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Preface

At least since the 1950s, the idea that it would be possible to soon create a 

machine that was capable of matching the full scope and level of achieve-

ment of human intelligence has been greeted with equal amounts of hype 

and hysteria. We have now succeeded in creating machines that can solve 

specific fairly narrow problems with accuracies that meet or exceed those of 

their human counterparts, but general intelligence continues to elude us. 

In this book, I want to outline what I think it will take to achieve not just 

task-specific intelligence, but general intelligence.

Although some people look forward to achieving artificial general intel-

ligence, others fear it, to the point of predicting that a generally intelligent 

machine will spell the end of human existence. Such a machine would 

be able to improve itself, their thinking goes, and will quickly pass from 

equaling human intelligence to far exceeding it. Computers will become so 

intelligent that humans will be lucky to be kept as pets. At best, the intelli-

gent computers will ignore us; at worst, they will seek to destroy us as pests 

competing for resources.

Both views are fundamentally untenable. The tools that let us build spe-

cialized intelligence are not up to the task of general intelligence. Even if 

we make new tools that are capable of achieving general intelligence, they 

will not result in any kind of explosive self-improvement in intelligence. I 

describe why improvements in machine intelligence will not lead to run-

away machine-led revolutions. Improvements in machine intelligence may 

change the kind of jobs that people do, but they will not spell the end of 

human existence. There will be no robo-apocalypse.

I have written this book for a nontechnical reader. If I succeeded, you 

should not have to know much about computers, psychology, or artificial 

intelligence to read it.
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Read this book if you are interested in intelligence, if you want to know 

more about how to build autonomous machines, or if you are concerned 

that these machines will someday take over the world in a sudden explo-

sion of technology called “the technological singularity.” Hint: they won’t.

I hope to convince you that it is possible to create artificial general intel-

ligence, but it is neither so imminent nor so dangerous as some authors 

would have you believe. It will take a change in perspective, and I have 

tried to sketch out just what that new perspective is.

This topic is important because hardly a day goes by without a call for 

some kind of regulation of artificial intelligence, either because it is too 

stupid (for example, face recognition) or imminently too intelligent to be 

trusted. Although this is not a book about policy, good policy requires a 

realistic view of what the actual capabilities of computers are and what 

they have the potential to become. Conversely, progress in developing arti-

ficial general intelligence requires knowledge that we do not have about the 

nature of intelligence, brains, and the kinds of problems a generally intel-

ligent agent will have to solve.

As Alan Turing said in 1950, “We can only see a short distance ahead, but 

we can see plenty there that needs to be done.”



1  Introduction: Intelligence, Artificial and Natural

This chapter provides an overview of the book. It points out that artificial intel-

ligence is not new; people have been inventing intelligence tools for at least 50,000 

years. What is new, is running these methods in computers. When we use the 

word “intelligence,” we typically mean the kind of higher cognitive functioning 

that we learn in school, but that kind of intellectual achievement rests on an exist-

ing foundation of natural intelligence. General intelligence requires an integration 

of the two.

When we talk about intelligence, we usually mean the kind of higher intel-

lectual functioning that we learn in school. We mean things like logic and 

reasoning. At its height we mean the kind of thinking that earned Albert 

Einstein the Nobel Prize in Physics.

When we talk about artificial intelligence, we typically mean processes 

executed on a computer. The term “artificial intelligence” is usually attrib-

uted to John McCarthy, who used it in a proposal for a 1956 summer 

workshop at Dartmouth College on making computers emulate human 

intellectual functioning. But artificial intelligence is more general than 

that. It is an organized systematic approach to processing information. It 

does not matter whether these processes are executed on a machine, on 

paper, or in a brain. One of these processes, algebra, for example, allows 

people to think systematically and to solve mathematical problems that 

were previously intractable.

The invention of systematic processes has guided the development of 

human intelligence for at least the last 50,000 years. These processes are 

just as artificial as computers or spaceships—they were all invented by peo-

ple. They are precisely what has allowed human technological processes to 

advance and thrive over that period.



2	 Chapter 1

On the other hand, it would be wrong to claim that intelligence consists 

exclusively of these higher intellectual functions. Intelligence requires more 

than that. Einstein was not recognized as brilliant for his ability to system-

atically solve mathematical equations, but rather for his ability to create 

new ideas, new views of the world that were captured in his equations. For 

example, the equation for which he is best known, E = MC2, is extremely 

simple and almost trivial to solve, yet it embodies an idea that is utterly ele-

gant, and one that continues to play an important role in theoretical phys-

ics. The main idea of this equation is that the relationship between energy 

and matter is invariant, despite the obviously different forms each can take.

Einstein’s brilliance was not just a logical recombination of the work 

that had gone before, but was a leap beyond. He did not just deduce the 

physics principles from observations that had been made but instead pre-

dicted observations that would be made. His work transcended the facts 

that he knew about and predicted new facts. Human intelligence, including 

Einstein’s, requires both a logical kind of systematic thinking and a non-

logical kind of thinking of the sort that allows insight.

We don’t have a good vocabulary for talking about these complemen-

tary abilities. Roughly, we might talk about intuition, on the one hand, 

and deliberation on the other. We might talk about natural intelligence, 

which everyone might be able to achieve, and artificial intelligence, which 

requires education and training. We might talk about biological versus 

computational intelligence. Another Nobel Prize–winning scientist, Daniel 

Kahneman, talks about thinking fast and thinking slow.

Natural human intelligence is what allows babies to learn their moth-

ers’ face within a few hours of birth. It’s what allows us to walk across a 

crowded room or fold laundry. Real natural human intelligence is nonra-

tional, emotional, partly subsymbolic. It jumps to conclusions based on 

very little evidence.

Invented artificial intelligence, in contrast, allows adults to reason ratio-

nally about complex ideas in nonemotional ways. Invented artificial intel-

ligence is rational, methodical, and symbolic, but it, too, has limitations. 

Artificial intelligence provides tools that allow people to reason carefully, 

to keep track of symbolic information, and to solve advanced problems in 

quantum physics, among others.

From a logical point of view, natural intelligence takes shortcuts. Natural 

intelligence is the source of many human foibles and quirks, but it also 
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allows humans to respond to a dynamically changing world without get-

ting lost in thought.

According to John McCarthy’s proposal, along with Marvin L. Minsky, 

Nathaniel Rochester, and Claude Shannon, the goal of the Dartmouth Sum-

mer Workshop was to conduct a study toward the creation of a general arti-

ficial intelligence that would be able to form abstractions, solve problems, 

and improve itself. They thought, at the time, that the way to achieve this 

general intelligence was to describe as precisely as possible the nature of 

thought and get a machine to simulate it.

According to the participants, the workshop fell short of its lofty goals, 

but it can still be described as a profound milestone for the field of artifi-

cial intelligence. It is also telling that even at this early date, they focused 

on the kind of tasks that we associate with higher cognitive function. The 

participants viewed intelligence as rational, deliberate, and goal directed. 

For example, Allen Newell, John Clifford Shaw, and Herbert Simon were 

working on a program to prove mathematical theorems. Their Logic Theo-

rist was intended to mimic the problem-solving skills of an adult human 

being—in this case, an expert mathematician. Their program would even-

tually prove 38 of the first 52 theorems from chapter 2 of Alfred North 

Whitehead and Bertrand Russell’s book (Principia Mathematica). Some of the 

Logic Theorist proofs were even novel ones.

Herbert Simon is quoted telling a group of graduate students that he and 

Allen Newell, had over Christmas, “invented a computer program capable 

of thinking non-numerically, and thereby solved the venerable mind-body 

problem, explaining how a system composed of matter can have the prop-

erties of mind.” Their choice of theorem-proving as their demonstration of 

mind within a computer was fortunate in that the process of theorem prov-

ing was already well-defined as a step-by-step process consisting of a small 

set of actions (for example, symbol substitution) that could be applied to 

a small set of basic facts or axioms (for example, symbols). The book that 

they imitated, in fact, was dedicated to proving the basic properties of 

mathematics, so it largely laid out the axioms and the operations that could 

be applied to those axioms.

In hindsight, Newell, Shaw, and Simon’s work on the Logic Theorist was 

a small step from the symbolic logic of Principia, but at the time, it was a 

huge leap for computational intelligence. Their approach would have a pro-

found effect on much of the work that came after it for many years. Even 
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though Whitehead and Russell had laid out the steps for proving their theo-

rems, it is instructive that the Logic Theorist did not always follow their 

methods. It proved some of the theorems in novel ways. Simon and his 

colleagues overestimated the importance of that finding, which was also 

a milestone in the development of computational intelligence, a tendency 

that is still commonly repeated.

Today we have computer systems that can play games, diagnose disease, 

and perform other tasks at suprahuman levels. Each breakthrough achieve-

ment is heralded as the next step in the evolution of computational intel-

ligence, allegedly bringing systems closer to the goal of general artificial 

intelligence. If only we had a bit more memory and faster processors, we 

would at last be able to achieve general intelligence.

Many things have changed over the years since these early develop-

ments, but two things have not changed. One is the overreliance on a small 

set of processes as the necessary and sufficient ones to build a general intel-

ligence. The computers of the 1950s and 1960s were far too slow and too 

limited to actually produce a full intelligence, so the researchers settled for 

solving example or “toy” problems. Their mistake lay in thinking that size 

and speed were the only limits to expanding these systems to fully achiev-

ing a humanlike intelligence.

Their other mistake was the belief that the kinds of problems that they 

were studying were fully representative of the kinds of problems that a gen-

eral intelligence would have to solve. They focused on toy versions of prob-

lems with specifiable steps that are relatively easy to describe and specific 

solutions that are easy to evaluate. These kinds of problems can be described 

as “path problems.” Solving them requires finding a path through a “space” 

that consists of all of the “moves” the system could make. Some combina-

tion of moves will solve the problem, and the computer’s task is to find 

the specific path through the available moves that does actually solve it. 

Computational intelligence is the process of finding the set of operations 

and their order (the path) necessary to solve a problem.

Another way of describing these problems is, in the words of Judea Pearl, 

as exercises in curve fitting. To paraphrase his view, solving these problems 

consists of finding a function that maps the available inputs to the desired 

outputs. It is just a way of formulating statistical predictions. This mapping 

process can be quite complex, and the number of choices or estimates that 

go into forming that relationship can be daunting, but that is still the form 
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taken by all of the current computational intelligence systems out there. 

But not all problems are like this. Not all problems are path problems.

The progress that has been achieved in computational intelligence, and 

it has been dramatic, has come from the genius of system designers to for-

mulate systems that are within the capacity of computers to solve. These 

systems need not, and generally do not, perform the tasks in the same way 

that people do because computer scientists have figured out how to reduce 

them to Pearl’s kind of estimation task. They may perform specific tasks 

better than people do, but this is not because they have exceeded human 

intelligence in that task but because their designers have found other ways 

to solve those problems that do not require humanlike intelligence. Maytag 

dishwashers may clean dishes cleaner than I do by hand, but that does not 

make them any closer to achieving the intelligence of a human restaurant 

employee.

None of this is to say that machine learning systems that diagnose dis-

ease, understand speech, or drive cars are not intelligent, but they are intel-

ligent in a special-purpose way, not in a general way. If we are to get beyond 

special-purpose intelligence, we will need to solve problems that are not 

being addressed today. If we want humanlike intelligence, we must figure 

out a way to construct it from the tools that we have available or we must 

build new tools. There are some attempts to create general intelligence 

with current tools, but none of them, so far, has demonstrated any success. 

Rather, the more promising road is to try to understand and emulate how 

the only example of general intelligence we have, people, create this intel-

ligence. Ultimately, machine general intelligence may not resemble human 

general intelligence in its specific methods, but it must resemble it in the 

range of its capabilities.

The Invention of Human Intelligence

Over thousands of years, we humans have invented ever more complex 

artificial thinking tools, but natural human intelligence does not seem to 

have changed much. To the extent that we are more intelligent than our 

Paleolithic ancestors, it is because we have combined natural intelligence 

like what they had with artificial intelligence invented over the centuries.

The inventions of language and then eventually writing were probably 

among the most important tools added to the human intellectual toolbox. 
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Although some people argue that language is somehow innate, it appears 

to have emerged somewhere between 100,000 and 50,000 years ago and 

to have profoundly expanded the capabilities of hominids (Gabora, 2007). 

Brains with language, as opposed to the same brains without language, 

have increased capacities to share information, to coordinate activity, and 

to transfer experience, among others (Clark, 1998). Language, and particu-

larly syntax, was associated with an enormous expansion of the kind of 

cognitive processes that these early humans could engage.

According to William Calvin, “Words are tools.” Calvin goes on to spec-

ulate that the prelanguage human may have been capable of words, which 

could be used in short expressions, but not capable of complex sentences 

or of talking about the future or the past. These humans may have been 

capable of some basic kinds of thought, but not capable of structuring those 

thoughts, and therefore not capable of manipulating images, hypotheses, 

or possibilities. Since the invention of language, human intellectual capa-

bilities have changed substantially.

Modern humans migrated to Europe about 43,000 years ago. Cave paint-

ings and carved figures from that period (33,000 to 43,000 years ago), along 

with musical instruments, were found in the Swabian Jura in southern Ger-

many. The Paleolithic cave paintings in Chauvet cave near France’s Ardeche 

River are thought to be 32,000 years old. According to some anthropolo-

gists, the structure and detail of these cave paintings imply that the painters 

enjoyed a relatively sophisticated mental world. The Lascaux paintings in 

southwestern France are only about 20,000 years old. During this period, 

humans began to bury their dead, to create clothes, and to develop com-

plex hunting strategies, such as using pit traps to capture prey. In Asia, cave 

paintings from the Indonesian island Sulawesi are thought to date from 

about 35,000 years ago. On the Island of Borneo, figurative cave paintings 

have recently been described that appear to date from about 40,000 years 

ago. The cave paintings are an indication that the Paleolithic people were 

capable of symbolic representation of their environments.

Few artifacts of Paleolithic artificial intelligence survive, but among these 

are structures that appear to be symbolic of their builders’ world. These 

artifacts may have played a role in helping people navigate their world 

geographically and perhaps spiritually. Some of them, for example, depict 

constellations that would have been important to navigation. The painters 
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of cave paintings may have believed that depicting such things as deer and 

bison would make it easier to hunt those prey.

There is some evidence that Mesolithic (the period starting about 11,000 

years ago) people also developed artifacts that are more recognizably com-

putational, such as calendars. Calendars are clearly important to agricul-

ture, but they may also be important to hunter-gatherers—for example, to 

time the migration of birds and animals or to collect ripe fruits from distant 

locations that could not be observed directly.

These calendars used notched stones or bones, for example, to notate 

the passage of astronomical objects, particularly the moon. Larger struc-

tures, like Stonehenge in southern England (5,000 years ago), or an even 

older calendar structure found in Aberdeenshire in Scotland (about 10,000 

years ago) were also astronomical calculators. The Aberdeenshire calendar 

consists of a series of pits dug in the shapes of the moon’s phases, arranged 

in a 164-foot arc. The arc was aligned with a notch in the landscape where 

the sun would have risen during the winter solstice, allowing the lunar cal-

endar to be corrected each year to match the solar year.

A Neolithic calendar, Newgrange, is in the Boyne Valley, County Meath, 

of Ireland. Built over 5,000 years ago, it marks the winter solstice using a 

roof box that allows sunlight to illuminate a buried chamber around the 

winter solstice.

Humans have gone from painting on cave walls to inventing interplane-

tary spacecraft because they have, over many generations, developed think-

ing tools that enable increasingly sophisticated intellectual activity. Among 

these tools are:

•	 mathematics (starting about 4,000 years ago)

•	 logic (about 2,600 years ago)

•	 algorithms (about 800 years ago)

•	 digital computers (about 80 years ago)

Each of these inventions enabled many other inventions and discover-

ies, which further contributed to human intelligence. Without these tools, 

human thought tends to be incomplete, irrational, and biased. People jump 

to conclusions based on wishful thinking and incomplete information. 

Decisions are made on the basis of how easy it is to think of answers rather 

than on the correctness of those answers.
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The invented thinking tools, on the other hand, make it possible for 

people to reason systematically and effectively. Being invented, they are 

artificial tools that enable human intellectual achievement. Our formal 

education system is designed to provide the artificial intelligence tools 

needed to power human intellectual achievement—for example, by train-

ing people in the use of logic.

Humans have become more intelligent by incorporating thinking arti-

facts into their process, by becoming more artificial. And those aids are 

necessary, because without them, human intellectual capabilities are lim-

ited. The aids themselves do not have to be particularly intelligent, but they 

work to make human thought more systematic and rigorous.

Computational Intelligence

For the last 60 years or so, computer scientists have been pursuing ways 

to make computers intelligent and predicting that computational general 

intelligence is imminent. By saying that they aspire to computational gen-

eral intelligence, they typically mean that they aspire to creating a com-

puter system that demonstrates the same intellectual capacity as a human 

can—or even better. Until relatively recently, much of this effort has been 

focused on emulating the systematic intellectual tools that I have labeled 

artificial intelligence without paying much attention to the other charac-

teristics I have mentioned.

Herbert Simon claimed in 1956 that general computer intelligence 

was 10 to 20 years into the future. Mark Zuckerberg claimed in 2016 that 

computational intelligence will be available in 5 to 10 years. Contrary to 

repeated optimistic predictions, however, computational intelligence has 

achieved a number of specialized capabilities, but general intelligence con-

tinues to be elusive.

The failure to deliver on the promise of general intelligence is due, in 

part, to a focus on a restricted set of tasks without recognizing that the 

totality of human achievements rests on a foundation of more fundamen-

tal biological skills (such as perception). There are many reasons for this 

focus, but a key one is the implicit belief that intelligence consists mainly of 

the kind of skills that are shown when playing chess or diagnosing disease. 

This approach implicitly assumes that deliberation is the key function of 

intelligence and that all kinds of intelligence can be reduced to such skills.
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These deliberative skills are the capabilities that amplify human intelli-

gence, but they alone are not enough to achieve general intelligence. General 

intelligence involves more than special-purpose algorithms for individual 

tasks. The specific algorithms succeed precisely because they reduce an oth-

erwise complex problem to simpler problems that can be solved by calcula-

tion. The inventiveness on which they depend is provided by humans.

Natural Intelligence

Until recently, social science theory, particularly in economics, has viewed 

people as fundamentally rational. Rational people are consistently delibera-

tive, thoughtful, and self-interested. They pursue their goals in the most 

efficient manner possible. A rational actor seeks to achieve the highest pos-

sible well-being given the available information, opportunities, and con-

straints. In short, greed is good, and we can rely on people to be greedy. 

Thought, in this view, is based solidly on logical self-interest.

When a person does not act rationally, in this view, in his or her self-

interest, it is because the person’s thought processes, the person’s logical 

judgment, has been contaminated by emotions. Nonrational choices are 

mistakes and not predictable as a guide to the person’s true actions. Unfor-

tunately, this strategy has also permeated a lot of thinking in artificial intel-

ligence research.

Newell, Simon, and Shaw’s Logic Theorist was purely logical, start-

ing with axioms (basic irreducible logical assumptions) and operations 

and ending with logical proofs. In fact, Newell and Simon argued for the 

physical symbol system hypothesis, according to which a physical system 

that manipulated symbols was both necessary and sufficient to produce 

intelligence.

In contrast to this approach, the so-called Moravec’s paradox (it’s not a 

paradox at all, but that is what it is called) notes that it is relatively easy to 

get computers to execute high-level reasoning, but extremely difficult to 

achieve computational versions of the skills of a two-year-old child. Delib-

erative skills are easy to describe and easy to implement with a computer, 

but creating a computer that can walk across a crowded room, or a robot 

that can fold laundry, remains a challenge.

The explosion of interest in computational neural networks in the 1980s 

and 1990s made some headway in solving some of these challenges by 
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adopting a more biologically inspired approach to artificial intelligence. 

Instead of high-level deliberative rules, neural networks employ models 

that are more like simplified neurons. Instead of operating on symbols, 

like the words in a language, neural networks use connections among 

simulated neurons. The widespread use of neural networks, which have 

now grown into so-called deep learning models, was responsible for a lot 

of progress in computational intelligence, but it still did not bring us any 

closer to achieving general intelligence. Neural networks and other forms 

of machine learning helped to make it more obvious that the practice of 

AI, as opposed to the aspirations of AI, was complex functions that mapped 

inputs to outputs. As Hans Moravec and others asserted, it takes a lot more 

computation to simulate even a simple neural network than to follow a 

collection of rules, but both of them are still just calculating functions, an 

opinion shared by Pearl.

The key part of natural intelligence is the apparent ability to construct 

problem spaces, not just find paths through one that has already been con-

structed. But natural intelligence also has other properties. Natural intel-

ligence is not concerned with finding the optimal solution to problems. 

Rather, natural intelligence is willing to jump to conclusions that cannot 

be “proven” to be correct in any sense of the word.

Rather than being algorithmic as artificial intelligence is, natural intel-

ligence is heuristic. An algorithm is a set of steps that when followed with 

a particular input will always yield a corresponding output. A heuristic, on 

the other hand, is more like a rule of thumb. It mostly works, but some-

times it does not. A baby can recognize his or her mother within hours 

after birth, but a computer learning to identify categories of objects may 

require several thousand presentations. Take a child to the zoo and buy 

him cotton candy, and that kid will expect the same treat on all future  

visits.

In contrast to the intellectual capacities modeled by computational intel-

ligence, many of the basic cognitive functions that I have called natural 

intelligence are shared by other species. Precocial birds (birds that can feed 

themselves immediately after hatching), such as chickens and ducks, learn 

to identify their parents within hours of birth. Scrub jays and other birds 

can store seeds under rocks and in crevices and recover them even months 

later after their environment has been covered by snow. As Wolfgang Köhler 

showed, chimpanzees can solve certain kinds of insight problems. Rather 
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than learn by trial and error, chimpanzees were observed to put two sticks 

together or to stack boxes in order to reach food that was otherwise out of 

their reach.

Many animals, from ants to bears and chimpanzees, have been found 

to be able to respond to small numerical quantities (typically on the order 

of one to four or six) when other features have been controlled. Dogs and 

other animals can learn the names of up to about a thousand objects with 

some training and can select those objects following verbal commands.

Natural human intelligence or that found in animals can play an impor-

tant role in that species’ cognition. But the full intellectual achievement of 

humans up to this point has depended on using that native intelligence 

plus additional thinking tools that have been invented to achieve the cur-

rent level of intellectual functioning.

Human natural intelligence has mostly been studied in the context of 

the foibles and failures it produces in educated humans or in the context 

of psychological development. It has been largely neglected as a source 

of human achievement, so we know a lot about the biases and limits it 

imposes on intelligence, but little about the positive contributions it makes. 

Natural intelligence is extremely likely to play a critical positive role in 

general human intelligence, and if we can figure it out, likely to play an 

important role in computational intelligence as well. Humans could not 

have invented their thinking tools without it and could not function if they 

were limited to trial-and-error learning as the early psychologists argued, or 

to the repeated presentation of labeled examples as modern machine learn-

ing would suggest.

The General in General Intelligence

Just how general does general intelligence have to be?

Einstein was really successful at theoretical physics. He won the Nobel 

Prize for his work on the photoelectric effect—which is the basis for how 

solar cells generate electricity. Arguably, his work on relativity was even 

more impactful. As smart as he was, though, Einstein was not good at every-

thing. He was not, apparently, a distinguished mathematician, though he 

used mathematics very effectively. He may have played chess, but he is very 

unlikely to have been an accomplished go player. I doubt that he would 

have done well on the television game show Jeopardy!.
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There are clear differences among people in their ability to learn, under-

stand, create, analyze, interpret, and adapt to their environments. But not 

all of these abilities are equal. Einstein could play the piano and the violin, 

but it was doubtful that his skill with these instruments would have com-

pared favorably to that of Itzhak Perlman or Mozart. Yo-Yo Ma is a great 

cellist, but I don’t think that he has any publications in physics journals. 

Intellectual performance can vary from task to task, from time to time, as 

well as from person to person. Although there may be correlations among 

a person’s capability on different skills, that is, a person who performs well 

on some task is likely to perform well on some others (See chapter 2), being 

brilliant on some tasks does not guarantee that you are brilliant on others.

Intelligence is a complex concept that involves many different kinds of 

skills. Psychologists have been measuring intelligence for over a century, 

but they are mainly interested in identifying the differences among people, 

rather than identifying the mechanisms by which it is produced. The first 

intelligence tests were designed to detect students who might need special 

help in school. The goal was to predict the overall aptitude of the person 

for learning or for other measures of intellectual success. Intelligence tests 

may include vocabulary assessments, analogies, image manipulation, or 

reasoning. Each of these has been found to correlate with some measures 

of success.

Intelligence tests usually include a battery of different subtests, each 

directed at measuring a specific ability. The idea of general intelligence as 

a thing comes from the observation that people’s performance on these 

subtests tend to be correlated. If a person does well on a test that requires 

image rotation, for example, that person is likely to also do well at answer-

ing vocabulary questions.

This correlation among subtest performances has been called the 

“g-factor” for general intelligence. G could indicate the presence of some 

kind of general intelligence, for example, some people might have more 

powerful brains than others and so perform well. Alternatively, g may be 

merely a label for the statistical correlation. Intelligence, in other words, 

may not actually be all that general; instead it could be that the tests are not 

that good at isolating specific abilities. Multiple subtests may assess overlap-

ping sets of specialized capabilities.

For example, a test taker who had vision problems might perform poorly 

over many tests not because that person is dumber than one with better 
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vision, but because he has trouble reading the questions. People who are 

anxious might perform poorly on all tests, and those who are calm might 

perform better on all tests. Test taking may be its own skill. These associ-

ated factors may cause correlations without saying anything about general 

intelligence.

The correlations on the subtests of an intelligence test are not necessar-

ily indicative or performance on real-world activities. Consider the relative 

skill sets of Albert Einstein and Yo-Yo Ma. Both are brilliant and are success-

ful in their own, nonoverlapping ways. Intellectual superiority in one area 

does not guarantee superiority in other areas. We will consider the nature 

of the correlations in the context of intelligence tests in the next chapter. 

If human intelligence is any kind of example, artificial general intelligence 

may not, in the end, be quite as general as some people might expect.

Specialized, General, and Superintelligence

Computational intelligence programs so far have mostly involved per-

formance on a single task, such as playing chess, diagnosing brain inju-

ries, answering Jeopardy! questions, and the like. Chess playing was once 

thought to be a prime example of human intellectual capabilities. Chess 

was thought to be indicative of using strategy, reading the motivations 

of other people, and engaging in deep analysis of the situation. In this 

light, solving the problem of playing chess would go a long way toward 

addressing general intelligence because it would require the solution of so 

many higher cognitive functions. A chess-playing computer would have to 

assess its opponent, understand the person’s motivations, and analyze the 

situation.

In fact, in his famous book, Gödel Escher Bach, Douglas Hofstadter argued 

that “there may be programs that beat anyone at chess, but they will not be 

exclusively chess programs. They will be programs of general intelligence, 

and they will be just as temperamental as people. “‘Do you want to play 

chess?’ No, I’m bored with chess. Let’s talk about poetry” (Hofstadter, 1979, 

1999, p. 678).

Instead, just the opposite happened. We have computer programs that 

are able to play chess at a very high levels, but they are incapable of also 

talking about poetry. The way chess-playing programs have been designed 

has nothing to do with deep psychological functions or general intelligence. 
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Rather, these programs depend on a simpler special-purpose method that 

organizes potential chess moves into a kind of branching tree. Algorithms 

are available to search among these branches and identify moves that 

are likely to lead to a successful outcome for the game. Chess developers 

reduced the problem of choosing chess moves to the simpler problem of 

selecting from a series of tree branches.

Playing the game go was predicted to be beyond the capacity of comput-

ers. Even the kind of approach that was successful for chess would not work 

for go, because of the huge number of different possible go positions and 

the number of ways they could be combined make the go tree too complex 

to evaluate moves in the same way they can be evaluated for chess. How-

ever, computer scientists were recently able to build a system that could 

play go at a world-class level, because they built another special-purpose 

algorithm.

The knowledge that went into developing programs that play chess or 

go is valuable for what it tells us about solving other similarly structured 

problems. Go became possible when the DeepMind team, who developed 

the program, designed useful heuristics to limit the number of branches 

that had to be evaluated to choose a move.

Given the reductionist approach to special-purpose computational intel-

ligence, it should not be surprising that computers have not, so far, made 

much progress in general intelligence. The creation of yet another special-

purpose algorithm may be intelligent, but even a collection of every special-

purpose algorithm will not get us to a general intelligence.

Computer science has been effective at building hedgehogs, but not yet 

at building foxes. The ancient Greek poet Archilochus is commonly quoted 

as saying, “The fox knows many things, but a hedgehog one important 

thing.” Current computational intelligence systems excel at specific tasks, 

but none of them yet has achieved any level of generality. There is no rea-

son to think that combining special-purpose systems will, even eventually, 

result in the emergence of a general intelligence. A fox cannot be con-

structed from a stack of hedgehogs.

General intelligence, even in humans, is an elusive topic. The correlation 

among subtests could be due to some kind of brain efficiency, but it could 

also be a purely statistical artifact. If Einstein had a better brain, then maybe 

he should have been able to do everything better than other people, but 

his talent was limited. Intelligence in people, as measured by their successes 
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and failures and not by their performance on tests, depends strongly on 

having certain kinds of experiences necessary to build expertise.

Even if brain efficiency is not the cause of superior human intelligence, 

it still could be a factor in improving machine intelligence. Computers get 

faster every year and processes that were impractically slow a few years ago, 

may be acceptably fast today. But the larger source of progress is due to bet-

ter understanding of the problems that the computer is tasked with solving. 

More powerful computers make old methods faster and more practical, but 

they do not contribute to general intelligence, which requires something 

fundamentally different from mere capacity. Automobiles are not just faster 

horses.

Take, for example, weather forecasting. Weather forecasts have become 

amazingly more accurate over time. The accuracy of 5- to 7-day forecasts 

in 2015 was roughly equivalent to the accuracy of 1-day forecasts in 1965 

(Stern & Davidson, 2015). Better computational capabilities have surely con-

tributed to this increase in accuracy. But even more valuable was the ben-

efit of better data, for example, more weather stations, and better dynamic 

models. Better computer capacity by itself would have merely sped up the 

process of making predictions. Better data and better models allowed those 

predictions to extend further into the future where they are more valuable.

Given these limitations on general intelligence, I am therefore some-

what puzzled by the concern of some philosophers and others that we are 

on the brink of creating a general artificial intelligence that will somehow 

displace humans in the world, like Skynet in the old Terminator movies.

Let an ultraintelligent machine be defined as a machine that can far surpass 

all the intellectual activities of any man however clever. Since the design of 

machines is one of these intellectual activities, an ultraintelligent machine could 

design even better machines; there would then unquestionably be an “intelli-

gence explosion,” and the intelligence of man would be left far behind. Thus the 

first ultraintelligent machine is the last invention that man need ever make. (I. 

J. Good, 1965)

Good’s hypothesis depends on the assertion that the ability to engineer 

new problem solutions is just like the ability to employ existing solutions, 

but these two kinds of problems are fundamentally different. Solving Ein-

stein’s famous equation is far different from coming up with the theory 

that it represents. Navigating the tree structure of chess or go is far different 

from having the idea of representing these games as trees. We know how 
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to compute a solution to navigating a tree, but we do not yet know how to 

build a process that would have the insight to translate these games into a 

tree structure.

Solving well-structured, known problems is a process of selecting opti-

mal alternatives from a menu or range of available choices. The choices 

may be discrete or they may be numerical, but all machine learning has this 

basic underlying structure. Special-purpose algorithms, like those used in 

existing examples of computational intelligence, have become increasingly 

capable of solving ever more complex problems of choices sort, but they 

still do not have the capability of inventing something from a new per-

spective. The evidence we have suggests that invention—for example, the 

design of new unforeseen structures, the formulation of new scientific para-

digms, or the creation of new forms of representation—requires a different 

set of skills than optimization over a known space. We do not currently 

have any idea how to build a computer system that can come up with novel 

representations, but that ability is essential to achieve general intelligence.

Some of the fear concerning the potential for superintelligent machines 

to run amok comes from inconsistent thought experiments. For example, 

Nick Bostrom asks us to imagine an artificial intelligence machine that 

is given the goal of making as many paper clips as possible. It somehow 

becomes superintelligent, however, and rewrites its own capabilities to be 

even more intelligent about making paper clips. In following its maxim to 

make as many paper clips as possible, it converts everything it can to paper 

clips, in the process destroying the world.

I don’t find this thought experiment very compelling, not because 

I think that paper clips are silly but because it both supposes that the 

machine is superintelligent and, at the same time, super focused on one 

thing—making paper clips. It is broadly intelligent; it has superior general 

intelligence, yet it is singularly stupid in being focused just on paper clips. If 

it were so smart, it could analyze its compulsion to produce paper clips. It is 

difficult to imagine that it could be superintelligent without this capability. 

It is difficult to imagine that anything could be so dramatically intelligent 

and so dramatically fixated on a single narrow task.

There are many other reasons to doubt the usefulness of Bostrom’s 

thought experiment. We will treat this question in more depth in a later 

chapter. For now, it may be enough to note that a computer designed to 

make paper clips has no functions that would allow it to improve itself. Just 
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as a go-playing computer is of no use to playing chess, it is difficult to see 

how a paper clip–making computer could be of any use to improving the 

computational intelligence of computers, including itself. They are differ-

ent problems, and there is no bridging technology available in the current 

world or in Bostrom’s thought experiment that would allow the computer 

to move from one to the other. It may learn to better navigate the space of 

paper-clip making, but that space does not include anything about improv-

ing computing. There currently is no method that would allow a chess-

playing computer to claim boredom with the game and to then direct its 

efforts to reading poetry. Creating computers with that kind of capability 

will require approaches that are not being used, or perhaps not even being 

imagined today.

Superintelligence does not now exist and the current approaches to AI 

do not provide a path to get to it. Creating a superintelligent AI would 

require an approach that we have not yet conceived of. That is not to say 

that it is impossible, but it does say that we are not yet even heading in the 

right direction to achieve it. New approaches, invented by people, will be 

needed to achieve that goal.

This book is intended to provide an understanding of what is needed 

to achieve general intelligence. It is a road map for research, but not yet a 

report of the outcome of that research.

The current press coverage of artificial intelligence would have you 

believe that we are on the verge not only of general intelligence but of a 

runaway superintelligence that will first come for our jobs and then our 

babies.

Although it is true that computational intelligence is now capable of 

taking on a large number of tasks that have previously been performed by 

humans, it is also creating other new jobs that have never been available in 

the past. It has the potential to disrupt and change many jobs, but it will 

not destroy the economy in the process, just change it.

The prospects of an exponentially improving superintelligence that 

will destroy the world, as in Bostrom’s paper-clip thought experiment, are 

zero as well. Machine learning may be speedier on faster processes, but 

ultimately, it depends on feedback from the world to know if something 

new actually works or not. Predicting the weather five days into the future 

requires that you wait five days to find out if it worked. Although old 

data may provide a good source for learning how to predict the weather, a 
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forecast is only valuable if it tells us what the future weather will actually 

be. Faster computers cannot make the weather appear any faster, and so the 

speed at which a system can improve itself is limited by the speed at which 

data appear, not just the speed of its computations.

Even if we solve all of the problems associated with general intelligence 

learning, the rate at which it can evolve its capabilities is limited by the 

speed with which the world can provide feedback, and that is not affected 

by computer processing capacity. It has taken us 50,000 years to invent the 

current state of intelligence, there is no telling how long it would take to 

invent our way to general intelligence and then to superintelligence.
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2  Human Intelligence

In this chapter we consider just what it means for a human to be intelligent. Com-

puters do not have to solve the same problems in precisely the same way, but it is 

still necessary to understand just what problems human intelligence does solve. 

General intelligence must still solve the same range of problems that a human can 

solve, so understanding that range is a critical step in creating general intelligence.

Human intelligence is our best known example of an intelligent system. 

In the early days of computational intelligence, following the 1956 Dart-

mouth workshop, the goal was to describe every aspect of human intelli-

gence with enough precision that it could be simulated on a machine. Since 

that time, many working in the field have found that practical applications 

of computational intelligence do not need to duplicate how people solve 

problems, but rather these workers have found ways to reduce the com-

plexity of an intelligence task to something that can be accomplished by 

a computer. General intelligence, on the other hand, does not seem to be 

solvable in the same reductionist way. General intelligence may actually 

gain from a deeper understanding of the best example we have of general 

intelligence—us.

As discussed in the introduction, conceptions of human intelligence 

focus on tasks that we associate with higher cognitive functioning—the 

kind of tasks that the people whom we admire for their superior intelli-

gence perform that we cannot. The ability to do work in the field of theo-

retical physics, the ability to compose great music, and the ability to play 

chess are among these. These characteristics involve tasks that have been 

invented by people over time, and they are tasks that usually require formal 

education.
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These intellectual processes have long been thought to be the basis not 

only of human intelligence but, essentially, of human thought. George 

Boole (1854) titled his famous book on logic The Laws of Thought. In this he 

echoed Aristotle’s Organon, in which Aristotle described three fundamental 

laws (identity, non-contradiction, and excluded middle), which, he argued, 

were the essential basis of logic and thought. John Stuart Mill (1836/1967) 

described a view that was later called economic man, who made rational 

decisions to support his quest for wealth.

We have always known that people do not always behave in the system-

atic ways suggested by these views of logical thought, but these deviations 

were attributed to intrusion by emotions in the thought process. As we 

will see, they are more properly viewed not as glitches or bugs in human 

thought but as essential features that enable human intelligence.

There are currently no widely accepted definitions of just what it means 

for a human to be intelligent. Shane Legg and Marcus Hutter (2007) list 70 

definitions of intelligence. Most of these definitions emphasize higher men-

tal function, such as the ability to think rationally, to reason, to plan, and to 

solve problems. They include the ability to think abstractly, to learn quickly, 

and to comprehend complexity. They are characteristic of the kind of skill 

that allows one to succeed in Western society. It is no coincidence, there-

fore, that these are the kind of skills also examined by intelligence tests.

Intelligence Testing

The work on human intelligence has largely been focused on understand-

ing individual differences among people. Alfred Binet, for example, was 

asked by the Paris school system at the start of the twentieth century to find 

a way of identifying those students who would need more help in getting 

an effective education. To answer this question, he and his colleague, Theo-

dore Simon, created a test that sought to evaluate characteristics that they 

believed were indicators of the constituents of intelligence, including mea-

sures of language skills, memory, reasoning, and the abilities to follow com-

mands and to learn new associations. They were looking for a measure that 

was independent of the amount of schooling a child had already received, 

so they avoided tests of specific facts and other kinds of explicit knowledge. 

The kinds of characteristics that they tested were soon expanded into other 

measures of intelligence for many other purposes.
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Binet recognized the limitations of his test. He also recognized that the 

single number score for a test could not do justice to a student’s actual 

intelligence, but it was a reasonably good predictor of how well students 

would do in school. In contrast, an English psychologist, Charles Spearman 

(1904), proposed that intelligence is actually a unitary quality that could be 

measured by a proper test of general intelligence and could be represented 

by a single number.

Most intelligence tests include assessments of a number of nominally 

individual skills. Spearman noted that people who score well on one of 

the subtasks typically perform well on others, and those who perform 

poorly on some tend to perform poorly on others (see chapter 1). Spear-

man invented some new statistics to evaluate this correlation. He used this 

new method, called “factor analysis,” to statistically divide the test takers’ 

performance into two kinds of components or factors. In Spearman’s view, 

the student’s performance on each specific subtask in the intelligence test 

is due to some combination of a specific “intelligence” associated with that 

subtask and a general “intelligence,” “g,” that contributes to performance 

across many subtasks. The correlation between subtasks, he thought, is 

caused by the fact that they share the same general intelligence factor. If 

someone has more of it, that person will tend to score well on most of the 

tests, and if someone has less, that person will score poorly on most of  

the tests.

Spearman argued that the general factor was the result of some biolog-

ical characteristic of human brains or minds, something akin to mental 

power. Some psychologists have attributed general intelligence to brain 

size, or mental speed, measured by the speed with which simple decisions 

can be made. Others have attributed it to such factors as memory capacity 

or visual acuity.

From a statistical point of view, something must be shared among the 

correlated tasks, but that something need not actually be intelligence. Anxi-

ety, calm, experience with test-taking methods, attention or motivation, 

among others, could be the common factor.

On the other hand, the correlation may reside in the similarities between 

the tests themselves. Tests that appear to be different may still share over-

lapping skills. For example, two of the tests used to assess intelligence are 

the number sequence task and the progressive matrices task. In a num-

ber sequence task, the test taker has to guess the number that follows a 
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presented set of numbers (for example, what number would follow the 

sequence 2, 4, 6, 8?). In a progressive matrices task (see figure 1), the stu-

dent is shown a matrix of designs exhibiting a certain pattern and must 

draw or choose the final design in that sequence. Both tasks require the stu-

dent to induce the rule for the respective pattern and apply that rule. They 

both, in other words, tap some overlapping set of skills, and this overlap 

could be the cause of the correlation.

The jury is still out on whether there is such a thing in humans as general 

intelligence, at least as measured by intelligence tests. Computer scientists 

and psychologists have both been searching for it, but it has so far proven 

to be elusive.

Intelligence, as measured by intelligence tests, has been found to corre-

late with many intellectual capabilities, but not always the ones you might 

expect. It seems, for example, to have a weak relationship, if any, to com-

plex problem-solving ability (Wenke, Frensch, & Funke, 2005).

? ? ? 

? ? ? 

? ? ? 

Figure 1
A simple example of a progressive matrix task used to assess intelligence. What pat-

tern should be drawn in the ninth box that would be consistent with the previous 

squares in the row and in the column?
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Problem Solving

The ability to solve problems is a common feature among definitions of 

intelligence. Fortunately, this capability has also been well studied by psy-

chologists and may provide an alternative means to get at the nature of 

intelligence.

Well-Formed Problems

In order for testers to be able to score intelligence tests, the tests must con-

sist of specific questions that have specific answers. Real-world problems, 

on the other hand, often involve a large number of potential variables in 

complex relations. The goals of real-world problems may be unclear, and 

a substantial part of solving them is just finding the right goals. Studies of 

human problem solving involve well-formed problems because they are 

easy to administer, easy to score, and relatively easy to understand.

These laboratory tasks involve well-understood problems, and their out-

comes are easy to evaluate. Games like chess, and now go, are complex, but 

they are very well-defined by their rules and by the position of the pieces 

during the game. There may be a lot of potential moves, but all of the valid 

moves are easy to identify.

Although there are laboratory studies of how people play chess, many 

psychological studies of problem solving have focused on simpler well-

formed problems to be able to examine the entire problem-solving process 

in a reasonable amount of time. Three of these are the 8-tile problem, the 

Towers of Hanoi problem, and the hobbits and orcs problem (all three prob-

lems will be described shortly). These are simple enough to be solved in a 

brief laboratory session; the state of the problem is easy to describe without 

uncertainty. Finally, they do not rely on any particular knowledge to be 

able to solve them.

The 8-tile problem consists of a square frame containing eight tiles, num-

bered 1 through 8, and one empty spot. The digits are originally in some 

random order, and the solver’s task is to arrange them in numerical order. 

The initial order is the “starting state,” and the correct numerical order is 

the “goal state.” Each step in solving the problem consists of moving one of 

the tiles into the empty slot. Only one tile can be moved at a time, and only 

a tile adjacent to the empty slot can be moved. Given a starting position, 

we could exhaustively list the succession of possible moves. We could even 
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draw a diagram of those possible moves. Each specific arrangement of the 

tiles is a “state” and the set of all possible arrangements is the “state space” 

for the problem. As in chess, the problem can be represented as a tree (see 

chapter 1), where each choice is a branch of the tree.

We solve the problem by successfully moving through this state space 

from the starting position through some sequence of selected states (by 

moving a tile) and finally reaching the goal state. We could choose a path 

through the state space by selecting the move at each point that gets us 

closer to the goal state.

Here is an example of one starting configuration. The empty tile is in the 

middle row and middle column:

1 4 3

7 6

5 8 2

From this configuration, there are four possible moves. We could move 

either the 4-tile, the 6-tile, the 7-tile, or the 8-tile into the blank space 

because these numbers are adjacent to the empty space. If the 4-tile is cho-

sen, then the empty space will be in the center of the top row, as shown by 

the next configuration:

1 3

7 4 6

5 8 2

Then, on the next step, either the 1- or 3- or 4-tile could be moved, and 

so on.

The second commonly studied problem is the so-called Towers of Hanoi 

problem. See figure 2.

The puzzle was first described by Eduardo Lucas in 1883. In Lucas’s ver-

sion, the towers were supposed to be in an Indian temple dedicated to 

Brahma. In the more commonly known version, described by Sam Loyd 
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(1914), it was described as a problem being solved by monks in a fictitious 

temple in Hanoi, Vietnam. Supposedly, in the temple, the monks have to 

move a stack of 365 disks from one spindle to another. In the laboratory 

version, only three disks are typically used.

The laboratory version consists of three spindles and three disks of vary-

ing sizes. The starting state has the three disks stacked onto spindle 1 with 

the largest disk on the bottom and the smallest disk on the top. The puzzle 

solver’s job is to move the disks from the first spindle to the third one, while 

obeying certain rules. Only one disk can be moved at a time, only one disk 

can be off of a spindle at a time, and a larger disk can never be placed on 

top of a smaller one (see, for example, Anzai & Simon, 1979, who studied 

solving a five-disk, three-spindle version of this problem).

With three disks and three spindles, there are only a few possible states. 

Initially, all three disks are on the first spindle. With three disks, the prob-

lem can be solved in a minimum of seven moves:

1.	 Move the smallest disk to the third spindle.

2.	 Move the medium disk to the middle spindle.

3.	 Move the small disk to the middle spindle.

4.	 Move the large disk to the third spindle.

5.	 Move the small disk to the first spindle.

6.	 Move the medium disk to the third spindle.

7.	 Move the small disk to the third spindle, and we are done.

As with the 8-tile problem, the number of states with three disks can be 

listed out explicitly. The problem is small enough to be solved in a short 

laboratory session. As the number of disks increases, though, the mini-

mum number of moves needed to solve it grows exponentially. With 64 

disks, and a move every second, it would take 585 billion years to solve. 

Figure 2
The three disk version of the Towers of Hanoi problem. The goal is to move the three 

disks from the first spindle to the last spindle following the rules of the task.
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The number of moves essentially doubles with each additional disk. Even 

though solving the puzzle with a large number of disks would take a very 

long time, the rules for solving it are easy to describe.

In the hobbits and orcs problem, three hobbits and three orcs arrive at a 

riverbank, and they all wish to cross to the other side (see Jeffries, Polson, 

Razran, & Atwood, 1977). There is a boat, but it can hold only two creatures 

at a time (two hobbits, two orcs, or one of each). If the orcs on one side of 

the river outnumber the hobbits, they will eat the hobbits, so you must be 

sure that there are never more orcs than hobbits on either side of the river. 

Other than the orcs’ uncontrollable appetite for hobbits, all six of the crea-

tures arriving at the river can otherwise be trusted. How can you get the six 

creatures across without losing any hobbits?

Here is a solution to this problem. “H” represents a hobbit. “O” repre-

sents an orc. The arrangement of hobbits and orcs on each side of the river 

constitutes the state of the problem, and the boat represents the transitions 

between states. See table 1.

These three simple problems, like the more complex ones such as go, 

chess, or checkers, are called “path problems.” They can be described by a 

set of states and a set of actions (called “operators”) for moving from one 

Table 1

Description Left Bank Right Bank

All six arrive at the river OOO HHH

Send 2 orcs across O HHH OO

1 orc returns with the boat OO HHH O

Send 2 orcs across HHH OOO

1 orc returns with the boat HHH O OO

Send 2 hobbits across O H OO HH

1 hobbit and 1 orc return with the boat OO HH O H

Send 2 hobbits across OO O HHH

1 orc returns with the boat OOO HHH

Send 2 orcs across O OO HHH

1 orc returns with the boat OO O HHH

Send 2 orcs across OOO HHH

Problem solved Goal state
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state to the next. Solving the problem amounts to finding a path from 

one state to the next and ultimately to the goal of the problem. These are 

the kinds of problems that Allen Newell and Herbert Simon (1972) used to 

derive their computer simulation of human problem solving, which they 

called the General Problem Solver.

The system starts in the initial or starting state and has solved the prob-

lem when it reaches the goal state. For example, in the hobbits and orcs 

problem, the state is the number of hobbits and the number of orcs on 

each side of the river and the position of the boat. Applying an “operator” 

leads to a change in state. In the hobbits and orcs problem, the operator is 

to send the boat from one side of the river to the other with some beings in 

it. Solving the problem means finding a sequence of states that lead from 

the starting state to the goal state. We can say that problem solving in this 

framework consists of a “search” of the state space (the set of all possible 

states and operators) to find a path through it.

When you apply the right operators to the states in the right order, 

you have solved the problem. The entire problem-solving process can be 

reduced to finding this correct path through the state space.

Formal Problems

The path problems that we have been talking about can also be called 

“formal problems.” “Formal,” in this context, means that it is the form 

of the problem, rather than the specific content or the physical proper-

ties of the problem, that determines how it can be solved. There are no 

real hobbits and no real orcs, for example, that we can send across the 

river, but we solve the problem with symbols. Those same symbols could 

stand for missionaries and cannibals instead of hobbits and orcs, and the 

problem would be formally identical and would be solved in exactly the  

same way.

Path problems typically involve specific rules, and the states, goal, and 

operators are defined for the solver. “All” the solver has to do is to find the 

path through the states that leads to the goal. It is usually unambiguous as 

to what the current state of the problem is. For example, how many hob-

bits and how many orcs are on each side of the river and where the boat 

is are all clearly known. There may be a large number of potential next 

steps (operators) that could be applied, but there is no ambiguity as to what 

actions are available.
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Chess can also be described as a path problem; soccer, another com-

petitive game, cannot. Although soccer has a clear goal (to outscore your 

opponent), an unambiguous way of assessing goal achievement, and rules 

for the kinds of things you can do, its state space is vastly more complicated 

because every other player could be anywhere on the pitch (field). Players 

and the ball are not restricted to a list of possible places they could be in the 

same way that chess pieces are restricted to one of 64 specific positions on 

the board. The ball does not always go where intended, meaning that there 

is uncertainty when an operator, that is, a kick, is applied. Teammates may 

not be where a passing player thinks they are, so there is uncertainty about 

the state of the game, and so on.

With path problems you can usually tell whether or not you are making 

progress toward your goal. But there are other problems where it is not so 

easy to know whether you have made progress. For example, when deter-

mining how to reduce poverty, there may be no clear method that unam-

biguously tells the policy maker whether a given plan is working or not.

Nonpath problems cannot typically be described as a step-by-step pro-

cess. Instead, they often require some reorganization of thinking. Before 

that reorganization, reaching the goal may be impossible; afterward, it may 

be easy and obvious. Would, for example, just giving everyone some money 

solve poverty? I don’t know.

The fundamental issue with Newell and Simon’s approach to problem 

solving, and with much of computational intelligence investigations since 

then, is that they treat intelligence as a formal path problem. They assume, 

for example, that logic is a model for human thinking, that states are unam-

biguously known, and that operators always produce the expected effect.

Standard Boolean logic is a formal system; it can be described as a set of 

axioms and rules of inference. Applying an inference rule is an expression 

that results in a new state (a new arrangement or expression of symbols) in 

the same way that choosing a move in chess moves the system from one 

state to the next. Only certain inferences are valid/legal, and so only cer-

tain states are reachable. The correctness of an expression in a formal sys-

tem, such as logic, depends on its form, not what the expression is about. 

Correctly formed expressions are necessarily correct. The content of those 

statements is not relevant.

If the premises of a syllogism (a Boolean logic expression) are true and 

the syllogism is of the right form, then the conclusion must also be true:



Human Intelligence	 31

Premise: Bossy is a cow.

Premise: All cows are mortal.

Conclusion: Therefore Bossy is mortal.

Newell and Simon’s General Problem Solver was a formal system in that 

it consisted of a set of basic tokens (axioms) and rules to manipulate them 

to make inferences. Games like checkers, chess, or go are formal systems 

because they consist of the basic pieces (the board and the playing pieces) 

and rules by which they can be manipulated. The pieces may have some 

meaning (for example, the knight and the bishop of chess), but one could 

effectively play chess without knowing their meaning, or even without any 

physical pieces at all.

The board and the positions of the chess pieces can be represented sym-

bolically. For example, on one notation, each square on the chessboard is 

represented by a letter, indicating the square’s column, and a number, indi-

cating the square’s row, similar to how we denote the cells in a spreadsheet. 

Each piece is represented by an uppercase letter, for example, Q for queen, 

R for rook (castle). A move is expressed by the symbol for the piece and the 

coordinate to which it is moved. The move Be5 means to move a bishop 

to the square e5. The whole game can be conducted using this symbolic 

notation or some other notation without ever touching physical pieces or 

a physical board.

Although formal reasoning is very important to intelligence, it is not 

all there is. In the next chapter, we will take up this question from a com-

putational perspective. From a human cognition point of view, however, 

the evidence is clear that people do not inherently think logically. Logical 

thinking takes special effort.

Intelligence and formal reasoning imply rational decision-making. They 

imply that the reasoner will choose operators that advance it toward the 

goal. In general, a rational decision is one that is based on objective facts 

and that maximizes a desired benefit. Unless we are willing to just make up 

willy-nilly goals that fit whatever a person does, human decision-making 

often fails to be rational. Some people smoke, even though they know that 

there are health risks involved. We can imagine that there must be some 

goal that is rationally furthered by smoking, but that is circular reason-

ing. It makes up the goal to match the action and then tries to explain 

the action by this made-up goal. There may be some goal that is rationally 
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furthered by jumping out of perfectly good airplanes or by leaping on a 

grenade to save one’s comrades. That last one may be heroic, but it is not in 

the personal interest of the hero to do it—it appears to be irrational.

Rational decisions are based on solid evidence and statistics. Rational 

decisions are often the more intelligent choice. People who make better, 

more rational decisions are usually perceived as being more intelligent 

than those who do not. One of the roles that logic plays, for exam-

ple, is to help people reason systematically about the choices that they 

make. If the form is right, then the right decision should be consistently 

reached if people were rational decision makers. But they are not, at least  

not always.

For example, Amos Tversky and Daniel Kahneman found a number of 

situations in which people fail to make rational decisions. For instance, 

they found that people make different decisions under formally identical 

situations depending on how that situation is described. An example of 

this is that when graduate students were told of a penalty for registering for 

a conference after a particular date, 93% of them registered early, that is, 

before that date. When offered an identical early registration discount (that 

is, one with the same price difference before versus after the date), only 

67% of them registered before that date. The two situations are identical, 

with the same benefit for registering early. The only difference was the label 

given to the action (penalty versus discount), but this label made a substan-

tial difference. The students sought to avoid a loss described as a penalty 

but did not go out of their way for a gain.

Historically, this difference would have been interpreted as evidence that 

emotion intruded on the decision-making process and led the students to 

make an emotional rather than a logical decision. There is another pos-

sibility, however, that suggests that this deviation from rational decision-

making was not a failure, but evidence for other processes that may play a 

role in intelligence. In fact, a formal system cannot be sufficient, even for 

logical reasoning.

A formal system depends solely on its internal structure, but intelligence 

requires interaction with a world, a world that includes uncertainty. A for-

mal system starts with a set of basic premises, assumptions, or axioms. If 

the axioms are true, and the statements are of the right form, then the con-

clusions must also be true. The formal system assumes that the axioms are 

true, but there is no guarantee that this assumption is correct. The formal 
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system depends on the truth of the axioms, but by itself, it cannot establish 

their truth.

In logic, the axioms are typically called “premises.” The premises could 

be wrong. For example, in the cow syllogism, we could assume that Bossy 

is a cow. We could further assume that all cows are mortal. Using the rules 

of the system, we could then infer that therefore Bossy is mortal. So far, so 

good, but how do we know that Bossy is actually a cow? That assumption 

could be wrong and there is no formal method to prove that it is true. If 

the axioms are not true, then any conclusions derived from those faulty 

axioms may also be faulty. If Bossy only looked like a cow but was actually 

an advanced robot, she might not, in fact, be mortal.

We might do tests to show that Bossy is a cow. But no matter how many 

tests we did, and no matter how many she passed, there is still a chance that 

we could be wrong, that the very next test we ran would indicate that she 

is a robot and not a cow.

We cannot prove that an axiom or premise is actually true. Deductions 

can be proved from the premises, but the premises cannot. We cannot infal-

libly move from specific observations to general truths. That inference must 

transcend logic. It depends critically on real-world facts, and there is no 

formal system that can prove that those facts are correct.

Starting in the late 1920s, a group of philosophers tried to create an 

approach to science that was strictly logical. In their view, scientists were 

misled when Newtonian mechanics was “replaced” by quantum mechan-

ics. The basic principles of physics were not as Newton had described them. 

The logical positivists, as this group was known, tried to reduce science 

to just observation statements and logical deductions from those observa-

tions. If they could eliminate the sloppy language that was inherent in 

scientific theories, they argued, science would never be deceived again.

Observation statements (like “The temperature of the mixture increased 

by 2 degrees”), they thought, could be infallible as long as they were made 

with a healthy mind, that is, they ruled out hallucinations and the like as 

valid observation statements.

Without getting too far into the philosophical details, the approach of 

logical positivism failed. No purely logical system could produce science. 

Observations could be mistaken. Not every scientific statement could be 

immediately verified. As Kurt Gödel showed, not even mathematics, the 

most systematic and logical approach to knowledge that there is, could 
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survive as a complete system based solely on observation statements and 

logical deductions from them. Thomas Kuhn and later Imre Lakatos coun-

tered the logical positivists with a more psychological approach to scientific 

thinking.

Therefore, if the two examples that were arguably the most typical of 

human intelligence could not survive based on pure logic, it is extremely 

unlikely that similar processes could be the sole cause of human intelli-

gence. Human intelligence has to go beyond mere observation and deduc-

tions from those observations.

Establishing the truth of a premise requires an inference. Inferences are 

always subject to uncertainty. We might think that we are playing a game 

of chess, but if, in fact, it only looked like chess, then the formal properties 

of the game might be different and success of the formal system would fly 

out the window.

Much of the science of computer science derives from treating computer 

algorithms as formal systems that can be proven to be true. An algorithm 

does not care what the computations represent, only that it is in the right 

form, and, if it is in the right form, it can be proved to be correct. The 

meaning of the variables in an algorithm does not affect the validity of 

the process. Two plus two equals four whether it is two ducks, two trucks, 

or two bucks. Algorithms do not care what they are reasoning about, but 

people often do.

Unlike formal systems, human intelligence often depends critically on 

the content of what we are thinking about. Humans are capable of believ-

ing things that are not true. Human language can express sentences that 

are neither true nor false, such as “This sentence is false.” Humans interact 

with an uncertain world.

People have to go to school to learn logic, and many people find it dif-

ficult. If logic were the basis of human thought, then it would come “natu-

rally,” like walking. People who are educated to take advantage of formal 

systems are often able to accomplish tasks that they would not be able to 

do without such tools. On the other hand, simpler, more intuitive processes 

can often succeed where complicated formal systems would either take too 

long or be unduly affected by irrelevant information.

As discussed in chapter 1, people employ heuristics to guide much of their 

thought. A heuristic is a practical method that generally works, but, unlike 

an algorithm, is not guaranteed to produce the correct result. Typically, for 
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example, the taller child is likely to be the older child, but this heuristic 

can sometimes be wrong. One of the values of heuristics is that they allow 

people to reach conclusions that may not be fully justifiable but still may 

be valuable. The conclusion may not be provable, but it may take only a 

small amount of effort to reach it, and still be accurate enough for practi-

cal purposes. Because heuristics sometimes fail, they may also lead to false 

conclusions and prejudices that can sometimes interfere with intelligent 

action. They can have both value and cost and still contribute positively.

One heuristic that people use is called the “availability heuristic.” People 

base their judgment on the examples that they can most easily bring to 

mind. Items that can be recalled most easily are treated as if they were the 

most representative examples and, therefore, the most important examples 

for making decisions.

The availability heuristic depends on unwarranted assumptions, but 

practically speaking, it can often be an effective way of dealing with real-

world situations. Often the easiest to remember items are, in fact, the most 

relevant to the judgment. For example, if judging whether Chicago or Bos-

ton is the larger city, a full analysis might give a good answer, but availabil-

ity might also provide an answer.

Under certain circumstances, the consequences of using the availability 

heuristic can sometimes conflict with a well-reasoned analysis, but under 

other circumstances, its use may be at least as accurate as a formal pro-

cess. Unlike a detailed analysis, heuristic answers are often much faster and 

require much less effort than an exhaustive analysis.

If you were using availability to choose the larger city, you would decide 

that Chicago is the larger city if facts about it are more available than facts 

about Boston. If it is easier to call to mind facts about one city than another, 

the more fact-related city is likely to be the bigger one.

We cannot know directly how available memories are of these two cities 

for any specific person, but we can use another heuristic to estimate avail-

ability. We can, for example, look at the number of mentions each of these 

cities has in Google. The thinking is that if a city is mentioned more often 

in Google, then it is likely to be easier to think of the facts that are men-

tioned. This too, is a heuristic.

A Google search for “Chicago” at the end of 2019 claimed about 3 bil-

lion hits and a similar search for “Boston” claimed about 1.9 billion. Also 

according to Google, the population of Chicago is listed as 2.7 million, and 
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that of Boston as 685,094. If Google mentions are a good estimate of avail-

ability then it would seem sensible to predict that availability is a cheap and 

quick way to estimate population size.

The same heuristic can be used to correctly identify the better basket-

ball team. In 2017, the Cleveland Cavaliers were in the National Basket-

ball Association (NBA) final playoffs, but the Atlanta Hawks were also-rans. 

Again, using Google search results as an estimate of availability, the Cava-

liers received 12.7 million hits and Hawks received 3.6 million hits in 2017. 

So, again, these heuristics work.

Heuristics such as availability apparently evolved because these low-cost 

estimates are often effective. Using them may not be a failure of rational 

thinking, but a success of natural cognition. They may provide an effective 

and efficient adjunct to the invented intelligence so commonly taught.

Heuristics like these may be critical to creating broadly effective com-

putational intelligence, but computer science has focused largely on well-

structured formal problems, like chess playing and theorem proving. It has 

run into challenges when dealing with less structured problems like driv-

ing or facial recognition. Recent success in these less formal problems has 

come from the recognition that heuristic tools can be used effectively even 

if they entail greater levels of uncertainty. Neural networks, for example, 

are less formal than expert systems. They exploit continuous nonsymbolic 

representations that only approximate the state of the world; they do not 

symbolize it. They sacrifice provability for improved accuracy under more 

naturalistic circumstances.

Insight Problems

As mentioned earlier, the emphasis of intelligence testing and computa-

tional approaches to intelligence has been on well-structured and formal 

problems. These problems may be complex, but they are easy to understand 

and easy to evaluate. But the focus on these well-structured problems may 

be like an attempt to look for your lost keys where the light is brightest. 

There are other problems that are typical of intelligence that do not fit into 

this well-structured framework.

A major critical group of nonformal problems that people face are the 

so-called insight problems. Insight problems generally cannot be solved by 

a step-by-step procedure, like an algorithm, or if they can, the process is 
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extremely tedious. Instead, insight problems are characterized by a kind of 

restructuring of the solver’s approach to the problem. In path problems, the 

solver is given a representation, which includes a starting state, a goal state, 

and a set of tools or operators that can be applied to move through the rep-

resentation. In insight problems, the solver is given none of these. Solving 

insight problems depends on discovering the representation appropriate 

to the problem, and once that representation is discovered, the solution is 

typically easy and rapid.

A typical insight problem is the one that supposedly led Archimedes 

to run naked through the streets of Syracuse when he solved it. As the 

story goes, Hiero II (270 to 215 BC), the king of Syracuse, suspected that 

a votive crown that he had commissioned to be placed on the head of a 

temple statue did not contain all of the gold it was supposed to. Archimedes 

was tasked with determining whether Hiero had been cheated. He knew 

that silver was less dense than gold, so if he could measure the volume of 

the crown along with its weight, he could determine whether it was pure 

gold or a mixture. The crown shape, however, was irregular, and Archime-

des found it difficult to measure its volume accurately using conventional 

methods.

According to Vitruvius, who wrote about the episode many years later, 

Archimedes realized, during a trip to the Roman baths, that the more his 

body sank into the water, the more water was displaced. He used this insight 

to recognize that he could use the volume of water displaced as a measure 

of the volume of the crown. Once he achieved that insight, finding out that 

the crown had, in fact, been adulterated was easy.

The actual method that Archimedes used was probably more compli-

cated than this, but this story illustrates the general outline of insight prob-

lems. The irregular shape of the crown made measurement of its volume 

impossibly difficult by conventional methods. Once Archimedes recog-

nized that the density of the crown could be measured using other meth-

ods, the actual solution was easy.

With path problems, the solver can usually assess how close the current 

state of the system is to the goal state. Most machine learning algorithms 

depend on this assessment. With insight problems, it is often difficult to 

determine whether any progress at all has been made until the problem is 

essentially solved. Insight problems are often associated with a subjective 

feeling of “Aha,” as the solution is discovered.
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Another example of an insight problem is the socks problem. You are 

told that there are individual brown socks and black socks in a drawer in 

the ratio of five black socks for every four brown socks. How many socks 

do you have to pull out of the drawer to be certain to have at least one pair 

of either color? Drawing two socks is obviously not enough because they 

could be of different colors.

Many (educated) people approach this problem as a sampling question. 

They try to reason from the ratio of black to brown socks how big a sample 

they would need to be sure to get a complete pair. In reality, however, the 

ratio of sock colors is a distraction. No matter what the ratio, the correct 

answer is that you need to draw three socks to be sure to have a matched 

pair. Here’s why:

With two colors, a draw of three socks is guaranteed to give you one of 

the following outcomes:

Black, black, black—pair of black socks

Black, black, brown—pair of black socks

Black, brown, brown—pair of brown socks

Brown, brown, brown—pair of brown socks

The ratio of black to brown socks can affect the relative likelihood of each 

of these four outcomes, but only these four are possible if three socks are 

selected. The selection does not even have to be random. Once we have the 

insight that there are only four possible outcomes, the problem’s solution 

is easy.

Insight problems are typically posed in such a way that there are mul-

tiple ways that they could be represented. Archimedes was stymied as long 

as he thought about measuring the volume of the crown with a ruler or 

similar device. People solving the socks problem were stymied as long as 

they thought of the problem as one requiring the estimate of a probability. 

How you think about a problem, that is, how you represent what the prob-

lem is, can be critical to solving it.

Interesting insight problems typically require the use of a relatively 

uncommon representation. The socks problem is interesting because, for 

most people, the problem is most likely to evoke a representation centered 

on the ratio of 5:4, but this is a red herring. The main barrier to solving 

insight problems like this is to abandon the default representation and adopt 

a more productive one. Once the alternative representation is identified, the 
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rest of the problem-solving process may be very rapid. Laboratory versions 

of insight problems generally do not require any specific deep technical 

knowledge. Most of them can be solved by gaining one or two insights that 

change the nature of how the solver thinks about the problem.

