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Fine-Tuning, Complexity, and Life in the Multiverse

m a r i o l i v i o a n d m a r t i n r e e s

Abstract

The physical processes that determine the properties of our everyday world, and of the
wider cosmos, are determined by some key numbers: the constants of microphysics and the
parameters that describe the expanding Universe in which we have emerged. We identify
various steps in the emergence of stars, planets, and life that are dependent on these fun-
damental numbers and explore how these steps might have been changed – or completely
prevented – if the numbers were different. We then outline some cosmological models
where physical reality is vastly more extensive than the Universe that astronomers observe
(perhaps even involving many big bangs) – which could perhaps encompass domains gov-
erned by different physics. Although the concept of a multiverse is still speculative, we
argue that attempts to determine whether it exists constitute a genuinely scientific endeav-
our. If we indeed inhabit a multiverse, then we may have to accept that that there can be no
explanation other than anthropic reasoning for some features of our world.

1.1 Introduction

At their fundamental level, phenomena in our Universe can be described by certain laws –
the so-called laws of nature – and by the values of some three dozen parameters (e.g., [38]).
Those parameters specify such physical quantities as the coupling constants of the weak and
strong interactions in the Standard Model of particle physics and the dark-energy density,
the baryon mass per photon, and the spatial curvature in cosmology.

What actually determines the values of those parameters, however, is an open question.
Many physicists believe that some comprehensive ‘theory of everything’ yields mathe-
matical formulae that determine all these parameters uniquely. But growing numbers of
researchers are beginning to suspect that at least some parameters are, in fact, random
variables, possibly taking different values in different members of a huge ensemble of
universes – a multiverse (see, e.g., [23] for a review). Those in the latter camp take the
view that the question ‘Do other universes exist?’ is a genuine scientific one. Moreover, it
is one that may be answered within a few decades. We address such arguments later in this
chapter, but first we address the evidence for fine-tuning of key parameters.

3



4 Mario Livio and Martin Rees

A careful inspection of the values of the different parameters has led to the suggestion
that at least a few of those constants of nature must be fine-tuned if life is to emerge. That
is, relatively small changes in their values would have resulted in a universe in which there
would be a blockage in one of the stages in emergent complexity that lead from a ‘big bang’
to atoms, stars, planets, biospheres, and eventually intelligent life (e.g., [2, 3, 6, 25]).

We can easily imagine laws that were not all that different from the ones that actually
prevail but would have led to a rather boring universe – laws which would have led to a
universe containing dark matter and no atoms; laws where there were hydrogen atoms but
nothing more complicated and, therefore, no chemistry (and no nuclear energy to keep the
stars shining); laws where there was no gravity; laws where there was a universe where
gravity was so strong that it crushed everything; laws where the cosmic lifetime was so
short that there was no time for evolution; or laws where the expansion was too fast to
allow gravity to pull stars and galaxies together.

Some physicists regard such apparent fine-tunings as nothing more than statistical
flukes. They would claim that we should not be surprised that nature seems ‘tuned’ to
allow intelligent life to evolve – we would not exist otherwise. This attitude has been
countered by John Leslie, who gives a nice metaphor. Suppose you were up before a firing
squad. A dozen bullets are fired at you, but they all miss. Had that not happened, you would
not be alive to ponder the matter. But your survival is still a surprise – one that it’s natural
to feel perplexed about.

Other physicists are motivated by this perplexity to explore whether ‘fine-tuning’ can
be better understood in the context of parallel universe models. In this connection, it’s
important to stress that such models are consequences of several much-studied physical
theories – for instance, cosmological inflation and string theory. The models were not
developed simply to remove perplexity about fine-tuning.

Before we explore some prerequisites for complexity, it is instructive to examine a
pedagogical diagram that demonstrates in a simple way the properties of a vast range of
objects in our Universe. This diagram (Figure 1.1), adapted from Carr and Rees [5], shows
the mass vs size (on a logarithmic scale) of structures from the subatomic scale to the
cosmic scale. Black holes, for example, lie on a line of slope 1 in this logM − logR plot.
A black hole the size of a proton has a mass of some 1038 protons, which simply reflects
how weak the force of gravity is. Solid objects such as rocks or asteroids, which have
roughly the atomic density, lie along a line of slope 3, as do animals and people. Self-
gravity is so weak that its effects are unnoticeable up to objects even the size of most
asteroids. From there on, however, gravity becomes crucial – causing, for instance, planets
to be spherical – and by the time objects reach a mass of about 0.08M�, they are sufficiently
squeezed by gravity to ignite nuclear reactions at their centres and become stars. The
bottom-left corner of Figure 1.1 is occupied by the subatomic quantum regime. On the
extreme left is the ‘Planck length’ – the size of a black hole whose Compton wavelength is
equal to its Schwarzschild radius. Classical general relativity cannot be applied on scales
smaller than this (and indeed may break down under less extreme conditions). We then
need a quantum theory of gravity. In the absence of such a theory, we cannot understand
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Figure 1.1 This diagram summarises the scales of stars, planets, black holes, and other bodies in a
log-log plot of mass against radius. Ordinary lumps lie on the line of slope 3. The mass, in units of
the proton mass, scales roughly as the cube of the radius. That line would eventually cross the black
hole line (of slope one) at a mass of about 100 million suns. However, it is curtailed before it can do
so. The reason is that any mass above about that of Jupiter (containing more than 1054 atoms) would
be crushed by gravity to a higher density than an ordinary solid. If G were different, the shape of the
diagram would not change much, but the number of powers of 10 between the scale of stars and of
atoms would scale as the inverse 3/2 power.

the Universe’s very beginnings (i.e., what happened at eras comparable to the Planck time
of 10−43 seconds).

Despite this unmet challenge, it is impressive how much progress has been made in
cosmology. In the early 1960s, there was no consensus that our Universe had expanded
from a dense beginning. But we have now mapped out, at least in outline, the evolution of
our Universe, and the emergence of complexity within it, from about a nanosecond after the
Big Bang. At that time, our observable Universe was roughly the size of the solar system,
and characterised by energies of the order of those currently realised at the Large Hadron
Collider (LHC) near Geneva. Nucleosynthesis of the light elements gives us compelling
corroboration of the hot and dense conditions in the first few seconds of the Universe’s
existence (see Chapter 7; see also, e.g., [8] for a recent review).

The cosmic microwave background (CMB) provides us with not only an astonishingly
accurate proof for a black-body radiation state that existed when the Universe was
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Figure 1.2 The fluctuations in the microwave background on different angular scales. The data come
from the Planck spacecraft. The angular scale of the strongest peak is consistent with a flat universe,
and the relative heights of the other peaks determine the baryon and dark matter densities.

400,000 years old but also a detailed map of the fluctuations in temperature (and density),
�T/T ∼ 10−5, from which eventually structure emerged. Peaks in the power spectrum of
the CMB fluctuations, mapped with great accuracy by the WMAP and Planck satellites,
can, even without any other information, offer precise determinations of a few cosmological
parameters (e.g. [13, 30]), such as the fractions of baryonic matter, dark matter, and
so-called dark energy in the cosmic energy budget (Figure 1.2).

The latter is a mysterious form of energy latent in empty space which has a negative
pressure and causes the cosmic expansion to accelerate. It was discovered through observa-
tions of Type Ia supernovae [29, 31]. Since then, however, its existence has been confirmed
through other lines of evidence, including the CMB, baryon acoustic oscillations, and the
integrated Sachs-Wolfe effect (see [28] for a brief review). The simplest hypothesis is
that the dark energy has the same properties as the cosmological constant ‘lambda’ which
Einstein introduced in his original equations, but it is possible that it has more complicated
properties. In particular, it could change with time and could correspond to just one of
many possible vacua. In addition, many lines of evidence have led to the realisation that
some form of gravitating dark matter outweighs ordinary baryonic matter by about a factor
of five in galaxies and clusters of galaxies. Here are four: (1) flat rotation curves in galaxies
extending out beyond the stellar disk; (2) the motions of galaxies in clusters of galaxies;
(3) the temperature of the hot gas in clusters of galaxies; (4) gravitational lensing. All of
these measure the depth of the gravitational potential well in galaxies or clusters and reveal
the presence of mass that does not emit or absorb light. While all the attempts to detect
the constituent particles of dark matter have so far been unsuccessful (see Chapter 9; see
also, e.g., [11] for a review), this may not be so surprising when we realise that there are
some 10 orders of magnitude between the currently observed mass-energies and the GUT
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unification energy where these particles could hide. Moreover, there are other options such
as axions and ultra-low-mass bosons.

Dark matter provided the scaffolding on which the large-scale structure formed. In fact,
while some uncertainties about the details remain (see, e.g., [6]), computer simulations can
generally reproduce the types of structures we observe on the galactic and cluster scale
while starting from the fluctuations observed by Planck and WMAP (see, e.g., [1]).

Similarly, a combination of hydrodynamics, thermodynamics, and nuclear physics has
led to a fairly satisfactory understanding of the main processes involved in stellar structure,
star formation, evolution, and stellar deaths (e.g., [17, 18]), as well as the formation of
planetary systems. Thanks to observations in the past two decades (especially by the Kepler
Space Observatory), we now know that the Milky Way contains about one Earth-size
habitable-zone planet for every six M-dwarfs [9], which makes the prospects of finding
extrasolar life (at least in simple form) with planned or proposed telescopes more promis-
ing [26, 35, 36].

Given our current understanding of the evolution of our Universe and of galaxies, stars
and planets within it, we may attempt to identify the prerequisites for life. However, since
our knowledge of the processes involved in the emergence of life lags far behind our
comprehension of fundamental physical processes, we shall only list those very basic
requirements that we think should apply to any generic form of complexity.

1.2 Prerequisites for Complexity

There are (at least) five prerequisites for the emergence of complexity in a universe; these
prerequisites would not be fulfilled in a counterfactual universe where the fundamental
constants are too different from their actual values.

‘Counterfactual’ exercises of this type are useful for developing an intuition about the
role of physical constants in the evolution of the Universe and in the emergence of com-
plexity. Similar studies are used by historians to explore various ‘what if?’ scenarios, such
as speculating what might have happened had Archduke Franz Ferdinand of Austria not
been shot by a Serb nationalist in Sarajevo in 1914. Biologists similarly wonder about how
the history of life on Earth might have changed had the dinosaurs not been wiped out by an
asteroid impact.

If the acceptable range of values for some parameter is small, we would define it as
‘fine-tuned’. We shall briefly discuss the extent to which this is the case for some key
parameters.

1.2.1 Constraints on Gravity

As numerical simulations of structure formation in the Universe have demonstrated, gravity
enhances density fluctuations (see Chapter 6). In our Universe, gravity caused the denser
regions to lag behind the cosmic expansion and form the sponge-like structure that charac-
terises the Universe on its largest scales. Eventually, gravity led to the formation of galaxies
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at the density peaks, of stars, and of planets. Stellar evolution also represents one continuous
battle with gravity, the latter pushing the stellar central densities and temperatures to higher
and higher values. On the surface of planets, gravity played crucial roles in keeping an
atmosphere bound and bringing different elements into contact to initiate the chemical
reactions that eventually led to life. But gravity in our Universe is a very weak force –
the ratio of the repulsive electric force between two protons to their gravitational mutual
attraction is e2/Gm2

p ∼ 1036. The reason gravity becomes important on the scale of large
asteroids and higher is that large objects have a net electric charge that is close to zero, so
gravity wins once sufficiently many atoms are packed together.

Figure 1.1 allows us to make a first attempt to examine what would happen in a universe
in which the values of some ‘constants of nature’ are different. How would Figure 1.1 be
different if gravity were not so weak? The general structure of the diagram would remain
the same, but there would be fewer powers of 10 between the subatomic and cosmic scales.
Stars, which effectively are gravitationally bound nuclear fusion reactors, would be smaller
in such a universe and would have shorter lives. If gravity were much stronger, then even
small solid bodies (such as rocks) might be gravitationally crushed. If gravity’s strength
were such that it would still have allowed tiny planets to exist, life forms the size of humans
would be crushed on the planetary surface. Overall, the universe would be much smaller,
and there would be less time for complexity to emerge. In other words, to have what we may
call an ‘interesting’ universe (in the sense of complexity), we must have many powers of 10
between the microscale and the cosmic scale, and this requires gravity to be very weak. It
is important to note, however, that gravity does not need to be fine-tuned for complexity to
emerge. In fact, a universe in which gravity is ten times weaker than in our Universe, may
be even more ‘interesting’ in that it would allow bigger stars and planets and more time for
life to emerge and evolve.

1.2.2 CP Violation – More Matter Than Antimatter

The Big Bang in our Universe created a slight excess (by about one part in three billion)
of matter over antimatter (see Chapter 5). It has been shown that for such an imbalance
to be created, baryon number and CP symmetry (charge conjugation and parity) had to
be violated in the Big Bang and interactions had to be out of thermal equilibrium (the so-
called Sakharov conditions [32]). Had the matter-antimatter imbalance not existed, particles
and antiparticles would have all been annihilated to form only radiation (what we observe
today as the CMB) – leaving no atoms and therefore no galaxies, no stars, no planets, and
no life. Within the Standard Model of particle physics the most promising source of CP
violation appears to be in the lepton sector, where it generates matter-antimatter asymmetry
via a process known as leptogenesis. If, however, CP violation in the lepton sector will
be experimentally determined to be too small to explain the matter–anti-matter imbalance
(as was the case with the Cabibbo-Kobayashi-Maskawa matrix in the quark sector [22]),
physics beyond the Standard Model would be required.
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1.2.3 Fluctuations

‘Curvature fluctuations’ were imprinted into the Universe at a very early era. Their ampli-
tude is almost independent of scale. Many theorists suspect that they originated as quantum
fluctuations during an inflationary phase, when the presently observable universe was of
microscopic size. The physics of this ultra-early era is, of course, still speculative and
uncertain. However, we know from observations that the fluctuations gave rise to tem-
perature fluctuations that grew to �T/T ∼ 10−5 at the time of recombination.

These fluctuations were crucial for the emergence of complexity. If the early Universe
had been entirely smooth, then, even with the same microphysics, the Universe today would
have been filled only with cold hydrogen and helium. Stars, galaxies, and, indeed, people
would never have formed. The parameter that measures the ‘roughness’ of the Universe
is called Q. At recombination, the temperature fluctuations across the sky �T/T are of
orderQ. There is no firm theoretical argument that explains why it has the observed value of
about 10−5 (see, e.g., [37, 38] for a discussion). Computer simulations have offered a huge
boost to the credibility of our current �CDM model by showing that under the action of
gravity and gas dynamics, the fluctuations observed in the CMB would evolve into galaxies
with the morphological properties and luminosity functions observed, grouped into clusters
whose statistical properties also match the observations.

But what would happen in a counterfactual universe where Q were different from its
actual value but all other cosmic parameters stayed the same? If the amplitude of the fluctu-
ations were larger, sayQ∼ 10−4, masses of about 1014M� would condense at a cosmic age
of about 300 million years. At that time, Compton cooling on the (then warmer) microwave
background would allow the gas to collapse into huge disc galaxies. The virial velocity in
large-scale systems scales as Q1/2c, and these giant galaxies would find themselves (after
some 1010 years) in clusters with masses of � 1016M�. A universe with Q ∼ 10−4 would
have an even larger range of non-linear scales than ours. It would offer more spectacular
cosmic vistas; and the only reason why it might be somewhat less propitious for life
is that stars in the galaxies would be more close-packed, rendering it less likely that a
planetary system could remain undisrupted by a passing star for long enough to permit
biological evolution. However, if Q were even larger (Q � 10−3), conditions would be
very unfavourable for life. Enormous masses of gas (far larger than a cluster of galaxies in
our present Universe) would condense out early on, probably collapsing to massive black
holes – an environment too violent for life.

(Incidentally, any observers who could exist in a high-Q universe would find it far
more challenging to interpret and quantify their surroundings. Because Q is small in our
actual universes, even the largest non-linear structures are very small compared to the
cosmic horizon [they are smaller by a factor of order Q1/2]. We can therefore observe
a large number of independent patches and define average smoothed-out properties of the
Universe – the mean density, etc – and use the standard homogeneous cosmological models
as a good approximation. By analogy, a sailor watching ocean waves can meaningfully
describe their statistical properties because even the longest wavelength is small compared



10 Mario Livio and Martin Rees

Figure 1.3 Plot of the cosmological constant� versus amplitude of fluctuations in cosmic microwave
backgroundQ. The shaded-dotted region shows conditions that allow for the existence of complexity.

to the distance of the horizon. In contrast, an astronomer in a high-Q universe would
resemble a climber in a mountain landscape, where one peak could dominate the view,
and averages are not well defined.)

What about the other extreme, a ‘smoother’ universe with Q � 10−6? In this case,
the disruptive dark energy would push protogalaxies apart before they had a chance to
collapse. Even if the dark energy were not there, any galaxies that formed in a lower-Q
universe would be small and rather loosely bound (and forming later than in our actual
Universe). At Q � 10−6, stars would still form, but material enriched in heavy elements
and ejected via stellar winds or supernovae may escape from the shallow gravitational
potential wells, not allowing for second-generation stars and planetary systems to form.
For values ofQ that are significantly smaller than 10−6, there would be inefficient radiative
cooling, and therefore, stars would not form within a Hubble time. The conclusion from this
discussion (summarised also in [25]; see Figure 1.3) is that for a universe to be conducive
for complexity and life, the amplitude of the fluctuations should best be between 10−6 and
10−4 and, therefore, not particularly finely tuned.

1.2.4 Non-Trivial Chemistry

For life to emerge, the Universe requires nuclear fusion. Fusion not only powers the stars;
nucleosynthesis at the hot stellar centres also forges elements such as carbon, oxygen, iron,
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and phosphorus, all of which are essential for life as we know it. In general, many of
the elements in the periodic table participate in the complex chemistry required for the
formation of planets and the evolution of their biospheres.

To obtain the nuclear fusion reactions that lead to the creation of the periodic table
requires a certain balance between the strength of the electromagnetic force (that repels
two protons from each other) and the strong nuclear force (that attracts them). This balance,
in our Universe, where the strong nuclear force is about a hundred times stronger than the
electromagnetic force, is responsible for the fact that we do not have atomic numbers higher
than 118. Had the ratio of the two interactions been much smaller, carbon and heavier
elements could not have formed, but the necessary tuning is not excessive.

Similarly, much has been written about Fred Hoyle’s prediction of the existence of a
7.65 MeV resonant level of 12C [14, 16]. However, while the prediction itself was indeed
remarkable, the degree of fine-tuning required for the energy of that level is not fantastic
(e.g., [27, 33]; see [10] for a recent study of this energy level).

The topic of chemistry actually allows us to examine a much more extreme counterfac-
tual universe – a ‘nuclear-free universe’ – in which hydrogen is the only element that exists.
Surprisingly, on the large scale, such a universe would not look much different from ours.
Gravity would ensure that galaxies would still form, and even stars would shine (albeit
generally for shorter times) by releasing their gravitational energy as they contract to form
white dwarfs and black holes. Even Jupiter-like planets composed of solid hydrogen could
exist. Of course, no complexity or life of the types we are familiar with will emerge in such
a universe (only perhaps something similar to Fred Hoyle’s science fiction concept of The
Black Cloud [15]).

1.2.5 ‘Tuned’ Cosmic Expansion Rate

The results from the Planck satellite depicted in Figure 1.2 (in combination with obser-
vations of baryon acoustic oscillations, lensing reconstruction and a prior on the Hubble
constant) give for the cosmic energy budget �m ∼ 0.3, �� ∼ 0.7, with baryons making
less than 5% of this budget [30]. If the cosmic acceleration is indeed driven by a cos-
mological constant (energy of the physical vacuum, with an equation of state parameter
w = P/ρ = −1), then the acceleration will continue forever (see Chapter 3). It is clear,
however, that if the dark-energy density would have dominated over the matter density
(dark matter + baryons) much earlier in the life of our Universe, galaxies would never have
formed (this is also dependent on the value of Q; see discussion in the next section). This
means that for complexity to arise, some constraints are needed on the ratios of �m/��

and �b/�DM (where �b denotes the baryon fraction and �DM the dark matter fraction).
The second ratio is crucial because even though dark matter dominates over baryonic matter
in our Universe, without the latter, there would be no stars, no planets, and no life.

As an aside we should note that the nature of the dark energy that propels the cosmic
acceleration is one of the most fascinating puzzles in modern cosmology (and one that may
not be solved until we have a better understanding of the granular structure of space-time on
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the Planck scale). Despite its importance for fundamental physics, the dark energy hardly
affected any astrophysical phenomena in our Universe; in contrast, the evolution of our
Universe so far – the emergence of and morphology of galaxies, clusters, and so forth – has
been dominated by the effects of dark matter.

1.3 The Multiverse

As far as we can tell, the laws of physics and the values of the cosmological parameters
are the same throughout our entire observable Universe. But the observable Universe is
limited by the horizon, which is determined by the finite age of our Universe. What lies
beyond this Hubble volume? The homogeneity and isotropy of our observable Universe,
with the absence of any perceptible gradient across it (to the 10−5 level) suggest (though,
of course, do not prove) that the same laws continue to apply thousands of times further.
Indeed, many arguments suggest that galaxies beyond the horizon outnumber those we see
by a vast factor – perhaps so vast that all combinatorial options would occur repeatedly,
and we’d all, far beyond the horizon, have avatars.

Furthermore, some models for the inflationary phase lead to what has been dubbed
‘eternal inflation’ [24, 39]. According to these models, our Big Bang could be just one
‘pocket universe’ in a huge ensemble – one island of space-time in a vast archipelago. This
scenario also fits well with the ‘landscape’ concept of string theory, in which there are some
10500 metastable vacua solutions, of which our Universe is but one [4, 19]. So the question
arises: how large is physical reality?1

The first thing to realise is that because we live in an accelerating universe, galaxies
are disappearing over an ‘event horizon’, so we will not observe their far future (rather,
as we cannot observe the fate of an object that falls into a black hole after it has crossed
the horizon). If the acceleration continued, then after about a trillion years, observers in
the remnant of the Milky Way (or its merged product with the Local Group) would not be
able to see (again, even in principle) any galaxy other than their own. This does not mean
that those galaxies whose light would have been stretched beyond the cosmic scale would
not exist.

Moreover, galaxies that are already beyond our current horizon will never become
observable, even in principle. Yet most researchers would be relaxed about claims that
these galaxies exist in the same way that, in the middle of the ocean, you expect that an
ocean extends beyond the terrestrial horizon. These never-observable galaxies would have
emerged from the same Big Bang as we did. But suppose that we imagine separate Big
Bangs. Are space-times completely disjoint from ours any less real than regions forever

1 It’s perhaps necessary, especially in addressing philosophical readers, to inject a clarification at the start. Many would define
‘the Universe’ as ‘everything there is’ – and if that’s the definition, then there plainly cannot be more than one. If there are
other domains (perhaps originating in other Big Bangs, and perhaps differing from our observable domain in size, content, or
dimensionality), then we should really define the whole enlarged ensemble as ‘the Universe’. We then need a new word –
‘metagalaxy’, for instance – to denote the domain to which cosmologists and astronomers have observational access. However,
so long as this whole idea remains speculative, it is probably best to leave the term ‘universe’ undisturbed, with its traditional
connotations, even though this then demands a new term, ‘multiverse’, for the whole (still hypothetical) ensemble.
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unobservable which are the aftermath of ‘our’ Big Bang? Surely not – so these other
universes, too, should count as parts of physical reality.

Similarly, while we cannot observe any free quarks, we believe that quarks exist, because
the Standard Model of particle physics has successfully passed many experimental tests.
Likewise, we are disposed to believe in what Einstein’s theory tells us about the metric
within black holes (inside the event horizon), because general relativity has gained high
credibility by being tested in numerous observations and experiments.

If we can develop a theory that makes numerous predictions that are testable (and
confirmed) in the observable part of the Universe, then we should be prepared to accept
its predictions in unobservable parts.

We currently have no theories of microphysics that are ‘battle tested’ above the energies
reachable in the biggest particle accelerators. These energies are exceeded throughout the
first nanosecond after the Big Bang. Theorists who model the inflation era therefore make
assumptions about the physics. Some such assumptions predict eternal inflation; others do
not (see Chapter 4). Some predict the landscape scenario; others do not. The details of this
physics are already somewhat constrained (by, for instance, the observed properties of the
fluctuations in the CMB), but we are still far from being able to prove or disprove a model
like Linde’s ‘eternal inflation’ [24]. We should therefore be open-minded about how far
the aftermath of ‘our’ Big Bang extends beyond our horizon and also about whether other
Big Bangs exist as part of physical reality. Once we are willing to entertain the notion that
a multiverse may exist, an even more intriguing question arises: are the laws of physics
and the values of the physical constants the same in other members of this ensemble of
universes, or are they different?

If they are different, then what we call ‘laws of nature’ may be no more than local by-
laws governing just our cosmic patch. Moreover, many of these pocket universes could
be stillborn or sterile. That is, the physical laws prevailing in them (or the values of the
parameters) may preclude the emergence of any kind of complexity, and life, in particular.
They simply may not satisfy one or more of the prerequisites we discussed in Section 1.2.

The mere possibility that physical reality can encompass such a multiverse provides
a strong motivation to develop the lines of thought outlined in Section 1.2 to explore a
variety of counterfactual universes, with different values of physical constants, to ascertain
which ranges of parameters would allow complexity. The identification and selection of
such ‘biophilic’ universes constitutes what has been dubbed anthropic reasoning (e.g.,
[2, 12, 25, 34, 41]). Obviously, we humans find ourselves not in a typical member of the
multiverse but in a typical domain in the subset of universes that allows complexity and
life to emerge and evolve [12]. Copernican humility can only be taken so far. We live on
an ordinary terrestrial planet orbiting an ordinary star in its habitable zone. The observable
Universe may contain as many as two trillion galaxies [7], and our universe may be only
one member of an ensemble of some 10500 universes. But our Universe is not ‘typical’.

To give a simple analogy (which we believe was first suggested by physicist Leonard
Susskind), suppose you wake up in the morning and think, ‘What am I?’ It seems that a
natural answer may be ‘I am an insect’, since insects have the largest biomass of terrestrial
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animals. It is estimated that at any time, there are some 1019 insects alive. The reason that
this argument is false is that by being able to wonder ‘what am I?’ we have already selected
a small subset of the animal kingdom. On the other hand, we can argue that the probability
that the answer to ‘what am I?’ is ‘I am Leonardo da Vinci’ is still very small.

The ability to actually determine the ranges of all the parameters that allow complexity
to develop and the probability for its emergence is currently beyond what physics can
achieve, since it requires a knowledge of all the probability distributions and the corre-
lations among them. What we can currently do is a ‘poor man’s’ simplified version of
this daunting task – going beyond the discussion of Section 1.2, where parameters were
varied one at a time, and analysing the ‘anthropic’ domain in a two-parameter diagram.
For instance, we can depict different values of the dark energy (assumed to be due to a
cosmological constant �) and the amplitude of the fluctuations Q (Figure 1.3; Ref. [25]).
Structures can only form so long as gravity overwhelms the repulsive effect of �. A higher
value of Q implies earlier formation of structure, and therefore, higher values of � would
still be anthropically allowed in such a universe.

Another two-parameter example (see [38]) takes Q and the density of dark matter as
two parameters that could vary. If the dark matter density were higher than in our actual
Universe, the cosmic expansion would become matter dominated at an earlier stage, allow-
ing more time for the growth of structures from initial fluctuations. So the anthropically
allowed values ofQ would then extend downward. (This contrasts with the effect of higher
values of �, which extend the allowableQ upwards).

We are currently far from having any theory that determines the values of � or Q or
the dark matter density (and we know even less about the relative likelihood of various
combinations of these constants or how they might be correlated). We are even further from
having a cosmological model that can put a ‘measure’ on the probability density of various
combinations. But if we did, we would then have another way of testing – and, in principle,
refuting – whether the ‘fine-tuning’ was due to anthropic selection. We could do this by
examining whether we existed in a ‘typical’ part of the anthropically allowed multiverse or
whether the tuning was even more ‘special’ than anthropic constraints required. This line
of reasoning can be illustrated by a simple analogy:

Even if we knew nothing about how stars and planets formed, we would not be surprised
to find that our Earth’s orbit was fairly close to circular: had it been highly eccentric, water
would boil when the Earth was at perihelion and freeze at aphelion – a harsh environment
unconducive to our emergence. However, a modest orbital eccentricity, up to 0.1 or so,
is plainly not incompatible with life. But suppose it had turned out that the Earth moved
in a near-perfect circle with an eccentricity of 0.000001. Some quite different explanation
would then be needed: anthropic selection from orbits whose eccentricities had a ‘Bayesian
prior’ that was uniform in the range 0–1 could plausibly account for an eccentricity of 0.1,
but not for one as tiny as this.

The methodology requires us to decide what range of values is compatible with our
emergence. It also requires a specific theory that gives the relative Bayesian priors for
any particular value within that range. With this information, one can then ask if our actual
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Universe is ‘typical’ of the subset in which we could have emerged. If it is a grossly atypical
member even of this subset (not merely of the entire multiverse), then we would need to
abandon our hypothesis that the numbers were anthropically selected.

Most physicists would consider the ‘natural’ value of ‘dark energy’ in the ‘landscape’
to be large, because it is a consequence of a very complicated microstructure of space.
Current evidence suggests that the ‘dark energy’ has an actual value 5–10 times below
the anthropically allowed maximum (other parameters being constrained to their actual
values). That would put our Universe between the 10th or 20th percentile of universes in
which galaxies could form. In other words, our Universe is not significantly more special,
with respect to �, than our emergence demanded. But suppose that (contrary to current
indications), observations showed that�made no discernible contribution to the expansion
rate and was thousands of times below the threshold, not just 5–10 times. This ‘overkill
precision’ would (like the precisely circular orbit in the analogy given earlier) raise doubts
about the hypothesis that � was equally likely to have any value and suggest that it was
zero for some fundamental reason (or that it had a discrete set of possible values, and all
the others were well above the threshold).

In principle, we could, when theoretical models were more advanced, analyse other
important parameters of physics in the same way, to test whether our Universe is typ-
ical of the habitable subset that could harbour complex life. The methodology requires
us to decide what values are compatible with our emergence. It also requires a specific
theory that gives the probability of any particular value. For instance, in the case of �, is
there a set of discrete vacua or a continuum of values? In the latter case, we need to know
whether all values are equally probable or whether the probability density is clustered at a
low value.

1.4 Conceptual Shifts

The introduction of the multiverse and of anthropic reasoning has generated consider-
able controversy, sometimes even accompanied by passionately negative reactions from
a number of physicists. We have already discussed the first main objection – the senti-
ment that envisaging causally disconnected, unobservable universes is in conflict with the
traditional ‘scientific method’. We have emphasised that modern physics already contains
many unobservable domains (e.g., free quarks, interiors of black holes, galaxies beyond the
cosmological event horizon). If we had a theory that applied to the ultra-early Universe but
gained credibility because it explained, for instance, some features of the microphysical
world (the strength of the fundamental forces, the masses of neutrinos, and so forth) we
should take seriously its predictions about ‘our’ Big Bang and the possibility of others.

We are far from having such a theory, but the huge advances already made should give
us optimism about new insights in the next few decades. Indeed, even at this early stage,
eternal inflation and the landscape scenario already make some predictions that are, in
principle, testable. For example, in eternal inflation, our Universe is expected to have a very
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small (10−4) negative curvature (a ‘bubble’). Therefore, future measurements of spatial
curvature (including measurements of the 21 cm transition) could falsify eternal inflation
(e.g. [21]). Similarly, accelerator experiments can (in principle) generate conditions in
which a number of metastable vacuum solutions are possible, thereby testing the premises
of the landscape scenario. It is also possible (although the probability for such an event is
very low), for another inflating bubble to pop close and collide with our bubble Universe,
leaving an imprint in our CMB (e.g., [40]). These simple examples demonstrate that even
though the multiverse idea is still in its infancy, this scenario constitutes a bona fide topic
(albeit speculative) of scientific discourse, rather than metaphysics.

We have also pointed out that an anthropic explanation can be refuted, if the actual
parameter values are far more ‘special’ than anthropic constraints require.

Many physicists still hope that a unique, self-consistent theory of the Universe will
unambiguously determine the values of all the physical parameters. This is a lofty goal, but
the history of science has already demonstrated that a quest for first-principle explanations
for everything can fail. The great astronomer Johannes Kepler tried to find answers to two
questions: (1) Why were there precisely six planets (only six were known at his time)
and (2) What was it that determined the spacings among planetary orbits? Eventually, he
thought he found the answer, and he published it in his book Mysterium Cosmographicum
(originally published in 1597; [20]). Kepler’s answer was impressive and at the same time
absolutely wrong. He constructed a model of the solar system in which the five Platonic
solids were embedded one inside the other and together in a surrounding sphere. This
created exactly six spaces (like the number of planets), and by choosing the order of the
solids in a particular way, the spacing agreed with the relative sizes of the orbits to within
10%. The model was impressive because Kepler used mathematics to explain observed phe-
nomena. It was completely wrong because Kepler did not understand at the time that neither
the number of the planets nor their orbits were fundamental phenomena that required first-
principles explanations. Rather, we understand today that both the number of planets and
their orbits are accidental variables whose values are determined by the environmental
conditions in which the planetary system formed. Earth’s orbit is special only insofar as
it is in the habitable zone around the Sun.

The same may be true for at least some of the parameters of our Universe, such as
the values of � and Q. These may be random variables in the multiverse, whose only
‘explanations’ are offered by anthropic arguments. In view of our current ignorance as to
what is truly fundamental and what is not, we should keep an open mind to all options.

More specifically, some ‘constants’ may be truly universal and others not. As an analogy
(which we owe to Paul Davies), consider the form of snowflakes. Their ubiquitous sixfold
symmetry is a direct consequence of the shape of water molecules. But snowflakes display
an immense variety of patterns because each is moulded by its micro-environments: how
each flake grows is sensitive to the fortuitous temperature and humidity changes during its
growth as it falls towards the ground. If physicists achieved a fundamental theory, it would
tell us which aspects of nature were direct consequences of the bedrock theory (just as
the symmetrical template of snowflakes is due to the basic structure of a water molecule)
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and which (like the distinctive pattern of a particular snowflake) were contingencies, taking
many values across the multiverse.

If we indeed live in a multiverse, this would be a fifth (and, in some sense, the grandest)
Copernican revolution. First, Copernicus showed that we are not at the centre of the solar
system; Harlow Shapley showed that the solar system is not at the centre of our galaxy;
the Kepler Space Observatory showed that there are billions of planetary systems in the
Milky Way; Edwin Hubble and his namesake telescope have shown that there are trillions
of galaxies in the observable Universe; and now we realise that our observable domain may
be only a tiny part of an unimaginably large and diverse ensemble. The next few decades
will hopefully shed some light on the reality of the multiverse.

One thing, however, is clear. Our cosmic horizons have expanded precisely as fast as
human knowledge. Every one of the five Copernican revolutions marked an incredible
human achievement. In that sense, we remain of central significance to our Universe.
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2

Hierarchy of Fine-Structure Constants

b e r na r d c a r r

Abstract

Modern physics describes the vast range of scales of structure in the Universe, with a
hierarchy of forces providing connections between the microscopic and macroscopic
domains. It also predicts various natural relationships between these scales which might
otherwise be regarded as coincidental. However, there are numerous other relationships
or ‘fine-tunings’ between the constants of physics – including the dimensionless coupling
constants – which are unexplained by conventional physics and seem necessary for the
emergence of observers. This chapter distinguishes between (1) natural tunings which arise
between various scales of structure as a result of standard physics; (2) weak anthropic
tunings, such as Dicke’s argument for the age of the Universe, which regard the constants
as given but require that we observe at a special time and place; and (3) strong anthropic
tunings, which postulate relationships between the physical constants themselves. The
last arise from both astrophysical and cosmological considerations and seem to be
necessary for the development of complexity in the Universe. We consider possible
interpretations of these fine-tunings, including the multiverse proposal, and some associated
philosophical issues.

2.1 Preface

Nearly 40 years ago, I wrote an article in the journal Nature with Martin Rees [22], bringing
together all of the known constraints on the physical characteristics of the Universe –
including the fine-tunings of the physical constants – which seemed to be necessary for
the emergence of observers. Such constraints had been dubbed ‘anthropic’ by Brandon
Carter [24] – after the Greek word for ‘human’ – although it is now appreciated that this
is a misnomer, since there is no reason to associate the fine-tunings with humankind in
particular. We considered both the ‘Weak’ Anthropic Principle (WAP) – which accepts the
laws of nature and physical constants as given and claims that the existence of observers
then imposes a selection effect on where and when we observe the Universe – and the
‘Strong’ Anthropic Principle (SAP) – which (in the sense we used the term) suggests that
the existence of observers imposes constraints on the physical constants themselves.

20
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Anthropic claims – at least in their strong form – were regarded with a certain amount
of disdain by physicists at the time and in some quarters still are. Although we took
the view that any sort of explanation for the observed fine-tunings was better than none,
many regarded anthropic arguments as going beyond legitimate science. The fact that
some people of a theological disposition interpreted them as evidence for a Creator –
attributing teleological significance to the Strong Anthropic Principle – doubtless enhanced
that reaction. However, attitudes have changed considerably since then. This is not so much
because the status of the anthropic arguments themselves have changed – as we will see,
some of them have become firmer and others weaker. Rather, it is because there has been
a fundamental shift in the epistemological status of the Anthropic Principle. This arises
because cosmologists have come to realise that there are many contexts in which our
Universe could be just one of a large ensemble of ‘parallel’ universes in which the physical
constants vary. This ensemble is sometimes described as a ‘multiverse’.

The multiverse proposals have not generally been motivated by an attempt to explain
the anthropic fine-tunings; most of them have arisen independently out of developments in
cosmology and particle physics. Nevertheless, it now seems clear that the two concepts are
interlinked. For if there are many universes, this begs the question of why we inhabit this
particular one, and – at the very least – one would have to concede that our own existence is
a relevant selection effect. Indeed, since we necessarily reside in one of the life-conducive
universes, the multiverse picture reduces the Strong Anthropic Principle to an aspect of the
weak one. For this reason, many physicists would regard the multiverse as providing the
most natural explanation of the anthropic fine-tunings

Many of the arguments were summarised in the book Universe or Multiverse? [21],
which I edited in 2007. This grew out of a series of conferences which were sponsored by
the Templeton Foundation. The first was entitled ‘Anthropic Arguments in Fundamental
Physics and Cosmology’ and held at the home of Martin Rees, in Cambridge in 2001. It
was funded by a grant awarded to myself, Robert Crittenden, Martin Rees, and Neil Turok
for a project entitled ‘Fundamental Physics and the Problem of Our Existence’ as part of
the Templeton ‘Cosmology & Fine-Tuning’ programme. The second meeting – with the
same title as the book – was held at Stanford University in 2003 and came at a critical point
in the development of the subject. It included contributions from some of the key players
in the field and these provided the main part of the book. The third meeting was in 2005
and entitled ‘Expectations of a Final Theory’. It was again held at Cambridge but this time
hosted by Trinity College. Most of the focus was on the exciting developments in particle
physics – in particular, M-theory and the string landscape scenario, which perhaps provide
a plausible theoretical basis for the multiverse paradigm.

It should be stressed that Universe or Multiverse? was not a proselytising work and this
is signified by the question mark in the title. The proponents predominated numerically,
but many of the contributors were sceptical. Perhaps the most remarkable aspect of this
book is that it testified to the large number of eminent physicists at the time who found
the subject interesting enough to write about. It is unlikely that such a volume could have
been produced even a decade earlier. The shift in attitude in the five years between the
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first and the third meetings is reflected in a quote from Frank Wilczek’s contribution to the
book [92]:

The previous gathering had a defensive air. It prominently featured a number of physicists who
subsisted on the fringes, voices in the wilderness who had for many years promoted strange argu-
ments about conspiracies among fundamental constants and alternative universes. Their concerns
and approaches seemed totally alien to the consensus vanguard of theoretical physics, which was
busy successfully constructing a unique and mathematically perfect Universe. Now the vanguard has
marched off to join the prophets in the wilderness.

The focus of the present volume is fine-tuning, so the main purpose of this chapter is
to update the discussion of my 1979 paper with Martin Rees. There will be rather little
discussion of the multiverse proposal, even though this has played such an important role
in establishing the respectability of anthropic arguments, since this is covered in other
chapters. The first sections will discuss the Cosmic Uroborus (to put the topic in historical
context), the physical constants (including the hierarchy of fine-structure constants of the
title), and the different types of tunings. The middle sections will describe these tunings in
more detail – the natural tunings connecting the various scales of structure in the Universe,
the weak anthropic tunings and strong anthropic tunings arising in both astrophysics, and
cosmology. The final sections will discuss possible interpretations of Anthropic Principle
and some philosophical issues (including whether anthropic arguments qualify as legiti-
mate science). Despite the negative response, it may induce in some quarters, the A word
(‘anthropic’) will be used throughout this chapter.

2.2 Cosmic Uroborus

The history of physics might be regarded as a process in which the development of new
instruments, like the telescope and the microscope, has allowed us to extend observations
outwards to progressively larger scales and inwards to successively smaller ones. The
outward journey explores the macroscopic domain and is associated with astronomy, while
the inward journey explores the microscopic domain and is associated with particle physics.
This process has revealed ever larger and smaller levels of structure in the Universe.
Of course, a lot of interesting physics – including the whole domain of biophysics – is
associated with complex structures in the intermediate mesoscopic domain, and that will
be particularly relevant to this chapter.

The journey has also led to the discovery of the forces which determine the nature of
these structures – gravity and electromagnetism on large scales, the weak and strong forces
on short scales – and the associated laws of nature. These forces link the macroscopic
and microscopic domains so that the outward and inward journeys are not disconnected
but constantly throw light on each other. Both journeys have also led to new conceptual
ideas and changes in our world view. The outer one has led to the shifts from geocentric
to heliocentric to galactocentric to cosmocentric world views and to the radical change of
view of space and time entailed in relativity theory. The inner one has led to atomic theory,
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quantum theory, and a progressively unified view of the forces of nature and the fundamen-
tal constituents of matter. Any final paradigm of physics must amalgamate relativity and
quantum theory in some way.

So physics has revealed a unity about the Universe which makes it clear that everything
is connected in a way which would have seemed inconceivable a few decades ago. This
unity is succinctly encapsulated in the image of the Cosmic Uroborus (the snake eating its
own tail) shown in Figure 2.1. The pictures drawn around the snake represent the different
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Figure 2.1 The image of the Cosmic Uroborus summarises the different levels of structure in the
physical world, the intimate link between the microphysical and macroscopic domains, and the
evolution of our understanding of this structure. From Reference [21].
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types of structure in the Universe. Near the bottom are humans. As we move to the left,
we encounter successively larger objects: a mountain, a planet, a star, a solar system, a
galaxy, a cluster of galaxies, and, finally, the entire observable Universe. As we move to
the right, we encounter successively smaller objects: a cell, a DNA molecule, an atom,
a nucleus, a quark, the GUT scale, and, finally, the Planck length (the scale at which
quantum gravity effects become important). The numbers at the edge indicate the scale
of these structures in centimetres and also in units of the Planck length (in brackets). As
we move clockwise from the tail to the head, the scale increases through 60 decades: from
the smallest meaningful scale allowed by quantum gravity (10−33cm) to the scale of the
observable Universe (1027 cm). So one can regard the Uroborus as a clock in which each
minute corresponds to a decade in scale.

The horizontal lines in Figure 2.1 correspond to the various interactions and illustrate the
subtle connections between microphysics and macrophysics. For example, the electric line
connects an atom to a planet because the electric force binds the electron to the nucleus in an
atom and also determines the structure of solid objects. The strong and weak lines connect
a nucleus to a star because the strong force which holds nuclei together also provides the
energy released in the nuclear reactions which power a star, and the weak force which
causes nuclei to decay also prevents stars from burning out too soon. The line associated
with the grand unified theory (GUT) connects with large-scale structure because the density
fluctuations which led to this originated when the temperature of the Universe was high
enough for GUT interactions to be important.

The Big Bang might be regarded as the ultimate micro-macro link since it implies that
the entire observable Universe was once compressed to a tiny volume. This is why the head
of the snake meets the tail. Since light travels at a finite speed, we can never see further
than the distance light has travelled since the Big Bang; this is about 40 billion light years,
three times the age of the Universe times the speed of light because the cosmic expansion
helps light travel further. More powerful telescopes probe to earlier times rather than larger
distances. This is why early universe studies have led to an exciting collaboration between
particle physicists and cosmologists.

As discussed by Kolb (Chapter 9), cosmologists now have a fairly complete picture
of the history of the Universe. As one goes back in time, galaxy formation occurred at
a billion years after the Big Bang, the background radiation last interacted with matter
at 400,000 years, the Universe’s energy was dominated by its radiation content before
about 60,000 years, light elements were generated through cosmological nucleosynthesis
at around 3 minutes, antimatter annihilated with matter at about 10−5 s (before which there
was just a tiny fractional excess of matter), electroweak unification occurred at 10−9 s,
the highest energy which can be probed experimentally was reached at 10−12 s, grand
unification and inflation occurred around 10−35 s, and the quantum gravity era (the smallest
meaningful time) was at 10−43 s.

The last few decades have seen two important developments on the outer front, and
these are described in other chapters. First, the detection of temperature anisotropies
in the cosmic background radiation and ever more precise measurements of their
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dependence on angular scale have confirmed the quantum origin of the density fluctuations.
Second, although one expects the expansion of the Universe to slow down because of
gravity, observations of distant supernovae suggest that it is accelerating. We do not
know for sure what is causing this, but it must be some exotic form of dark energy,
most probably related to the cosmological constant. These discoveries have led to the
concordance �CDM model and the popularity of the inflationary scenario. Another idea
that has become topical is that our entire Universe may be just one member of huge
ensemble of universes called the multiverse, a notion which is particularly relevant to the
theme of this book.

On the inner front, we have learnt that it may be possible to incorporate gravity into
the unification of forces, leading some physicists to proclaim that we are on the verge of
obtaining a Theory of Everything (TOE). However, in order to describe all the subatomic
interactions, this requires extra wrapped-up dimensions of the kind proposed by Kaluza and
Klein to explain electromagnetism. For example, superstring theory suggests there could
be six additional spatial dimensions, and the way they are compactified is described by the
Calabi-Yau group. There were originally five different superstring theories, but it was later
realised that these are all parts of a single, more embracing model called M-theory, which
has seven extra dimensions [93]. In one particular variant of M-theory, proposed by Randall
and Sundrum [63], the 11th dimension is extended so that the physical world is viewed as
a four-dimensional brane in a higher-dimensional bulk. We do not experience these extra
dimensions directly – their effects only become important on the smallest and largest scales
(i.e., at the top of the Uroborus).

Taken together, scientific progress on both the outer and inner fronts – culminating in
the Big Bang model – can be regarded as a triumph. Indeed, as indicated by the arcs in
Figure 2.1, the history of science might be regarded as an expansion of our awareness
to ever larger and smaller scales. However, this achievement has come at a price. The
anthropocentric view which prevailed at the start of the journey has been demolished, and
the more we probe the Universe, the more irrelevant humans seem to become. According to
the Newtonian paradigm, the cosmos operates likes a giant machine, oblivious to whether
life or any form of consciousness is present, so the laws of physics and the characteristics of
the Universe are independent of whether anybody actually observes them. Modern devel-
opments have reinforced this notion. We are completely insignificant not only as judged by
scale but also in terms of duration. If the history of the Universe were compressed into a
year, Homo sapiens would have existed for only the last few minutes.

Curiously, in recent decades, cosmology has brought about a reversal in this trend. This
is because it seems that, in some respects, the Universe has to be the way that it is because,
otherwise, it could not produce life, and we would not be here speculating about it. Indeed,
since my paper with Rees, this idea has been explored in numerous works (e.g., [11, 15,
45, 54, 64]), and further references will be given in the chapter. Although this notion is
referred to as the Anthropic Principle, it is not inevitable that it relates to the presence
of observers, and it might be better described as the Complexity Principle. However, my
personal hunch is that it does relate to observers and that the ultimate explanation will relate
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to the unification at the top of the Cosmic Uroborus, with its possible invocation of other
universes and extra dimensions.

2.3 Physical Constants

The progress of physics has revealed a host of physical constants, all of which have been
measured to varying degrees of precision – for example, the speed of light (c), Planck’s
constant (h̄), the gravitational constant (G), the charge of the electron (e), and the masses
of various elementary particles like the proton (mp) and the electron (me). Our physical
theories relate some of these constants, so it is important to identify the ones which are
fundamental, in the sense that the others can be derived from them. As physics has become
progressively unified, the number of fundamental constants has reduced, but there is still
a large number of them. For example, the Standard Model of Particle Physics has 26,
and the Standard Model of Cosmology has six. Some of these constants are listed in
Table 2.1, which is taken from Barnes [8]. However, neither of these standard models can
be complete, so one may expect further reductions. Indeed, one might hope that some Final
Theory would determine them all uniquely, although there is no evidence for this. More
likely, some of the constants will turn out to be contingent.

Certain combinations of these constants have a special physical significance. For exam-
ple, h̄/mpc is a length-scale of about 10−13 cm and specifies the size of the proton. If one
divides this by c, one gets a timescale tp of about 10−23 s, and this is the time light takes
to traverse a proton; it is also the timescale associated with strong interactions. Another
combination, h̄2/mee

2, gives a scale of about 10−8 cm, and this specifies the size of
an atom. Dividing mp by the cube of this, gives a density of about 1 g cm−3, and this
characterises the density of atomic material like ordinary solids and liquids. Dividing mp
by the cube of the size of the proton gives a density of 1014 g cm−3, and this characterises
nuclear density.

It is particularly interesting to take combinations of the constants which are dimension-
less, in the sense that they are pure numbers. For example, the electric ‘fine structure’
constant,

α ≡ e2/h̄c ≈ 1/137, (2.1)

determines the strength of the electric interaction and plays a crucial role in any situation
where electromagnetism is important. Likewise, the gravitational fine structure constant,

αG ≡ Gm2
p/hc ≈ 6 × 10−39, (2.2)

determines the strength of the gravitational interaction and plays an important role in
determining the structure of large objects (like stars). The fact that αG is so much smaller
than α reflects the fact that the gravitational force between two protons is so much smaller
than the electric force between them. Gravity dominates the structure of large bodies only
because these tend to be electrically neutral, so the electric forces cancel out.
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Table 2.1 Constants of Standard Models of particle physics and cosmology, taken from
Reference [8]. Note that the electric, weak and strong coupling constants indicated are
different from the low-energy definitions of Eqs. (2.1), (2.5), and (2.6).

Quantity Symbol Value in our universe

Speed of light c 299,792,458 m s−1

Gravitational constant G 6.673 × 10−11 m3 kg−1 s−2

(Reduced) Planck constant h̄ 1.05457148 × 10−34 m2 kg s−1

Planck mass-energy mPl = √
h̄c/G 1.2209 × 1022 MeV

Mass of electron; proton; neutron me; mp; mn 0.511; 938.3; 939.6 MeV
Mass of up; down; strange quark mu; md ; ms (Approx.) 2.4; 4.8; 104 MeV
Ratio of electron to proton mass β (1836.15)−1

Gravitational coupling constant αG = m2
p/m

2
P l

5.9 × 10−39

Hypercharge coupling constant α1 1/98.4
Weak coupling constant α2 1/29.6
Strong force coupling constant αs = α3 0.1187
Fine structure constant α = α1α2

α1+α2
1/127.9 (1/137 at low energy)

Higgs vacuum expectation value v 246.2 GeV
QCD scale �QCD ≈ 200 MeV
Yukawa couplings �i = √

2mi/v Listed in [82]
Hubble constant H 71 km/s/Mpc (today)
Cosmological constant (energy density) � (ρ�) ρ� = (2.3 × 10−3eV )4

Amplitude of primordial fluctuations Q 2 × 10−5

Total matter mass per photon ξ ≈ 4 eV
Baryonic mass per photon ξbaryon ≈ 0.61 eV

Many physical quantities can be expressed very simply in terms of α and αG. For
example, the radius of a hydrogen atom and the (Rydberg) energy required to ionise it are

ao ∼ α−1re ∼ 10−8cm, Eo ∼ α2mec
2 ∼ 10 eV, (2.3)

and the Planck length and Planck mass can be expressed as

RP =
(
G

h̄c3

)1/2

= α1/2
G rp ∼ 10−33cm, MP =

(
h̄c

G

)1/2

= α−1/2
G mp ∼ 10−5g. (2.4)

These are the scales at which quantum gravity effects become important.
The value of αG is of particular interest because simple physics (discussed later) shows

that most of the scales appearing in Figure 2.1 can be expressed as powers of αG. Also,
we will see that the main-sequence lifetime of stars is roughly α−1

G tp, so the size of the

observable Universe RU must be roughly α−3/2
G ∼ 1060 in Planck units. This explains the

clocklike feature of the Uroborus (i.e., the factor of 60). If αG were different, the form of
the Uroborus would remain the same, but all the scales would change.
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On scales smaller than atoms, two more fundamental interactions come into play: the
strong and the weak force. Although these are many orders of magnitude stronger than
the gravitational force, they are both short range, becoming negligible beyond distances of
10−13 cm and 10−15 cm, respectively. For this reason, they do not play an important role in
determining the structure of objects larger than atoms. The associated coupling constants
are also energy dependent, so Reference [22] only indicates their low-energy values. The
weak force has a (low-energy) dimensionless coupling constant

αW ≡ (gm2
ec/h̄

3) ∼ 10−11, (2.5)

where g ∼ 10−49 erg cm3 is the Fermi constant. Thus, its interaction strength is intermedi-
ate between that of gravity and electricity. Reference [22] describes the strong force by the
(scalar) coupling constant

f 2 ≈ 15. (2.6)

However, it must be stressed that the strong coupling constant is strongly energy dependent:

αS(E) = 12π

(33 − 2nf ) ln(E2/�2
QCD)

, (2.7)

where nf is the number of quarks and �QCD is the QCD scale. This goes to zero for
E � �QCD, corresponding to asymptotic freedom. It diverges as E → �QCD, but QCD
theory breaks down there, and lattice gauge theory gives αS ≈ 0.1 at the appropriate energy.

2.4 Types of Fine-Tuning

The AP claims that there are various tunings between the physical constants – including the
dimensionless coupling constants – which are necessary for the emergence of observers.
Indeed, there could be enough of these to determine all the physical constants, at least to
some precision. Current physics does not explain their values, but even if it did, it would
be remarkable that the values predicted turned out to be the ones required anthropically.
However, the term ‘tuning’ is used in different senses, so we first clarify the distinction
between them.

• Natural tunings. Standard physics implies that the mass- and length-scales of many
natural objects depend on α and αG. This implies many apparent coincidences between
these scales, which might be surprising if one did not understand the underlying physics.
For example, the size of cell is 10−3 cm, which is roughly the geometric mean of the RP
and RU .

• Non-anthropic tunings. Some tunings in particle physics have no obvious anthropic
aspects. For example, the Higgs mass (250 GeV) is roughly the geometric mean of the
dark-energy mass and the Planck mass, but this does not seem to have anthropic signif-
icance. Wilczek’s classification of fundamental parameters distinguishes between four
types of tunings; he terms these enlightenment, knowledge, ignorance, and temptation,
with only the last being anthropic [91].
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• Weak anthropic tunings. Given the constants of physics, there is an inevitable selec-
tion effect on when and where observers can exist, and this may involve the coupling
constants. For example, an argument of Robert Dicke [40] suggests that observers can
only exist when the age of the Universe is roughly the lifetime of a main-sequence star,
tMS ∼ α−1

G tp ∼ 1010 yr. The WAP is a logical necessity, although the nature of the tunings
may still be a surprise.

• Strong anthropic tunings. There are also coincidences between the physical constants
themselves which seem necessary for observers. However, most of these coincidences
merely involve prerequisites for observers (such as planets, stars, galaxies, and chem-
istry), so the description ‘anthropic’ is misleading. They are better regarded as conditions
for complexity. The SAP is much more controversial than the WAP because it refers to
counterfactual universes in which the constants are different. However, if one accepts the
existence of a multiverse, the SAP essentially becomes an example of the WAP.

2.5 Scales of Structure and Natural Tunings

Straightforward physics shows that, to an order of magnitude, α and αG determine the
mass and the size of nearly every macroscopic object in the Universe. This is illustrated
in Figure 2.2, from which one can read off the scales associated with the Universe itself,
galaxies, stars, planets, asteroids, exploding black holes, humans, atoms, protons, and the
Planck length. The scales are given in grams and centimetres and also in terms of α, αG,
and the size and mass of the atom. A derivation of some of these results is given later.

Some of these dependencies are also summarised in Table 2.2. The proton and Planck
scales trivially follow from Eq. (2.3) and (2.4), but the others are less obvious. For example,
stars have a mass of roughly α−3/2

G ∼ 1060 and a radius of roughly α−1/2
G ∼ 1020 in atomic

units (see also Chapter 10); the largest planets (like Jupiter) have a mass and radius smaller
than this by factors of α3/2 ∼ 10−3 and α1/2 ∼ 10−1, respectively; the mass and size of
a living creature – if we assume that it must live on a planet with a suitable temperature
and a life-supporting atmosphere and does not shatter whenever it falls down – must be
of order (α/αG)3/4 ∼ 1027 and (α/αG)1/4 ∼ 109. Some of the scales also depend on the
proton-to-electron mass ratio, but this can be written as

β ≡ me/mp ≈ 10α2, (2.8)

due to a coincidence in nuclear physics (discussed later).
It should be stressed that the dependencies on α and αG summarised in Figure 2.2

and Table 2.2 are all consequences of standard physics. No anthropic argument has been
introduced, except in deriving the scale of the Universe (which we discuss later). At first
sight, the dependencies might seem surprising, but the qualitative reason can be understood
as follows: any stable structure in the Universe reflects a balance between either gravity
or intermolecular forces, which are trying to hold it together, and various other effects –
such as pressure or quantum interactions – which are trying to blow it apart. Since gravity
depends on G, quantum effects on h̄, and electrical effects on e, a balance between these
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Figure 2.2 Dependence of mass and length scales of various objects on α and αG, from Refer-
ence [22].
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Table 2.2 Scales of some objects in atomic units.

Mass/mp Size/a0

Universe α−2α−2
G αα−1

G

Galaxy α4α−2
G α3α−1

G

Star α
−3/2
G α

−1/2
G

Jupiter α3/2α
−3/2
G α1/2α

−1/2
G

Human α3/4α
−3/4
G α1/4α

−1/4
G

Proton 1 α3

Planck α
−1/2
G α3α

1/2
G

factors is bound to involve the sort of combinations shown in Figure 2.2, However, one can
only deduce the actual powers of α and αG by detailed calculation.

We first consider the quantum and black hole regions in Figure 2.2. These are associated
with the Compton wavelength and Schwarzschild radius for an object of massM:

RC = h̄

Mc
= rp

(
M

mp

)
, RS = 2GM

c2
= αG

(
M

mp

)
rp. (2.9)

The Hawking temperature of a black hole of massM is given by [43]

kTH = h̄c3

8πGM
∼
(
M

MP

)−1

MP ∼ α−1
G

(
M

mp

)−1

mp, (2.10)

and it evaporates on a timescale

tevap ∼
(
M

MP

)3

N(M)−1tP ∼ α2
G

(
M

mp

)3

N(M)−1tp, (2.11)

where N(M) is the number of particle species with rest mass less than TH . This means that
a black hole evaporating at the present epoch has a mass

M∗ ∼ α−2/3
G

(
to

tp

)1/3

mp ∼ α−1
G mp ∼ 1015g, (2.12)

where we have used the relation to ∼ α−1
G tp at the second step. This implies that its radius

is just of order rp.
We next show that stars have a mass in the range (0.1–10)MC , where

MC ≡ α−3/2
G mp ∼ 1M�. (2.13)
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A gravitationally bound cloud represents a balance between gravity and thermal and
electron degeneracy pressure. The virial theorem therefore implies that the temperature T
is given by

kT + h̄2

2med2
∼ GMmp

R
∼
(
N

No

)2/3
h̄c

d
, (2.14)

where N is the number of protons, No ≡ α
−3/2
G , and d is the mean particle separation. As

the cloud collapses, T first increases as d−1, being given by

kT ∼ GMmp

R
, (2.15)

but it then decreases due to the degeneracy term, reaching a maximum

kTmax ∼
(
N

No

)4/3

mec
2. (2.16)

The cloud forms a star if kTmax exceeds the nuclear ignition threshold, χmec2 with
χ ∼ 10−2, so this implies N > 0.1No. On the other hand, the star will be unstable if it
is radiation-pressure dominated. Using Eq. (2.14), the ratio of the radiation and matter
pressures is

prad

pmat
∼ aT 4

NkT/R3
∼ 0.01

(
N

No

)2

, (2.17)

so the upper limit is around 10MC , although a more precise calculation gives a limit of
50MC . More details can be found in Chapter 10.

During its main-sequence phase, T adjusts itself so that the nuclear energy generation
rate balances the luminosity, which is the radiative energy content divided by the photon
leakage time. This corresponds to

L ∼ acT 4R2

κM
, (2.18)

where κ is the opacity. After its nuclear-burning (main-sequence) phase, the star resumes
its collapse, and so Eq. (2.14) predicts zero temperature (corresponding to an electron-
degeneracy-supported white dwarf) when the particle separation reaches

dmin ∼
(
N

No

)−2/3

re ⇒ R ∝ N1/3dmin ∝ M−1/3. (2.19)

There is no stable white dwarf configuration if the electrons become relativistic (i.e., for
kTmax ∼ mec2) since the degeneracy term in Eq. (2.14) then goes like d−1 rather than d−2.
Therefore,MC also gives the upper limit on the mass of a white dwarf (the Chandrasekhar
mass).

Note that the mass-scale at which a collapsing cloud stops fragmenting is

Mfrag ∼ q−1/2
(
kT

mpc2

)1/4

MC ∼ 10−2q−1/2MC, (2.20)
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where T is the cloud’s temperature and q is the ratio of its luminosity to that of a black
body with this temperature. The important point is that Mfrag has only a weak dependence
on T and is at least an order of magnitude smaller thanMC .

Solid objects represent a balance between electron degeneracy energy and electrostatic
binding energy. By comparing the degeneracy term in Eq. (2.14) with e2/d, one obtains the
atomic density line

ρo ∼ mp/a3
o ∼ e6m3

emph̄
−6 ∼ 1 g cm−3, (2.21)

which meets the white dwarf line at

M ∼
(
α

αG

)3/2

mp ∼ α3/2MC ∼ 1030g, R ∼
(
α

αG

)1/2

ao ∼ 1010 cm. (2.22)

This gives the maximum size of a planet and also lies on the Rydberg (kT ∼ α2mec
2)

isotherm. The minimum mass of a planet, the mass range of a habitable planets and the
maximum scale of a living creature (prescribed by the requirement that it does not fall
apart when it falls through its own height) can be derived with similar arguments but is not
given here.

We next discuss the galaxy scale [67, 71]. Let us assume that galaxies originate from
over-dense regions in the gaseous primordial material, and that they have a mass M and
radius RB when they stop expanding and become bound. After binding, protogalaxies will
virialise at a radius ∼ RB/2. Thereafter, they will deflate on a cooling timescale, with the
virial temperature (2.15). Providing kT exceeds the Rydberg energy, the dominant cooling
mechanism is bremsstrahlung with the associated cooling time

tcool ∼ 1

nασT c

(
kT

mec2

)1/2

∼ G1/2m
3/2
e mpR

α3n1/2
, (2.23)

using σT ∼ α2r2
e and n ∼ M/mpR3. The free-fall timescale, on the other hand, is

tff ∼ (GM/R3)−1/2 ∼ (Gnmp)−1/2, (2.24)

and this exceeds tcool when R falls below a mass-independent value

Rg ∼ α4α−1
G

(
mp

me

)1/2

ao ∼ α3α−1
G ao ∼ 100 kpc, (2.25)

where we have used Eq. (2.8). Until a massive cloud gets within this radius, it will contract
quasi-statically and cannot fragment into stars.

This argument applies only if kT > Eo ∼ α2mec
2 at the radius Rg , so one also needs

the mass to exceed

Mg ∼ α−2
G α

5(mp/me)
1/2mp ∼ α−2

G α
4mp ∼ 1012M�. (2.26)

Gas clouds with mass below Mg cool more efficiently, owing to recombination and can
never be pressure supported. On the other hand, clouds with mass above Mg are inhibited
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from fragmentation and may remain as hot pressure-supported clouds. This type of argu-
ment can be refined, but one always obtains a mass Mg , above which any fluctuations are
likely to remain amorphous and gaseous. These considerations suggest that Mg and Rg
characterise the mass and radius of a galaxy. However, of all the scale estimates in Figure
2.2, this is the least certain.

2.6 Non-anthropic Tunings

There are a number of tunings which seem surprising but do not have anthropic siginif-
icance. Indeed, Wilczek’s has classifed tunings into four types, according to whether or
not they seem to involve a selection effect and whether or not we are able to calculate
them [91]. He describes these tunings as ‘enlightenment’ (e.g., mp � MP ), ‘knowledge’
(e.g., θQCD � 1 ), ‘ignorance’ (e.g., most Standard Model parameters), and ‘temptation’
(e.g., anthropic relations).

A particular example of ‘ignorance’ is assocated with the Higgs boson. This gives
elementary particles their masses, but its mass is also affected by those particles and is par-
ticularly sensitive to the mass of the top quark. The measured Higgs mass, mH ≈ 125 GeV,
seems very finely tuned. This is because the Higgs particle is also related to the vacuum
state. The Universe should come to rest in the lowest energy vacuum state, but it seems to
be caught in a small trough. If the Higgs mass and top quark mass were slightly different,
it would either be in a completely stable vacuum or an unstable vacuum that would have
decayed a long time ago. So the Universe seems to be located on boundary, as illustrated in
Figure 2.3, which is taken from Reference [30]. However, it is possible that supersymmetry

Figure 2.3 Fine-tuning of mass of Higgs particle and top quark; from Reference [30].
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or some some symmetry associated with the axion may explain this. It may also be relevant
thatmH is roughly the geometric mean of the Planck scale (1019 GeV) and the dark-energy
scale (10−4 eV).

2.7 Weak Anthropic Principle

The ‘Weak Anthropic Principle’ (WAP) accepts the constants of nature as given and then
shows that our existence imposes a selection effect on when we observe the Universe. In
the �CDM picture, this may represent just a narrow window between the early radiation-
dominated period and the late dark-energy-dominated period.

2.7.1 Dicke’s Argument

As a simple example of a weak anthropic argument, consider the question: Why is the
Universe as big as it is? The mechanistic answer is that, at any particular time, the size
of the observable Universe is the distance travelled by light since the Big Bang, which is
about 1010 light years. There is no compelling reason the Universe has the size it does; it
just happens to be 1010 yr old.

There is, however, another answer to this question, which Robert Dicke [40] first gave
in 1961. In order for life to exist, there must be carbon, and this is produced by cooking
inside stars. The process takes about 1010 yr, so only after this time can stars explode
as a supernovae, scattering the newly baked elements throughout space, where they may
eventually become part of life-evolving planets. On the other hand, the Universe cannot
be much older than 1010 yr, else all the material would have been processed into stellar
remnants. Since all the forms of life we can envisage require stars, this suggests that it can
only exist when the Universe is aged about 1010 yr. So the very hugeness of the Universe,
which seems at first to point to our insignificance, is actually a prerequisite of our existence.
This is not to say that the Universe itself could not exist with a different size, only that we
could not be aware of it then.

We can express this result in terms of fundamental constants because standard physics
predicts that the lifetime of a star is of order α−1

G ≈ 2 × 1038 times the proton timescale
tp = h/mpc2 ∼ 10−23 s. (Since α−1

G is so huge, we sometimes approximate it as 1040, but
we need a more precise value in this section.) We now present the argument for this. The
luminosity of a star whose opacity is dominated by electron scattering (as applies for large
stars) but not so large as to be radiation-pressure dominated is

L ∼ (prad/pmat)LE, (2.27)

where the ratio of the pressures is given by Eq. (2.17) and

LE = 4πGMmpc/σT with σT = α2r2
e (2.28)
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is the Eddington luminosity. A characteristic timescale, first discussed by Salpeter [69], is
that over which an object of luminosity LE would radiate away its entire rest mass:

tE = cσT

4πGmp
∼ 0.1

(
α2

αG

)(
mp

me

)2

tp. (2.29)

If η ∼ 10−2 is the fraction of a star’s rest mass that can be released through nuclear burning,
the main-sequence lifetime is, thus,

tMS ∼ η
(
prad

pmat

)−1

tE ∼ 10

[
ηα2

(
mp

me

)2
](

M

MC

)−2

α−1
G tp, (2.30)

the quantity in square brackets being of order unity. For a radiation-dominated star
(M> 50M�), theM-dependence disappears, and tMS levels off with the value of 10−2α−1

G

tp ∼ 2 × 1013 s. Since the characteristic mass of a star isMC , the Dicke argument requires

to > tMS ∼ 10α−1
G tp ∼ 2 × 1016s. (2.31)

This is a factor of 20 shorter than the current age of the Universe to ≈ 4 × 1017s. However,
Eq. (2.30) is really only appropriate for an upper main-sequence star because the opacity is
increased at lower masses. For a solar-mass star, tMS exceeds α−1

G tp by a factor of around
mp/me ∼ 103, so it is better approximated as α−1

G te.
Since tMS is very sensitive to the value of M , Dicke’s argument is not very precise.

It would be more convincing if one could show that life requires stars of around a solar
mass. For example, it might be difficult for life-bearing planets to evolve around much
more massive stars, because they are too short-lived or because one needs some lower mass
convective stars to have planets. Alternatively, even if the first stars were massive, perhaps
some of the elements vital for life must be generated through the s-processes associated
with later-forming, less massive stars. Whatever the appropriate value of M , to cannot be
much bigger than observed, else most of the Universe would have been processed into
stellar remnants. Therefore, observers are most likely to exist at an epoch to ∼ tMS.

2.7.2 Cosmological Consequences of Dicke’s Argument

Dicke’s argument for solar-mass stars implies the approximate relation

cto ∼ α−1
G (h̄/mec) ∼ (α/αG)ao, (2.32)

so the ratio of the size of the observable Universe to the size of an atom is comparable to the
ratio of the electric and gravitational forces between protons. There is no other explanation
for this well-known coincidence within conventional physics, but Dirac [32] suggested the
unconventional explanation that αG is always given by

αG ∼ h̄/(mec2t) ∼ (t/te)−1. (2.33)
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Assuming that h̄, c, and me are constant in time, this requires that G decreases like t−1, so
Dirac invoked Eq. (2.33) as the basis for a new cosmology. However, such a variation ofG
is inconsistent with observation.

The relation (2.32) also implies that the number of protons in the observable
Universe must be of order α−2

G , thereby explaining another well-known coincidence. We
now describe this argument in more detail. The total mass associated with the observable
Universe (i.e., the mass within the horizon volume) is ∼ ρoc

3t3o , where ρo is the present
matter density. This is given by the Friedmann equation:

ρo = 3H 2
o

8πG
+ Kc2

16πG
, (2.34)

where K is the scalar curvature of the Universe. Providing the K term is smaller than the
others, we deduce that the mass of the Universe is

MU ∼ c3t3oG
−1H 2

o ∼ α−2
G

(
mp

me

)
mp ∼ α−2α−2

G mp, (2.35)

where we have used to ∼ H−1
o and Eq. (2.8). The fact that the number of protons in

the Universe is of order α−2
G is thus explained, providing one can neglect the K term in

Eq. (2.34). Some people have argued thatK must be zero by appealing to Mach’s principle,
but – as discussed later – there may also be anthropic reasons for expecting that theK term
is small.

Given the expression for the size of the Universe, the dependencies derived in
Section 2.6 allow one to predict amusing relationships between the different mass-scales
discussed earlier:

• Human ∼ (planet × atom)1/2

• Planck ∼ (exploding hole × proton)1/2

• Exploding hole ∼ (Universe × proton)1/2.

• The number of stars in the galaxy ∼ α4 α
−1/2
G .

• The number of galaxies in the Universe ∼ α−6.

These relationships are all consequences of standard physics, providing one accepts the
WAP prediction for the size of the Universe. Of course, they are only order-of-magnitude
relationships, since the objects involved (humans, stars, galaxies, etc.) all span a range of
sizes and masses.

2.7.3 Does WAP Suffice?

Dicke’s argument helps us to understand why the preceding large number coincidences
prevail. It accepts the constants of Nature as given and then shows that our existence
imposes a selection effect on when we observe the Universe. As such, it is no more than a
logical necessity: saying that we have to exist at a certain time is no more surprising than
saying we have to exist in a certain place (e.g., close to a star). It might be surprising to find
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what the selection effects are, but their existence is not surprising in principle. In fact, most
physicists would agree with the weak version of the Anthropic Principle.

The problem comes when we consider whether constants such as G are themselves
determined by the requirement that life should arise, a notion we have referred to as the
‘Strong Anthropic Principle’. That the weak principle may not be the whole story is also
suggested by the fact that all the scales shown in Figure 2.2 are relative. If α and αG differed
from what we observe them to be, all the scales would change, but the basic relationships
between them would be the same. For example, one could envisage a hypothetical universe
in which all microphysical laws were unchanged, but G was (say) 106 times stronger.
Planetary and stellar masses (∝ α

−3/2
G ) would then be lowered by 109, but hydrogen-

burning main-sequence stars would still exist, albeit with lifetimes (∝ α−1
G ) of 104 yr rather

than 1010 yr. Moreover, Dicke’s argument would still apply: a hypothetical observer looking
at the Universe when to ∼ tMS would find the number of particles in the Universe 1012

times lower than in ours, but he would still find the ‘large number’ coincidences described
earlier. If one fixed αG but allowed α to change, the effects would be less extreme but still
noticeable.

What are the arguments against the ‘cognisability’ of this kind of small-scale speeded-
up universe? One rather loose constraint on αG comes from biological considerations. We
have seen that the number of stars in the observable Universe is of order ∼ α

−1/2
G . If we

regard stars – or at least their associated solar systems – as potential sites for life, this
is also the number of places where life may have arisen. However, this is not a sufficient
condition for life because there is a whole set of extra conditions, each of which may be
very improbable (cf. the Drake equation). For example, we need the star to have a planet,
we need the planet to be at a suitable distance from the star, it needs to have a suitable
atmosphere and chemistry, and there must be the appropriate conditions for the first self-
replicating cells to arise.

Clearly, therefore, the overall probability (P ) of life arising at any particular site must be
very small. So if we want there to be life somewhere in the observable Universe, we need
the number of sites for life times the probability P to exceed 1. This implies that αG must
be less than P 2. For example, if P were 10−15, one would need αG < 10−30. This is not a
very precise argument, but it gives a qualitative reason why αG needs to be small. We now
discuss more specific anthropic arguments that pin down αG more narrowly.

2.8 Strong Anthropic Principle: Astrophysical Coincidences

The Strong Anthropic Principle (SAP) claims that there are tunings between the
physical constants themselves. Some of them involve the four dimensionless coupling
constants, while others involve various cosmological parameters, and the tuning is
sometimes remarkably precise. Although one might hope that some final theory of physics
or cosmological evolution would explain these relationships, they are not predicted by
current physics.
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2.8.1 Convective and Radiative Stars

One of the first and most striking SAP tunings was given by Brandon Carter and relates to
the existence of stars with convective and radiative envelopes [24]. In the first case, the heat
generated in its core by nuclear reactions is transported to the surface primarily by way of
large-scale motions of the stellar material itself. This tends to be the case for sufficiently
small stars (red dwarfs). By contrast, larger stars (blue giants) tend to be radiative in the
sense that the heat gets out primarily via the flow of radiation. The dividing line between
the two types is some critical mass which lies in the range around α−3/2

G mp in which stars
actually exist only because of the remarkable coincidence

αG ∼ α20. (2.36)

Were G slightly larger, all stars would be blue giants; were it slightly smaller, all stars
would be red dwarfs. This does not pin down the actual values of α and αG, but it does
specify a scaling law between them, and it explains why αG is so much smaller than α.
This is perhaps the most striking coincidence because of the high power of α involved. It
is also the condition that the number of stars in a galaxy be comparable to the number of
galaxies in the Universe.

Let us now derive relation (2.36). If radiation transport is unable to maintain a star’s
surface temperature TS above the ionisation temperature ∼ 0.1α2mec

2/k, a convective
outer layer develops, and this supplements the heat transport so that it does. The value of
TS that can be maintained by radiative transport, assuming a central temperature

TC ∼ 10−2α2mpc
2/k ∼ 107 K, (2.37)

is

TS ∼ (L/aR2)1/4 ∼ τ−1/4TC, (2.38)

where we have used Eq. (2.18). Here, τ is the optical depth through the star, which can be
expressed as

τ ∼ nRσT ∼ MσT

mpR2
∼ k2σT T

2
C

G2Mm3
p

, (2.39)

where we have assumed electron-scattering opacity and used Eq. (2.15) at the last step.
Thus, TS exceeds the ionisation temperature, providingM exceeds

M∗ ∼ α−2
G α

10mp ∼ α−1/2
G α10MC . (2.40)

The mass M∗ divides the (convective) red dwarfs from the (radiative) blue giants and is
comparable to the mass MC in which main-sequence stars actually exist only because of
relation (2.36). Page has discussed the argument in more detail [59], interpreting it as a
constraint on the electron charge (e ∝ √

α) and showing that it constrains e to 3%.
The relationship αG∼α20 is clearly satisfied numerically, but current physics does

not explain why this relationship should pertain. Its anthropic significance is that only
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radiative stars can end their lives as supernovae, which is required to disseminate heavy
elements. Otherwise, all stars would be chemically homogeneous due to convective mixing
and not develop the ‘onion-skin’ shell structure which characterises presupernova models.
So αG cannot be much smaller than α20. On the other hand, Carter suggested that the
formation of planetary systems may be associated with convective stars. This was based on
the observational feature that red dwarfs have much less angular momentum than blue
giants, and a loss of angular momentum could be a consequence of planet formation.
This argument is no longer compelling because there are other ways of losing angular
momentum. A better argument might be that only convective stars generate winds in their
early phase intense enough to blow away the gaseous envelope of nearby planets, thereby
facilitating the formation of solid planets with non-hydrogen atmospheres. In either case,
one infers that no planets, and hence no life, would form if αG were much larger than α20.
Even if the anthropic significance of the relation αG ∼ α20 is disputed, the existence of
both blue giants and red dwarfs certainly requires this.

If we had one more relationship between α and αG, we could predict the value for
each of them. Another relationship does, in fact, exist. It does not come from an anthropic
argument but from an argument in quantum field theory. It has been suggested that all
space intergals in quantum electrodynamics should be cut off at the Planck length, thereby
reducing otherwise divergent integrals to finite functions of the parameter α logαG. Various
arguments [31] suggest a self-consistent electrodynamics is possible only if this parameter
has some specific value of order unity – i.e., one requires

α−1 ∼ logα−1
G . (2.41)

This relation, together with the convective star condition, implies that α must be about 10−2

and αG must be about 10−40, as observed. In view of the simple dependencies on α and αG
of the different scales of structure in the Universe, this suggests that the appearance of our
Universe is determined, not merely in part, but to a very large degree by our existence.

In an important series of papers, Fred Adams and colleagues have explored these
relationships in much more detail [1–5]. They argue that star constraints are not as strict
as sometimes claimed and that the possible parameter space spans several orders of
magnitude. A summary of their results is contained in Figure 2.4 and its caption. This does
not include relation (2.36) because the connection between convective stars and planets
and between radiative stars and supernovae is disputed.

2.8.2 Supernovae

The value of αW is involved in an interesting anthropic constraint involving supernovae
[24]. We have seen that supernovae are essential for life because they disseminate heavy
elements throughout the Universe. The reason a star explodes after burning its nuclear fuel
is that its core gets hot enough when it collapses to generate a surge of neutrinos, which then
blow off the envelope as a result of weak interactions. For this model to work, one requires
the timescale on which neutrinos interact with nuclei in the envelope to be comparable
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Figure 2.4 The shaded region shows the (α,αG) plane allowed by the constraints of Reference [3].
Curve 1 indicates that the star is stable, curve 2 that its temperature is high enough to allow habitable
planets, and curve 3 that it lives long enough for biological evolution to occur. For planets to be
smaller than stars, α must be to the left of line 4. For stars to be smaller than galaxies, it must be to
the right of line 5. Planets can support a biosphere and remain non-degenerate below line 6. From
Reference [3].

to the dynamical timescale. If it were much longer, the envelope would be essentially
transparent to the neutrinos; if it were much shorter, the neutrinos would be trapped in the
core and could not escape to deposit their momentum in the less tightly bound surrounding
layers.

Let us now examine this argument in more detail. The weak interaction cross section is

σW ∼ c−4h̄−4g2(kT )2 ∼ α2
Wr

2
e

(
kT

mec2

)2

, (2.42)

so the weak interaction and dynamical timescales are comparable if

(ncσW )
−1 ∼ (Gnmp)−1/2, (2.43)

where n is the nucleon number density. Most of the neutrinos are pair-produced by
e+ + e− → ν+ ν̄, so for this to be possible, one requires kT ∼ mec2. One also expects the
density at the bounce to be of order the nucleon density which is n ∼ (h̄/mpc)−3. Putting
these values for n and T into Eq. (2.43) gives

αG ∼ α4
W(mp/me)

2. (2.44)
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The last factor is large but would be absent if we used the electron rather than proton mass in
the definition of αG. We know that this relationship holds numerically but the AP explains
why it must hold. So if we accept that αG is determined anthropically, we must also accept
that αW is so determined. As we will see later, the relation αG ∼ α4

W also plays a crucial
role in Big Bang nucleosynthesis.

2.8.3 Triple-α

Perhaps the most famous anthropic tuning – and the most sensitive constraint on the value
of αS – concerns the generation of carbon (a prerequisite for our form of life) in the helium-
burning phase of red giant stars via the ‘triple-α’ reaction. The way a star makes carbon is
by first combining two α particles to make a beryllium nucleus and then adding another α
particle to form a carbon nucleus:

He4 + He4 → Be8, Be8 + He4 → C12.

The trouble is that beryllium is unstable (otherwise, the ‘helium flash’ in giants would lead
to a catastrophic explosion), and it used to be thought that it would decay before the extra
α particle could combine with it. For many years, therefore, it was difficult to understand
why there is any carbon in the Universe. Then Fred Hoyle [48] realised that there must be
a resonance (i.e., an enhanced interaction rate) in the second step, which allows the carbon
to form before the beryllium disappears – i.e., C12 must have a state with energy just above
the sum of the energies of Be8 and He4. There is, however, no similar favourably placed
resonance in 1016; otherwise, almost all the carbon would be transmuted into oxygen.

Once the suggestion was made, the resonance was looked for in the laboratory and
rapidly found. So this might be regarded as the first confirmed anthropic prediction,
although Kragh [53] takes a different view. Indeed, the fine-tuning required is so precise
that Hoyle concluded that the Universe has to be a ‘put-up job’. At the time, it was not
possible to quantify this coincidence, but more recent work has studied this more carefully
[6, 25, 37, 56]. In particular, studies by Oberhummer et al. – calculating the variations in
oxygen and carbon production in red giant stars as one varies the strength and range of the
nucleon interactions – indicates that the nuclear interaction strength must be tuned to at
least 0.5% [58].

2.8.4 Constraints from Chemistry

As discussed in detail by Barrow and Tipler [11], many features of chemistry are sensitive
to the value of αS . For example, if αS were increased by 2%, all the protons in the Universe
would combine at cosmological nucleosynthesis to form diprotons (nuclei consisting of
two protons). In this case, there would be no hydrogen and, hence, no hydrogen-burning
stars. Since stars would then have a much reduced main-sequence time, there might not
be time for life to arise. If αS were increased by 10%, the situation would be even worse
because everything would go into nuclei of unlimited size, and there would be no interesting
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chemistry. The lack of chemistry would also apply if αS was decreased by 5% because all
deuterons would then be unbound, and one could only have hydrogen.

There are several other coincidences involving f and the masses of various elementary
particles which seem to be necessary for chemistry. These involve the mass ratios

me/mN = 1/1837, mπ/mN = 1/7, �/mN = 1/730, (2.45)

where� = mN−mp. The important features of nuclear physics depend upon the following
four coincidences [24]:

(a) f 2 ≈ 2mN/mπ,

(b)�/me ≈ 2,

(c) α ≈ �/mπ,
(d) f ≈ 1/(3α1/2).

(2.46)

(a) implies that strong interactions are only marginally strong enough to bind nucleons into
nuclei. If f were slightly weaker, only hydrogen would exist; if it were slightly stronger,
nuclei of almost unlimited size would exist. (b) implies that neutrons are unstable to
β-decay in isolation but not in the presence of relativistic degenerate electrons. (c) implies
that the electrostatic energy in light nuclei ∼ αmec

2 is comparable to the neutron-proton
mass difference. (d) implies that the electrostatic energy is small compared to nuclear
binding energy in light nuclei but comparable to it for nuclei with Z ∼ (f α)−3 ∼ 30, so
such large nuclei are unstable to electromagnetic disruption. Note that the combination of
(a), (b), (c), and (d) implies the relation (2.8).

If the relations indicated by Eq. (2.46) were not satisfied to at least 10% accuracy,
elements vital to life would not exist, so one might ascribe anthropic significance to these
relations. Kahn [49] has pointed out that me � mp may also be a prerequisite for complex
chemistry, since this ensures that ions are localised to a precision (me/mp)1/4 times their
mean spacing. More recent constraints on α and αS from chemistry – also expressed in
terms of the electron-proton mass ratio – are summarised in Figure 2.5, which is taken
from Barnes [8].

From the modern perspective, αS , mp and me are no longer fundamental quantities;
the QCD interaction strength and quark masses would be regarded as more significant.
Nevertheless, fine-tuning is still required at some level. As indicated in Figure 2.6, which is
taken from Hogan [46], the masses of the light fermions that make up the stable matter
of which we comprise – the up and down quarks and the electron – have values in a
narrow window that allows the existence of a variety of nuclei other than protons and also
atoms with stable shells of electrons that are not devoured by their nuclei. For example, the
stability of free protons requires [41]

α < (md −mu)/141 MeV ≈ 1/50. (2.47)
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Figure 2.5 Fine-tuning of α, αS , and me/mp; from Reference [8].
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Figure 2.7 Limits on stable stars in (αG,α) space for H-burning stars (black lines) and D-burning
stars (grey lines) from Reference [9]. This shows that D-burning stars are stable in a much larger
region of parameter space.

Since life requires stable nuclei other than protons and neutrons, these fundamental param-
eters of the Standard Model are good candidates for quantities whose values are determined
anthropically.

Recent literature has focused on a fine-tuning associated with the diproton [33].
Although hydrogen burns slowly in the Sun (because it is moderated by weak inteactions),
it would burn explosively if the Sun were made of heavy hydrogen (as in a nuclear bomb),
and increasing f by 6% would bind the diproton [26, 62]. Barr and Khan [10] calculate the
equivalent condition on the light quarks masses as

mu +md < 0.75 (mu +md)obs = 5.3 eV. (2.48)

On the other hand, the deuteron would be strongly unbound for

mu +md < 1.4 (mu +md)obs = 9.9 eV, (2.49)

in which case one would need much higher central temperatures in stars. Although Barrow
and Tipler argue that a bound diproton would result in all the hydrogen being consumed at
Big Bang nucleosynthesis, more detailed calculations show that this is not the case [57].
There could also be long-lived stars [14], although Barnes argues [9] that the strongest
anthropic bound on stars in such a universe still comes from their lifetime, all stars burning
out within 106 yr unless αG < 10−30. Figure 2.7 is taken from his paper.

