occur at a roughly constant rate between and within evolu-
tionary lineages across time [32] and has given rise to different
models to estimate this evolutionary rate and its constancy
[33]. According to the neutral theory of evolution, the speed of
this rate (the amount of molecular variation accumulated over

Fig. 7 Multi-locus profiling methods using a combination of anchors based on AFLP, SSR, or LTR
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time) depends on the structural and functional constraints of the
molecule [34]. This can be illustrated by noncoding DNA mole-
cules (such as introns or intergenic sequences) evolving much faster
than coding DNA as they accumulate more variations over time.
Also it is now well admitted that third position bases in codons
evolve much faster than other positions due to the redundancy of
the genetic code [34] (less functional constraint on the third posi-
tion allows for more variations to accumulate over time). Most
markers generated using RAPD or AFLP technologies have been
shown by genome mapping experiments to cluster around the
centromeres of chromosomes [35–38], a heterochromatin region
with mainly noncoding sequences. Consequently, these markers
often reveal an important amount of variation.

The evolutionary rate of a molecule is also driven by its evolu-
tionary mechanisms. Microsatellite markers are the most variable
molecules known to date. They are mostly noncoding molecules
and vary in length (due to the variation in the number of tandem
repetitions or VNTR) due to replication slippage (stepwise muta-
tion model SMM [39]), which occurs at a high frequency (10�6 to
10�2) in plants [40]. Microsatellites with shorter motifs and greater
number of repeats are more prone to replication slippage and are
thus the most variable [41]. ISSR, SAMPL, and REMAP markers,
which use a microsatellite locus as an anchor, also beneficiate to a
certain extent from the microsatellite length hypervariability. Min-
isatellite sequences that tend to evolve through unequal crossing-
over (infinite allele model IAM [39]), which is a phenomenon with
greater frequency than simple base mutations, also vary in length
(i.e., number of tandem repeats) with great frequency. For this
reason both types of sequences have been used for generating
powerful DNA fingerprints in human [42, 43] and subsequently
in numerous species, including plants.

Most tandemly repeated sequences in the genome evolve
through what is known as “concerted evolution” or molecular
drive [44, 45], which involves mechanisms such as unequal crossing
over or biased gene conversion. Over time, the sequences that
compose a family of tandem repeats within an individual genome
are maintained similar thanks to this concerted evolution [7, 46–
48]. Such sequences also tend to be maintained identical through
close lineages within a species and will therefore display a slower
evolutionary rate than molecules without concerted evolution.

In the cpDNA, like in the nDNA, intergenic noncoding
sequences evolve faster than coding sequences. For example, by
testing 7 different sequences on a range of land plants, [49] classi-
fied these sequences by order of variation as follows: psbK-
psbI > trnH-psbA > atpF-atpH > matK > rpoB > rpoC1 > rbcL,
illustrating that cpDNA intergenic regions are more variable than
coding regions. Globally, in plants, organellar sequences evolve
more slowly than nuclear sequences: mtDNA evolves 3 times
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slower than cpDNA, which in turn evolves 2 times slower than
nDNA (average synonymous substitution rates per site per year for
mtDNA and cpDNA are 0.2–1.0 � 10�9 and 1.0–3.0 � 10�9,
respectively [50]) (Chapter 6). Even the most variable of intergenic
regions in cpDNA is less variable than nuclear ITS: ITS reveals
2.81% sequence divergence in a range of plant families compared
to 1.24% divergence for trnH-psbA, one of the most variable inter-
genic cpDNA regions [51].

Finally, Class I TEs are good classification criteria to evaluate
species phylogenetic relationships, their mode of transposition
(“copy-paste” mode) makes them numerous and implies no ambi-
guity in the ancestral state definition, which is, for a given locus, the
absence of TE [12, 13]. Class II TEs are less appropriate for
phylogenetic issues mainly because of their direct mode of transpo-
sition (“cut-paste” mode). However, it is of note that TEs show
possibilities of horizontal transfer [52], which can lead to erroneous
classifications (TE phylogenetic trees not concordant with species
phylogenetic history) [53, 54].

3 Choice of Sequences for Molecular Taxonomy

These evolutionary considerations are of primary importance when
one wants to use a DNA sequence to infer phylogenetic relation-
ships between a set of accessions. Two questions have to be consid-
ered when starting a molecular taxonomy project:

1. What is the degree of time divergence between the accessions
under study? Do we want to address variations at the intraspe-
cific level (population level) or are we comparing species from
the same genus or different genera from the same family or
above?

2. What is the evolutionary rate of the molecule that will be used
to infer relationships between accessions?

The rule to keep in mind is that the further we need to go in
evolutionary times, the slower the molecule must evolve. Going
too far with too much diverging sequences will lead to homoplasy
(characters identical by state, not by descent) through convergence
or reversion. On the contrary, slow-evolving sequences will not be
enough discriminating for groups that have evolved recently
(Fig. 8). Figure 9 illustrates this rule: if a very slow-evolving
sequence is used, it might be unable to differentiate the two hypo-
thetical species under study (Fig. 9A). A sequence with an interme-
diate rate of evolution and concerted evolution would allow the
identification of each species, but would be unable to reveal any
intraspecific variability (Fig. 9B). To reach such level of informa-
tiveness, one would need to use a single copy gene (Fig. 9C) or a
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microsatellite marker (Fig. 9D), but the latter, due to high evolu-
tionary rate, may generate homoplasy (*), which could lead to
erroneous interpretations if comparing species A and B, as individ-
ual 4B would appear more related to species A than to individuals
from species B. Such rapidly evolving sequences are therefore not
appropriate for studying relationships at taxonomic levels too high.

Guidelines for the choice of sequences to be used depending on
the level of taxonomic divergence are illustrated (Fig. 10). It must
be kept in mind that the level of taxonomic differentiation can vary
considerably depending on the species group, therefore one always
needs to perform preliminary tests of various sequences on a repre-
sentative subset of accessions to assess their power in differentiating
our own individuals, species, or genera of interest.

Fig. 8 Illustration of the usefulness of rapidly evolving versus slow-evolving sequences in molecular taxonomy
assessment of recently or anciently diverged groups. The curvilinear relationship between molecular changes
and time is represented theoretically, starting with a constant accumulation rate (molecular clock hypothesis),
which plateaus as a consequence of the saturation of the sequence over time. The faster the sequence
evolves, the faster the plateau is reached
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4 Genetic Considerations

Knowledge of the mode of inheritance of the molecules under
study is also of great importance. Nuclear sequences are inherited
in a Mendelian fashion, with contribution from both parents.
Organellar (chloroplastic and mitochondrial) sequences are almost
always uniparentally inherited (generally maternally, but see [55]).
This can have important consequences when building a molecular
phylogeny, as individuals or species of interspecific origin will

Fig. 9 Illustration of the differentiation power of DNA molecules depending on their evolutionary rates. Panels A
to D represent hypothetical electrophoresis results using four different DNA molecules with increasing
evolutionary rate. * indicates fortuitous co-migrating bands i.e. homoplasy
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appear inconsistently on the trees generated with each type of
marker (Fig. 11): a species B of hybrid origin will be grouped
with its mother species A using cytoplasmic sequences, although
it will appear different from it on the nuclear tree.

AFLP, RAPD, ISSR, and other multilocus profiling methods
generate >90% dominant markers [56]. The polymorphism
revealed is mainly due to mutations in the hybridization region of
one of the primers, leading to either amplification of the locus
(presence) or null allele (absence of amplification), i.e., a dominant
system (Fig. 12). Consequently, such methods provide only bialle-
lic markers.

Fig. 10 General guidelines for the choice of markers to be used for plant taxonomy

Fig. 11 A hypothetic phylogeny involving a hybrid species B whose maternal parent is species A
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On the other hand, microsatellite are very powerful monolocus
markers as they are multiallelic and codominant (Fig. 12). They are
indeed widely used in molecular ecology and population genetics
studies as heterozygous loci can be clearly identified and allelic
frequencies can be calculated to test for deviations from Hardy
Weinberg equilibrium. One microsatellite multi-allelic marker pro-
vides as much genetic information as four to ten biallelic AFLP
markers [57].

SNPs markers are monolocus, codominant, but are biallelic.
Indeed, they evolve through the infinite sites (IAM) model: given
the low rate of substitutions in genomes (the average synonymous
substitution rate in plant nuclear genome is about 5.0–30.0� 10�9

per site per year [50]) the probability of more than one mutation at
a given site is negligible, therefore each SNP is almost exclusively
found only with two different states among the 4 possible (A, G, C,
or T). For population genetic studies, it will be necessary to com-
pensate the low allelic diversity of SNP markers by increasing the
number of studied loci (2 to 6 times more SNP locus are needed as
compared to microsatellites [58] to reach the same level of infor-
mativeness) particularly for populations with low levels of
differentiation [59].

5 Analyzing Results

Most techniques presented (microsatellites, RAPD, AFLP, ISSR,
IRAP, REMAP. . .) will generate fragment length data (different
band sizes visualized and coded after electrophoretic separation).
They are coded as 0/1 (absence/presence) or allelic size (when not
dominant). Most of these sequences can be used to construct
dendrograms using distance-based methods (generally using
UPGMA or Neighbor Joining simple clustering analyses). Such
procedures as applied for RAPDmarkers are detailed in Chapter 13.

Fig. 12 Different genetic profiles: dominant versus codominant markers
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On the other hand, sequence data can be analyzed either using
distance-based methods or more powerfully using character-based
cladistics methods (e.g., using maximum parsimony or maximum
likelihood), allowing true phylogenetic trees to be constructed
rather than phenetic trees. A detailed step-by-step phylogenetic
data analysis protocol is available in the earlier version of this
book [60]. Always remember that the tree built is a sequence
tree, not a species tree. For all the reasons discussed above, using
different sequences can lead to different trees reflecting the differ-
ent evolutionary patterns of the sequences under study (Fig. 11).

In search for an integrative approach to draw the best taxo-
nomic identification of species, it seems necessary to account not
only for the level of differentiation using neutral molecular markers,
but also to assess information related to nonneutral markers, which
may represent markers under selection and provide information
regarding fitness or adaptation of species [61–63]. Such approaches
are conducted using population level studies, and can be performed
using SNPs markers, using a new era of data analyses called popula-
tion genomics (Chapter 16).

6 A Temporal Landscape of the most Commonly Used Methods for Molecular Plant
Taxonomy

Interrogating NCBI database (as per 17/09/2019 for vascular
plants) gives a good representation of the evolving landscape of
techniques used over time for molecular plant taxonomy. As a
whole it is clear that molecular techniques have increasingly been
used since years 2000 for plant taxonomy. Searching for biblio-
graphic references in PubMed for plant taxonomy papers using the
various techniques described in the present book (Fig. 13) shows
that microsatellite markers remain still largely and stably used in
plant taxonomy and population genetic studies (with a mean con-
tribution of 33% since 1999). On the other hand, random priming
methods such as AFLP or RAPDs, are decreasing in use: they still
account for 16% of the references found in 2018 while they reached
56% in 2010 and 94% in 1996. Retrotransposon-tagging techni-
ques such as IRAP and REMAP have always remained more anec-
dotic with a maximum of 3% of the publications. In parallel, the
increasing use of next-generation sequencing (NGS) techniques
(SNP, GBS) is striking: they represented 12% of the papers pub-
lished in 2010 and reached 56% in 2018.

Regarding sequences that are used to build molecular phylo-
genies in plants (Fig. 14), a search in NCBI-nucleotide database
reveals that chloroplast DNA sequences and ITS nuclear sequences
remain the most published, mitochondrial DNA sequences repre-
senting only 4% of the sequences produced in the 2015–2019
period.
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Fig. 13 Total number of publications on molecular plant taxonomy for the mentioned techniques per 5-year
period (right axis) and percentage of each technique used (left axis), as referenced in NCBI-PubMed

Fig. 14 Total number of sequences published per 5-year period (right axis) and percentage (left axis) of nuclear
ITS, mitochondrial or chloroplast vascular plant DNA sequences deposited in NCBI-nucleotide database
(excluding whole genome sequences)
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7 Further Exploration: Chromosomal Organization

In plants, genome organization is very complex and polyploidy can
be an important speciation mode [64]. It will be almost impossible
to differentiate, for example, a diploid species from a related auto-
polyploid species using simply molecular markers. Molecular tax-
onomy can be greatly enhanced in some taxonomic complex plant
groups by not only assessing phylogenetic relationships, but also
genome organization to determine introgression, hybridization, or
polyploidization (either by analyzing chromosomes or simply
genome size) (Chapters 17–19).
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Chapter 3

Isolation and Purification of DNA from Complicated
Biological Samples

Ruslan Kalendar, Svetlana Boronnikova, and Mervi Sepp€anen

Abstract

The isolation of nucleic acids from a biological sample is an important step for many molecular biology
applications and medical diagnostic assays. This chapter describes an efficient protocol using established
acidic CTAB (with a pH value of 5.0 to 6.8) based extraction method for isolation and/or purification of
high molecular weight genomic DNA from a range of fresh and difficult sources from plant, animal, fungi,
and soil material. This protocol is suitable for many sequencing and genotyping applications, including
large-scale sample screening.

Key words High-quality DNA, DNA extraction, Plant tissues, Woody plants, Animal tissues, Herbar-
ium specimens, Food, Soil, CTAB

1 Introduction

Nucleic acid sequences have a variety of applications in the field of
molecular biology. They are a valuable tool in many analytical and
application techniques used in the field of molecular biology,
health, medicine (gene therapy, diagnostics, and recombinant pro-
tein expression), forensics, and food science. Some examples of
these techniques include next-generation sequencing applications,
genotyping with DNA fingerprinting, detection of pathogens, and
forensic identification of biological samples and environmental
samples contaminated with different biological entities [1–8].

To be used as a diagnostic tool, the target nucleic acid sequence
should be free of contaminants that inhibit PCR and other down-
stream applications. Such contaminants chemically or mechanically
block or inhibit chemical and enzymatic reactions, including dena-
turation and hybridization of nucleic acids, and other applications
used in molecular biology methods. Contaminants can also
degrade or modify the nucleic acid. These include high-molecular
substances, such as polysaccharides and polyphenols, as well as
substances of lower molecular weight, such as pigments, secondary
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metabolites, lipids, humic substances, low-molecular enzyme inhi-
bitors, and oligonucleotides. Therefore, in order to be able to use
nucleic acids from biological materials for further analysis, it is
important that these substances are eliminated entirely from the
sample.

Isolating DNA or RNA that is sufficiently purified from con-
taminants is complicated by the diversity and complex composition
of biological material from which DNA and RNA are isolated.
Biological material consists of cells and tissues. Cells in liquid
media, such as blood, lymph, milk, urine, and feces, and cells in
culture, on an agarose or polyacrylamide gel, in soil, or in solution,
usually include significant amounts of contaminants that must be
removed from the DNA or RNA before molecular biology experi-
ments. The presence of chemical or mechanical crosslinks between
DNA chains and with contaminants interweaving with DNA leads
to partial or complete inhibition of DNA denaturation and the
appearance of artifacts. The quality of nucleic acids directly influ-
ences problems and artifacts produced by molecular biology pro-
cedures downstream. Thus, for efficient DNA amplification, for
example, using the PCR method or isothermal DNA amplification,
complete separation of nucleic acid strands at all lengths is required.

A variety of DNA extraction and purification methods have
been developed [9–23], and are known for different characteristics.
Ionic ion exchange resins were used to purify a nucleic acid already
in 1953 [24]. Nucleic acids, proteins, and other contaminants are
bound on a solid support by anion exchange. Nucleic acids are then
eluted in a high salt concentration (7 M urea or 1.2 M NaCl) [18]
and further purified by ethanol precipitation. Ultracentrifugation in
a gradient of sucrose or cesium salts has also been used to purify
DNA. Nucleic acids are separated from other macromolecules in
accordance with their sedimentation coefficient, before extraction
with phenol or phenol/chloroform and precipitation with ethanol
or isopropanol. Conventional protocols for the extraction of DNA
or RNA from cells are well known in the field, and described in
Molecular Cloning, Sambrook et al. [25]. For DNA, these proto-
cols typically include a cell lysis step, solubilization of DNA, enzy-
matic or chemical extraction, and separation of DNA from
impurities such as proteins, RNA, and other substances [26].

A wide spectrum of methods has been developed for the purifi-
cation of nucleic acids by filtration on a microporous carrier
[27]. The microporous membrane as a matrix for binding and
support for DNA purification has many advantages, such as com-
pactness and ease of development. It allows differential control of
the elution of desired molecules and the removal of undesirable
components in the liquid phase, in parallel for a larger number of
samples in a shorter period of time compared to other approaches.
There are several methods based on the binding of nucleic acids on
a sorbent and then washing unwanted impurities, followed by
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elution of nucleic acids. Silicon dioxide particles (SiO2, silica, sand
with particle size of 10–50 μm), fiberglass (glass microfiber filters
Grade GF/A), microballs, hydroxyapatite, anion exchange resins,
and diatomite are used as sorbents. Nucleic acids bind reversibly on
particles of synthetic silica gel in buffers containing high concen-
trations of chaotropic salts (sodium iodide, sodium perchlorate, or
guanidine thiocyanate) or urea. Unbound cell components are then
washed out, after which the pure nucleic acid is eluted from the
sorbent with an aqueous solution with low ionic strength [20, 28–
30]. Several companies offer DNA and RNA purification kits based
on this approach. The kits contain columns with membranes of
sorbents based on silicon dioxide and microporous glass. Centrifu-
gation or vacuum filtration is used to bind nucleic acids with the
sorbent, followed by washing and elution. The use of glass microfi-
ber filters as a sorbent for purifying nucleic acids does not always
result in sufficiently pure DNA for subsequent use in molecular
biology protocols [12, 13, 20, 23, 24, 31, 32].

Probably the most promising approach for the isolation and
purification of nucleic acids is the use of electroelution techniques
[33–36]. The electroelution procedure allows the purification of
very clean DNA for use in all molecular biology applications. It
effectively separates DNA from compounds, including high-
molecular substances such as polysaccharides and polyphenols, as
well as from pigments and humic substances that interfere with
subsequent DNA quantification and amplification. For example,
the SageELF electrophoresis system (Sage Science, Inc. USA) is
commercially used to separate DNA or protein samples by size and
then fractionate the whole sample. The system is equipped with
pulsed-field electrophoresis for resolving large DNA.

We have developed a protocol for the isolation of DNA from
biological samples using a lysis buffer (pH < 7, but preferably less
than 6) containing acidic organic and inorganic salts of sodium or
potassium (acetate, propionate, formate, citrate) or weak acids of
zwitterionic buffering agents: HEPES (4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid), MOPS (3-(N-morpholino)propanesulfo-
nic acid), or MES (2-morpholin-4-ylethanesulfonic acid) [37].

The combination of acid lysis buffer and subsequent extraction
with chloroform allows highly selective separation of polysacchar-
ides, pigments, proteins, and other cellular components in the
organic phase, which possesses the original color of the pigment,
while in the aqueous phase the remaining pure DNA and RNA
acquires a completely transparent color (see Note 1).

During DNA or RNA extraction using a lysing buffer with a
weakly acidic pH (range from 5.0 to 6.8), oxidation processes and
enzymatic and chemical reactions are almost completely blocked.
As a result, covalent bonds are not formed between DNA and
phenolics or polysaccharide components. During subsequent
extraction with chloroform, contaminants that inhibit PCR
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(polysaccharides, polyphenols, peptides, lipids, and pigments) are
selectively removed to the interphase and an organic phase. The
aqueous phase containing the DNA is collected and mixed with an
equal volume of simple alcohol to precipitate the DNA. Finally, the
DNA is purified by precipitation or filtration through a column
with a glass/cellulose microfiber filter (see Note 2).

This protocol for DNA isolation is universal for most biological
specimens. The method will effectively isolate DNA from whole
blood, bones, plant samples, soil, herbarium, mycelium of fungi,
and tissues rich in secondary metabolites, polysaccharides, and
pigments. DNA samples obtained using the proposed method can
be used in studies where the presence of contaminants in nucleic
acids is undesirable; for example, during cloning, sequencing, and
genotyping (see Note 3).

2 Materials

Prepare all solutions using ultrapure Milli-Q water and analytical
grade reagents. Prepare and store all reagents at room temperature
unless otherwise specified and away from direct sunlight. Diligently
follow all waste disposal regulations when disposing waste
materials.

2.1 DNA Extraction 1. Glass beads 6 mm or tungsten carbide beads 3 mm.

2. TissueLyser II bead mill or similar Mixer Mill system, the
adapter set 2 � 24 or set 2 � 96 (QIAGEN).

3. NanoDrop™ 2000/2000c Spectrophotometers or similar
equipment for RNA (or DNA) concentration measures.

4. Chloroform:isoamyl alcohol mix (24:1).

5. 100% Isopropanol (2-propanol).

6. 70% Ethanol.

7. 10 mM Tris–HCL pH 8.0.

8. 0.5 M Na3EDTA.

9. Ribonuclease A solution: 10 mg/mL in 50% glycerol, 10 mM
Tris–HCL pH 8.0.

10. TE buffer: 1 mM Na3EDTA, 10 mM Tris–HCl adjusted to
pH 8.0.

11. CTAB DNA extraction buffer: 2% cetyltrimethylammonium
bromide (CTAB), 1.5 M NaCl, 10 mM Na3EDTA, 100 mM
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES-
acid) or 3-(N-morpholino)propanesulfonic acid (MOPS-acid).
Combine 20 g CTAB, 25 g HEPES-acid (or 21 g MOPS-acid)
and 20 ml of 0.5 M Na3EDTA dissolved in 500 ml of Milli-Q
water; then add 300 ml 5 M NaCl and bring final volume to
1 L.
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2.2 Gel

Electrophoresis

1. Electrophoresis Tris-Acetate-EDTA buffer (1� TAE): 40 mM
Tris-base, 20 mM Acetic Acid, 1 mM EDTA (pH 8.0).

2. Gel loading buffer (10�): 20% (w/w) Polysucrose
400, 100 mM Tris–HCl pH 8.0, 10 mM EDTA, ~0.01%
bromophenol blue. Dissolve 20 g Polysucrose 400 (Ficoll
400) in 80 mL 10� TE buffer. Add bromophenol blue accord-
ing to the desired color intensity. Store at +4 �C.

3. DNA Ladder for electrophoresis: 100–10,000 base range. The
DNA Ladder is diluted with 1� gel loading buffer to final
concentration 25 ng/μL.

4. Agarose Basic for DNA Electrophoresis.

2.3 Equipment 1. Power supply (minimum 300 V, 400 mA) for electrophoresis.

2. Horizontal electrophoresis apparatus without special cooling.
Most commercially available medium- or large-scale horizontal
DNA gel electrophoresis systems are suitable. We routinely
employ an apparatus with a run length of 10 cm.

3. UV transilluminator, for visualization of Ethidium Bromide-
stained or SYBR Green-stained nucleic acids, with a viewing
area of 20 � 20 cm.

4. Imaging system.

5. Spectrophotometer.

3 Methods

All lab procedures are performed at room temperature. This proto-
col was tested with different samples from herbarium specimens,
seeds including plant samples containing significant amounts of
contaminants and polysaccharides (Medicago sativa, Vicia faba,
Lupinus angustitolius, Colocasia esculenta), as well as with woody
plants, soil samples, and animal tissue, like blood.

3.1 DNA Extraction

Protocol

3.1.1 Tissue Grinding

1. This step can be performed using either a TissueLyser II or a
mortar and pestle. The TissueLyser II option is preferred
because less time is required, more samples can be extracted,
and cross-contamination is minimized.

2. Collect the tissue sample (the sample mass should not exceed
50–100 mg) in 2 mL Eppendorf Safe-Lock microcentrifuge
tube containing a glass ball. Place the samples (plant leaves) and
the TissueLyser II adapters in an ultralow freezer and store the
frozen tissue at �80 �C. Cooling is not required for dry sam-
ples (herbarium specimen).

3. Powder the tissue by shaking in the presence of the steel (glass)
balls at 30 Hz for 2–10 min. Proper grinding of plant samples
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with a TissueLyser II is a crucial step and the plant tissue should
be ground to a fine powder after the disruption. However, for
some plants one disruption step may not be enough. In these
cases, repeat the disruption for 5 min at 30 Hz until the sample
is thoroughly and equally homogenized.

3.1.2 Extraction of DNA

from Ground Tissue

1. Add 1 mL of preheated CTAB DNA extraction buffer with
1 μL Ribonuclease A solution to the tissue powder and mix in
the TissueLyser II for 1 min at 30 Hz.

2. Incubate at 65 �C for 1 h (long incubation increases DNA
yield).

3. Centrifuge at maximum speed in a microcentrifuge for 2 min to
remove nonsoluble debris.

4. Transfer the entire clarified supernatant to a new 2 mL micro-
centrifuge tube containing an equal volume of chloroform.

5. Mix well for 5 min in the TissueLyser II at 30 Hz.

6. Centrifuge at maximum speed in a microcentrifuge for 2 min.

7. Transfer the entire clarified upper aqueous layer to a new 2 mL
microcentrifuge tube which contains an equal or half the vol-
ume of 2-propanol, and vortex thoroughly.

8. Centrifuge at maximum speed in a microcentrifuge for
2–5 min. A whitish DNA pellet should be visible.

9. Discard supernatant and wash the pellet by adding 1.8 mL 70%
ethanol; vortex thoroughly. At this stage, DNA samples can be
stored at room temperature or refrigerated.

10. Centrifuge at maximum speed for 2–5 min and carefully dis-
card the supernatant by decanting or with a micropipette. A
whitish DNA pellet should be visible during discarding of
supernatant.

11. Ensure the DNA pellet does not dry and dissolve immediately
in 300 μL TE buffer, pH 8.0 at 55 �C for 10–20 min.

3.2 DNA Analysis The spectrophotometric method of DNA quantitation is com-
monly used to determine both concentration and relative purity
of nucleic acids in a solution. A spectrophotometer is used to
measure the absorbance and purity of DNA samples. Pure DNA
exhibited an A260/A230 ratio in the range of 1.8–2.0 and is accept-
able down to ratios of about 1.5. Smaller values around or even
below 1.0 indicate significant amounts of impurities, contamina-
tion with polysaccharides.

The rapid agarose gel electrophoresis method provides a much
more accurate quantitation of the genomics DNA. The integrity of
the genomic DNA samples extracted is analyzed by electrophoresis
on an agarose gel. Atleast 4 samples loaded onto a gel, at least one
lane should contain a series of DNA fragments of known sizes so
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that a standard curve can be constructed to allow the calculation of
the size of unknown DNA fragments. The most commonly used
molecular weight markers are calf thymus DNA or DNA Ladder.
DNA Ladder usually cover a wide range of DNA sizes.

1. Mix 10 μL of the DNA solution prepared in the previous
section with 2 μL of gel loading buffer (10�) in tube or
plate, a quick spin with centrifugation at 14,000
RPM (16,873 � g) for a few seconds.

2. Prepare 1% agarose gel in 1� TAE electrophoresis buffer con-
taining ethidium bromide. The agarose gel must be completely
melted in the microwave and then allowed to slowly cool until
its temperature drops to about 50–60 �C. At that point, if
desired, add the ethidium bromide solution at a rate of 20 μL
per 100 mL, to bring the final concentration to 0.5 μg per mL.

3. Load the sample into one of the wells. In the adjacent wells,
load equal volumes of a series of DNA concentration standards
(e.g., calf thymus in the range of 25–500 ng/μL) or DNA
Ladder.

4. Run the gel at 50 V when the bromophenol blue tracking dye
has migrated at least 2 cm from the wells, the run can be
stopped.

5. Examine the gel on an ultraviolet light transilluminator. Intact
DNA will be visible as a band near wells. A smear extending
from the well to the dye front indicates that the DNA has been
fragmented. The images can be saved in a Gel Documentation
System (see Note 4).

6. From the gel photo, estimate the quantity of DNA in the test
samples by comparison to the DNA concentration standards.
The yield should be in the range 5–15 μg of DNA per 300 μL,
with an average size of above 50 kb.

4 Notes

1. The original techniques using CTAB for DNA isolation was
first developed by Murray and Thompson in 1980 [13]. The
original protocol described by the authors contains an alkaline
pH on Tris buffer. However, under alkaline conditions DNA
extraction takes place with oxidative processes, causing a
change in the color of the lysis solution from green to brown
(for plants). Therefore, water-soluble polymer polyvinylpyrro-
lidone (PVP) and reducing agent β-mercaptoethanol were
added to the lysis buffer. The use of CTAB, a cationic deter-
gent, facilitates the separation of polysaccharides during purifi-
cation, while additives such as PVP can help remove
polyphenols. Buffers based on CTAB are also used to purify
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DNA from plant tissues and their metabolites. Polyphenols are
compounds that contain more than one phenolic ring (e.g.,
tannin), a structure that binds very effectively to DNA. They
occur naturally in plants, but they also form when tissue is
damaged (roasting). When plant tissues are homogenized,
polyphenols are synthesized by the polyphenol oxidase
released. The addition of PVP prevents polyphenols from bind-
ing to DNA and phenolic rings. The presence of chemical
crosslinks between the chains and impurities from the tissue,
or mechanical spatial entanglements of DNA in the presence of
polysaccharides, leads to partial or complete inhibition of DNA
denaturation and the appearance of artifacts. When DNA is
isolated, certain groups of polysaccharides form a viscous,
jelly-like, uniform mass with the DNA. Serious and damaging
effects are exerted by oxidants of different biochemical nature,
including phenolic compounds.

2. The implementation of our protocol of isolation and purifica-
tion of total DNA from a biological sample is achieved as
follows. Preliminary steps are homogenization of tissue sample
to complete destruction within a few seconds to minutes. Both
dry and liquid samples can be used. For blood samples, start
with a red blood cell lysis step and precipitation of leukocytes.
Lysis of the samples is carried out using weakly acidic
(pH 5.0–6.8) DNA extraction buffers containing acidic zwit-
terionic agents (MOPS or HEPES) during incubation at
55–65 �C. Organic extraction with chloroform results in con-
taminants selectively separated into interphase and an organic
phase. The aqueous phase containing the DNA is collected and
mixed with an equal volume of simple alcohol to precipitate the
DNA. As a result, an aqueous solution containing DNA
becomes completely transparent, while the organic phase pos-
sesses the original color of the pigment (or brown for hemo-
globin). In some cases, organic extraction with chloroform is
not possible and DNA must be precipitated immediately or
purified on a column.

3. The composition of the lysis solution contains inorganic salts
(sodium chloride), within the effective concentration in the
range of 1–4 M. The optimal concentration of the detergent
is 1.5% CTAB. To increase the efficiency of DNA extraction,
proteinase K can be added to the acidic lysing solution, which
retains proteolytic activity at high ionic strength and low pH
values, even in the presence of strong detergents and chaotro-
pic agents. The subsequent extraction with chloroform
increases the purity of the isolated DNA, especially from com-
plex samples (thermally treated raw materials, blood, herbar-
ium specimen, and soils). The effective concentration of
chloroform is 1–2 volumes of the total lysate. Further, the
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DNA is precipitated from the aqueous phase with a water-
soluble organic solvent, such as a simple alcohol (it is preferable
to use isopropanol). Depending on the biological material,
DNA can be precipitated by filtration through a column with
a glass microfiber filter, for example, glass microfiber filters
(Grade GF/A) or through cellulose paper [26]. Finally, DNA
is washed by precipitation or filtration in a solution of 80%
ethanol and dissolved in low ionic buffered water.

4. The most frequent cause of bad DNA resolution is improper
choice of agarose concentration.

Low percentage agarose gels should be used to resolve
high-molecular-weight DNA fragments and high percentage
gels for low-molecular-weight DNAs. Trailing and smearing of
DNA bands are most frequently observed with high-
molecular-weight DNA fragments. This is often caused by
overloading the DNA sample or running gels at high voltages.
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Chapter 4

Herbarium Specimens: A Treasure for DNA Extraction,
an Update

Lenka Záveská Drábková

Abstract

With the expansion of molecular techniques, the historical collections have become widely used. The last
boom started with using next- and second-generation sequencing in which massive parallel sequencing
replaced targeted sequencing and third-generation technology involves single molecule technology. Study-
ing plant DNA using these modern molecular techniques plays an important role in understanding
evolutionary relationships, identification through DNA barcoding, conservation status, and many other
aspects of plant biology. Enormous herbarium collections are an important source of material especially for
taxonomic long-standing issues, specimens from areas difficult to access or from taxa that are now extinct.
The ability to utilize these specimens greatly enhances the research. However, the process of extracting
DNA from herbarium specimens is often fraught with difficulty related to such variables as plant chemistry,
drying method of the specimen, and chemical treatment of the specimen. The result of these applications is
often fragmented DNA. The reason new sequencing approaches have been so successful is that the template
DNA needs to be fragmented for proper library building, and herbarium DNA is exactly that. Although
many methods have been developed for extraction of DNA from herbarium specimens, the most frequently
used are modified CTAB and DNeasy Plant Mini Kit protocols. Nine selected protocols in this chapter have
been successfully used for high-quality DNA extraction from different kinds of plant herbarium tissues.
These methods differ primarily with respect to their requirements for input material (from algae to vascular
plants), type of the plant tissue (leaves with incrustations, sclerenchyma strands, mucilaginous tissues,
needles, seeds), and further possible applications (PCR-based methods, microsatellites, AFLP or next-
generation sequencing).

Key words AFLP, DNA extraction, Difficult plant tissues, Herbarium specimens, Microsatellites,
Next-generation sequencing, PCR

1 Introduction

Hundreds of protocols for DNA preparation from various types of
tissues have been published over the last few decades. Plant and
mainly herbarium plant samples DNA extraction frequently present
a challenge in the first stage of each study, because of the extraction
of any given taxon may require time-consuming optimization of
the extraction protocols. The problem of DNA extraction is crucial
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for further analyses of herbarium samples. The satisfactory quality
of DNA is essential for the success of the whole molecular study.
Most future molecular taxonomic studies will probably be partly or
entirely based on DNA extracts from herbarium specimens because
of the easy accessibility and richness of herbarium collections.
Nowadays, the term “museomics” firstly used by zoologists [1] is
frequently used for studies using large-scale analyses of DNA from
herbarium samples. The last boom started with using next- and
second-generation sequencing in which massive parallel sequencing
replaced targeted sequencing and third-generation technology
involves single molecule technology. This chapter, will use the
term “next-generation” sequencing for all these kinds of sequenc-
ing technologies.

However, DNA isolation from dried specimens usually requires
some modifications to frequently used protocols [2] because of the
small amount of dry herbarium tissue available. The herbarium
material is dried and stored on herbarium sheets in packages. If
the specimens are air-dried at up to 42 �C [3], they contain a useful
amount of high-molecular-weight DNA. Air-drying is considered
to be better than the preservation of tissues in silica gel or anhy-
drous CaSO4 [4]. In general, old air-dried material that has not
been treated with chemical preservatives, high temperatures, or
microwaves has the best chance of yielding useful DNA [3]. To
preserve DNA well, it is necessary to dry plants as fast as possible.
Extraction results depend on how the plant material is prepared,
how many times the collection is disinfected, and the type of
chemicals or procedures used. For instance, DNA was seriously
degraded in leaves that were microwaved [4–6], boiled in water,
or immersed in chemical solutions. Another important factor is the
regular herbarium treatment used to keep specimens free of pests.
Fumigation methods have been changed from time to time [7],
making it difficult to be sure about the DNA quality. These kinds of
post-mortem DNA damage can come in different ways as described
[8]: (1) double-stranded damage, usually resulting from loss of A
and G bases (depurination), and (2) breaks in the sugar–phosphate
backbone of the DNA molecule, causing reduction of
PCR-amplifiable template DNA. Herbarium DNA is usually
degraded into small fragments with low molecular weight probably
as a direct result of heat-treatment of the specimens [9–11]. As
summarized [12], single-stranded damage on can lead to the gen-
eration of erroneous sequence information or so-called miscoding
lesions. Damaged nucleotides in herbarium DNA, caused by oxida-
tive stress and (or) heating, may include a-puric sites (loss of A and
G bases), de-aminated cytosine residues resulting in uracil, or oxi-
dized guanine residues, as found in studies in vivo and on ancient
DNA [13, 14]. PCR amplification of these sites may result in
damage-specific nucleotide mis-incorporations [15–17]. This type
of damage is therefore in principle polymerase-bypassable, which
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led to incorrect bases in the inferred sequence [12]. The extent of
DNA degradation in herbarium specimens appears to be related to
the condition of the fresh leaf rather than the year in which it was
dried [18]. The DNA from herbarium specimens have been satis-
factorily obtained from vascular plants about 200 years old and
100 years old from lichens.

Obtaining high-quality DNA depends on the extraction tech-
nique used. Traditional plant DNA extraction protocol by Doyle
and Doyle [19] was used 18,118 times to date (e.g., cited in
Google Scholar, 11.8.2020). This method is widely used for her-
barium material, but sometimes with modifications [20, 21]. Sev-
eral DNA isolation techniques that are useful for dry plant tissue
from herbarium specimens have been described [2, 3, 22, 23].
Herbarium specimens have been frequently used during the last
decade [20, 24–32]. The most convenient organ to sample is the
leaf. However, also the seeds and pollen are efficient and inexpen-
sive sources for DNA [33].

There are many different protocols more or less satisfactorily
used for DNA extraction from herbarium samples of different
group of plants with specific types of tissues. It is not possible to
present all of them in this book. I do not give detailed literature
evidence for many different protocols used but a simple comparison
of articles published during the last 10 years clearly shows the most
frequently used methods were the modified CTAB method [19]
and DNeasy Plant Mini Kit (Qiagen). I selected a few of the most
used protocols during the last 10 years. This chapter should serve as
a tool for projects involving DNA extraction from herbarium speci-
mens of different plants.

1.1 Main Isolation

Difficulties

One problem with extraction from herbarium specimens is a very
low yield of plant material. Many people work with plant taxa that
are rare or grown in inaccessible locations, making it difficult to
obtain fresh plant material. The use of dried plants from historical
collections becomes essential for representative taxonomic sam-
pling. Another problem is the quantity of the suitable tissue avail-
able. Many plants have a very limited leaf tissue volume, and the
sampling for a nonproblematic extraction (yielding a sufficient
amount of DNA) would cause serious damage to the herbarium
specimen. Nowadays, this problem is overcome by third-generation
sequencing, which involves single molecule technology (Oxford
Nanopore technology).

Undoubtedly, especially good homogenization is essential.
Another crucial point is a longer and repeated precipitation. Many
protocols for DNA extraction use liquid nitrogen for grinding the
plant material. The homogenization of plant material is easier and
faster, but the simultaneous processing of multiple samples in mor-
tars in one laboratory table leads to the loss of DNA and

DNA Extraction from Herbarium Specimens 71



contamination of the samples. When PCR products are analyzed by
sequencing, the contamination is revealed. Other techniques, such
as RFLP and RAPD, do not detect this type of mistake.

A good alternative is the use of bead-mills. These cylinders
disrupt the plant tissues in microcentrifuge tubes in the mixer mill
(or Tissue Lyser) without risk of contamination. Insufficient dis-
ruption of starting material leads to low yield and comprised purity.
Pulverizing plant material with a mixer mill is easier and produces
DNA of more reliable quality than grinding with liquid nitrogen in
a mortar [34].

2 Materials

Plants have cell walls mostly comprised of cellulose and some other
complex polysaccharide or another chemical compounds or have
tissues with mucilaginous substances. All these compounds may
influence the quality and yield of extracted DNA even in fresh
samples and herbarium samples as well. Furthermore, extraction
of DNA from herbarium specimens has always been difficult due to
the preservation conditions or liquids in which specimens are
preserved.

2.1 Key to Choice

of Protocols

1. According to plant group

Vascular plants or conifers Method 1

Mosses Method 1

Lichens Method 6

Algae Method 7

Mushrooms/fungi Method 8

2. According to type of plant tissue

Plant material with leaf incrustation or containing
sclerenchyma strands

Method 1

Plants with needles Method 1

Seeds Method 3

Plant material containing polysaccharides or phenolic
compounds

Method 4

Plant material containing mucilaginous tissues Method 5
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3. According to type of next procedures

DNA extraction for PCR based methods Method 1

DNA extraction for AFLP Method 2

DNA extraction for microsatellites Method 9

Extraction of ultrashort DNA molecules
for “next-generation” sequencing

Method 10

2.2 General

Equipment for all

Protocols

1. Manual pipettes.

2. Centrifuge for microcentrifuge tubes.

3. Vortex.

4. Thermal heating-block or water bath for incubation and pre-
heating of Buffers (up to 65 �C).

5. Equipment for sample disruption and homogenization (Tis-
sueLyser or Mixer Mill) including TissueLyser Adapter Set and
cylinders (Tungsten carbide beads or ceramic cylinders).

6. 1.5–2 mL microcentrifuge tubes

7. Disposable tips.

8. Ice.

9. Personal protection equipment (lab coat, gloves).

2.3 Method 1:

DNeasy Plant Mini Kit

(QIAgen) for Plants

with Leaves

Containing

Sclerenchyma Strands

1. Buffers from DNeasy Plant Mini Kit (AP1, AP2, AP3/E,
AW, AE).

2. RNase A (100 mg/mL).

3. 100% ethanol

4. Tungsten carbide beads.

5. QIAshredder Mini spin column.

6. DNeasy Mini spin column.

2.4 Method 2:

DNeasy Plant Mini Kit

(QIAgen) Modified

for AFLP

The following are in addition to the items needed for Method 1

1. Proteinase K (19.45 mg/mL).

2. Mortar and pestle.

3. Liquid nitrogen.

4. Quartz sand.

2.5 Method 3: DNA

Extraction from Seeds

The following are in addition to the items needed for Method 1:

1. Tween 20.

2. Liquid nitrogen.

3. 10% bleach solution (sodium hypochlorite).
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2.6 Method 4: The

STE/CTAB Method

for Micro-Scale DNA

Extraction from

Polysaccharide-Rich

Plants

1. STE (Sucrose-Tris-EDTA): 0.25 M sucrose, 0.03 M Tris,
0.05 M EDTA.

2. 2� CTAB (cetyltrimethylammonium bromide) extraction
Buffer: 100 mM Tris–HCl (pH ¼ 8.0), 1.4 M NaCl, 20 mM
EDTA (pH ¼ 8.0), 2% (w/v) PVPP (polyvinyl polypyrroli-
dine), 0.1% (v/v) β-mercaptoethanol (include to the solution
immediately prior to use)

3. Chloroform.

4. Isopropanol.

5. 80% ethanol

6. TE Buffer solution: 10 mM Tris–HCl (pH¼ 8), 1 mM EDTA.

7. Liquid nitrogen.

2.7 Method 5:

Modified CTAB

Adapted Method

for Mucilaginous

Tissues

1. 2� CTAB (cetyltrimethylammonium bromide) extraction
Buffer: 100 mM Tris-HCl (pH ¼ 8.0), 1.4 M NaCl, 20 mM
EDTA (pH ¼ 8.0), 2% (w/v) PVPP (polyvinyl polypyrroli-
dine), 0.1% (v/v) β-mercaptoethanol (include to the solution
immediately prior to use)

2. β-mercaptoethanol,

3. SEVAG: chloroform/isoamyl alcohol 24:1.

4. Ice-cold isopropanol.

5. Isopropanol.

6. TE Buffer: 10 mM Tris–HCl (pH ¼ 8), 1 mM EDTA.

7. RNase (10 mg/mL).

8. 2.5 M Sodium Acetate (NaOAc)

9. 95% ethanol

10. 70% ethanol

11. Vacuum desiccator.

2.8 Method 6:

Modified CTAB Method

for Fungi and Lichen

Forming Fungi

1. Extraction Buffer: 1% (w/v) CTAB, 1 M NaC1, 100 mM Tris,
20 mM EDTA (pH ¼ 8.0), 1% (w/v) PVPP (polyvinyl poly-
pyrrolidine) (include to the solution immediately prior to use).

2. Precipitation Buffer: 1% (w/v) CTAB, 50 mM Tris–HC1,
10 mM EDTA, 40 mM NaCl.

3. 1.2 M NaC1

4. SEVAG: chloroform/isoamyl alcohol 24:1.

5. RNase A (10 mg/mL).

6. Isopropanol.

7. 70% ethanol

8. PCR grade water (nuclease-free water).

9. TE Buffer solution: 10 mM Tris–HCl (pH¼ 8), 1 mM EDTA.

10. Liquid nitrogen.
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2.9 Method 7: CTAB/

HNO3 Method for Algae

1. 2% CTAB extraction Buffer: 100 mM Tris–HCl (pH ¼ 8.0),
1.4 M NaCl, 20 mM EDTA (pH ¼ 8.0), 0.1% (w/v) PVPP
(polyvinyl polypyrrolidine), 0.2% (v/v) β-mercaptoethanol
(added freshly)

2. Binding Buffer: 6 M NaI, 0.1 M Na2SO3.

3. HNO3 (1 mL, 5 M).

4. Washing Buffer: 20 mM Tris–HCl (pH 8), 1 mM EDTA,
0.1 mM NaCl solution, 18 mL 100% ethanol.

5. TE Buffer solution: 10 mM Tris–HCl (pH¼ 8), 1 mM EDTA.

6. 0.45-μm membrane filter (Whatman)

7. MilliQ filtered de-ionized water.

8. Silica gel.

2.10 Method 8: DNA

Extraction from Dried

Mushrooms Using

Enzymatic Digestion

and Glass-Fiber

Filtration (EDGF)

1. Proteinase K (20 mg/mL).

2. Lysis Buffer (LB): 100 mM NaCl, 50 mM Tris–HCl (pH 8.0),
10 mM EDTA (pH 8.0), 0.5% (w/v) SDS.

3. Binding Buffer (BB): 6 M GuSCN, 20 mM EDTA (pH 8.0),
10 mM Tris–HCl (pH 6.4), 4% (v/v) Triton X-100.

4. Binding mix (BM): 50 mL of ethanol (96%) thoroughly mixed
with 50 mL of BB.

5. Protein wash Buffer (PWB): 70 mL of ethanol (96%), 26 mL
of BB.

6. Wash Buffer (WB): ethanol (60%), 50 mMNaCl, 10 mM Tris–
HCl (pH 7.4), 0.5 mM EDTA (pH 8.0).

7. TE Buffer solution: 10 mM Tris–HCl (pH¼ 8), 1 mM EDTA.

8. PCR plate (e.g., Sorenson 96-well UltraAmp).

9. PALL collar.

10. Glass fiber filtration (GF) membrane (Whatman).

11. Aluminum cover.

2.11 Method 9:

NucleoSpin Plant II Kit

(Macherey-Nagel)

Used

for Microsatellites

1. Buffers from NucleoSpin Plant II kit (PL1, PL2, PC, PW1,
PW2, PE).

2. RNase A (100 mg/mL).

3. 96–100% ethanol

4. NucleoSpin Plant II Column.

2.12 Method 10:

Extraction

of Ultrashort DNA

Molecules

for “Next-Generation”

Sequencing

1. Buffers from DNeasy Plant Mini Kit (AP2, AP3/E, AW, AE).

2. PTB extraction Buffer: 1% SDS, 10 mM Tris, pH 8.0, 5 mM
NaCl. 50 mMDTT, 0.4 mg/mL proteinase K, 10 mM EDTA,
2.5 mM N -phenacylthiazolium bromide (PTB).

3. Dithiothreitol (DTT).
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4. 100% ethanol

5. Tungsten carbide beads.

6. MinElute Purification columns (Qiagen).

3 Methods

3.1 DNeasy Plant

Mini Kit (QIAgen)

Several commercially available DNA extraction kits are very popular
for high-quality extracted DNA and ease of use. For extraction of
herbarium specimens it is usually necessary to modify the manufac-
turer protocol. The most valuable part of the kits is silica-gel-
membrane spin columns for convenient extraction of high-quality
DNA, especially for PCR.

All procedures should be carried out at room temperature
unless different conditions are specified (e.g., sample incubation
on ice).

3.1.1 Method 1: DNeasy

Plant Mini Kit (QIAgen)

for Plants with Leaves

Containing Sclerenchyma

Strands

This extraction protocol was modified for monocots [24] and is
useful for all PCR-based applications. As PCR requires only minute
amounts of DNA, it suggests that herbarium collections will
become more valuable as sources of material for molecular studies
and analyses based on PCR technique [25]. However, herbarium
samples do require special extraction and reaction conditions (the
most crucial points are emphasized in Notes).

Mechanical disruption of plant material proved to be a limiting
step when handling multiple samples in parallel [34]. Therefore,
the tissue should be ground in the mixer mill (Tissue Lyser) with
tungsten carbide beads or ceramic cylinders. This procedure is
optimal for sufficient homogenization of hard leaf structure of,
e.g., Juncaceae, Cyperaceae, and Pinaceae. This extraction is pre-
sented according to the QIAgen protocol with a modification for
dried samples. These modifications were introduced mainly in the
laboratory of the Institute of Botany, Copenhagen University
(G. Petersen, personal communication).

1. Place 0.5–1 g of dried leaf tissue together with 3 mm tungsten
carbide beads (2 or 3 pieces) into a 1.5 mL microcentrifuge
tube. Place the tubes into the TissueLyser Adapter Set, and fix
into the clamps of the TissueLyser. Grind the samples for
1–3 min at 30 Hz (see Note 1).

2. Add 450 μL Buffer AP1 and 4 μL RNase A to a maximum of
20 mg dried disrupted plant tissue and vortex powerfully (see
Note 2).

3. Incubate the mixture for 30 min at 65 �C for cell lysis. Mix 2 or
3 times during incubation by inverting tube.

4. Add 130 μL Buffer AP2 to the lysate, mix, and incubate for
5 min on ice.
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5. Pipet the lysate into the QIAshredder Mini spin column placed
in a 1.5 μL collection tube, and centrifuge for 2 min at
20,000 � g (see Note 3).

6. Transfer the flow-through fraction from the previous step into
a new tube without disturbing the cell-debris pellet. Usually
450 μL of lysate is recovered (see Note 4).

7. To 450 μL lysate add 675 μL Buffer AP3/E. Reduce the
amount of Buffer AP3/E to 1.5 volumes if different volume
of lysate than 450 μL is obtained. Mix it by pipetting. It is
important to pipet Buffer AP3/E directly onto the cleared
lysate and to mix immediately.

8. Pipet 650 μL of the mixture from the previous step, including
any precipitate that may have formed, into the DNeasy Mini
spin column placed in a 2 mL collection tube. Centrifuge for
1 min at 6000 � g, and discard the flow-through. Reuse the
collection tube in the next step.

9. Repeat previous step with remaining sample. Discard flow-
through and collection tube. Place the DNeasy Mini spin col-
umn into a new 2 mL collection tube, add 500 μL Buffer AW,
and centrifuge for 1 min at 6000� g. Discard the flow-through
and reuse the collection tube in the next step.

10. Add 500 μL Buffer AW to the DNeasy Mini spin column, and
centrifuge for 2 min at 20,000 � g to dry the membrane (see
Note 5).

11. Transfer the DNeasy Mini spin column to a 1.5 mL or 2 mL
microcentrifuge tube, and pipet 50 μL Buffer AE directly onto
the DNeasy membrane. Incubate for 10 min at room tempera-
ture (15–25 �C), and then centrifuge for 1 min at 6000 � g to
elute.

12. Repeat the elution step.

13. Store at �20 �C or � 80 �C (see Notes 6 and 7).

3.1.2 Method 2: DNeasy

Plant Mini Kit (QIAgen)

Modified for AFLP

This extraction protocol was modified for dried vascular plants [35]
and successfully used for AFLP.

1. Grind the plant tissue in a mortar with quartz sand and about
3 mL liquid nitrogen into a very fine powder.

2. Preheat a total of 500 μL AP1 Buffer (60 �C), add to the
sample and grind until the mixture is completely
homogeneous.

3. After grinding add 4 μL RNase and 4 μL Proteinase K.

4. Transfer the mixture to an Eppendorf tube and incubate at
60 �C for 1 h.
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5. Add 150 μL AP2 Buffer and follow the Qiagen extraction
protocol to the final step, in which elute the DNA with 50 μL
preheated (60 �C) AE Buffer.

6. Store at �20 �C or �80 �C (see Note 8).

3.1.3 Method 3: DNA

Extraction from Seeds

This extraction protocol was modified [22] for seeds of vascular
plants.

1. Remove seed coats from seeds after a preliminary 10-min soak
in 10% bleach solution containing a drop of Tween 20.

2. Ground whole embryos, or separated embryonic axes and
cotyledons into a powder in the presence of liquid nitrogen.

3. Extract and purify DNA using the DNeasy Mini Kit according
to Subheading 3.1.1. or the manufacturer’s instructions.

3.2 CTAB Modified

Methods

The CTAB extraction methods are based on the well-established
CTAB extraction procedure [19]. However, there are some mod-
ifications for different types of plant tissues. Two protocols mod-
ified for mucilaginous tissues and fungi and lichen forming fungi
follow.

3.2.1 Method 4: The

STE/CTAB Method

for Micro-Scale DNA

Extraction from

Polysaccharide-Rich Plants

This extraction protocol was modified [36] for polysaccharide-rich
plant tissues.

1. Place 0.5–1 g of dried leaf tissue in a microcentrifuge tube with
a sterile grinder. Snap freeze by suspending the tube in liquid
nitrogen and grind to a fine powder (see Note 9).

2. Add 1 mL of freshly made STE to the ground plant tissue.
Vortex, then centrifuge at 2000 � g for 10 min. Discard
supernatant and repeat STE wash.

3. Add 600 μL of CTAB solution and incubate at 60 �C for
40 min with occasional shaking.

4. Add 600 μL chloroform and shake vigorously to homogenize.
Pulse centrifuge to 7000 � g.

5. Remove upper aqueous layer with a wide-bore pipette tip into a
new microcentrifuge tube. Add 600 μL of room-temperature
isopropanol and invert gently.

6. Leave at room temperature for 1–5 min and transfer DNA
pellet using a wide-bore pipette tip into a microcentrifuge
tube containing 800 μL of 80% ethanol. Wash pellet by gently
inverting several times. Remove DNA pellet to a new micro-
centrifuge tube and repeat ethanol wash.

7. Dry the pellet at room temperature and suspend in 30–60 μL of
TE.
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3.2.2 Method 5: Modified

CTAB Adapted Method

for Mucilaginous Tissues

This extraction protocol was modified [37] for plant mucilaginous
tissues. The DNA obtained by this extraction can be used not only
for PCR-based techniques, but also for AFLP.

1. Add 750 μL of 2� CTAB Buffer and 3.0 μL of
β-mercaptoethanol to Eppendorf tubes.

2. Grind 0.5–1.0 g of tissue with liquid nitrogen and sterilized
sand until finely powdered.

3. Add a spatula-tip of powdered tissue to each tube and mix well.

4. Incubate in a water bath at 55–60 �C for 1–5 h, mixing every
15 min.

5. Add 700 μL of SEVAG to each tube and mix thoroughly.
Centrifuge at 9240 � g for 10–15 min. Transfer the aqueous
phase to a new Eppendorf tube.

6. Add 0.33 vol of ice-cold isopropanol and store at�30 �C for at
least 1 h.

7. Spin at 9240–13,305 � g for 10 min at room temperature.
Discard supernatant without disturbing the pellet. Vacuum dry.
Repeat steps 6 and 7 two to four times if the aqueous phase is
viscous.

8. Resuspend pellet in 100–200 μL of TE. Add 1–2 μL of RNase.
Mix well and incubate for 30 min at 37 �C.

9. Add 20 μL (0.1 vol) of NaOAc and 500 μL (2–2.5 vol) ice-cold
95% ethanol and store at �20 �C for �30 min. Spin at
9240–13,305 � g for 5 min. Discard supernatant.

10. Wash pellet with 1 mL of 70% ethanol. Do not disturb the
pellet. Spin at 9204 � g for 4 min and pour off ethanol.
Vacuum-dry pellet. Do not overdry (see Note 10).

11. Resuspend pellet in 100–200 μL of TE. Store at �20 �C.

3.2.3 Method 6: Modified

CTAB Method for Fungi

and Lichen Forming Fungi

This extraction protocol was modified [18] and adapted for fungi
and lichen-forming fungi [38].

The best results were obtained from liquid nitrogen frozen
samples [18]. Samples can be disrupted without liquid nitrogen
by grinding the material in powdered glass. DNA extracted in this
way gave good amplifications, although the total DNA yield was
reduced compared to liquid nitrogen preparations. A mortar and
pestle can also be used without additional abrasives although this
did not prove practical for either large numbers or small amounts of
material.

1. Put 3–100 mg of material into 1.5 mL tubes and place in a
container with liquid nitrogen for 5–10 min. Then remove
from the container and place in an insulated rack. Add liquid
nitrogen to the tube and grind the material with a sterile
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precooled sharp glass bar. Sterilize glass bars in flame immedi-
ately prior to use.

2. Add 0.5 mL of pre-warmed extraction Buffer to the ground
material. Add PVPP to the Buffer immediately prior to use.
Mix the tubes by inverting several times and then heat in a
water bath for 30 min at 70 �C.

3. Add one volume of SEVAG. Mix by inverting the tube and
centrifuge for 5 min at 10,000 � g at room temperature.

4. Collect the upper aqueous phase in a new tube and discard the
slurry and lower layers (see Note 11).

5. Add two volumes of precipitation Buffer to the supernatant
and mix well by inversion for 2 min.

6. Centrifuge the mixture for 15 min at 13,000 � g at room
temperature and collect the pellet.

7. Resuspend the pellet in 350 μL of 1.2 M NaC1 and add one
volume of SEVAG. Mix vigorously and centrifuge for 5 min at
10,000 � g at room temperature.

8. For RNA-free DNA add 2 μL of RNase A to the sample and
incubate at 37 �C for 30 min.

9. Remove the upper phase to a new tube and add 0.6 volume of
isopropanol. Mix by inversion and place the tube at �20 �C for
15 min.

10. Collect the final pellet by centrifugation for 20 min at
13,000 � g at 4 �C. Wash the final pellet with 1 mL of 70%
ethanol and recollect by centrifugation for 3 min at 13,000� g
at 4 �C. Then drain the pellet and dry at 50 �C prior to
resuspension in either PCR-grade water or TE Buffer.

3.2.4 Method 7: CTAB/

HNO3 Method for Algae

This extraction protocol was modified [39] for brown macroalgae.

1. Grind the plant tissue and add 2% CTAB Buffer.

2. Clarify the binding Buffer by filtration through a 0.45-μm
membrane filter.

3. Prepare silica fines by placing 20–30 g of silica gel into c.
500 mL of milliQ filtered de-ionized water and stirring for c.
1 h. After stirring, allow the silica to settle for c. 15 min.

4. Transfer the supernatant to 50 mL plastic tubes and centrifuge
for 5 min at 1250 � g.

5. Remove most of the supernatant from each 50 mL tube; leave
only a small amount for resuspension of the pelleted particles
and subsequent consolidation into one tube.

6. Transfer aliquots (c. 1 mL) of the consolidated particles to
2 mL plastic tubes.

80 Lenka Záveská Drábková



7. Add HNO3 to each 2 mL tube prior to heating at 95 �C to
100 �C for 30 min in a vented hood.

8. After cooling, centrifuge the tubes at 13,000� g for 1 min and
discard the supernatant.

9. Wash the silica pellet by resuspending in c. 2 mL milliQ-filtered
de-ionized water and centrifuge for 1 min at 13,000 � g.
Discard the supernatant.

10. Repeat the washing step five times prior to a final resuspension
with an equal volume of milliQ-filtered de-ionized water.

11. Add 6.8 mL of the washing Buffer.

12. Elute in the TE Buffer.

3.3 Method 8: DNA

Extraction from Dried

Mushrooms Using

Enzymatic Digestion

and Glass-Fiber

Filtration (EDGF)

This extraction protocol was described [40] for animal tissues and
modified [41] for dried mushrooms.

1. Add a small amount of sample (1–2 mm3) to each well of a
96-well PCR plate. Instruments should be flame sterilized
between samples to avoid cross contamination. Last well can
be left blank and used as a negative control.

2. Mix 5 mL of LB and 0.5 mL of Proteinase K (20 mg/mL) in a
sterile container and dispense 100 μL to each well. Cover each
row with caps and incubate at 56 �C overnight (8–16 h) to
allow digestion.

3. Centrifuge at 1000 � g for 1 min.

4. Add 100 μL of BM to each sample. Mix by pipetting up and
down a few times.

5. Remove cap strips/cover and transfer the lysate (about 150 μL)
from the wells of microplate into the wells of the PALL glass
fiber filtration (GF) plate placed on top of a square-well block.
Seal the plate with adhesive cover.

6. Centrifuge at 1500 � g for 10 min to bind DNA to the GF
membrane.

7. Add 250 μL of PWB to each well of the GF plate. Seal with a
new adhesive cover and centrifuge at 1500 � g for 5 min.
Discard the flowthrough.

8. Add 300 μL of WB to each well of the GF plate. Seal with a new
cover and centrifuge at 1500 � g for 10 min.

9. To avoid incomplete WB removal, open the cover to relieve the
vacuum that may have formed in the wells, seal the plate again
and centrifuge the plates again at 1500 � g for 5 min. Discard
the flow-through.

10. Repeat steps 8 and 9.
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11. Remove the cover. Place the GF plate on a clean square-well
block and incubate at 56 �C for 30 min to evaporate residual
ethanol.

12. Position a PALL collar on a collection plate and place plate and
collar on top of a clean square-well block. Place GF PALL plate
with DNA bound to the membrane on top of a PCR plate.
Dispense 50 μL of 0.1� TE Buffer or water, pre-warmed at
56 �C, directly onto the membrane of each well of GF plate and
incubate at room temperature for a few minutes and then seal
plate.

13. Centrifuge at 1500 � g for 10 min to collect the eluted DNA.
Remove the GF plate and discard it.

14. Cover DNA plate with an aluminum cover. Keep at 4 �C for
temporary storage or at �20 �C for long-term storage.

3.4 Method 9:

NucleoSpin Plant II Kit

(Macherey-Nagel)

Used

for Microsatellites

This extraction protocol was used [42] prior to microsatellite data
analysis (see Note 12).

1. Homogenize up to 20 mg dry weight plant.

2. Transfer the resulting powder to a new tube and add 400 μL
Buffer PL1. Vortex the mixture thoroughly (see Note 13).
Alternatively, transfer the resulting powder to a new tube and
add 300 μL Buffer PL2. Vortex the mixture thoroughly. If the
sample cannot be resuspended easily, additional Buffer PL2 can
be added.

3. Add 10 μL RNase A solution and mix sample thoroughly.
Incubate the suspension for 10 min at 65 �C. Alternatively,
add 75 μL Buffer PL3, mix thoroughly and incubate for 5 min
on ice to precipitate SDS completely (see Note 14).

4. Place a NucleoSpin Filter into a new collection tube (2mL) and
load the lysate onto the column. Centrifuge for 2–5 min at
11,000 � g, collect the clear flow-through and discard the
NucleoSpin Filter. If all liquid has not passed the filter, repeat
the centrifugation step. If a pellet is visible in the flow-through,
transfer the clear supernatant to a new 1.5 mL
microcentrifuge tube.

5. Add 450 μL Buffer PC and mix thoroughly by pipetting up and
down (5 times) or by vortexing.

6. Place a NucleoSpin Plant II Column into a new collection tube
(2 mL) and load a maximum of 700 μL of the sample (seeNote
15). Centrifuge for 1 min at 11,000 � g and discard the
flowthrough.

7. Preheat Buffer PE to 65 �C.

82 Lenka Záveská Drábková



8. Add 400 μL Buffer PW1 to the NucleoSpin Plant II Column.
Centrifuge for 1 min at 11,000 � g and discard the
flowthrough.

9. Add 700 μL Buffer PW2 to the NucleoSpin Plant II Column.
Centrifuge for 1 min at 11,000 � g and discard the
flowthrough.

10. Add another 200 μL Buffer PW2 to the NucleoSpin Plant II
Column. Centrifuge for 2 min at 11,000 � g in order to
remove wash Buffer and dry the silica membrane completely.

11. Place the NucleoSpin Plant II Column into a new 1.5 mL
microcentrifuge tube. Pipette 50 μL Buffer PE (65 �C) onto
the membrane. Incubate the NucleoSpin Plant II Column for
5 min at 65 �C. Centrifuge for 1 min at 11,000� g to elute the
DNA. Repeat this step with another 50 μL Buffer PE (65 �C)
and elute into the same tube.

3.5 Method 10:

Extraction

of Ultrashort DNA

Molecules

for “Next-Generation”

Sequencing:

Modification

of DNeasy Plant Mini

Kit (QIAgen)

Recently, many commercially available DNA extraction kits can be
used for extraction of plant herbarium DNA, but sometimes mod-
ifications to standard protocols are often necessary to improve the
DNA yield. This method is chosen from [43–45], who optimized it
and successfully tested it in many different herbarium samples for
“next-generation” sequencing. A modified extraction method
combines a N-phenacylthiazolium bromide lysis Buffer, DNeasy
Plant Mini Kit (Qiagen), and MinElute Purification columns (Qia-
gen). Old specimens contain much shorter DNA fragments than
fresh material, therefore to efficiently retrieve short molecules, this
modified extraction method, which combines PTB lysis Buffer with
MinElute Purification columns (Qiagen), is utilized. PTB cleaves
glucose-derived protein crosslinks [46], and releases DNA trapped
within sugar-derived condensation products [47]. To compare the
choice of extraction Buffer that has a great impact on the length
distribution of molecules recovered from herbarium specimens,
see [43].

1. Prepare 1.2 mL PTB extraction Buffer per sample.

2. Place 0.5–1 g of dried leaf tissue together with 3 mm tungsten
carbide beads (2 or 3 pieces) into a 1.5 mL microcentrifuge
tube. Place the tubes into the TissueLyser Adapter Set, and fix
into the clamps of the TissueLyser. Grind the samples for
1–3 min at 30 Hz (see Note 1).

3. Add the sample to 1.2 mL of PTB extraction Buffer in a 2-mL
or larger tube, and vortex to homogenize thoroughly. The
mixture should be somewhat fluid, not a dry cake in the tube
[44]. Add more PTB extraction Buffer, if necessary, to achieve
the desired consistency (see Note 16).
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4. Incubate the mixture at 37 �C with constant agitation for
18–24 h.

5. Centrifuge the mixture at 9000 � g for 5 min. The samples
should separate into a dense mass of tissue and about
500–700 μ L of supernatant. If the tissue is not suitably com-
pacted (i.e., if more than a very small amount of visible debris is
suspended in the supernatant), centrifuge for an additional
2 min at up to 16,000 � g.

6. Transfer the supernatant from each tube to a new 1.5- or 2-mL
tube, and estimate the recovered volume for the next step.

7. Add 0.325 volumes of Qiagen Buffer AP2, mix, and incubate
on ice 5 min.

8. Pipet the lysate into the QIAshredder Mini spin column placed
in a 1.5 μL collection tube, and centrifuge for 2 min at
20,000 � g (see Note 3).

9. Transfer the flowthrough fraction from the previous step into a
new tube without disturbing the cell-debris pellet. Usually
450 μL of lysate is recovered (see Note 4).

10. To 450 μL lysate add 675 μL Buffer AP3/E. Reduce the
amount of Buffer AP3/E to 1.5 volumes if different volume
of lysate than 450 μL is obtained. Mix it by pipetting. It is
important to pipet Buffer AP3/E directly onto the cleared
lysate and to mix immediately.

11. Pipet 650 μL of the mixture from the previous step, including
any precipitate that may have formed, into the MinElute Puri-
fication column (Qiagen) placed in a 2 mL collection tube.
Centrifuge for 1 min at 6000� g, and discard the flowthrough.
Reuse the collection tube in the next step.

12. Repeat previous step with remaining sample. Discard flow-
through and collection tube. Place the MinElute Purification
column into a new 2 mL collection tube, add 750 μL PE
Buffer, and centrifuge for 1 min at 6000 � g. Discard the
flowthrough and reuse the collection tube in the next step.

13. Add 750 μL PE Buffer to the MinElute Purification column,
and centrifuge for 2 min at 20,000 � g to dry the membrane
(see Note 17).

14. Transfer MinElute Purification column to a 1.5 mL or 2 mL
microcentrifuge tube, and pipet 50 μL Buffer AE directly onto
the column membrane. Incubate for 1 min at room tempera-
ture (15–25 �C), and then centrifuge for 1 min at 6000 � g to
elute.

15. Repeat the elution step.

16. Store at �20 �C or � 80 �C (see Notes 6 and 7).
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4 Notes

1. Proper grinding of plant samples with a TissueLyser or Mixer
Mill is the crucial step. The plant tissue should be ground to a
fine powder after the disruption. However, for some plants one
disruption step may not be sufficient. In that case repeat the
disruption for 1 min at 30 Hz until the sample is thoroughly
and equally homogenized.

2. It is necessary to remove tissue clumps, because tissue clumps
will not lyse properly and therefore decrease yield of DNA. If
the small amount of sample is expected, use longer precipita-
tion or repeat it.

3. It may be necessary to cut the end off the pipet tip to apply the
lysate to the QIAshredderMini spin column. The QIAshredder
Mini spin column removes most precipitates and cell debris,
but a small amount will pass through and form a pellet in the
collection tube.

4. It is crucial not to disturb the pellet. In case you do that, repeat
step 5. For herbarium specimens usually less lysate is recovered.
In this case, determine the volume for the next step.

5. It is important to dry the membrane of the DNeasy Mini spin
column since residual ethanol may interfere with subsequent
reactions. Discard flow-through and collection tube.

6. Preferably short-term storage in TE (or AE Buffer) at �25 �C,
for long-term storage use �80 �C.

7. The exclusion of samples based on visualization of total DNA
on agarose gel alone is gratuitous. This statement is also valid
for other techniques as AFLP (see below). For PCR the best
results require short length of products (optimum of 300–350
to 500 bp). Higher number of PCR cycles are recommended.

8. Use short AFLP fragments, up to 300 bp (depending on the
quality/quantity of DNA and chromatograms). To compen-
sate for using only part of the chromatogram, it may be neces-
sary to increase the number of primer combinations in order to
obtain a sufficient number of polymorphic fragments. Even
samples for which DNA appearance on the agarose gel showed
small amount and/or low quality may in some cases work well
for AFLP.

9. To obtain a fine powder is the most crucial step.

10. If the pellet is disturbed, centrifuge again.

11. Do not disturb the lower layers and the pellet. If you do so,
centrifuge again.

12. Proceed with cell lysis using Buffer PL1 or alternatively with
Buffer PL2 or Buffer PL3. Test the different Buffers and
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choose the Buffer most appropriate to the plant tissue or the
plant species used: Buffer PL1 is based on the established
CTAB procedure. Additionally, the SDS-based Lysis Buffer
PL2 is provided by the manufacturer, which requires
subsequent protein precipitation by potassium acetate (Precip-
itation Buffer PL3).

13. If the sample cannot be resuspended easily, additional Buffer
PL1 can be added.

14. The maximum loading capacity of the NucleoSpin Plant II
Column is 700 μL. For higher sample volumes repeat the
loading step.

15. Extraction with N-phenacylthiazolium bromide (PTB) Buffer
decreased median fragment length by 35% when compared
with cetyl-trimethyl ammonium bromide (CTAB) [43].

16. Residual ethanol from PE Buffer will not be completely
removed unless the flowthrough is discarded before this addi-
tional centrifugation for 1 min at maximum speed.
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Chapter 5

Sequencing of Complete Chloroplast Genomes

Berthold Heinze

Abstract

In this chapter, frequently used methods for elucidating sequence and structure of chloroplast genomes are
reviewed, as a current best practice guide. This concerns methods for DNA extraction, sequencing library
preparation, and bioinformatics (assembly, verification, annotation, and sequence comparisons). Recom-
mendations for standard data reporting practices are given—chloroplast genome sequencing reports can be
highly formalized, and publication in the form of standard data reports is the best option for comparison
and meta-analysis purposes.

Key words Chloroplast genome, High-throughput sequencing, Next-generation sequencing, Bioin-
formatics, Data reporting standards

1 Introduction

The number of completely sequenced chloroplast genomes has
exploded in the last few years. While the numbers were in the tens
in the early years of the millennium when it became possible to
sequence entire nuclear genomes (e.g., Populus trichocarpa as the
first tree species and third plant species overall, [1]), they were in
the hundreds when we published the chloroplast genomes of the
date palm [2] and Syzygium cumini [3], and a previous version of
this book chapter [4]. Our recent publication of a conifer genome,
Abies alba [5], also contained its completely sequenced chloroplast
genome, and by now the entries of completely sequenced chloro-
plast genomes in NCBI’s GenBank are approaching 4000 (accessed
on January 27, 2020). This surge in sequenced chloroplast
genomes came about through technical advances in sequencing
(“next generation” or “high-throughput” methods), but also in
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bioinformatics, with several key programs or web services that are
highly used for these purposes.