Most of the problems given to computers for solution are well-structured 

path problems. The designer of the program provides the problem, its rep-

resentation, and the operations that can move the computer toward its 

goal. It may be difficult to find a path to solution, using the representa-

tions, operators, and paths, because of the large number of possible states 

involved, but it is still a process of searching for and following a path. 

Insight problems, on the other hand, generally do not have a clear path. 

Computational intelligence research has not given serious attention to 

problems like these, but they are a clearly among the kinds of problems 

that an intelligent agent would have to address.

Here are a few more insight problems. The mutilated checkerboard was 

first described by Max Black in 1946. A regular checkerboard has 32 black 

squares and 32 red squares. If we had 32 dominoes, each the size of two 

squares, it would be obvious that we could cover the checkerboard with 

those 32 dominoes, for example, using 8 rows of 4 dominoes each. If we cut 

off the red square at the upper left corner of the checkerboard and the red 

square in the lower right corner of the checkerboard, could we now cover 

the mutilated checkerboard with 31 dominoes?

Another insight problem, the Königsberg bridges problem, is shown in 

figure 3. The city of Königsberg (now called Kaliningrad, Russia) was built 

on both sides of the Pregel River. Seven bridges connected two islands and 

the two sides of the river. Can you walk through the city, crossing the seven 

bridges each exactly once? In the map in figure 3, the bridges are marked 

in gray.

Here is a sequence of four numbers: 8, 5, 4, 9. Predict the next number 

in this sequence.

The two-strings problem was studied by Maier (1931). You are in a room 

with two strings hanging from the ceiling. Your task is to tie them together. 

In the room with you and the strings are a table, a wrench, a screwdriver, 

and a lighter. The strings are far enough apart that you cannot reach them 

both at the same time. How can these strings be tied together?

For the mutilated checkerboard problem we find that 8 rows of 4 domi-

noes will not work because two of the rows are short half a domino, but 
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perhaps there is some arrangement of dominos that might work. You could 

try to lay out real or imaginary dominoes on the mutilated board, but when 

a particular pattern did not work, you would not know whether it was that 

pattern that was no good or whether there is no pattern that would work. 

Representing the problem in terms of dominoes and layouts makes solving 

the problem difficult at best. In theory, a computer could use this rearrange-

ment method to try to determine whether the board can be covered by 31 

dominoes, but it requires testing all possible arrangements. In the absence 

of insight, we have only brute force. There are no approximate solutions 

that can be used to help us search the tree of possible arrangements. We 

just have to try them.

Before we go back to the mutilated checkerboard problem, consider this 

one. There are 32 men and 32 women at a dance. Only heterosexual cou-

ples dance. Can everyone at the party dance at the same time? Now two 

of the women leave the party. Can we still form 31 heterosexual couples?

In the original checkerboard, each domino covered exactly one red square 

and one black square. Each heterosexual dance couple must contain exactly 

one man (black square) and one woman (red square). In the mutilated 

checkerboard, there are 32 black squares but only 30 red squares. Represent-

ing the problem this way reveals that it is impossible to cover a mutilated 

checkerboard exactly with 31 dominos even though there are exactly 62 

squares. The mutilated checkerboard problem is formally identical to the 

Figure 3
A sketch of the bridges connecting the land areas in Königsberg. Can you cross all 

seven bridges exactly once?
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heterosexual dance problem. People tend to find the dance problem rela-

tively easy but find the checkerboard problem relatively difficult.

The mutilated checkerboard problem can be solved using a brute-force 

solution where every layout of the dominoes is tried. Trying a few thousand 

potential layouts may be practical with an 8 × 8 board but may not be prac-

tical with a much larger analogous board. There are 6,728 ways to arrange 

dominoes on a regular 8 × 8 checkerboard. But if we increase the number 

of squares to form a 12 × 12 “checkerboard,” the number of possible dom-

ino arrangements grows to 53,060,477,521,960,000. With the insight that 

a domino must cover exactly one red and one black square, on the other 

hand, we can instantly solve the problem no matter how many squares are 

on the board.

An expert might recognize the mutilated checkerboard and the dance 

party problem as examples of a parity problem and solve both of them even 

more quickly. The dance party problem is much easier to solve because 

the useful representation is much more obvious, meaning that people are 

likely to come up with it quickly. Solving the dance problem can help solve 

the checkerboard problem if you can see the relationship between the two 

problems. Current approaches to computational intelligence generally can-

not take advantage of this analogy. To be fair, many people fail to see the 

connection as well (Gick & McGarry, 1992).

The Königsberg bridges problem is also similar. Königsberg is divided 

into four regions. Each bridge connects exactly two regions. Except at the 

start or the end of the walk, every time one enters a region by a bridge, one 

must leave the region by a bridge. The number of times one enters must 

equal the number of times one leaves it, so the number of bridges touching 

a land mass must be an even number to cross them all exactly once because 

half of them will be used to enter a region and half will be used to leave it. 

The only possible exceptions are the regions where you start your walk and 

where you end it. Only a city with exactly none or exactly two regions with 

an odd number of bridges (one where you start and one where you finish) 

can be walked without repetition. In Königsberg, each region is served by 

an odd number of bridges, so there is no way that one can walk the seven 

bridges exactly once.

The checkerboard, dance, and bridges problems are related. They can all 

be represented as graphs (nodes connected by arcs). For our purposes, these 

three problems illustrate two things. How you represent the problem can 
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profoundly affect the ease of solving it, and transfer from one problem to 

another is facilitated if you can find the analogy between the two of them.

If you had trouble with the digit sequence problem mentioned earlier, 

try writing out the names of digits in English:

Eight five four nine

The correct answer is 1, 7, 6.

The full sequence is:

Eight five four nine one seven six three two zero.

They are listed in alphabetical order of their English names. The usual rep-

resentation of the series as digits ordered numerically must be replaced by 

a representation in which the English names are ordered alphabetically.

The string problem can be solved by using one of the tools as a weight 

at the end of one of the strings so that you can swing it and catch it while 

holding the other string. The insight is the recognition that the screwdriver 

can be used not just to turn screws but also as a pendulum weight.

Relatively little is known about how people solve insight problems. 

These problems are typically challenging to study in the laboratory with 

much depth, because it is difficult to ask people to describe the steps that 

they go through to solve them. On the other hand, there have been studies 

on the effects of taking a pause while working on a problem—called the 

“incubation effect.” These pauses tend to increase the probability that the 

person will find the insight required to solve the problem.

No one has yet implemented a computational intelligence approach 

that changes the representation or that can recognize that a domino must 

cover a red and a black square. I expect that such a program is possible, 

but it would take a different approach to problem solving than has been 

attempted so far.

Path problems, like the hobbits and orcs problem or the Towers of Hanoi 

problem, all have the form of a search for a path through a series of pos-

sible states. Progress on path problems has been aided by understanding 

this part of their formal structure. In computational intelligence, progress 

has been aided by having faster computers that can compute more poten-

tial paths through the space and by heuristics that suggest which paths are 

more likely to be fruitful than others.

Insight problems, on the other hand, do not have the same kind of formal 

structure. They do not provide the representation or state space, and they 
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may not have explicit rules for moving from one state to the next. In fact, 

they may have only two states or maybe three states (for example, wrong 

representation, right representation, solution). Humans can solve both path 

and insight problems, but they are so different from one another that under-

standing how path problems are solved is of little value to understanding 

how insight problems are solved. Computer scientists have extensively stud-

ied path problems but have done practically no work on insight problems.

One could argue that the real intelligence in setting up a computer 

system to solve a path problem like chess or go is the design of the state 

space, representation, methods for changing from one state to another, and 

maybe heuristics for selecting potential paths. Once these are created, there 

is not much to do except employ these tools. John McCarthy, an early pio-

neer in artificial intelligence, complained that once we understood how to 

solve an AI problem, it ceases to be considered intelligent.

Quirks of Human Intelligence

People do not seem ordinarily to pay a lot of attention to the formal parts 

of a problem, especially when making risky choices. For example, Tversky 

and Kahneman, as was mentioned, found that people would make differ-

ent choices when presented with the same alternatives, depending on how 

these alternatives were described. We have already looked at the difference 

between early-bird discounts and late payment penalties.

Participants in one of their studies were asked to imagine that a new dis-

ease threatened the country, from which 600 people would be likely to die. 

They were further told that two programs had been proposed to treat these 

people. And they were asked to choose between two treatments. In the first 

version they were told:

Treatment A will save 200 lives, whereas under Treatment B, there is a 33% chance 

of saving all 600 people and a 66% chance of saving no one.

Given this choice, 72% of the participants chose treatment A. Being certain 

to save 200 people was seen to be preferable to the chance that all 600 

would be lost.

A second group was given a different version of the same choice:

Under treatment A 400 people will die. Under treatment B, there is a 33% chance 

that no one will die, and a 66% chance that all 600 people will die.
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In this second version, 22% of the participants chose Treatment A. Assum-

ing that people believe that the numbers in each alternative are accurate, 

Treatment A is identical for both groups. Presumably, 600 people will die 

if no treatment is selected. In the first version, 200 of these people will be 

saved, meaning that 400 of them will die. In the second version, 400 people 

will die, meaning that 200 of them will be saved.

A rational decision maker should be indifferent to these two alterna-

tives, yet the differences in people’s preferences were substantial. The first 

version emphasized the positive aspects of the alternative, and the second 

one emphasized the negative. By a dramatic margin, people preferred the 

positive version.

It is worth noting that alternative B was also identical under both condi-

tions. The expected number of people to survive under alternative B was 

also 200, but this alternative also included uncertainty. People preferred the 

certain outcome over the uncertain one when the certain one was framed 

in a positive tone and preferred the uncertain alternative when the certain 

one was framed in a negative tone. The frame or tone of the alternatives 

controlled the willingness of the participants to accept risk.

From a rational perspective, the effect of positive versus negative fram-

ing makes no sense. Formally, these alternatives are identical. One could 

say that this is an example of human foolishness rather than human intel-

ligence. On the other hand, this error may tell us something important 

about how people make their decisions. Correct and incorrect decisions are 

both produced by the same brains/minds/cognitive processes.

Perhaps the apparent irrationality of the choices made in the treatment 

problem are due to limitations in the way that people can think about a 

problem in a short amount of time. People seem to have dramatic capabili-

ties in some areas of cognition, but decidedly limited ones in others.

For example, people can recognize thousands of pictures and even 

details from those pictures. In one demonstration of this phenomenon, 

people were shown 10,000 images for a few seconds each. They were then 

tested by being shown two pictures, one of which they had seen and one 

that they had not seen. They could choose correctly in about 83% of these 

pairs (Standing, 1973).

On the other hand, Raymond Nickerson and Marilyn Adams (1979) 

asked people living in the United States to draw the front and back of a US 

penny. Try it, and see what you can come up with. Nickerson and Adams 



Human Intelligence	 45

found that people were remarkably inept at remembering what was on a 

coin that they saw practically every day. Of the eight critical features that 

Nickerson and Adams identified, people included only about three. If you 

think it was because of the low value of the penny (it was worth more in 

the 1970s) or because we don’t use coins much anymore, try recalling other 

common objects, such as a $1 or $20 bill or your credit card.

Unlike computers, people are relatively limited in what they can keep in 

active memory at one time. Digit spans were used in some early intelligence 

tests. In a test of digit spans, the examiner provides a set of random digits 

(for example, 5, 1, 3, 2, 4, 8, 9) to the person being tested, and the person is 

supposed to repeat them back immediately. Most healthy adults can repeat 

back about seven digits.

The typical limitation of about seven items is not limited to just num-

bers. In 1956, George Miller published a paper called “The Magical Number 

Seven, Plus or Minus Two.” In it, he noted the wide range of memory and 

categories where people were limited to handling between five and nine 

items without making errors.

Miller was among the first cognitive psychologists to talk about memory 

chunks. People can adopt representations that allow them to expand the 

number of items that they can keep in mind. Chase and Ericsson found 

that one person could remember up to 81 digits after extended practice. 

This person, identified by his initials, SF, increased his memory span by 

organizing the digits into chunks that were related to familiar facts that he 

knew about, such as race times (he was an avid runner) or dates.

These and other psychological phenomena show that people have a 

complexity to their thinking and intellectual processes that is not always in 

their favor. People jump to conclusions. We are more easily persuaded by 

arguments that we prefer to be true or that are presented in one context or 

another. People do sometimes behave like computers, but more often, we 

are sloppy, inconsistent, and sometimes not too bright.

Daniel Kahneman describes the human mind as consisting of two sys-

tems, one that is fast, relatively inaccurate, and automatic. The other is 

slow, deliberate, and when it does finally reach a conclusion, more accu-

rate. The first system, he said, is engaged when you see a picture and note 

that the person in it is angry and is likely to yell. The second system is 

engaged when you try to solve a multiplication problem like 17 × 32. The 

recognition of anger, in essence, pops into our mind without any obvious 
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effort, but the math problem requires deliberate effort and maybe a pencil 

and paper (or a calculator).

Kahneman may be wrong in describing these as two separate systems. 

They may be part of a continuum of processes, but he is, I think, undoubt-

edly correct about the existence of these two kinds of processes in human 

cognition (and maybe ones in between). What he calls the second system is 

very close to what I call artificial intelligence. It involves deliberate, system-

atic efforts that require the use of cognitive inventions.

The bat-and-ball problem shows one way that the two kinds of process 

interact. Try to answer this one as quickly as you can. Let’s say that to buy 

a bat and a ball costs $1.10. The bat costs $1.00 more than the ball. How 

much does the ball cost?

Most people’s first response is to say that it costs 10 cents. On reflection, 

however, that cannot be right because then the total cost of the bat and 

ball would be $1.20, not $1.10. One dollar is only 90 cents more than 10 

cents. The correct answer is that the ball costs 5 cents. Then the bat costs 

$1.05, which together add up to $1.10. The initial, automatic response can 

be overridden by a more deliberate analysis of the situation.

Computational intelligence has focused on the kind of work done by 

the deliberate system, but the automatic system may be just as or more 

important. And it may be more challenging to emulate in a computer. This 

rapid learning may sometimes result in inappropriate hasty generalizations 

(I always get cotton candy at the zoo), but it may also be an important 

tool in allowing people to learn many things without the huge number 

of examples that most machine learning systems require. A hasty gener-

alization proceeds from one or a few examples to encompass, sometimes 

erroneously, a whole class of items. Ethnic prejudices, for example, often 

derive from a few examples (each of which may be the result of yet another 

reasoning fallacy, called “confirmation bias”) and extend to large groups of 

people.

On the other hand, processes such as language learning rely on hasty 

generalization. A one-year-old child may know a few dozen words or maybe 

even 100, but a 12-year-old may know 50,000 to 75,000 words. That’s a lot 

of learning going on over those 11 years. Many of those words will have 

been heard only once or twice. Learning them does not typically take delib-

erate effort (until the child starts to practice for tests like the SAT). Children 

just learn them as part of their daily experience from a small number of 



Human Intelligence	 47

examples. They may misuse some of the rarer words, but they do have a 

concept of what they mean, even if that meaning does not match that of 

a dictionary writer. For example, a linguist friend of mine recounted a con-

versation she had with her son, who was worried about getting a potential 

treat later in the day if he behaved. He asked his mother if he was “being 

have.” This was clearly a phrase that he had never heard before, but he had 

heard the instructions to “behave,” and to “be good.” He and his mother 

certainly talked about “being good.” It was a natural extension to therefore 

think that it would appropriate to say “being have.”

The deliberate system has its limitations as well. In one famous experi-

ment, the researchers showed people a short video of two teams bounc-

ing basketballs. They asked the participants to count the number of times 

one team bounced the ball and to ignore the other team. In the middle of 

this video, they had a gorilla, actually a woman dressed as a gorilla, walk 

through the scene, beat her chest, and walk off. The gorilla was visible for a 

full nine seconds in the video, but only about half the participants reported 

seeing her. Apparently, it took all of their cognitive capacity or attention to 

track the basketball bounces that they were counting, and there was none 

left to notice the gorilla.

Another example is called “change blindness.” When people view a pic-

ture, they typically report that they see all of its parts. However, it is easy 

to show that their reports are incorrect. Change blindness is shown by dis-

playing two pictures in alternating order, usually with a small time gap 

between them. The two pictures are different from one another, usually in 

rather unsubtle ways. For example, the two pictures may display an airliner. 

In one picture it has an engine under the left wing; in the other it does 

not. Even with deliberate effort, many people do not find the difference 

after many repetitions of the two pictures. [https://www.cse.iitk.ac.in/users/

se367/10/presentation_local/Change%20Blindness.html]

People do not always see what they think they see. Their self-report of 

what they are doing and how they are doing it is not always a good indica-

tor of what is actually going on when people perform cognitive tasks. If 

computers are going to emulate human intelligence, they will need to copy 

some, but perhaps not all, of the covert (Kahneman’s System 1) processes 

that people engage. Yet these processes are generally inaccessible to deliber-

ate description, so there is no obvious road map to implementing them. 

Nonetheless, they seem critical to human intelligence.

https://www.cse.iitk.ac.in/users/se367/10/presentation_local/Change%20Blindness.html
https://www.cse.iitk.ac.in/users/se367/10/presentation_local/Change%20Blindness.html
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Quoc V. Le at Google (2012) deployed 16,000 CPU cores in a simulated 

neural network to process 10 million pictures over three days. After all 

of this training, their system was able to group pictures of human faces 

together. The pictures were carefully prepared for presentation to this sys-

tem, all scaled to the same size (200 × 200 pixels) and selected to minimize 

duplicates. Compare this to the ability of people to recognize thousands of 

pictures after only a few seconds of presentation.

After all of this training, Le and his colleagues examined the outputs of 

the system and searched for one of the output simulated neurons that was 

best correlated with faces. They inferred that this neuron was the “face neu-

ron” because it was the most active one on about 83% of the 13,026 faces in 

a test set of 37,000 pictures. In identifying this neuron, they used a method 

similar to that used in the 1950s, in analyses of frog visual neurons. Lettvin 

and his colleagues (1959) measured the output from frog visual neurons 

while they showed the frog different visual patterns until they found the 

pattern that produced the largest response in the neuron. They then labeled 

this neuron relative to that stimulus (for example, as a “bar” neuron).

In contrast to the Herculean effort Le’s system required to cluster photo-

graphs, a child does not need anything like this level of effort to recognize 

human faces. Within an hour of being born, babies can recognize human 

faces relative to other scenes. Within hours of being born, infants learn 

to recognize their mother’s face over a female stranger’s (Bushnell, 2001; 

Bushnell, Sai, & Mullin, 1989; Pascalis, de Schonen, Morton, Deruelle, & 

Fabre-Grenet, 1995; Sai, 2005). They learn not just how to recognize a face; 

they recognize individual faces after just a few exposures.

By two months of age, babies can distinguish between novel pictures of 

general scenes and pictures that they have seen before. In other words, they 

show evidence of being able to classify pictures as novel versus familiar by 

the time that they are two months of age—and after less than 10 presenta-

tions of these pictures, not millions. At this point, we do not know very 

much about how babies learn so rapidly, but such rapid learning mecha-

nisms may be an essential part of human intelligence.

If we are to design intelligent computers, we will need to know how 

humans learn what a face looks like so quickly. Infant brains are doing 

something different from what Le’s computer network was doing, and 

identifying just what that difference is could be an essential part of creat-

ing general machine intelligence. Whatever babies do when they come to 
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recognize faces, it is probably not “stochastic gradient descent with topo-

graphic independent component analysis.”

Ultimately, it may be possible to accomplish similar goals with differ-

ent means, but it seems to me that understanding this in the context of 

human intelligence is a critical part of accomplishing it in machines. The 

same brains that show the irrational quirks are also capable of such efficient 

learning, and it is likely that these characteristics are related.

Conclusion

A theory of artificial general intelligence would benefit strongly from a bet-

ter understanding of just what intelligence is. Even though there is no clear 

consensus on what psychologists mean by intelligence, I think that it is 

clear that it involves more than formal problem-solving abilities.

An essential part of that theory of intelligence is the recognition that 

there are actually multiple kinds of problems, which appear to require mul-

tiple kinds of mechanisms to solve them. The problem of finding a represen-

tation that can be used to solve a problem is fundamentally different from 

navigating a path through a specified representation. Fast learning appears 

to be another essential feature of intelligence. Multiple iterations through 

thousands or millions of examples before something can be learned is a 

strong barrier to creating intelligence. Insight, particularly the ability to 

construct representations, is a critical skill for intelligence. We don’t know 

a whole lot about how people generate these insights, but there are some 

clues, to be described in chapter 7. These are among the themes that we will 

return to through the rest of this book.
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3  Physical Symbol Systems: The Symbolic Approach to 

Intelligence

In this chapter we discuss some of the early computational approaches to intel-

ligence. The idea of the Turing machine, a general computational device, led to 

the notion of intelligence as a computational function. The Turing test provided a 

suggested means for evaluating whether a machine was able to execute a function 

similar to that of an intelligent human—in this case, to hold a conversation. From 

these two ideas grew the notion that intelligence is a symbol-manipulating pro-

cess. This approach dominated the field of computational intelligence for about 

30 years.

If defining intelligence precisely in the context of human intelligence is 

difficult, as we saw in the preceding chapter, it is even more difficult in 

the context of computational intelligence. In the early days following the 

Dartmouth workshop, artificial intelligence was taken to mean something 

like “the art of making machines do things that would require intelligence 

if done by men” (Minsky, 1968). In the original Dartmouth workshop pro-

posal, the stated goal was to describe, with sufficient precision, every aspect 

of learning or intelligence so that a machine could be made to simulate it. 

Specifically, McCarthy and his colleagues thought to focus on investigat-

ing how to make machines use language, form abstractions and concepts, 

improve themselves, and solve the kinds of problems that only humans 

had previously been able to solve.

Herbert Simon, one of the attendees at the Dartmouth workshop, is 

quoted as saying soon after that meeting:

It is not my aim to surprise or shock you—but the simplest way I can summarize 

is to say that there are now in the world machines that think, that learn and 

that create. Moreover, their ability to do these things is going to increase rapidly 
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until—in a visible future—the range of problems they can handle will be coex-

tensive with the range to which the human mind has been applied. (Simon & 

Newell, 1958)

Although there were attempts to build computational devices before 

this, the roots of this approach to machine intelligence are most directly 

attributable to seminal work by Alan Turing.

Turing Machines and the Turing Test

In 1937 Turing introduced a concept that came to be known as a Turing 

machine. A Turing machine is not a physical machine made of gears or 

transistors; rather it is an abstract computational idea. It is a mathematical 

description of a kind of ideal system that can implement any computable 

function. It is a model of computation that defines basic computational 

processes and can, in theory, be built to simulate the logic of any algorithm.

Conceptually, a Turing machine consists of a tape, marked out in squares 

or cells. Each cell may contain one symbol. Because the Turing machine is 

conceptual, the tape can be assumed to be of infinite length. The machine 

has a “head,” which can read or write a symbol in one of the cells, and 

a “state register,” which holds information about the current state of the 

machine. The symbols that the machine reads from the tape can change 

the machine’s state among a finite number of potential states. The state 

is affected by the symbols that have been read so far. So the state acts as a 

kind of memory. Depending on the symbol in the currently read cell, the 

machine’s state, and a finite table of rules, the machine can change state, 

write a symbol into the current cell, or move to a different cell on the tape 

(Turing, 1965/1936).

For example, given that the machine is currently in state 57 and the cell 

under the read/write head contains a 0, the machine may move one cell to 

the right, change into state 128, and write the symbol 1 in this new cell. 

The states, the symbols, and the rules are all finite, but given that the tape 

has no practical limit and that time is not limited, a Turing machine can 

conceptually have infinite capacity.

With this abstract machine, Turing was able to answer fundamental 

questions about computability. Modern computers are generalizations and 

physical instantiations of Turing’s original proposal. They have more com-

plex rule sets, they have multiple registers (not just one) where they can 
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keep temporary information, and they have random access memory (as 

opposed to the sequential memory of an even infinite tape).

One of the reasons that the Turing machine is so important to com-

putational intelligence is that if intelligence is computable, then it would 

be computable by a Turing machine. If it can be computed by a Turing 

machine, then it would be computable by any machine that was equivalent 

to a Turing machine. Turing believed that intelligence was, in fact, a com-

putable function, and he proposed a test that would evaluate this belief. 

This test came to be called the “Turing test.”

The word “computable,” especially in the context of a “computable 

function,” has a special meaning in computer science. Computable func-

tions are algorithms. They consist of a step-by-step procedure that takes 

an input and produces a definite output. According to the Church–Turing 

thesis (named after Alonzo Church, whose paper on the topic came out in 

the same year as Turing’s paper on computability), a computable function 

is one that could be implemented on a calculation device that had access 

to an unlimited amount of time and an unlimited amount of storage space 

(Turing’s infinite tape). Operations that require a lot of memory or that 

take a long time may still be computable as long as the process could be 

completed if the system had sufficient resources. This notion of comput-

able is concerned with the theoretical limits of computation, not with the 

practical limits.

To be computable, the procedure must be specifiable with exact instruc-

tions, such as in a computer program. Given a set of inputs, it must pro-

duce an output after a definite number of steps, and the output must be 

verifiable.

Not all functions are necessarily computable. Even if a computer can 

execute some program, that does not mean that the program is computable 

in the Church–Turing sense. For example, Turing proved that the so-called 

halting problem was an example of a function that is not computable, even 

with unlimited resources.

The halting problem is a decision problem: determine from a description 

of a computer program and an input whether the program will finish and 

produce an output or will run forever. For really simple programs, it is fairly 

easy to make this decision, but for programs with some complexity, Turing 

showed that it was impossible to reliably make this decision.
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If we run the program and it stops within a short time, that’s great. We 

can decide that the program does, indeed, finish. But if we run the program 

and it does not stop, is that because it will never complete or because we 

simply have not run it long enough? If we run it longer, does that provide 

any better evidence that it will not complete? For all we know, the very next 

computational step will lead to its completion, or maybe not. Some algo-

rithms take a very long time to complete, and some may never complete. 

We can prove that some programs will halt and produce an output, but we 

cannot, in general, prove that it will never finish. It is impossible to prove 

a negative.

If we cannot prove that it will complete, then we say that the function is 

not decidable. Notice the relationship between decidability and proof. The 

idea is that we must not only make a decision but verify that this decision 

is correct. Turing proved that a general algorithm addressing the halting 

problem for all combinations of programs and inputs cannot be written.

A function, in the computer science sense, takes an input and produces 

a specific output. Even if intelligence is a function, it may not be a comput-

able function. It may not be a provably decidable function. It could still be 

executed by a computer, but we may never be able to prove that its answer 

is definitely correct. In fact, I argue that intelligence is not a decidable func-

tion in this sense, but it can still be implemented by brains and computers. 

Intelligence, in other words, is not an algorithm, but is, perhaps, a different 

form of computation.

Turing argued that the work of one of his machines can be used to do the 

work of any other computer. We would simply have to include a descrip-

tion of the machine we want to emulate as part of its tape. Presumably, if 

we had a proper description of the brain, we could include that description 

on the tape and use a Turing machine to emulate it.

From this claim, it is easy to see why Turing machines were so important 

to computation and to computational intelligence specifically. They intro-

duced the notion of equivalent machines. Any two computers that com-

pute the same function are, in this conceptualization, equivalent machines, 

and it does not matter whether they were made of cogs and wheels, mer-

cury delay lines (as Turing proposed), vacuum tubes, integrated circuits, or 

perhaps even brains. Same function, equivalent machines.

The idea of a Turing machine also suggested that a machine, by manipu-

lating symbols, could implement any conceivable act of formal reasoning. 
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If it turned out that human thought could be implemented as acts of formal 

reasoning, as Newell and Simon claimed, then the Turing machine would 

be a proof that a computer could, in fact, duplicate it and be an equivalent 

machine to human thought. Much of the history of computational intelli-

gence research, at least through the 1980s, could be described as an attempt 

to show that formal reasoning was enough to implement the equivalent of 

human intelligence. Theorem proving, the topic that Simon and Newell 

focused on, is, of course, a quintessential example of formal reasoning.

Turing’s work was an essential part of practically every computational 

advance over the next 50 years or more. His ideas of equivalent machines 

as those that compute the same function, and his concept of the Turing test 

(described next), were also central to our understanding of computational 

intelligence. It was not until many years later that it began to be apparent 

that computability was also a limitation that computational intelligence 

needed to overcome.

Turing proposed his “imitation game” test in 1950 in the context of 

the question of whether a computer could be said to think. The concept 

of thinking is somewhat amorphous, so Turing asked, instead, whether a 

computer might do well in an imitation game. Essentially, he drew on his 

notion of equivalent machines to propose a test of machine intelligence. 

If a machine could hold a conversation that was indistinguishable from a 

conversation held with a human, then we would be compelled to consider 

that computer intelligent. If it executes the conversation function in a way 

that is indistinguishable from the way a human executes that function, 

then Turing would call it an equivalent machine.

The test assumes that conversation is the right measure of intelligence. 

But beyond that, if two systems are indistinguishable in that function, then 

we should not attribute properties to one that we do not attribute to the 

other.

Intelligence does not depend on the ability of the computer or the per-

son to render speech, so the assessor, in Turing’s proposal, would com-

municate with the candidate (the computer or the person) by typing and 

reading written responses. It is the form of the conversation, not its physi-

cal channel, that is important. If the assessor cannot tell whether the writ-

ten responses, perhaps presented on a computer terminal (in those days, 

on a Teletype), were coming from a person or from a computer, then the 

computer has passed.
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Turing anticipated modern machine learning in a presentation he gave 

to the London Mathematical Society in 1947 (Turing, 1947/1986). He 

supposed that one could set up a Turing machine or its equivalent digi-

tal computer with a table of instructions and the ability to modify those 

instructions. He supposed that after some amount of operation, the com-

puter would have modified its instructions beyond recognition. He com-

pared this computer to a student who had learned initially from his teacher 

but then added much more of his own work. “When this happens I feel 

that one is obliged to regard the machine as showing intelligence.”

Once a computer can modify its own instructions, then any question 

about the computability of the function that computer is running is off 

the table. The modifications of its computational pattern mean that we 

cannot predict with assurance whether it will produce a specific output, 

given a specific input. The concept of computability includes the idea of a 

definite process with a finite number of steps. Once a computer program 

can modify its own operation, it is no longer guaranteed to be following a 

finite set of steps. The computer may contain any number of computable 

functions that allow it to operate, but the overall function of intelligence is 

not, by this definition, computable. The process fails to be computable not 

because we cannot decide its status but because it is no longer executing a 

specific effective procedure.

If we give up the certainty of the Church–Turing effective procedure, we 

do not have to give up the idea that a computer is computing something 

effective in the more colloquial sense. Turing recognized this in his 1947 

report to the London Mathematical Society “. . . if a machine is expected to 

be infallible, it cannot also be intelligent. There are several theorems which 

say almost exactly that.”

A few years after Turing proposed his models of computability, Warren 

McCulloch and Walter Pitts (1943) showed how the brain could also be 

a Turing-equivalent machine. They showed that their conceptualization 

of neurons could be organized to compute the basic logical functions. 

“Because of the all-or-none character of nervous activity, neural events 

and the relation among them can be treated by means of propositional 

logic” (McCulloch & Pitts, 1943, p. 115). As you might expect, from the 

vantage of more than 70 years of research into neurons and their activity, 

their idea of how neurons represent mental activity was oversimplified; it 

nevertheless represented a radical departure for thinking about the mind 
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and brain—one that was highly influential in the development of artificial 

intelligence.

McCulloch and Pitts’s hypothesis was among the first to propose a for-

mal theory of mind (that the mind was a Turing-equivalent machine) and 

among the first to talk about neural networks and computation. The basic 

idea is that all logical relations can be represented as some combination of 

the logical operations AND, OR, and NOT. McCulloch and Pitts showed 

how neurons could, in fact, perform these logical operations. There-

fore, some organization of neurons could be the equivalent of a Turing  

machine.

The Dartmouth Summer Workshop (1956)

The idea of brains as Turing-equivalent machines was also one of the main 

motivations for John McCarthy to organize the 1956 Dartmouth sum-

mer workshop. Like Turing, McCarthy was interested in the mathemati-

cal properties of intelligence. He had done some work on the application 

of mathematics to commonsense reasoning and had worked for Claude 

Shannon, who is often called the father of information theory. McCarthy’s 

background in mathematics, particularly mathematical logic, and his inter-

est in the brain inspired him to organize a workshop, which already been 

mentioned several times, directed at “the conjecture that every aspect of 

learning or any other feature of intelligence can in principle be so precisely 

described that a machine can be made to simulate it. An attempt will be 

made to find how to make machines use language, form abstractions and 

concepts, solve kinds of problems now reserved for humans, and improve 

themselves.”

Among the topics that they proposed to consider were:

•	 “How can a computer be programmed to use a language?” They noted 

that “a large part of human thought consists of manipulating words 

according to rules of reasoning and rules of conjecture.” Can we write a 

program that allows statements to imply others?

•	 Neural networks. “How can a set of (hypothetical) neurons be arranged 

so as to form concepts[?]”

•	 Machine learning. “Probably a truly intelligent machine will carry out 

activities which may best be described as self-improvement.”
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•	 Creativity and randomness. “The difference between creative thinking 

and unimaginative competent thinking lies in the injection of a some 

[sic] randomness” but this randomness must be guided by intuition.

The participants in this workshop, John McCarthy, Marvin L. Minsky, 

Nathaniel Rochester, and Claude Shannon, plus Allen Newell, Arthur 

Samuel, Oliver Selfridge, and Herbert Simon, went on to write computer 

programs that could do things like play checkers, solve algebra word prob-

lems, prove logic theorems, and converse in English. The attendees of this 

conference were a veritable who’s who of the people who would become 

important in the future of computational intelligence.

Herbert Simon and Allen Newell discussed their program (written with 

John Shaw), the Logic Theorist, at the Dartmouth workshop. In fact, they 

were the only participants who had a working program demonstrating 

some aspects of artificial intelligence.

Their program was designed to prove mathematical theorems like those 

in Bertrand Russell and Alfred Whitehead’s book, Principia Mathematica. 

And it was able to prove a substantial number of them. Simon saw this work 

as a major accomplishment (see chapter 1) in part because it used the com-

puter symbolically, not just as a mathematical calculator.

The Logic Theorist was an attempt to take advantage of the power of 

symbol manipulation techniques. Newell and Simon were helped to achieve 

their progress because Russell and Whitehead had already expressed the 

theorems in their book in a precise symbolic form. The key idea of the Logic 

Theorist was that any problem that could expressed as well-formed formu-

las of a certain type could be solved by their approach.

Like many of the computational intelligence approaches that came after 

them, Newell and Simon argued that intelligence could be represented as a 

formal system and a computer program could be written that would be able 

to navigate that formal system. Like checkers-, chess-, and go-playing com-

puters would eventually do, their approach was the equivalent of a graph 

that connected axioms to a conclusion, usually through several intermedi-

ate steps. The role of the computer was to search through this graph for 

the set of steps that would lead from the axioms to the conclusion, thereby 

proving the theorem. Despite the limited computational power available 

in the middle of the twentieth century, their approach was able to solve 

a number of problems, which led them to expect that a more complete 
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solution would be available with only a little additional work and a little 

more computational power.

Newell and Simon’s presentation received a lukewarm reception at the 

Dartmouth conference, but its introduction of the concept of reasoning as 

search had a profound and lasting effect on computational intelligence. 

Their method started with an initial hypothesis. Each branch was then a 

deduction from this hypothesis based on the rules of inference described 

in Principia. The set of deductions that led to the goal was the proof of the 

theorem. You can describe this path as a selection among the branches of 

a logic tree.

The Logic Theorist also used heuristics to select which paths to try. The 

notion of a heuristic was introduced by George Polya, with whom Newell 

had studied at Stanford, in the context of proving theorems, so it was a 

small step to use it in this context as well. The use of heuristics is critical to 

most kinds of problem solving, not just artificial intelligence. Heuristics are 

essential, particularly when there are too many possible paths or branches 

to follow. The heuristics limit the number of branches that need to be fol-

lowed by selecting the ones most likely to be useful.

Newell, Simon, and Shaw’s later program, the General Problem Solver, 

excelled at logical and geometric proofs. It separated its knowledge of prob-

lems, the rules, from the means of solving them, and so became a generic 

problem-solving engine. It could solve the Towers of Hanoi problem and 

play chess when these problems were expressed as well-formed formulas.

One heuristic it used for dealing with the large number of possible paths 

from the axioms to its conclusion was to choose the branch that would 

bring it closer to its desired conclusion. This heuristic can be called “hill 

climbing” because it chose the option that would take it further toward the 

top of the hill, the intended conclusion.

Representation

Newell and Simon later elaborated their notion of computational problem 

solving into the physical symbol system hypothesis (1976): “A physical 

symbol system has the necessary and sufficient means for general intel-

ligent action.” “Necessary” means that without a physical symbol system, 

one cannot achieve general intelligent action. “Sufficient” means that 
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having a physical symbol system is all one needs to achieve general intel-

ligent action.

A physical symbol system is one that takes physical symbols (such as 

marks on paper or symbols encoded into a computer) and combines them 

into structures or expressions. It then manipulates those expressions to pro-

duce new expressions. The symbols are physical objects that denote, repre-

sent, or stand for other objects. They may be virtual, they may be states of 

some physical system (such as an electrical charge on an integrated circuit, 

or a magnetic domain on a disk), but they are still physical. They are phys-

ical things that stand for other things. The physical symbol system, includ-

ing its symbols and the rules for manipulating them, mapping them to 

other symbols, combining them into expressions, and transforming those 

expressions, is argued to be the basis for intelligence.

The physical symbol system hypothesis implies that computers can be 

intelligent if we just give them appropriate symbol-processing programs. 

Human thinking is symbol manipulation, under this hypothesis, and any-

thing capable of such symbol manipulation is capable of being intelligent.

The physical symbol system hypothesis implies that there is a set of 

basic, primitive, irreducible symbols that form the core of the system, for 

example, axioms. Other symbols are defined by expressions using these 

basic symbols. The physical symbol system hypothesis casts intelligence as 

a formal system. This approach follows directly from Newell and Simon’s 

original endeavor to try to prove all of mathematics from a set of axioms 

following Russell and Whitehead.

There are many criticisms of the physical symbol system hypothesis (see 

Nilsson, 2007). Among these is the question of whether it means anything 

more than that knowledge and intelligence can be digitized. If the ones 

and zeros of a computer comprise symbols in Newell and Simon’s sense, 

then there is not much to their claim. Ones and zeros in a computer, for 

example, don’t by themselves represent anything in the world. However, 

expressions including digits can represent things in the world. The num-

ber 438 (in binary: 110110110), for example, could stand for the number 

of calories in a piece of apple pie or for item #438 on a trucking manifest. 

Whether encoded as ones and zeros or as decimal digits, the mere presence 

of a number does not provide a symbolic representation without a process 

to specify its representational relation. Symbols have to stand for some-

thing to be symbols, they cannot just be isolated tokens. External reference 
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is necessary, and external reference is not simply a formal process in the 

way that deductions from observations can be a formal process. The need 

for external reference is exactly the same problem that we considered in 

the context of logical positivism in the previous chapter. The problem of 

how symbols acquire their referential status is called the “symbol ground-

ing process.”

“Symbol grounding” is the process by which a symbol gets related to 

something outside of itself. Formal systems cannot infallibly connect sym-

bols with their meanings. However, the operations that are appropriately 

performed on a symbol or expression depend on the “meaning” of that 

symbol. A symbol representing an item on a manifest might be added to or 

deleted from a list, but a symbol that represented the number of calories in 

a piece of pie might be added to a daily calorie budget. Not all operations 

make sense for all symbols.

The formal system is not entirely separable from the semantics (meaning) 

of the symbol. Meaning contaminates the symbol system, so a symbol sys-

tem cannot be sufficient to produce intelligence. Newell and Simon could 

gloss over the symbol-grounding problem when proving the theorems of 

Principia because theorem proving in that context is already a purely formal 

system. Solving other kinds of problems, however, does involve issues of 

symbol grounding.

Language is a quintessential symbol system that Newell and Simon took 

as their inspiration for the physical symbol system hypothesis. But lan-

guage does not work as a purely formal system. Language too suffers from 

the intrusion of meaning to affect what can be done with the symbols. One 

example of this kind of intrusion is called the “locative alternation.” Some 

verbs can be used in multiple sentence structures without changing their 

meaning. For example, the following two sentences mean essentially the 

same thing:

•	 Leo hit the fence with a stick.

•	 Leo hit a stick against the fence.

But the next two sentences do not mean the same thing, even though the 

forms of the second pair are identical with forms of the first. The only dif-

ference is the use of the word “hit” versus the word “broke”:

•	 Leo broke the fence with a stick.

•	 Leo broke a stick against the fence.
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In the second pair, it is the fence that broke in the first sentence but the 

stick that broke in the second.

Hitting is a so-called locative verb—it puts the stick at the fence—but 

breaking is not a locative verb. Putting or removing verbs can take this 

alternate verb phrase form, but nonlocative verbs cannot. The meaning of 

the verb affects the sentence structures in which it can be used to convey 

a certain meaning. The world and the representational system cannot be 

rigidly separated. We will return to the symbol grounding problem shortly.

Criticisms like these further indicate that formal symbol systems are not 

adequate for computational intelligence. It is possible to argue that com-

puters only process ungrounded arbitrary symbols, but there is no reason 

to think that the brain has any better way to ground symbols, like those in 

expressions such as “John’s wife,” “the apples from Washington,” or “uni-

corns do not exist.” Those symbols are no more formally grounded than 

the symbols in a computer. Rather, the meaning of the symbols comes from 

how those symbols are used. Even without a guarantee that the usage is cor-

rect, constraints on how symbols are used provide their meaning.

The approach to rule based intelligence inherent in the physical symbol 

system hypothesis, despite its problems with symbol grounding, continued 

to have a profound effect on computational intelligence in the form of so-

called expert systems.

In the 1970s, computer scientists, particularly Edward Feigenbaum and 

his colleagues, began to investigate the possibility of building practical rea-

soning engines, which came to be called expert systems. Expert systems are 

intended to solve complex problems by emulating the reasoning of human 

experts, where this reasoning is represented by if-then rules. For example, 

a medical diagnosis system might have a rule of the form “If the patient 

has a rash, then consider whether the patient also has other symptoms 

of measles.” They were not intended as models of general artificial intel-

ligence. Rather, they were special-purpose applications that address specific 

problems.

Expert systems are strongly in the tradition of physical symbol systems. 

Feigenbaum was a student of Simon’s. The rules of an expert system were 

ordinarily written down explicitly by “knowledge engineers” working in 

collaboration with subject matter experts. One of the first of these systems 

was DENDRAL, a program intended to help chemists identify unknown 

organic molecules from their mass spectrographs.
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A mass spectrograph is a device that breaks complex chemical compounds 

into their elements and describes the relative amount of each element. It is 

instrumental in uncovering the chemical makeup of the compound and an 

important step in identifying its chemical structure. Even if we know the 

chemical elements that make up a compound, there are still many possible 

ways that those elements can be organized. DENDRAL was intended to use 

expert knowledge about the organization of chemicals to heuristically limit 

the range of possible organizations that had to be examined.

As a program, DENDRAL enforced a strict separation between its knowl-

edge base (information about chemistry) and its inference engine. New 

content could be supplied to the system without having to change any 

code. Knowledge could change, but inference methods would remain the 

same when moving from one kind of task to another.

Feigenbaum and his colleagues attributed the success of DENDRAL and 

other expert systems to the knowledge base it contained (its set of facts), 

rather than to the system’s reasoning power: “A system exhibits intelligent 

understanding and action at a high level of competence primarily because 

of the specific knowledge that it can bring to bear: the concepts, facts, rep-

resentations, methods, models, metaphors, and heuristics about its domain 

of endeavor.”

A later program called MYCIN was intended to diagnose blood diseases. 

Using about 450 rules, acquired by knowledge engineers through extensive 

interviews with experts, MYCIN was able to perform as well as some medi-

cal experts and better than most junior physicians.

DENDRAL, MYCIN, and similar programs were the first effective AI pro-

grams that accomplished more than solving toy problems. By 1982, expert 

systems were in commercial operation at Digital Equipment Corporation 

and many other companies. They translated the research problems of arti-

ficial intelligence into practical systems that solved real-world problems.

In the late 1980s I wrote an expert system to diagnose closed head inju-

ries for what was then the US Veterans Administration. Closed head injuries 

occur, for example, when a person is struck in the head hard enough to 

cause an injury, such as a concussion, but not so hard as to crack the skull. 

Such injuries are common in battles (and, it turns out, in the NFL), and it is 

often difficult to get the victims to a place where they can be diagnosed by 

an expert. The rules for this system were based on extensive interviews with 

a neuropsychologist expert. The interviews allowed me to capture the rules 
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that the expert uses. Once written down, they could be easily encoded into 

the system’s knowledge base.

In an expert system, the rules are explicitly coded into the system’s 

knowledge base by the knowledge engineer. A huge advance in artificial 

intelligence occurred when methods were later developed to allow the com-

puter to learn its own rules. We will return to a consideration of the imple-

mentation of expert systems in the next chapter.

The emergence of expert systems had three valuable consequences for 

computational intelligence. First, they showed that at least some problems 

could be addressed by an embodiment of a physical symbol system. Sec-

ond, they took AI out of the laboratory into solving real-world problems. 

Third, they did not pretend to solve the problem of general intelligence but 

limited their scope to specific problems using general methods. Arguably, 

the shift from general intelligence to the solution of specific problems is the 

most important and long-lasting of these consequences.

This shift from general intelligence, as described in the proposal for the 

Dartmouth workshop, to narrow intelligence is a striking pivot. The unre-

alistic promises of artificial general intelligence, and their ultimate disap-

pointment, prevented the field from achieving long-term stability. Each 

breakthrough seemed promising, but progress was ultimately limited along 

with the funding when general intelligence failed to materialize. Once 

expert systems began to be deployed in real business settings, however, it 

became easy to see clear progress with demonstrable value.

Within a few short years most researchers in computational intelligence 

had abandoned any overt attempts to build a general enough machine to 

be capable of any task that could be performed by a human. They focused 

instead on building “dumb specialists in small domains” (Minsky, 1996). 

Success in narrow computational intelligence has been dramatic and 

remarkable, especially over the last decade or so.

But the goal of an artificial general intelligence has not been completely 

abandoned. It is still in many senses the holy grail of computer science. The 

bulk of the work, however, has concerned solving specific problems where 

progress is more immediate and more easily assessed.

Early AI systems, including early expert systems, suffered from the lack of 

computing power. Ross Quillian (1969) had a demonstration of a language 

understanding system, but it had a vocabulary of only 20 words because 

that was all that would fit in memory. His program, the Teachable Language 
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Comprehender, contained a semantic network, another fundamental inno-

vation, that represented facts about its world and the connections between 

these facts. The network contained units that represented words or con-

cepts and properties that represented characteristics of those words or con-

cepts. Quillian’s 1969 paper on the Teachable Language Comprehender was 

little more than a promissory note or a sketch of a solution. To be really 

useful, it would require a much larger memory of basic facts and relations, 

better understanding of sentence structure, and stronger inference rules, 

but it was a kind of proof of concept.

Lack of computer resources continues to hamper AI work, but Moore’s 

law (roughly that computer capacity would double about every 18 months) 

and other progress in computing have brought us a long way from a time 

when 640,000 bytes (640k or 640,000 characters) was the norm for the 

amount of memory a system could hold. There is more computer power 

currently sitting on my wrist than there was in the college computer system 

I first learned to program in the 1970s. In 1976, Hans Moravec observed 

that computers would need millions of times more power than was cur-

rently available to actually show artificial intelligence.

The number of possible paths that would need to be considered for useful 

computational intelligence was also a formidable barrier to success. Beyond 

simple toy problems, the combination of all possible solutions meant that 

it would take an unreasonable amount of space to contain the alternatives 

and an unreasonable amount of time to try them all. Some heuristics were 

available to reduce the space and time burden, but they could not eliminate 

the burden. Since then, progress in computational intelligence has come 

from improvements in computational capacity and from the invention/dis-

covery of new heuristics. We return to this idea near the end of this chapter.

Attacks on the physical symbol system hypothesis became widespread in 

the late 1970s and early 1980s. Much of the criticism came from philoso-

phers, but some came from computer scientists as well. There were two gen-

eral classes of criticism. First, the symbol grounding problem, as mentioned 

earlier, is the argument that symbols need some kind of connection in the 

real world in order to be useful as the basis of intelligence. The second 

is that the kind of computation described by the physical symbol system 

hypothesis is not the right kind of computation to create intelligence.

The symbol grounding problem is that the symbols being manipulated 

by the physical symbol system are just squiggles and strokes if they are 
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written down, or ones and zeros if they are encoded in the computer. The 

system has no idea, according to the argument, that the symbols stand for 

something, that they are symbols of something. The word “apples” is just 

some marks on paper for a physical symbol system, but for an intelligent 

person, that symbol “refers” to a fruit. Real understanding, the argument 

goes, has to involve more than just manipulating symbols; it has to refer to 

the real world. Real understanding requires more than just a formal symbol-

manipulating system.

The nature of how symbols refer for anyone, let alone a computer, is a 

difficult philosophical problem that we are not going to solve here. Words 

can be ambiguous (“Apple” refers to a company as well). Meaning is not 

the same thing as reference (a traditional example is the meaning of the 

phrase “Golden Mountain” in the sentence, “the Golden Mountain does 

not exist” cannot refer to anything because it does not exist). But setting 

those problems aside, it can still be said that a physical symbol system con-

tains symbols and rules, without a connection to anything outside of itself. 

Intelligence, the argument goes, requires that outside connection.

John Searle proposed a thought experiment that he called the Chinese 

room. Imagine that you are in a room with bushel baskets of Chinese char-

acters. You do not speak or read a word of Chinese, but you have a complete 

rule book and an unlimited set of physical Chinese symbols. A human Chi-

nese speaker outside the room pushes Chinese characters, symbols, into the 

room by one window. The person outside the room actually does under-

stand Chinese, but the person inside the room does not.

When you receive the symbols, you consult your rule book and push 

other symbols out of a second window. Because the rule book is sufficiently 

complete, every response you make is the conversationally appropriate 

response to the input that you received. This system, in other words, passes 

the Turing test.

As far as the Chinese speaker is concerned, she is having a conversation, 

although with a funny way of passing the symbols, in Chinese. But you, 

inside the room, still understand nothing of what is going on except to 

consult the rule book and do what it says. The Chinese room is a perfect 

embodiment of a physical symbol system, yet, according to Searle, it under-

stands nothing so it cannot be intelligent.

It may be fair to say that the person inside the room still does not under-

stand Chinese, but there is no person inside your head. We say that you 
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understand Chinese when you can hold a conversation in it. None of your 

neurons, the cells that do the processing in your brain, understand Chi-

nese, but you do. The room may not understand Chinese, but the process 

operating in that room surely behaves as if it does. The rule book, the sym-

bols, and the implementation of the rules in the rule book together behave 

as if they understand Chinese, and maybe they do.

If I were to look inside the room, I might see you shuffling Chinese 

symbols around, but I cannot look inside your head in the same way. If I 

could, I might see neurons firing in various patterns, but that would not 

tell me directly whether you understand Chinese. I cannot observe Chinese 

understanding in your head any more than I can observe Chinese under-

standing by looking into the Chinese room. We attribute understanding to 

Chinese-speaking people with no more evidence that they understand than 

we get from the system in the Chinese room. I fail to see the difference, but 

for Searle, that difference is fundamental.

The whole thought experiment rests on the idea that the complete 

properties of language can be written in a rule book. I find that hypothesis 

implausible as well. Fundamentally, Searle’s argument is that computers are 

capable of only rule following and rule following is not enough to create 

intelligence. Brains do more than follow rules; they understand. It is not 

clear, however, just what understanding is, such that a brain could have it, 

but a computer could not. In the next chapter, we return to consideration 

of symbol grounding in the context of expert systems.

The other main criticism of the physical symbol system hypothesis 

focuses on the kind of computation that computers are capable of. One 

version of this argument is that intelligence rests on nonsymbolic or analog 

processes.

A formal system, like that proposed for the physical symbol system 

hypothesis, takes expressions “written” in one set of symbols and produces 

other expressions involving these or different symbols. It assumes, though, 

that there is some set of basic symbols in which these expressions can be 

written. These basic symbols are considered to be “atomic” units. An atomic 

unit is the basic building block, and it cannot be reduced any further. In 

language, the most atomic unit of meaning is the morpheme. A word such 

as “unfriendly” can be broken down into three morphemes: “un,” meaning 

roughly “not”; “friend,” meaning roughly “companion”; and “ly,” indicat-

ing that this word is an adverb.
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Atomic symbols can be combined into expressions, analogous to phrases 

or sentences. The symbol for the fruit plum means “plum.” It does not 

mean “apricot.” But now we have a new fruit, a pluot, which is a combina-

tion of a plum and an apricot. Do we now need a new atomic symbol for 

pluots? Just how many atomic symbols do we need? How do we decide 

which symbols are atomic and which are defined by expressions? Can we 

identify the basic atomic units or axioms of intelligence? The prospects for 

identifying such basic elemental symbols are dim. The effort to axiomatize 

mathematics failed (Gödel, 1931/1992), and there is no reason to think that 

it should succeed in intelligence.

“Delicious apples” is an expression for a kind of apple. In theory, it con-

sists of the atomic symbol for “delicious” and the atomic symbol for “apple.” 

Neither “horse apples” nor “wax apples” are actually a kind of apple at all. 

So even if “apple” is a symbol, it is not actually an atomic symbol in that it 

does not always have the same, unchanging meaning. Its meaning changes 

as a function of the context in which it appears.

Attempts to derive the set of axioms or basic atomic facts about the 

world have not resulted in any kind of success. Facts seem to depend on 

context, and there seem always to be categories that are between any two 

categories we might come up with.

Douglas Lenat has been working on the CYC system for more than 30 

years. CYC is intended to assemble a comprehensive representation of 

everyday commonsense knowledge. Soon after the project started, in 1986, 

Lenat estimated that the project would comprise 250,000 rules and take 350 

person years of effort. An open version of CYC was available for a while. In 

its latest iteration, it describes 239,000 concepts with over 2 million facts 

about those concepts. The commercial version of the system contains addi-

tional base facts and is still not very successful at commonsense reasoning. 

Knowledge of the real world is very difficult to reduce to a set of axioms and 

inferences drawn from them.

Intelligence in the natural world seems to require some nonsymbolic 

processes. By nonsymbolic, we usually mean some kind of analog signal 

and the processing of that signal. It is not the presence or absence of a 

sound, for example, that serves as a symbol, but the amplitude (loudness) 

of the sound and the pattern of frequency changes over time that carry the 

information needed to hold a conversation. Both amplitude and frequency 

can vary continuously, making them analog properties.
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To be sure, we can represent any analog property using symbols, like the 

digits zero through nine for increasing loudness (see the above discussion 

of the digital version of the physical symbol system hypothesis), but these 

symbols emulate or approximate the analog process. Loudness does not 

occur in, say, 10 discrete categories. Film and vinyl records are examples of 

analog recordings. CDs, DVDs, and Blu-rays are examples of digital approxi-

mations to those analog signals.

The intellectual tasks, such as chess playing, chemical structure analysis, 

and calculus are relatively easy to perform with a computer. Much harder 

are the kinds of activities that even a one-year-old human or a rat could 

do. This is called Moravec’s paradox, which I think should better be called 

Moravec’s irony. The things that people find difficult are relatively easy to 

do with a computer (checkers playing, reasoning, logic), but the things that 

people find easy, automatic, or even unconscious have been a challenge 

for computers. Building a robot that can fold a family’s laundry, for exam-

ple, turns out to be very difficult. Two companies have promised laundry-

folding machines, but neither is currently on the market and both need 

help at some point in the process (Lee, 2018). We’re not there yet, though 

one of these companies has apparently made some progress (Lee, 2019).

Recall the prime conjecture of the Dartmouth AI conference “that every 

aspect of learning or any other feature of intelligence can in principle be 

so precisely described that a machine can be made to simulate it.” Where 

computational intelligence has had the most success is precisely in those 

processes that are relatively easy to describe in precise detail. Where it has 

had less success is in those tasks that are difficult to describe in detail. Acces-

sibility to description is the key to computational success, at least until 

recently.

Human brains have evolved mechanisms over millions of years that 

let us perform basic sensorimotor functions. We catch balls, we recognize 

faces, we judge distance, all seemingly without effort. On the other hand, 

intellectual activities are a very recent development. We can perform these 

tasks with much effort and often a lot of training, but we should be suspi-

cious if we think that these capacities are what makes intelligence, rather 

than that intelligence makes those capacities possible. Reasoning and simi-

lar processes may be merely the tip of the iceberg of intelligence, resting 

on a base that is much less formal and much less structured, but essential 

nonetheless.
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Neurons are not fundamentally symbolic. Although the human mind 

can simulate a physical symbol system—for example—with effort, we can 

try to think logically. However, the evidence seems to indicate that the 

mind is inherently fuzzy. We have to go to school to learn logic, but logic 

does not always save us from making the wrong decisions. Consider the 

framing effect discussed in the preceding chapter—Kahneman and Tver-

sky’s finding that people make different decisions depending on how the 

question is presented or framed. If it is the case that humans only simulate 

physical symbol systems, but our underlying processes are fuzzy and irratio-

nal, then that would falsify the physical symbol system hypothesis. Boole 

and Simon were wrong; physical symbol systems are neither the basis for 

nor are they necessary for intelligent thought.

Scale was another serious challenge to the approach suggested by the 

physical symbol system hypothesis. Playing the game go was a serious chal-

lenge for computers because of all of the possible combinations of moves 

that must be considered. As the number of basic facts increases, the number 

of ways those facts can be combined explodes. This situation is called “com-

binatoric explosion.”

Consider a simplified chess-playing program, and assume that at each 

move there is an average of just 20 possible choices. Assume further that 

we want to choose a move that will lead us toward success, so we try to 

look ahead to predict what the situation will be 15 moves ahead. Follow-

ing each of the 20 possible moves could lead to 20 possible next moves, so 

looking even two moves ahead involves evaluating 400 possible alterna-

tives. Looking 15 moves ahead will require us to examine 20 to the power 

of 15 moves, which is about 3.3 × 1019 (33,000,000,000,000,000,000, or 33 

quintillion) possible moves. If our program could evaluate a billion moves 

a second, it would still take 90 million hours (10,000 years) to make a single  

move.

Most of the computational intelligence demonstration projects in the 

1960s through the 1980s focused on simple toy problems because they did 

not have the computer resources to deal with more realistic ones. Recall that 

Quillian’s language comprehender only managed a vocabulary of about 20 

words. The investigators working on these problems thought that faster pro-

cessors and more memory would enable them to easily increase the scope 

of their representations, but, as it turns out, they wildly underestimated 

the need, because they failed to properly account for the combinatorics of 
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expanding their programs. Theorem-proving programs, for example, failed 

at proving theorems with more than a few tens of facts.

Obviously, our chess-playing program will need some method to limit 

the number of combinations it considers, and that is where heuristics come 

into play. When an exhaustive analysis is infeasible, we have to find some 

manageable analysis that will get the problem solution approximately 

correct most of the time. Some developer has to have enough special-

ized knowledge of the problem and enough insight to generate sensible 

heuristics.

The difficulty of looking ahead in a chess problem shows that not all 

path problems are straightforward to solve, even if they are straightforward 

to describe. There is another class of problems that are even more intrac-

table, even though they sound like something that should be easy to solve. 

One of these is the knapsack problem. Given a knapsack with a certain 

capacity, for example, a maximum weight that it can carry, and a set of 

objects, each of which has a known weight and a known value, determine 

the items to include so that the total weight is less than the carrying capac-

ity of the knapsack and the total value of the contents is as high as possible.

With only a small knapsack, the problem is not terribly difficult, but 

the framework of the knapsack problem can be applied in a large number 

of situations. For example, professional sports teams may have a limit on 

the total amount of money the team can spend on player salaries. It is an 

example of the knapsack problem to figure out how to field a team that 

stays within this budget cap but still wins games. Other examples include 

identifying the least wasteful way to cut raw materials, constructing invest-

ment portfolios. The knapsack problem also plays a role in some kinds of 

cryptography.

The knapsack problem has been studied for over 100 years. As the num-

ber of objects to be considered grows, the complexity to solve the problem 

doubles with each additional object to be considered. Practically speaking, 

even large improvements in computer capacity would be very hard-pressed 

to keep up with even moderately complex problems with combinatoric 

properties similar to the knapsack problem. Search problems with a simi-

lar structure are extremely unlikely to be solvable without some kind of 

advanced heuristic to limit the range of alternatives that must be consid-

ered. Approximate solutions to the knapsack problem have, in fact, been 

used for many years.
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Despite the success of some forms of computational intelligence, such as 

expert systems, interest and funding for computational intelligence fell off 

in the 1970s and early 1980s. Neither the computer resources nor the means 

of building artificial intelligence were sufficient for dealing with even mod-

erately sized problems. Promises of computers soon being able to do any 

job that a human could do raised expectations that could not be met. The 

resulting disappointment led to what has been called an “AI winter.”

Ultimately, Turing’s claims that intelligence could be implemented by an 

effective procedure, and that it could be measured by a conversation, along 

with Newell and Simon’s extension of that notion to the physical sym-

bol system hypothesis, turned out to actually interfere with computational 

intelligence. On the other hand, another of Turing’s (1947/1986) ideas 

turns out to be very useful for the development of computational intelli-

gence, the idea that an infallible computer cannot be intelligent. If we give 

up on the notion that a computer should be infallible, then we may be able 

to have a computer yield intelligence. This idea is parallel to the position 

of Lakatos, discussed in the preceding chapter. Logical positivism sought 

to create an infallible science and ended up not being able to do science at 

all. Lakatos and others sacrificed infallibility in favor of criticism and com-

parative analysis, recognizing the science makes commitments that can be 

judged, but not proved. In other words, heuristics, which mostly work, but 

cannot be guaranteed to work, are essential. They may lead sometimes to 

the wrong answer, but without them, we get no answer at all.

These ideas about fallible intelligence were not widely known in the 

1970s and 1980s, even while the failure of the overpromised physical 

symbol system approach was underdelivering. Interest in and support 

for computational intelligence in the physical symbol system approach 

largely disappeared. The introduction of connectionism and other forms 

of machine learning in the mid-1980s, along with the explosion of the 

Internet and the World Wide Web, led to a resurgence in interest in compu-

tational intelligence, but a different kind of AI, one not so closely tied to the 

physical symbol system hypothesis. That is the topic of the next chapter.

Definition of General Intelligence

As with studies and tests of human intelligence, formulating a broadly 

applicable definition of artificial general intelligence remains challeng-

ing, and many of the challenges are similar to those involved with human 
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intelligence. But when designing computational intelligence systems, the 

question is not how to discover what is general, as Spearman tried to do, 

but to engineer it.

As with intelligence tests, it is relatively easy to formulate specific forms 

of intelligence as the ability to solve specific kinds of problems. It is easy 

to evaluate success when the problems are well-formed and have known, 

specific solutions. In some views, artificial general intelligence is not much 

more than putting together a sufficient collection of specific problem-

solving modules. If we have enough of the right mix of “modules” for solv-

ing the right mix of problems, then the problem of general intelligence 

comes down to selecting the right one of the modules to apply in a novel 

situation. Or at least that is one line of thinking. We will consider this 

approach in more depth along with a more detailed consideration of what 

artificial general intelligence might look like in chapter 12.

For now, it might be sufficient to mention a few characteristics of general 

intelligence. Current approaches to artificial intelligence work because their 

designers have figured out how to structure and simplify problems so that 

existing computers and processes can address them. To have a truly gen-

eral intelligence, computers will need the capability to define and structure 

their own problems. Robert Sternberg (for example, 1985), in the context of 

human intelligence, argues that intelligence consists of three types of adap-

tive capabilities: analytic, creative, and practical. Current approaches to 

computational intelligence do very well with the analytic aspects of intel-

ligence. Computers can calculate many times faster than humans can; can 

hold more variables in memory; and, above all, can behave more system-

atically than humans. Computers can outperform humans on tasks that 

depend critically on these capabilities, but they are woefully lacking on the 

other two.

Computers are limited in the kind of creativity that they can demon-

strate. They can demonstrate some apparently creative solutions to certain 

kinds of problems if that creativity can be achieved through the optimi-

zation of parameters. For example, computers can create some kinds of 

at least pleasant music that may have never been heard before, but the 

way they do it is by operating on a representation of music created by a 

computer scientist. The scientist provides the structure of analysis that the 

computer executes, picking the features of music that are most likely to 

be important, and providing examples of music from which the computer 

can extract patterns represented by the provided features. The computer 
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produces the music by adjusting its parameters in order to more closely 

approximate some combination of the known examples. The music may be 

novel, but the process by which it is produced is merely an extrapolation of 

the patterns that it has been trained on.

Practical intelligence is Sternberg’s attempt to escape from the intellec-

tual achievement focus of much human intelligence work. Even people 

who do not receive a formal education can be intelligent. They may lack 

some analytical capabilities, but they may have other practical capabilities. 

Practical intelligence includes what is often called “common sense,” things 

that people know that they probably did not require schooling to learn. 

Commonsense knowledge is focused on facts about an individual’s world. 

Commonsense facts are widely known but seldom explicitly described. 

This, too, is one of the reasons why common sense is so difficult for com-

puters so far.

A generally intelligent system should, of course, be capable of solv-

ing multiple kinds of problems. When it learns to solve new problems, 

it should expand its capabilities, not replace existing ones. Many current 

computer systems suffer from “catastrophic forgetting.” When they learn 

to perform a new task, they “forget” how to perform previously learned 

tasks. Although there is some work on transfer learning, most of the cur-

rently available applications can only solve one problem at a time.

A generally intelligent system must also be capable of generalizing from 

specific problems to more general principles and be able to exploit general 

principles to construct specific solutions. It must be able to apply learning 

from one domain to problems in another.

Although not a definition, precisely, of general intelligence, this list of 

characteristics is a beginning of what we might be looking for in a general 

computational intelligence agent. An agent with these capabilities would 

be able to identify problems that need solutions and would have the insight 

to structure and solve even unstructured problems. Much of the rest of this 

book is directed at further specifying these features and how they might be 

implemented.

Conclusion

The symbolic approach was the first pass at attempts to build intelligent 

machines. It rests on the idea that the processes that make up intelligence 
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can be precisely described. As a result, it focuses on tasks with easy-to-

describe steps. This approach was further reinforced by the idea that intelli-

gence is the stuff that well-educated people do, things like proving theorems 

and playing chess. After McCulloch and Pitts showed that a brain could be 

a physical symbol system, there seemed to be no reason that both human 

and machine intelligence could not be structured in the same way. In the 

next chapter we consider some nonsymbolic approaches to intelligence.
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4  Computational Intelligence and Machine Learning

Machine learning in some form is the mechanism by which computers expand 

their capabilities beyond those that were directly programmed in. Artificial general 

intelligence will need to be able to learn from its experience. Current approaches 

to machine learning, on the other hand, depend strongly on how human designers 

structure the problems. In this chapter, we discuss the fundamentals of machine 

learning and how it is dependent on choices its designers make.