2.9 Strong Anthropic Principle: Cosmological Coincidences

The second set of fine-tunings is associated with Big Bang nucleosynthesis and the
formation of galaxies and their subsequent fragmentation into stars. They involve various
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cosmological parameters, such as the current matter density in units of the critical
density �o, the amplitude of the density fluctuations Q on entering the cosmological
horizon and the photon-to-baryon ratio S. Although most cosmologists might prefer to
believe that these parameters were determined by processes in the early Universe rather
than being prescribed freely as part of the initial conditions, even small deviations from the
observed values would exclude the formation of cosmic structures.

2.9.1 Cosmological Nucleosynthesis

Let us first recall the process of cosmological nucleosynthesis, as discussed by Uzan in this
volume (see Chapter 7). The prediction that one turns 24% of the mass of the Universe
into helium is one of the great triumphs of the Big Bang picture. However, the only reason
one gets an interesting amount of helium is because the neutron-to-proton ratio freezes out
with an interesting value. The freeze-out occurs at 1 s when T ∼ 1010 K because the weak
interactions become slower than the cosmological expansion rate then. However, it is only
because the freeze-out temperature and neutron-proton mass difference are comparable that
one gets the observed amount of helium production. It turns out that the condition for this
is roughly αG ∼ α4

W , precisely the condition required for supernovae.
Let us now describe this argument in more detail. The weak interactions proceed at a

rate nσWc, where n ∝ T 3 is the particle number density and σ ∝ T 2 is given by Eq. (2.42).
Therefore, the weak rate scales as T 5, whereas the cosmic expansion rate ∼ (GaT 4/c2)1/2

scales as T 2. So freeze-out occurs at a temperature

kTF ∼ α1/6
G α

−2/3
W c2m

4/3
e m

−1/3
p . (2.50)

Since virtually all the frozen-out neutrons burn into helium, the resultant helium
abundance is

Y ≈ 2nN/nP
nN/nP + 1

where
nN

nP
≈ exp

(
−�c

2

kTF

)
. (2.51)

Y is 24% rather than 0% or 100% only because kTF ≈ �c2 ≈ 2mec2, where we have used
Eq. (2.46b). From Eq. (2.50) this derives from the ‘coincidence’(

Gm2
e

h̄c

)1/4

∼ αW . (2.52)

The number on the left is the quarter power of the electron gravitational fine structure
constant, so this is precisely equivalent to condition (2.44). In the Weinberg-Salam theory
of weak and electromagnetic interactions, αW to α are related by

αW ∼ α
(
me

mW

)2

, (2.53)
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so Eq. (2.52) may also be written in the form

αG ∼
(
me

mW

)8 (
α2mp

me

)2

∼
(
me

mW

)8

, (2.54)

where we have used Eq. (2.8).
It is not clear to what extent this coincidence can be interpreted anthropically. Life could

probably not exist if Y were 100% (as would be the case if αW were slightly smaller), since
there would be no water. Also, the lifetime of a helium star is less than that of a hydrogen
star and might not be long enough to permit evolution of life. However, it is not clear that
a universe with no primordial helium would preclude life. On the other hand, the same
constraint in the supernova context applies in both directions.

2.9.2 Density Parameter

Before the discovery of dark energy, there were well-known anthropic reasons for why the
total matter density parameter �o had to lie within an order of magnitude of 1 in order for
the geometry of the universe to be nearly flat. If �o were much larger than 1, the Universe
would recollapse in a time �−1/2

o H−1
o , and this would be less than the main-sequence

time of a star. On the other hand, if �o were much smaller than 1, density fluctuations
would stop growing at the time�oH−1

o , and this means that – for reasonable initial density
fluctuations – galaxies would never bind at all. This argument requires that �o be in the
range 0.01–100. Similar arguments apply in a universe with dark energy, except that there
are additional anthropic constraints on the value of the effective cosmological constant.

This is only a weak constraint on �o, but in 1973, Collins and Hawking [27] gave
a more precise argument, based on the observed isotropy of the microwave background.
They showed that the set of spatially homogeneous cosmological models which approach
isotropy at late times is of measure zero in the space of all spatially homogeneous models.
So only a small set of initial conditions could give rise to a universe as isotropic as observed
today, and these correspond to models which are spatially flat. Only such models would
expand long enough for galaxies and intelligent life to form, suggesting that the observed
isotropy might be a reflection of our own existence.

In the 1980s, early universe studies were revolutionised by the introduction of the infla-
tionary scenario [39, 55, 85]. This requires that�o be very close to 1 and – as discussed by
Martin in this volume (Chapter 4) – observations seem to support this model. Therefore,
anthropic considerations may no longer seem relevant. However, in the simplest model –
with a single scalar field – inflation only works if the form of the vacuum potential V (φ)
allows a sufficient number of expansion e-folds, which means that V (φ) must itself be
fine-tuned [80]. Similar considerations apply in more complicated inflationary models,
including quantum cosmological models [42], where universes are expected to collapse
very quickly unless one imposes anthropic selection effects [44].
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2.9.3 Photon-to-Baryon Ratio

As discussed by Steigman and Scherrer in this volume (Chapter 5), another important
cosmological parameter is the entropy per baryon. Since the entropy is dominated by
the microwave background, this is equivalent to the photon-to-baryon ratio S, which is
of order 108�−1

B , where �B ≈ 0.05 is the baryon density parameter. The value of S is
associated with an interesting coincidence: if S ∼ 109, the matter and radiation densities
are comparable at the time they thermally decouple. We first examine this coincidence in
more detail.

According to the hot Big Bang model, the background radiation dominated the
density of the Universe until a redshift zeq, which depends on S and the current CMB
temperature To:

1 + zeq ∼ mpc
2

SfBkTo
, To ∼ h̄c

k

(
SfB

Gmpt2o

)1/3

, (2.55)

where fB ≡ �B/�M ≈ 0.2 and �M ≈ 0.25 is the total matter density. In the matter-
dominated era, t ∼ to(1 + z)−3/2, and so matter-radiation equality occurs at

teq ∼ S2f 2
Bα

−1/2
G tp ∼ 1012 s. (2.56)

On the other hand, the CMB thermally decoupled from the matter when T fell below
Tdec ∼ 0.1α2mec

2/k, which corresponds to the somewhat later time

tdec ∼ to
(
α2me

kTo

)−3/2

∼ S1/2f
1/2
B α

−1/2
G α−6tp ∼ 1013 s. (2.57)

(These equations use the fact that the radiation density and temperature fall like R−4

and R−1, respectively.) The requirement that teq and tdec be close to each other therefore
corresponds to the coincidence

S ∼ α−2f−1
B

(
mp

me

)
∼ α−4, (2.58)

where we use Eq. (2.8) in the last step.
It is not clear that this coincidence has any anthropic significance, but there are certainly

anthropic aspects to the values of teq and tdec. For example, there is an upper limit on S if
one requires that the Universe be radiation dominated at cosmological nucleosynthesis to
avoid all the hydrogen going into helium. From Eq. (2.50), the weak freeze-out time is

tF ∼ h̄c2α
−1/2
G (kTF )

−2mp ∼ α−5/6
G α

4/3
W

(
mp

me

)8/3

tp, (2.59)

so the condition teq > tF corresponds to

S > f−1
B

(
mp

me

)4/3
(
α4
W

αG

)1/6

∼ 104. (2.60)
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This does not pin down the value of S very precisely, but it does impose an interesting
lower limit.

Other anthropic constraints on S are associated with galaxy formation (see also
Chapter 6). In the standard Big Bang model, galaxies cannot form until the background
radiation density falls below the matter density at teq, but this occurs before the Dicke
timescale (2.30) (i.e., the main-sequence lifetime of a star) only if

S < α−1α
−1/4
G f−1

B ∼ 1011. (2.61)

Since the Jeans mass in the period teq to tdec has a valueMJ ∼ α−3/2
G S2f 2

Bmp, this exceeds
the galaxy mass given by Eq. (2.26) only for

S > α
−1/4
G α5/2

(
mp

me

)1/4

∼ α−1/4
G α2 ∼ 106. (2.62)

Eqs. (2.61) and (2.62) constrain S rather tightly.
One can strengthen Dicke’s weak anthropic argument for the age of the Universe by the

general requirement – independent of considerations of stellar physics – that observers can
exist only for to > tdec, when thermodynamic disequilibrium is possible. This corresponds
to the condition

S < 104α−1
G α

12f−1
B ∼ 1017 (2.63)

but this only gives only a very weak upper limit on S. An interesting twist on this argument
has been provided by Aguirre [7], who describes anthropic constraints on ‘cold’ cosmolog-
ical models (i.e., models with an initial photon-to-baryon ratio much smaller than currently
observed). He points out that such models could provide life-supporting conditions with
very different values of the cosmological parameters.

In the context of limits (2.61) and (2.62), we note that there are a number of scenarios
which predict S ∼ α

−1/4
G . This could apply, for example, if the radiation was generated

by a first generation of large pregalactic objects [18]. Such objects have a characteristic
lifetime tMS given by Eq. (2.30), so after tMS , one would expect the radiation density to
be ξF times the matter density, where F is the fraction of the Universe which goes into
the stars and ξ is the fraction of each star’s rest mass released through nuclear energy
generation. The value of teq associated with the generated S is thus (ξF )3/2tMS , and Eqs.
(2.56) and (2.30) imply

S ∼
[
α

(
mp

me

)
F 3/4ξ3/4

]
α

−1/4
G . (2.64)

Since the term in square brackets is of order unity, one would expect S ∼ α
−1/4
G , as

observed. The same relationship between S and αG would apply if the radiation were
generated by black holes accreting at the Eddington limit. Such scenarios are no longer
mainstream, but they illustrate that the S coincidences may be explained naturally, without
recourse to anthropic considerations.
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Nowadays, most cosmologists believe the value of S results from of baryon-violating
processes in the early Universe, most probably at the GUT epoch, around 10−34 s after
the Big Bang. However, in most GUT models, S is predicted to be of order α−n, where n
is an integer, so the anthropic constraint S < α−1/4

G merely translates into the constraint
αG < α

4n. If n = 5, this just gives the convective star condition [15].

2.9.4 Cosmological Constant

As discussed by Peacock in this volume (Chapter 3), another striking feature of the Uni-
verse is that its expansion appears to be accelerating under the influence of some form
of ‘dark energy’. The source of this energy is uncertain, but it may be associated with a
cosmological constant, denoted by � in Table 2.1. One possibility is that � arises through
quantum vacuum effects. We do not know how to calculate these, but the most natural
value would be the Planck density (which is 120 orders of magnitude larger than observed
value). For example, in the ‘string lanscape’ variant of M-theory there could be 10500

vacuum states [12], with the associated � covering the full range from minus to plus the
Planck value [77, 78]. There is also the remarkable coincidence that the vacuum and matter
densities are comparable at the present epoch, even though their ratio is time dependent.

As first emphasised by Weinberg [88, 89] and later studied by Efstathiou [35],
Vilenkin [86], and Peacock [61], this may provide the strongest anthropic fine-tuning of all,
since a priori� could be 120 orders of magnitude larger than observed. This is because the
growth of density perturbations is quenched once � dominates the cosmological density,
so if bound systems have not formed by then, they never will. This is not the only possible
explanation for the smallness of �, but it may be the most plausible one. The crucial issue
is whether the number of vacuum states is sufficiently large and their spacing sufficiently
small to satisfy the anthropic constraints [51], but this is still unresolved. As discussed
in the next section, the precise form of the � constraint depends on the amplitude of the
primordial density fluctuations at the horizon epoch.

It should be stressed that a cosmological constant is not the only possible explanation
for the cosmic acceleration. An alternative explanation is to invoke dark energy in the form
of a scalar field – termed ‘quintessence’ [75] – and this may better explain the near equality
of the vacuum and matter densities. However, some anthropic fine-tuning may be required
even in this case. Kallosh [50] gives some examples from her studies of M/string theory
where anthropic reasoning helps to shed light on the properties of dark energy. These issues
are discussed in more detail by Peacock in Chapter 3.

2.9.5 Density Fluctuations

The precise form of the anthropic upper limit on� depends on the amplitude of the density
fluctuations,Q, but this also has anthropic aspects. IfQ is too low, no galaxies form because
cooling is ineffective. IfQ is too high, there is excesssive black hole formation and galaxies
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Figure 2.8 Constraints onQ as a function of ξ ; from Reference [82].

are too dense for long-lived planetary systems because of disruption by neighbouring stars.
For � = 0, Tegmark and Rees showed that this leads to a constraint of the form [81]

α−1 ln(α−2)−16/9αG(β/ξ)
4/3�

−2/3
B < Q < α16/7α

4/7
G β12/7ξ−8/7, (2.65)

where ξ = f−1
B α

−1/2
G S−1 is the mass of non-relativistic matter per photon in Planck units.

As illustrated in Figure 2.8, this corresponds roughly to the range 10−6 < Q < 10−4. Later,
Tegmark et al. [82] expanded this analysis to consider variations ofQ and � together, and
the results are illustrated in Figure 2.9. Several other authors have also considered this
problem [1, 12, 13, 38].

2.9.6 Dark Matter

As discussed by Kolb in this volume (Chapter 9), the existence of dark matter with 25%
of the total cosmological density is now firmly established. The anthropic significance of
this is unclear. One needs dark matter in order to amplify the fluctuations at decoupling
enough to provide galaxies, but one could also achieve that by increasing the value of Q.
There are still many possible dark matter candidates, but several of them are associated
with anthropic constraints.

If WIMPs provide the dark matter, then their density will be comparable to the baryon
density provided the coincidence αG ∼ α4

W is satisfied [84]. This is the same relationship
which arises in the context of supernovae and cosmological nucelosynthesis, essentially
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Figure 2.9 Constraints on � as a function ofQ; from Reference [66].

because all three arguments involve the weak freeze-out condition. So there is at least an
indirect sense in which this condition is anthropic.

If axions provide the dark matter, then anthropic arguments may also explain why their
density is comparable with the baryon density [91]. The axion is a dark matter particle
associated with the breaking of Peccei-Quinn (i.e., strong charge-parity – CP) symmetry at
a time of order 10−30 s after the Big Bang. Large values of the symmetry-breaking energy
scale, associated with large values of the Peccei-Quinn ‘misalignment’ angle, are forbidden
in conventional axion cosmology. However, if inflation occurs after the breaking of Peccei-
Quinn symmetry, then the CP-violating factor θ may vary across the different inflationary
domains. So large values are permitted, providing we inhabit a domain where θ is small.
Although such regions may occupy only a small volume of the multiverse, they contain a
large fraction of potential observers.

In recent years, primordial black holes (PBHs) have become a popular dark mat-
ter candidate [17], partly because of the failure to find more conventional candidates
but also because of the possibility that the coalescing black holes detected by LIGO
could be primordial. PBHs are a natural dark matter candidate because they form in
the radiation-dominated era and are therefore unrestricted by the nucleosynthesis bound
on the baryonic density. However, it does require fine-tuning of the collapse fraction.
In the standard scenario, the fraction of the Universe going into PBHs of mass M is
only β ∼ 10−9(M/M�)1/2 at formation. Reference [20] discusses a possible anthropic
resolution of this problem by invoking PBH formation at the QCD epoch. Since the
horizon mass then is around MC , this would explain why dark matter and stars have
comparable masses. The collapse fraction is β ∼ S−1 because a baryon asymmetry of O(1)
is generated in the hot expanding shell around each PBH and this is then diluted by a factor
β when the baryons disperse, the factor being tuned so that the times of matter-radiation
equality and decoupling are comparable.
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Figure 2.10 Illustrating why we live in 3 + 1 dimensions. When the partial differential equations of
nature are elliptic or ultrahyperbolic, physics has no predictive power. In the remaining (hyperbolic)
cases, n > 3 admits no stable atoms and n < 3 may lack sufficient complexity for observers (e.g., no
gravity). From Reference [79].

2.9.7 Number of Dimensions

Since many models of particle physics invoke extra spatial dimensions, the issue of why
we live in a world with three spatial dimensions naturally arises. While there may well
be some physical explanation for this, it clearly has anthropic aspects. For example, there
would be no gravity with two spatial dimensions, and planetary orbits would be unstable
with four of them. There are also constraints on the number of time dimensions, associated
with causality. Other arguments for the number of space and time dimensions have been
given by Tegmark [79], and Figure 2.10 is taken from his paper.

In the context of higher-dimensional models, it is interesting that brane cosmology [63]
may give a natural explanation for the sort of power-law relations between the coupling
constants which arise in the anthropic arguments. This is because the variation in the
gravitational coupling constant would be associated with the change in the volume of
the bulk, whereas the variation in the other coupling constants would be depend on the
change in the volume of the brane or some manifold of intermediate dimensionality. In this
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Table 2.3 Fine-tunings associated with history of Big Bang.

log(t/s) Event Condition Anthropic significance

+17.5 Present epoch �o < 10 Else premature recollapse
+17.0 Planet formation αG < α

20 Need convective stars
+16.5 Metals from stars αG ∼ α4

W
Need supernovae

αG > α
20 Need radiative stars

Carbon from stars |�αS | < 0.005αS Need triple-α resonance
+16 Galaxy formation �o > 0.1 Over-dense regions must bind

+11 End of radiation era S < α
−1/4
G

Must precede galaxy formation

+2 Big Bang nucleosynthesis αG < α
4
W

Else all hydrogen → helium

�αS < 0.02αS Else all hydrogen → diprotons
�αS > 0.05αS Else deuterons unbound

−30 Axion production θ � 1 Need enough baryons
−34 Baryosynthesis αG > α

4n Need enough photons
−35 Inflation V ′′ � V Need enough inflation

case, relationships like αG ∼ α4
W ∼ α20 could just reflect the relative number of internal

and external dimensions [15].

2.10 Cosmology and the Complexity Principle

The crucial role of the various fine-tunings in the evolution of the Universe is summarised
in Table 2.3. This indicates the times of various key steps in the history of the Big Bang
and indicates the fine-tunings associated with each of them. These might be regarded as a
prerequisite for the large variety of structures appearing in Figure 2.2.

It is interesting to put these considerations into a broader historical context. In the
nineteenth century, the second law of thermodynamics was taken to imply that the Universe
must eventually undergo a ‘heat death’, with life and all other forms of order inevitably
deteriorating. However, developments in cosmology have led to a reversal of this view.
According to the Big Bang theory, the history of the Universe reveals an increasing rather
than decreasing degree of organisation, and modern physics – without any violation of the
second law of thermodynamics – is able to explain this.

Some of the types of organisation which exist in the Universe are summarised in the
Pyramid of Complexity, introduced by Reeves [68] and reproduced in Figure 2.11. This
shows the different levels of structure as one goes from quarks to nucleons to atoms to
simple molecules to biomolecules to cells and finally to living organisms. This hierarchy of
structure reflects the existence of the strong force at the lower levels and the electric force
at the higher ones. As one ascends the pyramid, the structures become more complex – so
that the number of different patterns becomes larger – but they also become more fragile.
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TIME

Figure 2.11 This summarises the different levels of structure which exist in the Universe and how
this arose during the Big Bang; from Reference [21].

The pyramid becomes narrower as one rises because the fraction of matter incorporated into
the objects decreases as the degree of organisation increases. No violation of the second
law of thermodynamics is involved because local pockets of order can be purchased at the
expense of a global increase in entropy, the fraction of matter going into these structures
decreasing as one ascends the pyramid.

The Pyramid of Complexity emerges as the Universe expands and cools, and the Big
Bang model explains when these structures arise. At early times, the Universe is mainly
in the form of quarks. Neutrons and protons appear at a few microseconds, light nuclei
at several minutes, atoms at a million years, and – following the formation of stars and
planets – molecules and cells at 10 billion years. The Big Bang model also explains why
the pyramid arises. The key point is that structures arise because processes cannot occur
fast enough in an expanding universe to maintain equilibrium. If it had its way, each type of
force would always form the objects which are most stable from its own perspective (e.g.,
the strong force would turn all nuclei into iron, the electric force would turn all atoms into
noble gases, and gravity would turn all matter into black holes). However, all variety would
be lost if this were the case, and it is only the disequilibrium entailed by the rapid expansion
of the Universe which prevents this.

For example, the reason all nucleons do not go into iron as a result of cosmological
nucleosynthesis is that the Universe is expanding too fast for most nuclei to interact with
each other at this time. The reason gravity does not turn all stars into black holes is because
the pressure associated with nuclear energy release and eventually quantum effects support
them against gravity. The forces may eventually attain their goal but only after an enormous
length of time and, even then, only for a limited period. Thus, even if the Universe does
eventually end up in black holes, on a still longer timescale, these black holes will evaporate
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into radiation. As emphasised in Table 2.3, it is only the anthropic fine-tuning of the
coupling constants that allows the ascension of the lower levels of the pyramid.

Figure 2.11 suggests that the anthropic fine-tunings are more related to the emergence
of complexity than life; they could equally well be regarded as prerequisites for inanimate
objects like motor cars or TV sets. However, here on Earth at least, the development of
observers seems to have occurred relatively quickly once the first signs of life arose, so
it is conceivable that this applies more generally. Provided there are no extra ‘biological’
fine-tunings required for the higher levels of the pyramid to arise, the evolution of complex-
ity may inevitably (and fairly rapidly) lead to life. In this case, the distinction between life
and complexity is not so clear-cut. The former is just a particular realisation of the latter
and may naturally emerge from it, so the question of what constitutes an observer may not
be so crucial.

2.11 Interpretations of Anthropic Principle

Anthropic arguments have always been controversial because they seem to exclude the
more usual type of physical explanation for the values of the constants. Three very different
views of the Anthropic Principle are illustrated by the following quotes. One is from the
protagonist Freeman Dyson [34]:

I do not feel like an alien in this Universe. The more I examine the Universe and examine the details
of its architecture, the more evidence I find that the Universe in some sense must have known we
were coming.

This contrasts with the view of the antagonist Heinz Pagels [60]:

The influence of the anthropic principle on contemporary cosmological models has been sterile. It has
explained nothing and it has even had a negative influence. I would opt for rejecting the anthropic
principle as needless clutter in the conceptual repertoire of science.

An intermediate stance is taken by Brandon Carter [24]:

The anthropic principle is a middle ground between the primitive anthropocentrism of the pre-
Copernican age and the equally unjustifiable antithesis that no place or time in the Universe can
be privileged in any way.

The rising popularity of the multiverse picture has encouraged a drift towards Carter’s view,
but the A word is still taboo in some quarters.

As far as is known, the relationships discussed in this chapter are not predicted by any
unified theory, and even if they were, it would be remarkable that the theory should yield
exactly the coincidences required for life. One therefore needs some form of explanation,
even if this veers into the border of science and philosophy. Three interpretations of the
anthropic coincidences have been suggested, and these are illustrated in Figure 2.12.

The first possibility is that the coincidences reflect the existence of a ‘beneficent being’
who tailor-made the Universe for our benefit. One could envisage our Universe as occupy-
ing a point in some multidimensional space of coupling constants, with the tailor putting a
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Figure 2.12 Three explanations of fine-tunings (from left): selection effect in a multiverse, conscious-
ness collapsing the wave function of the Universe, fine-tuner choosing the coupling constants.

pin in the optimal spot. Such an interpretation is logically possible and appeals to theolo-
gians [47]. Indeed some people now use the term ‘Strong Anthropic Principle’ to imply that
the Universe was created with the purpose of creating life. Not surprisingly, most physicists
are uncomfortable with this interpretation.

The second possibility, proposed by Wheeler [90], is that the Universe does not prop-
erly exist until consciousness has arisen. This is based on the notion that the Universe
is described by a quantum mechanical wave function and that consciousness is required
to collapse this. Once the Universe has evolved consciousness, one might regard it as
reflecting back on its Big Bang origin, thereby forming a closed circuit which brings the
world into existence. Even if consciousness really does collapse the wave function (which
is far from certain), this explanation is also somewhat metaphysical.

The third possibility is that there is not just one universe but a large ensemble of them,
all with different (possibly random) coupling constants. As reviewed by Tegmark [83],
there are many versions of the multiverse proposal, although not all of them necessarily
entail a variation in the physical constants across the ensemble. As stressed by Rees [65],
a key issue in assessing the multiverse proposal is whether some of the physical constants
are contingent on accidental features of symmetry breaking and the initial conditions of our
Universe or whether some future Theory of Everything will determine all of them uniquely.
In the first case, there would be room for the Anthropic Principle, but in the second case,
any fine-tunings would have to be regarded as coincidental. There might, in principle, be
other universes in this case, but they would all have the same values for the constants, so
there would be little point in invoking them.

If one grants the existence of a multiverse, the question of whether our Universe is
typical or atypical within the ensemble then arises. Anthropic advocates usually assume
that life forms similar to our own will be possible in only a tiny subset of universes. More
general life forms may be possible in a somewhat larger subset (e.g., if one envisages cold
cosmological models of the kind discussed by Aguirre [7]), but life will not be possible
everywhere. One may not have the same anthropic relation in every universe, but one will
have some relation.
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On the other hand, by invoking a Copernican perspective, Smolin has argued that most
of the universes should have properties like our own, so that we are typical [72, 73]. His
approach invokes a form of cosmological natural selection: the formation of black holes is
supposed to generate new baby universes in which the constants are slightly mutated. In this
way, after many generations, the parameter distribution will be peaked around those values
for which black hole formation is maximised. This proposal involves very speculative
physics since we have no understanding of how the baby universes are born, but it has
the virtue of being testable since one can calculate how many black holes would form if the
parameters were different. Note that Smolin’s proposal makes no reference to observers, so
it would not be regarded as anthropic in the usual sense of the term, but it still invokes a
multiverse.

But how legitimate is it to invoke the existence of other universes for which there may
never be any direct evidence? Smolin stresses [74] that the multiverse proposal is legitimate
only if one has a theory which independently predicts it, and such a theory, to be scientific,
must be falsifiable. He argues that the notion of a multiverse is neither falsifiable nor
testable. However, not everybody concedes this point. For example, Rees points out [66]
that one way of testing the multiverse proposal is to calculate the probability distribution for
various parameters across the different universes. One would then be surprised if the value
of some constant was on the tail of the distribution. In particular, if Weinberg’s explanation
for the value of � is correct, one would be surprised if its value was much less than the
anthropic limit.

Even if one accepts that a multiverse exists and gives rise to anthropic selection effects,
there is still considerable ambiguity as to how one interprets the selection effect. If the
Anthropic Principle can be interpreted as a Complexity Principle, what qualifies as an
observer in anthropic considerations? It would be most natural to associate the anthropic
constraints with life in general rather than humans in particular. In fact, Davies explicitly
associates them with a ‘life principle’ [28]. But in this case, does the mere existence of
consciousness suffice, or is some minimum threshold of intelligence required? We have
seen that this may not be so crucial since – whatever threshold one selects – it may be
attained relatively quickly once the first signs of life arise [52].

2.12 Concluding Remarks

In concluding, I will make a few philosophical points, most of which relate to the common
criticisms of anthropic arguments.

• In so much as the WAP is a selection effect, it is uncontroversial. It is clear that the
presence of observers implies a non-random sample of the underlying population, and
one needs to allow for this to avoid spurious correlations. However, one should not infer
from this that the WAP is trivial, since some of the selection effects are unexpected and
depend upon subtle aspects of physics. But what is being selected for? Even if it is life,
one must avoid being too anthropocentric since it is clearly not restricted to humans
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Figure 2.13 Illustrating that anthropic constraints may specify a wedge in parameter space if two
constants (x,y) are allowed to vary. From Reference [8].

and may not even be carbon based. According to Smolin [72, 73], it just relates to the
abundance of black holes and is irrelevant to life.

• A common objection to the SAP is that the apparent tunings involved could just be
coincidental. In this context, one might compare the contrasting views of Victor Stenger
[76] and Luke Barnes [8]. Clearly, this depends on the number of tunings and their
precision, but it is not straightforward to assess the probabilities involved, especially
since anthropic arguments do not explain exact values. In assessing the weight of the
evidence, it is also relevant to know whether the tunings are post hoc or predicted. Most
are post hoc, but it could be argued that the triple-α and � tunings were predictions.

• Many of the strong tunings discussed in this chapter are treated in isolation (i.e., with only
one constant being varied at a time). But what happens if one allows some constants to
covary? Stenger argues that, for two parameters, the constraints correspond to a ‘wedge’,
as illustrated in Figure 2.13, which means that the probability is not just the product of
the one-dimensional probabilities. However, Barnes points out that the wedge description
does not always apply, as illustrated by Figure 2.8. In general, when considering multi-
ple constraints, one needs to consider the intersection rather than the union of wedges.
Indeed, if there were too many constraints, life would presumably be excluded altogether.

• Anthropic arguments usually only consider small variations of the constants in the
‘island’ of parameter space around the observed values. However, there could be other
islands of life, so this may not suffice. This does not invalidate the Anthropic Principle,
providing the total area of the islands is small. As Richard Dawkins remarks [29],
‘However many ways there may be of being alive, there are vastly more ways of being
dead’. On the other hand, there are no small islands in Smolin’s proposal since our
Universe should be representative of the most populated region of parameter space.
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• One must distinguish between different levels of explanation. The Anthropic Principle –
viewed as a selection effect – provides some insight into the Universe, but it does not
provide an ultimate explanation. For comparison, consider the question of why distant
quasars are so luminous [8]. Although a selection effect is involved, in the sense that it
is easier to see very bright objects at large distances, this does not explain quasars. The
luminosity explains the visibility, but one needs to invoke accreting supermassive black
holes to explain the luminosity. In the present context, the analogue of the supermassive
black hole is the multiverse or whichever model discussed in Section 2.11 one prefers.
Perhaps the ultimate explanation will relate to what happens at the top of the Cosmic
Uroborus in Figure 2.1, in which case the Final Theory will need to refer to observers in
some way.

• The Anthropic Principle need not imply that the conditions in the Universe are optimal
for life or that life is pervasive. Indeed, Carter has argued that it may be very rare [23],
using the following argument. The time for life to arise on Earth seems to have been
a few billion years and, therefore, comparable to the age of the Earth itself. However,
one would not expect that a priori since the time for life to evolve tL is disconnected
from the cosmological timescale (to). Were tL much smaller than to, then life would be
very abundant in the Universe, but that contradicts the evidence. Were tL much larger
than to, life would be very rare, but presumably tL has some distribution so that – in an
infinite universe – there will always be some regions where life arises much sooner than
expected. The WAP merely requires that we reside in one of the rare Hubble volumes
where life has arisen after only 1010 yr. Carter therefore infers that we could be the only
life form within the Hubble scale and that the Universe is infinite.

• A new twist arises if the (so-called) constants vary in time even in our Universe. This
may be expected in theories of particle physics which invoke compactified extra spatial
dimensions, since the constants may be related to the size of these dimensions, and
this could change during the Universe’s history. Some astronomers claim to have found
evidence for a variation in α – of about seven parts in a million – by studying absorption
lines in several hundred quasars [87]. Sandvik et al. attempt to model this effect and
suggest that α should remain constant during both the early radiation-dominated phase
of the Universe and the late curvature-dominated or �-dominated phases [70]. However,
it could still vary over the intermediate matter-dominated phase, and this would make
it difficult to satisfy the anthropic constraints on α for an extended period unless the
curvature or cosmological constant were very small. Indeed, the anthropic constraints
may only be satisfied at a particular epoch.

Finally, one should address the issue of whether anthropically inspired speculations –
such as the multiverse – should be regarded as science or philosophy. So long as there is
no independent evidence for other universes, the notion certainly fails to meet the usual
criteria of science [36]. On the other hand, one might argue that it still qualifies if it
is predicted by a legitimate physical theory, such as the string landscape scenario. The
problem is that such theories may themelves be untestable and therefore dismissed as
mathematics rather than physics. In my dialogue with George Ellis on this issue [16], I
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conceded that the multiverse does not currently meet the criteria for science but argued that
it might eventually do so. For this reason, I suggested that the multiverse proposal might
be described as ‘metacosmology’ rather than ‘cosmology’ [19], this representing a grey
area between physics and philosophy. From a historical perspective, the advent of new data
has constantly promoted cosmological speculations from philosophy to physics, so today’s
metacosmology may well become tomorrow’s cosmology.
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Naturalness, Fine-tuning, and Observer
Selection in Cosmology

j o h n a . p e ac o c k

Abstract

The intention of this article is to review those areas of cosmology where we may need to
consider explicitly our role as observers in conditioning or biasing the properties of the
Universe that we observe. What we will do is begin by attempting to define naturalness and
fine-tuning, initially using the viewpoint of particle physics before setting up a more general
Bayesian framework within which such issues can be discussed. With this background, we
will then give a list of unexplained cosmological problems, focusing on strange parame-
ter coincidences and, in particular, the challenge of explaining the observed level of the
vacuum density. This will lead on to a survey of approaches to the observed properties of
‘dark energy’, especially the modelling of dark energy by considering dynamical signatures
that go beyond a simple cosmological constant or by modifying the theory of gravity.
The conclusion will be that there are problems with most of these approaches, leading
to a focus on observer selection as a possible solution. This leads to consideration of the
possible existence of a physical ensemble of causally distinct universes, as can arise in
some models of inflation. Within such an ensemble, many elements of physics can, in
practice, be different in different members of the ensemble. We begin with the possible
physics of a variable cosmological constant, moving on to evidence that other pieces of
‘fundamental’ physics may also not be immutable. In all these cases, there are two prac-
tical difficulties with converting these general ideas into quantitative testable science. One
is the ‘measure problem’ – the appropriate Bayesian prior for a given parameter – but
the other is the observer weighting, where astronomers risk being dragged into biological
issues far beyond their sphere of competence. One way to avoid this peril is to consider
the impact on the history and efficiency of star formation as pieces of fundamental physics
are altered.

3.1 Overview

The intention of this chapter is to review those areas of cosmology where we may need
to consider explicitly our role as observers in conditioning or biasing the properties of the
Universe that we observe. A shorthand term for such considerations is ‘anthropic’, and it is
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well known that many physicists (and not a few astronomers) show a strong allergy to ‘the
A word’. To some extent, one can sympathise with this attitude, since the tone of some older
discussions of this topic was not always helpful. Therefore, we will proceed at first with
some broader terminology, attempting to define naturalness and fine-tuning initially using
the viewpoint of particle physics, before setting up a more general Bayesian framework
within which such issues can be discussed. With this background, we will then give a list
of unexplained cosmological problems, focusing on strange parameter coincidences and,
in particular, the challenge of explaining the observed level of the vacuum density.

This will lead to a survey of approaches to the observed properties of ‘dark energy’,
especially the modelling of dark energy by considering dynamical signatures that go
beyond a simple cosmological constant, or by modifying the theory of gravity. The
conclusion will be that there are problems with most of these approaches, leading to a focus
on observer selection as a possible solution. This leads to consideration of the possible
existence of a physical ensemble of causally distinct universes, as can arise in some models
of inflation (see Chapter 4 for a detailed discussion). Within such an ensemble, many
elements of physics can, in practice, be different in different members of the ensemble. We
begin with the possible physics of a variable cosmological constant, moving on to evidence
that other pieces of ‘fundamental’ physics may also not be immutable. In all these cases,
there are two practical difficulties with converting these general ideas into quantitative
testable science. One is the ‘measure problem’ – the appropriate Bayesian prior for a
given parameter – but the other is the observer weighting, where astronomers risk being
dragged into biological issues far beyond their sphere of competence. One way to avoid
this peril is to consider the impact on the history and efficiency of star formation as pieces
of fundamental physics are altered.

3.2 Defining Fine-Tuning

3.2.1 Naturalness in Particle Physics

When considering the credibility of a given cosmological theory, the field borrows from
particle physics. One of the most powerful principles in that subject is naturalness, which
amounts to a statement that all dimensionless parameters in a theory should be of order
unity. Indeed, it is common to use dimensional analysis in all areas of physics to guess the
form of physical laws up to some dimensionless factor, which is then assumed to be of
order unity – provided this term is interpreted generously enough to cover factors such as
(2π)3. An exception to this is that a parameter that might be expected to be of order unity
can be forced to zero by means of some symmetry and a small non-zero value possibly
restored by means of breaking that symmetry. For example, the fact that the electron mass
is tiny compared to the >100-GeV scale of the weak interaction can be understood via an
approximate chiral symmetry (see, e.g., [59]). In non-dimensionless terms, this hypothesis
implies that all particles should have roughly the same mass (or zero, like the photon) –
whatever fundamental value sets the scale. It is common to assert that this should be the
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Planck scale, and so the relative lightness of all known particles makes particle physics
uniformly unnatural. This is known as the hierarchy problem.

A related but deeper definition of naturalness concerns quantum corrections: particle
masses are not fixed at some bare value but will run according to the energy scale of
observation. The interesting question is whether the resulting value is dominated by the
bare value or by the correction. Consider the self-energy of the electron, and contrast
the corrections to the mass up to some cut-off � as calculated using non-relativistic or
relativistic quantum theory:

δme

me
= 4α

3π

(
�

me

)
(non − relativistic) (3.1)

= 3α

2π
ln

(
�

me

)
(relativistic), (3.2)

where α is the fine-structure constant. The latter correction is natural, so the measured
electron mass is never very different from its bare value. But this is not always true: for
example, the Higgs mass has a correction that is quadratic in�, meaning that the hierarchy
problem is particularly severe in this case. The need to keep the Higgs at its observed light
value is one of the arguments often advanced for new physics such as supersymmetry.

Barring new physics, unnaturally small observed masses can only be accounted for by
a distasteful fine-tuning, in which a hypothetical bare mass is adjusted so that it almost
cancels the correction, leaving a residual small mass that is much less than either term.
Cosmology has a similar problem with the value of the cosmological constant. In both
subjects, fine-tuning formally deals with the observed data – but in a way that convinces no
one, and which cries out for an explanation.

3.2.2 Unnatural Aspects of Cosmology

Cosmology contains a number of puzzles that disturb us at the same level as the issues in
particle physics, but sometimes phrased rather differently. As discussed more fully in this
section, there is undoubtedly a huge fine-tuning issue with the cosmological constant. But
there are also issues that are best phrased as coincidences, and these come in two kinds:

Coincidences of Value

Here, certain parameters of the Universe take very similar values, even though they are
apparently physically unrelated. The most striking puzzles here are the rough equality in
density of baryons and dark matter, and the fact that recombination occurs roughly when
the Universe has just become matter dominated.

Regarding the matter budget, it is normally assumed that the baryon density arises
via some CP-violating process so that the numbers of baryons and photons reflect an
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asymmetry factor: nB/nγ = ε ∼ 10−9. If the dark matter consists of incompletely annihi-
lated particles and antiparticles, then the relic density can be written as

nDM

nγ
�
(
σ
mc

h̄

mPc

h̄

)−1

, (3.3)

where σ is the annihilation cross section,m is the particle mass, andmP is the Planck mass.
Thus, the ratio of baryon and dark matter densities is

ρB

ρDM

� ε
(
σ
mpc

h̄

mPc

h̄

)−1

, (3.4)

where mp is the proton mass. This ratio is known to be close to 0.2 but is composed of
physical quantities that have no known relation to each other.

As for recombination, this occurs roughly when thermal photons can ionise hydrogen:
kT ∼α2mec

2, where α is the fine-structure constant. Matter-radiation equality requires
nγ kT ∼ ρBc

2 = nBmpc
2. These two temperatures will coincide if

nB

nγ
∼ α2(me/mp) = 3 × 10−8. (3.5)

So the observed near equality of the two eras arises because of the numerological coin-
cidence between this critical value and the actual baryon-to-photon ratio. But no known
physics explains why the matter-antimatter asymmetry should take this particular value
(see Chapter 5).

Coincidences of Time

There are also certain puzzles that are more closely tied to our existence as observers.
Although the ratio between the matter density and vacuum density varies hugely with time,

Figure 3.1 The density fraction in various components of the Universe as a function of time. The
Universe is only strongly matter dominated for a little more than a single decade of expansion.
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Figure 3.2 The evolution of the dimensionless mass power spectrum in the standard �CDM model.
As the Universe expands, the high-k plateau value predicted in linear perturbation theory becomes
close to unity, so non-linear effects largely erase the initial conditions up to the break in the spectrum.
But as the Universe becomes � dominated, this evolution switches off. A small reduction in the
normalisation of the spectrum would have preserved the linear information forever, but this did not
happen. The curves correspond to the indicated redshifts, from left to right, respectively.

it is presently observed to be about unity – even though the history of the Universe is
partitioned into many decades of expansion during which it was mostly dominated by either
radiation (at early times) or vacuum energy (at late times); see Figure 3.1. A similar puzzle
exists in large-scale structure, where the linear power spectrum has a break on 100-Mpc
scales, to a nearly flat plateau in the dimensionless power dσ 2/d ln k ∼ k3P(k) at large
wave numbers. On very small scales, non-linear evolution erases the signature of the linear
initial conditions, but in practice, this erasure has proceeded close to the point where all
cosmological information below the break scale has been removed (see Figure 3.2). Neither
of these coincidences applied in the distant past, so we have a ‘why now’ problem.

3.3 Probabilistic Framework

3.3.1 Bayesian Approach

In grappling with the aforementioned puzzles, we are almost certain to use probabilistic lan-
guage: ‘it is very unlikely that the bare Higgs mass and its quantum corrections could cancel
so precisely’; ‘the vacuum density has a very large natural level, so the small observed
value seems highly improbable’. Is this legitimate? The Higgs mass is what it is, so how
can we talk about there being any probability that it could ever take any different value?
The answer comes in the Bayesian approach to statistics. Rather than the simple view of
probabilities as representing relative frequencies in an ensemble of trials, Bayesians define
probability simply as a degree of belief in a proposition. Consider a theory that contains
some parameter θ : if this theory is a correct description of reality, then θ has some definite
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value and is not a stochastic quantity. But the value of θ is unknown, and we can use the
probability of different possible values as a way of quantifying our ignorance. This is done
through Bayes’s theorem (almost universally written as Bayes’ theorem, although this is
not correct English):

P(θ |D) = P(θ) P (D|θ)
P (D)

, (3.6)

i.e., our belief about θ given data D (the posterior probability) is proportional to the prior
on θ times the likelihood, L = P(D|θ). If P(θ |D) is to be normalised, then integrating
over θ should give unity, requiring P(D) = ∫

P(θ) P (D|θ) dθ . All of this generalises in
an obvious way when θ becomes a vector of multiple parameters.

This approach has many appealing features. It focuses directly on what we care about,
which is the probability of various hypotheses given the data to hand. This is in contrast
to the frequentist approach, which calculates the probability of various possible outcomes
on a given hypothesis, but clearly it is better to focus on what we learn from events that
actually happened rather than having to think about all the other possible outcomes to the
experiment that might have occurred. In particular, there is no need to have an ensemble of
repeated experiments, and the Bayesian approach can happily handle unique events. The
need to have a prior is a difficult and controversial part of the apparatus, however, and many
are uneasy at the idea of admitting an individual’s subjective degree of belief into scientific
discussions.

One answer to this is that one of the main applications of the Bayesian formula is to
perform inference; i.e., to estimate parameter(s) θ , together with a measure of uncertainty
on them. As the quantity of data increases, the posterior probability for θ becomes concen-
trated around the true value, and the form of the prior becomes unimportant, provided it can
be treated as constant over some small range of θ . More deeply, the prior can be considered
to result from previous experimental knowledge. Consider what happens when we take two
sets of data, D1 and D2. The posterior distribution in the face of the totality of data is

p(θ |D1,D2) ∝ p(D1,D2|θ)p(θ). (3.7)

But the likelihood will factor into the likelihoods for the two data sets separately:
p(D1,D2|θ) = p(D1|θ)p(D2|θ), in which case the posterior can be written as

p(θ |D1,D2) ∝ p(D2|θ)
[
p(D1|θ)p(θ)

]
. (3.8)

Now we see that the posterior for experiment 1 functions as the prior for experiment 2,
so that Bayes’s theorem neatly expresses the process of updating our belief about θ in
the light of new information – although it does not remove the basic worry of how we
should set a prior before we have any data at all. For further food for Bayesian thought, see,
e.g., [36].

For inference – i.e., evaluating the relative probabilities of various different values of
θ – the normalisation constant P(D) is irrelevant, but sometimes it can be useful. This can
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be seen by realising that we might want to consider different models, Mi , with different
parameter sets θi . In that case, Bayes’s theorem would be written in a fuller form:

P(Mi,θi |D) ∝ P(Mi,θi) P (D|Mi,θi) ∝ P(Mi)P (θi |Mi) P (D|Mi,θi), (3.9)

where the latter case expands the prior into a prior probability for the model itself, times
a prior for the parameters in the case where that model applies. So if we want to know
the probability that the class of model Mi applies without caring about the exact value
of its parameters, then we would integrate to obtain P(Mi |D)∝P(Mi)

∫
P(θi |Mi)

P (D|Mi,θi) dθi . Apart from the prior probability of the model, P(Mi), this is just
proportional to the earlier normalisation constant, P(D), known as the Bayesian evidence.
Thus, we can assess the plausibility of various models by calculating the evidence ratio
between them, which allows the data to update whatever previous ratio of P(Mi) values we
had assigned. This is a powerful methodology, which has received considerable application
in cosmology (e.g., [54]). But it is not without its difficulties, stemming from the choice
of prior. This is always an issue at some level in Bayesian analyses but is often not so
important in inference applications. Suppose we have a single parameter, where the prior
is uniform over some range �: P(θ) = 1/�. When we compute the ratio of probabilities
of two values of θ , this constant divides out as long as both values are in the allowed
range, and we simply have the likelihood ratio. But in evidence ratios, the prior is more
prominent. Suppose we have two models, each with a single parameter, with allowed ranges
�1 and �2. If the likelihood has a Gaussian form, then the integral over the Gaussian is
Lmax

√
2πσ , where σ is the effective precision with which θ is measured. In this case, the

evidence ratio is

E2

E1
=
(
Lmax

2

Lmax
1

)(√
2πσ2

�2

)(√
2πσ1

�1

)−1

. (3.10)

Here, we can have the strange situation that the likelihood ratio might strongly favour
model 2, but overall model 2 could be disfavoured if its prior is too wide so that the small
value of σ2/�2 dominates. Things can become worse as the data improve, since σ will
shrink. For example, imagine an experiment where we try to test if the vacuum energy is
a cosmological constant; as discussed later, this is equivalent to introducing a parameter,
w, and asking if it is consistent with −1. Suppose we measure −1.003 ± 0.001 – a ‘three-
sigma’ detection. This corresponds to a likelihood ratio of exp(9/2) � 90 in favour of the
more complex hypothesis. But if we had been willing to contemplate values of w between
−1.5 and −0.5 (� = 1), then the overall evidence ratio would be 1000 : 90

√
2π � 4.4 : 1

in favour of w = −1, despite the ‘detection’ of a deviation (the last
√

2πσ1/�1 factor is
absent as the cosmological constant case has no free parameter).

This is in contrast to inference, where the prior becomes progressively less important
as the data improve and the likelihood becomes narrower. Indeed, studies in parameter
inference often deliberately choose uninformative priors that are much broader than any
reasonable value so that the conclusions are driven by the data. This is fine so far as it
goes, but such priors would be completely inappropriate for evidence calculations. Here,
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we really do have to believe our prior: the failure to reject w = −1 in our example came
because the prior tells us that, e.g., w = −1.49 is genuinely just as likely a model as
w = −1.003, so our model had a large list of parameter choices that we claimed to find
plausible a priori, most of which failed to match the data. This is why that model framework
is disfavoured. Inference requires less commitment: we can choose priors that extend to
ridiculous values (H0 = 10 or 200 km s−1Mpc−1, say), and the answers hardly alter.
But this means that the term ‘prior’ is being used to mean two rather different things in
inference, and in model testing, and this is unfortunate.

3.3.2 Observer Selection

The Bayesian framework can be used to address some of the preceding cosmological
puzzles. Suppose we have some prior belief in the probabilities of different cosmological
parameters, p(θ). This is not the probability that a given set of parameter values will
actually be observed, since it is inevitable that the cosmological parameters will influence
the number of observers that are produced. When we consider the likelihood part of Bayes’s
theorem, the ‘data’ D amount to the statement ‘I am an observer, and I experience the
Universe to have parameters θ ’. Thus, we need to consider the probability of producing
observers as a function of cosmological parameters. Furthermore, we need some assump-
tions about the typicality of observers since the cosmological puzzles refer to the parameter
values experienced by a single observer rather than a democratic average over a whole
population. To take a simple example, consider the temperature of the cosmic microwave
background, currently about 2.725 K. Observers in the past would have seen a larger value,
and observers in the far future will see a colder CMB, so to assess the value 2.725 K,
we need to have the relative probabilities for the times when observers live. This sounds
difficult at the outset: what is the prior probability of a given time interval δt? One might
assert that all interval of time should be equally probable; but t is a quantity that is purely
positive in a standard Big Bang universe, so it would be common to adopt a 1/t Jeffreys
prior so that all intervals of ln t are equally probable. Fortunately, in this case, it does not
matter which we pick since the likelihood requires us to calculate the number of observers
living in each time interval. With the additional assumption that all observers are equally
probable (i.e., that I am a randomly selected typical observer from the sequence of all
observers who will ever exist), the posterior probability for the CMB temperature can be
written down immediately without explicit reference to a prior on time: the probability that
I measure T in some interval δT around T = 2.725 K is just the number of observers born
in the time interval corresponding to δT divided by the total number that will ever exist.

This appeal to the ‘typical’ observer sounds reasonable enough but generates prob-
lems when examined in detail – see, e.g., Bostrom [6] and Carr [9]. What counts as an
observer? People, yes. Cats? Hypothetical non-carbon life forms? How should we weight
for lifetime? The preceding argument assumes a time interval that is still long compared
to an observer’s lifetime, but what if medical science should enable immortality – is one
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observer who survives for 100,000 years worth 1,000+ present-day humans? Cosmolo-
gists should prefer to stay clear of such biological questions, but they cannot be evaded
entirely and will inevitably leave some imprecision in our discussion. Nevertheless, the
range of possible cosmological conditions is so vast that we can argue that these non-
biological factors will dominate. So, for example, we may feel unsurprised that we live in
an era later than recombination: it is hard to envisage that complex structures supporting
intelligence could exist while the Universe is in a plasma state. But even this assertion
can be challenged by the concept of the Boltzmann brain: in an infinite universe, random
fluctuations in homogeneous matter of any temperature could assemble a self-aware state
(e.g., [33, 40, 55]). The probability of this happening is exponentially small, but non-zero.
Such considerations should be kept in mind, although they can be evaded by a little more
conditional information: I am a carbon-based non-Boltzmann brain, and it is legitimate
to ask what constraints that piece of data sets on the cosmological parameters that I will
measure. Although the precise calculation of those limits is difficult, there is a growing
acceptance in modern cosmology that such observer selection has to be taken into account
when discussing issues of cosmological naturalness.

3.3.3 Ensemble Reasoning and the Multiverse

Having said that probabilities can be discussed perfectly happily without the need for an
ensemble of experiments, it must be admitted that there are some advantages when such an
ensemble exists. We have just seen an example of this when considering the sequence of
observers in the Universe. The Bayesian approach applied to a single observer can happily
reach the conclusion that the temperature of the Universe must be < 1,000 K, given that
this observer exists, but this says nothing about whether it was inevitable that such an
observer exists at all. Or consider the Earth: if it lay at a markedly different distance from
the Sun (outside the ‘habitable zone’), then life as we know it would not be possible. So
the existence of life allows us to infer the approximate Earth-Sun distance, but why is the
Earth just at this convenient distance? A universe containing just one planet far outside
the habitable zone would be devoid of observers, and we would not be there to witness
this unhappy situation. But although this is logically fine, it somehow fails to satisfy as an
explanation for the actual location of the Earth. This is what we might term the ‘something
rather than nothing’ problem. An alternative is to guess that, in fact, there exist innumerable
Earth-like planets at all sorts of distances from their primary stars – in which case it is not
only inevitable that those hosting life will find themselves in the habitable zone, but it is
guaranteed that there will be some in the habitable zone. With recent astronomical data on
the population of exoplanets, we can be confident that this is the true situation.

Such a situation may exist in cosmology, where there is interest in a multiverse solution,
in which different causally disconnected domains may be able to possess different effective
cosmological constants. The most natural form of such a multiverse arises in inflationary
cosmology: inflationary models that display stochastic behaviour driven by quantum fluc-
tuations of the inflation field can seed ‘bubble universes’ (e.g., [27]), which potentially
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provide the seeds for a concrete ensemble of universes. If we can further arrange for
cosmological parameters or even laws of physics to be different in different members of the
ensemble, then we have the raw material for potentially both solving the ‘something rather
than nothing’ problem and explaining the cosmological coincidences. In principle, this is
not hard to arrange: many physical phenomena are controlled by scalar fields, which can set
particle masses in the case of the Higgs field or which can generally contribute to an effec-
tive vacuum density as discussed later. If these fields have a potential with multiple minima,
then inflationary fluctuations can give the fields different values in different members of the
ensemble, leading to trapping in different minima and different low-energy physics. This
makes qualitative sense, but it is not easy to turn this framework into a precise prior for
the low-energy physics. Not only does this depend on the scalar-field potential; there is
also the complication that the seeded bubble universes are formally of infinite volume –
making it unclear how different members of the ensemble should be weighted (the measure
problem – see, e.g., [26]). And if this problem can be solved, we are still not finished. Given
two members of the ensemble with equal prior probability, the different physical parameters
within the bubbles will almost inevitably alter the efficiency with which sentient observers
arise. This leads to the fundamental principle of observer selection in a multiverse: at least
if the number of observers in any member of the ensemble is finite, the probability of a
given set of conditions being observed is proportional to the number of observers that are
generated. This criterion is an essential element of correct reasoning in such situations,
and its neglect will generate paradoxes such as the infamous doomsday argument – see,
e.g., [39]. Even given these serious procedural issues, the ensemble approach is a rich and
stimulating vision: perhaps the greatest open question in cosmology is whether we are
really part of a multiverse and how such a theory might be tested.

The situation in cosmology is perhaps analogous to that facing Darwin, as he groped for
an explanation of the match between creatures and their environment. There was a choice
between the argument from design (that the world was just as God happened to make
it) or that it had arisen via selection from an ensemble of varied creatures. The critical
element needed for the second explanation to work was, of course, the idea of a diversity of
transmittable characteristics, which provides the raw material for repeated natural selection.
Nevertheless, Darwin was unaware of Mendel’s contemporary work, which identifies genes
as these discrete carriers of heredity. Indeed, the lack of any mechanism of this sort was
seen as a major defect by reviewers of The Origin of Species. Although he never made
a definitive statement in print, Darwin was nevertheless effectively forced by the logic
of his position to invent the key idea of genetics: that characteristics do not blend over
generations but are carried in an atomic way: ‘I have lately been inclined to speculate . . .
that propagation by true fertilisation will turn out to be a sort of mixture, and not true
fusion of two distinct individuals’ (letter to Huxley, quoted by Dawkins [16]). In this way,
the evolutionary hypothesis forced Darwin towards a dim vision of the underlying genetic
mechanism: the exact opposite of any abandonment of physical explanation. In the same
way, the invocation of a cosmological multiverse can be a possible route to important new
physics. As with evolution, this idea only works if there is variation, and, thus, we conclude
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that there must be some mechanism that allows physical constants to freeze out at different
values in different members of the ensemble. If this involves scalar fields, then those fields
exist here and now in our Universe, and one could imagine doing an experiment to verify
that they exist. This would be like a winner of the National Lottery inferring the existence
of something like a drum holding numbered balls – finding such a machine would be
convincing evidence that it was indeed once used to pick a winner at random. However,
this analogy between cosmology and Darwinism should not be pushed too far. In both
cases, one ends up with a peculiar universe via selection from an ensemble and infers a
microscopic mechanism that permits selection to operate. But the evolutionary ensemble
is a continuing time series of random trials, whereas natural selection in cosmology only
happens once, and the concept of inheritance does not apply.

3.4 Anthropic Principles

So far, we have deliberately refrained from using the term ‘anthropic’, which is how these
issues have traditionally been labelled. The debate under this heading has become quite
polarised, with some authorities unable to utter the ‘A word’, which can be seen as an
excuse to avoid the hard work of doing proper physics calculations. We have, therefore,
first tried to go back to basics and emphasise that observer selection must be considered, but
probably also requires more physics, not less. And, indeed, the tone of earlier discussions
was probably not helpful to this debate, raising quasi-religious associations by enunciating
‘anthropic principles’ of varying degrees of strength (originally due to Carter [10]; see [4]
for an early and thorough review of the subject).

The Trivial Anthropic Principle

This is not strictly part of the Anthropic Principle proper but consists of anthropic ideas
on which almost everyone can agree – i.e., that we can use observations of humanity as
cosmological information in the same way as we use data from telescopes. For example,
we can deduce that the Universe is � 1 Gyr old merely by noting that carbon-based life has
formed and that there needed to be time for typical stars to go through their life cycle and
distribute heavy elements in order for this to have happened. The existence of humanity
thus gives us a bound on H0. That is about as far as such trivial anthropic arguments go in
cosmology; they are, in a sense, unnecessary, as we have direct dating of the Earth to set a
much more precise limit on H0, a constraint that was astronomically important in the early
days of the distance scale, when values of H0 � 500 km s−1Mpc−1 were suggested.

However, anthropic arguments of this type have an honourable history from the 19th
century, when the Earth could not be dated directly. At that time, Lord Kelvin was advo-
cating an age for the Earth of only ∼ 107 years, based on its cooling time. Evolutionary
biologists were able to argue that this was an inadequate time to allow the development of
species, a conclusion that was vindicated by the discovery of radioactivity (which allowed
both the dating of the Earth and showed the flaw in Kelvin’s argument). Here was an
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excellent example of important astronomical conclusions being drawn from observations
of life on Earth.

The Weak Anthropic Principle

But it is not possible to go very far in discussing the astronomical consequences of our
local planetary observations before we run into the question of typicality: whether the
conditions we observe can be extrapolated into properties characteristic of the Universe
as whole. The danger in such reasoning was pointed out by Carter [10] in what he termed
the Weak Anthropic Principle: we ‘must be prepared to take account of the fact that our
location in the Universe is necessarily privileged to the extent of being compatible with our
existence as observers’. In other words, there may be times and locations in the Universe
where life is impossible, or at least highly improbable, and the allowance for such censoring
may condition cosmological observables or even allow us to predict them. The outstanding
success of this reasoning concerns Dirac’s large-number hypothesis. Dirac noted that very
large dimensionless numbers often arise in both particle physics and cosmology. The ratio
of the electrostatic and gravitational forces experienced by an electron in a hydrogen atom is

e2

4πε0Gmemp
� 1039.4; (3.11)

one of the problems of unifying gravity and other forces is understanding how such a vast
dimensionless number can be generated naturally. In a cosmological context, the weakness
of gravity manifests itself in the fact that the Hubble radius is enormously greater than the
Planck length:

c/H0√
h̄G/c3

� 1061. (3.12)

This number is very nearly the 1.5 powers of the previous large number: it is as if these
large numbers were quantised in steps of 1020. Dirac proposed that the coincidence must
indicate a causal relation; requiring the proportionality to hold at all times then yields the
radical consequence

G ∝ t−1 (3.13)

(because H0 declines as ∼ t−1 as the Universe ages). See also Chapter 2.
Geological evidence shows that this prediction is not upheld in practice since the

Sun would have been hotter in the past. A less radical explanation of the large-number
coincidence uses the anthropic idea that life presumably requires the existence of elements
other than hydrogen and helium. The Universe must therefore be old enough to allow
typical stars to go through their life cycle and produce ‘metals’. This condition can be
expressed in terms of fundamental constants as follows. Stars have masses of the order of
the Chandrasekhar mass

MChandra ≡
(
h̄c

Gm2
p

)3/2

mp, (3.14)
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where mp is the proton mass. The luminosity of a star dominated by electron-scattering
opacity is

L ∼ G4m5
pM

3

h̄3c2σT

. (3.15)

The characteristic lifetime of a star, MChandrac
2/L, can thus also be expressed in funda-

mental constants and is

t∗ ∼ c σT

Gmp
= 5.7 × 109 years. (3.16)

Comparing with the preceding, we see that the large-number coincidence is just t∗ ∼ H−1
0 ;

i.e., the Universe must be old enough for the stars to age. The fact that the Universe is not
very much older than this may tell us that we are privileged to be in the first generation
of intelligence to arise after the Big Bang: civilisations arising in � 1010 years time will
probably not spend their time in cosmological enquiry, as they will be in contact with
experienced older races who know the answers already. Lastly, the coincidence can be used
to argue for the fundamental correctness of the Big Bang as against competitors such as
the steady-state theory; if the Universe is, in reality, very much older than t∗, there is no
explanation for the coincidence between t∗ and H−1

0 .
In short, the Weak Anthropic Principle states that, because intelligent life is necessary

for cosmological enquiry to take place, this already imposes strong selection effects on
cosmological observations. Note that, despite the name, there is no requirement for the
life to be human, or even carbon based. All we say is that certain conditions can be ruled
out if they do not lead to observers, and this is one of the weaknesses of the principle:
are we really sure that life based on elements less massive than carbon is impossible? The
whole point of these arguments is that it only has to happen once. It is nevertheless at least
plausible that the ‘anthropic’ term may not be a complete misnomer. It has been argued
(see [11]) that intelligent life may be intrinsically an extremely unlikely phenomenon,
where the mean time for development could be very long:

t̄Intelligence � t∗. (3.17)

If the inequality was sufficiently great, it would be surprising to find even one intelligent
system within the current horizon. The Anthropic Principle provides a means for under-
standing why the number is non-zero, even when the expectation is small, but there would
be no reason to expect a second system; humanity would then probably be alone in the
Universe. On the other hand, t̄Intelligence may be shorter, and then other intelligences would
be common. Either possibility is equally consistent with the selection effect imposed by our
existence, although the fact that life on Earth took billions of years to develop is consistent
with the former view; if life is a rare event, it would not appear early in the allowed span
of time.
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Other Weak Anthropic Deductions

What other features of the Universe might be amenable to anthropic arguments? The strik-
ing aspects to explain are that we live in a universe with roughly critical density in matter,
dominating a radiation background of 2.725 K by roughly four powers of 10. Our starting
point is the age argument given earlier, plus the assumption that life will only arise (1) after
recombination (so that we are not cooked); (2) after matter domination (so that matter can
self-gravitate into stars):

t0 ∼ t∗ > tr, teq. (3.18)

A first coincidence to consider is that recombination and matter-radiation equality occur at
relatively similar times; why is this? Recombination requires a temperature of roughly the
ionisation potential of hydrogen:

kTr ∼ mec
2

1372
. (3.19)

The mass ratio of baryons and photons at recombination is therefore 1372mp/me ∼ 107.5,
and the Universe will be matter dominated at recombination unless the ratio of photon and
proton number densities exceeds this value. At high temperatures, kT > mpc

2, baryon,
anti-baryon, and photon numbers will be comparable; it is thought that the present situation
arises from a particle-physics asymmetry between matter and antimatter, so that baryons
and anti-baryons do not annihilate perfectly (see Chapter 5). Matter–radiation equality thus
arises anywhere after a redshift 107.5 times larger than that of last scattering and could be
infinitely delayed if the matter/antimatter asymmetry were small enough. The approximate
coincidence in epochs says that the size of the particle/antiparticle asymmetry is indeed
roughly 1372mp/me, and it is not implausible that such a relation might arise from a com-
plete particle physics model. At any rate, it seems to have no bearing on anthropic issues.

The anthropic argument for the age of the Universe lets us work out the time of recom-
bination if we accept for the moment that the matter density is �m ∼ 1 (see Section 3.5).
The age for an Einstein-de Sitter model would tell us both H0 & ρ0 and, hence, the current
number density of photons if we could obtain the photon-to-baryon ratio from fundamental
arguments. Since nγ ∝ T 3

γ , that would give the present photon temperature and, hence, the

redshift of recombination. The fact that this was relatively recent (only at z ∼ 103) reflects
the fact that the photon-to-baryon ratio is ∼ 107 rather than a much larger number.

Finally, what do anthropic arguments have to say about the matter density parameter,
�m? There is an instability in the evolution of �m in open matter-dominated models:∣∣∣�−1

m (z)− 1
∣∣∣ = (1 + z)−1

∣∣∣�−1
m − 1

∣∣∣ (3.20)

so that �m(z) has to be fine-tuned at early epochs to achieve �m � 1 now. We can go
some way towards explaining this, as follows. The formation of galaxies can only occur at
a redshift zf such that �m(zf ) ∼ 1; otherwise, growth of density perturbations switches
off when the Universe becomes dominated either by curvature or by �. �m must be unity
to within a factor ∼ (1 + zf ). The redshift zf must occur after matter-radiation equality;
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otherwise, radiation pressure would prevent galaxy-scale systems from collapsing. Any
universe with � � 10−3 at t = t∗ would then have great difficulty in generating the non-
linear systems needed for life. These structure-formation arguments are explored in more
detail in the following paragraphs.

The Strong Anthropic Principle

The ultimate form of anthropic reasoning is to assert that the existence of life is more than
just something that operates as a selection effect on observations: rather, the Universe must
be such as to admit the production of intelligent life at some point. This idea is known as the
strong Anthropic Principle. Is such an idea a part of testable science? The whole basis of
the Weak Anthropic Principle is the argument that a life-free universe cannot be observed,
and observations of such a counterexample would be required in order to falsify the Strong
Anthropic Principle.

However, the motivation for strong anthropic reasoning goes beyond the simple issue
of observational selection effects in space and time and focuses on puzzles concerning
fundamental physics. As first pointed out in a seminal article by Dicke [18], it appears
that the very possibility of carbon-based life depends on a series of striking coincidences
in the laws of nature. Consider our understanding of the production of the elements. It
is now thought virtually certain that the abundances of the light elements up to 7Li were
determined by the progress of nuclear reactions in the early stages of the Big Bang, but
heavier elements were produced at a much later stage by fusion in stars. Incidentally, this
division of labour represents an ironic end to a historically important debate concerning
the origin of the Universe, which dominated cosmology in the 1960s. The epochal paper
that became universally known just as B2FH [7] was concerned with showing how the
elements could be built up by nuclear reactions in stars. Although this was not the moti-
vation for the work, these mechanisms provided a vital defence for the steady-state model
(which never passes through a hot phase) against the belief of Gamow and co-workers
that all elements could be synthesised in the Big Bang (Gamow 1946; Alpher, Bethe &
Gamow 1948). Although the steady-state model passed away, the arguments of B2FH have
become part of current orthodoxy, leaving only the lightest elements adhering to Gamow’s
vision.

Now, the fascinating aspect of all this is that synthesis of the higher elements is rather
difficult, owing to the non-existence of stable elements with atomic weights A = 5 or
A = 8. This makes it hard to build up heavy nuclei by collisions of 1H, 2D, 3He, and 4He
nuclei. The only reason that heavier elements are produced at all is the reaction

3 4He → 12C. (3.21)

A three-body process like this will only proceed at a reasonable rate if the cross section for
the process is resonant: i.e., if there is an excited energy level of the carbon nucleus that
matches the typical energy of three alpha particles in a stellar interior. The lack of such a
level would lead to negligible production of heavy elements – and no carbon-based life.
Using these arguments, Hoyle made a breathtaking leap of the imagination to predict that
carbon would display such a resonance, which was duly found to be the case [28].
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In a sense, this is just trivial anthropic reasoning: we see carbon on Earth, and nuclear
physics gives us an inevitable conclusion to draw. And yet, one is struck by the coincidence:
if the energy levels of carbon had been only slightly different, then it is reasonable to
assume that the development of life anywhere in the Universe would never have occurred.
Does this mean that some controlling agent designed nuclear physics specifically to pro-
duce life? This is a possible explanation, but it is interesting to ask if the appearance of
design could have arisen without such interference. A tuning of nuclear physics can arise
quite naturally in the context of a multiverse ensemble, provided the different members
of the ensemble have some mechanism that allows fundamental physics to vary. In that
case, all variants of nuclear physics will be explored: in most cases, the parameters will be
such that Hoyle’s coincidence does not operate, and those members of the ensemble will
be sterile and devoid of life. But given a sufficiently large ensemble and the ability to vary
parameters continously, Hoyle’s coincidence is bound to arise. Indeed, strong anthropic
reasoning requires the existence of an ensemble of universes. From this point of view, the
Strong Anthropic Principle really just splits weak anthropic reasoning into one-universe
anthropics (which predicts that any observers will see their universe at an age of around
10 Gyr) and many-universe anthropics (which predicts that any observers will witness
fundamental physics laws that are compatible with life).

What remains unresolved here is the question of why there are observers at all: just
because we may be guaranteed to find some nuclear physics compatible with life, why
should life take the opportunity of coming into existence? One could just accept the ultimate
censoring effect of weak anthropic reasoning and admit that observers only observe cases
where observers happened to be created. But we are here, and we inevitably wonder if this
was inevitable. A multiverse that explores all kinds of nuclear physics creates the chance
for life, and even if this is highly improbable in any given case, a non-zero probability is
bound to be converted into a reality given sufficiently many trials – so our existence may
provide evidence in favour of a multiverse with an extremely large number of members.
But a completely different class of explanation is to be found in the interpretation of
quantum mechanics, where the role of the observer is critical in determining how the
Universe evolves. Chapter 7 of Barrow and Tipler [4] gives a full discussion of the relation
between quantum and anthropic ideas. In the Copenhagen interpretation, the critical events
in time are the moments of wave-function collapse when the act of observation singles out
a concrete state from undetermined possibilities (e.g., spin up or down?). In this sense, the
act of the observer may be necessary in order to bring the Universe into being at all.

3.5 The Puzzle of Dark Energy

3.5.1 Cosmological Effects of the Vacuum

One of the most radical conclusions of recent cosmological research has been the necessity
for a non-zero vacuum density. This was detected by being open to the assumption that
Einstein’s cosmological constant,�, might contribute to the energy budget of the Universe.
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We can note in passing that Einstein’s 1917 paper [21] is a masterpiece of clarity, which
can be read in English in, e.g., [5], and the basic argument is one that Newton might
almost have generated. Consider an infinite uniform sea of matter, which we want to be
static (an interesting question is whether Einstein was influenced by data in imposing this
criterion or whether he took it to be self-evident): we want zero gravitational force, so both
the gravitational potential, �, and the density, ρ, have to be constant. The trouble is this
is inconsistent with Poisson’s equation, ∇2� = 4πGρ. The ‘obvious’ solution (argues
Einstein) is that the equation must be wrong, and he proposes instead

∇2�+ λ� = 4πGρ, (3.22)

where λ has the same logical role as the � term he then introduces into the field equations.
In fact, this is not the correct static Newtonian limit of the field equations, which is ∇2�+
� = 4πGρ. But either equation solves the question posed to Newton by Richard Bentley
concerning the fate of an infinite mass distribution; Newton opted for a static model despite
the inconsistency analysed earlier.

If we adopt the second variant of the Newtonian field equation, or the GR field equation
itself, it is clear the � term can be taken from the left-hand side (where it represents the
curvature of empty space) to the right-hand side, where it represents an additional source
term for the gravitational field:

Gμν = −8πG

c4

(
T
μν
matter + T μν�

) ; T
μν
� = �c4

8πG
gμν . (3.23)

Thus, if there is no matter, then (�c4/8πG) gμν is the energy-momentum tensor of the
vacuum. However, we will see later that there are good reasons to expect the vacuum to have
a non-zero density on the grounds of quantum mechanics. Because such a vacuum energy
would have to be invariant for all observers within Special Relativity, its energy-momentum
tensor must be proportional to the metric (the only rank-2 tensor that is unchanged by
Lorentz transformations): T μνvac = ρvacc

2 gμν . Thus, Einstein’s classical geometrical� com-
bines with any physical vacuum density into a single effective value:

�eff = �+ 8πGρvac/c
2. (3.24)

This combination into a single effective vacuum density was first noted by Sakharov [44]
and Zel’dovich [60].

But if this ingredient is a reality, it raises many questions about the physical origin of
the vacuum energy; as we will see, a variety of models may lead to something similar in
effect to �, and the general term dark energy is used to describe these. The properties of
dark energy can be probed by the same means that we used to deduce its existence in the
first place: via its effect on the expansion history of the Universe. The vacuum density is
included in the Friedmann equation, independent of the equation of state

Ṙ2 − 8πG

3
ρ R2 = −kc2. (3.25)
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At the outset, we should be very clear that the deduced existence of dark energy depends on
the correctness of the Friedmann equation, and this is not guaranteed. We possibly have the
wrong theory of gravity, and we have to replace the Friedmann equation with something
else. Alternative models do exist, particularly in the context of extra dimensions, and these
must be borne in mind. Nevertheless, as a practical framework, it makes sense to stick with
the Friedmann equation and see if we can get consistent results. If this programme fails, we
may be led in the direction of more radical change.

To insert vacuum energy into the Friedmann equation, we need the equation of state

w ≡ p

ρ c2
. (3.26)

If this is constant, adiabatic expansion of the vacuum gives

8πGρ

3H 2
0

= �va−3(w+1). (3.27)

More generally, we can allow w to vary; in this case, we should regard −3(w + 1) as
d ln ρ/d ln a, so

8πGρ

3H 2
0

= �v exp

(∫
−3(w(a)+ 1) d ln a

)
. (3.28)

In general, we therefore need

H 2(a) = H 2
0

[
�ve

∫ −3(w(a)+1) d ln a +�ma−3 +�ra−4 − (�− 1)a−2
]

. (3.29)

Some complete dynamical model is needed to calculate w(a). Given the lack of a unique
model, a common empirical parameterisation is

w(a) = w0 + wa(1 − a). (3.30)

It frequently is sufficient to stick with constant w; most experiments are sensitive to w
at a particular redshift of order unity, and w at this redshift can be estimated with little
dependence on whether we allow dw/dz to be non-zero.

If w is negative at all, this leads to models that become progressively more vacuum
dominated as time goes by. When this process is complete, the scale factor should vary as a
power of time. The case w < −1 is particularly interesting, sometimes known as phantom
dark energy [8]. Here, the vacuum energy density will eventually diverge, which has two
consequences: this singularity happens in a finite time rather than asymptotically; as it does
so, vacuum repulsion will overcome the normal electromagnetic binding force of matter so
that all objects will be torn apart in the big rip. Integrating the Friedmann equation forward,
ignoring the current matter density, the time to this event is

trip − t0 � 2

3
H−1

0 |1 + w|−1(1 −�m)−1/2. (3.31)
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Observable Effects of the Vacuum

The co-moving distance-redshift relation is one of the chief diagnostics of w. The general
definition is

D ≡ R0r =
∫ z

0

c

H(z)
dz. (3.32)

Perturbing this about a fiducial �m = 0.3, w = −1 model shows a sensitivity multiplier
of about 5 – i.e., a measurement of w to 10% requires D to 2%. Also, there is a near-
perfect degeneracy with �m, so this parameter must be known very well before the effect
of varying w becomes detectable.

The other main diagnostic ofw is its effect on the growth of density perturbations. These
are also sensitive to the vacuum, as may be seen from the growth equation:

δ̈ + 2
ȧ

a
δ̇ = 4πGρ0δ. (3.33)

The vacuum energy manifests itself in the factor of H in the ‘Hubble drag’ term, 2(ȧ/a)δ̇.
For flat models with w = −1, the growing mode for density perturbations is approximately
g(a) ∝ a�(a)0.23 or (more accurately) d ln g/d ln a = �(a)0.55. For greater accuracy, the
following expressions are good to a maximum error of 0.1% [41]. The cases of positive and
negative � are somewhat distinct. For the positive case,

δ(a) � x(1 − x1.91)0.82 + 1.437
(

1 − (1 − x3)2/3
)
, (3.34)

where x denotes �v(a)1/3, and we choose the a = 1 point to correspond to equal density
in matter and vacuum:

�v(a) = (1 + a−3)−1 (3.35)

so that δ(a) � a for small a. For the negative-� case, we need time as a coordinate since
the scale factor is not monotonic:

a(t) =
[

sin

(
3t

2

)]2/3

, (3.36)

where here we choose units such that a = 1 at the point of maximum expansion, and time
is measured in units of (8πG|ρv|/3)−1/2 so that Friedmann’s equation is (ȧ/a)2 = a−3 −1
and �v(a) = (1 − a−3)−1. Here, the approximation for the growth function is

δ(t) = (3t/2)2/3

(1 + 0.37(t/tcoll)2.18) (1 − (t/tcoll)2)
. (3.37)

Again, the normalisation is that δ(a) � a for small a. Note that the fluctuations diverge at
the collapse time (tcoll = 2π/3) as 1/(tcoll − t); this corresponds to the decaying mode in
the expanding phase.

In the real Universe, we are interested in the positive branch of the growth factor, and
this is illustrated in Figure 3.3. The plot shows two alternative points of view: either a
growing δ(t) that asymptotes to a constant or a potential �(t) that is initially independent
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Figure 3.3 The growth of density fluctuation amplitude (1) vs dimensionless scale factor, a(t), for the
case of a flat universe containing matter plus a cosmological constant. The normalisation is that a = 1
at matter-vacuum equality. Line 2 shows �v(a), and line 3 shows δ(a)/a, which is proportional to
the amplitude of potential fluctuations, �(a).
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Figure 3.4 Perturbation around �m = 0.3 of Hubble parameter, distance-redshift, and growth-
redshift relations. Solid line shows the effect of increase inw; dashed line shows the effect of increase
in �m.

of time, but by which these preserved initial metric fluctuations are damped away once the
Universe becomes � dominated.

If w is made more negative, this makes the growth law closer to the Einstein-de Sitter
g(a) ∝ a (for very large negative w, the vacuum was unimportant until very recently).
Therefore, increasing w (making it less negative) has an effect in the same sense as
decreasing �m. As shown in Figure 3.4, the degeneracy between variations in �m and w
thus has the opposite sign to the degeneracy in D(z). Ideally, one would therefore try to
observe both effects.
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3.5.2 Observing the Properties of Dark Energy

What are the best ways to measure w? We have seen that the two main signatures are
alterations to the distance-redshift relation and the perturbation growth rate. It is possible to
use both of these effects in the framework we have been discussing: observing the perturbed
Universe in both the CMB and large-scale structure.

In the CMB, the main observable is the angle subtended by the horizon at last scattering

θH = D(zLS)/D(z = 0). (3.38)

This has the approximate scaling with cosmological parameters (for a flat universe)

θH ∝ (�mh3.3)0.15�α−0.4
m ; α(w) = −2w/(1 − 3.8w). (3.39)

The latter term comes from a convenient approximation for the current horizon size:

D0 = 2
c

H0
�−α(w)
m . (3.40)

At first sight, this looks bad: the single observable of the horizon angle depends on three
parameters (four, if we permit curvature). Thus, even in a flat model, we can only pin down
w if we know both �m and h.

However, if we have more detail on the CMB than just the main peak location, then we
have seen that the �m − h degeneracy is weakly broken and that this situation improves
with information from large-scale structure, which yields an estimate of�mh. In effect, we
have two constraints on the �m − h plane that are consistent if w = −1, but this is not the
case for other values of w. In this way, the current combined constraints from CMB plus
alternative probes (LSS and the Supernova Hubble diagram) yield an impressive accuracy:

w = −1.006 ± 0.045, (3.41)

for a spatially flat model – see Ade [2] and Spergel et al. [49]. The confidence contours are
plotted in detail in Figure 3.5, and it is clear that, so far, there is very good consistency with
a simple cosmological constant. But as we will see, plenty of models exist in which some
deviation is predicted. The next goal of the global cosmology community is therefore to
push the errors on w down substantially – to about 1%. There is no guarantee that this will
yield any signal, but certainly it will cut down the range of viable models for dark energy.

One of the future tools for improving the accuracy in w will be large-scale structure.
We have seen how this helps pin down the parameter degeneracies inherent in a CMB-
only analysis, but it also contains unique information from the acoustic horizon. Earlier,
we approximated this without considering how the speed of sound would depend on the
baryon density; a good approximation to the exact result is

Da � 55.4 (�mh
2)−0.26(�bh

2)−0.13 Mpc. (3.42)

This forms a standard measuring rod, as seen in the ‘baryon wiggles’ in the galaxy
power spectrum. In future galaxy surveys, the measurement of this signature as a function
of redshift will be a further useful geometrical probe. Strictly, this is a slightly different
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Figure 3.5 The marginalised WMAP3 confidence contours on the plane of dark-energy equation of
state (w) vs�m (from [49]). A flat universe is assumed, although this is not critical to the conclusions.

acoustic horizon to the one seen in the CMB, which is approximately 65.5 (�mh2)−0.25

(�bh
2)−0.08 Mpc. The earlier figure is appropriate for the ‘drag era’ when CMB photons

finally cease to interact with the baryons, and this is what sets the BAO scale in the galaxy
distribution (see, e.g., [42]).

The amplitude constraint from the CMB has been harder to implement. Although CMB
data provide an accurately determined temperature normalisation, this involves the uncer-
tain optical depth due to reionisation:

σ8(CMB) = 0.755 (�m0.3)+0.4 exp(τ )± 2%. (3.43)



Naturalness, Fine-tuning, and Observer Selection in Cosmology 89

The value of τ is constrained by large-angle polarisation data and is τ = 0.066 ± 0.016,
according to Planck. This value of σ8 is, of course, an extrapolation to z = 0 of the ampli-
tude of fluctuations inferred at z� 1,100, and so comparison with direct low-z data can, in
principle, measure the growth over this period and, thus, pin down w (or deviations from
Einstein gravity). Currently, this local determination is possible using gravitational lensing
and yields a figure that is within 10% of the CMB determination (e.g., [1]). Currently, this
is not accurate enough to give a competitive determination of w, but future constraints of
this sort will be interesting.

3.5.3 Models for Dynamical Dark Energy

The simplest physical model for dynamical vacuum energy is a scalar field. We know from
inflationary models that this can yield something close in properties to a cosmological
constant, and so we can immediately borrow the whole apparatus for modelling vacuum
energy at late times. This idea of scalar fields as a dynamical substitute for � was first
explored by Ratra and Peebles [43]. Of course, this means yet another scalar field that is
introduced without much or any motivation from fundamental physics. This hypothetical
field is given the fanciful name ‘quintessence’, implying a new addition to the ancient Greek
list of elements (fire, air, earth, water).

The Lagrangian density for a scalar field is, as usual, of the form of a kinetic minus a
potential term:

L = 1
2∂μφ ∂

μφ − V (φ). (3.44)

In familiar examples of quantum fields, the potential would be

V (φ) = 1
2 m

2 φ2, (3.45)

wherem is the mass of the field. However, as before, we keep the potential function general
at this stage.

Suppose the Lagrangian has no explicit dependence on space-time (i.e., it depends on
xμ only implicitly through the fields and their four-derivatives). Noether’s theorem then
gives the energy-momentum tensor for the field as

T μν = ∂μφ∂νφ − gμνL. (3.46)

From this, we can read off the energy density and pressure:

ρ = 1
2 φ̇

2 + V (φ)+ 1
2 (∇φ)2

p = 1
2 φ̇

2 − V (φ)− 1
6 (∇φ)2.

(3.47)

If the field is constant both spatially and temporally, the equation of state is then p = −ρ,
as required if the scalar field is to act as a cosmological constant; note that derivatives of
the field spoil this identification.
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For a homogeneous field, we have the equation of motion

φ̈ + 3Hφ̇ + dV/dφ = 0, (3.48)

which is most easily derived via energy conservation:

d ln ρ

d ln a
= −3(1 + w) = − 3φ̇2

(φ̇2/2 + V , (3.49)

following which the relationsH = d ln a/dt and V̇ = φ̇V ′ can be used to change variables
to t , and the damped oscillator equation for φ follows. The solution of the equation of
motion becomes tractable if we make the slow-rolling approximation that |φ̈| is negligible
in comparison with |3Hφ̇| and |dV/dφ| so that

3Hφ̇ = −dV
dφ

. (3.50)

From this, we know that a sufficiently flat potential can provide a dynamical vacuum that
is arbitrarily close to a cosmological constant in its equation of state. However, there are
good reasons why we might want to imagine the slow-roll conditions being violated in the
case of dark energy. For a detailed discussion, see Chapter 4.

Cosmic Coincidence and Quintessence

Accepting the reality of vacuum energy raises a difficult question. If the Universe contains
a constant vacuum density and normal matter with ρ ∝ a−3, there is a unique epoch at
which these two contributions cross over, and we seem to be living near to that time. This
coincidence calls for some explanation.

We already have one coincidence, in that we live relatively close in time to the era of
matter-radiation equality (z ∼ 103, as opposed to z ∼ 1028 for the GUT era). This is
relatively simple to understand: structure formation cannot begin until after zeq, and so
we would expect observers to appear before the Universe has expanded much beyond this
point. The vacuum coincidence problem could therefore be solved if the vacuum density
was some dynamical entity that was triggered to become�-like by the change in expansion
history at zeq. Zlatev et al. [61] suggested how this might happen. We have seen that the
density and pressure for a quintessence field will be

ρφ = φ̇2/2 + V
pφ = φ̇2/2 − V .

(3.51)

This gives us two extreme equations of state: (1) vacuum dominated, with V � φ̇2/2, so
that p = −ρ; (2) kinetic dominated, with V � φ̇2/2, so that p = ρ. In the first case, we
know that ρ does not alter as the Universe expands, so the vacuum rapidly tends to dominate
over normal matter. In the second case, the equation of state is the unusual w = +1, so we
get the rapid behaviour ρ ∝ a−6. If a quintessence-dominated universe starts off with a
large kinetic term relative to the potential, it may seem that things should always evolve
in the direction of being potential dominated. However, this ignores the detailed dynamics
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of the situation: for a suitable choice of potential, it is possible to have a tracker field, in
which the kinetic and potential terms remain in a constant proportion so that we can have
ρ ∝ a−α , where α can be anything we choose.

Putting this condition in the equation of motion shows that the potential is required to be
exponential in form. The Friedmann equation with ρ ∝ a−α requires a ∝ t2/α , so we have
ρ ∝ t−2, as usual. But now, both V and φ̇2 must scale in the same way as ρ so that φ̇ ∝ 1/t .
Both the φ̈ and 3Hφ̇ terms are therefore proportional to V , so an exponential potential
solves the equation of motion. More importantly, we can generalise to the case where the
Universe contains scalar field and ordinary matter. Suppose the latter obeys ρm ∝ a−α; it
is then possible to have the scalar-field density obeying the same ρ ∝ a−α law, provided

V (φ) = 2M4

λ2

(
6

α
− 1

)
exp

(
−λφ
M

)
, (3.52)

where M = mP/
√

8π . The scalar-field density is ρφ = (α/λ2)ρtotal. (see, e.g., [32]). The
impressive thing about this solution is that the quintessence density stays a fixed fraction
of the total, whatever the overall equation of state: it automatically scales as a−4 at early
times, switching to a−3 after matter-radiation equality.

This is not quite what we need, but it shows how the effect of the overall equation
of state can affect the rolling field. Because of the 3Hφ̇ term in the equation of motion,
φ ‘knows’ whether or not the Universe is matter dominated. This suggests that a more
complicated potential than the exponential may allow the arrival of matter domination to
trigger the desired�-like behaviour. Zlatev et al. [61] suggested two potentials which might
achieve this:

V (φ) = M4+βφ−β or V(φ) = M4
[

exp

(
mP

φ

)
− 1

]
. (3.53)

They show that these can yield an evolution in w(t) so that it switches from w � 1/3 in
the radiation era to w � −1 today.