For this review, a small database of publications reporting
complete sequences of chloroplast genomes was collated. It con-
tains mainly articles published in the recent few years (approxi-
mately 2017–2019), and the main sources were the journal PLOS
ONE (where I handled many manuscript submissions as an editor),
and a collection of articles published in an e-book [6]; this selection
is completely arbitrary, but it gives a good overview of currently
preferred methods. By browsing the database and further reports of
chloroplast genome sequencing, it becomes clear that methods and
reports have become highly standardized, and that there is not a
great variety, neither in wet lab techniques nor in bioinformatics.
Therefore, the chapter will summarize these workflows and will
give hints at alternatives to commonly used methods. The report
of the sequencing of the deadly nightshade Solanum dulcamara [7]
will serve as a guiding example, because it is comprehensive and the
authors went back to their references (sequenced genomes in data-
bases) and corrected these. This is important, as omissions, errors,
or inconsistencies that once get a hold in databases will spread by
taking over annotations and other features for the newly sequenced
chloroplasts; thus perpetuating common shortcomings and errors
in reference sequences.

Wet lab techniques being done in-house are now often reduced
to DNA extraction (and sometimes quality checks), while library
preparation and sequencing itself is outsourced to specialized
genome centers. Both are highly reliant on commercial kits, for
which exhaustive methods descriptions are available. For this rea-
son, the chapter will not list individual step-by-step instructions,
but rather it will review the most important questions that research-
ers who want to sequence chloroplast genomes are faced with.
Similarly for bioinformatics, the possibilities will be listed and com-
mented, but not be detailed in a step-by-step mode. The chapter
will close with recommendations for reporting, which would
benefit from applying a simple scheme in the form of a “data
report.”

2 Review of Methods

2.1 Database

of Research Articles

The database contains approximately 50 entries of methods from
published articles that describe chloroplast DNA sequencing (Data
S1) in the form of an Excel table, with text and information from
the articles, edited into a common format. It lists citations, journal
source, digital object identifiers (DOI), plant taxonomic groups,
purpose of study, material used, and DNA extraction and sequenc-
ing methods (in categories), as well as information on bioinfor-
matic procedures for assembly, annotation, software tools used, and
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any other useful hints. The following sections try to extract the
essentials from the comparison of the methods present in the
database entries.

2.2 Plant Material

and DNA Extraction

Most studies in the database use fresh leaves (or other types of fresh
plant materials). If not used immediately, tissue samples are placed
on ice, or immediately frozen and stored at deep-freeze tempera-
tures (e.g., �80 �C). Liquid nitrogen is sometimes used for shock
frosting. It can also be used for breaking cell walls with a mortar and
pestle, or with the help of a shaking mill. The resulting powder is
then used for DNA extraction.

Alternatively, silica gel for gentle, but thorough drying of the
material may be a convenient way to transport and store material,
especially if collected in the field. Tee filter bags are convenient for
placing individual samples separately into the silica gel, and they can
be labelled easily. A few studies list cambium as a source of plant
material. Obtaining cambium, the growth layer of tree trunks, is
often more convenient than getting twigs or leaves from high tree
crowns. A leather punch with approximately 1–2 cm diameter can
serve for this purpose. A piece of cambium (with thin layers of bark
and wood attached at opposite sides) can likewise be plunged into
silica gel for drying and transport. In the laboratory, these layers are
removed (e.g., with a scalpel, sharp knife, or razor blade), and the
cambium layer is further processed.

There is an example of flower buds (which are not necessarily a
photosynthetic tissue, thus may not be the best option for obtain-
ing chloroplast DNA) and another describing the use of young leaf
buds (which, on the contrary, consist of tightly packed cells, thus
lots of DNA). Needles (in the case of conifers) can be used much in
the same way, but may be harder to homogenize. A single article in
the collection describes isolation of chloroplasts prior to DNA
extraction. This may avoid an issue in bioinformatics—how to
extract sequencing reads that belong to chloroplast DNA from
the rest of the (nuclear and mitochondrial) DNA? There are ways
of dealing with this in silico (see sections below), but enriching for
chloroplasts in the first place may avoid this issue. Storing fresh
leaves in a refrigerator (at 4 �C) at least overnight may reduce levels
of chlorophyll, which can cause oxidation and problems associated
with it, like browning and inhibition of enzymes (polymerase,
ligase) in later steps.

The amount of plant material for DNA extraction varies widely,
but this has to do with whether fresh or dry material is used. The
smallest amounts listed are approximately 100 mg (presumably
dry), whereas up to 20 g may be used as in the study of Shi et al.
(2012 [8]), who worked on improvements in chloroplast isolation.

A high proportion of the reviewed articles used the well-known
CTAB (cetyl trimethyl ammonium bromide) method (originally by
[9]) or slight modifications of it for extracting the total genomic
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DNA from plant tissues (18 articles). This method can easily be
scaled to various amounts of starting material. Modifications
include the addition of antioxidant chemicals or other buffer com-
ponents. DNA is precipitated and re-dissolved in this method.
Alternatively, commercial kits are popular for DNA extraction,
including the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany;
listed 10 times) or the Plant Genomic DNA Kit of TIANGEN
(Beijing, China; 4 times). These kits usually apply the principle of
purifying DNA by binding it to silica membranes in the presence of
high concentrations of chaotropic salts, and releasing it under low
salt conditions. Others listed include the MagicMag Genomic
DNA Micro Kit (Sangon Biotech, Shanghai, China), the Genome
Wizard Kit (Promega, Madison, WI, USA), GenElute Plant Geno-
mic DNA Miniprep kit (Sigma-Aldrich, St. Louis, MO, USA), HP
Plant DNA Kit D2485-01 (Omega Bio-Tek, Santa Clara, CA,
USA), and the Gentra Puregene Tissue Kit (QIAGEN, Hilden,
Germany). The Invitrogen DNA Plantzol Reagent was used in
only one method among the approximately 50. Two studies
employed specific plant chloroplast isolation kits (Genmed Scien-
tific Inc., Arlington, USA, and BTN120308, Beijing, China; the
latter in combination with their Column Plant DNA Extraction
Kit). The rest of the studies applied specific protocols, often opti-
mized for the taxonomic group investigated. For example, one of
these was based on the Dellaporta protocol [10], which uses
sodium dodecyl sulfate (SDS) instead of CTAB, and high salt
conditions, and another one involved DEDTCA (diethyl dithiocar-
bamate) as the surfactant. The quality and concentration of DNA
are often checked by agarose gel electrophoresis (this is still highly
recommended) and spectrometric/fluorometric methods, respec-
tively. Among the latter, the Qubit and Nanodrop instruments are
most popular, but their results can somewhat differ from each
other, as Qubit is less sensitive to low-molecular DNA (which
may therefore go undetected), and the Nanodrop instruments are
sensitive to SDS carry-over on the lens. Capillary electrophoresis
can replace both quality and quantity checks (e.g., the Bioanalyzer
2100 of Aligent, Santa Clara, CA, USA).

2.3 Construction

of Sequencing

Libraries

Few studies list the specific methods for fragmenting DNA. The
sizes of DNA fragments for high-throughput sequencing are much
smaller than the ones obtained with the various DNA extraction
methods. A narrow size spectrum is important, as polymerase chain
reaction (PCR) protocols are employed in nearly all workflows
(as smaller insert sizes are preferentially amplified), and bioinfor-
matic assembly methods incorporate the approximate insert size in
their algorithms. Only the ends of the inserts are sequenced in most
methods, thus their physical distance is an important piece of
information for assembly. The Covaris shearing instruments
(Woburn, MA, USA) is an industry standard. Several commercial
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kits employ a different principle, in that a DNA-fragmenting
enzyme is incubated with the DNA for various amounts of time
in order to obtain a defined fragment size range. None of the
methods screened in the database mention steps for size selection
of DNA fragments. This could be easily done, e.g., by preparative
agarose electrophoresis.

Specific size ranges listed in the various studies range from
150 basepairs (bp) to 20 kilobasepairs (kb), but the latter only
applies for specific long-range techniques/instruments (PacBio
SMRT and Nanopore sequencing). The most common ranges are
300 bp (5 times), 350 bp (5 times), and 500 bp (12 times). Just one
article mentions a larger size range (600–800 bp), while another
one used 800 bp inserts for the (long-range sequencing) PacBio
SMRT technique. A single example of a mate-pair library of 5 kb
insert size is present. Large inserts (mate-pair libraries) offer the
advantage of better dealing with the large inverted repeats present
in most chloroplast genomes, as the fragments will often span the
junctions of these with the single-copy regions.

Frequently, libraries are prepared in the genome centers or by
commercial service providers; in such cases, details of the library
preparation methods are often lacking in the reports. Where they
are listed, Illumina kits and protocols are the favorites and include
the Nextera, TruSeq, and other variants. New England Biolab’s
NEBNext kits (in various versions) are second in line. It would be
desirable to have this information in all chloroplast genome
sequencing reports. Specific sequencing instruments (e.g., the Ion-
Torrent and PacBio instruments) require specific library methods
and kits.

2.4 Sequencing

Platforms and Modes

The overwhelming sequencing mode is “paired-end” (30 articles).
There is one mate-pair, and one single-end sequencing strategy
among the articles in the database. Again, the sequencing mode is
not reported in every case, although this would be highly desirable.
Similarly, most studies sequenced for 2 � 150 bp (14), fewer with
2 � 100/101 bp or 2 � 125 bp (four to five). Longer reads can be
done, in the case of Illumina sequencing, e.g., on the MiSeq
machines (2 � 250 bp and 2 � 300 bp, total of six studies).
Unfortunately, the latter ones did not report insert sizes in all
cases, and not even read lengths are reported in each case (they
can be partially deduced from the type of instrument employed, see
below).

Illumina sequencing instruments have developed into a sort of
industry standard in the most recent years. They were used in 40 of
the 50 cases. The various instruments produce different read
lengths, e.g., 2 � 100 bp on HiSeq 2000, 2� 125 or 150 bp on
HiSeq 2500, and 2 � 150 bp also on HiSeq 4000 and HiSeq X. As
mentioned above, MiSeq can cope with 2� 250 or 300 bp reads. A
single report in the collection used Roche’s 454 GS FLX Titanium
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platform, another one the IonTorrent, and two examples have
made use of the substantially longer read sequencing capacities of
the PacBio system (the RS II platform in both cases). One report
mentions the NanoPore platform as an alternative; it is also used for
much longer reads. Just one example of a PCR-based strategy
found its way into the collection; these authors designed primers
for long-range amplicons and sequenced those with Sanger tech-
nology. This strategy is now almost obsolete, but it has advantages
in that DNA quality is less of an issue; it can be paralleled for a
higher number of samples; and there is no need to employ bioin-
formatic routines to separate reads of chloroplast origin from
others. Nevertheless, the need for (species-)specific primer design,
and the need to sequence longer fragments in sections are work-
intensive drawbacks. As only up to 1000 bp can be sequenced in
one Sanger run, it would be necessary to sequence such long
fragments of, e.g., 10,000 bp in ten or more (overlapping) sections,
with specific primers designed for each. The chloroplast primer
database [11] offers a collection of “universal” primers anchored
in genes; these primers will be very helpful in a PCR-based sequenc-
ing strategy.

Data reporting standards for the amount of sequence obtained
are poor in this collection of articles (at least in the methods sec-
tions). Only eleven articles mention the amount of raw or clean
data in Gigabasepairs (Gb: range of 1.4 to 20.86) or in numbers of
reads (seven articles; range, approximately 600,000 to 152 million
reads; typical median numbers are from 3 to 60 million reads). The
numbers of reads and amount of sequence data obtained should
always be reported.

2.5 Raw Data (Read)

Processing

There is a need to filter out low-quality reads. Next-generation/
high-throughput methods yield sequences along with a quality
assessment figure for each base. By comparing these quality levels
among all reads, or by using a pre-set cutoff, reads with ambiguous
sequences are removed. This is essentially also done in traditional
Sanger sequencing (but not always as an obvious step)—sometimes
by computer programs that assess the chromatograms (electropher-
ograms), sometimes by visual inspection by the user. For next-
generation/high-throughput sequencing, a number of commercial
or free software solutions exist. CLC (Aarhus, Denmark) is a com-
mercial solution; its Genomic Workbench runs on ordinary PCs
and its graphic interface offers a convenient way to visualize data for
a quick overview (there are also versions that run on servers). CLC
programs have been used six times by methods in the database for
this purpose. GENEIOUS (Auckland, New Zealand) is another
commercial solution and quite popular among chloroplast sequen-
cers. It can be employed for various tasks in chloroplast sequencing
by NGS methods. Other, stand-alone solutions from the scientific
literature/internet are FastQC (https://www.bioinformatics.
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babraham.ac.uk/projects/fastqc/; mentioned by six arti-
cles), NGSQC Toolkit ([12]; nine times), Trimmomatic ([13];
ten times), PRINSEQ lite (http://prinseq.sourceforge.net/index.
html; twice), CUTADAPT [14] and SICKLE (https://github.
com/najoshi/sickle; once each), and SMRT Analysis (also men-
tioned only once; specific for PacBio). Another mentioned possi-
bility for PacBio experiments is their long read correction tool LSC,
which corrects the more error-prone PacBio reads with Illumina
paired-end reads. Also GENEIOUS can perform trimming and
filtering. However, a relatively high number of articles do not
mention specific trimming and filtering procedures. Only a few
among those specify the parameters explicitly; this is certainly the
best practice.

2.6 Selection

of Chloroplast Reads

and Assembly

Most methods work with sequence reads from the overall genome
and thus contain a mixture of nuclear, mitochondrial, and chloro-
plast sequences. There is a need to somehow select or filter for only
chloroplast reads. These are often more numerous (e.g., [1]), but
that criterion alone will not suffice, as there are also numerous reads
from mitochondria, and from nuclear repeats. Furthermore, the
sequence of chloroplast origin can, over evolutionary times,
“travel” to the mitochondrial and nuclear genomes and get
incorporated there [1]. Because these sequences and genes will
most often lose their function, their mutation rates are high.
Reads of such origins must thus be excluded from assembly, as
they may introduce polymorphisms caused by mutations of the
mitochondrial or nuclear copies. This is not a trivial task.

The easiest way to cope with this issue is to use a reference
chloroplast genome against which the reads are aligned; this is what
most methods in the database did. This can also be tricky, as it will
only identify homologous sequences that are present in the refer-
ence genome. For most cases, where the reference is closely related,
this will not be a big issue, as the chloroplast genomes are often very
similar. There are exceptions, however, for example in parasitic
plants (which do not depend on a fully functioning photosynthetic
apparatus, with the corresponding chloroplast genes becoming
dispensable).

The showcase example in this respect is [15] who used not just
one reference genome, but a collection of 1688 complete plastome
sequences from GenBank, against which the reads were filtered.
This requires higher computer power of course, but should still be
possible on desktop machines. A similar approach is to use BLAST
against only chloroplast entries in GenBank.

As for software for assembly, there are a handful of preferred
choices in the methods reviewed: CLC Genomic Workbench or
similar products of the same company (mentioned seven times in
various versions; a general multipurpose assembler that is capable of
assembling chloroplast genomes on desktop PCs); GENEIOUS
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(various versions; four times, also for multiple purposes); SOAPde-
novo [16] (various versions, seven times), usually employed for
large genome sequencing projects; SPADES (mostly versions 3.*,
seven times); NOVOPLASTY [17] (various versions; six times), an
interesting approach that starts from confirmed chloroplast
sequence and tries to extend the assembly by adding reads at both
ends; and a few others used in two to three methods each: the
GetOrganelle python pipeline [18], MITObim [19] (both are also
biting and iteration approach), ABYSS [20] (an assembler for entire
nuclear genomes); and VELVET [21].

2.7 Improving

the Assembly

There are interesting approaches of how to refine the initial assem-
bly. Such an assembly may suffer from various problems. Many such
problems can be due to the presence of repeats. The large inverted
repeats often only become evident in reference-guided assembly
approaches. “Ordinary” assemblers do not expect a genome to
close in a circle, but that is what a chloroplast genome is usually
assumed to do (even if the actual conformation may be more
complicated [22]). Smaller repeats, often present in the spacers
between the genes, are another issue. Introns, especially those in
the transfer RNA genes (tRNAs), can be similar to each other and
thus may confound assemblers.

Again, [7] provide good guidance, by combining and compar-
ing a reference mapping with two de novo methods and inspection
to resolve ambiguities. Sanger-based sequencing of PCR products
(predicted on the basis of the initial assembly) is a simple and
effective way to confirm the assembly in places where there is
doubt. Especially, the junctions between the inverted repeats
(IRs) and the single copy regions require such attention, as they
often shift a little bit even among closely related species. IRScope is
a program designed for supporting this purpose [23].

Gaps in the initial assembly are another issue that is often
encountered. There is a special function to deal with gaps called
GapCloser in the SOAP package that does not require additional
labwork (like in the case of PCR/Sanger sequencing). Such gaps
can also be tackled by selecting high-quality flanking reads as seeds
for further local assembly. Another approach that is generally
recommended is to map back clean reads onto the initial assembly;
in this way, inconsistencies will be identified and can be corrected.

2.8 Description

of the Assembly

Few of the reviewed methods explicitly describe the coverage of the
final genome—i.e., the average number of reads supporting each
position (nucleotide). It can be directly obtained from more versa-
tile assemblers like CLC Genomic Workbench or SOAP.

The usual next step is to define the genes and other features
along the genome. This process is called annotation. There are
three main routes that authors have taken in this respect. The
first, and the longest established, is the DOGMA web service for
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chloroplast and mitochondria annotation [24]. It works on the
basis of GenBank entries, to which it compares the submitted
sequence, and returns annotations for common chloroplast genes.
While it is still online, the server has “come in the years.” A recent
message (15 May 2019) on the website says that it is no longer
accepting new users, and will be disabled completely soon.
DOGMA required users to fine-tune start and stop codons of
genes manually. Luckily, there are alternatives; one (the most pop-
ular) of them is cpGAVAS [25, 26], which returns a similar full
annotation. The third option that is often cited is GENEIOUS,
which has a function to transfer annotations from aligned genomes
(i.e., from reference genomes to new assemblies). Two other soft-
ware packages are mentioned, but only twice each: GeSeq [27] and
Verdant [28]. However, the GeSeq website lists several other,
alternative tools. Many other authors have relied on (“manual”)
BLAST searches and corrections. In the face of this, the approach
by [7] and also [29], to compare the results of several annotation
tools, is the gold standard. However, even that requires enough
insight so that the correct starts and stops (as well as intron borders)
can be selected from those suggested. Overwhelmingly, authors
have made use of the tRNAscan-SE software [30] (often in addition
to automatic tools) to correctly annotate tRNA genes. An alterna-
tive is ARAGORN [31] (two mentions), or again, BLAST searches
followed by inspection and correction. It goes without saying that
the final annotated sequences must be submitted to one of the
nucleotide databases (GenBank, EBI, DDBJ).

Most reports contain a graphical representation of the resulting
chloroplast “ring” chromosome; the well-established OGDRAW
software/server [32] is by far the most often used for this purpose.
Alternatives are GenomeVx [33] and CGView [34]; CIRCOS [35]
is a full-blown option for comparing entire nuclear genomes, but
apparently also works for the much smaller chloroplast genomes.

Repeats make it more difficult to assemble chloroplast genomes
(see above), but they are an essential feature and should be
described. The Tandem Repeats Finder [36] identifies direct (tan-
dem) repeats according to various parameters to be set by the user.
Ten database entries followed this route. However, as Amiryusefi
et al. (2108) [7] have pointed out, redundant repeats which are
placed entirely within other repeats and/or duplicated (parts of)
tRNA genes should not be counted in the analysis. REPuter [37],
of similar age, searches for further repeat types. Most authors who
have used Tandem Repeat Finder have also employed REPuter (but
not vice versa: 15 methods only employed the latter, which may be
sufficient for this purpose). The shortest repeats, those of simple
sequences often called “microsatellites,” are often discovered with
the MISA tool (a Perl script [38]; 23 cases). Once again, overall
more authors used MISA than both MISA and REPuter, but a few
employed Phobos [39] instead of MISA. The third alternative is
MSATCOMMANDER [40].
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2.9 Phylogenetic

and General

Comparison

of Chloroplast

Genomes

I will only give an overview onmethods for phylogenetic analyses of
chloroplasts, as these may go beyond the more technical scope of
this chapter. mVISTA [41] and MAUVE [42] perform whole-
genome alignment visualization. Especially, mVISTA is almost uni-
versally used by the authors in the database, most often in the
so-called Shuffle-Lagan mode. MAFFT [43], which is constantly
being updated [44], performs the alignment of protein coding
sequences (amino acids). For calculating key parameters for DNA
sequence comparison and evolution, many authors turn to DnaSP
[45], which has a similar continuous history of development
[46]. MEGA (currently at version 10, [47]) performs similar
tasks, and can be used across different computing platforms. Fur-
ther investigations mentioned more than once are RNA editing
(programs PREPACT [48] and PREP-cp [49]). However, the
gold standard (again presented by Amiryousefi et al. [7]) is to
actually sequence RNA from active chloroplasts and compare
these to the genomic sequence. Defective RNA editing may lead
to cytonuclear incompatibilities [22], which again can be environ-
ment dependent. The same authors [22] also point out that if entire
chloroplasts, or entire gene sets, are used in phylogenies, genes or
sites under positive selection may blur the picture (and the resulting
tree). Codon usage is most often analyzed with the CodonW
software [50], and the actual model of nucleotide substitution
(the “ease” or probability of the different types of mutation) is
often analyzed with jModelTest [51]. Most studies have compared
the 70–80 common protein genes for phylogenies. However, even
intergenic sequence, if properly aligned and analyzed for the types
of mutation present [52], can provide a lot of insight into phyloge-
netic evolution. RAxML [53] is the clear favorite for maximum
likelihood estimations of phylogenic relationships (a new alterna-
tive is EasyCodeML [54]); followed by MrBAYES [55] for Bayes-
ian inference. PAUP* [56], which is based onmaximum parsimony,
is still popular. MEGA can also be used to build trees and assess
their significance. SNP detection can be done by SNiPlay [57].

3 Recommendations for Reporting Chloroplast Sequences

The analysis of the database shows that the description of chloro-
plast DNA sequences is highly formalized—there is often a set of a
few choices only for each step, and many authors follow this very
similar sequence of steps. These steps can be standardized to a high
degree. This will be exemplified here by [7] in a table (Table 1).

General recommendations include describing the exact sources
of the material analyzed (species and lower taxonomic ranks), and
mentioning the mating system of the species. Highly outbred
species (where each individual represents a completely different
genotype) are different in this respect from inbred species (where
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Table 1
Example of data reporting standards derived from Amiryousefi et al. 2008 [7]

Authors, year Amiryousefi et al. 2018

Source journal PLOS ONE

Species/taxa Solanum dulcamara

Species/taxa additional info

Citation PLoS ONE 13 (4): e0196069.

DOI https://doi.org/10.1371/journal.pone.0196069

Purpose Transcription, correcting annotations

Material Fresh leaves (plants)

Treatment/storage

Amount of sample

DNA extraction method Modified high-salt protocol of Shi et al. (2012): Shi C, Hu N,
Huang H, Gao J, Zhao Y-J, Gao L-Z. An improved chloroplast DNA
extraction procedure for whole plastid genome sequencing. PLoS
ONE 2012; 7:e31468. https://doi.org/10.1371/journal.pone.
0031468 PMID: 22384027; multiply-primed rolling circle
amplification (RCA): Atherton RA, McComish BJ, Shepherd LD,
Berry LA, Albert NW, Lockhart PJ. Whole genome sequencing of
enriched chloroplast DNA using the Illumina GAII platform. Plant
Meth. 2010; 6:22; REPLI-g Mini Kit (Qiagen)

Quality checks of DNA Agarose gel electrophoresis, Qubit; Agilent Technologies 2100
Bioanalyzer using a DNA 1000 chip

Library insert size 300 bp

Library kit/method IlluminaTruSeq DNA sample prep kit

Sequencing mode Paired-end

Sequencing length 2 � 150 bp

Sequencing instrument Illumina MiSeq

Raw/clean data (Gb)

Raw/clean data (reads)

Further info on data amounts

Trimming/filtering
procedures

Trimmomatic

Extraction of chloroplast reads
(software)

Use of a reference genome/de novo

Assembly software GENEIOUS v9.1.7, VELVET v1.2.10 (de novo)

Additional steps for assembly Reference mapping and two de novo methods compared and inspected;
sanger-based gap closure and IR junction verification

Coverage

(continued)
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each individual is essentially genetically identical). The purpose of
the study should be made clear—in most cases it will be the
description of the new sequence, along with a comparison to
related species. Therefore, the most appropriate form of such a
report in the future would be a Data Report with its own digital
object identifier (DOI). These can be kept simple, provide valuable

Table 1
(continued)

Annotation DOGMA, cpGAVAS, VERDANT, GeSeq; inspected and curated all
annotation manually; local BLAST searches to confirm the position of
CDS; confirmed start and stop codons manually and by comparison
to RNAseq; reconfirmed any internal stop codons. Reannotation
followed a two-step protocol—Software tools DOGMA to GeSeq

Annotation (additional) tRNAscan-SE

Further processing

Drawing OGDraw v1.2

Repeat analysis (1) Redundant repeats found entirely within other repeats as well as
duplicated parts of tRNAs pruned

Repeat analysis (2) REPuter; manually inspected output file and located repeats in
GENEIOUS (because REPuter overestimates number of repeats)

Repeat analysis (3) MISA

(Whole-genome) alignment Sequences aligned, compared, and manually curated (compared to new
reference); mVISTA; MAFFT

Analysis of nucleotide
variability

Further examinations IRscope (expansion and contraction of the inverted repeat IR regions at
junction sites examined and plotted)

Codon usage/gene selective
pressure analysis

Codon frequency and relative synonymous codon usage (RSCU)
calculated on the basis of protein-coding genes using an in-house
script; MEGA v7.0.21 (computed overall mean of pairwise distances
of 80 protein-coding genes based on Kimura 2-parameter model)

Phylogeny: substitution model
testing

jModelTest2

Phylogeny: regions used 35 complete chloroplast genomes

Phylogeny: tree building RAxML-NG (maximum likelihoodML under three different strategies)

Phylogeny: further details (1) One of the IR regions removed from all plastid genomes to reduce
overrepresentation of duplicated sequences; (2) same data matrix
partitioned by gene, exon, intron, and intergenic spacer regions
(n ¼ 258) and allowed separate base frequencies, α-shape parameters,
and evolutionary rates to be estimated for each; (3) inferred best-
fitting partitioning strategy with PartitionFinder2 for alignment
(n ¼ 24)
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data for others to use in their research, and are citable as a digital
resource. Many journals now encourage authors to use this format
for large datasets. In the past, GenBank entries of chloroplast
sequence without corresponding journal articles have made it diffi-
cult to assess the significance of, e.g., sequence polymorphisms as
compared to new sequence (e.g., [2]).

The nature of the plant material used for the purpose of chlo-
roplast sequencing (e.g., leaves) should be mentioned, as well as the
amount and the state/treatment of the material. Next is a summary
of the DNA extraction method. This can be done by citation in
most cases. Quality checks on the DNA obtained should be done
and mentioned. Most methods of sequencing now work with
libraries; the sizes of the DNA inserts (and how they were fragmen-
ted) should be mentioned, as well as the library preparation proto-
col. This is often done by service provider laboratories;
nevertheless, they should report these methods. The same applies
to the sequencing mode (e.g., single-end or paired-end), the actual
sequencing machine (instrument), the amount of raw sequence
data, and the numbers of reads (as well as their average lengths
and length range). After trimming for quality (mentioning the
methods to do so), the statistics of cleaned sequence used further
downstream should be given.

The strategy to extract chloroplast reads from the total DNA
should be given in sufficient detail (e.g., use of a reference
genome), and the software used to assemble these reads. The
most important settings of the software should be mentioned. If
there are additional steps (or several alternative ways) of assembly,
they should be described in the same detail. As a result, the general
coverage of reads per nucleotide should be given.

Steps for the annotation can also be highly formalized by
mentioning the software and its settings, and whether corrections
were done manually. It is very important to mention the reference
genomes (and time points of access to these) against which the
corrections are made, as errors and inconsistencies in database-
stored sequences will be propagated easily. Best practice would be
to have RNA sequencing data available for independent confirma-
tion of gene translation starts and stops. For annotation of tRNAs,
tRNA-SE is still a standard, along with the slightly younger ARA-
GORN, but there may be more up-to-date tools coming up. This is
a general issue – newer software tools may continue to appear, but
given that the current ones cope with chloroplast genomes in an
efficient and satisfactory way, the “peak” of development in this
area is probably past.

Visualization tools for chloroplast genomes all converge on a
standard form of representation of single genomes as a ring chro-
mosome. It would be desirable to have more advanced tools that
would allow for better graphical comparison of multiple chloro-
plasts, e.g., in concentric rings. While experienced graphic
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designers would have no problems with creating such images from
the coordinate data of features in the sequence (see, e.g., the
example of the Populus trichocarpa chloroplast in the supplemen-
tary material to [1] which we did in this way), new stand-alone
graphic design software would certainly be widely used.

Repeat analysis is included as a feature in most reports. The
well-established software packages are all suitable; what is necessary
to be reported are details of the settings used. Repeat structures can
be complex and interwoven, especially in the case of introns
[58]. Many authors design primers for highly variable microsatel-
lites/simple sequence repeats (SSRs). These are of limited use
beyond the species they were designed for. Quite often, the micro-
satellites will be found in areas for which previously published and
tested primers already exist [11].

Phylogenetic studies involving whole chloroplasts vary sub-
stantially because of different purposes and data availability. Data
reporting standards should include the sequence base (which
genes, whether introns or intergenic sequences, are included, etc.)
for each step/analysis, the software and settings for alignments,
steps in calculation parameters of sequence variability, and whether
codon usage and selective pressure was analyzed (and by which
strategy, software, and settings). The substitution model should
be selected based on a test for genes; there is not yet a good
consensus for the choice of an appropriate model for introns and
intergenic spacers, however. Tree building is dominated by a few
software packages, each specializing on a single approach (maxi-
mum likelihood/Bayesian/maximum parsimony).

4 Conclusions

Sequencing of chloroplast genomes is now a quite straightforward
exercise; along with its execution, data reporting can be formalized
to a high degree. Future investigators are encouraged to report
along the recommendations given in this chapter (e.g., as a Data
Report or similar, with its own DOI), as this will make the reports
highly comparable. This should lead to better oversight of the
progress in this field, and to enhanced possibilities for advanced
studies with these sequences. It will also help to improve methods
for even higher throughput and still better standardization.
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Chapter 6

Utility of the Mitochondrial Genome in Plant Taxonomic
Studies

Jérôme Duminil and Guillaume Besnard

Abstract

Size, structure, and sequence content lability of plant mitochondrial genome (mtDNA) across species has
sharply limited its use in taxonomic studies. Historically, mtDNA variation has been first investigated with
RFLPs, while the development of universal primers then allowed studying sequence polymorphisms within
short genomic regions (<3 kb). The recent advent of NGS technologies now offers new opportunities by
greatly facilitating the assembly of longer mtDNA regions, and even full mitogenomes. Phylogenetic works
aiming at comparing signals from different genomic compartments (i.e., nucleus, chloroplast, and mito-
chondria) have been developed on a few plant lineages, and have been shown especially relevant in groups
with contrasted inheritance of organelle genomes. This chapter first reviews the main characteristics of
mtDNA and the application offered in taxonomic studies. It then presents tips for best sequencing protocol
based on NGS data to be routinely used in mtDNA-based phylogenetic studies.

Key words DNA polymorphism, Genome assembly, Heteroplasmy, Lateral gene transfer (LGT),
Mitogenome, Next Generation Sequencing (NGS), Organelle inheritance, Organellar genome, Phy-
logeny, Phylogeography, Plastid-derived region (mtpt)

1 Mitochondrial Genomes

1.1 Origin

of Mitochondrial

Genomes

The mitochondrial genome originated from a eubacterial ancestor.
More specifically, it is now widely accepted that the mitochondria
originated from a single endosymbiotic event which involved a
α-proteobacteria-like organism and a common cellular ancestor of
eukaryotes [1]. This symbiotic relationship between a primitive
eukaryote nucleus and an aerobic bacteria—the future mitochon-
dria—has enabled the eukaryote to evolve an aerobic lifestyle. In
relation with this new endosymbiotic habit, the “resident” mito-
chondrial genome has undergone a reductive evolution, character-
ized, for example, by a loss of coding capacities [2]. The gene
content reduction of mitochondrial genomes has been primarily
attributable to either gene loss or mitochondria-to-nucleus gene
transfers [3]. This process has been interpreted as a consequence of
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deleterious accumulation in organelle genomes [2], and as a neces-
sity for multicellular organism to keep the function originally coded
by organelle genomes. Gene transfer from the mitochondria to the
nucleus has been demonstrated to be an ongoing process in plants
[4], which explains that the mitochondrial gene content varies
across distantly related plant lineages [5, 6].

1.2 Mitochondrial

Structure

and Genome Size

Land plant mitochondrial genomes (mtDNA or mitogenomes) are
usually represented as circular maps (e.g., [7, 8]), yet mtDNA
structure is highly variable and should be seen as a complex,
dynamic mixture of forms [9–12]. Indeed, plant mtDNA is com-
posed of multiple alternative subgenomic forms (isoforms) that can
recombine due to the presence of large repeats. This population of
isoforms is thus composed of highly complex structures, linear
molecules, open circles of variable size, and supercoiled molecules.
Such a structural lability leads to some difficulties for the definition
of universal primers and for the full assembly of mitogenome (but
see below).

In sharp contrast to the relative small and homogenous
mtDNA size in animals (usually between 16 and 20 kb; [13]) and
fungi (between 19 and 100 kb; [14]), land plant mitogenome is
large and variable in size (between 104 kb in the moss Anomodon
rugelii and 11.3 Mb in the angiosperm Silene conica; [15]). This
important size variation can be observed between closely related
species [16]. Thus, a comparative study demonstrated that mtDNA
size variation within the Silene genus might be related to variable
mutation rates, with an accumulation of noncoding sequences in
mitogenomes presenting higher mutation rates [15]. Angiosperm
mtDNA size variation among species is mainly related to differences
in the size of noncoding regions, especially large repeats, and alien
sequences acquired from intercellular gene transfer and/or inter-
specific horizontal gene transfer [17, 18]. Plastid-derived (the
so-called mtpt regions) and nuclear-derived nucleotide sequences
represent, respectively, from 1% to 12% and from 0.1% to 13.4% of
the mitogenome [17, 19, 20]. Lateral gene transfers (LGT) result-
ing from mitogenome fusion between distantly related species have
been documented, especially in epiphytic and holoparasitic plants
[21–23].

1.3 Gene

Arrangement

and the Importance

of Homologous

Recombination

Due to the presence of numerous repeated regions and to the
putative co-existence of more than one type of mitochondrial
genome in a cell (heteroplasmy; [24]), recombinations are frequent
within the mtDNA, and gene arrangement (synteny) in higher
plants vary enormously [25]. Besides the large size, recombination
activity is the most distinctive feature of these genomes [26]. Gene
arrangement of mtDNA in higher plants varies enormously due to
the presence of repeated regions, source of recombination within
and between mtDNA genomes [25]. Cole et al. [27] have
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demonstrated that rates of mtDNA rearrangements can be very
variable between species from the same genus. Importantly, rear-
rangements lead to the possibility to generate chimerical genes,
potentially involved in some traits of interest, such as the cytoplas-
mic male sterility [28]. Fortunately, mtDNA coding sequences are
highly conserved, facilitating the identification of conserved
regions within which universal primers can be defined [29, 30]
and that can be easily assembled using next-generation
sequencing data.

1.4 Molecular

Evolutionary Rates

of the mtDNA

In opposition to animals, plant mitochondrial genes evolve very
slowly. Comparing silent (synonymous) substitution rates among
coding sequences from three genomic compartments in plants [i.e.,
nuclear DNA (nDNA), chloroplast DNA (cpDNA), and mtDNA],
Wolfe et al. [31] have demonstrated that mitochondrial genes
evolve three times slower (0.2–1.1 � 10�9 substitutions per synon-
ymous site per year) than chloroplast genes (1.1–2.9 � 10�9 sub-
stitutions per synonymous site per year), which in turn evolve two
times slower than the nuclear genes (up to 31.5 � 10�9 substitu-
tions per synonymous site per year). These results were further
confirmed by Gaut et al. [32] on the comparison of genes from
all three genomes between maize and rice. Interestingly, as outlined
by Muse [33], the similarity obtained between Wolfe and Gaut
studies, albeit different levels of evolutionary divergence were
addressed, might indicate that plant nucleotide substitution fea-
tures have been constant over higher plant evolution. This is some-
what nuanced by Drouin et al. [34], who, based on the comparison
of 12 genes in 27 seed plant species, demonstrated that the overall
relative rate of synonymous substitutions of mitochondrial, chloro-
plast, and nuclear genes is 1:3:10 if averaged across studied seed
plants, 1:2:4 in gymnosperms, 1:3:16 in angiosperms, and that they
go up to 1:3:20 in basal angiosperms. Though this low molecular
evolutionary rate of mitochondrial genes appeared to concern most
of plant species, some exceptions were demonstrated (e.g., within
Pelargonium, Plantago, Silene; [15, 35, 36]). The generality of
slow synonymous sequence evolution in mitogenomes has been
investigated across a large and taxonomically widely distributed
set of seed plants [37]. According to this study, earlier findings
were confirmed for roughly 80–90% of the studied species, indicat-
ing that a surprising number of taxa depart from this common
pattern by presenting either an accelerated or a slower synonymous
substitution rate. Moreover, Mower et al. [37] demonstrated that
both patterns of faster and slower evolutionary rates can be found
within the same species at different genes supporting the idea that
all genes evolve independently from one another. Albeit this obser-
vation might be related to different artifacts (see the discussion in
[37]), independent evidences for mutation rate variation among
genes were acquired [27, 38]. Therefore, the general idea remains
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that mitochondrial genes evolve at a slow rate, and that mtDNA
polymorphism is very low within one species and even between
closely related species. This explains the limited use of mtDNA in
phylogeography and phylogeny, though the demonstration of
molecular rate heterogeneity within some plant lineages [37, 38]
might support the idea that it is worth investigating if this pattern
holds true for a given species.

1.5 Mode

of Inheritance

of the Mitochondrial

Genome

Mitochondrial genomes are generally uniparentally inherited (usu-
ally maternally) in seed plants, though some species have been
shown to present a paternal (some coniferous species) or a biparen-
tal inheritance [39]. Uniparental inheritance of organelle genomes
is more and more seen as an evolutionarily unstable trait [40]. The
uniparental inheritance of organellar genomes, together with slow
molecular evolutionary rates, explain their success as molecular
markers in phylogeography studies (reviewed in [41]). Mode of
inheritance has been shown theoretically and experimentally to
have a major effect on the estimation of the among-population
genetic differentiation: maternally inherited genomes generally
experience more subdivision than paternally or biparentally inher-
ited ones [42]. Thus, in conifers, GST is almost always larger at
mtDNA markers than at cpDNA markers, while it is nearly similar
at both markers in angiosperms, where both are generally mater-
nally inherited [42].

2 Mitochondrial Molecular Markers in Phylogenetics and Taxonomy

2.1 Genomic

Resources: Complete

Mitochondrial Genome

The first land plant complete mitogenome was obtained for the
liverwort Marchantia polymorpha [43]. The number of plant spe-
cies whose complete mtDNA sequence is available is now
221 (Fig. 1). In comparison, 4020 plant species were completely
sequenced for their chloroplast genome (data compiled in October
2019 according to https://www.ncbi.nlm.nih.gov/genome/
browse#!/organelles/).

2.2 Use of mtDNA

in Phylogeography

and Phylogenetics

Due to the supposed absence of recombination within the cpDNA
molecule and its slightly faster evolutionary rate, cpDNA-derived
molecular markers were more popular in phylogeography and phy-
logenetic studies than mtDNA-derived ones. However, the acqui-
sition of mtDNA data can also be very interesting to characterize
species evolutionary history, notably in addition to and comparison
with cpDNA data [44–50].

Historically, mtDNA variation was first evaluated with the
Restriction Fragments Length Polymorphisms technique (RFLPs;
[51, 52]). This approach allowed revealing large rearrangements
that were particularly useful to investigate linkage disequilibrium
between chloroplast and mitochondrial polymorphisms within
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some species due to the common maternal inheritance of cytoplas-
mic organelles [53, 54]. With the advent of PCR methods, the
amplification of mtDNA loci with universal primers became more
popular [29, 30, 55–58]. Universal primers were defined in con-
served regions (exons) and were used to amplify mtDNA regions
with conserved micro-synteny. Polymorphism in amplified frag-
ment has been revealed with various methods: PCR-RFLP [59–
63], RFLP-SSR [57, 60, 64], mtDNA-SSR [46], the variable num-
ber of tandem repeats (VNTR) in minisatellite regions [65–67],
and finally in DNA sequences [68–72]. The choice of the candidate
loci was limited and depended on the taxonomic level addressed by
the phylogenetic study. At the lowest taxonomic level (intraspecific
or among closely related species), intergenic or intronic sequences
were particularly interesting. Instead, at higher taxonomic levels,
polymorphism from coding sequences was generally used. Based on
such approaches, only a few studies have combined cpDNA and
mtDNA polymorphisms to reconstruct the phylogeography of spe-
cies (whereas cpDNA has remained the most frequently used
marker). Yet, some contrasted phylogeographic patterns have
been revealed in some species. This was particularly true in conifers,
in which cpDNA and mtDNA can be transmitted by different

Fig. 1 Number of full mtDNA and cpDNA sequences published per year for plant species
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parents, providing complementary information on species pollen-
and seed-mediated gene flow [47, 48].

We have now entered the high-throughput sequencing area.
This offers new opportunities for the use of mtDNA in phylogeo-
graphy and phylogenetics. Given the low polymorphism nature of
mtDNA, acquiring long mtDNA fragments, or even full mtDNA
genomes allows capturing useful genomic variations. However,
these new technologies also bring along new challenges, notably
in terms of mtDNA assembly and comparison between species. As
mentioned above, the mtDNA assembly is complicated by the
presence of numerous short and long repeated fragments (some
reaching more than 10 kb), as well as exogenous fragments (inter-
cellular gene transfers and/or LGTs; [17]). Assembly of nonre-
peated sequences is feasible on relatively long contigs (>10 kb;
[73, 74]), but the integration of all fragments in a master chromo-
some can be challenging [75]. The combined use of long reads
(Oxford Nanopore Technologies) with short reads (Illumina tech-
nologies) can help mtDNA assembly [12, 76], with the possibility
to observe recombination in long repeated regions (alternative
conformation of mitogenomes). The parallel reconstruction of
plastid and mitochondrial genomes is also necessary to resolve the
assembly of mtpt regions; by applying a step-by-step approach, it
was possible to reconstruct the master chromosomes in Oleaceae
even on very fragmented DNA from old herbarium specimens
[50, 75]. All parts of mitogenome are, however, not informative
for phylogeographic or taxonomical studies, since some regions are
not shared between species, even at the genus level, whereas some
homologous regions are not necessarily orthologous (because they
could be recurrently transferred, in particular from the plastome).
As a consequence, mtDNA phylogenies should be reconstructed
with the pan-mitogenome or the core fragments (shared by all
mitogenomes; e.g., Wang et al., [76]), and thus focus on regions
with functional genes (i.e., exons and introns). Using this
approach, the comparison of phylogenetic topologies obtained
with cpDNA and mtDNA have shown subtle differences in several
groups [27, 50, 77, 78], but it can also demonstrate strong infor-
mative incongruences [45, 49]. At the species level, the use of
complete mitogenomes could be possible, but beforehand, orthol-
ogy of mtpt regions has to be verified (by testing, for each mtpt,
phylogenetic clustering of accessions of the same species compared
to other genera). Such a strategy has been applied on the olive tree,
and allowed resolving the phylogeny of maternally inherited
genome, which was not possible with the plastome only [50]. Over-
all, at this taxonomical level, more information was recovered from
the whole mtDNA (>0.6 Mb) than from the plastome
(ca. 0.15 Mb).
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3 Tips for Sequencing Protocol Based on NGS

This chapter finally aims at providing tips for a good sequencing
protocol based on NGS data to assemble mtDNA sequences for
phylogenetic studies (see [79] for methods based on a PCR
approach). The protocol is defined to sequence conserved
mtDNA regions (i.e., parts of the pan-mitogenome) among dis-
tantly related species. The approach is relatively simple and is based
on shot-gun sequencing of total genomic DNA (the so-called
“genome skimming” approach; [80]). Considering the high num-
ber of cytoplasmic organites in a cell, organelle DNA is expected to
be highly represented in such data (ca. 5–10% of total genomic
reads). These data can thus be used for the assembly of different
genomic regions from both the nuclear genome (especially the
ribosomal DNA cluster that is highly repeated) and the organellar
genomes (e.g., [50, 74, 77]).

3.1 DNA Purification For studied samples, total genomic DNA has to be extracted with
an appropriate protocol, that allows recovering a relatively clean
extract with enough double-stranded DNA (at least 50 ng). For
instance, the BioSprint 15 DNA Plant Kit (Qiagen Inc.) has been
successfully used for distinct plant groups, including relatively old
museum specimens (e.g., [81]). With this method, each leaf sample
needs to be ground in a 2-mL tube containing three tungsten beads
with a TissueLyser (Qiagen Inc., Texas) before starting the DNA
purification procedure. Double-stranded DNA concentration of
final extracts is then quantified.

DNA quantification can be done on an agarose gel (if DNA is
not degraded) or by absorbance measurement. When using quan-
tification on agarose gel, PCR products can be quantified, respec-
tively, to a standard DNA ladder. In this aim, PCR products as well
as the DNA ladder have to be analyzed on an agarose gel electro-
phoresis system. Most ladders have a standard band that corre-
sponds to a standard amount of DNA per μL. The PCR product
concentration is roughly quantified according to the intensity of the
standard. If using quantification by absorbance measurement, the
PCR product concentration can be accurately quantified using a
microvolume spectrophotometer (e.g., PicoGreen or Qubit, Ther-
moFisher). Spectrophotometer-based quantification is more accu-
rate than gel-based quantification.

3.2 Construction

of Libraries

and Sequencing

Between 50 and 500 ng of double-stranded DNA are usually used
to construct sequencing libraries with a kit (e.g., TruSeq DNA
Sample, Illumina) or following a home-made, well-established pro-
cedure such as the one described in the supplemental online mate-
rial of Mariac et al. [82]. For herbarium specimens, DNA libraries
can be generated without prior DNA sonication because the DNA
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is supposedly moderately to highly degraded (e.g., [81]). A pool of
24 to 96 libraries can be bulked in equimolar concentrations before
sequencing.

Each sample is then paired-end sequenced (usually reads of
150 bp) on a sequencer lane (e.g., HiSeq or NovaSeq, Illumina).
Bridge amplification is performed to generate clusters, and paired-
end reads are collected on the sequencer.

4 Recommendations for Bioinformatics Analyses

Before starting the assembly, duplicated reads have to be removed
and overlapping paired-end reads can be merged. Because no auto-
mated approach of full plant mitogenome assembly based on short-
read data is currently available, we recommend to focus on the
conserved mtDNA regions and map reads on a reference that has
been previously defined on complete mitogenome. For instance, in
the Oleaceae family, 36 protein-coding genes and 16 introns, for a
total of ca. 55 kb) have been targeted [50]. It is better using as
reference genes from a complete mitogenome that is closely phylo-
genetically related to your model species (the list can be found here:
https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles/).
The merging of overlapping paired-end reads can be done using
BBMERGE [BBTOOLS] as implemented in GENEIOUS v. 9.0.5
[83]. Overlapping paired-end reads (“merged reads”) and non-
overlapping paired-reads (“unmerged reads”) are then used for
the mitogenome assembly as described in Van de Paer et al.
[75]. We recommend to check the quality of the mapping and the
homogeneity of the sequencing depth to detect any chimeric genes
or duplication/deletion among the targeted regions.
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Chapter 7

Nuclear Ribosomal RNA Genes: ITS Region

Pascale Besse

Abstract

Despite possible drawbacks (intraspecific polymorphisms and possible fungal contamination), sequencing
of the ITS region of the ribosomal RNA genes remains one of the most popular nuclear sequences used for
plant taxonomy and phylogeny. A protocol for PCR amplification and sequencing of this region using
universal plant primers is provided.

Key words Ribosomal DNA, ITS, Sanger sequencing, PCR

1 Introduction

Since early reviews [1] and the general agreement around the
necessity to use biparentally inherited nuclear markers together
with monoparentally inherited ones such as chloroplast or mito-
chondrial DNA (Chapter 2), nuclear ribosomal RNA genes
(nrDNA) have received increasing attention in plant taxonomy
and phylogeny. One of the reasons is that such genes provide
significant information in phylogenetic research because they are
composed of different regions (both coding and noncoding) that
are conserved differently and thus provide information at different
taxonomic levels [2] (seeChapter 2). In particular, spacer regions of
nrDNA are useful for plant systematics from species to generic
levels [3]. Another related reason for such popularity is the easy
PCR amplification of this region, provided by PCR primers
designed in conserved coding regions surrounding a more variable
spacer region. Ribosomal genes are arranged in tandem repeats and
are subjected to concerted evolution, which results in the homoge-
nization of the sequences at the tandem array, individual, popula-
tion, and species levels mainly through genomic mechanisms like
unequal crossing over [4, 5]. Homogeneous nrDNA sequences are
therefore generally found within one genome [2]. This implies
reduced levels of intraspecific variation (as compared to interspe-
cific) therefore allowing a reduced intraspecific sampling effort. It
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also provides ease of analysis (because nrDNA is abundant and
uniform) [2].

In plants, nrDNA are generally arranged in two distinct sets of
tandem repeats. The first one is composed of 5 s nrDNA and the
ond of 18 s + 5.8 s + 26 s nrDNA (Chapter 2). The latter is the most
frequently used for plant phylogeny and taxonomy. It is present at
one or a few loci (with hundred to thousands of tandem copies) [6],
and when transcriptionally active, these regions are referred to as
NORs (Nucleolar Organizer Regions). It comprises different
spacer regions. The intergenic spacer IGS, which separates adjacent
18 s + 5.8 s + 26 s nrDNA units, contains many reiterated sub-
repeats within its sequence and is very variable both in sequence and
in length [3]. This leads to difficulties for correctly aligning IGS
sequences. It therefore has not received as much attention as the
internal transcribed spacers (ITS), which are flanking the 5.8S RNA
gene region (between the 18 s and the 26 s RNA genes)(Fig. 1).
This entire ITS region (ITS1 + 5.8 s + ITS2) can be easily amplified
using universal primers in the conserved coding regions [3]
(Fig. 1), as the total size is up to 700 bp in angiosperms [1],
although in some other seed plants such as gymnosperms, it can
be much longer, up to 1500–3700 bp [9]. The ITS region has
become highly popular in plant phylogeny [9], as witnessed by the
constant increase of Embryophyta ITS sequences available in the
NCBI database since 2003 (381,076 ITS sequences as per 30th of
March 2020) (Fig. 2). As a comparison, much fewer hits (59,519)
are obtained for 5 s nrDNA. This region provides different levels of
informativeness: the central 5.8 s RNA gene is highly conserved
due to evolutionary constrains, whereas the surrounding ITS
spacers are highly variable (particularly the ITS2 spacer) and more
informative. This can be illustrated by an alignment of these regions
made from Poaceae sequences (Fig. 3).

Despite early warnings [13], attention has been focused only
recently on the possible drawbacks in using nrDNA (and therefore
ITS) for phylogenetic studies [10]. Concerted evolution does not
always act immediately after organismal processes (such as hybridi-
zation or polyploidization) or after genomic changes (duplication,
recombination) [3, 10]. Concerted evolution efficiency may also

Fig. 1 Structure of the ITS region of the nuclear ribosomal RNA genes and
schematic location of primers from Table 1
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Fig. 3 Variable sites (highlighted) in the ITS1, 5.8 s rRNA gene and ITS2 regions of various Poaceae species
following alignment with Mega 5 [12]: Bromus carinatus (AY367948), Bromus gunckelii (AY367947), Bromus
berteroanus (AY367946), Bromus striatus (AY367945), Bromus cebadilla (AY367944), Festuca matthewsii
(AY524836), Festuca madida (AY524833), Festuca novae-zelandiae (AY524832), Agropyron cristatum
(L36480), Thinopyrum bessarabicum (L36506), Lolium perenne (L36517), Poa alpina (AY327793), and
Oryza sativa (DQ996015)

Fig. 2 Number of nucleotide ITS sequences for land plants in NCBI: 2003 and 2007 values are from [10], 2013
value was as searched on the 17th of June 2013 (189,026 hits) [11], 2020 value, see text
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vary across loci and taxons [10]. This may induce intraindividual
nrDNA polymorphism [13]. If hybrids and allopolyploids are
recent, they might retain paralogous copies of their nrDNA
genes. On the other hand, in some hybrid species or polyploids,
one of the parental nrDNA can be more or less rapidly selectively
eliminated [9, 14, 15]. Intermediate cases of partial additivity are
also found [9]. The PCR product obtained may therefore represent
a mixture of sequences (in various concentrations) sharing the same
priming sites, but located at one or more locus on one or more
chromosomes, and representing either paralogous or orthologous
sequences [9, 13]. It is important to be aware of the possibility of
such intraspecific nrDNA heterogeneity, which may thus result not
only from the presence of homeologous loci due to recent hybri-
dization (with or without polyploidization), but as well from
[9, 15, 16]:

– Low concerted evolution rates: different sequences will coexist
within a single locus.

– Duplication.

– Allelic variants (heterozygosity).

– Amplification of nonfunctional copies (pseudogenes) with dif-
ferent evolutionary constraints [17].

– Possibilities of contamination by fungal DNA (as the same
primers are used for plants) [9].

Paralogous copies resulting from hybridization or allopolyploi-
dization processes can efficiently be utilized to study these pro-
cesses. Many examples are reviewed in [3, 10]. The problem is
more when paralogous sequences are mistaken for orthologous
sequences, which will lead to wrong inference in species relation-
ships [13, 18]. The occurrence of nrDNA intraspecific heterogene-
ity (not due to hybrids or allopolyploids) has been documented in a
range of taxa as reviewed by [18]. Only a detailed study involving
cloning and cytogenetics (e.g., FISH to reveal array number and
chromosomal distribution) (see Chapter 18) may help resolve the
origin of this heterogeneity. Very thorough flowchart diagrams
were designed [16] to help unravel part of these problems. The
least that should be done is:

(1) To check, after PCR amplification (under stringent condi-
tions), that only one clear band is obtained. Otherwise subsequent
cloning and analysis of each PCR product will be required. (2) After
sequencing, always do a BLAST search to check for possible con-
tamination (particularly from fungus). (3) It is also very important
to verify the congruence of the obtained ITS tree with other marker
trees such as chloroplast gene trees: if differences are detected, they
could be due to the hybrid status of some species, but isolated
polyphyly could indicate paralogous sequence. A more detailed
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procedure depicted in very thorough flowchart diagrams is avail-
able [16] if necessary.

A strategy to distinguish between paralogous (pseudogene)
and orthologous copies by using nucleotide diversification patterns
to determine if sequences are functionally constrained using tree-
based approaches was also proposed [18]: A comparison of 5.8 s
and ITS trees is performed. Functional copies should have a slower
rate of evolution of 5.8 s compared to ITS, whereas pseudogenes
should show equal evolutionary rates in 5.8 s and ITS.

The ITS region was early proposed [19] as a powerful tool for
plant DNA barcoding, following testing on a large plant sampling
(99 species covering 80 genera from 53 different families) which
showed more divergence (2.81%) than the most variable intergenic
chloroplastic region trnH-psbA (1.24%). Nevertheless, two chlor-
oplastic genes (matK and rbcL) have been selected by CBOL in
2009 as the universal plant barcode system [20] mainly because of
the previously mentioned possible drawbacks in ITS analysis (see
also Chapter 8). Recently, the high success rate of the ITS2 region
to identify species in dicotyledons (76.1%), monocotyledons
(74.2%), gymnosperms (67.1%), ferns (88.1%), and mosses
(77.4%) was further demonstrated [21]. Moreover, ribosomal
RNAs can form secondary structures that offer new prospects for
phylogenies [3]. The secondary structure of ITS2 is evolutionary
constrained (it is composed of four helixes throughout eukaryotes
(Fig. 4)) because it is important for ribosome synthesis; on the
other hand its sequence is highly variable because ITS2 is not
present in the mature ribosome [22]. Both levels of information

Fig. 4 Example of ITS2 secondary structures of two different orchid species, Vanilla planifolia and V. crenulata,
showing the occurrence of the typical four helixes. CBCs between the two species are indicated by arrows (the
green arrows show CBCs located within the critical conserved 30pb zone)
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are precious and allow the construction of robust phylogenies at
various taxonomic levels with increased resolution as compared to
simple sequence analyses [22–26]. Moreover, the existence of
CBCs (Compensatory Base Changes) between individuals was
shown to be a powerful way to identify species [27]. Particularly,
CBCs located within a 30 pb highly conserved region in the 50 part
of helix III were shown to be indicative of sexual incompatibility
[28](Fig. 4). An ITS2 database was constructed in 2006 [29], now
version IV (http://its2.bioapps.biozentrum.uni-wuerzburg.de/)
[30–32], allowing ITS2 secondary structure predictions and phy-
logenetic analyses. The secondary structure of ITS1 can be pre-
dicted as well but is much more variable and therefore more
difficult to analyze and use [3].

The Chinese Barcoding of Life group [33] conducted a very
thorough (6286 samples from 1757 angiosperm and gymnosperm
species) comparative (with chloroplastic genes rbcL and matK and
intergene trnH–psbA) research on ITS efficiency/universality.
Themselves and others [34] advocate for the incorporation of the
ITS region as a supplementary barcode for land plants. Adding ITS
to the official plant barcode system (rbcL + matK) indeed brings
discrimination success from 49.7% to 77.4% (and see Chapter 8).
Furthermore, [33] showed that contrary to what was feared [9],
very low problems with fungal contamination (only in 2% of the
samples studied) and a very low occurrence of intraindividual mul-
tiple copies of nrDNA (only 7.4% of the individuals) were detected.

ITS is therefore a highly suitable and powerful region for
resolving plant taxonomic and phylogenetic issues in most plant
lineages, as long as one is aware of its possible (but hopefully rare)
limits.

2 Materials

All solutions must be made up using sterile deionized water (Milli-
Q water), and all chemicals must be analytical reagent grade. As in
all molecular biology procedures, work surfaces should be cleaned
and gloves should be worn for all procedures.

2.1 PCR 1. PCR machine (thermocycler).

2. PCR plates or PCR tubes.

3. Taq polymerase: GoTaq® DNA Polymerase (Promega) is well
suited, 5 U/μL.

4. Appropriate Taq polymerase buffer (e.g., Green Flexi Buffer
for GoTaq®DNA Polymerase) (5�).

5. MgCl2 25 mM (if not present in buffer).
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6. dNTP mix (10 mM each) (add 10 μL of each dNTP solution at
100 mM to 60 μL Milli-Q water).

7. Universal plant ITS primers (Table 1) (5 μM).

8. Plant DNA (10 ng/μL).
9. Sterile Milli-Q water.

2.2 Electrophoresis 1. Electrophoresis apparatus (gel tray, combs, power supply).

2. Standard transilluminator (302 nm with 6 � 15 W tubes).

3. High-resolution agarose and standard agarose (molecular biol-
ogy grade) (see Note 1).

4. 10� TRIS (tris(hydroxymethyl)aminomethane)-borate (TBE)
buffer: 10.8 g TRIS base, 5.5 g boric acid, 0.7 g ethylenedia-
minetetraacetic acid. (EDTA)-Na2 in100 mL H2O. This TBE
buffer is diluted to 1� in Milli-Q water for use.

5. Fluorescent nucleic acid gel stain: GelRed™ 1000� in water
(see Note 2) (ethidium bromide can also be used if preferred).

3 Methods

3.1 PCR Reaction For each PCR reaction (25 μL) (see Note 3):

1. Deposit 2.5 μL template DNA in tube or well of the plate.

2. Add 1.5 μL MgCl2 25 mM.

Table 1
Universal plant primers for the ITS region (always use a combination of a forward and a reverse
primer; see Fig. 1)

Primer name Sequence (50- > 30) Reference

18 s forward primers

ITS1 TCCGTAGGTGAACCTGCGG [7]

ITS5 GGAAGTAAAAGTCGTAACAAGG [7]

17SE ACGAATTCATGGTCCGGTGAAGTGTTC [8]

26 s reverse primers

ITS4 TCCTCCGCTTATTGATATGC [7]

26SE TAGAATTCCCCGGTTCGCTCGCCGTTAC [8]

5.8 s reverse primer

ITS2 GCTGCGTTCTTCATCGATGC [7]

5.8 s forward primer

ITS3 GCATCGATGAAGAACGCAGC [7]
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3. Add 0.5 μL dNTPmix 10 mM.

4. Add 1.5 μL of each primer 5 μM (forward and reverse).

5. Add 5 μL of PCR buffer 5�.

6. Add 12.3 μL Milli-Q sterile water.

7. Add 0.2 μL (1 U) DNA polymerase.

3.2 PCR Program 1. Pre-denaturation at 95 �C for 3 min.

2. 35 cycles with 95 �C for 45 s, 60 �C for 45 s, and 72 �C for
1 min 30.

3. Final elongation step at 72 �C for 7 min.

4. Maintain at 4 �C.

3.3 PCR Quality

Verification

on Agarose Gel

1. Prepare a 2% mixture of agarose in TBE 1� (2 g agarose for
100 mL).

2. Bring to boil in a microwave oven.

3. Add 5 μL RedGel™ for 50 μL 2% agarose/TBE.

4. Cool down, and then pour the gel. Let the gel cool down and
prepare for migration.

5. Add 10 μL of PCR solution and loading dye.

6. Deposit in the well.

7. Run migration for appropriate time and observe gel over trans-
illuminator (see Note 4).

3.4 Sequencing A large number of private companies perform sequencing reaction
directly from PCR products that can be sent by express mail (either
sealed or vacuum dried in a SpeedVac). Generally the primers used
have to be provided (see Note 5).

4 Notes

1. We use high-resolution agarose gels rather than standard aga-
rose gels to check for the purity of the amplified fragment and
insure that only one band is amplified. Further routine checks
can be made on standard agarose gels, which can be re-thawed
and reused six times.

2. We prefer using GelRed™ than ethidium bromide (EB) as with
standard Ames test, as measured in two bacterial strains,
GelRed™ has been confirmed to be substantially safer than
EB. GelRed™ is not mutagenic at all dosages in the absence
of the S9 fraction. With S9 metabolic activation, GelRed™
showed weak mutagenicity only at the highest dosage
(50 μg/plate or 18.5 μg/mL), well above the normal concen-
tration used for gel staining.
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We however use EB safety rules when handling GelRed™:
solution pipetting is made under a fume hood, and wear gloves
and a lab coat. Whether GelRedTM waste solution can be
directly poured into the drain may depend on local regulations
despite its nonmutagenicity and noncytotoxicity. Alternatively,
GelRedTM solution may be disposed by adding 25–50 mL
bleach (regular household bleach) to each gallon (~4 L) of
the waste staining solution, and let the mixture react for at
least 8 h before pouring the solution to a sink (practically, you
may simply accumulate your GelRedTM waste solution in a jar
containing appropriate amount of bleach). For precast gels,
you can simply let the gels dry out first and then let the dried
waste go in regular trash bag (together with gloves and other
wastes which are autoclaved prior to disposal).

3. Generally a PCR mix (steps 2–7) is prepared for the desired
number of reactions (allow for 10% variation) and then ali-
quoted in the wells of the PCR plates or in the PCR tubes
containing the DNA samples. Work on ice.

4. At this stage the amplification should give a unique clear band.
If more than one band is obtained, try to use more stringent
PCR conditions (increase annealing temperature, lower MgCl2
concentration, use species-specific primers rather than universal
ones). If the problem still appears, the different bands will have
to be cloned and sequenced.

5. Always ask for a double sequencing reaction, e.g., forward and
reverse, which helps to check the quality of the sequence (con-
sistently poor reactions despite specific primers and stringent
PCR conditions might be due to heterozygous state or hetero-
geneity in the sequences—paralogous copies).
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Chapter 8

Plant DNA Barcoding Principles and Limits: A Case Study
in the Genus Vanilla

Pascale Besse, Denis Da Silva, and Michel Grisoni

Abstract

Powerful DNA barcodes have been much more difficult to define in plants than in animals. In 2009, the
international Consortium for the Barcoding Of Life (CBOL) chose the combination of the chloroplast
genes (rbcL + matK) as the proposed official barcode for plants. However, this system has got important
limits. First, any barcode system will only be useful if there is a clear barcode gap and if species are
monophyletic. Second, chloroplast and mitochondrial (COI gene used for animals) barcodes will not be
usable for discriminating hybrid species. Moreover, it was also shown that, using chloroplast regions,
maximum species discrimination would be around 70% and very variable among plant groups. This is
why many authors have more recently advocated for the addition of the nuclear ITS region to this barcode
because it reveals more variations and allows the resolution of hybrid or closely related species. We tested
different chloroplast genes (rbcL, matK, psaB, psbC) and the nuclear ITS region in the genus Vanilla, a
taxonomically complex group and therefore a good model to test for the efficiency of different barcode
systems. We found that the CBOL official barcode system performed relatively poorly in Vanilla (76%
species discrimination), and we demonstrate that adding ITS to this barcode system allows to increase
resolution (for closely related species and to the subspecies level) and to identify hybrid species. The best
species discrimination attained was 96.2% because of one paraphyletic species that could not be resolved.

Key words DNA barcoding, ITS, rbcL, matK, Barcode gap, Species discrimination

1 Introduction

1.1 Barcoding

History in Plants

Stoeckle et al. [1], in the “Taxonomy, DNA, and the Barcode of
Life” meeting held in New York in 2003, proposed the use of a
single universal short DNA sequence for molecular identification of
all living species, so-called DNA barcoding, later officialized
through an international consortium named CBOL (Consortium
for the Barcoding Of Life). Imagine a world in which any person,
anywhere, at any time can identify any species at little or no cost. That
world is technologically upon us. It was in these exact terms that the
global aim of this ambitious (other would say unrealistic) project
was defined. Nevertheless, the idea of a universal barcoding system
was appealing.
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In animals, the 50 end of the mitochondrial COI (cytochrome
c oxidase subunit 1) gene (� 650 bp length) was rapidly identified
as the best DNA barcode [2]. This was because (a) the mitochon-
drial genome is present in numerous copies in a cell, allowing easy
sequencing; (b) in animal mitochondrial genome, the order of the
genes is highly conserved; (c) the gene shows a high substitution
rate [3] and therefore a high polymorphism between species; and
(d) there is a low intraspecific polymorphism thanks to maternal
transmission [4].

However, COI was rapidly demonstrated to be not suitable for
plant barcoding. Indeed the mitochondrial genome in plants shows
low variation rates (low polymorphism) and numerous rearrange-
ments [5], advocating for the use of a different barcode system for
plant species. From 2005, many research groups tested a large
variety of sequences for finding the best barcode system for plants
[6–15] as termed the Holy Grail quest by some authors [16]. An
illustrative “enthusiasm heatmap” summary of all the sequences
tested can be found in [17]. The chloroplast (cp) genome was
chosen as the genome of choice for barcoding in plants because of
its maternal inheritance and therefore low intraspecific variation like
the mitochondrial genome. However, cpDNA is less variable in
plants than is mitochondrial genome in animals (Chapter 2).
Some authors recommended the use of noncoding intergenic
regions such as trnH-psbA [8], because these regions show a
much higher rate of variation and better species discrimination
than coding cpDNA regions (Chapter 2). Nevertheless, most
authors favored the use of cpDNA genes, such as rbcL or matK
[12, 13] as being a more appropriate DNA barcode sequence (more
similar to the animal barcode choice). However, these cpDNA
coding regions show low variation. It became rapidly evident that
DNA barcoding in plants would necessitate the use of a multilocus
system [5]. The initial suggestion of a universal and unique gene for
DNA barcode was long gone. As it appeared as the best system
recognized through publications testing all possible previously
suggested barcodes [9, 10], the CBOL proposed in 2009 [18] to
use the combination (rbcL + matK) as the official barcode for
plants. It is the system currently recognized in the CBOL barcod-
ing database BOLD (www.boldsystems.org/) [19, 20].

1.2 Limits of DNA

Barcoding

DNA barcoding suffers a range of important limitations. First, it
can only be applied to identify monophyletic species and will obvi-
ously fail in case of polyphyly or paraphyly (Fig. 1). An ideal DNA
barcode should generate non-overlapping distributions between
intra- and interspecific distances, so-called barcoding gap (Fig. 1).
The absence of a barcoding gap will make impossible the definition
of a threshold value to identify species, generating either false
negatives (species missed) or false positives (false species) (Fig. 1).
Because of hybridization and greater levels of gene-tree paraphyly
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in plants, barcode gaps are less important than in animals, making
plants much more difficult to barcode accurately [21].

Pursuing the search for a suitable barcode system in plants, it
became rapidly quite clear that, in plants, even with the best bar-
code or combination of barcodes, the maximum discrimination
power would reach only 70% of plant species (even with the best
combination of more than two chloroplast markers) and would
largely vary across plant families [9] [10]. It is predicted that
plant groups that are long-lived, with polyploidy, hybridization,
closely related autogamous lineages, recent speciation, narrow spe-
cies limits, or poor seed dispersal, will show lower discrimination
success with DNA barcodes [17]. In particular, it is clear that
because of maternal transmission of the chloroplast genome (like
the mitochondrial genome), a species of hybrid origin will not be
differentiable from the maternal parental species (Fig. 11 in
Chapter 2).

Fig. 1 Schematic representation of favorable and unfavorable situations for DNA barcoding. Only monophyletic
species are appropriate (polyphyletic and paraphyletic species are not), and they need to display a clear
barcode gap (i.e., a gap between frequency distributions of intraspecific (in red) versus interspecific (in yellow)
distances. If monophyletic species show no barcode gap, it will be impossible to define a barcoding threshold
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Many publications were written, particularly by the CBOL
Chinese group [22], to plead for the inclusion of the ITS gene in
the CBOL barcode system. ITS barcode limitations (Chapter 7)
(lower universality, fungal contamination, paralogous gene copies)
were carefully addressed and shown to be acceptable. Indeed, the
ITS region shows much more variations than any of the chloroplast
barcodes (see also Table S1 in [17] for a detailed review of papers).
This strongly stresses the need to refine the current CBOL barcode
system, as acknowledged by [23] [17]. Currently, efforts are made
to develop standardized protocols, and researchers are discussing
the usefulness of the ITS2 spacer [24–26] against that of the ITS1
spacer [27] to provide a simple and short barcode. Some research
groups have already set up barcode databases for ITS2 in plants
[25, 28] and eukaryotes [29, 30] allowing the use of both sequence
and secondary structure variations as powerful barcodes
(Chapter 7).

1.3 A Case Study

in the Genus Vanilla

Vanilla Plum. ex Miller is an ancient genus in the Orchidaceae
family, Vanilloideae subfamily, Vanilleae tribe, and Vanillinae sub-
tribe [31]. Vanilla species are distributed throughout the tropics
between the 27th north and south parallels, in Africa, America, and
Asia. Over 100 species have been described in the genus [32]. Tax-
onomic classification is complex in this genus as it is based on
morphological variations in vegetative traits (which show impor-
tant intraspecific variations) and on floral traits (but flowers are
ephemeral and rarely available in herbarium specimens) [33]. A
DNA barcode system for this genus is therefore highly desirable.

Vanilla can be considered as a TCG, a “Taxonomic Complex
Group” [34], because it shows both a sexual and a uniparental
reproduction mode (vegetative reproduction) [33, 35], interspe-
cific hybridization [36, 37] [38], and polyploidy [33, 39].

This genus is therefore a good model to assess the discrimina-
tion power of various DNA barcodes. From our previous published
[40] and unpublished [41] [42] work on molecular taxonomy in
the genus Vanilla, we obtained sequence data for the chloroplast
gene regions rbcL, matK, psaB, and psbC and the nuclear ribo-
somal DNA ITS region. The objective was to test which of these
loci were more appropriate to be used for specimen identification in
the genus Vanilla.