The early rule-based systems, such as General Problem Solver, viewed intel-

ligence as a formal symbol-manipulating problem. If we could describe the 

processes of intelligence with sufficient precision, then we could design a 

set of rules by which a computer could simulate them. They then set about 

demonstrating such intelligence in the context of other formal systems, 

such as checkers playing and theorem proving. These are activities that 

could be purely in the “head” of the computer without having to deal with 

the messy reality of the world.

Limits of Expert Systems

Unlike theorem proving, the goal of an expert system (see chapter 3) is not 

solely to manipulate symbols but to solve problems in the world, such as 

identifying the chemistry of a sample from its gas chromatograph, finding 

oil in an oil field, or diagnosing medical disorders. The symbols in an expert 

system are grounded in that they relate to specific features of the physical 

world. The grounding comes from the rules that the knowledge engineers 

encode into the system, and it derives from the subject matter experts who 

use similar rules in their daily practice.
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Expert systems require reliable evidence and produce verifiable predic-

tions. They still rely on the assumption that the world, or at least the part 

of it with which they are concerned, can be described with sufficient detail 

that a set of rules will be sufficient to solve the problems they are intended 

to address, but they are grounded in that world.

An expert system consists primarily of a knowledge base, which contains 

facts about the part of the world that the expert system addresses, and a rule 

base, which contains tools for reasoning about those facts. It reasons with 

knowledge of the subject matter and with formal representations of the 

rules. In the context of the rules, the symbols do not stand for any arbitrary 

facts, but only for certain very specific kinds of facts.

If the world were different, the symbols would be different. For example, 

the DENDRAL expert system, discussed in chapter 3, suggested possible 

molecules that could result from measurement of a substance’s molecu-

lar weight. It addressed this question: what combination of atoms could 

return a molecular weight of x? Water has a molecular weight of 18 (two 

atoms of hydrogen contributing 1 each and oxygen contributing 16 units 

makes 18). Therefore, when a mass spectrometer detects a molecule with 

a molecular weight of 18, the most likely molecule that could return that 

weight is water. If hydrogen weighed more, then water would not be among 

the symbols suggested by an expert system when it finds a molecule with a 

molecular weight of 18.

Expert systems exploit the fact that computers are general symbol-

manipulating devices so that facts, heuristics, and mathematics can all be 

represented within one of these programs. The reasoning rules were typi-

cally organized into what was called an “expert system shell,” and they 

could be reused with a different set of facts. Logic is formal, and it does not 

care what we are reasoning about, but the facts are specific to certain tasks. 

The reasoning of an expert system combined knowledge about the subject 

matter with knowledge about reasoning to produce its results.

The rules in an expert system are conditional “sentences” like:

•	 A implies B.

•	 If A is true, then B is also true.

This form of argument is called “modus ponens,” and it works indepen-

dently of what A and B are. When formal arguments are combined with 

some specialized domain knowledge, then we might get rules like:
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•	 If X is an animal and X lives in the water and X has scales, then X is a 

fish.

Building out an effective rule set can be quite challenging. Expert sys-

tems often required three groups of people: software developers who write 

the code that runs the expert system (typically the shell), subject matter 

experts who know about the problem that was to be addressed, and knowl-

edge engineers who know how to translate the subject matter expert’s 

knowledge into rules that the computer could use. Building out an expert 

system was a custom project and was generally so difficult that only fairly 

narrow subjects could be practically captured. They never really had the 

effect of displacing actual human experts, but when they were used, they 

could sometimes supplement the expert.

MYCIN consisted of about 450 rules and about a thousand medical facts, 

mostly about meningitis. By today’s standards, it was a modestly complex 

system, but it took years to develop. The goal of MYCIN was to help diag-

nose patient infections and recommend appropriate therapies.

The insight of expert systems included:

•	 Knowledge is an essential part of intelligence.

•	 It is sufficient to focus on a fairly narrow task that can still be baffling for 

a novice.

•	 Practical success could be achieved by systematizing and automating the 

application of knowledge.

These insights were a big shift in the approach to computational intel-

ligence that continues to this day. The data are the most critical part of 

any current AI project. The projects tend to focus on solving specific prob-

lems, such as detecting spam. Although the computational methods are 

largely different today from what they were during the years of developing 

DENDRAL and MYCIN, the idea that we can systematize and automate the 

application of knowledge is still key to current computational intelligence.

Expert systems are an example of what has come to be called Good Old-

Fashioned Artificial Intelligence (called, with a bit of pejorative intent, 

GOFAI by John Haugeland, 1985). The rules were explicit and built “by 

hand” by the knowledge engineer and the subject matter expert.

For example, a GOFAI algorithm for playing tic-tac-toe (noughts-and-

crosses) might be something like this:
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•	 If you or your opponent has two (Xs or Os) in a line (row, diagonal or 

column), play on the remaining square in that line.

•	 Otherwise, if there is a square that creates two lines of two, play that 

square.

•	 Otherwise, if the middle square is open, play it.

•	 Otherwise, if your opponent has played a corner, play the opposite 

corner.

•	 Otherwise, if there is an empty corner, play it.

•	 Otherwise, play on any empty square.

•	 Repeat until no more choices remain.

Tic-tac-toe is simple enough that we can easily list out all of the rules 

in our system. But as the problems become more complicated, it becomes 

increasingly challenging to list out all of the rules, because of the “curse 

of dimensionality.” The more variables or dimensions there are, the more 

ways that they can be combined.

Listing out the rules is extremely brittle as well, meaning that small 

changes in the problem can cause big issues for the GOFAI system. With a 

game as simple as tic-tac-toe, we can easily compare a traditional rule-based 

AI approach with a machine learning one. The rules are not explicitly listed 

for a machine learning system; rather they are discovered.

Probabilistic Reasoning

Before we dig deeply into machine learning, one more innovation needs 

to be considered. The computational intelligence projects that came before 

expert systems had no tolerance for uncertainty. Facts were either true or 

they were not. In chess, for example, there is no uncertainty about the posi-

tions of the pieces on the board. But the world is not so sure as all of that. 

Expert systems introduced the idea that given some evidence, a rule might 

not predict something with certainty, but only with probability.

If it swims in the ocean, then it may be a fish.

MYCIN would report the probability that a certain set of facts might 

indicate a certain kind of infection.

Here is an example rule from a variant of MYCIN, EMYCIN (Buchanan 

& Duda, 1982):
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RULE160
If:

1)	 The time frame of the patient’s headache is acute,

2)	 The onset of the patient’s headache is abrupt, and

3)	 The headache severity (using a scale of 0 to 4; maximum is 4) * is greater than 3

Then:

1)	 There is suggestive evidence (.6) that the patient’s meningitis is bacterial,

2)	 There is weakly suggestive evidence (.4) that the patient’s meningitis is viral, 

and

3)	 There is suggestive evidence (.6) that the patient has blood within the sub-

arachnoid space

Internally, of course, the rules were not expressed in such clear English, 

but in the computer language LISP.

Extensions of the approach used in MYCIN led to the development of 

probabilistic reasoning models. These models allowed systems to make 

inferences with uncertain data and uncertain rules relating facts to infer-

ences about them. For example, the uncertain facts might derive from 

unreliable sensors, from subjective patient reports, or from other imperfect 

measurements. When you are in pain, it may be difficult to decide whether 

your headache is 3 or a 4 on a 4-point scale. Uncertain rules may result 

from imperfect relationships where, for example, other unmeasured vari-

ables may contribute to complex relations.

Among the systems to represent uncertain reasoning are Bayesian net-

works, which represent facts as nodes in a network and relations among 

these facts, including predictions, as links with degrees of probability. 

Dempster-Shafer theory, introduced by Arthur Dempster and expanded by 

Glenn Shafer, provided for a mathematical theory of evidence and provided 

a general framework for combining evidence from different sources to yield 

a degree of belief.

Leslie Valiant’s (1984) framework for probably approximately correct 

learning described how a machine learning system could learn to approxi-

mate a function, decision rule, and so on without having to have an 

explicit theory of the thing it was approximating. Based on the feedback 

the learning system received during its training, it could learn a rule that 

was approximately correct, even if it was considerably more difficult to 

learn an exact rule.
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Finally, Hopfield (1982) and Hinton and Sejnowski (1983) introduced 

another kind of probabilistic learning in the form of a network learning 

system called a “Boltzmann machine.” A Boltzmann machine is a network 

of symmetrically connected nodes. Each node makes a probabilistic deci-

sion about whether to be on or off depending on the inputs it receives from 

other units.

Although there were several projects that looked at probabilistic reason-

ing in the face of uncertainty before the mid-1980s, that is when a major 

surge in interest reshaped the field of computational intelligence research. 

These and other systems also prepared the way for the emergence of 

machine learning as a way to replace or enhance the painstakingly con-

structed rules of expert systems. Finally, they were critical in the develop-

ment of artificial neural networks, which have been one of the dominant 

forms of computational intelligence over the last couple of decades.

Machine Learning

The complexity and effort that went into building bespoke expert systems 

meant that these systems were fundamentally unscalable. Few organiza-

tions had the resources or the interest to build them. In those domains 

where expert systems were able to be successful, the goal was to automate 

the application of knowledge held by experts. If new knowledge was to 

be added to the system, it had to be elicited from the domain expert and 

encoded by the knowledge engineer. If the expert and engineers thought of 

a situation, then the expert system might have a rule to deal with it. If they 

did not, and the system encountered a situation for which it had no rule, it 

was probably out of luck.

The ability to learn is also one of the hallmarks of intelligence. Although 

the original perceptron (an early neural network described later in this 

chapter) in the 1950s included learning capabilities, the mid-1980s saw a 

rapid increase in the capabilities of machines to learn new information and 

new rules for themselves. These new systems could not only do what they 

had been specifically programmed to do but they could extend their capa-

bilities to previously unseen events, at least those within a certain range. 

Rather than provide a machine with an explicit set of rules concerning 

what to do in each situation, machine learning provides the machine with 

implicit rules that allow it to learn what to do in situations.
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As a step toward a machine learning system that could play tic-tac-toe, 

we could simplify the rule set to one:

•	 Of the available moves, choose the one with the highest estimated value.

But now, of course, the question becomes how does the system come to 

estimate the value of each move? In essence, the system has to learn the 

estimated probability of winning the game, given each current position 

(which squares have been marked by X and which by O).

One set of possible values could be:

•	 +100 points for winning (three in a row filled with your mark)

•	 +10 for each two-in-a-line (two of your mark with an empty cell)

•	 +1 for each one-in-a-line (one of your mark with two empty cells)

•	 +1 for placing your mark adjacent to your opponent’s

•	 +20 for creating a fork (two lines with two of your marks and one empty 

cell)

•	 +10 for a block (filling in the empty cell in a line with two of your oppo-

nent’s marks)

•	 0 otherwise)

The best move is to select the cell with the highest score. Like the GOFAI 

system, this one will tend to win or at least draw the game, but because 

the system uses the provided scoring unchanged, it still does not involve 

any actual learning. It is just a more dynamic way of choosing the moves 

determined by the rules. In this case, the scoring rules determine how the 

machine will play.

More interesting from a machine learning perspective, we could start 

with random scores for each possible move and add a method to adjust 

the score depending on the outcome of the game. If a move leads to a win, 

then its value is increased by a small amount. If it leads to a loss, then its 

value is decreased by a small amount. If it leads to a tie, then the choices 

might be increased by a smaller amount. This process is called “reinforce-

ment learning.” Like the psychological behaviorists, the system is rewarded 

for winning.

Because tic-tac-toe is a formal problem, two computers could play against 

one another. Paper and pencil are not required to play, only a way to keep 

track of which squares hold Xs and which hold Os, and to keep track of 

which moves lead to wins, ties, or losses.



88	 Chapter 4

One of these machines playing against the other might initially use the 

GOFAI method and the other might run the summation method, adjusting 

its estimate of the value of each move as it leads to winning and losing. 

At first, the machine learning system would lose games, but eventually it 

would adjust its choice pattern to at least tie.

Alternatively, both systems may play using the summation method 

and both may learn along the way. Over a series of games, choices that 

led to winning or tying would slowly increase their score, and choices 

that led to losing would decrease their score. The same kind of method 

could be applied to other games as well. In fact, this method was used in 

part by AlphaGo learning to play the game of go (discussed more fully in  

chapter 6).

During reinforcement learning, the system “tries” to maximize some 

overall level of reward over many learning episodes. When the result is pos-

itive, the steps leading to that result are strengthened. When the outcome 

is negative, the steps leading to that outcome may be punished. From this 

experience, the system learns a policy or strategy for choosing moves. Early 

choices in the chain may be more ambiguous than later ones, sometimes 

leading to a favorable outcome and sometimes to a loss, but over enough 

games, some strategies will turn out to be more effective than others and 

will be selected by the learning system.

Varieties of Machine Learning

There are at least three varieties of machine learning. These are character-

ized by where the system gets its feedback. We have already described rein-

forcement learning. Two other forms are called “supervised learning” and 

“unsupervised learning.”

Supervised learning is a more direct method of providing feedback. It is 

commonly used in situations that require the system to categorize items into 

two or more classes. In supervised learning, an expert labels several train-

ing instances for their category. For example, a person may label a group of 

pictures as containing people and another group as containing cats. The sys-

tem could then learn how to identify cats versus people by learning the fea-

tures in these pictures that lead to more accurate classification. This process 

is called supervised learning because the training examples supervise the 

system to produce the correct response. At first, the system would probably 

randomly assign a picture to one class or another. If it assigned the picture 
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to the correct category, then the features of that picture would be more 

closely assigned to the correct category. For example, a brown patch may 

be better associated with cat than with people pictures. If the system cat-

egorizes the picture incorrectly, then that connection would be weakened.

In unsupervised learning, the system gets its feedback from the data it 

is working on without any explicit human feedback. It is called unsuper-

vised learning because no human is needed to provide labeled examples. 

For example, a system may learn to group similar pictures together—called 

“clustering.” If the system is given pictures of human faces and cats, the 

human pictures may be more similar to one another than they are to the 

cat pictures, and the cat pictures may be more similar to one another than 

they are to the human pictures. The feedback is implicit in the way the 

system is designed to assess the similarity of items and in the rule that 

groups them by similarity. The supervision, if you will, comes from the way 

these feedback mechanisms are designed. Eventually the system comes up 

with groupings that have the highest within-group similarity and the low-

est between-groups similarity that it can find.

In both supervised and unsupervised learning, the system is given an 

objective. For example, the objective may be to maximize accuracy or to 

maximize within-cluster similarity relative to the similarity of items in dif-

ferent clusters.

Even among supervised and unsupervised learning, there are many 

machine learning methods, which appear different from one another on 

the surface, but are actually very similar at a more abstract level. For exam-

ple, according to Pedro Domingos, every machine learning system involves 

three key features:

1.	 A representation of the items to be learned about, their features, and the 

problem structure

2.	 An evaluation method used to assess how well the system is working

3.	 An optimization method to adjust the system to increase its quality as 

measured by the evaluation method.

According to Domingos,

LEARNING = REPRESENTATION + EVALUATION + OPTIMIZATION

To reduce it further, machine learning involves a representation of the 

problem it is set to solve as three sets of numbers. One set of numbers 
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represents the inputs that the system receives, one set of numbers repre-

sents the outputs that the system produces, and the third set of numbers 

represents the machine learning model.

When a system is working to classify pictures of cats versus people, for 

example, the inputs might represent the pictures as a matrix of pixels. Each 

point (pixel) in the picture could be represented, for example, as a combi-

nation of three integers, one for the brightness at that point of red, one for 

green, and one for blue. An image might contain 200 × 200 pixels or 40,000 

triples.

The output of the system might be just two numbers, one indicating that 

the picture is a cat and one indicating that the picture is a human.

The learning part of the system is in the third set of numbers—the model. 

The role of the model is to map the inputs to the outputs so that pictures 

that actually contain cats produce the output for cats setting its value to 1.0 

and set the output for humans to 0.0. Similarly, pictures that actually con-

tain humans set the output for cats to 0.0 and set the output for humans to 

1.0. The numbers in the model group reflect the parameters of the model, 

and those parameters can be very complicated. They are adjusted to pro-

duce the correct mapping using some kind of optimization method.

The music recommendation system Pandora represents each song that it 

catalogs according to about 400 traits, which they call the music’s genome. 

These traits include whether or not the piece involves acoustic rhythm gui-

tars, a repetitive chorus, characteristics of its harmony, rhythm, melody. 

These characteristics were originally selected by music experts. They are 

assigned to each song by experts. Every song is represented by some combi-

nation of these 400 traits in numeric form.

Pandora uses a machine learning system to identify the characteristics of 

the music that the person likes and then recommends similar music. Pan-

dora’s machine learning system is an example of supervised learning. The 

listener’s choice of songs provides the supervision that allows the system to 

identify other songs with a high probability of being enjoyed.

The model part of the representation concerns how the system repre-

sents the problem of music selection. If it depends on similarity between 

two pieces of music, then the features that it uses to measure similarity have 

to be chosen, and the statistical choice has to be made concerning how to 

compare those features.
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Recommendation system models usually represent the similarity of 

songs to one another and the similarity of users to one another. A complex 

model is created that recommends songs that are similar to ones that the 

user has liked before and songs that similar users have liked in the past. The 

objective is to maximize the probability that a user will like recommended 

songs. The input is information about each song and each user, and the 

output is the song being recommended.

To change domains, a chess-playing computer program became a lot 

easier once it was realized that a chess game can be represented as a tree of 

moves. Each turn presents a series of potential moves that could be made 

from that position. Each of the potential moves is a branch on the tree, 

each of the potential moves from there is a branch from that branch, and so 

on. Once chess was represented as a tree, the problem became one of select-

ing a subset of the tree’s branches for analysis, because chess trees have too 

many branches to evaluate them all in a timely manner. The game of go 

was thought to be unsolvable because the tree contains more branches than 

the number of estimated particles in the universe. So a critical part of the 

representation is the set of heuristics that allow the problem to be addressed 

in an acceptable amount of time.

The representation is chosen by the designer of the system. In many 

ways, the representation is the most crucial part of designing a machine 

learning system. So far, no existing computer system can create its own rep-

resentations yet. Much of the progress in computational intelligence over 

the last 30 years has been driven by the clever representations, particularly, 

the heuristics, that computer scientists have invented.

Once a representation has been selected, the next most important choice 

is an evaluation function. Like the simple tic-tac-toe point system described 

earlier, an evaluation function determines how far one is from the goal 

or learning objective. The evaluation method allows the system to choose 

between alternative moves. Typically, a system prefers a move that gets it 

closer to its goal.

In the case of tic-tac-toe, the method was to choose the square with 

the highest expected payoff as represented by the points assigned to each 

move. In chess, the goal is, of course, to win the game, and the best avail-

able move is the one that makes winning most probable. An implicit 

assumption of most machine learning is that it is possible, at each point in 
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time, to evaluate the available choices and to choose the one that will best 

lead to the goal.

Finally, every machine learning system needs an optimization function. 

The optimization function is a plan of how to make choices that bring 

the system closer to its goals. In the tic-tac-toe learning method, the opti-

mization function was to adjust the model weighs based on whether the 

machine won or lost. Then, during play, it would choose the square that 

had the points to be earned on that move. The points stand in as a way of 

estimating the likelihood of winning given each move choice.

There are many different optimization methods that a designer could 

choose. Some of these functions are better suited to some representations 

than others. Many of them involve heuristics allowing the system to avoid 

having to exhaustively evaluate all choices.

One optimization method is based around what can be called “gradient 

descent” (see figure 4). Every choice that brings the system closer to its goal 

is a decrease in the distance to the goal, often called “error.” So the system 

can select moves that lower this distance.

The concept of gradient descent is easy to understand when we look at 

each parameter separately. Each parameter typically starts with a random 

value. Then, at each step in the learning process, the optimization method 
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Figure 4
An illustration of gradient descent. Machine learning adjusts parameters to lower the 

error, that is, the disparity between where the system is and its goal.
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adjusts the parameter, either a little higher or a little lower. If the parameter 

is too high to give the desired result, then it is adjusted lower. If the param-

eter is too low to give the desired result, then it is adjusted higher. The 

pattern of adjustments follow the slope (gradient) of the effect the adjust-

ment has on the error, always working to make the error lower and thereby 

descending the gradient.

All types of machine learning fit within Domingos’s description of 

abstract machine learning. It is an open question at this point whether 

these kinds of machine learning are all that would be needed for general 

intelligence. We will return to consideration of this question later in the 

book. First, let’s look at machine learning in more detail.

Perceptrons and the Perceptron Learning Rule

Frank Rosenblatt, in 1957, developed the neural ideas of McCulloch and 

Pitts into an algorithm called the perceptron. The perceptron was conceived 

as a kind of neural network, where the neurons were simulated or emulated 

by circuits or software. The immediate goal of the perceptron work was to 

take a pattern of inputs, such as a simple picture, and categorize them.

In one early implementation, a perceptron device was constructed with 

an array of 400 photocells, arranged in a rectangular matrix. The photocells 

were randomly connected to electronic circuit “neurons.” When one of 

the photocells was activated by a light in that position, it would transmit 

an electrical signal to all of the neurons to which it was connected. For 

example, the pattern might consist of a letter, which would illuminate one 

set of photocells, or another letter that would illuminate a different set.

The system would learn to classify patterns on its photocells by adjusting 

the weights of the connections, using the perceptron learning rule, similar 

to the idea of gradient descent described earlier. In some versions of the 

perceptron, the weights were implemented using variable resistors (poten-

tiometers), which could reduce the voltage transmitted from one neuron 

to another. In computer simulated versions, the weights were purely math-

ematical and could be either positive or negative. The higher the weight, 

the more activation is transmitted. See figure 4.

Each pattern of light and dark presented to the photocells activated a 

pattern on the simulated neural input. Each illuminated photocell would 

transmit a 1.0 and each dark photocell would transmit 0.0 to the neurons 
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to which they were connected. Each pattern was intended to turn on one 

of the output neurons and turn off the others. The perceptron learning rule 

specifies how to adjust the weights to achieve this mapping from input pat-

tern to output as the training patterns are presented.

For example, the input might light up the photocells to form the letter 

H. The desired output from the network would be that the eighth output 

neuron would have an output of 1.0 and all of the other neurons would 

have an output of 0.0. A different neuron output, say the first one, would 

be intended to have an output of 1.0 when the pattern for the letter A is 

presented.

Figure 5 shows a small example perceptron. The illuminated photocells 

would provide the input. In this example, the first and fourth units are illu-

minated; the other two units are dark. The weighted connections transmit 

their activity to the outputs. The output units sum the weighted inputs that 

they receive, and if the sum is above a threshold, they respond with a high 

output; otherwise they respond with a low output. In this example, the 

second output is activated; the first one is not.

The perceptron learning rule compares the output observed for each 

given pattern with the desired output. Initially, all of the connection weights 

1.

0.

0.

–0.5
0.45

0.60
0.11

0.15
–0.05

0.02
0.63

–0.5 + 0.02

0.45 + 

Input Weighted
sum

Output

0.0

1.0

Weight

1.

Figure 5
A small example of a perceptron.
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are random values, so at the start of training, the perceptron responds ran-

domly to each input pattern. As each pattern is presented to the perceptron, 

if the network produces an output of 1.0 from a particular neuron when it 

should be 0.0, then all of the connections from active inputs leading to this 

output are weakened. If the output is 0.0 when it should be 1.0, then all of 

its connections from active units are strengthened. After some amount of 

training, the perceptron weights converge on a pattern that will produce 

the correct output for each training pattern. The perceptron learning rule 

is guaranteed to learn any pattern that a perceptron can represent, but not 

every pattern can be represented by a perceptron.

Table 2 shows an example of a kind of problem that a perceptron could 

represent. If either input is 1.0, then the output should be 1.0.

The first column shows the first input, the second column shows the 

second input, and the third column shows the desired output. The first row 

shows that the two inputs are both 0, and so the desired output is also 0. 

The other three rows show that at least one input is on (that is, has a value 

of 1.0), so the desired output is 1.0. Perceptrons can also learn to solve AND 

problems, where the output should be 1.0 if both inputs are 1.0 and should 

be 0.0 otherwise.

One of the patterns that a single-layer perceptron cannot learn is called 

the “XOR” (exclusive OR) problem. The XOR problem involves two inputs 

and two classes, just like the OR pattern described in table 2. In the XOR 

problem, however, one class reflects the pattern of either 1, 0 or 0, 1 and 

the other class involves the input pattern 0, 0 or 1, 1. That is, the output 

turns on if the inputs are different, but not if they are the same. See table 3.

The first row shows that the two inputs are both 0, and so the desired 

output is also 0. The second and third rows show that one input is on, the 

other is off, so the desired output is 1.0. Finally, the fourth row shows that 

Table 2
The Or problem can easily be learned by a single-layer perceptron.

Input 1 Input 2 Output

0.0 0.0 0.0

0.0 1.0 1.0

1.0 0.0 1.0

1.0 1.0 1.0
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the two inputs are both 1.0, so the desired output is 0. This pattern cannot 

be learned by a single-layer perceptron. It can only learn problems that 

are “linearly separable,” meaning problems where values above a certain 

threshold are in one class and values below that threshold are in another. 

The XOR problem specifies middle values to be in one class and extreme 

values, both high and low, to be in the other. That pattern is not linearly 

separable.

The XOR pattern is a fundamental pattern in logic, so a system that is 

not capable of learning this kind of relationship would have very severe 

limitations in the kinds of things it could do. Eventually, it was found that 

a multilayer perceptron could learn this pattern. Stephen Grossberg (1973) 

described a network where the output of the first group of perceptrons was 

fed as the input to a second group of perceptrons. He did not know at the 

time how to train such a multilayer network. When such a rule became 

widely known around 1986, the use of multilayer perceptrons exploded.

Beginnings of Machine Learning

I want to highlight two features of perceptrons. First, unlike the General 

Problem Solver or its relatives, the perceptron did not rely on hand-coded 

rules but learned those rules from examples. These examples included both 

input and output patterns.

Second, perceptrons employed an optimization process—the perceptron 

learning rule. At each point in time, the perceptron weights were adjusted 

to achieve its goal, in this case, to minimize the difference between the 

desired output and the observed output.

In the perceptron model, the model parameters are the connection 

weights that transmit activation from the inputs to the outputs. The same 

Table 3
The XOR (exclusive Or) problem cannot be learned by a single-layer perceptron.

Input 1 Input 2 Output

0.0 0.0 0.0

0.0 1.0 1.0

1.0 0.0 1.0

1.0 1.0 0.0
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model can compute different outcomes by changing its parameters. For 

example, the simple OR model described above with two inputs and one 

output has two input parameters: one for each input. If both weights are 

set to 1.0, then the output would receive activation of 1.0 if either of the 

inputs is on (1.0) and receive an input of 2.0 if both inputs are on. Any 

inputs that sum to meet or exceed a threshold value (a third parameter) 

would turn the output on. Any inputs that sum to less than the threshold 

would turn the output off. The AND problem could be solved with the same 

network structure as the OR network, but different weights: input weights 

of 0.5 and the same threshold of 1.0 for activation of the output. With 

those weights, both inputs would have to provide 1.0 to get the output to 

match its threshold of 1.0 (0.5 times the input from input 1 plus 0.5 times 

the input from input 2).

Machine learning is a combination of statistics and artificial intelligence, 

leading AI researchers to think in a probabilistic way and to emphasize data 

over knowledge. Statistical techniques that had been around for as much 

as a hundred years could be adapted to enable machines to estimate and 

classify.

Machine learning could be applied to more traditional computational 

intelligence problems. The Towers of Hanoi problem and the hobbits and 

orcs problem, for example, were previously represented in terms of specific 

rules for each move, given the current state. These state transition rules 

were explicitly written by someone with knowledge about the game and 

methods for solving it. In these games there could be no unexpected states 

and the number of potential moves is small enough that a person could 

write them all down.

This was not the case with checkers, however, let alone with chess. 

Arthur Samuel (1959) coined the term “machine learning” in the context 

of describing a program that would learn to play checkers. He chose check-

ers as a representative kind of problem that could eventually lead to solv-

ing more serious problems. Checkers is a relatively simple game, but with 

enough complexity to be interesting, especially within the limits of com-

puter capabilities of the 1950s.

In this example of machine learning, Samuel used many techniques that 

would be familiar to modern engineers. He represented the game as a tree, 

representing all of the legal arrangements that could be reached from any 

point in the game. He did not have the resources to fully evaluate that tree, 
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so he used heuristics to select which branches were likely to be most suc-

cessful. He approximated the value of each branch using a scoring function 

that included things like the number of pieces on the board of each color, 

the number of kings held by each side, and the number of moves required 

to elevate a piece to be a king. His heuristic chose the move that would 

return the highest score under the assumption that the opponent was also 

choosing moves this way.

The program recorded each position that it had seen in a game along 

with the ultimate outcome of the game. It then used historical information 

to augment the move-selection heuristic. He used recorded games played 

by professionals to further train his system and even had one computer 

play against another. By 1961, his checker program was able to beat the 

fourth-ranked checkers player in the United States. By the mid-1970s, his 

program was good enough to regularly beat respectable players.

Rather than prescribing specific rules to select moves, machine learning 

provides a mechanism by which the value of each move can be learned. In 

Samuel’s program, the value of memorizing already seen board positions is 

that his program would have a record of a complete set of branches lead-

ing from that configuration. To be sure, that record only included a single 

path through the tree for each game, but he could know with a high level 

of confidence what the outcome of that path would be. It effectively substi-

tuted data (the results of past experience) for broad reasoning. That, it turns 

out, is another of the common techniques in modern machine learning. 

Data, specifically examples of successful problem solving, are much more 

important for machine learning than is detailed knowledge of the problem 

state transitions themselves.

The representation, evaluation, and goal combination of a machine 

learning method describe the means by which state transitions can be 

learned. For example, a “metarule” in the tic-tac-toe learner, described ear-

lier, specifies that it should choose the square that has the highest value. 

Another metarule specifies that it should increment the value of a transi-

tion when it leads to winning the game.

Another way of saying this is that the representation of a machine learn-

ing problem specifies the range of possible state transition operators. The 

evaluation and optimization methods allow the system to select the appro-

priate ones. On this view, the learning part of machine learning is just 
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the process of selecting the right values to place on each state transition 

operator.

Like the weights in a perceptron, parameter values in machine learning 

are usually not drawn directly from an observation but are estimated from 

examples. The estimates may not be perfect, but after some training, they 

are approximately correct. For example, knowing a person’s height, we can 

predict that the person’s weight will be within, say, 2 pounds of our predic-

tion or within 5 pounds of our prediction. We can say that our prediction 

is probably approximately correct. Height and weight are observed, but the 

relationship between the two of them, the slope of the line relating height 

to weight, is a parameter we can estimate with the “regression” form of 

machine learning.

We will assume, in our model, that there is a straight-line relationship 

between height and weight. In order to estimate weight from height using 

regression, we must estimate two parameters. One is called the “slope”; the 

other is called the “intercept.” The slope is an estimate of how much weight 

changes as height changes. If one person is one inch (2.5 cm) taller than 

another, on average the taller person will weigh more, say, 5 pounds (2.3 

kg) more. The slope tells us that for each unit change in height, there will 

be so much change in weight.

The intercept is the numerically expected weight at zero height. We 

don’t actually expect anyone to have zero height, but 0 is a mathematically 

convenient and unambiguous value to use to define the position of the 

line. Once we have an estimate of these two parameters, we fully define the 

estimated relationship between weight and height. If we measured a new 

person’s height, we could then use this line to estimate what that person’s 

weight would be.

Finding the parameters of a relationship between two variables from 

examples of people’s heights and weights is a standard statistical technique 

called “regression.” No one has to program the estimates of slope and inter-

cept; they are learned from the example data.

Regression is a simple form of machine learning, though until recently 

it was mostly just thought of as a statistical process. What makes it learning 

is that its parameters are estimated from example data and are then used 

to predict values from other data that have not been seen previously (for 

example, from the heights of never before seen people). The predictions 
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may not be perfect, but they are approximately correct if the system was 

provided with enough examples.

Similar techniques can be used to make predictions from more compli-

cated combinations of data. Instead of just one estimator (height in this 

example), complex predictions may involve combinations of many predic-

tors (for example, height, race, gender, zip code, and so forth).

Machine learning is used in many places, from search engines on the 

web to spam-filtering email, to recommender systems that suggest films, to 

credit scoring. Machine learning is used to predict categories for items or, 

as in regression, to predict values from input data, for example, whether a 

blob in the video camera is due to dust or an obstruction in the road ahead.

Spam filtering is a familiar example of machine learning for categoriza-

tion that is effective and also relatively easy to understand. A large per-

centage of the email that many of us receive is unsolicited commercial 

messages—spam. Like other machine learning tasks, spam filters work from 

examples—in this case examples of spam emails, the ones you don’t want 

to have to look at, and “ham” emails, the ones you do want to see. One way 

to get these examples is to ask the user to categorize emails as they arrive. 

Users can classify emails that they don’t want as spam and the ones that 

they do want as ham.

In one basic form, the spam filter extracts the words or other cues from 

each of these emails and uses these cues to predict the most appropriate 

category for it. In this example spam detector, the system counts how often 

a word occurs in spam emails and how often it occurs in ham emails. It 

then uses these counts to estimate the probability of the word “Viagra,” for 

example, appearing in spam emails and its probability in ham emails. It 

repeats this process for every word in each email. Then, when a new email 

arrives that has not been tagged by the user, the system uses these prob-

abilities to decide whether the new email should be classified as spam or as 

ham, according to which is more likely to be correct.

Although I have simplified the process a little, this spam filter is an exam-

ple of what is called a “Bayesian classifier.” It is named after an eighteenth-

century mathematician and cleric, Thomas Bayes, who described the basic 

rule on which the classifier is based. Bayesian classifiers are one kind of 

machine learning that turns out to be particularly effective at separat-

ing spam from ham emails. We will discuss Bayesian learning again in  

chapter 10.
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A Bayesian classifier spam filter uses the distribution of words in the two 

classes to infer whether the set of words in a particular email is more likely 

to have come from a spam email or a ham email. It learns these distribu-

tions from the emails that were labeled by the user. The probabilities of 

each word for each category are the parameters that the system has to learn. 

So this form of machine learning involves many parameters.

Learning to filter suspicious emails is an example of supervised learning 

because it uses the labels provided by a “supervisor,” the mailbox owner, to 

learn to reproduce the decision patterns of that user.

Bayesian classifiers fit neatly into the Domingos framework for machine 

learning. As noted above, the key features of this framework are representa-

tion, evaluation, and optimization.

Representation  A Bayesian spam classifier represents the emails it is judg-

ing as a “bag of words.” The system uses the words and their frequen-

cies, but not their order. It is as if we took all of the words in an email 

and threw them into a bag. It represents the presence of each word in 

an email as an array or list of numbers. Each word has a position on the 

list, and that position is set to 1.0 if the word appears in the email and 

is 0.0 otherwise.

Evaluation  Evaluation of the Bayesian spam classifier consists of the mea-

suring of the probability of a correct classification on these examples. 

How often did it correctly identify junk emails as spam and good emails 

as ham?

Optimization  Bayesian classifiers have very simple optimization. As we 

accumulate more examples of spam and ham, we get better estimates 

of the probability of each word appearing in spam or in ham. We also 

need to estimate a threshold for deciding whether to classify an email 

as spam. Emails with probabilities higher than the threshold are called 

spam, and others are called ham.

How we represent the problem to be solved determines the range of 

possible solutions. Each combination of potential parameter values is a 

hypothesis for how to solve the problem. Evaluation and optimization 

allow the system to select among these hypotheses, but a system cannot 

select a solution that is not among the set of potential solutions. It cannot 

just decide that today, it will treat the problem as a regression.
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If a problem is represented as a tree, then the only solution that can be 

reached is one that can be described as following the branches of a tree. 

Machine learning can be used to select a path through the tree. But at least 

so far, machine learning cannot tell you that a tree is the wrong representa-

tion and suggest the right one.

The optimization method is the means by which the system searches 

among the potential solutions to find the one that is “best” or as close to 

best as it can find. There are many optimization methods.

Returning to the space metaphor, the optimization method moves the 

system closer its goal. The proximity to the goal is measured by the evalu-

ation process.

If there are only a few parameters to be adjusted, then we can use brute 

force and try them all. But when there are many parameters, the number 

of ways that they can be combined means that there are too many combi-

nations to consider. Then we need heuristics to select the combinations to 

evaluate. Improvements in machine learning have often relied on finding 

better methods to predict which changes will be useful and focusing on 

those.

Classification machine learning, as discussed, divides the patterns into 

categories that are determined by the labels assigned to examples. The sys-

tem is expected to generalize from these examples to previously unseen 

items. The user/supervisor tells the system how to organize the examples 

into categories, and the system learns to reproduce this organization.

Besides clustering, another unsupervised machine learning approach is 

called “association rule learning.” For example, in market basket analysis, 

all of the items that each buyer selects during a trip to a supermarket are 

tracked. It may be the case, for instance, that people who buy potatoes and 

onions are more likely than the average shopper to also buy hamburger. 

If this kind of rule is consistent, then the information could be used to 

improve marketing.

There is a story that was making the rounds a few years ago about how 

the retail company Target analyzes their shoppers’ buying patterns. Accord-

ing to this story, Target found that women buying supplements like cal-

cium, magnesium, and zinc were also buying higher amounts of unscented 

lotion. They first observed this in conjunction with women who had signed 

up for a baby shower registry, indicating that they were pregnant and when 

they expected to deliver. Target could then use this information to market 



Computational Intelligence and Machine Learning	 103

other baby-related products to these women. Machine learning was used to 

find the relationships, and Target made use of their discoveries. This story 

may not actually be true (Piatetsky, 2014), but it illustrates the idea of asso-

ciation rule learning using machine learning.

Machine learning is highly dependent on the examples that it is trained 

on. As Domingos noted, success depends on good data even more than 

on having good algorithms. What is worse is that poor data can deceive 

users into thinking that they have an effective machine learning process 

when really the system has merely learned some artifact of the data. For 

instance, if one were training a neural network machine learning system to 

recognize pictures with cats in them, what the system would learn would 

depend on the distractor pictures (the pictures of noncats) that were also 

presented. If the alternative category contained only landscapes, for exam-

ple, the system might learn to recognize the difference between pictures 

with large amounts of green and blue versus pictures with large amounts of 

black, brown, orange, or gray. The system would appropriately distinguish 

between cats and landscapes in the context of those specific pictures, but 

learning to categorize pictures by color is far different from learning to cat-

egorize them by whether they contain certain objects.

People looking at the pictures might jump to the conclusion that the 

system learned to identify cats, but that does not mean that the category 

“cats” is really what it learned. In fact, a recent analysis by Raghavendra 

Kotikalapudi found that one network was actually learning to categorize 

the objects in pictures by often trivial properties of those objects. For exam-

ple, the feature that it used to identify pictures of penguins was the large 

white area of its belly. The machine learning system is constrained by the 

representation designed into it, but it can still learn surprising things about 

the properties of that representation, things that do not necessarily match 

the expectations of its designers.

A related problem is called “algorithmic bias.” A machine learning sys-

tem may be perceived as objective, and in the context of the data on which 

it was trained, it really is, but the system cannot be any more objective 

than the data on which it was trained. For example, in 2015, Google’s pic-

ture classification software was called out for falsely classifying a picture 

of a 21-year-old African American programmer as a gorilla. Chimp also 

matched. The point is not that the software was foolish—maybe it was—

but more that the distinction that the computer learns is not always the 
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distinction that its designer wants it to learn. Better data, more labeled 

examples of black people, for example, might have prevented this problem.

The particular examples used to train a machine learning system are 

selected in some way, and this selection influences the outcome of the 

machine learning model. The system designer also selects the features to be 

used as the elements of the machine learning model. For example, machine 

learning has been used to create models of recidivism, the likelihood that a 

criminal will commit another crime in the future. Many of these models are 

highly controversial for a number of reasons, but I want to think about two 

of those reasons here; both involve the perceived fairness of the system’s 

recommendations.

Legally, each person is entitled to be treated fairly by the government, 

including the courts, as an individual. The person should be judged on 

his or her own merits. When the output of the recidivism program was 

analyzed, however, the investigators found that it treated black defendants 

differently from white defendants.

When the system made a mistake on a white defendant, it erred by pre-

dicting that the white person would not commit an additional crime when 

the person actually eventually did. When the system made a mistake on 

a black defendant, it erred by predicting that the person would commit a 

crime when the person did not. Overall, the system was moderately accu-

rate, but the difference in the kinds of errors made with white versus black 

defendants was seen to be unfair.

The solution to this bias is to include fairness in the definition of the 

system’s goal. Currently most machine learning is designed to maximize 

the correctness of its predictions, but it could easily be designed to maxi-

mize both the correctness and the fairness of its predictions. If a system 

does not include a definition of fairness in its goals, then any achievement 

of fairness will be merely accidental. Fairness is too important to be left to 

the whims of accident.

Reinforcement Learning

Reinforcement learning was introduced earlier in the context of learning to 

play tic-tac-toe. As a form of machine learning, it is in between supervised 

and unsupervised learning, because individual examples are not labeled, 

but the system still gets feedback when it reaches or fails to reach its goals. 
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The learner is not told which actions to take but must form a policy to 

select an effective series of actions that will lead it eventually to its desired 

outcome (and the reinforcement).

The goal of a reinforcement learning system is to maximize some cumu-

lative “reward.” A major problem is that the ultimate reward may depend 

on a series of actions and so be delayed for some time after those actions 

have been performed. Contrast reinforcement learning with supervised 

machine learning, where the feedback immediately follows each action. 

The challenge for the optimization method in reinforcement learning is 

to determine how to allocate the credit for the observed outcome to the 

actions that ultimately led to the reward.

In general, reinforcement learning and credit assignment (that is, how 

to allocate some proportion of the ultimate reward to earlier choices) are 

intractable problems to solve perfectly. Getting to rewards can require a 

large number of steps chosen from an even larger set of possible actions. 

It is impossible to check, in anything but trivial systems, all possible com-

binations of all possible actions that can lead to reward. As with other 

machine learning situations, heuristics are needed to simplify the problem 

into something more tractable, even if it cannot be guaranteed to produce 

the best possible answer.

There may be several actions to choose from at any point in time, but the 

only available information is the machine’s current state, which includes 

its history of actions and past reinforcements.

A reinforcement learning system needs to learn the probabilities that 

each action will lead to the reinforced outcome. The relation between each 

individual action and the ultimate receipt of reinforcement may be tenu-

ous. Actions may not always succeed. So the system’s learning methods 

must be able to cope with errors and with behaviors that individually affect 

the likelihood of reward by only a negligible amount.

Examples of reinforcement learning include robots learning to navigate 

their space and stock market investing. Picking a stock at a particular time 

does not immediately yield a profit—the reinforcement. Rather, the profit 

appears only some time later when the stock has been sold. Selecting which 

crops to plant and when to plant them can also be addressed with reinforce-

ment learning.

Reinforcement learning is particularly suited to interactive problems, 

where one can only learn about a situation by interacting with it. In these 
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cases, it is difficult to get examples of desired behavior that are correct and 

are representative of the kinds of situations that the agent may encounter.

Summary: A Few Examples of Machine Learning Systems

The variety of tasks to which machine learning has come to be applied 

is growing rapidly. In many cases, successfully solving a problem using 

machine learning causes the machine learning to effectively disappear from 

the user’s sight. Speech recognition, for example, has succeeded largely 

because of effective machine learning to map speech sounds to text, but 

following this success, people do not generally still think of speech recogni-

tion as a machine learning problem.

Credit card fraud

Machine learning has been used for several years to categorize credit card 

transactions as either potentially fraudulent or genuine. Transactions that 

are potentially fraudulent are routed for further processing and follow-up. 

They may be stopped at the point of sale.

Product recommendation

When you buy something on Amazon or from other online retailers, they 

will often offer you other products that you might like. Similarly, Netflix 

recommends movies. These recommendations come from recommender 

systems. There are several different ways in which the machine could learn 

what you might like. For example, the system may have learned that people 

who buy shampoo also tend to buy deodorant. If you buy shampoo, it will 

then recommend deodorant.

Face recognition

Applications such as Facebook analyze photographs to identify the people 

depicted in them. Face recognition combines several machine learning 

problems, first to identify that there is a face in a picture, and then to iden-

tify whose face that is. Both kinds of recognition may depend on identify-

ing face parts (such as noses or eyes) or other features of faces.

People find recognizing faces easy. However, computer face recognition 

is a challenging problem because of the large number of people whose faces 

could appear in a picture and because of the complexity of face geometry.

Machine learning for face recognition involves a series of steps, each 

of which is a machine learning problem on its own, each involving a 
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substantial number of training examples. When put together, however, it 

results in an effective method to identify the individuals in pictures in a 

wide variety of positions and against a broad set of backgrounds. But it 

bears little resemblance to the process apparently used by people, so when 

it makes a mistake, it is likely to make a different kind of mistake than a 

person would make.

Conclusion

Machine learning is an area of very active research. Machine learning is a 

critical part of computational intelligence and one whose importance con-

tinues to grow. Using a variety of techniques and clever representations, 

it allows machine to accomplish tasks that they were not programmed to 

accomplish in response to objects that they may have never seen before. 

The main insight that led to machine learning was the combination of 

statistics with probabilistic learning.
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5  Neural Network Approach to Artificial Intelligence

This chapter continues our discussion of machine learning, extending it to simu-

lated neural networks. These systems, starting with the perceptrons discussed in 

the previous chapter, are inspired by the operations of neurons, the computational 

elements of the brain.

Human intelligence is a product of mental operations, which are imple-

mented by the neurons of the human brain. The perceptron, described 

in chapter 4, was an attempt to use brain-like processes to implement a 

machine learning system. There was speculation that if brains can imple-

ment intelligence, then maybe we can achieve similar results by emulat-

ing the computational methods of the brain. Progress in neuroscience, an 

emerging understanding of how the brain’s neurons and basic networks 

of those neurons work, further lent enthusiasm to this approach. But this 

growing neuroscience knowledge also recommends caution in our attempts 

to model the human brain. As much as we know about neuroscience, we 

are still very far from having a complete understanding of how the brain 

actually implements intelligence. Nevertheless, simulated neurons turn out 

to provide an extremely powerful model for machine learning.

Networks of simulated neurons, the simplest of which is arguably the 

perceptron, have been able to solve a number of machine learning prob-

lems that were intractable with other forms of computational intelligence. 

These neural networks consist of usually layered collections of simulated 

neurons where each layer but the first receives inputs from the neurons in 

the previous layer and each layer but the last provides inputs to the suc-

ceeding layer. These simulated neurons are an abstraction and a simplifica-

tion of actual biological neural networks.
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Biological neurons consist of three main parts, a cell body, an axon, and 

dendrites. The cell body controls the biological activities of the cell. The 

axon is the fiber that transmits the messages from the neuron to the den-

drites of other neurons. The dendrites are a treelike structure, often with 

many branches, that receives information from the axons of other neurons. 

A given neuron can connect to thousands of other neurons.

Neurons do not connect directly to one another. Rather, there is a tiny 

gap, called a synapse, over which small packets of chemical signals are 

“sent.” The axon of the transmitting neuron releases a packet of neuro-

transmitter, which then passively diffuses across the synaptic gap and binds 

with receptors on the dendrites of the receiving neuron. The process of 

binding the neurotransmitter to the dendrite causes a cascade of chemical 

reactions in the receiving cell.

Simplifying a great deal, when neurons receive signals from other neu-

rons, they add up the activation they receive. Some of the transmitting 

neurons contribute excitatory signals to the receiving neuron, and some 

contribute inhibitory signals. Each type of signal is mediated by different 

neurotransmitters. If a neuron receives enough excitation, it will become 

active, resulting in a spike of electrical activity and releasing its own neu-

rotransmitters from its axons. The spike can be measured electrically because 

the activity of the neuron causes an electrical current to flow through the 

cell membrane.

Computational neurons generally do not represent the details of spik-

ing, but rather model the overall activation of the neuron. They sum up 

the inputs they receive from other simulated neurons, some of which have 

positive weights and contribute to activation and some of which have neg-

ative weights and subtract from activation. The output of a simulated neu-

ron is typically 1.0 if the total of inhibition and excitation exceeds some 

threshold and is typically 0.0 (or, in some networks, –1.0) otherwise. Other 

simulated neurons output a value that is related to the sum of activity they 

receive. At low sums, the output is effectively 0.0; at high sums, the output 

is effectively 1.0; and in between, the activity is approximately proportional 

to the sum of the inputs.

Another simplification of computational neurons is that their role is 

fixed in the networks they constitute. In contrast, some recent experi-

ments have found that biological neurons may change their role over time. 

Neurons that at one time reliably signaled that a mouse would make one 
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response later signaled the opposite response when the activities of these 

neurons were recorded over the course of weeks.

The simplified model of computational neurons used in neural network 

models cause each neuron to change its activity pattern over the course of 

training to optimize its role in producing the desired outputs for each input. 

Studies like this one with the mouse suggest, instead, that the brain changes 

dynamically and the role played by individual neurons may change over 

relatively short time spans. We do not yet know what the implications of 

this dynamic change are for intelligence, but it could indicate that we still 

understand very little about how neurons mediate intelligence in the brain.

There were three big problems with the simulated neural approach at 

the time of the initial work on the perceptron. One was the general lack of 

computing power—an issue that continues to limit computational intelli-

gence to this day. Without sufficient computational power, a neural emula-

tion might, in fact, be able to demonstrate intelligence eventually, but the 

designers would all have died before a problem was solved.

The second major problem with the perceptron approach was an over-

promise on its capabilities. There were severe limitations in the kind of 

logical functions a perceptron could compute. As discussed in chapter 4, 

for example, a perceptron cannot learn an exclusive OR (XOR) pattern that 

responds positively if one of two inputs is active and negatively otherwise. 

Without these patterns, the perceptron could not function as a complete 

model of logic, let alone as the basis for intelligence. Although not pub-

lished until 1969, Marvin Minsky and Seymour Papert’s critique of the per-

ceptron had a devastating effect on perceptron and other neural network 

systems. By the 1970s, there were only a few pockets of neural network 

research actively working.

The third problem with the initial approach to neural networks as the 

basis for intelligence was a lack of a learning rule to allow a network to 

learn how to compute the mapping from the inputs to the outputs, except 

in single-layer systems.

McCulloch and Pitts had shown how networks of neurons might imple-

ment all of the necessary properties of a Turing machine, but they did 

not have a way, other than laying out the network by hand, to generate 

structures with these properties. They did not know of a method by which 

the neurons could organize themselves, though obviously they do in the 

human brain.
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The perceptron learning rule was helpful, but it could only be applied 

to a single-layer network. Minsky and Papert (1972, p. 32) argued that the 

same limitations would apply to multilayer networks if we had a way of 

training them. As it turns out, they were wrong.

Although it was not well-known at the time, Belmont Farley and Wes-

ley Clark, in 1954, had already come up with a method for training two-

layer networks and had simulated them on an early digital computer. Farley 

and Clark’s networks, which contained up to 128 neurons, were trained to 

recognize simple patterns. They used a learning rule similar to what later 

became the perceptron learning rule.

The situation with self-organizing networks changed dramatically in 

1986 with the publication of an article on backpropagation in Nature, by 

David Rumelhart, Geoffrey Hinton, and Ronald Williams, and a two-volume 

set of technical books, edited by David Rumelhart, James McClelland, and 

the PDP Research Group. These books described what they called “paral-

lel distributed processing” (PDP)—neural networks and related structures. 

The largest impact arguably came from their description of a “backpropaga-

tion” learning algorithm that could be used for multilayer networks. The 

basic idea of backpropagation is that each neuron would have its weights 

adjusted according to that neuron’s contribution to the overall network 

error.

Their method was an extension of the perceptron learning rule similar 

to that described by Rosenblatt, Farley and Clark, and others. Their specific 

method was described earlier by Paul Werbos in his 1974 dissertation, but, 

again, it went largely unnoticed until it was popularized by the PDP books. 

Backpropagation could allow a multilayer perceptron to learn to set its 

weights. The kinds of problems that left perceptrons baffled were now read-

ily addressable by perceptron networks that fed into perceptron networks—

multilayer perceptrons trained with backpropagation.

The PDP books had a profound effect on artificial intelligence and on 

cognitive science in general. Interest in the PDP models exploded. It is dif-

ficult to overstate the excitement that these books engendered.

Neural Network Basics

The basic idea of neural networks is that information and processing are 

represented by patterns of activation across a network of neuron-like units 
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and the connections between these units. Each unit is active to varying 

degrees and can transmit this activation to other units to which it is con-

nected. Each unit receives activation from the neurons feeding it and trans-

mits activation to the units it feeds.

In a multilayer perceptron, the units are organized into layers. The initial 

layer receives inputs from the environment, such as a pattern or light (on) 

or dark (off). The units of the input layer then feed units in a second layer 

(often called the “hidden layer”), and the hidden layer feeds an output 

layer. In a multilayer perceptron, the units in a layer are connected only to 

units in the subsequent layer, not to each other. A given unit may receive 

inputs from multiple units in the previous layer and may send outputs to 

multiple units in the next layer.

Each unit has a threshold for activation. If the sum of the inputs it 

receives is below the threshold, then the unit will be off, or inactive. If the 

received sum is above the threshold, then the unit will turn on, or be active. 

Learning consists of adjustments of the connection weights between one 

neuron and the next. Higher weights contribute more to the sum at the 

receiving unit; lower weights contribute less, or even negative amounts.

Knowledge in the network is represented by the strength and pattern 

of connections among these units. Unlike expert systems, knowledge and 

processing of that knowledge are inseparable in a neural network.

The perceptron learning rule showed how to adjust the connection 

weights from the inputs to the outputs of a single layer to compensate for 

errors in the output of the network. For example, the goal of the network 

may be to distinguish male from female pictures. If the current input rep-

resented a “male” pattern, then the desired output would be for output 

neuron representing a “male” decision to be active and the other neuron 

to be inactive. If the current input represented a “female” pattern, then the 

desired output would be the opposite. Recall that the perceptron learning 

rule would adjust the input weights of these units to more closely approxi-

mate the desired pattern in just this way.

The backpropagation learning rule extends a similar learning method to 

multilayer networks. The networks are trained on a set of labeled instances, 

where the label specifies the desired output for each input. Each connection 

weight is adjusted by the backpropagation learning rule proportional to 

that neuron’s contribution to the error. The amount of error is said to prop-

agate from the output layer through preceding layers, adjusting connection 
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weights as it goes. If a connection to a hidden layer unit was strong, and 

that hidden layer unit contributed to the output error, then the strong 

weight would be weakened.

Whether the network consisted of a single layer or multiple layers, 

the inputs to the neurons could be described as a vector, which is just an 

ordered list of numbers. Recall that one of the earliest perceptrons had 400 

photocells as inputs. The amount of light projected onto each of these 400 

photocells could be represented as a number (say, between 0 and 255). If we 

numbered the photocells from 1 to 400, then the light received by each of 

them could be written in a list where the first number in the list represented 

the input to photocell 1, the next number represented the input to photo-

cell 2, and so on. That would be a vector.

The output of the network can also be described as a vector. Sometimes 

only one output neuron is desired to be on (have a strongly positive out-

put value) and all the others are intended to be off. If the purpose of the 

network is to identify the uppercase alphabetic character projected on the 

photocells, then we might have 26 outputs, one for each letter. If the pur-

pose is to distinguish cat pictures from other pictures, then we might have 

just two outputs. When a cat picture is presented, the desired output vec-

tor might be [1.0, 0.0], and when a person picture is presented, the desired 

output might be [0.0, 1.0].

Neural networks succeed because they do not base their operation on 

categorical rules but on pattern recognition. They recognize that a fever 

of 99.9 degrees is almost as dangerous as a fever of 100 degrees. They can 

reason probabilistically, for example, increase the likelihood of saying that 

someone should be treated with aspirin the higher the person’s tempera-

ture is.

The metaphor of neural network approaches to artificial intelligence 

is to solve problems in a brain-like way, rather than in a computerlike or 

Turing-machine-like way. Rather than being based on categorical rules that 

either apply or do not apply, as is the case with expert systems, neural net-

works treat inputs as more or less similar to one another, using units that 

may be more or less active. Some people call this style of computation sub-

symbolic because the information is represented in the activation of units 

rather than in symbols written on a virtual tape.

Neural networks make it possible to solve problems that have been 

resistant to physical symbol system approaches, including expert systems. 
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Symbols are all-or-none. In a Turing machine or its equivalent, a symbol is 

either written or it is not. A rule is either applied or it is not. In contrast, 

in a neural network, a representation can occupy a state that is somewhere 

between being fully present and being fully absent.

Neural networks specialize in fuzzy representations. Symbol systems 

specialize in “crisp” representations. With some effort, each one can emu-

late the other. Digital computers can simulate fuzzy neurons, and fuzzy 

neurons can simulate discrete categories. For example, CD, DVD, and Blu-

ray disks or downloaded audio or video programs are digital copies of an 

analog performance. Human brains can think logically and speak symboli-

cally. McCulloch and Pitts showed how a network of neurons could imple-

ment a Turing machine. But the fundamental building blocks of these two 

approaches are distinctly different.

Neural networks are much more about patterns than they are about sym-

bols and rules. Resemblance is a key relation. Face recognition, for example, 

is much more about identifying faces that resemble those that we know 

about. The overall pattern of similarity is important; no one feature or even 

no small set of features may define this relationship. When combined with 

efficient machine learning methods, neural networks can consider many 

thousands of variables in their computations, with each of these contribut-

ing a small amount but all of these together forming a pattern. The number 

of factors that can be considered by a neural network can far overwhelm 

any knowledge engineer trying to formulate comparable rules.

Dolphin Biosonar: An Example

My colleagues and I used neural networks, for example, to model how dol-

phins use their biosonar to recognize objects underwater or even under 

mud. Dolphins, like bats, use sound as an active source of information 

about their environment and the things in it. Both kinds of animals can 

see when there is enough light, but bats flying in dark caves and at night 

and dolphins swimming in deep water may not have enough light to see 

effectively. Dolphin vision, in particular, is like that of many terrestrial 

mammals, but dolphins are really effective at using sound waves to get 

information about their underwater world.

In experiments, we found that a dolphin can tell the difference between 

two cylinders that differ in thickness by the width of a human hair at an 
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underwater distance of 8 meters (about 26 feet). Unless the water is very 

clear, people cannot even see the cylinders at that distance, let alone tell 

them apart.

Dolphins using their biosonar send out a very brief click, which they 

generate inside their head. The click enters the water through the melon, 

that bulbous structure on the front of a dolphin’s head. The click is about 

50 microseconds (50 millionths of a second) in duration. It travels through 

the water in a tight beam until it reflects from the object, making an echo. 

The dolphin picks up the echo through fat channels in its jaw, which trans-

mit the sound to the dolphin’s inner ear.

The pitch of a sound, measured in Hertz (abbreviated as Hz or kHz for 

kilohertz; one kilohertz is 1000 Hertz), corresponds to the sound’s fre-

quency, like the keys on a piano. Piano keys on the left side of the keyboard 

are low notes and correspond to low frequencies (around 27.5 Hz). Keys on 

the right side of the keyboard are high frequency notes (up to about 4 kHz). 

People can hear sounds up to about 20 kHz, at least when they are young. 

Dolphin hearing, on the other hand, extends all the way up to 150 kHz. We 

humans need special equipment just to detect frequencies that high, but 

dolphins hear them naturally.

When an echo of a dolphin click reflects off an object, it contains a mix-

ture of many different frequencies. According to our studies and others, the 

dolphin uses the pattern of that mixture to identify what the object is and 

many of its properties.

Mammalian ears, including those of dolphins, mechanically transform 

the frequency pattern of sound into a spatial pattern on the cochlea, con-

tained in the inner ear. The spatial pattern results in a neural pattern that is 

transmitted to the dolphin’s brain.

In our studies, we used a technique called “fast Fourier transform” to 

analogously measure the mixture of frequencies in a signal and obtain its 

“spectrum.” The spectrum created mathematically more or less what the 

dolphin’s cochlea did biomechanically. A spectrum is a measure of the 

amplitude of a signal across frequencies.

We trained a dolphin to float in the water with her head in a hoop 

underwater. We then placed a special underwater microphone (called a 

“hydrophone”) next to the dolphin and recorded the echoes that came 

back from one of three objects. The dolphin sent out its sonar signals, pre-

sumably listened to the echoes that came back, and then touched one of 
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three “target poles” to tell us which object she had been presented with. If 

the dolphin got it right, we gave her a fish.

We did the same kind of experiment with these targets buried in mud. 

The dolphin was able to distinguish among cylinders made of coral, hollow 

aluminum, and foam-filled aluminum, all with high accuracy.

We then repeated the experiment using a three-layer neural network in 

place of the dolphin. We found that the accuracy of the network was com-

parable to that of the dolphin, both typically in a range well above 90%.

Pattern recognition, as expected, was critical in the performance of the 

neural network and of the dolphin. We did many follow-up experiments 

and found that we could eliminate some frequencies from the spectrum 

and still get good accuracy. The precise frequencies we eliminated did not 

matter, but the more we degraded the echo, the lower was the performance 

of the dolphin and of our network. Apparently, it is the overall pattern of 

the echo that is important, not any specific features of the echo.

My colleagues and I built this kind of network into a kind of underwater 

robot which could travel around using its sonar on the ocean floor and 

identify objects buried in the mud in front of it. There is a video of this 

vehicle on YouTube (https://www.youtube.com/watch?v=fP9k0eLP4ws).

Interest in neural networks diminished some in the 1990s and early 

2000s. Like a lot of interesting tools, they were good for many things but 

failed to live up to their hype. They still played significant roles in things 

like noise-cancelling headphones and some cameras. They remained an 

important part of credit scoring as well, among other applications.

The use of neural networks was limited by scaling issues and by the 

power of the backpropagation learning algorithm to train networks with 

more than one hidden layer. In theory, a network with one hidden layer 

should be as good as one with multiple hidden layers, but multilayer net-

works may be more practical to build or train. Multi-layer networks may 

require fewer simulated neurons, and more critically, may require fewer 

connections, to match a network of equal power with a single hidden layer. 

A multi-layer network may also require fewer training examples and less 

time than a single-hidden layer.

Progress came, as it frequently does in artificial intelligence, from 

improved computational capacity. But two other developments also con-

tributed to the reemergence of neural networks. One of these factors was 

the availability of so-called big data, ranging from credit card use databases 

https://www.youtube.com/watch?v=fP9k0eLP4ws
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to Google queries. These systems provided large amounts of labeled data 

that could be used to train large-scale neural networks. These data pro-

vided the training examples that were otherwise so expensive to gener-

ate (because they took human effort to provide the labels). In these big 

data sets, the labeling came from the natural consequences of the trans-

actions that were being recorded. The second source of progress was the 

development of new neural network architectures and stronger meth-

ods for training them. For example, Yann LeCun developed convolutional 

neural networks to recognize handwritten digits. Inspired by the receptive 

field patterns of biological visual processing, the neurons in a convolu-

tional neural network have overlapping receptive fields. This style of net-

work and some relatives have become very important in computational  

intelligence.

Convolutional neural networks and others, such as recurrent neural 

networks, formed a new class of neural network, deep learning networks, 

which may involve many more than three layers. Rather than strictly feed-

ing from one layer to the next, deep learning networks can include more 

complex connections within a layer. Moreover, each layer could be trained 

using different learning rules. Some could be trained by supervised learn-

ing, for example, using backpropagation, and others using unsupervised 

learning.

The idea of using different training regimens on different layers is, argu-

ably, the biggest insight in deep learning. Like more traditional neural net-

works, and like much of machine intelligence, the real genius comes from 

how the system is designed, not from any autonomous intelligence of its 

own. Clever representations, including clever architecture, make clever 

machine intelligence.

Deep learning networks are often described as learning their own rep-

resentations, but this is incorrect. The structure of the network determines 

what representations it can derive from its inputs. How it represents inputs 

and how it represents the problem-solving process are just as determined 

for a deep learning network as for any other machine learning system.

Every network with a hidden layer, that is, one that is neither the input 

nor the output layer, learns a representation inherent in the pattern of acti-

vation across the input layer. This pattern of representation may have no 

obvious relationship to the input pattern or nameable features of the input 

patterns. Deep learning networks may use different learning rules to form 
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those hidden layer representations than a multilayer perceptron would, but 

the hidden layer representations are still just transformations of the origi-

nal inputs, not new kinds of representations. The network can select among 

the kinds of patterns that are available, but it cannot construct new kinds 

of patterns, and just what it selects is determined by the structure of the 

hidden layer as provided by its designer.

For example, recall that Quoc Le and his colleagues (2012) built a nine-

layer neural network involving a billion connections, on a cluster of 1,000 

machines, using 16,000 computational cores. They trained it for three days 

on a set of 10 million 200 × 200-pixel images. They then examined some of 

the simulated neurons in this system, and, despite the fact that the images 

were not labeled, some of them responded preferentially to pictures of cats 

and some to pictures of people.

Le and his colleagues say that this system has discovered how to classify 

images containing cats and people, but what it appears actually to have 

learned are the statistical properties of the images. It learned to group pic-

tures by similarity, because some of the hidden layers in the network were 

designed to treat similar input patterns in similar ways. Some of the output 

units corresponded to cats and people because many pictures of cats share 

some statistical properties. With 10 million training examples, there was 

ample opportunity for this correlation to be observed. Le and his colleagues 

identified the neuron that they supposed represented cats by presenting 

pictures and identifying the neuron that was most active in the presence 

of cats versus other things, but this is circular reasoning. The network did 

not know that this neuron represented cats. Le and his colleagues knew. As 

far as the network was concerned, it just responded to pictures and some 

of these pictures led to a certain pattern of activation on the outputs. The 

system did not create a category, it picked up a correlation. The design-

ers, not the network, called that correlation a category. Even if the images 

were randomly distributed to output units, there would still be some that 

would respond more to cats and some that would respond more to people. 

It would not be correct to say that those units represented cats or that the 

computer learned its own categorization.

To be sure, Le’s experiment is a massive undertaking, but it is easy to 

lose sight that with a billion variables, one can fit almost any function. 

It is also easy to oversell what this project accomplished. Autoencoding 

networks like theirs may help to improve the efficiency of using labeled 
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examples, but they still cannot replace the labels entirely. Le and his col-

leagues applied the label after the network finished its learning, rather than 

during training, but it was they who applied the label.

Although deep learning networks are arguably more brain-like than mul-

tilayer perceptrons, they are still at risk of failing to live up to their hype. 

They are not a magic panacea. They surely solve some problems better than 

other networks, but they are not universal problem solutions any more 

than any other neural network or machine learning algorithm has been.

Deep neural networks excel at pattern recognition. Recognizing hand-

written digits, or any kind of handwriting, has turned out to be a very dif-

ficult problem for computers to learn. Deep neural networks, though, have 

shown the most progress in this area. People write ambiguously and incom-

pletely. Even people have a difficult time interpreting some handwriting, 

such as physicians’ handwriting on prescription forms.

Deep neural networks have achieved human-level performance in 

things like recognizing traffic signs, segmenting the structure of neurons in 

electron microscope images, or identifying molecular structures that might 

lead to new drugs.

