

Save 50% on these books and videos – eBook, pBook, and MEAP. Enter menlpip50 in the
Promotional Code box when you checkout. Only at manning.com.

Getting Started with Natural Language
Processing
by Ekaterina Kochmar

ISBN 9781617296765
325 pages
$31.99
Spring 2021

Natural Language Processing in Action
by Hobson Lane, Cole Howard, Hannes Hapke

ISBN 9781617294631
544 pages
$39.99

Real-World Natural Language Processing
by Masato Hagiwara

ISBN 9781617296420
500 pages
$47.99
Spring 2021

https://avxhm.se/blogs/hill0

https://www.manning.com/books/natural-language-processing-in-action
https://www.manning.com/books/real-world-natural-language-processing
https://www.manning.com/books/natural-language-processing-in-action
https://www.manning.com/books/getting-started-with-natural-language-processing
https://www.manning.com/books/getting-started-with-natural-language-processing
http://manning.com
https://www.manning.com/books/real-world-natural-language-processing

Deep Learning for Natural Language
Processing
by Stephan Raaijmakers

ISBN 9781617295447
292 pages
$39.99
Spring 2021

Transfer Learning for Natural Language
Processing
by Paul Azunre

ISBN 9781617297267
325 pages
$39.99
Spring 2021

https://avxhm.se/blogs/hill0

https://www.manning.com/books/transfer-learning-for-natural-language-processing
https://www.manning.com/books/deep-learning-for-natural-language-processing
https://www.manning.com/books/deep-learning-for-natural-language-processing
https://www.manning.com/books/transfer-learning-for-natural-language-processing

Natural Language Processing in Practice
Chapters chosen by Ekaterina Kochmar

Manning Author Picks

 Copyright 2020 Manning Publications
To pre-order or learn more about these books go to www.manning.com

https://avxhm.se/blogs/hill0

http://www.manning.com/

For online information and ordering of these and other Manning books, please visit
www.manning.com. The publisher offers discounts on these books when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: Candace Gillhoolley, corp-sales@manning.com

©2020 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.
20 Baldwin Road Technical
PO Box 761
Shelter Island, NY 11964

Cover designer: Leslie Haimes

ISBN: 9781617299360

https://avxhm.se/blogs/hill0

http://www.manning.com

contents
introduction iv

Your first NLP example 2
Chapter 2 from Getting Started with Natural Language Processing

Introduction to Information Search 38
Chapter 3 from Getting Started with Natural Language Processing

index 77

iii

https://avxhm.se/blogs/hill0

introduction
Language proficiency is a core metric of intelligence—not only in humans, but in
machines as well. That’s why the ability to efficiently and accurately process the infor-
mation conveyed by human language is so important. Natural Language Processing
(NLP) technology plays an integral role in many of the recent advances in Artificial
Intelligence, so it’s no surprise that it’s earning more and more of the spotlight on the
intelligent technology stage. And it’s not only tech companies that are leveraging
NLP; Finance, insurance, and other industries across the board are increasingly inter-
ested in the potential benefits NLP can offer. After all, language is the primary means
of communication in all facets of life, and this rapidly advancing field promises to
spawn countless new and exciting opportunities. There’s really never been a better
time to get started with NLP!

 To jumpstart your NLP education, this mini ebook features two chapters from
Manning’s Getting Started with Natural Language Processing. In it, author and NLP expert
Ekaterina Kochmar guides you step by step as you build two NLP applications from
start to finish: one, a spam filter; the other, an information search algorithm; both,
classic examples of NLP in practice that apply fundamental NLP skills and concepts.
When you’re done, you’ll have valuable hands-on NLP experience that will help you
hit the ground running as you continue your NLP learning.

 Whether your interest in getting started with NLP is for your career, your personal
passion project, or just for fun, as long as it involves textual information, you’ll find
great value in this quick and practical primer. All you need to benefit from these chap-
ters is some basic Python programming skills. We hope the information here kindles
your NLP curiosity even more and opens your eyes to its endless possibilities. If you’d
like to dive deeper into this highly useful, interesting—and exploding!—field, we highly
recommend the complete version of Getting Started with Natural Language Processing.

iv

https://avxhm.se/blogs/hill0

In this chapter, you’ll build your own NLP application from beginning to
end: a spam filter. You’ll learn how to structure a typical NLP pipeline and apply
a machine learning algorithm to solve your task as you implement this classic
combination of NLP and machine learning.

Chapter 2 from Getting Started with
Natural Language Processing
by Ekaterina Kochmar

https://avxhm.se/blogs/hill0

https://www.manning.com/books/getting-started-with-natural-language-processing
https://www.manning.com/books/getting-started-with-natural-language-processing
https://www.manning.com/books/getting-started-with-natural-language-processing

Your first NLP example
In this chapter, you will learn how to implement your own NLP application from
scratch. In doing so, you will also learn how to structure a typical NLP pipeline and
how to apply a simple machine learning algorithm to solve your task. The particu-
lar application you will implement is spam filtering. We overviewed it in chapter 1 as
one of the classic tasks on the intersection of NLP and machine learning.

2.1 Introducing NLP in practice: Spam filtering
In this book, you use the spam filtering as your first practical NLP application
because it is an example of a very widely spread family of tasks: text classification.
Text classification comprises a number of applications that we discuss in this book;
for example, user profiling (chapter 5), sentiment analysis (chapter 6), and topic

This chapter covers:
 Implementing your first practical NLP application from

scratch

 Structuring an NLP project from beginning to end

 Understanding useful NLP concepts, including
tokenization and text normalization

 Applying a machine learning algorithm to textual data
2

https://avxhm.se/blogs/hill0

3Introducing NLP in practice: Spam filtering
labeling (chapter 8), so this chapter will give you a good start for the rest of the book.
First, let’s see what exactly classification addresses.

 We humans apply classification in our everyday lives pretty regularly: classifying
things simply implies that we try to put them into clearly defined groups, classes, or
categories. In fact, we tend to classify all sorts of things all the time. Here are some
examples:

 Based on our level of engagement and interest in a movie, we may classify it as
interesting or boring.

 Based on temperature, we classify water as cold or hot.
 Based on the amount of sunshine, humidity, wind strength, and air tempera-

ture, we classify the weather as good or bad.
 Based on the number of wheels, we classify vehicles into unicycles, bicycles, tricy-

cles, quadricycles, cars, and so on.
 Based on the availability of the engine, we may classify two-wheeled vehicles into

bicycles and motorcycles.

Figure 2.1 combines the two types of classification for vehicles into one illustration.

Classification is useful because it makes it easier for us to reason about things and
adjust our behavior accordingly. For example, there might be more subtle characteris-
tics to a movie than it being just interesting or just boring, but by defining our attitude
toward a movie very concisely using these two categories, we might save a friend of ours
(provided we have similar taste in movies!) a lot of time. By defining water as hot we
know that we should be careful when we use it, without the need to think about what
particular temperature it is and whether it is tolerable. Or take the different types of
vehicles as an example: once we’ve done the grouping of vehicles, it becomes much
easier to deal with any instance of each class. When we see any particular bicycle, we

Figure 2.1 Classification of vehicles by two parameters: number of wheels and
availability of an engine.
https://avxhm.se/blogs/hill0

4 CHAPTER 2 Your first NLP example
know what typical speed it can travel with and what types of actions can be performed
with bicycles in general. We know what to expect and don’t need to reconsider any of
these facts for each bicycle in question because the class of bicycles defines the properties
of each particular instance, too. We refer to the name of each class as a class label.

 When classifying things, we often go for simple contrasts—good vs. bad, interest-
ing vs. boring, hot vs. cold. When we are dealing with two labels only, this is called
binary classification. For example, if we classify two-wheeled vehicles on the basis of
whether they have an engine or not, we perform a binary classification and end up
with two groups of objects—unmotorized two-wheeled vehicles like bicycles and kick-
scooters, and motorized two-wheeled vehicles like electric bicycles, motorcycles,
mopeds, and so on. But if we classify all vehicles based on the number of wheels, on
size, or any other characteristics, we will end up with multiple classes; for example,
two-wheeled unmotorized vehicles, two-wheeled motorized vehicles, three-wheeled
unmotorized vehicles, and so on, as figure 2.2 illustrates. Classification that implies
more than two classes is called multi-class classification.

Finally, how do we actually perform classification? We rely on a number of characteris-
tics of the classified concepts, which in some cases may include one type of informa-
tion only. For example, to classify water into cold or hot, we may rely on a single value
of water temperature, and, for example, call anything above 45ºC (113ºF) hot and
anything below this value cold. The selection of such characteristics will depend on
the particular task: for example, to classify weather into good or bad we may need to
rely on a number of characteristics including air temperature, humidity, wind
strength, and so on, rather than any single one. In machine learning terms, we call
such characteristics features.

 As we are used to classifying things on a regular basis, we can usually relatively eas-
ily define the number of classes, the labels and the features. This comes from our wide
experience with classification and from our exposure to multiple examples of con-
cepts from different classes. Machines can learn to classify things as well, with a little
help from humans. Sometimes a simple rule would be sufficient. For example, you
can make the machine print out a warning that water is hot based on a simple thresh-
old of 45ºC (113ºF), as shown in the following listing.

Figure 2.2 Multi-class classification of vehicles based on two parameters.
https://avxhm.se/blogs/hill0

5Introducing NLP in practice: Spam filtering
def print_warning(temperature):
 if temperature>=45:
 print (“Caution: Hot water!”)
 else:
 print (“You may use water as usual”)

However, when there are multiple factors to take into account, and these multiple fac-
tors may interact in various ways, a better strategy is to make the machine learn such
rules and infer their correspondences from the data rather than hard-code them.
After all, what the machines are good at is detecting the correspondences and pat-
terns! This is what machine learning is about: it states that machines can learn to solve
the task if they are provided with a sufficient number of examples and with the gen-
eral outline of the task. For example, if we define the classes, labels, and features for
the machine, it can then learn to assign concepts to the predefined classes based on
these features. For the previous cold vs. hot water example, we can provide the
machine with the samples of water labeled “hot” and samples of water labeled “cold”,
tell it to use temperature as the predictive factor (feature), and this way let it learn
independently from the provided data that the boundary between the two classes is
around 45ºC, as figure 2.3 shows. This type of machine learning approach, when we
supervise the machine while it is learning by providing it with the labeled data, is
called supervised machine learning.

Now that you are familiar with the ideas behind classification tasks, you are all set to
implement your first NLP classification algorithm in practice. Before you move on,
test your understanding of the task with the exercise below.

Listing 2.1 Simple code to tell whether water is cold or hot

Define a simple function that takes
water temperature as input and
prints out water status.

B If-statement checks if temperature is above the
threshold and prints out a warning message if it is.

Figure 2.3 Provided with
enough labeled examples
of hot and cold water, the
machine learning algorithm
can establish the threshold
of 45ºC independently.
https://avxhm.se/blogs/hill0

6 CHAPTER 2 Your first NLP example
 Figure 2.4 shows examples of two emails.

Solution:
1 We distinguish between spam and normal emails. Spam emails should end up in

the spam box and normal emails should be kept in the INBOX.
2 This is an example of binary classification because we distinguish between two

classes only.
3 We humans can relatively easily tell a spam email from a normal one, although

some spammers use sophisticated techniques to disguise their intentions, and
in some cases, it might be tricky to tell the difference. The format of the email
(use of unusual fonts and colors), the information about the sender (unusual
or unknown email address), and the list of addressees (spam emails are often
mass emails), as well as attachments and links are all very indicative. However,
some of the strongest clues are provided by the content of the email itself and

Exercise 1
Spam filtering is an example of text classification, which is usually addressed with
supervised machine learning techniques.

1 What labels do we assign in the spam filtering task; for example, in the exam-
ple above?

2 How many classes are there? What type of classification is this—binary or
multi-class?

3 What features will help you distinguish between classes?

First, try solving this exercise yourself. Then compare your answers with the solution.

Figure 2.4 Examples of two
emails. Can you tell whether they
should go to INBOX or SPAM box?
https://avxhm.se/blogs/hill0

7Understanding the task

the language used: for example, you should be wary of emails that tell you that
your account is unexpectedly blocked, that you need to provide sensitive per-
sonal information for suspicious reasons, or that you have won in a lottery, espe-
cially if you haven’t participated in one!

2.2 Understanding the task

First, you need to ask yourself what format the email messages are delivered in for this
task. For instance, in a real-life situation, you might need to extract the messages from
the mail agent application. However, for simplicity, let’s assume that someone has
extracted the emails for you and stored them in text format. The normal emails are
stored in a separate folder—let’s call it “ham”, and spam emails are stored in “spam”
folder.1 If someone has already pre-defined past spam and ham emails for you, for
example, by extracting these emails from the INBOX and SPAM, you don’t need to
bother with labeling them yourself. However, you still need to point the machine-
learning algorithm at the two folders by clearly defining which one of them is ham
and which one is spam. This way, you will define the class labels and identify the number of
classes for the algorithm. This should be the first step in your spam detection pipeline,
after which you can preprocess the data, extract the relevant information, and then
train and test your algorithm. In total, the pipeline will consist of five steps, visualized
as a flow chart in figure 2.5.

Scenario 1
You have a collection of spam and normal emails from the past. You are tasked with
building a spam filter, which for any future incoming email can predict whether this
email is spam or not.

 How can you use the provided data?
 What characteristics of the emails might be particularly useful and how will you

extract them?
 What will be the sequence of steps in this application?

Figure 2.5 Five steps of a machine-learning NLP project.

1 If you are wondering why “normal” emails are sometimes called “ham” in spam detection context, check out
the history behind the term “spam” at https://en.wikipedia.org/wiki/Email_spam
https://avxhm.se/blogs/hill0

8 CHAPTER 2 Your first NLP example

Let’s look into each of these steps in more detail. So you can set Step 1 of your algo-
rithm as:

You will need to define the features for the machine to know what type of information, or
what properties of the emails to pay attention to, but before you can do that there is one
more step to perform. As we’ve just discussed in the previous exercise, email content pro-
vides significant information as to whether an email is ham or spam. How can you extract
the content? One solution would be to read in the whole email as a single textual prop-
erty. For example, use “Minutes of the meeting on Friday, 20 June [. . .]”2 as a single fea-
ture for “ham” emails, and “Low cost prescription medications [. . .]” as a single feature
for “spam” emails. This will definitely help the algorithm identify the emails that contain
all of the included phrases from these two emails as either “spam” or “ham”, but how
often would you expect to see precisely the same text of the email again? Any single char-
acter change may change the whole feature! This suggests that a better candidate for a
feature in this task would be a smaller chunk of text, for example, a word. In addition,
words are likely to carry spam-related information (for example, “lottery” might be a
good clue for a spam email), while being repetitive enough to occur in multiple emails.

Solution:
The first solution that might come to your mind might be “Words are sequences of
characters separated by whitespaces”. This will work well for some examples, including:

Step 1: Define which data represents “ham” class and which data represents
“spam” class for the machine-learning algorithm.

Exercise 2
For a machine, the text comes in as a sequence of symbols, so the machine does
not have an idea of what a word is.

How would you define what a word is from the human perspective? How would you
code this for a machine?

For example, how will you split a sentence “Define which data represents each class
for the machine-learning algorithm” into words?

2 Assume the whole email instead of [. . .] here.
https://avxhm.se/blogs/hill0

9Understanding the task

Let’s write simple code that uses whitespace to split text into words, as shown in the
following listing.

text = “Define which data represents each class for the machine-learning
algorithm”

text.split(“ ”) A You can rely on Python’s functionality
to split strings of text by whitespaces.

This will split the sentence above into a list of words as [Define, which, data, rep-
resents, each, class, for, the, machine-learning, algorithm]. However, what happens to
this strategy when we have punctuation marks? For example:

Now you will end up with the words like [. . . , “ham”, . . . , “spam”, . . . , algorithm.] in
the list of words. Are [“ham”], [“spam”] and [algorithm.] any different from [ham],
[spam] and [algorithm]; that is, the same words but without the punctuation marks
attached to them? The answer is, these words are exactly the same, but because you
are only splitting by whitespaces at the moment, there is no way of taking the punctua-
tion marks into account. However, each sentence will likely include one full stop (.),
question (?) or exclamation mark (!) attached to the last word, and possibly more
punctuation marks inside the sentence itself, so this is going to be a problem for
extracting words from text properly. Ideally, you would like to be able to extract words
and punctuation marks separately.

 Taking this into account, you might update your algorithm with a splitting strategy
by punctuation marks. There are several possible ways to do that, including using
Python’s regular expressions module re.3 However, if you have never used regular
expressions before, you may apply a simple iterative algorithm that will consider each
character in the text string and decide whether it should be ignored (if it is a
whitespace), added to a word list (if it is a punctuation mark), or added to the current
word (otherwise). In other words, the algorithm may proceed as follows:

Define which data represents each class for the machine-learning algorithm.

Listing 2.2 Simple code to split text string into words by whitespaces

Define which data represents “ham” class and which data represents “spam” class
for the machine-learning algorithm.

 3 If you have never used re module and regular expressions before, you can find more information about it on
https://docs.python.org/3/library/re.html
https://avxhm.se/blogs/hill0

https://docs.python.org/3/library/re.html

10 CHAPTER 2 Your first NLP example

Figure 2.6 shows how this algorithm will process the string ‘represents “ham”‘:

Algorithm 1
(1) Store words list and a variable that keeps track of the current word—let’s call it
current_word for simplicity.

(2) Read text character by character, and:

(2.1) if a character is a whitespace, add the current_word to the words list
and update the current_word variable to be ready to start a new word.

(2.2) else if a character is a punctuation mark, and:

(2.2.1) if the previous character is not a whitespace, add the cur-
rent_word to the words list, then add the punctuation mark as a sepa-
rate word token, and update the current_word variable.

(2.2.2) else if the previous character is a whitespace, just add the punc-
tuation mark as a separate word token.

(2.3) else if a character is a letter other than a whitespace or punctuation mark,
add it to the current_word.

Figure 2.6 Processing of the string ‘represents “ham”‘ with a tokenization algorithm.
https://avxhm.se/blogs/hill0

11Understanding the task

Va
wo
kee
of
wo

If th
the
and
sto
cur
add
ma
wor
And the following listing shows how you can implement this algorithm in Python.

text = ‘Define which data represents "ham" class and which data represents
"spam" class for the machine-learning algorithm.’

delimiters = [‘"‘, "."]
words = []
current_word = ""

for char in text:
 if char==" ":
 if not current_word=="":
 words.append(current_word)
 current_word = ""
 elif char in delimiters:
 if current_word=="":
 words.append(char)
 else:
 words.append(current_word)
 words.append(char)
 current_word = ""
 else:
 current_word += char

print(words)

This code will work for the previous examples, but it will also split examples like “i.e.”
and “e.g.” into [i, ., e, .] and [e, ., g, .], and “U.S.A.” and “U.K.” into [U, ., S, ., A, .] and
[U, ., K, .]. This is problematic, because the algorithm will lose track of the correct
interpretation of words like “i.e.” or “U.S.A.”, which should be treated as one word
rather than a combination of characters. How can this be achieved?