However, a degree of fine-tuning is still required, in that the trick only works for
M ∼ 1 meV, so there is no natural reason for tracking to cease at matter-radiation equality.
The idea of tracker fields thus does not remove completely the puzzle concerning the level
of present-day vacuum energy. But such models are at least testable: because the �-like
behaviour only switched on quite recently, it is hard to complete the transition, and the
prediction is of something around w � −0.8 today [61]. As we have seen, this can be
firmly ruled out with current data. These ideas about the dynamical vacuum are therefore
already interesting, testable science.

k-Essence

In a sense, quintessence is only half the story. We started with the usual Lagrangian for a
simple massive scalar field, L = φ̇2/2 −m2φ2/2 and generalised the quadratic mass term
to an arbitrary potential, V (φ). Why not take the same liberties with the kinetic term? Even
though such k-essence models lack the intuitive analogies of quintessence, a Lagrangian
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can be anything we like. The simplest models try to express things in terms of the normal
kinetic expression

X ≡ 1

2
∂μφ∂μφ, (3.54)

and one assumes that L = K(φ)f (X); In the homogeneous case, X = φ̇2/2. The pressure
and density are

ρ = 2XL,X − L
P = L

(3.55)

so that the equation of state is

w = f

2X df
dX

− f
. (3.56)

For a normal kinetic term, this gives w = +1 if there is no potential. The equation of
motion is derived just by writing conservation of energy as for quintessence:

d ln ρ

d ln a
= −3(1 + w). (3.57)

What sort of k-essence Lagrangian will yield tracking? We want to fix w at the value of
the dominant component, which requires

d ln f

d lnX
= 1

2

(
1 + 1

w

)
⇒ f (X) ∝ X(1+1/w)/2. (3.58)

Thus, a Lagrangian proportional to the square of the usual kinetic term will produce track-
ing during the radiation era, but tracking in the matter era requires a step to f (X) = 0 to be
encountered just as the Universe becomes matter dominated. This is the opposite to the case
of quintessence: now fine-tuning would be required in order for tracking to be maintained.
The real question is whether a simple model can achieve sufficiently strong departure from
tracking to get somewhere close to w = −1 in the matter era in an inevitable way. This
seems to be controversial: Armendariz-Picon et al. [3] claimed that it could be done, but
Malquarti et al. [37] disagreed. The issue, as with quintessence, is the extent to which a
tracking solution arises inevitably independent of initial conditions – i.e., whether it is an
attractor. This has certainly not been demonstrated.

Perturbations in the Vacuum

In dynamical models for the vacuum, we have a peculiar kind of fluid, so it is able to
respond to gravity and grow inhomogeneities. The key parameter here is the vacuum sound
speed, which obeys the usual relation

c2
s = ∂p

∂ρ
. (3.59)
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In practice, this is evaluated as

c2
s = ∂p/∂X

∂ρ/∂X
, (3.60)

i.e., ignoring perturbations in the field. The justification for this is that a gauge freedom
exists and that δφ = 0 corresponds to the rest frame of the vacuum fluid.

This means that, for quintessence, the sound speed is always cs = c. Even a completely
flat potential with initial condition φ̇ = 0 does not mimic a cosmological constant. This
only happens if the Lagrangian is set up completely lacking any kinetic term. The low sound
speeds in some k-essence models can have quite large effects on the CMB anisotropies, and
so can be probed observationally beyond just w and its evolution (see, e.g., [13, 58]).

Scalar Fields as Dark Matter

One interesting limit of the scalar-field equation is if the ‘acceleration’ from the potential
exceeds the Hubble drag (i.e., the Universe expands sufficiently slowly that this term can
be neglected). If we further assume that the potential is mass-like (or at least parabolic near
its minimum), then we have the simple oscillator equation φ̈ + m2φ = 0, with solution
φ = A sinmt (for a suitable origin of time). The density and pressure are

ρ = m2A2/2

p = (m2A2/2) cos 2mt .
(3.61)

Therefore, averaged over many cycles, the oscillating scalar field has the equation of state
of pressureless matter (〈p〉/ρ = 0, even though there are times when |p| and ρ are
comparable).

It is therefore possible that the cosmological dark matter may take the form of a light
scalar field rather than a supersymmetric relic WIMP (see Chapter 9). This scalar-field dark
matter is normally considered to be a particle called the axion, which has some motivation
in particle physics. Notice that the mass can, in principle, be anything, since the density
depends on m and on the field amplitude, A. In practice, other constraints on the axion
model focus attention on

maxion ∼ 10−5 eV. (3.62)

This is very light dark matter indeed, so shouldn’t it be very hot and fail to make� ∼ 1 by a
large factor? This is not so: the axion will act as cold dark matter and can have a significant
relic density. The answer to the apparent paradox is that these particles should not be
thought of as having been in thermal equilibrium. We are dealing with a classical field that
interacts extremely weakly with ordinary matter. If this interaction was zero, there would
be no prospect of detecting the axion other than via cosmology. In practice, as with WIMPs,
there is some level of interaction, but the strategy for detection is completely different: the
axion can interact with electromagnetic waves, and the low mass means that microwave
frequencies are involved. There is therefore an active experimental programme searching
for the axion using tuned microwave cavities. The problem is that, for sensitivity reasons,
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the bandwidth needs to be very narrow, and it takes a long time to scan an interesting
frequency range: the axion model probably will be fully explored and ruled out within the
next decade – or it could be detected any day now.

Despite the lack of detection of axions, the greater level of investment in WIMP searches
and their lack of success has tended to focus greater attention on the axion model. Although
the original QCD axion is constrained to a rather specific mass, the term ‘axion’ now tends
to be used for a wider range of scalar fields. The most exciting possibility is the case where
these are ultralight, with masses below 10−20eV. In this case, the Compton wavelength
h̄/mc is large enough that wave-mechanical effects may be observed on astronomical scales
(see, e.g., [38, 46]).

3.5.4 The Outlook for Dark Energy

One significant problem with this line of research is the lack of a clear target. Some models,
such as the w � −0.8 from simple power-law quintessence, have been ruled out, but
there is no guaranteed minimum deviation from w = −1. Perhaps dark energy is exactly
a cosmological constant, and we are condemned to a future of ever more challenging
experiments yielding increasingly precise null results around w = −1; at what point would
we abandon the search?

Trotta [54] gave a nice Bayesian answer to this question, which applies to the general
issue of asking when a theory should be expanded to include a new phenomenon. Let the
effect in question be characterised by a parameter a (w in our case), such that the ‘new
physics’ corresponds to a �= 0. Let the prior probability of a be P(a) so that the Bayesian
odds ratio between the two hypotheses A (new physics: a �= 0 and in the range da) and B
(no new physics: a = 0 exactly) is L(a)×P(a) da, where L is the likelihood ratio between
A and B, given some data. This neglects a prior ratio of beliefs in new physics vs no new
physics, which is generally taken to be of order unity (although, as usual, a sufficiently
firm prejudice against new physics is not capable of being overturned, however strong the
experimental evidence). To get the overall odds ratios of the two models in the face of the
data, we should integrate over a to get the evidence ratio discussed earlier:

E =
∫
L(a) P (a) da. (3.63)

Consider a simple Gaussian example, whereL(a) = exp[−â2/2σ 2] / exp[(a−â)2/2σ 2] in
terms of a measured value a = â±σ , and let the prior on a be uniform over a range�. If�
is large compared to the measuring error, σ , this gives E = √

2π(σ/�) exp[λ2/2], where
λ = â/σ is the ‘number of sigmas’ at which the data ‘detect’ a deviation from a = 0. This
expression is the basis of Figure 3.6 and reveals two important facts: (1) if λ is large, this
need not constitute a detection if σ � �; (2) if we have a null result (λ � 1), then we may
strongly disfavour hypothesis A if σ � � – i.e., demonstrate convincingly that, in fact,
a = 0 exactly, so there is no point in trying to measure it with improved precision. These
slightly paradoxical conclusions arise because we take our prior seriously: if the prior on w
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Figure 3.6 This plot, taken from [54], illustrates the interplay between the S/N of a measurement
probing the existence of a new parameter (vertical axis) and the reciprocal fraction of the available
parameter space ruled out by null measurements (horizontal axis). From a Bayesian point of view,
improving the precision on parameter measurement sufficiently while still finding a null result
can eventually yield compelling odds that the parameter will never be detected. In the context of
dark energy, the initial prior range of interesting models was |w + 1| ∼ 1; thus measuring, say,
w = −1 ± 0.001 would yield odds of 1,000:1 that the vacuum energy is exactly a cosmological
constant.

ranged over −0.5 to −1.5, say, we are saying that the range −1.4 to −1.41 is just as likely
as −1 to −1.01. But if we make a measurement with 0.01 precision, we have ruled out 99%
of the possible options for a, so the original model starts to look like a poor bet.

With σ/� � 0.05, dark energy is currently far from the situation envisaged in the
preceding paragraph. But the next generation of experiments (Euclid; LSST) should push
the measuring precision on w to below 1%, and a null result at that stage will start to be
interesting from a Bayesian point of view. See, e.g., Laureijs [31].

Dark Energy vs Modified Gravity

A more radical approach to the problem of dark energy might be to wonder whether
we are going entirely in the wrong direction. The acceleration of the cosmic expansion
is surprising if our prejudice is that the Universe is dominated by the attractive gravita-
tional effects of matter with normal equations of state. Introducing a new substance with
w< − 1/3 allows the acceleration to be explained and also makes new w-dependent
predictions for the growth of density fluctuations. But both the expansion rate and the
growth of perturbations are dictated by gravity, so is it possible that dark energy simply
does not exist at all and that, in fact, Einstein’s relativistic theory of gravity needs to be
modified on cosmological scales?



96 John A. Peacock

This possibility has been explored energetically in recent cosmological research, and
comprehensive reviews are given by Clifton et al. [12] and Joyce et al. [29]. There is clearly
plenty of scope for building alternative models, since Einstein gravity is built on a simple
scalar Lagrangian containing the Ricci scalar and the cosmological constant: L = R+ 2�.
So it is only necessary to replace this with some other invariant, and we have a theory of
modified gravity that is fully consistent with all the requirements of general covariance
(thus, it is misleading to describe this area of research as ‘testing general relativity’). The
simplest such approach would be some non-linear function of R, and f (R) gravity is one
of the most widely explored theories of modified gravity. An alternative is to express the
modification in the language of fifth forces and postulate an additional scalar field that
contains explicit interaction terms with the gravitational and matter sectors (unlike the case
of a simple quintessence field).

The behaviour of such models on non-linear scales is complicated, and much attention
has been given to the linear regime, where we can concentrate on the behaviour of the
metric perturbation potentials � and �, which affect respectively the time and space parts
of the metric. In Einstein’s gravity, these potentials are both equal to the Newtonian grav-
itational potential, which satisfies Poisson’s equation: ∇2�/a2 = 4πGρ̄δ. Empirically,
modifications of gravity require us to explore a change with scale and with time of the ‘slip’
(η ≡ �/�) and the effective G on the right-hand side of Poisson’s equation. The former
aspect can only be probed via gravitational lensing, whereas the latter can be addressed
on 10–100 Mpc scales via the growth of clustering. A common approach is to assume, as
before, that the growth rate can be tied to the density parameter: d ln δ/d ln a = �γm(a). The
parameter γ is close to 0.55 for standard relativistic gravity but can differ by around 0.1
from this value in many non-standard models. Clearly this parameterisation is incomplete,
since it explicitly rejects the possibility of effects at early times (�m(a) → 1 as a → 0),
but the recent onset of cosmological acceleration is used as a common justification for
assuming that modifications of gravity only become significant at late times.

This reliance on the growth rate exposes a degeneracy, since we have seen that the
growth rate is also sensitive to the equation of state of dark energy; thus, a deviation
from �CDM growth could indicate modifications of gravity, or just that dark energy is
not a simple � [47]. The way to break this degeneracy is by including geometrical probes
that measure purely the expansion history (BAO and SNe) and, hence, measure the value
of w (while being agnostic about whether this is genuinely the equation of state of a
physical substance as opposed to being an effective value induced by the modification of
gravity). We are then free to probe the two linear parameters that probe the effect of any
modifications on the perturbations. A practical parameterisation of this is to express things
in terms of factors that modify the strength of non-relativistic forces and relativistic forces
(i.e., lensing) with respect to the values predicted in Einstein gravity:

� = [1 + μ(a,k)]�E

(� +�) = [1 +�(a,k)] (�E +�E),
(3.64)
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where the relation to effectiveG and slip are 1+μ = (G′/G)/η; 1+� = (G′/2G)(1+1/η)
(see, e.g., [14]). Current data are consistent with standard �CDM and exclude variations
in slip or effective G of larger than of order 10% [48].

3.6 The Anthropic Vacuum

Whether or not one finds these approaches to dark energy compelling, there remains one
big problem. All the models are constructed using Lagrangians with a particular zero level.
All quintessence potentials have the field rolling down towards V = 0, and k-essence
models lack a potential altogether. They are therefore subject to the classical dilemma of
the cosmological constant: adding a pure constant to the Lagrangian has no affect on field
dynamics but mimics a cosmological constant. With so many possible contributions to this
vacuum energy from the zero-point energies of different fields (if nothing else), it seems
contrived to force V (φ) to asymptote to zero without a reason.

To review why zero is a problematic value for the vacuum density, recall what we
mean by the vacuum: |0〉, or zero occupation number for each wave mode inside a given
box. But standard quantum mechanics assigns a zero-point energy of h̄ω/2 to each mode.
Integrating h̄ω/2c2 per mode over k-space (with a degeneracy of 2 for polarisation) gives
a total density of

ρvac = h̄

2π2c5

∫
ω3 dω, (3.65)

which diverges horribly. Is it possible that the upper limit of the integral should be finite?
This would be the case if space were a lattice, which is perhaps conceivable on some
unobservably small scale. However, even with a cut-off at the hardly microscopic level
of λ ∼ 1 mm, ρvac already exceeds the critical density of the Universe (∼ 10−26kg m−3).
We can express things in terms of an energy scale Ev by writing the dimensional scaling

ρv = h̄

c

(
Ev

h̄c

)4

, (3.66)

or simply ρv = E4
v in natural units. if we adopt the values �v = 0.7 and h = 0.7 for

the key cosmological parameters, then Ev = 2.4 meV is known to a tolerance of about
1%. What is a natural choice for Ev? A case can be made for Ev lying at the Planck scale,
since quantum gravity effects must destroy the flat-space assumptions of quantum field
theory. This would give a vacuum density 120 powers of 10 larger than observed. But this
is over-dramatising the problem: one should focus on Ev rather than E4

v . Also, the solution
may lurk at much smaller energies. In unbroken supersymmetry, there would be an exact
cancellation of the zero-point energy of bosonic and fermionic oscillators, and the scale of
supersymmetry breaking could be as low as 10 TeV. So the vacuum problem is perhaps that
the energy scale of the vacuum is ‘only’ 15 powers of 10 smaller than seems reasonable –
a lot fewer than 120 powers of 10 but still enough to cause a problem.
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The preceding argument is commonly given, but it should be taken with some caution.
It is really the same argument as used to deduce black-body radiation, with a slightly
different occupation number. Therefore, we would expect an equation of state P = ρc2/3:
w = +1/3, so this is not at all a candidate calculation for the energy density of the vacuum.
The problem is that the calculation is not relativistically invariant. Koksma and Prokopec
[30] claim that a proper calculation changes the E4

v dependence to M4 ln(Ev/M), where
M is the particle rest mass associated with the field. Since we know of particles up to over
M = 100 GeV, this makes little practical change to the magnitude of the vacuum problem.

In any case, it should be clear that this prediction is hard to make fixed, partly because
of our ignorance of the field content of the Universe, and because these zero-point con-
tributions can be supplemented by classical contributions from V (φ) of any number of
scalar fields. This problem has been sharpened by recent developments in string theory,
known under the heading of the landscape. For the present purpose, this can be regarded
as requiring the introduction of a large number of additional scalar fields, each with an
associated potential. If we assume that a vacuum state is defined by these fields sitting at
the minimum of their various potentials, then the effective cosmological constant can vary.
It has been estimated that there are about 10500 distinct minima, which divides the natural
vacuum density of E4

P into what is almost a continuous range from the point of view of
observations – so we can have almost any effective value of � we like.

This leads us in the direction of anthropic arguments, which are able to limit � to
some extent: if the Universe had become vacuum dominated at z > 1,000, gravitational
instability would have been impossible – so that galaxies, stars, and observers would not
have been possible [56]. Indeed, Weinberg made the astonishingly prescient prediction on
this basis that a non-zero vacuum density would be detected at �v of order unity, since
there was no reason for it to be much smaller.

Many Universes

At first sight, this argument seems quite appealing, but it rapidly leads us into deep waters.
How can we talk about changing �? It has the value that it has. We are implicitly invoking
an ensemble picture in which there are many universes with differing properties. This is
a big step (although exciting if this turns out to be the only way to explain the vacuum
level we see). In fact, the idea of an ensemble emerges inevitably from the framework of
inflationary cosmology, since the fluctuations in the scalar field can affect the progress of
inflation itself. We have used this idea to look at the changes in when inflation ends –
but fluctuations can affect the field at all stages of its evolution. They can be thought
of as adding a random-walk element to the classical rolling of the scalar field down the
trough defined by V (φ). In cases where φ is too close to the origin for inflation to persist
for sufficiently long, it is possible for the quantum fluctuations to push φ further out –
creating further inflation in a self-sustaining process. This is the concept of stochastic
eternal inflation due to Linde et al. [34]. Sufficiently far from the origin, the random-
walk effect of fluctuations becomes more marked and can overwhelm the classical downhill
rolling. This means that some regions of space can inflate for an indefinite time, and a single
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inflating universe automatically breaks up into different bubbles with their own histories.
Some random subset of these eventually random-walk close enough to the origin that the
classical end of inflation can occur, thus creating a set of ‘universes’ each of which can
potentially host observers.

With this as a starting point, the question now becomes whether we can arrange for the
different members of this ensemble to have different values of �. This is easily achieved.
Let there be some quintessence field with a very flat potential so that it is capable of
simulating � effectively. Quantum fluctuations during inflation can also displace this field
so that each member of the multiverse would have a different �.

The Distribution of �

We are now almost in a position to calculate a probability distribution for�, following [20].
First, we have to set some ground rules: what will vary and what will be held fixed? We
should try to change as little as possible, so we assume that all universes have the same
values for

(1) the baryon fraction fb = ρb/ρm
(2) the entropy per particle S = (T /2.725)3/�mh2

(3) the horizon-scale inhomogeneity δH � 10−5

It is far from clear that these minimal assumptions are correct. For example, in the string
theory landscape, there is no unique form for low-energy particle physics but, instead, a
large number of possibilities in which numbers such as the fine-structure constant, neutrino
masses, etc., are different. From the point of view of understanding �, we need there to
be at least 10100 possible states so that at least some have � smaller than the natural m4

p

density by a sufficient factor. The landscape hypothesis provides this variation in � but
does not support the idea that particle physics is otherwise invariant. Still, it makes sense
to start with the simplest forms of anthropic variation: if this can be ruled out, it might be
taken as evidence in favour of the fuller landscape picture.

We then take a Bayesian viewpoint to the distribution of �, given the existence of
observers:

P(� | Observer) ∝ Pprior(�)P (Observer | �), (3.67)

where we need both the prior distribution of� between different members of the ensemble
and how the chance of getting an observer is modified by �. The latter factor should be
proportional to the number of stars, which is generally taken to be proportional to the
fraction of the baryons that are incorporated into non-linear structures. We can estimate this
using the Press-Schechter apparatus to get the collapse fraction into systems of a galaxy-
scale mass. The exact definition of this is not very important since the CDM dimensionless
power spectrum is very flat on small scales; any mass at all close to 1012M� gives similar
answers.

The more difficult part is the prior distribution of �, and a common argument is to say
that it has a uniform distribution – which seems reasonable enough if we are to allow it to
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have either sign but know that we will be interested in practice in a very small range near
zero. This choice of prior is key to the results of the argument, and it is clear that different
choices could completely transform the answer. For example, suppose we took a uniform
prior in log(�) – or rather log(|�|), since � can be negative. This would multiply our flat
prior by 1/|�|, which gives a divergent spike at � = 0. This might have been attractive
back in the days when � = 0 matched observations, but it actually is not an acceptable
explanation. This particular prior says that there is something special about� = 0, whereas
our whole problem is that we know of no physical argument why this should be so. As we
saw earlier, the observed value of � is a mixture of the classical � and a physical vacuum
density:�eff = �bare +8πGρvac/c

2. The natural value for the second term is very large, so
somehow the classical term must cancel it to high precision, but there is no known reason
for this to happen precisely (and, indeed, it does not). Therefore, we have to suppose that
nothing violent happens to the prior as we cross from � being slightly positive to slightly
negative – which is the basis of the uniform prior (see [57] for a detailed discussion).

We therefore have the startling proposition of the anthropic model: the effective vacuum
density takes large ranges, and in almost all realisations, the values are comparable in
magnitude to the natural scale m4

P ; such models are stupendously inimical to life. This
is quantified by the simple model

dP (ρv) ∝ fc dρv, (3.68)

where fc is the collapse fraction into galaxy-scale objects. For large values of �, growth
ceases at high redshift, and fc is exponentially suppressed. But things are less clear-cut
if � < 0. Here, the Universe eventually recollapses, and the high density means that the
collapse fraction always tends to unity. So why do we not observe � < 0? The answer
is that we have to cut off the calculation at late stages of recollapse: once the Universe
becomes too hot, star formation may be affected, and in any case, there is little time for life
to form.

With this proviso, Figure 3.7 shows the posterior distribution of � conditional on the
existence of observers in the multiverse. Provided we consider recollapse only to a max-
imum temperature of about 10 K, the observed figure is matched well by the anthropic
prediction: with this cut-off, most observers will see a positive �, and something of order
10% of observers will see � as big as we do, or smaller.

So is the anthropic explanation the correct one? Many people find the hypothesis too
radical: why postulate an infinity of universes in order to explain a detail of one of them?
Certainly, if an alternative explanation for the ‘why now’ problem existed in the form of,
e.g., a naturally successful quintessence model, one might tend to prefer that. But so far,
there is no such alternative. The longer this situation persists, the more we will be forced
to accept that the Universe we see can only be understood by making proper allowance for
our role as observers.

Multiverse and Curvature

To some extent, curvature presents a parallel set of problems to the vacuum. There is a
scale problem, in the sense that natural initial conditions might be thought to have a total
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Figure 3.7 The collapse fraction as a function of the vacuum density, which is assumed to give
the relative weighting of different models. The dashed line for negative density corresponds to the
expanding phase only, whereas the solid lines for negative density include the recollapse phase, up to
maximum temperatures of 10 K, 20 K, and 30 K.

|�− 1| of order unity, which would lead to a universe dominated by curvature long before
today. There could also be a ‘why now’ problem if the present curvature was non-zero at the
level of |�− 1| ∼ 0.01, which cannot currently be excluded. It is commonly assumed that
inflation solves the curvature scale problem and also predicts that there is no ‘why now’
problem, but it is interesting to take an anthropic view of the problem. In particular, we
might wonder why anthropic arguments were not applied to curvature decades ago, when
many cosmologists were convinced that � = 0. At first sight, the issues are similar to �:
curvature is negligible at high redshift, so we might consider a uniform prior in small early
curvature values – as with �, appealing to the idea that zero curvature is not special. But
in modern models where ‘pocket’ universes are formed by tunnelling, the result is an open
universe, so priors on curvature might well have a discontinuity at zero (e.g., [23]). The
idea of a uniform prior for curvature is therefore less well founded than it is for �.

In any case, the magnitude of curvature changes the situation. Decades ago, open models
were seriously under consideration, and some would have argued for�k � 0.7. This amount
of curvature seriously suppresses structure formation, so an anthropic approach to explain-
ing the density parameter in matter-only models would have yielded sensible answers.
But today, we know that the Universe is flat to approximately |�k|< 0.01, and such a
small value is suspiciously far below any anthropic upper limit. Therefore, even without
the theory of inflation, we would not be attracted to anthropic explanations of the flatness
problem – even though they would have worked well until perhaps the 1980s. Similarly,
if we had no detection of �, a sufficiently strong upper limit would reject the anthropic
approach, leading us to require a physical mechanism that forces � = 0. Anthropic rea-
soning is thus testable and could point to new physics. But this is not the situation we face:
we have an actual detection of � rather than an ever-retreating upper limit, and no a priori
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theory predicts the observed number. An explanation in terms of anthropic selection from
an ensemble matches what we see, and so far, there is no credible alternative.

More Complicated Ensembles

Weinberg’s ensemble, in which all dimensionless parameters of physics are fixed at their
observed values and only � is allowed to vary, is simple enough that we have been able
to calculate its consequences in some detail. But there is no guarantee at all that variation
within the multiverse is this simple, and more complex models may spoil the provisional
consistency with the observed �. For example, Garriga and Vilenkin [24] propounded
the ‘Q catastrophe’, in which both the normalisation of density fluctuations (Q; often
also denoted δH) and � are allowed to vary. Clearly, the formation of structure is also
exponentially sensitive to Q, as well as to �. By adopting a specific inflation model, they
argued that the joint prior forQ and � was of the form

dP (�,Q) ∝ Q4dQd� (3.69)

and, hence, that all the anthropic weight should go to models withQ far above observation –
which could, in turn, tolerate much larger values of �. One’s response to this could be to
say either that multiverse reasoning is inapplicable or that this is not the correct prior for
Q (in which case we have arguably learned something about the physics of the initial
conditions). But this example does emphasise the critical importance of understanding the
prior, and this tends to be less easy to justify robustly than in the case of �.

3.7 Semi-anthropic Galaxy Formation

In Weinberg’s approach to the anthropic explanation of the vacuum density, a central
implicit question is the long-term efficiency of cosmic star formation. At least in simple
ensembles where the ratio between the baryon and dark matter densities is held fixed, a
reasonable candidate observer weighting is simply the fraction of baryons that become
converted into stars. This is slightly imprecise, since some baryons may participate in
star formation on multiple occasions – being recycled into new generations of stars via
the process of stellar mass loss. However, Weinberg’s argument hinges on an exponential
suppression of structure formation when � is increased in value, and in this picture, one
must expect that the majority of the baryon content of the Universe remains forever in a
diffuse state that asymptotes towards zero density. Thus, the key question is what fraction of
the baryons remain forever in this unprocessed form. This is a challenging question, given
the need to account for star formation at arbitrary times in the future. There is nothing a
priori special about the current time of 13.5 Gyr after the hot Big Bang phase; stars formed
and could happily have hosted observers at high redshift when t < 1 Gyr, and similarly,
it is possible to imagine a star being born a trillion years hence and hosting observers that
contemplate the Universe.

Admittedly, the operation of observational cosmology will be very different in such a
distant future, as the Universe becomes progressively closer to de Sitter space. There is an
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event horizon, beyond which causal contact with distant objects will be impossible, and the
co-moving size of this is set just by the distance-redshift integral for photons that set off at
the time corresponding to redshift z:

DEH =
∫ z

−1

c dz

H(z)
(3.70)

(since a → ∞ and a = 1/(1 + z), the far future corresponds to z = −1). At late times, H
asymptotes to H∞ ≡ H0/(1 − �m)1/2, so the horizon is DEH = (c/H0)(1 − �m)1/2/a –
which, of course, has a fixed proper value. Thus, we will never lose contact with bound
regions like the outer parts of the Milky Way; but galaxies in the Hubble flow will be lost
to us: For a = 2,500, the co-moving horizon shrinks to 1h−1 Mpc, excluding everything
except the Local Group, so one might question whether observational cosmology would
be possible then – i.e., is there an anthropic selection in time so that the very fact we
are able to ask questions about the Universe as a whole makes us special observers? This
is a serious question, but its importance is perhaps overstated. We are talking about the
extreme long-term future: a = 2,500 corresponds to t = 100h−1 Gyr; also, we will be
able to see objects beyond the event horizon since we are receiving light that was emitted
in the past, when the event horizon was larger in co-moving terms (this applies in the
present-day Universe, where every galaxy with z � 2.5 is already beyond the possibility
of causal contact). Quantitatively, the flux density from distant objects will be determined
by the luminosity distance, DL = (1 + z)D, where D is the co-moving distance and z
is the redshift of the observed radiation. The redshift requires a little care since the time
of observation is in the future, and so we should not use the normal formula in which
1 + z = 1/aemit; rather, we need to use the ratio of scale factors at emission and reception
so that 1 + z = (1 + zemit)/(1 + zobserver). Evaluating the integral for the co-moving
distance, the result asymptotes to D = (c/H∞)(zemit − zobserver), which itself tends to
(c/H∞)(1 + zemit). Thus, the observed redshift tends to 1 + z = aobserverD/(c/H∞), so
the Universe of distant galaxies currently at z ∼ 1 will have luminosity distances increased
by a factor of roughly the future value of a compared to the present – and so would be
about 10 million times fainter than at present at our illustrative a = 2,500. This would
be challenging for future observers but not impossible, so cosmologists could operate even
100 Gyr in the future if any stars were to form then. In any case, it would be more satisfying
if we could resolve the� question without resorting to sociological arguments, so the focus
should first be on the long-term fate of star formation.

3.7.1 Direct Calculations of the Future

There is thus a strong motivation to use the most detailed modern galaxy-formation
codes to estimate the long-term efficiency of star formation. The important message
of the Lilly-Madau diagram is that the total co-moving density of star formation rate
has declined since z = 1 approximately as 1/a(t)2, where a(t) is the cosmic scale factor
(e.g., [35]). The multiverse view is that this decline can be traced to the fact that we inhabit a
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�-dominated Universe in which the gravitationally driven assembly of typical galaxies is
largely suppressed by z = 0. This claim is to be tested by the detailed study of models for
cosmological star formation in a variety of unusual contexts (see Chapter 6).

Galaxy formation requires an ability to follow the history of gas within dark matter
halos, together with prescriptions for how cold gas turns into stars, followed by possible
feedback of energy from the stars and from central black holes. All this must be calculated
while following the hierarchical merging of dark matter halos. This can all be computed
within an explicit N -body simulation, but there are disadvantages: finite resolution will
mean that low-mass halos are not followed, and finite volume will limit the statistics of
halos – especially at high masses. The alternative is to generate merger trees of halos via
a rapid Monte Carlo algorithm: the semi-analytic approach. This is much faster than direct
simulation and evades the problems of mass resolution and limited statistics – but at the
price of losing the spatial relation between halos. Sudoh et al. [50] have applied such codes
to estimate future star formation, as shown in Figure 3.8. They claim that little future star
formation is permitted if � is raised; this is an interesting conclusion, but the calculations
are only taken ∼ 10 Gyr beyond the present.

In principle, a more reliable alternative will be to run direct numerical simulations of
‘counterfactual’ universes. It is interesting to note that changing the cosmological constant
at high redshift while keeping all other parameters fixed has the effect of transcribing
the evolution onto another member of the �CDM family so that all the cosmological
parameters will be different at the ‘present’ (i.e., when T = 2.725 K: we must keep this
choice because the transfer function depends on the ratio of matter and radiation densities).

Figure 3.8 The dependence of the total stellar density on �, according to the semi-analytic
calculations of Sudoh et al. [50].
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Suppose we scale � by a factor α at some early time when the scale factor is ai . The
subsequent evolution of the Hubble parameter is H 2 = H 2

i [(1 −αε)(ai/a)3 +αε)], where
ε = ρv/ρtot at ai . Note that we assume that spatial flatness is maintained, but provided ε
is small enough, then we can neglect the (1 − αε) factor. For a reference standard model,
H 2 = H 2

ref(�refa
−3 + 1 −�ref), which allows H 2

i a
3
i and H 2

i ε to be re-expressed in terms
of the reference parameters so that the evolution of H is

H 2 = H 2
ref[�refa

−3 + α(1 −�ref)] = H 2
0 [�ma

−3 + (1 −�m)], (3.71)

where the last expression is �CDM in terms of new parameters. Thus, the new H0 is
H0 = Href[�ref+α(1−�ref)]1/2, and the new density parameter must satisfy (1−1/�m) =
α(1 − 1/�ref). The new value of σ8 is more complicated. If the co-moving length R is
8h−1

ref Mpc, then σ(R) is unchanged at high redshift, but σ(R) is now altered at z = 0
because the change in �m will alter the linear growth factor. Finally, because R is no
longer 8h−1 Mpc in terms of the new h, we need to scale σ(R) by a factor that depends on
the shape of the power spectrum. The results of this exercise are shown in Figure 3.9.

The first simulation studies using this rescaling approach are now just starting to appear.
Salcido et al. [45] used the EAGLE galaxy formation code to compute star formation
∼ 10 Gyr into the future and also compare �CDM with an Einstein-de Sitter model in
which � is set to zero at high redshift. The results are shown in Figure 3.10, and they
are intriguing. The peak in the Lilly-Madau curve is still present independent of � (not
so surprising, as � is rather subdominant at the redshift of the peak); star formation may
decline into the future or revive, depending on the strength of feedback. These are early
days for such studies, which need to integrate for longer and consider a wider range of

Figure 3.9 This plot shows how the principal �CDM parameters respond to a scaling of the
cosmological constant while maintaining the high-redshift Universe otherwise unchanged and exactly
flat. The ‘present’ is always defined as CMB temperature 2.725 K. Solid points show the default
cosmology (�m,h,σ8) = (0.3,0.7,0.8), and how this scales as� is altered from the default value�0
(which corresponds to �v = 0.7).
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Figure 3.10 The cosmic star formation rate (Lilly-Madau diagram) as predicted from the EAGLE
consortium simulations of [45].

cosmologies and possible galaxy-formation physics, but this approach has the potential
to tell us much about whether observational selection really plays a part in dictating the
observed value of �.

3.8 Outlook

The work discussed earlier represents only the first steps in exploring the practical impact
of anthropic ideas in cosmology. Even the relatively simple case of Weinberg’s ensemble
still has much to consider: the calculations of star formation only proceed a modest distance
into the future (to roughly double the present age), and a comprehensive exploration of the
impact of different semi-analytic recipes remains to be performed.

More generally, the current calculations do not focus on the main issue, which is the
fate of the majority of the cosmic baryons. Only about 5% of the baryons are currently in
the form of stars (e.g., [22]), and the majority of the gas is perhaps not even within the
virial radii of galaxy-scale halos. Based on hydrodynamical simulations, about half of
the cosmic baryons are predicted to form a ‘Warm-Hot Intergalactic Medium’ (WHIM)
that largely resides in filaments, with T ∼ 106 K and over-densities of 10–30 (e.g., [15]).
This diffuse gas sits in a temperature regime where it is hard to detect directly, but recently,
two groups have seen this unvirialised gas via its impact on the CMB through Sunyaev-
Zeldovich comptonisation [17, 52] (see Figure 3.11). Since filaments constitute a quasi-
1D system, their internal density declines only as 1/a(t), and so the scope for this gas
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Figure 3.11 The average SZ effect of filaments, according to de Graaff et al. [17]. (a) the
symmetrically stacked Compton y-parameter maps for 1 million close pairs of CMASS galaxies;
(b) the modelled signal from the galaxy host halos only; and (c) the residual between the stacked data
and model. The magnitude of the stacked signal (y ∼ 10−8) is larger than can be accounted for by
gas in virialised galaxy halos, and represents the detection of the Warm-Hot Intergalactic Medium,
which is where perhaps half of all baryons currently reside.

to cool and accrete onto halos in the long term needs careful exploration. Gas within the
virial radius of a halo should eventually cool and form stars, provided it is not unbound by
feedback, so the fraction of the WHIM that can attach itself to the deeper potential wells is
the critical question in determining the asymptotic efficiency of cosmic start formation.

An interesting long-term outcome in multiverse cosmology will be the testing of spe-
cific ensembles. We do not know what physical parameters might vary, and this must be
investigated empirically. The simplest ensemble, with only a variation in vacuum energy,
has been claimed to predict the observed vacuum density. Once this calculation has been
repeated, including realistic galaxy-formation physics for the first time, the conclusion may
alter. In any case, more complex ensembles can then be investigated (see, e.g., [24, 25]),
varying combinations of the dimensionless parameters that are held constant in the sim-
plest ensemble ranging from explicitly cosmological quantities – such as the horizon-scale
amplitude δH ∼ 10−5, the photon-to–baryon ratio – and the baryon-to–dark matter ratio –
to parameters of particle physics (coupling constants and mass ratios). In the limit, we will
have the radical view is that of the string theory landscape, in which all of physics is free
to vary [51]; arguably, then, there are as many as 31 dimensionless parameters that could
be considered to vary [53]. But anthropic reasoning long predated the landscape [4, 10]
and may outlive it. The best approach to this question is arguably an experimental one:
experiment with different classes of ensemble and see which ones fail to match observation,
limiting the presently uncertain physics of variation within the multiverse.
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Cosmic Inflation: Trick or Treat?

j e r o m e m a r t i n

Abstract

Discovered almost 40 years ago, inflation has become the leading paradigm for the early
Universe. Originally invented to avoid the fine-tuning puzzles of the Standard Model of cos-
mology, the so-called hot Big Bang phase, inflation has always been the subject of intense
debates. In this chapter, we review the theoretical and observational status of inflation,
discuss the criticisms that have been expressed against it, and attempt to assess whether it
can be viewed as a successful solution to these issues.

4.1 Introduction

The theory of cosmic inflation was invented to solve fine-tuning problems [51, 71, 105,
106, 120–122]. Indeed, the pre-inflationary Standard Model of cosmology, the hot Big
Bang model [114, 138], suffers from a number of issues, all related to a fragile adjustment
of the initial conditions needed to make it work. For instance, it is well known that, in a cos-
mological model without inflation, when one looks at the last scattering surface (lss) where
the cosmic microwave background (CMB) radiation was emitted, one looks at different
causally disconnected patches of the Universe. But despite being causally disconnected,
they all share approximately the same temperature. Unless one artificially fine-tunes the
initial conditions, this fact is not understandable.

Soon after its advent, it was also realised that inflation provides a mechanism for struc-
ture formation [105, 106, 122]. In brief, the unavoidable vacuum quantum fluctuations
of the gravitational and inflaton fields are stretched over cosmological distances by the
inflationary cosmic expansion and are amplified by gravitational instability to eventually
give rise to the large-scale structures observed in our Universe and to the CMB temperature
anisotropy. This simple idea implies a series of remarkable predictions, among which are
that the cosmological perturbations spend time outside the Hubble radius, implying the
disappearance of the decaying mode and the presence of coherent oscillations in the CMB
power spectrum, and that the two-point correlation function of the inflationary fluctuations
should be close to scale invariance.
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In 1992, the CMB anisotropies were discovered by the COsmic Background Explorer
(COBE) satellite [21, 119], and this marked the beginning of a very important experimental
effort by the international community to measure with a high accuracy these anisotropies
in order to constrain the physics of the early Universe. This culminated recently with the
publication of the Planck data, which is a cosmic variance limited experiment [1–10].
The results of these 30 years of experimental work are consistent with the predictions of
single-field slow-roll inflation with a minimal kinetic term. It is worth emphasising that, in
some cases, what has been confirmed are predictions and not postdictions. In particular, the
prediction that the scalar spectral index should be close but not equal to 1 has been shown to
be true at more than five sigmas by the Planck experiment since ns = 0.9645 ± 0.0049 [4].

Despite these important successes and despite the fact that it has become the leading
paradigm for the early Universe, inflation has always been the subject of doubts and criti-
cisms [56, 57, 109, 110]. Soon after its invention, two main concerns were discussed: the
choice of the inflationary parameters (for instance, the coupling constant in the potential)
needed to match the level of CMB anisotropies, an issue related to model building and the
physical nature of the inflaton field, and the question of initial conditions at the beginning of
inflation. Another issue, the graceful exit or how to stop inflation, was also a hot topic but,
apparently, the theory of reheating (and then preheating) gave a satisfactory answer [12, 58,
130, 133]. But the two first issues remained debated. In addition, in conjunction with the
experimental efforts mentioned in the previous paragraph, various theoretical developments
also took place. In particular, it was realised that single-field slow-roll models are not
the only way to realise inflation, and, gradually, a large zoo of models started to appear
[14, 99, 124, 137, 140]. Importantly, some of these scenarios make different predictions
that single-field slow-roll inflation. For instance, the level of non-Gaussianity (NG), which
is negligible for single-field slow-roll models, can be significant for a model with a non-
minimal kinetic term.

Another major theoretical development is the claim that inflation can be eternal [52, 53,
70, 72, 73, 75, 129]. This is based on the fact that, due to quantum fluctuations, the various
causally disconnected patches that are produced during inflation can be such that the value
of the inflaton field is different from one patch to another. In particular, there can be patches
where, due to quantum fluctuations, the field climbs its potential instead of rolling it down,
as it does classically. And, as a consequence, this means that there are patches where
inflation never stops. This idea, coupled with the concept of a string landscape, leads to
the multiverse, an idea which is nowadays the subject of heated discussions.

The aims of this article are to review the present status of cosmic inflation and to assess
whether it can be considered as successful given the assumptions on which it rests and given
what it has achieved; for more technical details and discussion, see also Reference [34]. In
particular, we discuss whether, driven out through the door, fine-tuning problems do not
simply slip in again through the window under a different name. The chapter is organised
as follows. In Section 4.2, we briefly present the pre-inflationary Standard Model of cos-
mology, namely the hot Big Bang model. We first discuss its theoretical foundations in
Section 4.2.1 and then, in Section 4.2.2, how astrophysical observations can constrain
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it. In Section 4.3, we review the difficulties of this model – in particular, the horizon
problem (see Section 4.3.1) and the flatness problem (see Section 4.3.2). In Section 4.4,
we introduce inflation and discuss how it can solve the previously mentioned puzzles in
Section 4.4.1. In Section 4.4.2, we study how it can be realised in practice, and we show
that the presence of a scalar field dominating the energy budget of the Universe is a likely
possibility. In Section 4.4.3, we present the theory of inflationary cosmological pertur-
bations of quantum-mechanical origin, which is at the heart of the calculation of CMB
anisotropy. In Section 4.4.4, we briefly review the consequences for inflation of the recently
released Planck data. In Section 4.5, we discuss whether inflation is a fine-tuned scenario; in
particular, we address the question of whether the choices of the parameters needed in
order to have a satisfactory model of inflation is ‘natural’. Then, in Section 4.6, we discuss
the initial conditions at the beginning of inflation, first in a homogeneous and isotropic
situation in Section 4.6.1, then in an homogeneous but anisotropic situation in Section 4.6.2,
and, finally, in a general inhomogeneous situation in Section 4.6.3. We also consider the
question of initial conditions for the quantum perturbations, the so-called trans-Planckian
problem of inflation, in Section 4.6.4. In Section 4.7, we discuss various aspects of the
multiverse question. In Section 4.7.1, we explain stochastic inflation, and in Section 4.7.2,
we show how the backreaction is usually taken into account, leading to the concept of
an eternal inflating Universe. In Section 4.7.3, we point out that there are models where
inflation is not eternal, and in Section 4.7.4, we discuss the consequences of the possi-
ble existence of a multiverse for inflation itself. Finally, in Section 4.8, we present our
conclusions.

4.2 The Standard Model of Cosmology

4.2.1 Relativistic Cosmology

Inflation is supposed to be a solution to some issues of the Standard Model of cosmology.
In order to understand why this is the case, it clearly is necessary to start with a presentation
of the Standard Model itself. Only after having understood its main features will it be
possible to appreciate its unsatisfactory aspects.

The shape of the Universe is controlled by gravity, which – in general relativity – is
described by a metric tensor gμν (xκ). The action of the system is given by

S = − c4

16πGN

∫
d4x

√−g (R + 2�B

)+ Smatter. (4.1)

This so-called Einstein-Hilbert action involves two fundamental constants – the speed of
light, c = 3 × 108 m · s−1, and the Newton constant, GN = 6.67 × 10−11m3 · kg−1 · s−2,
as appropriate for a relativistic theory of the gravitational field. Quantum effects, which are
controlled by the Planck constant, h̄ = 1.05×10−34m2 ·kg ·s−1, are not needed to describe
the dynamics of background space-time. But, as we will see, they play a fundamental role
at the perturbative level. In the following, we will work in terms of natural units for which
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h̄ = c = 1. In this system of units, everything can be expressed in terms of energy – in
particular, mPl = 1/

√
GN, where mPl is known as the Planck mass, mPl ≡ √

h̄c/GN =
2.17 × 10−8kg. We will also use the reduced Planck mass, defined byMPl ≡ mPl/

√
8π =

2.43 × 1018GeV.
Let us now describe the quantities appearing in the action (4.1). g denotes the deter-

minant of the metric tensor gμν (xκ). R ≡ gμνRμν is the scalar curvature, where Rμν =
Rαμαν denotes the Ricci tensor, which is a contraction of the Riemann tensor. Finally, the
quantity �B is the bare cosmological constant. Clearly, R and, therefore, the cosmological
constant �B are of dimension 2, [R] = [�B] = 2 (writing the natural dimension of a
quantity within square brackets).

One can then obtain the equation of motion by varying the action (4.1) with respect to
the metric tensor. The result reads

Gμν +�Bgμν = Rμν − 1

2
Rgμν +�Bgμν = 1

M2
Pl

Tμν, (4.2)

where we have defined the stress-energy tensor, which describes the matter distribution
responsible for the curvature of space-time by the following expression:

Tμν ≡ − 2√−g
δSmatter

δgμν
. (4.3)

Conservation of energy amounts to ∇αT αμ= 0, where ∇α denotes the covariant deriva-
tive. Let us notice that energy conservation is compatible with the Bianchi identities,
∇αGαμ= 0, and that the metric tensor also has a vanishing covariant derivative. We see
that the Einstein equations are a priori very complicated since they are partial, second-order,
and non-linear differential equations for the metric tensor.

However, the cosmological principle states that the Universe is, on large scales, homo-
geneous and isotropic. Of course, this assumption is not obvious a priori and must be
carefully observationally checked. We refer the reader to Reference [80], where this point
is discussed in detail. Moreover, it must also be explained, rather than postulated, since
it would be a bit contrived to assume that the initial state was so peculiar. We will, of
course, come back to this question at length in the following sections since inflation is
a scenario where this question can, in principle, be addressed. As a consequence of the
cosmological principle, the metric tensor takes the Friedmann-Lemaı̂tre-Robertson-Walker
(FLRW) form, namely

ds2 = gμνdxμdxν = −dt2 + a2(t)γ
(3)
ij dxidxj, (4.4)

where t is the cosmic time and xi are space-like coordinates. The quantity γ (3)ij is the metric
of the three-dimensional space-like sections which have a constant scalar curvature. From
(4.4), we have the relation gij = a2(t)γ

(3)
ij . In polar coordinates, the three-dimensional

metric can be written as

γ
(3)
ij dxidxj =

[
dr2

1 − Kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
, (4.5)
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while in Cartesian coordinates, it reads

γ
(3)
ij = δij

[
1 + K

4

(
x2 + y2 + z2

)]−2

. (4.6)

The constant K describes the curvature of the space-like sections (since (3)R = 6K) and,
without loss of generality, can be chosen to be K = 0,±1. As is apparent from the previous
equations, there is only one unknown function left, the scale factor a(t), and, moreover, this
is a function of time only.

On the other hand, matter is assumed to be a collection of N perfect fluids and, as a
consequence, its stress-energy tensor is given by the following expression:

Tμν =
i=N∑
i=1

T (i)μν =
i=N∑
i=1

{[
ρi(t)+ pi(t)

]
uμuν + pi(t)gμν

}
, (4.7)

where ρi(t) and pi(t) are, respectively, the energy density and pressure of the fluid. The
vector uμ is the four-velocity and satisfies the relation uμuμ = −1. In terms of cosmic
time, this means that uμ = (1,0) and uμ = (−1,0). In accordance with the cosmological
principle, the quantities ρi(t) and pi(t) only depend on time. In order to close the system of
equations, the relation between energy density and pressure, namely the equation of state
pi = wi (ρi), must also be provided.

We are now in a position to explicitly state the Einstein equations. In the case of a FLRW
metric, one arrives at

ȧ2

a2
+ K
a2

= 1

3M2
Pl

N∑
i=1

ρi + �B

3
, (4.8)

−
(

2
ä

a
+ ȧ2

a2
+ K
a2

)
= 1

M2
Pl

N∑
i=1

pi −�B . (4.9)

We see that one has obtained an ordinary, non-linear, second-order differential equation for
the scale factor a(t). The fact that we now deal with ordinary differential equation is, of
course, due to the cosmological principle and to the fact that the only unknown function
in the metric, the scale factor, is a function of time only. Combining the two equations of
motion obtained in (4.8) and (4.9), one gets an equation which gives the acceleration of the
scale factor, namely

ä

a
= − 1

6M2
Pl

N∑
i=1

(ρi + 3pi)+ 1

3
�B . (4.10)

This equation is especially interesting because it provides the condition leading to an
accelerated expansion, namely

ρT + 3pT < 0, (4.11)
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where ρT = ∑N
i=1 ρi and pT = ∑N

i=1 pi denote the total energy density and pressure
(assuming a vanishing cosmological constant or including its contribution in an extra fluid,
as in (4.12) or (4.13)). Since the energy density of matter must be positive, we see that
(4.11) requires a negative pressure – i.e., some exotic form of matter.

Even if the Einstein equations have been considerably simplified by the use of the
cosmological principle, they remain difficult to solve analytically. However, it turns out
that if the curvature term vanishes and if there is only one fluid with a constant equation
of state, an exact solution to the Einstein equations is available. Of course, one can always
solve these equations numerically, but exact solutions will be interesting when we discuss
the puzzles of the hot Big Bang phase in the next sections. For this reason, we briefly present
them. Since the equation of state is supposed to be constant, the conservation equation,
which can be written as

ρ̇ + 3H(1 + w)ρ = 0, (4.12)

can be integrated exactly, and the solution reads

ρ(t) = ρf

(af

a

)3(1+w)
, (4.13)

where ρf and af are the energy density and the scale factor expressed at a fiducial time tf
that can be chosen arbitrarily. Then, one inserts (4.13) in the Friedmann equation, namely(

1

a

da

dt

)2

= ρf

3M2
Pl

(af

a

)3(1+w)
, (4.14)

whose solution can also be found and reads(
a

af

) 3(1+w)
2

= 3(1 + w)
2

ρ1/2
f√

3MPl
t + C. (4.15)

In this expression, C is an integration constant. Requiring that a = af when t = tf , one
finds that C = −3(1+w)ρ1/2

f
tf/(2

√
3MPl)+1. Finally, noticing thatHf = ρ1/2

f
/(

√
3MPl),

one arrives at

a(t) = af

[
3

2
(1 + w)Hf

(
t − tf

)+ 1

] 2
3(1+w)

. (4.16)

The corresponding Hubble parameter can be expressed asH(t) = Hf/[3(1+w)Hf

(
t − tf

)
/

2+1]. We notice that the scale factor vanishes when t = tBB with tBB = tf −2/[3(1+w)Hf ].
In some sense, ‘time begins’ at tBB , and it would be meaningless to consider times such that
t < tBB . This is the famous Big Bang point where the classical analysis breaks down. This
singularity is, of course, a serious problem for the hot Big Bang model. However, it is not
considered to be a problem for inflation simply because inflation does not aim to address it.
It could be solved if, prior to inflation, there is a bounce [19, 22] or if quantum gravitational
effects take over and somehow regularise the singularity, as done, for instance, in quantum
cosmology [54]. We see that the singularity problem can be treated separately and does not
involve the inflationary scenario.
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For future convenience, it is also interesting to rewrite the scale factor in terms of tBB , and

one obtains a(t) = af

[
3
2 (1 + w)Hf

(
t − tBB

)] 2
3(1+w)

and H(t) = 2/[3(1 + w) (t − tBB

)
].

If, in addition, one chooses tBB = 0 (which can always be done), then the scale factor takes
the form (with this parameterisation, Hf = 2/

[
3(1 + w)tf

]
)

a(t) = af

(
t

tf

) 2
3(1+w)

, (4.17)

that is to say, a power-law function. For radiation, w = 1/3, the scale factor behaves as
a(t) ∝ t1/2 and for pressureless matter, w = 0, one has a(t) ∝ t2/3. We also notice that
the previous expressions are ill-defined if w = −1. This is just because, in that case, we
have an exponential solution, namely a(t) = af exp

[
Hf

(
t − tf

)]
, known as the de Sitter

solution.
Putting aside the particular case w = −1, let us finally come back to the fact that, for

t = tBB , the scale factor vanishes. This is clearly not an artefact of the coordinate system
used, as is confirmed by a calculation of the scalar curvature

R = 4(1 − 3w)

3(1 + w)2
1(

t − tBB

)2 , (4.18)

which blows up when t → tBB . This confirms the t = tBB corresponds to a real singularity.1

Having introduced the theoretical tools needed in order to understand the hot Big Bang
model, we now discuss the parameters that describe the model and how their values can be
inferred from cosmological data.

4.2.2 The Real Universe

In order to describe our Universe, we need to know its energy budget, namely the contribu-
tion of the different forms of energy density present in the Universe. Our Universe is made
of photons with energy density ργ , neutrinos with energy density ρν , baryons with energy
density ρb, cold dark matter with energy density ρc, and dark energy with energy density
ρ� (here assumed to be a cosmological constant). Photons and neutrinos have an equation
of state 1/3, baryons and cold dark matter have a vanishing equation of state and, finally,

1 Notice also that, for radiation, R is identically zero. Of course, this does not mean that there is no singularity in a
radiation-dominated epoch. This can be shown by computing another invariant – for instance, RμνRμν , which reads

RμνR
μν = R00R

00 + RijRij = 9

(
ä

a

)2
+
(
ä

a
+ 2

ȧ2

a2

)2

gij g
ij

= 12

(
ä

a

)2
+ 12

ä

a

ȧ2

a2
+ 12

(
ȧ

a

)4

= 48(3w2 + 1)

27(1 + w)4
1(

t − tBB
)4 . (4.19)

Clearly, RμνRμν blows up as t → tBB even if w = 1/3.
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dark energy has an equation of state −1. We have, therefore, three types of fluids: radiation
ρr = ργ + ρν , matter ρm = ρb + ρcdm, and dark energy ρ� . Their relative importance
must be inferred from observations. In order to describe the results of those observations,
it is convenient to introduce new quantities. Let us first define the critical energy density;
in order to do so, we rewrite the Friedmann equation, Eq. (4.8), as

H 2 + K
a2

= 1

3M2
Pl

(
ρ� +

i=N∑
i=1

ρi

)
, (4.20)

with ρ� = �BM
2
Pl representing the vacuum energy density. We then define the critical

energy density by ρcri ≡ 3H 2M2
Pl, which is clearly a time-dependent quantity. Then, the

Friedmann equation can be rewritten as

1 + K
a2H 2

= ρT

ρcri

, (4.21)

where ρT = ρ�+∑i=N
i=1 ρi is the total energy density (compared to the definition following

Eq. (4.11), we have now explicitly included the contribution of the cosmological constant
in the total energy density). This means that if the spatial curvature vanishes, then ρT = ρcri ,
and if K > 0 (respectively, K < 0), then ρT > ρcri (respectively, ρT < ρcri ). One can also
express the weight of a given form of matter by the quantity �i defined by

�i ≡ ρi

ρcri

, (4.22)

and, as a consequence, the Friedmann equation can be rewritten as

1 + K
a2H 2

= �� +
i=N∑
i=1

�i . (4.23)

In particular, if the space-like sections are flat, then the sum of all the �is should be 1.
It follows from the previous considerations that the contributions of the different forms of
energy density in our Universe are expressed through �0

i = ρ0
i /ρ

0
cri

, namely the quantity
�i evaluated at present time. The critical energy density today is ρ0

cri
= 3H 2

0M
2
Pl with

H0 = 100h km · s−1 · Mpc−1, where h takes into account the uncertainty about H0 (recent
measurements indicate that h � 0.67 [3]). H0 clearly has the dimension of the inverse of
a time (it is of dimension 1), and the strange units are used because of the measurement
of H0 was historically performed using the Hubble diagram [16, 61, 112, 113]. In standard
units, one has H0 = 3.24h × 10−18s−1 while, in natural units, H0 = 2.12h × 10−42GeV.
Therefore, we see that, by high-energy standards, the current expansion of the Universe is
a low-energy phenomenon. Given the value of the reduced Planck mass, this implies that
ρ0

cri
� 8.0990h2 × 10−47GeV4.

Let us now describe the composition of our Universe. Data analysis is complicated, as
it depends on which data sets are included in the analysis. For the moment, let us say that
the Planck 2013 data plus the WMAP data on large-scale polarisation imply that [1, 5–7]
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�K = −0.058+0.046
−0.026. (4.24)

If, in addition, baryonic acoustic oscillations (BAO) data are included [1, 5–7], one
obtains �K = −0.004 ± 0.0036. The conclusion is that everything is consistent with a
vanishing spatial curvature. The photon energy density is given by π2T 4

0 /15, where T0 is
the CMB temperature which has been measured to be T0 = 2.7255 ± 0.00006 K [40]. This
implies that

�0
γ h

2 = 2.47159 × 10−5. (4.25)

In the same way, the neutrino energy density is fixed since ρν = Neff(7/8)(4/11)4/3ργ �
0.68132ργ , with Neff = 3. This leads to

�0
νh

2 = 1.68394 × 10−5. (4.26)

For the baryon and cold dark matter energy densities, Planck 2015 with PlanckTT, TE,
EE+lowP has obtained [2–4]

�0
bh

2 = 0.02225 ± 0.00016, �0
cdmh

2 = 0.1198 ± 0.0015. (4.27)

Finally, since the curvature is 0, one must have �0
b + �0

cdm + �0
γ + �0

ν + �0
�

= 1, from
which one deduces that

��h
2 = 0.306. (4.28)

The previous considerations describe the current state of our Universe. The model is a six-
parameter model: ρb, ρcdm, ρ� , the optical depth τ that controls re-ionisation [49], and
two parameters that describe the fluctuations, their amplitude AS , and spectral index ns

(we discuss these two parameters in more detail in Section 4.4.3). A priori, ργ and ρν are
also parameters, but they are usually considered as fully determined, given the precision
of the measurement of the CMB temperature and given the fact that we have only three
families of particles. It is impressive that with only six parameters, one can account for all
the astrophysical and cosmological data.

From those numbers, using the theoretical description presented in Section 4.2.1, one
can also infer the past history of the Universe. The scaling of the three different types
of energy densities are given by ργ ∝ 1/a4, ρm ∝ 1/a3, and ρ� , is a constant. As a
consequence, equality between radiation and matter occurs when(

ρ0
b + ρ0

cdm

)( a0

aeq

)3

=
(
ρ0
γ + ρ0

ν

)( a0

aeq

)4

; (4.29)

that is to say,

1 + zeq = h2�0
b + h2�0

cdm

h2�γ (1 + 0.68132)
� 3417, (4.30)



120 Jerome Martin

where z ≡ a0/a(t) − 1 is the redshift. In the same way, equality between pressureless
matter and vacuum energy occurs at

1 + zvac =
(

h2�0
�

h2�0
b + h2�0

cdm

)1/3

� 1.29. (4.31)

We thus have three different eras. In the early Universe, radiation dominated, then matter
with vanishing pressure took over, and finally, recently, the expansion of the Universe
became dominated by vacuum energy. During each of these epochs, it is a good approxi-
mation to assume that the equation of state is a constant, and, therefore, the solution of the
Einstein equations discussed previously – see (4.16) and (4.17) – will be very useful.

The model that we have just described – the hot Big Bang model, or, in its modern
incarnation, the �CDM model – was the Standard Model of cosmology before the 1980s
(of course, the discovery that �B �= 0 was, in fact, made later but here, we refer to the
description of the Universe at very high redshifts). It is a very successful model since, with
a small number of parameters, it can explain a large number of observations. Historically,
three observational pillars have been the expansion of the Universe, the Big Bang nucle-
osynthesis (BBN) [37], and the presence of the CMB, but nowadays, the model is supported
by a much larger set of observations. Nevertheless, as we are now going to explain, it
possesses some undesirable features. It is not that some predictions of this model are in
contradiction with the data; it is rather that the initial conditions that need to be postulated
in order for the hot Big Bang model to work appear to be very unusual. In the next section,
we turn to this problem.

4.3 Fine-Tuning Puzzles of the Standard Model

4.3.1 The Horizon Problem

The first puzzle that the hot Big Bang model faces is the horizon problem. As the name
indicates, it is has something to do with the causality of initial conditions. A first question
is when we should fix the initial conditions. A priori, this should be done at the earliest time
available in the model, namely at the Big Bang. But, in practice, can we see what happens
at the Big Bang? The answer is no because the Universe was opaque prior to recombina-
tion and became transparent only after ward. Recombination is the process by which free
electrons and protons combine to form hydrogen atoms [108]. Before recombination, light
could not propagate freely because the cross section between photons and free electrons
was very large (Compton scattering). However, the cross section of photons with hydrogen
atoms is much smaller, and this is the reason why the Universe became transparent after
recombination. Recombination is described by the reaction p + e− → H + γ , which is
itself controlled by the Saha equation [59]

1 −Xe

X2
e

= 2ζ(3)

π2
η

(
2πT

me

)3/2

eBH/T , (4.32)
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where Xe ≡ ne/nB with ne representing the free electron number density and nB rep-
resenting the baryon number density. me = 0.511 MeV is the mass of the electron, and
BH = mp +me −mH � 13.6 eV, mp being the proton mass and mH the hydrogen atom
mass, is the binding energy. Finally, η ≡ nB/nγ , where nγ is the photons number density. If
we require Xe � 0.1, namely 90% of the free electrons have formed hydrogen atoms, then
we find that Trec = 0.3 eV, which corresponds to zrec � 1,300. This is the furthest redshift
we can reach or observe by traditional means. We see that this event takes place after
equality between radiation and matter – see (4.30) – and during the matter-dominated era.

Let us now recall the definition of an horizon in cosmology. For this purpose, let us first
rewrite the metric in polar coordinates; see (4.5). Assuming no spatial curvature, namely
K = 0, one has

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
. (4.33)

The horizon problem comes from the fact that information propagates with a finite speed
given by the speed of light. A photon follows a null geodesic and satisfies ds2 = 0, which
implies that its radial co-moving coordinate can be written as

r(t) = rE −
∫ t

tE

dτ

a(τ)
, (4.34)

where rE is the co-moving radial coordinate of the source and tE is the emission time
(there is a minus sign in the equation because the ‘distance’ between the observer of the
photon is decreasing with time as it is heading towards the telescope). Then, at time t ,
the proper distance is defined to be dP(t) = a(t)r(t). If, without loss of generality, we
put the origin of the coordinates on Earth, then, at reception at time t = tR , one has, by
definition, dP(tR) = 0, which allows us to estimate the co-moving radial coordinate at

emission, namely rE = ∫ tR
tE

dτ/a(τ). Clearly, this means that the radial coordinate of the
furthest event one can, in principle, observe from Earth is obtained by taking the emission
time to be the Big Bang time, namely tE → 0. This defines the size of the horizon a time tR :

dH(tR) = a(tR)
∫ tR

0

dτ

a(τ)
. (4.35)

Clearly, the horizon increases as tR increases since there is more time for light to travel, and
hence, we have access to more and more remote regions of our Universe.

Then, since we have seen that recombination is the earliest event one can observe in
practice, let us calculate the angular size of the horizon at that time. From the metric, we
know that the apparent size D of a source is given by D2 = a2(tE)r

2
E

dθ2, which implies
that its angular size is given by δθ = D/[a(tE)rE]. As a consequence, the angular size of
the horizon at recombination (or on the lss) is given by

δθ =
[∫ t0

tlss

dτ

a(τ)

]−1 ∫ tlss

0

dτ

a(τ)
. (4.36)
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We see that one needs to know the behaviour of the scale factor a(t) in order to carry
out this calculation. Unfortunately, as was already discussed, an exact analytic solution
valid at any time is not available for the hot Big Bang model. Here, a piecewise approx-
imation, where one has several successive epochs with constant equation of state and a
scale factor in each era given by (4.16), will be useful. In accordance with the preceding
description of the hot Big Bang model, the first phase (phase I) is a phase dominated by
radiation for which the scale factor reads a(t) = ai (2Hit)

1/2; see (4.17). The quantities
ai and Hi are free parameters. At t = 0, the scale factor vanishes, and the scalar curva-
ture blows up; this corresponds to the Big Bang, as already discussed. The scale factor
behaves according to the previous equation for times such that 0 < t < ti. At t = ti,
we assume that the behaviour of a(t) changes, and for ti < t < tend, we assume it is
given by

a(t) = ai

[
3

2
(1 + w)Hi (t − ti)+ 1

] 2
3(1+w)

(4.37)

(phase II), in accordance with (4.16). Notice that, here, we are using (4.16) and not (4.17).
Usually, this difference is not important, but it is relevant when one considers a piecewise
solution for the scale factor. The ‘normalisation’ of time is chosen by using a(t) ∝ t1/2

during the initial radiation-dominated era, and, then, it can no longer be modified hence
the use of (4.16). The scale factor and its derivative (and, therefore, the Hubble parameter
H = ȧ/a) are continuous at the transition. The quantity w is a free parameter describing
the equation of state of matter during phase II. Phase II is not part of the hot Big Bang
model, and we introduce it just for future convenience. If we do not want to include it in our
description of the model, we just have to switch it off by taking ti = tend. Then, at t = tend,
phase II is over, and the radiation-dominated era starts again. This phase III has a scale
factor given by a(t) = aend [2Hend (t − tend)+ 1]1/2, for times such that tend < t < teq.
The quantity aend is the scale factor at t = tend, where a(t) and H(t) are continuous.
Again, if one switches off phase II, then there is, of course, no need to distinguish phase
I and phase III. At equality between radiation and matter, at time t = teq, the matter-
dominated era (phase IV) starts, and the scale factor can now be expressed as a(t) =
aeq

[
3
2Heq

(
t − teq

)+ 1
]2/3

. This form is valid for times such that teq < t < tde. Finally, at

t = tde, the phase dominated by the cosmological constant (phase V) starts, for which a(t)
is given by a(t) = adee

H0(t−tde). This form is valid until the present time, for tde < t < t0.
During this phase, the Hubble parameter is constant and given by its present value H0. We
stress again that if phase II is switched off, then the simple piecewise model exactly mimics
the behaviour of a(t) for the standard hot Big Bang phase.

One has then to calculate the two integrals appearing at the numerator and denominator
of (4.36). This can easily be done given that the behaviour of the piecewise scale factor
described previously is, during each phase, just a power-law. Straightforward manipulations
lead to the following expression for the angular size of the horizon:
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δθ =
(
aeq

a0

)1/2 (
a0

ade

)3/2
[

2
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alss

aeq

)1/2

− 1 + 1 − 3w

1 + 3w

aend
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− 1 − 3w

1 + 3w

aend
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) 1+3w
2
]

×
{
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(
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ade
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(
alss

a0

)1/2
]

+ a0

ade
− 1

}−1

. (4.38)

As already emphasised, we have introduced the phase dominated by the fluid with equation
of statew (i.e., the phase II) for future convenience, but in the Standard Model, this phase is
absent. So we have to switch it off by assuming ai = aend. It is also a good approximation
to take a0 � ade and alss � aeq. In that case, one obtains

δθ � 1

2
(1 + zlss)

−1/2 � 0.0138 (4.39)

(without the simplifying assumptions a0 � ade and alss � aeq, one easily checks that
δθ � 0.0153). This means that we should have about 40,000 patches on the celestial sphere
with completely different temperatures, meaning, a priori, with temperature fluctuations of
order one. This is clearly not the case, as revealed by the impressive isotropy of the CMB;
see Figure 4.1. On the Planck map, one indeed sees that the temperature anisotropy is
everywhere of the order 10−5.

Facing this situation, we have two options: either we say that the initial conditions
were the same (meaning they were fine-tuned at the 10−5 level) on super-causal scales
or we say that the expansion was, in the early Universe, different from that predicted
by the Standard Model. The first solution corresponds to a fine-tuning (moreover on super-
causal scales) while the other one corresponds to inflation. Therefore, in some sense, the
concept of fine-tuning is at the heart of inflation: inflation was invented to prevent its
appearance.

Figure 4.1 Map of the temperature anisotropy measured by the European Space Agency (ESA)
Planck satellite. The amplitude of the anisotropy is very small, of the order of ∼ 10−5, which means
that the Universe was, in fact, extremely homogeneous and isotropic on the last scattering surface.
Figure taken from Reference [5].
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4.3.2 The Flatness Problem

We have just discussed the horizon problem. But this problem is not the only one faced
by the hot Big Bang model, and we now turn to another one, namely the flatness
problem (also discussed in Reference [34]). Let us now consider (4.40) again. This
equations reads

1 + K
a2H 2

= �T, (4.40)

and we know that observations indicate that |�0
T

− 1| < 0.01. Clearly, this means that we
live in a spatially flat Universe to a very good approximation. In the context of the Standard
Model of cosmology, this is problematic. Indeed, using the Friedmann equation, one has,
in general,

�T(t) =
∑
i �

0
i

(
a0
a

)3(1+wi)∑
i �

0
i

(
a0
a

)3(1+wi) − (
�0

T
− 1

) (
a0
a

)2 . (4.41)

In the case of the hot Big Bang model, we have seen that the Universe is made of radiation
and pressureless matter. As a consequence, the preceding expression takes the form

�T(t) = �0
m

(
a0
a

)3 +�0
γ

(
a0
a

)4
�0

m

(
a0
a

)3 +�0
γ

(
a0
a

)4 − (
�0

T
− 1

) (
a0
a

)2 . (4.42)

Then, deep in the radiation era, this equation can be approximately expressed as

�T(t) � 1 + �0
T

− 1

�0
γ

(
a

a0

)2

+ · · · , (4.43)

which implies that

�0
T

− 1 � �0
γ

[
�T(z)− 1

]
(1 + z)2 � 2.47h−2 × 10−5 [�T(z)− 1

]
(1 + z)2. (4.44)

This equation clearly shows the problem. We know as an observational fact that
|�0

T
− 1| < 0.01. As we go backwards in time, the redshift z increases and, in order

to satisfy |�0
T

− 1| < 0.01, �T(z) − 1, must be less and less. If, for instance, we evaluate
�T(z) − 1 at BBN (z � 108), we obtain |�BBN

T
− 1| < 10−13O (< 0.01). Obviously, if

we increase z (specifically consider even earlier times), this fine-tuning problem becomes
even more severe. Going back all the way down to the Planck scale, one has, indeed,
|�Pl

T
− 1| < 10−57O (< 0.01). The question is then why was the Universe so flat in the

early stages of its evolution? In some sense, it is like balancing a pencil on its tip for a very
long time. Clearly, even a tiny fluctuation in the air (for instance) will cause the pencil to
fall (more formally, this would also require us to define a measure in order to assess, in a
quantitative way, how unlikely this situation is; see [34] for a full treatment of this issue).
We see that, again, the question has something to do with initial conditions.

The hot Big Bang model has other puzzles, such as the presence of dangerous relics
originating from phase transitions taking place in the early Universe. Rather than describing
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all these issues in an exhaustive way, we now turn to a possible solution, namely the theory
of cosmic inflation.

4.4 Inflation

4.4.1 Solving the Standard Model Puzzles

The main idea of inflation is that the puzzles we have described in the previous sections are
an indication that the dynamics of the Universe at very high redshifts was different from
that implied by the hot Big Bang model. According to this model, at very high energies, the
Universe was radiation dominated, with a scale factor a(t) ∝ t1/2. According to inflation,
this was not the case. Let us now see how it works in practice, and let us discuss how
inflation can solve the horizon problem. For this purpose, we switch on the phase dominated
by the fluid with equation of state w (phase II) and rewrite Eq. (4.38) as

δθ � 1

2
(1 + zlss)

−1/2
{

1 + 1 − 3w

1 + 3w

aend

alss

[
1 − e− 1

2NT (1+3w)
]}
, (4.45)

where we have introduced the total number of e-folds NT = ln (aend/ai) during phase II.
The presence of phase II introduces a correction to the standard result (4.39), namely the
second term in the preceding equation. If we want this correction to play a significant role,
then the exponential term must be non-negligible. And this is the case if

1 + 3w < 0, (4.46)

or, in other words, using Eq. (4.10), if the Universe was accelerating ä > 0. By definition, a
phase of accelerating expansion is called a phase of inflation. But having a phase of accel-
eration is not sufficient; we also need a phase of acceleration that lasts long enough. Indeed,
requiring δθ > 2π gives NT � ln (1 + zend) (here, we assume that w is not fine-tuned to
� −1/3). If we write the energy scale at the end of inflation as ρend � (10x)4 GeV4, then
the previous condition reduces to NT � 2.3x+ 29. For the GUT scale, namely x = 15, this
gives NT � 63. Therefore, one concludes that the horizon problem is solved if we have a
phase of inflation and, if this phase of inflation takes place at the GUT scale, it must last
more than ∼ 60 e-folds. If the energy scale is lower, then we need less e-folds.

Let us now see what would be the consequence for the flatness problem. In agreement
with what we have discussed before, this means that we postulate the presence of a new
fluid, with an a priori unknown equation of state w. This unknown fluid dominates the
energy density budget of the Universe if ti < t < tend, namely during phase II, and is
smoothly connected to the standard Big Bang phase which takes place for t > tend. As a
consequence, this implies that Eq. (4.44) can only be applied if z < zend since tend is the
earliest time where the standard evolution is valid. In that case, one has

�0
T

− 1 � �0
γ

[
�T(zend)− 1

]
(1 + zend)

2 � 2.47h−2 × 10−5 [�T(zend)− 1
]
(1 + zend)

2.

(4.47)
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Now our goal is to calculate �T(zend)− 1 in terms of �T(zini)− 1, namely in terms of the
initial conditions at the beginning of inflation. During inflation, one has

�T(t) � �ini
X

(
aini
a

)3(1+w)

�ini
X

(
aini
a

)3(1+w) − (
�ini

T
− 1

) (
aini
a

)2 , (4.48)

which implies that

�T(zend) � �ini
X

�ini
X

− (
�ini

T
− 1

) (
aini
aend

)−1−3w
. (4.49)

Clearly, the only way to solve the flatness problem is if inflation is such that �T(zend) � 1,
and the only way to achieve it is to have 1+3w < 0 – that is to say, the same condition than
the one derived to solve the horizon problem; see Eq. (4.46). In that situation, the previous
equation takes the form

�T(zend) � 1 − �T(zini)− 1

�ini
X

e−NT |1+3w|, (4.50)

and, as a consequence,

�0
T

− 1 � 2.47h−2 × 10−5�T(zini)− 1

�ini
X

e−NT |1+3w|(1 + zend)
2. (4.51)

Requiring |�0
T

− 1| < 0.01 without postulating that �T(zini) − 1 is very small, namely
without postulating any fine-tuning of the initial conditions at the beginning of inflation,
leads to NT � ln (1 + zend) – that is to say, again, the same condition as for the horizon
problem.

We conclude that inflation can solve the fine-tuning puzzles of the Big Bang model.
In addition, we mentioned before the existence of additional puzzles. One can show that
inflation can also fix them. The next question is then which type of matter can produce such
a phase.

4.4.2 Realising a Phase of Inflation

As explained in detail in the previous sections, a phase of accelerated expansion in the early
Universe solves the puzzles of the Standard Model of cosmology. Clearly, at very high
energies, the correct framework to describe matter is field theory, and its simplest version,
compatible with isotropy and homogeneity, is when a scalar field dominates the energy bud-
get of the Universe. This scalar field is called the ‘inflaton’. In that case, the energy density
and pressure are given by

ρ = φ̇2

2
+ V (φ), p = φ̇2

2
− V (φ). (4.52)

As a consequence, if the potential energy dominates over the kinetic energy, one obtains a
negative pressure and, hence, inflation. This can be achieved when the field moves slowly
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or, equivalently, when the potential is almost flat. From a field theory perspective, the micro-
physics of inflation should therefore be described by an effective field theory characterised
by a cut-off �. One usually assumes that the gravitational sector is described by general
relativity, which itself is viewed as an effective theory with a cut-off at the Planck scale,
then � < MPl. On the other hand, we will see that the CMB anisotropy data suggests
that inflation could have taken place at energies as high as the grand unified theory (GUT)
scale, and this suggests� > 1015GeV. Particle physics has been tested in accelerators only
up to scales of ∼ TeV, and this implies that our freedom in building models of inflation
will remain very important. A priori, without any further theoretical guidance, the effective
action can therefore be written as

S =
∫

d4x
√−g

[
M2

Pl�B + M2
Pl

2
R + aR2 + bRμνRμν + c

M2
Pl

R3 + · · ·

− 1

2

∑
i

gμν∂μφi∂νφi − V (φ1, · · · ,φn)+
∑
i

di
Oi
�ni−4

]
+ Sint(φ1, · · · ,φn,Aμ,�)+ · · · (4.53)

In the preceding equation, the first line represents the effective Lagrangian for gravity
(recall that �B is the cosmological constant). In practice, we will mainly work with the
Einstein-Hilbert term only. The second line represents the scalar field sector, and we have
postulated that, a priori, several scalar fields are present. The first two terms represent the
canonical Lagrangian while Oi represents a higher-order operator of dimension ni > 4,
the amplitude of which is determined by the coefficient di . Those corrections can modify
the potential but also the (standard) kinetic term [32]. The last term encodes the interaction
between the inflaton fields and the other fields present in nature – i.e., gauge fields Aμ and
fermions �. Those terms are especially important to describe how inflation ends and is
connected to the Standard Model of cosmology. Finally, the dots stand for the rest of the
terms such as kinetic terms of gauge bosons Aμ, fermions �, etc.

Given the complexity of this Lagrangian, it is clear that it is impossible to single out a
model of inflation from theoretical considerations only. However, as we will see, the CMB
data have given us precious information. In particular, from the absence of non-adiabatic
perturbations and from the fact that the CMB fluctuations are Gaussian, models with a
single field, a minimal kinetic term and a smooth potential are favoured. This does not mean
that more complicated scenarios are ruled out (as a matter of fact, they are not) but that,
for the moment, they are not needed to describe the data. It is important to emphasise that
we are driven to this class of models, which is clearly easier to investigate than the more
complicated models mentioned before, not because we want to simplify the analysis but
because this is what the CMB data suggest. Then, the Lagrangian (4.53) can be simplified to

L = −1

2
gμν∂μφ∂νφ − V (φ)+ Lint(φ,Aμ,�). (4.54)

During the accelerated phase, the interaction term is supposed to be subdominant and will
be neglected. Then, only one arbitrary function remains in the Lagrangian, the potential
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Figure 4.2 Example of a potential the Starobinsky potential (4.87) that can support inflation. Slow-
roll inflation occurs along the plateau where the potential is almost flat, and the reheating phase takes
place when the field oscillates around its minimum, here located at the origin.

V (φ). An example of a potential that supports inflation is given in Figure 4.2. From CMB
data, one can constrain this function, and this will be discussed in the following. As already
mentioned, the interaction term plays a crucial role in the process which ends inflation.
Indeed, it controls how the inflaton field decays into particles describing ordinary matter.
These decay products are then supposed to thermalise, and the radiation-dominated epoch
starts at a temperature which is known as the reheating temperature Trh. This quantity is an
important parameter of any inflationary model, and we will see that the CMB data can also
say something about its value.

Following the preceding considerations, during inflation itself, the interaction term is
neglected, and the evolution of the system is controlled by the Friedmann and Klein-Gordon
equations, namely

H 2 = 1

3M2
Pl

[
φ̇2

2
+ V (φ)

]
, (4.55)

φ̈ + 3Hφ̇ + Vφ = 0, (4.56)

where a subscript φ means a derivative with respect to the inflaton field. For an arbitrary
potential, this system of equations cannot be solved analytically. This means that we have
to use either numerical calculations or a perturbative method. In general, a perturbative
method is based on the presence of a small parameter in the problem and on an expansion of
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the relevant quantities in terms of this small parameter. In the case of inflation, there exists
such a small parameter which physically expresses the fact that the potential is flat. So it can
be chosen as the curvature of the potential or, equivalently, as the kinetic to potential energy
ratio or, given that inflation corresponds to an approximately constant Hubble parameter,
as the derivative of H . Therefore, we introduce the Hubble flow functions εn defined by
[67, 117]

εn+1 ≡ d ln |εn|
dN

, n ≥ 0, (4.57)

where ε0 ≡ Hini/H starts the hierarchy and N ≡ ln(a/aini) is the number of e-folds. From
the preceding expression, the first Hubble flow parameter can be written as

ε1 = − Ḣ

H 2
= 1 − ä

aH 2
= 3φ̇2

2

1

φ̇2/2 + V (φ), (4.58)

and, therefore, inflation (ä > 0) occurs if ε1 < 1. In terms of the Hubble flow parameters,
the Friedmann and Klein-Gordon equations take the form

H 2 = V

M2
Pl(3 − ε1)

, (4.59)

(
1 + ε2

6 − 2ε1

)
dφ

dN
= −M2

Pl
d lnV

dφ
. (4.60)

It is worth stressing the point that these expressions are exact. The condition ε1 < 1 during
∼ 60 e-folds is sufficient to solve the fine-tuning problems of the Standard Model, as
discussed earlier. But, if one wants to describe properly the CMB anisotropy (as in Eqs.
(4.61)(4.63), one needs εn � 1, which is called the slow-roll regime. In this situation, the
first three Hubble flow parameters can be approximated as [69]

ε1 � M2
Pl

2

(
Vφ

V

)2

, (4.61)

ε2 � 2M2
Pl

[(
Vφ

V

)2

− Vφφ

V

]
, (4.62)

ε2ε3 � 2M4
Pl

[
VφφφVφ

V 2
− 3

Vφφ

V

(
Vφ

V

)2

+ 2

(
Vφ

V

)4
]

. (4.63)

We see that the first Hubble flow parameter is also a measure of the steepness of the
potential and of its first derivative. The second Hubble flow parameter is a measure of
the second derivative of the potential, and so on. Therefore, if one can observationally
constrain the values of the Hubble flow parameters, we can say something about the shape
of the inflationary potential. The slow-roll approximation also allows us to simplify the
equations of motion and to analytically integrate the inflaton trajectory. Indeed, in this
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regime, Eqs. (4.55) and (4.56), which control the evolution of the system, can be approxi-
mated by H 2 � V/(3M2

Pl) and dφ/dN � −M2
Pld lnV/dφ, from which one obtains

N −Nini = − 1

M2
Pl

∫ φ

φini

V (χ)

Vχ(χ)
dχ, (4.64)

φini being the initial value of the inflaton. If this integral can be performed, one gets
N = N(φ), and if this last equation can be inverted, one has the trajectory, φ = φ(N).

Let us now describe the end of inflation. As already mentioned, this is the phase during
which the inflaton decays into the particles of the Standard Model. During that phase, the
interaction term is obviously crucial. This means that, in principle, in order to have a fair
description of that process, one must specify all the interaction terms of φ with the other
scalars, the gauge bosons, and the fermions present in the Universe together with the corre-
sponding coupling constants. Then, one must solve the (non-linear) equations of motion of
all these fields. Clearly, this is a very complicated task. However, in a cosmological context,
one can proceed in a simpler way. Indeed, the reheating phase can, in fact, be described by
two numbers: ρreh, the energy density at which the radiation-dominated era starts (and,
therefore, at which the reheating epochs stops) and the mean equation of state wreh. Of
course, one should also know at which energy density reheating starts, but this is not a new
parameter since it is determined by the condition ε1 = 1. In the following, we denote this
quantity ρend. Let us notice that the knowledge of ρreh is equivalent to the knowledge of the
reheating temperature since

ρreh = g∗
π2

30
T 4

reh, (4.65)

where g∗ encodes the number of relativistic degrees of freedom. On the other hand, the
mean equation of state controls the expansion rate of the Universe during reheating. Let
ρT = ∑

i ρi and pT = ∑
i pi be the total energy density and pressure, where the sum is

over all the species present during reheating. Let us define the ‘instantaneous’ equation of
state by wreh ≡ pT/ρT . Then the mean equation of state parameter, wreh, is given by

wreh ≡ 1

�N

∫ Nreh

Nend

wreh(n)dn, (4.66)

where�N ≡ Nreh −Nend is the total number of e-folds during reheating. The quantitywreh

allows us to determine the evolution of the total energy density since this quantity obeys

ρreh = ρend e
−3(1+wreh)�N, (4.67)

where we recall that ρend can be determined once the model of inflation is known.
In fact, as long as the CMB is concerned, only one parameter can be constrained, and

this parameter is a combination of ρreh and wreh. It is known as the reheating parameter and
is defined by

Rrad ≡
(
ρreh

ρend

)(1−3wreh)/(12+12wreh)

. (4.68)
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The justification for this definition can be found in References [84, 92, 93, 100, 101], but a
simple argument shows that it makes sense. It is clear that one cannot make the difference
between a model of instantaneous reheating where ρend = ρreh and a model where reheating
proceeds with a mean equation of state of radiation, namely wreh = 1/3, since, in this last
case, reheating cannot be distinguished from the subsequent radiation-dominated era. We
see in the preceding definition that, in both cases, the reheating parameters have the same
numerical value, Rrad = 1, which is consistent.

It may come as a surprise that a very complicated phenomenon such as reheating can be
described by only one number. But one should keep in mind that this is the case only if one
tries to constrain reheating from the CMB, or, to put it differently, the reheating parameter
is the only quantity that can be measured if one uses CMB data. Moreover, this is not a new
situation. This is indeed very similar to what happens for re-ionisation [49] for instance.
Clearly, re-ionisation is, from a particle physics point of view, a very complicated process.
But despite this complexity, as long as one considers CMB data only, it is described by one
quantity, the optical depth τ [49].