2 Testing Barcoding Sequences for Vanilla

A total of 52 accessions maintained in the Vanilla collection of the
Biological Resources Center (BRC) Vatel in Reunion Island were
studied (Table 1). This dataset represents a total of 26 Vanilla
species, representative of the genus diversity. All specimens used
here were previously identified based on an integrative combination
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Table 1
Vanilla species studied and their classification in subgenera, sections, and morphological groups [32]

Subgenera and section Morphological group Species Subspecies n

Subgen. Xanata V. planifolia V. planifolia 5

Sect. Xanata V. bahiana 4

V. �tahitensis 3

V. sotoarenasii 1

V. phaeantha 2

V. ensifolia 1

V. insignis 1

V. odorata 1

V. hostmanii V. cribbiana 1

V. pompona V. chamissonis 1

V. pompona pittieri 1

V. pompona pompona 2

V. pompona grandiflora α 4

V. pompona grandiflora γ 1

V. palmarum V. palmarum 1

V. lindmaniana 2

Subgen. Xanata V. africana V. africana 1

Sect. Tethya V. albida V. crenulata 2

V. albida 1

V. aphylla V. aphylla 1

V. barbellata V. dilloniana 2

V. francoisii V. francoisii 2

V. imperialis V. imperialis 2

V. polylepis 1

V.phalaenopsis V. phalaenopsis 1

V. roscheri 1

V. perrieri 3

V. humblotii 2

Subgen. Vanilla V. mexicana V. mexicana 2

Subspecies are according to [48]. The number of studied accessions from the BRC Vatel collection is given (n)
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of morphological observations (they are maintained as living plants
in shade houses) and various unpublished or published molecular
phylogenetic studies [40, 41]. It includes species from the Vanilla
subgenus Vanilla (ancestral membranous American species), from
the Vanilla subgenus Xanata section Xanata (American leafy
species), and from the Vanilla subgenus Xanata section Tethya
(African and Asian leafy and leafless species and American leafless
species) [32] [35, 40]. For 13 of the species, two to eight different
individuals were assessed to gain information on the levels of intra-
specific diversity. We used sequences from the chloroplast genes
rbcL, matK, psaB, and psbC and from the nuclear ribosomal RNA
spacer ITS region (ITS1 + 5.8 s + ITS2) obtained during our
various unpublished and published studies [40, 41]. The sequences
of the primers that were used for PCR amplification are indicated in
Table 2.

Table 2
Primer sequences used (50-30)

Sequence Primer name Primer sequence 50-3’

rbcL_part1 RcbL33L CTCCTGACTACGAAACCAAAGA

RcbL730R TCTCTGGCAAATACCGCTCT

rbcL_part2 RcbL453L TCGTCCCCTATTGGGATGTA

RcbL1231R CCTCATTACGAGCTTGCACA

matK matK743F CTTCTGGAGTCTTTCTTGAGC

matK1520R CGGATAATGTCCAAATACCAAATA

psaB_part1 PsaB49L CCGTCGCAAGGAAAACTATAA

PsaB848R TTCGGGATTGGTCACAGTAT

psaB_part2 PsaB766L AGACCCTTATGYCCACGYC

PsaB1526R GCTTGGCAAGGAAATTTTGA

psbC_part1 PsbC25L GGTCTGGCTCTGAACCTACG

PsbC786R GGGCTAAGGGTCAARTTGGT

psbC_part2 PsbC596L TCCTTTCCATTCTTCGGTTATG

PsbC1379R AAGAACCTAAAGGAGCATGAGTC

ITS AB101F ACGAATTCATGGTCCGGTGAAGTGTTC

AB102R TAGAATTCCCCGGTTCGCTCGCCGTTAC
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3 Which Locus Shows the Greatest Sequence Diversity?

Sequence alignment was performed with MUSCLE using the
Mega5 software [43]. Genetic distances were then computed in
Mega5 as the number of bp differences revealed between two
sequences. The data is used to assess the level of diversity for each
sequence as the number of variable sites compared to the total
length of the sequence (Table 3). The nuclear ITS spacer region
is the most variable of the sequences with 39.4% of variable sites.
Among the chloroplast genes, matK is the most variable (12.2% of
variable sites). The rbcL, psaB, and psbC genes are the longest
sequences but the least variable (3.6–4.8%).

In order to determine which locus revealed the most variable
genetic distances (measured as the number of bp differences
revealed) in the studied dataset, we produced graphs to compare
inter-accession divergences for each pair of loci (Fig. 2a). Wilcoxon
signed-rank tests (BiostaTGV, biostatgv.sentiweb.fr) were used to
test the significance of the differences and show that the range of
distances revealed for the different loci are all significantly different
from one another (Fig. 2b). This allows the following classification
by order of decreasing diversity: ITS >> matK > psaB > rbcL >
psbC.

4 Is there a Barcoding Gap in Vanilla?

The frequency distribution of intra- and interspecific genetic dis-
tances (expressed as bp differences) was assessed first for each
studied sequence at a global scale [44] (Fig. 3). The range of bp
differences between individuals is variable between sequences; it
ranges from 0–33 bp for the four chloroplast sequences to
0–170 bp for the ITS sequence. There is an overlap in the distribu-
tion of the intraspecific and interspecific distances for the five
studied sequences, showing the absence of a barcoding gap in
Vanilla at global scale (Fig. 3). This precludes any possible use of

Table 3
Percentage of variation revealed for each studied sequence in the genus Vanilla

Sequence Size (bp) Variable sites % variation (%)

ITS 774 305 39.40

matK 695 85 12.20

rbcL 1115 53 4.80

psaB 1327 53 4.00

psbC 1223 44 3.60
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Fig. 2 (a) Pairwise genetic distances (number of bp differences) for all locus combinations using the five
sequences tested. (b) Results of the Wilcoxon signed-rank tests for each combination of locus tested: all
p values are highly significant and indicated in the upper panel, in the lower panel + indicates that locus on
vertical line is significantly more variable, � indicates that locus on the vertical line is significantly less
variable, than the locus on the horizontal line



a general threshold for species delimitation (Fig. 1) [45], which
could allow the identification of specimens based on distance data.
Interestingly, the distributions of interspecific distances are bimodal
for rbcL, psaB, matK, and psbC and clearly trimodal with clear gaps
for ITS. These gaps correspond to gaps between sections (Xanata
vs Tethya) or subgenera (Vanilla vs Xanata). A distance threshold
methodmight be straightforward only for section subdivision (sect.
Xanata vs sect. Tethya) or subgenus subdivision using ITS as a
triage tool for preliminary sorting of unknown specimens. The
absence of global barcoding gap has been described as a rule in
plants rather than an exception, with important coalescence depth
variation observed between species [44]. The genus Vanilla is no
exception, especially as a TCG with recent speciation events and
hybridizations.

Identification success of a specimen might however be efficient,
even if intraspecific distances for this species exceed interspecific
distances for other species [44, 46]. To further assess barcoding gap
at this local scale [44] and see more precisely the possible limits for
specimen identification, we also performed dot plots for each indi-
vidual in the dataset for which at least one conspecific was available:
the distance to the furthest conspecific was plotted against the
distance to the nearest nonconspecific (Fig. 4). Only those indivi-
duals falling above the 1:1 slope (largest intraspecific distance infe-
rior to the smallest interspecific distance) would be identifiable

Fig. 3 Barcoding gap study at global scale. Frequency (y axis) distribution of the genetic distances (number of
bp differences) (x axis) for the five loci tested on 52 individuals. Intraspecific distances are indicated in blue,
interspecific distances in gray
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(presence of a barcode gap). The results show that at local scale,
only 46% (with rbcL and psbC) to a maximum 77% (with ITS)
specimens display a clear barcode gap (Fig. 4).

The absence of clear barcoding gaps both at global and local
scale might hamper barcoding success in the genus Vanilla. It is of
note that, given our sampling, yet important, but not exhaustive,
barcoding gap was estimated here by default at the intraspecific
level (limited number of accessions per species) and sometimes by
excess at the interspecific level (not all species of the genus have
been surveyed, including very related ones). Nevertheless, results
show that ITS should be the most appropriate marker for the genus
Vanilla.

5 Which Locus Shows the Greatest Level of Species Discrimination?

Three methods were used for assessing species (specimen) discrim-
ination: distance, blast, and tree-building. Barcode sequences were
considered identical when the genetic distance between them was

Fig. 4 Barcoding gap study at local scale. Dot plot distribution of the distance (number of bp differences) to the
furthest conspecific (x axis) against the distance to the nearest nonconspecific (y axis), for each individual
(39 total) and each of the five tested loci. The 1:1 line represents the limit where the difference between x and
y is zero (i.e.,the limit of the local barcoding gap). The table describes, for each locus, the number of
individuals with (above the 1:1 line) or without (onto or below the 1:1 line) a local barcoding gap
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null (no bp difference). In the genetic distance matrix generated in
Mega5, if any accession from one species had the same barcode
sequence as another accession from another species, the two species
were considered as not distinguishable. Species represented by a
unique accession possessing a unique barcode were considered
identified. For species represented by more than one accession,
we verified that the species was represented by a monophyletic
group on the neighbor joining tree (constructed using Mega5)
for it to be identified. If not, we used a Blastn test online (blast.
ncbi.nlm.nih.gov), with the align function against our own data-
base built from the current dataset. When each accession of a
species was correctly identified to the right species as first hit, the
species was considered identified.

The ITS sequence allows to identify 88.5% of the assessed
species (23 of 26) (Fig. 5). The best chloroplast sequences are
matK and psbC, which allow to discriminate 61.5% of the species
(16 of 26 species), and the least efficient for species discrimination
is rbcL with 50% (13 of 26 species) (Fig. 5). The order of efficiency
of the sequences for species discrimination is therefore ITS >matK
> psaB ¼ psbC > rbcL.

6 What Is the Discrimination Gain Obtained by Combining Multiple Loci?

We also tested all possible multiple combination sets of loci follow-
ing the concatenation of the individual sequences in Mega5. Glob-
ally and as expected, there is an important increase in the ability to
discriminate species (63.1–96.2% in mean values for all combina-
tions) when combining one to five sequences (Fig. 6).

The best two-marker combination in our dataset is (ITS +
matK) with 88.5% discrimination (23 species of 26) (Fig. 5).

Fig. 5 Percentage of the 26 Vanilla species discriminated using each sequence and all possible combinations
(one to five) of sequences
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Adding one locus (either psaB or rbcL) to this combination
increases the resolution to 96.2% (25 species of 26), which appears
as the maximum % discrimination possible in our dataset even with
the best four (ITS + rbcL + matK + psaB) or even five loci (Fig. 5).
ITS brings higher resolution than chloroplast genes: the best chlo-
roplast combinations (either with two, three, or four sequences)
only reach 80.8% discrimination (Fig. 5), which is lower than the
discrimination achieved by ITS on its own.

7 Conclusion: Which DNA Barcode for Vanilla and What Limits?

The CBOL selected (rbcL + matK) DNA barcode for land plants
only allows a poor discrimination of 76.9% (20 species out of 26)
for Vanilla (Fig. 5). Our results are however concordant with
results found in other species, and we confirm that matK is the
most variable of the chloroplast markers. This CBOL system is not
fully adapted for the Vanilla genus. Adding ITS to the international
barcode system, on the other hand, allows the maximum (96.2%)
discrimination possible in our dataset. Practically, we therefore
recommend to use a sequential strategy by first testing for ITS
(as the most variable barcode) and then add matK and rbcL to
increase resolution for some groups if needed. A neighbor joining
tree representing species grouping using this (rbcL + matK + ITS)
barcode is proposed for illustration (Fig. 7) (note that this tree has
no evolutionary sense as it mixes sequences with different rates of
evolution and from different genomes, so it is only given as a visual
guide for discussion).

Fig. 6 Percentage of species discrimination using one single or two to five
combined sequences (mean values and standard deviation are represented)
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Fig. 7 (rbcL + matK + ITS) neighbor joining tree (500 bootstraps) showing the discrimination of the 26 studied
Vanilla species. Accession codes are given as species name abbreviation followed by official CR code number
from the BRC Vatel collection (e.g., plan0196 is V. planifolia accession CR0196). Discrimination success is
shown, as detected by Blast and/or by monophyly (for species with at least two accessions) or by a unique
barcode (for species represented by a single accession)



7.1 Closely Related

Species

ITS allows to discriminate very closely related species from the
V. planifolia group such as V. bahiana, V. phaeantha, and
V. insignis (Fig. 7) which cannot be resolved using any of the tested
chloroplast barcodes alone (data not shown). Similarly, some of
the species studied in the present dataset, such as those from the
V. phalaenopsis group, have evolved recently (4.4 Mya) [40]. The
combination of (rbcL + matK + ITS) (Fig. 7) gives a discriminant
barcode for the four tested species from this group, solely due to
the use of ITS, because matK and rbcL on their own are unable of
such a resolution (data not shown).

7.2

Non-monophyletic

Species

Only one species could not be discriminated with the proposed
system: V. planifolia stays unresolved because of the recently
described V. sotoarenasii species which appears among the
V. planifolia accessions making V. planifolia paraphyletic and there-
fore failing the Blastn test if V. sotoarenasii is included in the test
database (Fig. 7). V. sotoarenasii is different morphologically but
closely related to V. planifolia; it formed a clear-cut nested clade
within V. planifolia using ITS but was not differentiated from
V. planifolia using matK [47]. This pattern of a recently evolved
nested new species is one obvious limit of the barcoding approach.

The (rbcL + matK + ITS) barcode system is useful to identify
specimens from the three subspecies present within the V. pompona
complex (Figs. 7 and 8). These subspecies are species that were
recently reclassified to the subspecies rank [48]. When using only
(rbcL + matK), V. pompona subsp. grandiflora is monophyletic
(Fig. 8). ITS is more powerful to resolve the two subgroups α
and γ within this subspecies, but the subsp. grandiflora then
appears as paraphyletic, as noted previously [48] (Fig. 8). The
combined barcode with the three markers here appears powerful
and complementary to resolve both the species and its two
subgroups.

Another interesting, but different case is the one of
V. dilloniana. This species can only be resolved based on Blast
analysis, but it is polyphyletic with our barcode system (Fig. 7).
This is due to high intraspecific variation in the ITS region. Indeed,
rbcL or matK on their own would resolve it as a monophyletic
group (data not shown). Therefore in that case, the CBOL barcode
would be more appropriate.

7.3 Hybrid Species We previously mentioned the limit of the CBOL barcode to dis-
criminate hybrid species. A very good example in our dataset is the
one of V. �tahitensis, which has been shown to be of hybrid origin
between V. planifolia x V. odorata [38]. When using chloroplast
sequences, this species is nested within the V. planifolia accessions
(data not shown but see the phylogeny in [40] for an illustration).
Only using a nuclear sequence such as ITS allows to discriminate
this hybrid species from the maternal V. planifolia donor species
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(Fig. 6). It is however important to point out that our sampling of
V. �tahitensis is limited and accessions might fall in two different
clusters, either related to the V. odorata parent (like here) or more
related to the V. planifolia parent (as shown in [38]), making the
use of a barcoding approach very limited for such hybrid species.

7.4 Conclusion Vanilla is yet another example of seed plant for which the addition
of ITS to the recommended (rbcL + matK) system is essential.
However given the complexity of the genus, the absence of a clear
barcoding gap, and the existence of closely related, hybrid as well as
non-monophyletic species in the genus, a simple barcoding tool
cannot resolve all taxonomic issues. Indeed, in some situations, a
DNA barcode can be of great help, but it is unfortunately also just
an additional species concept. We deeply agree, particularly for
Vanilla, that barcoding should only be used as an aid to specimen
identification (against a known and well-characterized DNA data-
base with verified vouchers), but species delimitation and new
species discovery as applied to conservation issues should use bar-
coding only as a triage tool in preliminary assessments, species
delimitation being only possible if adding more DNA loci and
doing so within an integrative taxonomy framework [44].

Fig. 8 The resolution power of the different barcodes selected to resolve subspecies and subgroups within the
V. pompona species complex
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Chapter 9

High-Throughput Genotyping Technologies in Plant
Taxonomy

Monica F. Danilevicz, Cassandria G. Tay Fernandez, Jacob I. Marsh,
Philipp E. Bayer, and David Edwards

Abstract

Molecular markers provide researchers with a powerful tool for variation analysis between plant genomes.
They are heritable and widely distributed across the genome and for this reason have many applications in
plant taxonomy and genotyping. Over the last decade, molecular marker technology has developed rapidly
and is now a crucial component for genetic linkage analysis, trait mapping, diversity analysis, and association
studies. This chapter focuses on molecular marker discovery, its application, and future perspectives for
plant genotyping through pangenome assemblies. Included are descriptions of automated methods for
genome and sequence distance estimation, genome contaminant analysis in sequence reads, genome
structural variation, and SNP discovery methods.

Key words Single nucleotide polymorphism, SNP, Presence and absence variation, PAV, Pangenome,
Mash, Phylogenetic

1 Introduction

Next-generation sequencing technology has provided cost-
effective approaches to large-scale resequencing of plant genotypes,
enabling DNA barcoding and revolutionizing ecological and taxo-
nomic plant studies [1, 2]. DNA barcoding is a technique that
characterizes species using short conserved DNA sequences. This
sequencing technology has also enabled ancient DNA analysis,
providing information about the former plant communities and
the environmental conditions present at that period [3, 4]. Molecu-
lar markers are DNA tools complementary to phenotypic analyses;
they allow characterization of the underlying genetic variation
between different individuals. The majority of the genetic varia-
tions are not visible at the phenotypic level, though they can assist
the assessment of plant communities [5, 6].

Single nucleotide polymorphisms (SNPs) have emerged as the
most widely used genotyping markers for plants [7]. SNP markers
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are abundant, heritable, and unaffected by the environment.
Genome structure variations such as copy number variations
(CNVs) and and insertion/deletions (indels) are also used as
molecular markers. Comparing structural variation enables the esti-
mation of linkage disequilibrium, syntenic analyses, as well as the
study of genome rearrangement across taxa [8]. It is possible to
infer statistical associations between genetic markers and environ-
mental variables within a species through the use of molecular
markers [9–12]. Molecular markers have numerous applications
in plant taxonomy, as genome variation analysis can help unravel
complex genetic structures and map plant populations. Molecular
markers also have the potential to broaden our understanding of
demographic histories and genetic evolution. Novel markers can
expand our ability to reliably identify and characterize individuals
from genomic samples, which may be particularly useful for inves-
tigating remote populations.

1.1 What Are SNPs? Single nucleotide polymorphisms (SNPs) are the most frequent
forms of genetic variation. They are single nucleotide differences
in the DNA strand at specific loci [13]. SNPs are preferred for plant
genetic and genomic analyses because they are widely distributed
throughout the genome and thus capable of providing a high
density of markers near a loci of interest [14]. Previous studies
have estimated that SNPs appear every 100–300 bp in most crops
[13, 15–17]. They present codominant inheritance and
chromosome-specific location and are highly reproducible due to
their low mutation rate [18]. The aforementioned characteristics
have led to the widespread use of SNPs in studies, including demo-
graphic inferences about species and genotype distribution in a
given location. The distribution characterization in turn can shed
light on the roles of multiple climatic and geological events shaping
the population structure [19].

SNPs are excellent markers for studying complex genetic traits,
providing genetic diagnostics, and germplasm identification. SNPs
have been used extensively in crop studies, and several databases are
available to investigate these variations such as cropSNPdb for
Brassica and bread wheat [20]; autoSNPdb for SNP identification
in barley, rice, and Brassica [14]; Panzea for maize genotypes [21];
and CerealsDB 3.0 for data on cereal crops [22].

Recently, a method for genotyping ancient DNA based on SNP
identification has been developed using genotyping by sequencing
[23]. SNPs can assist in differentiating related sequences, both
within an individual and between individuals within a population.
SNPs are direct markers for tracing the nature of allelic variants,
which can be useful in comparison studies between wild and related
domesticated species, potentially revealing novel allelic variants
suitable for introgression into improved crop varieties [9]. A
study assessed the genomic variation of 3010 rice genomes,
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identifying 29 million SNPs and other genetic variations. Through
the analysis of SNPs and other molecular markers, they were able to
suggest several previously unreported rice subpopulations that cor-
relate to their geographic location [24]. In wheat, the analysis of
SNPs from 4506 genomes enabled the reconstruction of wheat
domestication history and phylogeography, using landrace and
cultivar varieties from 105 countries [25].

1.2 Gene Presence

and Absence Variation

The plant genome contains significant structural variation between
different genotypes. These structural variations may occur in the
form of copy number variations (CNVs), inversions, translocations,
and presence/absence variations (PAVs). PAV is considered an
extreme form of copy number variation, in which a segment of
the genome is entirely absent in some individuals. Structural varia-
tions contribute substantially to the genetic diversity of major
species, as these variable regions are often associated with pheno-
typic traits [26–28]. It is estimated that 20% of the soybean and
maize whole genomes are variable [29, 30], whereas in Brassica
oleracea, PAV affects 20% of the genes [26] and in wheat approxi-
mately 40% of the genome is variable [27]. The soybean genome
contains roughly 5000 large PAVs (>500 bp) across wild and
domesticated populations [31], with 133 genes present in PAV
regions [32]. Researchers identified a cluster of ten genes affected
by PAVs in Papaver somniferum (opium poppy); this gene cluster
controls the production of noscapine, an antitumor alkaloid. It was
observed that structural variation is able to decrease or even halt the
production of noscapine, demonstrating the economic potential of
PAV characterization [33].

PAV analysis can be used to trace the recombination history
within a distinct species or population. The comparison of geo-
graphically diverse mitochondrial genomes from Silene noctiflora,
S. turkestanica, and S. undulata showed the extensive fragmenta-
tion events in the mtDNA and its assortment profile. Through
analyzing the structural variation of mtDNA, it was possible to
reconstruct a sexual-like recombination history between the species
[34]. In recent studies, PAV analysis enabled the ancestry estima-
tion of protein domain families in the Solanaceae family [35] and
uncovered a rare allele present in a PAV region capable of regulating
fruit flavor [36]. The characterization of PAV regions may assist in
understanding the complex relationships between variation in gene
family size and its rate of evolution. Genes identified in PAV regions
can be directly linked to phenotype and fitness and can be used to
trace a gene’s history to a significant ecological event [37]. Novel
PAV discovery is especially useful for breeding crops, which as a
result of artificial selection often have lower genetic diversity com-
pared to their wild relatives.

High-Throughput Genotyping Technologies 151



1.3 Molecular

Marker Applications

in Plant Taxonomy

Molecular markers are based on alterations of the DNA sequence
that may be associated with the plant’s phenotype, such as SNPs
and structural variations. The increasing availability of sequence
data, generated from genome sequencing projects, provides a valu-
able resource for the discovery of novel molecular markers asso-
ciated with phenotypes of interest. The growing availability of
DNA data improves the coverage of intraspecific genome variability
and informs the geographical distribution of varieties. Molecular
markers can be integrated into tools for fast and accurate identifi-
cation of plant taxonomy and even in situ identification of plant
varieties. For instance, a taxonomic method for the classification of
the Aurantioideae subfamily has been developed using SNPs from
chloroplast genes [38]. This method enables a cost-effective cladis-
tic analysis in large collections at a subfamily level, which was not
feasible with previous methods, and can easily be expanded to
classify other plant species [38]. Another application of molecular
markers is the characterization of ancient DNA. Ancient DNA
samples are often highly degraded; therefore the use of SNPs can
be advantageous as small fragments can be amplified and compared
[39]. In the Tehuacán valley (Mexico), specimens of maize dating
at a similar age of 5300–4970 y B.P. were genetically analyzed
uncovering that the earliest maize from San Marcos was already
inbred, possibly from an isolated founder population [40].

The identification of newmolecular markers largely depends on
the use of appropriate bioinformatic tools and well-curated marker
databases, some of which have been reviewed by Scheben et al. [41]
and Singh, Singh [42].

1.4 Pangenomes

as the Future

of Molecular Markers

and Gene Variance

Identification

With increased access to genomic data, it became clear that a
substantial portion of genome varies between individuals within
the same species, suggesting that a single reference genome is not
sufficient to represent its genetic diversity [26, 43, 44]. Recently,
there has been an increase in the number of pangenomes assem-
bled, which requires sequencing, assembly, and comparison of
several lineages to characterize genetic variation. Currently, the
majority of the software packages have been designed for the
analysis of microbial pangenomes, reviewed in Xiao et al. [45],
although some can be adapted for the analysis of plants [26].

A pangenome represents a collection of individuals, in which
the genomic region present in all individuals is labelled “core,”
whereas the genomic portion exclusive to some of the individuals
is “dispensable” [46]. The Brassica and the soybean pangenomes
have been shown to exhibit a higher density of SNPs in dispensable
compared to core regions, and this trend seems to be followed in
other pangenomes [26, 29, 47].

The majority of research has focused on SNP identification by
comparing a single or multiple individuals to a reference genome.
However, this approach fails to identify SNPs in the dispensable
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region, when they are absent in the reference genome [43]. The use
of pangenome references allows for the recognition of SNPs occur-
ring in both the core and dispensable regions. The discovery of
SNPs in dispensable regions can facilitate the identification of novel
alleles and the characterization of novel metabolic pathways
[47]. Markers from the dispensable region may also aid the discov-
ery of molecular fingerprinting targets for population genetic stud-
ies and the reconstruction of phylogenetic histories [48]. The
pangenome is an ideal model for the characterization of CNVs
and PAVs, as it defines the core genome and the variations occur-
ring at the dispensable region [49]. The increased level of informa-
tion contained within pangenomes, particularly regarding gene
structure, SNPs, and variable regions, expands our understanding
of how dispensable regions evolve, which has potential for improv-
ing the resolution of plant phylogenies [48, 50].

1.5 Tools for Plant

Genotyping

and Taxonomy

1.5.1 Identification

of SNPs In Silico

The major challenge of SNP discovery is not their identification but
the differentiation of true SNPs from the often more abundant
sequence errors. It is estimated that 6.4 � 1.24% of sequences are
mutated during Illumina sequencing and 0.24 � 0.06% errors per
base occur, most of which are single nucleotide substitutions
[51, 52]. There are several potential sources of error; therefore it
is essential to perform a stringent quality assessment during read
processing to differentiate between sequence errors and true poly-
morphisms [52]. SNP genotyping methods usually begin with read
quality trimming, followed by mapping, processing of the mapped
reads, variant calling, and finally variant filtering [53]. The recur-
rence of a polymorphism at a particular loci increases the confidence
of the SNP being a true polymorphism; however several other
filtering steps can be implemented to increase confidence in assay-
ing a true variance [54].

The tools for SNP calling are mostly heuristic-based or
probability-based algorithms, both relying heavily on the abun-
dance and quality of data [43]. The two primary types of SNP
calling tools are haplotype-based callers and single site-based callers
such as Samtools/BCFtools [55]. The choice of software and
quality restrictions can greatly impact the proportion of SNPs
encountered, as most of the variant callers substantially disagree
on the SNPs and other structural variations found [54, 56, 57]. Var-
iant calling tools used for calling SNPs and other types of sequence
variation have enabled the discovery of population-specific poly-
morphisms used for a wide range of applications including phylo-
genetic studies [58]. The continued advancement of genome
sequencing technology and pangenome assembly ensures that
tools for variant calling will continue to be in high demand and
will be expanded to meet future requirements.
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1.5.2 Distance

Estimation Methods

in Genotyping

The discovery of molecular markers is highly dependent on which
genotype is used as reference, which makes the choice of reference
genome very important [43]. Sequence distance estimation can be
applied to choose the most appropriate reference genome; it can
also assist in the clustering of similar genotypes. Distance estima-
tion analysis can be applied to whole-genome phylogenies, classifi-
cation of protein families, identification of horizontally transferred
genes, and detection of recombined sequences [59]. There are two
main types of tools to cluster and perform distance estimation on
large genomic data: alignment-dependent and alignment-free
tools. The alignment-dependent tools are based on strict evolution-
ary assumptions that may not be reflected by the reality of living
organisms [59]. These assumptions can hinder proper clustering of
similar sequences. For instance, protein superfamily sequences
sometimes fail to cluster due to their highly variable primary
sequences, and even though their tridimensional structure is con-
served, it is hard to evaluate through assembled sequences
[60]. Alignment-dependent tools are subject to a substantial
decrease in accuracy if gaps are allowed, particularly impacting
nucleotide comparisons [61]. They are computationally demand-
ing and time-consuming, which can limit the amount of data used,
inhibiting multi-genome scale data analysis [59]. In contrast,
alignment-free tools do not rely on dynamic programming, which
makes them less computationally demanding than alignment-
dependent tools [62]. This makes alignment-free tools particularly
useful for large sequencing data estimations, and they will likely
become the preferred tools for future genomic data management.
In addition, alignment-free tools do not depend on evolutionary
sequence assumptions, which can hamper clustering of similar
sequences presenting structural variation [59]. Alfree is one of
many freely available web tools that can be used to run small
alignment-free analysis [59]. This web application has 27 tools
available for testing and has the ability to process a maximum of
50 sequences of 200,000 nucleotides/amino acids.

For larger data analyses, there are other more powerful
alignment-free tools that may assist in deciding upon the most
appropriate reference genome for SNP discovery, to perform a
rapid triage, cluster data, and assign species labels to mixed samples
and to identify mis-tracked or low-quality samples [63–67]. Align-
ment-free tools are able to rapidly assess clusters of thousands of
genomes at a time, enabling the identification of outlier varieties
[68]. Alignment-free tools have great potential to be applied to
large-scale genomic management and emerging long-read, single-
molecule sequencing technologies.
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2 Materials

2.1 Bioinformatics

Requirements

for Mash Analyses

The analysis must be run in the command line from a Linux or OS
X machine. Download and install the following binary files:

1. Sample files in FASTQ and MSH format are available as
Data_R1.fastq, Data_R2.fastq, Data 2_R1_val_1.fq.msh, and
Data 3_R1_val_1.fq.msh at our group website, to be used in
this analysis (http://appliedbioinformatics.com.au/index.
php/Sample_data).

2. Trim Galore version 0.5.0 (https://github.com/
FelixKrueger/TrimGalore) is a flexible pipeline which includes
Cutadapt [69] and FastQC [70] for trimming the adaptors
from raw sequencing reads and assessing the quality of the
remaining data [71].

3. Mash version 2.1.1 (available at https://github.com/marbl/
Mash) is a tool kit capable of generating sketch files, estimating
distance using MinHash, and genome contamination
screening [66].

4. A reference sketch file created from microorganism species,
publicly available at https://gembox.cbcb.umd.edu/Mash/
refseq.genomes.k21s1000.msh courtesy of Ondov et al. [66].

2.2 Bioinformatics

Requirements for SNP

Identification Using

BCFtools

The variant calling analysis requires (a) sequence reads from any
sequencer machine in FASTQ format and (b) a current assembled
genome of the reference species in FASTA format. The analysis
must be run in the command line on a Linux or OS X machine;
download the files and install the following tools:

1. Sample sequence files in FASTQ format are available as
Seq_R1.fastq and Seq_R2.fastq, at our group website for
download and usage in this analysis. The sample files are from
Brassica oleracea; thus the B. oleracea reference genome must
be downloaded to perform the read assembly. The sample files
are available at http://appliedbioinformatics.com.au/index.
php/Sample_data, the B. oleracea genome can be downloaded
from http://plants.ensembl.org/Brassica_oleracea/Info/
Index, and alternatively you can use the B. oleracea pangenome
as reference, available at http://www.brassicagenome.net/
databases.php.

2. HISAT2 version 2.1.0 (https://ccb.jhu.edu/software/hisat2/
manual.shtml#obtaining-hisat2) [72] is an alignment program
for mapping next-generation sequencing reads from any
sequencer machine. HISAT2 requires a reference genome.

3. Samtools version 1.2 (available at http://samtools.sourceforge.
net/; [73]) contains a suite of utilities designed for
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manipulating alignments in the SAM/BAM format, including
sorting, merging, indexing, and compressing.

4. BCFtools version 1.4.1 (http://www.htslib.org/doc/bcftools.
html) is a flexible data management program to manage SNPs
and Indels in VCF or BCF format.

5. VCFlib version 1.0.0 (https://github.com/vcflib/vcflib.git)
provides a set of tools to manipulate VCF format files and
perform VCF comparison, format conversion, filtering and
subsetting, annotation, and ordering.

3 Methods

3.1 Mash Analyses

3.1.1 Mash for Distance

Estimation

Mash is an alignment-free tool that estimates the distance between
sample sequences against one or more reference sequences using
MinHash. The MinHash probabilistic approach described in Bro-
der [74] enables the comparison of large datasets such as genomic
data, by dividing the sequences in small segments entitled “hash.”
The hash comparison allows for rapidly cluster analysis. Mash has
extremely low memory and CPU requirements, making distance
estimation of several genomic datasets feasible. It can use assembled
or unassembled sequences as the input, which will be reduced to
compressed sketch representations used for the distance calcula-
tion. The distance estimation returns the Jaccard index (i.e., the
fraction of shared k-mers), p-value, and Mash distance, which esti-
mates the rate of sequence mutation under a simple evolutionary
model [66, 75].

i. trim_galore -q 20 --phred33 --fastqc --illumina --length 99 --trim-n --paired 

Data_R1.fastq Data_R2.fastq

TrimGalore is used to prepare raw reads for the following analysis
(see Note 1). We have two input paired-end sequence files,
Data_R1.fastq and Data_R2.fastq. The option “--phred33”
instructs the use of ASCII+33 quality scores as Phred for quality
trimming, “-q 20” defines the minimum quality score, and
“--illumina” indicates the type of sequence adaptors to trim. The
“--fastqc” and “--paired” indicate the type of input file. The
“--length 99” establishes the minimum length of the sequence
read, and “--trim-n” allows to remove the “N” bases from either
side of the sequence reads. Unidentified nucleotides must be
trimmed to allow a better sequence comparison. By default, the
output of trim galore ends in “_val_1.fq” and _val_2.fq.” In this
case, it will generate two files, “Data_R1_val_1.fq” and
“Data_R2_val_2.fq.”
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ii. mash sketch –r –m 3 Data_R1_val_1.fq Data_R1_val_2.fq

The Mash run is performed in two steps using “Mash
sketch” followed by “Mash dist.” The “Mash sketch” step
must be performed individually for each sample you want to
perform the distance estimation. It creates a reduced represen-
tation of the sequence as simplified k-mers “words” that are
used for the distance estimation. It is important to perform this
step with all the query and reference sequences, and each must
be done separately. To create this sketch, you must first indicate
the type of file followed by the input file name (seeNote 2). The
flag “-r” must be used for genomic read input, and “-m 3” is
used to discard all k-mers that appear less than three times, as
these are likely to be sequencing errors. Another potentially
important flag is the “-s” flag, which defines the sketch size
per sample. By default this is set to 1000, so 1000 min-hashes
will be stored per sample. For many highly similar samples, it is
recommended to increase the sketch size to 10,000 or even
more in order to find rare differences. The output file will be
used as input for the second Mash step. The output files end in
“.msh,” one per individual. In this example, Mash will generate
a file named “Data_R1_val_1.fq.msh.”

iii. mash dist reference_file.msh Data_R1_val_1.fq.msh Data1_R1_val_1.fq.msh 

The “Mash dist” step estimates the global and pairwise muta-
tion distance of each query sequence against the reference, using
previously generated “.msh” files for the samples. At the distance
estimation step, it is important that both reference and query files
have matching k-mer sizes. In this step, it is possible to compare
multiple sketched sequences against a sketched reference sequence
file. More options on how to adapt the “dist” tool to your specific
data type are described in Note 3. This command will print a table
of distances; an example is given in Table 1.

3.1.2 Investigate Sample

Contamination with Mash

In Mash, the “screen” can be used to quickly check for contamina-
tion in sequencing read samples. For this type of analysis, reference
genomes with approximately 10x coverage should suffice. The
reference genome file must contain the genome sketches of all the

Table 1
Example Mash dist output table for one reference and three samples to compare, with an added
header

Reference filename Query filename Distance p-value Number of shared hashes

referencefile.msh Data_R1_val_1.fq.msh 0.2630222 7.27863e-06 2/1000

referencefile.msh Data1_R1_val_1.fq.msh 0.2630222 5.18662e-06 2/1000

referencefile.msh Data2_R1_val_1.fq.msh 0.0759181 0 113/1000
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potential contaminants for your sample (as provided in Subheading
2.1), and the file must be in MSH format following the instructions
given at Subheading 3.1. The query samples can be in FASTA,
FASTQ, or MSH format.

i. mash screen -w –i 0 reseq.genomes.k21s1000.msh Data_R1_val_1.fq 

The “Mash screen” tool was designed to search for genome
containment within the sample analyzed. The reference and
query inputs can be single or multiple files, and the files must
be separated by space for the latter. “Mash screen” uses a hash
count system, in which each aligned hash counts points used to
determine the genomes identified in the sample. It is possible
for the same hash to align to multiple species, thus scoring
points for more than one species. The “-w” option is used to
reduce the redundancy of hash alignment using a winner-takes-
all approach. In other words, a hash that aligns to multiple
references will only add points to the best matched reference,
leading to less output redundancy. The “-i” sets the minimum
identity level show in the output, and “-i 0” will output iden-
tities with at least one shared hash. The output file reports the
species genomes identified alongside contamination warnings
where required. The results will be displayed in six columns:
identity of the given reads with the reference in percentage,
ranging from 0 to 1, number of shared hashes between reads
and reference, median multiplicity (the median of how often
each shared hash appears in the entire pool), p-value, query ID,
and query comment (usually the number of sequences with hits
and the first few hit IDs). An example output table is given in
Table 2.

Table 2
Example output of the mash pool command, with an added header

Identity

Number of
shared
hashes

Median
multiplicity p-value Query ID

0.719686 1/1000 1 0.0746507 GCF_000760155.1_ASM76015v1_genomic.fna.gz

0.719686 1/1000 1 0.0746507 GCF_000760175.1_ASM76017v1_genomic.fna.gz

0.719686 1/1000 1 0.0746507 GCF_000760235.1_ASM76023v1_genomic.fna.gz

0.719686 1/1000 2 0.0746507 GCF_000760555.1_ASM76055v1_genomic.fna.gz

0.719686 1/1000 1 0.0746507 GCF_000760675.1_R_fas_A3b_genomic.fna.gz

0.719686 1/1000 2 0.0746507 GCF_000760775.1_R_fas_A78_genomic.fna.gz

0.743837 2/1000 24 0.0028556 GCF_000760795.1_R_fas_GIC26_genomic.fna.gz

0.719686 1/1000 1 0.0746507 GCF_000760155.1_ASM76015v1_genomic.fna.gz
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3.2 SNP

Identification Using

BCFtools

The workflow described below applies some of the latest tools for
SNP discovery from sequence reads data to produce a variation file.
This variant file is in a tab-delimited format that concisely describes
reference-indexed variations between individuals or populations.
The output file describes polymorphic loci, which can be applied
for taxonomic analysis.

i. trim_galore -q 20 --phred33 --fastqc --illumina --length 99 --trim-n --paired 

Seq_R1.fastq Seq_R2.fastq

It is important to check the quality and remove adaptors from
the sequence reads used in this analysis. Trim Galore can be used to
prepare the sequence data for the analysis; in this step we are using
two input files, Seq_R1.fastq and Seq_R2.fastq, which are paired
sequence reads from Illumina sequencer (see Note 1). The option
“--phred33” instructs the use of ASCII+33 quality scores as Phred
for quality trimming, “-q 20” defines the minimum quality score,
and “--illumina” indicates the type of sequence adaptors to trim.
The “--fastqc” and “--paired” indicate the type of input file. The “--
length 99” establishes the minimum length of the sequence read,
and “--trim-n” allows to remove the “N” bases from either side of
the sequence reads. Unidentified nucleotides must be trimmed to
allow a better sequence comparison. By default, the output of Trim
Galore ends in “_val_1.fq” and “_val_2.fq.” In this case, it will
generate two files, “Seq_R1_val_1.fq” and “Seq_R2_val_2.fq.”

ii. hisat2-build -p number_of_threads -f reference_genome.fasta output_indexed_genome ;

HISAT2 is an alignment program for mapping next-generation
sequencing reads to an indexed reference genome (see Note 4). In
addition to using one global Graph Full-text index in Minute space
(GFM) that represents the general population, HISAT2 uses a large
set of small GFM indexes that collectively cover the whole genome
[72]. The “hisat2-build” command above is used to build the index
file from the reference genome.

iii. hisat2 -p number_of_threads --no-softclip -x indexed_genome -1 Seq_R1_val_1.fq 

-2 Seq_R2_val_2.fq   -S Seq_R1R2_val.sam

HISAT2 is now used tomap the sequence reads used for variant
discovery, based on the previous indexed genome. The “--no-soft-
clip” flag prevents soft clipping to increase mapping confidence;
“-S” ensures the mapping will be stored in SAM format (see Note
5). HISAT2 outputs a report on the screen regarding the percent-
age of reads aligned to the reference genome, as shown in Fig. 1.
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iv. samtools view  -b  Seq_R1R2_val.sam >  Seq_R1R2_val.bam

The assembled sequences in SAM must be converted to
BAM format. It is possible to quickly convert to BAM files
using Samtools, one file at time. The “-b” option sets the
output to be created in BAM format.

v. samtools sort Seq_R1R2_val.bam Seq_R1R2_val.sorted.bam

Each BAM file must be sorted individually and converted
to BCF prior to variant discovery. The alignments in the BAM
file will be sorted by leftmost coordinates using the command
above.

vi. samtools faidx reference_genome.fasta

Create an index file of the genome assembly used; the
index file enables efficient access to arbitrary regions within
the genome reference. The “samtools faidx” tool accepts other
file formats; please see Note 6 for more information.

vii. samtools mpileup -f reference_genome.fasta -q 30 -Q 20 --per-sample-mF -g -b 

list.txt  > raw_output.bcf

Convert the sorted BAM file to binary call format (BCF) using
“samtools mpileup” (see Note 7). It is possible to use multiple
BAM files (each BAM file is considered a sample), and they must
be in a space delimited list. In this command the BCF file is
generated. The list of input BAM files (using their full names, one
file per line) is specified with the option “-b. The“-f” indicates the
reference genome is in FASTA format, “-Q” sets the minimum base

Fig. 1 Alignment output and mapping percentage of the reads from sample file provided by HISAT2
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quality, and “-q” sets the minimum mapping quality for an align-
ment. The “--per-sample-mF” flag sets (a) the minimum number of
gapped reads for indel candidates and (b) the minimum fraction of
gapped reads per sample, to increase sensitivity of calling. These
thresholds can be set manually using “-m” and “-F” flags.” The
option “-g” computes genotype likelihoods and outputs them
in BCF.

viii. bcftools call --multiallelic-caller --variants-only -g -Ov -S raw_output.bcf  -o 

variant_output.vcf 

The “bcftools call” replaces the former “bcftools view” in
samtools versions >0.1.19 and will be used to create a VCF file
consisting only of the variants encountered. Bcftools call uses an
alternative model for multiallelic and rare-variant calling, which is
recommended for most tasks (--multiallelic-caller). The option
“-g” adds the VCF blocks of homozygous reference calls to the
output file, and “--variants-only” outputs only variant sites. The
“-Ov” sets the output to be produced in VCF format, and “-o”
indicates the name of the output file.

ix. vcffilter -f “DP > 10 & QUAL > 30"  variant_output.vcf

VCFtool performs further filtering of the samples (seeNote 8).
The “vcffilter” tool estimates the likelihood of a true SNP by
counting the number of reads supporting the polymorphism. The
minimum read number is established using “DP <10.” The mini-
mum SNPs’ quality threshold is set using “QUAL >30.” For the
command described below, SNPs with quality scores and read
alignment depth below 30 and 10, respectively, are not considered
reliable [76]. This will provide you with a VCF file containing all
the SNPs in the group of samples provided and can be used as input
for GWAS and MAS analysis.

4 Notes

1. When using Trim Galore, check the documentation available at
https://github.com/FelixKrueger/TrimGalore/blob/mas
ter/Docs/Trim_Galore_User_Guide.md for options that best
suit your sequencing data, as it may have optimized settings
available. The adaptor used for sequencing can be specified
using -a/--adapter option; otherwise it will auto-detect
whether the Illumina universal, Nextera transposase, or Illu-
mina small RNA adapter sequence was used.
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2. Mash sketch can receive one or multiple files as inputs; either
case must be indicated by the option: “-i” for one fasta input,
“-r” for fastq file inputs, or “-l” for a list of file inputs, which
presents the specific paths to each sequence file separated one
per line. If using sequence reads, the following options can be
added: “-b” for Bloom filter of a defined size, “-m” to define
minimum copies of each k-mer required to pass the noise filter,
“-c” to display the target coverage, and “-g” to indicate the
genome size for p-value calculation.

3. The “Mash dist” output can be modified to be displayed in
table format using the “-t” option. The options “-v” and “-d”
can be used to set the maximum p-value and the maximum
distance to report, respectively.

4. Alternative software for de novo assembly is available if the
species you are analyzing does not have a reference genome;
in that case you can use Velvet [77], SOAPdenovo2 [78],
MaSuRCA [79], ABySS [79], or others.

5. HISAT2 is the reference-based alignment tool used for this
pipeline; it requires a modest amount of RAM to perform the
mapping steps. HISAT2 soft clips reads by default, which can
lead to false-positive alignments; therefore this option was
disabled.

6. Samtools faidx tool can perform the indexing of the whole
FASTA file or extract subsequence from previously indexed
reference sequences which is useful to retrieve specific
sequences into a separate file. The input file for indexing can
be compressed in the BGZF, FASTA, or FASTQ format
(if using FASTQ format, it must be indicated by using –fastq).

7. In the mpileup format, each line represents a genomic position
consisting of the chromosome name, 1-based coordinate, ref-
erence base, number of reads covering the site, read bases, base
qualities, and alignment mapping qualities. Information on
matches, mismatches, indels, strands, mapping quality, and
the start and end of reads are encoded in the read base column.
More information on the mpileup options for further manip-
ulating the data can be found at http://www.htslib.org/doc/
samtools-1.2.html.

8. Quality and SNP frequency filtering help remove very low
abundance variants in the sequence samples, which are often
caused by sequencing/mapping errors. The parameters for
SNP quality and read depth chosen here are relatively arbitrary,
but often used for variant calling in plant sequencing data. The
parameters should be altered based on factors including but
not limited to the depth of sequencing and the quality of the
sequencing reads.
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Chapter 10

Genotyping-by-Sequencing Technology in Plant Taxonomy
and Phylogeny

Félicien Favre, Cyril Jourda, Pascale Besse, and Carine Charron

Abstract

Genotyping-by-sequencing (GBS) is a method to discover and genotype simultaneous genome-wide high-
throughput single nucleotide polymorphisms (SNPs). GBS is based on reducing genome complexity with
restriction enzymes. Here we describe a method developed by Elshire et al. for constructing simplified GBS
libraries and recent bioinformatic approaches developed to analyze the large volume of polymorphism data
generated by this method. GBS approach is suitable for population studies, taxonomic and phylogenic
studies, germplasm characterization, and breeding and trait mapping for a wide range of organisms,
including plants with complex genomes.

Key words Genotyping-by-sequencing (GBS), Next-generation sequencing (NGS), High-through-
put single nucleotide polymorphism (SNP), Plant diversity markers

1 Introduction

1.1 Genotyping-

by-Sequencing

Nowadays, the exploration of genetic diversity of plant is enhanced
by advanced high-throughput sequencing (HTS) technologies,
which provide the opportunity to simultaneously discover a high
number of molecular markers at relatively low cost. In particular,
genotyping-by-sequencing (GBS) is a method to discover and
genotype genome-wide high-throughput single nucleotide poly-
morphisms (SNPs) in a large number of individuals at the same
time. Plant genomes are complex, and sequencing more than one
entire genome would be expensive and time-consuming. GBS in
any large genome species requires reduction of genome complexity,
which can be done by different approaches. The target enrichment
approaches can use long-range PCR of specific genes or genomic
subsets, molecular inversion probes, or hybridization-based
sequence capture methods such as microarrays [1]. However,
these methods require invariant primer binding site and remain
technically difficult and expensive for assaying many samples at
the same time. GBS is associated with restriction-site-reduced
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complexity approach (RAD) [2]. The concept is based on acquiring
the sequence adjacent to a set of particular restriction enzyme (RE)
recognition sites. Large volumes of polymorphism data can be
generated by applying massively parallel sequencing and multiplex-
ing RAD with RAD tag libraries. Herein we report a method for
constructing GBS libraries based on reducing genome complexity
with REs [3]. This approach is simple, quick, extremely specific,
and highly reproducible and may reach important regions of the
genome that are inaccessible to sequence capture approaches. A
large number of methylation-sensitive REs with different size rec-
ognition sites can be chosen.Methylation-sensitive REs are not able
to cleave methylated cytosine residues; thus they target gene
regions and filter out repetitive genomic regions. Thousands of
genome-wide markers can be identified with better chance to get
something linked to the cause of the polymorphism. GBS focuses
on next-generation sequencing (NGS) power to sequence the end
of restriction fragments. Advances in NGS throughout the last
decade have enabled GBS to be used for high diversity and large
genome species. The method is based on a multiplex sequencing
strategy that uses an inexpensive barcoding system. Barcodes are
included in one of the adapter sequence and located just upstream
of the RE cut site in genomic DNA. This procedure generates
restriction fragments with appropriate adapter, limits the sample
handling, and facilitates the association of fragments to the sample.
GBS was applied initially to maize and barley mapping populations
but provides results independently of the target species or popula-
tion and does not require having previous available genomic infor-
mation. Recent advances in bioinformatics and development of new
software programs such as STACKS [4] are able to overcome the
lack of reference genome, by using de novo assembly of short
sequenced reads. GBS was already used in a large amount of studies
in recent years. For instance, an analysis of genetic diversity of
European blueberry cultivars by GBS has allowed to better define
phylogeny and adaptation of plants to their environment in terms
of flowering and fruit ripening [5]. These results should help the
preservation of genetic resources and contribute to further breed-
ing programs. GBS is also useful to explore the genetic structure of
populations, such as in Cynara cardunculus, showing subpopula-
tions within artichokes and cultivated cardoon [6]. Molecular mar-
kers identified by GBS are particularly useful for marker-assisted
selection (MAS) to enhance genomic selection in plant breeding
programs in wheat [7]. GBS has been successfully used in pepper
with a wide range of applications. An important amount of infor-
mative genome-wide SNPs were identified and enabled to analyze
germplasm diversity and population structure as a result of domes-
tication or local adaptation [8, 9]. GBS-generated SNP markers
have been also useful in the detection of trait-associated quantita-
tive trait loci (QTLs) for both Capsicum annuum and Capsicum
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baccatum and will support genome-wide association mapping stud-
ies and marker-assisted selection programs [10, 11]. This approach
is also particularly efficient to identify QTLs or genes of interest
involved in resistance to plant disease [12], in plant architecture
[13], and in plant metabolite content [14]. Here we describe the
highly multiplexed system developed by Elshire et al. for construct-
ing GBS libraries for Illumina sequencing. Then we describe the de
novo assembly using STACKS and a bioinformatic way to
identify SNPs.

1.2 Some Limitations

to the GBS Method

1. GBS sequencing produces a lot of missing data [15]. This may
be partly explained by three main reasons: (a) the lack of the
restriction site in particular samples, (b) polymorphism in
restriction site, and (c) a low sequence coverage rate. Simula-
tions showed that locus identification was highly reproducible
with a sequence coverage somewhere between 20 and 40X [4].

2. This approach gives a random access to genomic regions,
because of structure variations and repeated sequences, which
are different in each individual.

3. The larger the library is, the more missing date is generated (see
Note 1).

4. The most important under the GBS approach is to obtain
enough high-quality molecular markers to answer to our ques-
tions. The GBS protocol can be modified to be used with new
species or different enzymes, mainly to obtain more markers or
fewer markers but with a deeper sequence coverage per locus,
to increase multiplexing, to avoid more repetitive DNA classes,
or for novel applications.

2 Materials

2.1 DNA Extraction

and Quantification

1. DNA spin columns-based commercial kit such as DNeasy Plant
Mini Kit (Qiagen, Hilden, Germany).

2. Qubit 4 Fluorometer and Qubit assays for DNA quantification
(Invitrogen, Carlsbad, CA, USA).

3. HindIII or EcoRI restriction endonuclease (New England Bio-
labs, Ipswich, Massachusetts, USA). The nucleic acid recogni-
tion sequences where the enzymes cut are, respectively, 50-A/
AGCTT-30 and 50-G/AATTC-30.

4. TAE buffer (1X): 0.04 M Tris-acetate and 0.001 M EDTA
pH 8.0.

5. Agarose gel 2%.
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2.2 GBS Library

Construction

1. Sequences of double-stranded barcode adapter:
50-ACACTCTTTCCCTACACGACGCTCTTCCGATCT

xxxx-30 and

50-CWGyyyyAGATCGGAAGAGCGTCGTGTAGGGAAAG
AGTGT-30,

where “xxxx” and “yyyy” indicate, respectively, the bar-
code and barcode complement end sequences.

2. Sequence of double-stranded common adapter:
50-CWGAGATCGGAAGAGCGGTTCAGCAGGAATGCCG

AG-30 and

50-CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT-30.

3. TE buffer (1X): 10 mM Tris–HCl and 1 mM EDTA-NaOH,
pH 8.0.

4. Thermocycler.

5. PicoGreen (Invitrogen, Carlsbad, CA, USA) or similar instru-
ment for quantification of the adapter.

6. PCR 96-well plate.

7. ApeKI that recognizes the sequence 50-G/CWGC-30 (New
England Biolabs, Ipswich, Massachusetts, USA) or appropriate
RE.

8. NEB Buffer 3 (1X): 50 mM Tris–HCl, 10 mM MgCl2,
100 mM NaCl, 1 mM DTT, pH 7.9 at 25 �C (New England
Biolabs, Ipswich, Massachusetts).

9. Ligase buffer with ATP and T4 ligase (New England Biolabs,
Ipswich, Massachusetts, USA).

10. QIAquick PCR Purification Kit (Qiagen, Hilden, Germany).

11. PCR primer 1: 50-AATGATACGGCGACCACCGAGATCTA
CACTCTTTCCCTACACGACGCTCTTCCGATCT-30.

12. PCR primer 2: 50-CAAGCAGAAGACGGCATACGAG
ATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCG
ATCT-30.

13. Taq Master Mix (1X) (New England Biolabs, Ipswich,
Massachusetts, USA).

14. Bio-Rad Experion (Bio-Rad, Hercules, California, USA) or
similar instrument.

2.3 Illumina

Workflow

The protocol should be optimized depending on the sequencer
used. Here, we describe themain steps of Illumina sequencing (Illu-
mina Inc., San Diego, California, USA).
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2.4 Data Analysis

Equipment

and Softwares

Data must be processed within a high-performance computing
cluster. The following softwares and tools are used:

1. FastQC (https://www.bioinformatics.babraham.ac.uk/pro
jects/fastqc/).

2. Cutadapt [16].

3. Trimmomatic [17], the FASTX-Toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/), or similar tool.

4. GBS barcode splitter (https://sourceforge.net/projects/
gbsbarcode/) and FASTQ/A Barcode splitter from the
FASTX-Toolkit.

5. STACKS [4].

6. South Green bioinformatics platform (https://www.
southgreen.fr).

7. R package “pegas” [18].

8. STRUCTURE [19].

3 Methods

3.1 DNA Extraction

and Quantification

1. Extract high molecular weight DNAs from young leaves using
a standard CTAB protocol or using DNA spin column-based
commercial kits according the manufacturer’s instructions (see
Chapter 3).

2. Quantify genomic DNA by fluorimetric assays, and normalize
gDNA concentrations at 50 ng/μL (see Note 2).

3. To test DNA homogeneity, mix 1 μL of uncut sample DNA
with 4 μL of loading dye, load in a 2% agarose gel, and run at
110 V for 2 h. The gel must reveal one clear band for each
sample.

4. Test whether DNA extractions are of sufficient quality by enzy-
matic digestion. The digestion test doesn’t need to be done
with methylation-sensitive enzymes that cleave only at
unmethylated recognition sites. Cheaper RE that is not
methylation-sensitive such asHindIII or EcoRI should be cho-
sen. Pool some DNAs from the same extraction series to have
500 ng of DNA.Mix 10 μL of DNA (50 ng/μL) with 7.3 μL of
ultrapure water, 2 μL of RE 10X, 0.2 μL of BSA, and 0.5 μL of
enzyme. The mix is incubated first at 37 �C for 4 h and at 80 �C
for 20min, loaded in a 2% agarose gel, and run at 110 V for 2 h.
The gel must reveal a regular smear without band.

3.2 GBS Library

Construction

1. Two kinds of adapters are used for constructing GBS libraries, a
barcode adapter and a common adapter. Adapters are designed
to fit with Illumina sequencing (see Note 3). Dilute
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oligonucleotides of each barcode and common adapters sepa-
rately in TE buffer (50 μM each), and anneal them in a thermo-
cycler at 95 �C during 2 min. Then decrease the temperature to
25 �C by 0.1 �C/s and wait 30 min at 25 �C. Hold the adapters
at 4 �C.

2. Quantify the adapters with an intercalating dye (PicoGreen
(Invitrogen, Carlsbad, CA, USA) or similar instrument)
diluted in water to 0.6 ng/μL. Mix then barcode and common
adapters together in a 1:1 ratio; plate the mix into a 96-well
plate, each well with a different barcode adapter; and dry the
plate (Fig. 1, step 1, see Note 4).

3. Add 100 ng of DNA in a volume of 10 μL into each well
(96 different DNA samples can be studied on one plate). Dry
the plate again (Fig. 1, step 1).

4. In each well, digest DNA for 2 h at 75 �C withApeKI, in 20 μL
volumes containing 1X NEB Buffer 3 and 3.6 UApeKI (Fig. 1,
step 2). This step should be optimized depending on the RE
that is used (see Note 5).

5. Ligate adapters to the ends of the genomic DNA inserts: add
30 μL of a solution containing 1.66X ligase buffer with ATP
and T4 ligase into each well. (Fig. 1, step 3).

6. T4 ligase inactivation: incubate samples at 22 �C for 1 h and
then heat them to 65� for 30 min.

7. Pool an aliquot of each sample (5 μL) into an Eppendorf tube,
and apply it to a size exclusion column to remove unreacted
adapters. Purify samples using a commercial kit (QIAquick
PCR Purification Kit, Qiagen, Hilden, Germany). DNA sam-
ples are then eluted in a final volume of 50 μL (Fig. 1, step 4).

8. Perform a PCR to amplify the fragment pool in 50 μL volumes
containing 2 μL pooled DNA fragments from step 7, 1X Taq
Master Mix, and 25 pmol of each PCR primers 1 and 2 (see
Note 6). Use the following PCR temperature cycling: 72 �C
for 5 min, 98 �C for 30 s; 18 cycles of 98 �C for 30 s, 65 �C for
30 s, and 72 �C for 30 s with a final Taq extension step at 72 �C
for 5 min (Fig. 1, step 5).

9. Clean up PCR products, and evaluate fragment sizes of the
resulting library on a DNA analyzer (Bio-Rad Experion or
similar instrument) (Fig. 1, step 6). Libraries without adapter
dimer are retained for DNA sequencing (see Note 7).

3.3 Illumina

Sequencing Workflow

Illumina sequencing being most often outsourced to private com-
panies, we simply propose here a step-by-step workflow rather than
a classical wetlab protocol.

1. Perform single-end sequencing or paired-end sequencing of
the library in a flow cell channel using the HiSeq 3000/
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Fig. 1 Diagram of the genomic library construction method based on reducing genome complexity with
restriction enzymes (REs) for Illumina sequencing
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HiSeq 4000 Systems (Illumina Inc., San Diego, California,
USA) (see Note 8).

2. Drop PCR products off at an Illumina flow cell (Fig. 1, step 7).

3. Bridge amplification of DNA fragments in cluster. The amplifi-
cation is based on solid-phase PCR. Cluster formation ampli-
fies sequencing signal.

(a) Bind single-stranded fragments randomly to the inside
surface of the flow cell channels.

(b) Add unlabeled nucleotides and enzyme to initiate solid-
phase bridge amplification.

(c) First amplification: the enzyme incorporates nucleotides
to build double-stranded bridges on the solid-phase
substrate.

(d) Linearization: denature the double-stranded DNA to
leave single-stranded DNA anchored to the substrate.

(e) Complete amplification: several million dense clusters of
same single-stranded DNA are generated in each channel
of the flow cell.

4. Sequencing by synthesis:

(a) To initiate the first sequencing cycle, add Illumina
sequencing primer P1, DNA polymerase enzyme, and all
four nucleotides, each labeled with a different dye, to the
flow cell.

(b) After laser excitation, capture the image of emitted fluo-
rescence from each cluster on the flow cell. Record the
identity of the first base for each cluster. Cleave dye and
terminating groups and wash.

(c) To initiate the next sequencing cycle, add all four labeled
nucleotides and enzyme to the flow cell. After laser exci-
tation, collect the image data as previously described.
Record the identity of the second base for each cluster.

(d) Repeat cycles of sequencing to determine the sequence of
bases. This entire process generates millions of reads,
representing all the genomic fragments (see Note 9).

3.4 GBS Data

Processing

3.4.1 Filtering Raw

Sequence Data

1. Illumina sequencing produces a large amount of data. Outputs
are “fastq” files with four lines per sequence with (a) sequence
name; (b) DNA sequence; (c) metadata with sample informa-
tion such as plant line, location, and year; and (d) quality score
of each base of the sequence.

2. View sequences with the quality control tool for high-
throughput sequence fastQC.
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3. Remove adapter sequences at the end of reads and low-quality
extremities. Some tools can be used such as Cutadapt [16] (see
Note 10).

4. Remove low-quality reads based both of quality score, read
length, low complexity, and N (unsequenced) bases using
Trimmomatic [17], the FASTX-Toolkit, or similar tool.

5. Reads are then demultiplexed and assigned to each sample (see
Note 11). GBS barcode splitter and FASTQ/A Barcode split-
ter from the FASTX-Toolkit are tools to split GBS reads by
barcode.

3.4.2 Mapping 1. Analyze assigned reads with STACKS to identify all the
SNPs [4].

2. Identified SNPs are conserved in a Variant Call Format (VCF)
file for analysis [20].

3. Screen SNPs according to several criteria: sequencing depth,
missing data, and gene frequency (see Note 12). VCF files
derived from SNP calling can be filtered directly by some
tools such as SNiPlay which is part of the South Green bioin-
formatics platform.

3.4.3 Analysis The identified SNPs can be used in phylogenetic studies. SNiPlay
computes on the web series of tools for analyses at a whole-genome
scale (general statistics, polyploid analysis, chromosome viewer,
SNP density, diversity analysis, association studies, etc.). VCF files
can also be analyzed using the R package “pegas” to calculate
similarity and construct phylogenetic trees [18]. To analyze the
genetic structure of a population and identify groups that are
genetically linked, the Bayesian method of the software STRUC-
TURE can be used [19]. Many other tools are efficient to analyze a
VCF files.

4 Notes

1. The technical option to limit the missing data is to reduce the
multiplexing level or sequence the same library several times,
and the molecular option is to choose less frequently cutting
enzymes.

2. Leaves can be first lyophilized. A quantity of 20–30 mg of
lyophilized leaves should be enough for DNA extraction. A
great amount of DNA is not needed (50–100 ng/sample).
However, quality and quantity of the DNA must be homoge-
neous. Use preferably fluorimetric method for quantification
than spectrophotometric method which could overestimate
DNA concentrations. DNA purity is crucial for complete
enzyme digestion.
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3. The DNA fragment is ligated to a barcode adapter and a
common adapter. The barcode adapter contains an Illumina
sequencing primer 1 and a barcode which is a 4–8 bp sequence
used to identify a sample. The barcode is on the 30 end of the
top strand of the adapter. The 50 end of its bottom strand is
terminated by a 3 bp overhang which is complementary to the
end genomic DNA fragments generated by the RE. The com-
mon adapter is complementary to the other end and is only
containing an Illumina sequencing primer 2 end. The adapters
are designed for either single-end or paired-end sequencing on
the Illumina (Fig. 1, step 1). Barcodes are enzyme specific: they
must not recreate the enzyme recognition site to avoid being
cut and must have complementary overhangs. Barcodes must
be of variable length and different enough from each other to
avoid confusion if there is a sequencing error (at least 3 bp
differences among barcodes).

4. Up to 96 DNA samples can be processed simultaneously
(48/96/384-well plate).

5. Choose methylation-sensitive REs to avoid repetitive regions
of genomes and target lower copy regions. Select REs that leave
2 to 3 bp overhangs for efficient adapter ligation to fragments
of DNA. ApeKI (New England Biolabs) is often used and
suitable for maize because it is known to have low recognition
sites in maize retrotransposons [3]. ApeKI recognizes the
sequence 50-GCWGC-30 (with W is A or T) and leave a 50

overhang with 3 bp. PstI (New England Biolabs) and
EcoT22I can also be used and recognize, respectively, the
sequences 50-CTGCA/G-30 and 50-ATGCA/T-30. PstI was
used in artichoke GBS libraries [6].

6. PCR primer 1 is designed to bind, on one hand to 30 strand of
barcode adapter and on the other hand to flow cell oligonucle-
otide 1 for Illumina sequencing. PCR primer 2 binds to 30

strand of common adapter and to flow cell oligonucleotide
2. The PCR primers 1 and 2 contain sequences for amplifying
restriction fragments with ligated adapters and binding PCR
products to oligonucleotides contained in Illumina flow cell
(Fig. 1, step 5).

7. Libraries were considered suitable for sequencing if adapter
dimers (around 128 bp) are minimal or absent and the majority
of other DNA fragments are between 170 and 350 bp. Do the
protocol again and adapt and decrease adapter amounts if
adapter dimers are present in excess of 0.5%.

8. Two kinds of sequencing can be used for GBS. The single-end
sequencing produces reads up to 300 bp and is better for
species without reference genome. The paired-end sequencing
from both fragment ends generates longer reads from 300 to
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500 bp and should be used preferably in species with high-
quality reference genome.

9. GBS captures barcode and insert DNA sequence in single read.
It ensures that the barcode fits well with its sample because they
are physically attached.

10. Different parameters and tools should be tested to removes
adapters and low-quality extremities. Reads must be verified
each time with fastQC.

11. A table of correspondence between barcode sequences and
samples would be very useful for demultiplexing.

12. At least five reads at each locus for each sample are recom-
mended. The minimal gene frequency recommended is 30% to
avoid keeping sequencing error. However, gene frequency can
be adjusted and reduced depending on the sampling. If the
sampling is unbalanced, a low frequency provides access to
alleles that are associated with underrepresented individuals in
the dataset.
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Chapter 11

Development of Microsatellite Markers Using
Next-Generation Sequencing

Hélène Vignes and Ronan Rivallan

Abstract

Among the molecular markers used for plant genetic studies, microsatellite markers are easy to implement
and can provide suitable codominant markers for molecular taxonomy.
Here we describe a method to obtain microsatellite primers from genomic DNA using a next-generation

sequencer.

Key words Microsatellite, Next-generation sequencing, Bioinformatic analysis

1 Introduction

Microsatellites, also called simple sequence repeats (SSRs) [1], are
small repeats of one, two, three, or four tandemly arranged nucleo-
tides that are ubiquitous components of eukaryotic genomes. They
have a high level of polymorphism due to mutation affecting the
number of repeat units. Their variable length polymorphism can be
revealed by polymerase chain reaction (PCR) [2] with unique
flanking primers [3] that generate codominant markers. Microsa-
tellites have a Mendelian heritability [4] and have a potential advan-
tage of reliability, reproducibility, discrimination, standardization,
and cost-effectiveness [5]. All these characteristics make them a
suitable tool for genetic analysis, diversity analysis, population
structure studies, genetic mapping, and quantitative trait analysis.

The precedent method for microsatellite discovery was an
expensive and time-consuming task, through the construction of
microsatellite-enriched genome libraries, cloning, and sequencing
by Sanger method.

Today, the method using NGS [6] and bioinformatics makes it
possible to obtain a very large number of microsatellite markers
quickly and easily. Microsatellite markers discovered represent a
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non-exhaustive part depending on the sequencing step. The search
for microsatellite motifs is done after high-throughput sequencing
using a specific pipeline or Galaxy.

2 Materials

2.1 Library DNA

Construction

Use the Nextera kit (FC-121-1030), Illumina. This kit allows the
construction of the DNA bank, from fragmentation to
amplification.

2.1.1 DNA Fragmentation 1. Total genomic DNA (2.5 ng/μL).
2. TD Tagment DNA Buffer (Nextera kit).

3. TDE1 Tagment DNA Enzyme (Nextera kit).

4. Mastercycler® nexus PCR thermal cycler, Eppendorf AG,
Germany.

2.1.2 Fragmented DNA

Purification

1. DNA Clean & Concentrator (ZD4013) kit, Zymo
(as recommended for the Nextera kit).

2. RSB Resuspension Buffer (Nextera kit).

2.1.3 DNA Amplification 1. NPM Nextera PCR Master Mix (Nextera kit).

2. Nextera Index Kit (N501, N502, N503, N504, N701, N702,
N703, N704, N705, N706).

3. PPC PCR Primer Cocktail (Nextera kit).

4. Mastercycler® nexus PCR thermal cycler, Eppendorf AG,
Germany.

2.1.4 DNA Purification 1. Agencourt AMPure XP beads (A63881), Beckman Coulter.

2. Agencourt SPRIPlate 96 Ring Super Magnet Plate (A32782)
Beckman Coulter.

3. 80% ethanol, fresh.

2.2 Library

Verification

1. Agilent 4200 TapeStation.

2. ScreenTape D5000, Agilent (5067-5588) (see Note 1).

3. LightCycler® 480 Real-Time PCR System, Roche Life Science.

4. Takara Library Quantification Kit (638324) (see Note 2).

2.3 Illumina

Sequencing

1. MiSeq System, Illumina.

2. 500 cycles V2 cartridge (MS-102-2003) or 600 cycles V3
cartridge (MS-102-3003), Illumina.
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2.4 Selection

and SSR Screening

1. Galaxy platform for bioinformatic analysis (see Note 3).

2. Mastercycler® nexus PCR thermal cycler, Eppendorf AG,
Germany.

3. ABI 3500xl sequencer, Life Technologies, Carlsbad,
California, USA.

4. GeneMapper® Software, Life Technologies, Carlsbad,
California, USA.

5. Zymo DNA Binding buffer.

2.5 PCR

Amplification

1. Buffer 10� (100 mMTris–HCl, pH 9.0; 100 mMKCl 80 mM
(NH4)2SO4; X-100 1% Triton).

2. 2 mM dNTP.

3. 50 mM MgCl2.

4. 5U/μL Taq DNA Polymerase.

5. Template DNA (1 ng/μL).
6. Water, Milli-Q.

2.6 Sequencer

Revelation and Scoring

Analysis

1. Hi-Di formamide.

2. 0.12 μL of GeneScan 600 LIZ size standard (Applied
Biosystems).

3 Methods

3.1 DNA

Fragmentation

1. Put 20 μL of 50 ng total genomic DNA (2.5 ng/μL) into a 0.5
mL Eppendorf microtube.

2. Mix with 25 μL of TD buffer and 5 μL of TDE1.

3. Incubate the tube in the Mastercycler® nexus PCR thermal
cycler for 15 min at 55 �C.

3.2 DNA Purification

with the Zymo

Clean-Up Kit

All the centrifugation must be performed at 10,000 � g.

1. Add 180 μL of Zymo kit DNA binding buffer in a 1.5 mL
Eppendorf tube.

2. Add 50 μL of DNA and mix by up and down.

3. Transfer the mix in a Zymo kit spin column and centrifuge for
30 s.

4. Add 200 μL of Zymo kit wash buffer and centrifuge for 30 s
(repeat this step a second time).

5. Place the column on a new 1.5 mL Eppendorf tube, and add
25 μL of RSB buffer to the column.

6. Wait 2 min at room temperature and centrifuge for 1 min.

7. Recover the eluate and transfer it to a new 1.5 mL
Eppendorf tube.
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3.3 PCR

Amplification

with Adding Indexes

1. For one library, one index N7 and one index S5 must be added
with purified DNA fragments. In a new 1.5 mL Eppendorf
tube, add 15 μl of NPM, 5 μL of index 1 (e.g., N701), 5 μL of
index 2 (e.g., S501), and 5 μL of PPC. The indexes are used to
label the samples. It is therefore possible to multiplex several
samples during sequencing. At the output of sequencing, there
is a sequence file for each sample.

2. Transfer 20 μL of DNA. Mix well and do a pulse.

3. Place the tube in the Mastercycler® nexus PCR thermocycler
with the following program: 72 �C 3 min, 95 �C 30 s, five
cycles (95 �C 10 s, 63 �C 30 s, 72 �C 30 s), and hold at 10 �C.

3.4 Amplified DNA

Purification

1. Add 30μL of AMPure XP beads in the tube containing 50 μL of
amplification product. Mix gently and incubate for 5 min at
room temperature.

2. Place the tube on SPRIPlate magnetic support for 5 min and
then discard the supernatant.

3. Add 200 μL of 80 % ethanol, incubate for 30 s, and discard the
supernatant. Repeat this step a second time.

4. Dry beads for 15 min on the SPRIPlate magnetic plate.
Remove the tube and add 32.5 μL of RSB. Mix by up and
down, and incubate for 2 min at room temperature.

5. Put the tube on SPRIPlate magnetic support for 5 min. Trans-
fer 30 μL of supernatant in a new 1.5 mL Eppendorf tube.

The library is ready.

3.5 Library

Verification

1. The quality is checked using an Agilent 4200 TapeStation with
a ScreenTape D5000. The size of the fragments must be
between 100 and 600 pb (Fig. 1).

2. The library is quantified using the Takara kit on real-time PCR
system.

3.6 Illumina

Sequencing

The sequencing is performed on MiSeq system Illumina sequencer,
using a 500-cycle V2 cartridge Illumina (2 � 250 pb) or a
600-cycle V3 cartridge Illumina (2 � 300 pb).