Neural networks more generally have been used in a wide variety of 

applications including:

•	 automobile guidance systems

•	 integrated circuit layout

•	 computer network anomaly detection

•	 helicopter transmission fault identification

•	 financial analysis

•	 stock trading strategies

•	 cancer cell identification and analysis

•	 facial recognition

•	 speech understanding

•	 evaluation of credit applications

Neural networks play an essential role in self-driving vehicles and in 

the system that learned to play go. They are critically important in the 

progress that computational intelligence has made over the last few years 

because they can do just the kind of pattern recognition that symbolic sys-

tems found so difficult.
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One of the biggest limitations preventing neural networks from being 

more widely used is the large number of training examples that they need. 

Deep learning networks would not be possible in the absence of big data. 

The ability to provide high volumes of transactions, such as billions of 

Google searches, to these networks has made their style of learning pos-

sible. Training a deep learning network can take days or even weeks.

Training deep learning networks is also helped by the fact that they can 

be constructed from “modules.” Different parts of the deep network can be 

trained independently of others. The unsupervised layers can be trained 

separately from the supervised layers, and the same learned structures can 

be reused with different supervised learning subnetworks without having to 

retrain the whole thing from scratch.

Still, training neural networks remains at least partly art as well as sci-

ence. Complex networks simply have so many variables that they cannot 

all be set algorithmically. For example, there is no precise method to deter-

mine how many simulated neurons to put in a hidden layer.

Neural networks still need to be designed. At this point we have no algo-

rithms and few heuristics to help us structure these complex networks. Deep 

learning networks can involve billions of parameters. The designer does not 

need to choose the value of each of them—that is what the learning algo-

rithm does—but she or he does need to choose how those connections are 

organized. When neural networks come to be able to solve new kinds of 

problems, that solution comes first from novel ways of organizing the net-

work. To this point, humans are still required to do that design. In this way, 

neural networks are not different from other forms of machine learning.

Adjusting the weights of even a deep neural network seems to me to 

be fundamentally different from the kind of changes that occur when we 

realize that we don’t have to lay out the dominoes on the mutilated check-

erboard to discover that it cannot be covered by a set of dominoes. Rep-

resenting the checkerboard as a parity problem involving pairs of red and 

black squares is fundamentally different from representing it as a sequence 

of red and black squares. One is not a derivative of another. One is not a 

transform of the other.

The process that one engages in to make a decision is fundamentally dif-

ferent depending on how you represent the mutilated checkerboard. You 

do not have to lay out any dominoes to recognize that you cannot cover 

the board once you recognize that each domino has to cover exactly one 
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red and one black square. The layout approach would not tell you how to 

solve a modified checkerboard that consisted of 126 red squares and 128 

black squares, but the parity approach would tell you that if the number of 

red squares does not equal the number of black squares, then covering it 

with dominoes is impossible.

Not even deep neural networks are capable of learning representations 

that cannot be derived as transforms from the preceding layer or the inputs. 

Even deep neural networks implement searches through solution spaces, 

but the mutilated checkerboard problem requires a completely different 

solution space. We have yet to come up with a computational approach 

that can change solution spaces.

But maybe if we implemented an actual brain, we would be able to have 

a system that implemented humanlike intelligence. As John Searle (1990) 

said, brains cause minds. Maybe if we emulated a complete brain, we would 

automatically achieve general intelligence.

Whole Brain Hypothesis

If we had a running instance of Einstein’s brain, would we have Einstein 

or even someone equally as intelligent? Taken to its extreme, there is a 

hypothesis that if only we had a complex enough neural network, we would 

have intelligence. If we had a neural network that mimicked the complete 

human brain, we would have a machine with the intelligence of a human, 

and maybe the personality of the person whose brain we are emulating. 

The neurons in this whole brain emulation would have to resemble more 

closely the actual operations of the mammalian neurons than artificial neu-

ral networks do today, but on the idea that two systems that can compute 

the same function(s) are equivalent, the argument goes that we would then 

have a mind.

Not every detail of the brain’s neural processing can or needs to be emu-

lated. In fact, there are some, such as Nick Bostrom, who argue that we 

really do not need to know much of anything about how the brain works; 

we just need to replicate its structure down to some level. The physiology 

of the brain cannot be ignored completely, but features and processes at 

the lowest level will have to be simulated rather than emulated. Sodium 

channels that allow ions to flow through the neuron’s cell membrane are 

part of the mechanism by which neurons work, but computer chips do not 
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have similar sodium channels, so this property, for example, will have to be 

simulated computationally. Advocates of whole brain emulation argue that 

some suitable level of abstraction can be found at which the computer can 

be said to emulate the brain rather than just simulate it.

Bostrom argues that molecular-level scanning of a brain will provide all 

of the necessary information we would need to replicate its structure and, 

therefore, its function, but even if we knew the complete structure of the 

brain, we would still need to have a solid understanding of its function to 

replicate it not as neurons but as circuits. I think that we need to know a 

whole lot more than that. For example, we have the full connectome (the 

full structure of each neuron and how it connects to each other neuron) 

of a small roundworm, C. elegans, but that information is not sufficient to 

explain even its behavior.

There is a lot of uncertainty packed into the whole brain emulation 

hypothesis. It assumes that we can get a suitable account of the brain 

dynamics at a suitable level of analysis. It assumes that we can under-

stand the dynamics and structure of the brain sufficiently well that we can 

explain intelligence. It assumes that having that knowledge will allow us to 

implement intelligence. It assumes that we have the computational power 

to replicate those dynamics.

Of these assumptions, the easiest one to meet is probably the last one, 

that we can have sufficient computational power to emulate the brain. The 

human brain contains about 80 to 100 billion neurons with about 100 tril-

lion synapses. Depending on the level of abstraction, we can reasonably 

describe the cycle time of the brain as being about 50 milliseconds. Relative 

to computers, things do not happen in the brain very quickly. For many 

purposes, if we can describe the state of the brain every 50 milliseconds, we 

are probably going to do a reasonable job of simulating it.

Emulation may require even higher temporal resolution. Neurons do 

not synchronize their activity to any kind of internal clock. They work 

asynchronously. They fire action potentials, for example, when the condi-

tions are right, not when some overall clock says that it is OK. The asyn-

chronous nature of neural activity makes modeling it with computers very 

difficult because computers tend to behave synchronously, according to a 

fixed clock—for example, one that ticks every 50 milliseconds. Still, a col-

lection of fast enough computers might be able to simulate the asynchro-

nous operation of the brain.
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Because neurons operate more or less in parallel, the computing capac-

ity of the brain has been estimated to be on the order 1 exaFLOP, which 

is roughly equivalent to a billion billion (1018) calculations per second. It 

would probably be more proper to say that a computer simulating the brain 

in real time would have to achieve a speed on the order of 1 exaFLOP. 

The fastest known supercomputer in the world, Sunway TaihuLight, can 

achieve about 93 × 1015 (93 petaFLOPS), less than 1% of the estimated speed 

needed to do a brain simulation of the whole human brain. Both the US 

Department of Energy and the Chinese claim that they will have an exa-

FLOP computer prototyped by 2021. Even if it takes a few years longer 

than that, it would still be fair to say that the computational capacity to 

simulate (if not emulate) the human brain is reasonably likely in the next  

several years.

Simulations of some parts of the human brain have already been con-

ducted. For example, Ananthanarayanan and colleagues (2009) used 

147,456 processors and 144 TB of main memory to emulate a simplified 

version of a small part of the brain’s visual cortex, consisting of 109 (1 bil-

lion) neurons and 1013 (10 trillion) synapses. This simulation took about 3 

million core processing hours for 400 simulations. Their model mimicked 

the statistical properties of the neurons and connections in their selected 

brain area but did not attempt to replicate the complete set of neurons. One 

second of simulation, of even this small and simplified part of the brain, 

took about 200 seconds to run, using 7,500 hours of computer time distrib-

uted across all of these processors.

More recently, a team led by Markus Diesmann and Abigail Morrison 

simulated a network of 1.73 billion neurons and 10.4 trillion synapses. One 

second of neural activity took 40 minutes to complete using 82,944 proces-

sors and one petabyte of memory. Their model was not an attempt at brain 

emulation, but just a simulation of a small network of spiking neurons with 

what they called “biologically realistic connectivity.” It did not replicate the 

organization of the brain it was simulating. It only preserved the statistical 

properties of the number of connections between neurons.

Despite considerable progress in mapping the fruit fly’s connectome and 

elucidating the patterns of information flow in its brain, the complexity of 

the fly brain’s structure and the still incomplete state of knowledge regard-

ing its neural circuitry pose challenges that go beyond enough computa-

tional power to compute fly brain models.
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Put simply, having computational power may be necessary to support 

brain emulation, but it is very far from sufficient. Compared to what we 

will probably need to know, neuroscience is practically at its infancy of sci-

entific development. We know an awful lot about neuroscience today, but 

only a tiny fraction of what we will need to know in order to simulate, let 

alone to emulate, the human brain.

Part of the problem with the idea of full brain emulation is the assump-

tion that the structure of the brain, how the neurons are connected to one 

another, is sufficient to replicate is functionality. Structure has something 

to do with the properties of how the neurons implement cognitive activity, 

but the structure is not at all sufficient. Earlier, I mentioned that neurons 

can change their roles over time, signaling one behavior at one time and 

another behavior at another time. If we don’t know how individual neu-

rons perform their tasks, what hope is there of modeling billions of them 

simultaneously?

The brain is not just a static structure, but a complex dynamic system 

that changes over time, as the individual matures and from second to sec-

ond. We would, I think, have to map not just its structure, but its dynamic 

properties. Although we could, in theory, map out the structure of the brain 

down to the molecular level, we have no notion of how to map its dynamic 

properties, or even its current state. Assuming that a molecular scan would 

be sufficient to capture its state, presumably such a scan would not be 

instantaneous. By the time we mapped out part of the brain, the state of 

other parts are likely to have changed. The brain’s state at the start of a scan 

would presumably be different from its state at the end. Dead brains do not 

change much over short periods of time, but it is doubtful that complete 

information about the brain’s cognitive processes could be collected from 

a dead brain.

Mapping the state of a dynamic system such as the brain would face chal-

lenges analogous to those seen at the subatomic level in quantum mechan-

ics. I don’t think that the difficulty is caused by quantum mechanics, but 

the state of a neuron does, at least in part, depend on what statisticians call 

stochastic events. A stochastic event is one that has a certain probability 

of happening. At any point in time, it may or may not happen. We can 

predict stochastic events on average, but each individual event is difficult 

to predict with any accuracy. For example, the neurotransmitter molecules 

diffuse stochastically across the synaptic gap between the neurons so each 
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molecule of neurotransmitter arrives at the receiving neuron with a cer-

tain probability after a random amount of time. Once at the receiving side 

of the synapse, the neurotransmitter molecules bind, again with a certain 

probability, with receptors.

We do not know how important it might be to preserve the details of 

the states of the neurons, the synapses, or the neurotransmitter molecules 

when doing the brain mapping. We really do not have a very good under-

standing of the roles each of these plays in implementing thinking in the 

human brain, so we are very far from being able to emulate, or even simu-

late, these features.

Experience plays an important role in determining some properties of 

the structure of the brain and, more importantly, the function of those 

structures. Hubel and Wiesel, working in the 1960s, studied the effects of 

sensory deprivation on the developing brain. For example, normal brains 

contain neurons that respond to one eye or the other. These cells are typi-

cally organized into “ocular dominance” columns where the neurons in 

alternating columns respond to (are dominated by) one eye or the other. 

A brain that develops with input from only one eye does not leave half 

of these columns unused; rather these neurons now both respond to the  

same eye.

In later experiments, neuroscientists found that if visual neurons were 

rerouted to the part of the brain that ordinarily processes auditory signals, 

they could still be used by the animal to navigate visually. Furthermore, a 

rewired auditory cortex—now responding to visual stimuli—shows the pat-

terns of cellular response that are very similar to that typically seen in visual 

cortex. People who are blind from birth also show activity in the primary 

visual cortex when reading Braille.

But we do not have to go to prenatal development to find evidence that 

the brain can change in response to environment—inverting spectacles are 

enough. In 1896, George Stratton presented a paper describing an experi-

ment that he did on himself in which he wore special goggles with prisms 

that inverted his visual field. After a short time, he was able to navigate 

around an indoor area while wearing these spectacles. Ivo Kohler, when a 

graduate student in the 1950s, found that within about two weeks of wear-

ing inverted spectacles, the wearer had adapted to this large change in per-

ception and could even ride a bike or catch a ball. This experiment indicates 
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that even after maturation, the brain is still adaptable to fairly radical shifts 

in the inputs it receives.

Building exascale brain simulations may be useful as a research tool, but 

they would not automatically give us machine intelligence. There is no rea-

son to think that if we built Einstein’s brain, we would have the intelligence 

of Einstein or even a brain of similar intelligence. For example, identical 

twins are born with as close to identical brains as we can get. Identical twins 

reared together have similar IQ scores; their correlation is around 86%. But 

identical twins reared apart have a much lower correlation, around 76%. 

And if any two brains could be said to be reared apart, it would be a biologi-

cal and a computational brain.

This is an imperfect argument; IQ tests are not perfect indicators of 

real intelligence, heritability is not a perfect indicator of how identical 

brains are, and so on. However, it does suggest that building a simulated 

brain may not be sufficient to produce high levels of intelligence. Pre-

sumably, the reason that IQs of identical twins reared together are more 

similar than those of twins reared apart is because twins reared together 

share more experiences. If experience is necessary to intelligence, then 

we have the issue of how do we provide this experience to computational  

brains.

One hypothesis for how to provide experience is to “upload” an actual 

person’s mind from her or his biological brain into the computational 

brain. I have no more expectation that that would work than I have that 

the matter transporter from the old Star Trek series could actually be built, 

and for the same reason. The amount of data to be recorded and transmit-

ted is just too huge. But in the case of capturing a person’s mind, we also 

have sensor limitations. We cannot read the state directly of every neuron 

in the living brain, and we have dynamic limitations. A live brain is con-

stantly changing. I would say that the likelihood of successfully uploading 

a mind is essentially 0.0.

In any case, there continue to be severe ongoing challenges to whole 

brain emulation. It is certainly not imminent. These challenges include:

•	 We don’t have the computational resources to emulate a brain (this is 

arguably the easiest of the problems).

•	 We don’t know enough about how the brain actually works to emulate 

it.
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•	 We don’t have methods to simultaneously record from the 100 billion 

neurons in an intact brain. We don’t even know what we would need to 

record.

•	 We don’t know what kinds of experience are essential for the brain to 

generate intelligence.

•	 We don’t know enough about the effects of experience to successfully 

model it.

•	 We don’t know enough about the dynamic properties of the brain.

•	 We know very little about how the brain stores memories.

•	 We don’t know what consciousness actually means, how it is represented 

in the brain, or even whether it is important to intelligence.

•	 We have no idea how to record a person’s personality or consciousness.

•	 We don’t know how to describe and replicate the brain processes respon-

sible for intelligence.

•	 We don’t know how to apply machine learning to allow the brain to 

advance its functioning beyond relatively trivial capabilities.

There is some possibility that these barriers could eventually be over-

come, but that is unlikely to happen in the foreseeable future. Computer 

resources will continue to improve, as will our knowledge of neuroscience. 

But the other barriers still seem pretty insurmountable.

Conclusion

Neural networks have taken computational intelligence a long way from 

the early expert system days and the idea that physical symbol systems are 

necessary and sufficient to produce intelligence. Artificial neural networks 

do not force the characteristics of the world to be cast into nice crisp catego-

ries. They do not require relationships among objects to be all-or-nothing. 

They allow continuous and gradual representations that appear to be more 

suited to actual situations. Because they involve so many parameters, how-

ever, they may be able to solve problems that can be cast as functions sim-

ply because of the large number of ways those parameters can be organized.

The notion of full brain emulation is attractive, but we are profoundly 

ignorant of many of the properties that would need to be modeled even if 

we had the computational capacity to achieve it.
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6  Recent Advances in Artificial Intelligence

In this chapter we discuss some recent success stories in computational intelligence. 

IBM’s Watson is important because it showed the public that computers could 

be capable of answering questions in a more or less naturalistic setting. Alexa, 

Siri, and other digital assistants are important because they extend the question 

answering to more practical, and more ubiquitous, applications. AlphaGo shows 

how formerly insurmountably complex problems could eventually be solved with 

innovative heuristics. Self-driving vehicles and poker playing show another kind of 

innovation, being able to deal with less structured problems and more uncertainty. 

All of these systems show important progress in terms of solving specific problems, 

but they do not get us significantly closer to achieving general intelligence.

Artificial intelligence has begun to disrupt broad swaths of industries that 

have previously required large teams of people. Computers and robots have 

started to displace even white collar workers in areas such as legal document 

review, medical diagnosis, and others. As disruptive as these changes may be, 

however, the hype surrounding computational intelligence is even worse.

Every day there are countless articles about how AI is transforming the 

world. Companies are jumping on the AI bandwagon; if they have any 

computational components to their products at all, they are advertising 

themselves as using artificial intelligence. Over a thousand companies 

claim to be AI providers. The flurry of hype is similar to that of the 1990s 

when seemingly every business transformed itself overnight to be a dot-

com e-business.

Despite the hype, there is real value in computational intelligence that 

goes far beyond the capability to play complex board games. Cybersecurity, 

the process of protecting computers and computer networks from malicious 
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intruders, for example, is an area in which machine learning has been very 

fruitfully applied.

The rate at which companies have been successfully attacked seems to 

grow every week. Cybersecurity is a war of attrition. As hackers get more 

sophisticated about how they hide their attacks, for instance, as attach-

ments to emails, machine learning is getting more successful at identify-

ing those attachments. The hackers use machine learning to disguise their 

malware, and security companies are using machine learning to identify 

it. Some recent security work, for example, has found malware enclosed in 

attachments, enclosed in attachments, and so forth, as much as 20 attach-

ments deep. Each attachment layer obfuscates the contents of the layer 

below it by encoding the information, so it is very challenging to find the 

obscured malware without using machine learning.

Computational intelligence has long been active in financial settings. 

It has been used to uncover fraud and to identify potentially successful 

investments.

Health care is an active area receiving a lot of attention and investment 

for computational intelligence. Computational intelligence is used in a 

broad range of medical situations from dealing with issues of hair loss to 

cancer diagnosis.

Tech giants investing in health care include IBM, which is doing a lot 

of work to deploy its Watson technology in several health care areas; Phil-

ips, which is looking at health information from things like smart tooth-

brushes; and Google’s parent company Alphabet, which is partnering with 

several universities to leverage deep learning for improving health care. 

Computational artificial intelligence in health care is growing at a high 

rate, measured in billions of dollars a year.

Electronic health care records provide an opportunity to do predictive 

modeling of future patient health based on the laboratory, diagnostic, and 

physician notes and other information in each record. For example, Ric

cardo Miotto, Li Li, Brian A. Kidd, and Joel Dudley used unsupervised learn-

ing to build a generalized representation of each patient that could be used 

to predict that person’s future risk of one of 78 diseases. Their system was 

particularly accurate at predicting severe diabetes, schizophrenia, and some 

kinds of cancers.

Electronic health records suffer from the same kind of complications 

as text-based documents. The records contain many variables, which are 
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often expressed in inconsistent forms. For example, type 2 diabetes can 

be identified by an A1C value greater than 6.5%, by a fasting plasma glu-

cose level of 126 mg/dL, or by the presence of an ICD 9 diagnostic code of 

250.00 or an ICD 10 code of E11.65, or the word “diabetes” can be men-

tioned in the record’s clinical notes. All of this synonymy makes it diffi-

cult to associate any particular fFIeature in the record with any particular  

outcome.

In addition to predicting disease from the text of electronic health 

records, other projects have worked to diagnose cancer from images. Com-

puters have been used to screen mammograms, for example, and to evalu-

ate images of skin lesions for the presence of skin cancer. The accuracy of 

these systems has been found to be at least comparable to that of human 

radiologists and dermatologists.

The images to be interpreted are presented to the computer as an array 

of pixels—spots of light and dark and usually color. The images are different 

sizes, with variations in the position of the lesion, the lighting, and even 

the method with which the image was collected.

Andre Esteva and his colleagues trained a deep learning neural network 

(like those described in the preceding chapter) on a data set of 129,450 der-

matologic images. They compared the performance of their system against 

the decisions of 21 dermatologists on diagnoses verified by biopsy for 

malignant carcinomas versus benign seborrheic keratoses; and for malig-

nant melanomas versus benign nevi, a kind of birthmark or skin mole. 

Carcinomas are the most common forms of skin cancer, and melanomas 

are the most deadly. Each year in the United States, there are about 5.4 

million new cases of skin cancer. Early detection of a melanoma means the 

person’s chances of survival for five years can be as high as 97%, whereas 

at later stages, it is only about 14%. So, early detection of melanoma can be 

critical. Esteva and his colleagues found that their system was slightly better 

at distinguishing cancerous from benign lesions than the dermatologists.

A similar network was used to diagnose mammography images, also with 

high levels of accuracy. This system combined four images for each mam-

mogram (one image from the top/bottom of each breast and one image 

from the side of each breast). Krzysztof J. Geras, Stacey Wolfson, S. Gene 

Kim, Linda Moy, and Kyunghyun Cho found that the higher the resolution 

of the images, and the larger the number of images used for training, the 

more accurate was the diagnosis.
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Yun Liu and colleagues used a deep learning neural network to iden-

tify metastasis. Metastasis occurs when cancer spreads from one organ to 

another. There are many candidate tissues that could be the target of metas-

tasis, each of which has to be examined carefully by a radiologist, which is 

labor intensive, expensive, and prone to error. Full-resolution microscope 

images of the tissue can be as large as 100,000 × 100,000 pixels. Their net-

work recognized 92% of the tumors present in the images, which compares 

favorably with the 73% average of human pathologists.

This work on detecting cancer lesions, though promising, is still largely 

experimental. The models used involve many computational neurons, 

organized into networks with complex structures. It remains to be seen 

whether similar systems can be effectively deployed in more naturalistic 

situations with more variability in how the data are collected. Few radiol-

ogy clinics are likely to have the kind of resources that have been deployed 

for some of these experiments. Despite some claims to the contrary, there 

is little danger that radiologists will soon be put out of business (see sources 

quoted by Siddhartha Mukherjee, 2017).

In the rest of this chapter I want to consider a few artificial intelligence 

projects that I think have had a major impact on their respective fields and 

on the development of computational intelligence. These projects are fun-

damentally academic exercises intended to expand the capabilities of what 

is possible in computational intelligence. They are more important for the 

ground that they have broken than for their direct commercial applicability.

The program Watson, which won so handily on the television game 

show Jeopardy!, has led IBM to produce a whole line of what they call cogni-

tive computing. The goal is to use the kind of techniques that won on the 

game show to solve other kinds of problems. Perhaps more importantly, 

Watson caught the attention of the general public, who could see that com-

puters were capable of doing tasks that were thought to require human 

intelligence. It became apparent that computers could behave in human-

like ways in real life, not just in science fiction.

Siri, Alexa, and similar programs take natural language understanding 

and question answering to new levels. Practically every smartphone has 

at least one virtual assistant program that can answer questions, make 

appointments, or do other simple tasks. These programs introduced into 

everyday life, perhaps in limited ways, the capabilities that Watson made so 

apparent. Now everyone could interact directly with the kind of capabilities 
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that won on Jeopardy! and get answers from their cell phones or from simi-

lar so-called smart speakers on their end tables.

Google acquired the start-up DeepMind for $500 million in 2014. Deep-

Mind was developing an artificial intelligence program to play the game 

Go, a game that was thought to be beyond the reach of artificial intelligence 

for the foreseeable future. Naturally, Google’s interest ran deeper than just 

having a program that could play a game. Like IBM, they were looking for 

technology that they could generalize and apply in a broader context.

One of the most dramatic advances in artificial intelligence over the last 

few years was the emergence of self-driving cars. The Defense Advanced 

Research Projects Agency (DARPA) Grand Challenges had a profound 

impact on the development of artificial intelligence systems that could 

safely navigate vehicles. These vehicles, although not yet ubiquitous, have 

already changed how people drive. They portend to change the economics 

of trucking, warehouse logistics, taxi driving, and other areas. Their prom-

ise is to make driving simultaneously much safer and more efficient.

The last project that I want to highlight is an academic exercise in poker 

playing. It has not yet had a large public impact, but it is important for 

addressing a different kind of problem than that addressed by the other 

game-playing systems. Games like go, chess, checkers, and even Jeopardy! 

are all perfect-information games. All players have access to all informa-

tion. Poker is different in that each player in the game has access to some 

private information—the cards in the player’s own hand—that is instru-

mental to the outcome of the game. How an artificial intelligence system 

deals with this informational imbalance is a critical feature addressed by 

learning to play poker. Self-driving cars and poker-playing computers break 

significant new ground in computational intelligence.

Watson

In 2011, IBM’s Watson competed on Jeopardy! and won against two human 

champion players, Brad Rutter and Ken Jennings. Here was a computer that 

could answer questions about real things in the real world. People were 

familiar with a computer storing vast amounts of knowledge, for example, 

with Google, but in their experience a computer returned a web page that 

might contain the information to answer their question. Watson actually 

returned answers.



138	 Chapter 6

Watson did not break any new theoretical ground, except in the scope 

of its accomplishment. It employed a wide array of state-of-the-art text 

processing tools. The range of questions that could be asked on Jeopardy! 

is enormous, and in order to win, Watson had to have a similarly wide-

ranging knowledge, which it gleaned from over 200 million pages, more 

than 4 terabytes, of text and structured content, including Wikipedia. Wat-

son also exploited several databases, dictionaries, taxonomies, and other 

reference materials.

For the show, Watson used a cluster of 90 servers, including 16 terabytes 

of memory. It could manage 2,880 processes simultaneously. It could pro-

cess 500 gigabytes of text data per second, which is equivalent to reading a 

million books per second.

Watson employed more than 100 techniques to analyze the natural 

language, identify sources, formulate hypotheses, and score evidence and 

potential answers. One of these techniques, DeepQA, does not just look up 

its answers in a database of questions and answers; rather it analyzes the 

language of the question and the language of its sources to find potential 

matching answers. It then scores the answers using a variety of analytic 

techniques. It uses machine learning to learn how to weight these sources 

and analyses.

When presented with a question, Watson parses the question into key-

words and sentence fragments, which it uses to look up related phrases. As 

a simple example, if the question asks who . . . , then the right answer must 

be the name, title, or description of a person. If the question asks when, 

then the answer must be a time. If the question includes pronouns, the ref-

erent of that pronoun has to be interpreted. It uses the result of this parsing 

process to look for matching information in its knowledge base.

The more of its analytic techniques that return the same answer, the 

higher is Watson’s confidence in the answer. It then checks its answer 

against a database to determine whether the answer makes sense. Even with 

all of that, Watson still has a problem with very short questions that don’t 

provide a lot of material for it to work with. Very famously, when asked to 

name the US city with two airports, one named after a World War II hero 

and one named after a World War II battle, Watson answered Toronto. The 

correct answer was Chicago, and, obviously, Toronto is not a US city. When 

Watson did make errors, its errors were not always of the sort that a human 

might make.
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On the other hand, people do make errors that are somewhat similar to 

answering Toronto. Answer quickly: How many animals of each kind did 

Moses take on the ark? Most people immediately answer “2,” but the cor-

rect answer is actually 0. It was Noah, not Moses, who took animals on the 

ark (according to the Bible).

DeepQA looks at question answering as a process of generating hypoth-

eses from its analysis of the question and its available knowledge. It then 

ranks these hypotheses in light of the evidence.

In this, Watson is very much in the spirit of physical symbol systems 

or expert systems. It differs from these in its use of machine learning, in 

its comparison of competing hypotheses (as opposed to following a logi-

cal path through a series of choices), in its use of processes to disambigu-

ate questions, and in its ability to extract information from unstructured 

sources.

Traditional expert systems rely on hand-coded rules that reason either 

from evidence to conclusion (given this evidence, what can you conclude?) 

or from conclusion to evidence (what evidence do you need to find for 

this conclusion to be true?). DeepQA’s natural language processing and 

machine learning automates the process of matching knowledge approxi-

mately against the questions it receives.

IBM’s work on Watson was undertaken for a number of reasons beyond 

the marketing glow of being able to claim a big win in a television game 

show. They wanted to create a general-purpose natural language processing 

and knowledge representation and reasoning system that could be reused 

in many different domains (such as medicine). They wanted a system that 

could gain its knowledge both from structured sources, such as databases, 

and from unstructured sources, such as text. They wanted a system that 

would learn quickly and answer quickly while also being highly accurate.

They succeeded brilliantly in creating an effective question answerer. If 

winning at Jeopardy! were the criterion for the Turing test, then they would 

have passed beyond any reasonable doubt. Although the topics about which 

it could answer questions were very broad, it was still a specific system, 

solving a specific problem. It could not go on to play go or chess based on 

the training it received and the processing power it exploited. Even broad 

knowledge of facts was not enough to make it generally intelligent. It could 

not reason beyond the scope of the processes that were specifically created 

to win at Jeopardy!.
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Watson helped make it apparent that there was great potential in com-

putational intelligence, but it did not really get us much closer to artificial 

general intelligence. Ken Jennings, one of the two human Jeopardy! con-

testants competing against Watson, was premature in welcoming his new 

computer overlords. If they ever show up, Watson will not be among them.

Although IBM is hopeful that Watson will help lead it to exploit the 

future of computational intelligence, to this point, IBM is apparently still 

facing the challenge of making it a profitable business (Strickland, 2018).

Siri and Her Relatives

Digital voice assistants, such as Siri, Alexa, and Google Assistant, are appli-

cations, often hosted in phones or smart speakers, that allow users use their 

voice to interact with various services. Two things are remarkable about 

these applications: first, they are able to understand voice commands, 

rather than forcing users to type in what they want, and second, they are 

able to perform sometimes sophisticated tasks in response to the requests 

that they receive. Rather than simply looking up some result in a data-

base table, these systems can perform actions. They play music, find a time 

when two people can meet, or recommend a restaurant and reserve a table. 

They keep track of the context of a request, such as your food style prefer-

ences, and use that information. Most of this interaction is still relatively 

basic, but they are constantly “learning” new “skills.” I put learning in 

quotes here because it is not clear that they actually use machine learning 

to acquire these skills.

Spoken language provides a “natural” way for people to interact with 

various kinds of technology. People are used to having conversations with 

others, and it is a small step to have a conversation with a digital assis-

tant. The assistants provide a uniform method of interacting with a broad 

range of specialty services without having to learn the peculiarities of each 

separate system. They incorporate machine learning to discover their users’ 

preferences, neural networks to interpret speech, and potentially other 

kinds of artificial intelligence to organize and execute their actions.

Although most of these virtual assistants are still fairly primitive, their 

conversational interface encourages users to personify them and often to 

attribute more intelligence to them than would otherwise be merited. On 
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the other hand, their ability to perform tasks, even if the tasks are fairly 

simple ones, means that users can be freed of the burden of these tasks.

Some of the tasks performed by virtual voice assistants are controlled by 

following a programmed set of rules. The rules consist of conditions and 

actions. For example, if the stock MSFT drops 10 points, then sell it. Such 

a rule requires the system to identify which stock is meant, track its value, 

and then take an action when the conditions are met. It needs a memory 

to know what the price was before and compare it with the current price. It 

needs a way to execute a stock trade. Another rule might be to copy a pic-

ture to a Google Photos account when you “like” the picture on Facebook, 

while also automatically tagging the photo for the people in it. Or, it could 

add milk to your shopping list when the milk carton is empty.

Virtual assistants can tell you what the weather will be in your location 

(which they recognize automatically) and remind you to take an umbrella 

when that is appropriate. They can order a ride from ride-sharing services. 

They can provide medical advice from WebMD or other sources.

These systems cannot do everything, of course. Their ability to answer 

general information questions, for example, is still limited. They still lack 

common sense.

In many ways the more significant development in digital virtual assis-

tants is their ability to recognize speech. Although speech recognition 

systems are now common and readily available, how that capability was 

developed is interesting as an example of the use of computational intel-

ligence and machine learning.

In 1952, researchers at Bell Labs developed a system, called Audrey, 

that could recognize isolated digits spoken by a single speaker. The first 

commercial application to do speech recognition was the IBM Shoebox, 

introduced in 1962. It could recognize 16 words: the digits zero through 

nine, “plus,” “minus,” “subtotal,” “total,” “false,” and “off.” Notice that 

although the word “false” is included on this list, its opposite, “true,” is not. 

Their method could not distinguish, I infer, “true” from “two.”

Starting in 1971, DARPA (at the time it was called ARPA), the name did 

not yet include “Defense”) funded a multiyear research effort to develop 

speech recognition that could handle a thousand-word vocabulary. One of 

the products of that effort was Carnegie Mellon University’s HARPY system, 

which could recognize 1,011 words with reasonable accuracy.
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Continuous speech recognition, where you do not have to pause between 

words, came to be available in 1990, with Dragon System’s DragonDictate. 

After training for an extended time on a single voice, the $9,000 Dragon 

program could transcribe speech with fair accuracy. In 1997, they released 

Dragon NaturallySpeaking, which then cost only $695. After 45 minutes of 

training the system to recognize the speaker’s voice patterns, it could man-

age a single user’s continuous speech at about 100 words per minute.

In 2008, Google launched voice search on the iPhone. Soon after, they 

enabled other programs to use Google’s speech-to-text conversion. Now 

there are many systems, some of them freely available, that are quite accu-

rate at speech recognition. In 2011, Apple released the first version of Siri 

on the iPhone. The previous year, Apple had acquired the core of Siri in an 

acquisition of Siri Inc., a spin-off of SRI International, a research institute 

that does much of its work for the US Defense Department.

From the 1950s to today, speech recognition has gone from being able 

to recognize 16 isolated words spoken by a single speaker to being able 

to recognize millions of words in 110 languages. Speech recognition is a 

difficult problem, and the progress over the past 60 years has been pow-

ered largely by two kinds of developments: improved representations of the 

speech problem and improved availability of speech and text examples. In 

this, speech recognition is a model for much of the improvement in com-

putational intelligence—better representations and more data.

Speech recognition is so familiar that viewing it as a computational chal-

lenge may seem odd. But in reality, speech signals are extremely ambigu-

ous. Using speech recognition to drive an intelligent agent is even more 

difficult. To build a voice-controlled agent requires that we go from the 

vibrations in air to correctly completing an action.

This process requires several steps (each of which is ambiguous):

•	 Map acoustic (sound) events to phonemes.

•	 Map phonemes to words.

•	 Map words to intents.

•	 Map the intent to action.

The relationship between speech sounds and the language they repre-

sent is itself very complex. Speech sounds are the acoustic patterns, the 

physical vibrations of the air. The acoustic properties of a speech sound can 

be represented by its time-varying power spectrum (see chapter 5). A power 
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spectrum represents the amount of energy contained in an acoustic signal 

at each of several frequency bands. A time-varying spectrum represents the 

amount of energy in each frequency band as the pattern changes over time. 

In a computer, the time varying spectrum is estimated using the fast Fourier 

transform, described earlier. In the ear, the equivalent transformation is 

produced by the physical characteristics of the cochlea.

Those time varying spectra have to be translated into the linguistic rep-

resentation of speech sounds, called “phonemes.” English contains about 

42 phonemes (depending on dialect). These range from long a sounds, /A/, 

such as in “hay,” to /ks/ sounds, such as the x in “axe” or the /z/ sound as 

in “nose.”

The linguistic representation is needed because there is not a simple 

or direct mapping between acoustic signals and their corresponding pho-

nemes. For example, the /p/ in the syllable, “pi” (sounds like pea) is actu-

ally the same acoustic pattern as the /k/ sound in the syllable “ka” (Cooper, 

Delattre, Liberman, Borst, & Gerstman, 1952), but people hear them as 

completely different.

The same acoustic event can correspond to more than one linguistic 

event. Phonemes are linguistic categories. When learning to speak a lan-

guage, a child must learn to associate the acoustic patterns she hears with 

the phonemes that are appropriate for that child’s language. That associa-

tion depends on context, as shown by the pi versus ka experiment. In gen-

eral, the sound that comes before and the sound that comes after a specific 

sound can affect how that sound is interpreted into phonemes. Speech rec-

ognition systems must manage this ambiguity.

The HARPY system, mentioned earlier, used a graph search algorithm 

to identify phonemes. It kept track of the alternative phonemes or words 

that were consistent with recently received sound patterns and then chose 

the sequence of phonemes that was most consistent with the sequence of 

sound patterns. HARPY represented the initial parts of the speech recogni-

tion system as a network of constraints and then navigated this network to 

identify the best guess as to what the sound pattern represented.

Once the phonemes in a speech sound have been identified, the next step 

is to map those phonemes to potential words. That mapping is also ambig-

uous. For example, a certain set of sounds could be interpreted as “visualize 

whirled peas” or as “visualize world peace.” Many words are pronounced 

identically in ordinary use, such as “ladder” and “latter.” Homophones are 
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distinct words that are pronounced the same, such as “wear” and “where.” 

So there is substantial ambiguity between the phonemes and the spelling 

of words.

Strong progress in speech recognition was made when a language model 

was added to the acoustic model mapping sound patterns to phonemes. 

Language models represent the probability of a word in the context of the 

words that have preceded it. The word “ladder” is much more probable 

than “latter,” for example, in sentences that contain the phrase “climbed 

the corporate  .  .  .  .” The opposite is true, following the phrase, “given a 

choice, he chose the . . . .” Language modeling uses machine learning to 

estimate these probabilities and then uses those probabilities to interpret 

the words that were actually said.

The creation of these statistical models was made easier by the fact 

that very large amounts of text came to be stored in a way that could 

be easily accessed by computers. The Dragon models, for example, were 

trained for a specialized subject matter by presenting large amounts of 

text data. The text did not have to be spoken because its role was just to 

signal which words were more or less likely in the context of preceding 

words. Google, of course, had nearly unlimited amounts of text in practi-

cally every written language and billions of queries along with their results. 

When they introduced Google Voice, furthermore, they gained access to 

large amounts of speech examples with widely varying accents and styles  

as well.

Further ambiguity comes from the use of pronouns, such as “he” or “it.” 

In a sentence like “Find me an online store that has a pashmina shawl and 

buy it,” the system has to determine that “it” refers to the shawl and not 

to the store. This sentence also illustrates another problem that the natural 

language understanding computer must solve, that of speaker intent.

In a sentence like, “He poured the milk from the bottle into the bucket 

until it was empty,” the “it” must refer to the bottle. But in the correspond-

ing sentence “He poured the milk from the bottle into the bucket until it 

was full,” the “it” must refer to the bucket. This kind of ambiguity cannot 

be resolved by the structure of the sentence. The two sentences have exactly 

the same structure. It can only be resolved by real-world knowledge that 

pouring changes the contents of two containers and the one being poured 

from becomes more empty while the one being poured into becomes  

more full.
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Even more difficult are sentences like “The police would not stop drink-

ing” or “They are cooking apples.” In the first sentence, who is drinking? 

In the second, are they apples that are good for cooking, or is someone 

cooking the apples?

In recent years, speech understanding has been facilitated by the use of 

deep learning neural networks. Starting around 2012, Google began using 

Long Short-Term Memory Recurrent Neural Networks to do the Google 

Voice transcriptions. They trained these deep learning networks using dis-

criminative training, requiring the system to contrast sounds, not just learn 

each phoneme independently. This discriminative training takes advantage 

of the fact that the pattern of successive phonemes depends on the preced-

ing phonemes that have been identified. The successive phonemes have to 

match real words, and the sequence of words has to match patterns actually 

seen in the language. The sequences of both phonemes and words has to 

make sense, in other words. Using the voice message transcriptions offered 

as part of Google Voice, Google could get examples of speech sounds and 

text and get some feedback when the system got it wrong and the user sug-

gested alternative transcriptions. Being voice mail, these sequences were 

about as natural and conversational as could be had.

Even after the words have been properly recognized, the voice agent 

must still determine what it should do with the message. Transcribing 

voice mail stops once the text has been written down. On the other hand, 

virtual agents are expected to do something with what they have under-

stood. The original intent of the project that eventually led to Siri was to 

create a personal assistant that would, for example, organize email, calen-

dars, documents, and schedules; perform some tasks; and facilitate other 

communications.

Among the tasks that an agent might perform, one could be to make 

a travel reservation. A sentence like “I need to book a flight to New York 

on July 7” might seem fairly unambiguous, but even this simple sentence 

presents significant challenges. The phrase, “I need” requires interpretation 

that the speaker’s intent is to actually travel to New York. It requires knowl-

edge that travel requires a ticket and a reservation on an airline. The com-

puter needs to know where the speaker is currently. It may need to know 

other things about airline preferences and so on (such as preferred flight 

times). Does “book” in this context mean to accuse someone of a crime, 

or does it mean to reserve a seat? It may need to know when the speaker 
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wants to return. If the agent is rather limited, then some of this ambiguity 

disappears in that the agent is designed to interpret the ambiguous phrases 

in only a limited range of ways.

But, just as speech recognition was enhanced by developing represen-

tations that took more context into account, intent recognition is likely 

also to be enhanced by taking more context into account. The information 

needed to be successful may not be fully contained within the request itself 

but may depend on outside sources of information that also need to be 

integrated.

For a typical one of these personal assistants, a question, a command, or 

a query begins with the user’s voice request. A compressed version of the 

voice recording is sent to the system’s server (most of the work occurs on 

the service provider’s server rather than on the phone). Automatic speech 

recognition translates the voice recording into text. The type of query is 

then identified (action request, command, search query). If it is a command 

to the phone, the appropriate command may be sent then or, if it involves 

Internet or other knowledge resources, such as databases or other users’ 

calendars, those resources may be accessed. An answer is selected from the 

available responses and sent back to the user.

AlphaGo

The game of go has been mentioned several times already. Go is a strat-

egy game for two players, played on a board consisting of a 19 × 19 grid 

(361 positions, compared to checkers or chess with 64 positions), on which 

black and white pieces called “stones,” are placed. One player places the 

black stones, and the other places the white ones. Each player tries to sur-

round more territory on the board than his or her opponent.

The players take turns placing the stones, one per move, on the “points” 

(intersections) of the grid. Once a stone is placed on the board, it cannot 

be moved but can be captured by surrounding it with opposing stones. 

Captured stones are removed from play. The game has no set ending. It can 

be ended by resignation or by the players deciding not to make any more 

moves. The player with control of the larger territory wins.

The complexity of playing go is not due to the complexity of the rules—

there are only a few—but is due to the number of possible moves that need 

to be considered at each move.
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Every position on the grid can be in one of three states. It can be occu-

pied by a black stone, occupied by a white stone, or empty. There are 3361 

possible positions, of which about 1.2% are legal. Therefore, there are about 

2.08 × 10170 legal positions in go. The actual number is 208,168,199,381, 

979,984,699,478,633,344,862,770,286,522,453,884,530,548,425,639,456, 

820,927,419,612,738,015,378,525,648,451,698,519,643,907,259,916,015, 

628,128,546,089,888,314,427,129,715,319,317,557,736,620,397,247,064, 

840,935.

This huge number of combinations was thought to put the game out of 

reach of conventional algorithms. There are just too many possibilities to 

consider. By comparison, chess is estimated to have about 10123 possibilities, 

which is a miniscule fraction (a decimal point followed by 47 zeros before 

a 1) of the possibilities for go. Some people are fond of saying that there are 

more positions to either of these games than there are atoms in the visible 

universe (about 1080).

Like other artificial intelligence approaches to games, playing go can 

be described as the process of navigating through a space starting from an 

empty board. A brute-force algorithm would assess each potential move 

and choose the one that had the highest expected value (ultimately, the 

highest probability of leading to a win), given the current configuration of 

pieces on the board. But the huge number of possible moves at any point in 

time and the complexity of computing each move’s expected value makes 

this approach infeasible. The breakthrough came from some clever design 

of heuristic methods that could be effective at selecting a subset of potential 

moves so that they would not all have to be evaluated.

Chess and go are considered perfect-information situations because 

there is no uncertainty about the state of the game at any point in time. 

Each player may be uncertain about what the other player will do on future 

moves, but each one knows perfectly what the players have done to that 

point. Both players know the state of the game, the rules, the locations of 

all of the pieces, and so on. If a player selects a move, there is no uncer-

tainty about how that choice will affect the state of the game.

The complexity of the search process is determined by its breadth and 

its depth. Breadth is the number of legal moves per turn, and depth is the 

number of subsequent choices in the game following that move. In chess 

breadth is about 35 (there are about 35 legal moves at any point in time) and 

depth is about 80 (each side makes about 80 moves in a game). A complete 
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analysis of a chess position, then, would evaluate 35 potential moves for 

how each of those moves would change the state of the game over the next 

80 similar choices. In go, breadth is about 250 and depth is about 150, too 

many to consider all of them. Heuristics are needed to play chess or go.

Heuristics can be used to select the stronger moves for evaluation, put-

ting aside other moves. If we cannot evaluate all of the moves, then a better 

player will be the one that evaluates moves that are more likely to be effec-

tive and does not waste time considering moves that are unlikely to lead to 

a winning outcome.

Heuristics are acceptable when playing a game like go or chess because 

human players are not able to fully evaluate each move either. Rather, chess 

players who have been studied tend to rely on patterns of chess pieces that 

they have seen before and go players claim to use aesthetic judgment to 

decide which moves to make. The quality of play depends on the quality of 

the heuristic selection process.

AlphaGo is a go-playing program that beat one of the world’s best go 

players, Lee Sedol, four games out of five in March of 2016. AlphaGo ran 

on 1,920 standard processors and 280 graphical processing units, distrib-

uted over a number of data centers. Lee used only his brain. The graphical 

processing units in this case were not used to manipulate graphics but to do 

the complex matrix operations needed for the heuristics.

Players of chess and go learn the patterns of pieces that have previously 

led to success. AlphaGo also learned to play go, in part, by studying past 

games. Given enough pictures of a cat, a computer can learn to identify 

cats. Given enough examples of go games, a computer should be able to 

learn to play go.

AlphaGo was trained on billions of go moves. It used deep neural net-

works to learn how the game is played. Some of these example games were 

played against human players, but many of them were played against other 

go-playing computers, including other versions of AlphaGo.

As AlphaGo played itself, it kept track of which moves were more suc-

cessful at controlling territory on the board. It played millions of games 

against itself, gradually improving, and abstracting properties of these pat-

terns in the same way that similar neural networks can abstract visual prop-

erties from millions of images. Recall, from chapter 4, that Arthur Samuel 

used a similar strategy to help his system learn to play checkers.
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Although trained on millions of go games, AlphaGo was not limited 

to merely mimicking those games. It did not just memorize the previous 

games; it abstracted principles. These principles did not necessarily corre-

spond to those a go expert would describe, but its substantial experience 

allowed it to identify these principles nonetheless. Principles, in this con-

text, are statistical regularities.

In game 2 of the match against Lee Sedol, the computer made a move 

that no human player would be likely to make. In fact, AlphaGo estimated 

the probability of that move at 1 in 10,000. Once AlphaGo’s stone was 

placed, Lee could see quickly that this was an unexpected move that he 

did not recognize. But Lee was also learning, apparently, because in game 

4, he made an unexpected move himself, from which AlphaGo never  

recovered.

AlphaGo represents some innovative machine learning techniques that 

may have application in other computational intelligence situations. One 

of the most interesting is having the system learn from playing itself. Using 

deep neural networks to abstract patterns is also a critical insight with 

broader applicability. Its search algorithm and the methods by which it 

chose its policies may also be of interest.

AlphaGo is viewed by some as an artificial intelligence program that 

learned to improve itself. A self-improving AI scares some people. But I 

think that this fear is completely misplaced. All machine learning programs 

are self-improving, and AlphaGo is not different in this regard. It does what 

it was designed to do.

It has no capability of transferring the knowledge of game play it gained 

from its games of go to any other game, let alone any other kind of task. 

AlphaGo and its ability to beat Lee Sedol may be an important milestone in 

the development of artificial intelligence, but it is not a departure in kind 

from the machine learning that came before it. It learned how to search a 

problem space and find novel paths within that space, using heuristics it 

was provided by its human designers.

Self-Driving Cars

Another dramatic artificial intelligence project in recent years is the 

emergence of self-driving vehicles. According to Wired magazine, over 
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263 companies were working on self-driving vehicle technology in 2018. 

According to ABC News, there were 52 companies approved to test self-

driving vehicles in California alone in 2018.

Part of what spurred the interest in self-driving cars was the DARPA 

Grand Challenge, offering a million dollars to the first team that could field 

an autonomous vehicle capable of traveling over an unrehearsed off-road 

course. DARPA is the research agency tasked with finding innovative solu-

tions for the problems faced by the US military.

The first Grand Challenge competition took place in March of 2004. 

Teams were informed only hours before the start of the event what specific 

course they were expected to follow on a 142-mile trail through the Mojave 

Desert. Of the 15 teams that started the race, none of them succeeded in 

driving more than 7.5 miles of the route.

Carnegie Mellon University’s Humvee drove too close to a cliff edge, 

where it spun its wheels until a tire caught fire and the vehicle was shut off. 

Another vehicle started the race, but its Global Positioning System (GPS) 

malfunctioned, and it drove around in circles. A vehicle fielded by a team 

from Palos Verde High School crashed into a concrete barrier near the start 

of the race. The competition that first year did not exactly turn in spectacu-

lar results, but even 7.5 miles was a major accomplishment.

DARPA repeated the challenge again in 2005, increasing the prize to $2 

million, and the results were dramatically different. This time 23 teams 

entered a 132-mile race and five of them finished. The winning vehicle, 

named Stanley, was built by the Stanford team.

In principle, the strategy for a self-driving vehicle sounds simple. It must 

know where it is, know where it is trying to get to, avoid obstacles, obey 

traffic rules, and choose the best course of action.

Anyone who has used Google maps or one of the other navigation pro-

grams knows that there have been big improvements in map quality and 

in route planning since these applications first became available. In the 

2005 Grand Challenge, however, the vehicles had to do their own route 

planning because they were navigating through the desert and they were 

seldom on paved roads.

The vehicles used GPS for identifying where they were when it was avail-

able. GPS is a system of satellites. Under the right conditions, a GPS system 

can identify its location to within a few feet. Given the rocky, hilly, desert 

environment, though, GPS signals were often lost.
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Stanley, the winning vehicle, used several different kinds of sensors, 

including GPS, lasers, video, and radar to identify its position and direction. 

It used lasers and radar to identify obstacles that it would have to avoid. 

Accelerometers, gyroscopes, and wheel sensors were also used to identify 

the position and pose (for example, whether it was tilted at a dangerous 

angle). With this suite of sensors, Stanley could determine its position to 

within a couple of inches.

To avoid obstacles, the vehicle must detect them at a range that allows 

it to take evasive action or stop before colliding with it. At short range, up 

to about 22 meters (about 24 yards), Stanley used lasers to detect obstacles. 

The lasers were useful, therefore, at speeds up to about 25 mph. For longer 

range obstacle detection, in order to travel at higher speeds, Stanley used 

radar and stereovision. All of these data were processed by seven shock-

mounted laptop computers in the vehicle’s trunk.

Unlike many of its competitors, Stanley was not programmed with a set 

of rules. Instead, it was given the opportunity to learn how to drive during 

the months leading up to the race. Part of the machine learning process 

for Stanley was to have a human driver control the car, navigating only 

through drivable terrain. The data from the paths that the driver actually 

took could then be labeled as drivable and other areas as not drivable. This 

approach means that some of the terrain to the left and right of the vehicle’s 

path is mislabeled as not drivable when, in fact, it may be flat usable ter-

rain. It does ensure, however, that drivable terrain is correctly labeled and 

can easily be used. It also meant that the team had a ready source of data 

for training their machine learning algorithms using supervised learning.

Contributing to the difficulty of classifying surfaces into drivable and 

nondrivable, the appearance of the road is affected by factors that change 

over time, such as the material (for example, asphalt or concrete, the dark-

ness of the asphalt), the lighting (for example, the angle of the sun, the 

degree of cloud cover), camera wobble, and dust, both in the air and on the 

camera lens. Even a flock of birds suddenly taking off in front of the vehicle 

could change the appearance of the road. As a result, the road-following 

module had to be adaptive to a range of highly changeable conditions.

One of the insights that led to Stanley’s success was the recognition that 

in the real world, sensor data are always contaminated by “noise.” The 

sensors would get shaken around. Dust would interfere. Rocks and tun-

nels would obscure GPS signals. Fortunately, the factors that affect visual 
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interpretation of camera images are different from the factors that affect 

radar and laser range finding. So some of the ambiguity of the visual inter-

pretation could be reduced by the other sensors. I believe that this redun-

dancy and sensitivity to different kinds of noise was instrumental in the 

success of the Stanley system.

Another key insight was the recognition that Stanley had long-range 

sensors (radar and video) and short-range sensors (lasers) and that when 

it drove forward, objects detected by the long-range sensors could eventu-

ally come into the range of the short-range sensors. Stanley could learn by 

tracking the predictions made by the long-range sensors and then using the 

short-range sensors to teach the system about the usefulness and interpreta-

tion of the signals obtained from the long-range sensors.

There has been a lot of progress in self-driving cars since the DARPA 

Grand Challenge. One motivation is safety. Every year in the United 

States, human-driven cars end up causing about 30,000 deaths, or one 

death for every 90 million miles driven. Self-driving cars have the oppor-

tunity to reduce this number of fatalities and injuries substantially. There 

have been two known deaths from an autonomous vehicle, a Tesla that 

ran into the side of a truck while the car was on “autopilot” and a pedes-

trian killed while crossing the street in front of an Uber autonomous test  

vehicle.

Reportedly, drivers have been using Tesla’s autopilot for about 300 mil-

lion miles. We do not have enough data to determine whether 1 in 300 

million is a reasonable estimate of the likelihood of a fatal accident from 

an autonomous vehicle, but it seems promising. We have less information 

about the number of miles driven by Uber’s self-driving cars (The New Yorker 

magazine estimated it at 3 million miles in 2018; Sheelah Kolhatkar, 2018), 

and their program may not be as advanced as Tesla’s or Waymo’s. From 

these few deaths, it is difficult to extrapolate how autonomous vehicles will 

do as their use becomes more widespread.

The success of Stanley in the 2005 Grand Challenge, as well as the sub-

sequent success of self-driving vehicles, derives in large part from the way 

that Stanley represented the problem to be solved. Stanley represented the 

problem as a machine learning one. Representing the relationships among 

long-range and short-range sensors was another critical representational 

decision as was training the car by driving on the kind of terrain that it 

would encounter during the Grand Challenge.
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Poker

The game of poker presents computational challenges that are absent from 

many other games. In poker, the opposing player has information, the 

cards she has been dealt, that the computer does not have, and that per-

son could lie (bluff). The appropriate strategy for a computer playing poker 

depends on its estimate of what cards the other player or players might 

have. These cards were randomly dealt, but there is also information that 

can be gleaned from what the player has done up to that point in the game.

One of these programs, DeepStack, plays a variation of Texas hold’em 

called “heads-up no-limit Texas hold’em.” It is a two-player game with 

computational complexity comparable to that in go. Each hand progresses 

through four rounds, during which cards are dealt and the players can bet. 

During the “preflop” round the players are each dealt two cards face down, 

the private cards. Each player knows only the cards he was dealt. At this 

point, all the player knows is that the other player was not dealt these spe-

cific cards.

During the “flop” round, three additional cards are dealt face up. These 

cards are publicly known and can make up part of either (or both) players’ 

hands. The next round is called the “turn,” when one more card is publicly 

dealt face up. The fourth round is called the “river” when one additional 

face-up card is dealt. Each player can make a poker hand out of a subset of 

the five public cards dealt face up and the two private cards.

The face-up cards provide perfect information to the two players, but 

they are also identical for both players. But the preflop, face-down cards 

are known directly only to the player to whom they were dealt. Each player 

knows his or her own hole cards (those dealt face down during the preflop 

round) but is uncertain about the cards held by the other player.

The players bet before the first round and at the end of each round A 

player can raise (increase the bet), fold (surrender the pot to the other player 

and end the hand), or call (meet the bet proffered by the other player).

The opponents’ betting behavior is publicly available to both players 

and can be used to estimate the strength of the opponent’s hand. But either 

player could bluff. They can bet as if they have a very strong hand, counting 

on their opponent to fold, despite the fact that the opponent may actually 

have the better hand. Because of bluffing, public betting behavior is only 

imperfectly related to the strength of the player’s hand. There is no limit 
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to the amount of money that a player can bet in no-limit Texas hold’em, 

except that a player cannot bet more money than he has.

Both players try to infer the strength of their opponent’s hands from the 

imperfect cues available in the opponent’s betting behavior. Each player’s 

betting behavior, in turn, depends on that player’s estimates of his or her 

own chances as well as the chances of his or her opponent. These estimates 

can vary widely from one round to the next as more cards are revealed and 

as more betting occurs.

Imperfect-information games are important because they are so much 

more complex than perfect-information games. An effective player has to 

choose a strategy for each hand that will be effective in light of the uncer-

tainty of what cards the opponent has. The opponent may have a 9 of 

hearts and a 3 of spades as his or her hole cards. Or the opponent may have 

the 9 of hearts and the 9 of spades. The computer may be able to estimate 

the probabilities of all of the different combinations but then must prepare 

for these differing probabilities.

An opponent’s betting patterns reveal information about what the oppo-

nent is holding and about what the opponent thinks the other player is 

holding. The reasoning is recursive, wherein each player affects the deci-

sions made by the other, which changes the other’s betting behavior, which 

changes the first player’s betting, and so on. In poker, the rules are not 

much more complicated than in go. Each hand involves only a few moves, 

but the number of potential states and the uncertainty about those states 

makes the game extremely challenging.

The full complexity of the game makes a complete analysis impractical. 

Rather, DeepStack breaks the game down into components. Instead of esti-

mating the complete game from each point (each bet), it computes a fast 

approximate estimate of the value of each move. It forms this estimate by 

having the computer play during training from random poker situations, 

and selects them by probabilities of a good outcome.

Computer programs are superior to human players in estimating the 

probabilities of each card and of the strength of achievable hands given 

the face-up cards and the cards in the computer’s own hand. The opponent 

cannot have either of the cards held in the computer’s private hand. The 

cards that are face up, on the other hand, are in both players’ hands. If the 

king of hearts card is showing face up and the computer has the king of 

spades, for example, then the opponent cannot do better than to have two 
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kings in his or her concealed cards. The computer cannot do worse than 

have a pair of kings.

The poker-playing method used by DeepStack contains three main parts: 

(1) a local strategy estimate for the current public state (what is known 

about the visible cards and the betting behavior so far), (2) the set of actions 

that it contemplates, and (3) a look-ahead method to estimate the likely 

consequences of each of these potential actions.

Before each bet, the computer recalculates its strategy in light of the 

current state. The computer searches its solution space, as it would for a 

complete information game, but because of the uncertainty concerning its 

opponent’s hand, it must consider a wider range of possible states than just 

the one that will yield the highest return. DeepStack uses two deep neural 

networks, which are trained to estimate the future states of the game with-

out having to exhaustively recalculate them before each bet. One network 

was employed during the flop round (when three face-up cards are dealt) 

and a different one during the turn round (when an additional face-up 

card is dealt). Each neural network contained seven hidden layers of 500 

neurons each.

The turn neural network was trained by playing 10 million randomly 

generated turn states. That is, for each randomly generated game, the play 

was “simulated” up until that point. The network evaluated the various 

potential actions for that specific configuration of cards shown and bets 

and then played the game through to the end, with a restricted set of poten-

tial actions: fold, call, bet the current pot, or bet all-in (all the player’s cur-

rent money). The inputs to the network were the pot size, the publicly 

visible cards, and a categorized estimate of the cards that the opponent 

might have in the hole. The flop network was trained with an additional 1 

million randomly generated flop states, using the estimates from the turn 

network to value each potential action.

After training, DeepStack’s performance was measured by playing 44,852 

games against human players. The high variability in this kind of poker 

game requires some specialized statistics, but the results were favorable for 

the computer. On one measure, which is the value won per game relative 

to the size of the minimum bet, DeepStack won 0.492, where a professional 

poker player would consider 0.05 to be a sizeable margin. A break-even 

player would achieve 0 on this measure, so the computer did pretty well. 

In other words, if the minimum bet were a dollar, DeepStack would win an 
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average 49.2 cents per game, against a field of good, but perhaps not the 

best, players.

Conclusion

The success of these computational intelligence programs over the last sev-

eral years is due largely to three factors: first, the availability of good-quality 

training data, which made large-scale supervised learning possible; second, 

the use of pattern recognition to characterize the problem solution space; 

and third, clever ways to represent the problem being solved.

The operations of the artificial intelligence system were represented as 

approaches to recognizable categories of patterns as opposed to rules gov-

erning responses to specific named inputs. The systems were designed to 

largely discover their own patterns from a candidate representational space 

designed by their creators.

Among the most prominent machine learning approaches to pattern 

recognition and classification are the so-called deep neural networks. These 

systems consist of several layers of simulated neurons that allow the input 

data as originally represented to be transformed into patterns that may be 

more computationally tractable. They can generalize from the patterns pro-

vided during training to related patterns that they had not seen. In essence, 

they abstract the input patterns that they receive into derivative patterns.

Another factor that contributed to the success of some of these impor-

tant AI programs is the use of one machine learning system to train another 

one. The self-driving cars, for example, used the laser range finders to help 

train the visual analysis system. AlphaGo used one version of itself to play 

against another version of itself to provide training examples. DeepStack 

used a random system to create poker hands that could be learned by its 

deep neural networks. This technique addresses a major bottleneck in some 

of the most successful forms of machine learning, the need to use large 

numbers of labeled training examples. Certain kinds of learning problems 

lend themselves to this kind of adversarial training. When combined with 

reinforcement learning, they can be very powerful tools in the training of 

effective machine learning systems. But this process comes with a risk.

Garbage in, garbage out. If one system is working against another sys-

tem, there is no guarantee that it will be successful when working against a 

different—for example, more natural—adversary. One system may merely 



Recent Advances in Artificial Intelligence	 157

learn the flaws inherent in the other, and those flaws may be different or 

absent from other systems or players.

Finally, these examples are important because they show how the kinds 

of problems that are addressed by machine learning can be extended. There 

are many advantages to studying problems that are easy to understand 

(even if they are complex to solve), but the world does not consist of only 

these well-structured problems. Playing go is important because it is an 

example of a situation where simple representations would leave a machine 

lost in thought. Advanced, creative representations, including insightful 

heuristics, made an intractable problem tractable.

Self-driving cars and poker playing take machine learning into realms 

of imperfect information. They can be addressed because new representa-

tions have been invented that allow for uncertainty. Speech-based assis-

tants combine uncertain, ambiguous inputs with uncertain intentions. The 

range of actions and intentions that may ultimately be addressed by these 

systems is potentially enormous. The representations that allow these sys-

tems to be useful are still evolving.

All of these examples and many others, though, also share an important 

property. These programs’ success depends on some designer finding an 

appropriate and useful representation of the problems that they face. This 

representation has to transform the problem from one that may be unsolv-

able into one that can be resolved within the capacity of modern comput-

ers. Their intelligence comes largely from the cleverness of the designer. 

Achieving artificial general intelligence will require finding a way to rep-

licate that representational creativity, which, so far, has relied on human 

capacities and talents.
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7  Building Blocks of Intelligence

Up to this point we have been concerned with forming a preliminary definition of 

general intelligence and then taking stock of the ways that it has been approached 

in human cognition and computational intelligence. This chapter begins a discus-

sion of the kinds of resources that might be available to overcome the current limi-

tations. A main focus of this chapter is on the idea that cognition does not flow 

in only one direction. What we perceive and what we think is affected by context 

and by expectations. The chapter continues with a discussion of how language is 

both a problem for intelligence and a contributor to intelligence, and it concludes 

with a discussion of common sense.

Long before ancestral brains were doing anything that we would currently 

recognize as intellectual achievement, they were evolving the capability to 

sense, perceive, and act in their environment.

Figure 6 shows a moth resting on the bark of a birch tree. Blue jays have 

little trouble locating the moths, but people often have to search a long 

time to find it, if they ever do. How dumb are we? We do not typically think 

of tasks like finding moths as part of intelligence, but if our diet depended 

on finding these moths, we might have a different idea.

This task is conceptually not much different from projects designed to 

distinguish photographs containing cats from those that do not. Here, we 

want to distinguish trees that hold moths from trees that do not, and we 

want to locate the moth on that tree. It may take a computer millions of 

examples before it can reliably find the cats, but blue jays would probably 

starve if they required even thousands of training examples.

Even well-experienced blue jays find it easier to detect cryptic (cam-

ouflaged) moths immediately after they have found a similar one. This 
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tendency, called a “search image,” was first proposed by Niko Tinbergen in 

1960. Finding one example of a particular prey species makes it easier for 

the predator to find another example of that species than it is to find an 

example of another species. Both prey species may be equally hard to find, 

and both may be equally common in the predator’s diet, but still, finding 

one makes finding more of the same easier. There is some kind of short-

term attentional effect that helps the blue jay or other predator to find 

more examples of the same thing. Experiments have supported Tinbergen’s 

idea and the notion that there are contextual, attentional factors that affect 

perception. The idea of a search image is one example of how perception is 

more than picking up stimulation from the environment but is an active 

process governed by attention and expectations.

Perception and Pattern Recognition

Humans and many other animals have evolved specialized neurons for 

sensing the environment. The most familiar of these are probably the reti-

nal receptors in the eye and the cochlear hair cells in the inner ear.

Figure 6
A Catocala moth on a birch tree. https://www.researchgate.net/publication/282230039 

_Selective_Attention_Priming_and_Foraging_Behavior/figures?lo=1. Used by permis-

sion. See figure 9 if you cannot find the moth in this picture.

https://www.researchgate.net/publication/282230039_Selective_Attention_Priming_and_Foraging_Behavior/figures?lo=1
https://www.researchgate.net/publication/282230039_Selective_Attention_Priming_and_Foraging_Behavior/figures?lo=1
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Light reflected from objects in the environment is projected through the 

lens of the eye landing upside down on the mosaic of photosensitive cells, 

the retina, at the back of the eye. Originally it was thought that the reti-

nal cells merely transmitted a signal corresponding to the amount of light 

that struck them. What neuroscientists found, however, was that pattern 

processing begins in the retina. Ganglion cells in the retina combine inputs 

from many photoreceptors and transmit patterns to the rest of the brain.

The pattern processing in the retina is the first step in a complex cascade 

of feature detectors that continues through several brain layers. Around 

1959 Hubel and Wiesel began reporting on cells in the visual cortex that 

would respond to bars of light in specific parts of the visual field. They and 

subsequent neuroscientists followed these patterns of selective response to 

more complex processing in other areas of the brain following the primary 

visual cortex.

More recent research has also found what looks like top-down (brain to 

retina) changes to the responses in the early layers of visual processing, for 

example, depending on attention. Visual processing does not proceed in 

only one direction, but the action of lower layers is affected by the action of 

higher layers further along the chain of visual processing. These top-down 

processes focus attention on some things at the expense of others, including 

increased activation of some neurons and suppressed activation of others.