4.4.3 Inflationary Cosmological Perturbations

So far, we have described the background space-time during inflation. We now turn to
the perturbations [81–83, 107]. As is well known, this is a crucial part of the inflationary
theory since it gives a convincing explanation for the origin of the large-scale structures
observed in our Universe. However, in order to deal with this question, one must go beyond
homogeneity and isotropy, which is a complicated task. But we know that, in the early
Universe, the deviations from the cosmological principle were small, as revealed – for
instance – by the magnitude of the CMB anisotropy δT /T ∼ 10−5. During inflation, we
expect the fluctuations to be even smaller since they grow with time according to the
mechanism of gravitational collapse. This means that we can treat the inhomogeneities
perturbatively and, in fact, restrict ourselves to linear perturbations. Then, the idea is to
write the metric tensor as gμν(η,x) = gFLRW

μν (η) + δgμν(η,x) + · · · , where gFLRW
μν (η)

represents the metric tensor of the FLRW Universe (see Eq. (4.4)), and where δgμν(η,x)�
gFLRW
μν (η). Here, η is the conformal time, related to the cosmic time by dη = adt . In the same

way, the inflaton field is expanded as φ(η,x) = φFLRW(η)z+ δφ(η,x), with δφ(η,x) �
φFLRW(η). In fact, δgμν(η,x) can be expressed in terms of three types of perturbations –
scalar, vector, and tensor. In the context of inflation, only scalar and tensor are important.
Scalar perturbations are directly coupled to the perturbed scalar field δφ(η,x) while tensor
fluctuations represent gravity waves. The equations of motion of each type of fluctuations
are given by the perturbed Einstein equations, namely δGμν = δTμν . But we also need
to specify the initial conditions. A crucial assumption of inflation is that the source of
the perturbations are the unavoidable quantum vacuum fluctuations of the gravitational
and scalar fields. It is clear that this has drastic implications: it means that the large-scale
structures in the Universe are nothing but quantum fluctuations made classical and stretched
to cosmological scales.
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Let us now turn to a quantitative characterisation of the cosmological fluctuations.
The amplitude of scalar perturbations is described by the curvature perturbations [18, 94]
ζ(η,x) ≡ � + 2(H−1�′ + �)/(3 + 3w), with w = p/ρ the equation of state during
inflation and � the Bardeen potential [17] (not to be confused with the scalar field φ).
The Bardeen potential is the quantity that describes scalar perturbations as revealed by
writing explicitly the perturbed metric in longitudinal gauge, ds2 = a2(η)[−(1−2�)dη2 +
(1 − 2�)δijdxidxj ]. Since we deal with a linear theory, we can go to Fourier space
and follow the time evolution of the Fourier component ζk(η). Then, the properties
of the fluctuations are described by the power spectrum of scalar perturbations, which is
given by

Pζ (k) = k3

2π2
|ζk|2. (4.69)

The power spectrum depends on the model of inflation – that is to say, for the simple
class of models discussed here, on the potential V (φ). Unfortunately, there exists no exact
analytic calculation of Pζ (k) for an arbitrary V (φ). Therefore, one must rely on either
numerical calculations or perturbative methods. Here again, the slow-roll approximation
can be used, and it leads to the following result [67]

Pζ (k) = Pζ0(kP)

[
a
(S)
0 + a(S)1 ln

(
k

kP

)
+ a

(S)
2

2
ln2
(
k

kP

)
+ · · ·

]
, (4.70)

where kP is a pivot scale, and the overall amplitude can be written as

Pζ0 = H 2∗
8π2ε1∗M2

Pl

. (4.71)

In the preceding expression (and in the subsequent ones), a star means that the correspond-
ing quantity has been evaluated at the time at which the pivot scale crossed out the Hubble
radius during inflation, namely kP ∼ a∗H∗. The amplitude of the spectrum depends on
(the square of) the strength of the gravitational field during inflation, which is described
by the expansion rate H∗. It is also inversely proportional to the first derivative of the
potential through the presence of ε1∗ in the denominator. The main property of Pζ0 is
that it is does not depend on the wave number; in other words, it is scale independent.
This result represents one of the main successes of inflation since a scale-invariant power
spectrum was known for a long time to be in agreement with the observations. But there
is even more. We see that the scale-invariant piece of the power spectrum receives scale-
dependent logarithmic corrections, the amplitudes of which are controlled by the Hubble
flow parameters and given by [29–31, 33, 46, 67, 78, 102, 117],
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a
(S)
0 = 1 − 2 (C + 1) ε1∗ − Cε2∗ +

(
2C2 + 2C + π2

2
− 5

)
ε2

1∗

+
(
C2 − C + 7π2

12
− 7

)
ε1∗ε2∗ +

(
1

2
C2 + π2

8
− 1

)
ε2

2∗

+
(

−1

2
C2 + π2

24

)
ε2∗ε3∗ + · · · , (4.72)

a
(S)
1 = −2ε1∗ − ε2∗ + 2(2C + 1)ε2

1∗ + (2C − 1)ε1∗ε2∗ + Cε2
2∗ − Cε2∗ε3∗ + · · · ,

(4.73)

a
(S)
2 = 4ε2

1∗ + 2ε1∗ε2∗ + ε2
2∗ − ε2∗ε3∗ + · · · , (4.74)

a
(S)
3 = O(ε3

n∗), (4.75)

where C ≡ γE + ln 2 − 2 ≈ −0.7296, γE being the Euler constant. Since the coefficients
a
(S)
1 , a(S)2 etc. . . . are small (being proportional to the Hubble flow parameters), this means

that the inflationary power spectrum is not exactly scale invariant but, in fact, almost scale
invariant. This is the main prediction of inflation, and it was confirmed recently by the CMB
Planck data. We stress that this is a prediction since it was made before it was measured. In
terms of spectral index, being defined as the logarithmic derivative of lnPζ (k), one has

ns = 1 − 2ε1∗ − ε2∗, (4.76)

where ns = 1 corresponds to exact scale invariance. We see in this expression that the small
deviations from exact scale invariance carry information about the shape of the inflationary
potential since ε1 and ε2 respectively depend on the first and second derivative of V (φ).
Therefore, an accurate measurement of the power spectrum can provide information about
which version of inflation was realised in the early Universe.

We have also mentioned that gravitational waves are produced during inflation. The
corresponding treatment is very similar to the one we have just described. In particular, the
tensor power spectrum Ph can be written as

Ph(k) = Ph0(kP)

[
a
(T)
0 + a(T)1 ln

(
k

kP

)
+ a

(T)
2

2
ln2
(
k

kP

)
+ · · ·

]
, (4.77)

with a scale-invariant overall amplitude that can be expressed as

Ph0 = 2H 2∗
π2M2

Pl

. (4.78)

This time, and contrary to scalar perturbations, the amplitude only depends on the Hubble
parameter during inflation. This has a very important implication: if one can measure
the amplitude of tensor power spectrum, then one immediately determines the expansion
rate during inflation or, in other words, the energy scale of inflation. Unfortunately, the
inflationary gravitational waves have not yet been detected. As for scalar perturbations,
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the tensor power spectrum has small scale-dependent logarithmic corrections, which can
be written as [67]

a
(T)
0 = 1 − 2 (C + 1) ε1∗ +

(
2C2 + 2C + π2

2
− 5

)
ε2

1∗

+
(

−C2 − 2C + π2

12
− 2

)
ε1∗ε2∗ + · · · , (4.79)

a
(T)
1 = −2ε1∗ + 2(2C + 1)ε2

1∗ − 2(C + 1)ε1∗ε2∗ + · · · , (4.80)

a
(T)
2 = 4ε2

1∗ − 2ε1∗ε2∗ + · · · , (4.81)

a
(T)
3 = O(ε3

n∗), (4.82)

corresponding to tensor spectral index given by

nT = −2ε1, (4.83)
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Figure 4.3 Multipole moments vs angular scale obtained from the Planck 2015 data. The multipole
moments are defined from the following expression of the temperature fluctuation two-point
correlation function: 〈δT /T (e1)δT /T (e2)〉 = (4π)−1∑

�(2�+1)C�P�(cos θ), where θ is the angle
between the two directions e1 and e2. The multipole moments C� represent the power of the signal
at a given spatial frequency �. Notice that the quantity D� is defined by D� = �(�+ 1)C�/(2π). The
solid curve in the upper panel corresponds to the best fit in the parameter space of the�CDM model.
This result is consistent with the predictions of inflation, for instance, because of the presence of the
Doppler peaks. Figure taken from Reference [3].
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an exact scale invariance corresponding, with these conventions, to nT = 0 (and not one as
for the scalars). Since, by the definition of inflation, one has ε1 > 0, this means that nT < 0;
i.e., we say that inflation predicts a red power spectrum (that is to say, more power on large
scales) for gravitational waves. It is also interesting to measure the relative amplitude of the
tensors compared to the scalars, and this is done in terms of the parameter r , defined by

r ≡ Ph
Pζ

= 16ε1∗. (4.84)

Clearly, since ε1∗ � 1, tensors are subdominant, which is compatible with the fact that
they have not yet been detected [2, 98].

4.4.4 Constraints on Inflation

After having discussed the main features and predictions of the inflationary scenario, let us
discuss what the CMB Planck data imply for inflation. The Planck data are represented in
Figures 4.3, 4.4, and 4.5. As already mentioned, the most important discovery made by the

Figure 4.4 Multipole moments corresponding to the correlation between temperature and so-
called E-mode polarisation anisotropies (we refer the reader to Reference [60] for definitions of
polarised CMB quantities) obtained from Planck 2015. The solid curve in the top panel corresponds
to prediction of the �CDM model obtained from the best fit in Figure 4.3 (with temperature
measurements only). The lower panel shows the residual with respect to this best fit. Figure taken
from Reference [3].
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Figure 4.5 Same as in Figure 4.4 but for the E-mode power spectrum obtained from Planck 2015.
Figure taken from Reference [3].

Planck satellite is probably the measurement of the scalar spectral index, which is found
to be [4]

ns = 0.9645 ± 0.0049. (4.85)

It is a crucial result since this is the first time that a deviation from ns = 1 is measured
at a statistically significant level (say, more than 5σ ). It is clearly a strong point in favour
of inflation. As was discussed previously, inflation also predicts the presence of a back-
ground of gravitational waves, and, unfortunately, we do not yet have a detection of those
primordial gravity waves. This means that we only have an upper bound on the parameter r ,
namely

r � 0.07, (4.86)

obtained by combining the Planck data and the BICEP/Keck data [2]. As already
mentioned, the Planck data are also compatible with no non-Gaussianity [7] and no
non-adiabatic perturbations [4], which is compatible with the simplest model of inflation.

One can also use the Planck data to constrain the shape of the inflationary potential.
The performance of a model can be described by two numbers: the Bayesian evidence
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Figure 4.6 Inflationary models in the space
(
Nuc, lnBiREF

)
. Nnuc represents the number of uncon-

strained parameters of a given model while BiREF is the evidence of a given model i to evidence
of a reference model ratio. Each model is represented by a circle (the radius of which has no
meaning) with its acronym, taken from Reference [103], written inside. The four panels corresponds
to successive zooms towards the best region (indicated by the dashed rectangles). Figures taken from
Reference [103].

[131, 132], which characterises the ability of the model to fit the data in a simple way, and
the Bayesian complexity [63], which is related to the number of unconstrained parameters
(given a data set). A good model is a model that has a large Bayesian evidence and no
unconstrained parameters. In Figure 4.6, we have represented the Bayesian evidence and
complexity for nearly 200 models of inflation, given the Planck data [76, 77, 84, 92, 97–
99, 103]. Based on this analysis, it is found that potentials with a plateau are favoured by the
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Figure 4.7 Observational constraints on reheating from the Planck and BICEP2/KECK data. The
vertical axis a measure of how tight the constraint on the reheating parameter is while the horizontal
axis represents the Bayesian evidence, namely the performance of a model. Each circle represents a
model of inflation. The shadings give the best value of the reheating parameter.

data, the prototypical example being the Starobinsky model [121], for which the potential
is given by

V (φ) = M4
(

1 − e−
√

2/3φ/MPl
)2

. (4.87)

Reheating can also be constrained by means of the Planck data [84, 92, 93, 100, 101]; see
Figure 4.7. We have seen that the only piece of information about the end of inflation that
can be extracted from CMB data is the posterior distribution of the reheating parameter.
In order to quantify whether the constraint is tight or not, one then has to compare the
posterior to the prior. In technical terms, this is given by the Kullback-Leibler divergence,
DKL, between the prior and the posterior. In Figure 4.7, we have represented DKL as a
function of the Bayesian evidence for the nearly 200 models of inflation, already studied
in Figure 4.6. Each model is represented by a circle. The yellow band corresponds to the
one-sigma deviation around the mean value, which is given by 〈DKL〉 = 0.82 ± 0.13.
This corresponds to the information value of almost one bit, and, therefore, this confirms
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that reheating is constrained by CMB data. Of course, it is not straightforward to translate
these constraints into constraints on the reheating temperature unless one specifies wreh

explicitly, in which case the reheating parameter and the reheating temperature are in one-
to-one correspondence.

4.5 Is Inflation Fine-Tuned? Choosing the Free Parameters
of the Inflationary Potential

In this section, we turn to the question of whether inflation, which was invented in order to
solve fine-tuning problems, is itself fine-tuned. Let us discuss the first aspect of the problem,
namely how the parameters of the potential must be chosen and what their numerical values
are in order for the model to correctly account for the data. Let us start with a particular
model, namely Large Field Model (LFI, for Large Field Inflation) for which the potential
is given by

V (φ) = M4
(
φ

MPl

)p
, (4.88)

where M and p are two free parameters. Using Eq. (4.64), one can calculate the slow-roll
trajectory, and one finds

φ(N) =
√
φ2

ini − 2pM2
Pl(N −Nini). (4.89)

In order to calculate the spectral index and the scalar-to-tensor ratio, one must calculate the
Hubble flow parameters. Using the expressions of ε1 and ε2 in the slow-roll approximation,
one obtains (see Eqs. (4.61) and (4.62))

ε1 = p2M2
Pl

2φ2
, ε2 = 2pM2

Pl

φ2
. (4.90)

This immediately leads to the vacuum expectation value at which inflation ends since
the condition ε1 = 1 implies φend/MPl =p/

√
2. Then, we must evaluate the Hubble flow

parameters at the time that was previously denoted with a star, namely the time at which the
pivot scale crossed out the Hubble radius during inflation. Using the slow-roll trajectory, it
is easy to show that φ2∗/M2

Pl = p2/2 + 2p�N∗, where �N∗ = Nend − N∗ with Nend the
number of e-folds at the end of inflation and N∗ the number of e-folds at Hubble radius
exit. In terms of �N∗, the Hubble flow parameters read

ε1∗ = p

4(�N∗ + p/4), ε2∗ = 1

�N∗ + p/4 . (4.91)

As a consequence, one has

ns − 1 = − p + 2

2�N∗ + p/2, r = 4p

�N∗ + p/4 . (4.92)

The measurements of ns and the constraints on r can therefore allow us to put constraints
on the parameter p. But we also see that the spectral index and the tensor-to-scalar ratio
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do not depend on the other free parameter, namely M . This one is, in fact, fixed by the
amplitude of the fluctuations (i.e., the ‘COBE normalisation’) – that is to say, by the fact
that δT /T ∼ 10−5. Using Eq. (4.71) and the slow-roll approximation for the Friedmann
equation, one obtains

M4

M4
Pl

= 12π2p2
(
φ∗
MPl

)−p−2

Pζ0 = 12π2p2
(
p2

2
+ 2p�N∗

)−p/2−1

Pζ0. (4.93)

Knowing that the Planck 2015 data [2–4] indicate that

ln
(
1010Pζ0

) = 3.094 ± 0.0049, (4.94)

one finds that M/MPl � 1.3 × 10−3 for p = 2 and M/MPl � 3 × 10−4 for p = 4.
In order to obtain these numbers, we have assumed �N∗ = 55 and a comment is in order
at this stage. In principle, one should not assume a value for �N∗ since it is determined
once the reheating temperature and the mean equation of state parameter during reheating
have been chosen [84, 92, 93, 100, 101]. It can be quite dangerous to choose a ‘reasonable’
value blindly because, sometimes, it could imply a reheating energy density higher than the
energy density at the end of inflation, which is clearly meaningless. In fact, the dependence
in �N∗ of ns and r is precisely the reason why one can use the CMB to put constraints on
the reheating epoch, as explained in the previous sections. Indeed, �N∗ cannot take arbi-
trary values; otherwise, the corresponding spectral index and tensor-to-scalar ratio would be
incompatible with the data. But since�N∗ depends on Treh and wreh, this means that those
quantities cannot take arbitrary values as well, or, to put it differently, they are constrained
by the CMB data. Nevertheless, one can show that, for large-field inflation, �N∗ can vary
in a quite small range around the value �N∗ = 55, and this is the reason why we choose
this value. Considering another value would not affect our numerical estimate much and
would change nothing in the present discussion.

The estimates of the mass-scaleM derived earlier show that inflation in this model takes
place around the GUT scale. But let us consider the case p = 4 and write the potential
as V (φ) = λφ4, where λ is a dimensionless coupling constant. Clearly, λ = M4/M4

Pl,
which implies that λ ∼ 10−13. This very small value can be viewed as a fine-tuning, at
least if one adopts the standard lore that absence of fine-tuning means that dimensionless
quantities should be ‘naturally’ of order one. Let us now consider the case p = 2 and write
the corresponding potential as V (φ) = m2φ2/2, where m is the mass of the inflaton field.
In that case, one hasm = √

2(M/MPl)
2MPl, which leads tom ∼ 2×10−6MPl. Is this fine-

tuning? In absence of a rigorous definition of fine-tuning, this is hard to tell. But one can
notice that m/H ∼ √

6(2 + 4�N∗)−1/2 < 1, which may be viewed as unnatural. Indeed,
we expect the mass of the inflaton to be corrected by high-energy physics according to
m2 → m2 + gM2 ln(�/μ), where μ is the renormalisation scale, M > � the mass of
a heavy field, � the cut-off already discussed in Section 4.4.2, and g the coupling con-
stant. The presence of these corrections implies m/H ∼ 1, and keeping m/H < 1 may be
problematic. This problem is also known as the η-problem of inflation [20]. But this at least
illustrates the fact that the fine-tuning of the parameters (if any) can depend on the potential.
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For this reason, it is worth studying the situation for the Starobinsky potential (4.87) since
this is the favoured model.

The Starobinsky model can be derived from different assumptions. Historically, it
was derived by considering R2 corrections to the Einstein-Hilbert action. However, more
recently, it was realised that it can also be viewed as a scenario in which the inflaton field
is the Higgs field, this one being non-minimally coupled to gravity. In technical terms, the
action of the model reads

S = M2
Pl

2

∫
d4x

√−g
⎡⎣(1 + ξh2

)
R − gμν∂μh∂νh− 2M2

Pl
λ

4

(
h2 − v2

M2
Pl

)2
⎤⎦ , (4.95)

where v is the Higgs vacuum expectation value and λ the self-interacting coupling constant.
The quantity ξ is a dimensionless constant which describes the non-minimal coupling. If
one defines the field φ by d[φ/(

√
2MPl)]/dh =

√
1 + ξ(1 + 6ξ)h2/[

√
2(1 + ξh2)] then

this field has a standard Lagrangian with a potential which is exactly the potential of
Eq. (4.87), the scaleM being given by

M4 = M4
Plλ

4ξ2
. (4.96)

Then the COBE normalisation, which constrains the value ofM , leads to

ξ ∼ 46,000
√
λ, (4.97)

where λ = m2
H
/v2 with v � 175 GeV and mH � 125 GeV. We see that ξ � 1, which can

imply many issues as far as the consistency of the model is concerned.
The overall picture that emerges from this section is that it is difficult to say whether the

parameters of the inflationary potential are necessarily fine-tuned if one wants to account
for the data. It is clear that this question is model dependent. For some potentials, the fine-
tuning is present, but for others (and, in particular, those that fit the data well), it is unclear
whether this is the case. The situation of the Starobinsky model is particularly interesting.
The coupling between gravity and the Higgs is not small, or it is not perturbative, which
may lead to technical difficulties, but this strong coupling problem is not necessarily asso-
ciated with a fine-tuning problem. Here, we are just missing an objective definition of what
fine-tuning is.

In fact, one could argue that such a definition exists and is nothing but the Bayesian
evidence considered in Section 4.4.4. Technically, the Bayesian evidence is the integral of
the likelihood over prior space, but its meaning can easily be grasped intuitively. Let us
consider a model depending on, say, one free parameter. If, for all values of the parameter
in the prior range, one obtains a good fit, then the Bayesian evidence is ‘good’. This is,
for instance, the case of the model in Figure 4.8 (left panel). Different points correspond
to different values of the reheating temperature but all points are within the 1σ Planck
contour. On the contrary, if one needs to tune the value of the free parameter in order to
have a good fit, then the Bayesian evidence will be ‘bad’. This is the case for the model
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Figure 4.8 Predictions in the (ns,r) space for two inflationary models, Higgs inflation (left panel)
and Higgs inflation with quantum corrections (right panel); see Reference [99]. In both cases, a very
good fit can be found, but in the case of Higgs inflation with quantum corrections, this requires a
tuning of the free parameters characterising the model. As a consequence, the Bayesian evidence is
smaller than that of Higgs inflation, and given the data, the model is seen as ‘less good’.

in Figure 4.8 (right panel). In order to have a good compatibility with the data (i.e., points
within the 1σ contour), one needs to tune the parameter AI (which controls the amplitude
of the quantum corrections), and the Bayesian evidence is ‘bad’. In other words, the wasted
parameter space is penalised. Obviously, the smaller the range of AI leading to a good fit
(compared to the prior), the smaller the evidence. We conclude that the evidence is a good,
objective measure of fine-tuning. In this sense, the Starobinsky model is the best model
because it is the less fine-tuned one.

4.6 Inflationary Initial Conditions

4.6.1 Homogeneous Initial Conditions

Let us now discuss another type of possible fine-tuning, namely the initial conditions (see
also Reference [34] for a detailed discussion of this question). We have seen previously that
one of the main motivations for inflation is to avoid the fine-tuning of the initial conditions
that is needed in order for the Standard Model to work. If our solution to that issue were
also fine-tuned, then one could wonder whether something has been gained or not. In fact,
this problem has different facets. If we restrict ourselves to an homogeneous and isotropic
solution, then the only question is how we should choose φini and φ̇ini. The slow-roll
trajectory corresponds to φ̇ini � −Vφ(φini)/[3H(φini)], and, therefore, there could be the
worry that we have to tune the initial velocity to this value. However, this is not the case
because the slow-roll trajectory is an attractor as can be seen in Figure 4.9. It is true that,
for some V (φ), the corresponding basin of attraction is very small. This is, for instance,
the case for Small Field Inflation (SFI). However, on the contrary, it can be very large for
other models, such as Large Field Inflation (LFI) (let us also notice that the existence of
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Figure 4.9 Phase space for the Starobinsky model. The central solid curve represents the slow roll
trajectory while the grey lines correspond to exact trajectories with different initial conditions. It is
evident from the plot that the slow-roll trajectory is an attractor in phase space.

an attractor is immune to stochastic effects; see Reference [47]). The interesting point is
that it is also the case for the Starobinsky model and plateau potentials, namely the models
favoured by the data. In this sense, in this restricted framework, there is no fine-tuning of
the initial condition [56].

4.6.2 Anisotropic Initial Conditions

Obviously, however, the previous analysis is not entirely satisfactory. Indeed, we start from
a homogeneous and isotropic situation while inflation is precisely supposed to explain why
our Universe is homogeneous and isotropic. The analysis can be improved by considering
that, initially, the Universe is not isotropic (but still homogeneous) [13, 127, 134]. For this
purpose, let us consider the following metric (Bianchi I model):

ds2 = −dt2 + a2
i (t)

(
dxi
)2; (4.98)
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that is to say, we now have one scale factor for each space direction. This metric can also
be rewritten as ds2 = −dt2 + a2(t)γijdxidxj , with

a(t) ≡ [a1(t)a2(t)a3(t)]
1/3 , (4.99)

and

γij =
⎛⎝e2β1(t) 0 0

0 e2β2(t) 0
0 0 e2β3(t)

⎞⎠ , (4.100)

with
∑i=3
i=1 βi = 0. As usual, one can also introduce the conformal time η in terms of which

the metric can be expressed as ds2 = a2(η)
(−dη2 + γijdxidxj

)
. Then, the next step is to

introduce the shear σij , which is defined by (as usual, a prime denotes a derivative with
respect to conformal time)

σij = 1

2
γ ′
ij =

⎛⎝β ′
1e

2β1 0 0
0 β ′

2e
2β2 0

0 0 β ′
3e

2β3

⎞⎠ . (4.101)

Assuming that matter is described by a scalar field, it is then easy to write the Einstein
equations. They read

3
H2

a2
= ρ

M2
Pl

+ σ 2

2a2
= 1

M2
Pl

[
φ′2

2a2
+ V (φ)

]
+ σ 2

2a2
, (4.102)

− 1

a2

(
H2 + 2H′

)
= p

M2
Pl

+ σ 2

2a2
= 1

M2
Pl

[
φ′2

2a2
− V (φ)

]
+ σ 2

2a2
, (4.103)(

σ ij

)′ + 2Hσ ij = 0, (4.104)

where σ 2 = σij σ ij = ∑i=3
i=1 β

′2
i and σ ij = γ ikσkj ; that is to say,

σ ij =
⎛⎝β ′

1 0 0
0 β ′

2 0
0 0 β ′

3

⎞⎠ . (4.105)

The solution for the shear can easily be found, namely σ ij = Sij /a2, where Sij is a constant

tensor. This implies that σ 2 = S2/a4, where S2 = SijS
j
i . As a consequence, one sees that

the shear is, in fact, equivalent to a stiff fluid with an equation of statewσ ≡ pσ /ρσ = 1 and
ρσ = M2

PlS
2/(2a6). Therefore, if initially the shear dominates, ρσ � ρφ , the Universe will

expand as a ∝ t1/3, (see Eq. (4.17)) and the expansion will not be accelerated. However,
since ρσ ∝ a−6 while ρφ is approximately constant, the scalar field will eventually take
over, and inflation will start. We conclude that, even if the Universe is not initially isotropic,
it will become so in the presence of a scalar field whose energy density is dominated
by its potential. In this sense, it is legitimate to start from an isotropic situation, as was
done previously. This is clearly not a fine-tuning but, rather, an attractor of the dynamical
evolution.
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4.6.3 Inhomogeneous Initial Conditions

Despite the fact that taking into account the shear represents an improvement, this still
does not allow us to discuss the real issue. For that, we need a framework where the initial
state of the Universe is neither isotropic nor homogeneous. Technically, this is clearly very
complicated since we have to solve the Einstein equations in full generality. The only way
to study these questions exactly is therefore numerical relativity. However, some schemes of
approximation have also been developed, and we now discuss them. Of course, the pertur-
bative approach described before (see Section 4.4.3) is one way of taking into account the
inhomogeneities. However, by definition, these fluctuations must be small while we would
like to see whether inflation ‘homogenises’ the Universe even if it is strongly inhomoge-
neous initially. Another method is the so-called effective-density approximation [44, 45].
The idea is to study an inhomogeneous scalar field on a (isotropic and homogeneous)
FLRW background and to add to the Friedmann equation a term which describes the
backreaction of the field gradient on the geometry [44, 45]. In practice, one writes

φ(t,x) = φ0(t)+ �
[
δφ(t)eik·x/a(t)

]
(4.106)

and assumes that the corresponding Klein-Gordon equation can be split into two equations,
namely

φ̈0 + 3Hφ̇0 + Vφ(φ0) = 0, (4.107)

¨δφ + 3H ˙δφ + k2

a2
δφ = 0. (4.108)

The Friedmann equation is then written as

H 2 = 1

3M2
Pl

[
1

2
φ̇2

0 + V (φ0)+ 1

2
˙δφ2 + 1

2

k2

a2
δφ2

]
− K
a2

. (4.109)

The wave number k should be chosen such that the wavelength of the perturbations is
much smaller than the Hubble radius, namely 2πk/a � H−1. In the opposite limit, the
contribution of δφ should just be added to the background. The energy density of the

inhomogeneities ρδφ = ρ ˙δφ+ρ∇ , with ρ ˙δφ = ˙δφ2
/2 and ρ∇ = k2δφ2/(2a2) is supposed to

dominate initially (i.e., the Universe is inhomogeneous initially), ρδφ � ρφ0 . The question
is whether ρδφ can decrease (i.e., the Universe becomes homogeneous) such that, at some
point, ρφ0 takes over and inflation starts.

Let us now discuss the initial conditions. We take φ̇0 and φ0 such that, in absence
of inhomogeneities, slow-roll inflation starts. Initially, the Friedmann equations can be
written as

3a2H 2

k2
� 1

2

˙δφ2

M2
Pl

a2

k2
+ 1

2

δφ2

M2
Pl

, (4.110)

since ρδφ � ρφ0 . For simplicity, we have taken K = 0, but it is straightforward to include
the case where curvature is not vanishing. We have already mentioned that the effective den-
sity approximation is valid only if the wavelength of δφ is smaller than the Hubble radius.
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This means that the left-hand side of Eq. (4.110) must be small. This immediately implies

that δφ � MPl and ˙δφ2
/M2

Pl � k2/a2 initially. Then, the corresponding solution is easily
guessed: the field δφ oscillates and decays inversely proportional to the scale factor, namely

δφ(t) � �
[
δφini

a(t)
eikt/a(t)

]
. (4.111)

This immediately implies that ρδφ behaves as radiation, namely ρδφ ∝ 1/a4. In Figure
4.10, Eqs. (4.107), ((4.108) and (4.109) have been numerically integrated and the evolution

Figure 4.10 Evolution of the scalar field δφ(t) obtained by numerical integration of Eqs. (4.107),
(4.108) and (4.109). The potential is chosen to be the Starobinsky one (see Eq. (4.87)) with a scale
M = 0.001MPl which, roughly speaking, matches the CMB normalisation. The initial value of the
field φ0 is φ0 = 4MPl and φ̇0 = −Vφ(φ0)/[3V (φ0)] (which is the slow-roll velocity). In absence
of inhomogeneities, with these initial conditions, inflation would start and would lead to more than
60 e-folds. The initial value of δφ is taken to be 0.01MPl (and is therefore less than the Planck mass,
as required; see the main text) while the initial velocity of δφ(t) is given by ˙δφini = 0 (central,
densely oscillating curve) or ˙δφini = 9 × 10−5M2

Pl (wider oscillations). The scale k is chosen to be

k/aini = 10−3, and the curvature is given by K/a2
ini � 1.36×10−12. This implies the following Hub-

ble parameter:Hini/MPl � 3.69 × 10−5 and ρφ,ini � 3.33 × 10−13M4
Pl, ρδφ,ini � 1.36 × 10−9M4

Pl.

One easily checks that those initial conditions are such that H 2
inia

2
ini/k

2 � 1.36 × 10−3 < 1 and

ρφ,ini/ρδφ,ini � 2.44 × 10−4, namely the inhomogeneities largely dominate initially. Finally, the

solid line represents δφini/a = δφinie
−N for the initial conditions corresponding to the central line.

We see that the envelope of the numerical solution indeed follows Eq. (4.111).
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Figure 4.11 Evolution of the Hubble parameter and of the various energy densities obtained by
numerical integration of Eqs. (4.107), (4.108) and (4.109). The initial conditions are those that lead
to the wider curve in Figure 4.10. Initially, the Universe is strongly inhomogeneous since ρδφ � ρφ .

However, ρφ (black line) stays approximately constant while ρδφ ∝ a−4 (solid line with negative
slope). As a consequence, the expansion is first radiation-dominated and then (at N � 1 in the plot),
ρφ takes over and inflation starts. Therefore, at least in this example, large inhomogeneities initially
do not prevent the onset of inflation.

of δφ(t) is displayed and compared to Eq. (4.111)). We see that they match very well.
In Figure 4.11, we have represented the corresponding energy densities. While ρφ
remains constant, ρδφ behaves as radiation and, as a consequence, becomes very quickly
subdominant. As a consequence, after a few e-folds, the Universe becomes homogeneous
and inflation starts as can be seen on the evolution of the Hubble parameter (H/M Pl)
which, initially, decreases and then becomes almost constant.

The previous analysis seems to indicate that inflation does indeed homogenise the
Universe. However, one should be aware of its limitations. First obviously, there is the
question of the domain of validity of Eqs. (4.107), (4.108), and (4.109) and whether they
can really represent a strongly inhomogeneous situation. Clearly, if 2πk/a � H−1, this is
not the case, and one has to rely on other techniques. Basically, one has two possibilities:
either one obtains exact solutions [28, 111, 128], but they are very hard to find in the
inhomogeneous case, or one uses numerical simulations [11, 23, 42–45, 62, 64–66]. These
ones are also complicated to study since they involve full numerical relativity.
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Historically, the first numerical solutions [42–45] were done under the assumption that
space-time is spherically symmetric. This has the advantage to simplify the equations since
they only depend on time and r , the radial coordinate. Of course, in that case, one still has
to numerically solve partial differential equations. The metric considered in Reference [45]
reads

ds2 = −(N2 − R2β2)dt2 + 2R2βdχdt + R2(dχ2 + sin2 χd�2), (4.112)

where 0 ≤ χ ≤ π so that the space-like sections are closed. The lapse and shift functions
N and β depend on t and r as well as the ‘scale factor’ R. The matter content assumed
in Reference [45] is a scalar field φ, which is the inflaton, and another scalar field ψ
without potential and playing the role of radiation. Some important technical restrictions
are also postulated on the initial data. First, it is assumed that the total energy density is
constant. Given an initial inhomogeneous distribution for the inflaton φ(χ), this is achieved
by choosing the initial velocity of ψ to be such that the total energy density is constant.
Second, the initial momentum is taken to vanish. Based on the previous calculations (see
Eqs. (4.107), (4.108), and (4.109)), it is argued in Reference [45] that, at least for large-
field models, this does not restrict the significance of the results. Third, the integration is
performed for values of the inflaton self-coupling that are larger than the ones necessary
to CMB-normalise the model. Different initial configurations for the inflaton field are
considered. In particular, the Gaussian ansatz

φini(χ) = φ0 + δφ
[

1 − exp

(
− sin2 χ

�2

)]
(4.113)

was studied in details. This initial profile depends on three parameters: φ0, the value of the
field at the origin χ = 0; δφ, which can be viewed as the value of the field on the other side
of the Universe, φ(π/2) = φ0 + δφ(1 − e−1/�2)

; and�, which represents the width of the
Gaussian.

Let us now describe the results obtained for large-field inflation. If V (χ = 0) and V (χ =
π/2), or φ0 and δφ, are such that, in a homogeneous situation, inflation would start, then it
also starts in the present case. If, on the contrary, V (χ = 0) is such that inflation would start
in a homogeneous situation but not V (χ = π/2) (therefore, the gradients are important),
then Reference [45] has shown that the outcome crucially depends on the width �. More
precisely, the numerical simulations show that the crucial parameter is R�/H−1, which
has to be large enough in order for inflation to start. Moreover, the larger the gradient,
the shorter the duration of inflation. For small-field models, the sensitivity to the initial
conditions is even greater.

A few years later, the analysis was improved in a significant way, and, in particular, the
assumption of spherical symmetry was relaxed. Indeed, References [64–66] ran simulations
of strongly inhomogeneous inflation with a three-dimensional numerical relativity code.
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These simulations are such that the initial time slice has homogeneous total energy density,
which means that (∇φ)2/2 < 3M2

PlH
2 implying that

∇φ <
√

6
MPl

H−1
. (4.114)

Thus, inhomogeneities that have wavelengths smaller than the Hubble radius must have a
small amplitude or, to put it differently, large inhomogeneities must necessarily extend over
many Hubble patches. The simulations were carried out for a quartic large field model with
an initial configuration given by

φini(tini,x) = φ0

+ δφ
2∑

�,m,n=1

1

�mn
sin

(
2π�x

L
+ θx�

)
sin

(
2π�y

L
+ θym

)
sin

(
2π�z

L
+ θzn

)
,

(4.115)

where the θs are random phases. Two runs have been carried out in Reference [65], one
with L = H−1 and δφ = 0.0125mPl and one with L = 32H−1 and δφ = 0.4mPl. In both
cases, one has φ0 = 5mPl and H0 = 0.1mPl. The simulations show that, in the first case,
the inhomogeneities oscillate, and their amplitude is damped. At the end of the run, the
inflaton field is homogeneous. But, in the second case, they do not oscillate (initially, they
are larger than the Hubble radius) and are not damped.

In conclusion, it seems possible to start inflation with inhomogeneous initial conditions
and to homogenise the Universe. However, admittedly, the numerical simulations that have
been carried out so far all require some technical restrictions. The crucial question that
emerges from the simulations is the size of the initial homogeneous patch. There is also a
dependence on the model with large-field scenarios being the preferred class of scenarios.
As a consequence, the Starobinsky model is (again) among the good models. Let us also
notice that, even more recently, new simulations have been carried out; see References
[35, 39]. These new works bring new insights into an issue that will probably be studied
even more in the future.

A last comment is that we have good reasons to believe the quantum effects to play an
important role at the beginning of inflation. For this reason, studying the initial conditions
at only the classical level is maybe not sufficient, and even more elaborate investigations
may be needed to settle this question.

4.6.4 Initial Conditions for the Perturbations

So far, we have discussed the question of the fine-tuning of the initial conditions related
to the background. Obviously, there is the same question for the perturbations. We have
seen that they are chosen such that the perturbations are initially placed in the vacuum
state. However, if one traces back the scale of astrophysical interest today to the beginning
of inflation, one notices that they correspond to physical lengths smaller than the Planck
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length. Clearly, in this regime, the framework used to derive the predictions of inflation,
namely quantum field theory in curved space-time, is no longer valid. This is the so-called
trans-Planckian problem of inflation [24–27, 68, 85, 86]. Notice that, at the same time,
one has H � MPl, and, therefore, the concept of classical background is perfectly well
defined. So, a priori, one could argue that the initial conditions for the perturbations are
tuned in an artificial way. Then, the next question is what happens if one modifies those
initial conditions: does it destroy the inflationary predictions that are so successful? To
study the robustness of inflation, one can introduce ad hoc (since we do not know the
theory of quantum gravity which would control the behaviour of the perturbations on scales
smaller than the Planck length), but reasonable, modifications and then recompute the
power spectrum of the fluctuations and see whether we obtain a result which significantly
differs from the standard result. Various modifications have been proposed: a modification
of the dispersion relations of the perturbations [24, 86], a modification of the commutation
relations [55]. etc. However, the most general approach consists in parameterising the initial
conditions of the perturbations when they emerge from the quantum foam. Let MC be
the energy scale at which the regime of quantum field theory in curved space-time breaks
down (possibly the Planck scale or the string scale) [85]. A Fourier mode emerges from the
quantum foam when its physical wavelength equals the length-scale associated to the scale
MC , namely

λ(η) = 2π

k
a(η) = �C ≡ 2π

MC

. (4.116)

The initial time satisfying Eq. (4.116) is, contrary to what happens in the usual case, scale
dependent. As a consequence, the corresponding power spectrum at the end of inflation is
modified, and one can show that it now reads [85]

Pζ (k) = H 2

πε1m
2
Pl

{
1 − 2 (C + 1) ε1 − Cε2 − (2ε1 + ε2) ln

k
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− 2|x| H
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[
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k
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]
cos

[
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π (2ε1 + ε2) sin
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2MC

H

(
1 + ε1 + ε1 ln

k

a0MC

)
+ ϕ

]}
. (4.117)

This expression should be compared to Eq. (4.77). In this expression, the scale kP is the
pivot scale, and a0 is the scale factor evaluated at the time where kP/a0 = MC . Finally,
the initial quantum state of the perturbations at the new scale-dependent initial time is
characterised by a complex number x that can be written in polar form x ≡ |x|eiϕ , hence
defining |x| and ϕ. This power spectrum is represented in Figure 4.12.

Let us now comment on the power spectrum itself. The most obvious remark is that
it is modified by the presence of super-imposed oscillations. These oscillations modify
the CMB multipole moments as shown in Figure 4.13 and, therefore, have observational
consequences [89–91]. The amplitude of the oscillations is, roughly speaking, given by
|x|H/MC , while the frequency is proportional to (H/MC)

−1. On general grounds, we
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Figure 4.12 Trans-Planckian power spectra given by Eq. (4.117). The straight line corresponds to a
vanilla model with |x| = 0 and ε1 = 1/(2�N∗), ε2 = 1/�N∗ with �N∗ � 50, as predicted for the
m2φ2 inflationary model. The widely oscillating line corresponds to a model with the same values
for the slow-roll parameters andH/MC � 0.002, |x| � 50, φ = 3. Finally, the tightly oscillating line
represents a model with H/MC � 0.001, φ = 2, and the same values for the other parameters.
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Figure 4.13 Multipole moments in presence of super-imposed trans-Planckian oscillations. Figure
taken from Reference [90].

expect the ratioH/MC to be a small number. Indeed, we know from the CMB normalisation
that H � 10−5MPl. The scale MC is not known, but MC ∈ [

10−1MPl,10−3MPl
]

seems
reasonable, and this implies that, at most, H/MC ∼ 0.01. Therefore, unless the number |x|
is very large, the amplitude of the oscillations is small, and one could argue that inflation is
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robust against trans-Planckian corrections. In this sense, assuming the vacuum state initially
is not a fine-tuning. Of course, as already mentioned, |x| could be large and, in this case,
the modification sizable. However, the magnitude of |x| is limited by the backreaction
problem [26]. Physically, this is due to the fact that |x| �= 1 corresponds to an excited state.
But the particles present in this quantum state carry energy density, and this energy density
could prevent inflation to start. Therefore, it has to be smaller than the inflationary energy
density H 2M2

Pl. One can show that this leads to an upper bound on the amplitude of the
oscillations given by [89–91]

|x| H
MC

� 104

√
ε1

(
H

MC

)2

∼ 4.3 × 10−4√r
(
MPl

MC

)2

. (4.118)

This upper bound is not sufficient to exclude a possible detection of the oscillations in
the data (although for the moment nothing has been seen). And, in this sense, one could
argue that inflation is not robust to a change of the initial conditions. However, detecting
the oscillations would mean opening a window on physics beyond the quantum gravity
scale, clearly a fascinating possibility.

4.7 The Multiverse

4.7.1 Stochastic Inflation

The discussion of the previous section about the initial conditions misses a crucial ingredi-
ent, namely the fact that the background field is itself a quantum field. So far, the quantum
effects have been taken into account but only at the perturbative level. The question is now
whether they also play an important role in the evolution of the background. Classically, the
inflaton field evolves according to the Klein-Gordon equation and, in the slow-roll regime,
the typical variation of φ is then given by �φcl � −Vφ/(3H)�t . On the other hand, the
amplitude of the quantum kick received by φ during one e-fold is, roughly speaking, of
the order of the square root of the power spectrum of δφ, namely �φq � H/(2π). If
�φq � �φcl, then quantum effects are likely to be dominant. In fact, it is easy to see that

�φq

�φcl
= √

Pζ0, (4.119)

where Pζ0 is the amplitude of scalar perturbations; see Eq. (4.71). This equation just tells
us that, when the fluctuations are of order one, quantum effects are relevant even for the
background. Notice that if we want to see whether stochastic effects can modify the power
spectrum of curvature perturbations, then the criterion is different; see Reference [136].

If, for instance, we consider the model V (φ)=M4(φ/MPl)
p, then the condition

�φq > �φcl is equivalent to φ > φs with

φs

MPl
=
[
πp

√
6

(
MPl

M

)2
] 2

2+p
. (4.120)
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Then, if one uses the expression ofM given in Eq. (4.93), one arrives at

φs

MPl
= 2− 1

p+2

(
p2

2
+ 2p�N∗

)1/2 (
PPlanck
ζ0

)− 1
2+p
, (4.121)

where PPlanck
ζ0 is the amplitude of the spectrum measured by the Planck satellite; see

Eq. (4.94). Using this equation, namely ln
(
1010Pζ0

) = 3.094 ± 0.0049, one obtains
φs/MPl � 1,743 for the model p = 2 (one has taken �N∗ � 50). It is also interesting to
estimate the Hubble parameter for this value of the field, and one finds

H 2
s

M2
Pl

= 4π2p2
(
p2

2
+ 2p�N∗

)− p
2 −1

PPlanck
ζ0

(
φs

MPl

)p
. (4.122)

For p = 2, this gives Hs/MPl � 0.005, the important point being that we are in a regime
where the quantum behaviour of the inflaton field must be taken into account but where, at
the same time, the concept of a background space-time is still relevant since Hs/MPl � 1.

After these qualitative considerations, let us now try to establish more precisely the
equations controlling the evolution of the system in this regime [15, 47, 79, 87, 88, 95, 123,
126, 136]. Let us first consider a quantum scalar field in a rigid de Sitter background. This
means that the backreaction of the quantum scalar field is neglected or, in other words, that
it is a test field living in a de Sitter space-time characterised by H . In this space-time, H−1

is a preferred length and can be used to distinguish between short and long wavelengths.
Then one writes the scalar field according to [123, 126]:

φ̂(t,x) = φ̂IR(t,x)+
1

(2π)3/2

∫
dk (k − σaH)

[
μk(t)e

ik·xĉk + μ∗
k(t)e

−ik·xĉ†
k

]
,

(4.123)

where σ � 1 is a small constant. The quantity  is the Heaviside function, μk(t) is the
field mode function, and ĉk and ĉ†

k are the annihilation and creation operators satisfying the

standard commutation relations [ĉk,ĉ
†
p] = δ(k − p). One can then insert this expression

into the Klein-Gordon equation to find an equation of motion for the long-wavelength,
infrared part of the field. In fact, one can forget that the infrared field is a quantum field and
see it as a stochastic quantity obeying a Langevin equation given by [123, 126]

dφIR(N,x)

dN
= −Vφ(φIR)

3H 2
+ H

2π
ξ(N,x), (4.124)

where ξ(N) is a white noise due the ultraviolet part of the field with correlation function

〈ξ(N,x)ξ(N ′,x′)〉 = δ(N −N ′)j0
(
σaH |x − x′|) . (4.125)

Here, j0 is a spherical Bessel function of order zero. By solving the Langevin equation, one
can calculate the various correlation functions of the field and show that they coincide with
the quantum correlation functions (at least in some limit). This approach, called stochastic
inflation, is uncontroversial since it is a fact that the two types of correlation function
perfectly match. This is another facet of the general fact that, on super-Hubble scales, the
system can be described by a classical stochastic process [47, 96, 115].
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4.7.2 Eternal Inflation

The next step is to relax the assumption that space-time is rigid and to take into account the
backreaction of the scalar field on the geometry [52, 53, 70, 72, 73, 75, 129]. It is at this
point that speculations enter the game. Since we study a regime where the inflaton field is
viewed as a quantum field, it seems that there are two ways to take into account its backre-
action. Either we still view the background as classical, in which case we need an equation
such as Gμν = 〈T̂μν〉, or the background space-time becomes a quantum object, in which
case we need an equation similar to Ĝμν = T̂μν . In the case of eternal inflation, the second
choice is made. However, since quantum objects are represented by stochastic quantities,
we are, in fact, led to the concept of stochastic geometry (supposed to represent, in this
approach, the behaviour of a quantum geometry). In this view, the stochastic geometry is
sourced by the stochastic scalar field. Then comes the question of which equation controls
the behaviour of the stochastic geometry. Here, the claim is that it is

H 2 = 1

3M2
Pl

V
(
φIR

)
, (4.126)

namely the classical equation promoted to an equation for the stochastic quantities. Here,
we really deal with an equation of the type Ĝμν = T̂μν since φIR andH are now considered
as stochastic quantities. We also notice that, obviously, the preceding equation is only valid
in a cosmological context. Then, the Langevin equation (4.124) becomes

dφIR

dN
= − Vφ(φIR)

3H 2(φIR)
+ H(φIR)

2π
ξ(N). (4.127)

Clearly, this equation is not equivalent to Eq. (4.124) and can even be ambiguous because
of the second term, which is given by the product of two stochastic quantities. In Figure
4.14, we present a numerical integration of this equation for the potential V = m2φ2/2 and
for different initial conditions. It is easy to see that, in that case, the criterion (4.120) reads

φs/MPl �
√

4π
√

6(m/MPl)
−1. For numerical reasons, in order to clearly illustrate the

effect, we choose a value of m much larger than implied by the CMB normalisation,
namely m = 0.1MPl. This leads to φs � 55MPl. Then, we numerically integrate
Eq. (4.127) for four different initial conditions, φini = 10MPl, φini = 30MPl, φini =
50MPl, and φini = 70MPl. Using the trajectory (4.89) and the fact that φend/MPl = p/√2,
classically, these four initial conditions respectively correspond to a total of ∼ 24.5,
∼ 224.5, ∼ 624.5, and ∼ 1,124.5 e-folds of inflation. This plot confirms the previous
analysis. When φini < φs, we see that the stochastic trajectory (solid line) is very close to
the classical one (dashed line). On the contrary, when φini ∼ φs or φini > φs, the stochastic
effects dominate, the trajectory becomes ‘chaotic’ and strongly differs from its classical
counterpart. In particular, we notice that, due to stochastic effects, the value of the field can
increase. This means that the field can in fact climb its potential.

Let us now come back to Eq. (4.124), where we assume that the field is a test field living
in a de Sitter space-time. If V (φ) = m2φ2/2, then this equation can be easily solved (since
it is a linear equation), and the solution reads
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Figure 4.14 Trajectories (vacuum expectation value of the inflaton field vs number of e-folds) for
the inflationary model V (φ) = m2φ2/2 with m = 0.1MPl and different initial conditions, φini =
10MPl (lowest line), φini = 30MPl (second lowest line), φini = 50MPl (second-highest line), and
φini = 70MPl (top line). The solid lines represent the stochastic trajectories while the dashed ones
correspond to the classical, slow-roll ones.

φ(N,x) = φini(N,x)e
−m2(N−Nini)/(3H 2) + H

2π
e−m

2N/(3H 2)

∫ N

Nini

em
2n/(3H 2)ξ(n,x)dn.

(4.128)

Using this solution, one can then calculate the two-point correlation function at equal time.
One obtains〈
φ (N,x) φ

(
N,x′)〉 = [

φini(N,x)φini(N,x
′)− 3H 4

8π2m2
j0
(
σaH |x − x′|)] e− 2m2

3H2 (N−Nini)

+ 3H 4

8π2m2
j0
(
σaH |x − x′|) . (4.129)

This expression is made of two pieces. The first one, which depends on the initial condi-
tions, decays away exponentially for N � Nini and quickly becomes subdominant. The
second piece shows that the ultra-large-scale structure of the field is made of a collection of
nearly homogeneous patches of size H−1 (i.e., the Hubble radius) since this is the distance
at which the correlation function almost vanishes, thanks to the presence of the Bessel
function.
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Then, since inflation is an almost de Sitter expansion, what we have just described for
a test field should also be true when the backreaction is taken into account, namely for the
field the behaviour of which is controlled by Eq. (4.127).2 Moreover, each patch is isolated
from the others as can be seen by computing the event horizon in de Sitter space-time. Let
us indeed consider a specific observer that we choose, for convenience, to be at the origin.
Then, its future horizon (the part of the Universe with which the observer will be able to
communicate in the future) is given by

dE = a0

∫ ∞

t0

dt

a(t)
= a0

∫ ∞

t0

dt
1

a0
e−H(t−t0) = 1

H
, (4.132)

namely the size of the patch itself. In other words, each patch is causally disconnected from
the others and this forever. These patches are sometimes referred to as ‘pocket universes’.
The number of these patches is growing with time. Indeed, in one e-fold, the ‘size’ of the
Universe increases by a factor e3 ∼ 20 while the ‘size’ of a patch is constant (since the
Hubble parameter is constant). As a consequence, each e-fold, one patch gives rise to about
20 new patches, all causally disconnected.

There is also some kind of ergodic argument at play. When, see for instance Figure 4.14,
we have solved the Langevin equation, each realisation of the solution of this equation was
supposed to represent a specific configuration of the field over the entire homogeneous
and isotropic space-time. But one can also assume that one realisation corresponds to a
specific value of the field in a given patch. And, as a consequence, different realisations
correspond to different values of the field in different patches. So, in this interpretation,
different realisations do not represent an ensemble of different field configurations over
an homogeneous and isotropic space-time but, rather, the spatial distribution of φIR in
different patches.

The overall picture that emerges is that of an expanding space-time where the number
of independent patches is increasing, the value of the field in each pocket universe being
a stochastic quantity controlled by a Langevin equation. Since we have seen that, due to
stochastic effects, the field can climb up its potential, there are patches where inflation
will never stop. Obviously, the volume occupied by those patches, compared to the volume
occupied by the patches where inflation stops, is growing, which means that patches where
inflation is taking place occupy more and more regions of space-time. Globally, inflation
will never stop, meaning that there are always regions of space-time undergoing inflation.

2 For the potential V (φ) = m2φ2/2, this equation reads

dφIR
dN

+ 2M2
Pl

φIR
= m

2πMPl
√

6
φIR ξ . (4.130)

It is of the Bernouilli type and, therefore, can be solved explicitly. The solution takes the form

φ2
IR

= e
m

πMPl
√

6

∫N
Nini

ξdn
[
φ2

ini − 4M2
Pl

∫ N
Nini

e
− m

πMPl
√

6

∫ n
Nini

ξ(n̄)dn̄
dn

]
. (4.131)

However, it is so complicated that it is not very useful. In particular, it seems very difficult to calculate the two-point
correlation function of the field from this solution.
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Of course, there will also be regions of space-time where inflation stops – those where, by
chance, the stochastic fluctuations do not push the field upwards. This structure is referred
to as ‘eternal inflation’. The stochastic effects are said to produce a ‘multiverse’. Notice
that the word ‘multiverse’ is especially awkward in the present context since we do not
produce many universes as in the many-world interpretation of quantum mechanics, for
instance, but just a specific spatial configuration of our single Universe made of causally
independent regions, the pocket universes.

Before discussing the reliability and the implications of eternal inflation, we would like
to investigate the question of whether it is unavoidable or not.

4.7.3 Avoiding Self-Replication

Before discussing the robustness of eternal inflation, it is interesting to investigate whether
this is an unavoidable consequence of inflation. As recently discussed in Reference [104], it
turns out that this is not the case, and in this section, we closely follow this paper although
we also present some new results. We have seen that the quantum-to-classical variation of
the field is given by the amplitude of the scalar power spectrum; see Eq. (4.119). If there
exists a field value for which this amplitude

Pζ0(φ) = H 2(φ)

8πM2
Plε1(φ)

, (4.133)

is of order one, then this means that the quantum fluctuations of the field are of order one
and, if the considerations presented in the previous section are correct, the regime of eternal
inflation starts. Usually, this happens in the regime where ε1(φ) → 0 since ε1(φ) stands at
the denominator. But this also implies that, if the shape of the potential is such that there
is a field range such that ε1 � 1 (in order to have inflation!), but otherwise, ε1(φ) is large,
then there could be no regime where Pζ0 > 1. One example was found by V. Mukhanov in
Reference [104]. The corresponding potential is

V (φ) = M4
(

1 − e−φ/MPl
)2
(

1 − φ

φm

)−α
(4.134)

and is represented in Figure 4.15. It looks like the Starobinsky model corrected by a term
(1 − φ/φm)

−α . The model depends on three parameters: M , φm, and α. As usual, M is
fixed by the CMB normalisation.

The first two Hubble flow parameters are given by the following expressions

ε1 = 1

2

[
2
e−φ/MPl

1 − e−φ/MPl
+ αMPl

φm

(
1 − φ

φm

)−1
]2

, (4.135)

ε2 = 4ε1 + 4e−φ/MPl
(
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)−1 − 4e−2φ/MPl

(
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)−2

− 8α
MPl
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(
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)−1
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φm

)−1

− 2
(
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Pl

φ2
m

(
1 − φ

φm

)−2

. (4.136)
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Figure 4.15 Potential given by Eq. (4.134) for two values of α, α = 2 (black line) and α = 4
(grey line).

The first Hubble flow parameter is represented in Figure 4.16. We see that it has exactly the
expected shape. There is a field range where ε1 is very small, and this is the regime during
which inflation can take place. But, at large-field values, the corrections play a crucial role
and ε1 → +, ∞ as φ → φm. As a consequence, the amplitude of the fluctuations is killed
and we never reach the regime of eternal inflation.

Moreover, this model is in perfect agreement with the observations. In Figure 4.17, we
have compared the predictions of the model for α = 4 and different values of φm (indicated
by the colour bar) with the CMB data (the pink contours are the WMAP7 contours while the
blue contours are the Planck contours). Evidently, the model is in agreement with the data.

From the previous considerations, as we have already discussed, it should be obvious
that the quantum fluctuations are suppressed. In order to check this statement explicitly, we
have integrated the Langevin equation with the potential (4.134). The result is represented
in Figure 4.18 and should be compared to Figue 4.14. In both plots, the value ofM has been
artificially increased (compared to its CMB value) in order to see the effects more clearly. It
is evident that, for the model (4.134), and contrary to what happens for large-field models,
the quantum fluctuations never play an important role. All the stochastic trajectories always
remain close to the classical one.
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Figure 4.16 First Hubble flow parameter ε1(φ) given by Eq. (4.135) for two values of α, α = 2
(black line) and α = 4 (grey line).

Figure 4.17 Predictions in the (r,ns) space of the inflationary model with the potential given by
Eq. (4.134). The scale M is CMB normalised, α = 4, and log10 (φm/MPl) ∈ [2,3], its value being
indicated by the shade bar. Along the same interval, different points represent different reheating
temperatures. The inner contours are the 1σ and 2σ WMAP7 contours while the outer ones are the
1σ and 2σ Planck contours.
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Figure 4.18 The inflaton field vacuum expectation value vs number of e-folds, for the inflationary
model given by Eq. (4.134) with α = 4 and φm = 1,000, calculated by means of the Langevin
equation (solid lines) and classically (dashed lines) for different initial conditions, φini = 900 (top
lines), φini = 800 (central lines), and φini = 700 (bottom lines).

Therefore, in conclusion, the results presented here clearly indicate that eternal inflation
is not mandatory and that it is perfectly possible to build a model of inflation which is
in perfect agreement with the observations and where self-replication never starts. The
only limitation of the previous argument is, maybe, that generic corrections are not such
that self-replication is prevented. Indeed, one has Pζ ∼V 3/V 2

φ ∼ φn+2 if V (φ)∼φn. For
n > 0, Pζ always grows with φ. So if the corrections take the form of monomials, quantum
corrections will unavoidably become of order one.

4.7.4 Is the Multiverse a Threat for Inflation?

In this subsection, we discuss the implications of the previous considerations for inflation.
The main point is that inflation and eternal inflation should not be put on an equal footing.
The former provides a phenomenological description by means of an effective model of the
early Universe which seems to be in good agreement with the observations while the latter
is, at this stage, only a speculation, although definitely an interesting one. The arguments
that support this point of view are the following.

First, it is important to make the distinction between stochastic inflation and eternal
inflation. Stochastic inflation, which is not a model of inflation but a technique, appears
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to be very robust. It is just a fact that the quantum correlation functions in an expanding
space-time can be recovered by focusing on the long wavelength part of the field and by
requiring it to obey a Langevin equation. This has been proven beyond any doubt; see, for
instance, References [123, 126]. Stochastic inflation studies test quantum fields, neglecting
the backreaction of the quantum field on the geometry. In stochastic inflation, the geometry
of space-time is rigid and fixed once and for all.

On the contrary, in the case of eternal inflation, one takes into account the backreaction,
which means that the geometry (i.e., the gravitational field) must be viewed as a quantum
(or stochastic) quantity. Clearly, this is reminiscent of quantum gravity. And, of course, the
big question is which theory controls the quantum behaviour of the geometry. The theory
of eternal inflation just models the coupling between the quantum field and the quantum
geometry by Eq. (4.126), an equation that one could also write as

Ĥ 2 = 1

3M2
Pl

V
(
φ̂
)
, (4.137)

where we have used hats to stress that the geometry should now be viewed as a stochastic
quantity and that stochastic quantities are, in fact, quantum quantities. If this equation
happened to be too simplistic, then the previous considerations about eternal inflation could
be drastically modified.

Let us now discuss how the status of this equation in more detail (here, we follow the
treatment of References [135, 139]). Classically, one has Ḣ = −(ρ + p)/(2M2

Pl). If H
increases due to quantum jumps, then ρ + p < 0, which means that one must violate
the Null Energy Condition (NEC), namely Tμνnμnν < 0, where nμ is a null vector. For
a scalar field, Tμνnμnν = (nμ∂μφ)

2 ≥ 0, and classically, the NEC cannot be violated.
Quantum mechanically, a natural way to describe the backreaction of quantum matter
on the geometry is to write the semi-classical Einstein equations, Gμν = 〈T̂μν〉/M2

Pl.
In this approach, geometry remains classical. Then, let us introduce the NEC operator
Ô ≡ T̂μνn

μnν = P̂ †P̂ , where P̂ ≡ nμ∂μφ̂. Generically, 〈Ô〉 is infinite and must be
renormalised. If this is done in a quantum state compatible with the symmetry of de Sitter,
then, necessarily, 〈T̂ ren

μν 〉 ∝ gμν and, therefore, 〈Ôren〉 = 0, and the NEC cannot be violated.
This means that it is necessary to go beyond semi-classical gravity if we want to treat the
eternal inflation case and allow for a NEC. Notice that this is what is done in the theory of
cosmological perturbations where the equations controlling the evolution of the system are
δĜμν = δT̂μν/M

2
Pl – i.e., quantum operators on both sides. In the linear regime, this has

been shown to be consistent and is at the origin of the claim that inflation implies an almost
scale-invariant power spectrum for cosmological perturbations. Of course, eternal inflation
corresponds to a situation where the fluctuations are, by definition, not small. A possible
way out is to define a smeared NEC operator [135, 139],

Ôren
W ≡

∫
d4x

√−gW(x)Ôren, (4.138)
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whereW is a window function which has support on a finite part of space-time. This breaks
de Sitter invariance, and as a consequence, one can expect 〈Ôren

W 〉 �= 0. The next step would
be to calculate the effects of smeared fluctuations on the metric, a framework which does
not yet exist. Despite this, it is usually assumed that this effect will be described by an
equation similar to Eq. (4.137). As discussed in References [135, 139], Eq. (4.137) may
describe space-time before and after the fluctuation happens. But important issues are not
addressed, such as the behaviour of the metric through the fluctuation or what role the
conservation of energy plays in this picture. As written in Reference [50], ‘An assumption
is that eq. 28 is sufficient to describe this process’ (where ‘eq. 28’ refers to Eq. (4.137) and
where ‘this process’ refers to the response of quantum geometry to stochastic fluctuations
of the field), or ‘So the heuristic argument, while suggestive, is certainly not sufficient by
itself to show that eternal inflation can occur’. We conclude from these considerations that
Eq. (4.137), on which partially rests eternal inflation, is an assumption.

To be completely fair, we should also mention an argument which is in favour of
Eq. (4.137). Let us indeed consider the Langevin equation Eq. (4.127) again. It can also be
used to write a Fokker-Planck equation for P(φ,N), the probability density of having the
field φ at time N . It reads

∂

∂N
P (φ,N) = ∂

∂φ

[
Vφ

3H 2
P(φ,N)

]
+ ∂2

∂φ2

[
H 2

8π2
P(φ,N)

]
. (4.139)

This equation can also be written as ∂P/∂N = ∂J/∂φ, where J is a current and a stationary
solution Psta(φ) can be obtained by requiring that ∂Psta/∂N = 0. Then, the Fokker-Planck
equation reduces to a first-order differential equation whose solution can be expressed as

Psta(φ) ∝ exp

[
24π2M4

Pl

V (φ)

]
, (4.140)

where we have ignored the prefactor which does not play a crucial role in our discussion.
Notice that if one considers the Fokker-Planck backward equation, then one obtains the
same solution but, crucially, with an overall minus sign in the argument of the exponential,
namely

Psta(φ) ∝ exp

[
−24π2M4

Pl

V (φ)

]
. (4.141)

Both Eqs. (4.140) and (4.141) are relevant for stochastic inflation. Notice that their deriva-
tion implicitly assumes Eq. (4.137).

Let us now consider the same situation but from a quantum cosmology point of
view [36]. In quantum cosmology, both matter and geometry are supposed to be quantised
consistently. The corresponding canonical Hamiltonian can be expressed as

Hc = N
[
− π2

a

48M2
PlvKa

+ π2
φ

2vKa3
− 12M2

PlkvKa + vKa3V (φ)

]
, (4.142)
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where the quantity vK represents the volume of the space-like hypersurfaces and N is the
lapse function. Carrying out Dirac quantisation leads to the Wheeler–De Witt equation for
the wave function of the Universe, �(a,φ), namely

∂2

∂a2
�(a,φ)+ p

a

∂

∂a
�(a,φ)− 6

M2
Pl

a2

∂2

∂φ2
�(a,φ)

− 36v2
KM

4
Pla

2
0

(
a

a0

)2
[
K −

(
a

a0

)2
]
�(a,φ) = 0. (4.143)

Here, the number p takes into account the factor ordering ambiguity and a0 ≡ [
V (φ)/

(3M2
Pl)
]−1/2. If one neglects the second derivative with respect to φ and chooses p = −1,

then the solution can be found explicitly and reads

�(a,φ) = αAi [z(a)] + βBi [z(a)]

αAi [z(0)] + βBi [z(0)]
, (4.144)

where Ai and Bi are Airy functions of first and second kinds, respectively, and z(0) =
z(a = 0). The quantity z(a) is defined by z(a) ≡ (

3vKM2
Pla

2
0

)2/3 (K − a2/a2
0

)
, and α

and β are complex numbers to be determined by boundary conditions: the tunnelling wave
function corresponds to α = 1 and β = i and the no-boundary wave function to α = 1 and
β = 0. In order to make predictions, we need to calculate probabilities but the Wheeler–De
Witt equation does not lead to positive-definite probabilities. Indeed, the associated current,

j = i

2M2
Pl

ap
(
�∗∂a� −�∂a�∗) , (4.145)

is not positive-definite. However, in the limit a � �Pl , the Wentzel-Kramers-Brillouin
(WKB) approximation is valid and, in this regime, the probabilities are positive. For the
tunnelling wave function, this gives

j � 2

πa2
0M

2
Pl|D|2

(
3vKM

2
Pla

2
0

)2/3 = 6vKe
−12vKM4

Pl/V (φ). (4.146)

For the no-boundary wave function, one obtains the same result except that there is no
minus in the argument of the exponential. If, in addition, the space-like section are taken to
be spheres, then vK = 2π2, and the prediction of quantum cosmology reads

j ∝ exp

[
±24π2M2

Pl

V (φ)

]
, (4.147)

which is nothing but Eqs. (4.140) and (4.141). We saw that the use of an equation
Ĥ 2 =V (φ̂) is questionable. The previous argument, however, seems to indicate that this
could be reasonable. Indeed, as already mentioned, the stationary distribution of the Fokker-
Planck equation was obtained by (implicitly) using this equation. The fact that the
Wheeler–De Witt equation, which is an equation where the quantum effects of the
geometry are taken into account, leads to results consistent with those obtained from
the stochastic formalism retrospectively justifies the use of an equation Ĥ 2 =V (φ̂). Of
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course, the argument is not completely conclusive since the Wheeler–De Witt equation and
the minisuperspace approximation can also be questioned. We conclude that the tools used
in order to model backreaction in eternal inflation are, at least for the moment, assumptions.
These assumptions may be very reasonable (as seems to be suggested by this argument),
but they remain assumptions.

Let us now discuss a second argument. As is clearly illustrated on the no-self-
reproduction potential of Section 4.7.3, eternal inflation also rests on an extrapolation
of the potential V (φ) beyond the observable window. By observing the CMB anisotropy,
we probe only a limited part of V (φ) corresponding to about seven e-folds. Eternal inflation
depends on another region of the potential which is not directly observed. Moreover, this
part of the potential is usually relevant at energies higher than the energy scale of inflation
(there are exceptions – for instance, hybrid inflation; see Reference [95]) where higher-
order operators can play a crucial role. For instance, our calculation of eternal inflation in
large-field models rests on the assumption that, even outside the observational window,
the potential is given by V (φ) ∝ φp. But nobody knows whether this is true since this is
not directly observable. The high-energy corrections could maybe produce terms leading
to the Mukhanov’s potential of Section 4.7.3, in which case eternal inflation would be
irrelevant. Notice that, even if one considers a plateau model, these corrections could play
an important role. Indeed, it is true that, a priori, corrections in V/M4

Pl are, by construction,
always negligible for plateau models. But the potential itself will generically receive
corrections. For instance, if one adds a term ∝ R3 to the Starobinsky model, then the
effective potential grows with φ. As a consequence, when the field is pushed upwards by
the stochastic fluctuations, these corrections will be important.

Third, eternal inflation suffers from a kind of ‘trans-Planckian problem’. Indeed, as
discussed before, one expects the field to be pushed upwards by stochastic fluctuations.
Generically, this means that the field will penetrate the region where V (φ) � M4

Pl. In
this regime, even the notion of a background space-time is lost. Indeed, in Reference [75],
this problem was already encountered and the potential made steeper by hand in order to
prevent the field to penetrate the trans-Planckian region. However, what really happens in
this regime remains a matter of debate.

Fourth, the multiverse is, in fact, a combination of eternal inflation with the string
landscape. A priori, string theory only depends on one parameter, the string tension. All the
other parameters of high-energy physics, the masses of the particles, the coupling constant,
etc., should be the vacuum expectation values of some fields appearing in string theory.
Since, according to eternal inflation, the fields stochastically fluctuate from patch to patch,
it should be the same for the parameters. We are thus led to a picture where what we see
as fundamental parameters are, in fact, stochastic quantities fluctuating from one patch (or
one ‘pocket universe’) to another. This is the famous multiverse. As it turns out, the concept
of string landscape is not that obvious and has been discussed among string theorists [48].
At the moment, the best one could conclude is that the multiverse may pose a question,
possibly justifying investigating alternatives to inflation [19]. So the multiverse problem is
not only based on an an extrapolation; it relies, in fact, on a combination of extrapolations.
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Based on the previous discussion, it therefore seems fair to call the multiverse ‘prob-
lem’ of inflation a wild speculation. Even if eternal inflation happens, it is not completely
obvious that a multiverse will be present. Indeed, since the question of a string landscape
remains disputed among string experts, one could imagine a situation where eternal infla-
tion occurs but where there is no string landscape. In this case, the inflaton vacuum expec-
tation value would still fluctuate from one patch to another, but the fundamental constants
would be the same everywhere. This implies that the inflationary predictions would also be
the same everywhere (for instance, Doppler peaks in the CMB would be present in each
pocket universe), at least in the patches where inflation came to an end. In any case, should
we reject single-field slow-roll inflation – a falsifiable, well tested, effective approach to
the early Universe – in addition in perfect agreement with observations because of the
multiverse? To say the least, it would be too hasty. It would be similar to rejecting the
Standard Model of particle physics because (at least for the moment) it cannot be obtained
from string theory.

4.8 Conclusion

In this article, we have discussed various aspects of inflation. The picture that emerges is
that inflation is a very successful model of the early Universe. It has all the criterions that a
good scientific theory should possess.

First, it is falsifiable. One can indeed quote two possible observations that could poten-
tially rule out inflation. All models of inflation predict the presence of Doppler peaks in
the CMB multipole moments. Therefore, if, instead of detecting them, we had obtained
a bump (as predicted, for instance, if the fluctuations entirely originate from topological
defects [38, 41, 116]), then inflation would have been ruled out. Another observation that
could threaten the basic principles of inflation is the observation that�K �= 0. It is true that
an inflationary model with �K �= 0 has been constructed in Reference [74], but this model
is so peculiar that it can be viewed as a curiosity and cannot be considered as representative.
Some may argue that it shows the amount of arm-twisting that needs to be done to inflation
to make it predict �K �= 0. In any case, it is our point of view that �K �= 0 (beyond 10−5

since, of course, some curvature is present in the perturbed universe) should be considered
as a fatal blow for inflation.

Second, inflation has been able to make predictions, most notably the prediction that
ns should be close to one but – and this is the crucial point – excluding one (however,
see the exception [125]). As discussed at length previously, this prediction has been con-
firmed by the data. It is true that a scale-invariant power spectrum, the so-called Harrisson-
Zeldovitch (HZ) power spectrum, was already considered before inflation. But, precisely,
the HZ power spectrum has ns = 1 while inflation has ns ∼ 1 and, crucially, ns − 1 �= 0.
The prediction ns − 1 �= 0 was made by inflation, and not by any other theory, and its
observational confirmation is therefore a strong argument in favour of inflation.

Third, the criticisms against inflation do not seem completely compelling (see also
Reference [34], where the initial conditions problem and the measure question are dicussed
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in detail). The initial condition problem does not seem to be very severe, thanks to the
presence of an attractor. It is true that the attractor is not present for some models (for
instance, small-field inflation), but, precisely, the Planck data have singled out a model
(namely the Starobinsky model) where it is present.

The multiverse question is nowadays widely debated, and there are claims that its
appearance implies that standard inflation makes no prediction and, therefore, is not
falsifiable. The argument is that if everything happens, there could be patches in our
Universe where, for instance, the Doppler peaks are present, but there could be others
where it is not the case. Or there could be patches where ns is close to one and others
where it is far from one. All that is based on the belief that the multiverse is unavoidable.
However, it is, at the moment, unreasonable to put the multiverse and standard inflation on
an equal footing. Indeed, at this stage, it is fair to say that the multiverse is a speculation
(if it is present at all, since we have seen that it can be avoided; see Section 4.7.3), and one
can argue that it would be awkward to reject a good, effective model because of a mere
speculation. As already mentioned, this would be like rejecting the Standard Model of
particle physics because, so far, no one has been able to derive it from string theory. To be
completely fair with this analogy and the multiverse criticism, it is true that the potential
modifications of the Standard Model of particle physics suggested by string theory are
much less radical that what the multiverse implies for standard inflation.

It is also true that we still do not know the physical nature of the inflaton field even if
the latest data raise the intriguing possibility that it could the Higgs field itself. After all,
we are trying to develop a theory the typical energy scale of which could be as high as the
GUT scale. So maybe this problem (if it is indeed one) is not in the inflationary scenario
but, rather, in our lack of understanding of particle physics at 1015GeV. In any case, with
the recent discovery of the Higgs boson, a common criticism against inflation, namely that
no scalar field has ever been seen, has fallen.

Of course, this does not mean that inflation has no drawback and should not be criticised.
Admittedly, the question of initial conditions is clearly not completely settled. The question
which is left partially unanswered is what happens when one starts from strongly inhomo-
geneous configurations in the most general situation; impressive numerical simulations of
fully inhomogeneous situations have been performed, but they do not yet cover all the
possibilities. This is technically complicated since this requires numerical relativity. But it
is fair to admit that this is a remaining issue which is very important. On the other hand, it
is not clear whether this question can be treated classically. Most probably, quantum effects
also play an important role in this problem, which makes it even more complicated.

Another open issue is the ultraviolet (UV) sensitivity of inflation. One example is, of
course, eternal inflation itself. Indeed, we have seen that it can happen or not, depending on
what we assume about the shape of the potential at high energies, outside the observational
window. Another example of UV dependence is the trans-Planckian problem of inflation.
If the fluctuations behave in a non-standard way when their physical wavelength becomes
smaller than the Planck length, and if the trans-Planckian physics is non-adiabatic, then
the prediction of an almost scale-invariant power spectrum could be modified. Let us
nevertheless tone down this conclusion by stressing that the corresponding modification
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could be very small. As was discussed earlier, we have indeed two scales in the problem:
the scale MC at which new physics pops up (typically the Planck scale) and the Hubble
parameter during inflation. If the effect scales as the ratio H/MC to some power, then the
correction should be very small. Yet another example of UV dependence is the importance
of higher-order operators for inflationary model building; see Reference [118].

Therefore, it is true that inflation has some UV sensitivity. But, after all, this is also the
case of the Standard Model of particle physics where the Higgs mass is not stable against
quantum corrections (the hierarchy problem). But no one would reject this model because
of this issue. Let us also add that it is inconsistent to claim at the same time that inflation
is UV dependent and that the multiverse is unavoidable: if inflation is UV dependent,
then one can modify it at high energies to avoid the multiverse, and this is exactly what
the calculation of Section 4.7.3 reveals. From a more general perspective concerning the
IR/UV connection, it is interesting that inflation seems to provide an example in which the
decoupling between physics at different scales, which is the basis of effective field theory,
does not work.

In conclusion, inflation appears to be a robust and reliable scenario for the early
Universe, not completely free of open issues, of course, but could it have been different for
a theory which is trying to describe the first instants of the Universe, at energy scales as
high as 1015GeV? At this stage, admittedly, one cannot yet trust it as we trust, for example,
the Standard Model of particle physics. The situation, however, could change soon if, for
instance, we could check the consistency relation, r = −nT/8. This is clearly a difficult
task, and a first step would clearly be to detect primordial gravitational waves. After all,
if the pieces of information that we have gathered so far are correct, the next generation
of experiments should be able to see them. Indeed, their target is r ∼ 10−4 while our
best model, the Starobinsky model, predicts r ∼ 4 × 10−3. Then measuring nT will be
even more difficult but would be very important. The measurement of NG would also be
important. The expected level, fNL � 10−2, is tiny for our preferred class of models, but
people are already thinking about experiments that could reach this level. In brief, inflation
continues to be an inspiration for many physicists and continues to fuel new interesting
works. So, inflation, trick or treat? Treat, definitively!
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Is the Universal Matter-Antimatter Asymmetry
Fine-Tuned?

g a r y s t e i g m a n a n d r o b e r t j . s c h e r r e r *

Abstract

The asymmetry between matter and antimatter (baryons and anti-baryons or nucleons
and anti-nucleons, along with their accompanying electrons and positrons) is key to the
existence and nature of our Universe. A measure of the matter-antimatter asymmetry of
the Universe is provided by the present value of the universal ratio of baryons (baryons
minus anti-baryons) to photons (or the ratio of baryons to entropy). The baryon asymmetry
parameter is an important physical and cosmological parameter. But how fine-tuned is it?
A ‘natural’ value for this parameter is zero, corresponding to equal amounts of matter
and antimatter. Such a universe would look nothing like ours and would be unlikely to
host stars, planets, or life. Another, also possibly natural, choice for this dimensionless
parameter would be of order unity, corresponding to nearly equal amounts (by number) of
matter (and essentially no antimatter) and photons in every co-moving volume. However,
observations suggest that in the Universe we inhabit, the value of this parameter is non-
zero but smaller than this natural value by some nine to ten orders of magnitude. In this
contribution we review the evidence, observational as well as theoretical, that our Universe
does not contain equal amounts of matter and antimatter. An overview is provided of
some of the theoretical proposals for extending the Standard Models of particle physics
and cosmology in order to generate such an asymmetry during the early evolution of the
Universe.

Any change in the magnitude of the baryon asymmetry parameter necessarily leads to
a universe with physical characteristics different from those in our own. Small changes
in this parameter will barely affect cosmic evolution, while large changes might alter the
formation of stars and planets and affect the development of life. The degree of fine-tuning
in the baryon asymmetry parameter is determined by the width of the range over which it
can be varied and still allow for the existence of life. Our results suggest that the baryon
asymmetry parameter can be varied over a very wide range without impacting the prospects
for life; this result is not suggestive of fine-tuning.

* Following the untimely death of Gary Steigman, the second author was brought in to complete this chapter. He has
endeavoured to adhere as closely as possible to the original format and spirit of the manuscript constructed by the first author.
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We note that, according to those extensions of the Standard Models of particle physics
and cosmology that allow for a non-zero baryon number, the Universe began with
zero baryon number at a time (temperature) when baryon number was conserved. As
the Universe expanded and cooled, baryon number conservation was broken at some
high temperature- (mass-/energy-) scale, and a non-zero baryon number was created.
However, even though baryon non-conservation is strongly suppressed at late times (low
temperatures), baryon number is not conserved, so matter (protons, the lightest baryons)
might eventually decay, with the baryon number reverting back to zero. Ashes to ashes,
dust to dust, the Universe began with zero baryon number and may well end that way.

5.1 Introduction and Overview

The asymmetry between matter and antimatter (baryons and anti-baryons or nucleons and
anti-nucleons, along with their accompanying electrons and positrons) is key to the exis-
tence and nature of our Universe. Any causal Lorentz-invariant quantum theory allows for
particles to come in particle-antiparticle pairs. The discovery of the antiproton [6] in 1955
quickly stimulated serious consideration of the antimatter content of the Universe [3, 18]
and led to constraints on the amount of antimatter based on the astrophysical effects of
interacting matter and antimatter [4]. At the time, and for many years after, the prevailing
view in the physics community was that baryon number (the quantum number that dis-
tinguishes baryons and anti-baryons) was absolutely conserved, and this assumption led to
two differing points of view. Either the Universe is and always has been symmetric between
matter and antimatter or the Universe is and always has been asymmetric, with an excess of
matter over antimatter that has remained unchanged from the beginning of the expanding
Universe (the Big Bang). Those who believed the Universe to be symmetric between matter
and antimatter were undeterred by the fact that that the only antimatter seen up to that time
(not counting positrons) was the handful of antiprotons created in collisions at high-energy
accelerators. Those who believed the Universe to be asymmetric had to come to grips with
the dilemma of creating such a universe if the laws of physics dictated that particles are
always created (and destroyed) in pairs and that baryon number is absolutely conserved.

Most ignored this dilemma. Andrei Sakharov [35] did not. To set the stage for
Sakharov’s seminal work, it is useful to recall the 1965 discovery of the cosmic microwave
background (CMB) radiation [9, 30], which transformed the study of cosmology from
philosophy and mathematics to physics and astronomy. It quickly became clear that the
discovery of the radiation content of the Universe, along with its observed expansion,
ensured that very early in its evolution, when the temperature and densities (both number
and energy densities) were very high, collisions among particles would be very rapid
and energetic and, at sufficiently high temperatures, particle-antiparticle pairs would be
produced (and would annihilate). Sakharov explored the requirements necessary for such
high-energy collisions in the early Universe to create a matter-antimatter asymmetry if none
existed initially. Sakharov’s recipe for cooking a universal baryon asymmetry has three
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ingredients. One obvious condition is that baryon number cannot be absolutely conserved;
baryon number (B) conservation must be violated. Although the Standard Model of particle
physics at the time did not allow for violation of baryon number conservation, the later
development of grand unified theories (GUTs) did. Sakharov also noted that the discrete
symmetries of parity (P) and charge conjugation (C), replacing particles with antiparticle,
or of CP, would need to be broken as well. Current models, in agreement with accelerator
data, do allow for P and CP violation. Sakharov’s third ingredient is not from particle
physics but from cosmology, relying on the expansion of the Universe. The third ingredient
in the recipe requires that thermodynamic equilibrium not be maintained when the B, P,
and CP violating collisions occur in the early Universe. Although at the time of Sakharov’s
work there was no evidence that conservation of B and CP were violated, it was already
known that parity is not conserved in the weak interactions and that the expansion of the
Universe could possibly provide the required departure from thermodynamic equilibrium.
Sakharov set the stage for consideration of a universe with unequal amounts of matter and
antimatter. We will revisit Sakharov’s three conditions for baryogenesis in Section 5.4.

In the hot, dense thermal soup of the very early Universe, matter and antimatter (baryons
and anti-baryons) are as abundant as all the other particles whose mass is less than the tem-
perature. As the Universe expands and cools, particle-antiparticle pairs annihilate, leaving
behind only the lightest particles, along with any particle-antiparticle pairs that evaded anni-
hilation in the early Universe or, perhaps, in an asymmetric universe, an initial matter excess
that escaped annihilation. In the late Universe, when the temperature (in energy units) is far
below the masses of the unstable particles of the Standard Model (SM) of particle physics,
only photons and the lightest stable (or very long lived) SM particles remain: nucleons (and
possibly anti-nucleons), electrons (and possibly positrons), and the three SM neutrinos. In
cosmology, it is conventional to refer to all ordinary matter consisting of nucleons and
electrons (nuclei, atoms, and molecules), as ‘baryons’ (B)1 to distinguish it from dark
matter (DM). Electrons are not baryons, but their (very small) contribution to the present-
day matter density is included in this definition of the baryon density. The photons and
neutrinos are often referred to as ‘radiation’. The matter-antimatter asymmetry is the differ-
ence between the numbers of baryons and anti-baryons. Since this is an extensive quantity,
scaling with the size of the volume considered, it is useful to introduce the ratio (by number)
of baryons to photons to quantify the size of any matter-antimatter asymmetry. The ratio of
the baryon (minus the anti-baryon) and photon number densities, ηB = nB/nγ , provides
a measure of the matter-antimatter asymmetry of the Universe. However, as the Universe
expands and cools, the heavier, unstable SM particles annihilate and decay, increasing the
number of photons Nγ in a co-moving volume V , where Nγ = nγ V , while the baryon
number in the same co-moving volume is unchanged (at least during those epochs when
baryons are conserved). Instead, it is the entropy, S = sV , in the co-moving volume, not the
number of photons, that is conserved as the Universe expands adiabatically. The entropy

1 Throughout this article, the terms baryons, nucleons, ordinary matter, and normal matter are used interchangeably.
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and the number of photons in a co-moving volume are related by S = 1.8gsNγ , where the
total entropy is related to the entropy in photons alone by S ≡ (gs/2)Sγ , and Sγ = 4/3
(ργ /T )V = 4/3(〈Eγ 〉/T )Nγ and 〈Eγ 〉 = 2.7 T . The quantity gs = gs(T ) counts the
number of degrees of freedom contributing to the entropy at temperature T . For the SM
of particle physics with three families of quarks and leptons at temperatures above the
mass of the heaviest SM particle (the top quark), gs ≈ 427/4. For temperatures below the
electron mass, after the three flavours of weakly interacting neutrinos have decoupled and
the photons have been heated relative to the neutrinos by the annihilation of the e± pairs,
gs → gs0 ≈ 43/11. As a result, as the Universe cools from above the top quark mass
to below the electron mass, the number of photons in a co-moving volume increases by
a factor of ≈ 27, and the baryon to photon ratio is diluted by this same factor. In an
adiabatically expanding Universe (as ours is assumed to be) the entropy in a co-moving
volume is conserved, along with the net number of baryons minus anti-baryons (during
those epochs when baryon number non-conservation is strongly suppressed). Therefore,
the ratio of baryon number to entropy, NB/S = nB/s, provides a measure of the baryon
asymmetry whose value is unchanged as the Universe expands and cools. Evaluated in the
late Universe, after e± annihilation is complete, s/nγ → (s/nγ )0 = 1.8 gs0 ≈ 7.0, so that
nB/s ≈ ηB/7.0. Consistent with most of the published literature, ηB is evaluated here in
the late Universe, so ηB ≡ ηB0 ≡ (nB/nγ )0. In the discussion here ηB and nB/s will both
be referred to as the ‘baryon asymmetry parameter’.

In a matter-antimatter symmetric Universe, the baryon asymmetry parameter ηB = 0.
For a quantity that could, in principle, have any value between −∞ and +∞2, zero might
seem to be a ‘natural’ choice.

When is a physical parameter, such as the baryon asymmetry parameter, considered
to be fine-tuned? The criteria for answering this question, along with a discussion of the
degeneracies with other physical parameters, are discussed in Section 5.2. In Section 5.3,
the overwhelming observational and theoretical evidence that our Universe is not matter-
antimatter symmetric is reviewed, excluding the natural choice of ηB = 0. Faced with
the necessity that a universe hosting stars, planets, and life requires ηB �= 0, Section 5.4
provides an overview of the multitude of particle physics (and cosmology) models proposed
to generate a non-zero baryon asymmetry during the early evolution of the Universe. These
models are capable of generating a baryon asymmetry that is much smaller or much larger
than that observed in our Universe, suggesting that there might be universes with almost
any non-zero values of ηB. In an asymmetric universe, the quantitative value of the baryon
asymmetry parameter plays an important role in primordial nucleosynthesis (Big Bang
nucleosynthesis: BBN), regulating the abundances of the nuclides produced in the early
Universe, before any stellar processing. BBN is reviewed for a large range of ηB in Section
5.5. The degeneracy of the baryon asymmetry parameter with other cosmological param-
eters is discussed in Section 5.6, and a variety of alternate cosmological models allowing

2 In a universe with more ‘matter’ than ‘antimatter’, ηB > 0. For the opposite case, where ηB < 0, the definitions of matter and
antimatter could be interchanged. Therefore, without loss of generality, it is assumed here that ηB ≥ 0.
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for a range of ηB values are presented in Section 5.7. The criterion used here to judge the
viability of alternate cosmological models is whether their universes are capable of hosting
stars, planets, and life. Our results and conclusions are summarised in Section 5.8.

5.2 Definition of Fine-Tuning of the Baryon Asymmetry Parameter

How fine-tuned is the baryon asymmetry parameter? Here we will adopt a definition of fine-
tuning based on the capability of the Universe to harbour life. Clearly, small changes in the
asymmetry parameter will have little effect on cosmic evolution. However, large changes
in this parameter will have major effects, notably altering the production of elements in
the early universe and changing the process of structure formation through the growth of
primordial density perturbations. We will see that the former, even in extreme cases, is
unlikely to have any effect on the development of life in the Universe, while the latter
can have profound effects. In particular, if the process of galaxy and star formation is too
inefficient, then there will be no planetary systems to harbour life. One must be cautious,
of course, in defining the limits on environments that can support life; our argument will be
based on life as we observe it, which exists on planets orbiting stars. It is always possible
that more extreme environments might harbour life in ways that we have not considered; for
example, Avi Loeb has pointed out that the cosmic microwave background can provide an
energy source for life when the Universe was only 10 million years old and the temperature
of the CMB was between the freezing and boiling points of water [27] (see Chapter 12).
While we will not consider such extreme possibilities here, caution is always advised when
defining the conditions needed for the existence of life.

The extent to which the value of ηB is fine-tuned will depend on how widely it can be
varied while still allowing for the existence of life. The issue of the fine-tuning of ηB is not,
of course, a true-false question: the best we can do is to determine an allowed range for ηB .
The width of this range can then suggest the plausibility (or lack thereof) of the need for
special initial conditions or special values for the underlying fundamental parameters that
determine ηB . But the question, ‘Is the baryon asymmetry parameter fine-tuned?’ does not
have a yes or no answer.

In considering the variation of one or more physical parameters, a choice must be made:
do we consider the variation of the baryon asymmetry parameter alone, or do we allow
other parameters to vary at the same time? In the latter case, changes in the value of one
parameter may be compensated, at least in part, by changes in other parameters.