3.7 Bioinformatic

Analysis and Primer

Design

Among all the sequences obtained, it is now necessary to sort and
recover the sequences containing microsatellite motifs via bioinfor-
matic analysis. It can be performed directly on the command line.
Uninitiated people can use the Galaxy platform [7]. Galaxy is a
workflow manager, which permits to run several bioinformatic
analysis using a simple web interface. The raw sequences (fast gz
format) are processed in Galaxy using several tools to obtain the
data matrix containing the microsatellite primers.
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The different tools used on Galaxy pipeline are:

1. FASTQ Groomer [8]: offers several conversion options relat-
ing to the FASTQ format.

2. Filter FASTQ: reads by quality score and length tool allows
filtering by minimum and maximum read lengths and quality
score values.

3. ABySS [9]: a de novo sequence assembler intended for short
paired-end reads and large genomes.

4. MISA [10] + Primer3: search for microsatellites and design
primers.

This tool allows the identification and the localization of
perfect microsatellites as well as compound microsatellites,
which are interrupted by a certain number of bases. In order
to design primers flanking the microsatellite loci, two perl
scripts serve as interface modules for the program-to-program
data interchange between MISA and the primer modelling
software Primer3 (Whitehead Institute).

Fig. 1 Library profile on ScreenTape D5000
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In output, a data matrix containing all the microsatellite
primers is obtained, according to the parameters indicated for
the different tools used (Fig. 2).

3.8 Selection

and SSR Screening

Validation and verification of microsatellite markers by PCR
amplification.

3.8.1 Selection

of Markers and Primers

1. Select only the primer pairs flanking for di- and trinucleotide
SSR motifs. It is best to choose a minimum of eight repetitions
for dinucleotides and six repetitions for trinucleotides. The
amplification fragment size must be between 100 and 400 bp.
You can select 40 SSR markers for a first serial of screening
(20 markers for dinucleotide SSR motifs and 20 markers for
trinucleotide SSR motifs).

2. The forward and reverse primers are synthesized. It is recom-
mended to use a M13 tail (50-CACGACGTTGTAAAACGAC-
3’) and adding it to the forward primer to lower the costs or
use directly one-labelled primer on both.

3.8.2 PCR Amplification 1. PCR reactions are performed as simplex experiments in a vol-
ume of 10 μL containing 1 μL of reaction buffer 10�, 1 μL of
2 mM dNTP, 0.3 μL of 50 mM MgCl2, 0.08 μL of 10 μM
forward primer with a M13 tail at the 50-end, 0.1 μL of 10 μM
reverse primer, 0.1 μL of fluorescently labelled M13-tail
(6-FAM, NED, VIC, or PET from Applied Biosystems, Foster
City, California, USA), 0.12 μL of 5U/μL Taq DNA Polymer-
ase, 5 μL of template DNA (1 ng/μL), and 2.3 μL of water.

2. Use a touchdown cycling program with an initial denaturation
at 94 �C for 5 min; followed by ten cycles at 94 �C for 30 s,
55 �C for 60 s (0.5 �C decrease at each cycle), and 72 �C for
1 min; followed by 25 cycles at 94�C for 45 s, 50 �C for 1 min,
72 �C for 1 min; and a final extension at 72 �C for 30 min.

Fig. 2 Data matrix (Galaxy)
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3.8.3 Sequencer

Revelation and Scoring

Analysis

1. PCR products can be multiplexed according to dye and
expected sizes (between 100 and 400 bp). Fluorescently
labelled PCR products are organized in several SSRmultiplexes
for electrophoresis, using, respectively, 2 μL of products
labelled with 6-FAM, 2 μL of those with VIC, 2.5 μL of
those with NED, 3.5 μL of those with PET, and completed at
20 μl with high purity water.

2. Take 2 μL of PCR pool and add to 10 μL of Hi-Di formamide
and 0.12 μL of GeneScan 600 LIZ size standard. The PCR
products are revealed on ABI 3500xL Genetic Analyzer.

3. ABI electropherograms are analyzed with GeneMapper Soft-
ware. Allele calling is obtained by checking for each data point
in the amplification peaks. The markers selected must be poly-
morphic and easy to score.

4 Notes

1. We use the ScreenTape D5000 (5067-5588) Agilent, but we
could also use a ScreenTape D1000 (5067-5582) or a Screen-
Tape genomic DNA (5067-5365). This step allows you to
visualize the quality and size of the obtained bank.

2. During sequencing, the flowcell must be loaded correctly. The
kit permits to quantify library with a method a highly sensitive
by quantitative PCR.

3. We use the Galaxy platform and its various tools. However, if
you have the skills in bioinformatics, then you can create your
own analysis pipeline and work on the command line.
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Chapter 12

Amplified Fragment Length Polymorphism: Applications
and Recent Developments
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Abstract

AFLP or amplified fragment length polymorphism is a PCR-based molecular technique that uses selective
amplification of a subset of digested DNA fragments from any source to generate and compare unique
fingerprints of genomes. It is more efficient in terms of time, economy, reproducibility, informativeness,
resolution, and sensitivity, compared to other popular DNA markers. Besides, it requires very small
quantities of DNA and no prior genome information. This technique is widely used in plants for taxonomy,
genetic diversity, phylogenetic analysis, construction of high-resolution genetic maps, and positional
cloning of genes, to determine relatedness among cultivars and varietal identity, etc. The review encom-
passes in detail the various applications of AFLP in plants and the major advantages and disadvantages. The
review also considers various modifications of this technique and novel developments in detection of
polymorphism. A wet-lab protocol is also provided.

Key words AFLP , cDNA, Epigenetics, Genetic diversity, Transcriptomics, MSAP , Restriction
enzymes

1 Introduction

The AFLP technique is a patented technology first described by [1]
and is applied widely in monitoring inheritance of agronomic traits
in plants, pedigree analysis, parentage analysis, screening of DNA
markers linked to genetic traits and genes of interest, etc. AFLP
technique uses the entire genome for polymorphism and reproduc-
ibility and is recognized as a universal DNA fingerprinting system,
universally accepted regarding origin and complexity of DNA sam-
ples and even small sequence variations that can be identified using
a small quantity of DNA as low as 0.05 μg. A large number of
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fragments are detected on a gel that allows evaluation of a large
number of loci at a time. It is much advantageous in terms of
number of polymorphisms identified per reaction, reproducibility,
ease, and cost of analysis.

1.1 Principle of AFLP AFLP employs selective amplification of restriction fragments from
a digested total genomic DNA using PCR. Genomic DNA is first
digested by two restriction enzymes that cut the big molecules into
a mixture of fragments enabling amplification by PCR. Usually in
AFLP two restriction enzymes, a rare cutter like EcoRI (6-bp
restriction site) and a frequent cutter like MseI (4-bp restriction
site), are used for restriction. Double-stranded oligonucleotide
adapters consisting of a core sequence and a restriction enzyme-
specific sequence homologous to one 50 or 30 end are then ligated
to the DNA fragments using T4 DNA ligase. The ligated DNA
fragments are amplified by PCR using primers complementary to
the adapter and restriction site sequence with additional selective
nucleotides at their 30 end. Using selective primers reduces the
complexity of the mixture, and those fragments complementary
to nucleotides beyond restriction site will be amplified by these
selective primers under stringent annealing conditions. Later, the
polymorphisms are identified by a denaturing polyacrylamide gel
electrophoresis and patterns between individuals are compared. In
AFLP polymorphisms observed arise due to a mutation in the
restriction site, a mutation in the regions complementary to primer
extensions and adjacent to restriction site, or a deletion/insertion
within the amplified region. Molecular polymorphisms are identi-
fied based on the presence or absence of particular DNA fragments
of a given size among individuals (Fig. 1).

1.2 Basic Steps

Involved in AFLP

Analysis

A suitable DNA extraction protocol that yields good quality DNA
without degradation may be employed for AFLP analysis. Quality
of DNA needs to be ensured by an extra purification step; in case if
the DNA extracts contain restriction or PCR inhibitors, an extra
purification step may be incorporated. In AFLP, it is required to
optimize the quantity of DNA for generating clear, intense AFLP
patterns. These patterns may vary from species to species and
depend on the genome size. Restriction fragments are generated
using two restriction endonucleases, a rare cutting enzyme with
6–8 base recognition, in combination with a frequent cutting
enzyme of four-base recognition. Enzymes are chosen based on
the genome complexity and methylation status of the DNA. Com-
plete digestion is to be ensured in order to avoid false polymorph-
isms due to amplification of fragments that are not fully digested.
The AFLP protocol is designed to amplify and preferentially detect
fragments with EcoRI cut at one end and MseI cut at the other. In
AFLP different combinations of enzymes and multiple combina-
tions of primers can be used for accessing hundreds of polymorphic
markers.
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1.3 AFLP Advantages

and Applications

The AFLP technique is a robust tool due to the ability to generate
quickly a large number of marker fragments without prior knowl-
edge of the genomic sequence and can be multiplexed for analysis
of hundreds of individuals at a time. It requires only a small quantity
of DNA and is highly reproducible. Due to this reason, it is used in
DNA fingerprinting of non-model organisms where no prior

Fig. 1 AFLP profiles of Vanilla spp., seedling progenies, and interspecific hybrids, developed using primer
combination EGG-MTG. Lanes 1–10: Seedling progenies of V. planifolia (1, V1; 2, V2; 3, V4; 4, V6; 5, V7; 6, V8;
7, V10; 8, V11; 9, V12; 10; V24); 11, V. planifolia; 12, V. aphylla1; 13, V. aphylla2; 14–16: interspecific hybrids
of V. planifolia and V. aphylla (14, VH1; 15, VH4; 16, VH5); 17, Water Control. Arrows indicate species-specific
bands (V. planifolia in green, V. aphylla in red)
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sequence information is available. AFLP can be used for samples of
any origin and complexity to detect sequence variations. Com-
mercial AFLP primer sets are available which work on most
organisms making this technique versatile. In-depth coverage of
the genome is possible since large numbers of AFLP markers can
be typed rapidly at a low cost. AFLP markers are largely indepen-
dent since 90% of these reflect point mutations in the restriction
sites. The co-migrating markers in AFLP are mostly homologous
and locus specific and follow a Mendelian inheritance in plants
[2, 3].

AFLP markers reveal a greater amount of diversity compared to
other popular markers like RAPD, ISSR, SSR, RFLP, etc. (Chapters
11, 13, 14) and are highly reproducible and reliable due to the
stringent hybridization conditions employed [4–6]. Due to these
reasons, it can be upscaled, reproduced between different labora-
tories and conditions. These methods require very small quantity of
DNA to generate huge amount of data.

AFLP differs from RFLP in that it employs PCR amplification
to detect the polymorphisms on a denaturing PAGE while RFLP
employs agarose or PAGE gels followed by hybridization. AFLP
provides additional possibilities of detecting polymorphisms
beyond the restriction site in comparison to RFLP wherein only
the length variation within restriction sites is available and detects
more point mutations, insertions, and deletions than RFLP to the
tune of about 100–200 loci at a time. There is a scope of detecting
unlimited polymorphisms by simply varying the restriction
enzymes and the nature and number of selective nucleotides.
AFLP fragments are mostly homologous and locus specific [7]
except in polyploid species. Due to the above advantages, AFLP
markers have proved effective in determining genetic differences
among individuals, populations, and species. AFLPmarkers unravel
cryptic genetic variation of closely related species which cannot be
distinguished using conventional strategies. AFLPmarkers have the
widest application in genetic variation analysis below species level
for investigating population structure and differentiation and phy-
logenetic relationships based on genetic distances. They are highly
instrumental in characterization of gene banks, fingerprinting, and
estimation of genetic diversity for gene bank management. AFLP
markers have been applied to evaluate gene flow and dispersal,
outcrossing, introgression, and hybridization. The different appli-
cations of this versatile technique are detailed below.

1.3.1 Genetic Diversity

Studies Using AFLP

Markers

Analysis of genetic diversity and phylogenetic relationships is an
important prerequisite for future breeding programs and conserva-
tion. It helps to understand evolutionary history of a species and
the future risks to diversity. Evaluation of interpopulation variations
indicates scope of geographic origin, dispersal of plant material, and
gene flow between populations. Intraspecific genetic variability in
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natural populations is an indicator of the potential to cope with
changing environmental conditions and provides valuable inputs
with respect to conservation and management of endangered and
endemic plant taxa [8]. Diversity studies based on molecular mar-
kers are found to be more informative and reliable than that based
on morphological and phenotypic traits. AFLP requires no prior
sequence information and has a multi-locus and genome-wide
nature, which makes it more popular than other molecular markers
in DNA fingerprinting and genetic diversity analysis [6, 8–17].

In genus Brassica, several reports [4, 18–25] demonstrate the
utility of AFLP in addressing important phylogenetic questions
within the species and provide new insights for future breeding
programs. In rice, AFLP analysis in four populations provided
valuable insights regarding unique genes in Iranian native varieties,
which will be useful for future breeding programs and stresses upon
the need for conserving this unique diversity [26]. In Jatropha,
AFLP analysis of five populations showed high intrapopulation
variability, and this could identify promising genetic resources to
be included in breeding programs [27]. Distribution of genetic
variation in Illinois bundle flower was detected using AFLP mar-
kers, with a view to increase the efficiency of germplasm preserva-
tion and expedited plant breeding programs [28]. AFLP-based
genetic diversity studies in Pinus pinaster populations provided
important information on organization and subdivision of diversity,
the genetic mechanisms underlying it, and sampling strategies to be
adopted for species conservation [29].

Evidence for maintenance of genetic variability in Italian and
Spanish durum wheat over the last century was revealed through
AFLP marker-based analysis [30], which showed an enrichment of
diversity in the cultivated pool and broadening of genetic back-
ground. In snap bean, AFLP-based genetic variability analysis
exhibited a good level of variability and a possible relationship
between bean growth habitat and the gene pool, which can be
exploited for future breeding programs [31]. AFLP-based finger-
printing is a suitable technology for discovering genetic diversity in
banana [32–36], and it also has an impact on conservation strate-
gies and breeding ventures in banana. Phylogenetic and genetic
diversity analysis of conserved endangered plant species has been
successfully done through AFLP [37–40]. Diversity study within
population and subpopulation of endangered sentry milk vetch
(Astragalus cremnophylax var. cremnophylax) [41] through AFLP
could estimate their adaptability to alien environments and also
provides strategically important inputs for their conservation.

Germplasm collections have been characterized in Jatropha
curcas [42] and Rhodiola rosea [43] using AFLP. Genetic diversity
studies in natural populations of Dendrobium thyrsiflorum and
radish [44] showed high interpopulation variations and correlation
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of a few AFLP markers with the antioxidant activity [45] in case of
the former. In teak, high genetic diversity could be observed within
locations indicating importance of intensive location-wise collec-
tion of diverse superior genotypes for conservation and genetic
improvement [46]. In lentil accessions genetic diversity and phylo-
genetic studies were conducted, and intraspecific genetic variability
at high levels could be detected. An important outcome of this
study was information on progenitor species of cultivated lentils
[47]. Genetic diversity analysis in Microlaena stipoides using AFLP
showed outcrossing and significant amount of variation within
populations which can be used as a probable strategy for its propa-
gation and for making microlaena more resilient in the long
term [48].

Genetic relationships among different species of Solanum gave
leads into the taxonomic resolution of this complex species and also
provided insights into the origins/introductions of some of the
important species [49]. Several other studies also have utilized
AFLP for Solanum taxonomy [50–57].

In many cases AFLP analysis showed limited genetic diversity
existing within germplasm collections, which indicates the need for
conservation and also suggests that new accessions should be
obtained from the center of origin of the species [58]. Intra-
accession diversity studies in potato population showed lower levels
of polymorphism within accessions of self-compatible when com-
pared to self-incompatible taxa, thereby showing the high suitabil-
ity of AFLPmakers for evaluation of diversity between accessions in
gene banks [59].

In many of the genetic diversity and phylogenetic studies,
grouping of individuals showed high correlation with taxonomic
and molecular classifications, indicating that the observed varia-
tions could be due to genetic factors. However, in some cases
morphological and agronomic traits did not correlate well with
molecular classification due to genotype� environment interaction
and polygenic nature of the traits [60].

Using AFLP markers genetic variation was detected among tea
genotypes [61] that could not be distinguished using morphologi-
cal and phenotypic markers. The grouping of populations in a
dendrogram was consistent with the taxonomy, known pedigree
of genotypes, and geographical origin. Valuable observations could
be made regarding the origin/ancestry and genetic diversity of tea
from this study. Analysis of genetic diversity using AFLP markers in
jackfruit [58] showed that grouping of accessions correlated well
with the taxonomic classifications. Through this study incorrect
classifications could be rectified, and self-fertilization of clones in
a hybridization material could also be detected. Genetic diversity
studies using AFLP assigned genotypes into groups corresponding
to origin and lineage relationships in cotton which can be exploited
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in marker-assisted parental selection tool for plant breeders [62]. A
study involving three species of Malvaceae depicted good congru-
ence of AFLP-based clustering with earlier morphological and
molecular investigations [63]. In pineapple cultivars from
Thailand, AFLP-based clustering revealed moderate genetic diver-
sity and congruence with earlier morphological characterization
[64]. Phylogenetic relationship studies indicated that AFLP data
correlated well with the taxonomic relationships among the
cultivated lettuce and wild species, and the dendrogram gener-
ated was similar to the phenetic tree constructed using RFLP
data [65]. In Triticum aestivum genotypes, a moderate correla-
tion between AFLP and morphological markers was observed
[66], while in olive cultivars, AFLP fingerprinting of core collec-
tion discriminated different cultivars, but clustering based on
AFLP and fruit traits did not show significant correlation
[67]. In azalea [68] and banana [32, 33] cultivars, no correlation
between AFLP data and morphological traits existed, indicating
that the majority of the polymorphisms did not contribute to
phenotypic variation.

Genetic diversity and influence by environment could provide a
better understanding of the natural variation and gene exchange
that existed in a species with respect to its geographical location.
This can help in preservation and development of germplasm
resources especially in case of endangered species. In some studies
a good correlation of AFLP data with the geographical origins and
distance could be observed. In Vigna sp. [69], Triticum landraces
[70], and banana [71], significant association was observed
between AFLP data and geographic location. In Hibiscus tiliaceus,
estimates of genetic diversity using AFLPs agreed well with the
geographical distribution and life history traits [72]. AFLP analysis
of Iranian potato germplasm [73] and Lactuca species [74] showed
a high level of genetic diversity and clustering corresponding to the
geographical origin of these varieties. In cowpea genetic distances
were estimated in wild, weedy annuals, domesticated cowpea,
perennial accessions, and wild subspecies, and AFLP markers
could successfully uncover variation within both domesticated
and wild accessions [75].

In alfalfa [76], soybean [77], and Croton sp. [78], AFLP was
used to study genetic diversity of cultivated and natural popula-
tions, which showed no correlation between genetic and geo-
graphic distances. In betel vine cultivars, cluster analysis based on
AFLP data showed that grouping of individuals was based on their
genetic relatedness rather than place of collection [79]. In kale,
landraces, cultivars, and wild populations exhibited higher levels of
diversity among wild populations. The study indicated that genetic
distance was not related to geographical distance and provided
inputs on conservation strategies to be adopted [80]. Wild
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populations of Agave angustifolia fingerprinted using AFLP
showed a partial correlation with geographical distribution and
variation between mother plants and vegetatively propagated
mother rhizomes [81]. In the endangered Glehnia littoralis,
AFLP analysis showed no obvious correlation between genetic
and geographic distances, and the endangered status was attributed
to the loss of wild habitats calling for ecological conservation
strategies [16]. In black gram AFLP-based clustering of landraces
indicated influence of soil pattern and topography in the genetic
makeup and genetic distinctness [82].

1.3.2 Variety/Cultivar

Fingerprinting, Kinship,

and Genetic Fidelity

Lack of genetic identity is a serious problem in plant propagation
and seed production of elite genotypes. For certification purpose,
genotypes need to be characterized both at phenotypic and molec-
ular level for identifying promising ones with outstanding agro-
nomic, nutraceutical, and nutritional characteristics. Availability of
informative molecular markers is an essential prerequisite for pro-
prietary protection, establishing identity, early detection of seed-
lings in the nursery, and monitoring trade. AFLP being a dominant
marker system and the availability of multi-locus and genome-wide
marker profiles are the reasons that make it a preferred method for
DNA fingerprinting [42]. Several studies endorse the utility of
AFLP markers for discriminating between closely related indivi-
duals when compared to nuclear and chloroplast DNA markers
[83, 84]. AFLPs are also the preferred method for establishing
genetic fidelity in in vitro culture systems especially in commercial
propagation [85] where soma clonal variation is a problem.

Along with genetic variability estimations in selected cultivars
and lines of Cornus florida, a dichotomous key using specific AFLP
markers was constructed to distinguish some of the popular culti-
vars and breeding lines [86]. Genomic fingerprints of elite geno-
types of farmers were done using AFLP markers for the purpose of
variety protection, seed certification, and future support to breed-
ing programs in blackberry [87] and for detection of duplicates in
germplasm collections of yam [88]. AFLP markers have the poten-
tial to resolve genetic differences at the level of “DNA fingerprints”
for individual identification and parentage analysis [89].

In case of identification of clonally identical individuals, a large
number of markers need to be screened to uncover existing genetic
differences due to their extremely close nature. Clonally derived
individuals in several plants could be delineated by AFLP making
them suitable for analysis of relatedness, parentage, mating fre-
quency, etc. due to low levels of co-migration of non-allelic frag-
ments. AFLPs clearly established their utility for clonal
differentiation and/or identification in Vitis vinifera ecotypes
[90], and the profiles were well in congruence with those generated
by ISTR (inverse sequence tagged repeat) markers. However, in
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certain populations, ISTR revealed more polymorphism. Differ-
ences at the molecular level were identified between agave offsets
and bulbils produced asexually from the same mother plant from
different tissues using AFLP depicting the great potential of this
method in plant cultivar identification [91]. In near-isogenic lines
of soybean, distinguishing between individuals that differ at only a
single small region in the entire genome was possible [9]. AFLP
markers also enable testing of clonal identity between individuals
and thus permit to make inferences about the sexual versus asexual
reproduction modes [92].

AFLP markers have also been used to establish genetic fidelity
in in vitro derived plants in several crops for confirming the
commercial-scale plant production protocol [93, 94]. Clonal fidel-
ity of micropropagated plants was established through AFLP in
endangered Arachis retusa for germplasm storage and in Dendro-
calamus hamiltonii [95]. In Bambusa nutans, AFLP revealed a high
level of genetic stability in somatic embryo-derived plantlets
[96]. AFLP successfully identified variations in cryopreserved
in vitro shoot tips in Rubus [97].

1.3.3 QTL Mapping AFLP markers have been used extensively for constructing linkage
maps for QTL analysis of agronomic traits including disease resis-
tance and salt tolerance [98–123]. AFLP markers have been widely
used for map-based cloning of target genes linked to them, and
SCAR markers for quality traits were developed in asparagus bean
[124], alfalfa [125], tomato [126], eggplant [127], and
maize [128].

1.3.4 Other Specific

Applications of AFLP

Marker Systems

In barley, AFLP assay and bulked segregant analysis involving
selected individuals of a cross between water stress-tolerant and
stress-sensitive genotypes identified a marker that was present
only in the tolerant parent and tolerant bulk of F2 individuals
[129]. In Salvia miltiorrhiza segregating sterile and fertile popula-
tions when subjected to bulked segregant analysis and AFLP
marker analysis indicated several markers tightly linked to the
drought stress genes. One of the markers was found to be identical
to another marker tightly linked to male sterile gene with 95%
identity [130]. Molecular tagging of male sterility locus was done
using AFLP technique in a BC1 mapping population segregating
for male sterility/fertility. Markers were identified for marker-
assisted selection and genetic map constructed for the male sterility
gene [131]. In Piper betle, a combination of bulked segregant
analysis and AFLP screening identified two male sex-specific mar-
kers [80]. Bulked segregant analysis combined with AFLP identi-
fied markers linked to resistance to yellow rust disease in Triticum
aestivum L [132]. AFLP coupled with bulk segregant analysis could
identify markers linked to virus disease in tomato [133].
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Species-specific AFLP fingerprints were generated and used for
authentication in three species of Zingiber, which is proposed to
help in resolving adulteration-related problems faced by commer-
cial users [134]. In Andean blackberry, attempt was made to gen-
erate genomic fingerprints that will enable protection, seed
certification, and future support to breeding programs [88]. In a
study, AFLP genome scan was combined with environmental anal-
ysis for testing natural populations of Liriodendron chinense for
signals of natural selection, and it identified a few outlier locus
strongly associated with climatic factors [135]. AFLP investigation
of 14 wild D. glomerata indicated that the genetic diversity and
structure pattern of populations could be influenced by environ-
mental factors like altitude, precipitation, latitude, and longitude
[136]. In Lactuca sp. studies indicate that ecogeographical condi-
tions can influence the genetic background of populations originat-
ing from them [137], and influence of biotic and abiotic stresses in
the center of origin regions can lead to high genome-wide diversity
in populations [138]. In rice, several high temperature responsive
transcript-derived fragments (TDFs) were identified employing
differential gene expression analysis coupled with AFLP [139]. Sim-
ilar strategy in sugarcane identified several induced and repressed
TDFs in response to infection by Sugarcane Mosaic Virus [140].

Isolation and characterization of differential genes in Capsicum
annuum L. using AFLP indicated that space flight influenced main
quality characters at genetic level, and induction of several novel
genes was observed [141]. In Spondias tuberosa [142], outcrossing
rates estimated using AFLP in a large population involving
12 families exhibited the open pollinated nature of the species and
provided valuable inputs on strategies for conservation and
breeding.

In Oregano, a high correlation between key chemotypic traits
and AFLP markers could be established [143]. Genetic diversity
assessments by AFLP markers in populations of Amaranthus pal-
meri was done to understand the distribution and development of
herbicide resistance to glyphosate [144]. AFLP also helps to target
other levels of diversity especially DNA methylation polymorphism
and transcriptomic variation [145].

1.4 AFLP Versus

Other Popular DNA

Markers

In several species a greater degree of polymorphism was observed in
AFLP-based diversity analysis compared to other popular markers
like SNP, SSR, ISSR, and RAPD [146–151]. In vanilla RAPD and
AFLP profiles coupled with morphological characters could suc-
cessfully assess variability of genotypes and of successful interspe-
cific hybridization and production of hybrids [152]. Genetic
relationship studies in soybean genotypes [153] indicated a lower
level of expected heterozygosity in case of AFLP markers in com-
parison with microsatellites and RAPD, in spite of the fact that
AFLP generated the highest effective multiplex ratio as in other
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studies. However, the marker index, a parameter involving
expected heterozygosity and multiplex ratio, was much higher for
AFLP markers indicating its superiority for detecting polymorph-
isms. The RFLP, AFLP, and microsatellite marker systems showed a
good correlation in the present study. In Brassica napus hybrids,
SSR was found to be more efficient than AFLP in evaluating genetic
diversity, while AFLP was better for varietal identification and DNA
fingerprinting [154]. In common bean SSR and AFLP showed a
comparable accuracy in grouping genotypes according to their
gene pool of origin [155]. AFLP was found to be the best molecu-
lar marker for fingerprinting and assessing genetic relationship
among genotypes of Dactylis glomerata when compared to other
markers like RAPD and ISSR [156].

In brinjal [157], Jatropha [158, 159], sugarcane [160], and
Miscanthus sp. [161], the superiority of AFLP over RAPD in dis-
criminating genotypes and estimation of genetic diversity was
reported. In yet another study on Aegilops species, 50 populations
analyzed using AFLP showed superiority of AFLP markers over
RAPD as a tool for molecular variability studies in plant breeding
programs [162]. AFLP turned out to be a better method for
obtaining a more definitive grouping for study of genetic relation-
ships both at species and cultivar level [35] in banana. AFLP was
more efficient compared to SSR markers for detecting genetic
variation among Ethiopian Arabica coffee genotypes [163], and
on a small spatial scale, AFLPs outperformed SSRs in discriminat-
ing individuals and assigning them to population of origin [164] in
Eryngium. In banana [36] estimates of genetic diversity did not
show any significant correlation between microsatellite and AFLP
markers. In maize [165], SSR and AFLPs were found to be equally
suitable for genetic diversity studies. However, intrapopulation
diversity studies in neem indicate a better efficiency of SAMPL
markers over AFLPs in resolving differences between closely related
accessions [166]. SRAP markers were found to be more informa-
tive than AFLP in giving high number of unique markers for
identification of banana genotypes [167].

However, in the genus Ocimum, a combined analysis of mor-
phological traits, volatile oil composition, and molecular markers is
found to be an ideal strategy for taxonomical classification
[168]. Genetic relationship study showed good correlation
between AFLPs and RAPDs in potato and endorsed the application
of a combination of marker systems like AFLP, SSR, and RAPD for
better understanding of genetic relationship [169].

1.5 Disadvantages

of AFLP Technique

AFLP is a cumbersome process involving several steps and requires
reasonably large quantity (300–1000 ng per reaction) of good
quality DNA and is a technically complicated procedure than simple
markers like RAPD. AFLP employs polyacrylamide gels and silver
staining and radioactivity of fluorescent probes for detection that
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are laborious and expensive compared to agarose gels. It requires
ligation and restriction enzymes and adapters, which adds to the
extra cost compared to techniques like RAPD (Chapter 13). Post-
run data analysis is lengthy and complex compared to RAPD.
However, recently available kits and automation have made it
more user-friendly. AFLP markers are dominant biallelic markers
and polymorphic information content is low (maximum is 0.5). It is
difficult to distinguish between heterozygous and homozygous
individuals for the presence of allele, and precise estimation of
heterozygosity is not possible, which limits its usage in population
genetic analysis, genetic mapping, and marker-assisted selection.
AFLP technique can produce artifacts in degraded samples like
herbarium specimens, and to overcome this, fresh samples were
included for comparison, thereby ensuring the presence of mono-
morphic fragments in the fresh samples as well as herbarium
AFLPs [170].

1.6 Modifications

of AFLP

1.6.1 SAMPL

The selectively amplified microsatellite polymorphic loci (SAMPL)
marker technique may be employed to detect higher levels of
genetic variation within genotypes. SAMPL is a microsatellite-
based modification of the AFLP assay and has all the advantages
of the latter [171]. Due to its association with the hypervariable
microsatellite region, this assay can detect high levels of polymor-
phism between closely related genotypes. Due to its ability to
survey the hypervariable microsatellite region in the genome, it
can detect higher levels of polymorphism per locus compared to
AFLP. The SAMPL assay has been employed for analysis of genetic
diversity in lettuce [172] and sweet potato [173] among other
crops [174, 175]. The SAMPL assay revealed higher levels of
polymorphism among Withania somnifera genotypes compared
to the use of standard AFLP in all the genotypes tested. The
AFLPmarkers and their modifications such as SAMPL are generally
expensive to generate, technically tedious, and dominant in nature.
This limits their large-scale application as diagnostic markers for
species, cultivar, or varietal identification. For practical applications,
these markers need to be converted to rapid, technically simple
assays that can be used on crude DNA preparation. A fruitful
attempt at converting SAMPLmarkers to useful diagnostic markers
was one where W. somnifera-specific bands generated with SAMPL
were used to develop a simple PCR-based assay [174]. All the
tested genotypes can be distinguished at the seedling stage by the
diagnostic markers generated.

1.6.2 M-AFLP Microsatellite-amplified fragment length polymorphism (M-AFLP)
is a modification of AFLP to detect intravarietal genetic differences
and is known to be the most efficient system and generates the
highest number of polymorphic bands compared to SSR, AFLP,
and SAMPL [176]. Markers are anchored to the 50-end of
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microsatellite (e.g., SSR) loci in this new AFLP-derived marker
system. M-AFLP combines the high heterozygosity of microsatel-
lites (SSRs) with high multiplex ratio of AFLP-derived markers.
Variation in the number of repeat units is the source of polymorph-
isms detected by the M-AFLP, and it is employed to develop
SSR-type codominant markers from polymorphic M-AFLP bands.
The technique does not require hybridization enrichment steps and
provides substantial efficiency of SSR identification compared with
conventional library procedures [177]. M-AFLP has been
employed in cassava for genetic diversity analysis of cassava and
other Manihot species [178], in grapevine for clone differentiation
and varietal identification [176], in Cynara cardunculus for micro-
satellite locus identification [179], in Poa pratensis L. for genetic
mapping of complex polyploids [177], and in Lupinus angustifolius
L. for the isolation of sequence-specific PCR markers [180].

1.6.3 SSAP Sequence-specific amplified polymorphism (SSAP) analysis [181]
was one of the first retrotransposon-based barcoding methods
based on AFLP. The BARE-1 LTR-RT is utilized by SSAP tech-
nique for molecular barcoding [181] using one primer comple-
mentary to an RT (e.g., 30 LTR) and the other primer
complimentary to the AFLP-like restriction site (usually MseI or
PstI) adaptor. Primer pairs contain two or three selective nucleo-
tides of MseI or PstI (or any restriction enzyme) adaptor primers
and one selective nucleotide of either 32P or fluorescently labeled
retrotransposon-specific primers [179]. The primers in SSAP tech-
nique are designed based on the LTR region, but could also match
to an internal sequence of the RT, like the polypurine tract (PPT),
which is found internal to the 30-LTR of retrotransposons
[179]. When restriction enzymes have a long recognition site
sequence, nonselective primers could also be used or when the
copy number of the RTs is low. The type of SSAP primers used
determines the quality of the SSAP pattern. SSAP usually exhibits
higher level of polymorphism compared to AFLP and has been
extensively used for diversity analysis studies in Triticum spp.
[182], Hordeum vulgare [183], Avena sativa [184], Aegilops spp.
[185],Malus domestica [186], Cynara cardunculus [187], Lactuca
sativa [188], Pisum sativum and other Fabaceae species
[179, 189], Capsicum annuum, Solanum lycopersicum [190], and
Ipomoea batatas [191]. SSAP was also used for cladistic molecular
barcodes to resolve evolutionary history in Nicotiana [192], Vicia
[193], Oryza [194], Triticum [182], and Zea [195].

1.6.4 AIMS The amplification of insertion mutagenized sites (AIMS) technique
is mainly based on reducing the band complexity by specific PCR
amplification of insertion mutagenized sites, by using a primer that
is specific to Mutator transposon flanking sequences [196]. AIMS
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procedure delivers possible gene candidates, but isolation of the
gene has to be verified by another method. MuAFLP, another
variant of AFLP, is similar to AIMS, and it targets amplification of
Mutator transposon regions [197].

1.6.5 MSAP The methylation-sensitive amplified polymorphism (MSAP) tech-
nique mainly involves cleavage with the methylation-sensitive
restriction enzymes HpaII or MspI, followed by adapter ligation,
amplification, and gel-based visualization [198, 199]. The methyl-
ation state of the external and internal cytosine residues strongly
affects the cleavage capacities of HpaII and MspI within the recog-
nized 50-CCGG-30 sequences. Thus, the methylation state is deter-
mined based on the ability of each enzyme to cleave the restriction
site, for each of the specific bands. MSAP-based analyses can be
performed for a range of species regardless of their genome size and
availability of reference genome. Established in 1997 [198], MSAP
has been effective in analyses of DNA methylation in various plant
species [200–209]. This technique is widely used in non-model and
model plants [210–214]. Being simple and useful, MSAP only
provides a general overview of the methylation state and does not
provide a specific sequence context. A novel technique calledMeth-
ylation Sensitive Amplification Polymorphism Sequencing (MSAP-
Seq) for the analysis of DNA methylation patterns in Hordeum
vulgare based on the conventional MSAP analysis, with direct
high-throughput sequencing using next-generation sequencing
(NGS) and automated data analysis, was introduced
[215]. MSAP-Seq allows for the global and direct identification
of a large set of sequences that undergo DNA methylation changes
without laborious band excisions, re-amplification, and subcloning,
which are required for MSAP analysis.

1.6.6 AFLP-RGA Resistance gene analog-anchored amplified fragment length poly-
morphism (AFLP-RGA) is a modified AFLP procedure first pro-
posed in soybean (Glycine max L.) [216]. Here the degenerate
RGA primers are used in combination with selective AFLP primer
in the second round of amplification. The AFLP-RGA method
combines the approach of AFLP with gene-anchored amplification
and can provide more functional markers that are possibly
distributed in other regions of the genome, thereby increasing the
genome coverage.

1.6.7 TE-AFLP The three endonuclease AFLP (TE-AFLP) technique reduces the
number of amplified fragments not only by primer extension but
also by selective ligation. Three endonucleases and two sets of
adapters are used in a single reaction. As a consequence, the
reduced number of potential amplifiable fragments diminishes
competition during PCR, permitting stringent reaction conditions
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and thus eliminating the need for a two-step amplification in fin-
gerprinting complex genomes. TE-AFLP primer combinations
generated a total of 12 and 48 polymorphic bands in 12 Pongamia
accessions from different regions of Delhi [217].

1.6.8 SDAFLP The secondary digest AFLP (SDAFLP) is a variation of MSAP tech-
nique wherein a restriction endonuclease site-specific single primer is
used to amplify the digested template DNA and later digested with a
methylation-sensitive enzyme. The fragments are re-amplified using a
primer from previous amplification and a second primer specific to
cleavage sites of methylation-sensitive primer [218].

1.6.9 MITE-AFLP Miniature Inverted-repeat Transposable Elements (MITEs) were
transposon elements discovered in plant genomes [219]. A success-
ful application of conserved motif of a Mite element as a molecular
marker in maize was demonstrated [220] with minor modifications
of AFLP protocol.

1.6.10 RNA

Fingerprinting Using

cDNA-AFLP

cDNA-AFLP is a variation that combines RNA fingerprinting tech-
nique and AFLP wherein the standard AFLP protocol is applied on
a cDNA template. This method is comparable with the northern
blot analysis in studying gene expression [221]. This method is a
useful modification to the RNA fingerprinting since it is possible to
eliminate all nontarget bands. This modified method can be uti-
lized in gene expression studies vis-a-vis biological pathways in
plants. AFLP has also been used to generate mRNA fingerprints
in hexaploid wheat and one of its deletion mutants, and the method
was found useful for isolating sequences mapping to deleted chro-
mosome segments in hexaploid wheat [222].

1.6.11 Nonradioactive

DD-AFLP

It is a method of coupling differential display (DD) and AFLP for
monitoring differentially expressed genes. Here double-stranded
cDNA molecules are restricted and ligated to the defined adaptor
sequences followed by amplification of a subset of ligation products
with adaptor-specific primers carrying two or more arbitrary
nucleotides and detection of bands representing gene of interest
on a polyacrylamide gel. It is considered as a high-throughput
method in functional genomics, and DD-AFLP patterns can be
simulated for sequenced genomes by computer softwares, and
information on undetermined genomes can be retrieved. Several
modified methods that avoid use of radioisotopes were optimized
and were widely used for detection of responsive genes in plants and
tissues subjected to elicitors [223].

1.7 Patents and IPR

Protection

Two patents regarding AFLP technology have been filed in the year
2018 and 2019. One patent is concerned with high-throughput
detection of molecular markers based on AFLP and high-
throughput sequencing. The invention relates to a high-
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throughput method for the identification and detection of molec-
ular markers wherein restriction fragments are generated and suit-
able adaptors comprising (sample-specific) identifiers are ligated.
The restriction fragments which are adapter-ligated may be selec-
tively amplified with adaptor-compatible primers carrying selective
nucleotides at their 30 end. The resulting fragments are sequenced
at least partly using high-throughput sequencing methods, and the
sequence parts of the restriction fragments together with the
sample-specific identifiers serve as molecular marker. The other
patent is titled as method for high-throughput AFLP-based poly-
morphism detection. The invention is mainly intended for discov-
ery, detection, and genotyping of one or more genetic markers in
one or more samples, comprising the steps of restriction endonu-
clease digest of DNA, adaptor ligation, optional pre-amplification,
selective amplification, pooling of the amplified products, sequenc-
ing the libraries with sufficient redundancy, clustering followed by
identification of the genetic markers within the library and/or
between libraries, and determination of codominant genotypes of
the genetic markers [224].

1.8 Conclusions The wide popularity of AFLP technology is evident from the avail-
able literature. It has immense future prospects due to the versatility
and flexibility especially in situations where no genomic informa-
tion is available. The method is reliable both under sophisticated
and ordinary conditions of processing and detection. While choos-
ing an appropriate method for molecular marker analysis, the
important factors into consideration are low cost, good through-
put, convenience, and ease of operation and automation. RAPD,
RFLP, SSR, etc. are popularly used markers and each one has its
own advantage. However, many studies that we have mentioned in
this chapter endorse the superiority of AFLP in diversity analysis,
phylogenetic characterization, fingerprinting, etc. Despite the fact
that AFLP provides a better coverage and estimate of genetic
diversity, it is prudent to consider markers like SSR that are codom-
inant and enable discrimination of heterozygous and homozygous
individuals. Dominant AFLPs cannot be used to study heterozy-
gosity. An integrated marker approach was found to be better in
many studies for more accurate genotype characterization and
taxonomy. It is prudent to use an appropriate marker considering
the biological question and geographical scale investigated, last but
not least the financial and resource constraints prevailing. More
importantly results from molecular studies need to be integrated
with knowledge on the morphological characteristics for a better
understanding toward genetic improvement as well as germplasm
conservation programs.
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2 Materials

In case of AFLP ready-made chemicals are generally used. Unifor-
mity in terms of chemical concentration needs to be maintained for
all individuals to be analyzed in the AFLP experiments. All the
reagents need to be stored at�20 �C. Some AFLP kits are currently
available (see Note 1).

2.1 DNA Template

Preparation

1. TE buffer (1): Dissolve 10 mM Tris–HCl and 1 mM EDTA in
1 L ddH2O, and adjust to pH 8. Store at room temperature.

2.2 Restriction-

Ligation (RL)

1. MseI restriction endonuclease (the “frequent cutter”—recog-
nizes a four-base motif, i.e., 50-TTAA). 1 UMseI is required for
one reaction.

2. EcoRI restriction endonuclease (the “rare cutter”—recognizes
a six-base motif, i.e., 50-GAATTC). 5 U EcoRI is required for
one reaction.

3. MseI-adaptor pair: 50-GACGATGAGTCCTGAG and 50-TAC
TCAGGACTCAT. Stored at �20 �C as stock with concentra-
tion of 100 μM. Immediately prior to adding to the RL reac-
tion, mix in proportion 1:1 (to obtain a concentration of
50 μM for each), then denature (i.e., heat up at 95 �C for
5 min) the required amount of combined MseI adaptors, and
allow slow renature (let them cool slowly at room temperature
for 10 min) to form double-stranded adaptor. Spin briefly.

4. EcoRI-adaptor pair: 50-CTCGTAGACTGCGTACCand50-AAT
TGGTACGCAGTCTAC. Store each adaptor primer individually
at �20 �C as stock with concentration of 100 μM. Immediately
prior to adding to the RL reaction, mix in proportion 1:1
(to obtain a concentration of 50 μM for each), then denature
(i.e., heat up at 95 �C for 5 min) the required amount of com-
bined EcoRI adaptors, and allow slow renature (let them cool
slowly at room temperature for 10min) to form double-stranded
adaptor. Spin briefly.

5. T4 DNA ligase: 0.6 U T4 DNA ligase is required per ligation
reaction.

6. T4 DNA ligase buffer.

7. BSA (bovine serum albumin). Stock solution of 10 mg/mL.
Dilute prior to use (1 mg/mL).

8. 0.5 M NaCl.

9. TE 0.1 M buffer (1�): Dissolve 20 mM Tris–HCl and 0.1 mM
EDTA in 1 L ddH2O, and adjust to pH 8. Store at room
temperature.

10. TBE buffer (stock solution 10�): Dissolve 108 g Tris base,
55 g boric acid, and 8.1 g Na2EDTA in 1 L ddH2O. Make up
the pH to 8.2–8.3.
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11. Size ladder of 1500 bp.

12. Loading buffer for electrophoresis.

2.3 Pre-Selective

PCR Amplification (See

Note 1)

1. AmpliTaq or RedTaq.

2. Taq DNA polymerase buffer.

3. Deoxynucleotide mix (dNTPs) in concentration 10 mM each
dATP, dCTP, dGTP, dTTP. Ready-made mix (e.g., GeneAmp
dNTP Blend, 10 mM, from Life Technologies) is
recommended.

4. EcoRI primer: 50-GACTGCGTACCAATTCA. Store as stock
solution at 100 μM.

5. MseI primer: 50-GATGAGTCCTGAGTAAC. Store as stock
solution at 100 μM.

6. TE 0.1 M buffer (1�) (prepared as above).

7. 1000 bp ladder.

2.4 Selective PCR

Amplification

1. RedTaq (1 unit).

2. RedTaq buffer (10�).

3. dNTPs (10 mM).

4. EcoRI primers: 5-GACTGCGTACCAATTCXXX where X
stands for selective nucleotides. These primers are fluorescently
labeled, and the working concentration of the EcoRI primer is
1 μM. Store as stock solution (100 μM) for several years and as
working solution (1 μM) for several months (see Note 2).

5. MseI primers: 5-GATGAGTCCTGAGTAAXXX where X
stands for selective nucleotides. The working concentration of
the MseI selective primer is 5 μM. Store as stock solution
(100 μM) and as working solution (5 μM) (see Note 2).

6. Thermal cycler.

2.5 Separation

and Visualization

of Fragments (See

Note 3)

1. Sephadex G-50 Fine or Superfine. Weigh 10 g of the powder
and mix with 120 mL ddH2O and 100 μL 100� TE buffer. Let
it stand for a couple of hours. Store at room temperature and
use within 1 week. The solution of Sephadex settles out, and it
should be resuspended before using.

2. MultiScreen HV plates. Store at room temperature.

3. GeneScan ROX or another fluorescently labeled, internal lad-
der suitable for sequencers. Store at 4 �C.

4. Hi-Di formamide.

5. LI-COR DNA Analyzer used for visualization of fragments.

6. Polymer and buffers, specific for the type of sequencer used.
Usually stored at 4 �C.
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3 Methods

In addition to the described methods, recent AFLP modifications
in procedure and detection are also available (see Note 3).

3.1 DNA Template

Preparation

The AFLP procedure requires genomic DNA stored in 1� TE
buffer.

3.2 RL

(Restriction-Ligation)

1. Heat the required amount of MseI (50 μM) and EcoRI (5 μM)
of each adaptor pairs at 95 �C for 5 min, each pair in a separate
vial. Allow them to cool gradually to room temperature for
10 min. Spin briefly in a microcentrifuge for 10 s (see Subhead-
ing 2.2, item 3).

2. Master mix for all samples is to be prepared, which is planned to
be analyzed in one batch, starting with ddH2O, T4 ligase
buffer (contains 50 mM Tris–HCl, 10 mM MgCl2, 1 mM
ATP, and 10 mM dithiothreitol in a solution of pH 7.5 at
room temperature), T4 ligase (0.6 units), NaCl (0.5 M), BSA
(1 mg/mL), both adaptor pairs, and finishing with the three
enzymes. Spin briefly (see Subheading 2.2, item 4).

3. Aliquot 5.5 μL of the master mix in individual tubes.

4. For each sample, add 5.5 μL DNA in one tube. The final
reaction volume will be 11 μL. Vortex and centrifuge briefly.

5. The reaction is incubated at 37 �C for at least 3 h in a thermal
cycler with a heated cover. The incubation is continued at
17 �C overnight, or at least for 3 h (17 �C is the optimum
temperature for ligation activity).

6. The efficiency of the restriction reaction can be tested by run-
ning 5 μL of several of the reactions on 1.5% agarose gel
prepared in 1� TBE buffer for 20 min at 90 V (see Note 4).

7. The reaction is stopped by diluting it 20-fold with 1� TE
0.1 M buffer.

8. The RL reactions can be stored for longer periods at �20 �C.

3.3 Pre-selective

PCR Amplification

1. Dilute and mix pre-selective primers in proportion of 1:1:18
with ddH2O to result in a working concentration of 5 μM each
primer (see Subheading 2.3, items 4 and 5).

2. Prepare a master mix for all samples that you plan to analyze in
one batch, starting with ddH2O, 10� Taq buffer (2.5 μL for
each reaction), dNTPs (10 mM), primers (5 μM each), and Taq
polymerase (1 unit for each reaction). The quantities of various
components are according to manufacturer’s instruction.

3. Aliquot 8 μL of the master mix in individual 1.5 mL Eppendorf
tubes.

AFLP Method 205



4. Add 2 μL of the diluted RL product to each tube. The final
reaction volume will be 10 μL. Vortex and centrifuge
(1500 � g) briefly.

5. Use a thermal cycler with heated cover and run the following
program: one hold of 72 �C for 2 min; 20 cycles of 94 �C for
1 s, 56 �C for 30 s, and 72 �C for 2 min; and finish with a hold
of 60 �C for 30 min.

6. The efficiency of the pre-selective amplification can be tested by
running 5 μL of several of the reactions on a 1.5% agarose gel in
1� TBE buffer, for 20min at 90 V. If the RedTaq polymerase is
used, no loading buffer is to be used. A smear product with few
brighter bands in the 100–1500 base pair range should be
visible (see Note 4).

7. Dilute the pre-selective reactions 20-fold with 1� TE 0.1 M
buffer. Mix thoroughly. For the samples for which an aliquot of
the PCR product has been run on agarose gel, reduce the
dilution volume.

8. Store the diluted pre-selective reactions in the fridge for 1 day
and at �20 �C for months.

3.4 Selective PCR

Amplification (See

Note 5)

1. Prepare a master mix for all samples that is planned to be
analyzed in one batch, starting with ddH2O, 10� Taq buffer
(2.5 μL for each reaction), dNTPs (10 mM), primers (EcoRI
primer 1 μM and Mse I primer 5 μM), and finishing with the
Taq (1 unit). The components were added based upon manu-
facturer’s instruction. Spin briefly.

2. Aliquot 8 μL of the master mix in individual 1.5 mL Eppendorf
tubes.

3. Add 2 μL of the diluted pre-selective product to each tube. The
final reaction volume will be 10 μL. Vortex and centrifuge
(1500 � g) briefly.

4. Use a thermal cycler with heated cover and run the following
program (90% ramp time): one hold of 94 �C for 2 min; nine
cycles of 94 �C for 1 s, 65 �C—1 �C every cycle for 30 s, and
72 �C for 2 min; followed by 23 cycles of 94 �C for 1 s, 56 �C
for 30 s, and 72 �C for 2min; and finish with a hold of 60 �C for
30 min. Program the cycler to keep the reactions at 4 �C until
they are removed.

5. Freezing the selective reactions is recommended as soon as
possible. They can, however, be kept for 1 day in the fridge.

3.5 Separation

and Visualization

of Fragments (See

Note 6)

1. Apply 200 μL of mixed Sephadex solution to each well of a
MultiScreen (MS) HV plate. Place the MS plate on top of a
microtiter plate to collect water. Pack the Sephadex by spinning
at 600 � g for 1 min. Discard water that has been collected in
the microtiter plate.
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2. Repeat step 1.

3. Repeat step 1 by packing the Sephadex by centrifuging at
600 � g for 5 min.

4. The MS plate is placed along with the Sephadex filter on top of
a fresh microtiter plate to collect the filtered selective product.

5. Mix together the selective reactions of up to three primer
combinations corresponding to one individual sample, by
applying 5 μL of each selective PCR product, and the PCR
product was labeled separately for easy identification (e.g.,
labeled green, yellow, and blue). Spin the MS plate (on top of
the clean microtiter plate) at 600 � g for 5 min (see Note 6).

6. Discard the Sephadex filter. The HV plate can be reused for up
to ten times after washing.

7. Make up the loading mixture for the number of samples to be
loaded on the sequencer using 9.8 μL Hi-Di formamide and
0.2 μL of GeneScan ROX per sample. Do not forget to account
also for two more samples as a tolerance for potential pipetting
inaccuracies.

8. Aliquot 10 μL of loading mixture to each well of a clean
microtiter plate.

9. Add 1.2 μL of the filtered, combined selective products to each
well. Vortex and centrifuge briefly.

10. Cover the microtiter plate containing loading mixture and
sample; heat it up at 95 �C for 5 min and cool the plate on
ice immediately to denature the AFLP fragments.

11. Load the plate containing the denatured samples onto the
sequencer.

4 Notes

1. PE Applied Biosystems (Foster City, CA, USA) has developed
an AFLP™ Plant Mapping Kit based on the AFLP procedure
patented by Keygene NV (Wageningen, The Netherlands).
Two modules are available depending on the genome size.
The Small Plant Genome Kit is used for genomes ranging
from 50 to 500 megabases, and the Regular Plant Genome
Kit is for genomes of 500–5000 megabases. Restriction frag-
ments are generated using EcoRI and MseI restriction
enzymes. For pre-amplification, both pre-selective primers in
the Regular Plant Genome Kit have an additional selective
nucleotide at the 30-end. However, only the MseI
pre-selective primer has a selective base in the Small Plant
Genome Kit. AFLP Analysis System II, a kit developed by
Thermo Fisher Scientific, is designed for use with plants having
genomes ranging in size from 1 � 108 to 5 � 108 bp. The
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AFLP Analysis System I is designed for plants having genome
size of 5 � 108 to 6 � 109 bp range. AFLP kits developed by
Li-COR Biotechnologies also helps to genotype individuals in
certain populations with less genetic variability.

2. The number of selective nucleotides of the primers can be
increased or decreased based on the genome size and the
availability of restriction sites in the genomes that are to be
analyzed. Longer pre-selective and selective primers are used
for large genomes and shorter selective primers, with only two
selective nucleotides for smaller genomes. The use of a differ-
ent combination of restriction enzymes results in fine-tuning of
the number of AFLP fragments generated as a result.

3. Since the original AFLP protocol was published (1), numerous
variants have been introduced. The major improvements in the
main protocol include (1) the use of IRDye® infrared dye
(IRD) or other fluorescently labeled oligonucleotide primers
instead of radioactive ones and (2) fragment analysis with an
automated DNA sequencer instead of polyacrylamide gel elec-
trophoresis. AFLP markers generated using IRD primers and
visualization of fragments by a gel-based sequencer such as a
LI-COR DNA Analyzer produced successful results for plant
species with genomes of varying complexities [225–227].

4. A smear product in the 100–1500 base pair range should be
visible. Make sure the genomic DNA is fully restricted, so no
high-weight DNA molecules are present.

5. Another modified protocol wherein which genomic DNA
was digested with 5 units of EcoRI and 5 units of TruI (an i-
soschizomer of MseI). Selective PCR reaction was done
with fluorescently labeled EcoRI+NNN and 1 mM un-labeled
MseI+CTT [228].

6. A modified protocol in amaranth [229] involved the analysis of
AFLP products in ABI PRISM 310 Genetic analyzer (Applied
Biosystems), and GeneScan software program was also used in
the analysis. Modification in the analysis of AFLP fragments
was introduced for AFLP marker study of the wild species of
lettuce crop, Lactuca aculeata, resistant against downy mildew
pathogen [230]. AFLP analyses were performed using the
commercial IRDye® Fluorescent AFLP® Kit designed for
large plant genome analysis. The results were visualized using
an automated AFLP analysis program (LI-COR SAGAMX
v.3.3) [78]. In another modification of the protocol (1), Pst1
and EcoR1 and the 4-bp cutting enzymeMse1 were used. PCR
reactions were set up in Beckman Biomek 2000 liquid handling
device. Electrophoresis was carried out on the Bio-Rad Sequi-
Gen GT system. A Promega fmol DNA Cycle Sequencing
System marker (Promega Q4100) was run to estimate the
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product size and “control lanes” of standard potato genotypes.
Gels were dried onto paper exposed to X-ray film which was
then developed using a Konica Minolta film processor
(SRX-101A 2006) [59]. A modified protocol was followed
for AFLP fingerprinting [231], wherein which the primer com-
binations with highest polymorphic index were selected to
investigate the genetic variability in separate sets of analysis
for wild population of two important medicinal plant species.
In a modified protocol developed [232], fluorescently labeled
AFLP primer combinations were used, and PCR products were
separated using capillary electrophoresis.
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211. Gimenez MD, Yañez-Santos AM, Paz RC
et al (2016) Assessment of genetic and epige-
netic changes in virus-free garlic (Allium sati-
vum L.) plants obtained by meristem culture
followed by in vitro propagation. Plant Cell
Rep 35(1):129–141

212. Gautam M, Dang Y, Ge X et al (2016)
Genetic and epigenetic changes in oilseed
rape (Brassica napus L.) extracted from inter
generic allopolyploid and additions with Ory-
chophragmus. Front Plant Sci 7:–438

AFLP Method 217



213. Wang B, Liu L, Zhang D et al (2016) Genetic
map between Gossypium hirsutum and the
Brazilian endemic G. mustelinum and its
application to QTL mapping. G3 (Bethesda)
6(6):1673–1685

214. Abid G, Kamel H, Marwa A et al (2017)
Agro-physiological and biochemical
responses of faba bean (Vicia faba L. var.
’minor’) genotypes to water deficit stress.
Biotech Agron Soc Environ 21

215. Chwialkowska K, Nowakowska U, Mrozie-
wicz A et al (2016) Water-deficiency condi-
tions differently modulate the methylome of
roots and leaves in barley (Hordeum vulgare
L.). J Exp Bot 67:1109–1121

216. Hayes A, Saghai MM (2000) Targeted resis-
tance gene mapping in soybean using modi-
fied AFLPs. Theor Appl Genet 100:1279

217. Sharma SS, Aadil K, Negi MS et al (2014)
Efficacy of two dominant marker systems,
ISSR and TE-AFLP for assessment of genetic
diversity in biodiesel species Pongamia pin-
nata. Curr Sci 106:1576–1580

218. Knox MR, Ellis THN (2001) Stability and
inheritance of methylation states at PstI sites
in Pisum. Mol Gen Genet 265:497–507

219. Wessler SR, Bureau TE, White SE et al (1995)
LTR-retro transposons and MITEs: impor-
tant players in the evolution of plant gen-
omes. Curr Opin Genet Dev 5:814–821

220. Casa AM, Brouwer C, Nagel A et al (2000)
The MITE family heartbreaker (Hbr) molec-
ular markers in maize. PNAS
97:10083–10089

221. Bachem CW, Van Der Hoeven RS, De Bruijn
SM et al (1996) Visualization of differential
gene expression using a novel method of
RNA fingerprinting based on AFLP: analysis
of gene expression during potato tuber devel-
opment. Plant J 9:745–753

222. Money T, Reader S, Qu LJ et al (1996) AFLP
based mRNA fingerprinting. Nucleic Acids
Res 24:2616–2617

223. Razavi K, Mohsenzadeh S, Malboobi M et al
(2014) The application of a non-radioactive
DD-AFLP method for profiling of Aeluropus

lagopoides differentially expressed transcripts
under salinity or drought conditions. Iranian
J Biotech 12(4):47–57

224. Van Eijk MJT, Preben A, Marco S et al (2018)
Method for high-throughput AFLP-based
polymorphism detection. US patent
8.481.257 B2, 2018

225. Remington DL, Whetten RW, Liu BH et al
(1999) Construction of an AFLP genetic map
with nearly complete genome coverage in
Pinus taeda. Theor Appl Genet
98:1279–1292

226. Klein PE, Klein RR, Cartinhour SW et al
(2000) A high-throughput AFLP-based
method for constructing integrated genetic
and physical maps: progress toward a sor-
ghum genome map. Genome Res
10:789–807

227. Ukrainetz NK, Ritland K, Mansfield SD et al
(2008) An AFLP linkage map for Douglas fir
based upon multiple full-sib families. Tree
Genet Genom 2:181–191

228. Blignaut M, Ellis AG, Le Roux JJ et al (2013)
Towards a transferable and cost-effective
plant AFLP protocol. PLoS One 8(4):61704
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Chapter 13

Random Amplified Polymorphic DNA (RAPD) and Derived
Techniques
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Abstract

Understanding biology and genetics at molecular level has become very important for dissection and
manipulation of genome architecture for addressing evolutionary and taxonomic questions. Knowledge
of genetic variation and genetic relationship among genotypes is an important consideration for classifica-
tion, utilization of germplasm resources, and breeding. Molecular markers have contributed significantly in
this respect and have been widely used in plant science in a number of ways, including genetic fingerprint-
ing, diagnostics, identification of duplicates and selection of core collections, determination of genetic
distances, genome analysis, development of molecular maps, and identification of markers associated with
desirable breeding traits. The application of molecular markers largely depends on the type of markers
employed, distribution of markers in the genome, type of loci they amplify, level of polymorphism, and
reproducibility of products. Among many DNA markers available, random amplified polymorphic DNA
(RAPD) is the simplest, is cost-effective, and can be performed in a moderate laboratory for most of its
applications. In addition, RAPDs can touch much of the genome and has the advantage that no prior
knowledge of the genome under research is necessary. The recent improvements in the RAPD technique
like arbitrarily primed polymerase chain reaction (AP-PCR), sequence characterized amplified region
(SCAR), DNA amplification fingerprinting (DAF), sequence-related amplified polymorphism (SRAP),
cleaved amplified polymorphic sequences (CAPS), random amplified microsatellite polymorphism
(RAMPO), and random amplified hybridization microsatellites (RAHM) can complement the shortcom-
ings of RAPDs and have enhanced the utility of this simple technique for specific applications. Simple
protocols for these techniques are presented along with the applications of RAPD in genetic diversity
analysis, mapping, varietal identification, genetic fidelity testing, etc.
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1 Introduction

1.1 RAPD Technique The advent of polymerase chain reaction (PCR) and subsequent
emergence of DNA-based markers have provided plant taxono-
mists easy and reliable techniques to study the extent and distribu-
tion of variation in species gene pools and to answer typical
evolutionary and taxonomic questions which were not previously
possible with only phenotypic methods. Properties desirable for
ideal DNA markers include highly polymorphic nature, codomi-
nant inheritance, and frequent occurrence in the genome, easy
access, easy and fast assay, and high reproducibility. DNA marker
systems based on PCR include random amplified polymorphic
DNAs (RAPDs) [1], amplified fragment length polymorphisms
(AFLPs) [2] (Chapter 12), microsatellites/simple sequence repeats
(SSRs) [3] (Chapter 11), and single nucleotide polymorphisms
(SNPs) [4] (Chapters 9 and 10). Although the sequencing-based
molecular techniques provide better resolution at intra-genus and
above level [5], they are expensive and laborious. Frequency data
from markers such as random amplified polymorphic DNA
(RAPD), amplified fragment length polymorphism (AFLP), and
microsatellites provide the means to classify individuals into nomi-
nal genotypic categories and are mostly suitable for intraspecies
genotypic variation study. Compared to other PCR-based techni-
ques which vary in detecting genetic differences and applicability to
particular taxonomic levels, RAPD is a cost-effective tool for taxo-
nomic studies.

RAPD is an adaptation of the PCR which relies on the rationale
that at low stringency, a given synthetic oligonucleotide primer is
likely to find a number of sequences in the template DNA to which
it can anneal when these sites are close to each other and lie in
opposite orientations and the DNA sequence between the sites will
be amplified to produce a DNA fragment characteristic of that
genome. Multiple bands of different sizes produced from the
same genomic DNA constitute a “fingerprint” of that genome
[1]. Patterns from different individuals and species will vary as a
function of how similar the genomic DNA sequences are between
samples. RAPD polymorphisms result from either chromosomal
changes in the amplified regions or base changes that alter primer
binding. This assay has the advantage of being readily employed,
requiring very small amounts of genomic DNA, and eliminating
the need for blotting and radio-active detection. As RAPD requires
initial genome information, it provides markers in regions of the
genome previously inaccessible to analysis. RAPD-derived esti-
mates of genetic relationships are in good agreement with pedigree,
RFLP, and isozyme data [6, 7].
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1.2 Recent

Applications of RAPD

and Its Derived

Techniques

DNA fingerprinting for cultivar or varietal identification has
become an important tool for estimating genetic diversity for
plant breeding, germplasm management, utilization [8], monitor-
ing genetic erosion, and removing duplicates from germplasm
collections [9]. As RAPD markers could gain information about
genetic similarities or differences that are not expressed in pheno-
typic information, RAPD analysis becomes an inexpensive tool to
characterize germplasm collections [10], to understand the pattern
of evolution from wild progenitors, and to classify them into
appropriate groups.

RAPDs have been successfully applied in estimation of varietal
distinctiveness and relatedness of commercially important crops
and registration activities like cultivar identification [11] and hybrid
verification [12]. The potential of RAPD for varietal identification
has been used to know about the variety being exported or sold
under various trade names, for settling a lawsuit involving unau-
thorized commercialization of patented varieties [13], and to iden-
tify the cases of adulteration and even the level of adulteration [14].

As RAPDs make use of arbitrary primers, some of them amplify
DNA at highly conserved region, leading to generate polymorph-
isms at a high level of classification, whereas some will amplify at
highly variable region, useful for classification and analyses at and
below the species level. This property of RAPD is taxonomically
useful at subgeneric level [15] and species level [16] and for the
analysis of geographic variation. Another application of RAPD is for
evaluation of the genetic integrity of somatic embryo-derived
plants [17].

RAPDs have significant use in ecology in studying mating
systems and assigning paternity. In plants, insect pollination might
be studied by fingerprinting all the potential pollen sources by
RAPDs and comparing the dominant RAPD bands seen in the
resulting seeds [18]. RAPDs are useful in hybridization studies to
document intergeneric hybridization [19] to identify species spe-
cific bands as well as interspecific hybridization and detection of
introgression in both natural and cultivated plant populations
[20]. RAPDs may provide insights into organismal evolutions
that are overlooked by single-gene comparisons [21].

The RAPD technique has received a great deal of attention
from population geneticists [22] because of its simplicity and rapid-
ity in revealing DNA-level genetic variation.

The RAPD protocol is refined to techniques like sequence
characterized amplified region (SCAR), arbitrarily primed polymer-
ase chain reaction (AP-PCR), DNA amplification fingerprinting
(DAF), sequence-related amplified polymorphism (SRAP), cleaved
amplified polymorphic sequences (CAPS), random amplified
microsatellite polymorphism (RAMPO), and random amplified
hybridization microsatellites (RAHM) so that some of the current
problems such as lack of reproducibility and codominant nature of
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inheritance will be overcome. Using several strategies, various mod-
ifications have been developed in conjunction with RAPD to
enhance the ability to detect polymorphism either by using more
than one arbitrary primer [23] or by using a degenerate primer in
the amplification reaction [24].

Sequence characterized amplified region (SCAR) markers are
generated by sequencing RAPD marker termini and designing
longer primers (22–24 nucleotide bases long) for specific amplifi-
cation of a particular locus [25, 26]. SCARs are usually dominant
markers; however, some of them can be converted into codominant
markers by digesting them with tetra cutting restriction enzymes,
and polymorphism can be deduced by either denaturing gel elec-
trophoresis or single-strand conformation polymorphism (SSCP)
[27]. Besides higher specificity, it is based on the presence/absence
of a single specific amplicon, considerably simplifying the interpre-
tation of the results, especially when a large number of samples are
checked. SCARs also allow comparative mapping or homology
studies among related species, thus making them an extremely
adaptable concept in the near future.

Arbitrarily primed polymerase chain reaction (AP-PCR) is a
special case of RAPD, wherein discrete amplification patterns are
generated by employing single primers of 10–50 bases in length in
PCR of genomic DNA. Unlike RAPDs, the oligonucleotide length
and primer concentrations are tenfold higher [28], and two cycles
of low-stringency annealing conditions to allow mismatches fol-
lowed by PCR at high stringency and the newly synthesized frag-
ments are radiolabeled using dCTP. AP-PCR generated fragments
are analyzed as plus/minus DNA amplification-based polymor-
phism [29] due to either sequence divergence at one of the priming
sites or insertion/deletion within the amplification region.

DNA amplification fingerprinting (DAF) uses single arbitrary
primers as short as five bases to amplify DNA using polymerase
chain reaction with high multiplex ratio [30]. This marker shares
those features common to AP-PCR and RAPDs—namely, it results
in plus/minus heritable amplification polymorphism, a preponder-
ance of dominant marker loci, and unknown allelism between
fragments of equivalent molecular weight. DAF bands contain
many more bands than AP-PCR and RAPD patterns, and the
likelihood is increased for observing polymorphism between sam-
ples. DNA amplification fingerprinting (DAF) has been found to be
promising in many plants for cultivar identification and sex deter-
mination [31] and for determination of genetic origin and diversity
analysis [32].

The sequence-related amplified polymorphism (SRAP) tech-
nique, a variation of RAPD, also uses arbitrary primers of 17–21
nucleotides to generate a specific banding pattern aimed to amplify
coding sequences (open reading frames (ORFs)) in the genome
[33] and results in a moderate number of codominant markers.
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SRAP results from two events: fragment size changes due to inser-
tions and deletions, which could lead to codominant markers, and
nucleotide changes leading to dominant markers. It has several
advantages over other systems: simplicity, reasonable throughput
rate, and it allows easy isolation of bands for sequencing, discloses
numerous codominant markers, and allows screening thousands of
loci shortly to pinpoint the genetic position underlying the trait of
interest. The primers and primer concentration vary for each RAPD
derived technique which increases its utility in various applications
(see Note 1).

To derive greater information from RAPD patterns, the strat-
egy of hybridizing SSR repeat primers to RAPD amplification
patterns has been described. The method has been called either
random amplified hybridization microsatellites (RAHM) [34] or
random amplified microsatellite polymorphism (RAMPO) [35]. In
RAHM, RAPD amplification and oligonucleotide screening are
combined for detection of microsatellites to provide more informa-
tion from RAPD gels and also help to reveal microsatellite genomic
clones without the time-consuming screening of genomic libraries
[34] (Chapter 9). RAMPO combines arbitrarily or semi-specifically
primed PCR with microsatellite hybridization to produce several
independent and polymorphic genetic fingerprints per electropho-
retic gel. In this approach, the amplified products resolve length
polymorphism that may be present either at the SSR target site itself
or at the associated sequence between the binding sites of the
primers [35]. The RAPD binding site actually serves as an arbitrary
end point for the SSR-based amplification product, and therefore,
the products obtained are not as restricted by the relative genomic
positions of a specific SSR.

Another strategy is referred to as cleaved amplified polymor-
phic sequences (CAPS), in which sequence information from
cloned RAPD bands can be used for analyzing nucleotide poly-
morphisms. CAPS markers rely on differences in restriction enzyme
digestion patterns of PCR fragments caused by nucleotide poly-
morphism between ecotypes. Sequence information available in
databank of genomic DNA or cDNA sequences or cloned RAPD
bands can be used for designing PCR primers for this process.
Cleaved amplified polymorphic sequences (CAPS) [36] are analo-
gous to RFLP markers in that a region of DNA containing a
restriction enzyme site unique to an allele is amplified, cleaved,
and compared for their differential migration [36, 37]. The sizes
of the cleaved and uncleaved amplification products can be adjusted
arbitrarily by the appropriate placement of the PCR primers. Criti-
cal steps in the CAPS marker approach include DNA extraction,
PCR conditions, and the number or distribution of polymorphic
sites.
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RAPD has gained a lot of popularity over the last decades due
to its ease of operation, low cost, and versatility. It has been exten-
sively used in cultivar identification, genetic diversity analysis, pop-
ulation studies, mapping, molecular breeding and gene tagging,
genetic fidelity establishment, etc. RAPD-based identification and
characterization of plant genetic resources have helped in attaining
goals of conservation of plant resources and in understanding
extent and distribution of variation in species gene pools to sort
out evolutionary and taxonomic ambiguities. Frequency data from
RAPD helps to classify individual into genotypic classes and thus is
appropriate for intraspecies genotypic variation studies. RAPD
either alone or in combination with other markers like RFLP and
SSR provides essential start points for physical isolation of genes of
interest, which may further be exploited through marker- assisted
selection, gene pyramiding, and transfer to other species. Especially
in gene tagging, RAPDs are a preferred method in self-pollinated
crops wherein variations between individuals within a species or
related breeding material is sought [38]. RAPD is a preferred
method for detecting genetic variations induced by somaclonal
variation in micro-propagated as well as cryopreserved plants
[39]. However, the usage of RAPD has shown a decline in the
past few years owing to several factors including the lack of reliabil-
ity and reproducibility of the technique, advent of novel and
derived strategies, and cost-effective means of next-generation
sequencing methods. Hence, in the recent references, we could
find a trend wherein RAPD analysis was done using very high
number of primers [40] or was used along with other markers
like ISSR (inter-simple sequence repeat), SSR, AFLP [41, 42],
etc., for improving reliability of results. The various applications
of RAPD and its derived techniques in plants are extensively dealt in
earlier reviews [43–52]. Here, we have compiled only the recent
important references on applications of RAPD and its derived
techniques as detailed below.