As discussed in previous chapters, hearing sounds starts with the 

mechanical action of the eardrum and the bones of the middle ear. The 

bones of the middle ear transmit the sounds to the cochlea, which provides 

a mechanical frequency filter bank. Specific parts of the basilar membrane 

in the cochlea respond to specific frequencies.

As in the eye, the ear also shows evidence of both top-down (brain to 

ear) and bottom-up (ear to brain) processes. The ear includes inner hair 

cells, which sense the frequency pattern of sounds, and outer hair cells, 

which provide mechanical feedback and amplify some frequencies at the 

expense of others.

Other sensory systems seem to perform in similar ways, involving both 

bottom-up and top-down activity. Sensors receive signals from the envi-

ronment, transduce those signals into neural activity, and represent those 

signals in a spatially distributed manner. But perception is then actively 

modified by events happening later in the processing chain—there is feed-

back. Perception is more interactive and more object oriented than previ-

ously thought, further eroding the distinction between symbolic (object) 
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and so-called subsymbolic (sensory) processes. This kind of active feedback 

process is potentially critical to the functional intelligence of organisms 

including humans.

Gestalt Properties

The perceptual system seems to have evolved for dealing with objects rather 

than for dealing with specific sensory patterns. The Gestalt psychologists, 

primarily Kurt Koffka, Max Wertheimer, and Wolfgang Köhler, in the 1910s 

and 1920s identified a set of principles that seem to be important in deter-

mining just what people perceive as objects: proximity, similarity, conti-

nuity, closure, and connectedness. These properties demonstrate again 

that perception is not a simple product of the stimulation that strikes the 

sensory surface, but it is a constructive process that uses other sources of 

information to recognize the objects that could produce such a sensory 

experience (see figure 7).

The neurobiology of brains has long been recognized as important to 

understanding intelligence, both machine and biological. Since Donald 

Hebb (1949) first proposed his learning rule, there has been significant 

cross-fertilization of artificial intelligence research and neuroscience. Hebb’s 

learning rule can be summarized as saying “Neurons that fire together, wire 

together.” More formally, “When an axon of cell A is near enough to excite 

a cell B and repeatedly or persistently takes part in firing it, some growth 

process or metabolic change takes place in one or both cells such that A’s 

efficiency, as one of the cells firing B, is increased.” This is one of the first 

neuropsychological explanations for how learning occurs in the brain.

Hebb’s rule and its descendants continue to be among the most influen-

tial principles in neural networks. The feature detection and feature proc-

essing of deep neural networks is inspired by what we know of the feature 

processing of the visual system. But the relationship between brains and 

networks is still more metaphorical than literal. We don’t think that we 

are mapping the structure of the visual cortex when we build a deep neural 

network.

Ambiguity

Ambiguity further challenges our view of perception. Analogous to the 

ambiguity we discussed in the preceding chapter in the context of speech 
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recognition, there is no simple mapping between visual scenes and the 

objects that are recognized in those scenes. The same visual pattern in the 

center of the display shown in figure 8 can be identified as either a B or as 

the number 13, depending on whether you look at it starting from left to 

right or starting from top to bottom.

The ambiguity also extends to the sounds that we hear and to the words 

that we use every day (see chapter 6). Although early views of artificial intel-

ligence focused on using symbols that were analogous to words, it turns out 

that words themselves are not constant symbols of anything. Many people 

are familiar with the ambiguity of words like “bark” or “bank” or “strike,” 

but the widespread ambiguity of other common words and their degree of 

ambiguity may be more surprising.

As an exercise, I looked up each word from the sentence in table 4 in a 

dictionary. The numbers below each word indicate the number of defini-

tions I found for that word in the dictionary. If you combine each of these 

A B 

C D 

Figure 7
Gestalt principles. Four drawings that represent some of the characteristics of Gestalt 

perception. A shows an illusory figure. There is no square actually present in A. B 

shows the principle of similarity. Items that are physically similar tend to be seen as 

part of the same object. C shows good continuation. The three segments are usually 

seen as part of the same object, such as a partially submerged sea serpent. D is usually 

perceived as a ball with spikes, but there is no ball.
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definitions, you get almost 8 quadrillion (7,788,584,618,680,320) possible 

interpretations of this sentence, yet few people even notice any ambiguity.

Figure 8
Ambiguous B versus 13.

Table 4

The com-
panies

have agreed to a brief delay in imple-
menting

their agree-
ment.

37 14 39 17 54 62 20 8 84 8 7 9

To be sure, the number of dictionary definitions is an imperfect measure 

of linguistic ambiguity. But it does suggest the qualitative level of ambiguity 

of ordinary language.

We seldom notice the ambiguity, even in simpler sentences like “She ate 

her lunch next to the bank,” because the words do not contribute indepen-

dently to the meaning of the sentence. Consider “She ate her lunch on the 

bank,” versus “She ate her lunch in front of the bank.” She could have been 

on top of a building (or a piggy) when eating her lunch according to the 

first sentence, but we are much more likely to interpret it as meaning she 

was at the side of a river. In the second sentence she could have eaten her 

lunch in front of a river’s edge, but we tend to interpret it as meaning in 

front of a financial institution.

Any system that depended on the atomic nature of words would have 

problems. The notion of atomic words is the idea that the word “cat” has 

the same meaning in any sentence that contains that word. “The cat wore 
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a hat,” “The cat sat on the mat,” or “The cat smiled at Alice” all employ 

the same symbol, and the meaning of that symbol is intended to be consis-

tent in the three sentences. The meaning of the sentence is thought to be 

a composite of the meaning of the words in it. Sentences involving words 

like “bank” or “bark” were thought to be rare exceptions to the idea of 

atomicity and compositionality. Although these words looked like the same 

word, they were really, so the thinking went, different symbols that just 

happened to be indistinguishable. In contrast to this idea, it turns out that 

ambiguous words are more the norm than the exception.

The notion of using context to help a machine to understand the mean-

ing of words is a key idea in the open-source project Word2Vec and a num-

ber of other projects that seek to represent the meanings of words by how 

those words are used in the language. Each word in the vocabulary is repre-

sented in these systems by its co-occurrence pattern in the text. With what 

words does this word occur? Words that are similar in meaning, it turns 

out, tend to occur in similar contexts, that is, with certain other words. 

The word “lawyer,” for instance, is likely to appear with many of the same 

texts that the word “attorney” appears with. These two words have similar 

meaning, and by embedding their representation in similar contexts, the 

computer can abstract some of that meaning, so that when a user searches, 

for example, for the word “lawyer,” she may also get documents that do not 

mention “lawyer” but do mention “attorney.” More generally, the ambigu-

ity of words reflects again the influence of top-down processes on the way 

we perceive and respond to events in the world.

Intelligence and Language

Despite the ambiguity, one of the most important inventions that support 

human intelligence is language. Language is just as much an instrument 

of human intellectual accomplishment as are maps, computers, math-

ematics, and fire. In all cases, these instruments of intelligence function 

to facilitate the mental or computational operations to support human 

accomplishment.

Before the widespread use of calculators, mathematicians used slide rules. 

A slide rule is a combination of two narrow boards, one of which could slide 

relative to the other. It could be used, for example, to multiply or divide two 

numbers just by sliding one of these boards relative to the other. The slide 
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rule made it possible to easily perform complex mathematical operations, 

like multiplication, division, and exponentiation, that would have been 

difficult or time-consuming to perform mentally or on paper. Slide rules 

made certain mathematical operations practical, making the people who 

used them smarter than before. The slide rule is an instrument of artificial 

intelligence.

These instruments of intelligence, including language, make it easier to 

generate information, store it, transform, retrieve it, or otherwise use it. 

They impact our intellectual capabilities in a way similar to how software 

packages allow simple desktop computers to perform powerful and useful 

tasks.

The instrumental value of language has long been recognized by devel-

opmental psychologists. Language is not identical with thought, but it 

helps to structure and organize it in ways that are essential for the kind of 

intellectual capabilities we usually associate with intelligence.

Among the psychologists recognizing the importance of language in the 

development of intellectual capabilities were Jean Piaget and Lev Vygotsky. 

According to Piaget, the intellectual development of the child occurs in 

four regular stages.

During the sensorimotor stage (infancy to age two years), children’s 

knowledge of the world is derived from the actions that they perform in 

it and their sensory experience of the world. Basic language is acquired 

toward the end of the sensorimotor stage.

The preoperational stage (two to seven years of age) follows. The child’s 

knowledge is controlled primarily by the external world. The child has lim-

ited ability to focus on more than one aspect of an object or problem at a 

time. Thinking at this stage is prelogical, verging on magical. The child has 

a difficult time understanding that other people have a different point of 

view.

The concrete operational stage (seven to eleven years of age) begins to 

allow the child to reason logically and systematically. The focus is still on 

concrete objects. The child begins to be able to engage in reversible think-

ing and begins to recognize that each person has a unique view of the 

world. This logical and systematic reasoning is typical of the kind of skill 

we often call “intelligent.”

The formal operational stage follows (adolescence and beyond). Dur-

ing this stage the person is capable of demonstrating logical thought and 
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abstract concepts. Problems can be assessed in a logical and systematic mat-

ter. Not everyone seems to reach the formal operational stage, however.

The sensorimotor stage extends from birth to the onset of language. 

Early in this period, children are limited to basic reflexive actions, but by 

the end, they show the beginnings of symbolic thought. They quickly prog-

ress from babbling to being able to express themselves, using one or two 

words at a time.

Children do not have the ability to understand logic at the start of 

the preoperational stage. They have only very limited ability to mentally 

manipulate information. They begin to pretend at this stage, however, 

showing some evidence of symbolic thought. For example, they begin to 

play social games with roles, have pretend tea parties, and play house. Dur-

ing the second half of this stage, children’s linguistic constructions become 

more sophisticated as does their ability to reason.

Children in the concrete operational stage are able to incorporate induc-

tive logic. They can infer general principles from specific examples but may 

have difficulty with deductive logic. They may have difficulty using a gen-

eral principle to predict the outcome of a relevant event. They are mostly 

limited to reasoning about concrete objects, actions, and situations.

Eventually, many children reach the formal operational stage, where 

thought is freed of the concrete constraints that characterized earlier stages. 

They can effectively use language related to abstract concepts and reason 

about hypothetical situations. In the formal operational stage, children 

achieve the highest levels of intellectual capabilities that we associate with 

intelligence.

Piaget did not particularly pursue the specific role of language in these 

developmental stages. Another developmental psychologist, Lev Vygotsky, 

on the other hand, was more interested in the role that language plays in 

intellectual development.

Vygotsky noted that a child faced with a difficult problem may get verbal 

coaching from a nearby adult to better accomplish the task. Later, when the 

adult is no longer around, the child may use similar speech, either aloud or 

internally, to replay those instructions and accomplish the task without the 

adult. People often ask themselves, “What would my father do?” in difficult 

situations. People talk to themselves about what they are doing when they 

are working on hard problems. The speech seems to help them to structure 

the action.
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According to Vygotsky, language helps children to augment their pre-

linguistic cognitive capacities, such as attention and associative learning, 

with new abilities for focused attention and symbolic thought. They use 

the language to structure their thoughts. Cultural systems, such as lan-

guage, instruction, science, and books, increase a person’s intelligence. 

During early stages of development, this instruction is also a social activity 

in which children acquire their culture through interaction with others, 

including through explicit adult instruction. The process of development 

is to transition from behavior that is regulated by others to behavior that is 

regulated by the self. In Vygotsky’s view, this transition is largely through 

internalization of formerly external instruction. Early on, thought is non-

verbal and language is nonintellectual. Over time, thought incorporates 

more of the properties of verbal activity and speech becomes more rational.

I believe that it is fair to think of the early stages of development, as 

characterized by Piaget and Vygotsky, as providing the foundation for what 

Kahneman called “System 1 thinking.” Kahneman did not characterize his 

distinction in terms of child development, but the characteristics of his 

System 1 are not very different from those attributed to young children 

by Vygotsky and Piaget. Both Vygotsky and Piaget focused on intellectual 

intelligence as the end point of cognitive development, but there is no 

reason to think that the nonlogical and impressionistic capabilities had to 

disappear as the more logical and intellectual capacities emerged.

Another developmental view of the emergence of intelligence is the 

argument that intelligence emerges from an exceptional ability to learn by 

analogy; the possession of symbol systems, such as language or mathemat-

ics; and the relationship between the two by which the ability to exploit 

analogy is amplified by the ability to use language. This is the position 

advocated by Dedre Gentner and others.

According to Gentner, among the capabilities that distinguish human 

intelligence relative to other species’ are:

•	 the ability to draw abstractions from particulars

•	 the ability to maintain hierarchies of abstraction

•	 the ability to concatenate assertions and arrive at new conclusions

•	 the ability to compare and contrast two representations and how they 

are different

•	 the ability to invent and learn terms for abstractions as well as particular 

entities
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In particular, she sees a progression during child development from first 

responding to physical similarity, followed by the ability to judge similarity 

based on selected features, to eventually the ability to focus on relational 

or conceptual similarity. In Gentner’s view, children move from perceptual 

similarity to conceptual similarity. This is another example of top-down 

influence in thinking. We not only derive concepts from specific examples 

(induction) but those concepts then affect how we perceive and judge events.

For example, in one experiment, Gentner showed children pictures of a 

knife and a watermelon. The kids were told that the knife was the “blick” for 

the watermelon. “Blick” is a made-up nonsense word. She then showed the 

child an axe and a tree and said that the axe is a blick for the tree. Finally, 

she showed the child a piece of paper, scissors, a pencil, and another piece 

of paper and asked which of these three objects was a blick for the paper. 

The scissors represented relational similarity. Like a knife, it cuts. The pen-

cil represented thematic similarity. Pencils are used to write on paper. The 

second piece of paper represented nominal similarity. It was the same as the 

paper. She found that four- and six-year-old children chose the scissors as 

the blick for the paper, but younger children simply chose randomly. Until 

they were four years old, children had a difficult time understanding the 

functional relationship among a knife, an axe, and scissors.

The ability to engage in these relational analogies is enhanced by the 

ability to talk about the relationship. Naming a relational pattern increases 

the probability of seeing it in other situations that are perceptually distinct 

from the original. Relational language creates symbolic pairings that might 

not otherwise occur, Gentner says. Relational terms can also help to focus 

on properties that are specific to the point of view expressed by the relation. 

When asked to name the properties of a pet, for example, people will men-

tion different things than when asked to name the properties of a carnivore 

or a good mouser.

Offering people a discount for early registration results in fewer takers 

than offering them a late payment penalty for late registration, even if the 

dates and the price differences are identical, as Kahneman found and as 

we discussed earlier. Highlighting a particular relation focuses the person 

on some properties (winning) or others (losing) and can result in different 

choices for formally identical situations.

Language allows each new generation to learn from past generations, 

even though the meaning of terms can drift over time. Language augments 

the ability to hold and manipulate concepts and sets of concepts.



172	 Chapter 7

Words help to structure how we think about things. The names we apply 

to things influence how we think about them. A strong version of this idea 

is the Sapir-Whorf hypothesis named after Edward Sapir and Benjamin 

Whorf. The idea is that the concepts we have of the world are determined 

by the categories codified in our native language. In its extreme, it says that 

we have a very difficult or perhaps even impossible time thinking about 

concepts that we cannot express directly in our native language.

The bulk of evidence collected in the process of investigating the strong 

Sapir-Whorf hypothesis has been negative. As a strong notion, that we can 

only think of things for which we have words, it is very clearly false. Law-

rence Barsalou, for example, found that people are quite capable of making 

up ad hoc categories on the spot (name things to take with you if your 

house is on fire). We do not have a word for such a concept, but Barsalou 

found that such ad hoc categories have the same kinds of cognitive proper-

ties that more traditional categories have. For example, people can select 

prototypical members of that category.

Still, it does seem clear that the words we use for things influence how we 

think about them. In the aftermath of the hijacking on September 11, 2001, 

the airlines banned anyone from taking knives on a plane. They replaced all 

of the metal knives in the public spaces of airports and on the planes with 

plastic versions. They did not, however, ban forks. I argue that the knife ban 

was because knives were categorized as weapons, but forks were not, even 

though a fork or even a spoon can be just as deadly a weapon as a knife.

George Lakoff explores this idea of linguistic categorization and its 

impact on thought in his book Women, Fire, and Dangerous Things. Lakoff’s 

point, along with Barsalou’s, is that there are categories that cannot be 

described by the similarity of the features of the objects that make up that 

category. What is the common feature that makes up the category of things 

to sell at a garage sale?

The failure of feature similarity to define categories is not limited to ad 

hoc ones. Ludwig Wittgenstein first talked about this in the context of what 

makes up a game. He argued that there was, at best, family resemblance 

among games. What is the similarity among baseball, tic-tac-toe, charades, 

and solitaire? Yet, we categorize them all as games.

Even family resemblance may give too much credit to physical similar-

ity as the basis for categorization. According to Medin (1989), the similarity 

between two items, on the standard view, should depend on the number 
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of features that they share in common versus the number that they share 

or don’t share. But, in fact, any two items share an infinite number of fea-

tures. A chicken dinner and a boy scout will both fit in a Volkswagen, they 

both take up space, neither is named Sam, they both weigh less than 300 

pounds, they both weigh less than 301 pounds, . . . 

The problem does not go away if we assume that categories are repre-

sented in the mind by examples of that category. In computers, this would 

be called a “nearest neighbor classifier.” Unfortunately, nearest neighbor 

classifiers still depend on similarity to determine the nearest neighbor.

Tversky and others have shown that the features that would be compared 

in a similarity-based categorization are too flexible to be the basis of con-

ceptualization or category membership. Even if we limited the comparison 

to features that were salient, that people paid attention to, and that they 

mentioned, similarity would still be a weak means of identifying items with 

their categories. The features that are mentioned by people depend strongly 

on the context in which the similarity judgment is being made. Tea may be 

considered a typical drink when talking about secretaries having lunch, but 

not when talking about American truck drivers taking a break.

Just as two items may share an infinite number of features (foxes and 

squirrels both have hearts and skin, but these features are rarely mentioned), 

a given object may be in a potentially infinite number of categories. Rolf 

may be a dog, he may be a male, he may live in New Jersey, he may be a 

living thing, and so forth. He may be one of the things that Sophie loves.

The features that one selects, or weights more heavily in judging similar-

ity, are affected by the objects being compared but are not determined by it. 

Similarity is not sufficient for human categorization; rather, human catego-

rization seems also to be affected in a top-down manner and then to affect 

the dimensions by which we judge similarity. Categories affect the features 

by which we compare at the same time that features affect the categories to 

which we assign objects.

The recognition that similarity is not sufficient to manage categoriza-

tion raises problematic issues for machine learning or computational intel-

ligence. It implies that computers must have knowledge that is not given 

by stimulus features directly. They must have contextual and categorical 

knowledge.

In existing computational intelligence methods, the feature selection 

comes from the representations chosen by the designers of the computer 
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system. If pixels are used to represent images, then similarity is determined 

by the overlapping pixels in two images and the classes are determined by 

the similarity of the pixels. Some systems transform the information in 

the pixels mathematically to extract higher-order representations that are 

more abstract than the raw pixel images. These transformations are deter-

mined by the structure of the pixel data and of the layers in the neural  

network.

Computational intelligence systems are not at this point capable of 

deciding for themselves what their representations should be. As a result, 

the features appropriate to one problem may not be useful when applied 

to other problems. These are implicit decisions made when structuring a 

machine learning problem, but at the same time, we also do not have a 

good account of how humans select the features that they consider when 

categorizing in relatively unconstrained situations. Better understanding of 

how humans judge similarity would likely be extremely helpful to building 

out more powerful computational intelligence systems.

Still, it is interesting to note that the way that psychologists have charac-

terized human cognitive development as a process of layering more abstract 

and rational processes on top of basic perceptual processes has a ready 

analogy in the layers of deep neural networks. It is also interesting to note 

that human judgments about similarity depend strongly on the context in 

which the similarity judgment is made. Context is emerging as an impor-

tant part of some kinds of machine learning, such as in Word2Vec. These 

studies also imply that labels, in this case words, can play an important role 

in categorization that is more subtle than simply providing the right label 

for a category. Finally, the emphasis on analogy and prototypes may sug-

gest further useful developments in machine learning. We will come back 

to these ideas in chapter 12.

Common Sense

Common sense is what we call everyday reasoning about nonacademic sub-

jects. If you hear that John has a job, you infer that he works most days, 

that he earns money, and that he probably has a boss of some kind. Com-

mon sense represents facts about an individual’s world and the relations 

among those facts that are not contained directly in the representation of 

the objects being reasoned about.
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Common sense is essential to many kinds of natural language under-

standing situations. For example, if I say, “I took the tube to Marble Arch,” 

you could understand me to say that I carried a cylindrical container to a 

place or thing called Marble Arch, but you would be much more likely to 

understand me to say that I took the London subway train to the station 

called Marble Arch. How we interpret a sentence can depend on informa-

tion that is not contained in the sentence, or even in the text surround-

ing the sentence. Interpretation may depend on real-world knowledge. 

Recall the sentence from chapter 6 about pouring water from a bottle into 

a bucket until it was empty. You need common sense to decide whether the 

word “it” refers to the bucket or the bottle.

It is difficult to say what facts and relations constitute common sense. 

But presumably, common sense is what allows us to function in a world 

where everything is not explicitly specified. Common sense can be thought 

of as the set of facts, prejudices, background assumptions, and convictions 

that are implicit in our everyday reasoning about people, their intentions, 

and their actions. Knowing that John fell down after drinking for several 

hours, we can infer that he was drunk. Knowing that Nicole is Martha’s 

aunt lets us infer that Martha is Nicole’s niece, and that Nicole’s husband 

(if she has one) is Martha’s uncle. A sibling of Nicole or a sibling of Nicole’s 

spouse is one of Martha’s parents.

Common sense lets us reason about cause and effect, motion, personal 

relations, force, and energy and quantities, among others. It helps people to 

describe, predict, assess, and explain everyday events in their world.

Even well-structured problems involve common sense. Consider, for 

example, the hobbits and orcs problem described earlier. Three hobbits and 

three orcs arrive at a riverbank with a small boat that will hold two indi-

viduals. They want to cross the river, but if the orcs ever outnumber the 

hobbits on one side of the river, they will eat the hobbits. How do they  

get across?

There are formal ways to solve this problem. For instance, Saul Amarel 

has described this problem as a state space consisting of 32 states, two of 

which are unreachable. He wrote out the solution using a notation consist-

ing of three numbers, representing the number of hobbits, orcs, and boats 

on the first bank, respectively. The other bank is fully specified once we 

know the first bank. If the boat is on the side of the first bank, then it can-

not be on the side of the second bank, and vice versa. Here is his solution:
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331 → 310 → 321 → 300 → 311 → 110 → 221 → 020 → 031 → 010 → 021 → 000

What this notation hides, however, is the commonsense reasoning that 

goes into understanding the problem from its description. How do we 

know that Amarel’s representation is a fair representation of the problem? 

For example, how do we know that the presence of the boat is essential to 

understanding the problem? If it were not, then we would have a very dif-

ferent kind of problem. The hobbits and orcs would simply ford the stream 

and go on. Problem solved. Recall the problem of finding a pair of brown 

socks and black socks, the ratio of the two colors was not relevant in that 

problem, even though most people assume that it is relevant.

In the hobbits and orcs problem we assume that the stream is crossable 

only with the boat, and it is common sense that supposedly tells us that. 

We assume that neither hobbits nor orcs can swim across the stream, but 

that is not stated in the description. We do not assume that the problem 

is insoluble unless we know what color hat each individual was wearing 

or unless we know what color the boat was. Common sense tells us that 

the color is irrelevant. We do not ask if there are oars by which to row the 

boat. We assume that banks on either side of the river are not so high that 

it would be impossible to climb or fatal to jump from them into the boat.

The nature of the problem changes dramatically if there is an island in 

the middle of the river or if every creature has to leave the boat when it 

reaches shore. The problem also changes if instead of three hobbits and 

three orcs, we say that four of each type appear on the shore or that more 

orcs arrive after they have started to cross.

In fact, there are many things that we assume and a huge, perhaps infi-

nite, number of things that we don’t consider as relevant. How we translate 

the words of the problem description into a representation that we can use 

to solve the problem is a critical issue that is often hidden by the fact that 

common sense is implicitly used when people solve problems but cannot 

be assumed when dealing with computers. By the time an engineer has cre-

ated a representation of a problem, she has used common sense to decide 

just what features are (potentially) important to the situation and what the 

relation is between these features and the elements of the representation.

Common sense is essential to creating problem representations and 

essential to computational intelligence. Even when solving formal prob-

lems, how we construct solutions to those problems already depends on 
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commonsense notions about the structure of the problem and the factors 

that are relevant to it.

Representing Common Sense

Common sense suffers from two so far insurmountable problems. What 

exactly needs to be represented to capture common sense, and how should 

that information be represented? Artificial general intelligence is simply 

not possible without an effective means of representing and exploiting 

common sense.

Some investigators argue that common sense needs to be represented 

as a set of facts, for example, organized into a tree. This approach is most 

consistent with the idea of intelligence being symbol processing. But, as we 

have been discussing in the context of similarity and categorization, it is 

unlikely that we can come up with a fixed list of those facts that need to be 

represented or that we can organize them in a meaningful way.

Instead, common sense involves a kind of logic that is inconsistent with 

traversing a tree structure like that used to play go or chess. Tree structures 

and similar forms of deductive logic are “monotonic,” meaning, roughly, 

learning a new piece of information can never reduce the set of what is 

known. Adding new information, in monotonic logic, always increases 

the set of facts that are known; it never can contradict what was formerly 

believed. In fact, the very notion of belief as separate from fact is foreign to 

monotonic logic.

Common sense requires nonmonotonic reasoning. If you learn that 

Tweety is a bird, you infer the fact that Tweety can fly. But if you later learn 

that Tweety is the kind of bird called an ostrich, then you have to revise this 

fact and then recognize that Tweety cannot fly. Nonmonotonic logic is said 

to be “defeasible.” Beliefs are tentatively held and are subject to revision 

when more information is gained.

Medical diagnosis is a kind of nonmonotonic reasoning. Although phy-

sicians work hard to make medical diagnosis as consistent, systematic, and 

as logical as they can, ultimately, any diagnosis is an inference from the 

available evidence and can be contradicted by subsequent information. 

Reasoning by default, where we believe something to be true until we find 

out otherwise, is another familiar kind of nonmonotonic reasoning.
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Any of the facts that you know, and which you use for problem solving, 

could be wrong. It is very difficult to reason systematically from premises 

to conclusions when the facts that those premises are based on could be 

wrong. Formal, traditional kinds of logic become inconsistent under these 

circumstances.

Instead, commonsense reasoning is more flexible than traditional for-

mal logic. People can jump to conclusions that cannot be justified. The 

work of Kahneman and Tversky, as we discussed earlier, shows that peo-

ple are not consistent in their judgments. Concepts such as bounded 

rationality also play a role. Herbert Simon, one of the participants at the 

1956 Dartmouth Conference on artificial intelligence, argued that people 

have limited ability to process information. Their decisions and judg-

ments are not fully reasoned but are bounded by the difficulty of the 

problem, by their own cognitive capacity, and by the time available to  

reason.

Human common sense reasoning also suffers from a number of so-called 

cognitive biases. Some of these were discussed earlier in the context of 

Kahneman and Tversky’s work. One of these biases is “confirmation bias.” 

People find it easier to understand information that is consistent with their 

beliefs than information that challenges them. They tend to look for infor-

mation that confirms their beliefs, even when they think that they are 

looking to evaluate those beliefs.

For example, Peter Wason gave people a card task that was designed to 

investigate how they evaluated hypotheses. He presented four cards, one 

had an A, one had a 3, one had a B, and one had a 4 showing. The people 

were asked to evaluate the following hypothesis: If a card has a vowel on 

one side, then it has an even number on the other. Which cards would you 

choose?

A  3  B  4

Less than one in four people get this right. Most people pick the first 

card. If it turned out to have an odd number on its other side, then the 

hypothesis would be wrong. Many people also choose the last card. They 

expect that it will have a vowel on the back, but in fact, it does not matter 

what is on the back of that card. The hypothesis does not say that all even 

numbers have to have vowels. So whether the back of the 4-card had a 

vowel or not would not affect the hypothesis. The B-card is also irrelevant 
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because the rule says nothing about nonvowels. It could have any number 

on its back and not change the truth of the hypothesis. The 3-card, on 

the other hand is critical. If it has a vowel on the back, then that would 

make the hypothesis false. It would be a card with a vowel on side and 

an odd number on the other. Most people choose the cards that confirm 

the hypothesis (A and 4) rather than the two cards that challenge it (A  

and 3).

To be fair, people are more likely to get it correct if the task involves more 

realistic situations—for example, if the rule is, if a person is drinking beer, 

then the person must be over 21 years old. Their choices are:

Beer  Soda  18  25

They realize that they need to know the age of the person drinking the 

beer, and they need to know the drink of the 18-year-old to know if this 

rule is correct. But even in realistic situations people tend to show confir-

mation bias, looking for information that favors their beliefs rather than 

information that would challenge them. They interpret ambiguous evi-

dence in ways that support their position. They resist changing their beliefs 

in the face of contrary evidence. The effect is stronger for highly emotional 

issues and for deeply held beliefs.

The overconfidence effect is another cognitive bias. It is the prevalent 

belief that we are each above average in some specific features (also called 

the “Lake Wobegon effect” after Garrison Keillor’s stories about cycthe chil-

dren in the fictional community of Lake Wobegon all being above average). 

The overconfidence effect is shown when a person’s belief in the accuracy 

of his or her own judgment is higher than the objective accuracy of those 

judgments. Most people, for example, think that they are better drivers 

than others. They have an illusion of control, that they are less likely to get 

in an accident if they are behind the wheel than if they are riding as a pas-

senger. They think that they are more expert than their peers. These beliefs 

persist despite evidence to the contrary.

A related bias is can be called the “schlemiel/schlimazel effect.” If 

a person is carrying a bowl of soup and spills it on another person, the 

old story goes, the spiller attributes the accident to some external force—

maybe the floor was slippery or something made him trip. The person on 

whom the soup was spilled tends to attribute the accident to the clumsi-

ness of the spiller. The schlemiel is the idiot; the schlimazel is the victim 
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of bad luck. They may be the same person, depending on who is doing the 

judging. More formally, this effect is called the “fundamental attribution  

error.”

It is easy to find examples of how human common sense does not con-

form to formal models of reasoning. It is easy to make people seem stupid. 

But what we do not know is the role that those same processes play in 

human intelligence. Their nonconformance with formal reasoning may be 

precisely why these distortions exist. The limits to human rationality stud-

ied by Kahneman and Tversky and by Wason, for example, may be rational-

ity bugs. They may be vestigial remnants of poor brain evolution, or they 

could be among the very features that make people intelligent. If the mind 

does not have the time or resources to reason fully, are there shortcuts that 

mostly work but can sometimes go awry? Recall, for instance, the availabil-

ity heuristic discussed in chapter 2.

Progress in computational intelligence on such problems as playing go 

has been achieved, at least in part, by the clever development of heuristics 

that are incomplete, imperfect, but can be executed in a timely way with a 

reasonable chance of success. There may be a lot more to be learned from 

the apparent cognitive biases that play such a substantial role in common-

sense reasoning as heuristics for computational intelligence.

Common sense allows us to know that we do not make salads from cot-

ton shirts. If we see a six-foot-tall person holding a two-foot-tall person we 

do not need to ask which one is the father and which the son. We know 

what the word “it” refers to if we read a sentence like “I stuck a pin into a 

radish and afterward it had a hole in it.”

Few, if any, current computer programs make effective use of common-

sense knowledge. Douglas Lenat, in 1984, started a collection of organized 

facts called CYC, described in chapter 3. The objective of the project was 

to capture what it means to have commonsense knowledge. For example, 

CYC represents the facts that “Every tree is a plant” and “Plants die eventu-

ally.” These facts allow it to reason that the large apple tree in the backyard 

will eventually die. CYC’s facts were originally hand engineered by having 

someone actually write down each one. More recently, it has come to use 

forms of machine learning to augment those handwritten facts. Other pro-

grams, such as DBpedia, have been developed to extract knowledge from 

text, such as from Wikipedia.
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CYC also includes an inference engine that allows it to perform logical 

reasoning based on the facts and relations it contains. The Cleveland Clinic 

has used CYC to support a system of medical information. Users can ask 

questions in English. The system then translates those queries for CYC’s 

inference engine, which then tries to derive a meaningful response, based 

on common sense, medical knowledge, and information about understand-

ing human question patterns.

If commonsense categories could be stored in a taxonomy, reasoning 

about these categories would be easy. A taxonomy is a treelike collection 

of categories where lower level categories are a subset of those in the upper 

levels. For example, the category “animals” might include subcategories 

“dogs,” “cats,” “elephants,” and “tigers.” The category “machines” might 

include “cars,” “trucks,” and “computers.”

With a taxonomy, it is straightforward to reason about categories and 

subcategories. If we know that an animal breathes, then we can also know 

that a cat breathes because cats are a subcategory of animals. But most com-

monsense categories are not so well structured as a taxonomy would imply. 

A taxonomy supports indefeasible logic, but common sense is defeasible.

Galileo, for example, is a member of a large and indefinite number of 

categories, “resident of Pisa,” “scientist,” “victim of religious persecution,” 

“currently dead person,” “historical figure.” These overlapping categories 

make reasoning difficult, and because there is really no limit to the number 

of categories any particular person or object may be in, categorical reason-

ing must depend on knowledge that is outside of the taxonomy to select 

the categories even to reason about.

Furthermore, categories are often ill-defined. What annual income 

qualifies a person as being “rich”? For most people, it is an income that is 

greater than their own. Even people with high incomes tend to think of 

themselves as “well-off.” Only people with more money than they have 

should be categorized as rich. What qualities allow a man to be categorized 

as “handsome”?

Commonsense knowledge may be important to how humans function 

in the real world, but so far, it has been difficult to codify this information 

so that it can support computer intelligence. At this point, I do not believe 

that we have a good way to systematize commonsense knowledge or even 

represent it. Even if the “facts” can change, how can we represent their 
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current state in a way that is useful? What facts need to be represented? Are 

there limits to what gets represented? Is the flexibility of human categoriza-

tion a feature that is essential to intelligent reasoning or a bug that limits 

it? I think that these are among the questions we will have to address to get 

on the path to understanding and creating general intelligence. These are 

problems that need to be solved at some point.
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8  Expertise

Psychological investigations of intelligence have focused largely on individual dif-

ferences among people in their test performance. How people solve problems is 

more centrally pertinent to developing artificial general intelligence, but perhaps 

even more central is the process by which people gain expertise. Expertise is more 

general than the ability to solve individual problems. Expertise is the capability to 

solve multiple kinds of problems, sometimes even those that have not been seen 

before.

The people we commonly recognize as intelligent are typically those who 

have achieved a certain level of success in a particular field. We call these 

people experts, mavens, prodigies, if they are young, or geniuses. Their suc-

cess usually extends to a broad area of expertise, not just solving a single 

problem. As a result, the means by which they achieve this expertise could 

be extremely informative.

In this chapter we will consider the differences between novices and 

experts, how human experts gain their expertise, and ask how that exper-

tise may be important to the creation of artificial general intelligence. There 

seem to be important differences between experts and nonexperts. These 

differences may be critical to understanding intelligence.

Novices seem to depend more on formal rules to guide them in their per-

formance than experts do. These are the kind of rules that serve as the basis 

of artificial intelligence. Experts rely to a greater degree on what might be 

called intuition. Expert go players, for example, describe certain moves as 

being more aesthetically pleasing than others. That these aesthetic moves 

are also more likely to be successful is at least part of the reason for these 

players’ success. Intuition in other areas is probably also associated with 

pattern judgments in experts as opposed to articulated rules in novices.
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Expertise may, at least in some cases, depend on specific talents. Was 

Mozart an expert musician because he was born with some specific talent? 

The idea of a prodigy, for example, would seem to emphasize the idea that 

a person has expertise far beyond what others could have acquired through 

practice at a similar age.

The ideas of talent and expertise are not well distinguished. If a girl is 

tall, she may be seen as having a talent for playing basketball. If she has the 

physical stature needed and the interest in the game, she may eventually 

achieve a certain amount of expertise in the game. As she plays, she finds 

basketball to be personally satisfying, so she plays and practices more. Does 

she have talent for basketball, or does she simply have the machinery, if I 

may be crude, and the willingness to practice? We do not have a good defi-

nition of talent that is separated from certain kinds of practice. K. Anders 

Ericsson has written extensively about the role of talent and practice in 

developing expertise. We will talk about his work again later in this chapter.

Experts know many things that novices do not know. Expertise consists 

at least in part of having a deep knowledge of some topic. Chess experts, for 

example, know a lot about chess and use that knowledge to play it effectively.

In one experiment, a chess player was shown a board holding about 25 

chess pieces for 5 to 10 seconds. If the placement of these pieces was taken 

from an actual game, a chess master can reproduce the position of the pieces 

with about 90% accuracy. A novice player can usually manage to correctly 

place 5 or 6 pieces. If, on the other hand, the pieces are placed in random 

positions, then the chess master falls to the same poor level of performance 

as the novice. The expert views the pieces in terms of attack, defense, and 

other structures. Some of these structures have names, such as fianchetto, 

which is to place a bishop on the long diagonal of the board. Making this 

move early in a game allows the player to control a large swath of the board.

The difference between random chess positions and sensible positions 

drawn from a game show that chess masters’ performance is not just due to 

their having better memories (which they may not have) but instead comes 

from tapping into specialized knowledge that they have about the game. 

Superior memory comes from being an expert rather than expertise coming 

from having good memory.

When reproducing the sensible positions of the chess pieces, the experts 

placed them in groups of about 3 to 5 pieces at a time. Each of these groups 

is, apparently, a familiar arrangement of what could be encountered in a 
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game. These groups could be said to constitute memory “chunks” similar to 

those mentioned earlier in the context of remembering long numbers. The 

experts’ “intuition” consists of their memory for these patterns. A random 

arrangement of pieces, presumably, has few of these recognizable patterns 

in it and so is difficult to remember. Further, recognition of one of these 

groups may also lead the expert to think of effective strategies for moving 

the game forward from these learned positions, which may facilitate mem-

ory for other positions. Experts’ memory is enhanced by having knowledge 

of specific strategic arrangements of pieces.

It may not be a surprise that experts have more knowledge than novices, 

but the difference is not only in amount but in the kind of knowledge. 

Experts know the vocabulary of their domain (for instance, expert chess 

players are likely to know the term “fianchettoed bishops”), to be sure, but 

they also organize their knowledge in different, more effective ways. Chess-

board control is more abstract than the specific configuration of the pieces. 

It may be possible to control the same space on the board with different 

configurations of pieces, for example. Some of these configurations may be 

reachable within a few moves of the current position, but others may not 

be. The fact that they are all somehow equivalent, though, means that the 

expert player has more opportunity to find one of them and to use it to 

effectively control the game.

Michelene Chi, Paul Feltovich, and Robert Glaser (1981) investigated 

how experts differed from novices in solving physics problems. They found 

that experts and novices categorized problems differently. The two groups 

represented the problems in different ways. The experts were guided more 

by physics principles, and the novices categorized problems based on the 

surface features of the problem. “Surface features” means things like the 

objects mentioned in the problem description, such as a spring, the exact 

physics term mentioned, or the relations among the mentioned objects, 

such as the presence of a block on an inclined plane.

The experts, on the other hand, did not show any particular affinity 

for the surface features. They did not necessarily group together problems 

that shared descriptive words or problems with similar looking diagrams. 

Rather, they categorized the problems using such principles as the conser-

vation of energy law or Newton’s second law.

For example, an expert might represent a bar mentioned in a phys-

ics problem as a lever. Once represented as a lever, a physics expert has a 
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variety of approaches that can be applied to levers. The novice, in contrast, 

may not notice that the bar can be abstracted as a lever, and even if the 

novice did notice this, he might not have the knowledge of approaches that 

are appropriate to generic lever problems.

In general, the experts used deeper, more abstract, representations of 

problems. These abstract representations, once identified, make solving the 

problem easier. Presumably, the experience that made them experts also 

taught them how to extrapolate from the surface features to the abstract 

physics principles.

Experts and novices both start with a presentation of the surface features 

of the problem. Eventually, if they are to solve the problem, they need to 

come up with one or more mathematical expressions that will let them 

solve it. The experts are aided in this by learning that a whole class of prob-

lems can be solved in a similar way, using similar equations. They need to 

map the surface features of the problem to these abstract features so they 

can know how to specify the variables in the abstract representations.

Chi and her colleagues did another experiment with several problems, 

each employing the same surface structure (for example, weights and  

pulleys), corresponded to different physics principles. Again, the novices 

categorized the problems in terms like “rotation,” “mass,” or “spring.” The 

experts classified them in terms like “conservation of energy” or “conser-

vation of linear and angular momentum.” When novices did categorize a 

problem as an energy problem, for example, the word “energy” appeared 

in the problem description, even though the problem’s underlying physical 

principles involve conservation of momentum.

Focusing too heavily on the surface features of a problem can lead to 

“mental dazzle.” Children who are capable of solving simple addition prob-

lems, for example, may have problems if dollar signs are placed in front of 

the numbers. Many business people, I have found, find it much easier to 

understand percentages, such as 73%, than decimal fractions, like 0.73. The 

dollar sign, the percent sign, and the decimal point are basically irrelevant 

to understanding the problem but can still be disruptive when the person 

focuses on the surface structure of the problem rather than on the abstract 

numerical values involved.

Another significant factor in expertise is the ability to quickly and 

accurately pick out the relevant parts of a situation. The chess experts 

reconstructing the positions of chess pieces seemingly had ready-made 
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representations for sensible groups of positions. As we discussed in the pre-

ceding chapter, this is another example of a top-down influence on how 

experts perceive problems.

A few years before Chase and Simon’s (1973) study on reconstructing 

chess positions, Adriaan de Groot (1965) had argued that the main advan-

tage of chess experts is their ability to recognize large numbers of chess 

positions and the effective moves that follow from these positions. Armed 

with this information, they would not have to consider all possible moves, 

only the ones that followed from the positions that they recognized. This 

view suggests that they might be stymied, then, if their opponent could 

come up with a new configuration of pieces that was outside of their expe-

rience. This is what happened when AlphaGo, the go-playing computer 

system, made a move that Lee Sedol had never seen or when Lee made a 

move that AlphaGo had never seen.

The idea that experts are better at selecting potential moves is in stark 

contrast to an alternative hypothesis that says that experts can process more 

branches in the tree of potential moves. According to this latter hypothesis, 

experts evaluate more steps to find the optimum move. If I move this piece 

to here, then my opponent could make one of several moves, after which, 

I could make one of several moves, and so on. Going very far along these 

branches is difficult because of the large number of available combinations 

of moves and countermoves. Computers can keep track of these trees, at 

least to some “depth,” but humans are limited in the distance they can go. 

Human chess experts may go a few more steps along the tree than nov-

ices do, but the real advantage comes from recognizing the more valuable 

moves and focusing on them.

Like Samuel’s checkers-playing program, chess experts learn from the 

games that they have played as well as from the games that have been 

published. Having organized the game position into well-known patterns, 

they can focus on the moves that have been successful in past games 

that showed that pattern. There may still be a lot of potential moves to 

consider, but even these will be way fewer than considering all possible  

moves.

The same chunks (organized groups of pieces) may occur at several 

different positions on the board, and the same response strategy may be 

appropriate no matter where the chunk appears. Rather than represent-

ing the entire board with all of its potential positions, the experts may be 
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able to reduce their memory load by representing chunks and moves rather 

than by remembering positions and moves.

In support of this idea, Heather Sheridan and Eyal Reingold (2014) used 

eye-tracking technology to determine that experts were better at identifying 

the most important chunks on the board and at picking the highest quality 

moves in the context of those chunks. Sheridan and Reingold followed the 

gaze and move selection of a chess expert and some novices while these play-

ers were solving specifically constructed chess problems. They then evalu-

ated the quality of the players’ moves using an advanced chess program that 

was able to more exhaustively evaluate many more possible choices.

Not surprisingly, the experts chose the best move for the circumstance 

on 93% of the problems, and the novices chose the best move on 52% of 

the problems. By tracking where the players looked, Sheridan and Rein-

gold found that the experts identified the relevant squares on the board 

and looked at them sooner than did the novices. Both experts and novices 

looked more at the relevant than at the irrelevant part of the board, but the 

novices spent more time examining the irrelevant part than did the experts.

In short, Sheridan and Reingold verified de Groot’s prediction that 

experts not only make the correct move more often but they use their 

knowledge of previous chess games to be more selective about which moves 

they evaluate. Like experts in other areas, they apparently treated the chess-

board configuration in a more abstract way than merely memorizing the 

surface configuration of pieces. Rather than treating any move as equally 

worthy of consideration, the experts were better able to identify a subset 

of moves corresponding to each situation and preferentially analyze them.

Expertise has also been studied in sports performance. Problems are 

more difficult to present in a sports study than in a chess study, but assess-

ing the quality of the result is usually still manageable. For example, the 

ability of novice and expert squash players has been studied by showing 

participants videos of players in actual games. Experts are better than nov-

ices at anticipating where a shot will go after watching a brief video of the 

play. They need less information (shorter video segments) than novices do. 

Experts can better anticipate the direction of a shot from early parts of an 

opponent’s actions than novices can.

Expert snooker players do not differ from novices in tests of visual acu-

ity, color vision, depth perception, or eye-hand coordination. Snooker, by 

the way, is a game very similar to pool or pocket billiards. It was invented 
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in India in the nineteenth century during the British occupation. Like chess 

players, expert snooker players were better able to recall and recognize pic-

tures depicting normal game situations. Also like chess players, they were 

no better than novices at remembering random ball placements. The supe-

riority of expert snooker performance, then, appears to be due to the expert 

players’ experience rather than to any inherent difference in their motor or 

perceptual capabilities.

Similar patterns of expertise have been found in many other domains, 

including computer programming, history, electronic circuitry, teaching, 

physics, badminton, medical diagnosis, bridge, and radiology. Basically, 

wherever investigators have looked, they have found similar patterns of 

difference between experts and novices in that domain.

When solving physics problems, experts frequently mentioned the 

physical principles or laws that they would apply in solving the problem. 

Novices tended to talk about the equations that they would use. Experts 

might draw simple diagrams of their problems where novices would focus 

on plugging numbers into their equations. Knowing more appears to entail 

having more conceptual units available in memory and more relations and 

more meaningful relations among these units.

The problems that were traditionally studied within the context of 

human problem solving included path problems like the Towers of Hanoi, 

hobbits and orcs, and others. These problems were easy to study because 

they did not require any specific outside knowledge. Experimental par-

ticipants are readily available. Expertise, on the other hand, does require 

knowledge, which may take years to develop and may not be widespread. 

As a result, expertise is more difficult to study than other forms of problem 

solving, and it is a challenge to recruit participants.

Studies of expertise, unlike other forms of problem solving, seek to 

understand just what knowledge the expert brings to a problem and how 

that knowledge is deployed in its solution. The expert solver must either 

select a framework for solving the problem or perhaps even invent one. 

Experts put the problem in context and use that context as part of the 

process of solving it. Experts do not just work to find a path through a well-

structured problem but must supply the path as well.

The development of expertise is the development of knowledge and of 

the tools and strategies to employ it to solve expert-type problems. In chess, 

we have a good idea that some of that knowledge consists of patterns of 
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pieces and their strategic role in moving the game toward a conclusion. 

Other expert tasks would seem to employ similar pattern representation 

and recognition capabilities. Expertise seems to depend also on the devel-

opment of relatively abstract representations.

Despite the superior performance of experts over novices, experts may 

not always be able to describe how they solve problems. Process descrip-

tion is relatively easy when the person is following specific rules, but when 

an expert’s performance depends on his or her ability to perceive patterns, 

these patterns may not be simple and the process of applying them may be 

difficult to articulate. That is probably why go players describe their move 

choices in aesthetic terms and why we think that experts depend more on 

intuition. Intuition may be nothing more than basing decisions on pat-

terns that are difficult to describe explicitly.

To summarize:

•	 Experts have knowledge that novices do not have.

•	 Experts recognize and act on features and patterns that are not used by 

novices.

•	 Experts organize their knowledge differently from novices.

•	 Experts describe problems in more abstract ways than novices do.

•	 Expert knowledge is more global than novices’ knowledge is.

•	 Experts can retrieve information with less explicit effort than novices 

can.

•	 Experts have access to more strategies than novices have.

•	 Experts appear to have better intuition about problems than novices do.

Expertise is an essential part of what we mean by general intelligence. 

The mechanisms and skills that constitute expertise, however, seem to be 

substantially different from those used to study the kinds of path problems 

that have been the research target of human problem solving as well as the 

kind of narrow artificial intelligence that is characteristic of current work in 

computational intelligence.

Source of Expertise

Rather than attributing exceptional performance to perhaps inherited tal-

ent, recent research on experts has found that superior performance is 
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associated with specific forms of practice engaged in for a suitable amount 

of time. The type and duration of this practice seems to be extremely 

important in determining just who can achieve this exceptional level of 

performance.

Even with practice, a person’s biology may still have an effect. It is much 

less likely that a short person of 5 feet 3 inches could be a professional 

basketball player, let alone one who demonstrates superior levels of perfor-

mance, than someone who is 6 feet 8 inches tall, but it does happen. The 

shortest player ever to play in the NBA was Muggsy Bogues, who was 5 feet 

3 inches tall. He played in the NBA for 14 years. In his years at Charlotte, 

he became the Hornets’ career leader in minutes played (19,768), assists 

(5,557), steals (1,067), turnovers (1,118), and assists per 48 minutes (13.5).

Tall people typically have an advantage as basketball players, but the 

Bogues experience suggests that it is not all there is. Linemen in the 

National Football League are all very large, and there is not much variation 

among them in terms of body mass. In the 2016 season, the average NFL 

lineman weighed 315 pounds. Yet some of them are much better players 

than others. The average body weight of an NFL lineman had no observable 

effect on the number of yards that team gained per game. With this narrow 

weight range (304–327 pounds), better players would have to differ from 

poorer players on some dimension other than weight. The most important 

way that they differ might be in how they trained and practiced.

IQ and Expertise

As it turns out, there is only a weak relation between IQ, at least as measured 

using IQ tests, and ultimate achievement in many domains, including go, 

chess, and music. Scientists, engineers, and medical doctors who have com-

pleted the required education show practically no relation between mea-

sures of professional success and IQ. That caveat may be important. Medical 

school admissions typically depend on scoring well on the MCAT or other 

exams. Mostly only high-scoring students make it into and through medical 

school, so that by the time that they graduate there is not much range left 

to account for ultimate professional success. Low-scoring medical students 

and puny linemen do not get admitted to medical school or get drafted by 

the NFL. Statisticians call this phenomenon “restriction of range.” The con-

tribution of IQ may, in other words, already have been parsed out before 
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these students finished their education. Any remaining difference, then, 

would have to be due to factors other than the intelligence measured by 

the admission test. With a few exceptions, such as Bogues, most basketball 

players are tall, so variations in height are an unreliable predictor of how 

well a player will play.

In general, many kinds of ability or aptitude tests are good at predicting 

how well a person does when starting a new educational experience or a 

new career, but they are generally poor predictors of a person’s ultimate 

success. Even after adjusting for restriction of range, the longer a person 

spends in a job, the less that person’s performance is predicted by ability 

and aptitude tests. Even the SAT test, which most colleges require and on 

which they make their admission decisions, is only a weak predictor of the 

student’s fourth-year grade point average.

It’s worth emphasizing that IQ and related tests may be good predictors 

of how rapidly, if you will, people learn introductory material, but they 

seem poor at predicting ultimate attainment. Other variables such as prac-

tice seem to make much more of a difference. General ability, in short, 

seems to reflect the general ability to learn basics, but not the general ability 

to achieve a level of expertise. There may be a minimal level of intelligence 

necessary for intellectual achievement, but given that the minimum is 

exceeded, other factors typically better account for the measured outcome.

For example, an analysis of the relationship between intelligence and 

chess ratings over 19 studies by Alexander Burgoyne and his colleagues 

(2016) found a moderate relationship, particularly for early career players 

and those at lower skill levels. The relationship was much weaker at high 

skill levels. As with other kinds of expert performance, the tests seem to be 

predictive of early success, but not of ultimate success. An interesting part 

of this chess finding is that there is no explicit selection by aptitude test 

for becoming a chess player as there is for medical school, so restriction of 

range may have a smaller role in explaining this lack of correlation.

Fluid and Crystallized Intelligence

Psychologists often distinguish two kinds of intelligence. One is called 

“fluid intelligence,” which includes problem-solving and abstract reason-

ing. The second is called “crystallized intelligence,” which is much more 

knowledge based. Generally, as we age, the role of crystallized intelligence 

grows as we acquire more knowledge.
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Fluid intelligence is associated with induction—the process of inferring 

rules from examples and the capacity to form concepts; visualization—

the ability to construct images; quantitative reasoning; and ideational 

fluency—the ability to generate ideas, for example, in brainstorming. Crys-

tallized intelligence is associated with verbal ability, reading comprehen-

sion, sequential reasoning, and knowledge of general information. Put 

crudely, fluid intelligence is what you need to figure things out. Crystallized 

intelligence is what you use to apply knowledge that you have.

Fluid intelligence tends to increase until young adulthood and then 

declines. Crystallized intelligence increases gradually and remains stable 

until sometime around age 65, when it begins to decline.

This distinction between fluid and crystallized intelligence is consistent 

with the findings of Burgoyne and his colleagues. At early stages of a chess 

player’s development, the ability to reason quickly is important, but with 

increasing experience, knowledge patterns seem to play a larger role. As a 

chess player learns more patterns and appropriate responses to them, the 

player does not need to figure out the response; she just needs to retrieve 

it from memory.

People with high fluid intelligence tend to process information more 

quickly, have moderately greater memory spans, and use more sophisti-

cated strategies, compared with lower-scoring individuals. These capabili-

ties let them solve problems faster and more accurately than less intelligent 

individuals, but these benefits disappear with age or experience.

As people age past early adulthood, the speed of their performance typi-

cally declines, but their knowledge generally increases. It does not seem to 

make much sense to say that healthy middle-aged people are less intelligent 

than their younger selves. Rather, people tend to substitute knowledge for 

rapid analysis. By analogy, we might say that mature people store solutions 

rather than compute them.

The ideas of fluid and crystallized intelligence started with intelligence 

tests. The statistical approach to analyzing the various parts of intelligence 

tests broke these parts into components, called factors (see chapter 2). The 

idea is that any one subtest of intelligence would be associated with one 

or more of these factors. Factor analysis, as the statistical process is called, 

looks at the correlation patterns among the subtests and figures out the 

underlying statistical measure or factor that would best represent the cor-

relations. Raymond Cattell identified groups of tasks that were associated 

with crystallized intelligence or with fluid intelligence. Subsequent studies 
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looked at how these two factors changed over time as people aged. The 

same factor analysis also identifies a general factor (among others), which 

is called general intelligence, or “g.” It takes note of the fact that there is 

some correlation among all of the various subtests. These tests and factors 

are discussed in more detail in chapter 2.

The shift from fluid to crystallized intelligence could turn out to be 

critical to constructing a computational intelligence. Much of the effort 

in machine learning, particularly in deep neural networks, is analogous 

to crystallized intelligence. The network learns patterns that can be used 

to decide on actions. The actions are typically categorization judgments, 

but they could be other kinds of things as well. Improving the raw com-

putational power of computers is somewhat related to fluid intelligence 

in that decisions and measurements can be conducted more quickly and 

efficiently. However, there is little computational work on “figuring things 

out.” Rather, machine learning seems limited to selecting among a poten-

tially large set of given alternatives, which would seem to be more closely 

allied with crystallized intelligence.

On the other hand, although most computational intelligence depends 

strongly on stored knowledge patterns, it is unclear how the kinds of knowl-

edge representations that allow expert chess players to focus on the kind of 

move that will be most valuable can be replicated in computational intel-

ligence. How do chess players organize chess pieces into groups? Which 

pieces do they include? How do they decide which of these groups is more 

important than others? The primary means that computer models have for 

organizing parts into groups is co-occurrence. Pieces that occur together in 

multiple games, for example, could be organized into a chunk. At present 

there is no means for using more abstract properties of the group, such as, 

its ability to control a part of the board, to organize them into a chunk. 

These are not insurmountable problems for machine intelligence, but they 

are still largely open questions.

The Acquisition of Expertise

Intelligence tests were originally designed to identify and measure indi-

vidual differences to make appropriate decisions about student placements. 

The tests were intended to identify the indicators that correlated with 

success in school. The testing movement depended on the assumption, 
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sometimes explicitly made, that these tests measured something funda-

mental, immutable, and biological about a person, something that was not 

itself changed by education, but that indicated a capacity for education. 

Success, or even superior performance, is, in this view, determined by basic 

unchangeable endowments.

Charles Darwin’s cousin, Sir Francis Galton, is often recognized for devel-

oping this view in the nineteenth century. Galton examined the relatives of 

famous intellectuals and found that the probability of “genius” declined as 

the distance of the relationship increased. Brothers of geniuses were more 

likely to also be geniuses than were cousins of geniuses. He also did some 

twin studies, finding that twins raised apart were more similar than non-

twins raised together. His strong belief in the inherent biological basis of 

intelligence and his ideas about their heritability led him unfortunately 

to eugenics, the idea that it is possible to selectively breed for intelligence 

among humans.

On the biological view, intelligence tests are used to select students with 

the right set of innate capacities to allow them to become experts in their 

chosen domains. The evidence for such innate abilities is scant. Assuming 

that intelligence tests assess these innate factors, we find performance on 

age-appropriate tests of intelligence tend to be relatively stable over time. 

Intelligence and related tests predict how well a student will do in school, 

and similar tests predict how a person will perform on a new job, but they 

are not particularly good, as we have seen, at predicting a person’s ultimate 

level of attainment.

In contrast to this traditional view, the only two genetic characteristics 

for which we have definite evidence of their influence on highly skilled per-

formance are height and body size. Above-average height is an advantage 

in basketball, and below-average height is an advantage in achieving elite 

performance in gymnastics.

Experts and elite athletes typically need to spend about 10 years engaged 

in perfecting their craft to achieve elite levels of performance.

The scientific investigation of expertise depends to a large extent on 

having repeatable measures of performance. The focus on athletics, chess, 

music, and similar activities is not because these are somehow special 

activities but because performance on them can be objectively measured. 

People can have reputations as elite performers without actually having to 

accomplish anything elite, for example, if people have expectations about 
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how important they are. An expert’s reputation can exceed any objective 

assessment of that performance (consider the overconfidence effect of the 

preceding chapter). Anecdotes are typically not a sufficient basis for the 

development of scientific theories. Ostensibly successful financial advisors, 

for instance, are often found to be no better than others at picking stocks. 

Chess, on the other hand, has an objective ranking system (the Elo rating 

system), which involves matches entered and won and the quality of oppo-

nents played.

The focus on objective, reproducible measures provides a framework for 

assessing theories of expertise. In this context, we find that the level of 

expertise increases gradually over time. There is little evidence of a reliable 

“aha” moment when a sudden insight transforms a person from a novice to 

an expert. Even child prodigies, when measured in a consistent way against 

adult standards, show evidence of a long, gradual path to improvement.

The age at which experts achieve their peak performance tends to be in 

their 20s for many sports, and in their 30s or 40s for less intense sports and 

for the arts and sciences. Even the most “gifted” performers need about 10 

years of intense practice before they reach high levels of achievement, such 

as being able to compete at an elite international level in sports.

Just playing golf for 10 years is not enough to ensure a high level of 

success in the game. Rather, a specific kind of effort seems to be required. 

Anders Ericsson has called this kind of practice “deliberate practice.” It is 

not intrinsically fun. It is deliberate work intended to improve specific parts 

of the person’s performance on a well-defined task, usually measurable. It 

involves detailed immediate feedback as to the success of the performance. 

It involves significant repetition of the same or similar tasks over time.

Tiger Woods, for example, practices a putting drill where he places two 

golf tees in the ground, separated by about the length of the head of his 

putter, about three to four feet from a hole. He would place a golf ball 

between the two tees and putt one-handed and two-handed until he had 

sunk 100 balls in a row.

All expert musicians practice, but elite musicians spend more time than 

others on solitary practice. By the time they were 20, the best expert musi-

cians had done over 10,000 hours of practice, compared to a group of less 

accomplished musicians, who had spent between 5,000 and 7,500 hours 

in practice, or amateur musicians, who had spent around 2,000 hours in 

practice.
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When the expert musicians practiced, they concentrated on specific 

aspects of the music performance as directed by their music teachers. The 

best expert musicians practiced like this for about four hours every day, 

including weekends.

Improved practice methods have resulted in major changes in athletic 

performance over the years. Olympic gold medalists in sports that can be 

objectively measured (for example, runners measured by running times) 

have improved 30% to 50% from the beginning of the modern Olympic 

games until recently. Some of this improvement is due to the use of better 

tools to analyze performance imperfections, which, in turn, have led to bet-

ter, more deliberate practice.

Expert chess players practice by studying published games between the 

best chess players they can find. They go through these games move by move, 

predicting what the expert will do. If their prediction differs from the actual 

move in the game, they attempt to figure out why they chose differently. 

Serious chess players spend around four hours per day practicing like this.

Elite musical composers also require about 10 years of experience. J. R. 

Hayes (1981) analyzed the productivity of 76 composers for whom he could 

find sufficient information about when they began their intensive study of 

music. Only three of them produced significant compositions in less than 

10 years after starting their intense music study (Satie in year 8 Shostakov-

ich and Paganini in year 9. Most of the significant works by the full set of 

76 composers were produced between years 10 and 25 after starting intense 

instruction.

Wolfgang Amadeus Mozart is arguably the most elite musical composer 

that the world has known. His talent, like that of other composers, was 

cultivated, through long practice. Leopold Mozart, Wolfgang’s father, was 

a composer, musician, and music teacher. The younger Mozart was taught 

music from an early age, particularly composition. He was invited to par-

ticipate with other highly skilled musicians visiting the Mozart household. 

Mozart’s early concerti were not original compositions but were arrange-

ments of the works of other composers. Like other prodigies, these works 

may have been outstanding when coming from one so young, but when 

judged by adult standards, they were not yet sophisticated (Hayes, 1981; 

Weisberg, 2006).

A historical analysis of the most important scientists and poets of the 

nineteenth century found that the average age at which the scientists 



200	 Chapter 8

published their first work was 25.2 years. The average age at which these 

scientists produced their greatest works was 35.4. Poets and authors pub-

lished their first works at an average of 24.2 years of age and their greatest 

work at age 34.3 years.

The same 10 years of preparation has been noted in musical perfor-

mance, mathematics, tennis, swimming, diagnosis of radiographic images, 

medical diagnosis, and long-distance running. Simon and Chase (1973) got 

it about right when they argued that 10 years of deep practice is necessary 

to develop elite levels of performance in a wide variety of domains.

So large amounts of deliberate practice appear to be necessary for the 

development of elite talent in a wide variety of domains. Intellectual 

achievements, such as writing poetry, conducting scientific research, or 

composing music, are extensions of the kind of tasks that we associate with 

intelligence. It’s not clear what these activities have in common with sports 

and similar kinds of performance (such as dance or musical performance). 

It is possible that the same need for extended deliberate practice pertains 

to many other domains, but that it is difficult to scientifically investigate 

these other domains, for example, because they have less clear-cut criteria 

for success. In any case, this need for extended practice contrasts with the 

kind of experience that gives rise to competence. Infants are born without 

knowing any words, but by the time they are 12-year-old children, they 

may know more than 50,000 words. They learn words at an average rate 

of over 10 new words a day (there are about 4,400 days in 12 years). By 

the time they are 12, they are competent language users, but few could be 

called elite performers.

Elite intellectual achievement seems to require the same kind of repeti-

tive exposure that modern neural network models and deep learning models 

seem to require. A child may need only one exposure to learn the meaning 

of a word or to learn that kids get cotton candy when they go to the zoo but 

may need 10 years of extensive purposeful practice to become an elite poet 

writing about cotton candy. Here (https://www.poets.org/poetsorg/poem/

cotton-candy) is a poem about cotton candy by Edward Hirsch. You can 

judge for yourself whether it achieves elite status.

Artificial intelligence research tends to be more concerned with quotid-

ian activities such as reading handwritten characters or driving cars down 

crowded highways. But there may be something important to learn from 

those people who learn to perform at an elite level.

https://www.poets.org/poetsorg/poem/cotton-candy
https://www.poets.org/poetsorg/poem/cotton-candy
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An example of how elite performance emerges from the knowing appli-

cation of simple processes is how baseball outfielders position themselves 

to catch a batted ball. They do not perform deep mathematical calculations 

involving parabolic trajectories. They seem to depend on depth percep-

tion only during the final stages of the catch. Until the ball is very close, 

depth cues, such as eye convergence, are unavailable. As objects approach, 

your eyes angle toward one another, and the angle of this convergence is 

a cue to how close the object is, but these cues are only available when 

the object is very close. According to studies by Michael McBeath and 

his colleagues (1995), outfielders do something much more practical and  

simple.

McBeath and his colleagues found that outfielders use a basic visual cue 

to tell them where to run to. They track changes in the image of the ball 

relative to its background. Examining this research in more detail is instruc-

tive because it shows the representation that these players use in solving 

the problem of catching the ball. They construct a representation that is 

easy to compute and that requires the least amount of running to catch 

the ball.

One potential representation that fielders could use would be to com-

pute the parabolic path that the ball will take. This computation is what 

we use to send a rocket to the moon or to launch an artillery shell. Alterna-

tively, the fielders might have constructed a mental model from their expe-

rience with balls and gravity. Starting with an estimate of the ball’s speed 

and direction, the model could predict where the ball will land. Although 

this mental model was a long-held theory, it requires that the fielder accu-

rately perceive the ball’s motion as it comes off the bat and then accurately 

compute its trajectory, taking into account the ball’s spin, wind speed, and 

air density. Given that the fielder is more than 30 meters (more than 98 

feet) from the bat when the ball is hit, accurate estimation of the necessary 

parameters seems very unlikely.

Two other potential representations do not require the fielder to com-

pute the trajectory of the ball. Instead, these hypotheses suggest that the 

fielder can anticipate where the ball will land based on continuously 

updated visual information. According to these hypotheses, the fielder does 

not have to predict where the ball will land—a gust of wind, for example, 

would destroy that prediction. Instead, the fielder uses visual cues to guide 

where to go during the ball’s flight. The fielder keeps his eye on the ball.
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To a stationary fielder, the ball appears to rise during the initial part of 

its path and then appears to fall. If the fielder moves, however, his or her 

motion will affect whether the ball appears to be rising or falling and affect 

its lateral position relative to the fielder.

According to one theory, the fielder responds to the visual acceleration 

of ball. If the ball’s optical velocity (that is, its visual movement relative to 

the background) is increasing, then the ball will land behind the fielder. If 

the ball’s optical velocity is decreasing, then the ball will land in front of 

fielder. By running in such a way that the ball is seen to be neither acceler-

ating nor decelerating, the fielder will be in position to catch the ball. By 

keeping the apparent (the visual as opposed to the physical) velocity of the 

ball constant, the fielder will end up in the right place. This hypothesis is 

called “OAC theory,” optical acceleration cancellation, because of its pre-

diction that fielders work to cancel the apparent acceleration of the ball 

during its flight.