As an example, consider the way in which the relation between the baryon to entropy
ratio and the baryon to photon ratio depends on the number of neutrino flavours, as well
as on the neutrino decoupling temperature – which depends, in turn, on the strength of the
weak interactions. In an alternate universe where there areNν flavours of neutrinos, instead
of the SM value of Nν = 3, gs0 = 43/11 + 7(Nν − 3)/11 = 43/11(1 + 7(Nν − 3)/43)
and gρ0 = 3.36 + 0.454(Nν − 3) = 3.36(1 + 0.135(Nν − 3)). For these results, it has been
assumed that when Nν �= 3, the usual weak interactions are unchanged and all neutrinos
decouple when Tdec � me (but Tdec � mμ) so that (Tν/Tγ )0 ≈ 4/11. With these caveats,
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for Nν �= 3, the late time entropy per photon is (s/nγ )0 ≈ 7.0(1 + 7(Nν − 3)/43), and the
relation between ηB and nB/s is changed,

ηB = (nB/nγ )0 ≈ 7.0(1 + 7(Nν − 3)/43) (nB/s) . (5.1)

For example, in an alternate universe with only one neutrino flavour (Nν = 1), ηB ≈
4.7(nB/s), while in one with eight flavours of neutrinos, (Nν = 8),3 ηB ≈ 12.8(nB/s).

In general, allowing multiple parameters to vary simultaneously will weaken the con-
straints provided when only one of them is varied, which is likely to be an issue with many
of the other essays in this volume. For example, consider the atomic energy scale,

ε ≡ μHc
2α2 =

(
memp

me +mp

)
c2
(
e2

h̄c

)2

, (5.2)

where μH is the reduced mass of the proton-electron system, and the fine-structure
constant is α = e2/h̄c ≈ 1/137 (when measured at low energies). For mec2 ≈ 0.51 MeV
and mp ≈ 0.94 GeV, ε ≈ mec

2α2 ≈ 27 eV. Since ε is not a dimensionless parameter,
perhaps it is the dimensionless parameter ε/μHc

2 = α2 ≈ 5.3 × 10−5 that is fundamental.
Suppose that α and μHc

2 are allowed to change, while the atomic energy scale, μHc
2α2,

is kept unchanged. For example, me and mp might change while me/mp � 1 might be
(nearly) unchanged. Atomic energy levels will be largely unchanged while nuclear energies
will be changed. How much freedom is there to change α along with other fundamental
parameters (e.g., me, mp, me/mp), while leaving most of ‘ordinary’ atomic and nuclear
physics unchanged? This issue of ‘degeneracy’ among physical parameters will rear its
head in the subsequent discussion of the fine-tuning of the baryon asymmetry of the
Universe. When exploring model universes with different values of ηB, we will keep all
other parameters (e.g., α, me/mp, Nν , etc.) fixed. However, we need to remain aware
that the results presented here can be considerably altered if multiple parameters are
simultaneously varied.

5.3 The Case against a Symmetric Universe

Over the years, experiments at ever higher energies have confirmed that particles are created
(and annihilated) in pairs and that in all collisions studied so far, baryon (and lepton)
number is conserved. Perhaps only at the very highest energies, inaccessible to the current
terrestrial accelerators, or in searches for proton decay, will non-conservation of baryon
(and lepton) number be revealed. However, it is not unreasonable to ask how our present
Universe would differ if baryon number were absolutely conserved. A complementary
approach is to ask what astrophysical observations can tell us about the amount of antimat-
ter (if any) in gas, stars, galaxies, and clusters of galaxies in the current Universe (e.g., [4]).
These two approaches are explored here. The discussion here is based on several earlier

3 For Nν ≤ 8, QCD is asymptotically free, allowing for quark confinement and bound nuclei [20].
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papers by the first author (e.g., [41–43, 45, 46]); the reader is urged to see those papers for
details and for many further references.

5.3.1 The Observational Evidence against a Symmetric Universe

To paraphrase remarks by the first author in a 1976 review of the status of antimatter in
the Universe [42], it is quite easy to determine if an unknown sample is made of matter
or antimatter. The most rudimentary detector will suffice. Simply place your sample in the
detector and wait. If the detector disappears (annihilates), your sample contained antimat-
ter. Indeed, if you had handled your sample, you would have already known the answer.
Astrophysical sources have been repeating this experiment over cosmological times. The
first lunar and Venus probes confirmed that the Moon and Venus are made of matter, not
antimatter. Indeed, the solar wind, sweeping past the planets of the solar system revealed
by the absence of annihilation gamma rays that the Sun and the planets and other solar
system bodies are all made of what we have come to define as matter. Were any of the
planets made of antimatter, they would be the strongest gamma ray sources in the sky (if
they had not already annihilated away). As may be inferred from the discussion in Section
5.3.2, if there were any antimatter in the material that collapsed to form the planets and
other solid body objects in the solar system (the pre–solar system gas cloud) , it would
have annihilated long before the solar system formed. The same is true for the stars in our
galaxy. On theoretical grounds, is is highly unlikely that in a universe some 14 Gyr old,
there are any non-negligible amounts of antimatter surviving in our galaxy.

In a typical nucleon – anti-nucleon annihilation, ∼ 5–6 pions are produced. The pions
decay to muons, neutrinos, and photons, and the muons decay to electrons (e± pairs) and
neutrinos. The e± pairs may annihilate in flight or, being tied to local magnetic fields, they
may lose energy by Compton emission and annihilate nearly at rest (producing a charac-
teristic 511 keV line) [4]. Photons from matter-antimatter annihilations provide the most
sensitive, albeit indirect, probe of the presence of antimatter, mixed with ordinary matter,
on galactic and extragalactic scales. In the galaxy, gas (clouds of atomic or molecular gas)
and stars are inevitably mixed. If either contained significant amounts of antimatter, the
result would be annihilation, along with the corresponding production of gamma rays.
The lifetime against annihilation of an antiparticle (e.g., an antiproton) in the gas in the
interstellar medium (ISM) of the galaxy is very short, tann ≈ 300 yr [42]. It is therefore not
surprising that observations of galactic gamma ray emission set very strong constraints on
the antimatter fraction in the ISM, fISM <∼ 10−15 [42]. There can be no significant amounts
of antimatter in the gas in the galaxy.

What about anti-stars? When gas collapses to form stars, the annihilation rate grows
as the number density while the collapse rate increases only as the square root of the
density. As a result, unless there were no normal matter in the gas that might collapse
to form an anti-star, the anti-star would never form. Setting this aside, let us suppose that
anti-stars had somehow formed in the galaxy. As the gas in the ISM flowed past these
anti-stars, there would be annihilation, resulting in gamma rays. Using by now outdated
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(40-year-old!) gamma ray data, the first author [42] determined that the absence of gamma
rays indicated that the nearest anti-star in the galaxy is at least 30 pc away. This result sets
an upper limit on the total number of anti-stars, N , that could be in the galaxy: N < 107, a
small fraction of all the stars in the galaxy. Although more recent gamma ray data can refine
these bounds, the old data were already sufficiently strong to argue against any significant
amounts of antimatter in the galaxy.

Galactic cosmic rays, coming to us from outside of the solar system, provide a valuable
direct probe of antimatter in the galaxy. Whatever the sources of the galactic cosmic rays,
the discovery of anti-nuclei in the cosmic rays would provide direct evidence (a ‘smoking
gun’) for the presence of antimatter in the galaxy (for more details but obsolete data, see the
discussion in [42]). The antiproton would be the lightest anti-nucleus, but in high-energy
collisions between cosmic rays and interstellar gas, some ‘secondary’ antiprotons will be
produced. Indeed, antiprotons have been observed in the cosmic rays, but their numbers
are consistent with a secondary origin. However, production of more complex anti-nuclei
in high-energy cosmic rays – interstellar gas collisions (secondary anti-nuclei) is strongly
suppressed, and to date, no anti-deuterons [16] or anti-alpha [2] particles have been detected
in the cosmic rays. For example, the 1999 AMS upper bound [2] to the cosmic ray anti-
helium-to-helium ratio is < 10−6, providing a strong supplement to the gamma ray data
suggesting our galaxy has no significant amounts of antimatter. The absence of primary
antimatter in the cosmic rays is evidence that the sources of the galactic cosmic rays contain
little, if any, antimatter (indeed, if there were some antimatter mixed with a predominant
amount of ordinary matter in the cosmic ray sources, they likely would have annihilated
over the lifetimes of the sources).

What of external galaxies or extragalactic high-luminosity sources such as AGNs or
QSOs? If annihilations deposit their energy locally, then the gamma ray flux and the lumi-
nosity of an annihilation-powered source are connected [41]. If �γ is the photon flux
from annihilations (photons cm−2 s−1) and �E is the energy flux from the same source
(ergs cm−2 s−1), then�γ >∼ 104�E [41]. Although annihilation was proposed as a panacea
for the energy budgets of QSOs and other high-luminosity sources [4], the detailed emission
mechanisms required enormous magnetic fields, compounding the problems of an already
stretched energy budget. Steigman and Strittmatter [46] explored whether observations
of the annihilation neutrino flux could constrain models of annihilation-driven infrared
emission in Seyfert galaxies. For individual sources, it was estimated [42] that the neutrino
flux would be at least five orders of magnitude smaller than was observed at the time. The
difficulty of detecting the relatively low energy (<∼ 500 MeV) neutrinos, combined with
improved models for the energy sources in QSOs, Seyferts, etc., have made annihilation
neutrinos an unlikely probe.

Moving further away, outside our own galaxy, the strongest constraints, on the largest
scales, come from observations of X-ray emitting clusters of galaxies [42, 43, 45]. Most
of the baryons in clusters of galaxies are in the hot intracluster gas. The same collisions
between particles in the intracluster gas responsible for producing the observed X-ray
emission would result in annihilation gamma rays if some fraction of the gas consisted of
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antiparticles. The virtue of using X-ray emitting clusters of galaxies is that there is a direct
proportionality between the X-ray emission from thermal bremsstrahlung and gamma ray
emission from annihilation. This approach leads to bounds on the antimatter fraction (the
fraction of antimatter mixed with ordinary matter) on the largest scales in the universe
(M ∼ 1014 − 1015M�, R ∼ few Mpc) [45]. Using data from 55 X-ray emitting clusters
of galaxies [12] in combination with the upper bounds to the gamma ray fluxes [33],
it was found that the antimatter fraction from that sample is limited to f < 10−6 [45].
However, even stronger bounds exist for some individual clusters. For the Perseus cluster,
f < 8 × 10−9, and for the Virgo cluster, f < 5 × 10−9. Perhaps the most interesting upper
bound on antimatter on the largest scales comes from colliding clusters. Analysis of the
Bullet Cluster gives f < 3 × 10−6 on the scale M ∼ 3 × 1015 h−1M�, where h is the
Hubble parameter in units of 100 km sec−1 Mpc−1 [45].

5.3.2 The Problem of a Symmetric Universe

Very shortly after the discovery of the CMB [9, 30], Ya. B. Zeldovich [54] 4 and H. Y.
Chiu [7] independently considered the fate of matter and antimatter emerging from the
early stages of the evolution of a hot universe. The result, whose derivation is outlined here,
is easily summarised. At high temperatures, above the quark – hadron transition, there are
many quark-antiquark pairs, and in a symmetric universe, there are equal numbers of quarks
and antiquarks. As the Universe expands and cools, the quarks (and gluons) are confined
into nucleons (neutrons and protons), which – because the strong interaction is strong –
are in thermal equilibrium with the cosmic plasma (e.g., photons, neutrinos, and the light
leptons and bosons). In this regime, the nucleon mass exceeds the temperature so that
annihilation of nucleon–anti-nucleon pairs proceeds on a timescale short compared to the
expansion rate of the Universe. But, since m � T , creation of new nucleon–anti-nucleon
pairs from collisions in the background plasma is strongly (exponentially) suppressed so
that up to spin-statistics factors of order unity, the ratio of nucleons (and anti-nucleons) to
photons is nN/nγ = nN̄/nγ = neq/nγ ∝ (m/T )3/2e−(m/T ) � 1. Even though the abun-
dances of nucleons and anti-nucleons (e.g., relative to photons) are very small, the strong
interaction is strong, ensuring that nN ≈ neq is maintained down to very low temperatures,
T �mN. However, eventually, the abundance of the nucleon–anti-nucleon pairs becomes
so small that they no longer can find each other to annihilate (and the creation of new pairs is
exponentially suppressed), and the abundance of nucleons (and anti-nucleons) ‘freezes out’
at a ‘relic’ abundance (nN/nγ )0. The evolution of the nucleon-anti-nucleon abundances
follows an evolution equation, described next, that accounts for creation, annihilation, and
the expansion of the Universe. The solution, presented in the following discussion, shows
that the relic abundance of the nucleon–anti-nucleon pairs in a symmetric universe is some
nine orders of magnitude smaller than the nucleon abundance observed in our Universe,
providing an important nail in the coffin of the symmetric Universe.

4 It is interesting that Zeldovich’s article was written prior to the discovery of the CMB. As a result, in his review, Zeldovich
considered both hot and cold universes.
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As first derived from an argument of detailed balance by Zeldovich [54] and later
rediscovered and supported by many textbook derivations based on the Boltzmann equa-
tion, the evolution of the abundance of a particle (and its antiparticle) produced and annihi-
lated in pairs, is described by the standard evolution equation (SEE); see, e.g., [7, 19, 25,
37, 41–43, 47] and references therein. For equal numbers of particles and antiparticles (no
asymmetry, zero chemical potential), the SEE may be written as

1

V

(
dN

dt

)
= dn

dt
+ 3Hn = 〈σv〉(n2

eq − n2), (5.3)

where N = nV is the number of particles (and antiparticles) in a co-moving volume V .
As the Universe expands and the cosmic scale factor, a, increases, the co-moving volume
grows as V ∝ a3. In Eq. (5.3), the number density of particles and antiparticles is n, the
total annihilation cross section is 〈σv〉, and H = a−1(da/dt) is the Hubble parameter.
The SEE is a form of the Ricatti equation, for which there are no known closed-form
solutions except in special cases. Although the SEE may be integrated numerically, here the
approximate analytic approach first outlined by Zeldovich [54] and employed extensively
in [19, 25, 37, 42, 43, 47] and elsewhere is followed.

For the approximate analytic solution to the SEE, it is convenient to write n = (1 +�)
neq where, in the non-relativistic (NR) regime (T <m), neq = (g T 3/(2π)3/2)x3/2

e−xf (x), where x ≡ m/T and g = 2 is the number of spin states of the proton (neutron)
and of the antiproton (anti-neutron). Here, f (x) is an asymptotic series in x for which
f (x) → 1 as x → ∞. For the range of x of interest in tracking the evolution of nucleon–
anti-nucleon pairs, f (x) ≈ 1 is a very good approximation. Therefore, the evolution of the
equilibrium number density (as a function of x) in the NR regime is very well described
by neq ∝ T 3x3/2e−x ∝ x−3/2e−x . Note that since the photon number density varies as
T 3, neq/nγ ∝ x3/2e−x in the NR regime. Instead of following the time evolution of the
thermal relic abundance, it is more convenient to track its evolution as a function of x.
Neglecting small logarithmic corrections involving derivatives related to the entropy and
photon densities, the derivatives with respect to time and x (or T ) are related by

dt ≈ 1

H

(
dx

x

)
≈ − 1

H

(
dT

T

)
, (5.4)

where H = H(T ) is the Hubble parameter evaluated at temperature T . Now we define
the quantity gρ(T ) (in analogy to gs) by gρ/2 ≡ ρ/ργ , where ρ is the total mass/energy
density and ργ is the energy density in photons alone. During those epochs in the evolution
of the Universe when the energy density is dominated by the contribution from relativistic
particles (radiation dominated: RD), H ∝ ρ1/2

R ∝ g1/2
ρ ργ ∝ g1/2

ρ T 2. In terms of � and x,
the SEE may be rewritten as

d(ln(1 +�)Neq)
d(ln x)

= −
(
�eq

H

)
y, (5.5)

where �eq ≡ 〈σv〉neq and y ≡ �(2 +�)/(1 +�).
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For x ∼ O(1) (m ≈ T ), � is very small and n = neq is a very good approximation.
As the Universe expands and cools, x increases and � grows exponentially (while neq
decreases exponentially), and the departure from equilibrium grows. Define x∗ to be the
value of x for which �(x∗)≡�∗ ∼ O(1), so the true abundance, n∗, exceeds the equilib-
rium density, neq∗, by factor 1 + �∗ > 1. (A more precise definition of x∗ is given after
Eq. (5.13)). For x >∼ x∗, � >∼ �∗ and n/neq > 1 increases. In this regime, where n >∼ neq ,
the SEE simplifies,

dN/dt = 〈σv〉(n2
eq − n2) V ≈ −〈σv〉n2V = −〈σv〉N2/V . (5.6)

This equation can be integrated directly from t = t∗ (when T = T∗ and x = x∗) to t = t0

(when T = T0 � T∗ and x � x∗). Replacing the evolution with time (or with x) by the
evolution with temperature,

dN

N2
≈ 〈σv〉
VH

dT

T
, (5.7)

where the Hubble parameter varies as H ≈ H∗(T /T∗)2 and the co-moving volume
increases with decreasing temperature as V ≈ V∗(T∗/T )3. Integrating from T = T∗ to
T = T0 � T∗ results in

N0/N∗ = [1 + (�/H)∗]−1, (5.8)

where �∗ = n∗〈σv〉. For nucleon–anti-nucleon annihilation, (�/H)∗ � 1, so N0/N∗ ≈
(�/H)−1∗ � 1. When T = T∗ (x = x∗), the number of particles (neutrons or protons)
in the co-moving volume, N∗, may be compared to the number of photons in the same
volume, Nγ ∗, (

N

Nγ

)
∗

=
(
n

nγ

)
∗

=
(

H

nγ 〈σv〉
)

∗

(
�

H

)
∗

. (5.9)

In terms of x∗, (
H

nγ 〈σv〉
)

∗
= 6.5 × 10−36 g

1/2
ρ∗ x∗

m〈σv〉 , (5.10)

wherem is in GeV and 〈σv〉 is in cm3s−1. As the Universe expands and cools from T = T∗
to T = T0, the surviving nucleon (and anti-nucleon) abundance(s) decreases (decrease) to
an asymptotic (‘frozen out’) value (ratio to photons) given by,(

N

Nγ

)
0

=
(
N

Nγ

)
∗

(
N0

N∗

)(
Nγ ∗
Nγ 0

)
, (5.11)

where – from entropy conservation – Nγ ∗/N0 = gs0/gs∗. Note that (N/Nγ )0 is the frozen
out ratio of neutrons or protons to photons (long after annihilation has ceased 5) and is
identical to the ratio of anti-neutrons or antiprotons to photons. Even though (N/Nγ )0 �= 0,

5 Annihilations never really cease. They simply become so rare that they are unable to continue to reduce the relic abundance.
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the baryon asymmetry parameter in a symmetric universe is ηB = 0. Combining the
preceding equations, (

N

Nγ

)
0

≈ 2.5 × 10−35

m〈σv〉
(
g

1/2
ρ∗
gs∗

)
x∗, (5.12)

where gs0 = 43/11 – corresponding toNν = 3 – has been adopted. For neutrons or protons
(in the approximation here, they are assumed to have the same mass, m ≈ 0.94 GeV), the
total (s-wave) annihilation cross section6 is 〈σv〉 ≈ 1.5 × 10−15 cm3 s−1 so that(

N

Nγ

)
0

≈ 1.8 × 10−20

(
g

1/2
ρ∗
gs∗

)
x∗ . (5.13)

To find x∗ and T∗ = m/x∗, in order to evaluate gρ∗ = gρ(T∗) and gs∗ = gs(T∗),7 we
impose the condition defining x∗ – that is, when x = x∗, �(x) = �(x∗) ≡ �∗. Although
�∗ ∼ O(1), a specific choice needs to be made for �∗ in order to find the corresponding
value of x∗ (and it needs to be checked and confirmed that the final result is insensitive
to this specific choice). Here, �∗ = 0.618 (related to the ‘Golden Mean’) is adopted, so
y∗ = �∗(2 +�∗)/(1 +�∗) = 1.

It may be verified that d(ln(1+�))/d(ln x)� d(lnNeq)/d(ln x), so Eq. (5.5) reduces to

−
(
�eq

H

)
y ≈ d(lnNeq)

d(ln x)
, (5.14)

where Neq = neqV ∝ V T 3x3/2e−x . Generally, V T 3 ∝ (aT )3 ≈ constant, so the log-
arithmic derivative of V T 3, depending on d(ln gs)/d(ln dT ), may be neglected, further
simplifying Eq. (5.5) to an algebraic equation,

d(lnNeq)/d(ln x) ≈ −(x − 3/2) ≈ −(�eq/H) y . (5.15)

For x = x∗, �(x∗) = �∗ = 0.618 and y = y∗ = 1. As a result,

x∗ − 3/2 = (�eq/H)∗ = neq∗〈σv〉/H∗ = A∗ g
−1/2
ρ∗ x

1/2
∗ e−x∗, (5.16)

where A∗ ≡ 4 × 1034g m〈σv〉; g is the number of neutron or proton spin states, and, as
before, the mass m is in GeV and 〈σv〉 is in cm3/s. For g = 2, m = 0.94, and 〈σv〉 =
1.5 × 10−15, A∗ = 1.1 × 1020. The transcendental equation for x∗, Eq. (5.16), may be
solved iteratively. The solution is x∗ ≈ 43.1, corresponding to T∗ = m/x∗ ≈ 21.8 MeV,
for which gρ∗ ≈ 11.5 and gs∗ ≈ 11.4 [24]. Substituting these values into Eq. (5.13) results
in the frozen-out ratios of the surviving numbers of neutrons, protons, anti-neutrons, and
antiprotons to photons,(

nn

nγ

)
0

=
(
np

nγ

)
0

=
(
nn̄

nγ

)
0

=
(
np̄

nγ

)
0

≈ 2.3 × 10−19 . (5.17)

6 Even though T∗ � m, the nucleons are moving sufficiently rapidly that Coulomb (Sommerfeld) enhancement of the
proton-antiproton annihilation cross section, relative to the neutron–anti-neutron annihilation cross section, is unimportant.

7 For gρ(T ) and gs (T ), the results of Laine and Schroeder [24] are used here.
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The corresponding nucleon (neutron plus proton) and anti-nucleon–to–photon ratios are
(nN/nγ )0 = (nN̄/nγ )0 ≈ 4.6 × 10−19.

Of course, for this symmetric universe, ηB ≡ (nN/nγ )0 − (nN̄/nγ )0 = 0. The
present mass density of matter (nucleon plus anti-nucleon) is ρB = m(nN + nN̄) ≈
3.5 × 10−16 GeV cm−3, or �Bh

2 ≈ 3.3 × 10−11. In contrast, for our observed asymmetric
universe, where annihilation of any relic anti-nucleons is very efficient, (nN/nγ )0 ≈
6.1×10−10 � (nN̄/nγ )0 ≈ 0 and�Bh

2 ≈ 0.022. In a symmetric Universe, the abundance
of nucleons surviving annihilation in the early universe is smaller than the abundance of
nucleons in our asymmetric Universe by some nine orders of magnitude.

Notice that when T = T∗, the ratio of the annihilation rate to the expansion rate is very
large, (�/H)∗ ≈ (1 + �∗)(x∗ − 3/2) ≈ 67 � 1. Neither annihilations nor the relic
abundances freeze out when T = T∗. For T < T∗, annihilations continue to reduce the
abundances of nucleons, and anti-nucleons and the ratio of the annihilation rate to the
expansion rate, �/H , continues to decrease. Eventually, for T ≡ Tf ≈ T∗/2, (�/H)f = 1,
and the relic abundances freeze out (although, depending on Tf , the number of photons in
the co-moving volume may continue to increase until T <∼ me, further reducing the relic
baryon to photon ratio). For T < Tf , nN = nN̄ = nNf (T /Tf )

3. For temperatures even
slightly below Tf , (�/H) ≈ Hf /H = (Tf /T )

2 < 1. Thereafter, the annihilation rate
scales as n〈σv〉 ∝ T 3 (for s-wave annihilation) while the expansion rate of the Universe
scales as H ∝ T 2 (during RD epochs in the evolution), so after freeze-out (T � Tf ),
�/H ≈ T/Tf � 1. During matter-dominated (MD) epochs in the evolution of the uni-
verse, H ∝ T 3/2, so �/H ∝ T 3/2, and it is still the case that �/H � 1.

By the same argument, nuclear reactions in this universe are extremely suppressed by
the very low nucleon density. There can be no primordial nucleosynthesis in a symmetric
universe. After freeze-out, as the universe expands and cools, neutrons decay, and the
universe is left with protons (and antiprotons) and electrons (and positrons). Note that as
the protons and electrons (and antiprotons and positrons) cool and become non-relativistic,
the long-range Coulomb interaction enhances, through Sommerfeld enhancement [40], the
annihilation cross section, 〈σv〉 → 2π(α c/v)〈σv〉 ∝ T −1/2. Even so, the ratio of the
annihilation rate to the expansion rate still decreases (as T 1/2 during RD epochs and as T
during MD epochs). Recombination cannot occur in such a low-baryon-density universe.
In the absence of non-baryonic dark matter, it is unlikely that any collapsed structures (e.g.,
stars or galaxies) could form in such a low-density, ionised universe; for a more detailed
discussion, see Chapter 6. The history (and future) of a symmetric universe is very bleak.
The story barely changes if a symmetric universe contains non-baryonic dark matter. If,
for example, the presence of DM in a symmetric universe allows collapsed DM structures
to form, the relic matter and antimatter would fall into the DM potential wells, increasing
their number densities, leading to renewed annihilation, further reducing their already very
small abundances. A matter-antimatter symmetric universe simply bears no resemblance to
our Universe.

Even in an asymmetric universe, during the very early evolution of the universe, when
the temperature is very high, the equilibrium abundance of nucleons and anti-nucleons
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may be much larger than the relic abundance of nucleons in our Universe, ηB = (nN/nγ )0 ≈
6 ×10−10. These pairs will annihilate until, at some temperature, T , (nN/nγ )(gs(T )/gs0) ≈
6 × 10−10. For lower temperatures, the anti-nucleons continue to be annihilated, but the
nucleons, due to the asymmetry, are frozen out. For nucleons (protons plus neutrons),
g = 4, and their equilibrium abundance relative to photons is nN/nγ = 0.26 g x3/2e−x ≈
x3/2e−x , where x = mB/T , and prior to BBN, the average mass per baryon is mB ≈ 939
MeV [44] so that x ≈ 939/T , with T in MeV. Here, we have assumed that f (x) ≈ 1. To
find T , we need to solve (939/T )3/2exp(−939/T ) ≈ 1.5 × 10−10gs(T ). Using [24] for
gs(T ), the solution is T ≈ 38 MeV (x ≈ 25). To avoid the annihilation catastrophe in a
symmetric universe, the baryon asymmetry must have been created when T > 38 MeV
(or when T � 38 MeV). Recall that T∗ ≈ 22 MeV, so T > T∗, as expected. In the
extensions of the Standard Models of particle physics and cosmology that allow for a
baryon asymmetry at low temperatures, the energy-/temperature-/mass-scales are orders of
magnitude larger than this conservative estimate.

5.4 Particle Physics Models for Generating the Universal
Matter-Antimatter Asymmetry

It is clear from the preceding two sections that a universe containing equal abundances
of baryons and anti-baryons is not the Universe we actually observe. At some point in its
evolution, the Universe must have developed an asymmetry between matter and antimatter.
How did this asymmetry come about?

One possibility is that the Universe actually began in an asymmetric state, with more
baryons than anti-baryons. This is, however, a very unsatisfying explanation. Furthermore,
if the Universe underwent a period of inflation (i.e., very rapid expansion followed by
reheating), then any pre-existing net baryon number would have been erased. A more
natural explanation is that the Universe began in an initially symmetric state, with equal
numbers of baryons and anti-baryons, and that it evolved later to produce a net baryon
asymmetry.

As we noted in the introduction, Sakharov introduced three conditions necessary to
produce a net baryon asymmetry in a universe that began with zero net baryon number.
These Sakharov conditions form the basis of nearly all modern theories of baryogenesis, so
we will review them in more detail here. These conditions are as follows:

1. Baryon number violation. This is the most obvious component needed for baryogenesis.
If the Universe began with zero net baryon number, and baryon number were conserved,
then it would still have zero net baryon number today.

2. C and CP violation. The operator C changes particles into antiparticles and vice versa,
while CP also flips all three coordinate axes. A universe that is baryon–anti-baryon sym-
metric is unchanged when C or CP is applied, while the same is not true for a universe
with a net baryon excess. Hence, the production of a baryon asymmetry requires C and
CP violation.
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3. A departure from thermodynamic equilibrium. If baryon and C/CP were violated
while thermal equilibrium conditions prevailed, then the chemical potentials for
baryons would be driven to zero, and the only possible difference between particle
and antiparticle abundances would arise if there were a mass difference between them.
But CPT invariance implies that the masses of particles and antiparticles are the same.
Hence, Sakharov conditions 1 and 2 allow for a net baryon number to be created only
when the particles of interest are out of thermal equilibrium.

While we know the general conditions necessary to generate a baryon asymmetry from
an initially symmetric state, we are far from having a single accepted theory of baryoge-
nesis. Here we will outline some of the ideas that have been proposed over the years. For
some of the earliest work in this field, see References [10, 13, 28, 50, 53]. For reviews of
this topic, see References [11, 34].

Perhaps the simplest class of models (and one of the earliest to be investigated) involves
the decay of massive particles. Consider a particle-antiparticle, X and X̄, that has dropped
out of thermal equilibrium in the early Universe, in the sense defined in Section 5.3.2.
Suppose the X can decay into two different channels, with baryon numbers B1 and B2,
respectively, while X̄ decays into the corresponding ‘anti’-channels, with baryon numbers
−B1 and −B2, respectively. Invariance under CPT guarantees that the total decay rate for
an antiparticle must be equal to the decay rate for the corresponding particle. However,
it says nothing about individual branching ratios. So it is possible, for instance, for the
branching ratio of X into the channel with baryon number B1 (which we will take to be r)
to be different from the branching ratio of X̄ into the channel with baryon number −B1,
which we will call r̄ . The possibility of such a difference is the key idea underlying this
mechanism for baryogenesis. Note that r �= r̄ is only possible if C and CP are violated.

With the previously defined branching ratios and baryon numbers, the net baryon num-
ber produced from each pair of X and X̄ decays is

B = B1r + B2(1 − r)− B1r̄ − B2(1 − r̄),
= (B1 − B2)(r − r̄). (5.18)

Eq. (5.18) illustrates the necessity of the three Sakharov conditions. If C and CP were
not violated, we would have r = r̄ , and the right-hand side of Eq. (5.18) would be zero.
Similarly, the possibility that X can decay into two different channels with different
baryon numbers is only possible if B is not conserved; otherwise, we would have B1 =B2

and again the right-hand side of Eq. (5.18) would be zero. Finally, we assumed out-of-
equilibrium conditions in setting up this scenario; i.e., when they decay, X and X̄ are not
in equilibrium with the thermal background, either through annihilations with each other
or through inverse decays. If this were not the case, the particles produced in the X and
X̄ decays would simply assume thermal equilibrium abundances, which would yield equal
baryon and anti-baryon densities.

The scenario we have sketched out here is a toy model; for more detailed models see,
e.g., Reference [22]. Models of this sort were first advanced in connection with physics
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at the GUT (grand-unified) scale, T ∼ 1015 − 1016 GeV. However, these ideas run into
trouble if inflation is assumed to occur in the early Universe. The reason is that, as we have
noted, inflation wipes out any pre-existing baryon asymmetry, so baryogenesis must occur
after inflation, and currently favoured models of inflation do not reheat the Universe to a
temperature as high as the GUT scale.

Another possibility for baryogenesis is the Affleck-Dine mechanism [1]. This model
is motivated by supersymmetry, in which all of the particles of the Standard Model have
corresponding super-partners with opposite spin statistics (fermions are paired with bosonic
super-particles and bosons with fermionic super-partners). The Affleck-Dine mechanism
invokes a scalar field that can carry a net baryon number. The field is initially frozen at
early times but begins oscillating when the Hubble parameter drops below its mass. During
these oscillations, the scalar field acquires a net baryon number, which is transferred at later
times into Standard Model particles.

Electroweak baryogenesis [23] is based on the idea that the Universe underwent an elec-
troweak phase transition at a temperature T ∼ 100 GeV, when the Higgs field dropped into
its vacuum state, giving masses to the quarks, leptons, and gauge bosons. If the electroweak
phase transition is first order, it can temporarily drive the Universe out of thermal equilib-
rium as bubbles of the low-temperature vacuum nucleate, expand, and collide, ultimately
occupying all of space. The production of baryons occurs in this out-of-equilibrium state
near the walls of these expanding bubbles. Electroweak baryogenesis does require physics
beyond the Standard Model, as the measured Higgs boson mass implies that the phase
transition would not be first order in the Standard Model. This new physics would couple
to the Higgs boson, altering its production and decay. Thus, the viability of these models
can be tested in the laboratory.

Another proposal goes under the heading of leptogenesis [17]. These models are based
on a result by ’t Hooft [48], who showed that even in the Standard Model, baryon number
is violated by non-perturbative electroweak processes. These processes conserve B−L but
not B (the baryon number) and L (the lepton number) separately. Furthermore, while the
rates for such processes are very low at low temperatures, they can be much higher in the
early Universe. Leptogenesis, then, is the production of a net lepton asymmetry in the early
Universe – e.g., through massive particle decay as discussed before. Then non-perturbative
electroweak effects transfer some of the net lepton number into a net baryon number.

This is by no means an exhaustive list of models for baryogenesis, which remains very
much an open and active field of research. At this point, we are confident of the ingredients
required in any successful model (the Sakharov conditions), and we have a very accurate
measure of the desired outcome (the observed baryon asymmetry), but the determination
of the correct model for baryogenesis remains an ongoing effort.

5.5 The Baryon Asymmetry Parameter and Primordial Nucleosynthesis

In the Standard Model of particle physics and cosmology, the baryon asymmetry parameter
plays a key role in BBN, regulating the rates of the nuclear reactions synthesizing (and
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destroying) the nuclides heavier than hydrogen. BBN in the Standard Model (SBBN) and
in extensions of the SM when various nuclear physics and other parameters are allowed to
vary is described in Uzan’s contribution to this volume (Chapter 7). Here we are mainly
concerned with the BBN predicted primordial (prestellar) abundances of the light nuclides,
along with the CNO abundances.

5.5.1 Standard BBN

The SBBN-predicted abundances [29], the ratios by number compared to hydrogen, are
shown as a function of ηB in Figure 5.1 for a factor of 1,000 range in ηB, for the SM case
of Nν = 3. Agreement between the predicted and the observationally inferred deuterium
abundance and the Planck observations of the CMB power spectrum imply a value of
ηB ∼ 6×10−10. This value is shown by the dashed vertical line in Figure 5.1. This value of
ηB also provides good agreement with the primordial 4He abundance derived from obser-
vations. However, it predicts a primordial 7Li abundance roughly three times larger than the

Figure 5.1 The primordial abundances predicted by SBBN [29] for a large range of the present
value of the baryon to photon ratio ηB = (nB/nγ )0. For all abundances (including 4He), the ratio
to hydrogen by number is shown. The dashed vertical line indicates the current SM value of
ηB ≈ 6 × 10−10.
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observationally inferred abundance; this primordial lithium problem remains unresolved at
present (see Reference [14] for a recent review).

As seen in Figure 5.1, over this large range in the baryon asymmetry parameter, the
abundance trends are quite simple: as ηB increases, the 4He abundance increases mono-
tonically, but very slowly (∼ logarithmically); the abundances of D, 3He, and 6Li are all
monotonically decreasing, while the abundances of the CNO nuclides increase. In contrast,
the evolution of the abundance of 7Li is non-monotonic. Starting from very small values of
ηB, as ηB increases, the 7Li abundance first increases (until ηB ∼ 3×10−11), then decreases
(until ηB ∼ 3 × 10−10), and finally increases again (eventually, for even larger values of
ηB, the 7Li abundance will decrease, being replaced by CNO and heavier nuclides). As
ηB increases from 10−11 to 10−8, 4He/H increases by a factor of ∼ 4, from 4He/H ∼ 0.024
(YP ∼ 0.09) to 4He/H ∼ 0.093 (YP ∼ 0.27), and the deuterium abundance decreases
dramatically, from D/H ∼ 5 × 10−3 to D/H ∼ 3 × 10−11. Over the same range in ηB, the
3He abundance decreases more slowly, from ∼ 10−4 to ∼ 3×10−6, and the 7Li abundance
ranges from >∼ 10−10 to <∼ 10−8, while the abundance of the CNO nuclides increases from
∼ 10−18 to ∼ 10−14.

For the value of the baryon asymmetry parameter inferred for the observed Universe,
ηB ∼ 6 × 10−10, 4He/H ∼ 0.082 (YP ∼ 0.25), D/H ∼ 2.5 × 10−5, 3He/H ∼ 1.1 × 10−5,
7Li/H ∼ 5.4 × 10−10, and the abundances of all the other primordial nuclides are <∼ 10−14.
For a very wide range in the baryon asymmetry parameter, the gas that will become the
first stars in the Universe consists mainly of hydrogen and helium (4He), with only trace
amounts of any other, heavier nuclides. Note, however, that for ηB � 10−8, the primordial
abundances of the CNO and heavier nuclides may become non-negligible (see Section
5.5.2). In the absence of significant CNO (or D) abundances, it is the hydrogen and helium
content of the primordial gas that will most influence the formation, structure, and evolution
of the first stars.

5.5.2 BBN for a Larger Range of Baryon Asymmetries

In the seminal BBN paper of Wagoner, Fowler, and Hoyle (WFH) [52], and in several
follow up papers by Wagoner [51], Schramm and Wagoner [39], and Schramm [38], a
much larger range in the baryon asymmetry parameter was explored than is shown here in
Figure 5.1. In the WFH paper, a range of some 8.5 orders of magnitude was considered,
−12 <∼ log ηB <∼ −3.5, while in the other cited papers, the range is five orders of magni-
tude, −11 <∼ log ηB <∼ −6. Although the quantitative BBN yields in those papers, based
on what are now outdated nuclear and weak interaction rates (especially the much revised
neutron lifetime), should be taken with a large grain of salt, the trends of the yields with
ηB revealed in those papers are likely robust.

For example, over the entire range explored, the helium mass fraction increases (and the
hydrogen mass fraction decreases) monotonically with ηB. Over the same range in ηB, the
D and 3He mass fractions decrease monotonically, with the deuterium abundance falling
much more rapidly than the 3He abundance. The evolution of the 7Li mass fraction, X7,
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is more interesting. At the lowest baryon asymmetries, X7 increases from being negligible
at log ηB ∼ −12 to a local maximum, a hint of which may be seen in Figure 5.1, when
log ηB ∼ −10.5. Then, as ηB continues to increase, X7 decreases to a local minimum at
log ηB ∼ −9.5, as may be seen in Figure 5.1. For ηB >∼ 3 × 10−10, X7 increases to
another local maximum when log ηB ∼ −6, after which X7 decreases monotonically for
all larger values of ηB. For log ηB <∼ −8, the abundances of the CNO and heavier nuclides
are negligible. As ηB continues to increase, so, too, do the CNO abundances, surpassing the
3He and 7Li abundances for log ηB >∼ −6. However, almost as soon as the CNO nuclides
become large enough to be of possible interest, they decrease as ηB continues to increase,
being replaced by even heavier nuclides. The trend seen at the very highest values of the
baryon asymmetry parameter in the WFH paper suggests that at sufficiently high values
of ηB, the iron peak elements might be produced during primordial nucleosynthesis. It is
interesting to speculate if even larger baryon to photon ratios might lead to the r-process
elements.

As discussed in Section 5.2, in determining if the baryon asymmetry parameter is fined
tuned, we are asking if stars, planets, and life could exist in alternate universes with different
values of ηB . In this case, we need to check if the primordial abundances in alternate
universes allow for the cooling and collapse of primordial gas clouds to form the first
stars and if, in the course of evolution of those stars, the elements required for life can
be synthesised.

5.6 Relation between the Baryon Asymmetry Parameter and the
Observable Cosmological Parameters

In our present-day Universe, the parameter ηB is not a directly observable quantity. Instead,
we measure quantities such as the baryon density or the CMB temperature, from which ηB
can be inferred. In this section, we examine the relation between ηB and the observable
cosmological quantities.

In a matter-antimatter asymmetric universe such as ours, the baryon asymmetry param-
eter is related to the contribution of baryons (normal matter) to the total mass density. As a
result, the magnitude of the baryon asymmetry plays a role in the evolution of the Universe
and in the growth and evolution of structure in it. For the discussion here, it is assumed
that the Universe is, on average, homogeneous and is expanding isotropically so that its
evolution is described by the ‘Friedman equation’,(
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In Eq. (5.19), the subscript 0 indicates the present (t = t0) value of the parameters, and
H = a−1(da/dt) is the Hubble parameter, quantifying the expansion rate of the Universe,
where a = a(t) is the cosmic scale factor. The subscripts, R, B, DM, k, and � stand,
respectively, for the contributions to the total mass/energy density from ‘radiation’ – i.e.,
massless particles or particles whose total energy (rest mass plus kinetic) far exceeds
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the rest mass energy), baryons (‘normal’ or ‘ordinary’ matter), dark matter (non-baryonic
matter),8 curvature, and a cosmological constant. For simplicity, we assume here that the
observed accelerated expansion of the Universe is driven by a cosmological constant rather
than a time-varying dark-energy component. Since the mass densities of baryonic and dark
matter evolve the same way (e.g., ρ ∝ a−3), it is convenient to introduce a parameter
describing the ‘matter density’, the total mass density in non-relativistic particles, �M ≡
�B + �DM. At the present epoch (t = t0), a ‘critical density’ of the Universe may be iden-
tified, ρcrit 0 ≡ 3H 2

0 /8πG = 1.05×10−5h2 GeV cm−3, whereH0 ≡ 100h km s−1 Mpc−1

and G is Newton’s gravitational constant. Here and elsewhere, we will often set c = 1 and
express masses in energy units. The parameters�i that appear in Eq. (5.19) are the ratios of
the various contributions to the present energy densities, normalised to the present critical
density: �i ≡ (ρi/ρcrit )0.

Consider the relation between the baryon asymmetry parameter (ηB), the baryon mass
density parameter (�B), and the Hubble constant (H0). The present mass/energy density in
ordinary (baryonic) matter is ρB0 = mBnB0 = �B ρcrit 0 ≈ 1.05 × 10−5�Bh

2 GeV cm−3.
For an average mass per baryon of mB ≈ 0.938 MeV [44] 9, the present baryon number
density is nB0 ≈ 1.12 × 10−5�Bh

2 cm−3. If the present temperature of the CMB photons
is T0 (in degrees Kelvin), then the present photon number density is nγ 0 ≈ 20.3 T 3

0 cm−3,
and the present baryon-to-photon ratio is ηB ≈ 5.54 × 10−7 (�Bh

2/T 3
0 ) so that ηB ≈

5.54 × 10−7 (�Bh
2/T 3

0 ) and nB/s ≈ 7.87 × 10−8 (�Bh
2/T 3

0 ) (for three flavours of SM
neutrinos). Note that the connection between the baryon asymmetry parameter (ηB or nB/s)
and the present mass density in ordinary matter (∝ �Bh

2) depends on the present (t = t0)
value of the photon temperature (T0). If the baryon asymmetry parameter were to change
by some factor, the combination �Bh

2/T 3
0 would change by the same factor, resulting in

changes to the other universal observables (e.g., �B,h, T0), separately or in combination.
The baryon asymmetry parameter is degenerate with these other cosmological parameters.
In particular, changes in �B alone would change the expansion history of the Universe,
as may be seen from the Friedman equation. The interconnections (degeneracies) among
the cosmological observables complicate any discussion of the effect on the history and
evolution of the Universe resulting from changes to any one of them (e.g., the baryon
asymmetry parameter).

If the Friedman equation, Eq. (5.19), is evaluated at present (t = t0), when H = H0,
there is one condition on the five parameters,

1 = �R + �B + �DM + �k + �� = �R + �M + �k + ��, (5.20)

leaving four free parameters. For our observed Universe, �k � 1 and �R � 1 so that
�B + �DM + �� ≈ 1. There are still three parameters and only one constraint, leaving

8 For agreement with observations of structure formation and its growth as the Universe evolves, it is assumed that the DM is
‘cold’, in the sense that for those epochs when deviations from homogeneity occur, the DM particles are moving slowly
(v � c).

9 In the post-BBN universe, when the baryons are mainly protons and alpha particles (hydrogen and helium), the average mass
per baryon depends on the helium abundance (mass fraction, YP). For YP ≈ 0.25, mB ≈ 938.112 + 6.683
(YP − 0.250)MeV [44].
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two free parameters. By writing �M = �B + �DM, it might appear that there are only two
parameters and one constraint,�M + �� ≈ 1. However, the ratio�B/�DM remains a free
parameter, so there are still three parameters with one constraint among them.

In the next section, we will consider how the evolution of the Universe changes when ηB
differs from its observed value. While our intention is to keep all of the other cosmological
parameters constant, there remains an ambiguity in the way we treat them. Note that ηB is
a dimensionless ratio of two quantities, the baryon and photon number densities. When we
alter this quantity, we can consider two different possibilities: (1) changing nB relative to
the other cosmological parameters while leaving nγ unchanged relative to these parameters
or (2) keeping nB fixed while changing nγ relative to the other cosmological parameters.
While each of these possibilities produces a change in ηB , they differ in their treatment of
the way that nB and nγ change relative to the other cosmological quantities of interest. (Of
course, these are only the two simplest possibilities; one could consider allowing the ratios
of both nB and nγ relative to the other cosmological parameters to change, but by different
amounts, thus changing ηB as well).

Which of the two approaches spelled out in the previous paragraph is the correct one?
Absent a particular model for a different universe with a different value of ηB , it is impos-
sible to say. However, the first possibility seems to be the more natural one. If we assume
that baryogenesis is independent of the processes that led to dark matter or dark energy,
then tweaking the model for baryogenesis will alter nB by the same factor relative to all of
the other cosmological parameters of interest. This is the case we will consider in detail.

Let F be the ratio of the value of ηB in some hypothetical universe relative to its value
in our Universe; our goal will be to understand what constraints, if any, can be placed on F .
We will use a tilde to denote physical quantities in a hypothetical universe in which ηB
has changed, and quantities without a tilde will denote the corresponding values of these
quantities in our Universe, so

η̃B = FηB . (5.21)

In case (1) discussed earlier, the ratios ρB/ρDM , ρB/ρ�, and nB/nν change in proportion
to the change in ηB , while nγ /ρDM , nγ /ρ�, and nν/nγ remain the same. Thus, we have

ρ̃B/ρ̃DM = FρB/ρDM, (5.22)

ρ̃B/ρ̃� = FρB/ρ�, (5.23)

ñB /̃nν = FnB/nν . (5.24)

Of course, there are other possibilities that we will not explore here. In an alternate
universe with a late production of entropy, nB would remain unchanged while the ratio of
nγ to all of the other cosmological parameters would be altered. Alternately, if baryogenesis
were linked to the process that produced dark matter (as it is in some models), one might
consider the possibility of changing ηB while leaving ρB/ρDM fixed. Nonetheless, we feel
that the model spelled out in Eqs. (5.22)–(5.24) is the most natural way in which to modify
ηB , and this is the case we will now attempt to constrain.
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5.7 Alternate Universes with Different Baryon Asymmetry Parameters

Changing ηB alters the evolution of the Universe in two ways: it changes BBN, and it alters
the processes that give rise to structure formation and ultimately yield stars and planets. We
will consider both effects in turn.

First, consider our Universe at present. Our Universe is very well described by a�CDM
cosmological model with �k ≈ 0, �R � 1, and �B < �DM < �� (�B + �DM +
�� ≈ 1). For our observed Universe, a good approximation to the 2015 Planck CMB
observations [31] is �� ≈ 0.7, �M ≈ 0.3, �B ≈ 0.05, �DM ≈ 0.25. For a �CDM
cosmology with �� ≈ 0.7, H0t0 ≈ 0.96, so for H0 ≈ 68 km s−1 Mpc−1, t0 ≈ 13.8 Gyr.
For the present CMB temperature, the Fixsen et al. [15] result may be approximated by
T0 ≈ 2.7 K, corresponding to a CMB photon number density nγ 0 ≈ 400 cm−3 (compared
to the more accurate results, T0 = 2.7255 K and nγ 0 ≈ 411 cm−3).

5.7.1 Effect on BBN

What happens to BBN when we allow for extreme variations in ηB? As noted earlier, the
most important effect of increasing ηB is to increase the primordial 4He mass fraction at the
expense of hydrogen. One might imagine that a universe in which stellar evolution begins
with almost pure 4He might be less hospitable to life. For example, Hall et al. [21] pointed
out that in such a universe, halo cooling takes longer, stellar lifetimes are reduced, and
there is less hydrogen to support organic chemistry. (The calculations in Reference [21] are
focused on variations in the weak scale rather than the magnitude of the baryon asymme-
try). However, even extreme increases in ηB do not produce primordial 4He mass fractions
close to 100%. For example, a value of ηB as large as 10−3 (more than six orders of
magnitude larger than the observed value) yields a 4He mass fraction of only 0.4 [36].

Large values of ηB also open up the possibility of producing heavier elements in BBN.
Consider first the CNO elements. In standard BBN, these are produced in very small
amounts, with abundances relative to hydrogen of CNO/H ∼ 10−15 − 10−14 [8]. However,
the abundances of these elements are an increasing function of ηB , peaking at CNO/H
∼ 10−8 for ηB ∼ 10−5 and decreasing for larger values of ηB [52]. Even a small primordial
abundance of CNO/H could affect the evolution of the first generation of stars, as noted
in Reference [5]; this evolution begins to change when CNO/H increases above 10−11.
Nonetheless, it seems unlikely that such a change would affect the ability of the Universe to
harbour life. For ηB > 10−5, the abundance of the CNO elements begins to decrease as the
nuclei are converted into even heavier elements [36, 52]. However, even extreme increases
in the value of ηB result in only trace amounts of such heavy elements. In terms of models
that can support life, it does not appear that BBN provides a useful upper bound on ηB , and
it certainly does not provide a bound competitive with arguments from structure/galaxy/star
formation.

Now consider BBN in the limit of very low values for ηB . In this limit, the 4He
abundance becomes negligible while 2H increases, reaching a peak abundance of order
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D/H ∼ 10−2 when ηB ∼ 2×10−12. For smaller values of ηB , even the deuterium abundance
decreases as ηB is reduced, yielding – in the limit ηB → 0 – a primordial universe
consisting essentially of pure hydrogen. The reduction in primordial helium for small
values of ηB is likely to reduce the cooling of galaxies that results from the collisional
excitation of ionised helium, but this is unlikely to have a major impact [21]. On the other
hand, a significantly larger abundance of deuterium would lead to enhanced molecular
cooling through an increase in the HD abundance [26]. While interesting, this is also
unlikely to affect the prospects for a life-bearing universe.

Our conclusion, then, is that BBN provides essentially no constraints on universes with
different values of ηB . The formation of stars and planets and the development of life is
nearly completely insensitive to variations in the primordial element abundances, at least
within the ranges of ηB that we have considered here.

5.7.2 Effect on Large-Scale Structure: The Linear Regime

In the Standard Model for structure formation, small initial fluctuations in the density
are imprinted on the matter and radiation by inflation or some other process early in the
evolution of the Universe. When the Universe is radiation dominated, these fluctuations
cannot grow inside of the horizon; subhorizon fluctuations begin to grow once matter
dominates the radiation. If δρ/ρ represents the magnitude of the fluctuation in the matter
density relative to the mean matter density, then after matter domination begins, δρ/ρ grows
proportional to the scale factor a,

δρ/ρ ∝ a. (5.25)

Eq. (5.25) applies only as long as δρ/ρ � 1; in this case, the density fluctuations are said
to be in the linear regime. Once δρ/ρ > 1, the Universe enters the non-linear regime,
and the analytic solution given by Eq. (5.25) no longer applies. Numerical simulations are
necessary to evolve the density field further forward in time. In the non-linear regime, the
fluctuations in the matter density grow much more rapidly, and the dark matter ultimately
collapses into halos.

This process applies in a straightforward way only to dark matter, which is collisionless.
The baryons evolve in a more complicated way. At high temperatures (T � 103 K), the
matter is ionised, and the cross section for scattering off of photons is very high. Thus, the
baryons are frozen to the radiation background, and baryonic density perturbations cannot
grow. As the temperature drops, the electrons become bound to the protons and to the
primordial helium nuclei in a process known as recombination.10 At this point, the density
perturbations in the baryons can begin to grow along with the dark matter perturbations.
A further complication is that in the non-linear regime, the baryonic matter, unlike the dark
matter, is not pressureless and can also radiate away energy in the form of photons. Thus,
at late times, the baryons evolve very differently than the dark matter. The end result is

10 Note that this term is a bit misleading, as the electrons and atomic nuclei were never ‘combined’ to begin with.
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that the baryons ultimately bind into fairly compact disks or ellipsoids (galaxies), fragment
into stars, and form planets, while the dark matter remains in the form of diffuse halos
surrounding the galaxies.

In considering the effect of changing ηB , we must therefore consider the change in
two key parameters: the redshift of equal matter and radiation and the redshift at which
recombination occurs. However, redshifts are defined relative to the present day, so they
are not particularly useful in determining whether a modified universe can support life
because we are not restricting life to form at redshift zero as it does in our Universe. Instead,
we should examine the temperature of equal matter and radiation and the temperature of
recombination. In our Universe, the temperature of equal matter and radiation, Teq is given
in terms of the present-day temperature, T0, by Teq = T0(ρM/ργ )0. For the parameter
values given at the beginning of this section, we obtain Teq = 9,000 K. How does this
change when ηB is altered? To determine this, note that the redshift of equal matter and
radiation is given by this ratio of present-day densities:

1 + zeq =
(
ρDM + ρB
ργ + ρν

)
0

. (5.26)

Here we are ignoring the fact that the neutrinos can become non-relativistic at very late
times. Then we have

1 + z̃eq =
(
ρDM + FρB
ργ + ρν

)
0

. (5.27)

Using the values for the preceding cosmological parameters, we can trace out the effect
of F on Teq . We have ρDM/ρB ≈ 5. Thus, zeq changes little for F � 5 while, for F � 5,
we have (1 + z̃eq) = (F/5)(1 + zeq). Then we have

T̃eq ≈ Teq (F � 5), (5.28)

T̃eq ≈ F

5
Teq (F � 5). (5.29)

Now consider the effect of altering ηB on the recombination temperature Trec. While
recombination is a gradual process and does not occur suddenly at a single temperature,
for the purposes of this study, it will be sufficient to take Trec ≈ 3,000 K. The process
of recombination depends primarily on the ratio of the photon temperature to the binding
energy of hydrogen, but there is also a residual dependence on ηB . This dependence comes
about because η−1

B determines the number of photons per hydrogen atom; an increase in this
number makes it easier for photons to ionise the hydrogen, delaying recombination, while
the reverse is true if the number of photons per hydrogen atom decreases. However, the
temperature at which a given ionisation fraction is reached varies roughly logarithmically
with ηB . This is a much smaller effect than the change in Teq with ηB , so we will ignore it in
what follows and take the recombination temperature to be roughly insensitive to changes
in ηB .

Now we can investigate the effect of changing ηB on large-scale structure in the linear
regime. We will not consider any possible changes in the magnitude of the primordial
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density fluctuations; we will assume that these are unaltered. We see that neither of the
parameters affecting large-scale structure are modified if F � 1, so the process of structure
formation, at least in the linear regime, proceeds in the same way as in our Universe. The
density of baryons relative to dark matter will be much lower, leading to fewer galaxies per
dark matter halo, but this by itself does not seem to be a barrier to the formation of stars
and planets. In the opposite limit (F � 1), the Universe will be become matter dominated
early on, but baryonic structure formation will not occur until the temperature drops down
to Trec, which is essentially unchanged from its current value. So in this case, too, we expect
little change to the process of structure formation.

5.7.3 Effect on Large-Scale Structure: The Non-linear Regime

Linear perturbation growth allows density perturbations to grow until δρ/ρ ∼ 1, but it is
the subsequent non-linear perturbation growth that directly produces galaxies, stars, and
planets. Unfortunately, non-linear perturbation growth is more difficult to characterise for
two reasons. First, it cannot be solved analytically and requires quite detailed numerical
simulations. Second, non-linear baryonic physics is quite a bit more complex than the
behaviour of collisionless dark matter and can be difficult to simulate, even numerically.
In the absence of large-scale computer simulations of alternate universes with different
values of ηB , the limits discussed here should be treated with some skepticism.

Tegmark et al. [49] have examined systematically the effects on structure formation of
altering the baryon-to–dark matter density ratio, which, by assumption, is the same as the
change in the baryon-to-photon ratio. Consider first the lower bound on�B/�M . Tegmark
et al. argued that one can derive a lower bound based on the requirement that the collapsing
baryon discs be able to fragment and form stars. If the baryon-to–dark matter ratio becomes
too small, then the baryonic matter is insufficiently self-gravitating to allow fragmentation
to occur. The limit derived in Reference [49] is �B/�M >∼ 1/300, which corresponds to
the lower bound, η̃B > 1 × 10−11.

In the absence of detailed numerical simulations, this bound should be treated with cau-
tion. More conservative lower bounds on ηB were derived by Rahvar [32]. Star formation
is significantly suppressed at very low ηB simply because there are not enough baryons
around to form stars. The requirement that at least one star forms per galactic-sized halo
mass gives η̃B > 10−22. One can be even more conservative and require at least one star in
the observable Universe; this requires η̃B > 10−34 [32].

Tegmark et al. also derived an upper bound on η̃B from Silk damping (also called
diffusion damping). Silk damping arises near the epoch of recombination from the diffusion
of photons out of over-dense (hotter) regions near the epoch of recombination. As the
photons diffuse, they scatter off of charged particles and drag the baryons along with them,
which tends to erase the baryonic density perturbations. Tegmark et al. argue that if the
dark matter density were lower than the baryon density at recombination, Silk damping
would tend to erase all fluctuations on galaxy-sized scales. Thus, they derive the limit [49]
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�B/�DM <∼ 1, corresponding to ηB < 3 × 10−9. Again, this limit should be treated with
some caution; before the discovery of dark matter, cosmologists did not consider purely
baryonic models to be ruled out by an absence of structure formation!

In summary, our results in this section do not point toward significant fine-tuning of the
baryon asymmetry parameter, ηB . Element production in the early Universe provides essen-
tially no limits on changes to ηB from the point of view of the habitability of the Universe,
while limits from structure formation are either very weak, very speculative, or both.

5.8 Summary and Conclusions

For a dimensionless physical parameter such as the baryon asymmetry parameter, ηB, that
could take on any value from −∞ to +∞ (or, allowing for a swap in the definition of matter
and antimatter, from 0 to ∞), zero might seem to be the most natural choice. However, the
value of ηB = 0 corresponds to a symmetric universe, a universe with equal amounts of
matter (baryons) and antimatter (anti-baryons), which is inconsistent with what we actually
observe. An overview of the problem was provided in Section 5.1, where ηB was defined
and its relation to the baryon-to-entropy ratio was discussed. To address the question of
whether a non-zero value for ηB is or is not, fine-tuned, some ground rules are required.
These were outlined in Section 5.2. We evaluate fine-tuning in terms of the ability of the
Universe to produce stars, planets, and, ultimately, life. As reviewed in Section 5.3, our
Universe cannot be symmetric; observations strongly indicate that ηB �= 0.

An overview of the models that have been proposed to account for ηB �= 0 was offered
in Section 5.4. The variety of models in the literature suggests that virtually any value of
ηB, including the other ‘natural’ value of ηB ≈ O(1), could be ‘predicted’. The observa-
tions most sensitive to ηB are the abundances of the elements produced during BBN. The
dependence of BBN on ηB was reviewed in Section 5.5, revealing that while the precise
abundances vary significantly with ηB, over a very large range in ηB, only hydrogen and
helium (4He) emerge from the early evolution of the Universe with significant abundances.
The connection between ηB and a variety of other cosmological parameters was discussed
in Section 5.6, and the effect of changing ηB on the evolution of the Universe was examined
in Section 5.7. While large changes in ηB affect both primordial element production and
the formation of galaxies and stars, it is only the latter that allows us to suggest limits
on the allowed range for ηB . Our results indicate that universes with values of the baryon
asymmetry parameter that differ significantly from our own can form galaxies and stars
(whose evolution can produce the heavy elements necessary for life) and planets, capable
of hosting life. Thus, the value of ηB can be varied by many orders of magnitude with-
out strongly affecting the habitability of the Universe, a result that is not suggestive of
fine-tuning.

It is likely that our Universe began with no baryon asymmetry (equal amounts of matter
and antimatter), so that the initial baryon asymmetry parameter had its ‘natural’ value of
zero. For a universe like our own, conservation of baryon number, an exact symmetry at
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very high temperatures, needed to be violated at some mass-/energy-scale in the very early
Universe. Processes such as those described in Section 5.4, which must include baryon
number non-conservation, resulted in the baryon asymmetry observed in our Universe and
in those alternate universes discussed here. However, the baryon non-conservation required
at high-mass/-energy scales might also lead to non-zero (even if exponentially suppressed)
baryon non-conservation at very late times in the evolution of the Universe. If this were the
case, then, eventually, in a universe that lives long enough, protons might decay (diamonds
are not forever!), so the baryon number of the Universe (as well as the lepton number)
would revert back to its natural value of zero. Ashes to ashes, dust to dust.
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Structure Formation

a d r i a n n e s ly z

Abstract

In this chapter, I will describe how the galaxies populating the present-day Universe are
believed to have originated from extremely small fluctuations in baryons, dark matter, and
radiation in the early Universe. I will very briefly outline the currently favoured explanation
as to the origin of these fluctuations before discussing their growth and evolution via linear
perturbation theory. Finally, to complete the picture, I will sketch how the virialised dark
matter halos hosting the galaxies we observe emerged from the cosmological density field,
by combining linear theory and a simplified spherically symmetric model to follow the
evolution of these perturbations once they have detached from the Universe’s expansion
and entered the non-linear regime.

6.1 The Emergence of Structure in the Universe

6.1.1 Introduction

Maps of the positions of galaxies in the sky reveal a complex, inhomogeneous distribution.
Galaxies are organised in what is called a cosmic web, characterised by sheets, filaments,
and voids (see Figure 6.1). The largest among the hierarchy of over-dense structures seen in
such cosmic maps are superclusters containing one or more clusters of galaxies undergoing
collapse under their own self-gravity. On the opposite end are voids, the most under-dense
regions of the Universe. The development of this inhomogeneous matter distribution is
called structure formation.

In the framework of the standard cosmological model, we possess a remarkably suc-
cessful theory for the formation of the observed large-scale structures in the Universe.
According to the Big Bang model, the Universe emerged from an initially singular state
of infinite density, from which space progressively expanded. This theory is underpinned
by three main pieces of observational evidence. First, support for an expanding universe
came in 1930 when astronomer Edwin Hubble discovered that galaxies move away from
each other at a speed proportional to the distance separating them. Second, the theory of
primordial nucleosynthesis stemming from the thermal history of the Big Bang predicts a
universal helium abundance consistent with the measured one (about 25% in mass). Finally,
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Figure 6.1 Spatial distribution of galaxies with stellar masses in excess of 2 × 1010M� in the
Horizon-AGN simulated Universe between redshifts 0 (bottom-left corner of the image) and 1 (top-
right corner of the image); see www.horizon-simulation.org for detail. The observer, looking to the
right and located at the apex of the bottom-most wedge, thus, sees the left hand side of the wedge
situated immediately above when the bottommost wedge ends on the right-hand side and so on and
so forth, all the way to the end of the uppermost wedge. In other words, the image represents the
projection of a unique wedge which subtends a 2 square degree angle on the sky (about 10 times the
area covered by the Moon as seen from Earth). Note how the galaxies are not distributed at random
but organised in a cosmic web.

http://www.horizon-simulation.org
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the uniform and isotropic black-body radiation prophesied to permeate the entire sky was
detected by Penzias and Wilson in 1964, lending further support to the high densities and
temperatures reigning in the primordial Universe.

This extreme isotropy and homogeneity of the microwave background radiation imme-
diately raises a puzzle concerning the formation of galaxies. How can galaxies populating
the present-day Universe originate from such a ball of incredibly smooth cosmic fire? The
answer to this question is believed to rest with the theory of inflation, a very brief phase
of exponential expansion of space itself, which occurred immediately after the Big Bang.
During this phase, quantum fluctuations in density were stretched to macroscopic scales,
while the observable Universe maintained a constant size. However, even though inflation
extended these quantum fluctuations to sizes larger than the cosmological horizon, their
amplitude, as imprinted in the black-body spectrum of the cosmic microwave background
radiation remained very weak, at a level of only 1 part in 105. Following inflation, gravita-
tional instability is thus invoked to amplify primordial fluctuations.

Detailed analysis of the cosmic microwave background radiation rules out structure
formation in a universe dominated by baryonic matter because the time required for gravita-
tional instability to magnify the density contrasts to present-day values from the weak level
of anisotropies at the moment of photon-matter decoupling is too large. In contrast, should
matter exist which interacts only weakly with photons, it could decouple at an earlier epoch
and could thereby accelerate the later growth of baryonic fluctuations, up to the level of the
characteristic density contrast of galaxies.

There are other observational reasons which suggest that a more exotic form of matter
dominates the matter density of the Universe. For example, the rotation curves of galax-
ies remain flat beyond the distances where visible matter can be detected. The mass of
clusters of galaxies, deduced from dynamical measurements or gravitational lensing, is
higher than their luminous mass comprised of galaxies and hot gas. From the point of
view of structure formation, the different possibilities for the nature of this dark matter
can roughly be divided into three categories which depend on particle mass. Cold dark
matter is characterised by particles with masses ∼ 1 GeV or greater, warm dark matter has
intermediate mass particles with masses between ∼ 100 eV and ∼ 100 MeV, and hot dark
matter is composed of light, ultra-relativistic particles with masses smaller than 1 eV. The
common characteristic of all these particles is that they interact very weakly with the rest
of matter.

The nature of dark matter constitutes a very active research subject and is discussed in
Chapter 9.

6.1.2 Dynamics of the Universe

The story of structure formation begins from the moment when Einstein’s equations
become a valid description of the Universe – i.e. a little after the Planck time, a few
10−43 seconds after the birth of the Universe. From this moment onwards, it is possible
to describe the dynamical evolution of the Universe with the laws of physics as we know
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them. In the first instance, we will treat the distribution of matter in the Universe as
completely homogeneous and isotropic. Inhomogeneities will be treated as deviations
from this smooth, primordial state. We will also assume that only gravity dominates the
dynamics of the Universe on large scales. This model of the Universe, the simplest one can
imagine, is called the Friedmann model.

As the geometrical properties of the Universe are determined by the matter distribution
according to Einstein’s equations, it follows that no direction (isotropy), and no point in
space (homogeneity) are privileged. In this case, one can show (see, e.g., [14]) that the most
general space-time metric describing the Universe is given by the Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) metric:

ds2 = gμνdxμdxν = dt2 − a2(t)

[
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (6.1)

where g is the metric tensor, a(t) is the scale factor of the Universe, which only depends
on time t and is chosen to be a(t0) ≡ a0 = 1 at the present time, and k is the spatial
curvature at the present epoch, equal to 0 for a flat universe, positive for a closed universe,
and negative for an open universe. We also take the speed of light in vacuum to be c = 1
and r , θ and φ define a (spherical) coordinate system co-moving with the expansion of the
Universe.

The same general considerations of isotropy and homogeneity allow us to jump into
the co-moving coordinate frame where the matter (understood here in the general sense
of the term – i.e., including all components such as radiation, baryons, and dark matter)
assumed to be filling the Universe is at rest. In analogy with an ideal fluid in thermodynamic
equilibrium, we can write its energy-momentum tensor T in the form

Tμν = diag(ρ̄(t),p̄(t),p̄(t),p̄(t)), (6.2)

where p̄(t) and ρ̄(t) are the total average pressure and energy density of the multicom-
ponent fluid respectively and are related to one another by an effective equation of state
p̄ = p̄(ρ̄).

Finally, one uses Einstein’s field equations to relate the metric tensor to the energy-
momentum tensor and to thereby describe the influence of matter on space-time and vice
versa:

Rμν − 1

2
gμνR = 8πGTμν +�gμν, (6.3)

where R and R are functions of g and its first and second derivatives with respect to
the coordinates, G is the (Newtonian) gravitational constant and � is the cosmological
constant. Given our previously stated assumptions of homogeneity and isotropy for the
Universe, these field equations simplify to yield the Friedmann-Lemaı̂tre equations:1

1 To make the notation more compact, we stop writing explicit time dependence for the physical quantities when there is no
ambiguity.
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d2a

dt2
= −4πGa

3
(ρ̄ + 3p̄)+ �a

3
(6.4)

d(ρ̄a3)

dt
= −p̄ da3

dt
, (6.5)

where the spatial curvature k is present as a constant of integration for the second equation.
The first equation states that both the energy density and the pressure cause the expansion
rate of the Universe to decrease while the cosmological constant causes the expansion rate
to increase. The second equation is a statement of energy conservation and can also be
derived by considering an adiabatically expanding universe. Together with the equation
of state, these two equations form a closed system, completely describing the dynamical
evolution of an homogeneous and isotropic universe.

6.1.3 The Generation of Density Fluctuations

Having established the dynamical equations of a homogeneous and isotropic universe,
the question arises of how to explain the mechanism that generates the inhomogeneities
that give rise to the structures seen today. Historically, two theories were put forward for
producing these inhomogeneities: inflation and topological defects. However, topological
defects have difficulties explaining the power spectrum of the cosmic microwave back-
ground anisotropies as well as the existence of massive filaments, walls, and voids seen
in redshift surveys on their own (see, e.g., [13]). Hence, we will focus on (very) briefly
describing the basic principle behind inflation generated fluctuations.

From the perspective of structure formation by gravitational instability, the major prob-
lem that needs to be circumvented is the following: adopting standard values for the cos-
mological parameters, a fluctuation enclosing a galaxy as massive as our own Milky Way
typically has a co-moving size ≈ 1 Mpc, which is larger than the causal distance – called the
particle or cosmological horizon – that a photon can cover in ≈ 0.3 years from the original
Big Bang. How, then, can a physical process possibly engender a coherent fluctuation on
this scale in the primordial2 Universe?

Inflation, in its many different guises, resolves this issue by postulating that when the
Universe reaches the temperature of T ∼ 1014 GeV corresponding to the energy scale
above which strong and electroweak forces are unified, a scalar field called the inflaton3

undergoes a transition between two vacuum states, during which the energy density of
the Universe – and, therefore, its expansion rate H ≡ 1

a
da
dt – remains nearly constant.

This leads to an exponential growth phase during which the proper (by opposition to
co-moving) Hubble radius,4 rH ≡ c/H , hardly changes. Points in space move apart faster

2 Understood as the epoch where the age of the Universe is less than 0.3 years in this case.
3 For the sake of completeness we note that inflation models with multiple scalar fields are also possible, but their dynamics

generally exacerbate the fine-tuning problem, as they are more sensitive to initial conditions and couplings than single field
inflation (see, e.g., [6] and references therein)

4 Cosmologists use this scale because it defines a sphere containing all particles moving away from a given observer located at
the centre with a relative velocity slower than the speed of light. Although it is not the particle horizon which truly defines the
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than the speed of light so that by the end of inflation, any patch of the Universe is much
larger than rH . Perturbations can thus be generated by physical processes when they are
within the causal sphere but then expand exponentially during inflation acquiring a size
greater than rH . In this way, perturbations are frozen until the end of the inflationary phase.
Then, growing more slowly than rH in the post-inflation Universe dominated by radiation,
perturbations progressively re-enter the observable Universe.5 For perturbations enclosing
the typical galaxy mass, this re-entry corresponds to a time of ≈ 0.3 years after the Big
Bang or an expansion factor a ≈ 10−6. We refer the reader to Chapter 4 for a detailed
discussion of the fine-tuning issues related to the existence of such a rapid expansion phase,
but note that they entail that the inflaton field must slowly roll down its potential if an
inflationary phase is to occur; i.e., the potential must be flat and the mass of the inflaton
small (see, e.g., [15], pp. 42–43).

In summary, if inflation is to be believed, the seed perturbations for structure formation
are quantum fluctuations of a scalar field. Despite the facts that the theoretical calculations
of the perturbations generated by quantum fluctuations are technically arduous and not
completely conceptually understood and that many variants of inflation have been devised,
they are typically predicted to be adiabatic and follow Gaussian statistics to a high level of
accuracy. Thus, they are entirely specified by their power spectrum (Fourier transform of
the density field autocorrelation function). This power spectrum, P , in turn, is predicted to
be close to scale invariant; i.e.,

4πk3P(k,tbis) ≡ 4πk3
〈
|δ(k,tbis)|2

〉
≈ constant ≈ δ2

inf, (6.6)

where k is the wave vector of the perturbation in Fourier space which corresponds to
the wavelength equal to rH at time tbis when it re-enters (hence the subscript ‘bis’) the
observable Universe, k is its amplitude, δ is the density contrast of the perturbation, 〈〉
denotes an ensemble average, and δinf is the (scale-independent) amplitude of the pertur-
bations produced by inflation. We will come back to the evolution of the power spectrum
in more detail later and, in particular, why P is only scale independent before perturba-
tions re-enter the observable Universe but emphasise that there does not exist, as yet, a
satisfactory prediction for the value of the constant in Eq. (6.6). The amplitude of density
perturbations is only measured in the cosmic microwave background (CMB) to be around
a few ×10−5. Some authors have argued, based on variants of inflationary cosmology, that
this measured amplitude should be construed as a possible value amongst a very large
ensemble of potentially vastly different ones, each associated with a different causally
disconnected ‘universe’. In that case, the fine-tuning question needs to be reformulated in
terms of Bayesian probabilities which take into account anthropic selection effects: how

observable Universe at a given epoch, one can view it as an ‘instantaneous’ horizon: a particle located outside of the Hubble
sphere cannot be in causal contact with the observer at this instant, although it may have been in the past, and may well be in
the future. This is why it makes sense to compare the size of the perturbations to this length-scale at a specific moment in time.

5 As we will see in more detail, in the post-inflation phase, during the radiation-dominated era, rH and the proper particle
horizon are identical (= 2ct), so we can use them interchangeably, and in the matter dominated-era, the proper particle horizon
(= 3ct) is only a factor 2 larger. They only wildly differ during the inflation-like �-dominated era.
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likely is the observed value, given that we observe it? This is explored in some detail
in [15] (and references therein), which concludes that the anthropic selection function
plausibly peaks around the observed value, as values diverging from the observed one by
an order of magnitude on either side already lead to radiative cooling efficiencies which
radically alter structure formation and, as such, drastically reduce our chances of observing
the fluctuations.

6.2 The Early Stages of Evolution: Linear Regime

6.2.1 The Linear Growth Phase

Along the lines we followed for the homogeneous and isotropic case, we will model the
perturbed matter in the expanding Universe as an ideal, non-relativistic fluid evolving under
Newtonian gravity (as done in, e.g., [9]), as this essentially yields the correct dynamical
evolution (i.e., that obtained using General Relativity, see, e.g., [8]) provided we only
consider perturbations on scales that are small compared to rH . At the epoch when this
matter is the dominant constituent, the first equation describing its behaviour is

∂ρ

∂t
+ ∂(ρu)

∂r
= 0, (6.7)

where r is the position vector of a fluid element in physical coordinates and ρ and u
are its corresponding density and velocity vector respectively. This equation is called the
conservation of mass (or continuity) equation. The second fluid equation

∂u
∂t

+
(

u · ∂
∂r

)
u = − 1

ρ

∂p

∂r
− ∂�

∂r
(6.8)

is the Euler equation. The last equation, namely the Poisson equation for the gravitational
potential � is (

∂

∂r

)2

� = 4πGρ −�. (6.9)

One can rewrite these equations in terms of the co-moving coordinates previously intro-
duced for the homogeneous and isotropic Universe – i.e., coordinates such that x = r/a(t).
The velocity u can be expressed as u = da

dt x + v in this case, where the da
dt x term is called

the Hubble flow and v is the peculiar velocity of a fluid element – i.e., its velocity relative
to the Hubble flow. Using these co-moving coordinates, the fluid equations become:6

∂ρ

∂t
+ 3

a

da

dt
ρ + 1

a

∂(ρv)
∂x

= 0 (6.10)

6 Note that the partial derivatives with respect to time in these equations are taken at fixed x instead of fixed r, using the relation(
∂
∂t

)
r

=
(
∂
∂t

)
x

− 1
a

da
dt

(
x · ∂
∂x

)
.



210 Adrianne Slyz

∂v
∂t

+ 1

a

(
v · ∂
∂x

)
v + 1

a

da

dt
v = − 1

ρa

∂p

∂x
− 1

a

∂�′

∂x
(6.11)

(
1

a

∂

∂x

)2

�′ = 4πGρ −�+ 3

a

d2a

dt2
, (6.12)

where we have split the gravitational potential in two, writing � = �′ − a
2

d2a

dt2
x2 to

somewhat simplify the form of the Euler equation.7

As we wish to describe all the physical quantities appearing in the dynamical evolu-
tion equations as perturbations imprinted on the homogeneous and isotropic background
Universe previously discussed, we introduce the density contrast of the perturbations, δ, in
these equations, by recasting the density as ρ(x,t) ≡ ρ̄(t)(1+δ(x,t)). Note that the velocity
u and the gravitational potential � have already undergone a similar procedure, as v is the
deviation from the velocity of the homogeneous and isotropic background component by

definition and �′ is the perturbed part of the term − a
2

d2a

dt2
x2, which we can identify with

the gravitational potential of this very same background.
If perturbations in all the physical quantities are small compared to their corresponding

background values – i.e., δ � 1, v2(te/d)
2 � 1 and �′(te/d2)2/ρ̄ � 1, where d is the

coherence length of the spatial variation of δ and te is the expansion time ∼ (Gρ̄)− 1
2 – we

can linearise the evolution equations (that is to say, only keep the terms where the small
perturbations appear at first order) to obtain

∂δ

∂t
+ 1

a

∂v
∂x

= 0 (6.13)

∂v
∂t

+ 1

a

da

dt
v = −c

2
s

a

∂δ

∂x
− 1

a

∂�′

∂x
(6.14)

(
∂

∂x

)2

�′ = 4πGρ̄a2δ, (6.15)

where we have used Eqs. 6.4 and 6.5 (dropping the p̄ terms as the fluid is assumed to be
non-relativistic), which govern the evolution of the homogeneous and isotropic Universe, to
get rid of the background zeroth order terms and defined the sound speed in the polytropic8

fluid as c2
s ≡ dp/dρ.

Taking the gradient of Eq. (6.14), and substituting v using Eq. 6.13 and�′ using Eq. 6.15
in it, we obtain the following second-order differential equation for the density contrast

∂2δ

∂t2
+ 2

a

da

dt

∂δ

∂t
= 4πGρ̄δ + c2

s

a2

(
∂

∂x

)2

δ, (6.16)

7 We are allowed to do that as the second term only introduces a total time derivative in the Poisson equation, which does not
change the action.

8 By imposing a polytropic equation of state for the fluid, we force the perturbations to be adiabatic – i.e., we neglect entropy
perturbations.
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which fully describes the growth of density perturbations, in the regime where they remain
small compared to the background density. Before discussing the solutions to this equation,
we describe it qualitatively. Recalling that the Hubble expansion rate is H ≡ 1

a
da
dt , the

second term on the left-hand side can be expressed as 2H ∂δ
∂t

. Called the ‘Hubble drag’
term, this term captures how the expansion of the Universe suppresses perturbation growth.
The terms on the right-hand side, in contrast, determine how gravity enhances and spatial
gradients influence perturbation growth.

The evolution equation for the density contrast is more easily solved by decomposing
δ(x,t) into a set of Fourier modes:

δ(x,t) =
∑
k

δ(k,t)eik·x =
∑
k

δk(t)e
ik·x. (6.17)

The amplitude of each Fourier mode then obeys the equation

d2δk

dt2
+ 2H

dδk
dt

=
(

4πGρ̄ − c2
s k

2

a2

)
δk, (6.18)

as, in the linear regime, we do not have to worry about coupling between the different
modes: each Fourier mode δk evolves independently.

Now, because the Universe is composed of radiation (photons, neutrinos), different
matter components (baryons, collisionless dark matter), and dark energy (cosmological
constant), which dominate at different epochs of the Universe evolution, solutions for the
growth of the Fourier modes depend on the cosmological model, the equation of state for
the different components, and the epoch considered.

6.2.2 Perturbations in a Matter-Dominated Universe

Let us start by looking at a simple universe mainly composed of ordinary matter – i.e.,
baryons (by opposition to pressureless dark matter). At first, this may seem like a gross
oversimplification, but it constitutes an extremely useful example to understand key fea-
tures of perturbation growth. Moreover, matter (cold dark matter plus baryons in that case)
dominates the energy density throughout most of the evolution of the Universe. Arguably
the easiest way to see this last point is to plug Eq. (6.5) into Eq. (6.4), multiply the result
by 2da/dt , and integrate it w.r.t. time to the present day, explicitly breaking up the energy
density ρ̄ into its total matter and radiation components ρ̄m and ρ̄γ in the process. This
yields the following equation for the evolution of the expansion rate of the homogeneous
and isotropic Universe:

H 2 = H 2
0

(
�γ,0 a

−4 +�m,0 a−3 +��,0
)
, (6.19)

where we have omitted the curvature contribution, since the Universe is measured to be flat
to a high level of accuracy, and introduced the dimensionless parameters �γ = ρ̄γ /ρc,
�m = ρ̄m/ρc, �� = ρ̄�/ρc, with the critical density ρc = 3H 2/(8πG) and ρ̄� =
�/(8πG). Given the present-day values of �γ,0 � 9.4 × 10−5, �m,0 � 0.31, and ��,0 �
0.69 (taken from [10]), and given that Eq. (6.19) constrains their sum to remain equal to 1 at
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all times, one easily sees that we switch from a cosmological constant dominated expansion
rate at the present epoch to one dominated by matter at a�eq = (�m,0/��,0)1/3 � 0.77 –
i.e., a redshift z�eq ≡ a0/a�eq − 1 � 0.3 – and then to a radiation dominated one at
aeq = �γ,0/�m,0 = 3 × 10−4 – i.e., zeq � 3,300. Overall, the Universe is thus matter
dominated for more than 10 billion years out of a total age of 13.8 billion years.

Going back to our fully baryonic Universe, a solution to Eq. (6.18) depends on the sign
of the right-hand side. It is positive and leads to growing perturbations only if wave numbers
satisfy the criterion

k < kJ = 2
√
πGρ̄

cs
(6.20)

or, in terms of wavelength, if the wavelength, λ, of a perturbation is greater than a critical
wavelength, λJ , called the Jeans length

λJ = 2π

kJ
= cs

√
π

Gρ̄
. (6.21)

Physically, the Jeans length encapsulates the battle between gravity and pressure. Com-
pressing a parcel of baryons adiabatically will cause its density and temperature to rise,
creating an overpressured region relative to its surroundings. If the self-gravity of the per-
turbation is weak, then pressure will iron out gradients, thereby suppressing the growth of
perturbations, leaving them to oscillate as acoustic waves. Only if self-gravity overwhelms
pressure will the perturbation grow.

Since perturbations smaller than λJ do not grow, we consider solutions to Eq. (6.18)
in the long-wavelength, gravity-dominated limit (i.e., k → 0), in which case this equation
becomes9

d2δk

dt2
+ 2H

dδk
dt

= 4πGρ̄δk. (6.22)

As previously discussed, a good approximation at 0.3 < z < 3,300 is that �m = 1, in
which case ρ̄ = ρc, and Eq. (6.22) becomes

d2δk

dt2
+ 2H

dδk
dt

= 3

2
H 2δk. (6.23)

In a non-expanding universe with a = 1, H = 0, the solutions to Eq. (6.22) would grow
exponentially. The ‘Hubble drag’ term causes them to grow more slowly in a manner well
approximated by a power-law δk ∝ tn, where the power law index depends on cosmology,
epoch, and equation of state. The solution to Eq. (6.23) in our �m = 1 Einstein–de Sitter

cosmology, whereH = 2
3t , is a linear combination of a simple growing modeD+ ∝ t 2

3 ∝ a
and a decaying modeD− ∝ t−1 ∝ a−3/2. Since we are interested in forming cosmological
structures, we will focus our attention on the growing mode and ignore the decaying part.

In general, for other cosmological models (�m �= 1,�� �= 0), expressions for the
growing mode are more complicated (not analytic) and usually expressed in terms of a

9 Note that since we neglect pressure, this equation also applies to dark matter.
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linear growth factor g(z) ≡ D+(z) × (1 + z). An approximation for the linear growth
factor is given by, e.g., [4] as

g(z) ≈ 5

2
�m

[
�

4
7
m −�� +

(
1 + �m

2

)(
1 + ��

70

)]−1

. (6.24)

Perturbations in an open universe or in a universe with a non-zero cosmological constant
grow even more slowly than in an Einstein–de Sitter universe because the expansion rate is
larger, leading to a stronger Hubble drag.

Taking the Einstein–de Sitter growth rates as an upper limit for the growth rates of
perturbations in a matter-dominated universe, one sees a compelling argument against the
case of a universe composed mainly of baryons. Given that CMB observations show that
the amplitude of the baryonic perturbations at redshift ∼ 1,000 are a few 10−5, they will
have grown by, at most, a factor of 1,000 by redshift 0 according to linear theory, as D+ ∝
(1 + z)−1, which brings their amplitude only as high as a few percent, still safely in the
regime where our linear solution is valid and far from the δk ∼ 1 level at which non-linear
evolution should take over and form the galaxies we observe today.

A resolution to this puzzle is to invoke dark matter. Because dark matter interacts with
radiation only gravitationally, rather than through the scattering processes which affect
baryons, larger-amplitude perturbations in the dark matter at high redshifts can be achieved
without changing the CMB power spectrum. Larger dark matter perturbations at earlier
times allow them to reach larger amplitudes at later times and provide gravitational poten-
tial wells for baryons to fall into, thus accelerating the growth of baryonic perturbations.
We will now discuss in detail how this proceeds.

6.2.3 Perturbations in a Radiation-Dominated Universe

Given that the seed perturbations for structure formation are believed to originate during
the inflationary epoch, re-entering the observed Universe around z∼ 106 for the small-
est of them – i.e., galaxy-sized fluctuations – their early growth phase occurs during the
radiation-dominated epoch of the Universe at z > 3,300. The fluid equations we derived
for the evolution of the density perturbations were based on a non-relativistic, Newtonian
approach. In principle, to describe perturbation growth during the radiation-dominated
epoch, we should solve for the evolution of a photon-baryon fluid using a full relativistic
treatment for the fluid in a perturbed space-time metric. In practice, we can get a good
sense of the physics using the Newtonian treatment, provided we consider fluctuations in
the dark matter fluid only and approximate the photon-baryon fluid as a smooth background
dominant component which only affects the expansion rate of the Universe,10 that is to say,
we write11: ρ = ρ̄m(1 + δ)+ ρ̄γ .

10 This approach only works to describe density fluctuations – i.e., if we are not interested in describing CMB anisotropies.
11 Technically speaking, to be consistent with our notations, the baryon density, ρb , should be removed from the matter density

– i.e., ρm should become ρm − ρb – and added to the energy density of the photons ργ . However, since ρb � ρm at all times,
and ρm < ργ before matter radiation equality (but δ = δm > δγ , as perturbations in the dark matter do not oscillate), we
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The validity of such an approximation during the radiation dominated era can be under-
stood by calculating the Jeans length for the tightly coupled photon-baryon fluid. Using the
(adiabatic) sound speed cs = √

dp/dρ = c/
√

3 since p = ρc2/3 for a relativistic fluid,
this gives

λJ = c
√
π

3Gρ̄
. (6.25)

Comparing it to the Hubble radius rH ≡ c/H , Eq. (6.19) for H yields a ratio of λJ /rH =√
8π2/9 � 3. Therefore, the Jeans length during the radiation-dominated era is on the

order of three times larger than the Hubble radius, meaning that perturbations in the
photon-baryon fluid, δγ , smaller than the horizon scale are suppressed, hence the ‘smooth’
approximation.