 This is where the NLP tools come in handy: the tool that helps you to split the run-
ning string of characters into meaningful words is called tokenizer, and it takes care of
the cases like the ones we’ve just discussed. That is, it can recognize that “ham.” needs
to be split into [ham, .] while “U.S.A.” needs to be kept as one word [U.S.A.]. Unlike
the simpler solutions that you applied previously, tokenizers not only perform split-
ting by whitespaces and punctuation marks, but also keep track of the cases that
should not be split by such methods. This helps make sure that the tokenization step
results in a list of appropriate English words.

 To check your understanding of what tokenization step achieves, try manually
tokenizing strings of text in the following exercise before looking into the solution
notes. Later, you will also be able to check whether your solutions coincide with those
returned by a tokenizer.

Listing 2.3 Code to split text string into words by whitespaces and punctuation

Initialize a list of delimiters and populate
it with some punctuation marks.

riable
rds will
p the list

processed
rds.

Variable current_word will keep track
of the word currently being processed.

Iterate through text character by character.

E If the character is a whitespace and the
current_word is not empty, add it to the
words list and re-initialize current_word
to keep track of the upcoming words.

e character is one of
 punctuation marks
 there is nothing
red in the
rent_word yet,
 this punctuation
rk to the
ds list.

If the character is one of the punctuation
marks and there is information stored in
current_word, add both the current_word
and the punctuation mark to the words
list and re-initialize current_word to keep
track of the upcoming words.

Otherwise, if the character is any
other letter (not specified as a

delimiter, and not a whitespace),
add it to the current_word.
https://avxhm.se/blogs/hill0

12 CHAPTER 2 Your first NLP example

Solution:
1 You already know that the punctuation marks should be treated as a separate

word, so the last bit of text in the sentence “What’s the best way to split a sen-
tence into words?” should be split into “words” and “?”. The first bit “What’s”
should also be split into two words: this is a contraction for “what” and “is”, and
it is important that the classifier knows that these two are separate words. There-
fore, the word list for this sentence will include [What, ‘s, the, best, way, to, split,
a, sentence, into, words, ?].

2 The second sentence “We’re going to use NLP tools.” similarly contains a full
stop at the end that should be separated from the previous word, and “we’re”
should be split into “we” and “‘re” (= “are”). Therefore, the full word list will be
[We, ‘re, going, to, use, NLP, tools, .].

3 Follow the same strategy as before: the third sentence “I haven’t used tokenizers
before.” will produce [I, have, n’t, used, tokenizers, before, .]. Note that the
contraction of “have” and “not” here results in an apostrophe inside the word
“not”, however you should still be able to recognize that the proper English
words in this sequence are “have” and “n’t” (= “not”) rather than “haven” and
“‘t”. This is what the tokenizer will automatically do for you.4

Now you can define Step 2 of your algorithm as:

Exercise 3
How will you tokenize the following strings into words?

(1) What’s the best way to split a sentence into words?

(2) We’re going to use NLP tools.

(3) I haven’t used tokenizers before.

Step 2: Apply tokenization to split the running text into words, which are going to
serve as features.

4 Note that the tokenizers do not automatically map contracted forms like “n't” and “'re” to full form like “not”
and “are”—although such mapping would be useful in some cases, this is beyond the functionality of tokenizers.
https://avxhm.se/blogs/hill0

13Understanding the task

Next, let’s look into the extracted words closely and see whether they are all equally
good to be used as features, that is, whether they are equally indicative of the spam-
related content. Suppose two emails use a different format. One says:

 while another one says

The algorithm that splits these messages into words will end up with different word
lists because, for instance, “lottery” ? ”Lottery”, but is it different in terms of the mean-
ing? To get rid of such formatting issues like upper case vs. lower case you can put all
the extracted words into lower case using Python functionality. Therefore, the third
step in your algorithm should be defined as:

At this point, you will end up with two sets of data—one linked to “spam” class and
another one linked to “ham” class. Each data is preprocessed in the same way in steps
2 and 3, and the features are extracted. Next, you need to let the machine use this
data to build the connection between the set of features (properties) that describe
each type of email (spam or ham) and the labels attached to each type. Then, in step
4, the machine-learning algorithm tries to build a statistical model, a function, that
helps it distinguish between the two classes. This is what happens during the learning
(training) phase. Figure 2.7 is a refresher visualizing the training and test processes.

Collect your lottery winnings.

Collect Your Lottery Winnings

Step 3: Extract and normalize the features, for example, by putting all words to lower case.

Figure 2.7 Learning (training) and prediction phases of spam filtering.
https://avxhm.se/blogs/hill0

14 CHAPTER 2 Your first NLP example

So, the next step of the algorithm should be defined as:

Step 4: Define the machine-learning model and train it on the data with the features
predefined in the previous steps.

Your algorithm has now learned a function that can map the features from each class
of emails to the “spam” and “ham” labels. During training, your algorithm will figure
out which of the features matter more and should be trusted during prediction: for
example, it might detect that occurrence of a word “lottery” in an email should be
strongly associated with the label “spam”, while occurrence of the word “meeting”
should strongly suggest “ham” label. The final step in this process is to make sure the
algorithm is doing such predictions well. How will you do that?

Remember that you were originally provided with a set of emails pre-labeled for
you as “spam” and “ham”. That means you know the correct answer for these emails.
Why not use some of them to check how well your algorithm performs? In fact, this is
exactly how it is done in machine learning: you use some of your labeled data to test
classifier’s performance—this bit of data is predictably called a test set. There is one
caveat, though: if you’ve already used this data to train the classifier, that is, to let it fig-
ure out the correspondence between the features and the classes, it already knows the
right answers. To avoid that, you need to make sure that the bit of data you used in
Step 4 for training is separate and non-overlapping with the test set—this bit of data is
called training set. Therefore, before training your classifier in Step 4 you need to split
your full dataset into training and test sets. Here is the set of rules for that:

 Shuffle your data to avoid any bias.
 Split it randomly into a larger proportion for the training phase and set the rest

aside for the test phase. The typical proportions for the sets are 80% to 20%.
 Train your classifier in Step 4 using training set only. Your test set is there to pro-

vide you with a realistic and fair estimate of your classifier’s performance, so
don’t let your classifier peek into it. Use it at the final step for evaluation only.

Figure 2.8 visualizes these steps.
Suppose you trained your classifier in Step 4, and then applied it to the test data.

How will you measure the performance? One approach would be to check what pro-
portion of the test emails the algorithm classifies correctly, that is, assigns a “spam”
label to a spam email, and classifies ham emails as “ham”. This proportion is called
accuracy, and its calculation is pretty straightforward:

Accuracy = (number_of_correct_predictions)/(number_of_all_test_instances)
https://avxhm.se/blogs/hill0

15Understanding the task
Now check your understanding with the following exercise.

Solution:
1 Using the formula, we can estimate that the accuracy of this algorithm is 3/5, or

60%: it got 3 out of 5 examples correctly (spam-spam, ham-ham, and ham-
ham), and it made 2 mistakes mislabeling one spam email as “ham”, and one
ham email as “spam”.

2 An accuracy of 60% seems to not be very high, but how exactly can you inter-
pret it? Note that the distribution of classes helps you to put the performance of
your classifier in context because it tells you how challenging the problem itself
is. For example, with the 50%-50% split, there is no majority class in the data
and the classifier’s random guess will be at 50%, so the classifier’s accuracy is
higher than this random guess. In the second case, however, the classifier per-
forms on a par with a majority class guesser: the 60% to 40% distribution of

Exercise 4
Suppose your algorithm predicts the following labels for some small dataset of test
examples:

 Correct label Predicted label

 Spam Ham
 Spam Spam
 Ham Ham
 Ham Spam
 Ham Ham

1 What is the accuracy of your classifier on this small dataset?
2 Is this a good accuracy, that is, does it suggest that the classifier performs

well? What if you know that the ratio of ham to spam emails in your set of
emails is 50%-50%? What if it is 60% ham emails and 40% spam—does it
change your assessment of how well the classifier performs?

3 Does it perform better in identifying ham emails or spam emails?

Figure 2.8 Before training the classifier, shuffle the data and split it into
training and test sets.
https://avxhm.se/blogs/hill0

16 CHAPTER 2 Your first NLP example
classes suggests that if some dummy “classifier” always selected the majority
class, it would get 60% of the cases correctly—just like the classifier you trained.

3 The single accuracy value of 60% does not tell you anything about the perfor-
mance of the classifier on each class, so it is a bit hard to interpret. However, if
you look into each class separately, you can tell that the classifier is better at clas-
sifying ham emails (it got 2/3 of those right) than at classifying spam emails
(only 1/2 are correct).

The prediction of the classifier based on the distribution of classes that you came
across in this exercise is called baseline. In an equal class distribution case, the baseline
is 50%, and if your classifier yields an accuracy of 60%, it outperforms this baseline. In
the case of 60%:40% split, the baseline, which can also be called the majority class base-
line, is 60%. This means that if a dummy “classifier” does no learning at all and simply
predicts “ham” label for all emails, it will not filter out any spam emails from the
inbox, but its accuracy will also be 60%—just like your classifier that is actually trained
and performs some classification! This makes the classifier in the second case in this
exercise much less useful because it does not outperform the majority class baseline.

 In summary, accuracy is a good overall measure of performance, but you need to
keep in mind: (1) the distribution of classes to have a comparison point for the classifier’s
performance, and (2) the performance on each class which is hidden within a single
accuracy value but might suggest what the strengths and weaknesses of your classifier are.

 Therefore, the final step in your algorithm is:

Implementing your own spam filter2.3
Now let’s implement each of the five steps. It’s time you open Jupyter and create a new
notebook to start coding your own spam filter.

Step 1: Define the data and classes2.3.1

Quite often when working on NLP and machine learning applications, you might find
out that the problem has been previously described or someone has already collected
some data that you may use to build an initial version of your algorithm. For example, if
you want to build a machine learning classifier for spam detection, you need to provide
your algorithm with a sufficient number of spam and ham emails. The best way to build
such a classifier would be to collect your own ham and spam emails and train your algo-

Step 5: Apply your classifier to the test data and evaluate its performance.
https://avxhm.se/blogs/hill0

17Implementing your own spam filter

Im
Py
mo
he
thr
fol

Ski
are
au
the
Th
ide
the
wit

.

rithm to detect what you personally would consider spam—that would make your classifier
personalized and tuned toward your needs, because you might consider certain content
spam even when other users might see it as a harmless although unsolicited email. How-
ever, if you don’t have enough examples in your own spam box (for instance, some mail
agents automatically empty spam folders on a regular basis), there are collections of
spam and ham emails collected from other users that you can use to train your classifier.

 One of such publicly available collections is Enron email dataset.5 This is a large
dataset of emails (the original dataset contains about 0.5M messages), including both
ham and spam emails, for about 150 users, mostly senior management of Enron.6 To
make processing more manageable, we are going to use a subset of this large dataset,
although you can use the full dataset later if you wish. For your convenience, this sub-
set is available together with the code for the book.7 We are going to use enron1/
folder for training. All folders in Enron dataset contain spam and ham emails in sepa-
rate subfolders, so you don’t need to worry about pre-defining them. Each email is
stored as a text file in these subfolders. Let’s read in the contents of these text files in
each subfolder, store the spam emails contents and the ham emails contents as two
separate data structures and point our algorithm at each, clearly defining which one is
spam and which one is ham.

 To that end, let’s define a function read_in that will take a folder as an input, read
the files in this folder and store their contents as a Python list data structure:

import os
import codecs

def read_in(folder):
 files = os.listdir(folder)
 a_list = []
 for a_file in files:
 if not a_file.startswith("."):
 f = codecs.open(folder + a_file,
 "r", encoding = "ISO-8859-1", errors="ignore")
 a_list.append(f.read())
 f.close()
 return a_list

Return Python list that
contains the contents of the

files from the specified folder.

Listing 2.4 Code to read in the contents of the files

port
thon’s os
dule that

lps iterating
ough the
ders.

Import Python’s codecs module that
helps with different text encodings.

Using os functionality, list all
the files in the specified folder.

Iterate through the files in the folder.

p hidden files, that
 sometimes

tomatically created by
 operating systems.

ey can be easily
ntified because
ir names start
h “.”

Read the contents of each
file. The encoding and errors

arguments of codecs.open
function will help you avoid
errors in reading files that

are related to text encoding

Add the
content of

each file to
the list data

structure.

Don’t forget
to close the

file after
you’ve read

the contents.

5 You can read more about the dataset on this webpage https://www.cs.cmu.edu/~enron/, and download the
subsets of the data here: http://nlp.cs.aueb.gr/software_and_datasets/Enron-Spam/index.html. The subsets
are described in more detail in V. Metsis, I. Androutsopoulos and G. Paliouras, “Spam Filtering with Naive
Bayes—Which Naive Bayes?”. Proceedings of the 3rd Conference on Email and Anti-Spam (CEAS 2006),
Mountain View, CA, USA, 2006.

6 See https://en.wikipedia.org/wiki/Enron.
7 The dataset and the code are available at https://github.com/ekochmar/Essential-NLP.
https://avxhm.se/blogs/hill0

https://www.cs.cmu.edu/~enron/
http://nlp.cs.aueb.gr/software_and_datasets/Enron-Spam/index.html
https://en.wikipedia.org/wiki/Enron
https://github.com/ekochmar/Essential-NLP

18 CHAPTER 2 Your first NLP example

In
sp
an
h

P
ra
m
h
sh
d
ra

e
y.

Now you can define two such lists—spam_list and ham_list, letting the machine
know what data to use as examples of spam emails and what data represents ham
emails. Let’s check if the data is uploaded correctly: for example, you can print out the
lengths of the lists or check any particular member of the list. Since you are using pub-
licly available dataset, you can easily check whether what your code put into the lists is
correct: the length of the spam_list should equal the number of spam emails in the
enron1/spam/ folder, which should be 1500, while the length of the ham_list should
equal the number of emails in the enron1/ham/, or 3672. If you get these numbers,
your data is uploaded and read in correctly. Similarly, you can check the contents of
the very first instance in the spam_list and verify that it is exactly the same as the con-
tent of the first text file in the enron1/spam/ folder, as shown in the following listing.

spam_list = read_in("enron1/spam/")
ham_list = read_in("enron1/ham/")
print(len(spam_list))
print(len(ham_list))
print(spam_list[0])
print(ham_list[0])

Print out the contents of the first entry. In both
cases, it should coincide with the contents of
the first file in each correspondent subfolder.

Next, you’ll need to preprocess the data (for example, by splitting text strings into
words) and extracting the features. Won’t it be easier if you could run all preprocess-
ing steps over a single data structure rather than over two separate lists? The listing 2.6
shows how you can merge the two lists together keeping their respective labels. This
time, instead of using for-loop, let’s use the compact code style that is provided by
Python’s list comprehensions.8 Instead of lengthy for-loops that do updates to the lists,
we are going to update list contents as we go. Finally, remember that you will need to
split the data randomly into the training and test sets. Let’s shuffle the resulting list of
emails with their labels, and make sure that the shuffle is reproducible by fixing the
way in which the data is shuffled, as shown in the following listing.

import random

all_emails = [(email_content, "spam") for email_content in spam_list]
all_emails += [(email_content, "ham") for email_content in ham_list]
random.seed(42)
random.shuffle(all_emails)
print (f"Dataset size = {str(len(all_emails))} emails")

You can check the size of the dataset (length of the list)
—it should be equal to 1500 + 36729.

Listing 2.5 Code to verify that the data is uploaded and read in correctly

Listing 2.6 Code to combine the data into a single structure

itialize
am_list
d

am_list.

Check the lengths of the lists: for spam
it should be 1500 and for ham—3672.

ython’s
ndom
odule will
elp you
uffle the

ata
ndomly.

Let’s use list comprehensions to create all_emails list that will keep
all emails with their labels: for each member of the ham_list and
spam_list it stores a tuple with the content and associated label.

By defining the seed for
the random operator,
you can make sure that
all future runs will shuffl
the data in the same wa

8 Refresher on Python’s list comprehensions: https://docs.python.org/3/tutorial/datastructures.html.
9 This kind of strings is called formatted string literals or f-strings, and it is a new feature in Python 3.6. If you are unfa-

miliar with this type of string literals, you can check Python documentation at https://docs.python.org/3/refe-
rence/lexical_analysis.html#f-strings.
https://avxhm.se/blogs/hill0

https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/reference/lexical_analysis.html#f-strings
https://docs.python.org/3/tutorial/datastructures.html

19Implementing your own spam filter
Step 2: Split the text into words2.3.2

Remember, that the email contents that you’ve read in so far each come as a single
string of symbols. The first step of text preprocessing involves splitting the running
text into words.

 Several NLP toolkits will be introduced in this book. One of them, Natural Lan-
guage Processing Toolkit, or NLTK for short, you are going to start using straight
away.10 One of the benefits of this toolkit is that it comes with a thorough documenta-
tion and description of its functionality.

 You are going to use NLTK’s tokenizer.11 It takes running text as input and returns
a list of words based on a number of customized regular expressions, which help to
delimit the text by whitespaces and punctuation marks, keeping common words like
“U.S.A.” unsplit. The code in listing 2.7 shows how to import the toolkit and the
tokenizer and run it over the examples you’ve looked into in this chapter.

import nltk
from nltk import word_tokenize

def tokenize(input):
 word_list = []
 for word in word_tokenize(input):
 word_list.append(word)
 return word_list

input = “What’s the best way to split a sentence into words?”
print(tokenize(input))

Given the input, the function prints out a list of
words. You can test your intuitions about the words
and check your answers to previous exercises by
changing the input to any string of your choice!

If you run the code from listing 2.7 on the suggested example, it will print out [‘What’,
‘‘s’, ‘the’, ‘best’, ‘way’, ‘to’, ‘split’, ‘a’, ‘sentence’, ‘into’, ‘words’, ‘?’] as the output.

2.3.3 Step 3: Extract and normalize the features

Once the words are extracted from running text, you need to convert them into fea-
tures. In particular, you need to put all words into lower case to make your algorithm
establish the connection between different formats like “Lottery” and “lottery”.

 Putting all strings to lower case can be achieved with Python’s string functional-
ity. To extract the features (words) from the text, you need to iterate through the
recognized words and put all words to lower case. In fact, both tokenization and

10 Install the toolkit from https://www.nltk.org/install.html.
11 Check the documentation at https://www.nltk.org/api/nltk.tokenize.html.

Listing 2.7 Code to run a tokenizer over text

Import nltk library, and specifically
import NLTK’s word tokenizer.

Let’s define a function tokenize that will take
a string as input and split it into words.

This loop appends each identified word from the
tokenized string to the output word list. Can you
see how to present this code in a more compact

and elegant way using list comprehensions?
https://avxhm.se/blogs/hill0

https://www.nltk.org/install.html
https://www.nltk.org/api/nltk.tokenize.html

20 CHAPTER 2 Your first NLP example
converting text to lower case can be achieved using a single line of code with list
comprehensions. See if you can come up with this line of code before you look at
the next code listing.

def get_features(text):
 features = {}
 word_list = [word for word in word_tokenize(text.lower())]
 for word in word_list:
 features[word] = True
 return features

all_features = [(get_features(email), label)
 for (email, label) in all_emails]

print(get_features("Participate In Our New Lottery NOW!"))
print(len(all_features))
print(len(all_features[0][0]))
print(len(all_features[99][0]))

You can also check what all_features list data structure contains,
for example, by printing out its length and the number of
features detected in the first or any other email in the set.