1.2.1 Cultivar

Identification

Traditionally, grapevine cultivars have been identified based on the
morphological characteristics, but because of the similar pedigree
backgrounds, the identification of closely related cultivars has been
difficult. Identification of 37 different grapevine cultivars was done
using 16 SCAR markers developed from RAPD marker [53]. For
identifying cultivars based on random amplified polymorphic DNA
(RAPD) markers, cultivar identification diagrams (CIDs) provide a
rapid and efficient approach. About 64 tomato cultivars were iden-
tified using CID [54]. About 22 onion cultivars were identified
using RAPD markers. The cultivars could be easily distinguished
based on the polymorphic bands produced by various RAPD pri-
mers [55]. Ten autochthonous cultivars of sweet cherry (Prunus
avium) were validated using 30 RAPDmarkers. It was also possible
to distinguish two important cultivars of tremendous market value
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based on the markers [56]. In olive, cultivars sampled from differ-
ent countries in the Mediterranean region exhibited high resolving
power for cultivar identification using RAPD [57]. RAPD tech-
nique was used for rapid characterization of Indian medicinal plant
Strychnos minor Dennst of 16 different localities of Coromandel
Coast of Tamil Nadu [58].

SCAR markers based on species-specific RAPD amplicons were
developed in four species of the medicinal tuber, Pinellia ternata,
Pinellia tripartita, Pinellia pedatisecta, and Typhonium flagelli-
forme, for verification through multiplexing [59]. RAPD-PCR-
amplified fragments were used to develop SCAR markers for iden-
tification of medicinal plant Lonicera japonica [60] and in longan
fruits [61]. RAPD fragments from Litchi chinensis were cloned,
sequenced, and converted into stable SCAR markers for authenti-
cation and validation of L. chinensis cultivars [62]. Certification of
the two maple species, red maple (Acer rubrum) and silver maple
(A. saccharinum), and their hybrids was done through the devel-
opment of SCAR markers. The information obtained can be used
for tracking the introgression of A. rubrum and A. saccharinum
DNA in other hybrid trees or their populations [63]. RAPD-DAF
markers were used to discriminate between jalapeño peppers with
little phenotypic difference [64]. In yet another study, RAMP-
PCR-amplified fragments were used to develop four novel SCAR
markers for the genetic authentication of L. japonica from its sub-
stitutes [65]. RAMP-PCR was found to be better than traditional
RAPD-PCR when employed to study genetic diversity and varietal
authentication of the herb Angelica sinensis (Oliv) [66].

1.2.2 Genetic Mapping

and Tagging

For genetic mapping applications, RAPD has been known as a
non-biased and neutral marker. It does not require information
about a particular sequence in the genome [67]. In RAPD analysis,
the entire plant genome is targeted for primer annealing which
facilitates development of a higher density map. RAPD does not
require DNA probes, blotting and hybridization, and primer
designing procedures. Small amounts of DNA are required, and
high-throughput sampling can be obtained. RAPD generated
DNA fragments possessed many of the DNA sequences that are
related to chromosome size changes as it is reported in many
studies that the amplified fragments in an RAPD reaction were
preferentially amplified from species containing a common genome
consisting of large chromosomes [68]. The above advantages make
RAPD a preferred choice in gene tagging involving several different
types of populations like backcross selection progenies, recombi-
nant inbred lines, near-isogenic lines, etc. Bulked segregant analysis
was also employed to tag traits from populations having contrasting
characters [38].
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In Saccharum officinarum L., an RAPD marker was found to
be linked to eyespot susceptibility, and it also helped to identify
additional linkage groups. This particular work showed that lin-
kages identified in this map could potentially be used for marker-
assisted selection [69]. Molecular evaluation of two guava mapping
populations (MP), MPI comprising 94 F1 progenies and MPII
comprising 46 F1 progenies, was carried out using random ampli-
fied polymorphic DNA (RAPD) markers. Genotypic data thus
generated can be further exploited for constructing genetic linkage
maps and mapping complex Quantitative Trait Loci (QTLs)
governing fruit quality traits in guava [70]. A reference genetic
map for Capsicum baccatum was constructed based on RAPD
molecular markers [71]. Using SRAP markers, a molecular genetic
map for hawthorn, a medicinal plant, was constructed which can be
used for marker-assisted selection in the particular plant
species [72].

1.2.3 Assessment of

Outcrossing Rates

Outcrossing rates in sweet passion fruit were assessed using RAPD
molecular markers. The results showed that all the progenies
assessed were derived as a result of outcrossing [73]. RAPD was
used to study outcrossing in Agave schottii, and it was found that
RAPD markers are useful tools for assessing ecological phenomena
like outcrossing [74]. RAPD markers were used to estimate the
outcrossing rate in Ethiopian mustard (Brassica carinata). It was
analyzed by looking into the banding pattern of offsprings of two
parental lines grown in open pollinated isolation lines [75]. The
rate of outcrossing in orchards containing ‘Hass’ avocado (Persea
americana Mill.) was determined using RAPD markers. The data
included 2393 fertilization events taken from two areas of southern
California of different climate over a period of 4 years. Three
potential pollen sources were also investigated using RAPD mar-
kers specific to each pollen source [76]. RAPD markers were found
to be useful in understanding breeding patterns in faba beans
[77]. In B. carinata, RAPDmarkers helped in estimating outcross-
ing rate and the opportunity for exploiting heterosis through syn-
thetic and/or hybrid cultivar breeding [75].

1.2.4 Genetic Fidelity

Testing

Genetic fidelity testing of in vitro propagated Araucaria excelsa
R. Br. var. glauca plantlets was done using RAPD technique. A
total of 1676 fragments were generated with 12 RAPD primers in
micro-propagated plants and mother plants [78]. RAPD was
employed to test the genetic fidelity among the regenerants in
Spilanthes calva DC [79]. Genetic fidelity was confirmed in
micro-propagated Drosera plantlets using RAPD [80]. Assessment
of genetic fidelity through RAPD analysis was done in in vitro
raised plants (Swertia chirayita), and the plants showed high clonal
fidelity [81]. In vitro regeneration of Guizotia abyssinica Cass and
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evaluation of genetic fidelity through RAPD markers showed the
presence of somaclonal variation in the plantlets arising from direct
regeneration as well as from indirect regeneration [82]. Some stud-
ies endorse utilizing one more marker like ISSR in conjunction with
RAPD for better analysis of genetic fidelity in banana [83], grapes
[84], and mango ginger [85]. Genetic stability of in vitro propa-
gated potato micro-tubers examined using AFLP, SSR, and ISSR
indicated them to be superior to RAPD [86]. In endemic medicinal
plants Pittosporum eriocarpum Royle [87] and Rauvolfia tetra-
phylla L., [41], RAPD was used to validate the genetic homogene-
ity of in vitro raised plantlets in conjunction with SCoT and ISSR
markers. In Salvia hispanica L., a reasonably good number of
RAPD and ISSR primers were employed for confirming genetic
fidelity of in vitro regenerated plantlets [88]. The genetic unifor-
mity of blackberry plants (Rubus fruticosus L.) obtained by micro-
propagation was analyzed by RAPD and SRAP markers [89]. ISSR
and RAPD analysis was used to assess genetic uniformity of trans-
genic cotton containing Bt and chitinase genes [42].

1.2.5 Inter and

Intraspecies Variations and

Genetic Diversity

RAPD is found to be more suitable in large-scale screening of closer
populations found in similar habitats. However, the discrimination
capacity decreases relatively when populations from distant loca-
tions are analyzed. RAPD may not be much suitable for genetic
diversity analyses of populations in wide geographic areas. RAPD
includes some deflections in the genetic discrimination of popula-
tions having high genetic diversity in different habitats. Combining
RAPD and SCAR markers provides a simple and reliable tool for
genetic characterization of plant species. Genetic diversity of 21 aro-
matic rice genotypes (Oryza sativa L.) was assessed using about
38 RAPD primers [90]. The RAPD profile helps to identify varia-
tions of the diagnostic markers on aromatic rice genotypes [91],
identification of rice at the level below species [92]. For the identi-
fication and protection of natural resources, genetic tracking of
aromatic rice germplasm is essential. Genetic variation in Ocimum
species was studied using RAPD markers. Many unique species-
specific alleles were amplified by RAPD in Ocimum species [93]. In
bamboo, RAPD-RFLP analysis was able to generate a low-cost and
fast screening method for genetic characterization of genera and
species of bamboo [94]. In Miscanthus spp., genetic diversity and
relationships based on RAPD and AFLP indicated significant
genetic differentiation among accessions due to geographic
distance [95].

Genetic diversity analysis in sweet potato [96] and Elymus spp.
[97] indicated a close correspondence of RAPD and ISSR markers
in detecting variability. Genetic diversity studies inHarpagophytum
species using ISSR and RAPDmarkers indicated evidences of intro-
gression and interspecific gene flow [98]. Genetic diversity analysis
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of cumin genotypes based on sequence-related amplified polymor-
phism (SRAP) markers was conducted, and it was found that there
is a need for enhancing the genetic base of cumin germplasm using
different breeding approaches, viz., mutagenesis, wide hybridiza-
tion or somaclonal variation, and germplasm introduction
[99]. Genetic diversity and population structure study within and
among six natural populations of Limonium sinense, a plant which
has medicinal and ornamental values, was conducted using SRAP
markers, which could develop insight and useful strategies for its
conservation [100]. A highly efficient and economical technology
of sequence-related amplified polymorphism (SRAP) molecular
markers with an automated fragment analyzer ABI 3500xL was
developed, to detect genetic diversity in upland cotton
[101]. Genetic diversity studies in strawberry cultivars in Indonesia
using CAPS molecular markers resulted in the grouping of the
cultivars into four clusters [102].

Cleaved amplified polymorphic sequence (CAPS) marker anal-
ysis of four chloroplast DNA regions, rbcL-ORF106, trnF-trnV,
trnV-rbcL, and trnK2-trnQ, in 42 citrus accessions including man-
darins and their close relatives showed their close relationship and
low variation in chloroplast DNA of mandarins [103].

1.2.6 Others RAPD was used to evaluate genotoxic effects in many studies to
identify DNA damage induced due to harmful agents like heavy
metals [104–106]. RAPD was successfully applied to whole germ-
plasm collections of flax to identify redundant and distinct acces-
sions and associated traits useful in future breeding programs [107]
and to identify duplicates in germplasm collections of rice at Inter-
national Rice Research Institute, Philippines [108]. RAPD is a
preferred choice for the detection of adulteration in medicinal
plants and successfully used especially when the adulterant is a
different species [109, 110]. An interesting study has been reported
that utilizes commercial RAPD analysis beads in differentiating
about 63 different food and feed legume species for establishing
authenticity and correct labeling of raw material used in food or
feed samples [111]. Similarly in medicinally important Ocimum
spp., diagnostic RAPD markers were useful in identifying raw
materials for herbal drugs [112]. RAPD markers linked to
disease-resistant genes in plants like the rpg4 gene responsible for
stem rust resistance in barley [113] and heat smut resistance [114]
have been identified. Dwarfism gene has been located by an RAPD
marker in barley [115]. RAPD markers were exploited in identify-
ing somatic hybrids [116]. RAPD was successfully used to reveal
polymorphism in mutant potato [117] and chrysanthemum [118]
obtained via gamma irradiation.
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1.3 Disadvantages of

RAPD Technique and

Solutions

The main concern about RAPD is its lack of reproducibility within
and between laboratories. Differences in amplification patterns
based on type of thermocycler and primers used and also concen-
tration of Taq polymerase and amplification conditions are the
commonly reported issue. The most important factor affecting
reproducibility is the low quality of DNA template [28]. Differences
between template DNA concentrations of individual samples can
also affect the amplification profile [45]. It is a dominant marker
and presence of a band of apparently identical molecular weight in
two different individuals cannot be considered as identical loci and
thus gives more accurate estimates between closely related popula-
tions than the distant ones (1). A single RAPD band can be com-
prised of a number of co-migrating amplification products.
However, it is suggested that RAPD polymorphisms can be suc-
cessfully reproduced among laboratories when standard reaction
conditions are used and similar temperature profiles in tubes are
followed [119]. Some authors also report that when more samples
and primers are included in the study, the fingerprint and phylog-
eny are more accurate [120]. A preliminary pedigree analysis is a
prerequisite to assign markers to specific loci. To get comparable
results with other codominant markers, two to ten times more
individuals need to be sampled per locus, and marker alleles for
these loci should be in low frequencies [121]. Many studies indicate
that RAPD shows significant difficulties in cultivar characterization
due to low polymorphism, irreproducibility, and weak grouping
due to artifacts [122, 123]. RAPD marker identity might be estab-
lished by fingerprinting a set of standard genotypes by RAPD to
facilitate communication and the reproducibility among labora-
tories. In cases where a single primer is unable to distinguish all
cultivars in a study, a combination of polymorphic bands generated
by various primers can be utilized. Converting RAPD markers to

Fig. 1 Unique RAPD-derived SCAR marker for identification of an endangered and endemic species of
Myristica, viz., Knema andamanica. (a) Fruits of K. andamanica with unique fused mace. (b) RAPD derived
SCAR marker showing amplification of a marker of 585 bp in K. andamanica accessions absent in other wild
and related genera of Myristica. Lanes M- 100 bp marker. 1–8: M. fragrans, M. beddomei, M. malabarica,
M. prainii, M. fatua, M. andamanica, K. andamanica, M. amygdalina, 9: Control, lanes 10–15: Different
germplasm accessions of K. andamanica from the repository at ICAR-IISR
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more reliable SCAR markers and also using one or two other
marker methods in conjunction with RAPD are some useful tips
to improve reliability and reproducibility of results (Fig. 1).

2 Materials

2.1 Genomic DNA

Isolation and

Quantification

1. Extraction buffer (2�): 2% cetyltrimethylammonium bromide
(CTAB), 100 mM Tris HCl, pH 8, 20 mM ethylenediaminete-
traacetic acid (EDTA), pH 8, 1.4 M NaCl, 1% polyvinyl poly-
pyrrolidone (PVPP).

2. Chloroform: isoamyl alcohol (24:1).

3. 100% Ethanol or isopropanol.

4. 70% Alcohol.

5. TE buffer (10 mM Tris, 0.1 mM EDTA, pH 8).

6. RNase A (10 mg/mL).

7. Tris-acetate-EDTA (TAE) buffer (pH 8) (50�).

8. Agarose.

9. Ethidium bromide (10 mg/mL).

10. Loading dye (6�): 30% glycerol, 5 mM EDTA, 0.15% bromo-
phenol blue, 0.15% xylene cyanol.

11. MassRuler 1000 bp DNA ladder.

2.2 Reagents Used

for RAPD-PCR

1. Taq DNA polymerase with 10� buffer.

2. 10 mM dNTPs: 10 mM each of dATP, dCTP, dGTP,
and dTTP.

3. 25 mM MgCl2.

4. 10 μM Primers (operon primers are the most commonly used
RAPD primers) (see Notes 1 and 2).

5. Milli-Q water.

2.3 Sequence

Characterized

Amplified Region

(SCAR)

2.3.1 Genomic DNA

Isolation and Quantification

(See Subheading 2.1).

2.3.2 Reagents for PCR (See Subheading 2.2).

2.3.3 Gel Extraction 1. QIAquick gel extraction kit, Qiagen, Germany.
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2.3.4 Cloning of PCR

Amplified Gene

1. PCR amplified and purified product.

2. PCR cloning vector.

3. T4 DNA ligase.

4. Ligation buffer (5�).

5. Sterile deionized water.

6. Overnight culture of E. coli DH5/.

7. CaCl2 (100 mM).

8. Mg Cl2 (25 mM).

9. LB medium.

10. Sterile microcentrifuge tubes and tips.

11. Sterile glycerol (80%).

12. LB agar with ampicillin (100 μg/mL), X gal (20 μg/mL), and
IPTG (40 μg/mL).

2.4 Arbitrarily

Primed Polymerase

Chain Reaction (AP-

PCR)

2.4.1 Genomic DNA

Isolation and Quantification

(See Subheading 2.1).

2.4.2 Reagents for PCR 1. Taq polymerase.

2. PCR buffer (10�).

3. 25 mM MgCl2.

4. 10 mM each of dNTPs.

5. 50 μCi α-[32P] dCTP.
6. 10 μM of each primer.

2.4.3 Electrophoresis 1. 40% Acrylamide-bis-acrylamide.

2. 7.5 M Urea.

3. Tris-borate-EDTA (TBE) buffer, pH 8 (10�).

2.5 DNA

Amplification

Fingerprinting (DAF)

2.5.1 Genomic DNA

Isolation and Quantification

(See Subheading 2.1).

2.5.2 Reagents for PCR (See Subheading 2.2).
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2.5.3 PAGE Reagents 1. 40% Acrylamide-bis-acrylamide.

2. 7.5 M Urea.

3. Tris-borate-EDTA (TBE) buffer, pH 8 (10�).
Cover the bottle with aluminum foil and store at 4 �C and

use before 1 month.

4. 10 bp MassRuler.

5. 100 bp MassRuler.

2.5.4 Silver Staining

Reagents

1. Acetic acid, glacial.

2. Silver nitrate crystal, AR (ACS) (AgNO3).

3. Formaldehyde solution, AR (ACS) (HCHO).

4. Sodium thiosulfate (Na2S2O).

5. Sodium carbonate powder, ACS reagent (Na2CO3).

6. Ethanol.

7. Silver staining solution (250 mg silver nitrate and 375 μL
formaldehyde and 50 μL sodium thiosulfate).

8. Ice-cold developer solution (10 �C) (7.5 g sodium carbonate,
375 μL formaldehyde, and 50 μL sodium thiosulfate (10 mg in
1 mL water) in 250 mL water).

9. Formamide loading dye: 80% formamide, 10 mM EDTA,
pH 8.0, 1 mg/mL xylene cyanol, 1 mg/mL bromophenol
blue, 50% glycerol in a final volume of 10 mL.

2.6 The Sequence-

Related Amplified

Polymorphism (SRAP)

Technique

2.6.1 Genomic DNA

Isolation and Quantification

(See Subheading 2.1).

2.6.2 Reagents for PCR

Conditions

(See Subheading 2.2 but using different primers in step 4).

1. Primers: The arbitrary primers consist of the following ele-
ments: core sequences, which are 13 to 14 bases long, where
the first ten or 11 bases starting at the 50 end are sequences of
no specific constitution (“filler” sequences), followed by the
sequence CCGG in the forward primer and AATT in the
reverse primer. The purpose of using the “CCGG” sequence
in the core of the first set of SRAP primers was to target exons
to open reading frame (ORF) regions.

2.6.3 PAGE

Electrophoresis

(See Subheadings 2.5.3 and 2.5.4).
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2.7 Random

Amplified

Microsatellite

Polymorphism

(RAMPO)

2.7.1 Genomic DNA

Isolation and Quantification

(See Subheading 2.1).

2.7.2 Reagents Used for

RAPD and Microsatellite-

Primed PCR (MP-PCR)

(See Subheading 2.2).

2.7.3 Hybridization with

Microsatellite-

Complementary Probes

1. Nylon membrane (Hybond, Amersham).

2. 32P-labeled microsatellite-complementary oligonucleotide
probes.

3. 5 mM EDTA.

2.8 Random

Amplified

Hybridization

Microsatellites (RAHM)

2.8.1 Genomic DNA

Isolation and Quantification

(See Subheading 2.1).

2.8.2 Reagents Used for

RAPD-PCR

(See Subheading 2.2).

2.8.3 Hybridization with

Microsatellite-

Complementary Probes

(See Subheading 2.7.3).

2.9 Cleaved

Amplified Polymorphic

Sequences (CAPS)

2.9.1 Genomic DNA

Isolation and Quantification

(See Subheading 2.1).

2.9.2 Reagents for PCR

Conditions

(See Subheading 2.2).

2.9.3 Restriction Enzyme

Digestion

1. Restriction enzymes: Mse I, Alu I, Mbo I, Hae III.

2. Buffer 2 (New England Biolabs (NEB), UK)—supplied at 10�
concentration.

3. NEB buffer 2 (1�).
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4. 50 mM NaCl.

5. 10 mM Tris–HCl.

6. 10 mM MgCl2.

7. 1 mM DTT, pH 7.9 at 25 �C.

8. 100� BSA (10 mg/mL)—use at 1�.

2.9.4 PAGE Reagents (See Subheading 2.5.3).

2.9.5 Silver Staining

Reagents

(See Subheading 2.5.4).

3 Methods

3.1 Isolation of

Genomic DNA

(Modified Doyle and

Doyle, 1990) [124]

1. Grind 2 g of clean young leaf tissue to fine powder with a pestle
and mortar after freezing in liquid nitrogen; transfer it to
10 mL CTAB extraction buffer and incubate at 60 �C for 1 h.

2. Extract the supernatant with chloroform: isoamyl alcohol
(24:1) and centrifuge at 12,378 � g for 10 min at room
temperature.

3. Precipitate the DNA with 100% ethanol or isopropanol; centri-
fuge at 19,341 � g for 10 min at 4 �C.

4. Wash the DNA with 70% ethanol; centrifuge at 19,341 � g for
5 min at 4 �C.

5. Dry the pellet and dissolve the DNA in 1� TE buffer.

6. Treat the DNA in solution with RNase (10 μg/mL) at 37 �C
for 30 min.

7. Wash with chloroform: isoamyl alcohol (24:1) and centrifuge
at 12,378 � g for 10 min at room temperature.

8. Precipitate with 100% ethanol and dissolve in 1� TE buffer.
Store frozen at �20 �C.

3.2 DNA

Quantification

It is an essential step in many procedures where it is necessary to
know the amount of DNA that is present when performing tech-
niques such as PCR and RAPDs.

3.2.1 By Gel

Electrophoresis

The comparison of an aliquot of the extracted sample with standard
DNAs of known concentration (Lambda Hind III) can be done
using gel electrophoresis.

1. 5 μL of the DNA is mixed with 1 μL of 6� loading dye and
loaded onto a 0.8–1% agarose gel along with 500 ng of Lambda
Hind III digest marker and electrophoresed at 90 V for 30min.

2. The quantity of extracted DNA is estimated based on the
intensity of Lambda Hind III digest marker bands as the top
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bands account for half amount (250 ng) of total loaded
amount.

3. The quality of genomic DNA is confirmed for its integrity.

3.2.2 Using UV

Spectrophotometer

1. Take 1 mL of TE buffer in a cuvette and calibrate the spectro-
photometer at 260 nm and 280 nm wavelength.

2. Add 2 to 5 μL of DNA, mix properly, and record the optical
density at both 260 nm and 280 nm.

3. Estimate the DNA concentration employing the following
formula:

Amount of DNA μg=μLð Þ ¼ ODð Þ 260� 50
� dilution factor=1000

4. Judge the quality of DNA from the ratio of OD values recorded
at 260 and 280 nm. Pure DNA has values close to 1.8.

5. Dilute the DNA sample to get 20 ng/μL.

3.3 RAPD

3.3.1 PCR Amplification

of Genomic DNA with

Primers

Amplify 20–50 ng of genomic DNA in a reaction mix containing
1.0 U Taq DNA polymerase, 1 μM primer, 1.5–2.0 mM MgCl2,
0.125mM each of dNTPs, and 1� TaqDNA polymerase buffer (see
Note 1).

1. The amplification profile consists of an initial denaturation of
3 min at 94 �C followed by 35–40 cycles of denaturation for
1 min at 94 �C, annealing for 37 �C for 1 min and extension at
72 �C for 2 min and final extension for 6 min at 72 �C (see
Note 2).

3.3.2 Gel Electrophoresis 1. Amplified RAPD products are separated by horizontal electro-
phoresis in 1.5% (w/v) agarose gel, with 1� TAE buffer,
stained with ethidium bromide (0.5 μg/mL) and analyzed
under ultraviolet (UV) light. The length of the DNA fragments
is estimated by comparison with DNA ladder.

3.3.3 Scoring and

Interpretation of RAPD

Banding Patterns (See

Note 3)

Variability is then scored as the presence or absence of a specific
amplification product.

Polymorphism usually results from mutations or rearrange-
ments either at or between the primer binding sites, due to appear-
ance of a new primer site, mismatches at the primer site, and
difference in the length of the amplified region between the primer
sites due to deletions or insertions in the DNA.
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1. Each gel is analyzed by scoring the present (1) or absent
(0) polymorphic bands in individual lanes. The scoring proce-
dure is based on the banding profiles which are clear, transpar-
ent, and repeatable (see Note 4).

The RAPD profiles are compared between the genotypes
to estimate the similarity index. Studies are initiated to assess
the similarity/differences between the genotypes using RAPD
polymorphism as estimated by Paired Affinity Indices (PAIs).

PAI is calculated by the formula PAI
¼ no:of similar bands=total no:of bands

The PAIs expressed as percentage indicate the similarity (%)
between any two genotypes.

2. The binary matrix is transformed into similarity matrix using
Dice similarity (NTSYS-PC 2.01; Numerical Taxonomy Sys-
tem of Multivariate Programs) [125]. The Dice coefficient is
preferred to the Jaccard coefficient because it assigns weights to
matches rather than to mismatches and does take shared
absences of bands into account (see Notes 5 and 6).

3. The similarity matrix is subjected to a clustering analysis using
the unweighted pair group method with arithmetic means
(UPGMA; NTSYS-PC 2.0) [125].

4. The RAPD matrix can also be analyzed using the neighbor-
joining (N-J) method. Evaluate statistical support for the clus-
ters recovered both in the UPGMA andN-J trees by generating
1000 bootstrap pseudoreplicates (see Note 7) (Fig. 2).

3.4 Sequence

Characterized

Amplified Region

(SCAR)

3.4.1 Amplification

1. Genomic DNA is isolated, quantified, and diluted (see Sub-
heading 3.1).

2. 20–50 ng of genomic DNA is amplified using random primers
(see Subheading 3.3.1).

3. Aliquots (5.0 μL) of RAPD products are separated by horizon-
tal electrophoresis in 1.5% (w:v) agarose gel, with 1� TAE
buffer, stained with ethidium bromide (0.5 μg/mL) and ana-
lyzed under ultraviolet (UV) light. The length of the DNA
fragments is estimated by comparison with DNA ladder.

3.4.2 RAPD Fragment

Selection and Cloning

1. From obtained RAPD fingerprints, the polymorphic RAPD
marker bands are selected.

2. These bands are cut, eluted, and purified using QIAquick gel
extraction kit, cloned and sequenced.

4. Primer design: New longer and specific primers of 15–30 bp
are designed for the DNA sequence, which is called the SCAR
(see Note 8).
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3. PCR amplification: For the verification of primers ability to
amplify predicted fragment length, primers are tested with
isolated DNA.

3.5 Arbitrarily

Primed Polymerase

Chain Reaction (AP-

PCR)

3.5.1 Amplification

1. Amplify 20 ng genomic DNA in a PCR reaction mix containing
0.025 U Taq polymerase and 1� buffer (Stratagene) with
4 mM MgCl2, 0.2 mM of each dNTP, and 10 μM primer.

2. Amplification profile consists of an initial denaturation of 94 �C
for 5 min followed by 40 �C for 5 min for low stringency
annealing of primer and 72 �C for 5 min for extension for
two cycles. This temperature profile is followed by ten high
stringency cycles: 94 �C for 1 min, 60 �C for 1 min, and 72 �C
for 2 min for ten cycles.

3. At the end of this reaction, add 90 μL of a solution containing
2.25 U Taq polymerase in 1� buffer, 0.2 mM dNTPs, and
50 μCi α-[32P] dCTP, and the high stringency cycles are
continued for an additional 20 or 30 rounds.

Fig. 2 Dendrogram generated using UPGMA using RAPD marker data in wild and related genera of Myristica.
Number of forks indicates confidence limits for grouping of those species in a branch occurred, based on
2000 cycles in bootstrap analysis, using Winboot program
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3.5.2 Electrophoresis 1. Prepare the 40% stock 19:1 acrylamide bis-acrylamide solution
and store it in dark bottles at 4 �C.

2. Prepare 5% working solution containing 7.5 M urea, 40%
acrylamide bis-acrylamide. Assemble electrophoresis unit by
adding 0.5� TBE buffer to upper tank and lower tank.

3. Add 4 μL of the loading buffer to 8 μL of the final amplified
reaction mix.

4. Load this sample into the gel and conduct electrophoresis at
200 V for 55 min.

5. The AP-PCR generated fragments are size separated on poly-
acrylamide and visualized via radiography.

3.6 DNA

Amplification

Fingerprinting (DAF)

3.6.1 Amplification

1. Amplify 20 ng of genomic DNA in a 10 μL PCR reaction mix
containing 0.5 U of Taq polymerase, 200 μM each dNTP,
0.5 μMprimer, and 1� PCR buffer with 2 mMMgCl2 overlaid
with a drop of mineral oil.

2. The amplification profile consists of an initial denaturation at
5 min of 94 �C followed by 40 cycles of denaturation for 5 s at
94 �C, annealing at either 35 �C or 45 �C and 30 s at 72 �C.

3. The amplification products are separated in a vertical electro-
phoresis system using 5% non-denaturing polyacrylamide gel of
0.5 mm thickness to separate DNA fragments according to
their molecular weight.

4. Gel preparation (see Subheading 3.5.2).

3.6.2 Silver Staining for

DNA Visualization

1. Gently place the gel in 10% (v/v) glacial acetic acid for 30 min
at room temperature.

2. Rinse the gel in deionized water twice for about 2 min each.

3. Immerse the gel in silver staining solution for 20 min.

4. Pour out the silver stain solution and wash the gel quickly with
deionized water within 10 s.

5. Immerse the gel in an ice-cold developer solution (10 �C) until
optimal image intensity is obtained. Stop the developing pro-
cess by immersing the gel in 7.5% ice-cold glacial acetic acid.

6. Transfer gel onto the Whatman paper.

7. Air-dry the gel or dry using gel drier at 70 �C for 30 min.

3.6.3 Gel Interpretation Scoring can be done by the presence or absence of band. Bands are
sized and matched directly on gels, autoradiographic or photo-
graphic films, or photocopies on transparency overlays.
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3.7 Sequence-

Related Amplified

Polymorphism (SRAP)

(See Note 9)

3.7.1 Amplification

1. Amplify 20 ng of genomic DNA in a PCR reaction mix con-
taining 1 U of Taq polymerase, 200 μM each dNTP, 0.1 mM
each forward and reverse primer, and 1� PCR buffer with
1.5 mM MgCl2.

2. The amplification profile consists of an initial denaturation at
2 min of 94 �C followed by five cycles of denaturation for 1 min
at 94 �C, annealing at 35 �C for 1 min and 72 �C for 1 min;
followed by 35 cycles of 94 �C for 1 min, 50 �C for 1 min, and
72 �C for 1 min; followed by 7 min at 72 �C.

3. Polyacrylamide gel electrophoresis (see Subheading 3.5.2).

4. Marker analysis: Each polymorphic band can be scored as a
single dominant marker.

3.7.2 Sequencing of

SRAP Marker Bands

1. After electrophoresis, the gel is exposed overnight to a high-
sensitivity film (Kodak BioMax).

2. Using the exposed film as a blueprint, the gel pieces containing
the polymorphic bands are cut and introduced into a
dialysis tube.

3. The dialysis tube is placed into the buffer tank of a sequencing-
gel apparatus, and the DNA is electro-eluted in 1� TBE buffer.
The application of 2000 V, which is the same voltage used for
running sequencing gels, results in the complete electro-
elution of DNA into buffer from the gel fragment.

4. After ethanol precipitation and TE buffer suspension, the DNA
can be used for direct sequencing.

3.8 Random

Amplified

Microsatellite

Polymorphisms

(RAMPO)

3.8.1 Genomic DNA

Isolation

(See Subheadings 3.1 and 3.2).

3.8.2 Amplification of

Genomic DNA with RAPD

Primers/Microsatellite

Primers

1. The DNA is first amplified with a single arbitrary (see Subhead-
ing 3.3.1) or microsatellite-complementary PCR primer
(MP-PCR) (see Note 10).

2. The products are separated on agarose gel (1.4%), stained with
ethidium bromide, and photographed.

3.8.3 Hybridization with

Microsatellite-

Complementary Probes

1. The gel is either dried or blotted onto a nylon membrane.

2. Hybridize to a [32P]-labelled, microsatellite-complementary
oligonucleotide probe.

3. Hybridization was done overnight at 42 �C containing
20–40 ng/mL of the probe.
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4. Filters are washed twice for 5 min at room temperature in
2� SSC, 0.1% SDS followed by two final washing steps (2�
15 min) at different stringencies.

5. The stringency can be varied through temperature (50–65 �C)
and salt concentration (1� SSC; 0.1% SDS to 0.1� SSC;
0.1% SDS).

6. Positive signals are detected by chemiluminescence system and
documented by exposure to X-ray film for 1–2 h.

3.9 Random

Amplified

Hybridization

Microsatellites (RAHM)

1. Amplify the DNA using RAPD primers (see Subheading 3.3.1).

2. The amplified products are separated by gel electrophoresis (see
Subheading 3.3.2).

3. The polymorphisms on the agarose gel are identified and
scored (see Subheading 3.3.3).

4. The amplified DNA is then transferred onto Hybond-N+ filters
using Southern blot procedures.

5. The filters are then hybridized with radiolabeled oligonucleo-
tide probes carrying simple sequence repeats (SSR).

6. The luminescent signals produced are detected by autoradi-
ography. Hybridizing bands are named random amplified
hybridization microsatellites (RAHM).

3.10 Cleaved

Amplified Polymorphic

Sequences (CAPS)

1. Genomic DNA is isolated (see Subheadings 3.1 and 3.2).

2. Amplify the different CAPSmarker locus by PCR (see Subhead-
ing 3.3.1).

3. Analyze the PCR by gel electrophoresis to confirm amplifica-
tion of DNA and the yield.

4. Mix 5 μL PCR reaction and 10 μL digest mix. The reaction
mixture for the enzyme digestion contained 5 μL PCR prod-
uct, 9 μL ddH2O, and 0.3 μL restriction enzyme (10 U/μL),
which were then incubated at 37 �C for 5 h and then heated to
65 �C for 5 min.

5. Mix equal parts of digest mix and formamide loading dye.
Denature sample by heating at 94 �C for 5 min and then
placing tube on ice.

6. Resolve restriction fragments using 1� TBE, 8.25%
polyacrylamide gel.

7. Load 2.5 μL of the denatured sample per lane.

8. Denature by heating at 94 �C for 5 min and then placing tube
on ice.

9. Load 3.5 μL of the denatured ladder per lane, equivalent to
117 ng DNA.
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10. Run gel at 80 W for approximately 80 min or until the bromo-
phenol blue dye front has reached the bottom of the gel.

11. Follow usual silver staining protocol to stain gel (see Subhead-
ing 3.6.2).

4 Notes

1. RAPD reaction is far more sensitive than conventional PCR
because of the length of a single and arbitrary primer used to
amplify anonymous regions of a given genome. Optimization
of reaction conditions should precede the actual RAPD analysis
to get consistent and reproducible results. The following opti-
mizations are essential: template DNA concentration and qual-
ity, Taq DNA polymerase concentration, Mg2+ ion
concentration, primer concentration and annealing tempera-
ture, and primers suitable for detection of polymorphic loci in
the taxa to be analyzed [126].

2. Too many RAPD cycles can increase the amount and complex-
ity of nonspecific background products, while too few cycles
give low product yield. The optimum number of cycles will
depend mainly upon the starting concentration of target DNA
when other parameters are optimized. Although the sequences
of RAPD primers are arbitrarily chosen, two basic criteria must
be met: a minimum of 40% GC content (50–80% GC content is
generally used) and the absence of palindromic sequence
(a base sequence that reads exactly the same from right to left
as from left to right). Because G-C bond consists of three
hydrogen bridges and A-T bond consists of only two, a
primer-DNA hybrid with less than 50% GC will probably not
withstand the 72 �C temperature at which DNA elongation
takes place by DNA polymerase [1].

3. Data from at least ten primers with a total of 100 RAPD bands
are needed to produce a stable classification [127].

4. The probability of a scored RAPD band being scored in repli-
cate data is strongly dependent on the uniformity of amplifica-
tion conditions between experiments, as well as relative
amplification strength of the RAPD band [128]. The criteria
for selecting scoring bands include reproducibility and consis-
tency (the experiments need to be repeated to achieve repro-
ducible results) and thickness and size of the bands.

5. Deleting inconsistent or faint bands or using only those bands
that are reproducible introduces false negatives, and simply
ignoring RAPD artifacts and using all bands introduces false
positive into RAPD data [129].
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6. If estimates of the percent of false-positive and false-negative
bands in the RAPD data are available (such as when replicate
runs have been made), equations described earlier [130] can be
used to determine the actual bias by subtracting the true value
from the estimated value. Once the bias is known, it can be
used to determine whether the RAPD protocol has been opti-
mized sufficiently to provide accurate enough estimates of the
similarities.

7. Other softwares like PAUP, PHYLIP, CLINCH, MaClade,
PopGene, and Arlequin can also be used to accomplish the
cluster algorithms and for phylogenetic analysis.

8. In SCAR, the longer primer sequence increases the specificity
of the PCR reaction and produces results less sensitive to
changes in reaction conditions. SCAR is thus more reproduc-
ible than RAPD [131].

9. The rationale behind primer designing in SRAP is based on the
fact that exons are normally in GC-rich regions. The core is
followed by three selective nucleotides at the 30 end. The filler
sequences of the forward and reverse primers must be different
from each other and can be 10 or 11 bases long.

10. If RAPD gels were used for RAMPO analysis, banding patterns
are generally less complex, less variable, and easier to interpret
than those derived from MP-PCR gels [132].
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Chapter 14

Inter-Simple Sequence Repeats (ISSR),
Microsatellite-Primed Genomic Profiling Using Universal
Primers

Chrissen E. C. Gemmill and Ella R. P. Grierson

Abstract

Inter-simple sequence repeat (ISSR) markers are highly polymorphic, relatively easy to develop, and
inexpensive compared to other methods and have numerous applications. Importantly, the same ISSR
primers can potentially be used universally across plant phylogenetic diversity. The basic technique of ISSRs
is flexible and can be modified with options for implementation for a broad range of projects and budgets.
Ranked in increasing order of technical demand and costs, these are manual agarose and manual polyacryl-
amide with silver staining and automated using fluorescently labeled primers and capillary electrophoresis.
Overall manual agarose-based ISSRs are a sound, safe, easy, and low-cost method for reliably inferring plant
genetic diversity. Here, we provide detailed protocols to undertake this fingerprinting method and provide
guidance to the literature for the many options available for this technique.

Key words Conservation, Cultivar, Dominant marker, Genetic diversity, ISSR, Molecular identifica-
tion, Phylogenetic relationships, Species delimitations, Taxonomy

1 Introduction

The term DNA fingerprinting was coined by Jeffreys [1] to reflect
the unique multilocus genotype profiles of minisatellites observed
via DNA hybridization analyses. This method was quickly adapted
[2, 3] to take advantage of the polymerase chain reaction (PCR)
[4, 5] and has catalyzed a diverse range of fingerprinting techniques
including randomly amplified polymorphic DNA (RAPDs) [6]
(Chapter 13), amplified fragment length polymorphisms (AFLPs)
[7] (Chapter 12), and inter-simple sequence repeats (ISSRs)
[8, 9]. ISSRs are a microsatellite-directed polymerase chain reaction
technique and are also called anchored microsatellite-primed PCR
(AMP-PCR). This approach takes advantage of the ubiquitous
microsatellite loci distributed throughout eukaryotic genomes
(see review of Bruford and Wayne [10]). These markers are hyper-
variable, arbitrarily amplified dominant markers that randomly
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target multiple regions within the genome simultaneously. The
targets for amplification are the variable regions between identical
inverted microsatellites. Multiple priming sites occur in the gen-
omes of most organisms; hence, the production of multiple ampli-
cons of varying lengths for a given reaction produces highly variable
multilocus DNA fingerprints. By necessity, the primer must anneal
to the repetitive elements on each of the two complementary
strands of DNA within about 1 kB of each other. Lack of polymeri-
zation results from either a lack of one priming site or both priming
sites; it is not possible to determine which. The resulting fragments
have been shown to be inherited in a Mendelian fashion [8];
however, this is not likely the case for all loci. One issue inherent
in DNA fingerprinting analyses is that co-migrating fragments are
assumed to be homologous. Homology of fragments is assumed,
but amplicons can co-migrate due to convergence [11, 12]. Further-
more, since these markers are dominant and genotypes cannot be
inferred as in codominant markers, applying standard population
genetic analyses is problematic as allele frequencies cannot be
estimated [13].

ISSRs have become a very popular method globally to probe
organisms for hidden genetic diversity without any prior knowl-
edge of the genome. A search on the Scopus database on December
2, 2019, for “ISSR AND plant” returned 2502 articles for the years
1996–2019 and is on the rise. ISSRs have been applied to a multi-
tude of questions and have made detailed comparisons to other
methods [14–23]. Some applications include identification of plant
cultivars, medicinal plants and constituents of products, and inva-
sive plants; taxonomic identification particularly between closely
related taxa and cryptic taxa; genetic mapping and fidelity; compar-
ison of levels of genetic variation of in situ versus ex situ plants and
populations for conservation and restoration management; and
even probe genetic variability of plants raised in space
[24]. Kumar et al. [25] suggest that ISSRs may be useful to delimit
species where other markers, such as those used in DNA barcoding,
have failed to provide adequate resolution.

As with other molecular techniques, there are advantages and
disadvantages associated with ISSRs, which need to be weighed by
the researcher on a case-by-case basis. Other considerations will
include taxonomic range, discriminatory power required, repro-
ducibility, technical difficulty, budget, and ease of interpretation
(see also [14, 26]). RAPDs, AFLPs (Chapters 12 and 13), and
ISSRs do not require any previous knowledge of the genome and
hence can be applied to non-model systems easily and require only
small amounts of DNA. ISSRs are on par with RAPDs with a low
level of difficulty and low cost yet are more highly reproducible
[27]. ISSRs tend to exhibit fewer loci than the technically more
demanding AFLPs yet often produce congruent results with much
less cost [21].However, AFLPs may provide finer resolution of the
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population genetic structure than ISSRs; this hurdle may be able to
be overcome by adding more ISSR primers to an analysis. For many
projects, ISSRs will provide appropriate levels of polymorphism and
resolution, allowing for more primers to be assessed and/or more
individuals to be included for a given budget. The number of
primers used, usually three to ten, will depend on the level of
polymorphism and the number of amplicons resolved per primer.
Overall manual agarose-based ISSR is a sound, safe, easy, and
low-cost method for reliably inferring genetic diversity across the
diversity of plants.

Potentially, a number of different materials (e.g., fresh, dried in
silica, frozen�80 �C, herbarium specimens) could be used, but this
will vary with the plant group as well as collection, preservation,
and storage methods (Chapters 3 and 4). Conducting preliminary
analyses is key to sorting out issues early on in this process. The
ideal material to use for ISSRs is fresh, clean, and young leaves;
however, this is not always logistically feasible. The next best mate-
rials would be those collected into silica gel. As with all other
molecular studies when collecting field and/or botanical garden
specimens, lodging herbarium vouchers and/or obtaining acces-
sion information, respectively, is essential. Herbarium and botanic
garden accession information should be reported along with the
sample information. Acknowledging all permitting agencies is
recommended.

Many studies report using CTAB (hexadecyltrimethylammo-
nium bromide) [28, 29] or modifications thereof, such as treat-
ment with RNase. Deng et al. [30] recently compared CTAB DNA
extraction methods. Today, commercially available kits provide
high quality and reasonable, and possibly consistent, quantities of
DNA and are much easier, faster, and technically less demanding
than CTAB extractions. Quality and purity of DNA can be assessed
qualitatively via gel electrophoresis and/or quantitatively through
spectrophotometry. Some authors suggest adjusting all DNA
extractions to a concentration of 50 ng [31].

One important but often neglected step is screening the DNA
extracts for contamination by nontarget epiphytes [32] and endo-
phytes [33, 34]. To check DNA purity, amplify the extracts for the
internal transcribed spacer (ITS) region [35, 36] using relaxed
protocols (e.g., lower than normal annealing temperatures to
encourage amplification on nontarget DNA); do not use a
cpDNA maker for screening as you may miss fungal contaminants.
A single strong band is indicative of non-contaminated DNA,
whereas multiple bands indicate contamination. These contami-
nated samples cannot be used for ISSRs. An alternative to this is
to check only the aberrant samples that appear to have more frag-
ments than other conspecific samples. In our experience, the multi-
locus profiles of contaminated DNA are not completely additive
but will differ from non-contaminated samples.
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A single oligonucleotide primer, usually�25-mer, containing a
microsatellite repeat is used in the PCR. The primers can be
anchored at the 50 or 30 end with a single nucleotide or a short
degenerate sequence. Archibald et al. [37] recommend using a 30

anchor and avoiding redundancy of primer selection [38] or pri-
mers that may self-anneal such as CG and AT. Arens et al. [39]
suggest avoiding tetra-nucleotide primers as they may not be evenly
distributed within the genome. Many papers refer to the University
of British Columbia’s (UBC) Primer Set 9, and while UBC no
longer synthesizes these primers nor maintains a list of the primers,
Prince [40] included a full table of these primers along with melting
temperatures and comments.

Use of negative controls to check for PCR contamination is
standard in PCR. Positive controls are used to check reproducibility
between runs, and independent repeat runs to check reproducibil-
ity overall. PCR can be optimized in a number of ways. PCR
enhancers commonly used include bovine serum albumin (BSA)
and dimethyl sulfoxide (DMSO) or 1,2-propanediol. Different
concentrations of MgCl2 can be trialed during PCR optimization.
Testing primers with a temperature gradient is also important.
Using a touchdown protocol may enhance clarity and
reproducibility [41].

ISSRs can be conducted manually with agarose or polyacryl-
amide gels or automated with capillary gel electrophoresis and
fluorescently labeled primers. Agarose gels are the least technically
demanding and also likely the safest when employing a nontoxic
nucleic acid staining solution in lieu of ethidium bromide. How-
ever, resolution is lowest among the methods. Goulao and Oliveira
[42] provided detailed protocols for polyacrylamide gel electro-
phoresis and detection by silver staining. Increasingly, authors
[37, 38, 43–45] have used fluorescently labeled primers and sepa-
rated the fragments via capillary electrophoresis on automated
DNA sequencing instruments, which will generate the most accu-
rate fragments sizes. This method is the most sensitive, producing
more fragments [16, 46, 47], but will be costlier (fluorescently
labeled primers, cycle sequencing, running on automated
sequencer). These costs may be somewhat offset by the faster
scoring and analysis. As with all ISSR protocols, nonspecific ampli-
fication can be an issue. Note also that fingerprinting patterns can
differ between manual and automated methods and between
labeled and unlabeled products. Regardless of final method chosen,
initial screening of primers can be done with standard oligonucleo-
tides and agarose gels to keep costs down. Screen as many primers
as possible and assess clarity, reproducibility, and number of poly-
morphisms. As an example, Grierson [48] assessed species delimita-
tions and genetic variation within and among three endemic species
of New Zealand Sophora L. (Fabaceae), Sophora microphylla Aiton,
Sophora prostrata Buchanan, and Sophora tetraptera JF Mill.
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Primers used included three 30 anchored dinucleotide repeats
(UBC818, 822, 828), two 30 anchored degenerate dinucleotide
repeats (UBC841, 844), and one nonanchored trinucleotide repeat
(UBC866). To evaluate the performance of each primer at both
inter- and intraspecific levels, the strategy employed a subset of the
taxa that represented the broad diversity of these taxa and included
multiple individuals per species (Fig. 1). Amplicons resulting from
30-anchored dinucleotide and unanchored trinucleotide primers
were clear, reproducible, and scorable from 2% agarose gels.

Scoring of manual ISSR profiles can be done by eye or using an
automated scoring program; see Crawford and Mort [49] for dis-
cussion. Fragments are scored as present (1) or absent (0) produc-
ing a diallelic data matrix representing each fragment scored for
each locus, across all loci, for each sample. Consistency of approach
is key, including limiting scoring to fragments within a certain size
range and of a certain intensity of brightness. Select an exclusion
threshold for using missing data, e.g., samples or primers with>5%
missing data are excluded from the analysis. The resulting binary/
diallelic matrix is then subjected to a variety of analyses including
estimates of common genetic parameters (percent of loci

Fig. 1 ISSR products of endemic New Zealand Sophora species visualized using 2% agarose gels stained with
ethidium bromide. All primers are from UBC set number 9. Each gel has two origins and the first and last lanes
of all gels are a 100-kb ladder. The numbers above each lane are the reaction tube numbers. (a) primer
828 ((TG)8A). (b) primer UBC841 ((GA)8YC, where Y is C or T). For (a) and (b), S. prostrata, origin 1, lanes 2–16
and origin 2, 19–22; S. tetraptera, origin 2, lanes 23–27; S. microphylla, origin 2, lanes 28–33. (c) test of
reproducibility using one sample for each of S. prostrata, S. tetraptera, and S. microphylla, respectively, with
primers 822 ((TC)6A), 828, 841, 818 ((CG)8A), 844 ((CT)8RA, where R is A or T), and 866 ((CTC)6)
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polymorphic, genetic diversity, etc.), analysis of molecular variance
(AMOVA), principal component analysis (PCA), and clustering
algorithms such as neighbor joining (NJ) and the unweighted pair
group method (UPGMA). Methods that avoid shared absences
[50, 51] may be best, as shared absences are more likely to be
homoplastic than shared presences. Early on, Lynch and Milligan
[13] outlined the issues of using dominant markers for estimating
traditional population genetic parameters. Hollingsworth and
Ennos [52] examined issues with the analysis of dominant markers
and importantly the effect of the number of loci on the topology of
NJ analyses. Nelson and Anderson [53] recently discussed the
issues related to the number of loci needed for AMOVA as that
implemented in the software Arlequin [54, 55] was moderate, e.g.,
30, while STRUCTURE, a Bayesian clustering algorithm [56–58],
required >90 and is more sensitive to unequal sampling. Hence, it
is important to determine the type of analyses that will be con-
ducted before sampling. Increasing the number of ISSR loci
and/or samples is likely to increase the resolution of genetic
structure.

Below, we describe the implementation of manual agarose ISSR
analyses as this method can be implemented in most general molec-
ular biology laboratories. The major steps are experimental design
including sampling, collection of vouchers and curation and stor-
age of materials, DNA extraction, screening of primers, PCR of all
primers using a set regime, scoring, and analysis. Detailed protocols
for polyacrylamide gels with silver staining have been presented by
Goulao and Oliveira [42] and automated fluorescently labeled
primers with capillary electrophoresis have presented by
Prince [40].

2 Materials

All solutions are made withMilli-Q water or molecular grade water,
and all chemicals are analytical reagent grade.

2.1 Reagents 1. Plant DNA isolation kit such as Bioline ISOLATE II Plant
DNA Kit. Alternatively, CTAB extraction as described in
Doyle and Doyle [29]. CTAB buffer: 100 mM Tris–HCl,
1.4 M NaCl, 30 mM EDTA, 2% (w/v) hexadecyltrimethylam-
monium bromide.

2. Liquid nitrogen or sterile fine-grained sand for homogeniza-
tion of plant tissues.

3. RNase if using CTAB method.

4. ISSR primers diluted in water or TE buffer to a 10-μM con-
centration (see Note 1).
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5. TE buffer: 10 mM Tris–HCl, 1 mM EDTA.

6. Taq polymerase with PCR buffer (see Note 2).

7. Electrophoresis buffer: 1x TAE (40 mM Tris, 20 mM acetic
acid, 1 mM EDTA), 1x TBE (89 mM Tris, 89 mM boric acid,
2 mM EDTA), or 1x SB (5 mM sodium borate) (see Note 3).

8. Milli-Q water.

9. Agarose.

10. Nucleic acid stain, such as RedSafe™ (see Note 4).

11. 100 bp DNA ladder, such as Invitrogen™ TrackIt DNA
ladder.

12. Loading buffer (6�): 30% glycerol, 5 mM EDTA, 0.15% bro-
mophenol blue, 0.15% xylene cyanol. Use at final 1x concen-
tration (use only if Taq polymerase mix does not contain some
already).

2.2 Equipment 1. Mortars and pestles for homogenization of leaf tissue or other
methods of tissue disruption.

2. Bench microcentrifuge.

3. Thermo-mixer (kit) or water bath (CTAB).

4. Vortex mixer.

5. Optional: spectrophotometer or Qubit for quantification of
DNA and required consumables/standards.

6. Laminar flow hood to prepare the PCR.

7. Programmable thermal cycler such as Eppendorf Gradient with
96 tube capacity.

8. Microwave.

9. Standard agarose gel electrophoresis apparatus with power
supply.

10. UV imaging equipment such as Alphaimager.

11. Optional: software to automatically score bands.

3 Methods

3.1 DNA Extraction Follow the manufacturer’s directions for kit extractions; we use
ca. 5 mm � 5 mm fresh or dried leaf tissue. For CTAB extraction,
use up to 5 g of fresh leaf material and grind to a powder in liquid
nitrogen. Samples extracted with CTAB should be treated with
RNase. The quality and quantity of the DNA extracts can be
assessed qualitatively via agarose gel electrophoresis or quantita-
tively via spectrophotometry (see Notes 5–8 for DNA
extraction tips).
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3.2 PCR The following method uses a Taq polymerase mix that includes all
reagents (dNTPs, MgCl2, loading buffer) except primer, PCR
enhancers, and DNA. The PCR is set up at room temperature in a
laminar flow hood (see Notes 9 and 10 for tips on optimizing your
PCR).

1. As a guide, use a total volume of 15 μL for the PCR, in 0.2 mL
PCR tubes with final concentrations as follows: 0.25 μM of
primer, 1� PCR mix, 1.0 μL of DNA (approx. 5–10 ng/μL),
0.05 U Taq polymerase (see Notes 11–13).

2. Include a negative control containing no DNA in each PCR
run to check for contamination. You can also include a positive
control for reproducibility in each run—a sample known to
amplify well. Also see Note 14 for other reproducibility
considerations.

3. Transfer the tubes to a thermocycler using a program of 5 min
at 94 �C for initial denaturation; 35–40 cycles of denaturation
45 s at 94 �C, annealing for 45 s at annealing temperature for
specific primer, and extension for 90 s at 72 �C, followed by
5 min at 72 �C for the final extension. Keep tubes at 4 �C until
the initiation of gel electrophoresis (see Notes 15 and 16).

3.3 Gel

Electrophoresis

This method uses a standard agarose gel, but other options can be
explored for increased resolution (see Note 17). Standard oligos
can be used and visualized on 2–3% agarose gels. The following is to
prepare 240 mL of 2% agarose gel; calculate the volume needed by
multiplying the surface area of the gel tray by the desired thickness
(approx. 3–5 mm).

1. Set up gel mold with comb(s), level on surface. Depending on
the specific apparatus, two origins may be used on a large gel
(see Note 18).

2. Prepare a 2% (w/v) gel, weigh out 4.8 g of agarose into a flask,
and add 240 mL of electrophoresis buffer. Dissolve agarose
completely using a microwave (see Note 19).

3. Let solution cool until temperature is below 60 �C; then add
nucleic acid stain as per manufacturer’s directions. Swirl gently
to mix.

4. Pour the gel into the gel tray, add combs, and let set for at least
30 min (see Note 20).

5. Place gel into electrophoresis tank, and cover by 5 mm with
electrophoresis buffer.

6. Load appropriate ladder into the first and last lanes as a size
reference; 3 μL of Invitrogen 100 bp ladder is sufficient in most
cases (see Notes 21 and 22).
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7. Add loading buffer to PCR product if needed (to a final con-
centration of 1x).

8. Load 15 μL PCR product into each well (see Note 23).

9. Run the gel at approx. 125 V for 2 h. Running time will depend
on agarose concentration and size of gel (see Note 24).

10. View and photograph the gel using an imager. Save the file at
highest resolution possible.

3.4 Scoring A binary data matrix is created for the sample set by scoring
presence (1) and absence (0) of specific bands across samples for
each primer using the ladder to determine size. Bands that fail
reproducibility tests, or are very faint compared to others, should
be scored as absent. Subtle differences in band intensity are not
usually considered. Gels can be rescored at least twice to test the
consistency of the researcher. A subset of samples can be reamplified
and run on a gel next to the original products to ensure reproduc-
ibility (see Note 14).

4 Notes

1. See Prince [40] for list of UBC primers or Wolfe [59]. Once
rehydrated, aliquot primers into multiple tubes to prevent cross
contamination of primers. For all steps, employ good molecu-
lar biology techniques and anti-contamination protocols used
in standard PCR.

2. For ease, consistency, and minimization of errors, select a Taq
polymerase that includes nucleotides, MgCl2, and loading
buffer such as MyTaq™ RedMix. Each Taqmay require differ-
ent concentrations of MgCl2; hence, this is one reagent that
might be optimized during trials.

3. We have been able to use 0.5� TBE to save on costs. SB may be
a less expensive option and is easier to make and has provided
excellent results. We make up 10� SB (wearing a mask) and
dilute to 1� as needed.

4. Ethidium bromide can also be used, but it is a known mutagen
and carcinogen and has largely been replaced in most labs by
less toxic nucleic acid stains such as RedSafe™. If you do use
ethidium bromide, be sure to observe appropriate safety
protocols.

5. If there are any concerns of epiphytes, carefully wash leaves in
distilled water and dry prior to extraction or for storage in silica
or at �30 to �80 �C.

6. Ideally, all extracts would be checked for nontarget DNA con-
tamination; however, this adds time and cost to the analyses.
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An alternative would be to check any anomalous samples with
additional or errant banding patterns for contamination via
PCR for ITS. We use ITS4 [35] and the higher-plant primer
ITS5 HP [60] to amplify the entire ITS region as detailed in
Carter et al. [61]. ITS fragments vary in size plant species to
species, as do fungal contaminants, which are usually smaller
than those of plants. An ITS product with two bands or a single
smaller band indicates fungal contamination, and hence, the
sample cannot be used for ISSRs.

7. For DNA extraction from dried material, the lysis period can be
increased; we generally use 3 h for samples stored in silica gel or
herbarium specimens when using the Bioline ISOLATE II
Plant DNA Kit. Before sampling from herbarium specimens,
be sure to obtain proper permission from the curator.

8. DNAs can be quantified using spectrophotometry or “by eye”;
in this case, adjust DNAs to have similar fluorescence intensities
under standardized conditions (see [58]). Too much DNA can
inhibit PCR, as can secondary compounds that coprecipitate
with the DNA; here, try diluting an aliquot of DNA 1:10 or use
a standard protocol, e.g., ethanol precipitation, phenol:chloro-
form:isopropanol 25:24:1 to clean the DNA. Use prescribed
safety protocols when working with phenol.

9. As a first step, conduct a comprehensive survey of the literature
for recent journal articles on ISSRs, particularly those of the
same genus or family if possible to get a start on which primers
to screen first. It is imperative to spend time screening numer-
ous primers and optimizing the PCR.

10. Once you have begun the full-scale analyses, you will not be
able to make any further changes to the established protocol as
they may cause deviations in the PCR results; hence, diligence
in preliminary optimization and screening is critical. Minimize
changes within the laboratory such as reagents and thermal
cyclers. Ideally, it is best to conduct all of the PCRs within
the shortest time frame possible. Make sure that you use the
same reagents, even the same lots if possible. In some labs,
water quality can change over the season, as can other environ-
mental factors.

11. Always include a few additional reactions in your master mix
calculations to account for pipetting errors. We use the guide of
one extra sample per ten samples.

12. The volume/quantity of DNA in the PCR can be reduced if
the fragments are overwhelmingly bright and hence possibly
obscuring other bands.

13. Additives that can be used to improve your PCR reaction can
include 0.1% BSA and/or up to 5% DMSO, or 0.86 M
1,2-propanediol.
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14. Reproducibility

(a) Repeat PCRs in duplicate or triplicate [40] applying a
majority rule approach when scoring individual bands.
Run products side by side to assess reproducibility
and/or include PCRs run previously on each run for
each primer to make sure the banding patterns for each
primer are consistent run to run.

(b) To have ample sample for loading on multiple gels as
controls, the total volume of the PCR can be increased.
Consider including a sample that is not closely related to
your focus group, as another method to monitor
reproducibility.

(c) Only individuals that can be scored with low percent of
missing data, for example, <5% missing data per individ-
ual, should be included in the analyses.

15. You may need to use different annealing temperatures for
different primers. Conduct a gradient PCR to determine the
optimal annealing temperatures that give clear, strong, and
well-separated fragments. The annealing temperature may be
above the calculated Tm. See Bornet and Branchard [27].

16. Optimization of the thermal cycling may include changes in
the length of each step (denature, anneal, polymerization)
and/or the number of cycles. A touchdown protocol can also
be trialed.

17. Agarose gels (2–3%) will likely provide adequate resolution in
most systems, but polyacrylamide or capillary electrophoresis
will provide higher levels of resolution. Agarose gels stained
with alternatives to ethidium bromide are the safest. Costs, as
well as health risks and impacts on the environment, may be
increased with silver-stained polyacrylamide gels. Capillary
electrophoresis will provide the highest level of detail but is
also the most expensive option.

18. Trial use of wide/broad thin (e.g., 25 wells, 1 mm thick) versus
narrow thick gel combs (e.g., 50 wells, 1.5 mm thick) to assess
method for best visualization of fragments.

19. When dissolving agarose gel, the liquid can superheat. It is best
to heat in short bursts followed by gentle swirling with flask
pointed away from face, wearing appropriate protection.

20. We use large gels (230 mm � 210 mm, CLP System) and two
combs with fine but thick teeth (50 wells, 1.5 mm thick) that
produce 100 wells per gel. This allows us to run up to 94 sam-
ples, a negative control, and two ladders per origin at a time.
This works particularly well with a 96-well thermal cycler.

21. You can also include a ladder in the center lane of the gel to aid
sizing of fragments if your gel is very wide.
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22. To differentiate bands of similar molecular weight, gels can be
run longer or rerun with a higher-resolution ladder or higher
percentage of agarose.

23. Do not overload the wells of the gel, as this could result in
fragments being overwhelmingly bright and possibly obscur-
ing other bands. Background smear may also be reduced by
loading less product into the wells.

24. Time and voltage required can be varied—keep an eye on the
loading dye to ensure your fragments do not run off the gel
and that your gels are not running too hot. For long runs, it is
best to refresh at least 50% of the electrophoresis buffer
each run.
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Chapter 15

Retrotransposable Elements: DNA Fingerprinting
and the Assessment of Genetic Diversity

Ruslan Kalendar, Alexander Muterko, and Svetlana Boronnikova

Abstract

Retrotransposable elements (RTEs) are highly common mobile genetic elements that are composed of
several classes and make up the majority of eukaryotic genomes. The “copy-out and paste-in” life cycle of
replicative transposition in these dispersive and ubiquitous RTEs leads to new genome insertions without
excision of the original element. RTEs are important drivers of species diversity; they exhibit great variety in
structure, size, and mechanisms of transposition, making them important putative components in genome
evolution. Accordingly, various applications have been developed to explore the polymorphisms in RTE
insertion patterns. These applications include conventional or anchored polymerase chain reaction (PCR)
and quantitative or digital PCR with primers designed for the 50 or 30 junction. Marker systems exploiting
these PCR methods can be easily developed and are inexpensively used in the absence of extensive genome
sequence data. Themain inter-repeat amplification polymorphism techniques include inter-retrotransposon
amplified polymorphism (IRAP), retrotransposon microsatellite amplified polymorphism (REMAP), and
Inter-Primer Binding Site (iPBS) for PCR amplification with a single or two primers.

Key words Retrotransposon, Molecular marker, IRAP, REMAP, iPBS

1 Introduction

All eukaryotic genomes contain DNA sequences termed “repetitive
elements” that are present in multiple copies throughout the
genome [1–3]. These repetitive sequences can either be tandemly
arrayed or interspersed throughout the genome [4]. Interspersed
repetitive sequences comprise a large fraction of eukaryotic gen-
omes and are predominantly comprised of retrotransposable ele-
ments (retrotransposons, or RTEs) [1, 5–9]. For example,
retrotransposons can comprise up to 90% of the genome in some
eukaryotes. In most of the species studied thus far, these inter-
spersed repeats are distributed unevenly across the nuclear genome,
with some repeats having a tendency to cluster around the centro-
meres or telomeres [10, 11]. Moreover, RTEs are predominantly
located in heterochromatic regions of the genome. Cereals and

Pascale Besse (ed.), Molecular Plant Taxonomy: Methods and Protocols, Methods in Molecular Biology, vol. 2222,
https://doi.org/10.1007/978-1-0716-0997-2_15, © Springer Science+Business Media, LLC, part of Springer Nature 2021

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0997-2_15&domain=pdf
https://doi.org/10.1007/978-1-0716-0997-2_15#DOI


citrus fruits often have retrotransposons locally nested within one
another and in extensive domains, referred to as “retrotransposon
seas,” which surround gene islands. Nevertheless, the most preva-
lent retrotransposons are dispersed throughout the genome
[3]. RTEs can be subdivided on the basis of their size; short inter-
spersed elements are less than 1000 bp long, and the rest are
considered to be long interspersed elements. Variation in the copy
number of repeat elements and internal rearrangements on both
homologous chromosomes can arise after the induction of recom-
binational processes during the meiotic prophase [12, 13].

It was previously shown that a specific retrotransposon is uni-
versally distributed among closely and distantly related species
[14, 15]. Although there is no unique set of retrotransposons for
a particular species [14, 16–19], related species have phylogeneti-
cally cognate (related) RTE sequences. As such, any high-copy
mobile genetic element (MGE) shows phylogenetic similarity
among related species. For example, both the long terminal repeats
(LTRs) and the central part are conserved, consistent with their
parent plant families. Generally, retrotransposons have not been
extensively explored as phylogenetic markers, except in a few arti-
cles that have discussed the phylogenetic relationships among con-
crete retrotransposon sequences [14, 15, 17, 20]. Since high-copy
RTEs are widely distributed and diverse in eukaryotes, they offer
many advantages for their use in eukaryotic phylogenetic studies.
Their features of abundance, general dispersion, and activity pro-
vide ideal conditions for developing molecular phylogenetic mar-
kers [21, 22].

1.1 LTR

Retrotransposons

Transposable elements (TEs) are classified into two main groups in
eukaryotic genomes, defined according to their mechanism of
transposition [23]. Class I TEs transpose through an RNA inter-
mediate, which class II transposons lack [24] (Fig. 1). The two
classes can be further divided into two subclasses according to their
structure and transposition cycle: LTR retrotransposons and non-
LTR retrotransposons. Non-LTR retrotransposons can either be
long interspersed nuclear elements (LINE) or short interspersed
nuclear elements (SINE). All groups are complemented by
degraded members of their nonautonomous forms, which lack
genes that are essential for transposition. Specifically, miniature
inverted-repeat transposable elements (MITEs) are the nonauton-
omous form of class II transposons, SINEs are the nonautonomous
form of non-LTR retrotransposons, and terminal-repeat retrotran-
sposons in miniature (TRIMs) and large retrotransposon deriva-
tives (LARDs) are nonautonomous LTR retrotransposons [14, 15,
23, 25].

Class I transposable elements/retrotransposons replicate by a
process of reverse transcription, as do lentiviruses such as HIV
[1, 26, 27]. The retrotransposons themselves encode the proteins

264 Ruslan Kalendar et al.



needed for their replication and integration back into the genome
[28]. Their “copy-out and paste-in” life cycle means that they do
not need to be excised in order for a copy to be inserted elsewhere
in the genome. Hence, genomes diversify by the insertion of new
copies, while the original copies persist. Their abundance in the
genome is generally highly correlated with genome size. Indeed,
large plant genomes contain hundreds of thousands of these ele-
ments, which together form the vast majority of the total DNA
[6, 17].

Three basic types of LTR retrotransposon structures are illu-
strated in Fig. 1, each having two LTRs. An LTR varying in length
from 100 bp to a few kb generally starts, and its inverted repeat
sequence 50-TG--CA-30 ends. They tend to form direct repeats of

Fig. 1 Retrotransposon architecture: the main groups of autonomous and nonautonomous retrotransposons.
(a) Retroviruses and autonomous LTR retrotransposons. Above, the basic structure of an LTR retrotransposon,
comprising target site duplication (TSD); long terminal repeats (LTRs); the primer binding site (PBS), which is
the (�)-strand priming site for reverse transcription; and the polypurine tract (PPT), which is the (+)-strand
priming site for reverse transcription. The PBS and PPT are part of the internal domain, which in autonomous
elements includes the protein-coding open reading frames (ORFs). The ORFs of the internal domain are GAG
encoding the capsid protein Gag, PR proteinase, RT-RH reverse transcriptase-RNase H, INT integrase, and ENV
envelope protein. (b) Nonautonomous retrotransposons. LARD elements have a long internal domain with a
conserved structure but lack a coding capacity. TRIM elements have virtually no internal domain except for the
PBS and PPT signals. (c) Autonomous and nonautonomous non-LTR retrotransposons. The autonomous order
LINE of the L1 superfamily and the nonautonomous order SINE are shown
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4–6 bp (target site duplications, TSDs) at both ends of the trans-
poson upon insertion into the genome. An LTR retrotransposon is
comprised of a gene encoding a variety of proteins, including the
GAG (encoding structural proteins forming the shell, the synthesis
of reverse transcription) and poly POL gene (encoding a series of
reverse transcription enzymes). In addition, LTR retrotransposons
contain transcription initiation and termination sequences related
to a tRNA binding site (primer binding site, PBS) and a polypurine
sequence (polypurine tract, PPT). Based on the similarity of the
order and sequence of the enzyme transposase genes, LTR retro-
transposons can be subdivided into the Tyl-copia type and
Ty3-gypsy type.

Human and other mammalian genomes contain an abundance
of retrotransposons. The majority of these, however, are not LTR
retrotransposons. Rather, they are LINEs and SINEs, which repli-
cate by a somewhat different copy-and-paste mechanism [2, 29,
30]. The L1 family of LINEs and the Alu family of SINEs together
comprise roughly 30% of human genomic DNA and contain nearly
two million copies [31]. Integrated retroviruses, which are rem-
nants of ancient infections, are also abundant in mammalian gen-
omes [32]. These elements, called “endogenous retroviruses”
(ERVs, or HERVs in humans), are functionally equivalent to LTR
retrotransposons. The features of integration activity, persistence,
dispersion, high copy number, as well as conserved structure and
sequence motifs together make retrotransposons well-suited to
build molecular marker systems [18, 22, 33–41].

1.2 Retrotransposons

as DNA Markers

Retrotransposable elements, which are among the MGEs that are
abundantly present in the genomes of plants, are known to be
excellent molecular genetic markers. The insertion of LTR retro-
transposons is random, and it occurs during the transposition
process in the continuous evolution of species. This can provide a
wealth of information for the study of evolution, species diversifi-
cation, and genomic differentiation. The transposition mechanism
for the LTR-LTR retrotransposon sequence determines the ends
after transposition and is completely consistent. Therefore, by
comparing the sequence LTR ends of the complete transposon,
the insertion time can be calculated based on their mutation rates.

RTE-based molecular genetic marker applications have become
a key part of research on genetic variability and diversity [28, 37–
39, 42–44]. The scope of their usage includes creating genetic
maps and identifying individuals or lines that carry certain genetic
polymorphic variation [45, 46]. The DNA marker system takes
advantage of the developments in molecular genetics and biochem-
istry [47], using “fingerprints” (i.e., distinctive patterns of DNA
fragments resolved by gel electrophoresis or next-generation
sequencing (NGS)). Specifically, molecular genetic markers work
by finding polymorphisms in a nucleotide sequence at a particular
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genomic location; when this nucleotide sequence varies between
the parents of the chosen cross, it can be discernible between plant
accessions; hence, its pattern of inheritance can be investigated.

Retrotransposon-based molecular genetic systems (Fig. 2)
detect the insertion of elements hundreds to thousands of nucleo-
tides long, although generally only the insertion joint itself is
screened due to the impracticality of amplifying and resolving
long fragments and discriminating their insertion sites. The LTRs
that encompass a complete retrotransposon contain ends that are
highly conserved in a given family of elements. Newly inserted
retrotransposons, therefore, form a joint between the conserved
LTR ends and flanking anonymous genomic DNA. Most
retrotransposon-based marker systems use polymerase chain reac-
tion (PCR) to amplify a segment of genomic DNA at this joint.

Fig. 2 Retrotransposon-based molecular marker methods. Multiplex products of various lengths from different
loci are indicated by the bars above or beneath the diagrams for each reaction. Primers are indicated by
arrows. (a) The SSAP method. The primers used for amplification match the adapter (empty box) and
retrotransposon (LTR box). (b) The IRAP method. Amplification takes place between retrotransposons (left
and right LTR boxes) near each other in the genome (open bar), using retrotransposon primers. The elements
are shown oriented head-to-head, using a single primer. (c) The REMAP method. Amplification takes place
between a microsatellite domain (vertical bars) and a retrotransposon, using a primer anchored to the
proximal side of the microsatellite and a retrotransposon primer. (d) The inter-PBS (iPBS) amplification
scheme and LTR retrotransposon structure. Two nested LTR retrotransposons in inverted orientations
amplified from a single primer or two different primers from primer binding sites. The PCR product contains
both LTRs and PBS sequences as PCR primers in the termini. In the figure, the general structure for PBS and
LTR sequences and the several-nucleotide-long spacer between 50-LTR and PBS are schematically shown
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Generally, one primer is designed to match a segment of the LTR
that is conserved within a given family of elements, but different in
other families. The primer is oriented toward the LTR end. The
second primer is designed to match some other features of the
genome. The first described retrotransposon method was SSAP
(sequence-specific amplified polymorphism; see Fig. 2) in barley,
where one primer matched the end of the BARE1 retrotransposon
and the other matched an AFLP (amplified fragment length
polymorphism)-like restriction site adapter [48].