As for the dark matter perturbations since they are pressureless (pm � 0), their growth
is governed by an evolution equation similar to Eq. (6.22) in the radiation era,

d2δk

dt2
+ 2H

dδk
dt

= 4πGρ̄mδk, (6.26)

but where the density ρ̄ in the term on the right-hand side has been replaced by ρ̄m. The
first Friedmann equation (6.4), however, becomes

1

a

d2a

dt2
= −4πG

3
(ρ̄m + 2ρ̄γ ) = −4πG

3
ρ̄γ (2 + y) = − 2 + y

2(1 + y)H
2 (6.27)

where we have introduced the new variable y = ρ̄m/ρ̄γ = a/aeq. Noticing that dy/dt =
yH and using Eq. (6.27), one can rewrite Eq. (6.26) as

d2δk

dy2
+ (2 + 3y)

2y(1 + y)
dδk
dy

= 3

2

δk

y(1 + y), (6.28)

for which the growing mode solution is D+ ∝ 1 + 3y/2 ∝ 1 + 3a/(2aeq), resulting
in a constant value for δ during the radiation dominated era (y � 1, or a � aeq) –
i.e., the perturbations stagnate. Only around the epoch when matter begins to significantly
contribute to the energy density (a ≈ aeq) and later, when y ≥ 1 and matter dominates,
do they transition smoothly to a growth proportional to the expansion factors characteristic
of an Einstein–de Sitter universe. This stagnation during the radiation dominated epoch is
called the Mészáros effect.

To summarise, during the radiation-dominated era, neither radiation, baryon, nor dark
matter perturbations on subhorizon scales grow. The expansion rate of the Universe driven
by ρ̄γ is much faster than the growth rate of any perturbation on subhorizon scales, effec-
tively freezing the amplitudes of the subhorizon perturbations in all components. However,
contrarily to the baryons, which remain coupled to the photons until recombination, the

neglect the baryons altogether for simplicity. Note that as long as their free-streaming length remains shorter than the
wavelengths of interest, we could include neutrinos in the smooth radiation background, as they can then be treated as a fluid.
Finally, we have also neglected the (smooth) dark-energy density, as we know that ρ� � ρm already at the start of the
matter-dominated epoch.
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perturbations in the dark matter begin to grow from matter-radiation equality onwards.
This head start of dark matter fluctuation growth might appear insignificant in the grand
scheme of things, but it is a dramatic example of the consequences of fine-tuning: reverse
the baryon-to–dark matter ratio, or simply make it larger, and this early growth phase is
suppressed. As a result, the growth of baryonic fluctuations after recombination cannot be
accelerated by the presence of pre-existing dark matter potential wells, and these fluctua-
tions never reach the density contrast required to form galaxies.

6.2.4 Before and after Recombination

As the Universe transitions to the matter-dominated phase, ρ̄m > ρ̄γ , but the baryon energy
density still remains ρ̄b < ρ̄γ until recombination. This coupling is mainly achieved by
Compton scattering, which efficiently transfers momentum from photons to baryons and
vice versa. Varying density and pressure adiabatically in the photon-baryon fluid, one can
calculate its sound speed exactly

cs = c√
3

(
3

4

ρ̄b

ρ̄γ
+ 1

)−1/2

(6.29)

and realise that it drops as ρ̄b becomes comparable to ρ̄γ , but not by a large factor, so the
baryon Jeans length remains comparable to rH . As a result, we expect baryon fluctuations
with scale lengths smaller than the horizon to experience acoustic oscillations between aeq

and arec and to not grow. This is another place where fine-tuning intervenes in structure for-
mation: changing the baryon-to-photon ratio not only delays the matter-radiation equality
epoch, slowing down dark matter fluctuation growth, but also pushes back recombination.
As a result, baryon fluctuations continue to oscillate for a longer period of time and, thus,
significantly hamper the early formation of stars and galaxies.12

Eventually, close to recombination, as the density of matter and radiation drops, photons
and baryons start to become less coupled, and photons can travel further before they are
scattered. They therefore undergo more diffusion. In regions of photon over-density, pho-
tons diffuse out, and in the process, they pull with them any baryons that they scatter off of,
smoothing out not only photon number densities but also baryon perturbations. This effect
is called Silk damping and leads to a time-dependent length-scale below which acoustic
oscillations are damped. A simple derivation of the Silk damping length-scale starts from
the photon mean free path λmfp = 1/(neσT ), where σT is the Thomson scattering cross
section and ne is the electron number density. From the mean free path, we can write a
diffusion coefficient, η = 1

3λmfpc, and therefore estimate the distance out to which photons
diffuse in time t , λη ∼ √

ηt . At recombination, trec ∼ 378,000 years, and the electron

12 Although the fine-tuning issues related to the vacuum-expected-value of the Higgs field are discussed in another chapter of
this volume, it feels natural to mention at the stage of recombination, when neutral atoms are created, that if this value were
not reasonably close to the measured one, complex atoms (as in more complex than hydrogen) would not be able to be
synthesised (e.g. [1, 5]) either in the early Universe during the post-inflation, during the radiation-dominated phase, or by
stars during the structure formation stage. Needless to say, this would significantly alter galaxy formation.
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number density ne ∼ 400 cm−3, leading to an estimate λη ∼ 6 kpc in physical units (∼ 6
Mpc co-moving) of the scale below which Silk damping erases perturbations in the photon-
baryon fluid.

After recombination the baryons decouple from the photons to form a neutral gas of
monoatomic hydrogen and helium. For quite some time (until z∼ 100), there are still
enough residual free electrons to maintain enough interaction to keep photons and baryons
in thermal equilibrium, so Tb � Tγ . However, as a result of this decoupling, the sound speed
of the baryons plummets dramatically from values close to the speed of light c/

√
3 ∼ 0.5c

to
√

5kBTbc/(3μmHc2) ∼ 2 × 10−5c, where kB is the Boltzmann constant, μ is the mean
molecular weight of the gas, and mH is the mass of a hydrogen atom. With this drop in
sound speed, the Jeans length of the baryons also drops by a factor ∼ 4 × 10−5, giving the
possibility for baryon perturbations – which, prior to recombination, were too small – to
now grow. The problem is that below λη, Silk damping has erased baryon perturbations.
Owing to the fact that dark matter is not subjected to Silk damping because it is not
coupled to the radiation, dark matter perturbations on scales smaller than λη should serve
to regenerate the baryon perturbations.

Since the baryon Jeans length after recombination is � 1Mpc, and we are not interested
in how individual galaxies form but in much larger scales, we can consider the baryon fluid
as pressureless. As in the previous section, we can consider the photons (and neutrinos and
dark energy) as a smooth (but now subdominant) background, but now with perturbations in
both dark matter and baryonic components – i.e., we write ρ = ρ̄d (1+δd)+ρ̄b(1+δb)+ρ̄γ ,
with ρ̄m = ρ̄d + ρ̄b. We thus obtain for the pressureless perturbations a system of coupled
evolution equations similar to Eq. (6.22):

d2δd

dt2
+ 2H

dδd
dt

= 4πGρ̄mδ (6.30)

d2δb

dt2
+ 2H

dδb
dt

= 4πGρ̄mδ, (6.31)

where we have dropped the subscript k for clarity, and δ = (ρ̄dδd + ρ̄bδb)/ρ̄m is the total
matter perturbation.

We can now define a baryon–dark matter entropy perturbation Sdb ≡ δd − δb which
indicates how the two components deviate from one another. Subtracting Eq. (6.31) from
Eq. (6.30), we obtain an evolution equation for this entropy perturbation:

d2Sdb

dt2
+ 2H

dSdb
dt

= 0. (6.32)

We have assumed that the perturbations are adiabatic when they re-enter the horizon so that
δd(tbis) = δb(tbis) and Sdb(tbis) = 0. Thus, for large scales that re-enter after recombination,
the evolution of baryon and dark matter is identical. However, for smaller scales that re-
enter before recombination, δd � δb as δd has been growing while δb remained stalled.
Therefore, for these perturbations, at trec, Sdb � δd . Solving Eq. (6.32) yields Sdb(t) ∝
1+C−(t/trec)

−1/3 in the matter-dominated era, where the first term is a constant ‘growing’
mode, and the second term is the decaying mode. Recall that δd(t) = δd(trec)(t/trec)

2/3 was
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the growing mode found for the dark matter component in the matter-dominated era.13

Assuming there is no strong cancellation between growing and decaying mode during
recombination – i.e., that C− � 1 – the constant of proportionality in front of the solution
for Sdb(t) is ∼ δc(trec), and we easily see that for t � trec, δd(t)� Sdb(t) ∼ δc(trec). Since
Sdb(t) ≡ δd(t)−δb(t) by definition, this implies δb(t) � δd(t) and the baryon perturbations
must eventually catch up with the dark matter ones to a high level of accuracy.

6.2.5 Perturbations in a �-Dominated Universe

Although dark energy – assumed to be in the simplest form of a cosmological constant
here – only starts dominating the energy density at late times (around z � 0.3, as previously
discussed), it is interesting to look at how it impacts the growth of perturbations in the
matter field. Using an approach that should now be familiar, we will consider fluctuations
in the total matter fluid only, as we just showed that baryon fluctuations rapidly tend to
track dark matter ones once recombination is over, and treat the dark-energy density as a
smooth, dominant background. In other words, we will write ρ = ρ̄m(1 + δ) + ρ̄� and
neglect radiation.

Once again, the matter perturbation growth is governed by an evolution equation similar
to Eq. (6.22):

d2δk

dt2
+ 2H

dδk
dt

= 4πGρ̄mδk, (6.33)

where the density ρ̄ in the term on the right-hand side has been replaced by ρ̄m. The first
Friedmann equation (6.4), becomes

1

a

d2a

dt2
= −4πG

3
(ρ̄m − 2ρ̄�) = −4πG

3
ρ̄�(y − 2) = − y − 2

2(1 + y)H
2, (6.34)

where we we have introduced the new variable y = ρ̄m/ρ̄� = (a/a�eq)
−3. Noticing that

dy/dt = −3yH and using Eq. (6.34), one can rewrite Eq. (6.33) as

d2δk

dy2
+ (5y + 2)

6y(1 + y)
dδk
dy

= 1

6

δk

y(1 + y) . (6.35)

This equation can be recast in a Gaussian hypergeometric form and solved analytically.
Unfortunately, the solutions can only be expressed as hypergeometric series. However, one
can study their asymptotic behaviour and recover, for y � 1, the matter-dominated growth
mode D+ ∝ y−1/3 ∝ a, and for y � 1, Taylor expanding the solution around y = 0,
D+ ∝ 1 + y/2 [+O(y2)] ∝ 1 + 0.5(a�eq/a)

3. We therefore conclude that perturbations
very rapidly stop growing as a gets larger than a�eq.14

13 We neglect the decaying mode since it has been decaying away from the moment the perturbation re-entered the horizon and
the impact of the subdominant baryon component on the growth of dark matter fluctuations.

14 One has to pay attention that the proper wavelength of the perturbation remains smaller than rH as y → 0 for the Newtonian
approximation to remain valid, which can be a challenge as a grows exponentially when ρ̄� dominates, whereas rH remains
constant. In practice, the approximation holds well to the present day – i.e., a = 1 or y = 0.45 – even for perturbations with
sizes comparable to rH .
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From the point of view of structure formation, this halt of perturbation growth related to
the present-day value of the cosmological constant arguably constitutes the most clear-cut
case of fine-tuning. Indeed, ρ̄� will quickly dominate the energy density in the near future
as ρ̄m decays away like a−3. If the value of � was only 43% larger than it is measured to
be15 – which is not as large an increase as it seems, given that� is 122 orders of magnitude
smaller than it should if we interpret it as vacuum energy! – then we would have a�eq =
(0.01/0.99)1/3 � 0.2, which is small enough to wipe any galaxy cluster out of the night
sky and, thus, force galaxies to live in isolation.

6.2.6 The Linear Power Spectrum

After describing the linear growth of primordial fluctuations in the matter density field
through different epochs of the Universe, we now turn to the question of the evolution of
the spectrum of fluctuations characterised by an initially scale-independent power spectrum
widely believed to result from an early inflationary phase. As inflation generates fluctua-
tions on all super-horizon scales, different sized fluctuations will re-enter the horizon at
different epochs, which will determine the physical processes that they will be subjected
to. The primordial spectrum of fluctuations P(k,tbis) defined by Eq. (6.6), at time tbis when
the co-moving scale λ = 2π/k re-enters the horizon, gets altered by linear perturbation
theory to a spectrum P(k,t), at a later time t : P(k,t) = P(k,tbis)D

2+(t)/D2+(tbis).
Now the horizon scale itself evolves with the expansion of the Universe: if it increases

with time, an observer is able to see objects at increasingly further distances. So we first
need to calculate how this evolution proceeds. We will denote this co-moving particle
horizon – i.e., the co-moving distance to the furthest observable point in the Universe by
sH . How sH evolves with the scale factor a can be derived from the FLRW metric (Eq.
(6.1)). Photons travel along null geodesics ds2 = 0. We can choose our coordinate system
to consider radially travelling photons (dθ2 = dφ2 = 0), place the observer at r = 0, and
define the proper particle horizon for the photon emitted at time t to be at rhor. The FLRW
metric, for a flat universe, then gives∫ t

0

dt

a(t)
= 1

c

∫ rhor

0
dr . (6.36)

We can also define the distance between two events measured in a reference frame where
the two events happen at the same time (dt = 0). This distance, called the proper distance,
for an object at r = 0 to rhor is

s
prop
H = a(t)

∫ rhor

0
dr, (6.37)

15 We assume that other conditions remain the same and, in particular, that the Universe remains flat.
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which means that the co-moving particle horizon can be expressed as

sH =
∫ t

0

c dt

a(t)
. (6.38)

Using dt = da/ da
dt and the Friedmann equation (6.19) to get an expression for da/dt = aH ,

the dependence of the co-moving particle horizon on a is

sH = c
∫ a

0

da

a2H
= c

H0

∫ a

0

(
�γ,0 +�m,0a +��,0a4

)−1/2
da, (6.39)

which yields sH ∝ a in the radiation dominated epoch, sH ∝ a1/2 in the matter dominated
epoch, and sH ∝ 1/a when � dominates.

Consider a fluctuation mode with a wavelength λ so large16 that it re-enters the horizon
only during the matter-dominated era. At the time of re-entry, λ = 2π/k = sH ∝ a1/2(tbis)

and so P(k,t) = P(k,tbis) a
2(t)/a2(tbis) ∝ k a2. In other words, scale-independent per-

turbations during inflation produce P(k,t) ∝ k – i.e., a scale-invariant power spectrum
called Harrison-Zel’dovich – on scales that re-enter the Hubble radius during the matter
dominated epoch. Applying the same reasoning to a mode that re-enters the horizon well
into the radiation-dominated era, we get 1/k ∝ a(tbis) but P(k,t) = P(k,tbis) ∝ k−3

since perturbations do not grow (Mészáros effect). The transition between modes whose
last wavelengths re-enter the horizon during the radiation-dominated era and modes whose
first wavelengths re-enter the horizon during the matter-dominated era is smooth, so the
change in shape of P(k,t) from ∝ k−3 to ∝ k is gradual.

Cosmologists encapsulate this change in the power spectrum shape through a transfer
function T (k), defined such as P(k,t) ∝ kT 2(k)D+(t), that depends on the energy den-
sities of the various constituents of the Universe (dark matter, baryons, photons, neutrino,
dark energy, etc.) but applies regardless of the power spectrum of initial fluctuations, infla-
tion generated or not.17 From our previous simple analysis of the shape of P(k,t), we
immediately get T (k) � 1 on large scales – i.e., for k � keq, where keq is the wave
number corresponding to sH (aeq) – the co-moving particle horizon size at matter-radiation
equality. To get a sense of scales, keq = 2π/λeq, where λeq ∼ 100 Mpc. At the other end
of the spectrum, on small scales – i.e., for k � keq – T (k) ∝ 1/k2. The transition where
T (k) (and P(k,t)) turns over, between the two regimes of scales, happens around keq.

Importantly, the dependence of T (k) on wave number encodes the non-linear mapping
between the primordial power spectrum of fluctuations to the spectrum at later times. This
is the main consequence of smaller perturbations re-entering the horizon at earlier times.
If they do so during the radiation-dominated phase, then their growth will be suppressed.

16 Note that the reason why we ignore the �-dominated epoch is that sH shrinks during this epoch, which means that
perturbations with larger wavelengths than those which re-entered the horizon at the end of the matter-dominated phase will
always remain super-horizon.

17 For completeness sake, even though we have only discussed adiabatic perturbations up to now, we note that T (k) would differ
in the case of isocurvature perturbations.
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Only when matter dominates will their growth resume. A major ramification of different
sized modes growing at different rates at different epochs of the Universe is that structures
will form from a power spectrum that is no longer scale invariant. Furthermore, the fact
that the scale keq at which the transfer function bends from unity depends on cosmological
parameters indicates that the galaxy distribution can be used to determine them.

We sketched out the derivation of the transfer function for dark matter and radiation
focusing on the Mészáros effect, but in practice, T (k) needs to account for all types of
matter and radiation and the diverse physical processes that can alter the growth of fluc-
tuations once they penetrate the observable Universe. For example, we saw that baryonic
fluctuations oscillate as sound waves during recombination and that they can be damped by
photons diffusing out of density peaks after recombination (Silk damping). Fluctuations can
also be smoothed out if they enter the horizon while their non-collisional component is still
relativistic (free-streaming). These processes will leave imprints on the transfer function.

As a result, an approximation to the transfer function for a cold dark matter–dominated
universe will look like

T (k) = ln(1 + 2.34q)

2.34q
(1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4)−

1
4 , (6.40)

where

q = k

�
= k

�m,0 h exp
(
−�b,0

[
1 + (2h)1/2�−1

m,0

]), (6.41)

where h = H0/100 [12]. This approach can be generalised to other types of matter –
e.g., hot dark matter composed of very light neutrinos, warm dark matter composed of
intermediate mass particles, and a mixture of cold and hot dark matter. More accurate
calculations of the transfer function are now routinely done numerically using Boltzmann
codes (e.g., [7]) for any set of cosmological parameters and mix of matter constituents.

6.3 The Final Stretch: Non-linear Growth

6.3.1 The Spherical Top-Hat Model

The present-day density contrast of galaxies and clusters is orders of magnitude above
the regime where linear perturbation theory can describe their formation (see Figure 6.2).
Knowing the evolution of the Universe background density, back-of-the-envelope calcula-
tions of the density contrast give δ ∼ 106 for galaxies and δ ∼ 103 for clusters. While in the
linear regime – i.e., when δ � 1, we evolved different perturbation modes independently
with linear perturbation theory. Once the density contrast of a perturbation increases to
δ ∼ 1, over-densities run away to very large densities via gravitational instability, only
prevented from reaching infinity by the random motions of collisionless dark matter and gas
pressure, and perturbation modes become correlated. Thus the most accurate description of
the growth of structures in the non-linear regime is left to computer simulations (such as that
presented in Figure 6.2), but important insights can be gained from simple analytic models.
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Figure 6.2 Evolution of the gas density in a 20 Mpc/h thick slice of the (100 Mpc/h)3 volume of the
Horizon-AGN simulated Universe between redshifts 0 and 3 (see www.horizon-simulation.org for
detail). Top-left panel corresponds to z = 3, top-right panel to z = 2, bottom-left panel to z = 1, and
bottom-right panel to z = 0. The scale is logarithmic to showcase the enormous range spanned by
the density contrast δ, which extends well into the non-linear regime in the densest regions (in dark).

To arrive at an analytic non-linear theory, we must make drastic assumptions about the
geometry and density profile of the fluctuations. The simplest model that comes to mind is
that of a uniform and isolated spherical density perturbation of collisionless matter evolving
in an otherwise completely homogeneous Einstein-de Sitter universe.18 Commonly called

18 This latter assumption of an �m = 1 universe is not necessary but yields the simplest analytic solutions while still capturing
the essential physics, which is the reason why we adopt it here.

http://www.horizon-simulation.org
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the ‘top-hat’ perturbation because of the form of its density profile, this very simple model
is routinely used because its non-linear evolution can be completely described analytically.
Moreover, its evolution provides an understanding of the key stages in the non-linear evolu-
tion of a perturbation, namely its growth at a slightly slower rate than the Hubble expansion
at early times, its detachment from the Hubble flow owing to its self-gravity once it reaches
a certain size, and, finally, its collapse onto itself.

Birkoff’s theorem tells us that such a perturbation behaves as if it was an independent
universe, with the matter exterior to it having no influence on its evolution. If we split up this
perturbation into several concentric spherical shells, as long as different shells do not cross,
the mass interior to each shell stays constant. We can then write the equation of motion of
a shell located at a radius r inside the top hat perturbation as a function of time t as

d2r

dt2
= −GM

r2
, (6.42)

where the massM interior to r is

M ≡ M(< r) = 4

3
πr3ρ̄m(1 + δ), (6.43)

with δ defined as the top-hat over-density contrast and ρ̄m as the mean density of the
background Universe.

Integrating this equation of motion once yields the following equation of energy
conservation:

1

2

(
dr

dt

)2

− GM

r
= E, (6.44)

where E is the specific energy the shell. For E = 0, r evolves at the same rate as the
expansion of the Universe – i.e., r ∝ t2/3, ∝ a – so that, as a result, the top-hat perturbation
does not grow. For E < 0 the shell is bound and the parametric solution for the value of its
radius r at time t is given by

r[η]

rm
= 1

2
(1 − cos η)

t[η]

tm
= 1

π
(η − sin η). (6.45)

Starting from r[0] = 0 at t[0] = 0, the shell reaches a maximum radius rm = r[π ] at
time tm = t[π ] corresponding to turnaround. By symmetry, the shell collapses back to
r[2π ] = 0 and virialises at time t[2π ] = 2tm. Solutions for rm and tm are

rm = GM

|E|

tm = πGM

(2|E|)3/2 (6.46)

so that r3
m = (8GM/π2) t2m.
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From these parametric solutions for r and t , we can deduce the solution for the evolution
of δ. Indeed, the density ρ of the top-hat perturbation is given by

ρ = 3M

4πr3
= 6M

4πr3
m

(1 − cos η)−3 (6.47)

while that of the background Universe ρ̄m follows

ρ̄m = 1

6πGt2
= π

6Gt2m
(η − sin η)−2. (6.48)

Hence, using r3
m = (8GM/π2) t2m, the density contrast of the spherical top-hat perturbation

evolves as

1 + δ = ρ

ρ̄m
= 9

2

(η − sin η)2

(1 − cos η)3
. (6.49)

Small values of η correspond to the early evolution of the spherical top-hat perturbation.
In that case, the solution for δ reduces to the linear regime solution. More specifically, for
η � 1, Taylor expanding sin η and cos η around η = 0 gives

1 + δ � 1 + 3
η2

20
(6.50)

to second order in η, meaning δ � 3η2/20. We can express δ in terms of t in the small η
limit by first Taylor expanding t around η = 0 to get

t = tm

π
(η − sin η) � tm

π

η3

6
, (6.51)

which gives

η �
(

6πt

tm

)1/3

, (6.52)

and, finally, an expression for the evolution of the density contrast in the linear regime for
the Einstein-de Sitter universe:

δ = 3

20

(
6πt

tm

)2/3

. (6.53)

We can now calculate the difference between the linear regime prediction for δ at various
times and its value derived from the spherical top-hat collapse model. Key stages in the
evolution of the perturbation occur at the point of maximum expansion (turnaround) and
collapse. From Eq. (6.53), linear theory predicts that the density contrast at turnaround
when t = tm is

δ(tm) = 3

20
(6π)2/3 � 1.062 (6.54)

and that at collapse, when t = 2 tm,

δ(2 tm) = 3

20
(12π)2/3 � 1.686. (6.55)
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Meanwhile, the spherical top-hat collapse model predicts, from Eq. (6.49), that at
turnaround (η = π ),

δ(tm) = 9π2

16
− 1 � 4.6, (6.56)

while at collapse (η = 2π ),

δ(2 tm) = ∞. (6.57)

Of course, the prediction from the spherical collapse model breaks down some point
after turnaround when the shells inevitably cross because in reality the perturbation embed-
ded in a universe with structures will not be exactly homogeneous and will experience
torques from its neighbours, giving it angular momentum and causing it to deviate from
perfect spherical symmetry. Hence, non-spherical motions will develop. Virialisation takes
over as oscillating shells interact gravitationally and exchange energy to ultimately halt the
collapse.

Neither linear perturbation theory nor the simple spherical top-hat model can give us
the final end state of the perturbation, but we can determine it from energy conservation
arguments. To estimate the final density of the collapsed, virialised perturbation, we use
the virial theorem to estimate its radius after collapse has ended. Neglecting the surface
pressure term, the perturbation will reach virial equilibrium when its final kinetic Kf and
potentialWf energies obey

2Kf +Wf = 0. (6.58)

Energy conservation relates the total final energy of the perturbation, Ef , to its total energy
at turnaround, Eta:

Ef = Kf +Wf = Eta. (6.59)

Since the velocity of the perturbation comes to a halt at turnaround, all the energy at this
point is in potential form so thatEta = −GM/rta. Combining the virial theorem and energy
conservation, we can show that Ef = Wf /2 = −GM/(2 rvir) asWf = −GM/rvir, where
rvir is the virial radius of the perturbation. Hence, rvir = rta/2, indicating that after it has
virialised, the perturbation has collapsed to half the radius it had at turnaround.

Now we are in a position to estimate the over-density,�vir, of the collapsed perturbation:

1 +�vir = ρ(tcoll)

ρ̄m(tcoll)
, (6.60)

where ρ(tcoll) is the density of the top-hat perturbation at collapse and ρ̄m(tcoll) is the
density of the background Universe at the same time. It is evident that the collapsed pertur-
bation acquires its density because it increases during the collapse, while at the same time,
the density of the background Universe in which it is embedded decreases due to the expan-
sion of the Universe, thereby enhancing the density contrast of the perturbation relative to
a collapse during which the background remains constant. Because the background density
in a matter-dominated, Einstein–de Sitter universe scales as a−3 ∼ t−2 and tcoll = 2 tta, this
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means that ρ̄m(tcoll) = 1
4 ρ̄m(tta). Furthermore, as the radius of the collapsed perturbation is

half the radius of the perturbation at turnaround, its density at collapse is a factor 8 greater
than its density at turnaround, ρ(tcoll) = 8 ρ(tta). As a result,

1 +�vir = 32
ρ(tta)

ρ̄m(tta)
= 32 × (1 + δ(tm)) (6.61)

and given that we showed earlier that 1 + δ(tm) = 9π2/16, we obtain

1 +�vir = 18π2 � 178. (6.62)

So although the spherical top-hat collapse model predicted that the density at collapse
would shoot to infinity giving a singularity, virialisation intervenes when shells cross,
and the spherical top-hat model breaks down, leading to an over-density of � 178. This
is two orders of magnitude higher than the prediction for the value of the over-density
(δcoll,lin ∼ 1.686) at tcoll = 2 tta if it had continued to evolve according to linear theory. For
a low-�m universe such as ours, the mean background density is lower than in an �m = 1,
and so the virialised over-density is higher yet.

Despite its simplicity, the spherical top-hat model not only highlights the key stages in
the evolution of a density perturbation (turnaround and collapse), but it also gives insight to
the hierarchy of collapsing perturbations. Arguments based on energy conservation reveal
that in an Einstein–de Sitter universe, all over-densities will eventually collapse. The argu-
ment goes as follows. Approximating the velocity v of a mass shell with radius rinit by the
Hubble flow velocity v = H rinit, the energy of the shell can be expressed as

E = 1

2
H 2r2

init − GM

rinit
. (6.63)

UsingM = 4π/3 r3
initρ̄m (1 + δ(tinit)) and ρ̄m = ρc = 3H 2/(8πG), we have

E = 1

2
H 2r2

init − 1

2
H 2r2

init(1 + δ), (6.64)

which gives E < 0 for all over-dense perturbations (δ > 0) in an Einstein–de Sitter
universe.

Energy conservation arguments also show that the radius at turnaround only depends on
the initial over-density of the perturbation. By equating the energy at turnaround,

E(tta) = −GM
rta

= −H
2r3

init

2 rta
(1 + δ(tinit)) , (6.65)

to the initial energy,

E(tinit) = −H
2r2

init

2
δ(tinit), (6.66)

one gets

rta

rinit
= 1 + δ(tinit)

δ(tinit)
. (6.67)



226 Adrianne Slyz

Hence, not only does the initial over-density determine the radius at turn-around for a
perturbation, but perturbations with smaller initial over-densities enclosed in the same
initial radius reach larger radii at turnaround and therefore experience later collapse.
In other words, for a given value of δ(tinit), perturbations with smaller rinit – i.e., a smaller
mass – will collapse first, leading to a hierarchical build up of structures, in a bottom-up
fashion.

6.3.2 Press-Schechter Theory

Having discussed the linear evolution of perturbations and how their growth rates depend
on their size and cosmic epoch, and then a simple model for their subsequent non-
linear collapse which predicts different collapse times and virialised masses for different
over-densities, we visit the question of whether, without performing a computer simulation,
we can predict the mass spectrum of collapsed dark matter perturbations in the Universe,
called halos, at different times. This mass spectrum, known as the ‘halo mass function’,
gives the number density of halos as a function of their mass. Since galaxies are believed
to form in dark matter halos, estimating the halo mass function is a key prediction from
structure formation theory as it can be compared to the observed galaxy luminosity
function.

The halo mass function n(M) is defined as

dN = n(M) dM, (6.68)

where dN is the number of halos per unit volume with mass between M and M + dM . In
practice, it is measured by counting the number of halos of a given mass present in a given
volume.

A simple analytic argument to derive the halo mass function was first proposed in a
classic paper by Press and Schechter [16]. Despite the rather crude approximations they
made, it turns out the mass function they derived yields a reasonable match to the mass
function measured in numerical N-body simulations as shown in Figure 6.3.

Press and Schechter quantify how many halos form out of peaks in the matter fluctu-
ations by assuming that fluctuations that surpass the collapse over-density predicted by
linear theory (δcoll,lin = 1.686) will collapse to form virialised halos. Although we saw
that even the simplified spherical top-hat model predicts a collapse over-density which is
much higher (∼ 200), taking the much lower prediction from linear theory turns out to
be reasonable because gravitational instability proceeds quickly. The basic idea behind the
derivation of the Press-Schechter mass function is that the fraction of mass in halos more
massive than a given mass M is related to the fraction of the volume within which the
smoothed density field is above threshold δcoll,lin. The smoothing scale R is tied to the
halo mass, as we will describe below. By filtering out points in the density field that are
embedded within structures of scale smaller than R(M), we filter out masses less than M ,
leaving only structures with mass ≥ M .
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Figure 6.3 Evolution of the dark matter halo mass function (histograms) measured in the Horizon-
AGN cosmological simulation between redshifts 0 and 3 (see www.horizon-simulation.org for detail).
Top-left panel corresponds to z = 3, top-right panel to z = 2, bottom-left panel to z = 1, and bottom-
right panel to z = 0. The solid lines on each panel indicate the Press-Schechter analytic prescription
discussed in the text. The discrepancy between the two, especially noticeable at the low-mass end, is
mainly caused by the various approximations used in the Press-Schechter formalism.

We now outline the Press-Schechter derivation in more detail. Consider a field of density
fluctuations δ(x). We can filter this field on a length-scale R, where R is associated to
a given mass M as the radius of a uniform-density sphere containing mass M , with the
sphere density equal to the mean density of the Universe at redshift z, ρ̄m:

R(M) =
(

3M

4πρ̄m

)1/3

. (6.69)

http://www.horizon-simulation.org
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By smoothing the field on scaleR(M), all information about δ(x) below that scale is thrown
out. Smoothing is achieved by convolving δ(x)with a window functionWR(x−x′) typically
taken to be a top-hat function on scale R:

δR(x) =
∫

d3x′ δ(x)WR(x − x′). (6.70)

Introducing the notation δR(x) = δM , and assuming that the density fluctuations δ(x) –
and, hence, the smoothed δM – are a Gaussian random field, we can write the probability
of finding any particular value δM at position x as

p(δM) = 1√
2πσ 2

R

exp

(
− δ2

M

2σ 2
R

)
, (6.71)

where σR is the variance of the field smoothed on scale R:

σ 2
R = σ 2

M =
∫ ∞

0

k2dk

2π2
P(k,t) Ŵ 2

R(k), (6.72)

where ŴR is the Fourier transform of the window function and P(k,t) is the power spec-
trum of fluctuations previously defined. The probability that a fluctuation exceeds δcoll,lin

is given by

Pδ>δcoll,lin(M) =
∫ ∞

δcoll,lin

p(δM) dδM

= 1

2
erfc

(
δcoll,lin√

2σM

)
, (6.73)

where erfc is the complementary error function.
By subtracting Pδ>δcoll,lin(M + dM) from Pδ>δcoll,lin(M), we then get the number of

collapsed halos of mass M surrounded by under-dense regions. To get the mass function
n(M) dM , which tells us the number of objects per unit volume, we have to multiply the
probabilities by the background density divided by the mass-scale, ρ̄m/M . Furthermore,
because we expect that most of the mass in the Universe should eventually find itself in
collapsed halos, the probability should be normalised to unity. To achieve this, Press and
Schechter simply multiplied the mass function by 2 to obtain:19

n(M) dM = 2
ρ̄m

M

(
Pδ>δcoll,lin(M)− Pδ>δcoll,lin(M + dM)

)
= −2

ρ̄m

M

dPδ>δcoll,lin

dM
dM . (6.74)

19 This brute force solution to the fact that under-densities (δ < 0) are not treated properly by the Press-Schechter approach (the
so-called cloud-in-cloud problem) was properly justified by [3] in their excursion set theory. The Press-Schechter approach of
merely multiplying by 2 appears to work because, once fluctuations collapse, they are able to pull material from less dense
regions, resulting in most of the mass eventually ending up in over-dense regions.
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It is convenient to write

d

dM
= dσM

dM

d

dσM

to get

n(M) dM = −2
ρ̄m

M

dPδ>δcoll,lin

dσM

dσM
dM

dM . (6.75)

Then, using the fundamental theorem of calculus to differentiate Pδ>δcoll,lin , together with

the substitution x = δcoll,lin/(
√

2 σM),

dPδ>δcoll,lin

dσM
= d

dσM

[∫ ∞

δcoll,lin

1√
2πσM

exp

(
− δ2

M

2σ 2
M

)
dδM

]

= 1√
π

∫ ∞
δcoll,lin√

2 σM

exp
(
−x2

)
dx

= − 1√
π

exp

(
−δM

2

2σ 2
R

)
d

dσM

[
δcoll,lin√

2σM

]

= 1√
2π

δcoll,lin

σM2
exp

(
−δM

2

2σ 2
R

)
. (6.76)

With this expression for dPδ>δcoll,lin/dσM , we finally arrive at the expression for the number
density of collapsed halos of a given mass:

n(M) dM =
√

2

π

ρ̄m δcoll,lin

σM

d lnσM
dM

exp

(
− δM

2

2σ 2
M

)
dM

M
. (6.77)

To understand the behaviour of this mass function, we can estimate σM by assuming a
power-law function for the power spectrum, P(k,t) ∝ kn, and a window function that is a
top-hat in k-space:

ŴR(k) =
{

1, if k ≤ 2π/R
0 otherwise.

This leads to

σ 2
M ∝

∫ 2π/R

0
k2+ndk ∝ R−3+n ∝ M(−3+n)/3. (6.78)

For small scales, the argument of the exponential in the mass function goes to 1 so that

n(M) dM ∝ M(n−9)/6 dM . (6.79)

Earlier we estimated that the power spectrum at time t could be deduced from the
scale-independent primordial power spectrum P(k,tbis) generated by inflation, and that
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P(k,t) ∝ k−3 for k � keq (corresponding to galaxy scales), meaning that n = −3. This
gives the following scaling for the mass function at the low mass end:

n(M) dM ∝ M−2 dM, (6.80)

i.e., more low-mass halos than high mass halos. At the high-mass end, the mass function
decreases exponentially so that the probability of finding a halo of arbitrarily large mass at
any given redshift is extremely small.

Despite the oversimplifications it makes – for example, the fact that it assumes spherical
halos and that it does not account for how many small-mass halos are subsumed into
larger-mass ones – the Press-Schechter theory gives a rough estimate of the mass function
across all scales from dwarf galaxies to galaxy clusters accurate to about a factor 2, as
shown by Figure 6.3. Where it goes wrong the most is at the low-mass end, where it
over-predicts the number of halos, and at the high-mass end, where it under-predicts the
number of gravitationally bound objects compared to N -body simulations (see Figure 6.3).
Nevertheless, it captures the key features of structure formation, allowing one to track when
halos of a given mass first appear in the Universe.20

Unfortunately, galaxies do not map straightforwardly onto halos. What we measure
for galaxies is their luminosity function – i.e., the number density of galaxies of a given
luminosity. The faint end of the luminosity function is not as steep as the low-mass end of
the halo mass function predicted by Press-Schechter, and the characteristic luminosity at
which the luminosity function overturns corresponds to a much lower halo mass than the
characteristic halo mass at which the Press-Schechter halo mass function overturns. Hence,
to take structure formation a step further and make predictions about observed galaxies, one
needs to consider more complex physics such as gas cooling, star formation, and feedback
from processes such as supernovae and active galactic nuclei powered by supermassive
black holes.

However, it is interesting at this point to ask how the Press-Schechter halo mass function
will depend on the fine-tuning of cosmological parameters and, more specifically from an
observable perspective, how much mass is locked in collapsed halos massive enough to
retain baryons and form stars.21

This has recently been explored in some detail in Reference [2] (see their figure 3) using
numerical simulations with characteristics very similar to those used in this chapter. These
authors find that for the fraction of mass locked in star-forming halos to change by a factor
∼ 2.5, one would need to increase �� by a factor 100 compared to its measured value.
Furthermore, the cosmic star formation rate history of the Universe, obtained when folding
in the baryonic processes previously mentioned (gas cooling, star formation supernovae,
and active galactic nuclei feedback) would only change by a factor eight in that case.

20 It is possible to relax some of the simplifying assumptions used in the Press-Schechter theory, especially that of a spherically
symmetric collapse of the perturbations, and get a better agreement with N-body simulations. We refer the interested reader
to [11] for an extension of the formalism to the more general case of an ellipsoidal collapse.

21 This can be readily deduced from Eq. (6.73) by multiplying it by two (following the original Press-Schechter argument) and
settingM = Mmin, whereMmin is the minimum mass above which halos retain baryons.
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The authors do point out that the environment of galaxies would be dramatically different
in a larger �� universe (disappearance of groups and clusters as argued earlier in this
chapter) but, nevertheless, conclude that structure formation, as quantified by the amount
of stars produced throughout the lifetime of the Universe, does not seem very sensitive to a
fine-tuning of the cosmological constant.

There exists, however, a major caveat in their argument: one could easily argue that
increasing the value of the measured cosmological constant by a mere two orders of mag-
nitude is still very much within the realm of fine-tuning, given that more than 120 orders
of magnitude separate it from the value expected from quantum field theory! Moreover,
as the authors themselves admit, an anthropic argument calculation based on a multiverse
model, whilst faring better than pure theory, remains, by and large, inconclusive in naturally
predicting a low � value.

6.4 The Fine-Tuning of Structure Formation

Historically fine-tuning is understood as referring to the specificity of the conditions neces-
sary for life as we know it22 to appear in the Universe. This is generally discussed in terms
of variations in the fundamental constants of physics, but from the point of view of structure
formation, it seems more sensible to adopt a more prosaic point of view: that of life shelter.
Obviously, the two are related: if, for instance, the gravitational coupling constant had a
different value, the very presence of life shelters, such as planets, could be in jeopardy.

Science is underpinned by reproducible experimental results, so our argument shall
unfold from there. Repeated CMB measurements since its discovery by Penzias and Wilson
in 1965 have established that the Universe started from a highly homogeneous and isotropic
state (at least to one part in 100,000). Since the 1930s and Hubble’s observations that
galaxies recede from one another at a rate proportional to the distance between them, we
also know that the Universe is expanding. Moreover, from distant supernovae measure-
ments performed independently by several groups in the late 1990s, we have established
that this expansion occurs at an accelerated rate. The unavoidable conclusion is that the
homogeneous Universe must be getting colder and more diluted as time goes by, which
completely goes against the apparition of life in the Universe.

Indeed, while it is notoriously difficult to define what life is and how it came to be,
there can be little doubt that it entails the formation of complex molecules. An uniform
universe, whose matter density converges towards perfect vacuum and whose temperature
is driven by expansion toward the absolute zero, where no movement can take place on the
atomic level, does not appear as propitious conditions for complexity to emerge – hence,
the concept of life shelter. If the overwhelmingly homogeneous Universe is converging to
an eternal state of ‘frozen in the vacuum’ death, life will need to appear in small, isolated
islands harbouring a more auspicious climate.

22 That is to say, based on the chemistry of carbon, although to the best of my knowledge, a compelling argument that life based
on another element could not exist has yet to be put forward.
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Going from small to large scales, one can sketch the properties of the optimal habitat for
fragile, complex molecules to be formed and survive for a significant amount of time so that
they can further gain in complexity. It first needs to be dense and hot enough for various
atoms to collide but not too dense or hot; otherwise, they would be too easily destroyed
or not formed at all. In other words, you need a planet with a surface temperature below
the energy dissociation of these complex molecules but well above absolute zero. This
implies close (but not too close!) proximity with stars – first to produce the heavy elements
from which complex molecules are assembled in large quantities23 and, second, to catalyse
chemical reactions and provide heat via the radiation they emit.

Now stars do not form in isolation – although there might be a few exceptions in the
very early stages of structure formation – but in galaxies, which explains why galaxies are
considered as the fundamental building blocks of cosmological structure formation. It also
justifies why the scope of our discussion about fine-tuning in this chapter is reduced to a
discussion of how fine-tuned the conditions for galaxies to exist are.

There are many places where one could see fine-tuning at work in cosmological structure
formation, beginning with the initial conditions from which structures come into existence.
Indeed, it may seem paradoxical that the very mechanism invoked to solve, amongst other
issues, the acausal fine-tuning problem,24 turns out to appear so fine-tuned itself. In other
words, why is value of the initial fluctuation amplitudes produced by inflation so low (one
part in 100,000)?

Should they be much smaller, despite the presence of dark matter, they would remain
in the linear regime, and galaxies would not have enough time to grow. If, on the other
hand, they were much larger, say on the order of unity, they would never grow in the linear
regime to begin with, but behave like independent universes very rapidly collapsing on top
of one another,25 creating a very violent environment where galaxy cannibalism would be
the rule rather than the exception. As a result, this would greatly reduce the total number of
galaxies in the Universe and, hence, the number of places where life could be nurtured.

Given the measured amplitude of the fluctuations and moving on to the evolutionary
stage, their growth, which will eventually give birth to galaxies, depends on two dominant
‘dark’ components: dark matter and dark energy (assumed in this chapter to be in the guise
of a cosmological constant). Bypassing the issue of the very existence of dark matter,
thanks to which, as we have seen earlier in this chapter, galaxies can form in a timely
manner despite the low amplitude of initial baryonic fluctuations, one can legitimately ask
the question as to why its energy density is comparable to the critical energy density today.

Once again, had it been much smaller, then hardly any galaxy would have formed by now
as the epoch of matter domination during which perturbations can most efficiently grow

23 We know from element abundance observations that Big Bang nucleosynthesis produces virtually no element heavier than
helium.

24 That is to say, provide an answer to the question of how perturbations on galaxy scales which are larger than the causal
length-scale in the early Universe can be coherent.

25 from Eq. (6.45) for the spherical top hat model, such large amplitude perturbations would enter the matter dominated era with
a radius already greater than r[π/2] = rm/2 at time t[π/2] � 0.18 tm, hence rapidly reach turnaround and collapse onto
themselves.
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would have been considerably shortened. Conversely, had it been much larger, the Universe
would have undergone a short expansion phase and recollapsed onto itself before galaxy
clusters or even galaxies – depending on the exact value of �m,0 – formed. There also is
the question of the mass of the dark matter particle candidate: one needs a massive dark
particle with a short free-streaming length (unlike, e.g., neutrinos) in order for perturbations
to exist on galaxy scales at an early stage.

Finally, as previously mentioned in the section devoted to the growth of matter fluctu-
ations in the �-dominated era, comes what arguably constitutes the most clear-cut case
of fine-tuning from the point of view of structure formation: the value of the cosmological
constant.26 This value is measured to be about 122 orders of magnitude lower than expected
from the Standard Model of particle physics,27 and, as discussed earlier in this chapter,
should it be only marginally larger28 than its measured value, large-scale cosmic structures
and possibly galaxies would not have formed at all. Whether such a gigantic discrepancy
with such extraordinary consequences simply reflects the (lack of) depth of our current
knowledge of the underlying physics or possesses a more profound meaning must be
regarded as the greatest mystery of modern physical cosmology.
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Fine-Tuning in Particle and Nuclear Physics





7

Nuclear Physics and Its Impact on Primordial and
Stellar Nucleosynthesis

j e a n - p h i l i p p e u z a n

Abstract

Nuclear physics is at work in cosmology both during Big Bang nucleosynthesis, during
which light elements are formed, and during stellar evolution, where heavier elements
(actually, all nuclei but hydrogen, helium, and lithium) are synthetised. It means that a
successful stellar nucleosynthesis, in particular to form carbon and oxygen, is a key step
in the emergence of complexity in our Universe. Besides, stars provide a long-lived, low-
entropy source of energy also necessary for planetary life to emerge. Nuclear processes
depend on many fundamental constants, the values of which affect cross sections, binding
energies, reaction rates, and masses of particles. They also affect the stability of those
nuclei. In our Universe, the Mendeleev table summarises the variety of nuclei and their
isotopes that are then involved to form molecules. The goal of this chapter is to detail the
connections between the Standard Model of particle physics and nuclear physics in order to
understand how the fundamental constants affect the stability and production of the nuclei
in the Universe and how it could limit the apparition of chemical complexity and eventually
of life.

7.1 Introduction

Nature confronts us with structures at different scales, complexity, and properties, from
fundamental particles to molecules and cells to planets, stars, and galaxies. Each of them
can be described by a scientific theory, with its own ontology and structures. They form a
hierarchy of theories organised in modules in interaction (see References [45, 97, 111] for
a discussion). Indeed, those theories are not independent. Higher levels are built on lower
levels and more fundamental theories that define a space of possibility for the former. And
higher theories set the context in which the dynamics of the lower-level theories develop.
This is related to both bottom-up action and top-down causation [45].

Hierarchy of physical theories. The fact that we can understand the Universe and its
laws has a deep implication on this structure of theories. At each step in our construction
of physical theories, we have been dealing with phenomena below a typical energy scale,
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mostly for technological constraints, and it turned out (empirically) that we have always
been able to design a consistent theory, valid in such a restricted regime. This is not
expected a priori, and this empirical fact is deeply rooted in the mathematical structure
of the theories that describe nature. In particular, they have to enjoy a scale-decoupling
principle in the sense that there exist energy scales below which effective theories are
sufficient to understand a set of physical phenomena that can be observed. Effective theories
are then the most fundamental concepts in the scientific approach to the understanding of
nature, and they always come with a domain of validity inside which they are efficient to
describe all related phenomena [111]. They offer a successful explanation at a given level
of complexity based on concepts of that particular level.

This implies that the structure of the theories is such that there is a kind of stability
and independence of higher levels with respect to more fundamental ones. It follows that
various disciplines have developed independently in almost quasi-autonomous domains,
each of them having its own ontology and dynamics that are independent of our ability
to formulate a theory explaining these concepts. On the one hand, we can hope to relate
the concepts and constants of a given level to those of an underlying level. For instance, we
understand that the proton is a composite structure of three quarks, and we may try to deter-
mine its physical characteristics (charge, mass, gyromagnetic factor, quantum numbers) in
terms of these more fundamental entities [79]. We know that this reductionist approach is
limited and can only be achieved for some structures since there exist emergent phenomena
(information, life, consciousness) that cannot be reduced to the concepts of a lower level.

Goal of this chapter. This chapter investigates the first layer of this hierarchy, namely
the one involving the properties of nuclear matter and, in particular, its stability and its
production. In our Universe, the diversity of the atomic nuclei opens a large possibility
space of combinations for atoms and then molecules. These properties are first roughly
summarised in the Mendeleev table, and one success of the standard cosmological model
and nuclear astrophysics is to understand how the Mendeleev table is populated – i.e., in
which sites each nuclei is produced and with which abundance.

As can be seen from Figure 7.1, only helium is significantly synthetised during Big Bang
nucleosynthesis; some lithium, beryllium, and boron and slight traces of carbon, nitrogen,
and oxygen are synthesised. It is understood that most stable beryllium and boron were
created in the interstellar medium when cosmic rays induced fission in heavier elements
found in interstellar gas and dust. Elements lighter than iron are formed in small and large
stars while heavier elements are formed mostly in explosive nucleosynthesis in supernovae.
In terms of nuclear processes, one usually distinguishes different processes:

• The s-process (slow neutron-capture process). It occurs at low neutron density and inter-
mediate temperature conditions in stars. Heavier nuclei are created by neutron capture,
increasing the atomic mass of the nucleus by one, followed by a β− decay, leading to a
nucleus of higher atomic number.

• The r-process (rapid neutron-capture process). It occurs during core-collapse supernovae
and is responsible for the creation of approximately half of the neutron-rich atomic nuclei
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Figure 7.1 Simplified summary of the main sites of formation of the different atomic nuclei. Besides
helium mostly produced during Big Bang nucleosynthesis, all nuclei are formed during the stellar
evolution. It is important to note that some elements are only known to be human made and have
not been found in any natural environment. A more detailed summary, included the different isotopes
is presented in Figure 7.17 in Appendix A. We emphasise that the existence of isotopes, is also
important, wether they are stable or not. Note that some nuclei have never been observed to be
produced in natural environments. They do not seem to have any importance for the emergence of
complexity but they may be a way to characterise an intelligent civilisation.

heavier than iron. The process entails a succession of rapid neutron captures (hence the
name r-process) by heavy seed nuclei. It creates very neutron-rich heavy isotopes, which
can then decay to the first stable isotope.

• The p-process (proton process). It refers to a proton capture process which is the source
of certain naturally occurring, proton-rich isotopes of the elements

Let us also note that it is important to distinguish stable isotopes from unstable isotopes.
For instance, radioactive beryllium-10 is produced in the atmosphere of the Earth by the
cosmic-ray spallation of oxygen. We shall not describe all these routes here. A summary of
all the sites of production, as understood today, is given in Appendix A.

Some heavy elements, for which we only have traces, are also important for the emer-
gence of life. Our discussion mostly focuses on carbon, nitrogen, and oxygen. They are,
indeed, the building blocks of life as we know them and will enable a complex chemistry.
This is indeed not a sufficient condition for life to emerge. Many other elements are neces-
sary for life as we know it to exist. But it is almost impossible to quantify their effect and
whether they can be replaced by other mechanisms if they did not exist.

This raises different questions. First, one would like to determine if (and which) nuclei
are stable and then if they can be produced with a large enough abundance. To answer these
questions, we would need to connect quantum chromodynamics (QCD) to nuclear physics,
which is a difficult task and for which many links are still not fully understood. This means
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that one will have to rely on different approaches: theoretical, numerical, and modelisation.
It also means that we will have to embed nuclear physics in a cosmological context for Big
Bang nucleosynthesis (BBN) and in an astrophysical model for stellar evolution.

Fundamental physics. To begin, let us define our starting point concerning fundamental
physics. Today, gravitation is well described by general relativity, and the most fundamental
(experimentally tested) theory of matter is the Standard Model of particle physics. It is a
theoretical construction based on an action and many choices such as the mathematical
description of the matter fields (This is not completely arbitrary. It is based on the rep-
resentation of the Poincaré group, which allows one to define scalar, spinor, vector, etc.,
structures, but we still have to decide to identify one kind of particle with a mathematical
structure [113]), symmetries, and constants. None of them can be explained by the theory
at hand. In particular, it is important for the constants to be measurable. For this model,
they actually are and have been measurable, as we shall describe later. There is, indeed,
no way to express them in terms of more fundamental quantities, and there is no equation
for them. By testing their constancy, one actually shows that at the level of accuracy of the
experiments and their timescales, it is a good hypothesis. In case of a disagreement, one
could promote them to a dynamical field but would have to explain why they are almost
frozen today [107–110] – i.e., of a stabilisation mechanism.

It is also important to remember that any measurement is just a comparison between two
physical systems, one usually defining a system of units. It follows that only dimensionless
constant can be measured [46], and only the change of these constants would change the
physics. We are considering only these parameters. Given a list of N constants, one can
always pick up three of them to define units so that one is left with N − 3 fundamental
parameters that affect the magnitude of any physical process.

Coming back to the Standard Model of particle physics, we assume it is our fundamental
theory, even though it does not incorporate massive neutrinos and dark matter so that we
know it calls for an extension. This theory offers the space of possibility for higher levels
complexity to emerge. Changing the values of the fundamental constants may result in the
technical impossibility for nuclei to be stable. How fine-tuned is the Universe? This is what
we shall now illustrate, keeping in mind that we would like to estimate how far in the chain
of physical theories of higher complexity level they propagate.

Content. This chapter focuses on the relation between QCD and nuclear physics. There,
one needs to determine how cross sections, binding energies, lifetimes of unstable nuclei
(or of the neutron), or simply characteristics such as the mass of the proton depend on the
fundamental constants listed in Table 7.1. This has been intensively investigated, and we
refer to References [107–110] for reviews. It is of huge importance for the description of
Big Bang nucleosynthesis and for stellar nucleosynthesis.

This chapter will first provide some generalities on the study of the influence of fun-
damental constants (Section 7.2). Section 7.3 then details different approaches to relate
masses, gyromagnetic factors, binding energies, and resonance energies to the parameters
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Table 7.1 List of the fundamental constants of our Standard Model. See Reference [83]
for further details on the measurements.

Constant Symbol Value

Speed of light c 299,792,458 m s−1

Planck constant (reduced) h̄ 1.054 571 628(53) × 10−34 J s
Newton constant G 6.674 28(67) × 10−11 m2 kg−1 s−2

Weak coupling constant (at mZ) g2(mZ) 0.6520 ± 0.0001
Strong coupling constant (at mZ) g3(mZ) 1.221 ± 0.022
Weinberg angle sin2 θW(91.2 GeV)MS 0.23120 ± 0.00015

Electron Yukawa coupling he 2.94 × 10−6

Muon Yukawa coupling hμ 0.000607
Tauon Yukawa coupling hτ 0.0102156
Up Yukawa coupling hu 0.000016 ± 0.000007
Down Yukawa coupling hd 0.00003 ± 0.00002
Charm Yukawa coupling hc 0.0072 ± 0.0006
Strange Yukawa coupling hs 0.0006 ± 0.0002
Top Yukawa coupling ht 1.002 ± 0.029
Bottom Yukawa coupling hb 0.026 ± 0.003

Quark CKM matrix angle sin θ12 0.2243 ± 0.0016
sin θ23 0.0413 ± 0.0015
sin θ13 0.0037 ± 0.0005

Quark CKM matrix phase δCKM 1.05 ± 0.24

Higgs potential quadratic coefficient μ̂2 −(250.6 ± 1.2) GeV2

Higgs potential quartic coefficient λ 1.015 ± 0.05
QCD vacuum phase θQCD 10−9

of the Standard Model of particle physics, which means that it starts with a short summary
of the formulation of the Standard Model of particle physics in order for the read to
understand the nature of its constants (this is complementary to Chapter 8). Masses, cross
sections, and binding energies are the key quantities that appear in nuclear physics. Once
we have seen how they can be related to the fundamental constants, we can give the
two main astrophysical applications of these computations: the synthesis of light nuclei
during Big Bang nucleosythesis in Section 7.4 (see also Chapter 5) and the production of
heavier elements during stellar evolution in Section 7.5. We will pay special attention to
the production of carbon-12 and oxygen-16 since they are key nuclei for life as we know it
on Earth. Section 7.6 will summarise the implications for fine-tuning.

7.2 Strategy

In order to study the effects of a variation of the fundamental constants on the prediction
of nuclear physics, we proceed as follows. First, we only consider a local variation; that
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is, we assume some changes of the fundamental constants in a domain close to the actual
values observed in our Universe and, more important, we assume that the structure of the
QCD theory remains unchanged. General studies on the constraints on the time variation
of fundamental constants [107–110] provide upper bounds on possible variations. This
means that these constraints give a measure of a universe that will appear similar to ours
to observers similar to us. Our observational ability to constrain such variations provide a
coarse-graining scale on the space of fundamental constants, under which two universes
cannot be distinguished.

Under this hypothesis, we can define sensitivity coefficients that characterise the effect
of the change of a fundamental constant. Given an observable O, the value of which
depends on a set of primary parameters Gk , the sensitivity of the measured value of O
to these parameters is

d lnO

d lnGk
= ck . (7.1)

The primary parameters can indeed be fundamental constants, such as the gravitational
constant, the fine-structure constant, or combination of them, such as masses of compos-
ite particles, cross sections, binding energies, etc. The computation of the coefficient ck
requires a physical description of the system. Indeed, the observation O depends on both
the parameters Gk and on external parameters that we shall call X, such as temperature,
magnetic fields, etc.

Any observation of the system provides a value of O with some errors bars – i.e.,
Oobs±�Oobs. Usually, the values of the primary parameters are assumed to be constant and
take the value derived locally in the solar system, as tabulated in Table 7.1. Two different
approaches shall be distinguished:

• One can use the observations to set constraints on the space-time variations of the primary
parameters. The constraints will depend on the accuracy of the observations (�Oobs) as
well as our knowledge of the effects of the external parameters X.

• One can let the constants vary in order to quantify the change that may result in the fact
that the phenomena O does not happen or happens in a very different way.

The values of the parameters ck offer a way to either choose the system O that will best
constrain a set of parameters or determine the constants that play a drastic role in the
phenomena O and that can thus be subject to some fine-tuning. At this stage, the approach
is completely standard from a physics point of view, since it just assumes that the values of
the Gk are not known a priori and that we try to measure them on the system O.

As we have already emphasised, the parameters Gk may not be fundamental constants.
They need to be related to a set of fundamental constant αi , and we define

d lnGk
d lnαi

= dki . (7.2)

The computation of the coefficients dki requires one to specify the theoretical framework
and depends heavily on our knowledge of nuclear physics and the assumptions of
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unification. This shall be discussed in the next section. In the following, a particular
set of parameters dki has been singled out for the sensitivity of the mass of a body A to a
variation of the fundamental constants

d lnmA
dαi

= fAi . (7.3)

As we have emphasised, we restrict our analysis to local variations of the fundamental
constants, simply for technical reasons. In a general setting – such as in most multiverse
scenarios, fundamental constants, and even the structures of the theory – can radically
change. Among this range of parameters lies a subset that we shall call the anthropic range,
which allows for the Universe to support the existence of observers (but not necessarily
similar to us). The local analysis is indeed very restrictive since the mathematical form of
the laws of physics may as well change so that what we are restricting to a local analysis in
the neighbourhood of our observed Universe (in the space of theories). The determination
of the anthropic region is not a prediction but just a characterisation of the sensitivity of
‘our’ Universe to a change of the fundamental constants ceteris paribus. Once this range is
determined, one can ask the general question of quantifying the probability that we observe
a universe as ours, hence providing a probabilistic prediction. This involves the use of
the Anthropic Principle, which expresses the fact that we observe not just observations
but observations made by us, and, requires us to state what an observer actually is (see
References [8, 110] for a detailed discussion on fine-tuning and anthropic arguments). We
shall not discuss this in detail in this chapter.

7.3 From the Standard Model of Particle Physics to Nuclear Physics

In order to detail the connection between these two theories, we start by recalling the basics
of the Standard Model of particle physics. The main goal is to define the structures and
the constants that appear at that level. We shall then discuss the running of the coupling
constants with energy and the possibility of unification. It has deep implications on fine-
tuning since it can tie the values of different constants together, hence suppressing some
parts of the parameter space. We follow with a general discussion on the masses and
gyromagnetic factors of composite particles. We then describe the cluster approach to
model nuclei. It is an important tool that will allow us to compute binding energies and
resonance energies. We finish with a summary of the tuning issues related to the stability
of the nuclei.

7.3.1 The Standard Model of Particle Physics in a Nutshell

The Standard Model of non-gravitational interactions accounts for all the interactions
except gravity, classified depending on the representations of the groups SU(3)c for the
strong interaction, and SU(2)L × U(1)Y for the electroweak ones. This last symmery is
broken by the Higgs mechanism along the symmetry-broken process SU(2)L ×U(1)Y →
U(1)elec.
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The strong interaction is based on an invariance under the transformations of the group
SU(3). Since this group has eight generators, its joint representation, in which the gauge
bosons Gaμ are placed, is of dimension 8. The leptons are not subject to these interactions
and, thus, appear as singlets of SU(3), which do not couple to the gauge boson. The quarks
exist in three possible states, and are thus placed in a three-dimensional representation,
denoted by 3. The quarks are therefore represented in column vectors with these three
elements,

Q ≡
⎛⎝ur

ug

ub

⎞⎠ ,
⎛⎝dr

dg

db

⎞⎠ ,
⎛⎝srsg
sb

⎞⎠ ,
⎛⎝cr

cg

cb

⎞⎠ ,
⎛⎝trtg
tb

⎞⎠ ,
⎛⎝br

bg

bb

⎞⎠ . (7.4)

The index is called colour. The covariant derivative of each quark Q, with respect to the
strong interaction, is given by

D(3)μ Q = (
∂μ − ig3Gaμλ

a
)
Q, (7.5)

where the λa are eight matrices forming the algebra of SU(3). We often take the Gell-Mann
matrices which satisfy the appropriate commutation relations of SU(3) with the structure
constants of SU(3), then denoted as f abc . The coupling constant g3 of the group measures
the intensity of the interaction. The Lagrangian of QCD takes the form

LQCD = −
∑

quarks

QγμD
μ

(3)Q− 1

4
GaμνG

aμν, (7.6)

where a = 1,. . . ,8 and Gaμν ≡ ∂μGaν − ∂νGaμ + if bcaGbμGcν .
The electroweak interaction combines the properties of the weak interaction, coming

from the invariance under transformations of the group SU(2)
L

, and of electromagnetism,
based on U(1)elec, brought together as a unique interaction. All particles are combined in
singlets or doublets of SU(2)

L
.

The quarks of each generation are supposed to be equivalent so that the doublets are(
uL

dL

)
,

(
cL

sL

)
, and

(
tL
bL

)
, (7.7)

where each fermion appears as an eigenstate of chirality with the definition

ψL ≡
(
I − γ 5

2

)
ψ, ψR ≡

(
I + γ 5

2

)
ψ , (7.8)

where the matrix γ 5 is defined as γ 5 ≡ iγ 0γ 1γ 2γ 3. Finally, the quarks with right chirality
are defined as singlets of SU(2)L:

uR, dR, cR, sR, and tR,bR .

The leptons include electrons, muons, tau, and their associated neutrinos. Experimen-
tally, neutrinos are only observed in the left state νL , leading to the conclusion that they
should be massless. Since they only have two degrees of freedom, in order to put them in
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similar doublets, it is only possible to pair them with the left component of the correspond-
ing lepton, leaving the right component in a singlet of SU(2)L. The structure is, thus,(

νeL

eL

)
, eR ,

(
νμL

μL

)
, μR ,

(
ντ L

τL

)
, τR , (7.9)

which gathers in a similar scheme the electron, the muon, and the tau with their associated
neutrinos. The covariant derivatives are defined as

D(2)μ

(
νeL

eL

)
≡
(
∂μ − ig2Biμσ

i
)(
νeL

eL

)
. (7.10)

σ i (i = 1,2,3) are the Pauli matrices, generators of the group SU(2), since they satisfy the
algebra [

σ i,σ j
]

= 2iεijkσ
k . (7.11)

Similar to the strong interaction, the vector bosons Biμ are in the adjoint representation of

SU(2). The coupling constant of the group is called g2. The coefficients εijk take numer-
ical values +1 (resp. −1) if (i,j,k) is an even (resp. odd) permutation of (1,2,3), and 0
otherwise. The structure constants of the group SU(2) are given by the rank 3 Levi-Civita
tensor, and this group is locally equivalent to that of rotations.

Moreover, a charge with respect to the phase transformations is associated to each
particle. This ‘hypercharge’ is denoted by Y , and we have YR = −2 for the right leptons,
YL = −1 for the left leptons, Y (qL) = 1

3 for the quark doublets (7.7) of left chirality, and,
for the right chirality, Y (uR,cR,tR) = 4

3 and Y (dR,sR,bR) = − 2
3 . The doublet structure of

Eqs. (7.7) and (7.9) reminds us of the one of spin 1
2 . This is why the doublet classification

of SU(2)L is also called weak isospin, denoted by T . The values T 3 = ± 1
2 are respectively

given to the top and bottom component of the doublet. Using this analogy and bearing in
mind that the electric charges of the quarks are Qu,c,t = + 2

3 and Qd,s,b = − 1
3 , that the

ones for the massive leptons are Qe,μ,τ = −1, and that neutrinos have no electric charge,
we obtain the Gell-Mann–Nishijima relation

Q = T 3 + Y

2
. (7.12)

Note that for this relation to hold for all particles, we need to set T = 0 for the singlets.
We can then add a covariant derivative term U(1)Y for each field,

D(1)ψ ≡ (
∂μ + ig1YCμ

)
ψ,

where g1 is the coupling constant associated with the group U(1)Y .
This provides all the building blocks to write down a complete Lagrangian for the three

non-gravitational interactions and all their invariances. The kinetic terms of the Standard
Model for the electroweak and strong interactions are thus given by
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Lkin = −iψγ μ
(
∂μ − ig3Gaμλ

a − ig2Biμσ
i − ig1YCμ

)
ψ

− 1

4

(
∂μCν − ∂νCμ

)2
− 1

4

(
∂μGaν − ∂νGaμ + if bcaGbμGcν

)2

− 1

4

(
∂μBiν − ∂νBiμ + iεjki BjμBkν

)2
, (7.13)

where the action of the covariant derivative depends on which particle it acts on. For
instance, for the lepton doublet of the first family, using the hypercharges obtained earlier,
this gives

Lkin
e = −i (νeL,eL

)
γ μ
(
∂μ − ig2Biμσ

i + ig1Cμ

)(
νeL

eL

)
− ieRγ

μ
(
∂μ + 2ig1Cμ

)
eR,

(7.14)

since the leptons are not subject to the strong interaction, etc. Equation (7.14) can explicitly
be expanded in left and right components as

Lkin
e = −iνeLγ

μ∂μνeL − ieγ μ (∂μ + 2ig2sinθWAμ
)
e

−
√

2g2
(
νeLγ

μW+
μ eR + eRγ

μW−
μ νeL

)
− g2

cosθW

(
νeLγ

μZμνeL − cos 2θWνeLγ
μZμeL − 2 sin2 θWνeRγ

μZμeR

)
,

(7.15)

where the weak angle θW is defined by the relations

sinθW ≡ g1√
g2

1 + g2
2

, cosθW ≡ g2√
g2

1 + g2
2

. (7.16)

The vector fields, are defined by

W±
μ = 1√

2

(
B1μ ∓ iB2μ

)
, (7.17)

and(
Zμ

Aμ

)
≡
(

cosθW −sinθW
sinθW cosθW

)(
B3μ

Cμ

)
⇐⇒

(
B3μ

Cμ

)
≡
(

cosθW sinθW
−sinθW cosθW

)(
Zμ

Aμ

)
,

(7.18)

Aμ being the electromagnetic field. The Lagrangian (7.15) can be understood in the fol-
lowing way. First of all, we notice that the kinetic term of the electron leads to a gauge
coupling of the U(1) type with the photon, the electromagnetic coupling constant, and Q
the electric charge operator, with valueQe = −1 for the electron. This coupling is the same
for the left and right degrees of freedom of the electron. In addition to the coupling terms,
an intermediate neutral boson Zμ has appeared, coupling both right and left components
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of the electron in a different way and also adding a self-coupling term for the (left-handed)
neutrino. Finally, charged intermediate bosons W±

μ induce possible interactions between
neutrinos and electrons (the charges of the W± come from the fact that each term of the
final Lagrangian should preserve the electric charge, which – between a neutral neutrino
and an electron – is only possible with the indicated signs for the charges).

The Lagrangian (7.13) counts almost all possible terms that satisfy the invariance of
the Standard Model and brings into play the particles known experimentally. Due to its
invariances and, in particular, due to the weak isospin, it is not possible to write mass
terms for the leptons. As for the quarks, all elements of the same doublet of SU(2)L
should have the same mass – like, for instance, both quarks u and d – which contradicts
the measurements. Thus, the model can only be made compatible with experiments if the
SU(2)L symmetry is broken. For this, we introduce a complex field doublet

φ =
(
φ1

φ2

)
, (7.19)

the dynamics of which is governed by the potential

V (φ) = λ
(
|φ|2 − η2

)2 = λ
(
φ!1φ1 + φ!2φ2 − η2

)2
. (7.20)

Around the minimum of this potential is |φ1|2 + |φ2|2 = η2. Assuming that the Higgs field
is not subject to the strong interaction, the kinetic term becomes

Lcin
φ = −|Dφ|2 = −

∣∣∣∣(∂μ − ig2Biμσ
i − ig1YφCμ

)(
φ1

φ2

)∣∣∣∣2 (7.21)

around the minimum of the potential, performing a gauge transformation to suppress any
of the three redundant degrees of freedom. In the unitary gauge, for which φ1 = 0 and
φ2 = η + h/√2, i.e.,

φ = φ0 + δφ, with φ0 =
(

0
η

)
and δφ = 1√

2

(
0
h

)
, (7.22)

we are left with only the Higgs field, h, which is real. We then get

Lcin
φ = −1

2
∂μh∂

μh−
(
η2 + 1

2
h2 +

√
2ηh

)[(
g2B3μ − g1YφCμ

)2 + 2g2
2W

+μW−
μ

]
,

(7.23)

where we recognise the intermediate vector boson Zμ, provided that we fix the hypercharge
of the Higgs scalar doublet to Yφ = 1. It is the only value that will preserve the electromag-
netic invariance after the symmetry breaking, ensuring the photon defined by Eq. (7.18)
remains massless. It allows one to determine the masses of theW and Z bosons:

MW =
√

2g2η and MZ =
√

2g2η

cosθW
= MW

cosθW
. (7.24)
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All the parameters of this model can actually be measured in laboratory and accelerator
experiments. Their values are summarised in Table 7.1. This sets our reference theory,
concerning both its structure and the values of its free parameters.

7.3.2 Extensions

The Standard Model of particle physics briefly described before relies on the gauge group
SU(3)c × SU(2)L × U(1)Y . One might feel uneasy with such a structure, as the reason
why this particular group determines the symmetries remains unexplained, but, indeed,
we may (correctly) argue that no theory is supposed to explain its own structures. More
annoying, perhaps, is the fact that the model contains three families of quarks and leptons,
which again looks like an unexplained replication of the same theory but at different energy
scales. These particles are placed in representations that appear to be completely arbitrary.
The most severe theoretical problem from which the Standard Model suffers is probably
the proliferation of free parameters, which are exclusively determined from experimental
measurements and are not computable from first principles. While gravity only introduces
one free parameter, the coupling constant, the electroweak and strong theory requires 19
dimensionless parameters.

Taking into account the fact that we now know that neutrinos must have a mass, then
there are three additional masses, one for each generation, and as a consequence, new
mixing angles and phases. This extraordinarily simple extension raises the number of free
parameters to more than 25, which is considered excessive for a theory supposed to explain
three of the four fundamental interactions in a unified way.

It is not the goal of this text to investigate the extensions of the Standard Model. How-
ever, we shall mention the idea of unification which relies on the fact that the value of
the three gauge coupling constants run with energy. In quantum field, the calculation of
scattering processes include higher-order corrections of the coupling constants related to
loop corrections that introduce some integrals over internal four-momenta. Depending on
the theory, these integrals may be either finite or diverging as the logarithm or power-law of
a UV cut-off. In the class of theories called renormalisable, among which is the Standard
Model of particle physics, the physical quantities calculated at any order do not depend
on the choice of the cut-off scale. But the result may depend on lnE/m where E is the
typical energy scale of the process. It follows that the values of the coupling constants of
the Standard Model depend on the energy at which they are measured (or of the process
in which they are involved). This running arises from the screening due to the existence
of virtual particles, which are polarised by the presence of a charge. The renormalisation
group allows one to compute the dependence of a coupling constants as a function of the
energy E as

dgi(E)

d lnE
= βi(E), (7.25)

where the beta functions, βi , depend on the gauge group and on the matter content of the
theory and may be expended in powers of gi . For the SU(2) and U(1) gauge couplings of
the Standard Model, they are given by
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β2(g2) = − g3
2

4π2

(
11

6
− ng

3

)
, β1(g1) = + g3

1

4π2

5ng
9
, (7.26)

where ng is the number of generations for the fermions. Remember that the fine-structure
constant is defined in the limit of zero momentum transfer so that cosmological variation
of the fine-structure constant is independent of the issue of the renormalisation group
dependence. For the SU(3) sector, with fundamental Dirac fermion representations,

β3(g3) = − g3
3

4π2

(
11

4
− nf

6

)
, (7.27)

nf being the number of quark flavours with a mass smaller than E. The negative sign
implies that (1) at large momentum transfer, the coupling decreases, and loop corrections
become less and less significant – QCD is said to be asymptotically free; (2) integrating the
renormalisation group equation for α3 gives

α3(E) = 6π

(33 − nf ) ln(E/�c)
(7.28)

so that it diverges as the energy scale approaches �c from above, �c, �QCD , which we
decided to call �QCD. This scale characterises all QCD properties, and, in particular, the
masses of the hadrons are expected to be proportional to �QCD up to corrections of order
mq/�QCD.

It was noticed quite early that these relations imply that the weaker gauge coupling
becomes stronger at high energy while the strong coupling becomes weaker, so that one can
think the three non-gravitational interactions may have a single common coupling strength
above a given energy. This is the driving idea of Grand Unified Theories (GUT) in which
one introduces a mechanism of symmetry breaking from a higher-symmetry group at high
energies. It has two important consequences for our present considerations since one gets
extra relations between the free parameters of the models.

First, there may exist algebraic relations between the Yukawa couplings of the Standard
Model. Second, the structure constants of the Standard Model unify at an energy scaleMU :

α1(MU) = α2(MU) = α3(MU) ≡ αU(MU). (7.29)

We note that the electroweak mixing angle is fixed by the symmetry to have the value
sin2 θ = 3/8 at E = MU , from which we deduce that

α−1(MZ) = 5

3
α−1

1 (MZ)+ α−1
2 (MZ). (7.30)

It follows from the renormalisation group relations that

α−1
i (E) = α−1

i (MU)−
bi

2π
ln
E

MU
, (7.31)

where the beta-function coefficients are given by bi = (41/10, − 19/6,7) for the Stan-
dard Model and by bi = (33/5,1, − 3) for N = 1 supersymmetric theory. Given a field
decoupling at mth, one has
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α−1
i (E−) = α−1

i (E+)−
b
(−)
i

2π
ln
E−
E+

− b
(th)
i

2π
ln
mth

E+
, (7.32)

where b(th)i = b(+) − b(−) with b(+/−) the beta-function coefficients respectively above
and below the mass threshold, with tree-level matching at mth. In the case of multiple
thresholds, one must sum the different contributions. The existence of these thresholds
implies that the running of α3 is complicated since it depends on the masses of heavy
quarks and coloured superpartners in the case of supersymmetry. For non-supersymmetric
theories, the low-energy expression of the QCD scale is

�QCD = E
(mcmbmt

E

)2/27
exp

(
− 2π

9α3(E)

)
(7.33)

for E > mt. This implies that the variation of Yukawa couplings, gauge couplings, Higgs
vev, and �QCD/MP are correlated. A second set of relations arises in models in which the
weak scale is determined by dimensional transmutation [47]. In such cases, the Higgs vev
is related to the Yukawa constant of the top quark by [19]

v = Mp exp

(
−8π2c

h2
t

)
, (7.34)

where c is a constant of order unity. This would imply that δ ln v = Sδ lnh with S ∼ 160
[26].

The first consequences of this unification were investigated in References [18, 19, 38,
48, 75] where the variation of the three coupling constants was reduced to the one of αU
andMU/MP. It was concluded that, setting

R ≡ δ ln�QCD/δ lnα, (7.35)

R ∼ 34 with a stated accuracy of about 20% [75] (assuming only αU can vary), R ∼ 40.82
in the string dilaton model (assuming grand unification) [38]. We shall not discuss all of
these models here but refer to section 5.3.1 of Reference [110] for an extensive review of
the models and the relations they induce between the fundamental constants.

7.3.3 Masses

Any non-fundamental particle or nuclei has a mass that can, in principle, be expressed in
terms of the parameters listed in Table 7.1. When we consider ‘composite’ systems such
as proton, neutron, nuclei, or even planets and stars, we need to compute their mass, which
requires us to determine their binding energy. The electromagnetic binding energy induces
a direct dependence on the fine-structure constant α of the masses of the nuclei that can be
evaluated using, e.g., the Bethe–Weizäcker formula,

EEM = 98.25
Z(Z − 1)

A1/3
αMeV. (7.36)
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The dependence of the masses on the quark masses, via nuclear interactions, and the
determination of the nuclear binding energy are especially difficult to estimate.

In the chiral limit of QCD in which all quark masses are negligible compared to �QCD,
all dimensionful quantities scale as some power of �QCD. For instance, concerning the
nucleon mass,mN = c�QCD with c ∼ 3.9 being computed from lattice QCD. This predicts
a mass of order 860 MeV, smaller than the observed value of 940 MeV. Reference [79]
shows that the mass of the proton can be expressed in terms of the masses of the light
quarks as

δmp

mp
= fTu

δmu

mu
+ fTd

δmd

md
+ fTs

δms

ms
+ fTg

δ�QCD

�QCD

, (7.37)

where the fTi are coefficients that can be computed in different approximations. They can
be found in Reference [79].

To go further and determine the sensitivity of the mass of a nucleus to the various
constants,

m(A,Z) = Zmp + (A− Z)mn + Zme + ES + EEM, (7.38)

one should determine the strong binding energy (see Eq. (7.39)) in function of the atomic
number Z and the mass number A. If we decompose the proton and neutron masses as [60]
m(p,n) = u3 + b(u,d)mu + b(d,u)md + B(p,n)α, where u3 is the pure QCD approximation of
the nucleon mass (bu, bd and B(n,p)/u3 being pure numbers), it reduces to

m(A,Z) = (Au3 + ES)+ (Zbu +Nbd)mu + (Zbd +Nbu)md

+
(
ZBp +NBn + 98.25

Z(Z − 1)

A1/3
MeV

)
α, (7.39)

with N = A−Z, the neutron number. For an atom, one would have to add the contribution
of the electrons, Zme. This form depends on strong, weak, and electromagnetic quantities.
The numerical coefficients B(n,p) are given explicitly by [60]

Bpα = 0.63 MeV Bnα = −0.13 MeV. (7.40)

7.3.4 Gyromagnetic Factors

Gyromagnetic factors are of importance in atomic physics, particularly when it turns to
the hyperfine structure. Following Reference [79], an approximate calculation is possible
in the shell model and is relatively simple for even-odd (or odd-even) nuclei where the
nuclear magnetic moment is determined by the unpaired nucleon. For a single nucleon – in
a particular, (l,j) state within the nucleus – we can write

g =
{

2lgl + gs
j
j+1 [2(l + 1)gl − gs] for

{
j = l + 1

2
j = l − 1

2
, (7.41)

where gl = 1(0) and gs = gp(gn) for a valence proton (neutron).
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The differences between the shell model predicted g-factors and the experimental values
can be attributed to the effects of the polarisation of the non-valence nucleons and spin-spin
interaction [13, 51, 54]. Taking these effects into account, the refined formula relevant is

g = 2
[
gn b 〈sz〉o + (gp − 1)(1 − b)〈sz〉o + j] , (7.42)

where gn = −3.826, 〈sz〉o is the spin expectation value of the single-valence proton in the
shell model and is one-half of the coefficient of gs in Eq. (7.41), and b is determined by
the spin-spin interaction and appears in the expressions for the spin expectation value of the
valence proton 〈szp〉 = (1 − b)〈sz〉o and non-valence neutrons 〈szn〉 = b〈sz〉o. Following
the preferred method in References [13, 51], it is found

〈szn〉 =
g
2 − j − (gp − 1)〈sz〉o

gn + 1 − gp
, and 〈szp〉 = 〈sz〉o − 〈szn〉. (7.43)

Therefore, the variation of the g-factor can be written as

δg

g
= δgp

gp

2gp〈szp〉
g

+ δgn

gn

2gn〈szn〉
g

+ δb

b

2(gn − gp + 1)〈szn〉
g

. (7.44)

The main step is, thus, the computation of the gyromagnetic factors of the proton and
neutron. In Reference [79], the dependence of the g-factors was expressed as

δgp

gp
= κup

δmu

mu
+ κdp

δmd

md
+ κsp

δms

ms
+ κQCDp

δ�QCD

�QCD

, (7.45)

δgn

gn
= κun

δmu

mu
+ κdn

δmd

md
+ κsn

δms

ms
+ κQCDn

δ�QCD

�QCD

, (7.46)

where the coefficients κi have been calculated by three methods: constituent quark model,
chiral perturbation theory, and based on lattice results. The results can vary according to
the method by a factor 10 for some of those coefficients. This illustrates the difficulty to
relate nuclear physics to QCD.

7.3.5 Effect of the Strength Nuclear Force

As just illustrated, it is sometimes difficult to relate nuclear physics parameters. In the
following, we will use a microscopic model [74, 115] that proved to be useful and efficient
to analyse the effect of the variation of the strength of the nuclear interaction (NN) and
electromagnetic interaction on cross sections, binding energies, and energy levels. In such
an approach, the wave function of a nucleus with atomic number A, spin J , and total parity
π is a solution of a Schrödinger equation with a Hamiltonian given by

H =
A∑
i

T (ri )+
A∑

i>j=1

V (rij ). (7.47)
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T (ri ) is the kinetic energy of nucleon i. The nucleon-nucleon interaction V (rij ) depends
only on the set of relative distances rij = ri − rj . It can be decomposed as

V (rij ) = VC(rij )+ VN(rij ), (7.48)

where the potential VC(r) arises from the electromagnetic interaction and VN(r) from the
nuclear interaction. The expression for VN is detailed in Appendix B. The eigenstates
�JMπ with energy EJπ of the system are solutions, as usual, of the Schrödinger equation
associated with the Hamiltonian given in Eq. (7.47),

H�JMπ = EJπ�JMπ . (7.49)

The total wave function �JMπ is a function of the A− 1 coordinates rij .
When A > 4, no exact solutions of Eq. (7.49) can be found, and approximate solutions

have to be constructed. For those cases, we use a cluster approximation in which �JMπ is
written in terms of α-nucleus wave functions. Because the binding energy of the α particle
is large, this approach has been shown to be well adapted to cluster states; and, in particular,
to 8Be and 12C [71, 102]. In the particular case of these two nuclei, the wave functions are
respectively expressed as

�JMπ8Be
= AφαφαgJMπ2 (ρ)

�JMπ12C
= AφαφαφαgJMπ3 (ρ,R), (7.50)

where φα is the α wave function, defined in the 0s shell model with an oscillator
parameter b; A is the antisymmetrisation operator between the A nucleons of the system.
For two-cluster systems, the wave function gJMπ2 (ρ) depends on the relative coordinate ρ

between the two α particles. For three-cluster systems, R is the relative distance between
two α particles, and ρ is the relative coordinate between the third α particle and the
8Be centre of mass. The relative wave functions, g2 and g3, are obtained by solving the
Schrödinger equation (7.49).

One then needs to specify the nucleon-nucleon potential VN(rij ). We shall use the
microscopic interaction model [105], which contains one linear parameter (admixture
parameter u) whose standard value is u = 1. It can be slightly modified to reproduce
important inputs such as the resonance energy of the Hoyle state. The binding energies of
the deuteron (−2.22 MeV) and the α particle (−24.28 MeV) do not depend on u. For the
deuteron, the Schrödinger equation is solved exactly.

To take into account the variation of the fundamental constants, we introduce the param-
eters δα and δNN to characterise the change of the strength of the electromagnetic and
nucleon-nucleon interaction respectively. This is implemented by modifying the interaction
potential (7.48) so that

V (rij ) = (1 + δα)VC(rij )+ (1 + δNN)VN(rij ). (7.51)

Such a modification will affect binding energies and resonant energies simultaneously.



254 Jean-Philippe Uzan

7.3.6 Binding Energies

The computation of binding energies is a difficult task that can follow different paths. For
light elements, several method can be used, and we shall expose that on the particular
case of the deuterium binding energy, BD . For heavier elements, one needs to rely on
phenomenological models, such as the liquid drop.

Deuterium binding energy. The case of the deuterium binding energy BD has been
discussed in different ways. It plays an important role in nucleosynthesis.

• Pion mass. A first route is to use the dependence of the binding energy on the pion
mass [12, 48], which is related to the u and d quark masses by

m2
π = mq〈ūu+ d̄d〉f−2

π � m̂�QCD, (7.52)

where mq ≡ 1
2 (mu + md) and assuming that the leading order of 〈ūu + d̄d〉f−2

π

depends only on �QCD, fπ being the pion decay constant. This dependence was
parameterised [118] as

�BD

BD
= −r �mπ

mπ
, (7.53)

where r is a fitting parameter found to be between 6 [48] and 10 [12]. Prior to this result,
the analysis of [52] provides two computations of this dependence, which respectively
lead to r = −3 and r = 18. This shows, once more, the difficulty to get a precise
prediction. Reference [82] adds an electromagnetic contribution −0.0081�α/α so that

�BD

BD
= − r

2

�mq

mq
− 0.0081

�α

α
, (7.54)

but this latter contribution has not been included in other works.

• Sigma model. In the framework of the Walecka model, where the potential for the nuclear
forces keeps only the σ and ω meson exchanges,

V = − g2
s

4πr
exp(−mσ r)+ g2

v

4πr
exp(−mωr), (7.55)

where gs and gv are two coupling constants. Describing σ as a SU(3) singlet state, its
mass was related to the mass of the strange quark. In this way, one can hope to take into
account the effect of the strange quark, both on the nucleon mass and the binding energy.
In a second step, BD is related to the meson and nucleon mass by

�BD

BD
= −48

�mσ

mσ
+ 50

�mω

mω
+ 6

�mN

mN
(7.56)

so that �BD/BD � −17�ms/ms [53]. Unfortunately, a complete treatment of all the
nuclear quantities on ms has not been performed yet.
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• Cluster model. The analysis using the cluster model described earlier implies [44] that
the deuterium binding energy scales as

�BD/BD = 5.716 × δNN. (7.57)

This relation allows one to relate the phenomenological parameter δNN to miscroscopic
parameters. Again, this explicitely shows the difficulty of to determining the role of the
QCD parameters in low-energy nuclear physics.