With this bit of code, you iterate over the emails in your collection (all_emails) and
store the list of features extracted from each email matched with the label. For exam-
ple, if a spam email consists of a single sentence “Participate In Our New Lottery
NOW!” your algorithm will first extract the list of features present in this email and
assign a ‘True’ value to each of them. The list of features will be represented using the
following format: [‘participate’: True, ‘in’: True, . . . , ‘now’: True, ‘!’: True]. Then, the
algorithm will add this list of features to all_features together with the “spam” label,
that is, ([‘participate’: True, ‘in’: True, . . . , ‘now’: True, ‘!’: True], “spam”). Figure 2.9
visualizes the steps performed in this code listing.

 Now check your understanding of the data processing with the following exercise.

Listing 2.8 Code to extract the features

Exercise 5
Imagine your whole dataset contained only one spam text “Participate In Our New Lot-
tery NOW!” and one ham text “Participate in the Staff Survey”. What features will be
extracted from this dataset with the code from listing 2.8?

Let’s define a function that will extract the
features from the text of email passed in as input.

You can combine the two steps—tokenization and
converting strings to lower case—in one line using list
comprehensions. Compare this to a much longer piece

of code that performs tokenization in listing 2.7.

For each word in the email let’s switch on the
“flag” that this word is contained in the email.

The list data structure all_features will keep
tuples containing the list of features matched

with the “spam” or “ham” label for each email.

You can check what features are
extracted from an input text.
https://avxhm.se/blogs/hill0

21Implementing your own spam filter

Solution:
You will end up with the following feature set.

Figure 2.9 Preprocessing and feature extraction steps.

Again, it is a good idea to make sure you know how your data is represented, so the code
in listing 2.8 uses print function to help you check some parameters of your data: for
example, you can check how many emails have been processed and put into the feature
list (this number should be equal to the number of emails you have started with), as well
as the number of features present in each email (that is, with the ‘True’ flag assigned to
them). The data structure that you have just created with the code from Listing 2.8,
all_features, is a list of tuples (pairs), where each tuple represents an individual email,
so the total length of all_features is equal to the number of emails in your dataset.
https://avxhm.se/blogs/hill0

22 CHAPTER 2 Your first NLP example
As each tuple in this list corresponds to an individual email, you can access each one of
them by the index in the list using all_features[index]: for example, you can access
the first email in the dataset as all_features[0] (remember, that Python’s indexing
starts with 0), and the 100th as all_features[99] (for the same reason).

 Let’s now clarify what each tuple structure representing an email contains. Tuples
pair up two information fields: in this case a list of features extracted from the email
and its label; that is, each tuple in all_features contains a pair (list_of_features, label).
So if you’d like to access first email in the list, you call on all_features[0], to access
its list of features you use all_features[0][0], and to access its label you use all_-
features[0][1]. Figure 2.10 visualizes the all_features data structure and the
extraction process.

For example, if the very first email in your collection is a spam email with the content
“Participate in our lottery now!”, all_features[0] will return the tuple ([‘partici-
pate’: True, ‘in’: True, …, ‘now’: True, ‘!’: True], “spam”), all_features[0][0] will
return the list [‘participate’: True, ‘in’: True, …, ‘now’: True, ‘!’: True], and all_fea-
tures[0][1] will return the value “spam”.

2.3.4 Step 4: Train the classifier

Next, let’s apply machine learning and teach the machine to distinguish between the
features that describe each of the two classes. There are a number of classification
algorithms that you can use, and you will come across many of them in this book. But
since you are at the beginning of your journey, let’s start with one of the most inter-
pretable ones—an algorithm called Naïve Bayes. Don’t be misled by the word “Naïve”
in its title, though: despite relative simplicity of the approach compared to other ones,
this algorithm often works well in practice and sets a competitive performance base-

Figure 2.10 The all_features data structure.
https://avxhm.se/blogs/hill0

23Implementing your own spam filter

line that is hard to beat with more sophisticated approaches. For the spam filtering
algorithm that you are building in this chapter, you will rely on the Naïve Bayes imple-
mentation provided with the NLTK library, so don’t worry if some details of the algo-
rithm seem challenging to you. However, if you would like to see what is happening
“under the hood”, this section will walk you through the details of the algorithm.

 Naïve Bayes is a probabilistic classifier, which means that it makes the class predic-
tion based on the estimate of which outcome is most likely. That is, it assesses the
probability of an email being spam and compares it with the probability of it being
ham, and then selects the outcome that is most probable between the two. In fact, this is
quite similar to how humans assess whether an email is spam or ham: when you
receive an email that says, “Participate in our lottery now! Click on this link”, before
clicking on the (potentially harmful) link you assess how likely (that is, what is the proba-
bility) that it is a ham email and compare it to how likely it is that this email is spam.
Based on your previous experience and all the previous spam and ham emails you
have seen before, you might judge that it is much more likely (more probable) that it is a
spam email. By the point the machine makes a prediction, it has also accumulated
some experience in distinguishing spam from ham that is based on processing a data-
set of labeled spam and ham emails.

 Now let’s formalize this step a bit further. In the previous step, you extracted the
content of the email and converted it into a list of individual words (features). In this
step, the machine will try to predict whether the email content represents spam or
ham. In other words, it will try to predict whether the email is spam or ham given or
conditioned on its content. This type of probability, when the outcome (class of “spam”
or “ham”) depends on the condition (words used as features), is called conditional
probability. For spam detection, you estimate P(spam | email content) and P(ham |
email content), or generally P(outcome | (given) condition).12 Then you com-
pare one estimate to another and return the most probable class. For example:

If P(spam | content) = 0.58 and P(ham | content) = 0.42, predict spam
If P(spam | content) = 0.37 and P(ham | content) = 0.63, predict ham

In summary, this boils down to the following set of actions illustrated in figure 2.11.
 How can you estimate these probabilities in practice? Your own prediction of

whether an email content like “Participate in our lottery now!” signifies that an email
is spam or ham is based on how often in the past an email with the same content was
spam or ham. Similarly, a machine can estimate the probability that an email is spam
or ham conditioned on its content taking the number of times it has seen this content
leading to a particular outcome. That is:

P(spam | “Participate in our lottery now!”) = (number of emails “Participate
in our lottery now!” that are spam) / (total number of emails “Participate in
our lottery now!”, either spam or ham)

12 Reminder on the notation: P is used to represent all probabilities, | is used in conditional probabilities, when
you are trying to estimate the probability of some event (that is specified before |) given that the condition
(that is specified after |) applies.
https://avxhm.se/blogs/hill0

24 CHAPTER 2 Your first NLP example
P(ham | “Participate in our lottery now!”) = (number of emails “Participate
in our lottery now!” that are ham) / (total number of emails “Participate in
our lottery now!”, either spam or ham)

In the general form, this can be expressed as:

P(outcome | condition) = number_of_times(condition led to outcome) /
number_of_times(condition applied)

You (and the machine) will need to make such estimations for all types of content in
your collection, including for the email contents that are much longer than “Partici-
pate in our new lottery now!”. Do you think you will come across enough examples to
make such estimations? In other words, do you think you will see any particular combi-
nation of words (that you use as features), no matter how long, multiple times so that
you can reliably estimate the probabilities from these examples? The answer is, you will
probably see “Participate in our new lottery now!” only a few times, and you might see
longer combinations of words only once, so such small numbers won’t tell the algo-
rithm much, and you won’t be able to use them in the previous expression effectively.
Additionally, you will constantly be getting new emails where the words will be used in
different order and different combinations, so for some of these new combinations you
will not have any counts at all, even though you might have counts for individual words
in such new emails. The solution to this problem is to split the estimation into smaller
bits. For instance, remember that you used tokenization to split long texts into separate
words to let the algorithm access the smaller bits of information—words rather than
whole sequences. The idea of estimating probabilities based on separate features
rather than based on the whole sequence of features (whole text) is somewhat similar.

Figure 2.11 Prediction is based on which conditional probability is higher.
https://avxhm.se/blogs/hill0

25Implementing your own spam filter
 At the moment you are trying to predict a single outcome (class of spam or ham)
given a single condition that is the whole text of the email, for example “Participate in
our lottery now!”. In the previous step, you converted this single text into a set of fea-
tures as [‘participate’: True, ‘in’: True, . . . , ‘now’: True, ‘!’: True]. Note that the con-
ditional probabilities like P(spam| “Participate in our lottery now!”) and P(spam|
[‘participate’: True, ‘in’: True, . . . , ‘now’: True, ‘!’: True]) are the same because this
set of features encodes the text. Therefore, if the chances of seeing “Participate in our
lottery now!” are low, the chances of seeing the set of features [‘participate’: True, ‘in’:
True, . . . , ‘now’: True, ‘!’: True] encoding this text are equally low. Is there a way to
split this set to get at more fine-grained, individual probabilities; for example, to estab-
lish a link between [‘lottery’: True] and the class of “spam”?

 Unfortunately, there is no way to split the conditional probability estimation like
P(outcome | conditions) when there are multiple conditions specified; however, it
is possible to split the probability estimation like P(outcomes | condition) when
there is a single condition and multiple outcomes. In spam detection, the class is a sin-
gle value (it is “spam” or “ham”), while features are a set ([‘participate’: True, ‘in’:
True, …, ‘now’: True, ‘!’: True]). If you can flip around the single value of class and
the set of features in such a way that the class becomes the new condition and the fea-
tures become the new outcomes, you can split the probability into smaller components
and establish the link between individual features like [‘lottery’: True] and class values
like “spam”. Figure 2.12 visualizes this idea.

Figure 2.12 Since the conditional probability of class given a whole set of features is hard
to estimate directly, flip the condition and outcome around and estimate the probabilities
separately.
https://avxhm.se/blogs/hill0

26 CHAPTER 2 Your first NLP example

Luckily, there is a way to flip the outcomes (class) and conditions (features extracted from
the content) around! Let’s look into the estimation of conditional probabilities again: you
estimate the probability that the email is spam given that its content is, “Participate in our
new lottery now!” based on how often in the past an email with such content was spam.
For that, you take the proportion of the times you have seen “Participate in our new lot-
tery now!” in a spam email among the emails with this content. So you can express it as:

P(spam | “Participate in our new lottery now!”) =
P(“Participate in our new lottery now!” is used in a spam email) /
P(“Participate in our new lottery now!” is used in an email)

Let’s call this Formula 1. What is the conditional probability of the content “Participate
in our new lottery now!” given class spam then? Similarly, to how you estimated the
probabilities above, you need the proportion of times you have seen “Participate in our
new lottery now!” in a spam email among all spam emails. So you can express it as:

P(“Participate in our new lottery now!” | spam) =
P(“Participate in our new lottery now!” is used in a spam email) /
P(an email is spam)

Let’s call this Formula 2. That is, every time you use conditional probabilities, you
need to divide how likely it is that you see the condition and outcome together by how
likely it is that you see the condition on its own—this is the bit after |. Now you can see
that both Formulas 1 and 2 rely on how often you see particular content in an email of
particular class. They share this bit, so you can use it to connect the two formulas. For
instance, from Formula 2 you know that:

P(“Participate in our new lottery now!” is used in a spam email) =
P(“Participate in our new lottery now!” | spam) * P(an email is spam)

Now you can fit this into Formula 1:

P(spam | “Participate in our new lottery now!”) =
P(“Participate in our new lottery now!” is used in a spam email) /
P(“Participate in our new lottery now!” is used in an email) =
[P(“Participate in our new lottery now!” | spam) * P(an email is spam)] /
P(“Participate in our new lottery now!” is used in an email)

Figure 2.13 illustrates this process.
In the general form:

P (class | content) = P(content represents class) / P(content)
= [P(content | class) * P(class)] / P(content)

In other words, you can express the probability of a class given email content via the
probability of the content given the class. Let’s look into these two new probabilities,
P(content | class) and P(class), more closely as they have interesting properties:

 P(class) expresses the probability of each class. This is simply the distribution
of the classes in your data. Imagine opening your inbox and seeing a new
incoming email. What do you expect this email to be—spam or ham? If you
mostly get normal emails and your spam filter is working well, you would most
https://avxhm.se/blogs/hill0

27Implementing your own spam filter
probably expect a new email to also be ham rather than spam. For example, in
enron1/ ham folder contains 3672 emails, and spam folder contains 1500
email, making the distribution approximately 71%:29%, or P(“ham”)=0.71 and
P(“spam”)=0.29. This is often referred to as prior probability, because it reflects
the beliefs of the classifier about where the data comes from prior to any partic-
ular evidence: for example, here the classifier will expect that it is much more
likely (chances are 71 to 29) that a random incoming email is ham.

 P(content | class) is the evidence, as it expresses how likely it is that you (or
the algorithm) will see this particular content given that the email is spam or
ham. For example, imagine you have opened this new email and now you can
assess how likely it is that these words are used in a spam email versus how likely
they are to be used in a ham email. The combination of these factors may in the
end change your, or classifier’s, original belief about the most likely class that
you had before seeing the content (evidence).

Now you can replace the conditional probability of P(class | content) with P(con-
tent | class); for example, whereas before you had to calculate P(“spam” | “Partic-
ipate in our new lottery now!”) or equally P(“spam” | [‘participate’: True, ‘in’: True, …,
‘now’: True, ‘!’: True]), which is hard to do because you will often end up with too few
examples of exactly the same email content or exactly the same combination of fea-
tures, now you can estimate P([‘participate’: True, ‘in’: True, . . . , ‘now’: True, ‘!’:
True] | “spam”) instead. But how does this solve the problem? Aren’t you still dealing
with a long sequence of features?

 Here is where the “naïve” assumption in Naïve Bayes helps: it assumes that the fea-
tures are independent of each other, or that your chances of seeing a word “lottery” in an
email are independent of seeing a word “new” or any other word in this email before.

Figure 2.13 The conditional probability for P(class | content) can be expressed via the
conditional probability for P(content | class).
https://avxhm.se/blogs/hill0

28 CHAPTER 2 Your first NLP example
So you can estimate the probability of the whole sequence of features given a class as a
product of probabilities of each feature given this class. That is:

 P([‘participate’: True, ‘in’: True, . . . , ‘now’: True, ‘!’: True] | “spam”) = P(‘par-
ticipate’: True | “spam”) * P(‘in’: True | “spam”) … * P(‘!’: True | “spam”)

 If you express [‘participate’: True] as the first feature in the feature list, or f1, [‘in’:
True] as f2, and so on, until fn = [‘!’: True], you can use the general formula:

P([f1, f2, …, fn] | class) = P(f1 | class) * P(f2| class) … * P(fn| class)

Figure 2.14 illustrates the classification process.

Now that you have broken down the probability of the whole feature list given class
into the probabilities for each word given that class, how do you actually estimate
them? Since for each email you note which words occur in it, the total number of times
you can switch on the flag [‘feature’: True] equals the total number of emails in that
class, while the actual number of times you switch on this flag is the number of emails
where this feature is actually present. The conditional probability P(feature |

class) is simply the proportion of the two:

P(feature | class) = number(emails in class with feature present) /
 total_number(emails in class)

These numbers are easy to estimate from the training data—let’s try to do that with an
example.

Figure 2.14 Classification
process: the conditional
probabilities are multiplied
with the class probabilities.
https://avxhm.se/blogs/hill0

29Implementing your own spam filter

Solution:
The probabilities are simply:

 P(‘prescription’: True | spam) = number(spam emails with ‘prescrip-
tion’)/number(spam emails) = 2/5 = 0.40

 P(‘meeting’: True | ham) = 5/10 = 0.50
 P(‘stock’: True | spam) = 1/5 = 0.20
 P(‘stock’:True | ham) = 3/10 = 0.30

Now you have all the components in place. Let’s iterate through the classification
steps again: during the training phase, the algorithm learns prior class probabilities
(this is simply class distribution. For example, P(ham)=0.71 and P(spam)=0.29) and
probabilities for each feature given each of the classes (this is simply the proportion of
emails with each feature in each class, e.g. P(‘meeting’:True | ham) = 0.50). During
the test phase, or when the algorithm is applied to a new email and is asked to predict
its class, the following comparison from the beginning of this section is applied:

Predict “spam” if P(spam | content) > P(ham | content)
Predict “ham” otherwise

This is what we started with originally, but we said that the conditions are flipped, so it
becomes:

Predict “spam” if P(content | spam) * P(spam) / P(content) > P(content | ham)
* P(ham) / P(content)

Predict “ham” otherwise

Note that we end up with P(content) in denominator on both sides of the expression, so
the absolute value of this probability doesn’t matter and it can be removed from the
expression altogether.13 So we can simplify the expression as:

Predict “spam” if P(content | spam) * P(spam) > P(content | ham) * P(ham)
Predict “ham” otherwise

Exercise 6
Suppose you have 5 spam emails and 10 ham emails. What are the conditional prob-
abilities for P(‘prescription’:True | spam), P(‘meeting’:True | ham), P(‘stock’:True |
spam) and P(‘stock’:True | ham), if:

 2 spam emails contain word prescription
 1 spam email contains word stock
 3 ham emails contain word stock
 5 ham emails contain word meeting

13 Since the probability always has a positive value, it won’t change the comparative values on the two sides. For
example, if you compare 10 to 4, you would get 10>4 whether you divide the two sides by the same positive
number like (10/2)>(4/2) or not.
https://avxhm.se/blogs/hill0

30 CHAPTER 2 Your first NLP example
P(spam) and P(ham) are class probabilities estimated during training, and P(content
| class), using naïve independence assumption, are products of probabilities, so:

Predict “spam” if P([f1, f2, …, fn]| spam) * P(spam) > P([f1, f2, …, fn]|
ham) * P(ham)

Predict “ham” otherwise

is split into the individual feature probabilities as:

Predict “spam” if P(f1 | spam) * P(f2| spam) … * P(fn| spam) * P(spam) >
P(f1 | ham) * P(f2| ham) … * P(fn| ham) * P(ham)
Predict “ham” otherwise

Apply the train function using 80% (or a similar
proportion) of emails for training. Note the use
of the all_features structure created using code
from listing 2.8.

This is the final expression the classifier relies on. The following listing implements
this idea. Many toolkits come with an implementation of a range of widely used
machine-learning algorithms. Since Naive Bayes is frequently used for NLP tasks,
NLTK comes with its own implementation, too, and here you are going to use it.

from nltk import NaiveBayesClassifier, classify

def train(features, proportion):
 train_size = int(len(features) * proportion)
 train_set, test_set = features[:train_size], features[train_size:]
 print (f"Training set size = {str(len(train_set))} emails")
 print (f"Test set size = {str(len(test_set))} emails")
 classifier = NaiveBayesClassifier.train(train_set)
 return train_set, test_set, classifier

train_set, test_set, classifier = train(all_features, 0.8)

Step 5: Evaluate your classifier2.3.5

Finally, let’s evaluate how well the classifier performs in detecting whether an email is
spam or ham. For that, let’s use the accuracy score returned by the NLTK’s classifier in
the following listing.

def evaluate(train_set, test_set, classifier):
 print (f"Accuracy on the training set =

{str(classify.accuracy(classifier, train_set))}")
 print (f"Accuracy of the test set = {str(classify.accuracy(classifier,

test_set))}")
 classifier.show_most_informative_features(50)

evaluate(train_set, test_set, classifier)

Listing 2.9 Code to train a Naïve Bayes classifier

Listing 2.10 Code to evaluate classifier’s performance

Import the classifier
implementation from NLTK.