1.3 Inter-

Retrotransposon

Amplified

Polymorphism (IRAP)

and Retrotransposon

Microsatellite

Amplified

Polymorphism

(REMAP)

Inter-repeat amplification polymorphism techniques such as inter-
retrotransposon amplified polymorphism (IRAP), retrotransposon
microsatellite amplified polymorphisms (REMAP), and inter-
MITE amplification have been used to amplify abundantly dis-
persed repeats, including the LTRs of retrotransposons and
SINE-like sequences (inter-SINE amplified polymorphisms)
[49]. The IRAP and REMAP (Fig. 2) PCR methods represent a
departure from SSAP (Chapter 12)—no restriction enzyme diges-
tion or ligation step is needed, and the products can be resolved by
conventional agarose gel electrophoresis without the need of a
sequencing apparatus. The IRAP method detects retrotransposon
insertional polymorphisms by amplifying the portion of DNA
between two retroelements. It uses one or two primers pointing
outward from an LTR and therefore amplifies the tract of DNA
between two nearby retrotransposons. IRAP can be carried out
with a single primer matching either the 50 or 30 end of the LTR
(oriented away from the LTR itself) or with two or more primers.
The two primers may be from the same retrotransposon element
family or from different families. The PCR products—and there-
fore the fingerprint patterns—result from amplification of hundreds
to thousands of target sites in the genome. LTR primers from one
species can be used on other species because related species have
phylogenetically related TE sequences. In such cases, primers
designed for conservative TE sequences are advantageous.

The complexity of the pattern obtained will be influenced by
the retrotransposon copy number, which mirrors genome size, as
well as by their insertion pattern and the size of the retrotransposon
families of interest. Furthermore, thousands of products can nei-
ther be simultaneously amplified to detectable levels nor resolved
on a gel system. Hence, the pattern obtained represents the result
of competition between the targets and products in the reaction. As
a result, the products obtained with two primers do not represent
the simple sum of the products obtained with the primers
individually.

If retrotransposons were fully dispersed within the genome,
IRAP would either produce products too large to provide a clear
resolution on gels or target amplification sites too far apart to
produce products with the available thermostable polymerases.
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This is because retrotransposons generally tend to cluster together
and may even nest within each other. For example, the Wis2 and
Wilma retrotransposons from grasses, which are the average abun-
dant superfamily copia elements, are present as roughly 20,000 full-
length copies of about 8 kb in the wheat genome. IRAP with
Wilma and Wis2 primers displays a range of products from
500 bp to upward of 5 kb (Fig. 3) [50, 51].

The REMAP method is similar to IRAP, except that one of the
two primers matches a simple sequence repeat (SSR) motif with one
or more non-SSR anchor nucleotides present at the 30 end of the
primer. Microsatellites of the form (NN)n, (NNN)n, or (NNNN)n
are found throughout plant and animal genomes. Furthermore, in
cereals, they appear to be associated with retrotransposons
[16]. Differences in the number of SSR units in a microsatellite
are generally detected using primers designed for unique sequences
flanking the microsatellite. Alternatively, the stretches of the
genome that are present between two microsatellites may be ampli-
fied by inter-simple sequence repeats (ISSRs) (Chapter 14), in a way
akin to IRAP. In REMAP, anchor nucleotides are used at the 30 end
of the SSR primer, in order to both avoid slippage of the primer
within the SSR (which would produce a “stutter” pattern in the
fingerprint) and avoid detection of variation in repeat numbers
within the SSR. REMAP uses primer types that are shared by
IRAP and ISSR. It is in theory possible that the SSR primers in
REMAP could also yield ISSR products, and the LTR primers

Fig. 3 The use of IRAP in the diversity analysis of 30 genotypes of populations of Triticum dicoccoides. (a)
Results for the LTR retrotransposon Wilma (LTR primer 2108: 50-AGAGCCTTCTGCTCCTCGTTGGGT-30). (b)
Results for the LTR retrotransposon Wis2 (LTR primer 2106: 50-TAATTTCTGCAACGTTCCCCAACA-30). A size
marker (Thermo Fisher Scientific GeneRuler DNA Ladder Mix (100 to 3000 bp)) is present on both sides,
marked on the left in bp
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could also yield IRAP products. However, in practice, this rarely
occurs, probably due to a combination of factors including genome
structure and competition within the PCR.

The generation of a virtually unlimited number of unique
markers is possible through the combination of different LTR
primers or using combinations with microsatellite primers
(REMAP) [52]. The same primers produce completely different
banding patterns depending on whether they are used alone or in
combination, demonstrating that most of the IRAP/REMAP
bands were derived from sequences flanked by an LTR or a micro-
satellite on one side and by another LTR on the other side [39]. In
general, a more variable and stable pattern has been observed in
IRAP than in ISSR/RAPD (random amplified polymorphic DNA)
(Chapters 13 and 14); frequently, but not always, single priming
PCR also shows less variability than the IRAP pattern generated
when primer combinations are used, depending on the LTR
sequence [53].

1.4 Inter-PBS (iPBS)

Amplification: A

Universal Method for

Isolating and

Displaying

Retrotransposon

Polymorphisms

A major disadvantage of all retrotransposon-based molecular-
genetic marker techniques is the need for sequence information
to design retrotransposon-specific primers. The primary require-
ment is the sequence of an LTR end, either mined from a database
or produced by cloning and sequencing the genomic DNA that
flanks the conserved segments of retrotransposons. Indeed, rapid
retrotransposon isolation methods based on PCR with conserved
primers for RTE have been designed. Nevertheless, it maybe still
necessary to clone and sequence hundreds of clones to obtain only a
few good primer sequences. The LTRs do not contain conserved
motifs for distantly related species, which would allow their direct
amplification by PCR. However, all reverse transcribing elements,
including LTR and LINE retrotransposons, can be obtained by
PCR with degenerate RT primers. Based on how conserved the
reverse transcriptase domain is—particularly for the Ty1-copia
type—a few restrictions and adapter-based methods for LTR clon-
ing have been developed [54]. Major classes of retrotransposons
include the Pseudoviridae (Ty1-copia), Metaviridae (Ty3-gypsy),
and Retroposineae LINE (non-LTR) groups. PCR with degenerate
RT primers can produce all reverse transcribing elements. For
instance, two Ty1-copia degenerate primers have been designed
for the RT domain encoding TAFLHG and the reverse site
YVDDML and also encoding QMDVKT and the reverse
YVDDML [55–57]. For the Ty3-gypsy element, degenerate pri-
mers have been designed for the RT domain encoding
RMCVDYR, LSGYHQI, or YPLPRID and the reverse encoding
sites YAKLSKC and LSGYHQI. The method based on reverse
transcriptase can only be applied to the family of retrotransposons
that contains this sequence. Therefore, for example, TRIM or
LARDs and unknown classes of LTR retrotransposons cannot be
found using this approach [14, 15, 58, 59].
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The LTR retrotransposons and all retroviruses contain a con-
served binding site for tRNA. Generally, tRNAiMet is the most
common, but tRNALys, tRNAPro, tRNATrp, tRNAAsn, tRNASer,
tRNAArg, tRNAPhe, tRNALeu, and tRNAGln can also be found.
Elongation from the 30-terminal nucleotides of the respective
tRNA results in the conversion of the retroviral or retrotransposon
RNA genome to double-stranded DNA prior to its integration into
the host DNA. While the process of reverse transcription is con-
served among virtually all retroelements, the specific tRNA capture
varies for different retroviruses and retroelements. The primer
binding sites (PBS) are almost universally present in all LTR retro-
transposon sequences. Hence, an isolation method for retrotran-
sposon LTRs based on the PBS sequence has the potential for
cloning all possible LTR retrotransposons.

The inter-PBS (iPBS) amplification technique has led to the
development of a virtually universal and exceedingly efficient
method, which utilizes the conserved parts of PBS sequences, for
direct visualization of polymorphisms between individuals, poly-
morphisms in transcription profiles, fast cloning of LTR segments
from genomic DNA, as well as for database searches of LTR retro-
transposons (Fig. 2). Although many retrotransposons are nested,
recombined, inverted, or truncated, they can still be easily amplified
using conservative PBS primers in any plant species tested. Frag-
ments of retrotransposons containing a 50 LTR and part of the
internal domain are often located near other entirely or similarly
truncated retrotransposons. Therefore, PBS sequences are very
often located sufficiently near to each other to allow amplification.
This situation allows the use of PBS sequences for cloning LTRs.
Where the retrotransposon density is high within a genome, PBS
sequences can be exploited for detection of their chance association
with other retrotransposons. When retrotransposon activity or
recombination has led to new genome integration sites, the iPBS
method can be used to distinguish reproductively isolated plant
lines. In this case, amplified bands derived from a new insertion
event or from recombination will be polymorphic, appearing only
in plant lines in which the insertions or recombination has taken
place.

The PBS primer(s) can amplify the sequences of nested inverted
retrotransposons or related elements that are dispersed throughout
genomic DNA. In this case, the PCR amplification occurs between
two nested elements’ PBS domains and produces fragments con-
taining the insertion junction between the two nested LTRs. After
retrieving LTR sequences from a selected family of retrotranspo-
sons, they are aligned to identify the most conserved region.
Related plant species have conserved regions in LTRs for members
of the same retrotransposon family. Thus, alignments of several
LTR sequences from several species will identify these conserved
regions. Subsequently, these conserved LTR domains can be used
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for inverted primers designed for long distance PCR, for cloning of
whole retrotransposons, and also for the IRAP, REMAP, or SSAP
marker techniques (Figs. 3 and 4). The iPBS amplification tech-
nique shows roughly the same level of polymorphism as IRAP and
REMAP, and it is an efficient method for the detection of cDNA
polymorphism and clonal differences resulting from retrotranspo-
son activities or recombination [37, 60, 61]. In order to obtain a
vigorous, rapid, and economical marker system for genotyping
applications in plant breeding and marker-assisted selection, iPBS
amplification was elaborated.

Fig. 4 The effectiveness of IRAP amplification according to genome size. An IRAP gel produced with LTR
primers: (a) LTR retrotransposon (gypsy) Bagy2 (primer 833: 50-TGATCCCCTACACTTGTGGGTCA-30). (b) LTR
retrotransposon (TRIM) Cassandra (primer 2015: 50-ACCTGGATGCAACAGAGGTCTATG-30). A size marker
(Thermo Fisher Scientific GeneRuler DNA Ladder Mix (100 to 10,000 bp)) is present on both sides, marked
on the left in bp. DNA samples of Triticeae species with a small genome include Brachypodium distachyon
(lanes 1–5); those with a large genome include Triticum aestivum (ABD; lane 6); Triticum durum (AB; lane 7);
Aegilops tauschii (D; lanes 8–9); Triticum dicoccoides (AB; lanes 10–12); Aegilops peregrina (S; lane 13);
Phleum pratense (lane 14); Avena sativa (lane 15); Secale strictum (H4342; lane 16). For the small genome of
Brachypodium distachyon, there is no IRAP amplification, whereas for the large genomes of Triticeae species,
multiple amplicons are observed

272 Ruslan Kalendar et al.



Further research on related varieties or breeding lines could be
carried out through the development of a native RTE system,
which then requires the cloning and sequencing of elements from
new a species by using iPBS amplification or a technique based on
the conservancy of the reverse transcriptase domain. The process is
initiated by the amplification and cloning of segments between
retrotransposon domains that are highly or universally conserved,
the development of new primers specific for the retrotransposon
families found, and the testing of these for their efficacy as markers.

Next-generation sequencing allows small-scale, inexpensive
genome sequencing with a turnaround time measured in days
[62, 63]. However, as NGS is generally performed and currently
understood, all regions of the genome are sequenced with roughly
equal probability, meaning that a large amount of a genomic
sequence is collected and discarded to collect sequence information
from the relatively low percentage of areas where the function is
understood well enough to interpret potential mutations.

2 Materials

2.1 Reagents All solutions should be prepared using Milli-Q or equivalent ultra-
pure water and analytical-grade reagents.

1. TE buffer (10�): 100 mM Tris–HCl, pH 7.5–8.0, 10 mM
EDTA. DNA and primers should be stored in a 1� TE
solution.

2. Electrophoresis buffer (10� TBE): 450 mM H3BO3, pH 8.8,
5 mM EDTA. Weigh 54.5 g Tris-base and 27.8 g H3BO3, add
10 mL 0.5 M EDTA, pH 8.0, dissolve in water, and bring final
volume to 1 L. Store at room temperature.

3. Gel loading buffer (10�): 20% (w/w) Polysucrose
400, 100 mM Tris–HCl, pH 8.0, 10 mM EDTA, ~0.01%
(w/w) Orange G, and ~0.01% Xylene Cyanol FF. Dissolve
10 g Polysucrose 400 (Ficoll 400) in 80 mL 10� TE buffer.
Add Orange G and Xylene Cyanol FF according to the desired
color intensity. Store at 4 �C.

4. Thermostable DNA polymerase: many types and sources of
recombinant thermostable DNA polymerases are effective.
Those that are most preferable for PCR use are the recombi-
nant DNA polymerases from Thermus aquaticus (Taq) where
applicable (see Note 1). A polymerase mix consisting of
50 units of Taq DNA polymerase and 1 unit of Pfu DNA
polymerase improves amplification of long bands and the accu-
racy of the PCR.

5. PCR reaction buffers (1�): several PCR buffers for Taq poly-
merases are suitable for PCR: Buffer 1: 60 mM Tris-SO4
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(pH 9.0), 2 mM MgSO4, 20 mM (NH4)2SO4. Buffer 2:
10 mM Tris–HCl (pH 8.8), 2 mM MgCl2, 50 mM KCl, 0.1%
Triton X-100. Buffer 3: 50 mM Tris–HCl (pH 9.0), 1.5 mM
MgCl2, 15 mM (NH4)2SO4, 0.1% Triton X-100. The PCR and
its efficiency depend on which buffer and enzyme combination
is used (see Note 1).

6. Ethidium bromide solution in water, 0.5 mg/mL. Store at
room temperature.

7. DNA ladder for electrophoresis 100–10,000 base range. DNA
ladder should be diluted with 1� gel loading buffer to a final
concentration of 25 ng/μL.

8. Agarose wide range for DNA electrophoresis with gel strength
>1700 g/cm2 can be used.

2.2 Equipment 1. Thermal cycler for 0.2 mL tubes or plates (96-well), with a
rapid heating and cooling capacity between 4 �C and 99 �C—
the temperature should be able to change by 5–10 �C per
second.

2. Power supply (minimum 300 V, 400 mA) for electrophoresis.

3. Horizontal electrophoresis apparatus without special cooling.
Most commercially available medium- or large-scale horizontal
DNA gel electrophoresis systems are suitable (see Note 2).

4. Gel comb with at least 36 wells, 1 mm thickness, forming
3–4 mm wide wells, with a 1 mm well spacing (see Note 3).

5. UV transilluminator, for visualization of ethidium bromide-
stained or SYBR Green-stained nucleic acids, with a viewing
area of 20 � 20 cm.

6. Imaging system. A digital gel electrophoresis scanner for detec-
tion of ethidium bromide-stained nucleic acids by fluorescence
(532 nm green laser) with a resolution of 50–100 μm. Software
such as ImageJ (https://imagej.nih.gov/ij/) is required for
image analysis and manipulation.

2.3 DNA Template The DNA template should be diluted with 1� TE solution to
obtain the appropriate working concentration (5–10 ng/μL) and
stored at 4 �C. Pure DNA can be stored at 4 �C for many years
without showing any PCR inhibition or decrease in amplification
efficiency for DNA fingerprinting.

The quality of genomic DNA plays an important role in the
quality of the resulting fingerprint. In order to be used in DNA
fingerprinting applications, the target DNA should be free of con-
taminants that inhibit PCR and other downstream applications (see
Note 4).

Furthermore, contaminated DNA will decline in PCR perfor-
mance after prolonged (e.g., 1 month or longer) periods of storage
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due to chemical modification. Such DNA should be extracted, for
example, with methods involving CTAB in weakly acidic conditions
(pH< 6), followed by chloroform DNA extraction (see Chapter 3).
Depending on the biological material, DNA can be precipitated by
filtration through a column with a glass microfiber filter or through
cellulose paper.

Pure DNA should exhibit an A260/A230 ratio in the range of
1.8–2.0. Significantly lower values may indicate contamination
with polysaccharides. The integrity of the genomic DNA samples
extracted can be analyzed by electrophoresis on a 1% agarose gel for
1 h at 70 V, with a DNA ladder for scale.

2.4 Primer Design PCR primers should be designed to match an LTR sequence close
to either its 50 or 30 end and oriented so that the amplification
direction is toward the nearest end of the LTR. Generally, the
design should be based on a sequence alignment for the represen-
tative LTRs from a particular family of elements and placed within
the most conserved region for that family. For LTRs, it is often
useful to test primers at several locations within the LTR or internal
part of the retrotransposon and in both orientations—particularly if
there is evidence for nested insertions in the genome. Primers can
be placed directly at the end of the LTR facing outward, as long as
they do not form dimers or loops. For primers placed at the edge of
the LTR, one or more additional selective bases can be added at the
30 end in order to reduce the number of amplification targets. For
example, if the initial primer yields amplification products contain-
ing too many weak individual bands for confident analysis by gel
electrophoresis, a second round of primer design with additional
bases should be included.

Database searches can be used to find unannotated, native LTR
sequences that match the characterized retrotransposons from
other species (Tables 1 and 2). However, care should be taken
when defining the ends of the LTRs. Generally, mapping of the
RT-primer binding sites PBS and PPT is needed in order to define
the LTR ends with confidence. Microsatellite primers for REMAP
or ISSR should be designed according to two principles: first, the
primer length should be between 19 and 22 bases; second, the last
base at the 30 end of the primer should be designed as a selective
base that is absent in the repeat unit itself. Examples of LTR
conservation and consequent primer design for LTRs and micro-
satellites are provided in Tables 1, 2 and 3.

Our primers were designed using the FastPCR software or
online Java Web tools [52, 64–67] (see Note 5).
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Table 1
ISSR primers

ID Sequence ISSR primer Tm (�C)a CG (%)
Linguistic
complexity (%)b

Dinucleotide microsatellites:

(CA)10G CACACACACACACACACACAG 56.8 52.4 23

(CA)10T CACACACACACACACACACAT 55.8 47.6 23

(CA)10A CACACACACACACACACACAA 56.0 47.6 21

(TG)10G TGTGTGTGTGTGTGTGTGTGG 57.7 52.4 21

(TG)10C TGTGTGTGTGTGTGTGTGTGC 58.3 52.4 23

(TG)10A TGTGTGTGTGTGTGTGTGTGA 56.5 47.6 23

(AG)10G AGAGAGAGAGAGAGAGAGAGG 52.4 52.4 21

(AG)10C AGAGAGAGAGAGAGAGAGAGC 53.1 52.4 23

(AG)10T AGAGAGAGAGAGAGAGAGAGT 51.5 47.6 23

(AC)10G ACACACACACACACACACACG 58.1 52.4 23

(AC)10C ACACACACACACACACACACC 57.7 52.4 21

(AC)10T ACACACACACACACACACACT 56.4 47.6 23

(GA)10T GAGAGAGAGAGAGAGAGAGAT 50.4 47.6 23

(GA)10C GAGAGAGAGAGAGAGAGAGAC 51.6 52.4 23

(GA)10A GAGAGAGAGAGAGAGAGAGAA 50.6 47.6 21

(GT)10T GTGTGTGTGTGTGTGTGTGTT 56.0 47.6 21

(GT)10C GTGTGTGTGTGTGTGTGTGTC 56.8 52.4 23

(GT)10A GTGTGTGTGTGTGTGTGTGTA 55.2 47.6 23

Tri-nucleotide microsatellites:

(CTC)6G CTCCTCCTCCTCCTCCTCG 56.3 68.4 30

(CTC)6T CTCCTCCTCCTCCTCCTCT 54.4 63.2 24

(CTC)6A CTCCTCCTCCTCCTCCTCA 54.7 63.2 30

(GAC)6C GACGACGACGACGACGACC 59.7 68.4 30

(GAC)6T GACGACGACGACGACGACT 58.3 63.2 32

(GAC)6A GACGACGACGACGACGACA 58.6 63.2 30

(CAC)6G CACCACCACCACCACCACG 60.0 68.4 30

(CAC)6T CACCACCACCACCACCACT 58.1 63.2 30

(CAC)6A CACCACCACCACCACCACA 58.4 63.2 24

(ACC)6G ACCACCACCACCACCACCG 60.7 68.4 30

(ACC)6T ACCACCACCACCACCACCT 58.9 63.2 30

(continued)
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3 Methods

3.1 PCR Protocol for

IRAP, REMAP, and

iPBS

The method described below applies to standard Taq DNA poly-
merase. PCR products can be separated using an agarose gel elec-
trophoresis protocol. Alternatively, if fluorescent-labeled primers
are used following TaiI digestion of PCR fragments, Fluorescent
Image Analyzer gel systems may be employed. For separation on
sequencing systems, fluorescent-labeled primers must be used; no
special reaction conditions are needed.

1. The 25 μL reaction with Taq DNA polymerase should include
the following: 25 ng DNA, 1� PCR buffer (containing
1.5–2.0 mM MgCl2), 0.2–1 μM primer(s), 200 μM dNTPs,
and 0.2 μL (1 U) TaqDNA polymerase (5 U/μL) (seeNote 6).

2. Centrifuge all tubes or the plate before starting the PCR.

3. The PCR with Taq DNA polymerase (60 min total) should
consist of the following steps: 3 min initial denaturation step at
95 �C; 30–32 cycles of 15 s at 95 �C, 20 s at 55�–72 �C, and
60 s at 72 �C; a 5 min final extension at 72 �C. The thermal
cycling conditions can be varied without large effects on the
resulting band pattern (see Note 7).

4. PCR product can be stored at 4 �C overnight.

3.2 Sample

Preparation and

Loading

1. Add an equal volume of 2� loading buffer to the completed
PCR in tubes or plates and mix well.

2. Collect the mixture by a short centrifugation (turn a benchtop
microcentrifuge on and immediately off).

3. Load the gels with a sample volume of 8–10 μL (see Note 8).

Table 1
(continued)

ID Sequence ISSR primer Tm (�C)a CG (%)
Linguistic
complexity (%)b

(ACC)6C ACCACCACCACCACCACCC 60.4 68.4 24

(ACA)6G ACAACAACAACAACAACAG 48.5 36.8 30

(ACA)6T ACAACAACAACAACAACAT 47.6 31.6 30

(ACA)6C ACAACAACAACAACAACAC 48.9 36.8 24

aOligonucleotide concentration is 200 nM, 0 mM Mg2+ [65]
bSequence linguistic complexity, nucleotide arrangement, and composition [65]
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Table 2
Retrotransposon LTR primers

ID Sequence LTR primer TE name Tm (�C)a CG (%)
Linguistic
complexity (%)

560 TTGCCTCTAGGGCATATTTCCAACA Wis2 57.7 44.0 93

554 CCAACTAGAGGCTTGCTAGGGAC 58.6 56.5 80

2105 ACTCCATAGATGGATCTTGGTGA 54.1 43.5 88

2106 TAATTTCTGCAACGTTCCCCAACA 57.0 41.7 83

2107 AGCATGATGCAAAATGGACGTATCA Wilma 57.2 40.0 84

833 TGATCCCCTACACTTGTGGGTCA 58.4 52.2 88

2108 AGAGCCTTCTGCTCCTCGTTGGGT 62.9 58.3 83

516 TCCTCGTTGGGATCGACACTCC 59.8 59.1 82

2109 TACCCCTACTTTAGTACACCGACA Daniela 55.8 45.8 74

2110 TCGCTGCGACTGCCCGTGCACA 67.2 68.2 78

2111 CAGGAGTAGGGTTTTACGCATCC 57.3 52.2 88

2112 TGCTGCGACTGCCCGTGCACA 65.6 66.7 72

2113 TACGCATCCGTGCGGCCCGAAC 66.1 68.2 90

2114 GGACACCCCCTAATCCAGGACTCC Fatima 61.8 62.5 76

2115 CAAGCTTGCCTTCCACGCCAAG 61.5 59.1 75

2116 CGAACCTGGGTAAAACTTCGTGTC 58.3 50.0 86

2117 AGATCCGCCGGTTTTGACACCGACA 63.9 56.0 81

432 GATAGGGTCGCATCTTGGGCGTGAC Sukkula 63.5 60.0 93

480 GGAACGTCGGCATCGGGCTG 63.1 70.0 82

1319 TGTGACAGCCCGATGCCGACGTTCC 66.8 64.0 81

2123 GGAAAAGTAGATACGACGGAGACGT Wham 58.0 48.0 70

483 TCTGCTGAAAACAACGTCAGTCC 57.5 47.8 80

1623 TGCGATCCCCTATACTTGTGGGT 58.6 52.2 90

552 CGATGTGTTACAGGCTGGATTCC Bagy1 57.9 52.2 93

1369 TGCCTCTAGGGCATATTTCCAACAC BARE-1 58.6 48.0 93

2015 ACCTGGATGCAACAGAGGTCTATG Cassandra 57.7 50 93

aOligonucleotide concentration is 200 nM, 0 mM Mg2+
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Table 3
PBS 18-mers primers

ID Sequence Tm (�C)a CG (%)
Linguistic
complexity (%)

2217 ACTTGGATGTCGATACCA 51.0 44.4 89

2218 CTCCAGCTCCGATTACCA 54.4 55.6 81

2219 GAACTTATGCCGATACCA 50.1 44.4 89

2220 ACCTGGCTCATGATGCCA 56.9 55.6 81

2221 ACCTAGCTCACGATGCCA 56.4 55.6 89

2222 ACTTGGATGCCGATACCA 54.0 50.0 86

2224 ATCCTGGCAATGGAACCA 54.4 50.0 83

2225 AGCATAGCTTTGATACCA 48.9 38.9 81

2226 CGGTGACCTTTGATACCA 52.6 50.0 83

2228 CATTGGCTCTTGATACCA 50.2 44.4 86

2229 CGACCTGTTCTGATACCA 52.0 50.0 83

2230 TCTAGGCGTCTGATACCA 52.4 50.0 92

2231 ACTTGGATGCTGATACCA 51.2 44.4 83

2232 AGAGAGGCTCGGATACCA 54.7 55.6 83

2237 CCCCTACCTGGCGTGCCA 62.8 72.2 78

2238 ACCTAGCTCATGATGCCA 53.6 50.0 83

2239 ACCTAGGCTCGGATGCCA 58.3 61.1 92

2240 AACCTGGCTCAGATGCCA 56.9 55.6 89

2241 ACCTAGCTCATCATGCCA 53.6 50.0 78

2242 GCCCCATGGTGGGCGCCA 67.0 77.8 67

2243 AGTCAGGCTCTGTTACCA 53.1 50.0 89

2244 GGAAGGCTCTGATTACCA 51.8 50.0 94

2245 GAGGTGGCTCTTATACCA 51.2 50.0 94

2246 ACTAGGCTCTGTATACCA 49.2 44.4 89

2249 AACCGACCTCTGATACCA 52.9 50.0 81

2251 GAACAGGCGATGATACCA 52.8 50.0 86

2252 TCATGGCTCATGATACCA 51.0 44.4 78

2253 TCGAGGCTCTAGATACCA 51.7 50.0 89

2255 GCGTGTGCTCTCATACCA 55.9 55.6 81

2256 GACCTAGCTCTAATACCA 47.8 44.4 81

2257 CTCTCAATGAAAGCACCA 50.8 44.4 83

(continued)
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3.3 Casting the

Agarose Gel

1. Prepare 200 mL of 1.2% (w/v) agarose containing 1� TBE
buffer in a 500 mL bottle. This volume is required for one gel
with the dimensions 0.4 cm � 20 cm � 20 cm.

2. Dissolve and melt the agarose in a microwave oven and then
allow to slowly cool until its temperature drops to about
50–60 �C (see Note 9).

3. The ethidium bromide solution can be added at a rate of 50 μL
per 200 mL, to bring the final concentration to 0.5 μg/mL.
Alternatively, the gel can be stained at the end of the run (see
Note 7).

4. Pour the agarose into the gel tray (20 � 20 cm) and set the gel
combs. Allow the agarose to solidify at room temperature for at
least 1 h.

5. Fill the chamber with 1� TBE running buffer until the gel is
covered by about 3–5 mm of buffer.

3.4 Gel

Electrophoresis

For a standard 20 � 20 cm gel, carry out electrophoresis at a
constant 80–100 V for 5–9 h (in total, 700–900 volt-hours) (see
Note 10).

3.5 DNA

Visualization

DNA can be visualized directly by casting ethidium bromide into a
gel as described above or by incubating in an ethidium bromide
solution of equivalent strength following electrophoresis.

A high-quality gel scanner with good sensitivity and resolution
is very important (see Note 11).

Table 3
(continued)

ID Sequence Tm (�C)a CG (%)
Linguistic
complexity (%)

2295 AGAACGGCTCTGATACCA 53.3 50.0 94

2298 AGAAGAGCTCTGATACCA 49.8 44.4 86

2373 GAACTTGCTCCGATGCCA 56.5 55.6 86

2395 TCCCCAGCGGAGTCGCCA 63.9 72.2 75

2398 GAACCCTTGCCGATACCA 55.4 55.6 86

2399 AAACTGGCAACGGCGCCA 61.8 61.1 75

2400 CCCCTCCTTCTAGCGCCA 59.5 66.7 75

2401 AGTTAAGCTTTGATACCA 46.3 33.3 92

2402 TCTAAGCTCTTGATACCA 47.5 38.9 89

2415 CATCGTAGGTGGGCGCCA 60.9 66.7 86

aOligonucleotide concentration is 1000 nM, 0 mM Mg2+
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4 Notes

1. We have tested several Taq DNA polymerases, including
DreamTaqDNA Polymerases (Thermo Fisher Scientific), One-
Taq® (New England Biolabs), LongAmp® Taq DNA Polymer-
ase (New England Biolabs), and FIREPol® (Solis BioDyne).

2. Small electrophoresis boxes and short gel trays are not suitable
due to the large number of PCR products that need to be
resolved. We routinely employ an apparatus with a run length
of 20 cm.

3. This comb is ideal for analysis of any PCR amplification prod-
uct or DNA restriction enzyme digest. The small space
between the slots is important for analysis of banding patterns
and for comparing lanes across the gel. Also, this comb thick-
ness improves band resolution.

4. Such contaminants can chemically and mechanically block or
inhibit chemical or enzymatic reactions, including denatur-
ation and hybridization of nucleic acids; contaminants can
also degrade or modify the nucleic acid. These contaminants
include high-molecular-weight substances, such as polysac-
charides and polyphenols, as well as substances of lower molec-
ular weight, such as pigments, secondary metabolites, lipids,
humic substances, and low-molecular-weight enzyme inhibi-
tors or oligonucleotides. Therefore, in order to use the geno-
mic DNA contained in biological materials, it is important that
these substances are eliminated entirely from the sample.

5. It must be expected that not all primers (those derived from
retrotransposons or ISSR primers) will work in the PCR. The
genome may contain too few retrotransposon or microsatellite
target sites, or these targets may be too dispersed for the
generation of PCR products. Alternatively, sequence diver-
gence in ancient retrotransposon insertions or polymorphisms
between heterologous primers and native elements may lead to
poor amplification. Some primers generate smears under all
PCR conditions. Many sources can contribute to this problem,
including primer structure, variability in the target site, and
competition from other target sites. Generally, it is more effi-
cient to design another primer than to try to identify the source
of the problem. Furthermore, primers that produce a single,
very strong band are not suitable for fingerprinting.

6. The PCR can be set up at room temperature. Prepare a master
mix for the appropriate number of samples to be amplified, plus
at least one additional sample [65]. After adding all compo-
nents to the PCR master mix—with the DNA polymerase
added last—mix well and then centrifuge. The reaction volume
may vary from 10 to 25 μL; 10 μL is enough for running two
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gels. The final primer concentration(s) in the reaction can vary
from 200 to 500 nM for combined primers. For a single PCR
primer, 400 nM should be used for IRAP and 1000 nM for
iPBS amplification. Although higher primer concentrations
increase PCR efficiency and the speed of DNA amplification,
they also produce over-amplified products.

7. The time of the annealing step can vary from 10 to 30 s, and the
annealing temperature depends on the melting temperature of
the primer, which should be between 55 �C and 68 �C (60 �C is
optimal for almost all primers and their combinations in IRAP
and REMAP).

8. The DNA concentration plays an important role in gel resolu-
tion: overloaded lanes will result in poor resolution.

9. Note that the bottle should be closed, but the plastic cap must
not be tightened. The agarose gel must be completely
melted—small undissolved inclusions will severely hamper the
quality of the results. Do not allow the gel to cool unevenly
before casting, for example, by leaving it on the benchtop or in
cool water. The best way to cool the agarose is by shaking it at
37 �C for 20 min. Careful casting of gels is critical for success.
Small, undissolved agarose inclusions in the gels will result in
bands with spiked smears. For optimal resolution, cast hori-
zontal gels 3–4 mm thick. The volume of gel solution needed
can be estimated by measuring the surface area of the casting
chamber and multiplying it by gel thickness.

10. Select running conditions that are appropriate to the configu-
ration of your electrophoresis box. Electrophoresis may cause
the gels to deteriorate after several hours; their temperature
should not exceed 30 �C, as electrophoretic resolution will be
impaired at higher temperatures. The best results are obtained
with a slower run. We routinely use 90 V for 7 h, or overnight
(14 h) at 50 V (700 volt-hours). It is useful to check the run
with a UV transilluminator toward the end of the run. For
samples with many or large (> 500 bp) bands, the gel electro-
phoresis should be performed at a constant voltage of 50 V
overnight (17 h).

11. Older video systems may be suitable for checking the success of
restriction digests, cloning reactions, or simple PCR; however,
they are not suitable for analysis of complex banding patterns.
The gels can be scanned on an imaging system with a resolu-
tion of 50–100 μm; a digital gel electrophoresis scanner can
detect ethidium bromide-stained nucleic acids by fluorescence
using a green laser (532 nm).
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Chapter 16

Introduction to Population Genomics Methods

Thibault Leroy and Quentin Rougemont

Abstract

High-throughput sequencing technologies have provided an unprecedented opportunity to study the
different evolutionary forces that have shaped present-day patterns of genetic diversity, with important
implications for many directions in plant biology research. To manage such massive quantities of sequenc-
ing data, biologists, however, need new additional skills in informatics and statistics. In this chapter, our
objective is to introduce population genomics methods to beginners following a learning-by-doing strategy
in order to help the reader to analyze the sequencing data by themselves. Conducted analyses cover several
main areas of evolutionary biology, such as an initial description of the evolutionary history of a given
species or the identification of genes targeted by natural or artificial selection. In addition to the practical
advices, we performed re-analyses of two cases studies with different kind of data: a domesticated cereal
(African rice) and a non-domesticated tree species (sessile oak). All the code needed to replicate this work is
publicly available on github (https://github.com/ThibaultLeroyFr/Intro2PopGenomics/).

Key words Whole-genome sequencing, Pool-seq, Nucleotide diversity, Molecular evolution,
Genome scans, Population structure, Admixture, Artificial and natural selection, Bioinformatics,
Perseverance

1 Introduction

Population genetics is an increasingly important discipline at the
interface between genetics and evolutionary biology focusing on
the analysis of DNA variation and evolution across different loci
and populations. Population genetic concepts help to understand
the contribution of key evolutionary forces (mutation, migration,
genetic drift, and natural selection) to the observable present-day
distribution of genetic diversity. Prior to describe how various
important and long-standing questions in plant biology can be
addressed using population genetic concepts (for plant breeding,
plant conservation biology, plant ecology for example), it is impor-
tant to notice that a major shift occurred in this discipline. Over the
last decade, cost-effective and high-throughput sequencing meth-
ods have accelerated and amplified the interest for population
genetics by taking advantage of large-scale comparisons of DNA
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sequences or large sets of single nucleotide polymorphisms (SNPs)
to better understand the contribution of the different evolutionary
forces to the present-day DNA variation, leading to the emergence
of a closely related field, called population genomics ([1] for a
historical retrospective).

Biologists have now access to very large amounts of sequencing
data. This change makes new investigations possible but also
induces a considerable shift in the professional skills needed to
generate (wet lab) or analyze the data (dry lab). Indeed, large-
scale sequencing projects with several hundreds or thousands of
samples sequenced have considerably shifted the limits in plant
research (e.g., 3000 Rice Genomes Project [2]; Arabidopsis thali-
ana 1001 Genomes Project [3]). These new investigations require
additional skills in biology, especially regarding the bioinformatic
analysis of the sequencing data (e.g., a strong experience in using
command-line versions and high-performance computing clusters,
a proficiency in scripting or programming, a solid competence in
statistical methods) to be able to handle such big genomic data
projects. This greater transdisciplinarity between genetics, infor-
matics, and statistics can make access to population genetics more
difficult. In this chapter, our main objective is to tackle this issue by
providing a simple and step-by-step guide. Unlike many great
academic writings in the field (e.g., [4]), this chapter is not inter-
ested at covering the basis of the theory of evolution, but rather at
introducing population genomics methods to beginners following a
“learning-by-doing” strategy. All the genomic data we used are
publicly available, as well as our scripts (see Subheading 2 below).

Population genetics is a broad discipline, and we do not claim
to be exhaustive. Our objective is rather to introduce population
genomics by focusing on some key analyses: the analysis of popula-
tion structure, the inference of population splits and exchanges, and
the detection of footprints of natural or artificial selection. We hope
that some plant biologists, including students, will discover the
benefits of population genomics analyses, including its applications
for breeding and conservation, despite the fact that this discipline
is, rightly or wrongly, reputed to be particularly difficult and
demanding.

2 Materials

This tutorial requires the use of command-line software (preferen-
tially on high-performance computing clusters) and some basic
knowledge about Linux and bash commands (e.g., cd, mkdir, cp,
paste, awk, grep). There are plenty of good tutorials available on the
Internet to learn these aspects in a couple of hours, such as the Ryan
Chadwick’s website (https://ryanstutorials.net).
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Due to space constraints, the code and commands are not
described in this book chapter. However, all our scripts (bash,
python, and R) are freely available on github: https://github.
com/ThibaultLeroyFr/Intro2PopGenomics/.

This code repository is therefore an essential and complemen-
tary part of this chapter.

These scripts require different softwares:

1. BayPass: http://www1.montpellier.inra.fr/CBGP/software/
baypass/download.html.

2. BWA mem: http://bio-bwa.sourceforge.net/.

3. Blast+: https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYP
E¼BlastDocs&DOC_TYPE¼Download.

4. Bowtie 2: http://bowtie-bio.sourceforge.net/bowtie2/index.
shtml.

5. FastStructure: https://rajanil.github.io/fastStructure/.

6. GATK: https://software.broadinstitute.org/gatk/download/
.

7. Plink: https://www.cog-genomics.org/plink2/.

8. Picard: https://broadinstitute.github.io/picard/.

9. R: https://cran.r-project.org/
(Rstudio is not mandatory but can be useful: https://www.

rstudio.com/products/rstudio/download/)
including R packages:

(a) ape: https://cran.r-project.org/web/packages/ape/
index.html.

(b) circlize: https://cran.r-project.org/web/packages/
circlize/index.html.

(c) ggplot2: https://cran.r-project.org/web/packages/
ggplot2/index.html.

(d) pcadapt: https://cran.r-project.org/web/packages/
pcadapt/index.html.

(e) poolfstat: https://cran.r-project.org/web/packages/
poolfstat/index.html.

(f) reshape2: https://cran.r-project.org/web/packages/
reshape2/index.html.

(g) SNPRelate: https://bioconductor.org/packages/
release/bioc/html/SNPRelate.html.

10. SAMtools: http://samtools.sourceforge.net/.

11. Seq_stat to compute nucleotide diversity and Tajima’s D:
https://tinyurl.com/yxurjgdx.

12. TreeMix: https://bitbucket.org/nygcresearch/treemix/
downloads/.
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13. Trimmomatic: https://github.com/timflutre/trimmomatic.

14. VCFtools: http://vcftools.sourceforge.net/.

15. wget: https://www.gnu.org/software/wget/.

3 Methods

After introducing notions related to the handling of large sequenc-
ing data, we will provide guidelines to perform population genomic
analyses based on two publicly available data from two different
species: African rice from [5] and sessile oaks from [6]. These two
examples were selected to cover broad plant biology-related issues,
with both crop- and wild flora-associated topics. In addition, these
two studies used different kind of sequencing data: individual-
based genotypes vs. pooled DNA samples (a mixture of the DNA
from several individuals prior to sequencing, hereafter pool-seq). As
shown in Fig. 1, all analyses described in the analyses of the pool-
seq data are based on the allele frequencies and can also be per-
formed for individual-based data, at least when a minimum of
12–15 individuals were sequenced per population. In other
words, analyses based on pool-seq data are far more limited than
individual-based sequencing data, but pool-seq represents a
cheaper strategy than the sequencing of individuals (see Subheading
3.3.1). Our analyses focus on plant species, but it has to be noted
that such analyses can also be used to analyze various non-plant
datasets, at least for diploid eukaryotic species.

3.1 From Raw DNA

Data to Genetic

Variants

1. Reads: All genomic projects start from the sequencing of very
small pieces of DNA generated by a DNA sequencer, called
reads. Despite recent advances in sequencing technologies
(hereafter NGS, “for next-generation sequencing”) to generate
long fragments (up to 100,000 bases or more, e.g., Oxford
Nanopore or PacBio technologies), these technologies remain,
at the time of writing, too expensive to sequence multiple
individuals of a given population in order to describe the
genetic variation observed within this population. Moreover,
long read technologies typically have a high error rate, that
can negatively affect the accuracy of some population genomic
analyses. Such new technologies therefore remain little used in
population genomics projects. Most population genomicists
rather use huge quantities of very short—but affordable—
sequencing reads (e.g., Illumina sequencing of both ends of a
short DNA fragment, so-called paired-end reads, generating
100–300 bases of known sequence for each end).

2. FASTQ file structure: High-throughput sequencing instru-
ments generally output sequences under a FASTQ format. A
FASTQ file is a text file with n repeats of four lines, with
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n depending on the total number of generated reads. The first
line begins with a “@” (equivalent of a “>” for a FASTA
sequence) which indicates a new sequence. This line then con-
tains a unique sequence identifier. The second line corresponds
to the sequencing read itself, i.e., the succession of the different
DNA bases read by the sequencer instrument. The third line
generally only contains a “+” character. The fourth line corre-
sponds to the quality values for the corresponding bases in
second line, in the exact same order. In other words, the
DNA sequencer provides a confidence score in the assignment
of the corresponding base call. The very first step of a popula-
tion genomic project is therefore to exclude low-quality reads
and bases from these raw FASTQ files, in order to eliminate the
majority of sequencing errors, a process commonly referred to
as read trimming.

Fig. 1 Data format and analyses using individual versus pooled samples (i.e., DNA of several individuals mixed
prior to sequencing, hereafter pool-seq). All analyses can be performed with individual data (dotted arrow), but
the pool-seq data have limitations (see also Subheading 3.3.1 for the advantages and disadvantages of pool-
seq). Methods or programs shown in green are those used in the following sections
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3. Read mapping to reference genome: All along this chapter, we
assume that a reference genome is already available for the
species you are interested in (or at least a closely related one).
If not, the best solution is to start by generating a high-quality
de novo genome assembly (this step ideally requires to establish
a close collaboration with an experienced bioinformatician). If
so, trimmed reads are then “mapped” against a reference
genome in order to find the most likely genomic location for
a read sequence, a process hereafter referred to as read
mapping. A read mapper is not strictly speaking a read align-
ment software. The read mapper tries to find the best location
(s) for a given read, but without establishing the base-to-base
correspondence with the reference sequence. It might seem
surprising but can be explained by a complex time-sensitivity
trade-off. Any increase in the sensitivity of the mapping heavily
slows down the speed of execution. To remain computationally
efficient, particularly with extremely high volumes of sequence
data, the two most commonly used read mappers, BWA [7, 8]
and Bowtie 2 [9], identify the potential loci of origin of a
sequencing read, but without performing precise local align-
ments. For short read data, these softwares remain fast and
accurate methods, but it remains important to bear this limit
in mind, especially in the future when reads will increase in
length.

4. Variant calling: The identification of genetic variants fromNGS
data, hereafter variant calling, requires the accumulation of
several reads at the same location, to increase the confidence in
the identification of polymorphisms. Such methods generally
predict the likelihood of variation at each locus to take into
account some sequencing or mapping biases. Current popula-
tion genomic studies are generally based on short polymorph-
isms, either SNP or short indels (insertions and deletions).
Large structural variations (e.g., large indels, translocations,
duplications) represent a non-negligible part of the genetic
variation but remain quite difficult to access with the com-
monly used short-read data. This specific genetic diversity is
therefore not addressed in the following sections.

3.2 Case Study 1:

Individual-Based

Genotyping

3.2.1 African Rice

Plant domestication might appear at first sight to be a simple and
abrupt transition from a wild ancestor to a domesticated species.
Following this view, it is generally assumed that only a part of the
phenotypic (and genetic) diversity of the ancestral species has been
used by the early farmers and therefore has contributed to the
newly domesticated one, generating a so-called domestication bot-
tleneck. As a consequence, theoretical work predicts that domesti-
cation is associated with a reduction of the genetic variation and a
higher mutation load, i.e., an increase in the number of deleterious
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alleles. This prediction is empirically supported in several plant or
animal species [10]. For most domesticated species, domestication
can be viewed as a long transitional process over millennia rather
than a sudden event. This induces several other layers of complexity
(reviewed in [11]), such as the possibility for (1) past and/or
contemporary gene flow between wild and domesticated species,
(2) several wild contributors, (3) several centers of domestication,
and (4) massive changes in census and effective population sizes (Ne)
of either the wild, the domesticated, or both species. All these
situations are expected to have substantial impacts on neutral diver-
sity and can generate confounding patterns leading to inappropri-
ate conclusions.

In this section, we decided to use huge NGS data from the
domesticated African rice (Oryza glaberrima). This species is char-
acterized by a small genome (<350 Mb) and a simple organization
(diploid), at least for a plant species. In addition, Cubry et al. [5]
recently investigated the evolutionary history of this species
through a large sequencing projects of 83 wild (Oryza barthii)
and 163 domesticated individuals. This study represents an excel-
lent and detailed piece of work. To speed up computations and help
the reader to replicate this work, we have focused on a subset of
23 wild and 25 domesticated individuals from the center of domes-
tication (as identified by Cubry et al. [5], corresponding to present-
day Mali, Ghana, Niger, Nigeria, Benin, and Togo).

3.2.2 Variant Discovery

from Publicly

Available Data

1. Databases: Before downloading publicly available sequence
from the Sequence Read Archive (SRA) or the European Bio-
informatics Institute (EMBL-EBI), a close reading of the web-
page associated to the project can provide considerable useful
information about the data. Both the SRA and the EMBL-EBI
website give relatively similar information, but from our per-
spective, the EMBL-EBI website is more user-friendly (Fig. 2).
In the search bar, enter the ID of a project (e.g., ERP023549
for the African rice). To have an overview of the data, click on
the associated project (for the African rice project: IRIGIN for
International RIce Genome INitiative). The webpage contains
a table with several fields by default: sample accession ID,
species name, and some information relative to the sequencing
instrument or the library protocol or different URL to down-
load the data (Fig. 2). By selecting some additional columns,
further information is available such as the number of reads or
the sizes of the gzipped FASTQ files.
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2. Data downloading to SNP dataset: To download the data, the
best solution is to use a shell File Transfer Protocol (FTP) client
such as wget. For example, the accession ERR2008855 can be
downloaded from SRA servers using the following command
in a terminal emulator: wget ftp://ftp.sra.ebi.ac.uk/
vol1/fastq/ERR200/005/ERR2008855/ERR2008855_1.
fastq.gz

wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/ERR200/005/

ERR2008855/ERR2008855_2.fastq.gz

And so on for all individuals you want to download.
All our scripts are available to download and replicate all steps

(including trimming, read mapping, and variant calling;
see https://github.com/ThibaultLeroyFr/Intro2PopGenomics/
tree/master/3.2.2/). In a nutshell, we use Trimmomatic to
remove low-quality bases using a window computing average
quality and sliding along the read, excluding all remaining bases
of the read, if the average quality over four successive bases drops
below 15. After excluding low-quality bases, reads with less than
50 remaining nucleotides are discarded. Then, we map all the
remaining reads using BWA, remove duplicates with Picard, and
perform the variant calling under GATK. We use the GATK
HaplotypeCaller to first generate individual VCF file (gVCF for

Fig. 2 Screenshot of the EMBL-EBI webpage for the African rice sequencing project described in Cubry et al. [5]
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genomeVariantCall Format) and thenperform the joint genotyp-
ing of the 48 individuals (joint VCF in Fig. 1). Low-quality SNPs
are excluded, generating a set of 6,150,642 filtered SNPs (i.e.,
with a “PASS” label in the final VCF file).

3.2.3 Population

Structure

Genetic differences between populations can be investigated by
examining population structure—sometimes referred to as popula-
tion stratification—which represents genome-wide differences in
allele frequencies. Such a difference in genetic ancestry among
individuals is possible because the samples can be derived from
several populations that have experienced different demographic
histories. As a consequence, all population genomics project first
assess population genetic structure in order to take it into account
in the downstream analyses. Aside from biological reasons, analyses
of population structure allow to identify errors such as the acciden-
tal misidentification of some individuals arising during sample
preparation, sequencing, or bioinformatics phases.

Given that this population structure represents a systematic
shift in allele frequencies, a very large set of SNPs is unnecessary
to investigate population structure patterns. A limited number of
unlinked SNPs randomly selected across the entire genome (e.g.,
few thousands of SNPs with a low proportion of missing data) is
sufficient to get an accurate picture of the population structure.
Such genome complexity reduction is also more computationally
efficient and reduces the number of variants in strong linkage
disequilibrium (LD). LD represents a deviation from the hypothe-
sis of random association of alleles within a genome and may impact
the inferred population structure (seeNote 1). Indeed, most popu-
lar population genetic tools use models assuming no or weak
linkage disequilibrium within populations, including the most
widely used model-based population genetics program STRUC-
TURE [12–14].

1. Principal component analysis (PCA): PCA is a commonly used
exploratory analysis to infer population structure among indi-
viduals [15]. PCA helps to visualize genetic distance and relat-
edness between individuals by calculating principal
components, with the top components explaining most of the
differences among samples. In practice, PCA is sensitive to
missing data. As a consequence, depending on the proportion
of missing data in the VCF file (i.e., individuals with an
unknown genotype: “./.”), population geneticists either
exclude all SNPs with missing data or replace missing values
by the mean of the values based on the individuals with known
calls. As a general rule, it is better to investigate population
structure with few highly informative SNPs than using large
proportion of poorly genotyped SNPs. This warning is
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especially important for SNP set derived from Restriction site-
Associated DNA data (RAD-seq data, [16]) which generally
contain a large proportion of missing data.

The African rice project is based on massive Illumina
sequencing data, leading to a VCF having very little missing
data. As a consequence, we have chosen to remove all SNPs
with missing data before performing PCA (i.e., grep -v “\./\.”
[VCFfile]). An example of PCA based on the 48 African rice
samples is shown in Fig. 3. The first axis of the PCA accounts
for 14.5% of the total variance and separates four wild indivi-
duals from present-day Mali and three wild individuals from
Nigeria from all other samples. The second axis separates wild
Nigerian samples from all other Malian samples. The third axis
mostly separates 12 O. barthii samples from Mali. In summary,
the PCA indicates different outcomes in the two species, with
distinct population clusters observed in the wild species, while
the domesticated species forms a single, relatively homoge-
neous, genetic group.

2. Bayesian clustering: In addition to PCA, Bayesian clustering
programs assigning individuals to ancestral populations such as
Structure [12–14], TESS 2 [17], and BAPS [18] are very
popular tools to infer population structure. Some more recent
methods used roughly similar method approach but are more
adapted to large set of SNPs, e.g., FastStructure [19], LEA
[20, 21], or TESS3 [22]. These methods infer the admixture
proportion of each individual (Q-value) for a given number of
ancestral populations (“K”). After a Plink transformation of the
input file, we use the method implemented in FastStructure to
provide an example based on the African rice data (Fig. 4).
Assuming two ancestral populations (K ¼ 2), FastStructure
partially excludes seven wild O. barthii samples, including

Fig. 3 Principal component analysis of the 48 investigated samples represented by dots (left: PC1 and PC2,
right: PC1 and PC3). Geographical location and species labels are based on the information provided in
Table S1 of Cubry et al. [5]
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four from present-day Mali and three from Nigeria, from all
other samples. The individual assignment of these seven sam-
ples suggests that these samples are admixed between the
genetic cluster observed in all investigated cultivated samples
(maroon) and an unknown genetic cluster (yellow). At K ¼ 3,
FastStructure infers a third group containing 12 samples from
present-day Mali. PCA and FastStructure have generated very
concordant results concerning these 48 African rice samples.
Both analyses already suggest some complexity in the evolu-
tionary history of the African rice.

3.2.4 Diversity Nucleotide diversity greatly varies along the genome, with more
genetic variation in intergenic regions than in genes. This general
pattern reflects varying degrees of natural selection acting on the
genome, from neutral regions that do not positively or negatively
affect the organism’s ability to survive and reproduce (i.e., fitness)
to genes under strong negative or positive selection. Negative
selection refers to the purging of deleterious alleles at functionally
constrained genes because individuals with deleterious alleles are
selected against and therefore contribute less to the next generation
than the average of the population. Reciprocally, positive selection
refers to the rapid fixation of advantageous mutation because
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Fig. 4 Individual assignment to two (top) or three (below) genetic clusters by FastStructure. Each bar
represents a single individual, with portions of the bar colored depending on the ancestry proportions
estimated assuming K ¼ 2 or K ¼ 3. The number of subpopulations that maximize the marginal likelihood
is 2 (see FastStructure manual for details). Geographical location and species labels are based on the
information provided in Table S1 of Cubry et al. [5]
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individuals carrying this advantageous allele are expected to con-
tribute more to the next generation. In both cases, it is important
to keep in mind that the footprints of natural selection can extend
to the vicinity of these regions because of linkage disequilibrium,
over relatively long distance in regions of low recombination (gen-
erating so-called linked selection [23]).

Two important measures of nucleotide diversity are generally
used in population genomics, the number of polymorphic sites (θ)
and the mean proportion of nucleotide differences between differ-
ent pairs of sequences randomly sampled in a population (π). The
diversity of different groups of samples can then be compared. For
example, a reduction of diversity (ROD) index can be estimated by

computing 1� πGroup1 e:g:domesticatedð Þ
πGroup2 e:g:wildð Þ . Such ratios are partic-

ularly meaningful for different research questions associated to
plant conservation or plant breeding. For instance, the total
genetic diversity loss since the onset of plant domestication
(or along a plant breeding program) can be investigated by com-
paring wild and domesticated species (e.g., wheat [24]). Based on a
comparison of the 23 Q. barthii and 25 Q. glaberrima samples, an
overall ROD of 0.327 is estimated, suggesting that 32.7% of the
Q. barthii diversity was lost during the domestication or breeding
process. Genomic heterogeneity in ROD is also informative to
identify important genes, particularly regions with very high
ROD estimates (ROD exceeding 0.8 in red, Fig. 5). Those regions
with remarkably reduced levels of nucleotide diversity in the
domesticated species as compared to the wild progenitor species
can be informative about candidate genomic regions (including
genes) that have been subjected to strong artificial selection during
domestication or breeding.

A great statistical property of π and θ (to be strictly accurate, π
and θ

a1 , where a1¼
Pn�1

i¼1
1
i ) is that these two statistics are equal

in values assuming mutation-drift equilibrium and constant popu-
lation size (d ¼ π� θ

a1¼0, see [25]). Any excess or lack of rare alleles
in the population, however, creates deviations from zero because π
tends to underestimate the number of mutations that are rare in the
population. As a consequence, the difference between the two
estimators is a commonly used measure to evaluate nonequilibrium
demographic situation such as population expansion (generating an
excess of rare alleles, overall negative Tajima’s D value) or popula-
tion contraction (generating a lack of rare alleles, overall positive
D value).

By observing the genomic heterogeneity in Tajima’s D, the
footprints of natural and artificial selection can also be revealed in
some specific regions of the genome. Positive values can be
observed if selection maintains variation in some specific regions
(balancing selection). Strongly negative values are informative
about recent selection that has removed neutral variation
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surrounding a selected site (i.e., a selective sweep). Negative Taji-
ma’s D values found in a domesticated species can therefore be
informative about footprints of domestication and human selection
(e.g., Fig. 5 for the case study on African rice).
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Fig. 5 Circular diagram showing different nucleotide diversity estimates for the two African rice species along
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to the �2/+2 decision rule, which is a simple rule of thumb, but remain commonly used in practice to find
some candidate regions under selection. All estimates are based on nonoverlapping 100-kb sliding windows
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3.2.5 Inferring Population

Size History

Whole-genome sequence data are increasingly used to infer the
history of a population, such as the historical changes in effective
population sizes (Ne). Ne represents the number of breeding indi-
viduals in an idealized Wright-Fisher population that experiences
similar amount of genetic drift than the real population (see [26] for
a review). It may seem like an abstract concept, but the study of the
evolution of Ne is particularly important in population genomics
because Ne variation explains the dynamic of genetic diversity
within a population (loss or gain) or the fixation of deleterious
alleles (Subheading 3.2.6). Following the nearly neutral theory,
the genetic diversity θ equals 4 � Ne � μ (for a diploid species,
where μ is the per-generation mutation rate). Assuming that μ
remains constant over quite long periods of time, recent variation
of θ only depends on the effective population size (Ne)—which
captures the effect of genetic drift—with more chance for variants
to be fixed by drift in smallNe as compared to largeNe populations.

To investigate this variation, many methods based on the coa-
lescent theory are now available. Without going into details, a
coalescence event occurs when two alleles merged into a single
ancestral copy (i.e., the most recent common ancestor), when
looking backward in time starting from the present. In other
words, the coalescent theory models how genetic variants sampled
from a given population may have originated from a common
ancestor (see [27] for an introduction). By estimating the rate of
coalescence during any period of time, it is therefore possible to
infer population size changes. Over the last decade, these new
methods have rapidly become popular to provide information
about the factors driving genetic diversity of a given species,
which is especially crucial for conservation-related issues. Major
shifts in the evolutionary trajectories can be identified and poten-
tially be correlated with the major climate change periods or with
geological and anthropogenic disturbances.

The coalescent-based method implemented in SMC++ [28] is
a good method currently available to reconstruct the history ofNe.
This method is fast, easy to use, and efficient, even for analyzing
tens or hundreds of unphased whole-genome sequences. We there-
fore performed a simple test based on the African rice dataset and
observed considerable changes in past effective population size
(Fig. 6).

As a limited number of individuals of the progenitor species had
presumably been used by the early farmers and therefore contrib-
uted to the domesticated species, a drastic reduction in effective
population size (Ne) at the onset of the domestication is generally
assumed, which is commonly referred to as the domestication
bottleneck. Similarly to the study of Cubry et al. [5], we inferred
substantial changes in effective population size of the African rice
over the last 100,000 years. Surprisingly, we were, however, unable
to infer the expected reduction ofNe at the onset of the African rice
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domestication, but rather we inferred an expansion between 2000
and 10,000 years ago. This lack of support for the domestication
bottleneck can be due to a series of factors such as the reduced
number of genomes used and the existence of long runs of homo-
zygosity (masked in Cubry et al. [5]). As a consequence, the pattern
we have recovered over the last 10,000 years should be interpreted
with caution. This result is illustrative of the importance of remain-
ing prudent when interpreting such inferences. Violations of some
assumptions can substantially distort the inference of effective pop-
ulation size changes. SMC++, as well as similar methods (e.g.,
PSMC [29]; MSMC [30]), relies on the assumption of no external
gene flow (originating from another population or species). This
assumption is one of the most frequently violated. They also require
high quality data (e.g. 30X sequencing depth or more). Some more
advanced methods available to decipher more complex evolution-
ary histories (see Note 2), including several closely related species
that have experienced different periods of gene flow, can also be
helpful to provide additional statistical support for historical
changes in Ne [31–33].

3.2.6 Deleterious

Mutation Load

A downstream consequence of the domestication bottleneck is the
higher load of deleterious mutations in the domesticated species as
compared to the wild counterpart. Following the nearly neutral
theory, neutral nucleotide diversity is expected to be reduced pro-
portionally to the reduction in Ne because neutral variants have

Fig. 6 Estimated changes in past effective population sizes (Ne) for O. barthii (red) and O. glaberrima (blue)
inferred using the coalescent-based method SMC++
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more chance to be fixed by drift in smallNe as compared to largeNe
populations (Subheading 3.2.5 above). For non-neutral variants
(i.e., s 6¼ 1), fixation probabilities depend on the strength of selec-
tion and effective population size (Nes, e.g., [34]). A domestication
bottleneck is therefore expected to induce a shift in the balance
between selection and drift, with drift playing a greater role after
the bottleneck. This also holds true for deleterious mutations,
particularly slightly deleterious mutations, which are therefore
expected to accumulate more easily. In other words, the domesti-
cation bottleneck reduces the efficacy of purifying selection, the
force which tends to remove harmful mutations. Domesticated
plants are therefore expected to have an increased mutation load
as compared to their wild progenitor species. This hypothesis is
often referred to as the “cost of domestication” [35]. Some recent
studies have provided considerable empirical support for this
hypothesis, e.g., in maize [36], Asian rice [37], cassava [38], or
wine [39].

In addition to the 23 and 25 WGS of O. barthii and
O. glaberrima, we use sequencing data of three Oryza meridionalis
(Australian wild rice individuals from [40]) and three Oryza sativa
individuals (domesticated Asian rice individuals from [2]) to infer
the ancestral allele of each SNP (the original non-mutated allele).
In short, the recent phylogeny of the Oryza species based on the
WGS data suggests that O. meridionalis had diverged from the
common ancestor of African and Asian rice 2.4 million years ago.
The divergence of African and Asian rice lineages is more recent
(<1 million years ago; see [40] for details). Australian rice and Asian
rice are used to infer the ancestral allele in order to count the
number of derived alleles in the wild and the domesticated African
rice. Based on the SNPs for which the ancestral allele was unambig-
uously determined, we identify more fixed derived alleles in
O. glaberrima, as compared to O. barthii (1,050,545 and
825,826, respectively), which can be considered as another piece
of proof supporting the hypothesis of a domestication bottleneck.

To look into more details the burden of deleterious genetic
mutations, various methods are available. Simple methods such as
the comparisons of ratios of the nucleotide diversity
(or heterozygosity) at non-synonymous as compared to synony-
mous polymorphisms can be very relevant (e.g., between a wild
progenitor and a domesticated species [41]). Indeed, most within-
gene mutations changing the amino acid sequence are expected to
be slightly or strongly disadvantageous (i.e., deleterious). Higher
ratios of non-synonymous to synonymous polymorphisms are
therefore informative of higher deleterious loads. In silico methods
predicting the potential deleterious effects of mutations are more
and more popular (e.g., SIFT [42]). Subsequently, we use the
software PROVEAN (Protein Variation Effect Analyzer [43])
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which performs local alignments (BLAST) against a protein data-
base to predict whether an amino acid change in a given protein
affects its function. A score is then computed based on the 30 best
cluster hits. A negative PROVEAN score is indicative of a deleteri-
ous mutation.

This analysis requires different steps, which are detailed on
github (https://github.com/ThibaultLeroyFr/
Intro2PopGenomics/tree/master/3.2.6/Scripts_provean/).
Before running PROVEAN, we have built an NCBI “nonredun-
dant” (nr) database containing only proteins corresponding to
monocot species. By limiting to monocotyledon species, our objec-
tive is to avoid spurious BLAST alignments against evolutionary
distant species. Among a total of 120,324 candidate
non-synonymous mutations passing PROVEAN filtering criteria,
18,369 mutations are predicted to be putatively deleterious muta-
tions (score < �2.5). Among these 18,369 SNPs, the ancestral
state is unambiguously determined for 11,829 variants (see above).
Deleterious allele frequency spectra at these 11,829 putatively
derived deleterious SNPs are generated for both the wild and
domesticated species (Fig. 7). Interestingly, a higher mutation
load in O. glaberrima as compared to O. barthii is identified, but
this difference is relatively small. Our analyses are rather consistent
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Fig. 7 Deleterious mutation loads in the wild O. barthii and the domesticated O. glaberrima species, as
estimated using proteins of the African rice. DAF ¼ deleterious allele frequencies
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with a substantial deleterious mutation load in O. barthii and a
slight increase in O. glaberrima, which can be compatible with the
African rice domestication.

Looking at this difference more carefully, the number of dele-
terious alleles per individual is slightly higher in O. glaberrima
(Fig. 8), but this difference seems to be more explained by a
difference in heterozygous sites than by a strong difference in the
number of homozygous deleterious variants. Because deleterious
mutations tend to be recessive [44], such a limited difference in the
number of homozygous variants therefore suggests that this
higher mutation load may only induce a marginal fitness difference
between the two species. This first investigation already gives an
overview of the accumulation of deleterious variants, but
some analyses are available to conduct more precise measurements
[45–47].

3.2.7 FST and Genome

Scans for Selection

The fixation index FST is probably the most widely used population
genetic statistics. FST measures the differentiation between popula-
tions and ranges from 0 to 1. However, some slightly negative
values can be observed in the case of uneven sample sizes and
should be interpreted as a zero value. A value of zero indicates
complete panmixia, i.e., free interbreeding between the two
assumed populations resulting in no population structure or
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Fig. 8 Total numbers of deleterious alleles (left), heterozygous calls (center), and homozygous derived alleles
per individual for O. barthii (red) and O. glaberrima (blue). The black bar indicates average per species
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subdivision. On the contrary, a value of 1 indicates that the two
populations are homozygous for two different alleles (e.g., an SNP
with genotypes A/A observed in all individuals of the first popula-
tion and genotypes C/C for all individuals of the second popula-
tion). In other words, the higher the FST value, the more different
the allele frequencies in the two or more populations.

To give a better idea of how useful report of FST values can be,
we computed FST between samples of O. barthii and O. glaberrima
at two different genomic scales: on an SNP-by-SNP basis and using
10-kb sliding windows (Fig. 9).

Fig. 9 Fixation index (FST) values as computed using VFCtools and estimated for each SNP (external circle) or
for nonoverlapping 10-kb sliding windows (internal circle) over the 12 rice chromosomes. A color scale from
yellow (FST¼ 0) to red (FST¼ 1) is used for the SNP-by-SNP FST estimates to illustrate the continuous variation
in FST values. Empirical distribution of the observed FST values across all SNPs is shown in the center of this
circular graph (corresponding FST values for the different quantiles: 5% ¼ �0.03; 90% ¼ 0.27; 95% ¼ 0.41;
99% ¼ 0.66; and 99.9% ¼ 1.00)
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The use of the empirical distribution of the among-locus varia-
tion in FST (Fig. 9) to identify loci that deviate from neutral
expectations—and therefore representing candidate footprints for
natural or artificial selection—is inspired by the seminal study of
Lewontin and Krakauer [48]. Indeed, loci under balancing selec-
tion in the two populations are expected to exhibit lower FST
values, while regions under diversifying selection are expected to
exhibit larger differences in FST as compared to selectively neutral
loci. Diversifying selection indeed triggers allele frequency changes
over time in such a way of generating and maintaining high genetic
differences in the two populations. In practice, identifying loci
under balancing selection is a near-impossible task to achieve.
Identifying diversifying selection remains a complex issue. The diffi-
culty comes from the fact that the among-loci variation in FST is
highly dependent on the demography of the investigated popula-
tions [49–53]. Over the last 20 years, considerable attention has
been devoted to develop statistical approaches that partially address
this challenge (e.g., [54, 55]; hereafter referred to as genome scans
for selection). In this section, we introduce the use of pcadapt [56],
an R package that is well suited to identify variants with large
differences in allele frequencies between clusters of individuals.
This package has several advantages. From the user’s perspective,
this solution is easy to use under an R environment, especially with
the detailed tutorial available for this package. From amore compu-
tational and biological perspective, pcadapt is computationally effi-
cient, and the analyses do not require to group individuals into
populations—i.e., no prior information about the two or more
populations, which can be a difficult task to achieve (e.g., Subhead-
ing 3.2.3 for the African rice). In addition, pcadapt can handle very
large datasets and reports summary statistics in a reasonable
computational time, offering an alternative to the genome scan
methods based on a Bayesian framework, which are several orders
of magnitude longer (see Subheading 3.3.6 for the use of a Bayesian
method).

After a preliminary analysis revealing some regions of strong
linkage disequilibrium (LD) in the African rice dataset, this dataset
was pruned to remove SNPs in strong LD. Indeed, such an extent
of LD is expected to have a considerable impact on the analysis (see
Note 1). As a consequence, the dataset is first “pruned” to remove
SNPs in strong LD, before computing the principal components
and performing the outlier detection. Coordinates of individuals
on the two principal components (PC) (Fig. 10, as compared to
Fig. 3) are different after SNP pruning. This reduction of the LD
likely improves the ability of the PCs to capture the genome-wide
patterns reflecting ancestry differences, as commonly assumed
[57]. The first PC mostly isolates samples from O. barthii and
O. glaberrima, with the notable exception of four O. barthii
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samples from Mali. Visual evaluation of the so-called scree plot
[58] for PC1 to PC20 suggests that the three first components
explain a substantial fraction of the total variance in the data, as
compared to the 17 additional components that were also investi-
gated (Fig. 10). As a consequence, we use the implementedmethod
in pcadapt to scan genomes assuming these three components.

The genome positions of all outliers as shown in the so-called
Manhattan plots (Fig. 11) reveal that they are distributed through-
out the genome. SNPs deviating from neutral expectation and
therefore potentially under selection are unexpected to have this
distribution, since selection is unlikely to impact all the genome.
These outputs are more consistent with a substantial background
noise generating an excess of outliers. However, some genomic
regions exhibiting hundreds of variants in several narrow genomic

Fig. 10 Individual PCA and scree plot after LD thinning. (a) Coordinates of individuals on the two principal
components. (b) Coordinates of individuals on the PC1 and PC3 (c) Scree plot (proportion of explained
variance) for the 20 first PCs after LD thinning. Based on this scree plot, K ¼ 3 was preferred
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regions, e.g., on chromosome 4 or 6 (Fig. 11), are more convinc-
ing. These regions therefore represent excellent candidate regions
to identify the African rice domestication genes.

3.3 Case Study 2:

Sessile Oak

Populations

3.3.1 Pool-seq

as a Cost-Efficient Method

For many plant species, the sequencing of hundreds or more indi-
viduals using an individual-based strategy represents a too expen-
sive option. Consider, for example, the sequencing of 50 diploid
individuals at reasonable sequencing coverage (20�)—the total
sequencing effort would be around 1000�—in order to ensure
accurate individual calls for all individuals. For some biological
questions, the genotypes of all individuals are not truly necessary.
Instead, accurate population estimates of the frequency of each
allele along the genome can be sufficient [59]. In this case, a cost-
effective alternative remains possible. The strategy is to first equi-
molarly mix the DNA of these 50 individuals prior to sequencing in
order to sequence the pool at a lower coverage. Assuming that the
pool is sequenced at 100� (so resulting in a tenfold drop in the
sequencing cost), each chromosome is therefore expected to be
sequenced only once, on average, which is low. But, given the
total number of chromosome sequenced in the pool, the allele
frequency estimated for the whole population is expected to be

Fig. 11 Manhattan plots showing the chromosome position of each outlier detected using pcadapt and
assuming K ¼ 3. Score is expressed as �log10( p-values). SNPs with p-value <0.01 (i.e., �log10( p-
values)¼ 2) are shown in orange, and those with p-value<0.00001 (�log10( p-values)¼ 5) are shown in red
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accurate. Based on mathematical derivations, Gautier et al. [60]
provided theoretical support for this accuracy. These authors
showed that the sequencing of DNA pools remains an efficient
strategy under various realistic experimental designs. They also
provide an easy-to-use tool (PIFs [60]) to optimize the experimen-
tal pool-seq design considering several parameters or experimental
errors (e.g., pipetting biases).

Based on a rapid simulation using this tool and the number of
individuals previously assumed (Fig. 12), it indicates that the
sequencing of a pool of 50 individuals with a mean pool coverage
of 100� is expected to generate as accurate allele frequency esti-
mates as 26 individuals separately sequenced with a depth of cover-
age of 20� (the pool-seq strategy therefore reduces by five the
sequencing costs). Even assuming substantial experimental error
(50%) generating departure from equimolarity (i.e., a dispersion of
individual contributions around the expected mean value assuming
equal DNA quantities), the allele frequency estimates are expected
to be roughly similar to those of 23 individuals separately
sequenced, each with a depth of coverage of 20� (Fig. 12).