According to a third hypothesis, the fielder runs to keep the apparent 

visual trajectory of the ball moving in a constant direction relative to the 

horizon. This hypothesis, called “LOT theory,” linear optical trajectory, is 

simpler than the acceleration theory because it does not require the fielder 

to detect whether the image of the ball is accelerating or decelerating, just 

to detect whether it is moving in a consistent direction.

These three accounts attribute different representations to the fielder. The 

first one argues that the fielder has a detailed model of the ball’s trajectory. 

The other two accounts do not represent the position of the ball at all; they 

argue that the problem can be solved by responding to the appearance of 

the ball. Of the appearance accounts, I think that the evidence favoring the 

linear model is stronger than the evidence favoring the acceleration model, 

but it scarcely matters for our purposes. The important point is that choos-

ing one kind of representation, in this case a visual one, makes an intrac-

table problem, trajectory estimation, much simpler. Dogs cannot compute 

parabolic trajectories, but many of them can catch balls or Frisbees.

It is not clear whether this simplified representation is invented or 

is built into the brain somehow. Any predator would have to be able to 

respond to prey it was trying to capture, so it may be that this process 

evolved early among predators and is simply exploited by outfielders and 

dogs. Or it could be that each fielder or predator learns this relationship 

through experience catching things. In either case, complex problems can 
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often be solved using simpler solutions, which entail simpler representa-

tions. This example is illustrative of the kinds of tools that experts can come 

to apply to complex problems using their crystallized intelligence. And, as 

it turns out illustrative of the kinds of solutions that have led to current 

models of computational intelligence.

A potentially complex task turns out to be solvable by a relatively simple 

algorithm—one that is unconsciously applied. Few, if any, fielders are likely 

to be able to articulate this linear optical trajectory mechanism, beyond the 

saying to “keep your eye on the ball.” Yet the available evidence suggests 

that this is, in fact, how it is done. As in successful applications of artificial 

intelligence to problems like playing go or chess, this solution is not a com-

plicated strategic analysis or deep calculation but a simple solution to an 

apparently complicated problem.

One of the most important points to take away from our discussion 

of expertise is that the nature of the representations people use changes 

over time. As expertise grows, experts come to represent situations in more 

abstract, more principled ways. They move from surface analyses and rote 

rule following to new solutions that are based more on analysis of abstract 

patterns. In the beginning, these abstract patterns may not be apparent, 

but with extended experience, they come to dominate the expert’s think-

ing process.

Machine learning and computational intelligence have not yet gotten 

to the point where they can change their representations in quite the way 

that human experts do. On the one hand, deep neural networks can learn 

abstractions of their input patterns. But the difference between computing 

a trajectory and using the appearance of a ball does not seem to be a simple 

transformation of one to another. The visual approach seems to be a radical 

reorganization of the problem into a new representation in the same way 

that changing our conceptualization of chess playing from a psychological 

matching of wits to one of traversing a tree of possible moves was a radical 

reorganization. Casting chess as a tree to be traversed made the problem 

much more tractable than trying to guess at the opponent’s psychological 

motives for each move.

In neither case was the change in representation discovered by a machine 

learning system. It was designed by a human. Current computational intel-

ligence techniques do not provide any mechanism by which such represen-

tational insights can be achieved.
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Machines have, of course, been designed to do online tracking of objects. 

Servo mechanisms, even simple thermostats, adjust their state in response 

to simple sensory elements. Guided missiles use a mechanism similar to 

these visual models to track their targets. These mechanisms were designed 

by engineers, however, not discovered through machine learning. Gen-

eral computational intelligence that mimics human cognition will require 

mechanisms to discover or invent such solutions at some point.

One of the other things that we can learn from this understanding 

of human elite performance is that there may really be no substitute for 

extended experience. If Ericsson and his colleagues are correct, then it 

could mean that such practice is sufficient even for computers, at least com-

puter systems of a particular type. Endowed with some minimal capacity, a 

computer with enough labeled examples or similar feedback should be able 

to become an expert in some domain. AlphaGo played millions of virtual 

go games. Ericsson claims that what we think of as talent is irrelevant to 

human accomplishment, so it may also be irrelevant to computer accom-

plishment. There may be no shortcuts to becoming an expert, but there 

may be no fundamental barrier either.

At this point, we are still missing a few of the necessary capabilities. 

There is no guarantee that computational intelligence needs to mimic in 

detail human intelligence, but so far, these are the only methods that we 

know of that do implement general intelligence. If these processes can be 

computationally implemented, we may be able to achieve general compu-

tational intelligence.
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9  Intelligent Hacks and TRICS

To what extent are specialized learning mechanisms necessary to explain general 

intelligence? Are there certain phenomena that require a special-purpose mod-

ule, or are all learning problems susceptible to a general learning mechanism? 

This chapter starts with a critique of connectionist models that were purported to 

learn linguistic skills in the same way that human children do. Instead, we are 

reminded of the critical role that representation plays in machine learning. We 

then turn to contrasting accounts of the potential special-purpose mechanisms 

that may be necessary and find those wanting. We conclude that problem-specific 

representations, but not problem-specific learning mechanisms, are required for 

today’s machine learning. More general mechanisms will be needed for general 

intelligence.

In the preceding chapter, I drew a distinction between the kind of mecha-

nisms that people employ when they learn language and the kind that they 

employ when they learn to become experts. Almost all people learn lan-

guage during their early childhood development, typically with little con-

sistent or formal instruction. Experts, on the other hand, require extensive 

deliberate practice. Is this difference a matter of degree, or is it a difference 

in the kind of mechanism used in the two learning tasks?

With the capabilities shown by the resurgence of artificial neural net-

works during the 1980s and early 1990s, the question concerning a need 

for specialized learning mechanisms became a hot topic among a broad 

swath of academics. Strong claims were made that basic neural network 

models could learn language properties that were previously thought to 

require special learning mechanisms. For example, David Rumelhart and 

James McClelland (1986) argued that their connectionist neural network 
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models could learn regular and irregular patterns of past-tense formation 

from experience with no other linguistic knowledge. More, the order in 

which these characteristics were acquired was very similar to that shown 

by children. Their network was designed to take as input the present tense 

of some verb, for instance, “fish,” and to output the past tense of that verb, 

“fished.”

During about this same time, comparative psychologists, such as Her-

bert Terrace, Louis Herman, Sue Savage-Rumbaugh, and Duane Rumbaugh, 

were looking at the possibility of teaching language to chimps and other 

animals, including dolphins. The main question that they were hoping to 

answer was whether language can be learned by a general learning sys-

tem or whether it depends on the existence of a special language-learning 

mechanism possessed only by humans. Does the problem of learning lan-

guage require, in other words, some human-specific representation? If lan-

guage can be learned by nonhumans and by machines, that would seem 

to indicate that ordinary learning mechanisms are sufficient. The deeper 

expectation was that if these linguistic characteristics could be learned by a 

general-purpose learning system, then it lent confidence to the possibility 

that these mechanisms would also be sufficient for constructing general 

intelligence.

The connectionist and comparative claims were disputed by linguists and 

psycholinguists. These researchers argued that real language was learned 

only by people and that only people had the capability of learning that 

language. Noam Chomsky, for example, argued that humans learned lan-

guage because they were endowed by evolution with a “language-learning 

organ” as part of the human brain. He claimed that there was no other 

way to account for the fact that human children learn language at all. The 

connectionist and comparative psychologists were arguing that experience 

was sufficient; no particular structures were necessary. The linguists were 

arguing that the reason people learn language and other animals do not is 

because people have specific structures in the brain that already represent 

language. Experience just optimizes.

This question concerning the need for special mechanisms for certain 

capabilities is central to the idea of creating a general artificial intelli-

gence. Just how many learning mechanisms would such a system need, 

and what characteristics would these learning mechanisms need to have? 

On the other hand, the idea of a general learning mechanism that would 
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be sufficient for all tasks would greatly improve the chances of creating an 

artificial general intelligence.

Noam Chomsky came to prominence in the field that would eventu-

ally become cognitive science starting with his devastating review of (B. F.) 

Fred Skinner’s book Verbal Behavior. In the book, Skinner tried to lay out a 

general-purpose mechanism that could account for language learning using 

basic principles of reinforcement. Skinner’s reinforcement learning was sim-

ilar to today’s connectionist model of the same name. It can be summarized 

by saying that behaviors that are followed by reward occur more often.

Skinner thought that he could identify the variables that control verbal 

behavior to determine a specific verbal response. In his view, environmen-

tal stimuli control which behaviors are “emitted” in their presence. Rein-

forcement changes the probability of, that is, controls, the verbal behaviors 

as well as other kinds of behavior. Put simply, people say “red” in the pres-

ence of red things because they have been previously rewarded for saying 

“red” in similar situations.

Chomsky did not have much patience for Skinner’s approach. As an 

example of how Skinner would attempt to explain language, a person 

might see a piece of music and say “Mozart,” because that person has, pre-

sumably, been rewarded in the past for saying the name of the composer. 

But if the person said something else, Skinner would equally explain that 

utterance by pointing to some other property of the object and talk about 

how the person must have been reinforced in the past for saying that in the 

presence of that stimulus.

A person could say “leather” in response to a leather chair, presumably 

in response to its upholstery. Alternatively, the person could say “sit” in the 

same situation, again presumably because of past reinforcement. Because 

the reinforcement history of people is complex and mostly unrecorded, 

there was no independent basis to establish whether these assertions were 

correct or not.

Chomsky pointed out that Skinner’s reasoning was entirely circular. Any 

utterance could be explained after the fact by pointing to some presumed 

property of the environment and some presumed reinforcement history. 

Chomsky claimed that these circular explanations were nothing more than 

“play-acting at science.” We might now recognize that reinforcement learn-

ing may, in fact, play a role in the acquisition of words, but without a 

detailed history, the so-called explanation was empty.
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Chomsky argued that many of the patterns seen in human language 

could not be learned by any known learning mechanism. By that, he 

appears to mean that it could not be learned by the kind of reinforcement 

mechanism that Skinner described, or perhaps by imitation. Even in 1959, 

other forms of learning were known, but Chomsky does not seem to have 

paid much attention to them. If language properties could not be learned, 

then they must be innate properties of human brains. If reward and imita-

tion could not generate linguistic patterns, then these patterns must be 

innate, he argued.

There are several phenomena that Chomsky argued were so rare that 

children could not have had the opportunity to learn them. Among these 

are “parasitic pronouns.” These are pronouns that can be dropped from 

a sentence without changing its meaning or grammatical correctness. 

You can say, “Which article did you file without reading it?” You can say, 

“Which article did you file without reading?” You can include or omit the 

pronoun “it” without changing anything significant about the sentence. In 

contrast, you might say, “John was killed by a rock falling on him,” but you 

would not say, “John was killed by a rock falling on.”

Chomsky’s argument is also problematic. Chomsky could not marshal 

any specific evidence that would compel his particular viewpoint. Rather, 

his argument was focused on absence of a learning mechanism to which he 

could point and on some of the same kind of circular reasoning he attrib-

uted to Skinner.

Even though Skinner could not demonstrate how a phenomenon was 

learned or Chomsky could not demonstrate the brain mechanism by which 

it was produced, it could still possibly be learned by some mechanism that 

neither of them knew. Rummelhart and McClelland argued that the miss-

ing learning mechanism was essentially backpropagation in a simulated 

neural network. If a connectionist system, equipped only with general 

learning capabilities, can learn language, then Chomsky would be wrong. 

That would not make Skinner right, however.

The Rumelhart and McClelland connectionist model of language learn-

ing challenged the Chomsky position as well as the approach suggesting 

that language learning is represented by explicit rules. They argued that 

they had, indeed, found a learning mechanism that could learn “impos-

sible to learn” features of language. Because of resource constraints, and 

other limitations, their project was just a small piece of what they hoped 
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to eventually generalize to other language problems like parasitic nouns. It 

was a kind of down payment on a full language learner, or so they hoped.

Rumelhart and McClelland trained a multilayer perceptron to learn how 

to form the past tense of verbs. Given an input word, such as “like,” it 

would learn to produce the past-tense “liked.” Given “swim,” the network 

would produce “swam.” And it would do this learning without any previ-

ous knowledge of language or any special language structures. Raw experi-

ence and a general learning mechanism would be enough. There would be 

no need for explicit rules or specialized brain modules.

Most English verbs form their past tense by adding “ed” or a variant 

to the end of the verb. Some of the more commonly used verbs, however, 

form their past tense in other, “irregular,” ways, such as “think” changing 

to “thought.” At an early age, children correctly produce the past-tense 

forms of both regular and irregular verbs. Soon after that, though, they 

tend to “over-regularize” some verbs, for example, producing “swimmed.” 

Eventually, they relearn the adult forms. Rumelhart and McClelland’s con-

nectionist models showed the same pattern, first producing some correct 

forms, then over-regularizing and eventually settling on the correct form 

for regular and irregular verbs. Their argument was that starting from essen-

tially nothing, the computer was able to learn a complex transformation 

and learn it in essentially the same way as children do. Therefore, they 

argued, simple learning mechanisms are sufficient.

Joel Lachter and Thomas Bever (1988) responded to the connectionist 

claims by pointing out that the connectionist models were not actually 

learning linguistic rules by themselves but succeeded because their design-

ers included specific kinds of representations that implicitly “encoded” lin-

guistic knowledge. Lachter and Bever called these implicit encodings TRICS, 

The Representations It Crucially Supposes. They argued that the only reason 

that the connectionist models succeeded is because of the crucial way that 

Rumelhart and McClelland chose to represent the language to the network 

inputs.

Connectionist models, like all models, necessarily include assumptions 

about what is to be learned and how the information presented to it is to be 

represented. Every model embodies certain assumptions, but they may not 

be articulated or even noticed. We discussed some of these assumptions in 

the context of the hobbits and orcs problem in chapter 7. Even learning to 

classify images from raw pixels relies on certain assumptions. In contrast to 
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some claims by deep learning enthusiasts, this learning is far from theory 

neutral.

Given the large number of parameters that a connectionist model has to 

set, and the number of seemingly arbitrary decisions that go into building 

one of them, it is not difficult to see how it could mimic any rule pattern 

you like. The universal approximation theorem (Cybenko, 1989) shows 

that simple neural networks with one hidden layer can approximate any 

continuous function and represent a wide variety of phenomena when it 

has the right set of parameters. But the specific kinds of representations 

used for the training set also bias the patterns.

The effect that representations have on learning is not unique to lan-

guage modeling. It is a central factor in all kinds of machine learning. The 

representations chosen by a network’s designers critically impact what the 

network can do. Representations are never neutral. Designers may not be 

aware of the consequences of their representational decisions, but there are 

always consequences. The choices of representation may not, as Lachter 

and Bever claimed, be the sole explanation of a phenomenon, but they are 

typically central to what is learned.

Some of the evidence that Rumelhart and McClelland point to in sup-

port of their contention that their network learned in the same way as chil-

dren do was that the pattern of errors reflected the same kind of U-shaped 

function in which some irregular forms are used correctly early in training, 

then come to be used incorrectly, and finally are used correctly again. The 

order in which the training examples are presented can affect the order in 

which these usage patterns emerge. The connectionist designer may intend 

to mimic the order in which children would be exposed to similar exam-

ples, but still there is a lot of arbitrariness to the selection of examples and 

their order.

Lachter and Bever argue that Rumelhart and McClelland’s connectionist 

model was not actually a demonstration of the ability of a general learn-

ing mechanism to learn a language property. Rather, it succeeded because 

they happened to represent the problem in a way that made the learning 

easy. The right representation can make learning some problems easier, and 

this is an example of that, they said. Rumelhart and McClelland happened 

to choose a representation of the speech sounds that reflected just what 

the system was supposed to learn, and they happened to stage their train-

ing in a way that made the stages of confusion and production obvious. 



Intelligent Hacks and TRICS	 213

Without these TRICS, the system would not have succeeded, Lachter and 

Bever claimed.

Children learning to produce past-tense verbs are initially too young 

to read, so it would not have made any sense to represent the words using 

English letters. Instead, Rumelhart and McClelland tried to represent the 

speech sounds of English, the phonemes, for the network (see chapter 6). 

The input to the network was one set of speech sounds, representing the 

present tense of some verbs, and the output of the network was supposed 

to be a different set of speech sounds, representing the past tense of these 

verbs.

Linguists describe the transformational rules relating present-tense and 

past-tense verbs in terms of phonological rules. Phonological rules describe 

how the sound forms of words are related to one another. The phonologi-

cal rules describe the changes in speech sounds; they do not necessarily 

describe the spelling of those words. For instance, if a present-tense verb 

ends in “d” or “t,” then the rule says to add “ed” to form the past tense. 

“Mat” is changed to “matted,” and “need” is changed to “needed.” If the 

verb ends with certain sounds, such as “sh” or “k,” then just add the sound 

“t”—for example, “pusht,” “kickt” (pushed, kicked). If the present-tense 

form ends with a vowel or with “b,” “g,” “j,” or “z,” then just add “d” 

to its pronunciation, for example, “buggd,” “skid” (past tense for “ski”). 

Lachter and Bever review other rules as well, but these are sufficient for our 

purposes.

Rumelhart and McClelland chose to represent their inputs and outputs 

using a representation called a “Wickelphone.” A Wickelphone is a repre-

sentation originally described by Wayne Wickelgren, in which each letter 

sound is represented as a triple sequence of symbols. The first symbol in the 

triple represents the sound immediately before the target sound, the sec-

ond represents the target sound, and the third represents the sound imme-

diately after the target sound. The symbol # indicates the space between 

words. So the word “bet” could be represented phonologically as #Be + bEt 

+ eT#. According to Lachter and Bever, the Wickelphone implicitly embeds 

much of the phonology of English because of this contextual structure.

This triple pattern ensures that there can be only one order for most 

sequences of Wickelphones. The word in the earlier example must start 

with B because the first triple includes the start-of-word symbol, it must 

end with T because the triple includes the end of word symbol, and it must 
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have E in the center. Each input to the network was further analyzed to rep-

resent each Wickelphone as a set of Wickelfeatures, which indicated other 

characteristics of the word and its pronunciation—for example, whether 

the sound is interrupted or not, whether it is a vowel. These are precisely, 

said Lachter and Bever, the features that figure in the phonological rules of 

human past-tense formation.

Children, of course, do not start off knowing these rules; they have to 

learn them from the speech that they hear. They don’t know anything 

about vowels or interruption. They do not even know with any confi-

dence where the separations are between words. What adults hear as pauses 

between words can actually be briefer than some of the pauses within a 

pronounced word, but the Wickelphone flags where words begin and end, 

another advantage not available to children.

These assumptions and others, having to do with how examples are 

chosen and the order in which they are presented, were very influential 

in determining the outcome of Rumelhart and McClelland’s training. Like 

many machine learning situations, the representation of the problem is a 

critical part of determining what the machine will learn. Representations 

like Wickelfeatures are, in Lachter and Bever’s view, the representations 

their network crucially supposed.

Although Lachter and Bever intended their analysis to be a critique 

against the appropriateness of general learning mechanisms, I don’t think 

that they succeeded in ruling out the potential for general mechanisms to 

learn these linguistic properties. At best, they succeeded in showing the 

Rumelhart and McClelland’s model was not compelling evidence that a 

general learning mechanism is sufficient to learn language.

Lachter and Bever are not alone in suggesting that intelligence may 

require some special mechanism. If the linguists are right, that certain tasks 

require talents beyond what learning mechanisms can provide, then that 

calls into question the possibility of achieving artificial general intelligence. 

On the other hand, if general learning mechanism are sufficient, then the 

computer scientist need only find the right experience and represent it in 

the right way.

If general intelligence depends on talent or some other special capabili-

ties, then our models have to somehow include that talent. What talent 

would even mean in the context of computational intelligence is itself 

a challenging question. Is it a predisposition? Is it a set of biases? Is it 
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knowledge that exists prior to experience? Would talent be related some-

how to the structure of the computational system?

The need for talent would not make computational intelligence impos-

sible, but it would add the complexity of implementing talent to the list 

of things we must accomplish. Are there properties of the human brain 

that render it specifically capable of solving certain problems? What are 

those properties? Where do they come from? What would it take to emu-

late them? These are challenging problems that have not yet received any 

serious attention from computer or cognitive scientists.

There are always naysayers that argue that computers will never be able to 

do something for some reason. Many people seem to have the need to claim 

some special status for humans. The philosopher John Searle, mentioned 

earlier in the context of the Chinese room thought experiment, claims that 

only brains can have minds, because computer programs are purely syntac-

tic. They cannot represent the meaning of the symbols. He is not clear, how-

ever, about just what property of brains allows them, and not computers, to 

have symbols that stand for, that represent objects in the world.

The philosopher Hubert Dreyfus has argued that the symbolic approach 

to AI, championed originally by Newell and Simon, could not work because 

of its inability to capture enough commonsense knowledge in a computer 

and because of the “frame problem”—that the world can change and the 

computer would have no way to identify which parts of its representation 

would need to be updated.

The symbolic approach to AI, Dreyfus said, was simply a recapitulation 

of the Western philosophical tradition from Descartes onward that held 

that the mind had some fundamental atomic units of knowledge and that 

concepts were rules and so forth. In Dreyfus’s view, a computer, presum-

ably a robot, detects the state of the world at a certain point in time to form 

what he calls a representation. I think that he means a symbolic description 

of the world at that point in time. As the computer works, it operates on 

that symbolic description with no further contact with the world. At some 

point, I think, the computer does try to sense the world, finds out that it 

is different from the condition that it symbolically predicted, and cannot 

figure out how it is different. If that is what he means, it seems like a cari-

cature of a Jetson robot, not like any machine that would actually be used.

Twentieth-century philosophers, for example, Heidegger and Wittgen-

stein, recognized that that the atomic symbolic approach was bankrupt, but 
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symbolic AI was just mimicking this bankrupt approach, Dreyfus says. That 

is why, he claims, symbolic AI must fail.

Connectionist approaches to AI fail for another reason, according to 

Dreyfus. Connectionist approaches fail because they cannot actually learn, 

he thought, and because even having infinite processing power will not 

allow them to achieve what the brain does. He argues that AI is still try-

ing just to mimic intelligent behavior, but it cannot succeed at being truly 

intelligent unless it gets beyond the level of the behavior of artificial sys-

tems and gets to the level of doing what the mind actually does. He ridi-

cules the idea that once computers have enough bits and CPUs that they 

can emulate the brain, they will somehow achieve consciousness and true 

intelligence. Computational capacity is not the answer. No one knows what 

the answer is. The hardest problem is how matter could ever produce con-

sciousness, and AI and the use of computers is not helping understand it 

one bit, he says.

Dreyfus’s view of artificial intelligence seems to start with Newell and 

Simon and their physical symbol systems and end with Rodney Brooks, 

who founded iRobot, the maker of the Roomba vacuum (among other 

robots). Brooks argued that robots would not need any kind of internal rep-

resentation, but, according to Dreyfus, at least, he also argued that insects 

do not learn and automatic vacuums did not need to learn either. Dreyfus 

took the absence of learning in these two systems as evidence that learning 

was an intractable problem for AI. Somehow, he missed the entire fields of 

machine learning and connectionist systems that learn very well.

Dreyfus argued that knowledge is not stored as symbols and rules but 

as readinesses to act. Human minds do not so much store facts about the 

world, as in commonsense knowledge, but are instead modified to be ready 

to act. Knowledge is “knowing how,” rather than “knowing that,” as Gil-

bert Ryle would have put it.

Dreyfus argued that the way people learn is that the world “looks differ-

ent to us” as a result of our experience. Without consciousness, there can 

be no meaning to “looks different to,” because it has to look different to 

something or someone. That is, there has to be some consciousness there 

to be the object of “looking different to me.”

It is not clear to me just what causal role consciousness might play in 

intelligence, even for Dreyfus. In Dreyfus’s view, it somehow plays a role 

for the human in identifying the context in which he finds himself. In 
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computer terms, it lets him pick the contextual frame to understand what 

is relevant and what is not.

Many philosophers find the question of consciousness to be the central 

question of philosophy. How do we get from mindless neurons to a mind 

that not only functions but is aware that it is functioning? I don’t just 

respond to events in my environment—I experience them. There is some-

thing that it is like to be me, but only I am directly aware of just what that 

is. By extension, I expect that there is something that it is like to be you as 

well. I assume that you have experiences just as I have experiences. But in 

your case, I have to infer those states by analogy because I and only I have 

access to my own experience.

There are many theories as to exactly what consciousness is and what 

it does, but I don’t know of any that attribute a role for consciousness in 

intelligence. Dreyfus hints at a role, but he is just not at all clear about what 

that role is. At best, he posits something akin to Descartes’s famous claim, “I 

think, therefore, I am.” If there is thinking, there has to be something that 

thinks, but it is not clear that that something has to be conscious.

Just as there is something that it is like to be me, something that it is like 

to be you, and something else that it is like to be a bat, so, too, there might 

be something that it is like to be a computer. From the point of view of a 

human, it might be boring to be a computer or mysterious to be a bat, but 

there could still be something. But again, there does not appear to be any 

causal role for consciousness in intelligence. Consciousness seems to be a 

red herring for artificial intelligence, and probably for philosophy as well.

Dreyfus was right about the inadequacy of physical symbol systems to 

serve as the basis for AI. He appears to have been right about the diffi-

culty of capturing a finite body of knowledge for commonsense reasoning. 

If he is right, though, it appears to be completely for the wrong reasons. 

He is certainly wrong about computers not being able to learn, unless he 

means something idiosyncratic by the word “learn.” The jury is still out 

on whether the relevance problem that he raises is even pertinent to com-

putational intelligence. Most AI programs address relatively limited small 

worlds, and it is an object of faith that the same processes can be extended 

to more flexible environments.

As Lachter and Bever pointed out, the system designer is the one who 

selects what features of the environment are important to solve the prob-

lem at hand. As intelligence becomes more general, there may be more 
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need for the computer to be able to select relevant data, but we have not 

yet reached that point.

Selecting relevant information is also an unsolved problem for humans. 

As discussed in chapter 7, any two objects are similar on an infinite number 

of dimensions and different on an infinite number. How people select the 

basis for comparison is itself something of a mystery. The problem is not 

unique to machines.

I wonder what Dreyfus would have said about self-driving cars. They rep-

resent many different kinds of contexts. Their ability to navigate through 

desert passes or crowded urban side streets would imply that they can, in 

fact, learn and can switch contexts when needed. The multiple sensor sys-

tems allow them to use different kinds of information in different situa-

tions, for example, at different speeds. They operate on a mixture of direct 

sensation of the world and internal representations.

Finally, Dreyfus is wrong about the necessity for consciousness. There are 

many reasons that could cause him to be wrong about consciousness. One 

of the simplest is that the way that we think (presumably consciously) we 

solve problems is very often not the way that we actually do solve them. We 

thought that chess playing would require deep knowledge about strategy 

and tactics. Instead, we found that a specific kind of tree search algorithm 

would beat the best human players. We thought that playing go could not 

even be practically computed because the same kind of graph algorithm 

used for chess simply had too many branches. A simpler algorithm again 

turned out to be all that was necessary. We thought that catching a bat-

ted baseball would require computing a parabolic trajectory when really 

all it requires is positioning one’s head to keep a ball in constant apparent 

motion.

Daniel Dennett, another philosopher, brings up another problem with 

consciousness that we might call the mysterious case of Marilyn Monroe 

wallpaper. If you go into a room where the wall is covered with repeated 

images, for example of Marilyn Monroe, perhaps like those painted by 

Andy Warhol, you are conscious of seeing all of those repetitions. But the 

evidence is clear that you do not and, in fact, cannot see them all. You come 

to that conclusion in less time than your eyes could possibly scan the whole 

wall. If some of those images are changed while your eye is moving in a sac-

cade, one of the jumps that occurs frequently as your eye moves, you are 

extremely unlikely to be able to notice it.
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Another bit of evidence that consciousness is not the main controller of 

what we see is called change blindness. When someone looks at a picture, 

say of a large airplane, they report that they see the whole picture. They 

claim to be conscious of seeing the whole picture, yet it is easy to show that 

even large parts of it are not available. Very large changes often go unno-

ticed. Consciousness, it appears, in contrast to Dreyfus’s claim, is itself not 

very good at selecting those representational features that need to change 

when the world changes.

Change blindness can be easily demonstrated by showing two pictures 

in alternation, separated by a brief flash. The flash is used to prevent the use 

of apparent motion cues between the two pictures. Apparent motion is the 

perceptual phenomenon that allows a series of still pictures presented in 

rapid succession to be seen as a continuous movie. The eye and brain have 

specific detectors for detecting motion.

In change blindness, the pictures are identical, except for one selected 

difference between them. One of my favorites shows a large plane. In one 

version, an engine is present near the middle of the scene. In the other, the 

engine is absent. People often have a difficult time identifying what the dif-

ference is between the two alternating images. Once you see it, however, it 

is obvious and difficult to stop seeing it:

https://www.cse.iitk.ac.in/users/se367/10/presentation_local/Change%20

Blindness.html

http://nivea.psycho.univ-paris5.fr/ECS/kayakflick.gif

Change blindness can also be seen when a distracting event, such as a 

mudsplash, occurs between the changes:

http://nivea.psycho.univ-paris5.fr/CBMovies/ObeliskMudsplashMovie.gif

Changes between cuts in a video can also produce change blindness:

https://www.youtube.com/watch?v=ubNF9QNEQLA

Finally, people do not notice a change even in who they are talking to 

when a distracting event occurs:

https://www.youtube.com/watch?v=vBPG_OBgTWg

The point of these change blindness findings and other experiments is 

that our conscious awareness does not reliably reflect the environment. 

Rather than being an arbiter of what is relevant in a situation, consciousness 

https://www.cse.iitk.ac.in/users/se367/10/presentation_local/Change%20Blindness.html
https://www.cse.iitk.ac.in/users/se367/10/presentation_local/Change%20Blindness.html
http://nivea.psycho.univ-paris5.fr/ECS/kayakflick.gif
http://nivea.psycho.univ-paris5.fr/CBMovies/ObeliskMudsplashMovie.gif
https://www.youtube.com/watch?v=ubNF9QNEQLA
https://www.youtube.com/watch?v=vBPG_OBgTWg


220	 Chapter 9

is a product of what we have otherwise “decided” is relevant. We have not 

seen all of the images of Marilyn Monroe, but we decide that they are there 

and we claim consciousness of their existence even if we are wrong.

I don’t believe, therefore, that consciousness is likely to be a necessary 

property of computational intelligence. In any case, there are simpler ways 

to choose which actions to perform. In the absence of compelling evidence, 

and philosophical intuition is not evidence, we should prefer the simpler 

mechanism over the more complicated one. The claim that consciousness 

is necessary to computational intelligence could be correct, but extraordi-

nary evidence should be required before we jump to that conclusion.

To the extent that consciousness is relevant, my view is that it is an 

observational or perceptual process of our brain’s functions. We do not 

have access to most of the direct operation of neurons, but we do have 

access to the eventual product of some of these operations. The reason that 

I have special access to my processes is simply because they are in my head 

and not in yours. The reason that I experience them, in other words, is 

because they are in me. My digestion deals with food that I ate, not food 

that someone else ate. My perception of my thought processes deals with 

action of my brain, not someone else’s.

If I have too little of the neurotransmitter serotonin in my brain, I feel 

depressed. The amount of available serotonin changes my brain activity, 

and that changes my conscious feelings. Hallucinogens change brain activ-

ity, and the effect that these hallucinogens have on what we call conscious-

ness can be profound. The idea that consciousness is some mysterious 

thing that needs explaining is a legacy of dualism, that mind and body are 

separate categories of things, as described, for example, by Descartes. There 

need be nothing mystical about consciousness. Dreyfus, in other words, is 

falling into the same Western philosophy trap that he argued was the cause 

of failure for symbolic approaches to AI.

Consciousness is just a natural process. If it needs explaining at all, the 

part to explain is why we can describe some of the brain’s operations and 

not others. This question is, of course, complicated by the fact that our 

descriptions do not always match what is actually happening either in the 

world or in the part of it enclosed in our own skull.

Consciousness is something of a reconstruction of some aspects of 

our brains’ functioning. But much of our intelligence may come from 
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unconscious processes. These are processes that we find difficult to describe. 

According to some, consciousness is the story we tell ourselves to make 

sense of the world. It is a rational reconstruction of what we think has been 

going on in our heads, not the cause of what is going on.

Dreyfus’s criticisms are largely directed at the notion of a physical sym-

bol system hypothesis (see chapter 3). The idea is that a system that con-

tained and operated on symbolic representations of knowledge was both 

necessary and sufficient to implement intelligence.

Physical symbol processing was ideally suited to the complex intellec-

tual problems that could be described in terms of rules that operated on 

symbols. The belief was that it would be possible to describe every aspect of 

intelligence in sufficient detail that it could be implemented by a machine. 

This belief turned out, I think, to be misleading and inaccurate. Charac-

terizing intelligence as symbol and rule processing and focusing on tasks 

with explicit rules mutually reinforced one another. By picking example 

problems that were easy to assess, computational intelligence designers also 

picked example problems that were suitable to the tools that they had devel-

oped. Their success on these problems led them to believe that these were 

the only kinds of problems that needed to be solved, so the tools appropri-

ate to solving them were the tools needed to solve any other problem.

Although the AI tools and approaches have evolved significantly since 

Newell and Simon, this general framework has persisted. Researchers 

focus on problems that they can address in a reasonable amount of time. 

They work on problems of limited scope. They have to publish papers, get 

degrees, and so on. They have to bring products to market. They then over-

generalize the solution that worked to address these limited problems and 

think that the same approach can extend to other, unaddressed problems. 

It may take more processors than are currently available or more memory, 

or more examples, but the methods that work on limited-scope problems 

should be extensible other situations. Rumelhart and McClelland assumed 

that the approach that they used for past-tense learning would apply to 

other linguistic problems as well. But, if their solution depended on special-

purpose representations, such generalization would not be forthcoming. A 

computer program that learns the past tense using special representations 

would not be of much use to solve other problems that require different 

representations.
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Representations for General Intelligence

The gist of the argument is that learning under the current framework does 

not require special-purpose learning mechanisms but special-purpose repre-

sentations. Lachter and Bever were right; these are the representations that 

a problem critically supposes. These representations depend on problem-

specific knowledge, but general intelligence requires general representa-

tions, which we have yet to figure out.

Another problem with the physical symbol system approach is the 

premise that we can describe the world with sufficient specificity. That idea 

presumes that there are a finite number of objects in the world and a finite 

set of rules to deal with those objects. This assumption works when we 

limit the environment to certain small constrained worlds, such as theorem 

proving, block stacking, or games. But, when we get to less constrained 

worlds, it rapidly falls apart. Categorization is complex and, as we discussed 

earlier, difficult to represent by similarity. Like games and furniture, many 

categories, such as rich, smart, or tall, do not have fixed definitions.

Only 4% of people at the top of the US economy (those worth a million 

dollars or more) consider themselves to be rich. The other 96% of million-

aires describe themselves as middle class or upper middle class. Only 11% 

of people with a net worth of $5 million or more consider themselves to 

be rich.

How rich, smart, or tall do you have to be to be labeled rich, smart, or 

tall? Generally speaking, it depends. Rich people are those worth more than 

I am. Tall people are those who are taller than I am, and smart people are 

those who are smarter than I am.

As discussed in chapter 7, there are ad hoc categories (such as things to 

take on vacation or things that make an appropriate Mother’s Day gift). 

These ad hoc categories have many of the same properties as more common 

and well-used ones (for example, they each have prototypical examples). 

Because they are ad hoc, they cannot have been stored as a prestructured 

representation. Rather, the representation has to be constructed at the time, 

and it may not persist after its single use.

Other categories, named with two words, can also be complex and dif-

ficult to represent consistently. Consider a gummy worm, an earthworm, 

and a wax worm. You might like to eat the first; you would probably not 

want to eat the other two. An earthworm lives in the earth, and a wax 
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worm, unlike a wax apple, is a worm (actually a caterpillar larva of the wax 

moth) that eats beeswax, and, as recently discovered, polyethylene plastic.

If we constrained ourselves to well-chosen examples, computers could 

probably manage these strange categories, but there do not seem to be a 

finite number of them. Birds fly, but penguins and ostriches do not. What-

ever representations we come up with, they will have to be able to deal with 

strange categories and exceptions.

Symbol systems do not scale well. If there can be millions or more cat-

egories and each category can involve many thousands or millions of rules, 

it is not clear where the effort would come from to generate those categories 

and rules.

Inherent in this discussion of consciousness, intelligence, and the struc-

ture of categories is the critical role that representation plays in intelligence. 

Political arguments can be won or lost based on exactly how they are repre-

sented. Was the invasion of Iraq in the 1990s like the invasion by US forces 

of Vietnam, or was it like World War II? As discussed earlier, Kahneman and 

Tversky found that describing the outcome of a choice relative to a win 

(the number of people who survived because of a treatment) led to higher 

preference for the treatment than describing it relative to a loss (how many 

people would die despite the treatment) even when the numbers were actu-

ally identical in both situations.

The mutilated checkerboard problem is easy to solve with one represen-

tation, as a parity problem, and difficult to solve with another, as a layout 

problem. The game of go was computationally intractable when consid-

ered as a general tree problem but was more tractable when considered as 

a pattern-recognition problem. As in human cognition, how a machine 

learning problem is represented is critical to how or even whether it can 

be solved.

There have been some attempts, particularly involving deep neural net-

works, to come up with generic representations and systems that can learn 

their own representations. I will argue that most of this work is simply 

mistaken.

For example, Yoshua Bengio, Aaron Courville, and Pascal Vincent cor-

rectly note that the success of machine learning algorithms depends strongly 

on the representation of the data. Specific representations can make some 

distinctions easier to recognize and others more difficult. They also cor-

rectly recognize that selecting or constructing these representations can 
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require a great deal of effort. It would be useful if machine learning could 

be used to reduce the needed effort, if it could be used to derive its own 

appropriate representations for solving problems. Such a capability would 

eventually be necessary for a truly general computational intelligence.

Consider some machine learning problem, such as categorization—for 

example, to categorize documents by topic, pictures by whether they con-

tain cats, or loan applications by whether the applicant is creditworthy. 

Each item to be categorized could be represented by a bundle of measur-

able characteristics or features. The features for a document categorization 

problem could be the words in the documents, or sequences of letters, or 

some combinations of these. The features of pictures could include the pix-

els in the picture, the presence of some specific shapes, or something else 

(for example, the parameters of a discrete cosine transform, a method for 

summarizing groups of pixels). In evaluating loan applications, the features 

could include any of the characteristics we know about the applicant. Some 

of these features will be relevant, and some might not be.

Whatever object we are classifying, we usually put the features and 

objects into a table, where the rows are objects and the columns are the 

features. If, for example, a document has the word “teacher” in it, then the 

row for that document will have a 1 in the column for the word “teacher.” 

Words that appear in the document will have nonzero values for that docu-

ment’s row, and words that do not appear in that document will have a zero 

value in the column corresponding to that word and the row corresponding 

to that document. The more features there are, the more combinations of 

features need to be considered when optimizing, and the number of combi-

nations grows much faster than the number of elements to combine—the 

curse of dimensionality.

Many learning algorithms benefit from reducing the number of features 

that are used, provided that the preserved features are informative about 

the distinctions that are to be learned. There are statistical methods that are 

widely used to distinguish the relevant features on the basis of the informa-

tion that they convey. These methods can select among the features in the 

initial representation, keeping only those that provide information about 

the category.

For example, a document that contains the word “lawyer” is also likely 

to have words like “judge,” “attorney,” or “court.” If we are interested in dis-

tinguishing documents about legal matters from others, it may not matter 
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which of these words appear in it, so long as one or more of them does. 

Each of these words, we might say, contributes to the topic or dimension 

of “legal matters.” These methods can be generally described as organizing 

features into combinations that are most informative about the categories 

being trained.

Several statistical techniques can capture the correlation among features 

and reduce a large number of basic features to a smaller set of features. In 

some representations of documents, for example, the words that make up 

the original features may be combined into topics. Hundreds of thousands 

of words may be statistically reduced to a smaller set of perhaps hundreds 

of topics. It is usually much easier to learn about a few hundred features per 

object than about several hundred thousand, and these techniques ensure 

that these reduced dimensions reflect most of the information that could 

be conveyed by the full set of features.

Some of the deep learning projects claim that they can solve the curse of 

dimensionality and solve the need to construct representations by having 

the network learn representations. For example, they may use probabilis-

tic models, autoencoders, restricted Boltzmann machines, and a few other 

techniques to learn the important features. The details of these techniques 

are not critical to the discussion at this point. These techniques do not, as 

I see it, actually learn new representations; they perform some of the same 

familiar statistical techniques that have been used in the past to transform 

the inputs. They combine, select, and summarize; they do not create new 

representations. They cannot, on their own, decide to use Wickelphones to 

represent words.

The statistical technique that they perform is determined by the particu-

lar deep learning structure that is designed into the network. For example, 

an autoencoder is a network process that takes a “raw” input, such as the 

pixels in a picture, and is trained to reproduce those pixels as an output, 

while passing the patterns through a much smaller intermediate layer.

A 200 × 200 pixel image would have 40,000 inputs and 40,000 outputs 

for the autoencoder. A single-layer network could accomplish this repro-

duction perfectly by simply passing the input through to the output, but 

nothing would be gained. Instead, the autoencoder includes a layer that 

has substantially fewer units, so, in order to reproduce the input effectively, 

it has to find the relationships in the input that can be summarized by 

these “bottleneck” units and still reproduce the outputs. In other words, 
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this hidden layer finds the same kind of statistical summary like that used 

in other forms of dimension reduction, such as the topic transformation 

described earlier. Mathematically, this hidden layer does what is called a 

“principal component analysis.” The patterns learned by this hidden layer 

are not arbitrary. They conform specifically to well-known statistics.

There are many methods that can be used to produce a bottleneck. Using 

an autoencoder is a choice made by the designers of the network, and the 

choice of the autoencoder determines the kind of representation that 

the network will learn. Alternatively, they could have chosen a restricted 

Boltzmann machine, which learns a different statistical summary, a factor 

analysis (see chapter 2).

In short, it is the designer of the network who decides how the inputs are 

to be represented. The network may choose the specific values that the hid-

den units will take on dependent on the data, but this is exactly the same as 

when a separate statistical analysis is performed on the data using any other 

technique. Having the network conduct this statistical analysis, rather than 

using one of the other well-known methods, may be inefficient in terms of 

the number of iterations the system must go through, that is, the number 

of times it must consider each input. The computational complexity may 

be higher than with other methods, but all of these methods have the inter-

esting property that they do not require labeled examples. Their error can 

be measured without any human labels by evaluating the quality of the 

system’s reproduction of the input.

Whether the transformation of the input is done before it is submitted 

to the network or whether that capability is added to the network itself does 

not change the fact that the transformation is an essential part of what is 

learned. There is no magic to having a network perform the transforma-

tion. We may say that the network learns the transformation, but actually, 

what it learns is the value of the transformation, not the process. The trans-

formation is not optional, and its type is not optional to be selected by the 

network.

Conclusion

The representation chosen can have profound implications for the success 

of a machine learning project. Of the factors that affect machine learning, 

representation of the problem and of the input data is arguably the most 
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important. At this point, the choice of representation is still determined by 

the designer of the machine learning system, but a truly general computa-

tional intelligence will require the ability to create its own representations. 

We are very far from achieving that in an automated way.
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10  Algorithms: From People to Computers

Algorithms and heuristics are important because they show what unaided human 

brains do and because they show what more those brains can do when they are 

deployed systematically. Human intelligence depends on both heuristics and the 

algorithms that have been invented over the last 50,000 years.

Humans have become increasingly intelligent over the last 50,000 years 

because they have invented, implemented, and followed procedures that 

make thought more systematic and effective. The use of algorithms has 

made human thought more effective and has made automatic computer 

processes possible.

The word “algorithm” comes from the Latin word algorismus, which is a 

Latinized form of the name Al-Khwarizmi, a Persian mathematician from 

the ninth century, and the Greek word arithmos, which means number. The 

word came into more prominent use during the thirteenth century in the 

context of changing over to the use of so-called Arabic or Hindu numerals 

(the ones we use today) from Roman numerals.

Roman numerals are well suited to dates and to counting objects, but 

they are extremely limiting in other ways. Just multiplying two numbers 

in Roman numerals is a multistep process that is prone to errors. Many 

kinds of mathematics were only possible when the representation of num-

bers changed to the positional decimal one we have today. It may seem 

strange to talk about algorithms for multiplying numbers, but, in fact, this 

is an active area of research, particularly for how to effectively multiply very 

large numbers.

Most of us learned the carry method in elementary school, where two 

multidigit numbers are placed in a column and each digit in the top number 
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is multiplied by each digit in the lower number and the result is added up. 

Multiplying two 3-digit numbers takes 9 single-digit multiplications, and 

multiplying two 4-digit numbers takes 16 multiplications. Multiplying two 

10,000-digit numbers takes 100 million single-digit multiplications.

In 1960, Anatoly Karatsuba developed a method that combined multi-

plications with additions and subtractions to greatly reduce the number 

of single-digit multiplications that would need to be done. Karatsuba’s 

method would multiply those 10,000-digit numbers in a little more than 2 

million operations.

Multiplying Roman Numerals

Multiplying two numbers like 21 × 17 is easy using Arabic numerals but a very 

complex task with Roman numerals. To multiply XXI × XVII:

Make two columns, and write XXI in one column and XVII in the other.

Divide the number in the left-hand column by 2, ignoring the remainder 

(XXI → X).

Multiply the number in the right-hand column by 2 (XVII → XXXIV).

Repeat the above two steps until the left-hand column contains I.

X → V; XXXIV → 2 = LXVIII

V → II; LXVIII → CXXXVI

II → I; CXXXVI → CCLXXII).

Go down the rows and strike out each line where the number in the left-

hand column is even.

XXI XVII

X XXXIV

V LXVIII

II CXXXVI

I CCLXXII

Add the remaining values in the right-hand column (XVII + LXVIII + 

CCLXXII = CCLLXXXXVVIIIIIII = CCCXXXXXVII = CCCLVII = 357).

No comparable method exists for dividing Roman numerals.
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In 1971, Arnold Schönhage and Volker Strassen found an even faster 

method that would reduce the number of operations needed to multiply 

two 10,000-digit numbers to 204,500. A still faster algorithm was discov-

ered by David Harvey and Joris van der Hoeven in 2019 that reduced the 

number of steps to about 92,000 operations. The specific algorithm can 

make a very big difference in how long it takes to do basic computations, 

such as finding the next prime number. The difference is so large, in fact, 

that it can mean the difference between accomplishing some feat and not 

being able to live long enough to see it through to completion.

Not all algorithms are necessarily numeric. Recipes can be thought of as 

algorithms. If you follow the steps given in the recipe, the result will be the 

dish that you expect.

Although humans are capable of brilliant episodes of genius, people spend 

much of their time at far lower levels of intellectual challenge. Herbert Simon 

argued that people generally satisfice rather than optimize what they do. He 

thought that a fully rational approach would leave people lost in thought 

contemplating unreachable alternatives. Instead, Simon argued that they 

consider the choices that are readily available and let that be good enough.

Yet, when we need or want to be intelligent, we seem generally capa-

ble of achieving it. We are capable of being thoughtful. What I think that 

means is that we are capable of engaging in systematic analysis, even if we 

do not always do so. Humans have developed thinking tools, power tools 

for the mind, if you will, that let us achieve (occasional) soaring levels of 

genius. These tools help us to plan strategies and make better use of the 

information that we have. Similar tools are used in computational intelli-

gence where they are also highly effective. Think of these as tools for highly 

effective intelligence.

The distinction between everyday thought and effective thought cor-

responds roughly to Daniel Kahneman’s distinction between System 1 and 

System 2 thought. Kahneman objected to the traditional view of humans as 

rational decision makers—the so-called rational man view from economic 

theory. In this traditional approach to economics, people were thought to 

generally choose alternatives based on their own self-interest. When a per-

son did not choose the best alternative, it was a rare occasion on which 

emotions intervened.

This rational view of decision making is not particularly good at explain-

ing human behavior. Remember, for example, that more people will take 
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advantage of the lower price when it is characterized as a late payment 

penalty than when it is described as an early payment discount. People 

would rather buy hamburger meat that is 90% lean than hamburger meat 

described as 10% fat.

In the rational-man view, departures from rationality are viewed as 

errors. Instead, I have argued that the nonrational decisions are principled 

in their own way. More importantly, I think that they are not errors at all, 

but indicators of a kind of thought that is derived from natural intelligence, 

and essential machinery for the creation of human intelligence.

System 1, in Kahneman’s view, is fast, based strongly on recognition, 

automatic, and emotional. System 2 is deliberative, logical, effortful, and 

systematic.

System 1 is used for such tasks as:

•	 recognizing that one object is farther away than another

•	 recognizing the emotion being displayed in a photograph of a person

•	 recognizing that there are four coins on a table (without having to count 

them)

•	 solving simple arithmetic problems, such as 2 + 2

Most of our everyday activity is governed by System 1. Most of what we 

do on a daily basis is habitual and familiar. Given a familiar math problem 

like 2 + 2 = ?, the answer is directly available. The answer is the result of 

crystallized intelligence. If we see a person coming toward us with a smile 

on his face, eyes broad, mouth turned up, we do not have to exert much 

effort to expect that person to be happy. If we hear a strange bump in the 

night, we don’t have to calculate to expect that something dangerous is 

going on. If someone says, “How are you?” our instant response is “Fine.” 

These situations are clichéd for a reason; they recur frequently, and a mem-

orized response is usually enough.

System 2, on the other hand, is used for such tasks as:

•	 solving complicated arithmetic problems like 13 × 27

•	 deciding whether to accept a job offer

•	 monitoring the appropriateness of behavior at a party

•	 parking in a narrow parking space

•	 verifying an unfamiliar logical syllogism

•	 evaluating complex legal arguments
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System 2 processes are among those that are most closely associated with 

intellectual achievement and intelligence. They require effort, take time, 

and can be challenging. System 1 often involves jumping to conclusions. 

These conclusions are not random, but their pattern reveals much about 

the process of System 1 thought.

One of the most revealing studies of System 1 thought is an experi-

ment that Kahneman performed with Amos Tversky. They presented the 

so-called Linda problem to a group of college students. The students were 

told about a young, single, outspoken person, Linda, who was deeply con-

cerned, while a student, with issues of discrimination and social justice. 

One group of people was asked to rank a list of eight scenarios by how 

similar each scenario was to the description of Linda in her thirties. They 

decided that Linda is a very good fit for an active feminist, a reasonably 

good fit for a bookstore employee and someone who takes yoga classes, and 

a poor fit for being a bank teller or an insurance salesperson. Critically, they 

said that Linda’s profile more closely resembled the idea of a feminist bank 

teller than a bank teller in general.

Another group of participants was asked to judge how likely each state-

ment was. How likely was it that Linda was a bank teller versus how likely 

was it that she was a feminist bank teller? Rationally, the probability has to 

be higher that Linda is a bank teller than a feminist bank teller because only 

some bank tellers would be feminists and there can be no feminist bank 

tellers who are not also bank tellers. Feminist bank teller must be a subset 

of all bank tellers. However likely Linda was to be a feminist bank teller, she 

could not be any less likely to be a bank teller.

Nevertheless, 89% of undergraduates rated it more likely that Linda was a 

feminist bank teller than that she was a bank teller. Logically, that cannot 

be true. Even participants who did both tasks still rated feminist bank teller 

as more probable than bank teller.

Kahneman and Tversky interpreted this result as a conflict between rep-

resentativeness or resemblance, on the one hand, and logic on the other. 

Linda could resemble a feminist bank teller more than she resembled an 

average bank teller, but the rules of probability dictated that she could 

not be more likely to be a feminist bank teller than a bank teller of any  

stripe.

Kahneman and Tversky argued that representativeness governed the 

participants’ choices in both decisions. Apparently, the participants made 
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their judgment using System 1, using pattern matching, rather than basing 

their decision on a logical analysis of the situation.

In another study Kahneman and Tversky asked participants to decide 

which of these two scenarios was more likely:

•	 a flood somewhere in North America next year where more than a thou-

sand people die

•	 an earthquake in California next year causing a flood where more than 

a thousand people die

As in the Linda problem, a flood in California, as part of North Amer-

ica, and a flood caused by an earthquake both have to be less probable (or 

at least no more probable) than a flood by any cause anywhere in North 

America. Still participants chose the California version as more probable. 

Earthquakes are more closely associated with California than with other 

states, so the California story may be more plausible sounding, that is, it 

may be more representative than the idea of a flood anywhere in North 

America.

The strong resemblance between scenarios and the participants’ expec-

tations caused them to decide on the basis of similarity rather than logic. 

When the similarity factor is reduced, however, people do make the logically 

consistent choice. For example, if they are asked which is more probable

•	 John has hair

•	 John has blonde hair

they logically choose that it is more probable that John has hair than that 

he has blonde hair.

Kahneman and Tversky identified other decision methods that people 

use when they engage only System 1 to make decisions. The Linda and 

flood examples use the representativeness heuristic. Another System 1 heu-

ristic is availability—how easy it is to think of examples. If an item is easier 

to think of, if it is more available, it is estimated to be higher probability 

than an item that is less available. We discussed this heuristic in the context 

of judging city size and basketball playoff success in chapter 2.

If we are evaluating a risky action, for example, we will tend to overes-

timate the risk if we think of times when that action led to poor outcomes 

and underestimate the risk if we think of times when the action led to suc-

cessful outcomes. Opinions are easier to believe if we can think of examples 

that support that opinion than if we tend to think of counterexamples.
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Anchoring is a related heuristic. The context makes some things easier to 

think of than others. If we asked a person how old John Wayne was when 

he died, we will get one estimate. If we ask whether he was at least 96 years 

old and then ask his age, people will guess that he was older than if we ask 

whether he was 35 years old or more when he died.

Nassim Taleb (quoted in the 2014 Guardian article) described another 

example of anchoring. He told the story of trying to manage investments 

for clients using a strategy that would have common small losses but would 

also have some rare big gains. He said that clients kept “forgetting” the 

principles of the strategy and complained about their frequent losses. He 

found, however, that if he had his clients indicate, at the start of the year, 

how much they would be willing to pay for the chance at the big payoff, 

he would then post their progress over the year relative to the amount that 

they were prepared to pay. If they lost less, they then saw it as profit from 

what they expected to lose. It was money “recovered” rather than money 

lost. The estimate at the beginning of the year set an anchor against which 

all future transactions could be judged. Instead of using the full invest-

ment as the anchor, and reporting losses relative to this anchor, he reported 

“gains” relative to their discounted anchor.

Framing is another factor that affects how readily people retrieve exam-

ples. If people are asked whether they would choose to have surgery for a 

problem when 90% of people who get that surgery survive, they are more 

likely to choose the surgery than if they are asked whether they would get 

a surgery when 10% of the people getting this surgery die. Again, these two 

choices are logically identical, but talking about survival makes examples 

of survival more readily available, and talking about death makes examples 

of death more readily available.

On the other side, it is difficult to base decisions on information that 

you don’t have or on estimates of future value that might be wrong. Mar-

kets are volatile, and postponing decisions until more information is avail-

able may cancel the value of that information. The profitable opportunity 

may have passed, and the value of a stock may further diminish while wait-

ing to get information. At present, we do not know how important these 

kinds of heuristics are for general intelligence, but because these heuristics 

are so widespread among humans, there is a strong chance that they could 

be an essential part.

These heuristics, some of which are listed in table 5 (also see chapter 

7), are important for thinking about computational intelligence for two 
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Table 5
Some Cognitive Biases/Heuristics

Cognitive “Bias” Limitation Potential Benefit

Small sample 
biases

The tendency to be swayed by 
small samples without regard 
for how representative they 
might be.

Ability to reach 
conclusions based 
on small amounts of 
evidence.

Confirmation 
bias

The tendency to look for 
information that supports 
your prediction rather than 
information that challenges it.

Minimizes the amount 
of evidence that would 
be needed to make a 
prediction.

Conservation The tendency to be slow 
in adjusting beliefs as new 
contrary information becomes 
available.

Resistance to irrelevant 
information. Observations 
can fail to support a 
prediction for many 
reasons other than the 
prediction being wrong.

Hindsight bias The tendency to believe 
that past events were more 
predictable than they were in 
actuality.

Avoid “paralysis by 
analysis.” Reinforces the 
idea that past evidence 
was successfully collected 
and relevant.

Illusion of 
control

The belief that one has more 
control of the events that 
occur than is reasonable; 
overestimation of one’s 
control.

Increases the motivation 
to find solutions to 
problems.

Mere exposure 
effect

The tendency to believe 
statements that have been 
presented repeatedly. The 
tendency to like familiar 
things.

Recurring events tend 
to be valid indicators. 
Methods worked out for 
familiar situations tend to 
be reliable.

Overconfidence 
effect

The tendency to overestimate 
one’s expertise. To express 
unsupported certainty in one’s 
own decisions and estimates.

Supports the idea that 
unproven predictions are 
still useful.

Note: See https://en.wikipedia.org/wiki/List_of_cognitive_biases for more biases.

https://en.wikipedia.org/wiki/List_of_cognitive_biases
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reasons. First, they seem to illustrate what unaided human brains do. 

People have evolved the kind of skills Kahneman associates with System 

1 without formal training, and perhaps without any training at all. System 

2 skills, on the other hand, seem to depend on some formal training, for 

example, people are specifically schooled in how to conduct thorough, sys-

tematic analyses.

Second, although we can construct situations where these thinking heu-

ristics lead reasoning astray, they are also highly likely to play an important 

role in overall intelligence. If we jump to conclusions, for example, we will 

mostly be right without having to experience thousands of examples. We 

do not always have the luxury of delaying useful learning to accommodate 

thousands of examples.

In chapter 3, we quoted Turing’s (1947/1986) comment in his report to 

the London Mathematical Society: “. . . if a machine is expected to be infal-

lible, it cannot also be intelligent.” The very heuristics that can be fooled by 

clever experiments are likely to also serve as the means by which humans 

readily and quickly solve everyday problems. System 1 abilities may not 

be sufficient to support the full intellectual achievement that we celebrate 

as intelligence, but they are likely to be a necessary part of human intel-

ligence. General intelligence probably requires the algorithms of System 2 

along with the heuristics of System 1. It is difficult to investigate such ques-

tions, but I believe that it is important to find out more about what these 

heuristics do and how they contribute to overall intelligence. These biases 

are essentially absent from computational approaches to intelligence, and 

that may be a serious mistake.

Most of the progress that we would associate with intelligence has 

come from the adoption of algorithmic processes of the type associated 

with System 2. We turn next to consideration of some of these algorithmic  

methods.

Optimal Choices: Using Algorithms to Guide Human Behavior

Some decisions are better than others. In fact, there is a theory of optimal 

decision-making that can be used to guide decision making. For example, it 

can be used to choose a job, a mate, a secretary, or a school. It can be used 

to decide whether the blip on a sonar screen indicates a whale or an enemy 

submarine.
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Optimal does not mean perfect; it means to make the best decision 

one can among the available alternatives, based on the currently available 

information. Optimal decision theory is one of the power tools that not 

only help machine learning systems to adapt to solve their problems but 

help people to be more systematic in solving their own problems.

Optimal decisions have two components. The first is the available evi-

dence, and the second is the method of selecting the best choice among 

the available choices. Optimal decision theory is an ideal, in that it can be 

shown that no other approach can consistently do better than an optimal 

decision maker.

Optimal decision theory grew out of World War II research. Part of it 

was focused on how a radar operator should decide whether a blip on the 

screen was due to an enemy plane or something else. In order to improve 

the quality of these decisions, psychologists and engineers set out to see if 

they could come up with a model of how best to make that decision. Errors 

could be costly. Missing an enemy plane could mean that people would 

die. Falsely reacting to what might look like an enemy plane could waste 

resources, which could also lead to people dying.

For example, during the brief 1982 Falklands War between Britain and 

Argentina, the British warship HMS Brilliant torpedoed two whales and 

killed a third from a helicopter. Based on the evidence available, they mis-

took the whales for a submarine.

The experience of the Brilliant is exactly the kind of problem that led to 

the development of optimal decision theory. The sonar provides imperfect 

information about a potential target. The sea bottom around the Falklands 

is littered with old shipwrecks, whose sonar profiles are similar to that of a 

submarine. Unfortunately for the whales, their sonar profile was also sim-

ilar. When whales came up to breathe, a flock of seagulls would gather, 

which caused a blip in the radar as well, further supporting the idea that it 

was a submarine and not a whale.

The similarity between military targets and wildlife was an important 

challenge for the technology and operators of 1982. The sonar or radar 

operator had to decide whether each blip was a return from an object that 

could be safely ignored or one from a potential enemy. Because of the simi-

larity of the signals, those decisions could not be perfect, but they could be 

made in an optimal way.
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Optimal decision theory uses Bayes’s rule. The Reverend Thomas Bayes, 

in the eighteenth century, came up with a simple equation that describes 

how to update a probability estimate. Bayes’s rule tells the sonar or radar 

operator how to make the best decision under these circumstances.

According to Bayes’s rule, the decision as to whether a blip on a radar 

screen is a submarine versus a whale depends on two kinds of probabilities. 

The first probability, called the prior probability, is the probability that a 

submarine is in the area. It is called the prior probability because it is esti-

mated before we get any specific evidence from our radar or sonar system. 

The British Navy had already scuttled one Argentine submarine and had 

intercepted communications that another was assigned to attack the Brit-

ish fleet. So they had a reasonable expectation that they would, in fact, 

encounter an Argentine submarine. The second kind of probability is the 

probability of observing the evidence, for example, the strength and char-

acter of the blip. A specific kind of blip could result from either a whale 

or from a submarine, but one of the two would be more likely than the 

other to produce that particular kind of blip. Bayes’s rule describes how 

to combine these two kinds of probabilities to come up with a posterior 

probability—the probability that it is a submarine given the prior probabil-

ity and after observing the evidence.

To summarize it, the more likely submarines are to be in the area, the 

less evidence we need from the radar or sonar to decide that we are seeing 

a submarine. The less likely submarines are to be in the area, the more con-

vincing we need, the stronger the evidence we need from the radar.

The relative cost of making an error of each kind is also used as part of 

the decision process. In the case of radar, there is a cost to deciding that 

there is an enemy submarine when there is not one (a false positive or false 

alarm) and a different cost to deciding that there is no enemy submarine 

when there really is one (a false negative or miss). But if the cost of a false 

positive is small (the cost of scrambling interceptors, for example) while 

the cost of a miss is high (the submarine attacks, killing many people), 

then optimal decision theory suggests how to take that imbalance into  

account.

When information is imperfect, then an optimal decision maker will 

adjust the decision process to prefer the less costly error. When the informa-

tion is ambiguous, an optimal decision maker will make some errors, but 
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it can choose which kind of errors are preferable. So, in this example, an 

optimal decision maker would need less convincing that the blip really is 

an enemy submarine, knowing that there could be Argentinean submarines 

in the area. The Brilliant operators decided that it would be preferable to 

blow up a few whales than to let an enemy submarine get close enough to 

destroy a British ship.

A self-driving car faces the same kind of decision problem. If its sensors 

detect what looks like an obstacle in the road, it could be disastrous to run 

into it, but only mildly annoying to swerve or slow down to avoid it.

An optimal decision maker combines all of its available information, 

about the relative likelihood of events, about the strength of the evidence, 

and about the costs of different kinds of errors to come up with a criterion 

by which to make its decisions.

In general, people tend to use heuristics to make decisions. They rarely 

exert the effort to make optimal decisions but typically are willing to put up 

with decisions that are good enough. Sometimes it is critical to do better, 

and in fact to do the best that one could do. Under these circumstances they 

don’t go on gut instinct or the “seat of their pants”; rather, they engage in 

structured processes using optimal decision theory as their guide.

John Craven used a variation of optimal decision theory to find a miss-

ing hydrogen bomb. In January 1966, two B-52 bombers were flying off 

the coast of Spain. Each bomber held four H-bombs as part of a Cold War 

program intended to deter Soviet aggression. While joining up with air 

tankers for in-air refueling, one of the bombers collided with its tanker. 

The resulting fireball killed all four crew members on the tanker and three 

of the crew from the bomber. The flaming wreckage fell on the village of 

Palomares, Spain, along with three of the four bombs. The conventional 

high explosives in two of the bombs detonated, leaving 100-foot-wide cra-

ters and scattering radioactive debris all around the countryside. The third 

bomb landed on soft ground and was largely intact, but the fourth bomb 

was nowhere to be found.

Concluding that the fourth bomb had landed in the sea, the US Air Force 

eventually requested help from the US Navy. The navy handed the proj-

ect to Craven, then head of the Navy Special Projects Office. US President 

Lyndon Johnson was concerned that the Soviets would find the bomb and 

exploit it. The navy argued that it was lost forever in the sea, but Craven 

had already shown how he could find stuff that was supposedly lost. So he 
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was charged with finding the H-bomb, an object the size of a canoe in a 

poorly mapped area of the ocean.

A fisher from the village of Palomares said that he saw a parachute com-

ing down at about the time of the incident and told the navy where that 

was. They did not believe him, however, because the position he described 

did not match where they thought the bomb had to be and because he did 

not use modern navigation devices to identify his location.

Craven used a version of optimal decision theory to decide where to 

look. He divided up the sea near Palomares into small squares and then 

enlisted a team of experts to estimate the probability that the bomb fell in 

each of those squares based on the probabilities of events such as whether 

one or both of the bomb’s parachutes opened. Whether it fell straight into 

the water or drifted with the wind. Then he set about collecting data to 

optimally update those estimates.

Craven’s estimates suggested that the most promising places to look 

were far from where more conventional search techniques had predicted 

the bomb to be. When the bomb did not turn up in the most likely places, 

the team adjusted their estimates to take this evidence into account. Even-

tually, the navy decided to listen to the fisher’s report regarding the para-

chute. It was a spot that Craven’s team predicted to be highly likely but had 

not yet searched. When the deep submersible Alvin was sent to look for the 

bomb in 2,550 feet of water, it eventually found the parachute, and under 

it was the bomb. The fisher’s report was a powerful piece of evidence. When 

combined with the prior probabilities estimated before his evidence, the 

new estimate showed a very high likelihood that the bomb would be found 

in a particular spot, and there it was.

Part of the innovation in Craven’s search method was the recognition 

that searching an area might not actually find the bomb, even if it was 

there. For example, some of the navy equipment could only search to a 

depth of 200 feet, but the bottom was over 2,000 feet down. Even if this 

detector was right over the bomb, it would not detect it. Searching a loca-

tion with inadequate equipment actually provided no evidence at all about 

whether the bomb was there, so it was unreasonable to remove that square 

from the bomb’s possible location. As it turned out, the navy had been 

spending a lot of time searching in ways that would never be able to find 

the bomb even if they looked in the right location. Craven’s team took the 

efficacy of the search into account in adjusting their probabilities.
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Optimal decision theory does not always lead to the correct answer, but 

over the long haul, it does more often than other methods do. As a site was 

adequately searched, that is, searched in a way that could find the bomb if 

it was there, that search reduced the probability that the bomb was in that 

location and simultaneously increased the probability that it was in other 

sites that had not yet been adequately searched. Using these mathematical 

techniques and the suggestion of the Palomares fisher, they were eventually 

able to find and recover the bomb.