Remember
that you need
to set aside
part of the
data for
testing.

Use the first n% (according to the specified proportion) of emails
with their features for training, and the rest for testing.

Print out
simple

statistics to
make sure the

data is split
correctly.

Initialize the classifier.

Let’s define a function
that will estimate

the accuracy of the
classifier on each set.

In addition, the NLTK’s classifier allows you to inspect the most
informative features (words). You need to specify the number of the
top most informative features to look into. For example, 50 here.
https://avxhm.se/blogs/hill0

31Implementing your own spam filter

Figure 2.15 presents an example of an output returned by the previous code.

One piece of information that this code provides you with is the most informative fea-
tures, that is, the list of words that are most strongly connected to a particular class.
This is functionality of the classifier that is implemented in NLTK, so all you need to
do is call on this function as classifier.show_most_informative_features and
specify the number of words n that you want to see as an argument. This function
then returns the top n words ordered by their “informativeness” or predictive power.
Behind the scenes, the function measures “informativeness” as the highest value of
the difference in probabilities between P(feature | spam) and P(feature | ham).

That is, max[P(word: True | ham) / P(word: True | spam)] for most predictive
ham features, and max[P(word: True | spam) / P(word: True | ham)] for most
predictive spam features.14 The output shows that such words (features) as “prescrip-
tion”, “pain”, “health” and so on are much more strongly associated with spam
emails—the ratios on the right show the comparative probabilities for the two classes.
For instance, P(“prescription” | spam) is 122.9 times higher than P(“prescription” |
ham). On the other hand, “nomination” is more strongly associated with ham emails.
As you can see, many spam emails in this dataset are related to medications, which
shows a particular bias—the most typical spam that you personally get might be on a
different topic altogether! What effect might this mismatch between the training data
from the publicly available dataset like Enron and your personal data have? You will
see another example of this issue in Exercise 7.

 One other piece of information presented in this output is accuracy. Test accuracy
shows the proportion of test emails that are correctly classified by Naive Bayes among all
test emails. The code above measures the accuracy on both the training data and test
data. Note that since the classifier is trained on the training data, it actually gets to “see”
all the correct labels for the training examples. Shouldn’t it then know the correct

Figure 2.15 Output of the code in Listing 2.10. Features indicative of spam are
highlighted in red, and features indicative of ham are highlighted in blue.

14 Check out NLTK’s documentation for more information at https://www.nltk.org/api/nltk.classify.html
#nltk.classify.naivebayes.NaiveBayesClassifier.most_informative_features.
https://avxhm.se/blogs/hill0

32 CHAPTER 2 Your first NLP example

r

.
s
e
Apply this function to two lists—
ham_list and spam_list—to find
out about the different contexts

of use for the word “stocks”.

answers and perform at 100% accuracy on the training data? Well, the point here is that
the classifier doesn’t just retrieve the correct answers: during training it has built some
probabilistic model (that is, learned about the distribution of classes and the probability
of different features), and then it applies this model to the data. So, it is actually very
likely that the probabilistic model doesn’t capture all the things in the data 100% cor-
rectly. For example, there might be noise and inconsistencies in the real emails: note that
“2004” gets strongly associated with the spam emails and “2001” with the ham emails,
although it does not mean that there is anything peculiar about the spam originating
from 2004. This might simply show a bias in the particular dataset, and such phenomena
are hard to filter out in any real data. That means, however, that if some ham email in
training data contains a word “2004” as well as some other words that are otherwise
related to spam, this email will get classified as spam by the algorithm. Similarly, as many
medication-related words are strongly associated with spam, a rare ham email that is actu-
ally talking about some medication the user ordered might get misclassified as spam.

 Therefore, when you run the previous code, you will get accuracy on the training
data of 96.13%. This is not perfect (that is, not 100%) but very close to it! When you
apply the same classifier to new data—the test set that the classifier hasn’t seen during
training—the accuracy reflects its generalizing ability. That is, it shows whether the
probabilistic assumptions it made based on the training data can be successfully
applied to any other data. The accuracy on the test set is 94.20%, which is slightly
lower than that on the training set, but it is also very high.

 Finally, if you’d like to gain any further insight into how the words are used in the
emails from different classes, you can also check the occurrences of any particular
word in all available contexts. For example, word “stocks” features as a very strong pre-
dictor of spam messages. Why is that? You might be thinking, “OK, some emails con-
taining “stocks” will be spam, but surely there must be contexts where “stocks” is used
in a completely harmless way?” Let’s check this using the following code.

from nltk.text import Text

def concordance(data_list, search_word):
 for email in data_list:
 word_list = [word for word in word_tokenize(email.lower())]
 text_list = Text(word_list)
 if search_word in word_list:
 text_list.concordance(search_word)

print ("STOCKS in HAM:")
concordance(ham_list, "stocks")
print ("\n\nSTOCKS in SPAM:")
concordance(spam_list, "stocks")

Listing 2.11 Code to check the contexts of specific words

Import NLTK’s Text data structure.

“Concordancer” is a tool that checks fo
the occurrences of the specified word
and prints out the word in its context
By default, NLTK’s concordancer print
out the search_word surrounded by th
previous 36 and the following 36
characters—so note, that it doesn’t
always result in full words.
https://avxhm.se/blogs/hill0

33Deploying your spam filter in practice

F
p
y
e

If you run this code and print out the contexts for “stocks”, you will find out that
“stocks” feature in only four ham contexts (for example, an email reminder “Follow
your stocks and news headlines”) as compared to hundreds of spam contexts including
“Stocks to play”, “Big money was made in these stocks”, “Select gold mining stocks”, “Lit-
tle stocks can mean big gains for you”, and so on.

 Congratulations—you have built your own spam-filtering algorithm and learned
how to evaluate it and explore the results!

2.4 Deploying your spam filter in practice
Why are the evaluation steps important? We’ve said before that the machine learns
from experience—data that it is provided with—so obviously, the more data the bet-
ter. You started with about five thousand emails, but you had to set 20% aside for test-
ing, and you were not allowed to use them while training. Doesn’t it mean practically
“losing” valuable data that the classifier could have used more effectively?

 Well, if you build an application that you plan to use in real life you want it to per-
form its task well. However, you cannot predict in advance what data the classifier will
be exposed to in the future, so the best way to predict how well it will perform is to test
it on the available labeled data. This is the main purpose of setting aside 20% or so of
the original labeled data and of running evaluation on this test set. Once you are
happy with the results of your evaluation, you can deploy your classifier in practice!

 For instance, the classifier that you’ve built in this chapter performs at 94% accu-
racy, so you can expect it to classify real emails into spam and ham quite accurately. It’s
time to deploy it in practice then. When you run it on some new emails (perhaps,
some from your own inbox) you need to perform the same steps on these emails as
before, that is:

 You need to read them in, then
 You need to extract the features from these emails, and finally
 You need to apply the classifier that you trained before on these emails.

The following code shows how you can do that. Feel free to type in your own emails as
input.

test_spam_list = ["Participate in our new lottery!", "Try out this new
medicine"]

test_ham_list = ["See the minutes from the last meeting attached",
 "Investors are coming to our office on Monday"]

test_emails = [(email_content, "spam") for email_content in test_spam_list]
test_emails += [(email_content, "ham") for email_content in test_ham_list]

Listing 2.12 Code to apply spam filtering to new emails

eel free to
rovide
our own
xamples.

Read the emails extracting their textual content and keeping the labels for further evaluation.
https://avxhm.se/blogs/hill0

34 CHAPTER 2 Your first NLP example

E
f

new_test_set = [(get_features(email), label) for (email, label) in
test_emails]

evaluate(train_set, new_test_set, classifier)

Apply the trained classifier
and evaluate its performance.

The classifier that you’ve trained in this chapter performs with 100% accuracy on
these examples. Good! How can you print out the predicted label for each particular
email though? For that, you simply extract the features from the email content and
print out the label. That is, you don’t need to run the full evaluation with the accuracy
calculation. The following code suggests how you can do that.

for email in test_spam_list:
 print (email)
 print (classifier.classify(get_features(email)))
for email in test_ham_list:
 print (email)
 print (classifier.classify(get_features(email)))

For each email in
each list, this code
prints out the content
of the email and the
predicted label.

Finally, let’s make the code more interactive and see if the classifier can predict the
class label on any input text in real time. For example, how about reading the emails
of your choice straight from the keyboard and predicting their label on the spot? This
is not very different from what you’ve just done; the only difference is that instead of
reading the emails from the predefined list, you should allow your code to read them
from the keyboard input. Python’s input functionality allows you to do that. Let’s read
the emails typed in from the keyboard and stop when no email is typed in. For that,
use the while-break loop as the code below shows. The code will keep asking for the
next email until the user presses Enter.

while True:
 email = input("Type in your email here (or press ‘Enter’): ")
 if len(email)==0:
 break
 else:
 prediction = classifier.classify(get_features(email))
 print (f"This email is likely {prediction}\n")

Print out the
predicted label
for the email.

Summary
Let’s summarize what you have covered in this chapter:

 You have learned about a powerful family of NLP and machine learning tasks that
deal with classification. Classification is concerned with assigning objects to a prede-
fined set of categories, groups, or classes based on their characteristic properties.

 Humans perform classification on a regular basis, and machine-learning algo-
rithms can be taught to do that provided with a sufficient number of examples

Listing 2.13 Code to print out the predicted label

Listing 2.14 Code to classify the emails read in from the keyboard

xtract the
eatures.

Ask the user to type in the text of the email.

Stop when the user provides no text and presses Enter instead.
https://avxhm.se/blogs/hill0

35Deploying your spam filter in practice
and some guidance from humans. When the labeled examples and the general
outline of the task are provided for the machine, this is called supervised learning.

 Spam filtering is an example of a binary classification task: the machine has to
learn to distinguish between exactly two classes—spam and normal email (often
called ham).

 Classification relies on specific properties of the classified objects. In machine
learning terms, such properties are called features. For spam filtering, some of
the most informative features are words used in the emails.

 To build a spam-filtering algorithm, you can use one of the publicly available
spam datasets. In this chapter, you’ve used Enron dataset.

 You have learned how build a classifier in five steps:
– First, the emails should be read, and the two classes should be clearly defined

for the machine to learn from.
– Next, the text content should be extracted.
– Then the content should be converted into features.
– The classifier should be trained on the training set of the data.
– Finally, the classifier should be evaluated on the test set.

 The data comes in as a single string of symbols. To extract the words from it,
you may rely on the NLP tools called tokenizers.

 NLP libraries come with such tools, as well as implementations of a range of fre-
quently used classifiers. In this chapter, you used Natural Language Processing
Toolkit (NLTK).

 There are a number of machine learning classifiers, and in this chapter, you’ve
applied one of the most interpretable of them—Naive Bayes. Naive Bayes is a
probabilistic classifier: it assumes that the data in two classes is generated by dif-
ferent probability distributions, which are learned from the training data.
Despite its simplicity and “naive” feature independence assumption, Naive
Bayes often performs well in practice, and sets competitive baseline for other
more sophisticated algorithms.

 It is important that you split your data into training (for example, 80% of the
original dataset) and test (the rest of the data) sets, and train the classifier on
the training data only, so that you can fairly assess it on the test set. The test set
serves as new unseen data for the algorithm, so you can come to a realistic con-
clusion about how your classifier may perform in practice. In this chapter, you
learned how to evaluate the classifier and interpret the results.

 Once satisfied with the performance of your classifier on the test data, you can
deploy it in practice.

Finally, apply what you have learned in this chapter and test your new skills by attempt-
ing the following practical exercise. You can check your solutions against the note-
book, but first try to write the code yourself!
https://avxhm.se/blogs/hill0

36 CHAPTER 2 Your first NLP example
Exercise 7
Apply the trained classifier to a different dataset, for example to enron2/ spam and
ham emails that originate with a different owner (check Summary.txt for more infor-
mation). For that you need to:

 Read the data from the spam/ and ham/ subfolders in enron2/.
 Extract the textual content and convert it into features.
 Evaluate the classifier.

What do the results suggest? Hint: one man’s spam may be another man’s ham. If you
are not satisfied with the results, try combining the data from the two owners in one
dataset.
https://avxhm.se/blogs/hill0

In this chapter, you’ll explore information search, or information retrieval, a
task widely used in many applications, from searching in an Internet browser to
searching for the relevant files on your personal computer. You’ll learn to evaluate
the importance and relevance of different information as well as other useful NLP
concepts as you implement your own information search algorithm, step by step.

Chapter 3 from Getting Started with
Natural Language Processing
by Ekaterina Kochmar

https://avxhm.se/blogs/hill0

https://www.manning.com/books/getting-started-with-natural-language-processing
https://www.manning.com/books/getting-started-with-natural-language-processing
https://www.manning.com/books/getting-started-with-natural-language-processing

Introduction to
Information Search

This chapter covers
 Implementing your own information retrieval algorithm

 Understanding useful NLP concepts, including
stemming and stopwords removal

 Assessing importance of different bits of information
in search

 Evaluating the relevance of the documents to the
information need

This chapter will focus on algorithms for information search, which also has a more
technical name—information retrieval. It will explain the steps in the search algo-
rithm from beginning to end, and by the end of this chapter you will be able to
implement your own search algorithm.

You might have come across the term information retrieval in the context of
search engines: for example, Google famously started its business by providing a
powerful search algorithm that kept improving over time. The search for informa-
tion, however, is a basic need that you may face not only in the context of searching
38

https://avxhm.se/blogs/hill0

39Understanding the task

online. For instance, every time you search for the files on your computer, you also
perform a kind of information retrieval. In fact, the task predates digital era. Before
computers and Internet became a commodity, one had to manually wade through
paper copies of encyclopedias, books, documents, files, and so on. Thanks to the tech-
nology, the algorithms these days help you do many of these tasks automatically.

 The field of information retrieval has a long history and has seen a lot of develop-
ment over the past decades. As you can imagine, Google and other search engines are
dealing with large amounts of data, which makes their task exceptionally challeng-
ing—they have to process billions of pages in a matter of seconds and be able to
return most relevant of those to satisfy the information needs of the users. Truly amaz-
ing, if you think about the complexity of the task!

 In this chapter, we will break this process into steps. We will look into how the
information need is expressed as a query and processed for the computer to under-
stand it, how the documents should be processed and matched to the queries, and
how the relevance of the documents to the queries can be assessed. Search engines,
fundamentally, go through all the same steps, albeit they do it on a much larger scale,
and employ a number of additional techniques, for example, learning from user
clicks, linking web content via hyperlinks, using optimization to speed the processing
up, storing intermediate results, and so on. So this chapter should perhaps start with a
disclaimer: we are not going to build a new Google competitor algorithm here
(although you might consider building one in the future), but we will build a core
information search application that you can use in your real life projects.

3.1 Understanding the task
Let’s look into the scenario from chapter 1 again.

Scenario 1 (reminder from chapter 1)
Imagine that you have to perform the search in a collection of documents yourself,
without the help of the machine. For example, you have a thousand printed out notes
and minutes related to the meetings at work, and you only need those that discuss
the management meetings. How will you find all such documents? How will you iden-
tify the most relevant of these?

We said that if you were tasked with this in actual life, you would go through the docu-
ments one by one, identifying those that contain the key words (like “management”
and “meetings”) and split all the documents into two piles: those documents that you
should keep and look into further and those that you can discard because they do not
answer your information need in learning more about the management meetings. This
task is akin to filtering, and figure 3.1 should remind you how we set it up in chapter 1.

Now, there are a couple of points that we did not get to discuss before. Imagine
there are a hundred of documents in total and you can quickly skim through them to
filter out the most irrelevant ones—those that do not even mention either “meetings”
https://avxhm.se/blogs/hill0

40 CHAPTER 3 Introduction to Information Search

or “management”. But what if a high number of documents actually do contain one,
another, or both words? Say, after this initial filtering, you end up with 70 such docu-
ments. This is not the original thousand, but still too much to read through carefully.
At the very least, you’d like to be able to sort them in the order of relevance, so that
you can start reading with the most relevant ones and then stop as soon as you found
the information you were looking for. How can you judge whether one of the docu-
ments is more relevant than the others, and how can you sort all of them in the order
of decreasing relevance?

 Luckily, these days we have computers, and most documents are stored electroni-
cally. Computers can really help us speed the things up here. If we can formulate our
information needs for them more or less precisely, they can be much quicker in spot-
ting the key words, estimating the relevance and sorting the documents for us—in
fact, in a matter of seconds (think Google). So let’s formulate a new, more technical
scenario for this chapter.

Scenario 2 (based on Scenario 1, but more technical!)
Imagine that you have to perform the search in a collection of documents, this time
with the help of the machine. For example, you have a thousand notes and minutes
related to the meetings at work stored in electronic format, and you only need those
that discuss the management meetings.

First, how will you find all such documents? In other words, how can you code the search
algorithm and what characteristics of the documents should the search be based on?

Second, how will you identify the most relevant of these documents? In other words,
how can you implement a sorting algorithm to sort the documents in order of decreas-
ing relevance?

Figure 3.1 Simple
filtering of documents
into “keep” and
“discard” piles based
on occurrence of words.

This scenario is only different from the previous one in that it allows you to leverage
the computational power of the machine, but the drill is the same as before: get the
machine to identify the texts that have the keywords in them, and then sort the “keep”
pile according to the relevance of the texts, starting with the most relevant for the user
or yourself to look at.
https://avxhm.se/blogs/hill0

41Understanding the task

 Despite us saying just now that the procedure is similar to how the humans per-
form the task (as in Scenario 1), there are actually some steps involved in getting the
machine to identify the documents with the keywords in them and sorting by rele-
vance that we are not explicitly mentioning here. For instance, we humans have the
following abilities that we naturally possess but machines naturally lack:

 We know what represents a word, while a machine gets in a sequence of symbols
and does not, by itself, have a notion of what a “word” is.

 We know which words are keywords. For example, if we are interested in finding
the documents on management meetings, we will consider those containing “meet-
ing” and “management”, but also those containing “meetings” and potentially even
“manager” and “managerial”. The machine, on the other hand, does not know that
these words are related, similar, or basically different forms of the same word.

 We have an ability to focus on what matters. In fact, when reading texts we usu-
ally skim over certain words rather than pay equal attention to each word. For
instance, when reading a sentence “Last Friday the management committee
had a meeting”, which words do you pay more attention to? Which ones express
the key idea of this message? Think about it—and we will return to this question
later. The machines, on the other hand, should be specifically “told” which
words matter more.

 Finally, we also intuitively know how to judge what is more relevant. The
machines can make relevance judgments, too, but unlike us humans they need
to be “told” how to measure relevance in precise numbers.

That, in a nutshell, represents the basic steps in the search algorithm. Let’s visualize
these steps as in figure 3.2.