Fig. 12 Comparison of the accuracy in the allele frequency estimation between two strategies, as performed
using PIF [60]: a pool-seq strategy of 50 individuals sequenced at a mean pool coverage of 100� and an
individual-based genotyping strategy with a growing number of individuals sequenced at 20�. The tipping
point is 26 individuals assuming no experimental biases. Even after considering some experimental biases, a
pool-seq strategy of 50 individuals sequenced at a pool coverage of 100� is expected to outperform a design
with 20 individuals sequenced at 20� (the equivalent of 400� of sequencing data; for details, see [60])
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3.3.2 Population

Genomics in Wild

Sessile Oaks

The sessile oak (Quercus petraea), a species belonging to the
European white oaks complex, is an example of plant species with
an impressive amount of genomic resources, including huge pool-
seq data [6, 61, 62]. Sessile oaks extend from Northern Spain to
Southern Scandinavia, thus representing a large diversity of climatic
conditions (Fig. 13). In South-West French Pyrenees, some sessile
oak populations occur from lowlands to middle elevations (up to
1600 m, Fig. 13), with substantial differences in mean annual
temperature (up to 7 �C) or in precipitation sums (a difference of
up to 250 mm/year, [6] for details). In the subsequent sections, we
perform a step-by-step reanalysis of the data used in Leroy et al. [6]
to illustrate the possibilities of the pool-seq data. In this study,
18 pools were sequenced: ten sessile oak populations collected on
a latitudinal gradient in Europe (including seven populations from
France, two from Germany, and a population from Ireland) and
eight sessile oak populations from an altitudinal gradient in the
French Pyrenees (collected along two close valleys, with four popu-
lations per valley (100 m, 800 m, 1200 m, and 1600 m). The DNA
of 20–25 individuals were equimolarly mixed prior to sequencing,
except for the two populations at 1600 m for which only ten to
18 individuals were used (for details, see [6]). Analyses performed in
this section are basically performed following the same strategy
than in the original paper, but the analyses are simplified.

3.3.3 From Raw

Sequencing Data to Allele

Counts

The Illumina data can be downloaded from SRA or EMBL-EBI
using the project ID PRJEB32209. We make available on github all
the scripts used to download and perform the trimming and read
mapping and to identify variants. The pipeline is roughly similar to

Fig. 13 Sessile oak distribution and climate variation. Left: European distribution map of Q. petraea created
with QGIS from data made available by the European Forest Genetic Resources Programme (EUFORGEN [63]).
Right: Sessile oak trees in the snow. Photo taken by T. Leroy on November 22, 2015, at an elevation of 1200 m
in one of the French Pyrenees forests investigated in Leroy et al. [6] (“O12” population)
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those used for the African rice data, at least for read trimming and
mapping. A notable exception is the way in which variants are
identified. As previously described (Subheading 3.1), variant calling
methods have been developed to minimize the number of false-
positive variants (e.g., sequencing errors). Indeed, each diploid
individual possesses either two copies of the reference allele (homo-
zygous for the same allele than the reference genome), one copy
(heterozygous, with both a reference and an alternative allele), or
none (homozygous for the alternative allele). In other words, the
frequency of the reference allele estimated for each individual is
expected to be close to 1, 0.5, or 0. When the coverage is high
enough (>20), deviations from these situations can be informative
of false-positive SNPs. In contrast, such investigations are impossi-
ble to perform with pool-seq data because DNA from several
individuals are mixed prior to sequencing. As a consequence, only
few parameters can be used to exclude false-positive SNPs, i.e., the
minor allele frequency (MAF) and the depth of coverage at each
position. Illumina sequencing errors are expected to be about 1% or
less, so it is generally recommended to use a MAF that exceeds this
value (e.g., 2% or more). Similarly, coverage is expected to vary
across the genome following a Poisson distribution [64]. Extreme
values in the observed distribution of coverage depth are also
informative from some read-mapping biases inducing an excess or
deficit of coverage compared to the expectations assuming this
distribution. For example, highly covered regions can be due to
reads corresponding to two genomic loci with almost similar
sequences (e.g., recent duplications) aligning to a unique location
of the reference sequence. Such regions therefore present a high
risk of identifying false-positive SNPs. In practice, a matrix of allele
counts (Fig. 1 and Table 1) contains both allele frequencies and
coverages that can be used to filter variants.

One thing must be kept in mind, however: errors in pool-seq
data are necessarily more numerous than in individual-based
sequencing. Even after using some MAF or coverage thresholds,

Table 1
A hypothetical example of a read count matrix with two SNPs in rows

Chromosome Position
Ref
allele

Major allele
(all
populations)

Minor allele
(all
populations)

Major
allele
counts
(pop1)

Minor
allele
counts
(pop1)

Major
allele
counts
(pop2)

Minor
allele
counts
(pop2)

Chr1 47 G G C 75 30 49 55

Chr1 112 T A T 68 20 79 14

The two pools are assumed to be sequenced at a mean pool coverage of 100�. Allele frequencies can be easily derived

from this matrix (e.g., 30/(75 + 30) ¼ 0.29 for the pop1 of the SNP Chr1:47)
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the number of false-positive SNPs can remain substantial.
Population-level estimates of nucleotide diversity can be greatly
inflated, especially for species with low to extremely low genetic
diversity, for which the noise-to-signal ratio can be high. In this
section, we choose not to cover diversity-related analyses (including
comparisons of estimators, e.g., Tajima’sD) based on pool-seq data
to call for caution. It must, however, be noted that some methods
already exist (e.g., PoPoolation [65]) and some studies successfully
reported similar range of estimates based both on individual and
pool-seq datasets (e.g., oaks [62]).

3.3.4 Inferring

the History of a Set

of Populations

Allele frequencies are expected to be very informative about histor-
ical relatedness between populations. Indeed, two populations that
have a recently shared history are expected to exhibit more simila-
rities in allele frequencies because of a low influence of genetic drift,
as compared to two genetically distant populations. As a conse-
quence, inferring the history of a set of populations based on allele
frequencies is expected to be possible. This is exactly what TreeMix
[66] aims to do. This genetic tool infers the relationships among
populations as a bifurcating tree, which can therefore be considered
as an analogous to phylogenetic trees. To do so, the software first
infers the variance-covariance matrix of allele frequencies between
populations based on a large set of variants and then finds the
maximum likelihood tree explaining most of the observed variance
in relatedness between populations.

In the case of sessile oak, TreeMix computes the 18 � 18
variance-covariance matrix using a huge set of SNPs (37 million
SNPs). Because the allele frequencies at nearby SNPs are expected
to be highly correlated due to linkage disequilibrium (see Note 1),
we set the parameter k to 1000 (blocks of 1000 SNPs) to take into
account this bias. TreeMix therefore first estimates the variance-
covariance matrix based on 37,062 blocks of 1000 SNPs.

Using the R scripts from the TreeMix suite, the total variance
explained by a simple bifurcating tree can be estimated. Applied to
the sessile oak dataset, drift alone accounted for more than 89% of
the total variance in allele frequencies among populations. An
example of phylogenetic visualization of the inferred best likelihood
tree is shown in Fig. 14. As a first step, it provides a lot of informa-
tion regarding the relatedness of populations. For example, sessile
oak populations from the latitudinal gradient are genetically differ-
ent from the populations from the altitudinal gradient, especially
the six populations at the highest elevation (Fig. 14). The popula-
tion from Ireland, however, departs from this general pattern, since
this population is more related to Pyrenean populations at high
elevation.

In the great majority of cases, a simple bifurcating tree cannot
explain all the genetic variation observed in the variance-covariance
matrix. TreeMix allows adding some additional edges connecting

312 Thibault Leroy and Quentin Rougemont



distant nodes or branches. These events can be interpreted as
different migrations events, either ancient or contemporary, that
have contributed to generate populations with a mixed ancestry
(so-called admixed populations). We can therefore perform simula-
tions for a range of migration events (m).

By adding different migration events, the likelihood of the
model (or the total variance explained) is expected to increase
(Fig. 15). For example, adding a single migration node substan-
tially increase the proportion of explained variance (+3.1%; see
Fig. 16 for the corresponding tree topology).

Admixture between populations can be tested using three- and
four-population tests. These f3 and f4 tests were developed by
Reich et al. [67] and Keinan et al. [68], respectively, and are
implemented in the TreeMix suite. The tree-population test f3(A;
B;C) aims at testing if a given population A is admixed between two
other populations (B and C). Negative f3 values are indicative of
admixture (see [67] for methodological details and [6] for empirical
tests on oak data).

3.3.5 FST Fixation Indices Several bioinformatic solutions were developed to compute mea-
sures of differentiation between pools such as FST (see Subheading
3.2.7 for general information about FST). PoPoolation2 [69] is

Altitudinal gradient
French Pyrenees,
Low elevation

Latitudinal Gradient
7 Populations from France
Low elevation

Latitudinal Gradient
2 Populations from Germany
Low elevation

Latitudinal
Gradient
1 Population 
from Ireland
Low elevation Altitudinal gradient

French Pyrenees
(Luz Valley)
Middle elevation

Altitudinal gradient
French Pyrenees
(Ossau Valley)
Middle elevation

Fig. 14 Population splits inferences under TreeMix assuming a simple bifurcating tree (no migration nodes).
Left: Unrooted visualization of the best likelihood tree. Unlike in the study of Leroy et al. [6], we do not use
additional species to root the tree, i.e., to find the most basal ancestor of the tree, but only perform the
inference based on the 18 sessile oak populations. Right: Visualization of the matrix of residuals. For example,
this matrix shows that populations 124 and O16 have a remaining variation in relatedness (black square) that
is not captured by the bifurcating tree
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Fig. 16 Population splits inferences under TreeMix assuming a simple bifurcating tree and a migration node.
Left: Unrooted visualization of the best likelihood tree and the inferred migration node. Right: Visualization of
the matrix of residuals for this best tree. Unlike in Fig. 14, no strong excess of remaining variation in
relatedness between populations 124 and O16 is observed

Fig. 15 Proportion of the variance explained for a growing number of migration nodes. Only one simulation
was performed per migration node
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probably the most widely used program for this purpose. In this
section, we used the new estimator of FST recently developed by
Hivert et al. [70] because of its higher robustness to different
sources of bias associated with pool-seq ([70] for details). In addi-
tion, this new FST estimator is implemented in an R package
(“poolfstat” [70]) which also generates input files for BayPass
[54], the genome scan method used in Subheading 3.3.6.

Using the R package poolfstat, the computePairwiseFSTmatrix
function can be used to calculate pairwise FST values over the whole
dataset, which can be useful to have a rapid overview of the genetic
structure among the different pools (Fig. 17).

FST values can also be computed for each SNP using the com-
puteFST function to detect SNPs that exhibit very high levels of
differentiation among all pools (black line, Fig. 18). FST values can
also be estimated for each SNP and each pair of pools using the
computePairwiseFSTmatrix function with the following argument:
“output.snp.values ¼ TRUE” (gray lines, Fig. 18).

3.3.6 Genome Scans

of Selection

Unlike the genome scan for selection performed for the African rice
(Subheading 3.2.7), we used a Bayesian framework to detect foot-
prints of natural selection. We have chosen the method implemen-
ted in BayPass [54], which is equally suited for pool-seq and
individual sequencing data. Many other methods are available and
of interest too, including Bayenv [71, 72]. Core models of Bayenv
and BayPass are indeed very similar. First, the population structure

Fig. 17 Pairwise FST values between the 18 sessile oak pools, as computed by the R package poolfstat. To
speed up computations, computations were performed on a random selection of 100,000 SNPs among the
whole SNP set
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is captured by computing a covariance matrix of allele frequencies
across all populations. This matrix is particularly convenient since it
makes technically possible to perform extensive neutral simulations
assuming this inferred covariance matrix in order to calibrate a
measure of differentiation (Pseudo-Observed DataSets, PODS)
and then identify threshold values based on these neutral simula-
tions (but see also Note 3). Under Bayenv or BayPass, the differ-
entiation metric used is the XtX, which can be considered as a
SNP-specific FST explicitly accounting for the population structure.
Outlier SNPs are the observed variants (red, Fig. 19) deviating
from neutral expectations, i.e., those exhibiting greater XtX values
than expected based on the simulations (black, Fig. 19).

XtX outliers are not randomly distributed along the genome
but rather cluster in several genomic regions (black dots, Fig. 20).
All these regions show an excess of differentiation among popula-
tions as compared to the expectations based on the variance-
covariance matrix.

3.3.7 Genotype-

Environment Association

(GEA)

BayPass can also identify association between allele frequency dif-
ferences and population-specific covariables, such as environmental
or phenotype data (e.g., temperature, height, or yield). Assuming
that climatic or phenotypic data is available for the set of popula-
tions under investigation, it is possible to identify allele frequency
variation along these climatic or phenotypic gradients (so-called

Fig. 18 Distributions of pairwise (gray) and among-population FST (black) values. Each gray line corresponds to
the distribution of FST for one of the 153 (i.e., 18∗ 18�1ð Þ

2 ) possible pairs
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Fig. 19 Distributions of the XtX values for the observed dataset (red) and for the simulations assuming the
variance-covariance matrix (black). Thresholds corresponding to the top 1% and 0.001% of the XtX values
based on simulations are shown by the dotted lines

Fig. 20 Manhattan plots showing the chromosome positions of all SNPs and the corresponding XtX value as
computed under BayPass. SNPs with empirical XtX values exceeding the 99% and 99.999% thresholds based
on Pseudo-Observed DataSets (PODS, orange and red lines, respectively) are shown in dark gray and black,
respectively
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genetic clines). Associations to environmental covariables are often
referred to as genotype-environment associations (GEA), while
associations to phenotype are often referred to as genotype-
phenotype associations (GPA) or population Genome-Wide Asso-
ciation Study (pGWAS). The strategy is to find correlations
between allele frequencies at a given locus for a set of populations
and mean values for a given trait for the same populations. In a
nutshell, BayPass infers this “environmental effect” through a
locus-specific regression coefficient parameter (β). In BayPass, the
significance of this parameter can be tested using different decision
rules (see [54] for details). Here, we used a simple comparison of
models with and without association (i.e., a model assuming β 6¼ 0
versus β ¼ 0) and quantify this support using Bayes factors (BF).
The most positive BF values correspond to SNPs with the highest
support for the model with a significant environmental or pheno-
typic effect. In general, SNPs of great interest are those simulta-
neously exhibiting both allele frequency differences among
populations (highest XtX values) and associations (highest BF
values, Fig. 21).

Manhattan plots showing chromosome positions of the asso-
ciated SNPs (Fig. 22) reveal clusters of associated SNPs in some
genomic regions, particularly on chromosomes 1, 9, 10, and 12.
Such investigations can lead to the identification of important
genes for local adaptation possible, for example, here adaptations
to cold/warm conditions or drought/waterlogging. It is, however,

Fig. 21 Whole-genome scan for genetic differentiation (XtX) and association (Bayes factors, BF) with mean
annual temperature (left) or precipitation sums (right) covariables and identification of SNPs of interests
(orange or light blue; best candidates, red and dark blue). A simple rule-of-thumb decision was used to identify
the most strongly associated SNPs: BF¼ 15 and BF¼ 20. As an alternative, it is also possible to use the PODS
to calibrate the BF metric, in the same way as for the XtX (see Leroy et al. [6])
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crucial to keep in mind the following statement when interpreting
the results: correlation does not imply causation. GEA and GPA
analyses can provide ecologically meaningful information, but these
analyses are also prone to over-interpretation and storytelling (e.g.,
[73]).

4 Notes

1. For several analyses (e.g., PCA, clustering methods), it is
important to note that linkage disequilibrium (LD), the non-
random association of alleles within a genome between a given
locus and its genomic neighborhood, is an important factor to
control. For species with a relatively limited extent of LD across
the genome (in general native species with a high genetic
diversity), this bias is expected to be limited but can become
substantial for some species, particularly domesticated ones.
Various SNP pruning methods (e.g., SNPrune [74]) are cur-
rently being increasingly used for that purpose. We recommend
using these methods. Advices on how to use these methods are
available on the github repository.

2. It is also important to note that TreeMix (Subheading 3.3.4)
fits single admixture pulses assuming homogeneous gene flow
along the genome. This assumption is likely to be violated
because migration is expected to be impeded at some genes
maintaining genetic differences between hybridizing popula-
tions (e.g., [33] for empirical evidence). As a consequence,

Fig. 22 Manhattan plots showing the chromosome positions of the SNPs exhibiting elevated Bayes factors
(BF) as detected using BayPass. Significant SNPs in Fig. 20 are shown in colors. To facilitate readability, only
SNPs with XtX > 15 and BF > 15 for either the mean annual temperature covariable or mean annual
precipitation sums are shown
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TreeMix provides a good way to investigate potential migration
events, but the exact direction of gene flow and the intensity of
the migration edges should be interpreted with some caution.
Some more advanced modeling approaches, albeit computa-
tionally intense, can decipher the evolutionary history of the
investigated species with more confidence. These methods can
explicitly account for heterogeneous migration rates (i.e., pres-
ence of barriers to gene flow). These methods provide consid-
erably stronger statistical support for migration between
populations, as well as temporal changes in effective population
sizes, e.g., Approximate Bayesian Computation (ABC
[33, 75]) or dadi [32]. A growing number of empirical studies
have used the former (e.g., [75, 76]), the latter (e.g., [77, 78]),
or both methods (e.g., [61]).

3. Deciphering the evolutionary history of a given species is an
important step because demography can generate a substantial
background noise weakening genome scan analyses [79]. To
perform robust identification of variants under selection
(or variants in close vicinity), one of the ongoing challenges is
to better take into account the evolutionary history of the
population. Extensive simulations under the inferred most
likely evolutionary scenario can provide an accurate distribu-
tion of the expected differences in allele frequencies (e.g., FST,
XtX, or similar), thereby allowing the identification of variants
under selection among loci deviating from these demographic
expectations. Some early attempts to explicitly take into
account the inferred demography to scan genome for selection
have recently emerged (e.g., [61, 77, 80, 81]). In future, we
suspect the emergence of new methods inferring at once the
most likely demographic scenario and variants departing from
neutrality assuming this scenario.
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Chapter 17

The Application of Flow Cytometry for Estimating Genome
Size, Ploidy Level Endopolyploidy, and Reproductive Modes
in Plants

Jaume Pellicer, Robyn F. Powell, and Ilia J. Leitch

Abstract

Over the years, the amount of DNA in a nucleus (genome size) has been estimated using a variety of
methods, but increasingly, flow cytometry (FCM) has become the method of choice. The popularity of this
technique lies in the ease of sample preparation and in the large number of particles (i.e., nuclei) that can be
analyzed in a very short period of time. This chapter presents a step-by-step guide to estimating the nuclear
DNA content of plant nuclei using FCM. Attempting to serve as a tool for daily laboratory practice, we list,
in detail, the equipment required, specific reagents and buffers needed, as well as the most frequently used
protocols to carry out nuclei isolation. In addition, solutions to the most common problems that users may
encounter when working with plant material and troubleshooting advice are provided. Finally, information
about the correct terminology to use and the importance of obtaining chromosome counts to avoid
cytological misinterpretations of the FCM data are discussed.

Key words Chromosome number, DAPI, DNA ploidy level, Endopolyploidy, Genome size, Flow
cytometry, Flow histogram, C-value, PI, Plant nuclei isolation, Relative fluorescence

1 Introduction

The total amount of DNA in the nucleus of an organism is generally
referred to as the genome size and is measured either in picograms
(pg; i.e., 1�10�9 g) ormegabase pairs (Mbp,with 1 pg¼978Mbp,
[1]). People started to investigate genome size in plants even before
the structure of DNA was worked out, with the first plant to have
its genome size estimated being Lilium longiflorum in 1951
[2]. Since then, the genome sizes of over 12,000 species have
been estimated [3, 4] with the data being used not only for practical
applications (e.g., How much will it cost to sequence a genome?
How many clones are needed for making BAC libraries?) but also
for providing valuable insights into many biological fields, includ-
ing evolution, systematics, ecology, population genetics, and plant
breeding (e.g., [5–15]).
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Over the years, several methods have been used to estimate
genome sizes in plants (e.g., Feulgen densitometry, reassociation
kinetics). Nevertheless, in recent years, due to a variety of reasons,
flow cytometry (FCM) has become the method of choice
[16]. Briefly, the method involves three steps: (1) a sample of
plant tissue is chopped in a suitable buffer to release the nuclei
while maintaining their integrity; (2) the nuclei are stained with a
fluorochrome that binds quantitatively to the DNA, so the bigger
the genome, the more stain that is bound to the DNA; (3) the
nuclei are passed through a flow cytometer which measures the
amount of stain bound to each nucleus (Fig. 1a). By preparing a
combined sample which includes a plant species with a knownDNA
amount (reference standard), the relative intensity of fluorescence

Fig. 1 (a) The basic steps involved in the estimation of genome size and ploidy level by flow cytometry. (b)
Changes in the holoploid C-value at different stages of the cell cycle and following meiosis and endopolyploidy
(N.B. cells which undergo endopolyploidy (i.e., DNA synthesis not accompanied by mitosis) will have C-value
greater than 4C (i.e., 8C, 16C, 32C, etc., depending on the number of rounds of DNA replication))
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from the target plant can be converted into an absolute genome
size. It is important to realize that FCM only gives information
about the relative or absolute DNA amount of the isolated nuclei,
but it does not provide cytological information. Yet without such
information, interpretations of the chromosome number and/or
ploidy level of the species can be flawed. Subheading 1.2 below
highlights the importance of obtaining such cytological data and
the pitfalls and errors that can arise without it.

FCM can also be used to estimate the ploidy level of a plant
based on comparing the genome size of the target species either
with the genome size of a specimen of known ploidy (i.e., deter-
mined karyologically) or with an internal standard (in that case, the
reference standard must be kept constant throughout the experi-
ment, and the ploidy level of at least one target sample should be
karyologically determined). However, in such cases, the ploidy level
is referred to as the “DNA ploidy” to distinguish it from studies
where ploidy level has been determined karyologically [17]. Such
approaches are now being increasingly used to survey the diversity
of cytotypes across plant populations and have uncovered a
surprising diversity of hitherto unsuspected ploidy variation in
some species [18, 19]. Besides ploidy levels, FCM can be also
employed to explore and investigate the occurrence of endopoly-
ploidy. Endopolyploidy, where several rounds of DNA synthesis
occur without mitosis (i.e., producing cells with 4C, 8C, 16C,
etc., Fig. 1b), can occur in certain cell types within a plant and
can reach very high levels (e.g., the endosperm haustorium cells of
Mesembryanthemum crystallinum (Aizoaceae) have undergone
16 endocycles and hence, the nuclei are 65,536C) [20]. Differences
in the occurrence and levels of endopolyploidy between tissues can
result in different tissues having different DNA amounts [21]. In
addition to this variation within plants, the frequency of endopoly-
ploidy also varies between families and lineages of land plants (e.g.,
it is reported to be absent in lycophytes and liverworts but common
in mosses).

Another application of FCM is the inference of reproductive
pathways in plants (sexual vs. apomixis). Based on the same princi-
ples as for the analysis of DNA ploidy levels, this approach consists
of establishing the ratio between the relative DNA contents of the
embryo and the endosperm in the seed. This method has been
called “flow cytometric seed screening (FCSS)” [22] and has been
widely used since then inmultiple studies which aim to gain insights
into the impact of apomixis in plants and its long-term evolutionary
consequences (e.g., [23–25]). In brief, seeds from most flowering
plants formed via the sexual pathway are expected to display an
embryo-endosperm ratio of �1.5 (2C:3C) resulting from double
fertilization comprising (1) the fusion of one of the haploid sperm
cells with the haploid egg cell to make a 2C zygote and (2) the
fusion of the other haploid sperm with two haploid polar nuclei to
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form a triploid endosperm (3C). Any deviation from this ratio is
assumed to have arisen from a variety of apomictic pathways [24].

This chapter outlines the general method used to estimate
genome size and/or determine the DNA ploidy level in plants
using FCM and its multiple applications in different fields (Sub-
headings 2–4). However, given the immense diversity of plants in
terms of their morphology (e.g., woody, succulent, herbaceous)
and biochemistry (e.g., presence of pigments, tannins, phenolics,
mucilaginous compounds), several problems may well be encoun-
tered. The majority of these arise mainly from the interaction
between chemicals present in the cell cytoplasm and the binding
of the fluorochrome to the DNA [26–34] leading to erroneous
results. Thus, this chapter also outlines some of the more com-
monly encountered problems and ways in which the poor results
might be improved to overcome these issues.

In addition to the information given here, it is worth checking
databases such as the Plant DNA C-values Database [3] and the
Genome Size in Asteraceae Database (GSAD, ([35])) to see
whether a given genus of interest has previously been studied by
FCM and if so, whether any particular modifications were made to
the buffers used, etc. This will help to overcome specific problems
associated with the particular genus being analyzed. In addition,
checking such databases can be helpful to get some idea about the
range of genome sizes one might expect for a given taxon. The
Plant DNA C-values Database [3] contains data for all the major
groups of land plants and three algal lineages, while the more
focused database containing genome size data for Asteraceae
(GSAD—[36]) is ideal for specific studies focused on this family
of angiosperms. Such prior information can save a lot of time and
frustration!

1.1 Terminology

Used for Genome Size

Studies

Given that the amount of DNA varies throughout the cell cycle
(i.e., G2 nuclei have twice the DNA amount as G1 nuclei) (Fig. 1b)
and following meiosis and endopolyploidy (¼somatic polyploidy),
considerable confusion can arise when discussing genome sizes. To
overcome such issues, Greilhuber et al. [37] proposed the follow-
ing terminologies which have now been widely adopted:

1. Holoploid 1C-value (abbreviated to 1C-value) refers to the
amount of DNA in the unreplicated gametic nucleus (e.g.,
pollen or egg cell of angiosperms) regardless of the ploidy
level of the cell. The 2C-value represents the amount of DNA
in a somatic cell at the G1 stage of the cell cycle, while the
4C-value is the amount in a somatic cell at the G2 stage,
following DNA synthesis (S-phase) (see Fig. 1b).

2. Monoploid 1C-value (abbreviated to 1Cx-value) refers to the
amount of DNA in the unreplicated monoploid
(x) chromosome set. For a diploid organism where 2n ¼ 2x,
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the 1C- and 1Cx-values are the same; however, for a polyploid
organism, the 1Cx is always smaller than the 1C-value (e.g., for
a tetraploid where 2n ¼ 4x, then 1Cx ¼ 1/2 1C, whereas for a
hexaploid where 2n ¼ 6x, then 1Cx ¼ 1/3 1C, etc.).

1.2 The Importance

of Cytological Data

for Genome Size

Studies

As noted above, FCM only measures the total amount of DNA in
the nucleus and gives no specific information about the chromo-
some number or ploidy level of the plant analyzed (although this
can be deduced in certain cases as outlined in Subheading 3.2.3).
Despite this, many studies report a ploidy level or chromosome
number for the analyzed plant which has either been taken from the
literature or based on comparisons of DNA amounts found in
related species. This is, to some extent, acceptable in a stable
cytological system where there is little variation in chromosome
number and size between species. However, in plants, such situa-
tions are probably the exception rather than the rule, even between
closely related taxa, as many genera show considerable cytological
diversity—for example, (1) polyploidy, both within (e.g., [18]) and
between species (e.g., [38, 39]), is frequent; (2) large divergences
in genome size among closely related species with the same ploidy
have been reported (e.g., see Fig. 2); and (3) increases in ploidy level
or chromosome number are not necessarily accompanied by pro-
portional changes in DNA amount (e.g., see [40]).

Examples of problems and misinterpretations of genome size
that can arise through assuming the ploidy level and/or chromo-
some number of a species have been discussed by Suda et al.
[17]. Below are a few examples to illustrate the pitfalls that can
arise when karyological information is not obtained in parallel with
genome size data.

1. In species with a constant chromosome number but a big range
in size, an absence of chromosome data could lead to the
erroneous suggestion that polyploids may be present to explain
the large range of genome sizes encountered. This is illustrated
by the genus Cypripedium (Orchidaceae) where most species
have a chromosome count of 2n ¼ 20 but genome size has
been shown to vary over tenfold between species
(1C ¼ 4.1–43.1 pg) [41] (see Fig. 2a and b). Another example
can be found in the genus Heloniopsis (Melanthiaceae) where
the genome sizes for some species are twice the size of others
and yet all species have the same chromosome number of
2n ¼ 34 [42]. A similar situation has also been reported in
the genus Artemisia (Asteraceae), where the diploid species
Artemisia annua with 2n ¼ 18 chromosomes has a 1C-value
of 1.75 pg [43], while Artemisia leucodes with the same chro-
mosome number has a 1C ¼ 7.70 pg [44]. Without doing a
chromosome count, one could easily assume that A. leucodes
was a polyploid given such differences in genome size.
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2. Erroneous assumptions of ploidy level in a studied species can
arise when increases in chromosome number via polyploidy
have not been accompanied by proportional increases in
genome size. This is likely to be a common problem since
genome downsizing following polyploidy is frequently
encountered in angiosperms [45]. In extreme cases, species
with higher ploidy levels may have the same or lower genome
sizes than related species of lower ploidy. An example of this is
provided by the genus Physaria (Brassicaceae) where the high
polyploid Physaria didymocarpa with 2n ¼ 14x ¼ 56 actually
has a smaller genome (1C ¼ 2.23 pg) than a related diploid
P. bellii (2n ¼ 2x ¼ 8) with 1C ¼ 2.34 pg [46] (Fig. 2c and d).

3. Nonproportional changes in DNA content have also been
reported in different cytotypes of the same species. Once
again, this has the potential to lead to erroneous deductions

Fig. 2 Examples where chromosome size and number in related species do not correlate with genome size.
Chromosomes of (a) Cypripedium molle (1C ¼ 4.1 pg) and (b) C. calceolus (1C ¼ 32.4 pg) taken at the same
magnification showing an eightfold range in genome size but a constant chromosome number of 2n ¼ 20.
Image reproduced with permission from [41] (scale bar ¼ 10 μm). Chromosomes of (c) diploid Physaria bellii
(2n¼ 2x¼ 8; 1C¼ 2.34 pg) compared with those from (d) the high polyploid P. didymocarpa (2n¼ 14x¼ 56;
1C 2.23 pg). Both species have similar genome sizes but very different chromosome numbers and sizes.
Image reproduced with permission from [46] (scale bar ¼ 5 μm)
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of ploidy level based on genome size data alone. Both increases
and decreases in the size of monoploid genomes have been
reported with increasing ploidy levels. For example, in Larrea
tridentata (Zygophyllaceae), the hexaploid cytotype was
reported to have just 1.25 times more DNA than the tetraploid
[47]. Without chromosome data to support this, it is possible
that the hexaploid could have been misidentified as a penta-
ploid based on DNA amount alone.

In addition to these examples, it is also important to note that
many chromosomal changes and variations (e.g., aneuploidy, chro-
mosome duplications and deletions, sex and supernumerary chro-
mosomes, supernumerary segments, etc.) can arise which are
detectable as changes in DNA amount. Without identifying these
through cytological analysis, further misinterpretations of the data
may arise.

Overall, these examples serve to illustrate how serious mistakes
can be made in the absence of karyological information. Thus, it is
strongly recommended that chromosome counts are made of the
plant used for genome size estimation. If this is not possible, then
the ploidy level should always be referred to as the “DNA ploidy
level” as discussed by Suda et al. [17].

2 Materials

Detailed information about plant tissues, reagents, composition of
the isolation buffers, as well as the technical equipment needed to
carry out genome size and ploidy estimations using FCM are
described below.

2.1 Plant Tissue

and Reference

Standards

Of the potential plant tissues suitable for genome size estimation,
leaf tissue is preferred by researchers because it generally gives the
best results. Nevertheless, other plant tissues such as petals, flower
stalks, young stems (incl. petioles), cambial tissue or decorticate
twigs of woody species, roots, pollen grains (incl. pollinia), fruiting
capsules, and seeds (dried or fresh) [13, 34, 48–51] can be consid-
ered as viable alternatives for genome size estimations. When fresh
plant tissues are selected, they should be as fresh as possible and
collected from young and actively growing parts of the plant as such
material is likely to give the best results. Old and senescent tissues
will probably result in higher levels of background signal and may
contain high proportions of nuclei at the G2 phase of mitosis.

In addition, silica-dried leaves and herbarium vouchers may be
used to estimate DNA ploidy levels (e.g., [14, 52, 53]). However,
given that DNA deterioration is likely to occur in such samples, the
material is not considered suitable for high-quality estimations of
genome size in absolute units. More recently, improved protocols
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for silica-desiccated samples, including long-term storage at
�20 �C in the genus Juniperus, have shown highly consistent
results between fresh and preserved samples [14], therefore open-
ing new opportunities to explore genome size diversity in preserved
materials. That said, the suitability and consistency of the method
should be rigorously tested in each case prior to the use of such
material for genome size studies.

Notwithstanding, as an alternative to using desiccated material,
the suitability of glycerol-preserved nuclei for estimating genome
size in absolute units for material up to at least a few weeks old has
been investigated [54]. This method has been designed for field
research, and although it has some limitations (i.e., high-quality
results are only obtained when samples are kept in ice-cold buffer),
it demonstrates the efforts that researchers in this discipline may go
to in order to overcome problems associated with the current
limited timescale available to analyze large batches of fresh material
without compromising quality of the results.

Concerning reference standards, we recommend that several
species, covering a broad range of genome sizes, are kept growing
in the laboratory to enable the most appropriate standard to be
selected for each particular analysis. Many species have been used,
but we summarize some of the most popular ones in Table 1 which
work well with FCM.

2.2 Equipment 1. Set of pipettes with disposable tips (100 μL, 1 mL).

2. Razor blades (double-edged) or scalpel with replaceable blades.
A razor blade holder or alternative protective device (e.g., cork
or silicon bung) is also recommended.

3. Plastic petri dishes (c. 5–6 cm diameter).

4. Disposable nylon mesh filters (30–42 μm pore size; e.g., Sys-
mex CellTrics, cat. no. 04-0042-2316). Alternatively, regular
nylon mesh cut into squares and fitted on disposable tips can
be used.

5. Sample tubes suitable for the particular flow cytometer being
used (check manufacturer’s specifications in each case).

6. 1.5 mL tubes.

7. Sample tube racks.

8. Plastic and/or expanded polystyrene containers to fill with ice.

9. Latex, nitrile, or vinyl gloves. Safety goggles and lab coat.

10. Centrifuge fitted with a rotor suitable for 1.5 mL tubes.

11. Fridge and freezer.

12. Flow cytometer fitted with the light source suitable for excita-
tion of the DNA fluorochrome used in the study (check fluor-
ochrome’s excitation and emission spectra to select the suitable
excitation sources following the manufacturer’s
recommendations).
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13. Analytical software for evaluation of flow cytometric data (usu-
ally provided by the manufacturer of the flow cytometer).

14. Fume cupboard to carry out nuclei isolation using buffers
supplemented with either β-mercaptoethanol or dithiothreitol
(DTT) (see Note 1).

15. Cleaning and decontamination solutions for flow systems.
Domestic sodium hypochlorite (bleach) diluted 1:5 in distilled
water.

16. Calibration particles: fluorescent beads [e.g., Sysmex, cat. nos.
05-4006_R (green) and 05-4022 (UV)].

2.3 Reagents

2.3.1 Fluorochromes

The following fluorochromes are the most popular dyes used in
flow cytometry to estimate genome size and for DNA ploidy
analysis:

1. PI (propidium iodide—see Notes 1 and 2): Intercalating fluo-
rescent dye (IFD). Prepare a 1 mg/mL stock solution and filter
through a 0.22 μm filter. Store in 1 mL aliquots at �20 �C (see
Note 1).

2. DAPI (40,6-diamidino-2-phenylindole—see Notes 1 and 2):
Base-specific dye (BSD). Prepare 0.1 mg/mL stock solution

Table 1
Several reference standard species recommended for genome size estimation

Plant species 1C DNA content (pg) References

Oryza sativa ‘IR-36’ 0.50 [76]

Raphanus sativus L. ‘Saxa’ 0.55 [77]

Solanum lycopersicum L. ‘Stupiké polnı́ rané’ 0.98 [77]

Vigna radiata ‘Berken’ 1.20 [76]

Glycine max Merr. ‘Polanka’ 1.25 [78]

Petunia hybrida Vilm. ‘PxPc6’ 1.42 [79]

Petroselinum crispum ‘Champion Moss Curled’ 2.22 [80]

Zea mays L. ‘CE-777’ 2.71 [81]

Pisum sativum L. ‘Express Long’ 4.18 [79]

Pisum sativum L. ‘Ctirad’ 4.54 [82]

Pisum sativum L. ‘Minerva Maple’ 4.86 [76]

Secale cereale L. ‘Daňkovské’ 8.09 [82]

Vicia faba L. ‘Inovec’ 13.45 [77]

Allium cepa L. ‘Ailsa Craig’ 17.44 [83]

Allium cepa L. ‘Alice’ 17.42 [82]
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and filter through a 0.22 μm filter. Store in 1 mL aliquots at
�20 �C (see Note 1).

SYBR Green I has also been used in a few genome size and
ploidy studies (e.g., [55]), although much less frequently than PI
and DAPI. Its use is not described here although information on
how to prepare it for genome size estimation is given in Note 2.

2.3.2 Isolation Buffers

(See Notes 3 and 4)

1. General Purpose Buffer [56] for the one-step protocol (Subhead-
ing 3.1.1): 0.5 mM spermine·4HCl, 30 mM sodium citrate,
20 mM MOPS (see Note 1), 80 mM KCl, 20 mM NaCl, 0.5%
(v/v) Triton X-100. Adjust to pH 7.0. Store the buffer either at
4 �C if used regularly or at �20 �C in 10 mL aliquots.

2. Otto buffer [57] for the two-step protocol (Subheadings 3.1.2 and
3.1.3): Otto I: 100 mM citric acid monohydrate, 0.5% (v/v)
Tween 20 (see Note 43). Store at 4 �C. Otto II: 400 mM
Na2HPO4 (see Notes 39 and 44). Store at room temperature.
The fluorochrome (DAPI or PI; see above) can be added to
Otto II before adjusting the final volume of the stock solution.
If this is done, the buffer should be stored in the dark at room
temperature. Alternatively, the fluorochrome can be added
directly to the sample at step 10 of Subheading 3.1.2 or step
7 of Subheading 3.1.3.

Further modifications to the composition of the Otto
buffer (including the addition of different amounts of Tween
20, HCl, HNO3, and acetic acid) which were shown to
improve the estimation of genome size in some species are
given in Šmarda et al. [34].

3 Methods

3.1 Isolation of Plant

Nuclei

Nuclei suspensions can be prepared according to either the
one-step protocol (Subheading 3.1.1) or the two-step protocol
(Subheading 3.1.2). The one-step protocol using General Purpose
Buffer (see Note 3) works with many plant species. However, for
some plant groups, the two-step protocol using the Otto buffers
will provide histograms with much higher-quality peaks. A simpli-
fied version of the two-step protocol using the Otto buffer is given
in Subheading 3.1.3.

We recommend (unless specified otherwise) working under
cold conditions (i.e., keep all solutions, buffers, and prepared sam-
ples waiting for analysis on ice, and do the chopping step in a petri
dish resting on a bed of ice). Together, this helps to inhibit the
negative effect of many cytosolic compounds that may be present
(e.g., DNase, phenolics, tannins, etc.), and it can be especially
helpful when working with recalcitrant samples. Furthermore, in
some cases, the quality of the results can be further improved if the
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tubes are kept in ice cold water while the sample is being run on the
flow cytometer.

3.1.1 Isolation of Plant

Nuclei Using the One-Step

Protocol

1. Place a small amount of the selected plant tissue (usually about
1 cm2 or 20 mg) in a 6 cm petri dish (see Note 6).

2. Add 1 mL of ice-cold General Purpose Buffer to the petri dish.
This isolation buffer performs well with a wide range of plant
families. However, a selection of alternative buffers is given in
Note 4.

3. Chop the tissues in the buffer using a new razor blade or sharp
scalpel (see Note 7).

4. Add another 1 mL of the same ice-cold buffer as used in step
2 (see Note 8).

5. Mix the crude suspension by gently shaking the petri dish.

6. Filter the homogenate through a 30–42 μm nylon mesh filter
into a labelled flow cytometry tube (seeNote 9). The chopping
and filtration processes might result in a reduction in the final
volume, especially when working with dried samples. To
reduce any critical effect, (1) dried samples can be presoaked
in buffer for up to 5–10 min before step 2, and (2) filters can
also be soaked in buffer prior to filtration.

7. Add the appropriate volume of fluorochrome (Subheading
2.3.1) to the nuclei suspension and vortex gently. For a typical
sample which is c. 2 mL, the amount of stock PI added is
100 μL (i.e., working concentration: 50 μg/mL), while for
DAPI, 80 μL (i.e., working concentration: 4 μg/mL) should
be added (see Notes 10 and 11).

8. Keep samples on ice until ready to analyze (see Note 12).

9. Proceed to analyze the nuclear DNA content, vortexing the
sample before putting it on the flow cytometer (follow instruc-
tions in Subheading 3.2).

3.1.2 Isolation of Plant

Nuclei Using the Two-Step

Protocol

This procedure uses the Otto buffer (see Subheading 2.3.2; see also
Note 5 for an alternative buffer which can be used here).

1. Place a small amount of the selected plant tissue (usually about
1 cm2 or 20 mg) in a 6 cm petri dish (see Note 6).

2. Add 1 mL of ice-cold Otto I buffer.

3. Chop the tissues in the buffer using a new razor blade or sharp
scalpel (see Note 7).

4. Mix the crude suspension by gently shaking the petri dish.

5. Filter the homogenate through a 30–42 μm nylon mesh filter
into a labelled 1.5 mL tube.
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6. Pellet the nuclei by centrifuging at 150� g for 5 min (seeNotes
13 and 14).

7. Carefully remove the supernatant leaving approximately
100 μL of the buffer (see Note 15).

8. Resuspend the pellet by gently shaking and add a further
100 μL of the buffer used in step 2 (see Note 16).

9. Add 1 mL of room temperature Otto II buffer (see Note 17).

10. Add the appropriate volume of the fluorochrome to the nuclei
suspension (if it is not already in the buffer—see Subheading
2.3.2) and vortex gently. For a typical sample which is
c. 1.2 mL, the amount of stock PI added is 60 μL, while for
DAPI, 50 μL should be added.

11. Incubate the samples at room temperature for few minutes in
the dark (see Note 18).

12. Proceed to analyze the nuclear DNA content, vortexing the
sample before putting it on the flow cytometer (follow instruc-
tions in Subheading 3.2).

3.1.3 Isolation of Plant

Nuclei Using a Simplified

Two-Step Protocol

This procedure uses the Otto isolation buffer (see Subheading 2.3.2
above; see also Note 19 for alternative buffers which can be used
here).

1. Place a small amount of the selected plant tissue (usually about
1 cm2 or 20 mg) in a 6 cm petri dish (see Note 6).

2. Add 0.5 mL of ice-cold Otto I.

3. Chop the tissues in the buffer using a new razor blade or sharp
scalpel (see Note 7).

4. Mix the crude suspension by gently shaking the petri dish

5. Add 2 mL of Otto II buffer.

6. Filter the homogenate through a 30–42 μm nylon mesh filter
into a labelled flow cytometry tube (see Note 9).

7. For a typical sample which is c. 2.5 mL, the amount of stock PI
added is 100 μL to give a working concentration of 50 μg/mL,
while for DAPI, 100 μL of the stock should be added to give a
working concentration of 4 μg/mL to the nuclei suspension
(if it is not already in the buffer—see Subheading 2.3.2) and
vortex gently.

8. Incubate at room temperature for few minutes in the dark (see
Note 18).

9. Proceed to analyze the nuclear DNA content, vortexing the
sample before putting it on the flow cytometer (follow instruc-
tions in Subheading 3.2).
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3.2 Analysis

of the Nuclear DNA

Content and DNA

Ploidy Level

The flow cytometer allows the measurement of several optical
properties of the isolated particles (i.e., nuclei) that move one by
one through the flow capillary tube illuminated by a laser beam or
mercury light source. Prior to analyzing any plant sample, check
that the instrument is properly aligned using fluorescent calibration
beads (see Subheading 2.2). Subsequently test the linearity of the
flow cytometer by running a plant sample (e.g., reference standard)
and comparing the ratio between the 4C/2C peaks, which ideally
should be in the range of 1.98–2.02 sensu Doležel et al. [16].

The first step in the analysis of a new target species requires the
user to determine its relative nuclear DNA fluorescence. This step is
described in Subheading 3.2.1. Based on this information, the user
can then proceed either to Subheading 3.2.2 to determine the
absolute DNA amount or to Subheading 3.2.3 to determine the
DNA ploidy level.

3.2.1 Measurement

of the Relative Nuclear DNA

Fluorescence of a Sample

1. Load the tube containing the suspension of stained nuclei onto
the flow cytometer sample port and run for a few seconds at
low speed until the flow has stabilized through the tubing
system (see Notes 20 and 21).

2. Adjust the flow rate to a speed of 15–25 nuclei/s (seeNotes 22
and 23).

3. Once the sample is running through the flow cytometer, a flow
histogram with peaks will start to appear. The peak positions
can then be adjusted using the instrument gain settings to
move the peaks within the histogram (see Notes 24 and 25).
It is also possible to adjust the lower limit threshold so that
undesirable low-channel signals (e.g., from cell debris and
autofluorescent compounds) are excluded from the histogram.
If there is a large amount of cell debris/background fluores-
cence in the flow histogram, then see Note 26, while if addi-
tional, unexpected peaks appear, then see Note 27.

4. Measure 5000 particles (see Note 28).

5. Use the software provided by the flow cytometer manufacturer
to assess the quality of histograms by (1) estimating the pro-
portion of background, (2) checking peak symmetry, and
(3) evaluating the peak width, expressed as the coefficient of
variation, CV% (¼SD of peak/mean channel position of the
peak � 100) (see Notes 29 and 30).

6. Save the histogram if appropriate (see Note 31).

3.2.2 Measurement

of the Absolute Nuclear

DNA Content of a Sample

Using a Reference

Standard

Once the target sample has been run on its own to determine what
reference standard to use and what gain the machine should be set
at (see Subheading 3.2.1), a combined sample which includes both
the target species and reference standard can then be prepared and
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run to determine the absolute nuclear DNA content of the target
species.

To ensure the estimate of nuclear DNA content in absolute
units is as accurate as possible, FCM researchers have adopted
several best practice approaches. These include the following
recommendations: (1) three specimen plants are collected per pop-
ulation/species and three independent replicates are processed per
sample, or (2) five specimens are collected per population/species
and two independent replicates are processed per specimen;
(3) only intercalating fluorochromes (e.g., PI) should be used;
base-specific fluorochromes such as DAPI are not suitable for esti-
mating nuclear DNA content.

1. Load the sample which contains a suspension of stained nuclei
of both the target species and the selected internal reference
standard (based on results obtained in Subheading 3.2.1) onto
the flow cytometer sample port and run for a few seconds at
low speed until the flow has stabilized through the tubing
system (see Notes 20 and 21).

2. Adjust the flow rate to a speed of 15–25 nuclei/s (seeNotes 22
and 23).

3. Once the sample is running through the flow cytometer, a flow
histogram with peaks will start to appear. The peak positions
can then be adjusted, if necessary, using the instrument gain
settings to move the peaks within the histogram. It is also
possible to adjust the lower limit threshold so that undesirable
low-channel signals (e.g., from cell debris and autofluorescent
compounds) are excluded from the histogram.

4. Check to see if there is any evidence of negative effects caused
by the presence of cytosolic compounds which can affect the
accuracy of the genome size estimation. This is done by com-
paring the position of the G1 peak of the reference standard in
this combined sample with its position in a sample containing
just the reference standard (see Subheading 3.2.1). Both sam-
ples must be run at the same gain.

5. When this situation arises, alternative isolation methods should
be tested (seeNote 32); otherwise, proceed with the next step.

6. Measure 5000 particles (see Note 28) (in some protocols,
10,000 particles are recommended) and save the data (see
Note 31).

7. Use the software provided by the flow cytometer manufacturer
to assess the quality of histograms (see step 5 of Subheading
3.2.1). Assuming the quality of the histogram is suitable (i.e.,
CVs< 3%) (seeNote 29), also obtain the statistical information
for the histogram (i.e., mean peak position).
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8. Calculate the nuclear DNA amount (2C-value) of the target
plant in each replicate as follows (see Notes 33 and 34):

2C DNA content target pgð Þ ¼ target sample mean G1 peak
standard sample mean G1 peak

� 2CDNA content standard pgð Þ
For an illustrative sample histogram output and calcula-

tion, see Fig. 3.

9. Calculate the mean nuclear DNA content and the standard
deviation for the species (including all specimens and repli-
cates) (see Note 35). To convert between picograms (pg) and
megabase pairs (Mbp), use: 1 pg ¼ 978 Mbp [1].

Fig. 3 A typical flow histogram to illustrate how genome size is calculated for the
target species Guzmania monostachya using Solanum lycopersicum as the
internal reference standard. Using the output data from the flow cytometer
software, the mean relative fluorescence of the G1 peak of G. monostachya
(gray peak labelled I, i.e., 166.08) is divided by that of the mean G1 peak of the
standard S. lycopersicum (black peak labeled II, i.e., 283.77). This ratio is then
multiplied by the 2C DNA content of S. lycopersicum to give the 2C value of
G. monostachya. To convert between pg and Mbp, use the conversion factor
1 pg ¼ 978 Mbp [1] (N.B. peak III is the G2 peak of the reference standard)
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3.2.3 Measurement

of the Relative Nuclear DNA

Content of a Sample Using

a Reference Standard

to Determine DNA

Ploidy Level

Among the multiple uses of FCM, DNA ploidy estimation is
becoming highly popular as it allows the rapid screening of multiple
samples. The protocol described below is optimized to work at
either the species level or within species complexes.

1. Load the sample which contains a suspension of stained nuclei
of both the target species of unknown ploidy and either a
reference sample comprising a species of known ploidy (i.e.,
karyologically determined) or another internal standard
(in that case, as mentioned above, the ploidy level of at least
one target sample must be karyologically determined) (see
Note 36) onto the flow cytometer sample port and run for a
few seconds at low speed until the flow has stabilized through
the tubing system (see Note 20).

2. Perform steps 2 and 3 (Subheading 3.2.2).

3. Measure at least 3000 particles (seeNote 37) and save the data
(see Note 31).

4. Use the software provided by the flow cytometer manufacturer
to obtain the statistical information for the histogram (e.g.,
peak position and ratio, area, CV% (see step 5 of Subheading
3.2.1)).

5. Calculate the relative nuclear DNA amount (DNA ploidy) of
the target plant as follows:
a. If the reference sample used (with known ploidy) is the same

species as the target sample, a perfect overlap of G1 peaks will
indicate they both have the same ploidy.

b. If multiple peaks appear, then calculate the ploidy level using
the following formula:

Target sample ploidy ¼ target sample mean G1 peak
standard sample mean G1 peak

� reference sample ploidy

c. If one of the cultivars listed in Table 1 is used as the reference
standard, ploidy levels can be inferred by means of the ratio
between the G1 peaks of both the standard and the target
samples (keeping in mind that the chromosome number of
at least one of the target samples must be known). An
example of the FCM analysis of ploidy level in the genus
Sorbus (Rosaceae) is given in Fig. 4.

3.2.4 Measurement

of the Relative Nuclear DNA

Content of a Sample

to Determine the Extent

of Endopolyploidy

The protocol for detecting and measuring the level of endopoly-
ploidy is very similar to that described for the measurement of
DNA ploidy (Subheading 3.2.3 above) with just a few small adjust-
ments as outlined below.
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1. Load the sample which contains a suspension of stained nuclei
of the target species and reference standard onto the flow
cytometer sample port and run for a few seconds at low speed
until the flow has stabilized through the tubing system (see
Note 20). Although it is recommended to include a reference
standard with the target species when measuring endopoly-
ploidy, in some cases, this may not be possible as the peak
(s) of the reference standard may overlap with the peaks of
the target species. If a suitable reference standard is not
obtained (due to the overlapping peaks), the target species
can be run alone.

2. Perform steps 2 and 3 (Subheading 3.2.2). If a large number of
peaks are observed (due to high levels of endopolyploidy), it
may be necessary to adjust to a log scale so that all the peaks are
displayed within the flow histogram (e.g., Fig. 5).

Fig. 4 Flow cytometric ploidy analysis in Sorbus. DNA ploidy was assessed in
different species of Sorbus using the internal reference standard (Oryza sativa).
Diploid Sorbus aria (whose chromosome number has been counted) was used as
a reference to uncover higher ploidy levels in related species of unknown ploidy
by determining the ratio between the peaks of these Sorbus species and the
internal reference standard. S ¼ G1 peak of the internal standard (Oryza sativa);
2x ¼ G1 peak of the chromosomally determined diploid S. aria; 3x ¼ G1 peak of
the triploid S. saxicola; 4x ¼ G1 peak of the tetraploid S. rupicola
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Fig. 5 Analysis of endopolyploidy in leaf material of (a) Oscularia deltoides (Aizoaceae) and (b) Tylecodon
paniculatus (Crassulaceae) with different peaks corresponding to different levels of endopolyploidy, with some
nuclei having undergone six endocycles to reach 64C as observed in O. deltoides and five endocycles to reach
32C in T. paniculatus
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3. Measure at least 10,000 particles and save the data (see Note
31). It is important to measure this increased number of par-
ticles when exploring endopolyploidy to ensure that all peaks
are visible on the histogram.

4. Use the software provided by the flow cytometer manufacturer
to obtain the statistical information for the histogram (e.g.,
peak position and ratio, area, CV% (see step 5 of Subheading
3.2.1)).

5. Using the measured area of each peak, the endoreduplica-
tion index (Ei) can be measured using the following formula
[58]:

Ei ¼ 0 x n2cð Þ þ 1 x n4cð Þ þ 2 x n8cð Þ þ 3 x n16cð Þ . . .
n2c þ n4c þ n8c þ n16c . . .ð Þ

�

where n is equal to the area (number of nuclei) of each peak.

3.2.5 Using Seeds

to Determine Reproductive

Pathways Based

on the Ratio between

the Relative Nuclear DNA

Content of the Embryo

and the Endosperm

1. Follow the procedure to isolate nuclei describe in Subhead-
ing 3.1.1 using seeds as the starting material. Ideally, indi-
vidual seeds are used; however, if seeds are very small, then
several seeds (c. 5–10 seeds) can be processed and analyzed
together.

2. Load the tube containing the suspension of stained nuclei onto
the flow cytometer sample port and run for a few seconds at
low speed until the flow has stabilized through the tubing
system (see Notes 20 and 21).

3. Adjust the flow rate to a speed of 15–25 nuclei/s (seeNotes 22
and 23).

4. Once the sample is running through the flow cytometer, a flow
histogram with peaks will start to appear. The peak positions
can then be adjusted using the instrument gain settings to
move the peaks within the histogram (see Notes 24 and 25).
If there is a large amount of cell debris/background fluores-
cence in the flow histogram, then see Note 26, while if addi-
tional, unexpected peaks appear, then see Note 27.

5. Measure between 1000 and 3000 particles or until the embryo
and endosperm fluorescence peaks can be clearly identified and
analyzed with the flow cytometer software (see Note 28).

6. Use the software provided by the flow cytometer manufacturer
to assess the quality of histograms (see Notes 29 and 30).

7. Calculate the ratio between the fluorescence peak of the
embryo and the endosperm. Interpretation of the results can
be found in Matzk et al. [22].
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4 Notes

1. Many of the chemicals that are used in FCM are considered
hazardous, and so suitable protective equipment (i.e., gloves,
lab coat, fume cupboard) should be used to avoid health risks,
and manufacturer’s safety recommendations should be fol-
lowed when using them. For example:

MOPS (3-morpholino-propanesulfonic acid) and DTT
(dithiothreitol) may cause irritation to the eyes, respiratory
system, and skin.

β-Mercaptoethanol is very hazardous and can be fatal if
inhaled, swallowed, or absorbed through skin contact.

PI is a potential mutagen and may cause irritation to the
eyes, respiratory system, and skin.

DAPI is a potential carcinogen and may cause irritation to
the eyes, respiratory system, and skin.

DMSO (dimethyl sulfoxide) itself is not considered as a
hazardous substance but in contact with other potentially toxic
chemicals might enhance their absorption through the skin.

2. Intercalating fluorescent dyes (IFD) bind to double-stranded
DNA and RNA with no base preference. These are suitable for
genome size estimations in absolute units (the majority of
studies in plants use PI). Fluorescent dyes that bind preferen-
tially to base-specific rich DNA (BSD), either AT-rich or
GC-rich DNA, are not suitable for estimating genome size
but are frequently used for ploidy level studies.

If users wish to test SYBR Green I as a fluorochrome, then
it can be prepared as follows: The stock solution provided by
the manufacturer is usually 10,000� concentrate, and manu-
facturers recommend a working concentration of 10�. The
stock should first be diluted 100-fold in DMSO (dimethyl
sulfoxide—see Note 1) to give a diluted solution of 100�
(e.g., 50 μL SYBR I in 4.95 mL of DMSO). This 100�
solution can be stored in 5 mL aliquots at �20 �C. For use,
the appropriate volume of this diluted 100� solution is added
to the nuclei isolation buffer to give a final working concentra-
tion of 10�.

3. Isolation buffers must be prepared using either single or double
distilled water, filtered through a 0.22 μm filter to remove
suspended particles, and stored as specified. The isolation
buffer might precipitate after a while if it has not been stored
at the appropriate temperature or when poor quality water has
been used (see Note 38). The pH of the buffer is adjusted
either with 1 M NaOH or 1 N HCl (see Note 39). Further
information about the roles of the different buffer components
is given in Notes 40 and 41.

344 Jaume Pellicer et al.



4. While the General Purpose Buffer given in Subheading 2.3.2
works for many plant species, the selection of the most appro-
priate buffer needs to be determined empirically for each plant
group. In many cases, the same buffer works well across a
family, while in other cases, different buffers are needed for
different genera, or even within a genus. Other buffers which
have been shown to work across a diversity of plants include
Ebihara’s, LB01, Galbraith, woody plant buffer, and commer-
cial buffers such as CyStain and OxProtect (Sysmex Ltd.).

A comprehensive list of alternative buffers and their com-
ponents is given below. These isolation buffers must be
prepared using either single or double distilled water, filtered
through a 0.22 μm filter to remove suspended particles, and
stored as specified. Most buffers remain stable for up to
3 months if appropriately stored. As indicated below, some
buffers can be stored longer by freezing them in aliquots at
�20 �C. However, if this is done, then once thawed, the buffer
should not be refrozen.

(a) LB01 buffer [59]: 15 mM Tris, 2 mM Na2EDTA,
0.5 mM spermine·4HCl, 80 mM KCl, 20 mM NaCl,
0.1% (v/v) Triton X-100. Adjust to pH 7.5. Add
β-mercaptoethanol to give a final concentration of
15 mM (see Note 1). Store the buffer either at 4 �C if
used regularly or at �20 �C in 10 mL aliquots.

(b) Tris MgCl2 buffer [60]: 200 mM Tris, 4 mM MgCl2,
0.5% (v/v) Triton X-100. Adjust pH to 7.5 and store at
4 �C.

(c) Galbraith buffer [61]: 45 mM MgCl2, 20 mM MOPS
(see Note 1), 30 mM sodium citrate, 0.1% (v/v) Triton
X-100. Adjust pH to 7.0. Store the buffer either at 4 �C if
used regularly or at �20 �C in 10 mL aliquots.

(d) Woody plant buffer [56]: 200 mM Tris, 4 mM MgCl2,
2 mM Na2EDTA, 86 mM NaCl, 10 mM sodium meta-
bisulfite, 1% PVP-10 (see Note 41), 1% (v/v) Triton
X-100. Adjust to pH 7.5. Store the buffer either at 4 �C
if used regularly or at �20 �C in 10 mL aliquots.

(e) MgSO4 buffer [62]: 9.53 mM MgSO4, 47.67 mM KCl,
4.77 mM HEPES, 6.48 mM DTT (see Note 1), 0.25%
(v/v) Triton X-100. Adjust to pH 8.0. Store the buffer
either at 4 �C if used regularly or at �20 �C in 10 mL
aliquots.

(f) Bino’s buffer [63]: 200 mMmannitol, 10 mMMOPS (see
Note 1), 0.05% (v/v) Triton X-100, 10mMKCl, 10mM
NaCl, 2.5 mM DTT (see Note 1), 10 mM spermi-
ne·4HCl, 2.5 mM Na2EDTA, 0.05% (w/v) sodium
azide (see Note 1). Adjust to pH 5.8 and store at 4 �C.
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(g) De Laat’s buffer [64]: 15 mMHEPES, 1 mMNa2EDTA,
0.2% (v/v) Triton X-100, 80 mM KCl, 20 mM NaCl,
15 mM DTT (see Note 1), 0.5 mM spermine·4HCl,
300 mM sucrose. Adjust to pH 7.0 and store at 4 �C.

(h) Ebihara’s buffer [65]: 50 mM Na2SO3, 50 mM Tris,
40 mg/mL PVP-40 (see Note 41), 140 mM
β-mercaptoethanol (see Note 1). Adjust to pH 7.5 and
store at 4 �C.

(i) Seed buffer [66]: 5 mM MgCl2, 85 mM NaCl, 100 mM
Tris, 0.1% Triton X-100. Adjust to pH 7.0 and store at
4 �C (see Note 42).

(j) Gif nuclear buffer (GNB) [67]: 45 mM MgCl2, 30 mM
sodium citrate and 60 mM MOPS, pH 7.0, 1% PVP
10,000, 0.1% Triton X-100 and 10 mM sodium metabi-
sulfite (S2O5Na2). This buffer can be stored at 4 �C (see
Note 42), but the metabisulfite is added daily.

(k) Baranyi buffer [68]: Baranyi solution I: 100 mM citric
acid monohydrate, 0.5% (v/v) Triton X-100. Store at
4 �C.

Baranyi solution II: 400 mM Na2HPO4, 10 mM
sodium citrate, 25 mM sodium sulfate. Store at room
temperature.

The fluorochrome (DAPI or PI; see Subheading
2.3.1) can be added to Baranyi solution II before adjust-
ing the final volume of the stock solution. If this is done,
the buffer should be stored in the dark at room tempera-
ture. Alternatively, the fluorochrome can be added
directly to the sample at step 10 of Subheading 3.1.2 or
step 7 of Subheading 3.1.3.

(l) Mishiba buffer [69]:Solution A: see recipe for Galbraith
buffer, i.e., buffer (c) above.

Solution B: 10 mM Tris, 50 mM sodium citrate,
2 mM MgCl2, 1% PVP-40 (original recipe used PVP
K-30—see Note 41), 0.1% Triton X-100, 18 mM
β-mercaptoethanol (see Note 1). Adjust to pH 7.5.
Store at 4 �C.

(m) Commercially available buffers: Sysmex PI Absolute P
(Sysmex cat. no. 05-5022) and Sysmex CyStain PI OxPro-
tect (Sysmex cat. no. 05-5027). Follow manufacturer’s
instructions for sample preparation. Both buffers contain
PI-based staining solutions which need to be kept in the
dark for long-term storage. Store at between 2 and 8 �C.

5. The Baranyi buffer (comprising solutions I and II—see buffer
(l) in Note 4 [68]) can be tried as an alternative to the Otto
buffer in the two-step protocol (Subheading 3.1.2) and sim-
plified two-step protocol (Subheading 3.1.3) if the results from
using the Otto buffers give poor histograms.
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6. The amount of tissue used needs to be determined empirically,
taking into account the number of nuclei released and the
proportion of debris produced. For internal standardization,
when needed, also add leaf tissue of the appropriate reference
standard species (see Table 1).

7. It is very important to use very sharp razor blades or scalpels to
chop the tissue into a crude suspension, while minimizing
damage to the nuclei. It is therefore recommended that each
razor blade or scalpel is used only once. The chopping must be
vigorous, quick, and short to avoid drying of the sample. We
recommend empirical adjustments, especially to the chopping
intensity, so that optimal numbers of nuclei are released with-
out generating too much cell debris which can lead to high
background signal in the flow histogram and low numbers of
nuclei in the G1 peak.

8. The working volume can be modified, but remember that if
this is done, then the volume of the fluorochrome added at step
7 will need to be adjusted accordingly to maintain the appro-
priate final concentrations.

9. Check carefully that the sample is free of particles after filtration
to minimize the possibility of blockages in the flow cytometer.

10. If the samples have become brown/dark just a few minutes
after adding the fluorochrome, this is indicative that the sample
is undergoing oxidation due to the presence of secondary
metabolites in the cytoplasm. The reaction can be slowed
down by keeping everything cool during nuclei isolation and
analysis (e.g., using ice-cooled samples, petri dishes, isolation
buffers, and sample tubes and placing the prepared sample of
isolated nuclei on ice during flow cytometry). Sometimes, this
problem can also be avoided by supplementing the isolation
buffer with reducing agents such as β-mercaptoethanol and
DTT (see Note 30). Another option that might help is the
addition of PVP-10, PVP-40, or higher molecular weights
such as PVP-360 (see Note 41), which will help improve
histogram quality and sample stability, especially if tannins are
present. If the problem persists, then alternative isolation buf-
fers (see Note 4) should be tested and the chopping intensity
reduced (see Note 7).

11. Many protocols add RNase (Ribonuclease II-A) at 50 μg/mL
at this stage when PI is used as the fluorochrome. This is
because PI intercalates into double-stranded (ds) nucleic
acids so it can stain dsRNA as well as dsDNA. Nevertheless,
since RNase is only active between 15 and 70 �C, with an
optimal temperature of 60 �C, it can be left out of any protocol
that lacks an incubation step within this temperature range.
Since the protocols described here do not include such an
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incubation step, RNase has not been included. Nevertheless, if
users want to include an RNase incubation step, a stock RNase
solution can be prepared by heating 1 mg/mL RNase to 80 �C
for 15 min (to inactivate DNases) and filtering through a
0.22 μm filter. The stock can be stored in 1 mL aliquots at
�20 �C (note that 100 μL of the stock into a 2 mL final sample
volume should be added).

12. The time between staining (step 7) and running the sample on
a flow cytometer can vary from a few minutes to up to 1 h (and
in rare cases up to half a day). While for some plant samples, a
short incubation works fine, for others, a longer incubation can
give better results. In cases where there is a large amount of
debris, keeping the incubation time to just a few minutes can
improve the quality of the flow histograms generated. Thus,
incubation time needs to be adjusted empirically for each plant
species to optimize results.

13. The relative centrifugal speed and time may need to be empiri-
cally adjusted.

14. Samples are stable in Otto I (or Baranyi solution I—see Note
5); hence, it is possible to prepare several samples in advance
and simultaneously centrifuge them together.

15. It is important to do this step very gently so as not to remove
the pelleted nuclei.

16. As samples are stable in Otto I (or Baranyi solution I—seeNote
5), it is possible to prepare many replicates and store them at
either room temperature or 4 �C for up to several hours.

17. The addition of Otto II (or Baranyi solution II —see Note 5)
raises the pH of the sample to c. 7.3 and increases salt concen-
tration. To keep these parameters within a working range, the
amount of buffer added at this stage should be about fourfold
that of Otto I (or Baranyi solution I—see Note 5) which now
comprises c. 200–250 μL.

18. The optimal incubation time should be adjusted in each case,
but short incubation times (e.g., less than 5 min) usually
provide the best results because nuclei may not remain stable
for a long time after this step.

19. When following the simplified two-step protocol (Subheading
3.1.3), Baranyi or Mishiba buffer (see Note 4 above) can also
be tried if the histograms obtained using the Otto buffer are of
poor quality.

If Mishiba buffer is used, follow the protocol in Subhead-
ing 3.1.3 with the following modifications:

Step 2.* Add 0.2 mL of ice-cold Mishiba solution A.

Step 4.* Incubate for 5 min at room temperature.
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Step 5.* Add 1 mL of Mishiba solution B.

Step 7.* For a typical sample using Mishiba buffer, the volume
is usually c. 1.2 mL; thus, the amount of stock PI added is
60 μL, while for DAPI, 50 μL should be added.

Step 8.* Incubate at room temperature in the dark for 20 min.

20. The user can clear the acquisition results as many times as
needed until the flow rate becomes stabilized. Do not be
tempted to start recording data for analysis until the flow rate
has stabilized (usually 0.5–1 min after the start of the run) as
this can lead to poor histograms and inaccurate results.

21. If no peaks are appearing in the flow histogram, and assuming
that the flow cytometer is properly set up, the peaks are proba-
bly off the scale due to an inappropriate gain setting for the
sample being analyzed. To locate the peaks, adjust the gain
setting of the machine. This can sometimes be donemore easily
by using the log scale setting of the relative fluorescence (x axis)
scale. Once the position of the peak has been located, adjust
back to a linear scale to perform analyses. Remember that the
gain of the machine should be kept within the range that is
recommended by the manufacturer of the flow cytometer to
ensure the machine is operating optimally.

22. If the flow rate is slow, there are several explanations and
possible solutions:

(a) This could be a technical problem with the flow cyt-
ometer. Any blockage in the flow chamber or in the
tubing system can cause a reduction in the number of
nuclei recorded. Check that the pressure in the system is
within the recommended range for the machine and clean
the flow system using either a decontaminant solution or a
diluted bleach solution (see Subheading 2.2) to wash out
any potential blockage.

(b) Alternatively, this could be a biological problem caused by
the plant material being analyzed. The concentration of
nuclei in the suspension can vary significantly between
samples depending on tissue type, quantity of material
used, etc. Hence, the flow rate will need to be adjusted
each time a new sample is loaded onto the machine. If the
concentration of nuclei in the sample is low, this will
necessitate a high flow rate, and this can result in a broad-
ening of peaks and high CVs (see Notes 29 and 30). If
possible, it is best that this is overcome by preparing a new
sample using more material to increase nuclei concentra-
tion, rather than running the sample at a high flow rate.
When using flow cytometers with a pre-set sample acqui-
sition rate (e.g., slow, medium, high), we recommend
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Fig. 6 Troubleshooting problems encountered during flow cytometric analysis of plant material. (a) Fluores-
cence histograms obtained after analysis of isolated nuclei of Clusia multiflora (Clusiaceae). Samples in both
histograms were prepared using the same leaf and the same isolation buffer (woody plant buffer—[56]) but



using the slow rate and only increase it if absolutely
necessary.

Other possible causes of a slow flow rate include
inappropriate chopping intensity, the tissue used is not
suitable, and/or the isolation buffer selected is not appro-
priate. Such problems can be overcome by, for example,
increasing the amount of tissue used, adjusting the chop-
ping intensity, and testing different types of plant material
(see Subheading 2.1 and Fig. 6b which illustrates the effect
of changing from leaf material to pollinia in the orchid
Dactylorhiza). Even changing the end of the leaf used for
analysis can result in a dramatic change in the proportion
of G1 nuclei released (see Fig. 6c). Changing the isolation
buffer (seeNote 4) can also have a large effect, especially if
the sample is releasing mucilaginous compounds into the
chopping buffer. Indeed, many plants contain mucilage in
their cytoplasm, and isolated nuclei may bind to this
during the chopping process leading to a low number of
released nuclei. Increasing the percentage of detergent
(e.g., Triton X-100 up to 4%) can help, but keep in
mind that a higher concentration of detergent can also
result in higher levels of cell debris and hence a lower
quality of flow histograms, so compromise may be
necessary.

If the sample is releasing large amounts of mucilagi-
nous compounds, improved results may be obtained by
passing the filtered sample (after step 6, Subheadings
3.1.1 and 3.1.3; step 5, Subheading 3.1.2) through cot-
ton wool saturated in buffer as outlined in Lee and Lin

�

Fig. 6 (continued) supplemented with different types of polyvinylpyrrolidone (PVP) to illustrate the dramatic
effect on the quality of the flow histogram. (Left) using PVP-360 and (right) using PVP-40. (b) Flow histograms
of the relative fluorescence in Dactylorhiza sp. (Orchidaceae) illustrating the utility of using alternative tissues
to leaf samples to estimate nuclear DNA contents. (Left) genome size estimated using pollinia of Dactylorhiza
sp. and Solanum lycopersicum as internal standard [standard: peak I (G1) and IV (G2), pollinia: peak II (1C-G1)
and III (2C-G2); calculated 1C-value of Dactylorhiza sp. ¼ 3.58 pg]. (Right) genome size estimated using leaf
tissue of Dactylorhiza sp. and Solanum lycopersicum as internal standard [standard: peak I (G1) and II (G2),
Dactylorhiza sp. leaf: peak III (2C-G1) and IV (4C-G2); calculated 2C ¼ 7.06 pg]. (c) Flow histograms of leaf
tissue from the orchid Dracula sp. (using Oryza sativa as internal standard (peak I)), illustrating how different
parts of the same leaf can have very different proportions of G1 and G2 nuclei. Using a young and actively
growing leaf of Dracula (c. 1.5 cm long), the apical tip was seen to have a much lower proportion of G1 nuclei
(peak II, left histogram) compared with the basal part of the leaf (peak II, right histogram). (N.B. peaks III and IV
correspond to G2 and partial endopolyploid nuclei, respectively.) (d) Flow histograms of relative fluorescence
in leaf tissue of Kalanchoe marnieriana (Crassulaceae) illustrating how poor histograms with much debris (left,
ungated histogram) can be improved by gating the histogram (right) to reveal not only the G1 nuclei of
K. marneriana which was hidden in the debris of the left histogram but also the presence of several
endopolyploid cycles

Genome Size and Ploidy Estimations by Flow Cytometry 351



[70]. Also, increasing the acidity by adding HCl, HNO3,
or acetic acid to the Otto I buffer can help to dissolve
mucilaginous or other substances which are preventing
the nuclei release (e.g., see [34] for details).