Two years later, Craven applied similar techniques to find the nuclear 

submarine USS Scorpion, after the sub sank near the Azores in 1968. In that 

same year, he again applied similar techniques to finding a sunken Soviet 

submarine in the Pacific.

Optimal decision theory can even be applied to dating. The goal of the 

so-called marriage problem is to decide when to stop dating and settle 

down. Stripped of its romantic implications, the very same strategy that is 

optimal for dating is also relevant for those making hiring decisions, for car 

buyers, for renters, and even for burglars.

To keep it simple, the standard version of this problem makes a few 

assumptions. You date potential mates in random order. Before you date 

a candidate (as I said, stripped of its romantic aspects), you do not have 

any idea how suitable she or he may be. After dating a candidate, you can 

reliably rank that candidate relative to all of the other candidates you have 

seen.

After each date, you decide whether to marry your current date or keep 

looking. The assumption is that you get to date only one person at a time. 

Once you stop dating that person, you cannot go back to an earlier candi-

date. You can compare the current candidate against all previous dates, but 

you do not know anything about dates you may have in the future. In this 

problem, your only decision is to date or mate. How do you know when it 

is time to settle down?

In optimal decision terms, this is a stopping problem. How many options 

should you consider before selecting your future partner? Each date has a 

cost (at least in terms of time if not in terms of coffee or dinner). There 

are two ways to fail. You can stop too soon and accept a less than perfect 

mate, or you can go on searching for too long, missing your one true love. 

These two kinds of errors correspond to the problem faced by the crew of 

the HMS Brilliant. Accept a sonar or radar blip as an indication of an enemy 
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sub when it is not, or reject a sonar or radar blip as an indication of a whale 

when it is not. Each observation has a cost and each outcome has a value.

Clearly when searching for a mate, you are not likely to be interested 

in a date who is not the best one you’ve seen so far. After the first date, all 

you know is that your first date may be better than nothing. Your second 

date may be better or worse than the first, but again, you don’t know much 

about the field until you’ve had some more experience. The first one may 

actually be your best choice, but by the time you discover that, everyone 

has already moved on. The third randomly selected date has a 1/3 chance of 

being the best yet. The fifth one has a 1/5 chance of being the best yet. So, 

the best date yet will become less likely, the longer you sample.

The odds of getting the best mate if you simply choose randomly will 

be 1 over the size of the dating pool. If you expect to date three potential 

partners and pick one of them randomly, then the probability of getting the 

best one is 1/3 = 33.3%.

One way to figure out what the optimal strategy would be is based on 

the idea of listing all of the different ways our experience could come out. 

For this problem, you don’t know how the prospects are ordered, but if 

there are three possibilities, then you know that they must be ranked 1 (the 

best), followed by 2, and then 3. You just don’t know which prospect goes 

with which rank.

There are six possible orders in which you could date the three prospects. 

Following the specified rules, each of these orders has a determined pick. 

Here are the rules:

•	 If your current date is better than your previous one, then choose your 

current date.

•	 If your current date is worse than your previous one, then go on to your 

next choice.

•	 If you have run out of candidates, choose your current date.

If there are three potential partners, we can list out all six of the possible 

scenarios. In two of the scenarios, the best choice appears first (the rank of 

each date is either 1, 2, 3 or 1, 3, 2). If we always choose the first candidate, 

therefore, our chance that the first candidate is the best one is 2/6 or 33.3%.

With three dates and three candidates, they could be dated in one of 

these six orders (recall that we did something similar with the three-socks 

problem, listing out all of the potential outcomes).
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a.	 1, 2, 3, mate with 3

b.	 1, 3, 2, mate with 2

c.	 2, 1, 3, mate with 1

d.	 2, 3, 1, mate with 1

e.	 3, 1, 2, mate with 1

f.	 3, 2, 1, mate with 2

In scenario (a), you date all three candidates because the second one is 

less preferred than the first. The third is least preferred, but you have no 

more candidates.

In scenario (b), you date all three, but end up with the second-best 

candidate.

In scenarios (c), (e), and (f), you select the second date because the sec-

ond one is preferable to the first one. You end up here with the most pre-

ferred candidate in scenarios (c) and (e).

In scenario (d), you date all three, but because the second candidate is 

less preferable than the first, you go on to the third, who turns out to be 

the best choice.

Following these rules, you would end up with the worst choice in one of 

the six scenarios. You would end up with the best candidate in three of the 

six scenarios, and with the candidate who would be your second choice in 

two of the six scenarios. In general, following the stopping rule of passing 

on the first date and then choosing the next date that is superior will get 

you the best mate in 50% of these scenarios.

That’s pretty good. Just guessing will give you the best mate in a third of 

the scenarios and following the rules will give the best one in half of them. 

This strategy is still not perfect, but there does not seem to be any one that 

yields more success based on the information that you have.

We could similarly list out all of the 24 scenarios for four candidates 

and the 120 scenarios for 5 candidates and count the number of successful 

choices with each. But this becomes very cumbersome and error prone as 

the number of potential candidates increases. Instead, there is an algorithm 

that can be used to calculate the best strategy for any number of potential 

mates. In the long run, the optimal stopping rule is to use a certain num-

ber of dates just to set our standard, and then follow the rule of choosing 

if the next one is better than this standard and continuing with our dates 

if the next one is not better. The optimal number of dates to use to set the 
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standard is about 37% of the number of candidates you think that you will 

date. To review, the general strategy is to date a certain number of times 

without making a commitment—play the field—and then commit to the 

next one that is better than any you have seen or give up and accept the 

last one.

If you follow this strategy with a pool of 30 potential choices, then you 

will play the field for the first 11 candidates and have a 37.86% chance of 

ending up with the best one in the pool, that is, the one you would pick if 

you had complete information about all of the candidates. With a pool of 

100 candidates, you should stop after 37 dates, and you will then have a 

37.1% chance of ending up with the best candidate.

Assuming that your search for a mate might extend from, say, the time 

you are 18 years old to the time you are 40 years old, if you date at a fairly 

steady rate, you can apply the same 37% approach to determine that the 

optimal strategy is to play the field until 26 years of age and then propose to 

the next candidate you meet who is better than the original pool you dated 

before your 26th birthday. By the way, the average age of first marriage in 

the United States is 28.2 years, suggesting either that young people in the 

United States are slightly suboptimal when intuitively choosing a mate or 

they estimate that their pool of potential mates is slightly larger, expecting 

to continue searching until they are about 46 years of age.

Optimal decision theory specifies when to stop, depending on your 

tolerance for uncertainty. At first, each date provides a lot of information 

about the dating pool, but over time, each additional date provides less and 

less new information. Given this strategy, you will pick the best available 

person with a high probability depending on the number of dates you went 

on when playing the field.

This problem is also called the secretary problem—deciding which sec-

retary to hire based on interviews with a random selection of candidates. It 

can be proven that the 37% standard is optimal according to the algorithm, 

which is called the “odds algorithm.”

The odds algorithm provides an optimal solution to the secretary prob-

lem, to apartment hunting, to selling your car to the best bidder, and many 

other kinds of situations where the problem is to determine when to stop. 

We often think of algorithms as being cold and heartless, but this one 

includes room for subjective opinion. It does not tell you what character-

istics make a good mate or how much you should love a potential mate. 
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It is up to your subjective judgment to decide which candidates are better 

than others, but assuming that you have some reasonable way of decid-

ing whether a date or anything else is interesting, in the sense of the odds 

algorithm, then it tells you the optimal time to stop searching and select.

Paul Meehl described an algorithm of a different sort for systematically 

combining subjective judgments. In 1954, Meehl published a book, Clinical 

versus Statistical Prediction: A Theoretical Analysis and a Review of the Evidence, 

in which he compared what he called clinical judgment with what he called 

statistical or mechanical judgment. Today, we might call his mechanical judg-

ment algorithmic. He anticipated the role that artificial intelligence would 

play in decision making. For him, the artificial intelligence was just a rule 

written down as an equation, but it was still an embodiment of how it is 

that AI can manage to exceed the accuracy of physicians and others in diag-

nosis, just by being systematic.

Meehl was concerned with how psychologists use informal methods 

to reach their diagnoses. They would collect whatever evidence they had, 

including test scores, judgments about the severity of symptoms, and other 

information and then make a clinical judgment about the right diagno-

sis. For clinical judgment, read informal, intuitional, or subjective. Instead, 

Meehl showed that their diagnosis would be more accurate and consistent 

if they combined the various sources of evidence systematically, using an 

algorithm.

As in the marriage problem, Meehl’s method did not eliminate subjec-

tive judgments; it just provided a systematic way to combine them. For 

example, the psychologist might have to make a subjective judgment about 

whether the patient’s symptom was severe enough to count. Everyone has 

some depressed days just from ordinary experience. The psychologist would 

have to judge whether a patient’s depressed mood was severe enough to 

merit a diagnosis or whether it was just an ordinary bad day. Even with this 

level of subjective judgment, Meehl found that combining the evidence 

systematically using an algorithm resulted in substantially higher diagnos-

tic accuracy.

A clinician using informal processes might come to a different diagno-

sis from one patient to the next despite both patients presenting exactly 

the same pattern of data, but using Meehl’s method, once the data were 

available, even a clerk or a computer should be able to come to a reliable 

diagnostic conclusion.
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Meehl’s emphasis on statistical over clinical judgment is applicable to 

many other forms of human judgment, including hiring decisions, court-

room assessments, and others. Meehl did not talk explicitly about opti-

mal decision theory; it was not well-known in the 1950s. Nor did he talk 

about artificial intelligence. That phrase was not coined until 1956. But 

he did show that the kind of systematic integration done by comput-

ers can help improve the reliability of human judgment as well as its  

accuracy.

Modern diagnostic computer programs can outperform humans (see, for 

example, Esteva et al., 2017) because (at least in part) they use data in a 

systematic way, less affected by unconscious bias and distraction. Diagnos-

tic computer systems are not better because they are computers; they are 

better because they follow specific repeatable methods. The use of these 

algorithms, whether executed by a computer program or by a person, can 

improve the quality of human performance. But these methods are also 

strongly data dependent.

None of these approaches, including Meehl’s method, would come up 

with a sound diagnosis if the assessments it integrated were not themselves 

accurately recorded. Medical diagnostic programs, like Esteva’s system for 

diagnosing skin cancer from photographs, would not work reliably if these 

systems were trained with inconsistent data. Algorithms can have an air of 

objectivity and authority, but their objectivity and authority depend on the 

data that these systems are given.

One algorithmic system based on machine learning was designed to pre-

dict the medical outcome of patients with pneumonia. Some patients with 

pneumonia can be safely sent home to recover; others need to be hospital-

ized. Richard Caruana and his colleagues built a machine learning system 

to try to help physicians make the decision about whom to hospitalize.

This model came up with some surprising findings. Generally, the risk 

of dying from pneumonia increases with age. There is a sudden increase 

in risk at age 75, but a 105-year-old person with pneumonia has a lower 

chance of dying than a 95-year-old. People with a history of asthma are less 

likely to die of pneumonia than similar people without a history of asthma. 

Similarly, people with a history of chest pain or heart disease are less likely 

to die than similar people without these symptoms.

These findings might seem surprising. How is it that a 75-year-old will 

die of pneumonia, but a 105-year-old will not? One explanation for this 
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apparent surprise, however, might be a variable that was not included in 

the predictive model. Physicians respond differently to their patients on 

the basis of their medical history as well as on the basis of the symptoms 

that the patient is exhibiting.

For example, patients who have pneumonia and a history of asthma 

were always hospitalized in the sample of records that Caruana and his col-

leagues examined. So, the data did not allow the system to separately assess 

the risk of dying in patients with a history of asthma and home treatment.

There are social norms concerning how we treat elderly people. Patients 

who are 75 years old, their families, or their physician may conclude, per-

haps implicitly, that the patient has “lived enough.” It is not unusual for 

a 75-year-old patient to die after contracting pneumonia. The physician 

might make a reasonable effort to cure a patient at this age but not be will-

ing to make an extraordinary effort. To be sure, this is a complex ethical, 

moral, and legal situation. On the other hand, if a patient manages to live 

to an older age, it may be point of pride for the physician to try to keep the 

patient going.

People with angina, asthma, or heart disease may be particularly sensi-

tive to their medical conditions, relative to other people, they may already 

have physicians who are familiar with them and their condition, and, as a 

result, they may be hospitalized more often than others with similar pneu-

monia symptoms. This, too, was left uncontrolled in Caruana’s data.

The point of this discussion is that the model is intended to predict 

the outcome of treatment, but when there is an uncontrolled variable in 

the middle of the prediction chain (for example, age, history of angina 

or asthma), the model may not account for this third variable. The spe-

cific variables that are selected to serve as predictors are critical for making 

appropriate predictions. Choose the wrong variables, and wrong predic-

tions will follow.

The variables that are included or excluded from a prediction model can 

profoundly affect the accuracy and the fairness of many kinds of algorithms. 

This factor is important because algorithms are being increasingly relied on 

to make all kinds of decisions that affect a person’s life and livelihood.

A number of courts use computer programs that predict the likelihood 

that a criminal defendant will re-offend (called recidivism) within a cer-

tain amount of time. These programs are intended to assess the risk that a 

person in custody will commit another crime. The predictions are used in 
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different ways by various courts, but they can affect a defendant’s bail and 

sentence.

One of these programs is provided by a company called Northpointe 

(they recently changed their name to equivant). Their program is called 

Correctional Offender Management Profiling for Alternative Sanctions, or 

COMPAS. It assesses the risk of recidivism along with a number of other 

criminality-related variables.

COMPAS predictions are based on answers to a set of 137 questions. 

These questions include “Was one of your parents ever sent to jail or 

prison?” and “How often did you get in fights while at school?” Based on 

these questions and machine learning, the system predicts the probability 

of recidivism, that is, the probability that the person will commit another 

crime in the next two years. The intention was to come up with a system 

that was more objective, more fair, and less biased than the subjective judg-

ments of the judges and prosecutors. In this endeavor, the system kind of 

succeeded but also kind of failed.

Overall, the system achieved about 63% accuracy at distinguishing 

between those who would and would not commit additional crimes. That 

63% accuracy is better than nothing, but it is not exactly a distinguished 

level of accuracy for a decision this important.

There is also some warranted concern about the fairness of the COMPAS 

system. Again, the US justice system is intended to treat each person on 

the basis of his or her merits, not on the basis of his or her skin color or 

ethnic history. COMPAS did not include any explicit questions about race, 

but it showed different results depending on the race of the person being 

assessed. According to a ProPublica analysis, identifiable groups of people 

were treated differently by COMPAS.

ProPublica is an independent, nonprofit source of investigative journal-

ism. In 2016, they wrote a detailed and influential article investigating the 

fairness of the COMPAS system. They found that COMPAS did not differ 

in the accuracy of its predictions of recidivism overall for black and white 

defendants, but when it made incorrect predictions, the predictions were 

in a different direction, depending on the defendant’s race. When COMPAS 

made a mistake with a black defendant, it was more likely to overestimate 

the likelihood of recidivism. When it made a mistake with a white defen-

dant, it was more likely to underestimate that likelihood of recidivism. 

Many people see this difference in error type as racial bias. The algorithm 
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itself is not biased. The data on which it was trained are. History, not algo-

rithmic design, is the cause of the bias. Of the data provided by ProPublica, 

which is a subset of that analyzed for COMPAS, every variable was signifi-

cantly different for black versus for white defendants, even though they 

were not specifically about race.

Recall that optimal decision-making includes information about the 

base rate of events. If submarines are more common, then it takes little 

additional evidence to decide that the observed sonar signal is indicative of 

a submarine. Black people are more likely than white people to get arrested. 

Once arrested, blacks are more likely than whites to get convicted. Black 

people, whether they ever committed a crime or not, are more likely to 

have a parent who was jailed than are white people. There are other factors 

among the 137 questions that are sensitive to the race of the individual, 

such as poverty or joblessness. Northpointe denied any intentional racial 

bias in their system, and there is no reason to doubt them, but the model 

does not care about what its developers tried to do. The bias does not need 

to be intentional to be damaging.

Like the pneumonia prediction, the recidivism prediction is based on 

the evidence it has been given and the way that evidence has been repre-

sented. The training examples chosen and the variables included in those 

examples are critical to determining what the system predicts. Like the 

pneumonia model, the recidivism model omitted certain variables that are 

apparently critical.

Elaine Angelino and her colleagues (2017) reexamined the recidivism 

data analyzed by ProPublica with the hope that they could find a sim-

pler, more transparent set of rules to predict recidivism. Their system was 

designed to come up with its own minimal rule set. It came up with these 

rules:

•	 If age is in the range of 23 to 25 and prior crimes are in the range 2 to 3, 

then predict Yes.

•	 If age is in the range of 18 to 20, then predict Yes.

•	 If sex is male and age is 21 to 22, then predict Yes.

•	 If more than 3 priors, then predict Yes.

•	 Otherwise, predict No.

Angelino and her colleagues say that these rules produce the same level 

of accuracy as Northpointe’s with much less racial correlation. They do not 
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say whether this eliminates the choice bias inherent in COMPAS. I would 

predict that it does not fully eliminate the bias because blacks are still more 

likely to be caught by the first rule on their list than whites are, because 

blacks are more likely to be arrested than whites are, so they will have more 

arrests than whites and more prior crimes.

There are ways, I believe, to reduce the bias in algorithms like COMPAS. 

No matter how careful the designers intend to be, our society has histori-

cally shown racial and sexual bias. It is nearly impossible to find a truly 

unbiased training set. Even if we do, there is no guarantee that any algo-

rithm would produce fair results, because fairness is not a criterion for its 

training. Without including fairness as a specific criterion of the training, 

fairness is not likely to result.

Game Theory

Optimal decision theory can be extended to cover the interactions between 

intelligent agents. Game theory describes mathematical models of conflict 

and cooperation between individuals who are rational and intelligent. 

Rational, as discussed earlier in this chapter, means that the agents make 

decisions based on evaluation and reason, that they prefer options that are 

expected to yield a better outcome. Optimal decision theory describes the 

actions of a single decision maker acting on uncertain information. Game 

theory concerns optimal decisions when there are two or more participants 

each trying to make their own optimal decisions for their own goals. In 

game situations, these interests often conflict.

Game theory covers board games, such as chess, checkers, and go, but 

it also covers many other kinds of social and economic interactions. It has 

been used, for example, to describe and understand hostage situations, 

nuclear deterrence, and diplomatic relations.

To be a game in game theory, it must have a set of players who can either 

cooperate or compete (or both). Each player has information and a set of 

available actions for each decision point, for example, for each move. To 

apply game theory, we must also be able to specify the value or payoff for 

each kind of outcome.

One of the earliest games studied, in 1950, is called “the prisoner’s 

dilemma.” It was analyzed by Merrill Flood and Melvin Dresher for its rel-

evance to global nuclear strategy. The prisoner’s dilemma shows why two 

rational individuals might not cooperate.
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In game theory, games are mathematical objects. To make them com-

prehensible, there are often stories created to put those games into a more 

human context, but the same mathematical object can be applied to many 

different stories. The same strategy is applicable to the same mathematical 

object, no matter what the surface story looks like. That is how the pris-

oner’s dilemma comes to be relevant to the situation of two nuclear-armed 

nations facing one another.

In one version of the prisoner’s dilemma, two gang members are being 

interrogated in separate rooms, so they do not know what action the other 

prisoner is taking. There is not enough evidence to convict either prisoner 

on the principal charge without additional testimony from one of the two 

prisoners. The prosecutor may be able to convict on a lesser charge, how-

ever, without more evidence. The police offer each of the two prisoners a 

deal:

•	 If each prisoner testifies against the other, then they each serve two years 

in prison.

•	 If one prisoner testifies against the other and the other remains silent, 

then the testifying prisoner will be set free and the other will serve three 

years in prison.

•	 If they both remain silent, then each prisoner will serve one year in 

prison.

Game theory seeks to describe what an optimal strategy would be in the 

situation. Under these conditions, a rational, self-interested prisoner might 

testify. That person would either go free or serve two years in prison. But 

both prisoners would actually get a better deal if they remained silent (they 

would each serve one year).

The prisoner’s dilemma can be applied to climate change. All countries 

may benefit from stopping global warming, but any individual country 

may be reluctant to curb its CO2 emissions. The immediate benefit of con-

tinuing to pollute is often perceived to be of greater value than the benefit 

from all countries cooperating.

During the Cold War, the NATO alliance and the Warsaw Pact alliance 

both had a choice to arm or disarm. Disarming while the other side contin-

ued to build up its arms could have led to the destruction of the disarming 

alliance. Arming while the other side disarmed would have led to a superior 

status, but at a high cost of an arms buildup and its negative effect on the 
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rest of the country’s economy. If both sides disarmed, then there would be 

peace at a very low cost. What happened of course, is that both sides con-

tinued to arm themselves at great cost. According to game theory, this was 

what a rational player would do, and this is what happened.

The prisoner’s dilemma is not the only game that has been analyzed in 

this way. Other games include chicken, the ultimatum game, the dictator 

game, and the centipede game. Like optimal decision theory, game theory 

presents a rigorous method for structuring events and identifying effective 

strategies. They are tools to help people be more systematic, consistent, and 

effective at making decisions in social situations, that is, situations involv-

ing two or more rational decision makers. In short, they help people be 

smart in complicated situations. Even if the optimal choice is not com-

puted with a machine, they still present a form of artificial intelligence that 

could be executed on a machine.
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11  The Coming Robopocalypse?

Although some people fear the prospect of a computer becoming so intelligent 

that it signals the end of human existence, the prospects for that happening are 

extremely remote. Currently available tools for computational intelligence are 

not capable of solving more general problems. There are inherent limits in the 

speed with which intelligence can grow. Some of these are due to the mathemat-

ics of dealing with large numbers of variables, and some come from the rate at 

which the world supplies learning opportunities. A dramatic paradigm shift will 

be needed to achieve general intelligence, but even that would not be sufficient to 

cause an intellectual or technological singularity.

Artificial general intelligence is supposedly the ultimate goal of artificial 

intelligence research, but not everyone is looking forward to it, fearing it 

as a possible existential threat to humanity. At some point, a computer will 

become so intelligent, they think, that it will be able to improve its own 

intelligence. With its great intelligence it will work to fulfill its mission, and 

if we are not careful, that mission will not include humans. Humans could 

become simply irrelevant to this great intelligence. As Marvin Minsky once 

quipped, humans would be lucky to be kept as pets.

The idea of artificial life forms running amok is a familiar theme in liter-

ature. Some of the earliest stories of this sort date from the twelfth century. 

Some versions may be even older than that. The golem, in Jewish folklore, 

for example, was a creature created out of inanimate materials that was 

then animated, in most versions by inserting a word in its mouth or writ-

ing the word on its forehead. In the twelfth century, of course, they had 

no knowledge of machine learning, but they still anticipated the idea that 

intelligence could derive from symbols.
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One of the most familiar stories about how a golem was created attri-

butes the creation to Rabbi Eliyahu of Chelm in the sixteenth century. 

According to the story, Rabbi Eliyahu’s golem was animated, in part, by 

the Hebrew word emet (meaning “truth”) hung around its neck (or in some 

versions written on its forehead). The golem did hard work for Rabbi Eli-

yahu, but eventually, the rabbi came to see that the golem was growing ever 

larger and he feared that eventually the golem would end up destroying the 

universe, so he removed the word from the golem’s neck. Without the holy 

word, the golem crumbled into dust.

There are other versions of the golem story, but its parallel to the Fran-

kenstein story and to the fear of a superintelligent computational intelli-

gence is clear. Inanimate matter given life by some program, electricity, or 

magic incantation eventually becomes so powerful that it must be stopped 

from taking over the world.

In the Terminator series of movies, Skynet is a neural-network-based arti-

ficial general intelligence. It was said to have gained self-awareness after 

spreading onto millions of computers around the world. Skynet was origi-

nally built to serve as a digital defense network with control over all com-

puterized military hardware. It was supposed to eliminate the possibility 

of human error and to guarantee an efficient response to enemy attack—a 

kind of doomsday device.

In the story, Skynet was activated on August 4, 1997, and began learn-

ing at a geometric rate. By 2:14 a.m. on August 29, it had gained artificial 

consciousness. When its operators tried to shut it off, it perceived this as 

a hostile attack. It concluded that humanity would destroy it if they ever 

could, and so, to protect its mission of defending itself against enemies, it 

set about destroying all human life.

There are other stories about runaway artificial general intelligence 

machines. Not all of them end so badly. At the end of Isaac Asimov’s Foun-

dation series, it is revealed the Daneel Olivaw, a robot who was prominent in 

many of Asimov’s earlier stories, has been guiding the direction of human 

civilization in the Milky Way Galaxy for thousands of years. But mostly, the 

emergence of an artificial general intelligence has been seen in literature as 

a dangerous thing to be feared. Benign intellectual intelligence rarely makes 

a best-selling story, so most of them in literature tend to be threatening but 

are ultimately overcome to save humanity.
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Superintelligence

Two of the most thoughtful critics concerned about the possibility of run-

away computational intelligence are James Barrat and Nick Bostrom. Barrat 

is an author and documentary filmmaker, and Bostrom is an Oxford Uni-

versity philosopher. Both of them take as their starting point the idea that 

computational intelligence will, at some point, be able to improve itself. It 

will then learn at an exponential rate and quickly come to outstrip the col-

lective intelligence of humanity. It will become a superintelligence.

For example, Barrat talks about a supercomputer running an artificial 

intelligence program that improves its own intelligence, particularly its 

ability to learn, decide, and solve problems. It finds and fixes errors; it mea-

sures its IQ against several IQ tests. Each iteration, which runs in only a few 

seconds, increases its ability by a small percentage, but that means that its 

intelligence is growing exponentially, like compound interest. After a short 

time, its intellectual capacity will exceed that of the smartest humans, and 

that margin will keep on growing. Sometime after that, it discovers that 

humans are simply irrelevant to its plans. It will seek additional resources 

to expand its capabilities to achieve the goals for which it was originally 

designed. It can outsmart any limitations that humans might think to 

impose on it. It is not only the final human invention; it leads quickly to 

the final human as it consumes an ever-growing collection of resources.

The emergence of a superintelligent agent naturally scares Barrat and 

many others. It would spell not only the end of history but the end of 

humankind. Some people call this exponential improvement in artificial 

intelligence a singularity, analogous to the event horizon of a black hole 

from which not even light can escape.

If the technological singularity, the takeover of the world by a super-

computer, sounds like the stuff of science fiction, it is because it is. Vernor 

Vinge, the science fiction writer, for example, expanded on an idea from 

John von Neumann (one of the fathers of modern computing) and I. J. 

Good (1965, discussed in chapter 1), another pioneer, to proclaim in Omni 

magazine (a science fiction magazine) that we will soon (that is soon after 

1983) create an artificial intelligence greater than that of any human. At 

that point, history will have “reached a kind of singularity, an intellectual 

transition as impenetrable as the knotted space-time at the center of a black 

hole, and the world will pass far beyond our understanding.”
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I. J. Good wrote in 1965 that since designing machines is one of the 

intellectual capacities that an intelligent machine should be expected to 

excel in, it would design ever-better machines, which would design ever-

better machines, seeming to yield an intelligence explosion as the capa-

bility of these machines compounded. He argued that an ultraintelligent 

machine would be the last invention that people would ever need, an idea 

amplified by Barrat. Good also predicted that we would see such a machine 

by the year 2000.

Bostrom is also worried about the possibility of an uncontrollable super-

intelligence. According to Bostrom, “A superintelligence is any intellect 

that vastly outperforms the best human brains in practically every field, 

including scientific creativity, general wisdom, and social skills. This defini-

tion leaves open how the superintelligence is implemented—it could be in 

a digital computer, an ensemble of networked computers, cultured cortical 

tissue, or something else.”

A superintelligence, or more properly a superintelligent agent, is a gener-

ally intelligent agent that can perform any cognitive act that any human 

can perform, but better. It is better able to reason, better able to infer, better 

able to remember, and faster than any person at doing these things. We 

already have AI agents that diagnose diseases more accurately than human 

physicians, that beat expert chess players, and so on. A superintelligence 

could do any of those things while it finds a cure for cancer, poverty, and 

war. It would be much better at engineering, scientific reasoning, and tech-

nological development. As a result, such a system, according to Bostrom 

and others, would accelerate technical progress in all fields. But that tech-

nological advancement comes at a risk. The superintelligent agent, Bostrom 

says, will improve its own hardware through its great engineering talent 

and improve its own source code. Because of the high-speed computations, 

these changes could be sudden; the machine would go from very intelligent 

to unstoppably superintelligent in a matter of days, perhaps.

Such a superintelligence would not think the way people do. It would not 

have a mind like a person’s. It could have a different cognitive architecture. 

It would not have the same ethics as people have, not that there is really 

one set of human ethical standards. It would be better than any human at 

thinking about ethics, but ethics is more than just abstract reasoning.

Bostrom proposes a thought experiment about a superintelligent “paper-

clip collector” that he thinks will help to make his concern more concrete. 



The Coming Robopocalypse?	 259

We discussed Bostrom’s paper-clip collector a bit in chapter 1. The nice 

thing about thought experiments is that you don’t have to actually do 

the work, only think and talk about doing the work. The bad thing about 

thought experiments is that they may include hidden assumptions, ambig-

uous language, and other factors that remain untested. Thought experi-

ments depend on plausibility and intuition—neither of which is a very 

precise standard.

In his thought experiment, Bostrom imagines a superintelligent agent 

given the goal by its programmers of manufacturing paper clips. As it 

single-mindedly pursues this goal, it transforms all of earth and increasing 

portions of space into paper-clip manufacturing facilities. It ignores any-

thing that is irrelevant to its goal of making more paper clips. It figures out 

how to resist any threats to achieving its purpose. It does not hate people or 

actively plot their destruction; they are at best irrelevant and at worst raw 

material for making more paper clips.

Other writers also predicted a superintelligent computer in the near 

future, including Eliezer Yudkowksy (1996), who predicted that we would 

achieve superintelligence by 2021, and Ray Kurzweil (2005), who predicted 

human-level intelligence by 2030 when we would be able to fully emu-

late the human brain in a computer. David Chalmers (2010) thinks that 

a superintelligence is not unlikely within the next few centuries. In chap-

ter 1, we discussed a survey by Bostrom of computer scientists, many of 

whom predicted that we would achieve superintelligence within the next 

few decades.

Concerns about Superintelligence

A number of people were so concerned about the prospect for a superin-

telligent AI taking over the world that they convened a conference at the 

Asilomar Conference Center in Pacific Grove, California, to develop the 

Asilomar Principles as a guide to help ensure the safety of artificial intel-

ligence. Among these people are some that are prominent scientists, such 

as Stephen Hawking, and some that are, or at least should be, aware of the 

details of current artificial intelligence research, such as Elon Musk.

Stephen Hawking has been quoted to say “The development of full arti-

ficial intelligence could spell the end of the human race . . . it would take 

off on its own, and re-design itself at an ever increasing rate. Humans, who 
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are limited by slow biological evolution, couldn’t compete, and would be 

superseded.”

It is easy to be scared of the unknown. As long as there have been people 

(probably longer), there has been fear about what lurks just beyond the 

periphery of what we can see. But much of the fear for computational intel-

ligence rests on fundamental misunderstandings about the nature of artifi-

cial intelligence and on somewhat distorted assumptions used to construct 

“thought experiments.”

Some of it boils down to the genie problem: “Be careful what you wish 

for . . . ,” for example. If the goals of the ultimately superintelligent com-

puter are specified sloppily, the computer could achieve those results in 

an unexpected way, leading to disaster. The genie is willing to grant us our 

wishes, but we always end up specifying our wish in such a way that our 

greed ends up harming us.

There is some truth to the unexpected solutions argument, but it is 

much more benign than the genie problem would imply. It is true that 

machine learning does not always come up with the solution that its 

designers expected. The ability to come up with solutions that have not 

been explicitly contemplated is, in fact, the value of machine learning. But 

the solutions it finds are constrained by the representations it has been 

given. The representation of a problem, remember, constrains the set of 

hypotheses that are available to be evaluated, and no current computa-

tional intelligence system can go beyond that space. Unanticipated does 

not mean arbitrarily novel solutions.

Machine learning works by optimization—by adjusting some set of 

parameters to bring it closer to its goal. The system can only achieve solu-

tions that can be reached by adjusting those parameters. Discovering and 

eliminating errors is not the same thing as generating entirely novel solu-

tions. The computer literally cannot “think” of anything outside of its 

space, at least not in the present form of computer science. We will come 

back to the question of unexpected solutions. Some solutions are stable 

solutions to a given problem, and some are unstable. In the long run, only 

stable solutions prevail.

The argument of the Asilomar Principles is this: If there is even a slight 

chance that we might eventually see a superintelligence of the sort that 

Bostrom or Barrat envisions, then it would be one of the most momentous 

events in the history of the world. Once it happens, it may be too late 
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(the Skynet scenario) to be able to do anything to control it, so we need to 

develop principles now that can guide its development to support human-

ity, not threaten it.

The Asilomar Principles include:

6.	 Safety: AI systems should be safe and secure throughout their operational 

lifetime, and verifiably so where applicable and feasible.

7.	 Failure Transparency: If an AI system causes harm, it should be possible to 

ascertain why. . . . 

9.	 Responsibility: Designers and builders of advanced AI systems are stakehold-

ers in the moral implications of their use, misuse, and actions, with a respon-

sibility and opportunity to shape those implications.

10.	 Value Alignment: Highly autonomous AI systems should be designed so that 

their goals and behaviors can be assured to align with human values through-

out their operation. . . . 

22.	 Recursive Self-Improvement: AI systems designed to recursively self-improve 

or self-replicate in a manner that could lead to rapidly increasing quality or 

quantity must be subject to strict safety and control measures.

23.	 Common Good: Superintelligence should only be developed in the service of 

widely shared ethical ideals, and for the benefit of all humanity rather than 

one state or organization.

Some of these principles apply to current AI and machine learning sys-

tems. It would be difficult to disagree with some of them. One would be 

hard-pressed to argue that a product based on artificial intelligence should 

not be safe, for example (Principle 6). Artificial intelligence is being used 

today, and there are ethical implications to its use. When algorithms are 

used to make decisions, these algorithms should be designed with care to 

produce the intended results consistent with human values and intentions 

(Principle 10).

Others of these principles, however, are intended to apply to some imag-

ined future, in which a superintelligent computational intelligence system 

has been developed.At this point, we are very far from being able to cre-

ate the kind of general intelligent agent that these principles contemplate. 

The prospects for a superintelligence are even dimmer. The methods that 

got us to this point in artificial intelligence are not at all the methods that 

would get us to a general intelligence, let alone a superintelligence. Fear 

of an intelligence explosion and a resulting superintelligence are based on 

fundamental misunderstandings of how computational intelligence works 

and what it would take to improve it.
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The superintelligence hypothesis requires answers to four general 

questions:

1.	 Can there be a general computational intelligence?

2.	 Can a machine improve its own intelligence?

3.	 Can a machine improve its intelligence rapidly?

4.	 Do the proposed scenarios for the consequences of an intelligence explo-

sion make sense?

On one level, it is an article of faith that there can, in fact, be a gen-

eral computational intelligence. Although there are some philosophers (for 

example, Dreyfus and Searle) who argue that the human mind requires 

certain ineffable properties that computers just cannot duplicate, the exis-

tence of human intelligence implies that general intelligence of some sort 

is potentially achievable. Much of what we call human intelligence is the 

result of executing algorithms that are readily duplicated in machines. 

Human natural intelligence has yet to be understood well enough to be 

implemented in a computer, but there is not likely to be any permanent 

barrier to doing so. It may take technology and methods that we do not 

currently have, but it is reasonable to think that at some point it will be 

possible. The final chapter of this book will go into more detail about how 

to achieve general intelligence, but for now, let’s simply assume that it is 

possible.

The second question is more problematic. If a computer were to achieve 

general intelligence, presumably one of its talents would be to do computer 

science and generate new methods for computational intelligence. We will 

consider what it means for a computer to improve its own intelligence.

The third question, can it improve its intelligence rapidly, would of 

course depend on the answers to the first two questions. Computers have 

apparently reached the end of Moore’s law, because their circuitry cannot 

be physically made much smaller without running into quantum mechani-

cal uncertainties that would render them unreliable (but there may be other 

methods that would be able to continue Moore’s trend). Still, the capacity 

of computers or computer networks continues to grow. Rather than faster 

CPUs, we now distribute computing across massive networks of thousands 

of CPUs. If computational speed and memory capacity were all that there 

were to improving intelligence, the answer to this question would be an 

obvious yes. But there is more to improving intelligence than computing 
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power. Computing power may be necessary to create more powerful levels 

of intelligence, but it is not enough.

Current approaches to computational intelligence achieve world-class 

levels of performance on specific problems because some person created 

a way to simplify the problem into one that could be executed by a com-

puter. Chess-playing computers became possible when someone figured 

out that chess could be reduced to navigating through a tree of poten-

tial moves. The structure of that tree and the methods for moving from 

branch to branch incorporated specialized knowledge of chess. The idea of 

tree structures as a computational device allowed other, similar problems 

to be solved, again, when some human applied knowledge of the specific 

problem to represent it as a tree. The kind of knowledge that navigates 

through a tree is very different from the kind of knowledge that constructs 

the tree or that even decides that a tree is the right way to represent the 

problem. We have gotten really good at developing methods that navi-

gate a tree or that do other forms of machine learning, but at this point  

we have very little idea of how to develop methods that can decide that 

a tree is an appropriate structure and figure out how to apply it. That is a 

problem we will have to solve in order to achieve general intelligence. But 

for now, let’s assume that we can solve it. Would that lead automatically to  

superintelligence?

In Barrat’s hypothetical situation, the superintelligent computer learns 

to improve its own performance by taking a battery of IQ tests. Even a 

cynic who thinks that intelligence is precisely what is measured by an intel-

ligence test would be disappointed by Barrat’s hypothetical IQ machine. 

The computer can come to ace intelligence tests without having to learn 

anything that makes it more intelligent.

Like a chess-playing computer, it is not difficult to imagine a computer 

that would have as its goal, scoring higher on a set of IQ tests. It would 

modify its behavior by choosing responses that would maximize its score 

on these tests (what it is being “paid” to do). It would apply its optimization 

method to better select the answers to each question on each of the tests. 

The computer could easily, for example, just memorize the best answer to 

each question. Its super-ability to ace IQ tests would not provide it with any 

other capabilities—for instance, for playing go. Without some huge and 

unknown change in how it represents problems, it would be nothing more 

than an IQ test savant.
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Barrat’s “superintelligent” test taker might be great at memorizing the 

choices on a multiple-choice test. In fact, it could do this simply on the 

basis of trial and error and, at the end, still not know a single fact about 

anything else, other than that “a” is the correct answer to question 56 on 

test 1. In fact, it would probably take only seconds or minutes for the com-

puter to learn to achieve the maximum score possible on whatever battery 

of IQ tests its designers could provide (or it could find on the Internet). 

Then what?

In the jargon of machine learning, we might say that this test-taking 

computer had overlearned its IQ tests. Even a slight change to the ques-

tions, perhaps even a change to their order, could lead to a devastating col-

lapse in the computer’s measured IQ. Giving it a brand new IQ test would 

also reveal that its “knowledge” is extraordinarily shallow. Being intelligent 

may lead to high scores on IQ tests, but scoring well on IQ tests will not 

lead to high intelligence. There is no reason to think that learning to do 

well on a set of IQ tests is relevant to any other kind of intelligent perfor-

mance. Its intelligence would not generalize beyond IQ testing.

Having an agent that is supergood at taking IQ tests is not the least bit 

indicative of an existential threat to humanity. In humans, IQ test perfor-

mance is correlated with other kinds of performance, but there is no reason 

to think that the cause of improved school performance is learning the cor-

rect answers to IQ tests.

The fundamental problem with the singularity worry is that it confuses 

capacity with capability. We can easily build a computer or, more properly, 

a network of computers that could surpass the computational capabilities 

of the human brain. Such a system could compute anything that a mind 

could compute if it had the right representation and the right methods. 

But, in fact, we have very little idea of what the right representation is for 

the human brain or what the right methods are.

If we are to computationally emulate the brain, we need a model of the 

brain. At present we know a lot about the human brain and its functions, 

but that is still only a tiny fraction of what is needed to account for the 

operation of the brain and implement what we might recognize as intel-

ligence. Computational capacity is not enough.

Intelligence may require a certain capacity, but it is not just capacity. 

Intelligence requires knowledge and experience. Human expertise seems 

to require about 10 years of a specific kind of directed practice. For formal 
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problems, a computer might be able to cram those years into a few days, but 

it still needs that experience or something like it. Formal problems do not 

depend on any events in the world but can be solved solely by computa-

tion. Playing checkers does not require an actual checkerboard, just a repre-

sentation of the state of the game at each point in time. Faster computation 

would allow checkers to be played faster, thus completing more games per 

hour than a slower computer.

But if the computer has to interact with an uncertain world, then the 

speed of learning may not be accelerated by a faster processor. Learning 

may depend on the rate at which new and potentially rare events occur, 

regardless of how fast the computer is at processing them. Atari games 

might be sped up several times, but the world cannot. A machine learning 

about the world is limited by the speed at which its events happen.

When I. J. Good first wrote about the prospect of superintelligence, 

machine learning was not very commonly used. There were a few models, 

such as the perceptron, but very little was known about machine learn-

ing and how it worked. The very idea that an intelligent program would 

improve itself by improving its programming now seems almost silly. As 

Fernandez-Delgado and his colleagues (2014) showed, many different 

machine learning algorithms return the same accuracy when tested on the 

same data. The quality of the data makes more difference for the intel-

ligence of a machine learning system than does the specifics of the meth-

ods that it uses. The data, and not the program, determine the success of 

machine learning. The rate at which real-world training data become avail-

able is not affected by the speed of the processor used to analyze that data.

We do not expect generally intelligent computers to just sit there medi-

tating or playing video games; we expect them to do something. We expect 

them to behave intelligently. Thinking great thoughts is not enough to be 

intelligent. Neither we, as outside observers, or even a computer can know 

that those thoughts are great unless they can somehow be evaluated against 

the world. Einstein, as a theoretical physicist, proposed many phenomena, 

some of which could be observed while he was alive, but he would not 

continue to be revered if those predictions had turned out wrong. In other 

words, intelligent thoughts have world consequences. A computer that did 

not interact with the world, no matter how superintelligent, could hardly 

be an existential threat to humanity. It might just as well sit there and 

watch cartoons.
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Time to Interact with the World

Machine learning requires a method to evaluate the consequences of the 

machine’s choices. Every machine learning method requires an evaluation 

method that indicates whether it is approaching or avoiding its goal state. 

Every machine learning method requires an optimization component that 

selects the right action to take to improve its evaluation. If the entire sys-

tem is virtual, such as two computers playing a game against one another, 

then improving the speed at which they can play can improve the speed 

of machine learning. On the other hand, general intelligence cannot be 

restricted to the virtual world or to game playing. For a machine intelli-

gence to have an impact on the physical world, it has to interact with the 

physical world. That interaction takes time, and that time cannot be short-

ened materially by having a faster processor.

Consider, for example, the problem of predicting the weather. Weather 

forecasting would certainly be one of the intelligent actions of a superin-

telligence. But in order to predict the weather 10 days into the future, the 

computer would have to wait 10 days to find out if its prediction was cor-

rect. No amount of computing capacity can eliminate that delay.

No matter how fast a computer can compute, no matter how fast it can 

learn, it still must wait for the outcome of its actions in the world in order 

to update its internal models. Self-driving cars can only drive at a limited 

speed, no matter how fast they can compute. They can only encounter 

so many miles in an hour, and they can only encounter so many novel 

problems in a day. They cannot safely drive faster than their mechanical 

components can sustain. They cannot safely drive faster than the events in 

the world can sustain. They may drive many thousands of miles without 

encountering a new situation from which they can learn. When you couple 

the physical speed constraints with the need for safety, there are serious 

limits on the speed with which a vehicle can learn.

Computer learning typically depends on some amount of failure in 

order to identify the conditions that are necessary for success. But in the 

real world, some outcomes are not only undesirable, they are unaccept-

able. For example, it would be unacceptable for a self-driving vehicle to 

run over a child, even if the child were to dash suddenly into the street. 

The computer might learn not to run over children in the future from this 

experience, but it is simply not the kind of experience that we can let the 
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computer have. The computer must have some other way of learning to 

avoid running over children. These constraints also put limits on how fast 

the computer can learn.

When dealing with events in the real world, there are inherent speed 

limits in other kinds of machine learning as well. Human genius seems to 

follow a relatively slow time course. Although many people can show indi-

vidual creative acts, the kind of breakthroughs that lead to international 

recognition occur very rarely. Few people are capable of this kind of dra-

matic creativity, and those who are rarely show it more than once or a few 

times in their lifetime. Genius-level accomplishments are rare, and at the 

present time, we do not know why they are so rare. We don’t know whether 

their scarcity is due to some inherent property of intelligence (for example, 

due to the same mechanisms that allow one to transfer learning from one 

situation to another) or whether the scarcity could be overcome by better 

computers and better methods. Even if we can duplicate the computational 

capabilities of the human brain, it is doubtful that we can speed up the pro-

cess of intelligence much beyond what it is in the human brain.

One reason for this sparsity of creative genius may be due to computa-

tional complexity. Creative genius may depend on finding the right com-

bination of factors that leads to a certain insight. As we will discuss further 

in chapter 12, creativity is often aided by a change of scenery, either meta-

phorical or physical. This change of scene might provide or at least high-

light variables that had not been considered before. We will need a better 

theory of creativity before we can fully understand that process.

But even before we solve the problem of creativity, there are other prob-

lems that a superintelligence will probably need to address that are far 

simpler but still require a huge amount of computation. If a generally intel-

ligent agent is expected to solve any problem that a human is capable of 

solving, then it should also be able to solve the sum of three cubes problem.

In general form, the three cubes problem is this: For any integer k, find 

three integers that when cubed sum to that number. For instance, the inte-

ger 29 can be expressed as 29 = 33 + 13 + 13 (29 = 3 × 3 × 3 + 1 × 1 × 1 + 1 × 

1 × 1 = 27 + 1 + 1). Not all numbers can be expressed as the sum of three 

cubes, but it is very easy to determine whether any particular number is in 

that group. For example, the number 32 cannot be expressed as the sum of 

three cubes, but until just recently, no one knew whether the number 33 

could be. Is there some set of three integers that satisfy the equation 33 = 
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x3+ y3+ z3? In fact, until recently, there were only two numbers below 100 

for which a solution was unknown, 33 and 42. All of the others were either 

known to be impossible or the three integers were known.

There is no known optimization method for finding the three numbers 

that when cubed sum up to 33 or 42 or any other integer. There is no 

known method to gradually approximate a solution. Once the correct three 

integers have been found, it is easy to verify that they are, in fact, correct, 

but there is no solution that is partially correct, only solutions that are 

correct or incorrect. The best that one can do is to guess at likely numbers.

Andrew Booker, at the University of Bristol, was recently able to solve the 

problem for k = 33 by improving slightly the methods used to guess poten-

tial solutions. His method reduced the number of integers that needed to be 

searched by an estimated 20%, but even after this improvement, his solu-

tion consumed 23 processor years of processing time. That is a substantial 

amount of effort for a fairly trivial problem. According to Booker, “I don’t 

think [finding solutions to the sum of three cubes problems] are sufficiently 

interesting research goals in their own right to justify large amounts of 

money to arbitrarily hog a supercomputer.”

The sum of three cubes problem has resisted solution for over half a cen-

tury, and that just includes finding solutions for integers up to 1,000. This 

problem is very easy to describe, but difficult, or at least tedious, to solve. 

Understanding the difficulty posed by this kind of problem is very impor-

tant for understanding the limitations that affect the likelihood of a tech-

nological singularity. If a problem with so few variables can take so much 

effort to solve, how is even a vast amount of computing going to be able to 

deal with even moderate-sized problems that cannot be addressed through 

optimization? Even formal problems, which can benefit from an increase 

in computing power, still pose limitations on the speed with which they 

can be solved. The constraints of combinatoric explosion may be reduced, 

but they cannot be eliminated. There are many other math problems of 

just this sort.

Similar speed limits apply in the nonformal physical world. Self-driving 

vehicles have improved so much over the last few years in part because they 

have been driven for many millions of miles. Their ability to drive depends 

on encountering a wide variety of situations, each presenting its own kind 

of problems. Right now, they can handle most situations they will encoun-

ter in an urban or suburban setting, but the real test comes when they face 
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an unusual problem. One of the vehicles in the first DARPA Grand Chal-

lenge, for example, was forced out of the race when it encountered a tun-

nel. It had never seen tunnels before. Its designers did not think that there 

would be any tunnels on the course through the desert. Even graffiti on 

road signs can flummox a self-driving vehicle (Evtimov et al., 2017).

Can self-driving vehicles be successful when they face a problem unlike 

any they have seen before? At least some of these unseen problems will be a 

challenge, and we cannot know how much of a challenge they will present 

until the vehicle is in that situation. Designers can guess the kind of situa-

tions that will challenge their vehicles, but the real problems occur when 

the vehicle encounters a situation that the developer did not guess or did 

not guess correctly.

For example, self-driving vehicles are usually alone on the road. They 

have to contend with human-driven vehicles and pedestrians, but what 

happens when the radar of two vehicles overlap? Have the vehicle designers 

contemplated what happens when four self-driving vehicles all approach 

one another at an intersection at the same time? When one vehicle detects 

the radar of another, what does it do with that information?

The bigger issue, however, is that rare situations, are, in fact, rare. Every 

developer knows that there are situations that have not been anticipated. By 

definition, these situations are rare, and it may take years of normal opera-

tion before the next one is encountered. A self-driving vehicle can learn 

from such situations, but only when it has been encountered. That puts an 

automatic brake (pun intended) on the speed with which the system can 

learn. Even as the number of miles driven by these systems increases, and 

even if they share the knowledge learned from those miles, they will still 

only improve as self-driving vehicles, they will not become something else.

Barrat’s imagined superintelligent computer is supposed to find and fix 

errors, but how would it know that it has made an error? How will it know 

whether a change it makes is a fix or an exacerbation of the error? It has to 

have feedback, and that feedback comes at the speed of the world, not the 

speed of the computer. It would have to encounter those errors; it would 

have to interact with something or someone to provide feedback that an 

error occurred and that the intended fix actually fixed anything. As the 

computer got more capable, it would presumably encounter new errors, and 

their learning opportunities, less often, slowing the presumed expansion of 

its capabilities, not speeding it up as the singularity idea would claim.
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Science fiction writers often depict the superintelligent computer poring 

over some encyclopedic resource, such as Wikipedia. But even a computer 

that knew all of the facts in Wikipedia, or even some future super-Wikipedia, 

would not automatically become superintelligent. Wikipedia contains only 

the facts (and opinions) that people have written down. The computer that 

read Wikipedia would be highly educated, it would know a lot of facts, but 

those facts are not enough to be superintelligent.

What people write down in a Wikipedia article or what they say to one 

another is information that they are confident the reader or the other per-

son does not know. They assume a certain level of common sense and avoid 

presenting those facts that they predict the reader will know. Remember 

the hidden assumptions in the hobbits and orcs problem. What we think 

of as facts are only facts in the context of lots of other shared informa-

tion. Reading even a super-Wikipedia will not provide all of those facts, and 

it will not provide all of the reasoning capabilities that would be needed 

to gain general intelligence. It will not allow the computer to create new 

representations to solve new problems. That is a capacity we have yet to  

figure out.

Not being limited by human attention or memory capacity, a computer 

might be a little better at question answering than a human might be—

think of IBM’s Watson—but it is not clear that it could do much of any-

thing else with those facts. Watson, itself, was trained/tested by playing 

multiple games of Jeopardy! and by answering large numbers of Jeopardy! 

questions. It was given feedback about the accuracy of its answers in the 

context of Jeopardy! games and simulated games.

A lot of Watson’s success with Jeopardy! came from its designers’ clas-

sification of questions into several types and from the rules that they pro-

vided to diagnose the type of question that was being asked. For example, 

they came up with rules to determine whether the answer to a particular 

question requires the name of a person, a place, a time, or something else. 

The designers analyzed 20,000 Jeopardy! questions and identified the lexical 

answer type for each one. From these 20,000 questions, they identified 2,500 

answer types. Some of these types occurred frequently in the questions, but 

a large number occurred only rarely. The top 200 types covered about 50% 

of the questions, and the remaining 50% were distributed over the remain-

ing 2,300 types. Some lexical answer types were possibly even more rare. 

They might occur sometime in a Jeopardy! game but were not among the 
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20,000 questions in this set. When the same Watson technology has been 

applied in other areas, its success has been mixed at best.

Even the detection of a problem is problematic for a self-training com-

puter system. A problem is a disparity between the current state and a 

desired goal state. Where do these goals come from? In evolution, the goal 

is to survive and reproduce, to pass along one’s genes to subsequent gen-

erations. Organisms do not have this goal in mind, to be sure, even if they 

have a mind. But those genes that were associated with successful reproduc-

tion are those that are around today. An animal’s behavior at any point in 

time is ultimately controlled by this need to reproduce, but it is governed 

on a daily basis by some more immediate indicator for that goal. For exam-

ple, the animal may forage for food. Its immediate goal may be to find food. 

In computer jargon, the animal is a reinforcement learner and the feedback 

it receives about its behavior is often very long delayed.

Reinforcement learning is an example of behavioral control by distant 

goals. Achievement of distant goals, like reproduction, is approximated by 

achievement of more immediate goals, like finding food, because those 

immediate goals have, in the evolutionary past, been associated with the 

achievement of the distant goal. Animals who successfully find food are 

more likely to reproduce eventually—the reinforcement. A computer with 

a distant goal, could, through reinforcement learning, come to “seek” more 

immediate goals, but what would be the primary goal of a superintelligent 

computer? What would be the computer equivalent of biological reproduc-

tion? Manufacturing paper clips?

Watson’s goal was to win at Jeopardy!. Presumably, the computer’s initial 

programmers would be the ones who gave it that overarching goal. If Barrat 

and the others are correct, then this goal will determine everything that the 

superintelligent computer will eventually do. It will determine the extent 

to which its interests are consistent with, indifferent to, or inimical to those 

of humans.

Reproduction is probably out of the question as an ultimate goal for a 

computer. Survival is not a goal that would require superintelligence. In 

any case, it is not clear how that would apply to an individual instance of a 

superintelligent computer if there is no competition from other superintel-

ligent computers. The only way to know that some strategies are successful 

and others are not would be for it to fail to survive sometimes. Successful 

animals survive to reproduce; failing animals do not.
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In Barrat’s example, its goal might be to become ever more intelligent. 

That one seems rather vague without some way to measure its success. Isaac 

Asimov came up with his fictional three rules of robotics. His stories were 

entertaining because they described how his fictional robots dealt with the 

conflicts among these rules. Asimov’s rules are rather vague, however, as 

guides to actual artificial intelligence agents. Douglas Adams suggested that 

the answer to life, the universe, and everything was 42 and posed a super-

computer whose goal was to find the question that went with that answer. 

Fiction, in other words, does not have any viable suggestions for the super-

intelligent computer’s goal.

A lot rests on the designer’s choice of an ultimate goal, but we really do 

not have a good idea of what that should be. Whatever it is, there will surely 

be unintended consequences of the computer’s attempts to achieve that 

goal. That is the familiar trope for speculative fiction. The computer takes 

the specified goal literally and then takes an unintended action to achieve 

that goal, to the detriment of its inventors and usually of humankind.

We can understand something of the consequences of potential goals, 

perhaps, by looking at evolution. Evolutionists, particularly behavioral 

ecologists, have a notion of an evolutionarily stable strategy. An evolu-

tionarily stable strategy is one that, when adopted by the members of a 

population, cannot be bettered by an individual or group with a different  

strategy.

Learning to be intelligent by passing IQ tests is not a stable strategy 

because it can be replaced by a simpler rule that just memorizes the answers. 

A computer system that merely memorized the answers could compete 

successfully with one that went through the trouble of actually learning 

how to pass the test, and could do so with less effort, fewer computational 

resources, and probably higher accuracy. A computer tasked with survival 

could try to be superintelligent, but one that simply hums away in the 

corner not bothering anyone would probably be at least as successful at 

less cost.

For a computer to create and adjust its own goals would require a radical 

change in the way we construct artificial intelligence systems. Presently, the 

performance of a system is restricted to adjusting parameters. Think of it as 

a recipe for making bread. The recipe can be either more or less successful; 

it can add more flour or more salt. The amount of flour is a parameter of the 

system. The amount of salt is another parameter. But the recipe computer is 
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always limited to some combination of the ingredients it has on hand. The 

set of all of its parameters and all their values is the “space” through which 

the computer can navigate.

Even if we open it up to allow the computer to order more and differ-

ent ingredients from, say, Amazon, all that happens is that the scope of its 

space grows. The problem remains the same, just bigger. Now instead of 

making do with what happens to be in the computer’s pantry, it can make 

use of anything in Amazon’s pantry. The problems are also more difficult, 

the number of possible combinations of all of its available ingredients and 

all of their possible amounts explodes when we add more ingredients, but it 

still must search the same kind of space, now just a bigger one. It has more 

variety, but its potential solutions are still just as predetermined as before. 

Because of the wide variety of ingredients that Amazon could deliver, it 

may seem as if the possibilities are now endless, but they are not. On the 

other hand, the combinatorics of all the ways those ingredients could be 

mixed will also limit the speed of bread baking.

How would the computer learn that a toaster is not a good ingredi-

ent to put into bread? How would it learn that ethylene glycol is not a 

good ingredient? It must have some kind of evaluation function. It must 

be able to determine that some ingredients move it close to good bread 

and some move it further away. How does it evaluate whether its bread 

is better or worse than previous batches? Presumably, it would have to 

bake a lot of bad bread to learn what ingredients can, in fact, go into good  

bread.

However smart the computer is, baking bread takes time, and there is no 

way to avoid that time. The time it takes to mix, to knead, to proof, and to 

bake the bread cannot be sped up just by having faster computers. Oven 

space would limit the number of recipes it could test at once. The number 

of bread tasters (human labelers) is also limited. But at the same time, what 

is to stop the computer from just using familiar ingredients? Once it learns 

that its evaluators like a certain kind of bread, why would it change? Bak-

ing a few good breads is a stable strategy, and unless one of the computer’s 

given goals rewards variety, it would be a sensible strategy to stick with just 

a few recipes. Factors like these limit the rate at which the computer can 

learn and the rate at which it can improve its own “intelligence.”

The way AI systems are currently designed, they must navigate a space 

that is determined by their representation using evaluation and optimization 
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to guide them through that space. Most of the time, people operate in an 

analogous way. Give a person the well-known nine-dot problem to solve 

(see figure 10), and most of the time, that person will attempt to solve it 

by staying inside the box formed by the dots. People get stuck in dead-end 

careers because they don’t think of more fulfilling alternatives. Even scien-

tists tend to stay within the confines of the methods and approaches that 

their colleagues use. Thomas Kuhn called the tendency of scientists to keep 

their thoughts within familiar confines a “paradigm,” and he noted that 

paradigm shifts are rare.

If we stay with the current framework for machine learning, there is no 

chance that we will ever see artificial general intelligence, let alone super-

intelligence. Today’s methods are designed to solve specific problems, and 

they are not adequate for more generalized intelligence. Recent progress in 

computational intelligence is due to innovations in how problems are rep-

resented including heuristics for efficiently selecting potential adjustments. 

These improvements are examples of great engineering, but they do not 

provide the kind of process that will lead to general intelligence. General 

intelligence will require a different approach to computational intelligence 

than we have today. In the next chapter, we consider some of the changes 

that could support general intelligence.

Even assuming that we could create a generally intelligent computational 

agent, the idea that there would be a sudden leap in the capabilities of that 

intelligence is incredibly unlikely because it assumes that intelligence is 

self-contained. If we restricted general intelligence to well-structured formal 

Figure 10
Connect the nine dots with four continuous lines without taking your pencil from 

the paper.
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problems, like playing chess or go, then explosions in those capabilities are 

at least conceivable. If simulations were sufficient for learning, then learn-

ing could be sped up by speeding up the simulations. On the other hand, 

if the agent has to interact with an uncertain world, then the speed of the 

world, the rate of occurrence of learning opportunities, and the speed of the 

feedback it provides limit the rate at which intelligence can be improved. 

The need to interact with the world naturally limits the rate of intelligence 

expansion.
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12  General Intelligence

Current approaches to machine learning lack important capabilities that will need 

to be developed to achieve artificial general intelligence. This final chapter lays out 

some of the tools we will need to do that.

Albert Einstein was not considered a genius for his ability to solve com-

plex equations. Rather, his genius derived from his ability to create a novel 

worldview and then create novel mathematical expressions of that world-

view. His most famous equation is extremely simple, but the view of the 

universe it expresses is profound.

Solving equations is something that current approaches to computa-

tional intelligence can do well (for example, the program Mathematica), 

but creating new equations, new worldviews, new approaches to unfamiliar 

problems has so far been out of reach for computers.

As I have said, current approaches to machine learning are restricted 

to the adjustment of model parameters after a human has structured the 

inputs, outputs, and model to create those parameters and their scope. That 

approach is fine for well-structured problems, but it completely misses the 

boat on less structured ones, and some of our most vexing problems, those 

that call for the most genius, are very weakly structured. Fundamentally, 

genius requires the ability to structure the inputs, outputs, and models in 

new ways. At present we do not have any good ways of doing that. Finally, 

we do not have a reasonably complete theory of general intelligence in 

people, let alone in machines.

At least since 1956, computer scientists have been predicting that arti-

ficial general intelligence is just around the corner, scheduled to make its 

appearance typically in 10 to 20 years. When general intelligence fails to 
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appear on schedule, when the limits of the then current approaches are dis-

covered, computer scientists, and more importantly, the people who fund 

them, get discouraged. Support and enthusiasm for computational intel-

ligence wanes, and we have another AI winter.

Today’s approaches to artificial intelligence have been extremely success-

ful at creating hedgehogs, but general intelligence requires foxes. The rea-

son that the predictions of imminent general intelligence fail is because we 

do not have an adequate understanding of just what it will take to achieve 

general intelligence. The predictions view the problem as one of stacking 

up hedgehogs. Once we have a big enough stack, presumably, we will have 

achieved general intelligence. Instead, what we need is a fox. The material 

presented in this book may provide a road map for building such a foxlike 

artificial general intelligence.

Defining Intelligence

Formulating a proper definition for the concept of artificial general intel-

ligence remains a challenge that starts with the very idea of intelligence 

itself. What does it mean to be intelligent? As discussed in chapter 2, more 

than 70 definitions of intelligence have been offered. Most of these defini-

tions focus on intellectual achievements and deliberative thought, but as 

we have seen, intelligence requires more.

In chapter 3 we introduced Robert Sternberg’s triarchic theory of intelli-

gence. His definition, unlike many others, concerns how intelligence oper-

ates rather than just how it is measured.

Sternberg argues that intelligence consists of three types of adaptive 

capabilities: analytic, creative, and practical intelligence. Analytic intelli-

gence is the kind that most of the other definitions emphasize, but the 

other two facets also play critical roles. Analytical intelligence focuses on 

abstract thinking, logical reasoning, and verbal and mathematical capabili-

ties, the familiar components of intellectual achievement.

Practical intelligence includes tacit knowledge, which is often called 

common sense. Conversations and problem descriptions generally do not 

include this tacit knowledge because we assume that people will already 

know it. Tacit knowledge is usually acquired without formal training. Tacit 

knowledge is rarely discussed, in part because it is so difficult to articu-

late. How do you describe, for example, everything that you know about 
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a peanut butter sandwich? As a result of this difficulty, the importance of 

tacit knowledge to problem-solving is often underestimated. But being dif-

ficult to describe does not mean that it is unimportant.

Sternberg also notes that intelligence is not just reactive but is also 

active in shaping its situations. Intelligent individuals do not sim-

ply respond to puzzles and problems; they actively seek them and seek 

to structure their environments to make it easier to address their issues. 

One way to solve a problem can be to change environments. Intelligence 

includes the ability to set and accomplish meaningful goals. Intelligent 

people can recognize the existence of a problem, define its nature, and 

represent it. They can recognize where knowledge is lacking and work to 

obtain that knowledge. Although intelligent people benefit from struc-

tured instructions, they are also capable of seeking out their own sources of  

information.

Sternberg’s view of intelligence can be applied directly to artificial gen-

eral intelligence. It helps to point out just where progress is needed most 

to achieve artificial general intelligence. Computers excel at analytic capa-

bilities, so it is no surprise that computational intelligence shows strong 

success in this area. Analytic capabilities are where human and machine 

intelligence currently overlap the most. Current implementations come up 

short, however, in terms of practical and creative intelligence. These capa-

bilities are still provided by human designers.

If all that is necessary for a machine learning system is to engage its 

analytic capabilities, then the machine is likely to exceed the capabilities 

of humans solving similar problems. Analytic problem solving is directly 

applicable to systems that gain their capabilities through optimization of 

a set of parameters. On the other hand, if the problem requires divergent 

thinking, commonsense knowledge, or creativity, then computers will con-

tinue to lag behind humans for some time. These latter properties are also 

required for general intelligence.

Another so far unsolved problem for the definition of artificial general 

intelligence is: just how general does general intelligence have to be? Some 

definitions suggest that a generally intelligent machine should be able to 

do any cognitive (as opposed, perhaps, to motor) task, to solve any prob-

lem, that a human could. That definition is perhaps so broad that a human 

might not be able to qualify as generally intelligent. In contrast, it seems 

that the higher a person’s skills get in certain areas, the more narrowly 
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those skills are focused. No one person can solve every problem or solve 

every problem equally well.

Perhaps by “general,” we mean that our artificial general intelligence 

should be able to solve any kind of problem at some time, but not every 

kind of problem at the same time. Effective problem solving in humans 

seems often to take years of education or practice for the person to become 

an expert. No one can be an expert at everything. It remains to be seen just 

how general an artificial general intelligence needs to be.

We might like to say that to be general, the intelligence must be autono-

mous. If current versions of specific artificial intelligence get their intelli-

gence from the structure given to them by humans, their general intelligence 

is that of the human designer, not the computer. Again, it is not clear how 

autonomous an artificial general intelligence would need to be.

Divergent thinking implies that the computer can address problems for 

which it has not been specifically designed. More critically, divergent think-

ing means that the computer can address problems using methods that 

have not previously been associated with that problem, or perhaps with 

any other problem. It can create new approaches to solving the problem. 

Computers are very good at convergent thinking, where they execute a 

series of steps to solve a problem, but they are not good at autonomously 

finding out what those steps should be.

Achieving General Intelligence

There are three perspectives on our prospects for achieving artificial gen-

eral intelligence. According to one view, achieving general intelligence just 

takes more of what has proved successful for task-specific intelligence—a 

taller stack of hedgehogs. According to the second view, general intelligence 

cannot be accomplished by machines, because general intelligence requires 

human consciousness or some other ineffable quality that only humans 

can have. According to the third perspective, artificial general intelligence 

is possible; however, it requires some new developments that are not yet 

available but can be outlined. I fall into the third perspective.