Figure 3.2 Information search
algorithm in a nutshell.
https://avxhm.se/blogs/hill0

42 CHAPTER 3 Introduction to Information Search

You are already familiar with the first step in this algorithm. When building a spam
filtering application in chapter 2, you learned how to use a tokenizer to extract
words from raw text. In this chapter, you will learn about other NLP techniques to
preselect words, map the different forms of the same word to each other, and weigh
the words according to how much information they contribute to the task. Then you
will build an information search algorithm that for any query (for example,
“management meetings”) will find the most relevant documents in the collection of
documents (for example, all minutes of the past managerial meetings sorted by
their relevance).

 Suppose you have built such an application following all the steps. You type in a
query and the algorithm returns a document or several documents that are suppos-
edly relevant to this query. How can you tell whether the algorithm has picked out the
right documents? When you were building the spam filtering classifier, you faced the
same problem, and we said that before you deploy your spam filter in practice it is a
good idea to get an initial estimate of how well the classifier performs. You can do that
if for some data you know the true labels—which emails are spam and which ones are
ham. These true labels are commonly referred to as ground truth or gold standard, and
to make sure your algorithm performs well you first evaluate it against gold standard
labels. For that, you used a spam dataset where such gold standard labels were pro-
vided. You are going to do the same here. Let’s use a dataset of documents and que-
ries, where the documents are labeled with respect to their relevance to the queries.
You will use this dataset as your gold standard, and before using the information
search algorithm in practice, evaluate its performance against the ground truth labels
in the labeled dataset.

Data and data structures3.1.1

As in chapter 2, you are going to use a publicly available dataset labeled for the task.
That means a dataset with a number of documents and various queries, and a labeled
list specifying which queries correspond to which documents. Once you implement
and evaluate a search algorithm on such data labeled with ground truth, you can
apply it to your own documents in your own projects.

 There are a number of datasets that can be used for this purpose.15 In this chapter,
you will use the dataset collected by the Centre for Inventions and Scientific Informa-
tion (CISI)16, which contains abstracts and some additional metadata from the journal
articles on information systems and information retrieval. Despite the availability of
other datasets, there are several reasons to choose the CISI dataset for this chapter,
the primary of which are:

15 See a list of publicly available datasets here: http://ir.dcs.gla.ac.uk/resources/test_collections/.
16 You can download the dataset from http://ir.dcs.gla.ac.uk/resources/test_collections/cisi/.
https://avxhm.se/blogs/hill0

http://ir.dcs.gla.ac.uk/resources/test_collections/
http://ir.dcs.gla.ac.uk/resources/test_collections/cisi/

43Understanding the task
 It is a relatively small dataset of 1460 documents and 112 queries, which is easy
to process and work with. In addition, each document is relatively short, consist-
ing of an article abstract and some additional information, which helps faster
processing further.

 It contains gold standard annotations for the relevance of the documents to 76
queries.

 The results are easy to interpret, because the dataset does not include highly
technical terms. In contrast, some other widely used benchmark datasets
include medical articles or articles on technical subjects such as aerodynamics,
which are harder to interpret for non-experts.

Let’s first read in the data and initialize the data structures to keep the content. Note,
that this dataset contains many documents and various queries. For instance, one
query in this dataset asks what information science is, while another asks about the
methods of information retrieval, and so on—there is a diverse set of 76 questions.
Although you might just extract one particular query and focus on, say, searching for
the documents in this dataset answering “What is information science?”, since you
have access to so many diverse queries, why not read all of them and store them in
some data structure? This way, you will be able to search for the matching documents
for any of the queries rather than for only one specific query, and check how your algo-
rithm deals with a variety of information needs. For that, it would be good to keep
track of different queries. For example, if you assign an unique identifier to each
query (id1 = “What is information science?”, id2 = “What methods do information
retrieval systems use?”, and so on), you can then easily select any of the queries by its
id. You can apply the same approach to storing the documents, too. If each document
is assigned a unique id, it will be easy to identify a particular document by its id.
Finally, the matching between a particular query and documents answering the infor-
mation need in this query can be encoded as a correspondence between query id and
documents ids.

 This suggests that you can use three data structures for this application:

1 A data structure for the documents that will keep document ids and contents.
2 A data structure for the queries that will keep query ids and contents.
3 A data structure matching the queries to the documents.

Exercise 1
What would be the best format(s) for representing these three data structures? What
type of information do you need to keep in each case?
https://avxhm.se/blogs/hill0

44 CHAPTER 3 Introduction to Information Search

Solution:
Information search is based on the idea that the content of a document or set of doc-
uments is relevant given the content of a particular query, so documents data structure
should keep the contents of all available documents for the algorithm to select from.

 If you have only one query to search for, you can store it as a string of text. How-
ever, if you want to use your algorithm to search for multiple queries, you may use a
similar queries data structure to keep contents of all queries available in the dataset.

 What would be the best way to keep track of which content represents which docu-
ment? The most informative and useful way would be to assign a unique identifier—
an index—to each document and each query. You can imagine, for example, storing
content of the documents and queries in two separate tables, with each row represent-
ing a single document or query, and row numbers corresponding to the documents
and queries ids. In Python, tables can be represented with dictionaries.17

 Now, if you keep two Python dictionaries (tables) matching each unique docu-
ment identifier (called key) to the document’s content (called value) in documents dic-
tionary and matching each unique query identifier to the query’s content in queries
dictionary, how should you represent the relevance mappings? You can use a dictio-
nary structure again: this time, the keys will contain the queries ids, while the values
should keep the matching documents ids. Since each query may correspond to multi-
ple documents, it would be best to keep the ids of the matching documents as lists.

 Figure 3.3 visualizes these data structures.

Figure 3.3 Three data structures
keeping the documents, queries,
and their relevance mappings.

17 See https://docs.python.org/3/tutorial/datastructures.html.
https://avxhm.se/blogs/hill0

https://docs.python.org/3/tutorial/datastructures.html

45Understanding the task

As this figure shows, query with id 1 matches documents with ids 1 and 1460, there-
fore the mappings data structure keeps a list of [1, 1460] for query 1; similarly it keeps
[3] for query 2, [2] for query 112, and an empty list for query 3, because in this exam-
ple there are no documents relevant for this query.

 Now let’s look into the CISI dataset and code the data reading and initialization
step. All documents are stored in a single text file CISI.ALL. It has a peculiar format: it
keeps the abstract of each article18 and some additional information, such as the
index in the set, the title, authors’ list and cross-references—a list of indexes for the
articles that cite each other. Table 3.1 explains the notation.

For the information search application, arguably the most useful information is the
content of the abstract: abstracts in the articles typically serve as a concise summary of
what the article presents, something akin to a snippet. Are the other types of informa-
tion included in the dataset useful? Well, you might be interested in the articles pub-
lished by particular authors, so in some situations you might be interested in
searching on the .A field specifically; similarly, if you are interested in articles with par-
ticular titles, you might benefit from using .T field only. For the sake of simplicity, in
the application that you will develop in this chapter we won’t distinguish between the
.T, .A, and .W list and we’ll merge them into one “content of the article” field, assum-
ing that the information from each of them is equally valuable. .X field shows how
many other articles refer to the particular article, so it may be used as a credibility rat-
ing of an article. This may be quite useful in practice, if you want to rate the articles by
how reliable or respected they are (this is what the cross-references show), however in
this application we won’t focus on that and will remove the .X field.

 Table 3.2 shows the format of information presentation in the CISI.ALL file using
an example of the very first article in the set.

Table 3.1 Notation Used in the CISI Dataset for the Articles

Notation Meaning

Document index in the set.I

Article’s title.T

Authors’ list.A

Text of the abstract.W

Cross-references list.X

18 Note that the full texts of the articles are not included in this dataset. However, this is not a problem for your
search algorithm application. First of all, abstracts typically summarize the main content of the article in a con-
cise manner, so the abstract content is a more condensed version of the article content. Second, the mappings
are established between the queries and the documents containing the information summarized in table 3.1.
https://avxhm.se/blogs/hill0

46 CHAPTER 3 Introduction to Information Search
As you can see, the field identifiers such as .A or .W are separated from the actual text
by new line. In addition, the text within each field, for example, the abstract may be
spread across multiple lines. Ideally, we would like to convert this format into some-
thing like text in Table 3.3. Note that for the text that falls within the same field. For
example, with .W, the line breaks (“\n”) are replaced with whitespaces, so each line
now starts with a field identifier followed by the field content.

The format in table 3.3 is much easier to work with: you can now read the text line by
line, extract the unique identifier for the article from the field .I, merge the content
of the fields .T, .A, and .W, and store the result in the documents dictionary as {1: “18

Table 3.2 Format Used for the Articles Representation in the CISI Dataset

.I 1

.T

18 Editions of the Dewey Decimal Classifications

.A

Comaromi, J.P.

.W

 The present study is a history of the DEWEY Decimal
Classification. The first edition of the DDC was published
in 1876, the eighteenth edition in 1971, and future editions
will continue to appear as needed. In spite of the DDC's
long and healthy life, however, its full story has never
been told. There have been biographies of Dewey
that briefly describe his system, but this is the first
attempt to provide a detailed history of the work that
more than any other has spurred the growth of
librarianship in this country and abroad.

.X

…

Table 3.3 Modified Format for the Articles Representation in the Dataset

.I 1

.T 18 Editions of the Dewey Decimal Classifications

.A Comaromi, J.P.

.W The present study is a history of the DEWEY Decimal Classification. The
first edition of the DDC was published in 1876, the eighteenth edition in 1971,
and future editions will continue to appear as needed. In spite of the DDC's
long and healthy life, however, its full story has never been told. There have
been biographies of Dewey that briefly describe his system, but this is the first
attempt to provide a detailed history of the work that more than any other has
spurred the growth of librarianship in this country and abroad.
https://avxhm.se/blogs/hill0

47Understanding the task
Editions of the … this country and abroad.”}. Code in the following listing imple-
ments all these steps.

def read_documents():
 f = open("cisi/CISI.ALL")
 merged = ""

 for a_line in f.readlines():
 if a_line.startswith("."):
 merged += "\n" + a_line.strip()
 else:
 merged += " " + a_line.strip()

 documents = {}

 content = ""
 doc_id = ""

 for a_line in merged.split("\n"):
 if a_line.startswith(".I"):
 doc_id = a_line.split(" ")[1].strip()
 elif a_line.startswith(".X"):
 documents[doc_id] = content
 content = ""
 doc_id = ""
 else:
 content += a_line.strip()[3:] + " "
 f.close()
 return documents

documents = read_documents()
print(len(documents))
print(documents.get("1")) As a sanity check, print out the size of the

dictionary (make sure it contains all 1460
articles) and print out the content of the
very first article—it should correspond
to the text in table 3.3.

The queries are stored in CISI.QRY file and follow a very similar format: half the
time, you see only two fields, .I for the unique identifier and .W for the content of
the query. Other queries, though, are formulated not as questions but rather as
abstracts from other articles. In such cases, the query also has an .A field for the
authors’ list, .T for the title and .B field, which keeps the reference to the original
journal in which the abstract was published. Table 3.4 presents an example of one of
such original queries:

Listing 3.1 Code to populate the documents dictionary

String variable merged keeps the result of merging
the field identifier (e.g., .W) with its content.

Unless a string starts with a new field
identifier, add the content to the
current field separating the content
from the previous line with a
whitespace; otherwise, start a new
line with the next identifier and field.

Initialize
documents
dictionary.

Each entry in the dictionary contains key=doc_id,
which specifies the document’s unique identifier, and
value=content, which specifies the content of the article.

doc_id can be
extracted from
the line with the
.I field identifier.

As .X field is always the last in each
article, the start of the .X field
signifies that you are done reading
in the content of the article and can
put the entry doc_id:content into
the documents dictionary.

Otherwise, keep extracting
the content from other fields
(.T, .A and .W) removing the
field identifiers themselves.
https://avxhm.se/blogs/hill0

http://ir.dcs.gla.ac.uk/resources/test_collections/
http://ir.dcs.gla.ac.uk/resources/test_collections/

48 CHAPTER 3 Introduction to Information Search
We are going to only focus on the unique identifiers and the content of the query
itself (fields .W and .T, where available), so the code in listing 3.2 is quite similar to
Listing 1 as it allows you to populate the queries dictionary with data.

def read_queries():
 f = open("cisi/CISI.QRY")
 merged = ""

 for a_line in f.readlines():
 if a_line.startswith("."):
 merged += "\n" + a_line.strip()
 else:
 merged += " " + a_line.strip()

 queries = {}

 content = ""
 qry_id = ""

 for a_line in merged.split("\n"):
 if a_line.startswith(".I"):
 if not content=="":
 queries[qry_id] = content
 content = ""
 qry_id = ""
 qry_id = a_line.split(" ")[1].strip()

Table 3.4 Format Used for the Queries Representation in the CISI Dataset

.I 88

.T

Natural Language Access to Information Systems. An Evaluation Study
of Its Acceptance by End Users

.A

Krause, J.

.W

 The question is asked whether it is feasible to use subsets of
natural languages as query languages for data bases in actual applications
using the question answering system "USER SPECIALTY LANGUAGES" (USL).
Methods of evaluating a natural language based information system will
be discussed. The results (error and language structure evaluation)
suggest how to form the general architecture of application systems which
use a subset of German as query language.

.B

(Inform. Systems, Vol. 5, No. 4, May 1980, pp. 297-318)

Listing 3.2 Code to populate the queries dictionary

As before, merge the content of each
field with its identifier, and separate

different fields with line breaks \n.

Initialize queries dictionary and store key=qry_id
and value=content for each query in the dataset
as a separate entry in the dictionary

The start of a new entry is signified
with the next .I field. At this point,
add an entry to the dictionary.

elif a_line.startswith(".W") or a_line.startswith(".T"):
https://avxhm.se/blogs/hill0

49Understanding the task

Ot
ad
to
va

The
is s
colu
doc
sto
sec

 content += a_line.strip()[3:] + " "
 queries[qry_id] = content
 f.close()
 return queries

queries = read_queries()
print(len(queries))
print(queries.get("1"))

Print out the length of the dictionary (it should contain
112 entries), and the content of the very first query (this you
can check against the text of the first query in CISI.QRY).

For the query example in table 3.4, this code will put the unique identifier linked to
the query content from the fields .T and .W into the data structure. The particular
entry will be represented as {88: “Natural Language Access to Information Systems . . .
use a subset of German as query language.”}.

 Finally, you need to know which queries correspond to which documents. This infor-
mation is contained in the CISI.REL file. This file uses a simple column-based format,
where the first column keeps the reference to the query id, and the second column con-
tains an id of one of the articles (documents) that matches this query. So all you need to
do is read this file, split it into columns, and associate to the query id the list of ids for
the documents that match the query. Listing 3.3 shows how to do this in Python.

def read_mappings():
 f = open("cisi/CISI.REL")

 mappings = {}

 for a_line in f.readlines():
 voc = a_line.strip().split()
 key = voc[0].strip()
 current_value = voc[1].strip()
 value = []
 if key in mappings.keys():
 value = mappings.get(key)
 value.append(current_value)
 mappings[key] = value

 f.close()
 return mappings

mappings = read_mappings()
print(len(mappings))
print(mappings.keys())
print(mappings.get("1"))

Print out some information about the mappings data
structure. For example, its length (it should tell you that
76 queries have documents associated with them), list of
keys (so you can check which queries don’t have any
matching documents), and the list of ids for the documents
matching the very first query (this should print out a list
of 46 document ids, which you can check against CISI.REL).

For example, for the very first query, the mappings data structure should keep the fol-
lowing list: {1: [28, 35, 38, 1196, 1281]}.

 That’s it—you have successfully initialized one dictionary for documents with the ids
linked to the articles content, another dictionary for queries linking queries ids to their

Listing 3.3 Code to populate the mappings dictionary

herwise, keep
ding content
 the content
riable.

The very last query is not followed by any next
.I field, so the strategy from above won’t
work—you need to add the entry for the last
query to the dictionary using this extra step.

Split each line into columns.
Python’s split() performs splitting by
whitespaces, while strip() helps with
removing any trailing whitespaces.

 key (query id)
tored in the first
mn, while the
ument id is
red in the
ond column.

If the mappings dictionary already contains
some document ids for the documents matching
the given query, you need to update the existing
list with the current value; otherwise just add
current value to the new list.
https://avxhm.se/blogs/hill0

50 CHAPTER 3 Introduction to Information Search
correspondent texts, and the mappings dictionary, which matches the queries ids to
the lists of relevant document ids.

 Now, you are all set to start implementing the search algorithm for this data.

Boolean search algorithm3.1.2

Let’s start with the simplest approach: the information need is formulated as a query.
If you extract the words from the query, you can then search for the documents that
contain these words and return these documents, as they should be relevant to the
query.

 Here is the algorithm in a nutshell:

 Extract the words from the query.
 For each document, compare the words in the document to the words in the query.
 Return the document as relevant if any of the query words occurs in the document.

Figure 3.4 visualizes this algorithm.

The very first step in this algorithm is extraction of the words from both queries and
documents. You may recall from chapter 2 that text comes in as a sequence of symbols
or characters, and the machine needs to be told what a word is—you used a special
NLP tool called tokenizer to extract words. Let’s apply this text-preprocessing step
here, too.

import nltk
from nltk import word_tokenize

def get_words(text):
 word_list = [word for word in word_tokenize(text.lower())]
 return word_list

doc_words = {}
qry_words = {}
for doc_id in documents.keys():

Listing 3.4 Preprocess the data in documents and queries

Figure 3.4 Simple search
algorithm selects all
documents that contain any
of the words from the query.

Use NLTK’s word_tokenize
as in chapter 2.

Text is converted to lower
case and split into words.
https://avxhm.se/blogs/hill0

51Understanding the task

It
th
d

ry
s
ord
d
n).

u
t.
 doc_words[doc_id] = get_words(documents.get(doc_id))
for qry_id in queries.keys():
 qry_words[qry_id] = get_words(queries.get(qry_id))

print(len(doc_words))
print(doc_words.get("1"))
print(len(doc_words.get("1")))
print(len(qry_words))
print(qry_words.get("1"))
print(len(qry_words.get("1")))

Print out the length of the dictionaries (these should be
the same as before—1460 and 112), and check what words
are extracted from the first document and the first query.

Now let’s code the simple search algorithm described previously. We will refer to it as
the Boolean search algorithm since it relies on presence (1) or absence (0) of the
query words in the documents.

def retrieve_documents(doc_words, query):
 docs = []
 for doc_id in doc_words.keys():
 found = False
 i = 0
 while i<len(query) and not found:
 word = query[i]
 if word in doc_words.get(doc_id):
 docs.append(doc_id)
 found=True
 else:
 i+=1
 return docs

docs = retrieve_documents(doc_words, qry_words.get("3"))
print(docs[:100])
print(len(docs))

Check the results: select a query by its id (for example, query with id 3 here),
print out the ids of the documents that the algorithm found (for example, the
first 100, as there may be many), check how many there are in total.

If you run this code with a query with id 3 from the queries data structure (the text of
this query is “What is information science? Give definitions where possible.”), you will
get 1410 documents returned as relevant—this means that almost each document in the
collection of 1460 documents is considered “relevant” by this algorithm! There is noth-
ing special about query with id 3; in fact, almost any query will return comparably huge
number of “relevant” documents with this approach. That probably means that no truly
relevant document escapes such thorough search, but in practice it is not helpful. In
addition to returning a huge number of documents, the algorithm does not provide any
relevance sorting for them, and without such sorting looking through 1410 is not signifi-
cantly better than looking through 1460. So what exactly went wrong here?