23. If the flow rate is unstable just after starting acquisition and
large numbers of particles are being recorded, even when the
flow cytometer is running at a slow speed, this may be due to
unstable pressure in the flow cytometer. It can be caused by
several factors including the presence of suspended particles
(e.g., algae) in the sheath fluid and sheath fluid tubes/filters.
Check that the pressure is correct and replace sheath fluid,
tubes, and filters. If algae become a recurrent problem, 0.02%
sodium azide can be added to the water in the sheath fluid
bottle; however, it should be noted that sodium azide is toxic
and should be handled appropriately. Alternatively, the sheath
fluid bottles can be thoroughly rinsed with domestic bleach (see
Subheading 2.2) every 2 months, or even more frequently
when they are not changed on a daily basis. In addition,
many manufacturers recommend that the sheath fluid tubing
and filters are replaced every 3 months.

24. Given that most of the measurements will require the use of a
reference standard (see Subheadings 3.2.2 and 3.2.3), it is
strongly recommended that the user knows, in advance, the
peak position of a set of reference standards, ranging from small
to big genomes (check Table 1 for recommended reference
standards). This can be done by adjusting the gain settings so
that the G1 peak of the standard always falls, for example,
around channel number 200 (N.B. some flow cytometry
machines do not include an option to adjust the gain, in such
cases ensure the gate is set correctly to include the peaks of
interest). Then, when the target sample is run alone for the first
time, the user will be able to determine the best reference
standard by testing the peak position of the target plant at the
different gains selected for the standards. It is noted that while
the G1 peak is usually the dominant peak, in many cases, G2

peaks are present which might interfere with the target sample.
Care should therefore be taken to note where the peak posi-
tions of the target sample fall in relation to both the G1 and G2

peaks of the reference.
The positions of the G1 peaks in the flow histogram for the

target plant and the internal reference standard should be
different enough to avoid overlapping peaks. However, ideally,
the ratio between the G1 peaks for the standard and the target
plant should not exceed threefold to reduce risk of errors
arising due to loss of linearity in the flow cytometer.
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25. If the position of the peak appears to be unstable (i.e., the peak
in the histogram builds at a different position each time the
acquisition data are cleared), it may suggest the incubation
time following the addition of the fluorochrome is insufficient
(i.e., step 8, Subheadings 3.1.1 and 3.1.3; step 11, Subhead-
ing 3.1.2). Check different incubation times to test staining
stability. If the problem persists, test alternative isolation buf-
fers. However, when using the Otto buffers (Subheadings
3.1.2 and 3.1.3) (or Baranyi buffers—see Note 5), the nuclei
may be unstable once Otto II (or Baranyi solution II) has been
added (see step 11, Subheading 3.1.2, or step 8, Subheading
3.1.3). For these buffers, increasing the incubation time is only
likely to lead to deterioration in the flow histogram quality and
unstable peaks.

26. Large amounts of cell debris/background signal in the flow
histogram are a commonly encountered problem (e.g., see
histogram on the left of Fig. 6d). There are several explanations
and solutions:

(a) The isolation buffer selected is not appropriate for the
sample. Test an alternative isolation buffer (see Note 4).

(b) The tissue selected is not in good condition or optimal for
FCM. Test other plant tissues (see Subheading 2.1).

(c) The length of time that samples are kept on ice before
being analyzed (step 8, Subheading 3.1.1) or incubated at
room temperature (step 11, Subheading 3.1.2; step 8,
Subheading 3.1.3) can influence the quality of the flow
histogram, so try adjusting the incubation time.

(d) Over-chopping of the sample (see step 3 in Subheadings
3.1.1–3.1.3) can, in some cases, lead to large amounts of
background debris in the flow histogram. Reduce chop-
ping intensity and use a new sharp razor blade or scalpel
for each sample to avoid cell damage. Reduced chopping
has been shown to significantly improve the quality of the
flow histograms when working with highly succulent spe-
cies such as those belonging to Aizoaceae, Asphodelaceae,
and Crassulaceae [71]. Over-chopping may also yield
poor results when working with particularly tough leaves
such as those found in some palm (Arecaceae) or gymno-
sperm species. In such cases, we also suggest first incubat-
ing the leaves in the isolation buffer for 5 min on ice so
they are easier to chop.

(e) If none of the above solutions improve the quality of the
flow histogram, then gating can be tried if the flow cyt-
ometer is fitted with a side scatter detector. For this, the
region of interest is selected in the side scatter vs. forward
light histogram so that the flow histogram of relative
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fluorescence excludes the signals coming from the side
scatter. An example of how effective this can be is shown
in Fig. 6d.

27. If additional and perhaps unexpected peaks which do not
follow an endopolyploid series are present in the flow histo-
gram, this suggests the presence of contaminants such as
insects, insect eggs, and fungi in the plant sample. To avoid
this problem, always check the plant material carefully before
chopping (using a stereomicroscope if necessary) to ensure
there are no contaminating organisms. If endoparasites are
suspected, then alternative plant parts will have to be tested.

28. The number of particles that need to be recorded will vary
depending on the type of analysis being carried out. Usually, it
is recommended that 5000 particles are recorded for estima-
tions of genome size, although for some materials, it may not
be possible to obtain so many nuclei (e.g., for recalcitrant
material or for species where only limited amounts of material
are available). For ploidy level estimations, then typically data
from 3000 particles are recorded.

29. The CVof a peak is a measure of peak quality and must be kept
as low as possible (ideally less than 3%) and always below 5%.
Higher CVs are not acceptable for publication unless it has
been demonstrated that higher quality cannot be achieved after
extensive tests with different buffers, incubation times, types of
material, etc. (e.g., samples rich in polyphenols, old silica dried
samples, and herbarium vouchers).

30. Broad peaks with high and unacceptable CVs are, unfortu-
nately, commonly encountered in the analysis of plant material.
There are several possible explanations and solutions. These
can broadly be divided into technical and biological sources:

Technical

(a) A loss of pressure in the flow cytometer system might
result in a reduction of the peak quality. Check that the
pressure is correct.

(b) The instrument might be out of alignment. Align the
instrument light source by using calibration beads (see
Subheading 2.2).

(c) Broad peaks are produced when the flow rate is too high.
Run the samples at a flow rate that is no greater than c. 20
particles/s.

(d) Air bubbles in the flow system can cause peaks with high
CVs. Clean the flow chamber as recommended by the
manufacturer and take extra care to remove any air bub-
bles from the filter after the sheath fluid bottle has been
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refilled. Also make sure that the lid of the sheath fluid
bottle is tightly screwed on to seal the system.

(e) As reported by Doležel et al. [16], an obsolete arc lamp
used for UVexcitationmight be the cause of this problem.
Replace the lamp and align the instrument.

(f) Weak fluorescence and peaks with large CVs can arise
when a sample of DAPI-stained nuclei is analyzed follow-
ing a sample of PI-stained nuclei. Doležel et al. [16] noted
that this situation can arise as a result of fluorochrome
interference if the flow cytometer has not been completely
cleaned between samples. To avoid this problem, ensure
that the machine is thoroughly washed through by run-
ning a tube containing a weak solution (1:5 dilution in
distilled water) of domestic bleach (do not leave bleach
sitting in the system for more than a few minutes) and
then washing the system thoroughly with distilled water.

Biological

(a) In some cases, the isolation protocol and/or the buffer
used are unsuitable for the material being analyzed, and
the result can be a poor quality flow histogram with large
CVs. Test alternative isolation buffers (see Note 4) and
protocols (Subheading 3.1).

(b) Secondary metabolites in the cytoplasm may interfere
with the fluorochrome staining of the DNA and lead to
an increase in CVs. Sometimes, this can be overcome by
supplementing the isolation buffer with reducing agents
such as β-mercaptoethanol and dithiothreitol (DTT)
(250 μL per 200 mL of buffer). Tannins are also frequent
in plants, so the addition of PVP-10/PVP-40 is common
to help minimize their effects. PVP-360 has also been
shown to be effective and, in certain cases, may work
when other PVP types have failed (e.g., see Fig. 6a and
Note 41). The effect of secondary metabolites can also be
minimized by reducing the chopping intensity (see Note
26 (d)) and carrying out the nuclei isolation steps on ice
and with ice-cold solutions (as recommended in Subhead-
ing 3.1).

(c) Some tissues of some plants are just recalcitrant and pro-
duce poor results. Test alternative tissues (see Subheading
2.1), including pollinia (e.g., see Fig. 6b) or different parts
of the leaf (e.g., see Fig. 6c), or try putting the plant in the
dark for a few days prior to analysis.

(d) Doležel et al. [16] reported that excluding RNase from
the isolation buffer when PI is used to stain DNA can
result in increased CVs, especially in tissues with active
protein synthesis, such as root tips. Nevertheless, if this is
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the case, then the protocol should include an incubation
step at 37 ˚C for at least 30 min to ensure the RNase has
sufficient time to work (see Note 11 for how to prepare
RNase).

(e) The wrong concentration of the DNA fluorochrome can
also reduce the quality of the flow histogram, so it is
important to check that the fluorochrome solution has
been prepared correctly.

31. It is recommended that when a run is saved, the file name
should include information on the species analyzed, replicate
number, buffer used, and internal reference standard
(if applicable). If possible, it is also helpful to get the software
to list the instrument settings (e.g., gain and lower limit set-
tings) used for each run. This enables histograms to be com-
pared, if appropriate.

32. If a shift in the position of the G1 peak of the reference standard
is detected, then it is necessary to change the sample prepara-
tion. Often, the problem can be solved by changing to another
isolation buffer (see Note 4). Alternatively, the addition of
various compounds can sometimes eliminate the problem,
e.g., the addition of 3% PVP (see Note 41 and Fig. 6a) to
bind to polyphenolics or addition of dithiothreitol (DTT) or
β-mercaptoethanol which is a good reducing agent (see Note
30). In addition, the problem can sometimes be overcome by
using different plant materials such as roots, stems, bracts, and
seeds (e.g., see Subheading 2.1 and Fig. 6b and c).

33. For accurate nuclear DNA amount estimations, it is recom-
mended that the number of particles in both the target and the
reference standard G1 peaks should be similar.

34. Some plant breeding material, pollen, and the gametophyte
stage of bryophyte groups (i.e., mosses, liverworts, and horn-
worts) are haploid. In such cases, the first peak of the target
sample in a flow histogram (G1) will correspond to the 1C
rather than the 2C-value.

35. Technical factors should not account for more than 2–3% of
the variation between different estimates for the same species,
although for some materials (e.g., recalcitrant tissues), this type
of variation may be greater. Higher levels of variability in
C-value estimates for a species may reflect intraspecific variation
due to the presence of chromosomal instabilities (e.g., B chro-
mosomes, supernumerary segments or aneuploidy) or taxo-
nomic heterogeneity in the samples analyzed (see [8, 72] for
further discussion on intraspecific variation).

36. (1) Wherever possible, it is recommended that the “reference”
sample of known ploidy is at the lowest ploidy level known for a
given species/complex (i.e., diploid). (2) If investigating
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ploidy levels within a species, the reference sample can be a
sample of the species whose ploidy has been karyologically
determined (e.g., a diploid sample). (3) Following the recom-
mendations of Doležel et al. [16], the nuclear DNA may be
stained with PI or DAPI, although the latter option may result
in higher-quality histograms (i.e., the peaks have smaller CVs).
The use of DAPI is also recommended to detect aneuploid
specimens.

37. For ploidy level estimations, it is not necessary to measure as
many nuclei as needed to estimate the absolute genome size of
a sample (see Subheading 3.2.2); thus, data for a lower number
of particles can be collected.

38. If the isolation buffer becomes cloudy, changes color, or con-
tains suspended particles, it suggests the buffer has been stored
incorrectly or that the storage time has been exceeded. In
either case, this can result in fungi or bacteria growing in the
buffer. If this has happened, then new isolation buffer needs to
be prepared and stored as indicated (see Subheading 2.3.2 and
Note 3). Unused buffer should be discarded after 3 months. It
is also strongly recommended to prepare small volumes (e.g.,
200 mL) so that the stocks are as fresh as possible.

39. The pH of the isolation buffers must be above 4 for PI to stain
the DNA; most are around a neutral pH. For protocols using
either Otto buffer (see Subheadings 3.1.2 or 3.1.3) or Baranyi
buffer (see Note 5), the nuclei are isolated in a citric acid
solution which is acidic (i.e., Otto I or Baranyi solution I).
The pH is then raised to neutral by the addition of a basic
solution containing Na2HPO4 to ensure optimum staining of
the DNA when the fluorochrome is added.

40. Isolation buffers contain several different components which
ensure that enough nuclei are released from the cells and that
the DNA is protected from degradation and binds the fluoro-
chrome quantitatively. Typically, isolation buffers include the
following components: (1) organic buffers (e.g., Tris, MOPS,
HEPES) which stabilize the pH between 7.0 and 8.0 (depend-
ing on the buffer) to hence enable DNA staining by the fluo-
rochrome; (2) non-ionic detergents (e.g., Triton X-100 and
Tween 20) to facilitate the release of nuclei and prevent their
aggregation; (3) chromatin stabilizers (e.g., spermine, MgCl2,
MgSO4) to maintain the integrity of DNA; (4) chelating agents
(e.g., Na2EDTA (ethylenediaminetetraacetic acid disodium
salt), sodium citrate) to bind divalent cations such as Mg2+

and Mn2+ and hence block DNase activity; and (5) inorganic
salts (e.g., KCl, NaCl) to ensure the correct ionic strength of
the buffer. Some buffers also include β-mercaptoethanol, DTT,
ascorbic acid, or sulfite which acts as a reducing agent to
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prevent protein oxidation, and PVP (see Note 7 below). For a
discussion of the effect of different buffer components in a
range of plant species, see Loureiro et al. [73] and Greilhuber
et al. [74].

41. The polymer PVP (polyvinylpyrrolidone) is used to reduce the
effect of polyphenols and other secondary metabolites such as
tannins that are often present in plant tissues and which can
inhibit the quantitative staining of DNA by the fluorochrome.
Such secondary metabolites may also increase cell debris lead-
ing to a significant reduction in the quality of the peaks in the
flow histogram (see Notes 31 and 35). Generally, PVP-10 and
PVP-40 are used although in certain cases, only PVP-360 was
shown to result in decent flow histograms (see Fig. 6a).

42. Amodified version of this buffer was reported byHörandl et al.
[75] who also added 6.1 mM sodium citrate to the buffer.

43. It is essential that the cell culture tested grade of Tween
20 from Sigma-Aldrich (cat. no. P2287) is used. Tween
20 for molecular biology (Sigma, cat. no. P9416) is not suit-
able for FCM.

44. Dissolving Na2HPO4·12H2O can be speeded up by heating
the solution gently.
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(2006) Comparison of four nuclear isolation
buffers for plant DNA flow cytometry. Ann
Bot 98:679–689

74. Greilhuber J, Temsch EM, Loureiro J (2007)
Nuclear DNA content measurement. In:
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Chapter 18

Molecular Cytogenetics (Fluorescence In Situ
Hybridization - FISH and Fluorochrome Banding): Resolving
Species Relationships and Genome Organization

Sonja Siljak-Yakovlev, Fatima Pustahija, Vedrana Vičić-Bočkor,
and Odile Robin

Abstract

Fluorochrome banding (chromomycin, Hoechst, and DAPI) and fluorescence in situ hybridization (FISH)
are excellent molecular cytogenetic tools providing various possibilities in the study of chromosomal
evolution and genome organization. The constitutive heterochromatin and rRNA genes are the most
widely used FISH markers. The rDNA is organized into two distinct gene families (18S–5.8S–26S and
5S) whose number and location vary within the complex of closely related species. Therefore, they are
widely used as chromosomal landmarks to provide valuable evidence concerning genome evolution at
chromosomal levels.

Key words Chromomycin, Crepis, DAPI, Fluorescence in situ hybridization (FISH), Fluorochrome
banding, Hoechst, Pinus, rRNA genes

1 Introduction

Molecular cytogenetics provide new possibilities in the study of
chromosomal evolution and genome organization which also con-
tribute to a better characterization of the karyotype. Fluorochrome
banding and fluorescence in situ hybridization (FISH) are excellent
tools for chromosome identification in studies of chromosome
evolution and genome organization and also to reveal the relation-
ships between different taxa. These molecular cytogenetic
approaches have been widely used for karyotyping in many wild
and cultivated plants, e.g., in Arabidopsis thaliana [1], Medicago
truncatula [2], Picea abies and P. omorika [3], Agropyron [4],
Hordeum, and Triticum [5], and for studying evolutionary rela-
tionships within many genera, e.g.,Hypochaeris [6, 7],Quercus [8],
Lilium [9], Nicotiana [10], Pinus [11, 12], Juniperus [13], Reich-
ardia [14], and Cheirolophus [15].
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Before the development of fluorochrome banding, Giemsa
C-banding has been used to reveal constitutive heterochromatin
(highly repetitive DNA sequences which remain condensed during
the whole cell cycle). This heterochromatin can be GC or AT rich,
or “neutral.” The most widely used base-specific fluorochrome
chromomycin A3 is a fluorescent stain that binds strongly to
GC-rich regions in DNA. DAPI (40,60-diamidino-2-phenylindole)
or Hoechst (bisbenzimide H33258), on the other hand, is specific
for AT-rich DNA. Comparative patterns of fluorochrome banding
may be useful not only in identifying homologous chromosomes
but also in revealing phylogenetic relationships among species
[9, 16, 17].

In the case of two closely related species of the genus Crepis
[Crepis praemorsa (L.) Tausch and Crepis incarnata Tauch.] with
the same chromosome number and almost identical karyotypes,
banding techniques revealed a high intrachromosomal differentia-
tion between two species (Fig. 1). All constitutive heterochromatin
in these two species, revealed after Giemsa C-banding, represents
AT-rich DNA regions [18]. However, inC. praemorsa, heterochro-
matic regions are limited only to centromeres and nucleolar orga-
nizer region (NOR). In C. incarnata, this type of heterochromatin
is abundant forming the large telomeric and intercalary bands. The
AT-rich DNA regions are consequently GC poor and present low
fluorescent intensity with appropriate fluorochrome (see negative
bands on chromomycin stained chromosomes, Fig. 1d). Before
these results, obtained by chromosome banding, in Flora Europaea,
the C. incarnata has been considered only as subspecies
[C. praemorsa subsp. dinarica (Beck) Hayek, synonym ¼ C. incar-
nata] [19]. This and numerous other studies demonstrate the
usefulness of fluorochrome banding in resolving systematic and
phylogenetic relationships between closely related taxonomic enti-
ties and point out the high implication of heterochromatin during
differentiation of C. incarnata (endemic mountain species from
Alps) from C. praemorsa (ancestral species from Euro-Asiatic plains
with a large geographical repartition). In addition to this study, the
reproductive isolation has been also detected which confirmed the
specific level of these two taxa [20, 21].

Fluorescence in situ hybridization is a 35-year-old molecular
cytogenetic tool that has developed continuously. Schwarzacher
and Heslop-Harrison [22] provided the most accurately documen-
ted data and protocols concerning FISH techniques in plants.

In eukaryotes, rRNA genes present the most widely used FISH
markers. They are organized into two distinct gene families. The
first family of rRNA genes, encoding for 18S, 5.8S, and 26S ribo-
somal RNA (35S rDNA), occurs as tandem arrays at one or several
specific regions on chromosomes. The 35S rDNA loci consist of
tandemly repeated units of the 18S, 5.8S and 26S rDNA, internal
transcribed (ITS1 and ITS2) sequences, and intergenic spacers

364 Sonja Siljak-Yakovlev et al.



Fig. 1 Crepis praemorsa: Giemsa C-banding (a), idiogram showing C-bands (e), Hoechst (e0), and CMA
bandings (e00). C. incarnata: C-banding (b and f), Hoechst (c and f0), and CMA bandings (d and f00).
Bar ¼ 10 μm



(IGS). These genes are highly conserved, and the chromosomal
segment harboring them is known as a nucleolar organizer region
(NOR). The second family is presented by 5S rRNA genes, also
highly conserved and widely used as molecular cytogenetic
markers.

Due to their high copy number, both families of rRNA genes
are easily and reproducibly detectable on chromosomes and consti-
tute suitable landmarks for chromosome identification.

The number and location of rDNA vary within the complex of
closely related species; therefore, it can be used as a chromosomal
landmark to provide valuable evidence concerning genome evolu-
tion at chromosomal levels. The rDNAs can change rapidly both in
copy number and chromosome distribution, and rDNA transposi-
tion or dispersion in plant genomes is frequently observed [23–
27]. These rearrangements are generally in correlation with species
differentiation and speciation, and FISH analysis of rDNA is a good
tool to detect chromosome variations.

Since 2012 [28, 29], a database of plant rDNA is available
(www.plantrdnadatabase.com). Some authors have recently pub-
lished on the cytogenetic characteristics of rDNA in plants and on
this database [30] which we recommend to all researchers working
in the field of plant cytogenetics.

Recently, Waminal et al. [31] have developed an alternative
approach for efficient karyotyping and genome evolutionary studies
using the PLOP-FISH protocol, a simplified and rapid multiplex
FISH analysis using pre-labeled oligonucleotide probes (PLOPs)
for simultaneous visualization of different target loci with reducing
the cost and time for FISH hybridization. The authors analyzed
only a few species using probes based on highly conserved regions
in plants, animals, and fungi. In our future researches, we will test
the proposed protocol and compare the data obtained with previ-
ously analyzed plant species with conventional FISH methods.

The following example demonstrates the use of fluorochrome
banding and FISH to detect small structural chromosomal differ-
ences even at the level of intraspecific taxonomic categories.

The genus Pinus, and Pinaceae family in general, is character-
ized by the same chromosome number (2n ¼ 24) and conserved
karyotypes with all metacentric chromosome pairs, except one
submetacentric. In such cases, when karyotyping based on mor-
phometric analysis is difficult, the comparative patterns of fluoro-
chrome banding and FISH experiment may be useful not only in
identifying homologous chromosomes but also in revealing phylo-
genetic relationships among taxa.

Thus, in the study of Pinus nigra J.F. Arnold subspecies [Pinus
nigra subsp. laricio Maire and Pinus nigra subsp. dalmatica (Vis.)
Franco], molecular cytogenetic tools revealed an unsuspected dif-
ference in heterochromatin and rDNA organization [11]. DAPI
staining after FISH displayed a high number of signals (Figs. 2 and
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3). The number of CMA bands was 26 in ssp. laricio (Fig. 2a) and
24 in ssp. dalmatica (Fig. 3a) with slightly different positions. Since
all the centromeres were DAPI positive, the differences were
reflected by the number of intercalary DAPI bands. They were
distributed either on one or both chromosome arms. Two DAPI
patterns were evident: the first with a lower number of signals
(36 in ssp. laricio) and the second with a higher number of bands
(64 in ssp. dalmatica) (Fig. 2b and 3b, respectively). The number
and position of 5S rRNA genes were the same, but the number of
18S–26S rDNA loci was 10 for ssp. laricio and 8 for ssp. dalmatica
(Figs. 2b, c and 3b, c, respectively).

Fig. 2 Pinus nigra subsp. laricio: CMA-chromomycin banding (a); FISH (b); corresponding haploid idiogram
showing 10 35S and 2 5S rDNA loci, 13 CMA, and 18 DAPI bands (c). Bar ¼ 10 μm
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Therefore, the molecular cytogenetic analysis can unequivo-
cally reveal subtle chromosomal changes even between low taxo-
nomic categories, and by combining it with phytogeography and
ecology of representatives of a complex of related species, it

Fig. 3 Pinus nigra subsp. dalmatica: CMA (a); FISH (b); haploid idiogram showing
8 35S and 2 5S rDNA loci, 12 CMA, and 32 DAPI bands (c). Bar ¼ 10 μm
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becomes possible to determine processes of species differentiation
and evolution and the phylogenetic relationships between taxa.

2 Materials

Use sterile ultrapure water and analytical grade reagents for prepar-
ing solutions. Prepare and store all reagents at room temperature,
unless indicated otherwise. For long-term storage, the stock solu-
tions can be aliquoted and stored at � –20 �C. For short-term
storage, the solutions can be kept at 2–6 �C, protected from light if
necessary. Care should be taken in handling and disposal of dyes
and all waste materials, according to applicable local regulations.

2.1 Pretreatments

and Root Tip Fixations

1. 0.05% (m/v) aqueous colchicine solution: dissolve 0.05 g col-
chicine in 100 mL water.

2. 0.002 M 8-hydroxyquinoline: dissolve 0.029 g
8-hydroxyquinoline in 100 mL water (see Note 1).

3. Carnoy I: freshly prepared 3:1 (v/v) ethanol:glacial acetic acid
(see Note 2).

4. Carnoy II: freshly prepared 6:3:1 (v/v) ethanol:chloroform:
glacial acetic acid (see Note 3).

2.2 Buffers 1. 0.01 M Citrate buffer, pH 4.6: solution A: 0.1 M citric acid.
Solution B: 0.1 M trisodium citrate, pH 4.6. Mix 25.5 mL
solution A and 24.5 mL solution B; adjust volume to 100 mL
with ddH2O. Store at �20 �C.

2. 0.05 M Citrate buffer, pH 4.6: solution A: 0.5 M citric acid.
Solution B: 0.5 M trisodium citrate, pH 4.6. Mix 25.5 mL
solution A and 24.5 mL solution B; adjust volume to 100 mL
with ddH2O. Store at �20 �C.

3. McIlvaine buffer, pH 5.5: solution A: 0.l M citric acid. Solution
B: 0.2 M dibasic sodium phosphate. Mix 21.6 mL of A and
28.4 mL of B; adjust volume to 200 mL with ddH2O. Store at
�20 �C.

4. McIlvaine buffer, pH 7.0: solution A: 0.l M citric acid. Solution
B: 0.2 M dibasic sodium phosphate. Mix 18 mL of A and
82 mL of B, diluted to a total of 200 mL with ddH2O. Store
at �20 �C.

5. McIlvaine buffer, pH 7.0 + 5 mM Mg2+: dilute 0.123 g of
MgSO4·7H2O in 100 mL of McIlvaine buffer, pH 7.0 (see
Note 4). Store at �20 �C.

2.3 Enzyme Mixture 1. Hydrolytic enzyme mixture: 4% cellulase “Onozuka” RS
(Yakult Pharmaceutical Co.), 1% pectolyase Y-23 (Seishin Phar-
maceutical Co.), and 4% hemicellulase (Sigma-Aldrich) in
0.05 M citrate buffer. Store mixture at �20 �C (see Note 5).
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2.4 Fluorochrome

Banding

1. Chromomycin A3 (CMA), working solution: dissolve 0.02 g of
CMA in 100 mL of McIlvaine buffer, pH 7.0 + Mg2+. Store at
�20 �C, protected from light.

2. 0.05% (m/v) methyl green dissolved in pH 5.5 McIlvaine
buffer. Store at 4 �C.

3. Hoechst 33258 [Ho; bisbenzimide H33258; 2-[2-(4-Hydro-
xyphenyl)-6-benzimidazolyl]-6-(1-methyl-4-piperazyl)-benzi-
midazoletrihydrochloride]: dissolve 1 mg Ho in 100 mL
ddH2O for stock solution and store at �20 �C, protected
from light. Work solution: dilute 1 mL of Ho stock solution
with 4 mL of McIlvaine buffer, pH 5.5.

4. DAPI (40,6 diamidino-2-phenylindole): stock solution of
2 μg/mL in ddH2O. Working solution at 0.1 μg/mL, ali-
quoted and stored at �20 �C, protected from light.

5. Antifade solution: Citifluor AF2 (Agar Scientific Oxford Instru-
ments, Stansted, UK) or manually prepared glycerol antifade
solution (McIlvaine buffer, pH 7.0 + Mg2+:glycerol ¼ 1:1,
v/v).

2.5 FISH

(Fluorescence In Situ

Hybridization)

1. SSC (20�) (saline-sodium citrate buffer): 3 M sodium chlo-
ride, 0.3 M sodium citrate tribasic dihydrate, adjusted to
pH 7.0 with 1 MHCl, autoclaved, and stored at room temper-
ature. For use in the hybridization mixture, store at �20 �C.

2. SSC (2�): dilute 100 mL of 20� SSC with 900 mL of ddH2O.

3. SSC (0.1�): dilute 13 mL of 2� SSC with 237 mL of ddH2O.

4. RNase A stock solution: dissolve 10 mg of RNase in 1 mL of
10 mM Tris–HCl, pH 8.0. Boil for 15 min and allow to cool.
Store at �20 �C in aliquots. Prior to use, dilute 100� in
2� SSC.

5. 0.01 M HCl.

6. Pepsin stock solution: 0.1 mg/mL solution in 0.01 M HCl.
Aliquot and store at �20 �C.

7. Proteinase K: 1 mg/mL stock solution in ddH2O. Store at
�20 �C. Prior to use, dilute 100� in 2� SSC.

8. Formamide, deionized.

9. Tween 20.

10. SSCT (4�): dilute 100 mL of 20� SSC with 400 mL of
ddH2O. Add 1 mL of Tween 20.

11. Dextran sulfate (DS): dissolve 50 g of DS in 100 mL of sterile
ddH2O. Store in aliquots at �20 �C.

12. Sodium dodecyl sulfate (SDS): dissolve 1 g of SDS in sterile
10 mL ddH2O. Store in aliquots at �20 �C.
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13. Salmon sperm DNA solution (SS): concentration
10.5 � 0.5 mg/mL. Store in aliquots at �20 �C.

14. Hybridization buffer: prepare 50 μL for one slide: 50% form-
amide, 10% dextran sulfate, 0.6% sodium dodecyl sulfate,
1.5 μL salmon sperm, and 5 μL 20� SSC. Calculate the
required amount of ddH2O to the final volume depending
on the amounts of 18S–26S and 5S DNA probes added.

15. Modified hybridization buffer: prepare 50 μL for one slide:
50% formamide, 10% dextran sulfate, 5 μL 20� SSC, and
50 mM NaH2PO4, pH ¼ 7.0 (see Note 6). Calculate the
required amount of ddH2O to the final volume depending
on the amounts of 18S–26S and 5S DNA probes added.

16. PCR labeling with digoxigenin-11-dUTP: the PCR mixture
consists of 1� PCR buffer, 2 mM MgCl2, 0.2 mM dNTP,
1 mM digoxigenin-11-dUTP, 0.2 mM M13 forward primer
(universal), 0.2 mM M13 reverse primer (universal), 1 U of
Taq polymerase (Promega), and 100 ng of plasmid pTa794,
containing a 410 bp fragment of 5S rRNA gene and a spacer
region of wheat as a template [32]. After the initial denatur-
ation step at 95 �C for 5 min, 35 cycles of denaturation for 30 s
at 94 �C, annealing for 30 s at 55 �C, and elongation for 30 s at
72 �Cwere done, followed by a final elongation step of 5 min at
72 �C. The obtained PCR products are checked by electropho-
resis on 1% agarose gel to verify product length and digoxi-
genin incorporation. Store in aliquots at �20 �C.

17. Nick translation: 18S–26S rDNA probes are labeled with Cy3
by nick translation using Nick TranslationMix (Roche) accord-
ing to manufacturer instructions. A plasmid containing a
2.4 kb fragment of 18S rRNA gene from Cucurbita pepo is
used as a template [33]. Store in aliquots at �20 �C; protect
from light.

18. Blocking buffer: dissolve 0.1 g of BSA (bovine serum albumin)
in 2 mL 4� SSCT (see Note 7). Store at �20 �C.

19. Antibody buffer: dilute antibody stock solution (200 μg/mL)
1:75 with blocking buffer. For one slide, mix 49.3 μL of
blocking buffer with 0.7 μL of anti-digoxigenin-fluorescein,
Fab fragments (ADF) mixture (see Note 8).

20. Antifade mounting medium: use Vectashield mounting
mediumwith DAPI (Vector Laboratories, Peterborough, UK).

21. DAPI (40,6 diamidino-2-phenylindole): stock solution of
0.5 μg/μL in ddH2O. Working solution at 0.1 mg/mL, ali-
quoted and stored at �20 �C, protected from light.
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3 Methods

Carry out all procedures at room temperature unless otherwise
specified.

3.1 Pretreatment

and Fixation of Root

Tips 1. Immerse root tips in colchicine solution for 3–6 h at room
temperature (large chromosomes) or 8-hydroxyquinoline solu-
tion for 2–4 h at 16 �C (small chromosomes).

2. Fix root tips in Carnoy I or Carnoy II solution for 15–30min at
room temperature and leave in fixative for 24–48 h at 4 �C (see
Note 9).

3.2 Preparation

of Protoplasts

Following the technique of Geber and Schweizer [34] with minor
modifications.

1. Thaw enzyme mixture at 37 �C and transfer it either to a
watch glass in a Petri dish or to a 1.5 mL centrifuge tube (see
Note 10).

2. Wash fixed root tips in 0.05 M citrate buffer for 10 min and
then digest in the enzymatic mixture at 37 � C for 10–60 min
(depending on root size; see Note 11).

3. Transfer root tip meristems by pipette to a drop of 45% acetic
acid on a clean slide. Place cover slip and apply gentle pressure
to spread the chromosomes. Tapping with needle tweezers on
top of the cover slip may improve chromosome spreading.

3.3 Cover Slip

Removal

Following the technique of Conger and Fairchild [35] with minor
modifications.

1. Rapidly freeze preparation below�70 �C using liquid nitrogen
or CO2 or by placing slide on dry ice or on a metal plate in a
–80 �C freezer (see Note 12).

2. Remove cover slip quickly while frozen, using a razor blade,
and rinse briefly in absolute ethanol.

3. Air-dry and store at room temperature for a couple of days until
it is time to proceed to the next step (Subheadings 3.4, 3.5,
3.7, or 3.8).

3.4 Chromomycin

Banding

Following the modified techniques of Schweiser [36] and Kondo
and Hizume [37] and the technique of Siljak-Yakovlev et al. [3].

1. Prepare air-dried slide with cover slip removed as described in
Subheading 3.3.

2. Thaw previously prepared and frozen McIlvaine buffers
(pH 5.5; pH 7.0; pH 7.0 + Mg2+) and CMA working solution.

3. Add a few drops of McIlvaine buffer, pH 7.0 + Mg2+ to the
slide and incubate for 15 min. Gently shake off slide.
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4. Apply 80 μL of CMA working solution onto the slide and
gently cover with a plastic cover slip (cut from autoclavable
waste bags) avoiding formation of air bubbles. Incubate for
60–90 min in the dark.

5. Carefully remove the plastic cover slip with tweezers and wash
briefly with McIlvaine buffer, pH 7.0.

6. Counterstain with methyl green for 7 min in the dark.

7. Wash slide briefly with McIlvaine buffer, pH 5.5.

8. Mount preparation in glycerol antifade solution.

9. Store slide in the dark. For long-term conservation, store at
4 �C.

10. Observe under an epifluorescence microscope with appropriate
filters.

3.5 Hoechst Banding Following the techniques of Martin and Hesemann [38].

1. Prepare air-dried slide with cover slip removed as described in
Subheading 3.3.

2. Thaw McIlvaine buffer, pH 5.5, and Ho work solution.

3. Rehydrate slide by incubating successively in 70, 50, and 30%
ethanol series and in ddH2O for 5 min.

4. Add a few drops of McIlvaine buffer, pH 5.5, to the slide and
incubate for 10 min.

5. Gently shake off slide and apply 80–100 μL of Ho working
solution to the slide for 2 min. Cover with a plastic cover slip
(cut from autoclavable waste bags), avoiding air bubbles, and
protect from light.

6. Carefully remove the plastic cover slip with tweezers and wash
briefly with McIlvaine buffer, pH 5.5.

7. Apply McIlvaine buffer, pH 5.5, to the whole slide and incu-
bate for 15 min.

8. Gently shake off slide. Add a few drops of ddH2O to the slide
and incubate for 15 min.

9. Shake the water off, dry the slide, and mount it in glycerol
antifade solution.

10. Store slide in the dark. For long-term conservation, store at
4 �C.

11. Observe under an epifluorescence microscope with appropriate
filters.
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3.6 Destaining Slides

After Fluorochrome

Bandings

1. Immerse slide in Carnoy I in staining dish until cover slip
floats off.

2. Successively dehydrate slide in ice-cold ethanol series (70, 90,
and 100%) for 5 min each (see Note 13).

3. Dry slide for a couple of days in a vertical position in a closed
plastic box to prevent accumulation of dust.

3.7 FISH Following the technique of Heslop-Harrison et al. [39] with minor
modifications by Siljak-Yakovlev et al. [3].

3.7.1 Day One 1. Prepare a humid chamber using a plastic box with moistened
paper tissues in the bottom. Warm up to 37 �C.

2. Add 200 μL of RNase A working solution to each slide, cover
with a plastic cover slip, and incubate in a humid chamber at
37 �C for 1 h.

3. Carefully remove plastic cover slip with tweezers and wash slide
in a Coplin jar in 2� SSC twice for 5 min.

4. Briefly rinse slide in a 0.01 M HCl solution.

5. Incubate slide with 80–100 μL of pepsin working solution for
10–15 min at 37 �C (see Note 14).

6. Rinse slide in deionized H2O for 2 min.

7. Wash slide in 2� SSC two times for 5 min.

8. Facultative step: denaturation in 50 or 70% (for gymnosperms)
formamide, 2 min at 70 �C (see Note 15). Rinse slide in
2� SSC for 5 min.

9. Dehydrate slide in an ethanol series: 70, 90, and 100%
(�20 �C); 3 min each.

10. Air-dry slide for 1–2 h.

11. Add 0.5–2 μL of 18S–26S DNA probe (40 ng/μL) and/or
0.5–2 μL of 5S DNA probe (50 ng/μL) to hybridization buffer
to obtain a hybridization mixture, 50 μL/slide (see Note 16).

12. Denature the probe by incubating the hybridization mixture
(in an Eppendorf tube) in a water bath (or a heat block) at
72 �C for 10 min, and transfer immediately on ice for a mini-
mum of 5 min (see Note 17).

13. Add 50 μL of hybridization mixture to slide and cover with a
plastic cover slip. Place slide in a plastic box and incubate in a
water bath at 72 �C for 10 min (see Note 18).

14. Transfer the box to another water bath set at 55 �C for 5 min.

15. Place slide in a humid chamber and incubate overnight at 37 �C
(see Notes 19 and 20).
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3.7.2 Day Two 1. Preheat the buffers (0.1� SSC, 2� SSC, 4� SSCT) in a water
bath at 42 �C.

2. Carefully remove the plastic cover slip with tweezers and
immerse slide in a Coplin jar with 2� SSC buffer for 3 min at
room temperature.

3. Wash slide twice in 2� SSC for 5 min at 42 �C.

4. Facultative step to reduce background: wash slide in 20% form-
amide at 42 �C, two times for 5 min.

5. Wash slide in 0.1� SSC for 5 min at 42 �C.

6. Wash slide in 2� SSC for 5 min at 42 �C.

7. Wash slide in 4� SSCT for 5 min at 42 �C (see Note 21).

8. Blocking: apply 100 μL of blocking buffer on slide, cover with
plastic cover slip, and incubate for 5 min at room temperature,
protected from light. Carefully remove plastic cover slip.

9. Antibody detection: apply 50 μL of antibody buffer on slide;
cover with plastic cover slip, and incubate at 37 �C for 1 h in a
preheated plastic humid chamber.

10. Carefully remove plastic cover slip and immerse slide in 4x
SSCT buffer three times for 5 min.

11. Shake the buffer off, dry the slide, and counterstain with final
antifade mounting medium with DAPI. Leave to stand for
5–10 min and remove surplus medium using paper tissue.

12. Store slide in the dark at 4 �C.

13. Observe under an epifluorescence microscope with appropriate
filters.

3.8 Modified FISH

Protocol

In this section, we present a modified and much shorter version of
our standard FISH protocol, which we already used and verified for
some genera (e.g., Crepis, Iris, Narcissus, Quercus, and Triticum).

3.8.1 Day One 1. Prepare a humid chamber by placing moistened paper tissues
on the bottom of a plastic box and preheat to 37 �C.

2. Add 200 μL of RNase A working solution on each slide, cover
with a plastic cover slip, and incubate in a humid chamber at
37 �C for 1 h.

3. Immerse slide in a Coplin jar with 2� SSC buffer and wash
twice for 5 min. The plastic cover slip will float off the slide
during the first wash. Remove it carefully.

4. Add 50 μL of proteinase K working solution to the slide and
incubate for 15 min at 37 �C (see Note 14).

5. Wash slide in 2� SSC for 5 min.

6. Dehydrate slide in an ethanol series: 70, 90, and 100%
(�20 �C); 3 min each.
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7. Air dry slide for 1–2 h.

8. Add 50 μL of modified hybridization mixture per slide and
cover with a cover slip. Place the slide in a plastic box and
incubate in a water bath set at 85 �C for 6 min (see Note 18).

9. Transfer the slide to a humid chamber and incubate overnight
(16–20 h) at 37 �C.

3.8.2 Day Two 1. Preheat the buffers (0.1� SSC, 2� SSC, 4� SSCT) in a bath at
42 �C.

2. Immerse slide in a Coplin jar with 2� SSC buffer and wash for
5 min at room temperature.

3. Wash slide twice in 2� SSC for 5 min at 42 �C.

4. Wash slide in 0.1� SSC for 5 min at 42 �C.

5. Wash slide in 2� SSC for 5 min at 42 �C.

6. Wash slide in 4� SSCT for 5 min at 42 �C.

7. Wash slide 5 min in 4� SSCT at room temperature.

8. Blocking: apply 100 μL of blocking buffer on slide, cover with
plastic cover slip, and incubate in a humid chamber for 30 min
at room temperature, protected from light. Carefully remove
plastic cover slip.

9. Antibody detection: apply 25 μL of antibody buffer per slide.
Cover with a plastic cover slip and incubate in a humid chamber
for 1 h at 37 �C.

10. Immerse slide in a Coplin jar with 4� SSCT buffer and wash
twice for 5 min at room temperature. Carefully remove plastic
cover slip.

11. Gently shake off excess buffer and counterstain with antifade
mounting medium with DAPI. Remove surplus of medium
using paper tissue, after 5–10 min. Alternatively, counterstain
slide with 0.2 μg/mL DAPI in ddH2O for 8 min. After a brief
wash in 2� SSC, apply the antifade solution and cover with a
cover glass. Remove excess medium using a paper tissue.

12. Place slide in a dark place, at 4 �C.

13. Observe under an epifluorescence microscope with appropriate
filters.

3.9 Destaining Slides

After FISH

1. Immerse slide in 2� SSC in a staining dish until cover slip floats
off of the slide.

2. Dehydrate slide in ice-cold ethanol series (70, 90, and 100%)
for 5 min (see Note 13).

3. Dry the slide in vertical position for a couple of days in a closed
plastic box to avoid dust.

4. Restart new FISH experiment on the same slide from step
9 (standard protocol) or 6 (modified protocol) on Day One.

376 Sonja Siljak-Yakovlev et al.



4 Notes

1. Store at 4 �C in a dark glass bottle, not longer than 2 months.

2. It is necessary to use fresh solutions to minimize ester forma-
tion, stop mitosis, and preserve chromosome structure
integrity.

3. This solution is recommended for oily and waxy tissues to
increase the penetration ability of the fixative.

4. It is possible to use MgCl2 instead of MgSO4: add 0.1017 g of
MgCl2·6H2O.

5. Proposed enzyme composition and concentrations may require
modification for different plant species.

6. Hybridization buffer without probes and water can be
prepared in excess volume and stored at �20 �C.

7. Put powder in the buffer and keep at 37 �C for a couple of
minutes (without shaking) for easier and faster dissolution.

8. Detection step is not needed if FISH is done with directly
labelled probes.

9. For long-term preservation, keep material in the Carnoy fixa-
tive (4 �C) for a few days and then transfer it to 70% ethanol
fixative and store at 4 �C or –20 �C.

10. In case of large chromosomes and low number of available root
tips, avoid centrifugation protocol. Enzyme mixtures can be
reused several times in which case digestion time might need to
be slightly increased after each round of use.

11. Exposure time of meristems to enzyme mixture depends on
tissue thickness. It is necessary to verify the homogeneity and
successive decomposition of meristems of analyzed species:
material should be soft and break up easily for optimal time.

12. When using a freezer, preparations need to stay at �80 �C at
least 24 h to avoid the loss of chromosome during cover slip
removal.

13. Store alcohol solutions at �20 �C.

14. Incubation in pepsin and proteinase K should be prolonged in
case of larger amounts of cytoplasm on the slide.

15. This step is recommended to achieve better denaturation and
reduce background.

16. The probes should be added last, and the hybridization mix-
ture should be homogenized by vortexing.

17. Rapid cooling of the hybridization mixture prevents reanneal-
ing of the probe.
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18. The exact temperature and duration of treatment vary between
species and should be experimentally determined if not already
published.

19. It is important to prevent moisture loss by evaporation. How-
ever, too much moisture can lead to condensation on the slide,
which can result in poorly hybridized slide.

20. Duration of hybridization should be prolonged for gymnos-
perms to up to 48 h.

21. During this step, thaw blocking buffer.
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Chapter 19

GISH: Resolving Interspecific and Intergeneric Hybrids

Nathalie Piperidis

Abstract

Genomic in situ hybridization (GISH) is an invaluable cytogenetic technique which enables the visualiza-
tion of whole genomes in hybrids and polyploidy taxa. Total genomic DNA from one or two different
species/genomes is used as a probe, labeled with a fluorochrome, and directly detected on mitotic
chromosomes from root tip meristems. In sugarcane and sugarcane hybrids, we were able to characterize
interspecific hybrids of two closely related species as well as intergeneric hybrids of two closely related
genera.

Key words GISH, Fluorochrome, Interspecific, Intergeneric, Genome

1 Introduction

1.1 Genomic In Situ

Hybridization (GISH)

GISH was derived from fluorescence in situ hybridization (FISH)
techniques (Chapter 18) developed in the early 1980s by biomedi-
cal researchers, and it was eventually applied to plant chromosomes
in the late 1980s. GISH was first demonstrated in synthetic Hor-
deum chilense x Secale africanum hybrids [1] and also used to track
artificial introgression of chromosomes in wide crosses [2]. The
challenges faced by plant chromosome researchers are mainly based
on the fact that plants have cell walls, cytoplasmic debris, and more
condensed chromosomes status that could affect the probe/DNA
accessibility than in the mammalian cells. GISH is a powerful tool
and can be used, for example, to distinguish the genome of one
parent from the other by preferential labeling of the genome of
either parent. It can also be used to detect alien chromosome(s) in
addition lines or alien species in recipient parent, for example.
GISH is extremely useful to identify parental chromosomes in
interspecific or intergeneric hybrids, to test the origin of natural
amphiploids, to track down the introgression of alien chromo-
somes, or to test the occurrence of exchange between the genomes
involved [3, 4]. Multicolor GISH allows simultaneous discrimina-
tion of multiple genomes and identification of diploid progenitors
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in allopolyploids. GISH requires labelling of genomic DNA directly
with a fluorochrome or with a hapten capable of indirect association
with fluorochromes. The nucleic acid fluoro-probe(s) will then
provide an assay through complementary pairing with nucleotides
of the target DNA on a slide. Fluorochromes provide the ability to
visualize in situ homologous regions to the probe within the cellu-
lar structure using a fluorescence microscope. Digital camera cou-
pled to the microscope allows to capture permanent images of the
fluorescent patterns on the chromosomes. Figure 1 represents the
outline of the procedure.

1.2 Example

of Application

in Sugarcane

and Sugarcane

Hybrids

Although classical cytological studies in sugarcane [5] allowed a
better understanding of the sugarcane genome, molecular cyto-
genetic methods not only lead to important breakthroughs reveal-
ing the level of the complexity of modern sugarcane cultivars but
also unraveled the taxonomy of the Saccharum genus. Modern
sugarcane cultivars are one of the most difficult species to work
with on a genetic and molecular level. Sugarcane species are con-
sidered to have one of the most complicated genomes studied.
Chromosome numbers were determined, uncovering highly poly-
ploid and, frequently, aneuploid members in this genus [6]. The

Fig. 1 Overview of the GISH procedure
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genome of modern cultivars results in the hybridization of two
species of Saccharum, the noble cane Saccharum officinarum and
the wild species Saccharum spontaneum which was also revealed by
GISH studies. In the past 15 years, molecular cytogenetic techni-
ques have proven to be a very efficient tool to better understand
this complex genome and revealed outcomes that classical molecu-
lar markers alone could not. These techniques proved to be partic-
ularly relevant to refine our understanding of the genome structure
of sugarcane and its taxonomy [7, 8]. In our laboratory, we used
GISH to characterize interspecific hybrids to taxonomic reclassifi-
cation of atypical S. officinarum as well as intergeneric hybrids
involving two different genomes and three different species: Sac-
charum officinarum, Saccharum spontaneum and Erianthus
arundinaceus.

1.2.1 Interspecific Hybrid

Between S. officinarum

and S. spontaneum

Since the original classification of Saccharum species, taxonomy
within the genus Saccharum has been controversial. S. officinarum
is known to have 2n ¼ 80 chromosomes; therefore, clones with
more than 80 chromosomes should be classified as hybrids. How-
ever, Irvine [9] has debated this and suggested that clones that fit
the botanical description for S. officinarumwithmore than 80 chro-
mosomes should remain in this classification. GISH studies have
contributed to understanding the taxonomic status and relation-
ships of species and clones within the Saccharum genus. We used
GISH to verify the taxonomic reclassification of atypical
S. officinarum with more than 80 chromosomes revealed by flow
cytometry [7]. GISH results of atypical S. officinarum clone Mun-
tok Java are presented in Fig. 2a. Genomic DNA from
S. officinarum was labeled in “red” with Alexa Fluor 594-5-
dUTP, and genomic DNA from S. spontaneum was labeled in
“green” with Alexa Fluor 488-5-dUTP. Both species are relatively
closely related; therefore, S. officinarum chromosomes appear
“orange,” while S. spontaneum chromosomes appear “yellow-
green” due to some level of cross-hybridization between the two
genomes; recombined chromosomes from both species can also be
visualized.

1.2.2 Intergeneric Hybrid

Between S. officinarum

and E. arundinaceus

For our intergeneric GISH characterization, Erianthus arundina-
ceus was labeled in “red” with Alexa Fluor 594-5-dUTP or Rhoda-
mine-5-dUTP, while S. officinarum was labeled in “green” with
Alexa Fluor 488-5-dUTP or Fluorescein-12-dUTP [8]. GISH of
an F1 and backcross 1 (BC1) between the two genomes are pre-
sented in Fig. 2b, c. In these intergeneric hybrids, the E. arundina-
ceus chromosome are red and the S. officinarum chromosomes
are green, as the two species are not as closely related than in the
interspecific hybrids. The fluorochrome colors do not overlap as the
genome has minimal cross-hybridization.
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1.2.3 Revealing

the Interspecific

and Intergeneric Status

of Intergeneric Hybrid

Between Saccharum

and E. arundinaceus

We also characterized intergeneric hybrids using DAPI as a third
identification color tool to be able to distinguish the three different
species involved, as we wanted to investigate the recombination event
between the Saccharum and theErianthus genome. The questionwas
whether recombination was preferentially happening between Sac-
charum officinarum and Erianthus or Saccharum spontaneum and
Erianthus. To resolve the question, S. officinarum was labeled in
“red” with Alexa Fluor 594-5-dUTP or Rhodamine-5-dUTP, and
S. spontaneum was labeled in “green” with Alexa Fluor 488-5-dUTP
or Fluorescein-12-dUTP resulting in the Erianthus arundinaceus
species to be visualize in “blue” from the DAPI stain; therefore,
Vectashield without dye was apply on the slide. An Erianthus BC3
hybrid is presented in Fig. 3. S. officinarum appears pink in this image
(resulting from the overlap of colors from the three images (blue, red,
and green) necessary to reveal the three different genomes), while
S. spontaneum appears green, and theErianthus genome appears blue.

Fig. 2 (a) Interspecific chromosome composition of an atypical S. officinarum revealed by GISH using total
genomic DNA for S. officinarum (in orange) and total genomic DNA from S. spontaneum (in green), recombined
chromosomes appeared in both color. Intergeneric chromosome composition of an F1 (b) and a BC3
(c) revealed by GISH using total genomic DNA from S. officinarum (in green) and E. arundinaceus (in red).
Scale bar: 5 μm
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2 Materials

Prepare all stock solutions using deionized distilled water (ddH2O)
and chemicals with the highest grade available. For most steps in
DNA handling, it is essential that ddH2O is autoclaved for at least
20 min at 130 �C in order to destroy any DNase activity and ensure
sterility. All stock solutions have to be stored at room temperature
(RT) unless stated otherwise.

2.1 Equipment Besides the laboratory standard equipment, few specialized items
are needed.

1. CCD (charge-coupled device) camera with image capture and
processing software.

2. Coplin jars.

3. Epifluorescence/light microscope.

4. Heating plate with magnetic stirrer.

Fig. 3 Intergeneric/interspecific chromosome composition of an Erianthus BC3
hybrids revealed by GISH using total genomic DNA for S. officinarum (appeared
in pink), total genomic DNA from S. spontaneum (in green), interspecific
recombined chromosomes in pink & green. Two intergeneric recombined
chromosomes between S. officinarum and Erianthus arundinaceus (in pink &
blue) are circled in white. The blue (DAPI stain) correspond to the unlabelled
Erianthus chromosome. Scale bar: 5 μm
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5. Hot plate with digital temperature control for slide warming.

6. Refrigerated centrifuge (swinging bucket is recommended).

2.2 Stock Solutions

Stored at Room

Temperature or on Ice

for Immediate Use

1. 2� SSC, pH 7.0: Dilute 100 mL of 20� SSC (Saline Sodium
Citrate buffer), pH 7.0, in 900 mL for a final volume of
1000 mL.

2. Fixative solution (3:1): Dilute 3 volumes of 100% ethanol to
1 volume of glacial acetic acid.

3. RNase A solution is freshly made upon treatment. Dilute
(1/100) the thawed RNase A aliquot on ice: 8 μL of 1%
RNase A + 80 μL of 20 � SSC + 712 μL ddH2O.

4. Hybridization buffer (HB) 50 mL per slide: 25 μL FA, 10 μL
DS, 5 μL 20� SSC, 1.5 μL SS DNA, and 80–100 ng of each
DNA probe; make up to a final volume of 50 μL with ddH2O
(see Notes 3 and 15).

2.3 Stock Solutions

Stored at 4 �C
1. Antifade for mounting slide: Vectashield Mounting Media

with DAPI or Vectashield Mounting Media without DAPI
(see Note 1).

2. 0.25 N HCl: Always work under fume hood; measure
195.56 mL of ddH2O and then add 4.44 mL of pure HCl
(see Note 1).

3. 0.04% 8-Hydroxyquinoline: Add 40 mg of
8-Hydroxyquinoline to 100 mL of ddH2O. Place on a stirrer
at RT for several hours. Store at 4 �C up to 1 year (seeNote 2).

4. 3 M NaOAc, pH 5.2: Dissolve 40.81 g of sodium acetate
trihydrate (CH3COONa·3H2O) in 30 mL ddH2O, titrate
pH to 5.2 with glacial acetic acid, and dilute with ddH2O to
a final volume of 100 mL.

5. TE buffer, pH 8.0: 10 mM Tris–HCl, pH 8.0, 1 mM
Na2EDTA. Add 20 μL of 1 M Tris–HCl, pH 8.0, 4 μL of
500 mM Na2EDTA, pH 8.0, and 1976 μL of ddH2O.

2.4 Stock Solutions

Stored at �20 �C
1. 50% Dextran sulfate (DS): Dissolve 5 g of DS to a final volume

of 10 mL of ddH2O. Stir slowly until dissolved; it could take up
to 24 h for the DS to be completely dissolved.

2. BioPrime DNA Labeling System for random priming labeling.

3. 1 μg/μL carrier DNA, Sheared Salmon Sperm DNA
(SS DNA): Mix 10 mg of DNA with 10 mL of TE, pH 8.0.
Shear in autoclave for 5 min, denature for 10 min in boiling
water, and then place on ice. Aliquot and store.

4. Deionized formamide (FA) (see Note 1):Work under the fume
hood. Add 5 g of ion exchange resin for each 100 mL formam-
ide, cover with aluminum, and stir for 30–60 min. Filter twice
withWhatmanNo. 1. Aliquot in 1mL tubes as well as in 20mL

386 Nathalie Piperidis



tubes and store. Deionize all formamide when a new bottle is
opened. Do not keep FA after opening.

5. Digestion citrate buffer: Add 1.47 g of trisodium citrate dihy-
drate (Na3C6H5O7·2H2O), 1.05 g of citric acid monohydrate
(C6H8O7·H2O), 2.8 g of KCl, and ddH2O up to 500 mL.
Adjust pH to 4.5, aliquot, and store.

6. Digestion enzyme solution: Add 0.25 g (5% final concentra-
tion) of cellulase Onozuka R-10 and 0.05 g (1% final concen-
tration) of pectolyase Y-23 in 5 mL of digestion citrate buffer.
Place on stirrer at RT for 1 h. Aliquot into microtubes and
store.

7. Ethanol series: Prepare three solutions at 70%, 95%, and 100%
ethanol in three Coplin jars and store.

8. 70% FA/2� SSC: Add 35 mL FA and 15 mL of 2� SSC (see
Note 1).

9. Fluorochromes: 1 mM F-x-dUTP (see Note 3): ChromaTide
Alexa Fluor 594-5-dUTP; ChromaTide Alexa Fluor 488-5-
dUTP; Fluorescein-12-dUTP; Rhodamine-5-dUTP.

10. dNTP for random priming: dATP, dCTP, dGTP, dTTP
(100 mM). Dilute each of the individual dNTP at 10 mM
final concentration (10 μL of dNTP + 90 μL of ddH2O).

11. dNTP Fluorochrome (10 mM) mix (10�): On ice, add 5 μL of
each dATP, dGTP, and dCTP and 2.5 μL of dTTP together
with 25 μL dUTP-Alexa and 7.5 μL of ddH2O. Keep at
�20 �C for up to 6 months.

12. dNTP Fluorescein and/or Rhodamine mix (10�): On ice, add
5 μL of each dATP, dGTP, and dCTP and 3.25 μL of dTTP
together with 17.5 μL dUTP-Alexa and 14.25 μL of ddH2O.-
Keep at �20 �C for up to 6 months.

13. 1% RNase A in 10 mM Tris–HCl, pH 7.5, 15 mM NaCl
(DNase-free): Dissolve 10 mg of RNase A in 987 μL ddH2O
with 10 μL of 1 M Tris–HCl, pH 7.5, and 3 μL of 5 M NaCl;
incubate in boiling water bath for 15 min; cool slowly; and
store in aliquots.

3 Methods

3.1 Root

Pretreatment and Slide

Preparation

Root tip meristems are the most commonly used plant tissues in
cytogenetic methods for preparing mitotic chromosomes as they
contain cells in active division. Plants are grown in a glass house in
20 L pots with a mixture of 50/50 vermiculate (coarse grade)/
perlite (grade 3) with regular and sufficient application of water and
nutrients (see Note 4). Root tip collection includes a pretreatment
in order to arrest as many cells as possible in metaphase and a
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fixative treatment, and then the roots can be stored in a 70% ethanol
solution at 4 �C. For species with low mitotic index, it could be
important to estimate the time of the day where best mitotic index
slides are obtained. It is usually recommended to set up an assay
where quality/mitotic index of slides is recorded in function of the
collection time. The harvesting should be conducted by 1/2 h
periods over an 8-h day. For example, in sugarcane, we harvest
roots between 10 h 30 min and 11 h 00 min during the optimal
growth period days of October to December [7].

3.1.1 Root Treatment 1. Approximately 0.5 cm of roots are harvested with fine forceps
and placed directly in 5 mL bottles containing 0.04%
8-Hydroxyquinoline for 4 h at RT to arrest cells in metaphase
(see Note 1).

2. Fix in freshly made 3:1 fixative solution for 72 h at RT.

3. Store roots in 70% ethanol at 4 �C until roots are spread.

3.1.2 Slide Preparation

(See Note 5)

1. Rinse roots twice in ddH2O for 10 min at RT.

2. Hydrolyze roots in 0.25 N HCl for 10 min at RT.

3. Rinse roots in ddH2O for 10 min at RT.

4. Place roots in digestion citrate buffer for 10 min at RT.

5. Cut the distal 1–1.5 mm of the root tip with a fine scalpel; blot
away excess moisture with filter paper.

6. Digest root tips in digestion enzyme solution for 90–180 min
in a tube place in a water bath at 37 �C. Make sure the root tips
are completely covered by the digestive solution. The length of
time will vary with species and/or size of the root tips.

7. Carefully remove root tips from tubes and place in ddH2O in a
watch glass for at least 20 min at room temperature. Time must
be optimized and the root cap must be removed to avoid high
background.

8. Use a Pasteur pipette to carefully remove one root tip and place
it on a pre-cleaned slide (see Note 6).

9. Add one or two drops of freshly prepared 3:1 fixative solution,
immediately break apart the tip, and spread it with a pair of fine
forceps (see Note 7).

10. Air-dry and store overnight in a desiccator (37 �C).

3.2 RNase A

Treatment

Prior to any GISH experiment, slides are screened to select the ones
with the best mitotic chromosome cells. Therefore, to avoid disap-
pointment and reduce the cost of GISH if you work with species
prominent to low mitotic index (as in sugarcane for example), we
recommend to only hybridize slides with good mitotic prepara-
tions, i.e., with at least ten “complete” 2n cells. We also recom-
mend prescreening slides under a 20� objective and recording
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coordinates of the good mitotic cells for tracking purposes; this
allows to go back straight to the recorded metaphases and avoid
photobleaching when capturing images. We are also delimiting the
hybridization area (with a diamond pen on the back of the slide) for
a targeted and more efficient use of the hybridization buffer.

1. Add 50–100 μL of the freshly made RNase A solution on the
slides, cover with a plastic cover slip (see Notes 8 and 9), and
incubate in a humidified incubation chamber (seeNote 10) for
45 min at 37 �C.

2. Rinse slides in a Coplin jar in 2� SSC for 10 min at RT.

3.3 GISH Experiment The method described here for GISH experiment involves a ran-
dom priming labeling method with direct fluorochrome. This
method is the preferredmethod in our laboratory as it is very simple
and reliable in order to acquire relatively quick and efficient results.
There are alternative options to perform GISH in plants. Different
methods such as Nick translation (NT) labeling with different types
of haptens are extensively described in Zhang and Friebe [10].One
of the most common methods for GISH is NT labeling with biotin
and/or digoxigenin, but these haptens will have to be detected and
amplified in order to visualize the fluorescent signal. In sugarcane,
NT can also be performed with Fluorescein-12-dUTP and/or
Rhodamine-5-dUTP with excellent results.

3.3.1 Probe Labeling by

Random Priming

Random priming achieves best result with good quality DNA. A
mixture of different combinations of hexamers, octamers, or non-
amers is annealed randomly to denatured DNA. The annealed small
oligonucleotides will then act as primers and allow the synthesis of
the complementary DNA strand by the Pol1 fragment of the
Klenow enzyme (Pol1 has a DNA polymerase activity as well as
exonuclease activity 30 ! 50). Labeled DNAwill consist of a mixture
of double- and single-stranded fragments. We use the kit BioPrime
DNA Labeling System with the “green” and “red” Alexa fluoro-
chromes (F-x-dUTP) or with Fluorescein-12-dUTP and Rhoda-
mine-5-dUTP (see Notes 11 and 12).

1. On ice, firstly dilute 1 μg of genomic DNA in a volume of
19 μL ddH2O and add 20 μL of Random Primers (from the kit)
in a 1.5 mL tube. Denature the 39 μL in boiling water for
6 min and stand on ice for 15 min.

2. Finally, add 10 μL of 10� dNTP mix and 1 μL of Klenow
enzyme. Mix gently, centrifuge briefly, and incubate in a
water bath from 5 h to overnight at 37 �C. Longer incubation
times usually increase product yield.

3. Add 5 μL of stop buffer.
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4. Removal of unincorporated nucleotides and primers is not
essential but is recommended to avoid background noise and
can be performed by adding 1/10 volume of 3 M NaOAc,
pH 5.2, and 2.5 volumes of 100% ethanol and centrifuging at
15,000 � g for 30 min at 4 �C. Discard supernatant and add
250 mL of 70% ethanol; centrifuge for 15 min. Discard super-
natant carefully. Air-dry tubes for 5 min and resuspend in 20 μL
of TE at 37 �C for 5 min. The concentration of the probe
should be around 40–50 ng/μL (see Note 12). Another
method to remove unincorporated nucleotides is to use a
purification kit where the labeled DNA is purified through
columns. This method seems to have a higher ratio of recovery
of the labeled probe.

5. The fluorescence of fluorochrome-labeled probes can be esti-
mated by a spot test as follows. Spot 1 μL of fluorochrome
labeled probe onto a small piece of nylonmembrane, air-dry for
approximately 10 min, and then examine the fluorescence
intensity under a fluorescence microscope with a suitable filter.

6. Probes can be stored at �20 �C.

3.3.2 Slide Denaturation Chromosomes are denatured by placing slides on a hot plate at
80 �C in order to be ready for in situ hybridization.

1. Set a hot plate at 80 �C for at least 30 min prior to the
denaturation process. We use a digital hot plate for better
temperature accuracy (see Note 13).

2. Apply 200 μL of 70% FA/2� SSC solution, apply cover slip,
and place on the hot plate for 3 min at 80 �C (see Note 1).
Denaturation time has to be optimized according to the species
and the age of the slides.

3. Remove the cover slip (see Note 8) and rinse slides in a Coplin
jar standing in ice with 2� SSC (at �20 �C) for 3 min.

4. Dehydrate slides 5 min through an ethanol series of 70%, 95%,
and finally 100% on ice. Solution of ethanol at 70% and 95% as
well as 100% ethanol is kept at �20 �C.

5. Air-dry vertically (see Note 14).

3.3.3 In Situ

Hybridization

1. Denature the freshly made HB for 10 min in boiling water and
then place on ice for at least 15 min.

2. Deposit 50 μL of the HB on the dried slide; cover with a plastic
cover slip. Avoid bubbles.

3. Place slide in a humidified incubation chamber (see Note 10)
overnight at 37 �C.

4. Prepare three Coplin jars with 2� SSC, 0.5� SSC, and
0.1� SSC in a 42 �C water bath for stringency washes.
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5. Remove the cover slip with a squirt of 2� SSC, wash slide in the
2� SSC for 10 min and then in the 0.5� SSC for 10 min, and
finally wash with agitation in the last Coplin jar (0.1� SSC) for
another 10 min at RT (see Note 16).

6. Drain slightly one slide at a time without letting it dry. Coun-
terstain the slide with a drop of antifade Vectashield mounting
media with DAPI (see Notes 15 and 17). Cover with a glass
cover slip. Seal the cover slip with transparent nail polish. Dry
slides horizontally in a slide holder protected from light.
Observe under fluorescence microscope with appropriate filter.
Store slides horizontally in the dark at 4 �C.

4 Notes

1. Some chemicals, especially HCl, FA, DAPI, and glacial acetic
acid, are hazardous/toxic and should be handled with extreme
caution. Some products such as FA are more toxic when
heated, so always follow good laboratory practice and use the
fume hood when required.

2. 8-Hydroxyquinoline is sensitive to light. It is therefore impor-
tant to store the solution in the dark in a bottle covered with
aluminum foil. It is best to place the bottle on a stirrer at least
½ h before using the solution. Finally, just before root collec-
tion, fill up 5 mL bottles and keep bottles in a box away from
the light to ensure a good efficiency of the active product.

3. Fluorochromes will photo-bleached if exposed to light for long
periods of time. During probe labeling preparation, it is recom-
mended to work with a bench lamp directed away from the
fluorochromes.

4. Ensure that at least for 4 h prior to harvesting, the roots are not
being watered; they will be more accessible if the pots are not
soaked. Good size roots are collected approximately every
3 weeks; if roots are not growing properly, it is recommended
to use specialized root growth fertilizer.

5. Root treatment for the slide preparation can be performed in
the bottle, and the storage solution is removed completely with
plastic pipettes. If there is more than one clone/species to be
treated, we use a microplate with 24 wells. We treat two to
20 roots from six different species per plate. Each line has four
wells in use containing ddH2O (�2), HCl, ddH2O, and diges-
tion buffer, respectively. Roots are handled carefully with twee-
zers in each bath for the 10 required minutes. Root tips/
samples are then cut and grouped by size before being set up
in digestion enzyme solution. After at least 90 min, the first lots
of thinner tips are placed back in the washed microplate con-
taining ddH2O. The remaining tips are left in the water bath at
37 �C until ready to be spread.
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6. Slides are placed in Coplin jars with 100% ethanol and dried
just before use with kimwipes. Excess water is removed with a
home-made micro Pasteur pipette firstly, and then we use the
folded kimwipe to pre-clean the slide. The kimwipe with resid-
ual ethanol will suck the remaining water around the root.

7. If chromosomes on the slide have too much cytoplasm/too
much cell wall debris, make sure that the root cap was removed
before spreading as this increases the quality of the slide prepa-
ration. The root cap does not normally detach itself from the
tip, and tweezers are most of the time required to remove the
cap at this stage without damaging the tip itself. The digested
cap-free tip has to be spread evenly on a 32 mm � 40 mm
surface of the slide to concentrate the metaphasic chromo-
somes to a small area. Avoid spreading twice in the same
localization.

8. We use pre-cuts of autoclave bags for plastic cover slip as they
handle high temperature well and also as it seems that they do
not trap too many bubbles.

9. To remove the cover slip, a squirt bottle of 2� SSC is
recommended.

10. Our humidified incubation chamber consists of a large petri
dish lined with paper at the bottom and soaked with water. The
slides are set on plexiglass stick or bended Pasteur pipette so
they are not directly in contact with the water.

11. To ensure better result during ethanol precipitation, we are
using 100% ethanol at�20 �C, and after adding acetate sodium
and ethanol, we leave the tube at �20 �C for 2 h or at �80 �C
for 15 min. We also use a refrigerated centrifuge with a swing-
ing bucket as the pellet of DNA would be precipitated at the
bottom of the tube. We also preferably use screw cap tubes.
After ethanol precipitation, DNA pellets labeled with a red
fluorochrome are usually readily seen by the eyes, whereas
those labeled with a green fluorochrome are usually of a pale
shade of yellow and could not be easily seen. Before resuspend-
ing the probe, make sure that all the ethanol has been removed
from the tube. Centrifuging tubes for another min at
10,000 � g can get rid of the excess ethanol as residual ethanol
in probe and slides could result in higher background signal.

12. If your slides present no, weak, or patchy hybridization, it is
often the result of labeling problems. Check the quality of the
DNA on an agarose gel before labeling as good quality DNA
will give a better probe and the length of the probe is also
essential.

Also check the expiry date of the enzymes and dUTPs
being used.
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13. If you encounter a poor signal from the probe as well as from
the counterstain and if chromosome morphology appears
abnormal, try denaturing the slide a little less than the recom-
mended 3 min and ensure that the temperature of the hot plate
is less than or equal to 80 �C. Poor signal/DAPI stain is very
common if chromosomes have a ghostly look just after being
spread.

14. The slides can be put in an oven at 37 �C to reduce drying time.
Residual ethanol in slides can cause higher background signal.

15. It is recommended to avoid as much as possible exposure to
light during the entire procedure (labeling, hybridization,
post-hybridization wash, image capture). The laboratory
should be entirely dark except from the light coming from a
benchtop lamp. When capturing images, be as quick as possible
because each exposure to fluorescent light will remove energy
from the fluorochrome and therefore decrease its intensity.

If the hybridization signal is poor, the concentration of the
probe used during hybridization might be too low. Try differ-
ent concentrations of the probe, but ensure that the concen-
tration of the probe after precipitation has not been
overestimated. Also make sure that the hybridization solution
was mixed thoroughly as the DS solution is very viscous. It is
possible to use a special piston pipette or a normal pipette with
a cutoff pipette tip to slowly mix the solution up and down.

Finally, ensure that no bubbles remain between the slide
and cover slip after adding the hybridization solution. If bub-
bles appear, use fine tweezers to lift up and down the cover slip
to carefully remove them.

16. Post-hybridization washes are very important to remove unat-
tached probe and therefore reduce the background signal.
Ensure that washes are performed according to the procedure.

17. After applying a drop of mounting media (Vectashield with or
without DAPI depending on the experiment), we apply gentle
pressure on the glass cover slip in order to remove excess
media. We use a layer of kimwipe directly on the cover slip
and three layers of Whatman paper. Always apply pressure with
the thumb when slides are placed on a flat surface in order to
prevent breaking the slide and/or cover slip.
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