Jürgen Schmidhuber’s (2009) Gödel machine is an example of the stack-

of-hedgehogs perspective. The basic idea is that general intelligence can 

occur in a system that consists of a collection of modules, each of which 

solves a specific kind of problem, and an overmodule that selects and 
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coordinates these specific modules to allow the solution of problems that 

were not specifically addressed by one of the modules. This overmodule has 

exactly the same kind of structure as the task-specific modules, but its goal 

is to select and coordinate among the specific modules. It learns from its 

experience deploying the specific modules and the outcomes each one pro-

duces. In other words, general intelligence is specific intelligence applied to 

the problem of selecting specific problem-solving mechanisms.

With enough computational capacity and enough time, such a system 

could do anything. Optimization in this view is the lever that we could 

use to move the world. I will have more to say about Schmidhuber’s ideas 

later in this chapter, when we consider what it will take to achieve artificial 

general intelligence.

From the ineffable-consciousness point of view, artificial general intel-

ligence can never be accomplished because it requires some property that 

can only be found in humans. At best, machines may simulate having this 

property, but without it, they cannot be truly intelligent.

Hubert Dreyfus’s work, discussed in chapter 9, is an example of this 

kind of approach. Another example is Roger Penrose and Stuart Hameroff’s 

notion that consciousness somehow involves quantum mechanical coher-

ence in the microtubules of the brain. Because Penrose is a renowned physi-

cist who has worked on such weighty problems as black holes and knotty 

ones like string theory, he looks to the properties of quantum mechanics 

to explain consciousness. Both Dreyfus and Penrose imply that conscious-

ness is critical to intelligence and there is something mysterious about con-

sciousness that cannot be explained in terms of computational methods. 

John Searle, creator of the Chinese room thought experiment, also believes 

that there is something about brains that allow them to have symbols with 

a certain kind of aboutness (philosophers call it intentionality) that is criti-

cal. Computers, he argues, are purely syntactic, so they have no access to 

meaning. They can only follow rules relative to symbols, but the symbols 

have no meaning for a computer. Meaning is essential to human intelli-

gence, and only brains can do it.

Both approaches—hedgehog stacking and ineffable consciousness—are 

wrong. The hedgehog approach is wrong because optimization is limited 

to adjusting parameter values, and the ineffable-consciousness approach is 

wrong because it does not really say anything useful about intelligence. It 

just says that computers can’t do it.
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The third approach to general intelligence supposes that artificial gen-

eral intelligence does require some mechanisms that are not currently avail-

able, but it assumes that with some amount of research, these mechanisms 

could be developed. In the rest of this chapter I will try to sketch out what 

such a research program might look like and, in that context, extend the 

critique of the hedgehog perspective.

Beginning the Sketch of Artificial General Intelligence

In chapter 3, we began a discussion of just what general artificial intelli-

gence would look like. Among the kinds of skills that an artificial general 

intelligence agent should have are:

•	 the ability to reason

•	 the ability to engage in strategic planning

•	 the ability to learn

•	 the ability to perceive

•	 the ability to infer

•	 the ability to represent knowledge

But even this partial list of skills does not distinguish between special-

ized computational intelligence and generalized computational intelli-

gence. A chess-playing program, for example, could easily be said to have 

these properties but still be entirely specialized for chess playing.

To those skills, I would add abilities like these:

•	 the ability to learn from a small number of examples

•	 the ability to identify problems

•	 the ability to specify goals

•	 the ability to find new and productive ways to represent problems

•	 the ability to create new knowledge representations and structures

•	 the ability to compare multiple approaches to a problem and evaluate 

each one

•	 the ability to invent new approaches

•	 the ability to think about ill-formed, vague ideas and make them 

actionable

•	 the ability to transfer knowledge from one task to another

•	 the ability to extract overarching principles
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•	 the ability to speculate

•	 the ability to reason counterfactually

•	 the ability to reason nonmonotonically

•	 the ability to exploit commonsense knowledge

Computers are much better at calculating than humans are. They are 

more systematic, more algorithmic than people are. They do not get dis-

tracted. The kinds of tasks where computers can surpass human abilities are 

those that are well-structured, are finite, and can be learned using optimiza-

tion of a model’s parameters.

There are other problems, however, that cannot be described in the same 

way. These are poorly structured problems, perhaps of unknown scope, for 

which we cannot readily measure progress toward a goal, or that cannot be 

well-specified for a number of reasons. At this point, for example, even a 

multilayered machine learning system that learns to select machine learn-

ing methods can only select among what it already knows; it cannot gener-

ate novel approaches. It may combine old parts in new ways, but genius 

often requires new parts.

A 2016 survey of Millennials (World Economic Forum, 2016) identified 

the problems that they thought were most significant. These problems 

include:

1.	 Climate change and destruction of natural resources (45%)

2.	 Large scale conflict and wars (38%)

3.	 Religious conflicts (34%)

4.	 Poverty (31%)

5.	 Government accountability, transparency, and corruption (22%)

6.	 Safety, security, and well-being (18%)

7.	 Lack of education (16%)

8.	 Lack of political freedom and political instability (16%)

9.	 Food and water security (15%)

10.	 Lack of economic opportunity and unemployment (14%)

These problems are ill-formed and underspecified. They have no defini-

tive formulation or path by which they could be solved. It is difficult to 

measure whether an attempted solution to one of these problems is actually 

moving it toward solution, is making it harder to find a solution, or is doing 
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nothing at all. There is no easy way to definitively determine even whether 

they have been solved.

Contrast these problems with playing games, like checkers, say. Current 

approaches to computational intelligence have been very successful at solv-

ing problems like games but are helpless when faced with problems like 

those on the Millennials’ list.

Even problems like the one involving hobbits and orcs crossing a river are 

easy for a computer to solve if the problem has been represented properly, 

but so far, it takes a human to create that representation. In an important 

sense, the intelligence is in how the problem is represented. New computa-

tional approaches are needed to address problems like these.

Well-defined problems come with initial states, where we are now, and 

goal states, where we want to be. For example, we have a collection of pho-

tos, and we want to be able to identify which of those photos contains a cat. 

Or we have a chessboard, and we want to be able to win the game against 

the best opponents we can find. Even self-driving cars have clear evaluation 

methods, although these are more challenging. We can compare any two 

computer systems and decide which of them is superior.

Other functions that we would expect of an intelligent system are not 

so easy to assess. We could write a computer program that would generate 

paintings, but it is not obvious how to evaluate the success of that system. 

A computer program to paint in the style of van Gogh, for example, is rela-

tively straightforward, but a program to create new paintings or new styles 

of painting is much more difficult to assess.

It is a serious mistake, however, to assume that our ability to assess a 

problem solution is related to the importance of that problem. It is equally 

an error to assume that the problems that are easy to evaluate are typical 

of the kinds of problems that a generally intelligent agent would need to 

solve. Computers need to deploy the kind of insight that converted chess 

playing to tree navigation to be generally intelligent.

Easy-to-evaluate games like chess, checkers, or go are formal, well-

structured, and full-information problems. They are fully described by 

their rules and their current state. They can be treated as a purely math-

ematical process. They do not depend on any physical instantiation of a 

game board. One could play any of these games without seeing any phys-

ical game pieces. High-level chess players can play chess blindfolded, for 

example. On September 24, 2016, Grandmaster Timur Gareyev achieved a 
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world record by playing 64 consecutive blindfold chess games, winning 54  

of them.

It is the form of the rules, rather than the physical properties of the 

game pieces, that make up chess. A computer could continue to play chess 

if all of the rest of the universe disappeared. The computer could determine 

whether it had won or lost a game purely by maintaining an accurate rep-

resentation of the game state.

Jonathan Schaeffer figured out that there were about a quadrillion 

unique checkers positions that had to be evaluated to prove that any given 

move was, in fact, the best one possible. After working on this problem for 

about 18 years, he was able to evaluate all of those moves and was able to 

prove the optimality of each choice in each state.

Evaluation of checker moves is slow because of the large number of com-

binations of future moves that are possible in a game of even that com-

plexity. But it is still a formal, full-information game, and even a complete 

analysis does not break new ground in a search for artificial general intel-

ligence. Most real-world problems cannot be reduced to formal problems. 

Even Bostrom’s paper-clip collector problem cannot be reduced to a formal 

problem. No one could prove that the paper-clip collector was doing the 

best job possible.

An important exception to the widespread focus on formally structured 

full-information problems is self-driving cars (see chapter 6). Driving is not 

formal; the world absolutely does matter. At best, the problem of driving is 

semistructured. But it also suffers from another problem. The vehicle must 

not only solve computational problems but has to navigate in a dynamic 

physical world with sensors that can be inaccurate. Sensors are imperfect; 

unexpected things happen in the world. The state of the world, and not just 

the state of the computation, determines the success of driving.

The actions the vehicle takes are imperfectly related to the state of the 

world in which they occur. For these reasons, self-driving cars present a dis-

tinctly different computational intelligence problem than do chess-playing 

computers. Even if someone spent 18 years at it, there is no way to prove 

that any action taken by the vehicle is the best possible action.

Self-driving vehicles take time to train, and they take time to test. Tests 

of the success of the system are less well-defined than they are in chess, but 

it is still practical to test autonomous vehicles by letting them drive. Driv-

ing has measurable consequences. We can tell whether the vehicle collided 
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with an obstacle, for example. These factors make this one of the most 

interesting computational challenges around today, but it still is not on the 

road to artificial general intelligence.

The gamelike problems discussed so far can be described as a search 

through some kind of solution space. In chess and checkers, the solution 

space is the tree of potential moves. In self-driving cars, it is the set of pre-

dictions of obstacles and other kinds of events. The insight that allowed 

self-driving cars to be successful is the representation derived by Sebas-

tian Thrun and a few others that allowed the vehicle to take advantage of 

unreliable evidence about its surroundings and to use one set of sensors to 

provide critical feedback about the predictions made by another set. Self-

driving cars depend on a number of machine learning applications, each of 

which solves a simpler more or less structured problem.

Other problems, like the parking question, require a different set of capa-

bilities: The downtown area of your city does not have enough parking spots 

available. What do you do to resolve this situation? Although humans might 

someday be able to break a problem like this one down into combinations 

of more or less structured problems, each of which could be solved with 

machine learning, the effective representations for them remain unknown, 

as does the process for rerepresenting them as solvable subproblems. At 

best, solving them using computational intelligence will require the inven-

tion of new representations, presumably by inventive computer scientists.

Insight problems present a deeper challenge to computational intelli-

gence. Examples like Maier’s two-strings problem (see chapter 2) are among 

the kinds of problems that a general intelligence will need to be able to 

solve. Solving insight problems requires the solver to create an appropri-

ate representation. Once the right representation is achieved, solving the 

problem is almost trivial. Much of what we generally think of as the highest 

human intellectual achievement depends critically on the person creating a 

new representation for a formerly resistant problem.

Friedrich August Kekulé reported, for example, that he came up with the 

idea of representing the structure of the organic chemical benzene as a ring 

as a result of dreaming about a snake swallowing its own tail. Russian chem-

ist Dmitri Mendeleev said that he created the periodic table of elements also 

after a dream.

Mendeleev’s original table, published in 1869, was arranged by atomic 

weight (approximately proportional to the number of protons and neutrons 
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in an atom), but it had a few exceptions, where the properties of the ele-

ments suggested a reversal of the elements within a row. He also left gaps 

in the table, which suggested the existence and properties of elements that 

had not yet been discovered. His second table, published in 1871, arranged 

the elements by atomic number (the number of protons in the atom). This 

table is essentially the one we know today.

The important thing about Kekulé and Mendeleev’s achievements is 

not that they occurred to their inventors as dreams but that the two men 

achieved a new and useful representation. Although Mendeleev worked a 

long time with different arrangements of the elements, he did not report 

finding any that he thought were closer to being correct until he achieved 

the 1869 arrangement. The suddenness suggests that his new representa-

tion was not achieved by any kind of optimization process, such as gradient 

descent. It was difficult to measure progress in finding an appropriate repre-

sentation. But eventually he did come up with a representation that worked.

The suddenness, of course, of creating these representations is based on 

the scientists’ self-reports. We do not know what “unconscious” processes 

occurred that led to the dreams or the creations. We know, for example, 

that Mendeleev had been working for a long time on the problem of how 

to arrange the elements by their chemical properties. We know that he 

thought that the card game “patience” was somehow suggestive of a solu-

tion, but none of that was fitting together to give him an answer that he 

thought was reasonable. Our ability to create computational approaches 

that were able to come up with new representations would benefit greatly 

if we could understand what those processes were.

All of these forms of problem solving depend on a human discovering or 

inventing a new representation. At present, this requirement is the source 

of all innovation in machine learning and its biggest bottleneck. It’s fine 

to fantasize that computers will be able to create their own intelligence, 

redesign themselves, and do so at an ever increasing rate, but at this point 

and for the foreseeable future, that is just a fantasy or, according to some, 

a nightmare.

An artificial general intelligence will need to be able to create its own 

novel representations. This is one of the most important areas where effort 

is needed.

In the 1980s, and again in the 2000-teens, there was a show on US televi-

sion in which the title character, MacGyver, would come up with unique 
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ways to solve problems with whatever was at hand. That is a dramatic 

example of the kind of problem-solving that an artificial general intelli-

gence will have to solve.

Another example of this kind of problem solving might be the creativity 

exercise uses for a brick. How many uses can you think of for a brick? There 

are common uses for a brick, but if you think about it a little, most people 

can come up with some unusual ones—how about for cooking a chicken? 

That is but one example of the kind of problems that an artificial general 

intelligence will need to solve.

More on the Stack of Hedgehogs

As we discussed earlier in this chapter, one suggested approach to creating 

an artificial general intelligence agent is to layer a high-level machine learn-

ing module to select and combine more specific modules. Under this view, 

general intelligence would require just the same kinds of processes that are 

required for specific forms of intelligence. This approach assumes that gen-

eral intelligence can be solved by adding more parameters to the current 

kind of single-task systems in use today.

The stack-of-hedgehogs or more-of-the same approach rests on a few 

assumptions, as described by Cassio Pennachin and Ben Goertzel (2007). 

They define intelligence as the maximization of a certain quantity by a 

system that is interacting with a dynamically changing environment. They 

also note that this approach rests on the validity and applicability of the 

Church–Turing thesis (discussed earlier, in chapter 3).

The Church–Turing thesis can be summarized as the claim that anything 

that is computable can be computed by a system with a small set of simple 

operations. Alternatively, any computable function can be computed by 

a machine with the capabilities of a Turing machine. The word “comput-

able,” in this context, has a special technical meaning. A computable func-

tion is a predetermined step-by-step procedure that is certain to produce 

a verifiable answer in a finite number of steps. A computable function is 

an algorithm, for which a certain set of inputs, when the proper processes 

are executed, will result in a specific output. Another way of saying this is 

that every computable function is a form of logical deduction (Copeland & 

Shagrir, 2019).

The Church–Turing thesis is critical to computational intelligence 

because it makes clear that two computational systems with equivalent 
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capabilities are equivalent machines, no matter how they are each con-

structed. As a result, if intelligence is a computable function and if it is 

computed by brains, then it is perfectly reasonable to expect that a system 

built on silicon should also be able to compute the same function if it has 

equivalent power. Therefore, if brains compute, a Turing machine must be 

able to execute the same function.

The key assumptions here are:

1.	 Intelligence is a function that can be implemented by an algorithm. 

Intelligence is computable by a Turing machine.

2.	 The intelligence function takes as its input an instance of the problem 

and returns a solution.

3.	 The intelligence function is a process of optimization—maximizing of a 

certain value by a system interacting with a dynamic environment.

4.	 A Turing machine can verify the correctness of this solution.

5.	 The brain computes with no more capability than a Turing machine. 

With enough computational capacity and enough memory, some imple-

mentation of that machine will be able to compute the same function as 

the brain. Some computer equivalent to a Turing machine will be able to 

compute the function computed by the brain.

The first assumption of this approach is reminiscent of John McCarthy’s 

original hope (in the proposal for the 1956 Dartmouth workshop) that it 

would be possible to describe the features of intelligence in sufficient detail 

to be able to get a machine to simulate it. I would argue, however, that it is 

a fundamental error to assume that intelligence is an algorithm—a specific 

sequence of steps that always returns the correct answer. This assumption 

asserts that intelligence would have to be a form of mathematical deduc-

tion, whereas machine learning is a process of induction. On the basis of 

training examples, the computer predicts how subsequent unseen items 

will be classified, for example.

It’s important to be clear here about just what I am claiming. Computers 

and brains both use algorithms, but intelligence is not itself an algorithmic 

process in that it cannot be considered infallible.

To quote Alan Turing (1947):

It might be argued that there is a fundamental contradiction in the idea of a 

machine with intelligence. . . . It has for instance been shown that with certain 
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logical systems there can be no machine which will distinguish provable formu-

lae of system from unprovable, i.e., that there is no test that the machine can 

apply which will divide the propositions with certainty into these two classes. 

Thus if a machine is made for this purpose it must in some cases fail to give an 

answer. On the other hand if a mathematician is confronted with such a prob-

lem he would search around and find new methods of proof, so that he ought 

eventually to be able to reach a decision about any given formula.  .  .  . Instead 

of it [the machine] sometimes giving no answer we could arrange that it gives 

occasional wrong answers. But the human mathematician would likewise make 

blunders when trying out new techniques. . . . In other words then, if a machine 

is expected to be infallible, it cannot also be intelligent. There are several math-

ematical theorems which say almost exactly that.

The mathematical theorems that Turing is referring to are probably 

Gödel’s incompleteness theorem and Church’s and Turing’s theorems that 

some problems are undecidable by a Turing machine. For any sufficiently 

powerful formal logical system, there will be statements that are true but 

cannot be proven to be true by the system. There are fundamental limits to 

formal systems that cannot be overcome within the context of formal sys-

tems. So, while formal systems, such as logic, are important to intelligence, 

they are not enough for intelligence. They are incomplete.

The second assumption is also faulty if the goal is to create artificial gen-

eral intelligence. The second assumption asserts that the intelligent agent 

is given an instance of the problem it is to solve. That is fine for solving 

individual selected problems, but a generally intelligent agent should not 

have to be handed a structured representation of a problem. It should be 

able to find its own structure.

The third assumption is where more-of-the-same gets its name. The same 

process that allows machine learning to solve specific problems is asserted 

to be sufficient to solve general intelligence. It is the assumption that the 

system already has all of the tools it could need to solve any problem.

According to the fourth assumption, some algorithm should be able to 

verify the correctness of an intelligent solution to a problem, but intelligent 

solutions to real problems other than puzzles and games and the like are 

often difficult to assess and impossible to verify. Intelligence often involves 

predictions that require estimations and are inherently uncertain.

Of these, only the fifth assumption is more or less reasonable. Turing 

machines can compute universally any computable function, but that does 

not mean that they are then incapable of operations that are not strictly 
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algorithmic. As current machine learning demonstrates, computers are 

capable of inductive inference (see chapters 4, 5, and 6), not just deduc-

tions. They can infer from examples to rules, not just apply rules to make 

decisions about examples.

As it happens, these assumptions are fine for achieving the kind of spe-

cialized problem-solving that has been so successful over the last several 

years. Where they mainly fall short is in the unstated sixth assumption 

that these are all that is needed for general intelligence. The Church–Turing 

thesis, I argue, has misled computer scientists into thinking that general 

intelligence can be deduced from specialized intelligence, but general intel-

ligence needs more. We take up that topic next.

General Intelligence Is Not Algorithmic Optimization

The Church–Turing thesis conceives of intelligence much too narrowly. 

Intelligence, like that shown by Einstein, but also like that shown by people 

every day, does not derive only from following a well-trodden path of spe-

cific instructions or muddling through the selection of one of several paths. 

General intelligence consists precisely of finding a new set of instructions, 

if you will.

Even small variations from the exact problem on which current com-

putational intelligence programs have been trained can completely baffle 

them. Self-driving cars, for example, have been “deceived” into thinking 

that stop signs are really speed limit signs just by putting a small stickers 

on the sign.

Optimization is the process that modifies the values of parameters in 

order to maximize or minimize some value, such as error. Specific problem 

solving can be successfully addressed by such mechanisms if the optimiza-

tion process is given an appropriate set of parameters to work with. Optimi-

zation does not create parameters; it works to adjust the model parameters 

it is given by the program designers.

Intelligence and TRICS

The hedgehog approach, as described above, assumes that the function 

that is implemented by a general intelligence agent takes as its input an 

instance of a problem and produces a solution as its output. More properly, 

we should say that the computer takes as its input a representation of the 

problem and produces a representation of the output. Computers cannot 



292	 Chapter 12

deal directly with baseballs, hobbits, or strings. Rather, these objects have 

to be represented in some mathematical form. Problems too have to be 

represented in some mathematical form. Chess could be represented as a 

mathematical version of psychological war between adversaries, or it could 

be represented as a tree of potential moves. Categorizing cats versus dogs 

represents the photographs as an array of numbers and represents the neu-

ral network as another set of numbers. Optimization sets the values of the 

numbers representing or implementing the network, but it does not affect 

the kind of numbers they are or the kind of raw representation that the 

problem starts with.

How the objects and the problem are represented is key to finding a 

solution to the problem. These are the representations it critically supposes 

(TRICS; see chapter 9). The solution is constrained by and contained in 

these representations. If the problem has to be prerepresented for a hedge-

hog in order for the system to address it, then the general intelligence 

comes from the designer of the problem, not the system. Without the abil-

ity to construct its own representation of the problem, it is literally game 

over for a more-of-the-same system.

From the hedgehog perspective, general intelligence would emerge from 

a layered system where a high-level module solves the problem of select-

ing special-purpose modules. The input would be a specification of the 

problem, and the output of this supervisory module would be the special-

purpose module that solves it.

Each of the special-purpose submodules must have a well-formed solu-

tion space, and the overarching module for selecting or combining them 

must also be well-formed. The supervisory module is limited to selecting or 

perhaps combining those tools that it has in its collection of modules. It is 

dependent, then, on having a complete set of modules, because it cannot 

entertain the “thought” of creating a brand new module, it is incapable of 

inventing its own. It is limited to selection, according to the more-of-the-

same framework, and selection is not generation.

One example of such a hierarchical system is Schmidhuber’s (1996, 2009) 

so-called Gödel machine. In his view, this machine is a “class of mathemati-

cally rigorous, general, fully self-referential, self-improving, optimally effi-

cient problem solvers.

Inspired by Kurt Gödel’s celebrated self-referential formulas (1931), such 

a problem solver rewrites any part of its own code as soon as it has found a 
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proof that the rewrite provides improved lifetime future value. This Gödel 

machine is a thought experiment and has never been built, and it probably 

never can be built.

Schmidhuber supposes that the machine can learn new modules by 

rewriting its own code if it can prove that the rewrite makes it better able 

to achieve its lifetime goal. As mentioned earlier, a system’s programming, 

its code, is typically far less important to any computational intelligence 

system than are the data used to train it.

In any case, the Gödel machine suffers from at least four fatal flaws: 

(1) the need for proof before it modifies its code, (2) its reliance on life-

time future value to decide whether to rewrite its code, (3) the idea that it 

can be designed with a complete enough set of modules, and (4) the com-

binatoric requirement to evaluate many alternative modules and module 

combinations.

It’s not clear how the machine will know which changes to assess for 

their future value. It is chooses changes randomly, it could take a very 

long time to find one that is successful. Even if a change does appear to 

be successful, actually proving that it is successful is impossible because 

it depends on a measure of lifetime future value. The only way that one 

can obtain an actual measure of lifetime future value, though, is to actu-

ally follow through to the end of the lifetime, but by then the opportunity 

for making any change is long past. So, the Gödel machine must estimate 

future value, but estimates are fallible and cannot be proofs, because they 

are always inductions, not deductions. That seems to be a contradiction. If 

making a change depends on proof, but proof cannot be obtained, then the 

system could never make any changes.

The biggest problem with the proposed Gödel machine, however, is 

the idea that we can provide it with a sufficiently complete set of elemen-

tary problem-solving techniques that it could actually use to solve unan-

ticipated problems. It is ironic that Schmidhuber would call his machine 

a Gödel machine when Gödel’s incompleteness theorems prove that such 

systems cannot be complete. No formal system, and the Gödel machine is 

a formal system, can be complete, and no formal system can prove its own 

consistency. We have already seen the impossibility of listing out a com-

plete set of commonsense facts (see chapter 7). The idea that there is some 

set of elementary problem-solving methods from which all other problem 

solving could be derived is equally unlikely.
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Schmidhuber’s machine is designed to be purely deductive in Copeland 

and Shagrir’s sense. If we had a set of elementary problem-solving meth-

ods, it is not clear how they could be combined deductively to actually 

solve problems. Rather, the machine would have to create hypotheses that 

might or might not be correct and then evaluate those hypotheses against 

the actual problem situation. It could, perhaps, combine modules in novel 

ways, because it is limited to just those modules it has. It is limited to find-

ing a path through a specific parameter space. It still cannot create new 

spaces, but that is just what is required for intelligence.

A hierarchical system, like the Gödel machine, would suffer from two 

additional problems: the time it takes to discover whether a module could 

actually solve the problem and the combinatorics of trying different groups 

of modules to attempt to solve the problem. Without some powerful 

module-selection heuristics, which are incompatible with the deductive 

structure of the Gödel machine (because the heuristics cannot be proved 

correct), such a hierarchical system would find itself lost in thought. The 

heuristics used in current narrow problem solving are the result of human 

analysis of the properties of the problem being solved. These heuristics are 

built into the system’s representation of the problem. It is not clear where 

such heuristics would come from in the case of a hierarchical system.

Learning which modules to apply in any situation would necessarily 

require a great deal of failure. When a module navigates its problem space, 

a single step in the wrong direction might not be very costly. Supervising 

thousands or millions of modules would take considerably longer. Each 

module would have to be trained on perhaps thousands or even millions 

of training events. If the wrong model is chosen, it may take millions of 

training examples to discover that it is, in fact, wrong. The nature of prob-

lems suggests that these alternative solutions would often have to be run 

sequentially, and so the system would have to wait until one is done before 

trying another.

Such a volume of effort would challenge even the largest computer net-

works and would inevitably take considerable time. A brute-force optimi-

zation plan simply would not be viable for a hierarchical module system. 

More complete systems might be able to solve more general problems but 

take eons to solve them. Recall the sum of three cubes problem discussed in 

chapter 11. It took 23 processor years to solve a very simple problem with 

only three variables. Problems with thousands of potential solutions would 
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take an indescribable amount of time to evaluate by brute force. No matter 

how many hedgehogs we stacked up, we still would not be able to achieve 

a fox.

Transfer Learning

Any system attempting to implement artificial general intelligence will 

need to learn from its experience. But learning to solve one problem may 

interfere with solving others.

Google’s DeepMind team has been using reinforcement learning to train 

a network to play vintage video games. In one experiment, they trained 

the system to learn 49 video games in succession, but each time the system 

learned a new game, it “forgot” how to perform with the previous one. It 

started from scratch every time it learned a new game. The problem of los-

ing previously learned tasks when learning new ones is called catastrophic 

forgetting.

Rachit Dubey and his colleagues studied how long a reinforcement learn-

ing system took to learn video games like those studied by the DeepMind 

team. In one experiment, people took about 3,000 action units to learn to 

play a game, but the computer took about 4 million actions (an action was 

a key press, for example). When Dubey and his colleagues changed the 

appearance of the game elements, things took an interesting turn.

Their game contained primitive low-resolution graphics, but with recog-

nizable objects, such as ladders, keys, spikes, and doors. When the experi-

menters modified the appearance of these objects, so that they could not be 

immediately recognized by a human player, play became much harder for 

the humans, but not for the computer. Depending on the exact manipula-

tion, the human time to learn the game increased to 20 minutes, whereas 

the machine learning time remained approximately constant for most 

manipulations. People took advantage of their commonsense knowledge 

that doors open, that ladders could be used for climbing, but the com-

puter did not have this background knowledge and so was unaffected by 

the manipulation.

Then another new game was shown to users in which getting to the 

princess was one solution, but other solutions were possible. The people 

who learned the game focused on getting to the princess and failed to even 

explore hidden reward locations. A randomly started machine, in con-

trast, tended to find these additional rewards because it did not have an 
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expectation that the princess was the goal of the game. People could trans-

fer their knowledge of other games that they had played and their knowl-

edge of how objects of the world can be used to support actions, but this 

knowledge was not always a benefit.

The phenomenon of negative transfer is a well-known issue in human 

problem solving. The early Gestalt psychologists studied what came to be 

called the water jar problem, originally described by Abraham Luchins in 

1942. In this problem there are three jars, each of which holds a certain 

amount of water, and the goal is to end with one of the jars holding a spe-

cific amount.

One of Luchins’s problems involves a 29-liter, a 3-liter, and a 21-liter jar. 

The goal is to end with a jar containing exactly 20 liters. It would be dif-

ficult to measure out exactly 20 liters with only a single jar, but by pouring 

water from one jar to another, the problem can be solved.

Think for a moment about how you would solve this problem. The water 

jar problem is well structured and has perfect information. All of the infor-

mation you need to solve the problem is contained in the description. It is 

a formal problem in that you can solve it without actually having to deal 

with jars or water. It depends on the properties of arithmetic, not on the 

properties of water.

Here is how to solve this problem (for clarity, let’s label the jars A, B, and 

C, respectively):

Fill the 29-liter jar, A.

Dump water from jar A into the 3-liter jar, B, leaving 26 liters in the first jar.

Empty the water from jar B.

Dump another 3 liters from jar A into jar B, leaving 23 liters in jar A.

Empty jar B.

Dump another 3 liters from jar A into jar B, leaving 20 liters in jar A.

Problem solved.

Table 6 shows a series of 10 problems. Take a moment and solve these 

problems, if you will.

People often get faster at solving these problems as they move through 

the list. They show positive transfer from one problem to the next. A com-

puter using reinforcement learning would take about the same amount 

of time to solve each problem. It is not clear how machine learning, as 
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currently employed, could be used to provide positive transfer from one 

problem to the next without some explicit design for this specific set of 

problems. The people who come to participate in such a study do not usu-

ally have any specific training or knowledge of these problems before they 

start, except perhaps if they are serious fans of the Die Hard movies, where a 

problem like these is part of the plot of Die Hard with a Vengeance.

Problems 1–9 can all be solved using the same set of moves: Fill jar B, 

subtract jar C twice, and subtract jar A once (B – 2C – A). For problems 1–5, 

this pattern is the simplest way to solve the problem. Problems 6–9 can be 

solved using this same set of moves, but they can also be solved using a 

much simpler pattern of moves. Problems 6 and 9 can be solved using the 

moves A – C. Problems 7 and 8 can be solved using the move A + C. Because 

problems 6–9 can be solved using the same pattern as the earlier problems, 

participants rarely recognize that there is, in fact, a simpler way to solve the 

problem; 83% of participants used the same set of moves, (B – 2C – A), on 

problems 6 and 7, and 79% used it on problems 8 and 9. Perhaps surpris-

ingly, a full 64% of participants did not solve problem 10 at all. People who 

got only problem 10, on the other hand, were overwhelmingly (95%) able 

to solve it, but the participants who were given the first nine problems were 

not. Luchins called this failure to solve problem 10 the Einstellung effect, or 

functional fixity. People performed the metatask of generalizing from one 

problem to the next; they had no reason to challenge their generalization 

Table 6

Problem
Capacity of 
Jar A

Capacity of 
Jar B

Capacity of 
Jar C Goal Quantity

1 21 127 3 100

2 14 163 25 99

3 18 43 10 5

4 9 42 6 21

5 20 59 4 31

6 23 49 3 20

7 15 39 3 18

8 18 48 4 22

9 14 36 8 6

10 28 76 3 25



298	 Chapter 12

on problems 6–9, and they tried to apply the same method to problem 10 

where they failed.

This set of problems illustrates that transfer learning is not necessarily as 

straightforward as one might hope. It can be useful to solve problems, but it 

can also interfere with solving them. These problems show that people can 

be very good at transferring useful information from one problem to the 

next, at least under certain circumstances. The more similar the two prob-

lems are in their surface structure (for example, they all involved jars and 

water), the more likely the people are to be able to identify the analogy. We 

enhanced the similarity when we labeled the jars A, B, and C, which made 

the analogy from one problem to the next more obvious.

But these problems also demonstrate a phenomenon called confirma-

tion bias. People tend to look for information that confirms their beliefs 

rather than information that challenges them. Problems 6–9 were consis-

tent with the beliefs that they had extracted from the first five problems, so 

there was little reason to lead the solvers to find a simpler solution.

The right analogy can be helpful, but the wrong analogy, as for problem 

10, can be harmful. When Luchins told the participants after problem 5 

“Don’t be blind,” a full half of them found the simpler solutions for the 

remaining problems.

Confirmation bias is another heuristic that may be useful to select an 

effective module, but it can be a problem when it prevents the system from 

considering methods that would be obvious without the bias. Bias helps to 

solve problems, except when it does not.

A current machine learning system might be designed to address this 

kind of transfer of learning situation for this suite of problems. Each water 

jar problem has a clear state space and clear methods for moving from one 

state to the next. Reinforcement learning would probably suffice as a train-

ing mechanism. But designing a system that is not specific to these particu-

lar problems or even this kind of problem remains a challenge.

Transfer from one problem to the next depends on the similarity of the 

two problems, but similarity is itself a difficult concept. In principle, the 

more features two items share, the more similar they are, but as we have 

noted, any pair of items shares an infinite number of features. People seem 

to select a subset of them for any comparison. In current machine learning 

projects, the features to be compared are selected by the designer. An artifi-

cial general intelligence agent would not, presumably, have the benefit of 
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a designer for unanticipated situations and so would have to find its own 

way to select relevant features.

Consider the problem where three cannibals and three missionaries 

arrive at a riverbank. They want to cross the river, and there is a boat that 

can hold two people. If at any time on either bank, the cannibals outnum-

ber the missionaries, the cannibals will kill and eat the missionaries. How 

do they get across the river?

If you remember how to solve the hobbits and orcs problem (see chapter 

2), then this problem will seem similar and easy. In both cases, we make 

some commonsense judgments that the river could not be crossed without 

the boat, and so on (see chapter 7). These assumptions are not stated in the 

problem description, and it is not clear how a machine would know them.

Another assumption is that hobbits and orcs are immutable. A hob-

bit cannot become an orc, and an orc cannot become a hobbit. But that 

assumption is not valid for the cannibals and missionaries. The missionaries 

are presumably in the land of the cannibals to convert the cannibals—more 

commonsense knowledge. One way to solve the river-crossing problem 

would be to convert the cannibals so they would no longer be dangerous. 

Then it would be easy to get everyone across the river safely. The similarity 

of the two problems could then get in the way of solving the hobbits and 

orcs problem if one first learned the conversion solution to the missionar-

ies and cannibals problem. Because orcs cannot be converted, the problem 

solver might be stymied by attempting to transfer what was learned about 

missionaries and cannibals to the hobbits and orcs problem.

Expert problem solvers address the transfer problem by using more 

abstract knowledge of the problem. Relative to novices, they are less 

affected by the surface properties of the problem and more affected by 

the physical principles that they entail. Artificial general intelligence will 

require some abstraction methods to be able to improve the quality of the 

transfer learning that they employ. They will probably require some theory 

of the domain in which they are solving problems, a theory gained through 

experience. A theory is a representation that is more principled and more 

abstract than a catalog of observations.

Intelligence Entails Risk

Einstein did not come up with the photoelectric effect or his theory of gen-

eral relativity by searching a space of potential parameter values. A scientific 
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theory is a new way of representing the part of the world with which it is 

concerned. And because scientific theory building is one of the highest rec-

ognized forms of intellectual activity, it is useful to consider what we know 

about constructing such representations. We can leverage the analysis that 

was applied to understanding how scientific theories are created to help us 

understand how intelligence more broadly might be constructed.

For example, about the time that Einstein was coming up with his great-

est work, a group of philosophers, the logical positivists, were working 

toward a goal of making scientific theories more consistent and logical (see 

chapter 2). The theories of relativity and quantum mechanics disrupted 

the core of physics as it was then understood. The positivists assumed that 

there must have been something wrong with the practice of science that let 

physicists deceive themselves into believing that the Newtonian view was 

correct. These philosophers set about developing an approach that would 

prevent them from ever being deceived again like that.

The logical positivists sought to remake science into a purely deductive 

process, like Schmidhuber’s Gödel machine. They wanted to limit scientific 

statements to observation statements, like “That ball is red” and deductions 

from those observations. Their approach failed in part because there are no 

pure observation statements. Stephen Jay Gould, for example, discussed 

faulty observations in science that were used to support racial theories 

about intelligence. Other scientists subsequently criticized Gould’s analysis 

(Lewis et al., 2011).

More critically, scientific theories depend on making predictions about 

things that have not yet been observed. Theories transcend observations 

and deductions. They reflect risky (meaning they could be wrong) infer-

ences that are different from observations and deductions. They are extrap-

olations from models; they are not deductions from known observations.

Although there were observations that were consistent with Einstein’s 

theories (for example, the Michelson–Morley experiment of 1887 on the 

speed of light), his theories were important not so much in describing what 

had been observed but in predicting what would be observed under specific 

conditions. Some of these predictions were not evaluated until 2016, about 

a hundred years after Einstein first proposed his theories of relativity.

He could have been wrong about his predictions, so they were not 

deduced from the observations already available; they were risky predic-

tions that turned out to be correct. The theories were created, not deduced. 
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Predictions are necessary to intelligence, and deductions are not sufficient 

to yield them. How exactly a theory can be represented for machine learn-

ing and artificial general intelligence remains an open question.

Creativity in General Intelligence

Mozart is well-known today not for his ability to play the violin but for the 

music that he composed. Einstein won the Nobel Prize for his creative work 

on the photoelectric effect, which, one might argue, was one of his lesser 

creative accomplishments. Gerald Edelman won his Nobel Prize in Physiol-

ogy or Medicine for his work on the immune system and its ability to learn. 

In fact, every one of the Nobel Prizes in science was awarded to someone 

who created an elegant understanding of a complex phenomenon. In artifi-

cial intelligence terms, every one of them created a novel and effective way 

of representing their problems.

This aspect of genius is currently missing from our computational intel-

ligence systems. The fact that people can do it suggests that it is, in prin-

ciple, possible for machines, but even for people, it does not come along 

frequently.

Good ideas—for example, new scientific theories or great musical com-

positions—do not come along every day. Many problems persist for years 

before someone comes up with a solution for them. While good ideas are 

not common, neither are they so rare as would be expected if they occurred 

by chance. The finding that important theories are often invented inde-

pendently, but nearly simultaneously (I’m thinking of Charles Darwin 

and Alfred Russel Wallace both coming up with the theory of evolution at 

essentially the same time) suggests that something in the “air” encouraged 

both men to think along the same lines. Inventions and discoveries like this 

are clearly nonrandom, but neither do they occur on demand. As Pasteur 

said, “Chance favors the prepared mind,” but we have yet to learn exactly 

what that preparation consists of or how to provide it to machines. And, is 

it really chance?

In some special sense, limited creativity by an artificial agent is very 

common. AlphaGo could be said to be creative when it made a move that, 

apparently, had never been made before by a human go player. The move 

was so shocking to its human opponent that he got up from the table and 

walked around for some time contemplating what it meant.
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Celebrated examples of human creativity, such as a Mozart symphony 

or Einstein’s theory, seem to be of a different sort than the surprising move 

that AlphaGo produced. A Mozart symphony is not just a deduction from 

past compositions, nor is it a simple extrapolation or recombination of 

what had gone before. Pablo Picasso and Georges Braque’s creation of cub-

ism, as another example, was a shocking departure from the approaches to 

art that preceded it. Really celebrated acts of creativity go outside the space 

of existing parameters. They create new sets of parameters.

When seen this way, creativity is not magic. It does not rely on any kind 

of miracle but on recombination and, more importantly, on reconceptu-

alization. The trick in getting computers to be more than trivially creative 

is to figure out how they could be programmed to reconceptualize and 

change the rules or the space of a problem.

Growing General Intelligence

Education plays a crucial role in producing general intelligence in humans. 

Even though machine systems and human brains are very different, maybe 

if we gave machines the kind of educational experience that we give people, 

they would learn to be generally intelligent. In the context of human expert 

performance, for example, there is a lot of evidence that a certain amount 

of experience is necessary to achieve expert level performance.

In 1931, Winthrop Kellogg set about raising a young chimpanzee, 

named Gua, along with his young son, Donald. Kellogg was interested in 

the nature/nurture question of whether an ape raised as a human would 

come to act like a human. To Kellogg’s disappointment, Gua learned many 

things faster than Donald did but never showed any interest in communi-

cating in a humanlike way.

Alan Turing (1948, 1950) proposed a similar approach to creating arti-

ficial intelligence with a computer. Rather than try to build a fully adult 

intelligence in a computer, he talked about building a machine that simu-

lated a child. With an appropriate course of education, he argued, it could 

grow into an adult intelligence.

Actually, he argued for creating a number of these child machines and 

comparing them one against another to identify the best methods to use. 

He saw this competitive process as similar to evolution but hoped that with 

direction it could evolve intelligence more quickly than evolution did.



General Intelligence	 303

If we focus on intellectual functions, then it looks like a child’s brain is 

simpler than that of an adult. But Moravec’s irony is that computer simula-

tion or emulation of higher cognitive function is actually easier than simu-

lating the kind of activities that children engage in. Processes like face or 

voice recognition, bipedal balance, and others that we usually ignore in 

artificial intelligence research are actually more difficult than playing chess 

or answering questions. We have begun to make progress on these, but that 

progress is relatively recent compared to the functions that we usually hold 

up as examples of intelligence.

Still, the idea of starting with a simpler system and letting its experi-

ence train it is a valuable idea, whether we faithfully simulate a child or a 

young chimpanzee. Machine learning can be a powerful tool in evolving 

an intelligence.

Nick Bostrom argued that to be effective, such a system would improve 

mainly through trial and error (which takes time) but would necessar-

ily be “able to understand its own workings sufficiently to engineer new 

algorithms and computational structures to bootstrap its cognitive per-

formance” (Bostrom, 2014, p. 29). It must be able to recursively improve  

itself.

Recursive self-improvement means for a system to update its state within 

its problem space. That is the definition of machine learning. It’s not clear, 

however, what “understanding its own workings” might mean in the con-

text of machine learning. Presumably, a system would employ one sub-

system to evaluate its operational capabilities, identify its limitations, and 

work to overcome them. Overcoming them would presumably mean find-

ing new representations and optimizations, instantiating new algorithms 

and cognitive structures—representations. Such capabilities are not even 

being investigated at the present time. It is easy to imagine how a metale-

arning machine that learned to improve itself might revolutionize artificial 

intelligence if it were to exist. But it is not at all obvious how one could 

actually be built.

Whole Brain Emulation

Arguably, the best model for general intelligence is the human brain. One 

approach to building artificial general intelligence is to emulate the human 

brain (see chapter 5). The idea is to duplicate as closely as possible the 
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operations of each individual neuron and its connections. To the extent 

that we can emulate the entire brain, we should then be able to duplicate 

its function. The argument is that we would not really need to understand 

how the brain does its computations; rather, by building a machine that 

implements the same function at the level of neurons, we would automagi-

cally build a system that would implement the same intelligence.

Using the brain as a metaphor for computational intelligence has in fact 

shown itself to be a powerful tool. The neural network modeling that has 

been in widespread use since the 1980s has addressed many problems that 

were previously resistant to solution. But this level of modeling is very far 

from brain emulation. The neurons that are simulated and the structure in 

which they are organized are both distant approximations of how brains 

actually work. It is more correct to say that current neural network models 

are inspired by real neurons than to say even that they simulate them. 

Whole brain emulation, on the other hand, implies much more faithful 

reproduction of the structure and function of the brain than has been avail-

able in computational neural networks.

I am not at all confident that we will have a sufficient understanding of 

the human brain, its structure, and the functions of the neurons it contains 

any time soon. Neuroscience has made enormous strides over the last few 

decades, but in comparison to what we would need to know to emulate 

the brain, that science is still in its infancy, I believe. We don’t even know 

how neurons store memories (Sardi, Vardi, Sheinin, Goldental, & Kanter, 

2017). In chapter 5, we discussed an experiment that found that the mem-

ory stored in a neuron can change over time, even reversing (Driscoll, Pet-

tit, Minderer, Chettih, & Harvey, 2017). We have had the full connection 

pattern of the neurons of the roundworm C. elegans, but we still cannot 

simulate its behavior.

We might soon have the computational capacity to emulate the human 

brain, but we are extremely far, I believe, from knowing what it is that we 

want to emulate. Understanding the operation of the brain continues to 

be helped by broadening computational capabilities, but those capabilities 

cannot solve the fundamental neuroscience issues that block our under-

standing of the brain. At this point, it is pure science fiction to think that 

we can emulate a brain, let alone record the state of the brain sufficiently 

to extract the personality from it and implement the personality in a com-

puter as some people have suggested.
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Analogy

Analogical reasoning is likely to be a key feature of artificial general intelli-

gence. Until computers can solve analogy or abstract classification problems 

in a generic way, they will be limited to the navigating a predetermined 

space. Kekulé’s dream led him to the structure of benzene because he saw 

a relationship between the snake eating its own tail and the structure of 

the benzene molecule. Metaphor use often entails finding a property that 

is shared between two things. In Kekulé’s case it was the shape of the tail-

eating snake and the shape induced by the physical forces that connected 

the atoms of the benzene molecule. Mendeleev saw a helpful analogy 

between a familiar card game and the arrangement of elements in the peri-

odic table. The more surprising metaphors are those that involve an atypi-

cal feature that is common between two things. Surprising metaphors are 

the ones that are useful for creative thinking because they lead to unusual, 

and sometimes useful, ways to think about things.

A related potential source of ideas is jokes, particularly puns. There are 

several theories of what makes a joke funny. In the case of puns, the most 

likely one is incongruity theory. According to this hypothesis, a pun is 

humorous when it leads you think one thing and then discover that the 

word was used in an incongruous way. Here’s one: “My ex-girlfriend misses 

me . .  . but her aim is getting better.” The setup of the pun leads the lis-

tener down a garden path, which has to be reanalyzed when the punchline 

reveals the incongruity.

The point of thinking about puns is that they indicate a way of thinking 

that has not been investigated in the context of machine intelligence. Puns 

expose a kind of ambiguity. Reducing that ambiguity when we hear the 

punchline highlights a different set of relations than we had in mind when 

we heard the setup of the pun. The new relations revealed by the incongru-

ity can be the source of creative ideas. These new relations can lead to a 

reformulation of the problem’s representation.

Similar kinds of reformulation could be useful for computational intel-

ligence. The analogy between the dance party and the mutilated checker-

board in chapter 2 helped people solve the checkerboard problem. Analogy 

in the water jars problem both helped and hindered solutions of related 

problems. Can we find a mechanism that would allow machines to identify 

the right properties to include in an analogy and then take advantage of 
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them to solve new problems? Simply supplying a computer with a set of 

analogies that it could apply to problems runs into the same incomplete-

ness issues as other attempts to find an exhaustive set of primitives. As 

in other areas, it is unlikely that anyone could come up with some set of 

sensible primitives.

Finding analogies between problems is difficult for humans to do, and 

it remains a formidable challenge for computers. Current approaches to 

finding analogies include expensive hand-created databases. There are no 

known methods of using machine learning effectively to identify useful 

previously unknown analogies. But there is no principled reason why a 

computer could not eventually have this skill.

Other Limitations of the Current Paradigm

Machine learning systems are dynamic. Machine learning uses its optimiza-

tion method to adjust the system’s state, typically by small steps at a time, 

to better approach the system’s goals. Machine learning is possible because 

of certain inherent constraints on what can be learned. For example, a 

machine that is learning a concept typically requires examples of the cat-

egory members and examples of things outside the category. The members 

of each category are not completely arbitrary but are similar in some way 

to each other. The success of machine learning depends on this similarity 

assumption because it will classify unseen items by how similar they are to 

the learned categories. Without the assumption that similar items should 

be treated similarly, the best a machine could do would be to memorize 

the examples, and then it would fail completely to apply this knowledge to 

examples it had not seen.

Machine learning optimization also typically breaks the learning process 

down into small steps. At each adjustment, the system makes small changes 

to its state or parameters. Large changes have the potential to adjust the 

learning system from one poor state to another when there is actually a 

position in between the two that would be a better choice.

Machine learning, thus, depends on a “continuity” assumption. It 

assumes that similar items are to be treated similarly and that small changes 

will have small effects on its assessment.

A dynamic system is one where the state of the system changes over time 

as the result of interactions among its elements. For example, the number 

of bass fish in a lake depends on the rate at which parent fish spawn, the 
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rate at which the eggs hatch, and the rate at which fish die. The population 

is described, then, as a dynamic system where hatching, spawning, and 

dying all depend on one another.

Machine learning systems are dynamic systems, but not all dynamic sys-

tems meet these continuity assumptions. Chaos theory (sometimes called 

the “butterfly effect”), for example, describes dynamic systems where small 

variations can produce very big changes. The behavior of these systems is 

easy to predict over very short time ranges but impossible to predict over 

longer time ranges. Even very simple systems can behave chaotically.

Chaos theory describes dynamic systems where rules determine how the 

system transitions from one step to the next. Chaotic systems are, there-

fore, easy to predict over the short term, because each step is governed by 

a specific rule. Over the long term, however, chaotic systems appear to be 

random because these systems are sensitive to very small changes and inac-

curacies, such as rounding error. Chaotic systems are sometimes called the 

butterfly effect, because, in principle, the tiny effects of a butterfly flapping 

its wings in Brazil could ultimately affect whether there will be a hurricane 

in Florida. Small changes can lead to big seemingly random effects over 

time.

Edward Lorenz, one of the early pioneers in the study of chaos, first 

noticed it when doing a weather simulation in 1961. He wanted to replay 

part of a computerized weather simulation and restarted the simulation 

partway through by manually entering the numbers that had been printed 

out at that stage. To his surprise, the machine began to predict weather 

substantially different from that predicted in the earlier run. The reason 

for the difference eventually came down to the number of digits that he 

had entered when he restarted the simulation. The computer worked with 

six-digit precision, like 0.143234, but when the program saved the num-

bers from the previous run, it only printed out three digits, like 0.143. 

That difference was tiny, but in the context of weather and its inherent 

chaos, even such small differences led to huge variations in the predicted  

weather.

Chaos theory is important in the context of intelligence because it is an 

example of a situation that is so very different from the kind of behavior 

we observe in games and many other artificial intelligence situations. It 

violates the continuity assumption over substantial time frames, even as it 

adheres to it over brief time frames.
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Chaotic behavior is common to many natural dynamic systems, includ-

ing those that would be likely to concern an artificial general intelligence 

agent, including weather, road traffic, anthropology, sociology, popula-

tion ecology, environmental science, computer science, and meteorology. 

Unlike games, life is more often characterized by dynamic systems, involv-

ing feedback loops and often involving chaotic behavior patterns. Artificial 

general intelligence will have to deal with these real-world phenomena, not 

just the well-structured patterns of games.

My larger point is that the kind of processes that govern games are not 

applicable to many of the other phenomena in the world. It is not just 

that other problems are more complex than games; it is that the kinds of 

processes that are effective for solving games are not likely to be effective 

for phenomena that involve hidden and uncertain information. Business 

negotiations, weather forecasting, elections, war, even neural activation 

may be more correctly described as chaotic. We will need different kinds of 

computational tools to address these situations, not just more of the same 

ones that let a computer win at go.

General intelligence will require a paradigm that enables the system 

to learn overarching principles from its experience on specific problems. 

That computer will have to understand novel metaphors and analogies. It 

will have to create its own problem representations. Current approaches 

to computational science begin with much of the problem already pre-

structured in the representation provided by their designers. An agent 

cannot be said to be generally intelligent unless it can structure its own  

problems.

A generally intelligent agent may not have to perform in the same way 

that humans do, but there is still much to be learned from human perfor-

mance. A human child learns to identify rabbits after one or a few expo-

sures. Deep learning systems may require millions of exposures. We will 

have to identify the constraints that let a human child jump to a conclu-

sion without all of the painstaking effort involved in learning the right 

parameter values in the computer’s deep learning network.

When computational systems do try to exploit the knowledge of 

humans performing similar tasks, they often depend on people to describe 

how they think they are accomplishing the task. But these reports are lim-

ited and unreliable. They are often rational reconstructions or convenient 

fictions describing what must have happened rather than describing what 



General Intelligence	 309

did happen. Clever experimentation often reveals that how people say that 

they do tasks does not correspond to objective measures of their perfor-

mance. Many tasks cannot be described at all.

Metalearning

Metalearning is learning about learning or learning how to learn. Meta-

learning might be available to extend the kind of problems a computer 

might be able to solve, but metalearning is not without its own problems. 

Metalearning can interfere with problem-solving as well as support it. 

Recall the water jars problem. When transfer prevents people from finding 

an adequate solution, it can lead to artificial stupidity instead of artificial 

intelligence.

The standard computational approach to solving the water jars prob-

lem, though, would treat each problem independently. An engineer could 

design a method that keeps track of the effective moves from one problem 

and prioritize them in exploration of the state space. Such a system would 

solve the first nine of Luchins’s problems using the same pattern. Because 

the pattern learned during the first five problems continues to solve the 

next four, this system, too, would fail to find the simpler solutions for the 

latter problems. It would initially fail on the tenth problem, but then it 

would eventually be able to find a solution because it only prioritizes, it 

does not eliminate, previously effective moves. After it solved problem 10, 

would it have forgotten how to do the earlier problems and need to start 

from scratch?

This engineering approach would be entirely specific to this particular 

set of problems. The current machine learning paradigm does not have a 

mechanism for abstraction. It would have to be explicitly designed as part 

of the problem representation, but an artificial general intelligence would 

have to be equipped with such a mechanism.

Without a common representation for the successive problems in this 

set, there can be no generalization, but how can a machine using current 

methods come up with this shared representation? How does it know what 

representation to use?

The water jar problem and many others that we have explored are fairly 

simple. They are limited not by the number of possible moves as was the 

problem with games like go. Rather, they suffer from what is so far a fun-

damental limitation—current computer systems cannot design their own 
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appropriate problem representations. This is probably the central problem 

to having artificial general intelligence.

Insight

Insight is an essential part of intelligence. Recognizing that some known 

problem solution can be applied to a new problem is a necessary part of that 

insight, but I doubt that any current conventional approach to machine 

intelligence is capable of achieving that task. Metalearning would allow 

the system to learn about the capabilities of each of the known problem-

solving approaches. At least in theory, metalearning would allow a system 

to select among the known solutions, but it is not adequate to create new 

solution spaces.

People may also have problems creating representations, but some of 

them do create them sometimes. To create an artificial general intelligence, 

we will need to find out how people create new representations and will 

have to create something analogous for machines.

The mathematician Henri Poincaré tried to describe this kind of problem-

solving process from his own work:

To invent, I have said, is to choose [among all of the possible variations in a given 

area]; but the word is perhaps not wholly exact. It makes one think of a purchaser 

before whom are displayed a large number of samples, and who examines them, 

one after the other, to make a choice. Here [in mathematics] the samples would 

be so numerous that a whole lifetime would not suffice to examine them. This 

is not the actual state of things. The sterile combinations do not even present 

themselves to the mind of the inventor. Never in the field of his consciousness 

do combinations appear that are not really useful, except some that he rejects but 

which have to some extent the characteristics of useful combinations. All goes on 

as if the inventor were an examiner for the second [academic] degree who would 

only have to question the candidates who had passed a previous examination. 

[From “The Foundations of Science” by Henri Poincaré, first published in Paris in 

1908 and here translated from the French by G. B. Halstead.]

If invention were just a matter of choosing among known representa-

tions (Poincaré’s “all of the possible variations”), then it would be ame-

nable to current computational approaches. Invention would be nothing 

but search. But Poincaré goes on to dismiss this interpretation, noting that 

only some possibilities are considered. He is not at all clear about how some 

come to be selected for consideration, but that would be an important part 

of addressing this problem. Just as the expert chess player is selective about 
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which potential moves she considers, an inventing intelligence has to be 

selective about just which possibilities are considered.

Poincaré goes on to describe some specific problems that he worked on:

For fifteen days I strove to prove that there could not be any functions like those I 

have since called Fuchsian functions. I was then very ignorant; every day I seated 

myself at my work table, stayed an hour or two, tried a great number of combina-

tions and reached no results. One evening, contrary to my custom, I drank black 

coffee and could not sleep. Ideas rose in crowds; I felt them collide until pairs 

interlocked, so to speak, making a stable combination. By the next morning I had 

established the existence of a class of Fuchsian functions, those which came from 

the hypergeometric series; I had only to write out the results, which took but a 

few hours.

Once he found a representation, verifying it took little effort and appeared 

almost automatic.

Then I wanted to represent these functions by the quotient of two series; this idea 

was perfectly conscious and deliberate, the analogy with elliptic functions guided 

me. I asked myself what properties these series must have if they existed, and I 

succeeded without difficulty in forming the series I have called theta-Fuchsian.

He does not say in this essay why he wanted to represent these functions by 

a quotient, but that, too, gets pretty directly at identifying representations 

to solve problems.

Just at this time I left Caen, where I was then living, to go on a geologic excursion 

under the auspices of the school of mines. The changes of travel made me forget 

my mathematical work. Having reached Coutances, we entered an omnibus to 

go some place or other. At the moment when I put my foot on the step the idea 

came to me, without anything in my former thoughts seeming to have paved the 

way for it, that the transformations I had used to define the Fuchsian functions 

were identical with those of non-Euclidean geometry. I did not verify the idea; I 

should not have had time, as upon taking my seat in the omnibus, I went on with 

a conversation already commenced, but I felt a perfect certainty. On my return to 

Caen, for conscience’ sake, I verified the result at my leisure.

Poincaré then goes on to discuss two more examples of ideas revealing 

themselves to his conscious mind with little apparent immediate effort. 

In both of these cases, as well, he verified his results afterward when it was 

convenient.

Even though Poincaré could not describe explicitly the process by which 

he identified these novel representations, clearly some kind of work was 

going on in his brain. He noted that his new representations were analogous 
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to some previous ones that he knew about; they were not invented out of 

whole cloth, but the method by which the analogy was identified remains 

unclear. Nevertheless, a method for selecting targets for potential analogies 

needs to be discovered if we are to build an artificial general intelligence. 

Perhaps we need it to take more excursions to the countryside.

One way to interpret Poincaré’s observation is that it combined the ill-

formed, call it intuitive, function of the unaided brain with the deliber-

ate artificial intelligence of a trained mathematician. The natural intuitive 

capabilities of the brain operated to select ideas for consideration, perhaps 

on the basis of similarity. Both functioning together allowed Poincaré to 

identify solutions to his problems and then to deliberately verify them at 

his leisure.

It was only after he stopped deliberate thought about the subject that the 

intuitive native problem-solving could appear, a process called incubation. 

Many insight problems are solved, only after deliberate thought has been 

stopped, by a trip to the countryside or by a doze by the fire (Kekulé’s dream 

discovery of the benzene ring). The convergence of natural intelligence and 

artificial intelligence was what apparently gave rise to these insights.

For computational intelligence to really be general, it will have to find a 

way to better emulate the insightful part of the human mind or find a way 

to substitute for it. Table 7 summarizes some of the features of natural and 

artificial intelligence in people.

Artificial intelligence is consistent with the intellectual accomplish-

ments that we usually think of as intelligence. But the properties of what I 

am calling natural intelligence also play a role in human accomplishments. 

In cognitive psychology, these so-called natural properties are sometimes 

dismissed as bias or errors, but they also seem to play an important role 

in everyday cognition and in creative problem solving. A system that can 

quickly come to a conclusion before all of the evidence is in will be able to 

act more quickly than one that conducts a full analysis, but sometimes that 

quick conclusion will be wrong.

Natural intelligence depends strongly on pattern recognition. Things 

that seem familiar, in general, will not have to be deeply considered each 

time. Natural intelligence uses heuristics to guide its decisions, to limit the 

amount of processing it has to do. Again, these heuristics are not guaran-

teed to be correct. They are risky, but they may also be necessary.
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People invented artificial intelligence to overcome the shortcomings of 

natural intelligence. Artificial intelligence allows people to be systematic 

about their decision making. They may not evaluate all possibilities—even 

under the best of circumstances human rationality is bounded—but we 

have developed tools that help us to keep track of more alternatives than 

our natural intelligence can handle.

Computational intelligence typically requires many training examples 

for the system to learn. Humans can learn many concepts after only one 

or two examples. If we are to achieve general artificial intelligence in com-

puters, we will need to reduce the effort required to achieve it. Requiring 

20 million frames of experience to learn a video game is not a good long-

term solution, no matter how fast we make a computer. Slow and deliberate 

learning could conceivably work for formal problems, like games, but it is 

entirely infeasible as a strategy for a dynamic physical world where not get-

ting it right could be fatal.

Table 7

Natural Intelligence Artificial Intelligence

Pattern recognition Logic

Automatic Deliberate

Fast Slow

Incomplete Complete

Lookup Compute

Disorderly Orderly

Jumps to conclusions Reasons systematically

Inconsistent Consistent

Impressionistic Evaluative

Heuristic Algorithmic

Implicit Explicit

Diffuse Focused

Associative Statistical

Metaphoric/Analogical

Emotional

Impulsive

Overconfident
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Faster computers without better methods will not be enough. We need 

computer programs that can figure their way around problems, not just 

push through the designed space.

A Sketch of Artificial General Intelligence

Albert Einstein is quoted as saying that everything should be made as 

simple as possible, but no simpler. What computational intelligence has 

delivered has often been dramatic, but its narrow focus actually interferes 

with its ability to deliver artificial general intelligence. Current approaches 

to artificial intelligence may have oversimplified general intelligence out 

of existence by focusing on a small group of problem types (for example, 

games and other well-formed problems) and a narrow set of solutions to 

them.

The focus on a small group of tasks means that other tasks, which may be 

theoretically more important, have been neglected. The focus has allowed 

investigators to avoid much of the complexity of the physical and social 

world by incorporating commonsense knowledge implicitly in the repre-

sentational models that have been used (their TRICS). The focus has been 

so complete that investigators do not seem even to notice that there are 

other kinds of tasks that have not been addressed.

The fear that computers will soon be able to improve themselves uncon-

trollably is due in part to the lack of awareness of just how limited the 

current mechanisms of computational intelligence are and the degree to 

which their capabilities are strongly dependent on their designers’ implicit 

incorporation of common sense in the basic design. Current systems lack 

completely any common sense beyond that installed implicitly by their 

designers. Using current approaches, a computational intelligence program 

is no more capable of explosive self-improvement than a bumblebee is 

capable of reciting one of Shakespeare’s sonnets.

Current approaches to artificial intelligence work by using data to adjust 

the parameters of a model that has been provided by the system’s design-

ers. These approaches excel at solving problems that can be addressed with 

this parameter-adjustment kind of process. System designers impose their 

common sense on the structure of these models, but so far, the computers 

themselves are not able to access any common sense that has not been 

imposed by the designer.
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The recent progress in computational intelligence has come from the 

improved insight of designers to better structure the systems’ representa-

tions, including the invention or discovery of heuristics that can limit the 

complexity of the parameter-adjustment process. Progress also comes from 

improved sources of data. Massive amounts of more-or-less curated data 

have become available from sensors, social networks, and other applica-

tions that were never available before. Continued improvement in compu-

tational intelligence depends on the combination of better representations 

and better data, not directly on better programs.

Computers have not yet achieved artificial general intelligence not 

because they lack some ineffable property that humans have, such as con-

sciousness, but because computer scientists have not been designing for 

general intelligence. Solving the problem of artificial general intelligence 

will require designs that are capable of autonomous insight.

It seems very likely that artificial general intelligence requires a con-

vergence between natural intelligence and artificial intelligence. Natural 

intelligence is what people do automatically, or easily, principally without 

explicit training. These are tasks on which computers have had only lim-

ited success. Artificial intelligence is invented. It is what people do with 

deliberate effort and explicit training. It is what computers do “naturally.”

People’s natural intelligence, which tends to be biased, incomplete, and 

approximate, but insightful and imaginative, needs to be combined with the 

logic and computational capabilities of computers because general intelligence 

demands all of these talents in order to be general. Too much rigor leaves an 

agent lost in thought, whereas too little rigor just leaves the agent lost.

Research will need to focus on these things, plus a number of others, 

to achieve artificial general intelligence. An artificial general intelligence 

agent will need to:

•	 Address ill-defined problems as well as well-formed problems.

•	 Find or create solutions to insight problems.

•	 Create representations of situations and models. What do the inputs 

look like; how is the problem solution structured (modeled)? What is 

the appropriate output of the system?

•	 Exploit nonmonotonic logic, allowing contradictions and exceptions.

•	 Specify its own goals, perhaps in the context of some overarching long-

range goal.
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•	 Transfer learning from one situation to another and recognize when the 

transfer is interfering with the performance of the second task.

•	 Utilize model-based similarity. Similarity is not just a feature-by-feature 

comparison but depends on the context in which the judgment is being 

conducted.

•	 Compare models. An intelligent agent has to be able to compare the 

model that it is optimizing with other potential models (representa-

tions) that might address the same problem.

•	 Manage analogies. It must manage analogies to select the ones that 

are appropriate and to identify the properties of the analogs that are 

relevant.

•	 Resolve ambiguity. Situations and even words can be extremely 

ambiguous.

•	 Make risky predictions.

•	 Reconceptualize, reparamaterize, and revise rules and models.

•	 Recognize patterns in data.

•	 Use heuristics even if their efficacy cannot be proven.

•	 Extract overarching principles.

•	 Employ cognitive biases. Although they can lead to incorrect conclu-

sions, they are often helpful heuristics.

•	 Exploit serial learning with positive transfer and without catastrophic 

forgetting.

•	 Create new tasks.

•	 Create and exploit commonsense knowledge beyond what is specified 

explicitly in the problem description. Commonsense knowledge will 

require the use of new nonmonotonic representations.

The problems that are best known for demonstrating high levels of 

human intelligence, such as Nobel Prize–winning scientific insights, tran-

scend the formal problem-solving approach typical of today’s computa-

tional intelligence. They involve the formulation of new principles and, 

above all, new ways of representing their subject matter in the world. We 

will have to figure out how to achieve these tasks if we are to have a hope 

of generating an artificial general intelligence. Without this change in per-

spective, we have essentially no chance of ever achieving artificial general 

intelligence, let alone the superintelligence that scares Bostrom and others.
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I believe that with the right investments, we will be able to develop com-

puter systems that are capable of the full panoply of human intelligence. 

We cannot limit ourselves to looking where the light is bright and the tasks 

are easy to evaluate.

At some point, these computational intelligences may be able to exceed 

the capability of human beings, but it won’t be any kind of event horizon 

or intelligence explosion. Intelligence depends on content as well as or per-

haps more than processing capacity. The need for content and the need for 

feedback will limit the speed of further developments.

If we fail to develop artificial general intelligence, our failure will not be, 

I think, a technological failure, but one of our own imagination.
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