 Let’s look into how the algorithm decided on the documents relevant for query
with id 6 (“What possibilities are there for verbal communication between computers
and humans, that is, communication via the spoken word?”). According to the gold

Listing 3.5 Simple Boolean search algorithm

Entries in both documents and queries
are represented as word lists.

erate
rough the

ocuments. found flag will be turned on as soon as you
find any of the query words in the document.

i is the index of
the query word
in the query
word list.

Keep iterating through the words in the que
word list until either of the two conditions i
satisfied. You have reached the end of the w
list, or one of the words from the query wor
list is found in the document (found flag is o

As soon as you find a query word in the document, turn the found
flag on. This will help you optimize the search, since as soon as yo
find one word, you don’t need to look any further in this documen
https://avxhm.se/blogs/hill0

52 CHAPTER 3 Introduction to Information Search

standard in mappings data structure, only one document matches this query, but the
simple algorithm you applied above returns all 1460 documents as relevant. Figure 3.5
highlights the words by which the match was identified between query 6 and docu-
ment 1. As it shows, the query is matched to the document based on occurrence of
such words as “there”, “this”, “the”, “and”, “is”, and even a comma since punctuation
marks are part of the word list returned by the tokenizer.

On the face of it, there is a considerable word overlap between the query and the doc-
ument, yet if you read the text of the query and the text of the document, they don’t
seem to have any ideas in common, so in fact this document is not relevant for the
given query at all! It seems like the words on the basis of which the query and the doc-
ument are matched here are simply the wrong ones. They are somewhat irrelevant to
the actual information need expressed in the query. How can you make sure that the
query and the documents are matched on the basis of more meaningful words?

Solution:
First try to solve this task yourself, and then check your solution against the sample
solution in the Jupyter notebook.19

 If you consider an example of any of the queries, you may notice that it is rarely the
case that a document, even if it is generally relevant, contains all words from the
query. (At the very least, it does not have to contain question words like “what” and
“which” from the query to be relevant). Therefore, if you run this code, which applies
the more conservative approach of returning only the documents with all query words

Exercise 2
Another way to match the documents to the queries would be to make it a require-
ment that the document should contain all the words from the query rather than any.

Is this a better approach? Modify the code of the simple Boolean search algorithm to
match documents to the queries on the basis of all words, and compare the results.

Figure 3.5 The match
between the query and
the documents is
established based on
highlighted words.

19 All the code for this book is currently available at https://app.box.com/folder/70006068203.
https://avxhm.se/blogs/hill0

https://app.box.com/folder/70006068203

53Processing the data further
in them, it will work even worse at this stage—it simply will not find any relevant docu-
ments for any of the queries.

 Before we move on, let’s summarize which steps of the algorithm you have imple-
mented so far: you have read the data, initialized the data structures, and tokenized
the texts.

Processing the data further3.2
In the previous section, we have identified several weaknesses of the current algo-
rithm. Let’s look into further preprocessing steps that will help you represent the con-
tent of both the documents and the queries in a more informative way.

Preselecting the words that matter: Stopwords removal3.2.1

The main problem with the search algorithm identified so far is that it considers all
words in the queries and documents as equally important. This leads to poor search
results, but on top of that it is also intuitively incorrect. Let’s consider an example of
query 6, “What possibilities are there for verbal communication between computers
and humans, that is, communication via the spoken word?”, and identify the words
that matter.

Solution:
You may notice that not all words are equally meaningful in the sentences above. A good
test for that would be to ask yourself whether you can define in one phrase what a partic-
ular word means: for example, what does “the” mean? You can say that “the” does not
have a precise meaning of its own, rather it serves a particular function—it signifies that
the word following it is defined in the specific context. For example, when you see “the”
in “Look at the following queries”, you know precisely which queries I am talking about.

Exercise 3
Look at the following three queries. Which of the words express the information need
most precisely?

(1) What possibilities are there for verbal communication between computers and
humans?

(2) How much do information retrieval and dissemination systems cost?

(3) Testing automated information systems.
https://avxhm.se/blogs/hill0

54 CHAPTER 3 Introduction to Information Search

 You may find out that many of the frequent and short words like “for”, “at”, “a”,
“the”, and a number of others are less charged with meaning than rarer and longer
words like “communication” or “retrieval”. Such short words are very frequent in lan-
guage—almost any text you look at would contain multiple “the”s, “a”s, and so on. You
have seen an example of that when you ran the simple search algorithm and it was
misled by the presence of such words in all texts. Most of such words don’t have a par-
ticular meaning of their own, rather they express a function: similarly to “the” denot-
ing that the next word or phrase is identifiable in the context, “at” and “in” help
specifying location or time, and “which” or “what” in the beginning of a sentence sug-
gest that the sentence may be a question. In linguistic terms, such words are called
function words. You might even notice that when you read a text, for example an article
or an email, you tend to skim over such words without paying much attention to them.

 What happens to the search algorithm when these words are present? You have
seen in the example before that they don’t help identify the relevant texts, so in fact
the algorithm’s effort is wasted on them. What would happen if the less meaningful
words were not taken into consideration? Figure 3.6 shows an example with the more
meaningful words highlighted and the less meaningful ones grayed out.

Figure 3.6 The more
meaningful words in the
query and document are
highlighted.

You can see that were the less meaningful words not removed before matching docu-
ments to queries, document 1 would not stand a chance—there is simply not a single
word overlapping between the query and this document. You can also see that the
words that are not grayed out concisely summarize the main idea of the text.

This suggests the first improvement to the developed algorithm. Let’s remove the
less meaningful words. In NLP applications, the less meaningful words are called stop-
words, and luckily you don’t have to bother with enumerating them, Since stopwords
are highly repetitive in English, most NLP toolkits have a specially defined stopwords
list, so you can rely on this list when processing the data, unless you want to customize
it. For example if you believe that it should be extended with more words or that some
words that are included in the standard stopwords list should not be there, you could
use your own list of stopwords.

In addition to removing stopwords note that Figure 3.6 doesn’t have punctuation
marks, that is, full stops, commas, and question marks, highlighted. Punctuation
https://avxhm.se/blogs/hill0

55Processing the data further

.

marks may prove useful in some applications, but will unlikely help here: many que-
ries will contain question marks and documents won’t necessarily have any, while all
documents will have commas and full stops, so punctuation marks are not going to be
informative in the matching process. Let’s filter them out, too. Code in listing 3.6
shows how to do that.

import nltk
import string
from nltk import word_tokenize
from nltk.corpus import stopwords

def process(text):
 stoplist = set(stopwords.words('english'))
 word_list = [word for word in word_tokenize(text.lower())
 if not word in stoplist and not word in string.punctuation]
 return word_list

word_list = process(documents.get("1"))
print(word_list)

Check the result of these preprocessing
steps on some documents or queries,
for example, document 1.

If you run the code from Listing 3.6 to preprocess document 1, it will return the list of
words including [“18”, “editions”', “dewey”, “decimal”, “classifications”, . . .] for the
original text of document 1 from Table 3.3 that goes as “18 Editions of the Dewey Dec-
imal Classifications . . . ” That is, the preprocessing step helps removing the stopwords
like “of” and “the” from the word list.

3.2.2 Matching forms of same word: Morphological processing

One effect that stopwords and punctuation marks removal has is optimization of
search algorithm. The words that do not matter much are removed, so the computa-
tional resources are not wasted on them. In general, the more concise and the more
informative the data representation is, the better.

 This brings us to the next issue. Take a look at figure 3.7 illustrating the query with
id 15 and document with id 27, which are a match according to the ground truth map-
pings.

Listing 3.6 Preprocessing: Stopwords and punctuation marks removal

Import Python’s string module to help
remove punctuation marks.

Import NLTK’s
stopwords list.

NLTK includes stopwords for multiple languages, so you need to specify that you want
to use the one for English. You can check which words are included by print(stoplist).

Tokenize text, convert it
to lower case and only

add the words if they are
not included in the

stoplist and are not
punctuation marks

Figure 3.7 The words
highlighted in blue will be
matched between the
query and the document;
the ones in red will be
missed.
https://avxhm.se/blogs/hill0

56 CHAPTER 3 Introduction to Information Search

As Figure 3.7 shows, after removing the stopwords and punctuation marks, the algo-
rithm will be able to match the query to the document on some words, but will miss
others. For instance, it won’t be able to tell that “system” and “systems” as well as “cost”
and “costs” essentially represent the same words in different forms. In this particular
case, the query and document will still be matched on such words as “information” or
“well”, but the degree to which their contents overlap will be lower. As you will see
shortly, such degree matters, because it allows you to reason about the relevance rank-
ing of the document. In addition, in other cases, the query-document correspon-
dence might not be established at all, if the only relevant words are used in different
forms in the query and the document.

 The reason for this mismatch is that words may take different forms in different
contexts: some contexts may require a mention of a single object or concept like “sys-
tem”, while others may need multiple “systems” to be mentioned. Such different
forms of a word that depend on the context and express different aspects of meaning,
for instance, multiplicity of “systems”, are technically called morphological forms, and
when you see a word like “systems” and try to match it to its other variant “system” you
are dealing with morphology. English is a relatively “lucky” case—it is not very rich in
morphology. That is, it has a limited variety of word forms. Other languages distin-
guish between many more morphological forms, whereas English forms may be con-
cisely described as in table 3.5.

Table 3.5 Concise Description of English Morphological System

Type of word Example Type of form

Nouns (words that
denote objects,
people, animals,
concepts)

system, man, mouse, phenomenon Base form: singular form

systems, men, mice, phenomena Plural form

Verbs (words that
denote actions,
states)

be, have, retrieve, sing Base form: infinitive

is, has, retrieves, sings Third-person form (used with “he/she”)

was / were, had, retrieved, sang Past tense form

been, had, retrieved, sung Past participle form (used in phrases
like “have been”)

being, having, retrieving, singing Progressive form (as in “I am having
a nice time”

The base form in table 3.5 is always the most basic form of the word—it is the starting
point for any further changes and aspects of meaning, and it is also the word form
that you would find in a dictionary if you were looking up for a word. So the process of
mapping different forms of the word to its most basic one is similar to that of looking
up for words in a dictionary. Imagine you wanted to know what “sung” meant. Your
best strategy would be to look up straight away for “sing”. Similarly, the search algo-
https://avxhm.se/blogs/hill0

57Processing the data further
rithm would benefit from mapping “sing”, “sang”, and “sung” to the same word, by
default the most basic one—“sing”. Now, check your understanding of this processing
step with the following exercise.

Solution:
Conversion of this piece of text to the base forms should result in “A computer pro-
gram have be write and use which simulate the several-year operation of an information
system and compute estimate of the cost as well as the amount of equipment and person-
nel require during that time period.”

 Such a preprocessing step is quite useful—it results in a more compact search
space than the original where different forms of the same word are mapped together
to a single dictionary form. How can a machine perform such a conversion? The solu-
tion would be to keep a large dictionary of all known words in a language and try to
map the different forms to the known base forms in this dictionary. You might see
straight away that there are potential problems with such an approach. To begin with,
it is resource-intensive, because it has to keep a dictionary for the look-up. Moreover,
it would not scale, because it is hard to make sure that a dictionary indeed contains all
the words in a language. Human languages are creative and new words tend to crop
up on a regular basis, so no dictionary can cover all words in a language, past, present
and future. Can you do better than relying on a dictionary then?

 In fact, there is another option for word form preprocessing that is called stemming.
Stemming takes word matching one step further and tries to map related words across
the board, and this means not just the forms of the very same word. For that, the stem-
mers rely on a set of rules that try to reduce the related words to the same basic core.
Such rules rely on the idea that even though languages may add new words and bor-
row words from other languages, they will still apply the very same set of rules to build
morphological forms for such new additions. For example, the word “selfie” has been
relatively recently invented in English, but if you take multiple photos you will still use
the same rules of language and say that you took multiple “selfies”. Similarly, if you use
Twitter you might “tweet” once in a while, or you might be “tweeting” pretty regularly,
just like you might write an odd blog post once a year or you might be an active blog-
ger, who is constantly writing new blog posts.

 How does stemming work then and what resulting forms does it produce? Take the
verb retrieve as an example. You can make a whole range of forms out of it, including
retrieving, retrieves, and retrieved, just as table 3.5 shows. However, if you want to describe

Exercise 4
What base word forms will you end up with after processing this text:

“A computer program has been written and used which simulates the several-year
operation of an information system and computes estimates of the costs as well as
the amount of equipment and personnel required during that time period.”
https://avxhm.se/blogs/hill0

58 CHAPTER 3 Introduction to Information Search

Ap
to
te

the process of retrieving something, you use the word retrieval. Retrieval is derived from
retrieve, and the stemmer helps identifying this connection by reducing all related words
to their common core that is called stem, thus the name for the tool. The rule in that par-
ticular case will define that the words ending in –al can be mapped to the words without
–al: in fact, forming new words with an addition of –al is a productive pattern in English
(remove + -al = removal, approve + -al = approval, deny + -al = denial, and so on). The stem in
{retrieve, retrieves, retrieved, retrieving, retrieval} is retriev. So here is the difference with the
technique that you used before—stemming might result in non-words, as for example,
you won’t find a word like retriev in a dictionary. To provide you with a couple of other
examples, the stem for {expect, expects, expected, expecting, expectation, expectations} is expect
and the stem for {continue, continuation, continuing} is continu—see figure 3.8.

Note that the stemmer tries to identify which part of the word is shared between the
different forms and related words and returns this part as a stem by cutting off the dif-
fering word endings.

 Now let’s implement the stemming preprocessing step using NLTK’s stemming
functionality. NLTK provides a suite of different stemming tools,20 and in this chapter
you will use one of the most accurate of them—the Lancaster Stemmer, as shown in
the following listing.21

import nltk
import string
from nltk import word_tokenize
from nltk.corpus import stopwords
from nltk.stem.lancaster import LancasterStemmer

def process(text):
 stoplist = set(stopwords.words('english'))
 st = LancasterStemmer()
 word_list = [st.stem(word) for word in word_tokenize(text.lower())
 if not word in stoplist and not word in string.punctuation]
 return word_list

word_list = process(documents.get("27"))

Listing 3.7 Preprocessing: Stemming

Figure 3.8 Stemming
applied to different groups
of related words.

Import the tools,
including the stemmer.

Initialize the
LancasterStemmer.

ply stemming
 the preprocessed
xt.

20 Check the documentation here: https://www.nltk.org/api/nltk.stem.html.
21 The source code can be found here: https://www.nltk.org/_modules/nltk/stem/lancaster.html.
https://avxhm.se/blogs/hill0

https://www.nltk.org/api/nltk.stem.html
https://www.nltk.org/_modules/nltk/stem/lancaster.html

59Processing the data further

print(word_list)
word_list = process("organize, organizing, organizational, organ, organic,

organizer")
print(word_list) As before, check the results on some document or query; you can also pass

in a list of words. directly. Do the results correspond to your expectations?

When you run the previous code above on a particular document, for example, docu-
ment 27, the function process receives the following text as input:

 Input = “Cost Analysis and Simulation Procedures for the Evaluation of Large
Information Systems …”22

As an output, it returns the following list of stems:
 Output = ['cost', 'analys', 'sim', 'proc', 'evalu', 'larg', 'inform', 'system', …]

Stem ‘analys’ for “analysis” will help the algorithm to map “analysis” to such words as
“analyse” (in British spelling), “analysing”, “analyst” and so on; stem ‘proc’ will help
the algorithm group words like “procedure”, “process” and “processing” and so on. So
this step results in even more compact search space and helps establish useful corre-
spondences between similar words that should help the search algorithm find content
related to the information need more effectively.

 Now, what happens when you run this function on the input=[‘organize’, ‘organiz-
ing’, ‘organizational’, ‘organ’, ‘organic’, ‘organizer’]? Intuitively, the words {organize,
organizing, organizational, organizer} belong to one group and you might expect them to
be processed as organiz, while {organ, organic} belong to another group which should
result in something like organ. However, the actual output returned by the function
process is a list of identical stems for all the words in the input list: ['org', 'org', 'org',
'org', 'org', 'org']. This example is used here rather as a warning about the way stem-
mers work. While they are useful in mapping related words to each other, sometimes
they might produce an unexpected output and map unrelated words together. This
happens because stemmers sometimes go too far in their attempt to establish the cor-
respondences. As the stemmer blindly applies a rather general set of rules to all exam-
ples, some of these rules overgeneralize.

 The following list explains how the output for this list of words is produced, step-
by-step:23

 {organize, organizing, organizational, organizer} may all be reduced to organiz by
application of the following rules: -ing (as in make –> making), -ational (oper-
ate -> operational), and -er (produce –> producer).

 The mapping between organ and organic is explained by the addition of –ic as in
acid –> acidic.

 The less straightforward mapping between organ and organize is established
through the application of ending –ize, as in modern –> modernize.

22 As before, we use “…” to indicate that there are more words in the input and more stems returned in the output
23 Note, that this list of rules explaining how the output is arrived at is advanced content. You can consult with this

list in case you are interested in what happens “behind the scenes” when you apply the stemming algorithm. How-
ever, understanding or knowing these rules is not critical for the application of the stemming algorithm itself.
https://avxhm.se/blogs/hill0

60 CHAPTER 3 Introduction to Information Search
 Finally, organ gets mapped to org by the application of –an. It is, in fact, applicable
in cases like Italy –> Italian and history –> historian, that is, to form words describ-
ing properties and qualities (such words are called adjectives) from words
(nouns) that describe people in cases when these words are related in meaning.

So, technically, the last two rules should not be applied to map cases like organ –> orga-
nize, because the two words do not mean similar things, and it would be better for the
applications like search algorithm to make the distinction between the two groups of
words {organize, organizing, organizational, organizer} and {organ, organic}. However,
unfortunately, the stemmer algorithm does not take into account what words mean, so
once in a while it may make mistakes and connect unrelated words. Figure 3.9 visual-
izes all the rules that are applied to this set of words, showing the resulting stems and
the endings of the words that are cut off by the application of different rules.

Now, why should you be aware of this peculiarity of the stemmer algorithms? Since in
some cases the stemmer would map together words that are not closely related to each
other, your search algorithm might consider documents talking about organic products
somewhat relevant for the query that asks about organizational skills. This is something
to keep in mind. In general, because the queries are mapped to the relevant docu-
ments on the basis of more than one word from the query, such incorrect mappings
are usually outweighed by the relevance of other words.

 Before we move on, let’s summarize which steps of the algorithm you have imple-
mented so far. You have read the data, initialized the data structures and tokenized
the texts, removed stopwords, and applied the stemming preprocessing.

Figure 3.9 The full
analysis of rules applied
to the example including
organ and organize.
https://avxhm.se/blogs/hill0

61Information weighing
Information weighing3.3
Another problem with the simple Boolean search algorithm implemented in this
chapter is that it can only return a list of documents that contain some or all of the
words from the query, but it cannot tell which of the documents are more relevant.
You’ve seen before that when you run the algorithm from listing 3.5, for most queries
it returns a huge number of documents. Stopwords removal helps filter out the less
relevant words, while stemming helps find the correspondences between the related
words, which alleviates some of these issues. However, your algorithm still returns the
relevant documents as an unsorted list. Without some measure of relevance and rele-
vance, ordering it would still be time-consuming to look through all the documents
returned by the algorithm. What could serve as such a measure of relevance? Let’s
look into an example in figure 3.10.