• Relation to QCD parameters. Using the expression of BD from the sigma model and the
quark matrix elements for the nucleon, variations in BD can be related to variations in the
light quark masses (particularly the strange quark) and, thus, to the corresponding quark
Yukawa couplings and Higgs vev, v. In Reference [26], it was concluded that

�BD

BD
= 18

��

�
− 17

(
�v

v
+ �hs

hs

)
. (7.58)

Using the unification relations (7.33) and (7.34), one respectively gets

��

�
= R �α

α
+ 2

27

(
3
�v

v
+ �hc

hc
+ �hb

hb
+ �ht

ht

)
(7.59)

and

�BD

BD
= −13(1 + S) �h

h
+ 18R

�α

α
. (7.60)

This gives expressions in which the details of the unification scheme are hidden in the
two parameters (R,S).

Heavier elements. For larger nuclei, the situation is more complicated since there is no
simple modelling. For large mass number A, the strong binding energy can be approxi-
mated by the liquid drop model

ES

A
= aV − aS

A1/3
− aA (A− 2Z)2

A2
+ aP (−1)A + (−1)Z

A3/2
(7.61)

with(aV ,aS,aA,aP ) = (15.7,17.8,23.7,11.2)MeV [95]. It has also been suggested [39]
that the nuclear binding energy can be expressed as

ES � Aa3 + A2/3b3 with a3 = achiral limit
3 +m2

π

∂a3

∂m2
π

. (7.62)

In the chiral limit, a3 has a non-vanishing limit to which we need to add a contribution
scaling like m2

π ∝ �QCDmq. Reference [39] also pointed out that the delicate balance
between attractive and repulsive nuclear interactions [100] implies that the binding energy
of nuclei is expected to depend strongly on the quark masses [41]. Recently, a fitting for-
mula derived from effective field theory and based on the semi-empirical formula derived
in [58] was proposed [37] as

ES

A
= −

(
120 − 97

A1/3

)
ηS +

(
67 − 57

A1/3

)
ηV + . . . , (7.63)
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where ηS and ηV are the strength of respectively the scalar (attractive) and vector (repul-
sive) nuclear contact interactions normalised to their actual value. These two parameters
need to be related to the QCD parameters [41]. We also refer to [55] for the study of
the dependence of the binding of light (A ≤ 8) nuclei on possible variations of hadronic
masses – including meson, nucleon, and nucleon-resonance masses.

7.3.7 Resonance Energies

The formalism developed in Section 7.3.5 allows one to compute the resonance energies
of different nuclear reactions. It is, indeed, out of the scope of this text to investigate all
possible reactions. We shall focus of beryllium-8 and carbon-12, which are of primary
importance for nucleosynthesis.

For each set of values (δα,δNN ), one can solve Eq. (7.49) with the interaction potential
(7.51). We emphasise that the parameter u is determined from the experimental 8Be and
12C(0+

2 ) energies (u = 0.954). We assume that δNN varies in the range [−0.015,0.015].
Following Reference [44], one obtains the results depicted in Figure 7.2. The sensitivities
of ER(8Be) and ER(12C) to δNN are scaling as

ER(
8Be) ≡ −B8 (0.09184 − 12.208 × δNN) MeV, (7.64)

B8 being the 8Be binding energy with respect to two-alpha break-up (with this convention,
B8 < 0 for unbound 8Be), and

ER(
12C) = (0.2876 − 20.412 × δNN) MeV. (7.65)

The numerical results for the sensitivities of ER(8Be) and ER(12C) to δNN as well as
the preceding linear fits are shown in Figure 7.2. The effect of δα on these quantities is
negligible. Note that for δNN � 0.007, ER(8Be) is negative and 8Be becomes stable. Using
the bijective relation (7.57) between BD and δNN , we can also express our results as

ER(
8Be) = (0.09184 − 12.208�BD/BD) MeV, (7.66)

ER(
12C) = (0.2876 − 3.570�BD/BD) MeV. (7.67)

To estimate the effect of δα in Eq. (7.51), we can approximate the Coulomb energy by
(3/5)Z(Z− 1)αh̄c/Rc, where Rc = 1.3A1/3 fm, which gives 9 MeV for 12C and 0.9 MeV
for 4He. The variation of Qααα is thus of the order of +6 MeV × δα . The direct effect of
δα is thus of opposite sign but considerably less important. This is in qualitative agreement
with References [88, 89].

It is appropriate at this point to note that within the limits of variation of δNN that we
are considering here, the effect on promoting the stability of dineutron or diproton states is
negligible. Working within the context of the same nuclear model, we estimate that a value
of δNN ≥ 0.15 (for the dineutron) or ≥ 0.35 (for the diproton) would be required in order
to induce stability for the dineutron or diproton, respectively.
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Figure 7.2 Variation of the resonance energies as a function of δNN . The symbols represent the
results of the microscopic calculation while the lines correspond to the adopted linear relationship
between ER and δNN . From Reference [44].

7.3.8 Implications for Fine-Tuning

From the previous sections, it can be deduced that most low-energy nuclear properties will
depend on the values of the gauge couplings and on the masses of the quarks. In particular,
changing these constants may affect the stability of some particles (we mentioned the fact
that beryliium-8 may become bound).

Several attempts to study the parameter space of the Standard Model of particle physics
have been made.

They are often model dependent and restricted to a subset of parameters. For instance,
Reference [9] considered a model in which up and down fermions get their masses from
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Figure 7.3 Parameter space of the masses of the up and down quarks. The lines show the limits
of different life-permitting criteria, as calculated by Reference [9] and summarised in the text. The
small green region marked ‘potentially viable’ shows where all these constraints are satisfied. From
Reference [9].

different Higgs doublets. The result of their analysis in the plane of the up and down quarks
masses is depicted in Figure 7.3, where they have indicated the thresholds defined by
different criteria: (1) above the blue line, there exists a single stable element with chemistry
similar to helium-4; (2) above the red line, the deuteron is unstable and decays via the
strong force so that nucleosynthesis in hydrogen-burning stars would fail; (3) above the
green line, neutrons in nuclei decay so that hydrogen is the only stable element; (4) below
this red curve, the diproton is stable; two protons can fuse to helium-2 via a very fast
electromagnetic reaction rather than the much slower, weak nuclear pp-chain; (5) above
this red line, the production of deuterium in stars absorbs energy rather than releasing it.
Also, the deuterium is unstable to weak decay; (6) below this red line, atoms are unstable
since a proton in a nucleus can capture an orbiting electron to form a neutron; (7) below the
orange curve, isolated protons are unstable, leaving no hydrogen left over from the early
Universe to power long-lived stars and play a crucial role in organic chemistry; (8) below
this green line, protons in nuclei decay so that any atoms that formed would disintegrate
into a cloud of neutrons; (9) below this blue line, there is only a single stable particle,
which can combine with a positron to produce an element with the chemistry of hydrogen.
A handful of chemical reactions are possible, with their most complex product being (an
analogue of) H2.

Another example in the case of unification is provided by the analysis of Reference [65]
in the case of the grand unified theory, in the parameter space of the mass of the electron
and the difference between the masses of the down and up quarks, taking into account
the stability of hydrogen and deuterium. This slice of the parameter space is depicted in
Figure 7.4.
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Figure 7.4 Constraints in the plane of the mass of the electron and the difference between the masses
of the down and up quarks. Figure taken from Reference [65].

The effect of the QCD parameters on the strength of the interactions and masses have
been extensively discussed; see, e.g., References [8, 11, 20, 21, 104]. A short summary
of those constraints is the following (see Reference [8] for an extensive review on these
questions).

• The existence of stable atoms requires the radius of the electron orbit to be significantly
larger than the nuclear radius – i.e., αμ/αs � 1 [11].

• The existence of hydrogen – in particular, to power stars and form water – implies
me <mn − mp. Otherwise, the electron will be captured by the proton to form a
neutron [37].

• To ensure that the atomic constituents of chemical species maintain their identity in
chemical reactions, one may require that the typical energy of chemical reactions is much
smaller than the typical energy of nuclear reactions – i.e., α2μ/α2

s � 1 [11].



260 Jean-Philippe Uzan

• Stable ordered molecular structures are not stable only if μ1/4 � 1 [11].

• The stability of the proton requires α � (md − mu)/141 MeV so that the extra electro-
magnetic mass-energy of a proton relative to a neutron is more than counterbalanced by
the bare quark masses [61, 64].

• Unless α � 1, the electrons in atoms and molecules are unstable to pair creation [11].

• Unless αs � 0.3α1/2, carbon and all larger elements are unstable [11].

• Unless αs/αs,0 � 0.91 [40], the deuteron is unstable, and the main nuclear reaction in
stars (pp) does not proceed.

• The grey stripe on the left of each plot shows where α < αG, rendering electric forces
weaker than gravitational ones.

Many other constraints exist [8, 11, 20, 21, 104], but they also involve cosmological or
astrophysical parameters – that is, the environment in which the Standard Model of particle
physics evolves. This bounds were summarised mostly for the reader to be aware that many
conditions exist for the basic building blocks of nuclear physics to exist.

In the following sections of this chapter, we only consider the effect on BBN and stellar
nucleosynthesis. The range of variation of the parameters will be assumed to satisfy the
constraints cited earlier.

7.4 Primordial Nucleosynthesis

Big Bang nucleosynthesis describes the synthesis of light nuclei in the primordial Universe.
It is considered as the second pillar of the Big Bang model. It is worth noting that BBN
has been essential in the past, first to estimate the baryonic density of the Universe and
give an upper limit on the number of neutrino families, as was later confirmed from the
measurement of the Z0 width by LEP experiments at CERN.

This section starts by describing the evolution of the Universe during the radiation era in
Section 7.4.1 and then the basics of the BBN mechanism in Section 7.4.2. The observational
status of the abundances of light elements is summarised in Section 7.4.3. Section 7.4.4
describes the dependence of BBN of the different constants, and Section 7.4.5 investigates
the effect of a change of these parameters.

7.4.1 Description of the Universe in Its Early Phases

Cosmological Dynamics

In the standard cosmological model [92], which we shall assume here, the Universe is
described by a Friedmann-Lemaı̂tre (FL) space-time with metric

ds2 = −(uμdxμ)2 + (gμν + uμuν)dxμdxν, (7.68)

which clearly shows that the cosmic time t is the proper time measured by these fundamen-
tal observers. As a second consequence, this symmetry implies that the most general form
of the stress-energy tensor is the one of a perfect fluid
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Tμν = ρuμuν + P(gμν + uμuν), (7.69)

with ρ and P being the energy density and isotropic pressure measured by the fundamental
observers. The Einstein equations with the stress-energy tensor (7.69) reduce to the Fried-
mann equations

H 2 = 8πG

3
ρ − K

a2
+ �

3
, (7.70)

ȧ

a
= −4πG

3
(ρ + 3P)+ �

3
, (7.71)

together with the conservation equation (∇μT μν = 0)

ρ̇ + 3H(ρ + P) = 0. (7.72)

This gives two independent equations for three variables (a,ρ,P ) that requires the choice
of an equation of state

P = wρ (7.73)

to be integrated. It is convenient to use the conformal time defined by dt = a(η)dη and the
normalised density parameters

�i = 8πGρi/3H
2
0 , �� = �/3H 2

0 , �K = −K/a2
0H

2
0 , (7.74)

that satisfy, from Eq. (7.70),
∑
i �i +��+�K = 1, so that the Friedmann equation takes

the form

H 2

H 2
0

=
∑
i

�i(1 + z)3(1+wi) +�K(1 + z)2 +��, (7.75)

where the redshift z has been defined as 1 + z = a0/a.

Thermal History

Since for radiation ρ ∝ a4 and for pressureless matter ρ ∝ a3, it can be concluded that the
Universe was dominated by radiation in its early phase. The density of radiation today is
mostly determined by the temperature of the cosmic microwave background so that equality
takes place at a redshift

zeq � 3612 −4
2.7

(
�m0h

2

0.15

)
, (7.76)

obtained by equating the matter and radiation energy densities and where  2.7 ≡
TCMB/2.725 mK. Since the temperature scales as (1 + z), the temperature at which the
matter and radiation densities were equal is Teq = TCMB(1 + zeq), which is of order

Teq � 5.65 −3
2.7 �m0h

2 eV. (7.77)
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Above this energy, the matter content of the Universe is in a very different form from that
of today. As it expands, the photon bath cools down, which implies a thermal history.
In particular:

• When the temperature T becomes larger than twice the rest massm of a charged particle,
the energy of a photon is large enough to produce particle-antiparticle pairs. Thus, when
T � me, both electrons and positrons were present in the Universe, so that the particle
content of the Universe changes during its evolution while it cools down.

• Symmetries can be spontaneously broken.

• Some interactions may be efficient only above a temperature, typically as long as the
interaction rate � is larger than the Hubble expansion rate.

• The freeze-out of some interaction can lead to the existence of relic particles.

Radiation Era at Thermodynamical Equilibrium

Particles interaction are mainly characterised by a reaction rate �. If this reaction rate
is much larger than the Hubble expansion rate, then it can maintain these particles in
thermodynamic equilibrium at a temperature T . Particles can thus be treated as perfect
Fermi-Dirac and Bose-Einstein gases with distribution1

Fi(E,T ) = gi

(2π)3
1

exp
[
(E − μi)/Ti(t)

]± 1
≡ gi

(2π)3
fi(E,T ) , (7.78)

where gi is the degeneracy factor, μi is the chemical potential, and E2 = p2 + m2. The
normalisation of fi is such that fi = 1 for the maximum phase space density allowed by the
Pauli principle for a fermion. Ti is the temperature associated with the given species, and, by
symmetry, it is a function of t alone, Ti(t). Interacting species have the same temperature.
Among these particles, the Universe contains an electrodynamic radiation with black-body
spectrum. Any species interacting with photons will, hence, have the same temperature as
these photons as long as �i � H . The photon temperature Tγ = T will thus be called the
temperature of the Universe.

As long as thermal equilibrium holds, one can define thermodynamical quantities such
as the number density n, energy density ρ, and pressure P as

ni =
∫
Fi(p,T )d

3p ρi =
∫
Fi(p,T )E(p)d

3p Pi =
∫
Fi(p,T )

p2

3E
d3p. (7.79)

For ultra-relativistic particles (m,μ � T ), the density at a given temperature T is then
given by

ρr(T ) = g∗(T )
(
π2

30

)
T 4. (7.80)

1 The distribution function depends a priori on (x,t) and (p,E), but the homogeneity hypothesis implies that it does not depend
on x, and isotropy implies that it is a function of p2 = p2. Thus, it follows from the cosmological principle that
f (x,t,p,E) = f (E,t) = f [E,T (t)].
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g∗ represents the effective number of relativistic degrees of freedom at this temperature:

g∗(T ) =
∑

i=bosons

gi

(
Ti

T

)4

+ 7

8

∑
i=fermions

gi

(
Ti

T

)4

. (7.81)

The factor 7/8 arises from the difference between the Fermi and Bose distributions. In the
radiation era, the Friedmann equation then takes the simple form

H 2 = 8πG

3

(
π2

30

)
g∗T 4. (7.82)

Numerically, this amounts to

H(T ) ∼= 1.66g1/2
∗
T 2

Mp
, t (T ) ∼= 0.3g−1/2

∗
Mp

T 2
∼ 2.42 g−1/2

∗
(

T

1 MeV

)−2

s. (7.83)

Description of the Neutrinos

In order to follow the evolution of the matter content of the Universe, it is convenient to
have conserved quantities such as the entropy. It can be shown [92] to be defined as S = sa3

in terms of the entropy density s as

s ≡ ρ + P − nμ
T

. (7.84)

It satisfies d(sa3) = −(μ/T )d(na3) and is, hence, constant (1) as long as matter is neither
destroyed nor created, since then na3 is constant, or (2) for non-degenerate relativistic
matter, μ/T � 1. In the cases relevant for cosmology, d(sa3) = 0. It can be expressed in
terms of the temperature of the photon bath as

s = 2π2

45
q∗T 3 , with q∗(T ) =

∑
i=bosons

gi

(
Ti

T

)3

+ 7

8

∑
i=fermions

gi

(
Ti

T

)3

.

(7.85)

If all relativistic particles are at the same temperature, Ti = T , then q∗ = g∗. Note also that
s = q∗π4/45ζ(3)nγ ∼ 1.8q∗nγ , so that the photon number density gives a measure of the
entropy.

The standard example of the use of entropy is the determination of the temperature of
the cosmic neutrino background. Neutrinos are in equilibrium with the cosmic plasma as
long as the reactions ν + ν̄ ←→ e+ ē and ν + e ←→ ν + e can keep them coupled. Since
neutrinos are not charged, they do not interact directly with photons. The cross section of
weak interactions is given by σ ∼ G2

FE
2 ∝ G2

FT
2 as long as the energy of the neutrinos

is in the range me � E � mW. The interaction rate is thus of the order of � = n〈σv〉 �
G2

FT
5. We obtain that � � (

T
1 MeV

)3
H . Thus, close to TD ∼ 1 MeV, neutrinos decouple

from the cosmic plasma. For T < TD, the neutrino temperature decreases as Tν ∝ a−1 and
remains equal to the photon temperature.

Slightly after decoupling, the temperature becomes smaller than me. Between TD and
T = me there are four fermionic states (e−, e+, each having ge = 2) and two bosonic
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states (photons with gγ = 2) in thermal equilibrium with the photons. Thus, we have
that qγ (T >me) = 11

2 while for T <me only the photons contribute to qγ and, hence,
qγ (T <me) = 2. The conservation of entropy implies that after ē − e annihilation, the
temperatures of the neutrinos and the photons are related by

Tγ =
(

11

4

)1/3

Tν . (7.86)

Thus, the temperature of the Universe is increased by about 40% compared to the neutrino
temperature during the annihilation. Since nν = (3/11)nγ , there must exist a cosmic
background of neutrinos with a density of 112 neutrinos per cubic centimetre and per
family, with a temperature of around 1.95 K today.

7.4.2 Mechanism

The standard BBN scenario [15, 16, 91, 92] proceeds in three main steps:

1. For T > 1 MeV, (t < 1 s) a first stage during which the neutrons, protons, electrons,
positrons, and neutrinos are kept in statistical equilibrium by the (rapid) weak interaction

n←→ p + e− + ν̄e, n+ νe ←→ p + e−, n+ e+ ←→ p + ν̄e. (7.87)

As long as statistical equilibrium holds, the neutron-to-proton ratio is(
n

p

)
= exp

(
−Qnp

kBT

)
, (7.88)

where Qnp ≡ (mn − mp)c
2 = 1.29 MeV. The abundance of the other light elements is

given by [92]

YA = gA
(
ζ(3)√
π

)A−1

2(3A−5)/2A5/2
[
kBT

mNc2

]3(A−1)/2

ηA−1YZp Y
A−Z
n eBA/kBT , (7.89)

where gA is the number of degrees of freedom of the nucleus AZX, mN is the nucleon
mass, η the baryon-photon ratio, and BA ≡ (Zmp + (A−Z)mn −mA)c2 is the binding
energy.

2. Around T ∼ 0.8 MeV (t ∼ 2 s), the weak interactions freeze out at a temperature Tf

determined by the competition between the weak interaction rates and the expansion
rate of the Universe and, thus, roughly determined by �w(Tf) ∼ H(Tf); that is,

G2
F(kBTf)

5 ∼
√
GN∗(kBTf)

2, (7.90)

where GF is the Fermi constant and N∗ the number of relativistic degrees of freedom
at Tf. Below Tf, the number of neutrons and protons changes only from the neutron
β-decay between Tf to TN ∼ 0.1 MeV when p + n reactions proceed faster than their
inverse dissociation.
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3. For 0.05 MeV< T < 0.6 MeV (3 s < t < 6 min), the synthesis of light elements occurs
only by two-body reactions. This requires the deuteron to be synthesised (p + n→ D),
and the photon density must be low enough for the photodissociation to be negligible.
This happens roughly when

nd

nγ
∼ η2 exp(−BD/TN) ∼ 1 (7.91)

with η ∼ 3 × 10−10. The abundance of 4He by mass, Yp, is then well estimated by

Yp � 2
(n/p)N

1 + (n/p)N (7.92)

with

(n/p)N = (n/p)f exp(−tN/τn) (7.93)

with tN ∝ G−1/2T −2
N and τ−1

n = 1.636G2
F(1 + 3g2

A)m
5
e/(2π

3), with gA � 1.26 being
the axial-vector coupling of the nucleon.

4. The abundances of the light element abundances, Yi , are then obtained by solving a
series of nuclear reactions

Ẏi = J − �Yi,
where J and � are time-dependent source and sink terms (see Figure 7.5).

5. Today, BBN codes include up to 424 nuclear reaction network [28] with up-to-date
nuclear physics. In standard BBN, only D, 3He, 4He, and 7Li are significantly produced
as well as traces of 6Li, 9Be, 10B, 11B, and CNO. The most recent up-to-date predictions
are discussed in References [30, 33].

Figure 7.5 Left: The minimal 12 reactions network needed to compute the abundances up to lithium.
Right: The evolution of the abundances of neutron, proton, and the lightest elements as a function
of temperature (i.e., time). Below 0.01 MeV, the abundances are frozen and can be considered as the
primordial abundances. Figure taken from Reference [92].
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Figure 7.6 Abundances of 4He D, 3He, and 7Li (thick solid curve) as a function of the baryon-
to-photon ratio (bottom) or baryonic density (top). The vertical areas correspond to the WMAP
(dot, black) and Planck (solid, grey) baryonic densities while the horizontal hatched areas represent
the adopted observational abundances. The dot-dashed lines correspond to the extreme values of
the effective neutrino families coming from CMB Planck study, Neff = (3.02,3.70). Taken from
Reference [33].

7.4.3 Observations

These predictions need to be compared to the observation of the abundances of the different
nuclei (Figure 7.6).

Deuterium is a very fragile isotope, easily destroyed after BBN. Its most primitive
abundance is determined from the observation of clouds at high redshift, on the line of
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sight of distant quasars. Recently, more precise observations of damped Lyman-α systems
at high redshift have led to provide [35, 93] the mean value

D/H = (2.53 ± 0.04)× 10−5. (7.94)

After BBN, 4He is still produced by stars, essentially during the main-sequence phase.
Its primitive abundance is deduced from observations in Hii (ionised hydrogen) regions of
compact blue galaxies. The primordial 4He mass fraction, Yp, is obtained from the extrap-
olation to zero metallicity but is affected by systematic uncertainties. Recently, references
[5, 6] have determined that

Yp = 0.2465 ± 0.0097. (7.95)

Contrary to 4He, 3He is both produced and destroyed in stars all along its galactic
evolution so that the evolution of its abundance as a function of time is subject to large
uncertainties. Moreover, 3He has been observed in our galaxy [7], and one only gets a local
constraint

3He/H = (1.1 ± 0.2)× 10−5. (7.96)

Consequently, the baryometric status of 3He is not firmly established [112].
Primitive lithium abundance is deduced from observations of low-metallicity stars in

the halo of our galaxy where the lithium abundance is almost independent of metallicity,
displaying the so-called Spite plateau [101]. This interpretation assumes that lithium has
not been depleted at the surface of these stars, so the presently observed abundance can
be assumed to be equal to the primitive one. The small scatter of values around the Spite
plateau is indeed an indication that depletion may not have been very efficient. However,
there is a discrepancy between the value (1) deduced from these observed spectroscopic
abundances and (2) the BBN theoretical predictions assuming �b is determined by the
CMB observations. Many studies have been devoted to the resolution of this so-called
Lithium problem and many possible ‘solutions’, none fully satisfactory, have been pro-
posed. For a detailed analysis, see the proceedings of the meeting ‘Lithium in the Cos-
mos’ [70]. Note that the idea according to which introducing neutrons during BBN may
solve the problem has today been shown [31, 32] to be generically inconsistent with lithium
and deuterium observations. Astronomical observations of these metal poor halo stars [98]
have thus led to a relative primordial abundance of

Li/H = (1.58 ± 0.31)× 10−10. (7.97)

The origin of the light elements lithium, beryllium, and boron is a crossing point between
optical and gamma spectroscopy, non-thermal nucleosynthesis (via spallation with galactic
cosmic ray), stellar evolution, and Big Bang nucleosynthesis. We shall not discuss them in
detail but just mention that, typically, 6Li/H∼ 10−11. Beryllium is a fragile nucleus formed
in the vicinity of Type II supernovae by non-thermal process (spallation). The observations
in metal-poor stars provide a primitive abundance at very low metallicity, of the order of
Be/H = 3. × 10−14 at [Fe/H] = −4. This observation has to be compared to the typical
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primordial Be abundance, Be/H = 10−18. Boron has two isotopes: 10B and 11B, and is also
synthesised by non-thermal processes. The most recent observations give B/H = 1.7 ×
10−12, to be compared to the typical primordial B abundance B/H = 3 × 10−16. For a
general review of these light elements, see Reference [103].

Finally, CNO elements are observed in the lowest-metal poor stars (around [Fe/H] =
−5). The observed abundance of CNO is typically [CNO/H] = −4, relatively to the
solar abundance – i.e., primordial CNO/H < 10−7. For a review, see Reference [56] and
references therein.

7.4.4 Parameters

As can be seen in the description, the general BBN mechanism depends on

• External parameters (mostly the number of families of neutrinos or, more generally, the
number of relativistic degrees of freedom, and the baryonic density)

• Several primary parameters, such as the neutron lifetime (That dictates the free neutron
decay and appears in the normalisation of the proton-neutron reaction rates. It is the only
weak interaction parameter, and it is related to the Higgs vev.) and the deuterium binding
energies.

• Nuclear constants, such as the neutron-to-proton mass difference (it enters in the neutron-
proton ratio)

• Fundamental constants, such as the Newton constant (which will affect the Hubble expan-
sion rate at the time of nucleosynthesis in the same way as extra-relativistic degrees of
freedom do so that it modifies the freeze-out time Tf), the fine-structure constant (which
enters in the Coulomb barriers of the reaction rates through the Gamow factor in all the
binding energies), or the Higgs vev (via the Fermi constant).

In full generality, the effect of these constants on the BBN predictions is difficult to model
because of the intricate structure of QCD and its role in low-energy nuclear reactions.
Thus, a solution is to proceed in two steps: first by determining the dependencies of the
light element abundances on the BBN parameters and then by relating those parameters to
the fundamental constants.

Sensitivities. In order to evaluate to these parameters, we vary them independently and
compute numerically the abundances of the light elements, assuming that the cosmological
parameter η is fixed to the value determined by the analysis of the cosmic microwave
background anisotropies by the Planck satellite. The result is depicted on Figure 7.7 and
shows that the most sensitive parameter is BD , mostly because it controls the deuterium
bottleneck.

Expression of the nuclear parameters. Qnp can be expressed in terms of the mass on the
quarks u and d and the fine-structure constant as

Qnp = aα�QCD + (md −mu), (7.98)
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where the electromagnetic contribution today is (aα�QCD)0 = −0.76MeV, and, therefore,
the quark mass contribution today is (md −mu) = 2.05 [60] so that

�Qnp

Qnp
= −0.59

�α

α
+ 1.59

�(md −mu)

(md −mu)
. (7.99)

All the preceding analyses agree on this dependence.
The neutron lifetime can be well approximated by

τ−1
n = 1 + 3g2

A

120π3
G2
Fm

5
e

[√
q2 − 1(2q4 − 9q2 − 8)+ 15 ln

(
q +

√
q2 − 1

)]
, (7.100)

with q ≡ Qnp/me and GF = 1/
√

2v2. Using the former expression for Qnp, we can
express τn in terms of α; v; and the u, d, and electron masses. It follows:

�τn

τn
= 3.86

�α

α
+ 4

�v

v
+ 1.52

�me

me
− 10.4

�(md −mu)

(md −mu)
. (7.101)

Again, all the preceding analyses agree on this dependence.
The deuterium binding energy has been extensively discussed in Section 7.3.6.

Effect of the fine-structure constant on cross sections. The fine-structure constant
appears in the electromagnetic binding energy of the masses and binding energies. But it
also affects all cross sections involving charged particles [14, 67].

In the non-relativistic limit, it is obtained as the thermal average of the product of the
cross, the relative velocity, and the the number densities. Charged particles must tunnel
through a Coulomb barrier to react. Changing α modifies these barriers and, thus, the
reaction rates. Separating the Coulomb part, the low-energy cross section can be written as

σ(E) = S(E)

E
e−2πη(E), (7.102)

where η(E) arises from the Coulomb barrier and is given in terms of the charges and the
reduced massMr of the two interacting particles as

η(E) = αZ1Z2

√
Mrc2

2E
. (7.103)

The form factor S(E) has to be extrapolated from experimental nuclear data, but its
α-dependence as well as the one of the reduced mass were neglected. This analysis was
then extended [86] to take into account the α-dependence of the form factor to conclude that

σ(E) = 2πη(E)

exp2πη(E)−1
� 2παZ1Z2

√
Mrc2

2E
exp−2πη(E) . (7.104)

Note that Reference [86] also took into account (1) the effect that when two charged
particles are produced, they must escape the Coulomb barrier. This effect is generally weak
because the Qi-values (energy release) of the different reactions are generally larger than
the Coulomb barrier with the exception of two cases: 3He(n,p)3H and 7Be(n,p)7Li. The
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rate of these reactions must be multiplied by a factor (1+ai�α/α). (2) The radiative capture
(photon-emitting processes) are proportional to α since it is the strength of the coupling of
the photon and nuclear currents. All these rates need to be multiplied by (1 +�α/α).

7.4.5 Effects of a Variation of the Nuclear Parameters and Early CNO-Production

In standard BBN, the chain leading to carbon is dominated by the following reactions [92]:

7Li(α,γ )11B 7Li(n,γ )8Li(α,n)11B (7.105)

followed by

11B(p,γ )12C 11B(d,n)12C, 11B(d,p)12B 11B(n,γ )12B, (7.106)

which bridge the gap between the A ≤ 7 and A ≥ 12. Hence, in principle, the mass
gaps at A = 5 and A = 8 prevent the nucleosynthetic chain from extending beyond 4He.
The presence of these gaps is caused by the instability of 5He, 5Li, and 8Be, which are
respectively unbound by 0.798, 1.69, and 0.092 MeV with respect to neutron, proton, and
α particle emission. CNO production in standard BBN has been investigated in References
[28, 69]. While primordial CNO isotopes abundances are too low and highly unlikely with
the present observational techniques, they are important for other applications. In particular,
it may significantly affect the dynamics of Population III stars since hydrogen burning
in low-mass Pop. III stars proceeds through the slow pp chains until enough carbon is
produced, through the triple-alpha 3α reaction, to activate the CNO cycle. The minimum
value of the initial CNO mass fraction that would affect Pop. III stellar evolution was
estimated to be 10−10 [22] or even as low as 10−12 for less massive stars [43]. This is
only two orders of magnitude above the SBBN CNO yields obtained using current nuclear
reaction rates. The main difficulty in BBN calculations up to CNO is the extensive network
(more than 400 reactions) needed, including n-, p-, and α- but also d-, t- and 3He-, induced
reactions on both stable and radioactive targets.

In order to quantify the effect of the previously discussed constants on the production
of the light elements during BBN, at least up to carbon-12, we shall take into account their
effects (1) on the lifetime and stability of 8Be, (2) on the energy of the Hoyle state 12C(0+

2 )
for the production of carbon-12, and (3) on the 3He(d,n)4He, and 3He(d,p)4He reactions,
reactions involving A = 5 nuclei.

Beryllium-8. When the N-N interaction is modified by less than 0.75% (i.e., δNN < 7.52×
10−3), 8Be remains unbound with respect to two α–particle emission. We can therefore take
the 4He(αα,γ )12C rate as a function of δNN , as calculated in Reference [44]. We recall that
we obtained that the energy of the 8Be ground state with respect to the α+α threshold was
given by Eq (7.64).

Figure 7.8 depicts the reaction rate for B8 = 10 and 100 keV relative to the case with
B8 = 50. The rate depends very little on the 8Be binding energy for B8 > 0, and the rate
changes by less than ∼10% for the three values of B8 considered. As a result, we can safely
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Figure 7.8 The relative variation of the 4He(α,γ )8Be reaction rate assuming that 8Be is bound by
10, 50, and 100 keV, relative to the 50 keV rate. Figure taken from Reference [29].

neglect the difference in the rates once B8 > 0. The reaction rate is essentially given by the
radiative capture cross section at the Gamow energy E0(T ), which is proportional to E5

γ ,
where the photon energy is Eγ = Ecm + B8 and Ecm is the α-α centre-of-mass energy.

Hoyle state. The computation of the effect of a change of the nuclear interaction on the
Hoyle state is described in Section 7.5, and the effects on the cross sections and reaction
rates are detailed in Appendix B.

Taking that modifications in our BBN code, one can compute the CNO yields as a
function of δNN , as displayed in Figure 7.9(a). The carbon abundance shows a maximum
at δNN ≈ 0.006, C/H ≈ 10−21, which is six orders of magnitude below the carbon
abundance in standard BBN. This can be understood from Figure 7.9(b), that displays the
4He(αα,γ )12C rate as a function of δNN for temperatures relevant to BBN – i.e., from 0.1
to 1 GK. Clearly, the variation of the rate with δNN is limited at the highest temperatures
where BBN production occurs so that the amplification of 12C production does not exceed
a few orders of magnitudes. Indeed, while stars can process CNO at 0.1 GK over billions
of years, in BBN, the optimal temperature range for producing CNO is passed through
in a matter of minutes. This is not sufficient for 12C (CNO) nucleosynthesis in BBN.
Furthermore, the baryon density during BBN remains in the range 10−5–0.1 g/cm3 between
1.0 and 0.1 GK. This makes three-body reactions like 4He(αα,γ )12C much less efficient
compared to two-body reactions.

The maximum of the 12C production as a function of δNN in Figure 7.9 thus reflects
the maxima in the 8Be(α,γ )12C and 4He(αα,γ )12C rates. They are due to the effect of
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the sharp resonances (in both the 8Be ground state and the 12C ‘Hoyle state’ that dominate
the cross section). The sensitivity of the reaction rates of a sharp resonance is detailed in
Appendix D.

To summarise, for δNN <∼ 0.006, the rate decreases (increases) as a function of ER
(δNN ) because of the dominating exponential factor, exp(−ER/kT ), while for δNN >∼
0.006, it increases (decreases) because of the penetrability. This evolution is followed by
the 12C production displayed in Figure 7.9. For δNN ≥ 0.00752, when 8Be is bound, 12C
production drops to C/H ≈ 5 × 10−23 for B8 = 10. For larger B8, the abundance drops
sharply, as seen in Figure 7.9. For B8 = 50 keV, C/H ≈ 5 × 10−29 and is no longer in the
range shown in the figure. For B8 = 100 keV, corresponding to δNN = 0.0156, the Hoyle
state is even below threshold, and the production is vanishingly small. If 8Be is bound,
reactions that normally produce two α-particles could form 8Be instead. We considered the
following reactions

7Be(n,γ )2α 7Li(p,γ )2α
7Li(n,γ )8Li(β+)2α 7Be(d,p)2α

7Li(d,n)2α 7Be(t,np)2α
7Be(3He,2p)2α 7Be(n,γ )2α

7Li(3He,d)2α 7Be(t,d)2α
7Li(t,2n)2α 7Li(3He,np)2α
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using the same rates as in Reference [28] but replacing 2α with 8Be. The only significant
enhancement comes from the 7Li(d,n)2α reaction, but even in the most favourable case
(B8 = 10 keV), C/H reaches ≈ 10−21. This is still six orders of magnitude below the SBBN
yield [28] that proceeds via the reactions listed in Eqs. (7.105) and (7.106).

3H(d,n)4He and 3He(d,p)4He reactions. Both reactions proceed through the A = 5
nuclei 5He and 5Li and are dominated by a low-energy 3

2
+

resonance (at Eexp
R = 0.048

MeV for 5He and Eexp
R = 0.21 MeV for 5Li) and whose properties can be calculated

within the same microscopic model that we used for 4He(αα,γ )12C, but with 3H+d and
3He+d cluster structures. Unlike the case for 8Be, the lifetime of the 5He and 5Li states
is extremely short (the width of the 8Be ground state is 6 eV, whereas the widths of
the 3

2
+

resonances in 5He and 5Li are of the order of 1 MeV). Therefore, the issue of
producing A = 5 bound states, or even shifting their ground state energy down to the
Gamow window, is not relevant. Even a two-step process, like the 3α reaction, where 5He
or 5Li in thermal equilibrium would capture a subsequent nucleon to form 6Li is completely
negligible because they are unbound by ∼1 MeV compared with the 92 keV of 8Be. Hence,
no significant equilibrium abundance of A = 5 nuclei can be reached.

The computation is similar as the one for the Hoyle state; i.e., (1) determine from the
microscopic model the variation of the resonance energy with δNN and then (2) deduce the
effect on the reaction rate.

Using the parameterisation (7.51) for the nucleon-nucleon interaction, we modify the
resonance energy. Both the excitation energies of the 3

2
+

resonance and of the thresholds
vary. It is found that

�ER = −0.327 × δNN (7.107)

for 3H(d,n)4He and

�ER = −0.453 × δNN (7.108)

for 3He(d,p)4He (units are MeV). These energy dependences are much weaker (∼ 20–
30 keV for |δNN | ≤ 0.03) than for 8Be and 12C (see Eqs. (7.64) and (7.65)). This is
expected for broad resonances which are weakly sensitive to the nuclear interaction [115].

The reaction rates are shown in Figure 7.10. As expected from Eqs. (7.107) and (7.108),
they are only slightly affected by variations of δNN (less than 5%). From the sensitivity
study of Reference [25], we deduce that 3H(d,n)4He rate variations have no effect on BBN
while 3He(d,p)4He rate variations induce only very small (≤4%) changes in the 7Li and
3He abundances. Because the change is so small, we can make a linear approximation to
the sensitivity, as shown in Table 7.2, displaying (δY/Y )/δNN values for both reactions.

Constraints on δNN . These results have been implemented in a BBN code in order to
compute the primordial abundances of the light elements as a function of δNN . Reference
[26] concluded that, in terms of δNN , −0.7% < δNN < +0.5%. To test the importance
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Table 7.2 Abundance sensitivity, ∂ logY/δNN , to a variation of the N–N interaction at
WMAP baryon density. Blank entries correspond to negligible values.

Reaction Yp D/H 3He/H 7Li/H

3H(d,n)4He −0.015
3He(d,p)4He −0.027 −1.14 −1.10

NN = -0.03, -0.015, 0., 0.015, 0.030
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Figure 7.10 Left: Relative variation of the 3H(d,n)4He (solid line) and 3He(d,p)4He (dashed
line) rates for δNN = −0.030, −0.015, 0.015, and 0.030. Right: Effect of the variation of the
N-N interaction induced solely by the modification of the nuclear rates of 3He(d,p)4He and
3H(d,n)4He on the primordial abundances of the light element compared to the constraints obtained
in Reference [26]. Figure taken from Reference [29].

of the variations in the A = 5 rates, 3He(d,p)4He and 3H(d,n)4He were first considered.
We emphasise that a 30% variation in δNN is unrealistic since it corresponds to a 175%
variation on BD . Given the D and 4He primordial abundances, one gets the constraint

−0.0025 < δNN < 0.0006. (7.109)

Those allowed variations in δNN are too small to reconcile 7Li abundances with obser-
vations, where δNN ≈ −0.01 is required. We can easily extend our analysis by allowing
both η10 (the most important external parameter) and δNN to vary. This allows one to
set a joint constraint on the two parameters δNN and baryonic density, as depicted on
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Figure 7.11. No combination of values allow for the simultaneous fulfilment of the 4He,
D, and 7Li observational constraints.

Note that the most influential reaction on 7Li is surprisingly [26, 54] n(p,γ )d, as it
affects the neutron abundance and the 7Be destruction by neutron capture. The produc-
tion of 12C by the 4He(αα,γ )12C, or the 4He(α,γ )8Be and 8Be(α,γ )12C reactions as a
function of δNN , has been investigated. This is to be compared to the CNO (mostly 12C)
standard BBN production, CNO/H = (0.5 − 3) × 10−15, in number of atoms relative to
hydrogen. A network of ≈ 400 reactions was used, but the main nuclear path to CNO
was found to proceed from 7Li(n,γ )8Li(α,n)11B, followed by 11B(p,γ )12C, 11B(d,n)12C,
11B(d,p)12B, and 11B(n,γ )12B reactions. To disentangle the 12C production through the
4He→8Be→12C link, from the standard 7Li→8Li→11B→12C paths, we reduced the net-
work to the reactions involved in A < 8 plus the 4He(αα,γ )12C, or the 4He(α,γ )8Be
and 8Be(α,γ )12C reactions, depending whether or not 8Be would be stable for a peculiar
value of δNN . The carbon abundance shows a maximum at δNN ≈ 0.006, C/H ≈ 10−21

[29], which is six orders of magnitude below the carbon abundance in SBBN [28]. This
can be understood as the baryon density during BBN remains in the range 10−5–0.1 g/cm3

between 1.0 and 0.1 GK, substantially lower than in stars (e.g., 30–3,000 g/cm3 in stars
considered by Ekström et al. [44]). This makes three-body reactions like 4He(αα,γ )12C
much less efficient compared to two-body reactions. In addition, while stars can produce
CNO at 0.1 GK over billions of years, in BBN, the optimal temperature range for producing
CNO is passed through in a matter of minutes. Finally, in stars, 4He(αα,γ )12C operates



Nuclear Physics and Its Impact on Primordial and Stellar Nucleosynthesis 277

during the helium-burning phase without significant sources of 7Li, d, p, and n to allow the
7Li→8Li→11B→12C, A = 8, bypass process.

Note that the maximum is achieved for δNN ≈ 0.006 when 8Be is still unbound, so
contrary to a common belief, a stable 8Be would not have allowed the build-up of heavy
elements during BBN. This is illustrated in Figure 7.11 which displays the evolution of the
12C and 8Be mass fractions as a function of time when 8Be is supposed to be bound by
10, 50, and 100 keV (solid lines). They both increase with time until equilibrium between
two α-particle fusion and 8Be photodissociation prevails, as shown by the dotted lines.
For the highest values of B8, the 8Be mass fraction increases until, due to the expansion,
equilibrium drops out, as shown by the late time behaviour of the upper curve (B8 = 100
keV) in Figure 7.11 (right). For B8 >∼ 10 keV, the 12C production falls well below, out
of the frame, because the 8Be(α,γ )12C reaction rate decreases dramatically due to the
downward shift of the Hoyle state. For comparison, the SBBN ≈ 400 reactions network
(essentially the 7Li→8Li→11B→12C chain) result [28] is plotted (dashed line) in Figure
7.11. It shows that for the 4He→8Be→12C path to give a significant contribution, not only
8Be should have been bound by much more than 100 keV, but also the 8Be(α,γ )12C rate
should have been much higher in order to transform most 8Be in 12C.

7.4.6 Summary

This section has described the dependence of the production of light nuclei during BBN
on the fundamental parameters of nuclear physics. The most sensitive parameters are
(Qnp,BD,τn,me,α).

It can be first concluded (see Figure 7.7) that to be compatible with existing observa-
tions, an independent variation of these parameters has to satisfy

−8.2 × 10−2 � �τn

τn
� 6 × 10−2, − 4 × 10−2 � �Qnp

Qnp
� 2.7 × 10−2, (7.110)

and

−7.5 × 10−2 � �BD

BD
� 6.5 × 10−2, (7.111)

at a 2σ level. The deuterium data set the tighter constraint −4 × 10−2 � � lnBD �
3 × 10−2.

Similarly, the constraint on the parameter δNN has been obtained in Figure 7.11. It has
also been shown that a stable 8Be would not have allowed the build-up of heavy elements
during BBN, and, thus, there is a large abundance of carbon-12.

There exist several public codes to compute BBN abundances: PArthENope,2 FASTBBN
[50, 77],3 Kawano-Wagoner [72, 114], and AlterBBN.4 No public code includes a
modification of the standard physics.

2 http://parthenope.na.infn.it.
3 www-thphys.physics.ox.ac.uk/users/SubirSarkar/bbn/fastbbn.f.
4 http://superiso.in2p3.fr/relic/alterbbn/.

http://parthenope.na.infn.it.
http://superiso.in2p3.fr/relic/alterbbn/
http://www-thphys.physics.ox.ac.uk/users/SubirSarkar/bbn/fastbbn.f.
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7.5 Stellar Nucleosynthesis

Most nuclei are synthetised during stellar evolution (see Figure 7.1 and Appendix A). The
production of carbon, oxygen, and nitrogen seems to be a central step of the complexifica-
tion of the Universe – in particular, to allow for chemistry to develop in the Universe. This
section describes the effect of the change of the atomic parameters on the production of
these elements. It starts by a brief description of the modelling of stars in Section 7.5.1 and
then investigates the production of carbon by Population III stars in Section 7.5.2.

7.5.1 Stellar Evolution Model

In the evolution of a star, the four interactions of nature are at work so that they are unique
systems through which to study the impact of a modification of the laws of nature. As
discussed in the introduction, only helium-4 is significantly produced during Big Bang
nucleosynthesis while all other known nuclei are produced in stellar processes at different
stages of the evolution of the star. It is an important issue to determine whether this process
that lead to all the building blocks for atomic physics and chemistry requires some tuning.

Basics of Stellar Physics

The prediction of the abundance of the nuclei produced during the stellar evolution depends
on both the microphysics (i.e., the properties of the nuclear reaction) and the stellar evolu-
tion. This means that our results will depend (in particular, in terms of external parameters)
on the modelisation of the star. Thus, it is important to recall the basics of the description
of stellar physics.

Naı̈vely thinking of a star as a gas compressed under its own gravity through a series
of hydrodynamical equilibrium states, the integration of the equation for hydrostatic
equilibrium,

dP

dr
= −ρGMr

r2
, (7.112)

where we adopt the standard notations Mr for the mass contained inside the sphere of
radius r , gives after an integration by part

3
∫ R

0
PdV =

∫
ρG
Mr

r
dV = ��G(R). (7.113)

The pressure P is always proportional to the energy density u. For instance, for a non-
relativistic and non-degenerate monoatomic gas,

P = ρkT

μ
, u = 3

2

ρkT

μ
(7.114)

with μ = A/(A + Z) the number of nucleons per particle, while for a relativistic gas,
P = u/3.
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It is clear that at the onset of the collapse of a cloud of gas, it is non-relativistic and
non-degenerate so that Eq. (7.113) implies

��G(R) = 2
∫
udV = 2Eth(R). (7.115)

This means that half of the gravitational energy is transformed in thermal energy (i.e.,
kinetic energy). The other half has to be radiated, and this is where electromagnetism
enters the description: as soon as particles are ionized, their acceleration by gravity induces
radiation (photon production). These photons are absorbed and re-emitted many times
before they can escape the star, which means that we have to include a radiation component.
The star shines because it is hot, and it is hot because it is composed of a gas compressed.
It follows that its luminosity is the direct consequence of its mechanical equilibrium. Note
that the production of energy in a star is not very efficient: it corresponds to ∼ 10−4 W/kg
for the Sun, to be compared to ∼ 1 W/kg for a human body!

Eq. (7.112) needs to be completed by an equation to describe the thermal transfer. For a
radiative equilibrium, it takes the form

Lr

4πr2
= − 1

3κρ

d(acT 4)

dr
, (7.116)

where κ i the opacity, acT 4 is the energy density of the photon gas, and Lr is the flux of
energy through a sphere of radius r so that the rate of photons is εγ = dLr/dMr .

System of Equations

In order to keep equiibrium, energy has to be extracted from some source, either from
the gravitational contraction (macroscopic) or nuclear reactions (microscopic). Hence, the
energy released by the nuclear reaction explains not why a star is shining but why it can
shine for a long time. It also means that (1) a source term arising from the production of
energy and the loss of energy by neutrino production have to be included in the evolution
of Lr and (2) that the chemical composition of the star evolves with time. Concerning the
transfer of the radiation and heat, one also needs to consider both radiation (in the outer
part) and convection (in the central zone).

From the following discussion, it can be deduced that a stellar model can be described
by the set of equations for a one-dimensional description

∂P

∂Mr
= −ρGMr

4πr4
, (7.117)

∂r

∂Mr
= 1

4πr2ρ
, (7.118)

∂Lr

∂Mr
= εN + εg − εν, (7.119)

∂T

∂r
=
⎧⎨⎩ −

(
3

4ac

) (
κρ

T 3

)
Lr

4πr (radiative equilibrium)

2
5

(
T
ρ

)
dP
dr (convective equilibrium)

(7.120)
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Table 7.3 Typical evolution of a star given its initial mass. It gives the typical range of
temperature, the total gravitational energy per nucleon emitted since the beginning of the
contraction, the main nuclear reactions at work, the total nuclear energy per nucleon
released since the beginning, and the minimum initial mass to reach this stage of evolution.

Grav. energy Nuclear Nuc. energy Limit Photon Neutrino
T6 (106 K) produced reactions emitted mass (%) (%)

Grav. 0–10 ∼ 1 keV/n 100
Nuc. 10–30 4H→4He 6–7 MeV/n 0.1M� 95 5
Grav. 30–100 ∼ 10 keV/n 100
Nuc. 100–300 4He→12C→16O 7–8 MeV/n 0.4M� 100
Grav. 300–800 ∼ 100 keV/n 50 50
Nuc. 800–1,100 12C→Mb, Ne, Na, Al 7–8 MeV/n 0.7M� 100
Grav. 1,100–1,400 ∼ 150 keV/n 100
Nuc. 1,400–2,000 16O→S, Si, P 8–9 MeV/n 0.9M� 100

This gives a set of four equations for P , Lr , r and T as a function ofMr , chosen as integra-
tion variable. They involve four functions that need to be related to the microphysics: the
density ρ(P,T ,χ), opacity κ(P,T ,χ), and energy sources εnuc(P,T ,χ) and εν(P,T ,χ).
Initial conditions are set at the centre by the requirement that

(M,L,r,P,T )c = (0,0,0,Pc,Tc). (7.121)

The latter two require solving the set of equations to describe the nuclear reactions

∂Ya

∂t
= −[a,b]YaYb + [c,d]YcYd + . . . , (7.122)

which also give the evolution of the chemical composition χ . Generally, the star undergoes
a series of gravitational contraction and nuclear reaction energy production phases. A more
massive star will go through more nuclear phases and produce heavier elements, but each
phase is shorter. The typical evolution is summarised in Tables 7.3 and 7.4.

Nuclear physics enters in Eq. (7.122) through the cross sections. Indeed, they have to
be integrated over temperature in order to deduce reaction rates. By changing the nuclear
parameters, one affects the rate of production of nuclear energy, εN and, hence, the macro-
scopic evolution of the star (lifetime evolution in the Herzsprung-Russel diagram) and its
chemical composition at the end of its evolution.

Note that the previous set of equations is extremely simplified since it does not include
many important effects such as rotation, metallicity, magnetic field, binarity, etc. But in
the first approximation, the evolution of the star depends on its initial mass and initial
metallicity. There exist some public codes for stellar evolution such as MESA,5 STARS,6 or
CESAM [81]. While most codes are not public, but there is a database7 of stellar evolution

5 http://mesa.sourceforge.net/.
6 www.ast.cam.ac.uk/∼stars/index.htm.
7 https://obswww.unige.ch/Recherche/evol/Geneva-grids-of-stellar-evolution.

http://mesa.sourceforge.net/
www.ast.cam.ac.uk/~stars/index.htm
https://obswww.unige.ch/Recherche/evol/Geneva-grids-of-stellar-evolution
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Table 7.4 Evolution stages of an isolated star with solar initial metallicity. The timescales
and luminosities in the sixth line are given for a star of 15M�. It shows that stars are
more luminous in the neutrino sector. The cut in the range 9–15 is still discussed in the
literature, so we do not put a clear limit between the two behaviours (see, e.g.,
Reference [116] for a recent discussion on this issue).

M/M� Evolution Final state

<0.08 Degenerate before H-burning Brown dwarf

0.08–0.5 Only H-burning
He-core contracts and enters degenerate zone He white dwarf

0.5–7 H-burning
He-burning
Mass loss during Asymptotic Giant Branch (AGB)
Ejection of envelope C-O white dwarf

7–9 H-burning
He-burning
C-burning upto Ne-Mg Ne-Mg white dwarf

9–X H-burning
He-burning
C-burning
Electron capture triggers the SN
Production of ν, core collapse Supernovae/Neutron star

X–15 H-burning (11 Myr)
He-burning (2 Myr)
C-burning (2 kyr −Lγ = 72 × 103L� − Lν = 37 × 104L�)
Ne-photodecay (0.7 yr −Lγ = 72 × 103L� − Lν = 14 × 107L�)
O-burning (2.6 yr −Lγ = 72 × 103L� − Lν = 9 × 108L�)
Si-burning (18 days −Lγ = 72 × 103L� − Lν = 1.3 × 1011L�)
Fe-burning (1 s)
Core collapse Supernovae/Black hole

>150 Instability due to pair production during O-burning

models for masses between 0.8 and 120 solar masses and metallicities from Z = 0.001
to 0.1.

The goal of this chapter is indeed not to discuss the whole theory of stellar evolution.
We refer to standard texbooks [24, 94, 117]. The nuclear aspects will now be detailed in
the particular example of carbon production in Population III stars.

7.5.2 Carbon Production in Population III Stars

Given the previous general description of the stellar dynamics, one can study the evolution
of stars and of the chemical elements they produce during their evolution. The goal of this
section is to focus on the production of CNO in Population III stars.

It has been argued [96, 107–110] that the synthesis of complex elements in stars
(mainly the possibility of the 3α reaction as the origin of the production of 12C) sets strong
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constraints on the values of the fine-structure and strong coupling constants. There have
been several studies on the sensitivity of carbon production to the underlying nuclear
rates [10, 36, 49, 78, 88, 90]. The production of 12C in stars requires a triple tuning: (1) the
decay lifetime of 8Be, of order 10−16 s, is four orders of magnitude longer than the time
for two α particles to scatter, (2) an excited state of the carbon lies just above the energy of
8Be + α, and, finally, (3) the energy level of 16O at 7.1197 MeV is non-resonant and below
the energy of 12C+α, at 7.1616 MeV, which ensures that most of the carbon synthesised is
not destroyed by the capture of an α-particle. The existence of this excited state of 12C was
actually predicted by Hoyle [66] and then observed at the predicted energy by Dunbar [42]
as well as its decay [34]. The variation of any constant which would modify the energy
of this resonance, known as the Hoyle level, would dramatically affect the production
of carbon.

Qualitative Analysis

Qualitatively, and perhaps counter-intuitively, if the energy level of the Hoyle level were
increased, 12C would probably be rapidly processed to 16O since the star would, in fact,
need to be hotter for the 3α reaction to be triggered. On the other hand, if it is decreased
very little, oxygen will be produced. From the general expression of the reaction rate (see
the discussion through Eq. (7.130) for details, definitions of all the quantities entering this
expression, and a more accurate computation)

λ3α = 33/2N3
α

(
2πh̄3

MαkBT

)3
�

h̄
exp

[
−Qααα
kBT

]
, (7.123)

whereQααα ∼ 380 keV is the energy of the resonance, one deduces that the sensitivity of
the reaction rate to a variation ofQααα is

s = d ln λ3α

d lnQααα
= −Qααα

kBT
∼
(−4.4

T9

)
, (7.124)

where T9 = T/109K. This effect was investigated in References [36, 88, 90] who related
the variation of Qααα to a variation of the strength of the nucleon-nucleon (N-N) interac-
tion. Focusing on the C/O ratio in red giant stars (1.3, 5, and 20M� with solar metallicity)
up to thermally pulsing asymptotic giant branch stars (TP-AGB) [88, 90] and in low,
intermediate, and high mass stars (1.3, 5, 15, and 25M� with solar metallicity) [99], it
was estimated that outside a window of 0.5% and 4% for the values of the strong and
electromagnetic forces, respectively, the stellar production of carbon or oxygen will be
reduced by a factor 30–1,000.

Indeed, modifying the energy of the resonance alone is not realistic since all cross
sections, reaction rates, and binding energies, etc., should be affected by the variation
of the constants. One could have started by assuming independent variations of all these
quantities, but it is more realistic (and, hence, more model dependent) to try to deduce their
variation from a microscopic model. Our analysis can then be outlined in three main steps:
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1. Relating the nuclear parameters to fundamental constants such as the Yukawa and gauge
couplings and the Higgs vacuum expectation value. This is a difficult step because of
the intricate structure of QCD and its role in low-energy nuclear reactions, as in the case
of BBN. The nuclear parameters include the set of relevant energy levels (including
the ground states), binding energies of each nucleus, and partial width of each nuclear
reaction. This involves a nuclear physics model of the relevant nuclei (mainly 4He, 8Be,
12C, and 16O for our study).

2. Relating the reaction rates to the nuclear parameters, which implies an integration over
energy of the cross sections.

3. Deducing the change in the stellar evolution (lifetime of the star, abundance of the
nuclei, Hertzprung-Russel (H-R) diagram, etc.). This involves a stellar model.

General Description of the Computation

Such a computation involves many steps, which we briefly describe and summarise (see
Figure 7.12).

The first step is probably the most difficult. We shall adopt a phenomenological descrip-
tion of the different nuclei based on a cluster model in which the wave functions of the 8Be
and 12C nuclei are approximated by a cluster of respectively 2α and 3α wave functions.
When solving the associated Schrödinger equation, we will modify the strength of the
electromagnetic and nuclear N–N interaction potentials respectively by a factor (1 + δα)
and (1 + δNN), where δα and δNN are two small dimensionless parameters that encode
the variation of the fine-structure constant and other fundamental couplings. At this stage,
the relation between δNN and the gauge and Yukawa couplings is not known. This will

Figure 7.12 The computation of the abundance of CNO produced by Population III stars involves
many steps, from nuclear physics to stellar physics, in order to constrain the effects of the fundamental
constants.
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allow us to obtain the energy levels, including the binding energy, of 2H, 4He, 8Be, 12C,
and the first Jπ = 0+ 12C excited energy level. Note that all of the relevant nuclear states
are assumed to be interacting alpha clusters. In a first approximation, the variation of the
α-particle mass cancels out. The partial widths (and lifetimes) of these states are scaled
from their experimental laboratory values, according to their energy dependence. δNN is
used as a free parameter see Section 7.3).

The second step requires an integration over energy to deduce the reaction rates as
functions of the temperature and of the new parameters δα and δNN .

The third step involves stellar models and, in particular, some choices about the masses
and initial metallicity of the stars. While theoretically uncertain, it is usually thought that
the first stars were massive; however, their mass range is presently unknown (for a review,
see [17]). In a hierarchical scenario of structure formation, they were formed a few × 108

years after the Big Bang – that is, at a redshift of z ∼ 10–15 with zero metallicity (so that
we can use the BBN abundances as initial conditions). We thus focus on Population III
stars with typical masses, 15 and 60M�, assuming no rotation. Our computation is stopped
at the end of core helium burning.

The final step would be to use these predictions to set constraints on the fundamental
constants, using stellar constraints such as the C/O ratio, which is, in fact, observable in
very metal-poor stars.

The 3α Reaction

To start, let us summarise the basics of the 3α process at the origin of carbon. Figure
7.13 shows the low-energy-level schemes of the nuclei participating in the 4He(αα,γ )12C
reaction: 4He, 8Be, and 12C. The 3α process begins when 2α particles fuse to produce a 8Be
nucleus whose lifetime is only ∼ 10−16 s but is sufficiently long so as to allow a second
α capture into the second excited level of 12C, at 7.65 MeV above the ground state (of
12C). In the following, we shall refer to the successive α captures as first and second steps;
that is, αα ↔8Be+γ and 8Be+α ↔12C∗ →12C+γ . The excited state of 12C corresponds
to an � = 0 resonance, as postulated by [66] in order to increase the cross section during
the helium-burning phase. This level decays to the first excited level of 12C at 4.44 MeV
through an E2 (i.e., electric with � = 2 multipolarity) radiative transition as the transition
to the ground state (0+

1 → 0+
2 ) is suppressed (pair emission only). At temperatures above

T9 ≈ 2, which are not relevant for our analysis and therefore not treated, one should also
consider other possible levels above the α threshold.

We define the following energies:

• ER(8Be) as the energy of the 8Be ground state with respect to the α + α threshold

• ER(12C) as the energy of the Hoyle level with respect to the 8Be+α threshold – i.e.,
ER(12C) ≡ 12C(02

+)+Qα(12C), where 12C(02
+) is the excitation energy and Qα(12C)

is the α particle separation energy

• Qααα as the energy of the Hoyle level with respect to the 3α threshold so that

Qααα = ER(8Be)+ ER(12C) (7.125)
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Figure 7.13 Level scheme showing the key levels in the 3α process.

• �α(8Be) as the partial width of the beryllium decay (αα ↔8Be+γ )

• �γ,α(12C) as the partial widths of 8Be+α ↔12C∗ →12C+γ
Their standard values are given in Table 7.5.

Assuming (1) thermal equilibrium between the 4He and 8Be nuclei so that their abun-
dances are related by the Saha equation and (2) the sharp resonance approximation for the
α capture on 8Be, the 4He(αα,γ )12C rate can be expressed [2, 87] as

N2
A〈σv〉ααα = 33/26N2

A

(
2π

MαkBT

)3

h̄5ωγ exp

(−Qααα
kBT

)
(7.126)

with ω = 1 (spin factor), γ = �γ (12C)�α(12C)/(�γ (12C)+�α(12C)) ≈ �γ (
12C) for

present-day values, andMα is the mass of the α nucleus.
During helium burning, the only other important reaction is 12C(α,γ )16O [68], which

transforms 12C into 16O. Its competition with the 3α reaction governs the 12C/16O
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Table 7.5 Nuclear data for the two steps of the 3α reaction. See text for the definitions of
the quantities [1, 4, 106].

Nucleus Jπ ER (keV) �α (eV) �γ (meV)

8Be 0+ 91.84 ± 0.04 5.57 ± 0.25 −
12C 0+

2 287.6 ± 0.2 8.3 ± 1.0 3.7 ± 0.5

abundance ratio at the end of the helium-burning phase. Even though the precise value
of the 12C(α,γ )16O S-factor8 is still a matter of debate as it relies on an extrapolation of
experimental data down to the astrophysical energy (≈ 300 keV), its energy dependence is
much weaker than that of the 3α reaction. Indeed, as it is dominated by broad resonances,
a shift of a few hundred keV in energy results in an S-factor variation of much less than an
order of magnitude. For this reason, we can safely neglect the effect of the 12C(α,γ )16O
reaction rate variation when compared to the variation in the 3α rate. Similar considerations
apply to the rate for 16O(α,γ )20Ne.

During hydrogen burning, the pace of the CNO cycle is given by the slowest reaction,
14N(p,γ )15O. Its S-factor exhibits a well-known resonance at 260 keV, which is normally
outside of the Gamow energy window (≈ 100 keV), but a variation of the N–N potential
could shift its position downward, resulting in a higher reaction rate and more efficient
CNO H– burning.

Sensitivity to the Nuclear Parameters

The microscopic analysis gave the expression of the renonance energies (7.66) and (7.65),
from which one can easily deduce that the energy of the Hoyle level with respect to the 3α
threshold (and not with respect to 8Be+α threshold) is given by (see Eq. (7.125))

Qααα = (0.37945 − 5.706 ×�BD/BD) MeV, (7.127)

= (0.37945 − 32.620 × δNN) MeV. (7.128)

Then the method described earlier provides a consistent way to evaluate the sensitivity of
the 3α reaction rate to a variation of the constants. This rate has been computed numerically,
as explained in [3] and as described in Appendix C, where both an analytical approximation
valid for sharp resonances and a numerical integration are performed.

The variation of the partial widths of both reactions have been computed in Appendix B
and are depicted in Figure 7.18. Together with the results of the previous section and
the details of the Appendix B, we can compute the 3α reaction rate as a function of
temperature and δNN . This is summarised in Figure 7.14, which compares the rate for
different values of δNN to the NACRE rate [3], which is our reference when no variation
of constants is assumed (i.e., δNN = 0). One can also refer to Figure 7.19, which compares

8 The astrophysical S-factor is just the cross section corrected for the effect of the penetrability of the Coulomb barrier and other
trivial effects.
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Figure 7.14 The ratio between the 3α rate obtained for −0.009 ≤ δNN ≤ +0.006 and the NACRE
rate, as a function of temperature. Hatched areas: values of Tc where H- and He-burning phases take
place in a 15M� model at Z = 0. Figure taken from Reference [44].

the full numerical integration to the analytical estimation (7.126), which turns out to be
excellent in the range of temperatures of interest. As one can see, for positive values of
δNN , the resonance energies are lower, so the 3α process is more efficient.

Let us compare the result of Figure 7.14, which gives y ≡ log[λ3α(δNN)/λ3α(0)], to a
simple estimate. Using the analytic expression (7.126) for the reaction rate, valid only for
a sharp resonance, y is simply given by

y = 1

ln 10
sδNN, (7.129)

where the sensitivity sδNN ≡ d ln λ3α/d ln δNN is given, from Eq. (7.127), by sδNN = δNN×
(32.62MeV)/kT . We conclude that

y = 1.644 ×
(
δNN

10−3

)(
T

108 K

)−1

. (7.130)

This gives the correct order of magnitude of the curves depicted in Figure 7.14 as well as
their scalings with δNN and with temperature, as long as T9 > 0.1. At lower temperatures,
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differences arise from the fact that the analytical expression for the reaction rate is no longer
accurate (see Appendix D).

The sensitivity to a variation of the intensity of the N-N interaction arises from the fact
that dQααα/dδNN ∼ 102Qααα . The fact that the typical correction to the resonant energies
is of order 10 MeV (× δNN ) – compared to the resonant energies themselves, which are of
order 0.1 MeV – allows one to put relatively strong constraints on any variation.

Implications on the Stellar Evolution

The Geneva stellar code was adapted to take into account the reaction rates computed
earlier. The version of the code we use is the one described in Reference [43]. Here, we
only consider models of 15M� and 60M� without rotation and assume an initial chemical
composition given by X = 0.7514, Y = 0.2486 and Z = 0. This corresponds to the BBN
abundance of He at the baryon density determined by WMAP [73] and at zero metallicity
as is expected to be appropriate for Population III stars. For 16 values of the free parameter
δNN in the range −0.009 ≤ δNN ≤ +0.006, we computed a stellar model which was
followed up to the end of core He burning (CHeB). As we will see, beyond this range
in δNN , stellar nucleosynthesis is unacceptably altered. Note that for some of the most
extreme cases, the set of nuclear reactions now implemented in the code should probably
be adapted for a computation of the advanced evolutionary phases.

Focusing on the limited range in δNN will allow us to study the impact of a change
of the fundamental constants on the production of carbon and oxygen in Population III
massive stars. In this context, we recall that the observations of the most iron-poor stars in
the halo offer a wonderful tool to probe the nucleosynthetic impact of the first massive stars
in the Universe. Indeed, these halo stars are believed to form from material enriched by the
ejecta of the first stellar generations in the Universe. Their surface chemical composition (at
least on the main sequence) still bears the mark of the chemical composition of the cloud
from which they formed and, thus, allows us to probe the nucleosynthetic signature of the
first stellar generations. Any variation of the fundamental constants – which, for instance,
would prevent the synthesis of carbon and/or oxygen – would be very hard to conciliate
with present-day observations of the most iron-poor stars. For instance, the two most
iron-poor stars [23, 57] both show strong overabundances of carbon and oxygen with
respect to iron.

Figure 7.15 (left) shows the HR diagram for the models with δNN between −0.009 and
+0.006 in increments of 0.001 (from left to right). Once the CNO cycle has been triggered
(as we are about to discuss), the main sequence (MS) tracks are shifted towards cooler
Teff for increasing δNN . There is a difference of about 0.20 dex between the two extreme
models. Figure 7.15 (right) shows the central temperature at the moment of the CNO-cycle
ignition (lower curve). On the zero-age main sequence (ZAMS), the standard (δNN = 0)
model has not yet produced enough 12C to be able to rely on the CNO cycle, so it starts by
continuing its initial contraction until the CNO cycle ignites. In this model, CNO ignition
occurs when the central H mass fraction reaches 0.724 – i.e., when less than 3% of the
initial H has been burned. Models with δNN < 0 (i.e., a lower 3α rate) yield a phase of
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Figure 7.15 Left: HR diagrams for 15M� models with δNN = 0 (thick black) and ranges from left
to right from −0.009 to +0.006 in steps of 0.001 (using same colour code as Figure 7.14). Right: The
central temperature at CNO ignition (circles) and at the beginning of CHeB (squares) as a function
of δNN . The labels on the CNO-ignition curve show the central H mass fraction at that moment.
Note that above δNN ∼ +0.001, CNO ignition occurs on or before the ZAMS. Figure taken from
Reference [44].

contraction which is longer for lower δNN (i.e., larger |δNN |): in these models, the less-
efficient 3α rates need a higher Tc to produce enough 12C for triggering the CNO cycle.
Models with δNN > 0 (i.e., a higher 3α rate) are directly sustained by the CNO cycle on
the ZAMS: the star can more easily counteract its own gravity and the initial contraction is
stopped earlier, so H burning occurs at lower Tc and ρc (Figure 7.15, right), i.e., at a slower
pace. The MS lifetime, τMS, is sensitive to the pace at which H is burned, so it increases
with δNN . The relative difference between the Standard Model MS lifetime τMS at δNN = 0
and τMS at δNN = −0.009 (+0.006) amounts to −17% (+19%).

Implications on the Nuclear Constants

While the differences in the 3α rates do not lead to strong effects in the evolution character-
istics on the MS, the CHeB phase amplifies the differences between the models. The upper
curve of Figure 7.15 (right) shows the central temperature at the beginning of CHeB. There
is a factor of 2.8 in temperature between the models with δNN = −0.009 and +0.006. To
get an idea of what this difference represents, we can relate these temperatures to the grid
of Population III models computed by [80]. The 15M� model with δNN = −0.009 starts
its CHeB at a higher temperature than a standard 100 M� of the same stage. In contrast,
the model with δNN = +0.006 starts its CHeB phase with a lower temperature than a
standard 12M� star at CNO ignition. Table 7.6 presents the characteristics of the models
for each value of δNN at the end of CHeB. From these characteristics, we distinguish four
different cases:
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I In the Standard Model and when δNN is very close to 0, 12C is produced during He
burning until the central temperature is high enough for the 12C(α,γ )16O reaction to
become efficient: during the last part of the CHeB phase, the 12C is processed into 16O.
The star ends its CHeB phase with a core composed of a mixture of 12C and 16O.

II If the 3α rate is weakened (−0.005 ≤ δNN ≤ −0.002), 12C is produced at a slower
pace, and Tc is high from the beginning of the CHeB phase, so the 12C(α,γ )16O reac-
tion becomes efficient very early: as soon as some 12C is produced, it is immediately
transformed into 16O. The star ends its CHeB phase with a core composed mainly of
16O, without any 12C and with an increasing fraction of 24Mg for decreasing δNN .

III For still weaker 3α rates (δNN ≤ −0.006), the central temperature during CHeB is
such that the 16O(α,γ )20Ne(α,γ )24Mg chain becomes efficient, reducing the final 16O
abundance. The star ends its CHeB phase with a core composed of nearly pure 24Mg.
Because the abundances of both carbon and oxygen are completely negligible, we do
not list the irrelevant value of C/O for these cases.

IV If the 3α rate is strong (δNN ≥ +0.003), 12C is very rapidly produced, but Tc is so low
that the 12C(α,γ )16O reaction can hardly enter into play: 12C is not transformed into
16O. The star ends its CHeB phase with a core almost purely composed of 12C.

These results are summarised in Figure 7.16, which shows the composition of the core at the
end of the CHeB phase. One can clearly see the dramatic change in the core composition as
a function of δNN showing a nearly pure Mg core at large and negative δNN , a dominantly
O core at low but negative δNN , and a nearly pure C core at large and positive δNN . These
results are qualitatively consistent with those found by Schlattl et al. [99] for Population

Figure 7.16 The composition of the core at the end of the central He burning in the 15M� models as
a function of δNN . (left) for 15M� and (right) for 60M�. Figure taken from Reference [44].
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Table 7.6 Characteristics of the 15M� models with δNN ranging from −0.009 to +0.006
at the end of core He burning. The MS lifetime, τMS, and the core He-burning duration,
τCHeB, are expressed in Myr, the CO-core mass,MCO, is inM�, X(C) is the central value
for the carbon mass fraction, and C/O is the ratio of the carbon to oxygen mass fractions.

δNN τMS τCHeB MCO
a X(C)b C/O Case

−0.009 8.224 1.344 3.84 4.4e−10 – III
−0.008 8.285 1.276 3.83 2.9e−10 –
−0.007 8.308 1.200 3.38 8.5e−10 –
−0.006 8.401 1.168 3.61 4.2e−07 –

−0.005 8.480 1.130 3.59 5.9e−06 3.0e–05 II
−0.004 8.672 0.933 3.60 3.2e−05 5.2e–05
−0.003 8.790 0.905 3.60 1.3e−04 1.7e–04
−0.002 9.046 0.892 3.61 5.6e−04 6.4e–04

−0.001 9.196 0.888 3.70 0.013 0.014 I
0 9.640 0.802 3.65 0.355 0.550

+0.001 9.937 0.720 3.61 0.695 2.278
+0.002 10.312 0.684 3.62 0.877 7.112

+0.003 10.677 0.664 3.62 0.958 22.57 IV
+0.004 10.981 0.659 3.62 0.981 52.43
+0.005 11.241 0.660 3.61 0.992 123.9
+0.006 11.447 0.661 3.55 0.996 270.2

a Mass coordinate where the abundance of 4He drops below 10−3.
b Here, X(C) = X(12C).

I–type stars. Note that their cases with �ER = ±100 keV correspond roughly to our
δNN ≈ ∓0.005.

Table 7.6 shows also the core size at the end of CHeB. As in Reference [63], the mass,
MCO, is determined as the mass coordinate where the mass fraction of 4He drops below
10−3. The mass of the CO core increases with decreasing δNN , the increase amounting to
8% between δNN = +0.006 and −0.009. This effect is due to the higher central tempera-
ture and greater compactness at low δNN . The same effect was found by other authors [99].
As shown by these authors, this effect is expected to have an impact on the remnant mass
and thus on the strength of the final explosion.

7.6 Discussion

This chapter focused on the relation between QCD and nuclear physics in order to deter-
mine the level of tuning required in order to produce a large enough variety of nuclei in the
course of the evolution of the Universe in order to create a large enough space of possibility
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for chemistry. Several bounds on the parameters of the Standard Model of particle physics
(see Table 7.1) have been discussed.

• The effect of binding energies and masses have been discussed in Section 7.3, and a sets
of constraints based on the stability of matter have been summarised in Section 7.3.8.

• Light elements are formed during primordial nucleosynthesis, described in Section 7.4.
While only helium-4 is significantly produced, the effects of the nuclear parameters are
twofold. First, the observation allowed us the range of parameters that lead to a universe
similar to ours – i.e., undistinguishable by an observer. Indeed, these bounds evolve
with time and the accuracy of observations. But they allow one, at a given time, to
quantify the coarse graining in the space of fundamental parameters. Second, we have
shown that it was not possible to produce a large enough early abundance of carbon-
12. The computation of the initial metallicity is, however, important for the evolution of
Population III stars.

• Stars are the central system to understand the diversity of the Mendeleev table. Once
the nuclear parameters are in the bounds that allow for the diversity and stability of these
elements, one still needs them to be produce from the chemical composition after BBN, in
a timescale short enough to allow for chemistry and biology to start. The main description
of stellar nucleosynthesis has been described in Section 7.5. Stars are important in two
respects. First, they are the source of all elements but hydrogen, helium, and lithium.
Second, they provide a long-lived, low-entropy source of energy necessary for planetary
life to emerge. We have shown that the production of carbon and oxygen in Population III
stars requires a tuning at the level of 10−3 of the strength of the nuclear interaction.

This chapter has emphasised the difficulty of connecting QCD to nuclear physics. Even
if, in principle, one can derive the value of the nuclear parameters (masses, binding ener-
gies, resonance energies, etc.) in terms of the constants of the Standard Model of particle
physics, in practice, the accuracy of these predictions can be of one order of magnitude.
This is, indeed, the main limitation of such an analysis.

Let us also emphasise that we have assumed a local variation of the constants, assuming
the same structure for the theory and its symmetries. It is important to stress that there
exist some attempts to evade such a limitation. Reference [62] argued for the existence of
a region of parameter space which is life permitting in the absence of the weak force. It
requires many tunings but provides a counterexample.
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Appendix A: Summary of the Formation Sites of Atomic Isotopes

Figure 7.17 Abundance of the nucleides (atoms/106 Si) with the process of production in our
Universe. Figure taken from Reference [2].
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Appendix B: Details of the Microscopic Model

Here, we provide some technical details about the microscopic calculation used to deter-
mine the 8Be and 12C binding energies. This calculation is based on the description of
the nucleon-nucleon interaction by the Minnesota (MN) force [105], adapted to low-mass
systems.

The nuclear part of the interaction potential VN between nucleons i and j is given by

VNij (r) =
[
VR(r)+ 1

2
(1 + Pσij )Vt (r)+

1

2
(1 − Pσij )Vs(r)

] [
1

2
u+ 1

2
(2 − u)P rij

]
,

(7.131)

where r = |ri−rj | and Pσij and P rij are the spin and space exchange operators, respectively.
The radial potentials VR(r),Vs(r),Vt (r) are expressed as Gaussians and have been opti-
mized to reproduce various properties of the nucleon-nucleon system – such as the deuteron
binding energy at δNN = 0, or the low-energy phase shifts. They have been fit as [105]

VR(r) = 200 exp(−1.487r2)

Vs(r) = −91.85 exp(−0.465r2)

Vt (r) = −178 exp(−0.639r2), (7.132)

where energies are expressed in MeV and lengths in fm.
In Eq. (7.131), the exchange-admixture parameter u takes standard value u = 1 but

can be slightly modified to reproduce important properties of the A-nucleon system (for
example, the energy of a resonance). This does not affect the physical properties of the
interaction. The MN force is an effective interaction, adapted to cluster models. It is not
aimed at perfectly reproducing all nucleon-nucleon properties, as realistic forces used in
ab initio models [84], where the cluster approximation is not employed. The potentials are
expressed as Gaussian factors, well adapted to cluster models, where the nucleon orbitals
are also Gaussians [115].

The wave functions (Eq. (7.50)) are written in the resonating group method (RGM),
which clearly shows the factorisation of the system wave function in terms of individual
cluster wave functions. In practice the radial wave functions are expanded over Gaussians,
which provides the generator coordinate method (GCM), fully equivalent to the RGM [115]
but better adapted to numerical calculations. Some details are given here for the simpler
two cluster case. The radial function gJMπ2 (ρ) is written as a sum over Gaussian functions
centered at different values of the generator coordinate Rn. This allows us to write the 8Be
wave function (7.50) as

�JMπ8Be
=
∑
n

f Jπ (Rn)�
JMπ(Rn), (7.133)

where �JMπ(Rn) is a projected Slater determinant.



Nuclear Physics and Its Impact on Primordial and Stellar Nucleosynthesis 301

This development corresponds to a standard expansion on a variational basis. The bind-
ing energies EJπ of the system are obtained by diagonalisation of∑

n

[
HJπ(Rn,Rn′)− EJπNJπ(Rn,Rn′)

]
f Jπ (Rn) = 0, (7.134)

where the overlap and Hamiltonian kernels are defined as

NJπ(Rn,Rn′) = 〈�Jπ(Rn)|�Jπ(Rn′)〉,
HJπ(Rn,Rn′) = 〈�Jπ(Rn)|H |�Jπ(Rn′)〉. (7.135)

The Hamiltonian H is given by Eq. (7.47). Standard techniques exist for the evaluation of
these many-body matrix element. The choice of the nucleon-nucleon interaction directly
affects the calculation of the hamiltonian kernel and, therefore, of the eigen-energy EJπ .

For three-body wave functions, the theoretical developments are identical, but the pre-
sentation is more complicated due to the presence of two relative coordinates (ρ,R). The
problem is addressed by using the hyperspherical formalism [74].

Appendix C: Numerical Integration of the Cross Sections

To take into account the (energy-dependent) finite widths of the two resonances involved
in this two-step process, one has to perform numerical integrations as was done in NACRE
following References [76, 87]. Here, the condition of thermal equilibrium is relaxed, but it
is assumed that the timescale for alpha capture on 8Be is negligible compared to its lifetime
against alpha decay. The rate is calculated as in NACRE for the resonance of interest:

N2
A〈σv〉ααα = 3NA

(
8πh̄

μ2
αα

)(
μαα

2πkBT

)3/2∫ ∞

0

σαα(E)

�α(E)
exp(−E/kBT )NA〈σv〉α8Be E dE,

where μαα is the reduced mass of the α+α system, and E is the energy with respect to the
α + α threshold. The elastic cross section of α + α scattering is given by a Breit-Wigner
expression:

σαα(E) = π

k2
ω

�2
α(E)

(E − ER))2 + �2
α(E)/4

, (7.136)

where k is the wave number, ER≡ER(8Be), �α≡�α(8Be), and ω is a statistical factor
(here, equal to 2 to account for identical particles with spin zero).

The NA〈σv〉α8Be rate assumes that 8Be has been formed at an energy E different from
E8Be [76]. This rate is given by

NA〈σv〉α8Be = NA
8π

μ2
α8Be

(
μα8Be

2πkBT

)3/2 ∫ ∞

0
σα8Be(E

′;E) exp(−E′/kBT ) E
′ dE′,

(7.137)
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where μα8Be is the reduced mass of the α + 8Be system, and E′ is the energy with respect
to its threshold (which varies with the formation energy E). As in References [76, 87], we
parametrise σα8Be(E

′;E) as

σα8Be(E
′;E) = πh̄2

2μα8BeE
′

�α(E
′)�γ (E′ + E)

[E′ − ER(12C)+ E − ER(8Be)]2 + 1
4�(E

′;E)2 , (7.138)

where the partial widths are those of the Hoyle state and, in particular, � = �α(
12C) +

�γ (
12C). The various integrals are calculated numerically. The experimental widths at

resonance energy can be found in Table 7.5.
However, one must include (1) the energy dependence of those widths, away from the

resonance energy and (2) the variation of the widths at the resonant energy when this energy
changes due to a change in the nuclear interaction.

The energy dependence of the particle widths �α(E) is given by

�α(E) = �α(ER) P�(E,Rc)
P�(ER,Rc)

, (7.139)

where P� is the penetration factor associated with the relative angular momentum, � (0
here), and the channel radius, Rc.9 The penetration factor is related to the Coulomb func-
tions by

P�(E,R) = ρ

F 2
� (η,ρ)+G2

�(η,ρ)
, (7.140)

where ρ = kR and

η = Z1Z2α

v/c
(7.141)

is the Sommerfeld parameter.
For radiative capture reactions, the energy dependence of the gamma width �γ (E) is

given by

�γ (E)∝αE2λ+1, (7.142)

where λ is the multipolarity (here, 2 for E2) of the electromagnetic transition.
The relevant widths as a function of δNN are given in Figure 7.18. They are directly

linked to the resulting change of ER(8Be) and ER(12C).
The radiative width, �γ (12C), with its E5 energy dependence, shows little evolution.

(The energy of the final state at 4.44 MeV is assumed to be constant). In contrast, the 8Be
alpha width undergoes large variations due to the effect of Coulomb barrier penetrability.
Note that compared to these variations, those induced by a change of α in the Coulomb
barrier penetrability (Eqs. (7.141) and (7.140)) and �γ are considerably smaller.

9 We choose Rc = 1.3 (A1/3
1 + A1/3

2 ) fm, for nuclei A1 and A2.
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Figure 7.18 The partial widths of 8Be and 12C as a function of δNN . Figure taken from
Reference [44].

Numerical integration is necessary at low temperatures as the reaction takes place
through the low-energy wing of resonances. It takes even more relative importance at a
given temperature when the resonance energy is shifted upwards. On the other hand, when
δNN increases, the resonance energies decrease, and the �α(8Be) becomes so small that
the numerical integration becomes useless and soon gives erroneous results because of the
finite numerical resolution. For this reason, when �α(8Be)< 10−8 MeV, we use instead
the Saha equation for the first step and the sharp resonance approximation for the second
step – i.e., Eq. (7.126) when �α(12C)< 10−8 MeV. (Note that for high values of δNN , the
condition �γ � �α does not hold anymore and γ �= �γ .)

At temperatures in excess of T9 � 2, one must include the contribution of the higher
12C levels like the one observed by [59]. As this is not of importance for this study; we just
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Figure 7.19 The 4He(αα,γ )12C reaction rate as a function of temperature for different values of
δNN . Solid (dashed) lines represent the result of the numerical calculation (analytical approximation)
with δNN = 0 (centre), δNN > 0 (above) and δNN < 0 (below). (For the negative value of δNN ,
the larger difference is caused by the failure of the numerical integration and the analytical solution
is preferred (see text). Figure taken from Reference [44].

added the contribution given by the last terms in the NACRE analytical approximation and
neglected any induced variation.

Figure 7.19 shows the numerically integrated 4He(αα,γ )12C reaction rates for different
values of δNN compared with the analytical approximation Eq. (7.126). The difference is
important at low temperatures and small δNN values but becomes negligible for δNN � 0.
At the highest values of δNN , we consider the numerical calculation uses the Saha equation
for the first step, but the total widths of the 12C level also becomes too small to be accurately
numerically calculated; we use Eq. (7.126) instead.

The 8Be lifetime with respect to alpha decay, (h/�α(8Be)), exhibits the opposite
behaviour, indicating that, for large values of δNN , it becomes stable. Before that, its
lifetime is so long that the 4He(αα,γ )12C reaction should be considered as a real two-step
process with 8Be included in the network, as the assumption that alpha decay is much
faster than alpha capture may not hold anymore. Fortunately, our network calculations
show that this situation is encountered only for δNN � 0.006 for the temperatures and
densities considered in our stellar evolution studies.
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Appendix D: Sensitivity of the Nuclear Reaction Rates on the Resonance Energy

The contribution of a sharp resonance in the (α,γ ) channel is given by

〈σv〉 ∝ �α(ER)�γ (ER)

�(ER)
exp

(
− ER

kBT

)
, (7.143)

where �α is the entrance (alpha-)width, �γ is the exit (gamma-)width, and � is the total
width (� = �α + �γ if these are the only open channels). Figure 1 in Reference [44]
displays the 12C level scheme: the radiative width, �γ , is associated with the decay to
the first 12C excited state at 4.44 MeV as the decay to the ground state proceeds only
through the much less efficient electron-positron pair emission. The corresponding decay
energy is then Eγ (ER) = 3.21 MeV + �ER(12C). Equation (7.143) shows that for a
fixed ER – i.e., δNN – the contribution increases with temperature, as seen in Figures 7.9.
While the radiative width �γ (ER) ∝ E2�+1

γ is almost insensitive to ER(δNN), �α(ER)
is very sensitive to ER(δNN) variations because of the Coulomb and centrifugal barriers
penetrability, P�(E). The reduced widths γ 2

x , defined by

�x(E) = 2γ 2
x P�(E) (x �= γ ), (7.144)

are corrected for these effects so that they reflect the nuclear properties only and are, as a
good approximation, independent of δNN .