Suppose you try to find documents most relevant to the given query. After stopwords
and punctuation marks removal you end up with the query words—let’s call them key-
words—consisting of {much, information, retrieval, dissemination, systems, cost}. Which of the
two documents appears to be more relevant? Document doc_x does not only contain
more keywords than doc_y, each keyword also occurs more times, so it would be reason-
able to assume that doc_x is more relevant—given a choice between these two docu-
ments, you should start with doc_x if you want to find the answer to the query. How can
we take the factors like more keywords and higher number of occurrences into account?

3.3.1 Weighing words with term frequency

The first requirement, that you should take into account all keywords, suggests that you
need to keep track of the words used in the queries and documents. The second
requirement, that the number of occurrences of each of the keywords matters, suggests
that you need to count the number of occurrences rather than simply register presence
or absence of a keyword. You can achieve this by keeping the number of occurrences for
the keywords in a table, or translating this into a Python data structure you can use a dic-
tionary that will allow you to keep track of which counts correspond to which keywords.
For instance, the example from figure 3.10 will result in table 3.6.

Figure 3.10 An example
of the different distribution
of query keywords in
documents.
https://avxhm.se/blogs/hill0

62 CHAPTER 3 Introduction to Information Search

A
p
st
The correspondent Python dictionaries will be as follows:

 Query={much:1, information:1, retrieval:1, dissemination:1, systems:1, cost:1}
 Doc_x={much:0, information:2, retrieval:1, dissemination:2, systems:3, cost:1}
 Doc_y={much:0, information:1, retrieval:1, dissemination:1, systems:2, cost:0}

This approach, based on calculating frequency of occurrence, corresponds to the
well-known technique in Information Retrieval called term frequency (tf). It relies on the
idea that the more frequently the word (term) is used in a document, the more rele-
vant this document becomes to the query. We will use the word term instead of “word”
from now on following this widely accepted convention: after all, since you apply stem-
ming, not all keywords keep to be proper “words” anymore (think of the case of
retriev). Listing 3.8 shows how to implement this step.

def get_terms(text):
 stoplist = set(stopwords.words('english'))
 terms = {}
 st = LancasterStemmer()
 word_list = [st.stem(word) for word in word_tokenize(text.lower())
 if not word in stoplist and not word in string.punctuation]
 for word in word_list:
 terms[word] = terms.get(word, 0) + 1
 return terms

doc_terms = {}
qry_terms = {}

for doc_id in documents.keys():
 doc_terms[doc_id] = get_terms(documents.get(doc_id))
for qry_id in queries.keys():
 qry_terms[qry_id] = get_terms(queries.get(qry_id))

print(len(doc_terms))
print(doc_terms.get("1"))
print(len(doc_terms.get("1")))
print(len(qry_terms))
print(qry_terms.get("1"))
print(len(qry_terms.get("1")))

Check out the results: you can print out the length
of the resulting data structures (this shouldn’t
change from before—1460 for the documents,
112 for the queries), the term frequency
dictionaries for a specific document or query
(e.g., the first ones in the set), and the length of
these dictionaries (it should be 43 terms for the
document 1 and 14 terms for the query 1).

Table 3.6 The Keyword Occurrences Merged into a Shared Representation

much information retrieval dissemination system(s) cost

111111query

132120doc_x

021110doc_y

Listing 3.8 Code to estimate term frequency in documents and queries

pply all the
reprocessing
eps as before. Estimate the counts for each term

and populate the dictionary.

Populate the term frequency dictionaries
for all documents and all queries.
https://avxhm.se/blogs/hill0

63Information weighing

.

Now, let’s represent all queries and all documents in the same shared space. For exam-
ple, table 3.6 represents one query and two documents in a space where the columns
of the table are shared among all three. In the Python data structure, each of these
columns represents a separate dimension. For instance, column 1 keeps the counts of
the term “much” across the query and both documents, column 2 keeps the counts
for “information”, and so on; similarly, the Python data structures keep these counts
in the first two dimensions as:

 Query={much:1, information:1, …}
 Doc_x={much:0, information:2, …}
 Doc_y={much:0, information:1, …}

Now let’s add all terms from the data set as columns, and keep the counts for each of
them in each query and each document as rows. In terms of Python data structures,
this means that each document and each query will keep the whole dictionary of terms
in the collection with the associated term frequencies. Listing 3.9 presents this step.

def collect_vocabulary():
 all_terms = []
 for doc_id in doc_terms.keys():
 for term in doc_terms.get(doc_id).keys():
 all_terms.append(term)
 for qry_id in qry_terms.keys():
 for term in qry_terms.get(qry_id).keys():
 all_terms.append(term)
 return sorted(set(all_terms))

all_terms = collect_vocabulary()
print(len(all_terms))
print(all_terms[:10])

def vectorize(input_features, vocabulary):
 output = {}
 for item_id in input_features.keys():
 features = input_features.get(item_id)
 output_vector = []
 for word in vocabulary:
 if word in features.keys():
 output_vector.append(int(features.get(word)))
 else:
 output_vector.append(0)
 output[item_id] = output_vector
 return output

doc_vectors = vectorize(doc_terms, all_terms)
qry_vectors = vectorize(qry_terms, all_terms)

print(len(doc_vectors))
print(len(doc_vectors.get("1460")))
print(len(qry_vectors))
print(len(qry_vectors.get("112")))

Print out some statistics on these data
structures: you should still have 1460 doc_vectors
and 112 qry_vectors, with 8881 terms each.

Listing 3.9 Code to represent the data in a shared space

First, collect the shared vocabulary of
terms used in documents and queries;
return it as a sorted list for convenience

Print out the length of the shared vocabulary
(you should end up with 8881 terms in total) and
check the first several terms in the vocabulary.

Now each query and each document
can be represented with a dictionary
with the same set of keys—the terms
from the shared vocabulary. The values
will either be equal to the term
frequency in the particular query and
document or will be 0 if the term is
not in the query or document.

Using the vectorize method you
can represent all queries and

documents in this shared space.
https://avxhm.se/blogs/hill0

64 CHAPTER 3 Introduction to Information Search

Now, another way to think about each of these term dictionaries associated with each
document and each query is as vectors: that is, each document and each query is rep-
resented as a vector in a shared space, with the number of dimensions equal to the
length of the shared vocabulary (8881) and the term frequencies in each dimension
representing the coordinates. This may remind you of the discussion on vectors in
chapter 1, and figure 3.11 reinterprets the query, and two documents from table 3.6 as
vectors in two dimensions associated with terms “system” and “cost” (but you can
imagine how these vectors are extended to other dimensions, too).24

Now you can estimate the relevance, or similarity, of the query and documents using
the distance between them in the vector space. But before you do that, there is one
more observation due.

3.3.2 Weighing words with inverse document frequency

In a collection of documents, you are working with, some terms are much more fre-
quently used across all documents than others. For instance, since this is a collection of
articles on information science and information retrieval systems, such terms as
“information” or “system” may occur in many documents while other terms like “cost”
may occur in fewer documents. Which ones are more helpful in search then? Imagine
that you were to find the relevant documents for the query 15, “How much do infor-
mation retrieval and dissemination systems cost?” If “information” and “system” occur
in lots of documents, then you better focus your attention on those documents that
contain other terms from the query, such as “dissemination” and “cost”, because it is
those documents that contain these words that are more relevant. In other words, you
would like to give these rarer terms like “dissemination” and “cost” higher weight so
that the search algorithm knows it should trust their vote for relevance more. The
most straightforward way to assign such weights to the terms is to make it proportion-
ate to the number of documents where the term occurs. The higher the number of
documents that contain the term, the lower its discriminative power, and therefore
the lower the weight that the term should get.

 Take the term “inform” as an example (this is a stem for such words as “inform”
and “information”). It occurs in 651 out of 1460, so its document frequency (df) equals
651/1460 ? 0.45. On the other hand, the term “dissemin” (stem of “dissemination”)

Figure 3.11 Vector
representation of the
query and two
documents along two
dimensions.

24 You may recall that figure 1.5 uses a similar representation for a different example.
https://avxhm.se/blogs/hill0

65Information weighing
only occurs in 68 documents, so its df = 68/1460 ? 0.05. “Dissemin” is a more valuable
term for the search algorithm because it is rare: if a query contains it, the documents
that also contain, it should be given preference. To assign a higher weight to “disse-
min” than to “inform”, let’s take the inverse document frequency (idf): idf(“inform”)
= 1/0.45 ? 2.22, idf(“dissemin”) = 1/0.05 ? 20. These weights show that the rare term
“dissemin” is almost 10 times more important than the much more frequent term
“inform”. There are two more things to take into account here:

 First, some terms from the shared vocabulary may not occur in any of the docu-
ments, so their df will be 0. To avoid division by 0, it is common to smooth the
counts. To calculate the idf, take (df+1) rather than df, that is, idf = 1/(df+1), so
you will never have to divide by zero, and the absolute values of idf won’t
change much.

 Second, it is common to “tone down” the differences in absolute counts, because
the difference between very rare and very frequent terms might be huge, espe-
cially in large collections. It is assumed that the weight given to the terms should
increase not linearly (that is, by one with each document) but rather sub-linearly
(that is, more slowly). Logarithmic function achieves this effect: the relative
order of the term’s importance doesn’t change, while the absolute number does.

To put all the components together, here are the idf values for the terms “inform” and
“dissemin” in this collection:

idf(“inform”) = log10(1460/(651+1)) ≈ 0.35
idf(“dissemin”) = log10(1460/68+1)) ≈ 1.33

As you can see, the difference is still significant, but the counts are more comparable.
The general formula then is:

idf(term) = log10(N / (df(term) + 1)

where N is the total number of documents in the collection.

Solution:
 idf(“system”) = log10(1460/(531+1)) ≈ 0.44
 idf(“us”) = log10(1460/(800+1)) ≈ 0.26
 idf(“retriev”) = log10(1460/(287+1)) ≈ 0.71
 idf(“cost”) = log10(1460/(137+1)) ≈ 1.02

Exercise 5
What are the inverse document frequency (idf) values for the following terms based
on the number of documents (df for document frequency) they occur in:

df(“system”) = 531; df(“us” = stem of “use”) = 800; df(“retriev”) = 287; df(“cost”) = 137
https://avxhm.se/blogs/hill0

66 CHAPTER 3 Introduction to Information Search

A
id
fr

A
w
d

Now, if a particular document contains two occurrences of the term “cost”, its idf-
weighed value will be 2*1.02=2.04, while if it contains two occurrences of the term “sys-
tem”, its idf-weighed value will be 2*0.44=0.88, so despite the same term frequencies the
more informative term “cost” will get higher overall weight. For instance, here is how idf
weighing will change the weights of the terms in the documents from table 3.6.

Listing 3.10 shows how to implement this in Python.

import math

def calculate_idfs(vocabulary, doc_features):
 doc_idfs = {}
 for term in vocabulary:
 doc_count = 0
 for doc_id in doc_features.keys():
 terms = doc_features.get(doc_id)
 if term in terms.keys():
 doc_count += 1
 doc_idfs[term] = math.log(float(len(doc_features.keys()))/float(1 +

doc_count), 10)
 return doc_idfs

doc_idfs = calculate_idfs(all_terms, doc_terms)
print(len(doc_idfs))
print(doc_idfs.get("system"))

def vectorize_idf(input_terms, input_idfs, vocabulary):
 output = {}
 for item_id in input_terms.keys():
 terms = input_terms.get(item_id)
 output_vector = []
 for term in vocabulary:
 if term in terms.keys():

output_vector.append(input_idfs.get(term)*float(terms.get(term)))
 else:
 output_vector.append(float(0))
 output[item_id] = output_vector
 return output

doc_vectors = vectorize_idf(doc_terms, doc_idfs, all_terms)

Table 3.7 Idf Weighing Applied to the Term Frequencies in the Two Documents

system(s) cost

11query

1*1.02=1.023*0.44=1.32doc_x

02*0.44=0.88doc_y

Listing 3.10 Code to calculate and apply inverse document frequency weighing

Estimate idf values for each term
in the vocabulary by counting how
many documents contain it.

pply the
f formula
om above.

Check out the results: you should have
idf values for all 8881 terms from the
vocabulary; the idf for any particular

term should coincide with your
estimates as with Exercise 5.

Define a method to apply idf weighing
to the input_terms (in particular,

to doc_terms) data structure.

For that, multiply the term frequencies
with the idf weights if the term is present in the

document; otherwise, its term frequency stays 0.

pply idf
eighing to
oc_terms.
https://avxhm.se/blogs/hill0

67Practical use of the search algorithm

print(len(doc_vectors))
print(len(doc_vectors.get("1460")))

Print out some statistics: the dimensionality of the data structure
should still be 1460 documents by 8881 terms.

Let’s now summarize what you have implemented so far.

Practical use of the search algorithm3.4
Now that the documents and queries are represented in the shared search space, it’s
time to run the search algorithm, find the most relevant documents for each query
and evaluate the results.

Retrieval of the most similar documents3.4.1

How can you estimate query to document similarity based on the vector representa-
tions? In chapter 1 we discussed that the similarity can be interpreted as distance in
space defined by the query and document vectors. Here is a refresher:

 Each document and each query are represented as vectors in a shared space,
with the dimensions representing terms and coordinates representing weighted
term counts

 Similarity is estimated using distances in this shared space. To eliminate the
effect of different lengths (as queries are traditionally much shorter than docu-
ments), it is more reliable to use the cosine of the angle between the vectors,
because it normalizes the distance with respect to the different lengths of the
vectors. Because of this normalization step, estimating the angle between the
vectors of different lengths is equivalent to estimating the distance between the
vectors of same length.25

25 Figure 1.8 visualizes this idea.
https://avxhm.se/blogs/hill0

68 CHAPTER 3 Introduction to Information Search
 The higher the cosine, the more similar the query and the document are.
 The cosine can be estimated using the formula:

cosine(vec1, vec2) = dot_product(vec1,vec2)/(length(vec1)*length(vec2))

Let’s calculate the cosine between the query and documents doc_x and doc_y from
table 3.6 (using only tf and ignoring the idf weighing for the sake of simplicity here):

cosine(query, doc_x) = (0+2+1+2+3+1)/(sqrt(6)*sqrt(19)) ≈ 0.84
cosine(query, doc_y) = (0+1+1+1+2+0)/(sqrt(6)*sqrt(7)) ≈ 0.77

Based on these results, doc_x is more similar to the query than doc_y, so if you apply
the cosine similarity estimation for the given query to the set of two documents, you
should return them ordered as (doc_x, doc_y). As it is doc_x that is more similar and
thus more relevant to the query, if you want more relevant information you should
start with doc_x.

 Let’s apply cosine similarity to the input queries and documents in the dataset and
return the resulting lists of relevant documents ordered by their relevance scores, that
is cosine similarity values, as shown in the following listing.

from operator import itemgetter

query = qry_vectors.get("3")
results = {}

for doc_id in doc_vectors.keys():
 document = doc_vectors.get(doc_id)
 cosine = calculate_cosine(query, document)
 results[doc_id] = cosine

for items in sorted(results.items(), key=itemgetter(1), reverse=True)[:44]:
 print(items[0])

Sort the results dictionary by cosine values (key=itemgetter(1)) in descending order starting with the
highest value (reverse=True). Return the top n ones—here, we use 44 because that is the number of
relevant documents for query 3 according to the gold standard. Note that sorted function returns tuples
of (document_id, similarity score), so if you want to print out the document’s ids only, use items[0].

This piece of code returns a list of 44 documents identified by the search algorithm as
relevant to query 3, ordered by cosine similarity starting with the most relevant one.
A quick glance over the first 10 returned documents (that is how many you would see
on the first page in the Internet browser) shows that 8 out of 10 documents are also
included in the gold standard. Perhaps even more importantly the top two documents
in the returned list are relevant according to the gold standard—and you might not

Listing 3.11 Code to run search algorithm for a given query on the set of documents

operator’s itemgetter functionality is helpful when you
want to sort Python dictionaries by keys or values. Initialize the query by selecting an example

with a particular qry_id, for example, query 3.

For each document in the set of documents,
calculate cosine similarity between the input

query and the document, and store
the document id as the key and cosine

as the value in results dictionary.
https://avxhm.se/blogs/hill0

69Practical use of the search algorithm
even need to look any further than the first couple of documents! This looks like a
good result, but how can you get a more comprehensive overview of the results across
the board, i.e. over multiple queries?

3.4.2 Evaluation of the results

If you are building a search algorithm as part of some application for the users, it is
key to the success of your application that the users are satisfied with the results. If you
are building an application for your own needs, it is important to be able to measure
whether it is doing a good job. How can you measure if the users or yourself are satis-
fied with the results?

 In the previous step, you added similarity estimation to your search algorithm that
allows it to return the results as an ordered list. Suppose you are looking for the docu-
ments related to query 3, “What is information science? Give definitions where possi-
ble.” According to the gold standard, there are 44 documents in this set that match
this query. In some situations, you might be interested in exhaustive search, that is,
you will measure the success of your algorithm by its ability to find all 44 documents.
However, in most situations what you would like is for the algorithm to return the rel-
evant documents at the top of the list: it is more important that the first document
returned by the algorithm is relevant than whether the 44th document is relevant.
Often, if the very first document is relevant to your query, you will read no further. For
example, how often do you check the second page of results on Google?

 Since the number of relevant documents in the gold standard varies for different
queries—for example, it is 44 for query 3 but there is only 1 relevant document for
query 6—you may prefer to set the number of top documents to be returned by your
algorithm in advance. In addition, it is rarely the case that users are interested in doc-
uments after the first several relevant ones, so returning something between top 3 to
top 10 documents would be reasonable. The number of documents that are returned
by the algorithm among those top-3 (top-10) that are also included as relevant in the
gold standard is called true positives—they are truly relevant documents actually identi-
fied by your algorithm. The proportion of true positives to the total number of docu-
ments returned by the algorithm is called precision, and if you predefine the number
of returned documents to be k this measure is called precision@k (for example, preci-
sion@3 or precision@10). Another example is that the code in listing 3.11 returns 8
relevant documents in the top 10 ones—its precision@10 equals 0.8. That is, preci-
sion@10 is defined as:

precision@10 = (true positives among the top 10 documents) / 10 =
(number of documents that are actually relevant among the top 10) / 10

And in the general case, precision@k is:

precision@k = (true positives among the top k documents) / k =
(number of documents that are actually relevant among the top k) / k
https://avxhm.se/blogs/hill0

70 CHAPTER 3 Introduction to Information Search

D
to
p

The higher the precision, the better the algorithm you have built; however, the results
may also depend on the quality of the dataset and the queries themselves. For exam-
ple, since there are 44 matching documents for query 3 in the dataset and only 1
matching document for query 6 it would be much easier for the algorithm to find rel-
evant documents for query 3. If you want the results to be more objective, it is useful
to evaluate precision across all queries. This is called mean precision, because it takes
the mean across all queries. For example, if the top 3 results for the first query are all
relevant, precision@3=1; if only 2 are relevant, precision@3=0.66; for only one rele-
vant result, precision@3=0.33. If you estimate the mean precision across 3 queries with
such results, it would be equal to 0.66, as figure 3.12 shows.

Thus, the mean precision@k can be estimated as:

Mean_p@k = sum_over_queries(p@k)/number_of_queries =
sum_over_queries(true_positives/k)/number_of_queries

You might also be interested in knowing how often the top results contain at least one
relevant document: in the case exemplified in figure 3.12 the user will be able to find
at least one relevant document in the top 3 results, which is quite useful, therefore this
ratio will be equal to 1. Listing 3.12 shows how these measures can be implemented in
Python.

def calculate_precision(model_output, gold_standard):
 true_pos = 0
 for item in model_output:
 if item in gold_standard:
 true_pos += 1
 return float(true_pos)/float(len(model_output))

def calculate_found(model_output, gold_standard):
 found = 0
 for item in model_output:
 if item in gold_standard:
 found = 1
 return float(found)

Listing 3.12 Code to estimate precision@k and ratio of cases with at least one relevant
document

Figure 3.12 Mean
precision@3 per 3 queries.

efine a method
 estimate

recision.

Precision equals to the number of relevant
documents from the gold standard that are also

returned in the top-k results by the algorithm.

Alternatively, give the algorithm some credit if
at least one document in the top k is relevant.
https://avxhm.se/blogs/hill0

71Practical use of the search algorithm

C
v
a

S
a
c
(e
m
d

precision_all = 0.0
found_all = 0.0
for query_id in mappings.keys():
 gold_standard = mappings.get(str(query_id))
 query = qry_vectors.get(str(query_id))
 results = {}
 model_output = []
 for doc_id in doc_vectors.keys():
 document = doc_vectors.get(doc_id)
 cosine = calculate_cosine(query, document)
 results[doc_id] = cosine
 for items in sorted(results.items(), key=itemgetter(1),

reverse=True)[:3]:
 model_output.append(items[0])
 precision = calculate_precision(model_output, gold_standard)
 found = calculate_found(model_output, gold_standard)
 print(f"{str(query_id)}: {str(precision)}")
 precision_all += precision
 found_all += found

print(precision_all/float(len(mappings.keys())))
print(found_all/float(len(mappings.keys()))) In the end, estimate the

mean values for all queries.

According to the results, on some queries the algorithm performs very well. A print-
out message “1: 1.0” shows that all 3 documents returned for query 1 are relevant,
making precision@3 for this query equal to 1. However, on other queries the algo-
rithm does not perform that well: for example, “6: 0.0”, because there is only one
document relevant for query 6 according to the gold standard, the algorithm fails to
put it within the first 3 and gets a score of 0 for this query. The mean value of preci-
sion@3 for this algorithm is 0.39, and in 66% of the cases the algorithm finds at least
one relevant document among the top 3.

 If you are only interested in the proportion of cases when the top most relevant
document identified by the algorithm is actually relevant you can calculate that modi-
fying the code in listing 3.12 only slightly: instead of sorting all the results and then
taking the top 3 it simply needs to identify and store a single best result. You can use
this task as an exercise.

Solution:
First try to code this yourself, and then check the solution in the notebook provided
with the book.

Exercise 6
Modify the code from listing 3.12 to calculate precision@1. That is, the mean value
across the queries when the top 1 document returned by the algorithm is indeed rel-
evant.

alculate mean
alues across
ll queries.

Gold standard is the list of relevant document ids that
can be extracted from the mappings data structure.

For each document, estimate its
relevance to the query with
cosine similarity as before.

ort the results
nd only
onsider top-k
.g., top-3)
ost relevant
ocuments. Accumulate evaluation values across all queries;

track the results by a printout message.
https://avxhm.se/blogs/hill0

72 CHAPTER 3 Introduction to Information Search

 Finally, you may wish to know how highly, on the average, the algorithm places the
relevant document in its ranking. This shows how far into the list of the returned
results you should typically look to find the first relevant document. The measure that
allows you to evaluate that relies on the use of the highest ranking of a relevant docu-
ment identified by the algorithm. Since you already sort the returned documents by
their relevance scores starting with the most relevant one, position one in this list is
called first rank, position two—second rank, and so on. Take a look at the search
results from figure 3.12 again.

Figure 3.13 Ranks for the first
relevant document for each of the three
queries and mean reciprocal rank
(MRR) across all three results.

 The first relevant documents for both query 1 and query 2 in this example are
at position 1 in the ordered lists of returned documents, so their ranks are 1.
For query 3, the first relevant document is found in the second position, which
gives this result rank 2.

 However, returning the first relevant document at rank 1 is better than return-
ing the first relevant document at any further position, so your measure should
reflect this by assigning a higher score to the results with the rank 1. Just like
with the inverse document frequency, if you take the inverse of the ranks, you
will end up with exactly such measure: for both queries 1 and 2 the algorithm
returns the best possible results by placing the first relevant document at posi-
tion 1, so it gets a score of 1/1=1 for that. For query 3 it returns an irrelevant
document in position 1 and the first relevant document in position 2. For that it
gets only half the full score, 1/2. To summarize, to assign a score for the results
for each query take the inverse of the rank of the first relevant document in the
ordered list of results—this is called reciprocal rank:

reciprocal rank = 1 / rank of the first relevant document in the
ordered list of results

 Finally, as before, you want to have a comprehensive overview of the results
across all queries, so you need to take a mean reciprocal rank (MRR) for the recip-
rocal ranks across all queries. For the example from figure 3.13, this will equal
to (1 + 1 + 1/2) / 3 = 0.83.

MRR = sum_of_reciprocal_ranks_across_queries / number_of_queries
https://avxhm.se/blogs/hill0

73Practical use of the search algorithm

In
(r
d
re
The best-case scenario is when the algorithm always puts a relevant document at the
top of the list, so it assigns rank 1 in all cases. If the first relevant document is always
found at rank 2, the mean will equal to 1/2; for the results at rank 3, the mean will be
1/3, and so on. The result that you get for the example from figure 3.13, MRR =
(1+1+1/2)/3 = 0.83, lies between 1/2 and 1 and is closer to 1. This value shows, that
on the average, the ranking of the first relevant document returned by the algorithm
is between 1st and 2nd rank, and is in fact more often 1st than 2nd.

 Listing 3.13 shows how to implement this measure in Python.

rank_all = 0.0
for query_id in mappings.keys():
 gold_standard = mappings.get(str(query_id))
 query = qry_vectors.get(str(query_id))
 results = {}
 for doc_id in doc_vectors.keys():
 document = doc_vectors.get(doc_id)
 cosine = calculate_cosine(query, document)
 results[doc_id] = cosine
 sorted_results = sorted(results.items(), key=itemgetter(1), reverse=True)
 index = 0
 found = False
 while found==False:
 item = sorted_results[index]
 index += 1
 if index==len(sorted_results):
 found = True
 if item[0] in gold_standard:
 found = True
 print(f"{str(query_id)}: {str(float(1) / float(index))}")
 rank_all += float(1) / float(index)

print(rank_all/float(len(mappings.keys())))

Calculate and print out the
mean value across all queries.

The result—mean reciprocal rank of 0.58—printed by this piece of code suggests that,
on the average, the highest rank of a relevant document identified by this search algo-
rithm is between 1st and 2nd. That is, you will often find the relevant results within the
first pair of returned documents.

 This concludes the implementation of the search algorithm, so let’s summarize
what steps you have implemented.

Listing 3.13 Code to estimate mean reciprocal rank

As before, extract the list of gold
standard mappings for each query.

Sort the documents returned by the algorithm in descending
order starting with the most similar. The position of each
document in this sorted list is called rank.

You only need to find the first relevant document in
this list, so set the flag found to False, and switch it
to True as soon as you encounter the first relevant
document, or reach the end of the list.

crement index
ank) with each
ocument in the
sults.

As before, the document id is the
first element in the sorted tuples
of (document_id, similarity score).

Estimate inverse
of the rank.
https://avxhm.se/blogs/hill0

74 CHAPTER 3 Introduction to Information Search
Deploying search algorithm in practice3.4.3

Finally, once you have implemented the algorithm and decided on its components—the
use of stemming, the type of term weighing, and so on—you can deploy it in practice.
For instance, you may have your own data within your own project where searching for
relevant information is useful. If you don’t have such a project in mind, try applying the
algorithm to another dataset anyway to practice the new skills: you can download one of
the datasets from http://ir.dcs.gla.ac.uk/resources/test_collections/.

Summary
Let’s summarize what you have covered in this chapter:

 You have learned about search, or information retrieval, algorithms. Search algo-
rithms are widely used in many applications, from search in an Internet browser
to search for the relevant files on your personal computer. In addition, any
application where there is a need to efficiently find relevant information in an

Exercise 7
Apply the search algorithm to your own data. For that, you would need to read in the
files one by one as you did for spam filtering application in chapter 2.

Alternatively, apply the search algorithm to a different dataset from http://ir.dcs.gla.ac
.uk/resources/test_collections/. Among these, the Cranfield dataset uses a similar
data format to the CISI dataset, and is also relatively small and easy to work with.
https://avxhm.se/blogs/hill0

http://ir.dcs.gla .ac.uk/resources/test_collections/
http://ir.dcs.gla .ac.uk/resources/test_collections/
http://ir.dcs.gla .ac.uk/resources/test_collections/
http://ir.dcs.gla .ac.uk/resources/test_collections/

75Practical use of the search algorithm

arbitrarily large collection of documents would benefit from information
retrieval algorithms. The valuable property of these algorithms is that they can
sort the results in order of their relevance and ability to answer the information
need (typically formulated as a query).

 Before you deploy the search algorithm in practice, it is a good idea to evaluate
its performance on some annotated dataset. Such annotation is called ground
truth or gold standard, and there are a number of publicly available datasets that
you can use. In this chapter, you have used CISI, a collection of queries and
abstracts from articles on information science and information retrieval.

 You have learned how to implement a simple Boolean search algorithm. This algo-
rithm relies on the idea that any document that contains at least one word from
the query is relevant for this query. However, it is unable to assess relative rele-
vance of the documents and the results cannot be sorted.

 There is a particular set of words, including “a”, “the”, “in”, “at”, and the like,
that are highly frequent in English—they occur in all or virtually all documents,
so they are not informative for the search algorithms. In addition, they don’t
capture the meaning, as they mainly link other words together and fulfill partic-
ular functions. Such words are commonly called stopwords, and they should be
removed so that they do not mislead the algorithm. Many toolkits, including
NLTK, contain standard stopwords list that you can use.

 Words in language may occur in several different forms. In English, this is rele-
vant for nouns (words denoting objects, people, animals and abstract concepts)
and verbs (words denoting actions and states). Mapping the different forms of a
word to its base (dictionary) form allows the algorithm to establish useful corre-
spondences and optimize the search space; one step further is to apply a set of
rules to identify the correspondences across all related words. To link the
related words to each other, use an NLP tool called stemmer that relies on a set of
predefined rules.

 Documents that contain more occurrences of the query terms should be given
preference as compared to the documents with lower number of occurrences.
The number of occurrences represents term frequencies (tf).

 Not all terms are equally important. Even after the stopwords are removed,
there are still terms that are frequently used across all documents. Such terms
are less discriminative, and their relative weights should reflect this. Use inverse
document frequency (idf) to weigh the terms according to their distribution across
the documents.

 To estimate the relevance of the documents to the queries in the collection,
represent them in a shared search space, where each term stands for an individ-
ual dimension and term frequencies or tf-idf weighted counts are used as the
coordinates.

 The relevance in the shared space can be estimated using cosine similarity, esti-
mation of relevance in shared space and.
https://avxhm.se/blogs/hill0

76 CHAPTER 3 Introduction to Information Search
 The search algorithm can be evaluated with the use of one or more popular
measures. For example, you can estimate the proportion of the relevant docu-
ments returned in the top-k results—this measure is called precision@k. Alterna-
tively, you can measure the average highest rank for the relevant documents
returned by the algorithm—this measure is called mean reciprocal rank.
https://avxhm.se/blogs/hill0

index

A

abstracts, described 45

B

Boolean search algorithm 50–53, 75
example of simple 51
extraction of words from queries 50
match between queries and documents based

on highlighted words 52
preprocessing data in documents and

queries 50

C

CISI (Centre for Inventions and Scientific
Information), dataset collected by 42

classes, defining 8–12, 16–18. See also machine-
learning algorithm, example of spam
filtering and

features and 8
regular expression module re 9
splitting text string into words by whitespaces

and punctuation, example of 11
splitting text string into words by whitespaces,

example of 9
text as sequence of symbols 8
tokenization algorithm 9–10

classification
binary 4, 35

example of 6
class label 4
different parameters for 3
everyday life and applying 3

example of 3
experience with 4
features 4
how to perform 4
machines and 4
multi-class 4
overview 3–5
text classification 2
usefulness 3

classifiers
algorithm accuracy 14–16
baseline and distribution of classes 16
evaluation of 16, 30–33

accuracy 31
the most informative features and 31

inital estimate of classifier performance 42
majority class baseline 16
probabilistic 23
training 13–16, 22–30

classification process 28
conditional probability and prediction

23–24
estimating probabilities in practice 23
flipping conditions and outcomes 25
Naïve Bayes 30
Naïve Bayes as probabilistic classifier 22–23
prior class probabilities 29
splitting estimation into smaller bits 24

computers, formulating information needs
and 40

conditional probability 23–28
and prediction 23
Naïve Bayes and 27
P(class) 26
P(content | class) 27
77

https://avxhm.se/blogs/hill0

78 INDEX
replacing P(class | content) with P(content |
class) 27

cosine similarity 75
cosine similarity, estimation of relevance in shared

space 67–69

D

data
accuracy 31
combining into single structure 18
defining 16–18
Enron email dataset, publicly available

collection of 17
preprocessing 18
read_in function and file contents 17
search algorithm and further data

processing 53–60
shuffling 14
splitting into training and test sets 18
test set 14
training set 14
true labels and ground truth 42

data structures 42–50
example of three different 43–45
initializing 43
matching queries to documents 43

datasets 42–50
CISI dataset for search algorithm example 42

article abstracts 45
documents data structure 44. See also data

structures
documents dictionary 44

code to populate, example 46–47

E

evaluation steps, importance of 33

F

features 35
converting text into 19
defining classes and 8
extraction of 13, 19–22

all_features data structure 21–22
preprocessing and feature extraction

steps 21
tuples 21

filtering 40
formatted string literals 19

function words 54
function words. See stopwords

G

gold standard 42
dataset as 42

ground truth 42, 75

I

information retrieval 38. See also information
search

long history of the field 39
term frequency (tf) 61–62

information search 38–76
before Internet 39
example, questions to answer before

starting 40
idea behind 44

information search application, abstracts and
their content 45

information weighing 61–67
inverse document frequency (idf) 64–67
measure of relevance, example 61
term frequency (tf) 61–64

inverse document frequency (idf) 75
calculating and applying idf weighing, example

of 66–67
weighing words with 64–67

K

key, data structures and 44
keywords 61

L

Lancaster Stemmer stemming tool, word form
preprocessing and 58

M

machine-learning algorithm, example of spam
filtering and

defining classes, manual tokenization of strings
of text 11–12

learning (training) phase 13
steps of spam detection pipeline 8–16
test sets 14
https://avxhm.se/blogs/hill0

79INDEX
tokenization and splitting running text into
words 12–13

training sets 14
machines, learning from experience 33
mappings data structure 45. See also data

structures
mappings dictionary, code to populate,

example 49–50
mean precision, result evaluation and 70
mean reciprocal rank (MRR), result evaluation

and 72, 76
morphological forms

and English language 56
and search algorithm 56
base form 56–57

N

Naïve Bayes 35
Naïve Bayes algorithm, training classifiers

and 22–23
NLP (natural language processing)

implementing NLP application from scratch,
example 2–35

stemmer, NLP tool 75
stopwords and NLP toolkits 54
tokenizer 11, 50

NLTK (Natural Language Processing Toolkit)
stemming preprocessing and Lancaster

Stemmer, example 58–60
tokenizer 19

P

precision@k, result evaluation and 69–71, 76

Q

queries data structure 44. See also data structures
queries dictionary 44

code to populate, example 48–49

R

reciprocal rank, result evaluation and 72–73

S

search algorithm
and keeping track of different queries 43
assigning unique identifier to each query 43
basic steps in 41

Boolean 50–53, 75
degree of content overlapping 56
deployment of 74
evaluation against gold standard 42
function words and 53–54
Google and 38
main problem with 53
morphological forms 56
morphological processing 55–60
optimization 55
performance evaluation 75
practical use of 67–74

mean precision 70
precision@k 69–71
relevant documents and ranking 72–73
result evaluation 69–73
retrieval of the most similar documents

67–69
true positives 69

punctuation marks removal 55
stemming 57–60
stopwords removal 53–55

search engines
challenging task of 39
information retrieval 38

spam filtering, example of NLP in practice 2–35
deploying spam-filtering algorithm 33–34
printing out predicted labels 34
steps of spam detection pipeline 7–16
text classification and 2, 6

stemmer, NLP tool 75
stemming

described 57
example of applying to different groups of

words 58
word form preprocessing and 57

stopwords 75
NLP toolkits and 54

supervised machine learning 5–6, 35

T

term frequency (tf) 75
described 62
weighing words with 61–64

estimating in documents and queries 62
keyword occurences 61–62
queries and vector representation 64
representing data in shared space 63–64

test sets 35
text

converting into features 19
splitting into words 12–13, 19
https://avxhm.se/blogs/hill0

80 INDEX
text classification, spam filtering as example of 6.
See also classification

tokenizer 35, 42
and splitting string of characters into

meaningful words 11
NLTK toolkits 19

training sets 35
true positives, result evaluation and 69

V

value, data structures and 44
https://avxhm.se/blogs/hill0

	contents
	introduction
	Your first NLP example
	2.1 Introducing NLP in practice: Spam filtering
	2.2 Understanding the task
	2.3 Implementing your own spam filter
	2.3.1 Step 1: Define the data and classes
	2.3.2 Step 2: Split the text into words
	2.3.3 Step 3: Extract and normalize the features
	2.3.4 Step 4: Train the classifier
	2.3.5 Step 5: Evaluate your classifier
	2.4 Deploying your spam filter in practice

	Introduction to Information Search
	3.1 Understanding the task
	3.1.1 Data and data structures
	3.1.2 Boolean search algorithm
	3.2 Processing the data further
	3.2.1 Preselecting the words that matter: Stopwords removal
	3.2.2 Matching forms of same word: Morphological processing
	3.3 Information weighing
	3.3.1 Weighing words with term frequency
	3.3.2 Weighing words with inverse document frequency
	3.4 Practical use of the search algorithm
	3.4.1 Retrieval of the most similar documents
	3.4.2 Evaluation of the results
	3.4.3 Deploying search algorithm in practice

	index
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	V

	03_Promo_Natural Language Processing in Practice.pdf
	Getting Started with Natural Language Processing
	Natural Language Processing in Action
	Real-World Natural Language Processing
	Deep Learning for Natural Language Processing
	Transfer Learning for Natural Language Processing