Depending on whether �α � �γ or �γ � �α , the sensitivity of 〈σv〉 (Eq. (7.143)) to
ER or δNN variations is very different. This is due to the very different energy dependence
of �α and �γ , as discussed in detail in Reference [85]. In the latter case, using Eq. (7.143),
the sensitivity of the rate to ER (δNN ) variations is simply given by

∂ ln〈σv〉
∂ lnER

= − ER

kBT
(7.145)

as the prefactor in Eq. (7.143) is reduced to �γ , which is almost constant. Since δER and
δNN have opposite signs (Eqs. (7.66) and (7.65)), the rate increases with δNN . In the former
case, the same factor is reduced to the very energy-dependent �α , and we have

〈σv〉 ∝ γ 2
α exp

(
−
√
EG

ER
− ER

kBT

)
, (7.146)

where the penetrability, P�(E), has been approximated by exp(−√
EG/E) with Gamow

energy, EG. It is well known that the exponential in Eq. (7.146) can be well approximated
(see, e.g., Reference [3]) by

exp

[
−
(
ER − E0

�E0/2

)2
]
, (7.147)

with

E0 =
(μ

2

)1/3
(
πe2Z1Z2kT

h̄

)2/3

= 0.1220 (Z2
1Z

2
2A)

1/3 T
2/3
9 MeV (7.148)
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and

�E0 = 4 (E0kT/3)1/2 = 0.2368 (Z2
1Z

2
2A)

1/6 T
5/6
9 MeV, (7.149)

which define the Gamow window. Recalling that the reduced width γ 2 only reflects the
nuclear structure and is assumed to be constant, it is straightforward to calculate the sensi-
tivity of the rate to ER (δNN ) variations:

∂ ln〈σv〉
∂ lnER

= 4

(
E0(T )− ER(δNN)

�E0(T )/2

)
. (7.150)

Since, for large δNN and T , we have E0 > ER , the rate decreases with δNN .
The condition �α = �γ that marks the boundary between these two opposite evolutions

in Eq. (7.143) can be found in figure A.1 of Ekström et al. [44], at δNN ≈ 0.006.
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Fine-Tunings at Particle Scales

g i u l i a z a n d e r i g h i

Abstract

Particle physics, like most fundamental sciences, has a number of open questions that are
generally perceived as being of utmost importance. Accordingly, trying to address those
questions motivates most of the experimental and theoretical activity in the field. In particle
physics, these questions can be classified into two main categories. First, there are questions
that arise from experimental observations – for instance, what are the constituents of dark
matter, or what is the origin of the matter-antimatter asymmetry seen in our Universe?
These questions have a well-defined, unique answer which must be understood before
a complete understanding of the fundamental theory that governs all interactions can be
claimed. Additionally, there are questions that are more related to aesthetic arguments and
to our belief that the fundamental theory should obey certain criteria of symmetry and
simplicity that we often refer to as the beauty or elegance of a theory. The most com-
mon queries in the second category include, for example, why are there three generations
of quarks and leptons in the Standard Model (SM) of particle physics, why is the mass
spectrum of fermions hierarchical, what is the origin of neutrino masses, what resolves the
strong charge-parity (CP) problem, and why are the electroweak (EW) scale and the Planck
scale so widely separated? These questions, some which will be discussed in detail in the
following, are sometimes considered even more fundamental and interesting than those of
the first type. For instance, discovering that dark matter is an axion particle would be a
great achievement but would not fundamentally advance the understanding of our ultimate
theory. On the other hand, it is not clear whether all questions of the second type have a
well-defined answer.

8.1 Introduction

Particle physics, like most fundamental sciences, has a number of open questions that are
generally perceived as being of utmost importance. Accordingly, trying to address those
questions motivates most of the experimental and theoretical activity in the field. In particle
physics, these questions can be classified into two main categories. First, there are questions
that arise from experimental observations – for instance, what are the constituents of dark
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matter, or what is the origin of the matter-antimatter asymmetry seen in our Universe?
These questions have a well-defined, unique answer which must be understood before
a complete understanding of the fundamental theory that governs all interactions can be
claimed.

Additionally, there are questions that are more related to aesthetic arguments and to our
belief that the fundamental theory should obey certain criteria of symmetry and simplicity
that we often refer to as the beauty or elegance of a theory. The most common queries
in the second category include, for example, why are there three generations of quarks
and leptons in the Standard Model (SM) of particle physics, why is the mass spectrum
of fermions hierarchical, what is the origin of neutrino masses, what resolves the strong
charge-parity (CP) problem, or why are the electroweak (EW) scale and the Planck scale
so widely separated? These questions, some which will be discussed in detail in the
following, are sometimes considered even more fundamental and interesting than those of
the first type. For instance, discovering that dark matter is an axion particle would be a
great achievement but would not fundamentally advance the understanding of our ultimate
theory. On the other hand, it is not clear whether all questions of the second type have a
well-defined answer. Hence, while a resolution is not required, if it were to happen, it would
most likely lead to the discovery of new particles not present in the SM, to new symmetries
of nature, and, ultimately, to the unveiling of new fundamental principles. Prominent
questions of the second type address, in particular, the fine-tuning or naturalness problem
in the SM that will be discussed in this chapter. In particle physics, we generally say that a
parameter is fine-tuned if its observed value is much smaller than the size of corrections that
the parameter receives when higher-order quantum effects are accounted for. In particular,
fine-tuned parameters typically involve a cancellation between two large, apparently
unrelated terms.

In the past decades, a number of situations have been encountered in particle physics
when a parameter of the theory seemed fine-tuned. The apparent fine-tuning problem could
be resolved by realising that the description used was only suitable at low energies and that
extending the theory by including new particles and interactions could remove the alleged
fine-tuning problem. A number of notable examples of apparent fine-tuning – namely the
energy field of the electron, the charged and neutral pion mass difference, and the kaon
transition rates – are presented in Section 8.2. Since, in the past, requiring that a theory
was not fine-tuned led to formulating the correct extension of the theory, understanding
how to remove the fine-tuning problems in the SM has been used as a guiding principle to
construct theories of new physics, beyond the SM (BSM) over the past 40 years.

While we have some intuition about whether a parameter is fine-tuned, in order to
use fine-tuning as a solid guiding principle, it is important to quantify how fine-tuned
a parameter or a theory is. This is addressed in Section 8.3. The technical naturalness
criterion, as formulated by ’t Hooft in the 1980s [54] and discussed in more detail in Section
8.3.1, states that a parameter is allowed to be very small if setting it to zero increases the
symmetry of the theory. If, however, no new symmetry is recovered and a parameter is
unnaturally small, then the theory is considered to be unnatural. If a theory is found to
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be unnatural, it is useful to quantify the degree of fine-tuning. A number of measures that
have been suggested in the past and are used today in particle physics are described in
Section 8.3.2.

In contemporary particle physics, three areas face a severe fine-tuning problem:
the Higgs mass related to the electroweak symmetry breaking, the strong CP-violating
angle θ , and the cosmological constant �. The last problem is discussed extensively in
Chapter 2 (by Peacock); hence, in this chapter, we will concentrate on the other two
problems.

The first problem, discussed in more detail in Section 8.4, has to do with the fact that
the Higgs mass takes a value that is several orders of magnitude smaller than the size of
quantum corrections that it would receive in extensions of the SM. Hence, if the SM is
just a low-energy effective theory, then the Higgs mass suffers from a fine-tuning problem.
Section 8.4 also presents a number of possible solutions to the fine-tuning problem in the
EW sector in terms of BSM theories.

Section 8.5 describes the fine-tuning of the strong CP angle – i.e., the fact that an
angular parameter, usually denoted as θ , that enters the QCD Lagrangian, happens to be
very small. The fine-tuning of the CP angle is quite different from the fine-tuning in the
EW sector: while in the latter case the Higgs mass receives very large quantum corrections
of the order of the ultraviolet (UV) cut-off of the theory, this is not the case for the strong
CP angle. The problem is rather that θ is an angle that can take any value between 0 and 2π
in the SM. Experimental measurements constrain θ to be very close to zero, but there is no
explanation of why this angle should vanish or be so small. Section 8.5 also describes the
most popular solution to the problem in terms of a new symmetry of the Lagrangian, the
Peccei-Quinn symmetry. The latter leads to the existence of a new particle, the so-called
QCD axion.

Finally, in Section 8.6, we will discuss anthropic arguments as possible approaches to
fine-tuning problems. Anthropic arguments in their original and weaker formulation, as
applied first to the cosmological constant, rely on the observation that, if the cosmological
constant had a value that is much different from the one we observe, galaxies would not
have formed. These arguments can be made much stronger by requiring that our life as
human beings on the Earth should be possible and, hence, that light and heavy elements
should have formed in the right abundance for our existence to be possible. When extended
to requiring such conditions, anthropic arguments can be used to explain the fine-tuning in
the EW sector, but these approaches remain controversial.

8.2 Historical Examples

It is useful to first discuss a few examples where fine-tuning and naturalness arguments
provided an indication about the presence of new states and interactions. We will see that
these considerations can be, and in some cases even have been, used to predict the energy
scale at which new degrees of freedom are expected to appear.
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8.2.1 The Energy of the Electron Field

Let us begin by considering the fine-tuning problem in the case of the energy of a static,
electric field generated by an electron of negative charge e. This problem was presented first
in Reference [42]. For simplicity, we will work in natural units, in which c = h̄ = ε0 = 1
and the inverse of a length is simply an energy. The Coulomb field �E generated by a point
charge e points in the radial direction and is inversely proportional to the radial distance r
from the charge

�E = e

4πr2

�r
r

. (8.1)

The total self-energyW of the electric field is given by the volume integral

W = 1

2

∫
V

d3r �E2 (8.2)

and is divergent at r = 0. If one introduces a radial cut-off r > �−1 on the integration, one
obtains

W� = 1

2

∫
r>�−1

d3r �E2 = 1

2
α�, (8.3)

where α = e2/(4π) � 1/137 is the fine-structure constant. Using Einstein’s equivalence
between energy and mass, we add this energy to the intrinsic mass Me of the electron to
obtain the total effective, observable electron mass me. Accordingly, we write

me = Me + 1

2
α�. (8.4)

The electron massme has been measured very precisely via Thompson and Millikan exper-
iments and is about 511 keV. There are also experimental limits on the charge radius of the
electron, which are about 10−4 fm [43]. It would seem reasonable to use this bound on
the radius as a cut-off �−1 on the self-energy integration. In natural units, one has 1 fm =
(197 MeV)−1, so one would obtain a mass term 1

2α� = O(107 keV). This would mean
that the non-electrostatic massMe in the right-hand side of Eq. (8.4), that seems completely
unrelated to the electrostatic energy term would need to cancel it to five significant digits
in order to give the experimentally observed electron mass of me � 511 keV. The fact that
the physical small electron mass depends on the cancellation between two very large and
apparently unrelated terms is the fine-tuning problem in the case of the electron mass.

What solves the fine-tuning problem of the electron mass is quantum mechanics. In fact,
the preceding is just a classical picture, probing scales of the order of 10−4 fm. Quan-
tum effects allow the production of electron-positron pairs that violate energy-momentum
conservation but only for short amounts of time, according to the Heisenberg uncertainty
principle �E�t ≥ 1/2 (in units where h̄ = 1). The effect of these vacuum fluctuations
is to effectively reduce the electron charge, as illustrated in Figure 8.1. As one probes the
electron charge to smaller and smaller distances, the electron charge is screened by the
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Figure 8.1 A schematic representation of the screening of the electric field generated by a charge e
provided by quantum mechanical fluctuations of the vacuum that generate pairs of positrons (e+) and
electrons (e−).

vacuum fluctuations and seems smaller than expected. Technically, the screening effect
provided by the vacuum fluctuations leads to the renormalisation of the electric charge.

An explicit calculation [61] shows that, once one consistently includes the positron
contribution to the electromagnetic energy term in the electron mass, the energy does not
grow as 1/r = � but depends just logarithmically on �. Through a modern field theory
calculation, one easily finds that

me = Me
(

1 − 3α

2π
ln

(
Me

�

))
. (8.5)

This contribution remains smaller than the electron mass even for scales as large as the
Planck scale MPlanck = 1019 GeV – i.e., the scale at which quantum gravity effects cannot
be neglected.

The other important point to note is that the correction to the electron mass is pro-
portional to the intrinsic electron mass, Me, itself. The reason for this has to do with an
additional symmetry that is recovered in the massless limit. In fact, consider the QED
Lagrangian that governs the interaction of electrons with photons

L = ψ̄ (iγ μ(∂μ − ieAμ)−Me
)
ψ, (8.6)

where γ μ are the standard 4×4 Dirac matrices that obey the commutation rules {γ μ,γ ν} =
2gμν , Aμ is the photon field, ψ denotes the electron field, and ψ̄ = ψ†γ 0. If one sets
Me = 0, the Lagrangian becomes symmetric under a global chiral transformation
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ψ → eiαγ
5
ψ, (8.7)

where γ 5 = iγ 0γ 1γ 2γ 3 is the fifth gamma matrix, which anti-commutes with the four
Dirac matrices γ μ (i.e., {γ 5,γ μ} = 0). This transformation implies that

ψ̄ → (
eiαγ

5
ψ
)†
γ 0 = ψ̄eiαγ 5

. (8.8)

As a consequence, one obtains the following transformation properties:

ψ̄γ μψ → ψ̄γ μψ Meψ̄ψ → e2iαγ 5
Meψ̄ψ . (8.9)

Therefore, when Me = 0, the Lagrangian remains invariant under chiral transformations.
In this limit, higher-order corrections to the mass must respect the symmetry. This implies,
in particular, that all corrections to the electron mass must vanish as the intrinsic mass Me
tends to zero. This is obviously the case if the correction is proportional to the massMe.

In conclusion, we have seen in this section that the presence of a new particle, the
positron, provides a natural way to screen the electric charge and reduce the self-energy
contribution. This is the first example where a quantity is only apparently fine-tuned, but
the inclusion of a new state removes the fine-tuning problem. Similarly, we observe today
other fine-tuned quantities in the SM and hope to use the requirement that a more complete
description should be natural and not fine-tuned, as a guidance in finding new states, new
interactions, and new symmetries.

8.2.2 The Charged and Neutral Pion Mass Difference

Another example of a fine-tuning problem in particle physics is provided by the mass differ-
ence between charged (π±) and neutral (π0) pions. This difference is due to the tadpole and
self-energy diagrams where a photon is exchanged, depicted in Figure 8.2. These diagrams
are present only for charged but not for neutral pions and are hence responsible for the mass
difference between charged and neutral pions.

Let us try to estimate the mass difference �m2 = m2
π± − m2

π0 that is induced by the
photonic corrections to the π± propagator. The Lagrangian describing the interactions of
photons and charged pions is given by

L ⊃ ieAμ
(
π+∂μπ− − π−∂μπ+)+ e2AμA

μ π+π−, (8.10)

γ

π± π±

γ

π± π±

Figure 8.2 Photon tadpole and self-energy corrections to the π± propagator.
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where Aμ denotes the photon field. The tadpole and self-energy diagram both give rise to
a shift of the charged pion mass squared. From Eq. (8.10), one obtains(

�m2
π±
)

tadpole
= −i α

4π3
4
∫
d4l

1

l2
,

(
�m2

π±
)

self-energy
= i α

4π3

∫
d4l

(l + p)2
(l2 −m2

π±)(l − p)2
,

(8.11)

where p denotes the external momentum that flows through the self-energy diagram. Notice
that in the limit l → ∞, both contributions involve a quadratically divergent integral.
The quadratic singularities in Eq. (8.11) can be extracted by performing a Wick rotation
from the Minkowskian momentum l to the Euclidean momentum lE and introducing a UV
cut-off �. In both cases, one has to evaluate the integral∫

d4l
1

l2
= i

∫
d�4

∫ �

0
dlE lE = iπ2�2. (8.12)

Here, the factor
∫
d�4 is the surface area of a four-dimensional unit sphere, which is equal

to 2π2. Combining the two contributions in Eq. (8.11) then leads to the following estimate:

�m2 = m2
π± −m2

π0 � 3α

4π
�2. (8.13)

As in the case of the self-energy of the electron field discussed earlier in Section 8.2.1, one
observes that the charged and neutral pion mass difference also depends sensitively on the
UV cut-off scale �.

The fine-tuning problem related to the UV sensitivity of the charged and neutral pion
mass difference has been first pointed out and addressed in [20]. In fact, by comparing the
experimental determination of the mass difference [43]

�m2
exp � (35.51 MeV)2, (8.14)

to Eq. (8.13), one infers that at a scale of around

� � 850 MeV, (8.15)

a new particle should arise that softens the UV behaviour of the photonic corrections to the
π± propagator. An obvious candidate for this is the ρ meson which is a vector state with
a mass of mρ � 770 MeV. Indeed, it turns out that this state, together with the lightest
axial-vector resonance a1 with mass ma1 � 1250 MeV, cancels the quadratic sensitivity of
the mass correction to the UV cut-off �. An explicit calculation of the one-loop diagrams
shown in Figure 8.3 leads to [20]

�m2 � 3α

4π

m2
ρ m

2
a1

m2
a1

−m2
ρ

ln

(
m2
a1

m2
ρ

)
� (40 MeV)2. (8.16)

We see that, when substituting the values of the ρ and a1 meson masses, one obtains a
mass difference in reasonable agreement with the experimental measurement of Eq. (8.14).
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γ γ
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γ
ρ ρρ

a1

Figure 8.3 Photonic corrections to the π± propagator involving also the exchange of ρ and a1
mesons.

Finally, notice that, in the limit mρ → ma1 , the result in Eq. (8.16) turns into �m2 �
3α/(4π)m2

ρ , which shows clearly that the mass of the lowest-lying vector resonance acts
as the UV cut-off � appearing in Eq. (8.13).

8.2.3 Kaon Transition Rates and Mixing

The Fermi model was proposed in 1933 to explain the β decay of the neutron n →
pe−ν̄e [25]. According to the Fermi model, four fermions can interact directly with each
other through a pointlike vertex, the interaction is universal, and its strength is proportional
to the Fermi constant GF .

Despite the large success of the Fermi model, more measurements of decay and tran-
sition rates performed in the 1960s started to reveal a number of puzzles. For instance,
the measurement of the decay μ− → νμe

−ν̄e was giving a value of the Fermi constant
of GμF = (1.16632 ± 0.00002) · 10−5 GeV−2, slightly larger than the one observed in

β decay, namely GβF = (1.136 ± 0.003) · 10−5 GeV−2. In addition, certain hadronic decay
modes were observed to be very suppressed; for instance, a universal weak interaction
would predict the π− → μ−ν̄μ decay rate to be equal to the K− → μ−ν̄μ rate. However,
the latter one was observed to be about 20 times smaller. This lead Cabibbo [18] in 1963
to formulate the hypothesis that weak eigenstates are different from mass eigenstates –
i.e., that the one up-type quark known at the time would couple to a linear combination d ′

of the two down-type quarks d and s, namely

d ′ = cos θc d + sin θc s, (8.17)

where sin θc is the sine of the Cabibbo angle sin θc � 0.23. Since the π− meson is made
up of (ūd) while the K− meson is made up to (ūs), the transition rate of the latter is
suppressed by a factor cos2 θc/ sin2 θc � 18, quite close to the experimental observation.
Similarly, the discrepancy in the extraction of GF from μ− → νμe

−νe and n → pe−νe
could be explained by the introduction of a cosine of the Cabibbo angle in the latter decay.

Adopting the Cabibbo model, a number of new measurements were performed that
still gave puzzling results. For instance, the decay of neutral K mesons to muons, KL →
μ+μ−, was measured to be much smaller than predicted in the Cabibbo model. Similarly,
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Figure 8.4 A diagram describing the decay KL → μ+μ− in the Fermi theory. The four-fermion
vertices of the Fermi theory are indicated by the black dots.

the measured K0–K̄0 oscillations were considerably faster than theoretical predictions
relying on the Cabibbo model. This lead Glashow, Illiopoulos, and Maiani (GIM) [30]
to postulate the existence of an extra quark, the charm quark c, before its direct discovery
in 1974 at SLAC [10] and Brookhaven National Laboratory [9].

The way the introduction of the charm quark solves the aforementioned discrepancies
works as follows. Let us first consider the decay KL → μ+μ− in the Fermi theory with an
up quark and a muon neutrino running in the loop. The corresponding diagram is shown in
Figure 8.4, and the associated decay amplitude takes the form

Mu = −i
(

4GF√
2

)2

gu

∫
d4l

(2π)4

(
s̄γμPL

(
/l +mu

)
γνPLd

) (
μ̄γ νPL/lγ

μPLμ
)

l2(l2 −m2
u)

, (8.18)

where

gu = sin θc cos θc, (8.19)

and PL = (1 − γ 5)/2 projects on left-handed chiralities. In the limit |l| → ∞, one can
neglect the mass of the up quark in the loop, and one obtains

Mu = −i
(

4GF√
2

)2

gu

∫
d4l

(2π)4
lαlβ

(l2)2

(
s̄γμγ

αγνPLd
) (
μ̄γ νγ βγ μPLμ

)
= −i

(
4GF√

2

)2

gu

∫
d4l

(2π)4
1

4l2
(
s̄γμγ

αγνPLd
) (
μ̄γ νγ βγ μPLμ

)
= −i

(
4GF√

2

)2

gu
i�2

64π2

(
s̄γμγλγνPLd

) (
μ̄γ νγ λγ μPLμ

)
,

(8.20)

where we have used again the result in Eq. (8.12) to extract the part quadratic in �. Now
employing (

s̄γμγλγνPLd
) (
μ̄γ νγ λγ μPLμ

) = 4
(
s̄γμPLd

) (
μ̄γ μPLμ

)
, (8.21)



316 Giulia Zanderighi

one finds

Mu = G2
F

2π2
gu�

2 (s̄γμPLd) (μ̄γ μPLμ), (8.22)

which is – like the result in Eq. (8.13) – quadratically divergent.
However, in the diagram shown in Figure 8.4, both an up quark and a charm quark can

circulate in the loop. In order to take the charm quark into account, one should replace gu
with

∑
q=u,c gq in Eq. (8.22). The form of the coupling gc then follows from the observa-

tion that, in analogy to Eq. (8.17), the charm quark also couples to a linear combination of
the two down-type quarks d and s, namely to

s′ = cos θc s − sin θc d. (8.23)

From this, it follows that

gc = − sin θc cos θc, (8.24)

and as a result,
∑
q=u,c gq = 0. In physical terms, the latter result means that the quadratic

divergence of the up-quark loop is exactly cancelled by the charm-quark contribution.
This cancellation is called GIM mechanism. In the case of the up-quark and charm-quark
contribution to the KL → μ+μ− decay, the perfect GIM cancellation is broken by terms
(m2
c − m2

u)/m
2
W � m2

c/m
2
W � 1, which implies that the physical charm-quark mass acts

as an effective UV cut-off.
Similarly, the presence of the charm quark can explain the observed suppression of

K0–K̄0 mixing. In fact, as illustrated in Figure 8.5, in this case, four diagrams contribute
if we restrict ourselves to the exchange of up quarks and charm quarks. In the limit of
mu = mc = 0, the individual contributions to the K0–K̄0 amplitude with an exchange of a
quark of flavour i and a quark of flavour j take the form

Mij ∝ G2
F gi gj, (8.25)

where i,j = u,c. In the total amplitude M = ∑
i,j=u,c Mij , hence, all �2 terms cancel as

a result of the GIM mechanism. Like in the case ofKL → μ+μ−, finite-mass effects again
spoil the complete GIM cancellation but the residual mixing effects are very small being
both Cabibbo-Kobayashi-Maskawa (CKM) suppressed (∝ sin2 θc) and suppressed by the
small charm-quark mass (∝ m2

c/m
2
W ). In the SM, the top quark also enters the loops that

describeK0–K̄0 mixing (see Figure 8.5); the discussed GIM cancellation, however, persists
as a result of the unitarity of the CKM matrix [39].

Like for the mass difference between charged and neutral pions, one can also extract in
the case of K0–K̄0 mixing a bound on the effective cut-off scale � � mc. One just has to
calculate the KL–KS mass difference�MK = MKL −MKS and compare it to experiment.
A calculation similar to the one leading to Eq. (8.22) gives

�MK

MK
� G2

F

6π2
f 2
K sin2 θc m

2
c, (8.26)
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Figure 8.5 The one-loop box diagrams describing K0–K̄0 mixing. To obtain the full amplitude the
contributions of all internal up-type quarks have to be included.

whereMK = (MKL +MKS )/2 and fK denotes the kaon decay constant. Using the values
�MK/MK � 7 · 10−15 and fK � 0.1 GeV, one finds

mc � 1.4 GeV, (8.27)

in very good agreement with the actual mass of the charm quark as determined today
by lattice QCD. In fact, the very same argument presented here has been used already
more than 40 years ago by Gaillard and Lee in Reference [26] to predict that the charm
quark should be lighter than 10 GeV. This is one of the first examples in the history of
particle physics where the presence of a quadratic divergence in a theoretical prediction,
together with an accurate measurement, has been used to predict the correct mass-scale of a
new particle.

8.3 Quantifying Fine-Tuning

8.3.1 Technical Naturalness

We have seen in Section 8.2.1 that despite the fact that the electron mass is very small –
in particular, much smaller than the Planck scale – this is considered natural. In fact, no
fine-tuning is involved since setting the electron mass to zero one recovers an additional
symmetry, the chiral symmetry. This symmetry guarantees that corrections to the electron
mass remain proportional to the electron mass itself, and hence, it cannot receive large
radiative corrections. This idea was formalised by ’t Hooft [54] and elevated to a principle
of naturalness which states that if a quantity in nature is small but a new symmetry is
recovered were the quantity to vanish, then the smallness of the quantity is natural. This
principle is usually referred to as technical naturalness. ’t Hooft, however, made an even
stronger statement, saying that a quantity in nature should be small only if the underlying
theory recovers an additional symmetry when the quantity vanishes. Quantities that do not
respect this principle are considered fine-tuned. Let us now consider a few examples of
‘small’ quantities and see if they are technically natural in the ’t Hooft sense.

A first example is given by fermion masses in the SM, such as quark or neutrino masses,
which exhibit a large spread in values, from less than 1 eV to more than 100 GeV. If we
consider, for instance, the light quarks u, d , and s, the corresponding QCD Lagrangian
contains a term of the form

L ⊃ ψ̄ (iγ μDμ −m)ψ, (8.28)
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where

ψ =
⎛⎝ud
s

⎞⎠ , m =
⎛⎝mu 0 0

0 md 0
0 0 ms

⎞⎠, (8.29)

and

Dμ = ∂μ − igsGaμta (8.30)

is the covariant derivative, with gs the strong coupling constant,Gaμ, a = 1,. . . ,8 the gluon
fields, and ta are the colour matrices. It is easy to see from Eq. (8.28) that if one sets the
mass of the three lightest quarks to zero – i.e., mu = md = ms = 0, the Lagrangian
has an additional SU(3) flavour symmetry. Hence, the fact that the masses of the three
lightest quarks are much smaller than the mass of the top quark, while curious, is technically
perfectly natural.

In fact, as for the electron, in the massless limit another symmetry, the chiral symmetry
is recovered, which transforms the ψ field according to Eq. (8.7). It is easy to see that
in the massless limit Eq. (8.28) remains invariant under chiral transformations since γ 5

anti-commutes with the four Dirac matrices γ μ. Similar arguments apply to all fermion
masses in the SM. As a consequence of both the flavour and the chiral symmetry, while
the large spread in the values of the quark and neutrino masses poses some questions, it is
technically natural.

As a second example [53], one can consider an asymptotically free gauge theory with a
running coupling g(μ) obeying

∂g(μ)

∂ lnμ
= −β0g

3 + · · · . (8.31)

If the theory is asymptotically free, as is the case for QCD, β0 > 0, the coupling becomes
smaller at larger energy scales. Eq. (8.31) can be integrated between a scale Q and a scale
Q0 to give

1

g2(Q)
= β0 ln

Q2

Q2
0

+ 1

g2(Q0)
, (8.32)

where the bare coupling g0 can be identified as g(Q0). As in QCD, the typical value of
bound-state masses is of the order of Q where g(Q) becomes large. Even if Eq. (8.32)
becomes inaccurate in that region, it still can provide an indication about typical masses.
Imposing that g(Q) is very large in Eq. (8.32) leads to

Q = Q0 exp

(
− 1

2β0g
2
0

)
. (8.33)

It is clear that, because of the exponential factor in the right-hand side, even if Q � Q0,
the bare parameter g0 will not be very small. For instance, taking Q of the order of the
proton mass,Q = 1 GeV,Q0 of the order of the Planck mass,Q0 = 1019 GeV, and setting
2β0 = 1, one obtains g0 = 0.15, which is not an unnaturally small number.
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While the preceding discussion is somehow a simplification, it can be used to estimate
the order of magnitude of the proton mass and explain why it is much smaller than the
Planck scale. One might wonder what the symmetry is that allows the proton to remain
much lighter than the Planck scale.1 In the limit where the quark masses vanish, the classi-
cal action, S = ∫

d4L, has a scale or conformal symmetry

xμ → κ xμ, ∂μ → κ−1∂μ, ψ → κ−3/2ψ . (8.34)

If this symmetry was exact, the proton would be massless. As a consequence, the proton
mass is naturally small. Note that in QCD, the conformal symmetry is broken explicitly by
the renormalisation of the couplings that introduces a scale.

In summary, while most parameters in the SM are natural and not fine-tuned, according
to the criterion of ’t Hooft, there are also some parameters that are not natural. However,
before discussing examples of fine-tuned quantities in the SM, we will introduce quantita-
tive measures of fine-tuning in the next section.

8.3.2 Fine-Tuning Measures

We have seen that fine-tuning can be related to the presence of a delicate cancellation
between apparently unrelated large terms to produce a result that is much smaller than
individual contributions and that corresponds to physical observations. It is then important
to provide a quantitative measure of fine-tuning, which measures how big the cancellation
is. The aim is to be able to discuss questions of whether a new-physics model is fine-tuned
and to compare different theories in a quantitative way in terms of how fine-tuned they are.
A discussion of different fine-tuning measures can be found in Reference [34].

According to Wilson [53], the principle of naturalness requires that the physical proper-
ties of low-energy states should be stable against tiny variations of fundamental parameters.
Let us illustrate a case of an unnatural scenario, where a particle receives self-energy
corrections that are quadratic in a UV cut-off �, which has dimension of an inverse of
a length-scale. For instance, let us consider a simple theory that involves a massless bare
coupling g0 and a bare mass m0. The latter can be expressed as a dimensionless quantity
by taking the ratio to the UV cut-off �

r0 = m0

�
. (8.35)

The correction �m2 to the mass of the particle then assumes the form

m2 = m2
0 +�m2, �m2 = g2

0�
2. (8.36)

Solving for the fundamental parameter r0, one obtains

r2
0 = m2

�2
− g2

0. (8.37)

1 Note that the proton mass is not set by the light quark masses, which are more of the order of the neutron-proton mass
difference.
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If m is a physical mass of the order of the EW scale – i.e., O(100 GeV) – and� is taken to
be the Planck scale O(1019 GeV), then

r0 = 10−34 − g2
0. (8.38)

This equation implies that r0 must be adjusted to the 34th decimal digit, since, otherwise,
the mass m will become of order O(1019 GeV) rather than O(100 GeV). This high sensi-
tivity of physical parameters to tiny variations of fundamental parameters is precisely what
Wilson deemed to be unnatural.

A quantitative formalisation of naturalness, following Wilson’s idea, was formulated
by Barbieri and Giudice in Reference [13] in the context of quantifying the naturalness
of various low-energy supersymmetry models that arise from supergravity theories. Let us
consider an observable O, which could be, for example, a mass or a mass difference, and
is a function of a number of parameters ai – for instance, the masses and couplings of new
states. The fine-tuning measure �BG of Reference [13] is defined as follows. One requires
that for every ai , the following relation holds:

�BG(O;ai) ≡
∣∣∣∣aiO ∂O({ai})∂ai

∣∣∣∣ < �, (8.39)

which means that a relative variation of each of the parameters ai does not produce a relative
variation of O that is more than� times larger. So a value of� of 10 means that there is at
most an order of magnitude cancellation between the parameters.

If we go back to the example in Eq. (8.36) and use now the measure in Eq. (8.39), we
obtain

�BG(m
2,g0) = g0

m2

∂m2({g0})
∂g0

= 2g2
0
�2

m2
. (8.40)

This implies that unless the UV cut-off is close to the physical, observed massm, this mass
is unnatural, since �BG(m

2,g0) will become very large. For instance, taking g0 = 1, � to
be the Planck mass and m to be the Higgs mass, one obtains �BG(m

2,g0) = O(1034).
Since in model building one typically wants to avoid models that are fine-tuned,

Eq. (8.39) can be used at fixed � to constrain the parameter space of a theory. For
instance, one can look at the allowed parameter space so that a theory is not fine-tuned
by more than one or two orders of magnitude. Alternatively, given a new-physics theory,
one can first exclude regions in parameter space where predictions are in conflict with
experimental observations. For those regions of parameter space that remain not excluded
by experimental data, one can use the Barbieri-Giudice criterion to assign a measure of
fine-tuning. Originally, in Reference [13], � was chosen to be 10, allowing for an order of
magnitude cancellation. The choice of a particular value for� is obviously very subjective,
and after strong experimental constraints from the Large Electron Positron (LEP) and the
Large Hadron Collider (LHC), larger choices of � became more commonly accepted.

It was also suggested in Reference [3] that the Barbieri-Giudice (BG) measure of
Eq. (8.39) can be misleading, as it mixes the concept of sensitivity of a quantity to a given
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parameter and the notion of naturalness. In essence, the problem is related to the value
of � that should be considered acceptable because when a quantity is more sensitive to a
parameter, one should permit larger values of �. Hence, a new measure of fine-tuning was
suggested in Reference [3] embodying the idea that ‘Observable properties of a system
should not be unusually unstable against minute variations of the fundamental parameters’.
In essence, the new naturalness measure wants to separate the sensitivity of observables to
parameters from the fine-tuning. This point can be understood by examining Eq. (8.33),
which shows that changing, e.g., g0 from, e.g., 0.15 to 0.16 changes Q from 1 GeV to
100 GeV. Hence, Q is very sensitive to g0 despite the fact that there is no fine-tuning
problem. In fact, the BG measure forQ is

�BG(Q,g0) = 1

β0g
2
0

, (8.41)

which has no UV sensitivity to a cut-off but does depend strongly on g0. The solution
suggested in Reference [3] is to assign a probability distribution for the parameters of the
theory and to calculate the fine-tuning associated with measured values after normalising
away the specific sensitivity of physical quantities to parameters of the theory.

Starting from the BG measure in Eq. (8.39), Anderson and Castano (AC) define a new
measure as [3]

�AC(O;ai) = �BG(O;ai)
〈�BG(O;ai)〉, (8.42)

where

1

〈�BG(O;ai)〉 =
∫
daiaif (ai)�BG(O;ai)−1∫

daif (ai)
(8.43)

and f (ai) is a probability density. In essence, the new measure takes the BG measure and
normalises it to its average over a reasonable range of parameters.

As a simplest option, one can, for instance, take a flat density f (ai)= 1 or some simple
form for it. One can then integrate over some minimum and maximum value of ai , where
the chosen values should correspond to a sensible range of variation for this theory parame-
ter, with the chosen probability density. Simple forms of f (ai) give similar results in terms
of the fine-tuning measure 〈�AC〉. In particular, the presence or absence of a fine-tuning
problem is independent of the choice of f (ai), and the sensitivity to physical parameters is
removed by the normalisation.

As an example, we can consider again the case of the scalar mass with quadratic correc-
tions, Eq. (8.36). The BG measure is given in Eq. (8.40). To compute the AC measure, one
needs to evaluate Eq. (8.43). For instance, for f (g) = 1, one obtains

〈�BG(m
2;g0)〉−1 =

∫ g+
0

g−
0
dg0g0f (g0)�BG(m

2;g0)
−1

∫ g+
0

g−
0
dg0g0f (g0)

=
m2

0 ln
g+

0
g−

0

�2(g+2
0 − g−2

0 )
+ 1

2
, (8.44)
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where we denoted by g+
0 and g−

0 the upper and lower integration bounds. Similarly, for
f (g) = 1/g, one obtains

〈�BG(m
2;g0)〉−1 = 1

2
− m2

0

2�2g+
0 g

−
0

. (8.45)

In both cases, we see that 〈�BG(m
2;g0)〉−1 = O(1). As a consequence, �AC(m;g0) =

O(�2), which implies that a fine-tuning is needed in order to keep the scalar mass m light.
As a second example, we can consider again the proton mass, whose value is of the

order of the scale Q in Eq. (8.32). In this case, assuming a flat distribution f (g0) = 1 and
using Eq. (8.41), one obtains

〈�BG(Q;g0)〉−1 =
∫ g+

0

g−
0
dg0g0f (g0)�BG(Q;g0)

−1∫
dg0g0f (g0)

= β0

2

(
g+2

0 + g−2
0

)
,

(8.46)

and assuming a distribution of the form f (g0) = 1/g0, one has instead

〈�BG(m;g0)〉−1 = β0

(
g+2

0 + g+
0 g

−
0 + g−2

0

)
. (8.47)

In this case, regardless of the choice of the distribution f (g0), one can see that the
�AC(Q;g0)=O(1), which indicates, correctly, that there is no fine-tuning. This example
illustrates the effect of the normalisation of the BG measure, since, while �BG(Q;g0) =
O(1/g2

0) is very sensitive to g0, the AC normalisation removes this sensitivity. On the other
hand, the AC measure leads to a dependence on the integration range and to the form of
the probability density, which makes it more difficult to compare different theories.

Yet another measure of fine-tuning was proposed by Athron and Miller [8]. The idea
behind this measure is to generalise previous measures of fine-tuning to allow the variation
of many parameters, to consider many observables, and to remove the global sensitivity
by normalising to the mean value, as in the AC measure. More details can be found in the
original paper, Reference [8].

In the AC measure, the particular parameters in a model are viewed as one realisation
of nature over a broad distribution of possible values. This introduces the concept of like-
lihood of a particular choice of parameters over the possible theory distribution of allowed
parameters. While Anderson and Castano do not discuss probabilities directly (because of
a lack of a normalisation for the probability) they connect the notion of naturalness to that
of likelihood of one model over a range of possible models. In particular, the attention
smoothly shifts to having many possible realisations of a theory, with the parameters that
are allowed to vary in a broad range. In this sense, the AC measure features connections to
landscape theories.

While Anderson and Castano just introduce the concept of likelihood when discussing
naturalness, Ciafaloni and Strumia [19] suggest to interpret directly the inverse of the BG
measure as a probability

P ∝ 1

�BG
; (8.48)
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hence, a large BG measure is associated to a small probability – i.e., to a large unnatural
cancellation. In order to normalise the probability, they suggest requiring that the proba-
bility should be of order one in cases where no unnatural, accidental cancellation occurs.
In this sense, naturalness acquires a statistical meaning of how atypical and unlikely a
particular theory is. This is different from the original notion of naturalness introduced by
Wilson, which merely required physics at low energy to be stable against tiny variations of
fundamental parameters of the theory and did not connect the concept of naturalness to that
of probability.

8.4 Fine-Tuning in the Electroweak Sector

Within the SM, the full EW symmetry SU(2)L × U(1)Y is broken spontaneously down to
the abelian U(1)em subgroup describing electromagnetism. In this process, the masses of
the W and Z gauge bosons as well as the fermions are generated. Since details about EW
symmetry breaking (EWSB) are given in many textbooks on quantum field theory (QFT) –
for instance, in References [46, 60] – we will in what follows only sketch the main ideas
and steps.

The mechanism of EWSB in the SM involves a scalar field � that is a SU(2)L doublet.
The kinetic term and the potential of � take the form

L ⊃ |Dμ�|2 − V (�), (8.49)

where the first term involves the covariant derivative of the SU(2)L × U(1)Y gauge group

Dμ = ∂μ − igτaWa
μ − ig′YBμ, (8.50)

where g and g′ are the SU(2)L and U(1)Y gauge coupling, respectively; τa = σa/2
with σa the usual Pauli matrices; and Y = 1/2 represents the U(1)Y hypercharge of the
field �. The physical gauge boson fields, i.e., theW±, the Z, and the photon A are related
to the fieldsWa

μ and Bμ via

W±
μ = 1√

2

(
W 1
μ ∓ iW 2

μ

)
,

Zμ = cos θw W
3
μ − sin θw Bμ,

Aμ = sin θw W
3
μ + cos θw Bμ,

(8.51)

where sin θw = g′/
√
g2 + g′2 � 0.22 denotes the sine of the weak mixing angle.

The second term in Eq. (8.49) is given by

V (�) = μ2|�|2 + λ|�|4, (8.52)

which is the most general potential consistent with gauge invariance and renormalisability
in the case of a single scalar field. For μ2 = 0, the potential has a unique minimum at
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� = 0, while for μ2 < 0, the field value � = 0 becomes a maximum of the potential, and
the minima lie at

|�|2 = −μ
2

2λ
= v2

2
, (8.53)

with v =
√

−μ2/λ the vacuum expectation value (VEV) of �. One can now expand the �
field around the vacuum solutions. In the unitary gauge, one can write

� = 1√
2

(
0

v +H
)
, (8.54)

with H a real scalar – i.e., the Higgs field. Up to an irrelevant constant, in this gauge the
scalar potential reads

V (�) = 1

2
(2λv2)H 2 + λvH 3 + λ

4
H 4, (8.55)

which implies that the Higgs field H has a mass

mH =
√

2λv. (8.56)

The term involving the covariant derivative of� can be also worked out easily. One obtains

|Dμ�|2 = 1

2
|∂μH |2 +

[
g2v2

4
W+
μ W

−μ +
(
g2 + g′2) v2

8
ZμZ

μ

](
1 + H

v

)2

. (8.57)

From this expression, one can read off the values of theW and Z masses:

mW = gv

2
, mZ =

√
g2 + g′2 v

2
. (8.58)

The photon instead remains massless mA = 0. The value of the Higgs VEV can then be
obtained from precision measurements of the W and Z mass, from the Fermi constant
GF � 1.166 · 10−5 GeV−2 using the relation

GF√
2

= g2

8m2
W

= 1

2v2
, (8.59)

which simply follows from matching the Fermi theory to the full SM. Numerically,
one finds

v � 246.22 GeV. (8.60)

The Higgs mass is also known very precisely today [1], to better than ∼ 1% precision, and
reads

mH = 125.09 ± 0.21(stat.)± (syst.)GeV. (8.61)

Using the second equality in Eq. (8.53) from the knowledge of the Higgs mass and the VEV,
we also know the value of the quartic coupling λ in the SM. One obtains

λ � 0.13. (8.62)
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Figure 8.6 A one-loop correction to the Higgs mass coming from a top quark in the loop.

This implies that all interactions of SM particles, fermions, and bosons with the Higgs
boson – in particular, also the Higgs interaction with itself through triple and quartic Higgs
couplings – are fixed. A broad and detailed experimental program is ongoing at the LHC
to test the validity of the Higgs mechanism. At the moment, couplings of the Higgs to
fermions of the third generation and toW andZ have been measured to about 10% accuracy
and seem to follow the pattern predicted in the SM. Yet couplings to lighter fermions and
the Higgs self-coupling remain experimentally largely unconstrained. Better measurements
of those quantities are top priorities for the upcoming LHC physics programme. In fact,
although at the moment all measurements agree with the SM Higgs mechanism, the Higgs
sector suffers from a fine-tuning problem, as explained in the following. Hence, it seems
natural to think that the fine-tuning should be removed by the presence of BSM physics,
and trying to remove or alleviate the fine-tuning in the EW sector has driven a lot of the
theoretical activity in particle physics.

8.4.1 Higher-Order Corrections to the Higgs Mass

The fine-tuning problem in the Higgs sector is related to the fact that the Higgs mass
receives very large quantum corrections from particles that couple directly, or even indi-
rectly, to the Higgs boson. This fact was first observed in the context of grand unified
theories (GUTs) [28, 57].

Let us consider, for example, the quantum corrections to the Higgs mass coming from a
loop of fermions that couples to the Higgs through a Yukawa interaction of the form

L ⊃ −λfHf̄ f, (8.63)

with λf = √
2mf /v andmf the mass of the fermion. The diagram illustrated in Figure 8.6

gives rise to a correction to the Higgs mass of the form

�m2
H = Nciλ2

f

∫
d4l

(2π)4
tr
[
(/l +mt)

(
/l + /p +mt

)]
(l2 −m2

t )
(
(l + p)2 −m2

t

), (8.64)

which is quadratically divergent in the limit |l| → ∞. The divergent contribution is
given by

�m2
H = Nc

iλ2
f

16π4

∫
d4l

4l2

l4
= Nc

iλ2
f

4π4

(
−iπ2�2

)
= Nc

GFm
2
f√

2π2
�2, (8.65)
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H
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Q

Figure 8.7 Two examples of two-loop correction to the Higgs mass coming from a heavy fermionQ
that couples only indirectly to the Higgs via the exchange of a SM gauge boson V .

where we used the expression of the divergent integral in Eq. (8.12) and Nc = 3 is the
colour factor.

Within the SM, the dominant contribution to the Higgs mass comes from the top quark
because of its large Yukawa coupling. Also, loops involving massive bosons give rise
to divergent corrections, and when one includes all important one-loop corrections, one
obtains [55]

�m2
H

m2
H

= 3GF

4
√

2π2

(
4m2

t

m2
H

− 2m2
W

m2
H

− m2
Z

m2
H

− 1

)
�2 �

(
�

500 GeV

)2

. (8.66)

The UV cut-off can then be interpreted as the scale at which new physics enters and
modifies the high-energy behaviour of the theory. The hierarchy problem of the Higgs mass
is now related to the fact that, if in Eq. (8.66) the UV cut-off � is taken to be the Planck
mass, mH receives corrections that are more than 15 orders of magnitude larger than the
measured value of around 125 GeV. If, on the other hand, new, not-too-heavy particles exist
and act as an effective UV cut-off, then this could remove the fine-tuning problem in the
Higgs sector.

The interesting thing to note is that in any extension of the SM that introduces one or
more heavy states, the Higgs mass squared becomes quadratically sensitive to any new
degree of freedom, regardless of whether the new states interact at the tree level with the
Higgs. In fact, even if the new particles do not interact directly with the Higgs boson – for
instance, because their masses predominantly arise from a mechanism other than EWSB –
they will generically affect the Higgs boson mass indirectly through radiative corrections.
An example is shown in Figure 8.7, which displays two two-loop diagrams that involve
a heavy fermion that couples only indirectly to the Higgs boson through a SM vector
boson. The quadratically divergent correction to the Higgs mass squared that arises from
the diagram on the right-hand side of Figure 8.7 can be written schematically as follows:

�m2
H ∼ g2

1g
2
2C1C2

∫
d4l1

(2π)4

∫
d4l2

(2π)4
tr
[
(/l 1 + /l 2)/l 2

]
l41 l

2
2 (l1 + l2)2

, (8.67)

where the coupling of the intermediate vector boson to the Higgs is called g1, the cou-
pling of the vector boson to the heavy fermion is denoted by g2, and C1 and C2 are the
corresponding Casimir factors. The preceding expression simplifies to
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�m2
H ∼ g2

1

16π4

g2
2

16π4
C1C2

∫
d4l1

∫
d4l2

1

l41 (l1 + l2)2

∼ g2
1

16π2

g2
2

16π2
C1C2�

2 ln�,

(8.68)

where we used Eq. (8.12) and∫
d4l

1

l4
= i

∫
d�4

∫ �

0
dlE

1

lE
= i2π2 ln� (8.69)

and ignored numerical factors of O(1) to arrive at the final result in Eq. (8.68).
We see that like the one-loop contribution Eq. (8.65), the two-loop contribution also

depends quadratically on the UV cut-off �. One finds a similar quadratically divergent
contribution from the diagram on the left-hand side of Figure 8.7, but the two contributions
do not cancel. This example illustrates that even if a new heavy particle does not interact
with the Higgs boson at tree level, as long as the new state has interactions with some of
the SM particles, radiative corrections will give rise to a quadratic sensitivity of mH on the
cut-off scale �.

Given that the technical naturalness argument is used to explain the lightness of many
SM fermions, it is worth examining if an additional symmetry appears within the SM in
the limit of mH → 0. A massless Higgs would imply the absence of the quadratic term in
Eq. (8.52). In such a case, the Higgs VEV would be zero, the EW symmetry would
be unbroken, and neither the SM gauge bosons nor the fermions would receive a mass
from EWSB. In fact, at the classical level, the SM action is conformally symmetric –
i.e., invariant under the transformations in Eq. (8.34) and

Vμ → κ−1Vμ, �→ κ−1�, (8.70)

except for the quadratic term in Eq. (8.52). In the preceding transformations, Vμ represents
any of the SM gauge fields. It follows that the vanishing of the Higgs mass term μ2|�|2
would increase the symmetry of the SM by making the conformal symmetry exact. At the
loop level, there is explicit breaking of the conformal symmetry reflected by the logarithmic
running of the gauge and Yukawa couplings. The logarithmic running alone, however, will
not generate �2 terms so that in perturbation theory conformal symmetry would protect
�m2

H from quadratic corrections and the conventional statement of the EW fine-tuning
problem. Yet the fine-tuning issue may reappear if the SM is embedded into a more complex
theory, visible at short distances or high energies. Whether conformal invariance can still
be used to protect the EW scale then depends on the structure and the dynamics of these
more complete formulations.

Before concluding this section, it is also worth commenting on what happens if, instead
of regularising the divergent UV behaviour of loop integrals by a cut-off �, one consid-
ers dimensional regularisation, which is the regularisation procedure usually employed
in modern higher-order perturbative calculations. This point is discussed in detail, for
instance, in Reference [62]. Dimensional regularisation of UV divergences proceeds by
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extending the four-dimensional loop integration toD = 4 − 2ε dimensions with ε > 0 and
infinitesimal. At the one-loop level, UV divergences appear as simple poles of the form 1/ε,
and these singularities can be absorbed into the bare couplings and masses of the theory in
any renormalisable QFT (such as the SM). In dimensional regularisation, the quadratic �
dependence of the loop corrections to the Higgs mass squared is replaced by a logarithmic
dependence on the so-called renormalisation scale μ, and it so might appear that there is no
issue with fine-tuning of the Higgs mass (see, for instance, [14, 21, 24]). The fine-tuning
problem, however, reappears in dimensional regularisation if, at a scale �, new degrees
of freedom beyond the SM exist. These new states lead to finite threshold corrections
that reintroduce a quadratic sensitivity to � in �m2

H . Irrespectively of the regularisation
procedure, the EW fine-tuning problem can hence only be disregarded if the weak scale is
the only relevant scale of high-energy physics, and in such a case, the SM would be natural.

Nature, however, has already revealed that there is physics beyond the SM. Dark matter
and non-zero neutrino masses require new degrees of freedom and possibly new mass-
scales. More indirect hints like the unification of gauge couplings, the need for a mechanism
of baryogenesis, the strong CP problem, and the flavour puzzle also suggest the existence
of new typically very heavy states. Ultimately, the need to include gravitation in the picture
provides a concrete ultra-large energy scale close to the Planck mass, though its connection
to massive particles is less clear. It, thus, seems very plausible that between the weak and
the Planck scale, new degrees of freedom not present in the SM appear. Protecting the
Higgs mass from the resulting large UV sensitivity then requires a new mechanism or a
new symmetry that tames the size of radiative corrections. In the following, we will discuss
the most popular solutions to the EW hierarchy problem.

8.4.2 Solutions of the Gauge Hierarchy Problem

The EW fine-tuning problem has been a main motivation for the construction of BSM
scenarios. Most of these new-physics models predict the existence of new states at the TeV
energy scale that modify the quantum corrections to the Higgs mass, thereby stabilising the
weak scale. For a long time, this has been a leading argument in favour of new physics in
the TeV range; however, after results from Run I and first results from Run II at the LHC,
several simple and natural models to explain the lightness of the Higgs boson are not viable
anymore (see, e.g., [23, 29]).

An elementary scalar can be naturally light if the mass is protected by a symmetry. The
most explored possibility is supersymmetry (SUSY), an internal symmetry which relates
fermions to bosons. If SUSY is unbroken, each SM particle has a SUSY partner with the
same mass. The two particles are then said to be in the same supermultiplet. The mass of
scalars is then related to the mass of chiral fermions, and hence, it is naturally protected
from getting quadratically divergent corrections, precisely in the same way as fermion
masses in the SM are protected by the chiral symmetry.

The explicit way in which the quadratic sensitivity to the UV scale is removed in SUSY
models is that every SM fermionic (bosonic) quadratically divergent correction to the Higgs
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Figure 8.8 One-loop correction to the Higgs mass squared from the SM top loop (left) and its SUSY
partner, the stop (right).

mass comes together with a bosonic (fermionic) SUSY correction. This mechanism is
illustrated by the Feynman diagrams shown in Figure 8.8. Because fermion loops involve
an extra minus sign compared to bosonic loops, the divergent contribution from the two
diagrams cancel. If the masses of fermionic and bosonic states were the same, the can-
cellation would be exact. However, if SUSY was unbroken, i.e., if SM particles and their
SUSY partners had the same mass, we should have observed a plethora of SUSY particles
already at LEP, if not before. Since we have not, there must be a mechanism that breaks this
symmetry and that causes SUSY particles to be heavier than SM particles. A large number
of models have been suggested in the past to break SUSY. For a pedagogical review, see,
for instance Reference [41]. It is important to note that the heavier the SUSY particles
are, the less they provide a natural a solution to the Higgs fine-tuning problem. Current
bounds from the LHC on SUSY particles are already putting natural SUSY models under
stress. Yet, for the moment, some regions of parameter space are not constrained – most
notably, regions where SUSY spectra are compressed and where, for instance, top and stop
quarks are degenerate, because, in this case, stop production can hide under the large SM
top background. In general, the present situation raises the question of what level of fine-
tuning one should be willing to tolerate. If, for example, one allows for a permille tuning,
then SUSY particles might very well be out of reach of the LHC.

It is interesting to note that SUSY was, in fact, originally not put forward as a solution
to the Higgs hierarchy problem. Rather, it was proposed for more aesthetic reasons. Hence,
it is, in some sense, remarkable that SUSY provides such a simple solution to the hierar-
chy problem. Because of other remarkable properties of some SUSY models, such as the
presence of a natural candidate for dark matter (the lightest SUSY neutral particle) and
the unification of gauge couplings, despite the persisting lack of experimental evidence for
SUSY particles, these models are still relatively popular.

A very different approach to solve the fine-tuning problem in the Higgs sector is due to
Susskind and Weinberg, who – in 1978 – introduced the first technicolour model [53, 57,
58]. According to technicolour models, EWSB is not due to an elementary Higgs boson,
but, rather, it rather thanks to a condensate of fermions of some new strong dynamics, a
heavy copy of the familiar QCD interactions in the SM. If an elementary Higgs boson does
not exist, then there is simply no hierarchy problem. In fact, if the Higgs boson is not an ele-
mentary particle but a composite state, then its mass is set by the binding force between the
constituents. This compositeness scale � then becomes the cut-off of the SM. If the Higgs
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boson is composite, one would expect other composite states to exist, in the same way as
a whole spectrum of mesonic and baryonic states exists in QCD. Furthermore, if the Higgs
is composite, its coupling to vector bosons and fermions would be modified compared to
the SM predictions based on an elementary Higgs boson. This imposes stringent bounds
on the scale of compositeness. While the idea behind technicolour models is appealing
and simple, these models face a number of problems. First of all, they do not account for
an explanation of the origin of fermion masses. One possibility is to introduce new gauge
interactions that break the chiral symmetry which protects fermion masses. However, these
models, besides being ad hoc, typically run into problems with flavour physics, as they give
rise to flavour-changing neutral currents that are much larger than what is observed. Hence,
again, while trying to solve one fine-tuning problem, one would introduce other ones.
Furthermore, the discovery of a very light Higgs is, in general, difficult to accommodate in
technicolour models because such models typical predict mH = O(1 TeV).

Another interesting possibility of solving the EW hierarchy is to implement the Higgs
as a pseudo-Nambu-Goldstone boson (pNGB) [7, 27, 37]. In fact, when a continuous,
global symmetry is spontaneously broken, the theory develops a massless scalar parti-
cle, the Nambu-Goldstone boson (NGB). If the symmetry is, however, not exact but only
approximate, then a pNGB appears with a small mass that depends on the symmetry
breaking in the Lagrangian. This idea applied to the Higgs boson leads to so-called little
Higgs models [4, 5, 7, 50], according to which there is a new strong interaction at a scale
� = O(1 TeV) with a global symmetry, which is spontaneously broken. Little Higgs
models are able to predict a naturally light Higgs particle in exactly the same way as,
in QCD, the neutral pion is much lighter than the QCD scale of about 1 GeV since it is
a pNGB of chiral symmetry. Again, while the idea is appealing, explaining the origin of
fermion masses and respecting all the phenomenological constraints remains a challenge
in these models.

An additional approach to the Higgs fine-tuning problem was suggested around 20 years
ago [6]. The resolution of the fine-tuning problem is now based on suggesting that the UV
cut-off of the SM is not the Planck scale but, rather, a much lower scale of the order of
the TeV. This is achieved by considering modifications of our four-dimensional space and,
in particular, by extending the dimensionality of space-time. In this picture, SM particles
propagate in four dimensions, while gravity propagates in additional spatial dimensions that
are much larger than 1/MPlanck. If one adds n dimensions to the Einstein action, one gets

S ⊃ −M
2+n∗
2

∫
d4x dny

√−gR, (8.71)

where x are our ordinary four dimensions, y are the n extra dimensions, g is the determinant
of the metric tensor gμν , R is the scalar curvature – i.e., the trace of the Ricci curvature
tensor Rμν – andM∗ is the reduced Planck scale of the 4 + n – dimensional theory.

In the model described by Eq. (8.71) the four-dimensional reduced Planck mass
MPlanck = GN/

√
8π is then related to the size of the extra dimensions R∗ and M∗ as

follows:
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M2
Planck = Rn∗M2+n

∗ . (8.72)

Fixing M∗ at around the EW scale to avoid introducing a new mass-scale in the model
thus allows us to predict R∗. For n = 1, for instance, one obtains that the size of the
extra dimension is R∗ = O(109 km), a possibility that is clearly ruled out as it leads to
modifications of Newton’s law at solar-system distances. For n = 2, the extra dimensions
instead are predicted to have a size of a millimetre, and as a result, modification of the
gravitational law at distances smaller than that should appear. In fact, the 1/r2 scaling
of the gravitational force and the equivalence principle – i.e., the equivalence between
matter and gravity – has also been verified with very high accuracy through laboratory tests
at submillimetre distances. In the case of n = 2, searches for deviations from Newton’s
law of gravitation, for example, imply R∗ > 37μm at 95% confidence level (CL), which
translates into the lower bound M∗ > 3.6 TeV [43]. These models also predict a spectrum
of new particles – i.e., Kaluza-Klein (KK) excitations of all the SM fields. At the moment,
no evidence for these particles has been seen, with bounds on the mass of KK modes of
the order of several TeV. We finally mention that the consistency of the model introduced
in Eq. (8.71) requires a stabilisation mechanism for the radii of the extra dimensions. The
fact that one needs R∗ � 1/M∗ leads to a new hierarchy problem, the solution of which
might require further modifications such as SUSY to make the proposal both natural and
phenomenologically viable.

An alternative extra-dimensional solution to the gauge hierarchy problem is provided
by so-called warped extra dimensions, as proposed in the seminal papers of Randall and
Sundrum (RS) [47, 48]. The simplest RS models are based on a five-dimensional theory
with the extra dimension compactified in an orbifold, which is mathematically equivalent
to a manifold with boundaries at y = 0 and y = πR∗. These boundary points are called the
infrared (IR) and UV brane, respectively. Under the assumption that the five-dimensional
theory has a cosmological constant � in the bulk, one can show that the Einstein equations
in the RS model admit solutions where the metric varies like a(y) = e−ky . Here, y
denotes the extra-dimensional coordinate and k = √−�/(6M3∗ ). The factor a(y) is called
the ‘warp’ factor and determines how four-dimensional scales change as a function of y.
In particular, this implies that energy scales for four-dimensional fields localised at the
IR brane are redshifted by a factor e−kπR∗ with respect to those on the UV brane.

Similarly to Eq. (8.72) the reduced four-dimensional Planck mass is also related in
the RS framework to the five-dimensional one. Specifically, one obtains the relation

M2
Planck = M3∗

2k

(
1 − e−2kπR∗

)
. (8.73)

TakingM∗ � k � MPlanck, it is now possible to generate an IR scale of ke−kπR∗ = O(TeV)
for an extra-dimensional radius R∗ � 11/k. Mechanisms to stabilise R∗ to this value
have been proposed [31] and do not require introducing any new small or large parameter.
A natural solution to the hierarchy problem is hence achieved in the RS framework if the
Higgs field is localised on (or close to) the IR brane, where the effective mass-scales are



332 Giulia Zanderighi

of order of a TeV. Like models with large extra dimensions, RS models also predict a rich
spectrum of KK modes, which, however, have not been seen at the LHC. Furthermore,
precision electroweak measurements, flavour physics, as well as Higgs measurements of
both the mass and its couplings pose challenges to these models, often pushing the scaleM∗
into the multi-TeV range.

Recently, a new interesting idea, the cosmological relaxation [32], was suggested to
explain the lightness of the Higgs boson. The reason this idea has attracted considerable
attention is that it solves the fine-tuning problem without introducing any TeV-scale dynam-
ics that could be detectable at the LHC. According to the cosmological relaxation idea, the
Higgs boson is light, as its mass was driven to a value much lower than the cut-off during
the dynamical evolution of the early Universe. The idea is to observe that while mH = 0 is
not a special point in terms of symmetries (in the sense that no new symmetry is recovered
in the Lagrangian in this limit), it is a special point in terms of dynamics, since this is the
point where EW symmetry is broken.

In its simplest version, this model contains, besides the SM particles, the QCD-like
axion and an inflation sector. The conditions imposed on the axion are that it should have a
very large (noncompact) field range and a soft symmetry-breaking coupling to the Higgs.
Concretely, the Lagrangian suggested in Reference [32] to be added to the SM Lagrangian
takes the form

L = (−M2 + gφ)|�|2 + V (gφ)+ 1

16π2

φ

f
G̃aμνG

μν,a, (8.74)

whereM is the UV cut-off of the theory,� denotes the Higgs doublet,Gaμν is the QCD field

strength tensor, G̃aμν = εμνρσG
ρσ,a/2 is its dual, and g is a dimensionful coupling with

g � M . Notice that, in Eq. (8.74) the Higgs mass is at the UV cut-off and, thus, natural.
The field φ has all properties of a standard QCD axion – in particular, the couplings are set
by the decay constant f – however, it can take on field values much larger than f . In the
limit g → 0, the preceding Lagrangian has an additional shift symmetry φ → φ + 2πf
(the symmetry is broken by non-perturbative QCD effects), and hence, g � M is tech-
nically natural according to ’t Hooft criterion. The coupling g can thus be treated as a
spurion – i.e., an auxiliary field used to parameterise symmetry-breaking terms – and this
feature allows one to expand the potential V (gφ) in powers of gφ/M2. The QCD scale Eq.
(8.74) therefore effectively takes the form

L = (−M2 + gφ)|�|2 +M4
[
gφ

M2
+ g2φ2

M4
+ O

(
g3φ3

M6

)]
+�4

c cos

(
φ

f

)
, (8.75)

where the O
(
g3φ3/M6

)
can be ignored if φ � M2/g, the periodic QCD potential has been

approximated for simplicity by a cosine function, and �c is of order the QCD scale �QCD.
Notice that, since �c breaks a symmetry, it is technically natural to have �c � M .

In the early Universe, one can take an initial value for φ such that effective mass-squared
of the Higgs, m2

H = −M2 + gφ, is positive. The assumption on a positive initial value for
m2
H is crucial. During inflation, φ will slowly roll down, scanning different values of m2

H .
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In this process, the point m2
H = 0 and the Higgs field will start to develop a VEV. This

will happen for a field value φ = O(M2/g). As the VEV grows, so do the quark masses
and the scale �. As a result, the amplitude of the cosine term in Eq. (8.75) grows, which at
some point, stops the slow roll of φ. In fact, the rolling of φ stops shortly after m2

H crosses
zero, and this sets the Higgs mass to be naturally much smaller than the cut-offM . Since it
is the axion field φ which is responsible for the dynamical relaxation of the weak scale, the
mechanism described earlier has been coined the relaxion mechanism.

While the simplest realisation of the relaxion mechanism discussed here is phenomeno-
logically not viable, because the QCD θ angle is predicted to be of O(1), in stark contrast
to observation (see Section 8.5), the relaxion idea is a first example of a solution to the
fine-tuning in the Higgs sector that does not require new physics at the TeV scale. Hence, it
opens the door to other BSM theories that solve the hierarchy problem without having any
consequences at colliders. Instead, the one prediction of the model is the presence of an
axion with a very small coupling which is notoriously difficult to discover in a laboratory.

8.5 Fine-Tuning in the Strong Sector

CP violation is intimately related to the baryon asymmetry of the Universe.2 In fact, already
in 1967, Sakharov [49] pointed out that three conditions are necessary to generate the
baryon asymmetry: baryon number violation, C and CP violation, and interactions out
of thermal equilibrium. In particular, CP violation is necessary to produce a different
number of baryons of a given chirality and anti-baryons of the opposite chirality. The
weak interactions of the SM are known to violate CP symmetry; however, it is also clear
that the resulting amount of CP violation is not sufficient to explain the observed baryon
asymmetry. For this reason, additional sources of CP violations are of considerable inter-
est. Both the electromagnetic and the strong interaction are considered symmetric under
CP transformations. However, the situation in QCD is more complicated, as there is one
potential source of CP violation. The origin of the CP-violating term is intrinsically non-
perturbative, a regime where calculations are notoriously difficult. As of today, there is
not a full understanding of whether the potential CP-violating term in QCD is zero or not.
Current experimental measurements constrain this CP-violating term to be very small. The
smallness of this parameter constitutes a fine-tuning problem in the SM that is usually
referred to as the strong CP problem.

8.5.1 The U(1)A and the Strong CP Problem

It is useful to first recall theU(1)A problem that puzzled physicists in the 1970s, when QCD
was established as a theory of strong interactions. The QCD Lagrangian with N flavours
has the form

2 Under parity P, the coordinates are changed �x → −�x; hence, the handedness of particles flips. Under charge conjugation
particles and antiparticles are interchanged. The CP transformation is a combination of both transformations.
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L =
N∑
i=1

ψ̄i
(
iγ μDμ −mi

)
ψi − 1

4
GμνG

μν,a . (8.76)

This Lagrangian is invariant under the SU(3)c colour symmetry, which is an exact, unbro-
ken symmetry. In the limit where the quark masses vanish – i.e., mi → 0 – the Lagrangian
also has another global symmetry, namely

U(N)V × U(N)A = SU(N)V × U(1)V × SU(N)A × U(1)A, (8.77)

where the SU(N)V factor corresponds to a global vector symmetry

ψi → eiαat
a/2 ψi, (8.78)

while the SU(A)A factor is a global axial symmetry

ψi → eiαaγ
5ta/2 ψi . (8.79)

The latter is called axial symmetry because the associated Noether current ja,μA is an axial
vector

j
a,μ
A = ψ̄γ μγ 5taψ . (8.80)

Since two of the six quarks, the up and the down quarks, are very light, it is a good
approximation to set their mass to zero. As a consequence, one expects the strong
interactions to be approximately U(2)V × U(2)A invariant. The vector symmetry can
be decomposed as U(2)V = SU(2)V × U(1)V , giving rise to isospin and baryon number
conservation, respectively. Indeed, baryon number is an exact symmetry, and isospin is a
good approximate symmetry of nature, since the proton and the neutron, or the π± or π0,
are almost degenerate multiplets. On the contrary, the correspondingU(2)A axial symmetry
is not seen in the spectrum. The reason is that the SU(2)A symmetry is not preserved by
the QCD vacuum but spontaneously broken. This generates light NGBs, namely the pions.
However, there is no NGB for the spontaneous breaking of the global U(1)A symmetry.
This is the well-known U(1)A problem that puzzled physicists in the 1970s.

The solution to the U(1)A problem came with the realisation that, while we commonly
think of QCD as a theory that depends on quark masses and the strong coupling gs only, it
is, in fact, possible to add to the QCD Lagrangian in Eq. (8.76) a term of the form

L ⊃ g2
s

16π2
θ G̃aμνG

μν,a . (8.81)

Notice that we have already met a similar term in Eq. (8.74). While the preceding term
can be added to the QCD Lagrangian, with the simple motivation that any term that is not
forbidden by symmetries should be included, originally, this term was derived by studying
QCD instantons – i.e., solutions to classical field equations in Euclidean space-time.

In fact, the term introduced in Eq. (8.81) is a total derivative, as can be seen, for instance,
easily in the case of QED, where

F̃μνF
μν = 4 �E · �B = ∂μ (εμνρσAνFρσ ) . (8.82)
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Here, Fμν = ∂μAν − ∂νAμ is the QED field strength tensor with Aμ the electromagnetic
four-potential, and �E and �B denote the electric and magnetic three-field, respectively. Being
a total derivative, this term does not contribute to the classical equations of motion. In fact,
the volume integral in the action can be rewritten using Gauss’s theorem as a surface term
that vanishes, provided the field configuration vanishes fast enough towards infinity.

In the non-abelian case one, can also write this term as a total derivative:

G̃aμνG
μν,a = ∂μKμ, Kμ = εμνρσGν,aGρσ,a − 2

3
gsfabcG

ν,aGρ,bGσ,c, (8.83)

with fabc the fully antisymmetric structure constant of QCD. One, hence, might think that
this term has no physical consequence, since its contribution to the action can be written as
a surface term, ∫

d4x G̃aμνG
μν,a =

∫
S3
dSμ K

μ, (8.84)

which vanishes when fields vanish fast enough at infinity. In 1975, however, Belavin,
Polyakov, Schwartz, and Tyupkin [16] suggested the existence of non-trivial field con-
figurations which satisfy the vanishing boundary conditions at infinity but, nevertheless,
give a non-vanishing contribution to the surface integral. These configurations are called
instantons. As a result, a θ -like term appears naturally in the QCD Lagrangian once instan-
ton configurations are considered. Instantons are associated to an integer winding number,
which can be thought of as the difference between initial and final angular position in units
of 2π . Different winding numbers correspond to non-equivalent instanton configurations.
The classical vacuum state is the configuration which minimises the classical potential.
In QCD, it turns out that an infinite number of vacuum states are possible, each labelled
by a winding number, which cannot be transformed into one another by a (small) gauge
transformation. Instanton configurations with winding number k, on the other hand, connect
two vacuum states with winding number m and n at t = ±∞, such that m− n = k.

Gravitational, electromagnetic, and strong interactions without the θ term conserve CP;
hence, the interactions are the same for matter and antimatter. On the other hand, if θ is not
zero, the strong interaction would violate P and CP.3 To see this, it is useful to introduce
the shorthand notation (−1)μ ≡ 1 for μ = 0 and (−1)μ ≡ −1 for μ = 1,2,3. Since Gaμν
transforms as two vectors under both P and CP, we have

εμνρσG
μν,aGρσ,a

P,CP→ εμνρσ (−1)μ(−1)ν(−1)ρ(−1)σGμν,aGρσ,a= −εμνρσGμν,aGρσ,a,
(8.85)

where the last equation follows from the fact that all indices must be distinct for the fully
antisymmetric tensor εμνρσ to give a non-vanishing contribution.

3 Since it is not possible to formulate a locally Lorentz-invariant QFT with a Hermitian Hamiltonian that violates CPT, CPT is
believed to be a fundamental symmetry of nature (see, e.g., Reference [52]). This implies that if CP is violated, then the time
reversal symmetry T is also violated by strong interactions.



336 Giulia Zanderighi

CP
Neutron without EDM
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Figure 8.9 Schematic illustration of a CP transformation of a neutron in a magnetic field, without
(upper figures) or with (lower figures) EDM.

Accordingly, the effect of a non-zero θ in Eq. (8.83) would be to generate an electric
dipole moment (EDM) for the neutron of the form

dn � e

mn

mq

mn
θ � 1.6 · 10−16 θ e cm, (8.86)

wheremq is a typical light (up or down) quark mass andmn is the neutron mass (see Figure
8.9 for a pictorial illustration). Experimental limits on the neutron EDM can therefore be
used to constrain the θ angle. The current 95% CL upper bound on the neutron EDM is
|dn| < 2.9 · 10−26 e cm [11], which leads to

|θ | � 2 · 10−10. (8.87)

Since any term that is allowed by symmetry should be included in the Lagrangian, the
angle θ should take a non-zero value. The question that then arises is why θ should be
as small as required by Eq. (8.87) and not of order one. This is what is referred to as
the fine-tuning problem in the strong sector of the SM. In fact, the problem is even more
severe, as the measured θ angle is the combination of the bare one, discussed here, and
a determinant of the quark mass matrix, discussed in the next section. The latter receives
quantum corrections; hence, the cancellation between the two contributions has to remain
intact even after radiative corrections.

Is it interesting to note that if CP was an exact symmetry of nature, a small θ angle would
be technically natural according to ’t Hooft criterion, since by setting θ to zero, one would
recover a larger symmetry. However, we know that CP is explicitly violated in nature by
the complex phase in the CKM matrix, which is of order one. Hence, no new symmetry is
recovered by setting θ to zero, and its observed smallness remains just unnatural.
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8.5.2 Strong CP Problem and Massless Quarks

From Eq. (8.9), one naı̈vely expects that the QCD Lagrangian, as given in Eq. (8.76), is
invariant under the chiral transformations introduced in Eq. (8.7) if quarks are massless.
This naı̈ve expectation is, however, only correct at the classical level but not in the quan-
tum theory. The effect of a chiral transformation in a quantised theory can be derived by
studying how the measure Dψ Dψ̄ of the functional integral

Z =
∫

Dψ Dψ̄ exp

[
i

∫
d4x L

]
(8.88)

of the fermion field transforms under Eq. (8.7). The derivation of the transformation prop-
erty of Dψ Dψ̄ is reviewed in great detail, for instance, in chapter 19.2 of Reference [46]
or chapter 22.2 of Reference [60]. Since it is rather technical, we will simply state the
final result here. It turns out that, under a chiral transformation, the functional measure
transforms as

Dψ Dψ̄ → exp

[
i

∫
d4x α(x)A(x)

]
Dψ Dψ̄, (8.89)

where the function A(x) is given by

A(x) = − g2
s

8π2
G̃aμνG

μν,a . (8.90)

The QCD Lagrangian with massless quarks, hence, transforms under a global chiral trans-
formation as

L → L − g2
s

8π2
αG̃aμνG

μν,a ⊃ g2
s

16π2 (θ − 2α) G̃aμνG
μν,a . (8.91)

This implies that the θ angle effectively shifts θ → θ − 2α under Eq. (8.7). The trans-
formed θ angle can, hence, be set to zero by an appropriate global chiral transformation –
i.e., by choosing α = θ/2. This argument leads to the conclusion that the strong CP problem
would be absent for massless quarks. The up quark has, however, a non-zero mass of
mu = (

2.3+0.7
−0.5

)
MeV [43], and as a result, a different solution to the strong CP problem

is required in practice.

8.5.3 The Peccei-Quinn Mechanism

The most popular solution to the strong CP problem is due to the Peccei and Quinn [44, 45],
who suggested the existence of a new global chiral U(1)PQ symmetry (see also Refer-
ences [56, 63]). This symmetry is implemented at the Lagrangian level such that changes
in the θ angle are equivalent to a redefinition of the fields according to a U(1)PQ transfor-
mation and has no physical consequences. Such a theory is then equivalent to a theory with
θ = 0 and, hence, has no strong CP problem. In the previous section, we have discussed
how this is true in the case of massless quarks; however, Peccei and Quinn showed how
this property can remain true even when all quarks are massive, provided that at least
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one fermion gets its entire mass from the interaction with a scalar field so that the full
Lagrangian has (at least) one global U(1)PQ chiral symmetry.

In the simplest realisation of the Peccei-Quinn (PQ) mechanism, one adds a second
Higgs doublet φ to the SM. One doublet then generates masses for the up-type quarks,
while the other is responsible for the generation of the down-type quark masses. This fixes
the SU(2)L × U(1)Y representation of φ. The Lagrangian then has an additional global
chiral U(1)PQ symmetry. Under the corresponding transformations, the angular part of φ
shifts. The potential of φ has the form

V (φ) = λ
(

|φ|2 − f 2
a

2

)2

(8.92)

and develops a VEV at 〈φ〉 = fa/
√

2. Once the global PQ symmetry is spontaneously
broken, a pNGB appears: the QCD axion a. The axion couples to SM fermions and also
develops interactions to SM gauge boson through the chiral anomaly. In particular, the
couplings to gluons take the form a/faG̃aμνG

μν,a .
It follows that the Lagrangian introduced in Eq. (8.81) is modified to include a kinetic

term and an interaction term for the QCD axion field

L ⊃ 1

2
(∂μa)

2 + a/fa + θ
16π2

G̃aμνG
μν,a . (8.93)

Because, apart from a/faG̃aμνG
μν,a the full theory depends only on the derivative ∂μa

but not on the axion field a itself, the θ term appearing in Eq. (8.81) can be eliminated by
the shift,

a → a − θ/fa, (8.94)

without changing the rest of the theory. In fact, one can prove [44, 45, 56, 63] that the
axion potential has a minimum when the CP-violating term in the Lagrangian vanishes.
Accordingly, the coefficient of the CP-violating term is driven to zero, and the strong CP
problem is solved. By expanding the potential to second order, one can obtain the axion
mass. It is approximately given by

ma � fπ

fa
mπ, (8.95)

where mπ and fπ are the pion mass and its decay constant, respectively. The crucial
property is that the axion mass as well as all its interactions to SM particles are inversely
proportional to the axion decay constant fa .

Originally, it was suggested that fa should be of the order of the EW symmetry-breaking
scale v � 246 GeV. The corresponding pNGB is usually referred to as the Peccei-Quinn-
Weinberg-Wilzcek axion [44, 45, 56, 63]. However, this possibility was soon excluded by
data. If, instead, fa is very large, then the coupling of the axions becomes very small as the
interaction scales as 1/fa and the axion becomes very light, according to Eq. (8.95). Since
these axions with fa � v could evade all experimental constraints, they were dubbed
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invisible axions. For instance, if fa = O(1011 GeV), then ma = O(10−10 eV), which is
compatible with current experimental bounds.

Viable axion models include those that extend the hadronic sector of the theory to
include new heavy quarks. An example is the Kim-Shifman-Vainstein-Zakharov (KSVZ)
model [38, 51], which, besides the axion, introduces a weakly interacting singlet quark.
Alternatively, there are models that include additional spin-0 fields in the theory. For
instance, the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model introduces an additional
Higgs field besides the axion [22, 64]. In these models, the PQ symmetry-breaking
mechanism is decoupled from EWSB; hence, the axion decay constant fa can take very
small values which are not excluded by current bounds.

Almost 40 years since the PQ proposal, the axion solution to the strong CP problem
remains the most compelling explanation for the smallness of the θ angle. Furthermore,
axions can be natural dark matter candidates since they are electrically neutral and weakly
interacting. Hence, a variety of searches for axions or axion-like particles have been per-
formed in the past years, as reviewed, for instance, in Reference [33]. Since the QCD axion
has a two-photon vertex that is inherited from the mixing of the a field with neutral pions or
eta mesons, photon-axion conversion experiments provide one of the main search strategies
in laboratories today. Besides photon-axion conversion, many other axion searches are
being pursued, as summarised in [43].

8.6 Anthropic Arguments

8.6.1 The Essence of Anthropic Arguments

Anthropic arguments [15] have been first proposed to solve the cosmological constant
problem. Subsequently, they also have been applied to the fine-tuning problem in the EW
sector. Anthropic arguments are based on the assumption that there are many possible vacua
(possible universes); in some of these universes, some parameters appear to be fine-tuned,
while in others, they do not. However, if one can argue that our existence is allowed only
in those domains where the parameters seem fine-tuned, then, by construction, we have to
observe fine-tuned parameters because if these parameters had different values, we would
not be there to observe them. It is in this sense that anthropic arguments can justify the fact
that we observe what appear to be unnatural parameters and so address fine-tuning.

In an analogy, one could think of an Earthlike planet of radius R almost completely
covered with water, with only a small island on it, of radius r . If the island is inhabited
by N people, one could ask what is the probability that they are all on the island, which
is (r2/(4R2))N . It is obvious that, for small r/R and large N , this probability can become
extremely small. Does the observation that all people on the Earthlike planet, be it thou-
sands or millions, live on the island pose a fine-tuning problem? The answer is, of course,
no, since the island is the only place where people can survive, and hence, it is impossible
to observe people far away from the island. Anthropic arguments are based, in essence, on
a similar kind of reasoning.
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One of the first applications of the Anthropic Principle was to explain the fine-tuning
of the cosmological constant � [12, 17, 35, 36, 40, 59]. The argument is based on the
observation that if � were much larger than its observed value – i.e., �/(8πGN) �
(10−3 eV)4 – the rapid expansion of the Universe would make it impossible for galaxies
to form through gravitational collapse. The existence of galaxies – and, thus, of stars and
planets, which is necessary for our existence – is only possible if � has a value that is
of the same order of magnitude as what we observe. This is the anthropic solution of the
cosmological constant problem.

In a similar way, anthropic arguments have been used to explain the observed Higgs
VEV [2, 23]. In this case, it is the existence of atoms other than the hydrogen that would
not be possible if v were very different from its observed value. In fact, if one keeps all
parameters in the SM fixed but increases v, all masses increase. In particular, the neutron-
proton mass splitting increases. Nuclear binding energies, on the other hand, decrease, as
this binding can be viewed as mediated by the exchange of pions, which become heavier,
and hence, their interactions become shorter range. In order for complex nuclei to form,
the neutron-proton mass splitting must be smaller than the nuclear binding energy, as
otherwise, all bound neutrons would decay to protons. This results in a constraint on v
of about a factor of two larger than what is observed. An even stronger constraint comes
from the requirement of having stable deuterium, whose existence is crucial for primordial
nucleosynthesis. Since the existence of complex atoms and of deuterium is a prerequisite
for living organisms to form, anthropic arguments can address the gauge hierarchy problem.

However, the discussed anthropic arguments cannot be used to explain the smallness of
the θ angle (see Eq. (8.87)). If the θ parameter had any value between 0 and 2π , EDMs and
binding energies would change slightly, but there would be no dramatic consequence for
structure formations or for the existence of life. Hence, a simple anthropic reasoning does
not solve the strong CP problem.

8.6.2 Multiverse Theories and the String Landscape

In order for the anthropic arguments to work, one needs to construct a theory that has
very many ground states. This is in contrast to most theories that have just one or a small
number of ground states, like the SM or SUSY theories. The need for many ground states
stems from the fact that, if a parameter has a fine-tuning problem of the order of 10−N ,
there should be of the order of 10N ground states for there to be, on average, at least one
in which anthropic arguments allow life formation. String theories are characterised by the
presence of many ground states, so they are natural theories to exploit anthropic arguments.
Here, one has many low-energy solutions that depend on the shape and size of the extra
dimensions. Having many allowed solutions to a theory with parameters that are allowed
to change is what is usually referred to as a landscape.

A criticism that anthropic arguments often face is that, by definition, it is impossible
to test the existence of other vacuum states; hence, anthropic principles can never be
confirmed or refuted. For this reason, anthropic principles are often rejected by physicists
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as being not scientific arguments. One way around this is to observe that anthropic or
multiverse principles are just consequences of some fundamental theory. It is this complete
theory, with a multiverse property, that should be testable and tested. The problem, however,
is that, in these theories, because of the enormous landscape of solutions, it is notoriously
difficult if not impossible to explore and to test the full theory space of solutions.

8.7 Final Remarks

It is still possible that nature respects the technical naturalness criterion of ’t Hooft, but
measurements at the LHC are challenging this criterion more and more. Still, despite the
tension between ‘natural’ new-physics models and LHC data, the high-energy particle
physics community is not yet ready to fully give up on naturalness as a guiding principle.
There if still hope that the LHC will soon find signs of SUSY, extra dimensions, or other
manifestations of BSM physics that will revive our belief in naturalness. Nevertheless, the
unsettling possibility – that EW naturalness is not the right guiding principle to understand
what physics lies beyond the SM – must be considered. If that is the case, it becomes crucial
to identify what instead are the other main fundamental questions that can be addressed
at the LHC and at future colliders. In fact, in the case of the LHC, there was a no-lose
theorem in the sense that something new was guaranteed to show up at the LHC: either
the energy of the machine was sufficient to produce a Higgs boson directly or else some
sign of new physics would need to appear to prevent unitarity violations (i.e., probabilities
larger than one) at the TeV scale. The LHC discovery of the Higgs boson with a mass of
around 125 GeV makes the SM a consistent theory, albeit with fine-tuning problems, up
to very large energy scales that are beyond the reach of even future colliders. From that
point of view, there is no guarantee that the LHC or a future collider will discover physics
beyond the SM. If the LHC sees no sign of new physics and natural theories are excluded
or severely constrained, we find ourselves without a strong indication of what is the energy
scale at which new dynamics may appear. Still, the implications of finding new particles
would be so far-reaching that there is no doubt that searches for new physics at colliders
must continue, irrespectively of fine-tuning arguments.
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Dark Matter

e d wa r d w. k o l b

Abstract

For more than eight decades, astronomical observations have suggested that most of the
mass of the Universe is not visible at any wavelength; it is dark, hence the name dark
matter. The nature of dark matter is one of the fundamental questions in modern cosmology.
In this essay, I will briefly review the history of astronomical evidence for dark matter,
discuss some of the possibilities for dark matter that have been proposed over the decades,
describe the role of dark matter in structure formation, and focus on the possibility that
dark matter is a yet-to-be-discovered elementary particle. Where appropriate, I will also
comment on the fine-tuning aspects of dark matter.

9.1 Overview of the Current Composition of the Universe

Cosmology is the study of the origin, composition, evolution, and large-scale structure of
the Universe. The subject of this essay is the composition of the Universe – in particular,
the composition of one component of the present Universe: the dark matter component.
This is not an insignificant issue. Roughly 20% of the total present mass-energy1 of the
Universe is in the form of dark matter, and most of the total matter density is dark matter.

We have a very good determination of the present total mass-energy density of the
Universe from measurements of the temperature anisotropies in the cosmic background
radiation (CBR). CBR measurements imply that on cosmological scales, the Universe
has a vanishingly small spatial curvature. In the standard cosmological model, this
implies that the present mass-energy of the Universe must be close to the critical density,
ρC = 3H 2

0 /8πGN . Here ρC is the critical density, H0 is the present value of the expansion
rate of the Universe (the Hubble constant), and, of course, GN is Newton’s gravitational
constant. It is traditional to express H0 in terms of a dimensionless constant h: H0 = 100h
km s−1 Mpc−1. In terms of h, the critical density is ρC = 1.88h2 × 10−29 g cm−3.

1 In order to compare mass density and energy density, I will make use of the most famous equation in twentieth-century
physics: E = mc2. I will almost always suppress explicit factors of the speed of light, c.
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At present, there are two methods to determine the Hubble constant. The first is the
traditional ‘standard-candle’ method pioneered by Hubble [19]. This yields a value of
about h = 0.72 [13]. The procedure is to construct a distance ladder from a variety
of ‘standard candles’. Just as a chain is only as strong as its weakest link, the distance
ladder is only as reliable as its weakest rung. In the last decade, tremendous advances in
reducing the systematic uncertainties in the distance-ladder technique have reduced the
systematic uncertainties in this approach. The second method is to infer the value of H0

from measurements of fluctuations in the CBR. This method must assume a cosmological
model for the evolution of the Universe from the time of recombination, about 380,000
years AB,2 to today, about 14 billion years AB. The model assumed in the analysis is
known as Lambda Cold Dark Matter (�CDM), which will be described later. Since there
are model assumptions in the CBR determination of H0, using this method provides an
indirect determination of H0. This yields a best-fit value of around h = 0.68, smaller than
the standard-candle method. The two methods disagree at about three standard deviations.
Whether this ‘tension’ between distance-ladder and CBR determinations is fundamental,
or whether things will eventually sort themselves out and remove the discrepancy, remains
to be seen [14]. Luckily for us, our discussion is qualitative, and the exact value of h will
not matter. So we will properly regard the value of H0 as a nuisance parameter and make
the convenient choice h = 1/

√
2. This yields ρC = 9.4 × 10−30 g cm−3.

We will not have to remember the value of the critical density because we will write
the densities of all the components of the mass-energy density in terms of the fraction of
the mass-energy density of a component divided by the critical density. These fractions are
denoted by� for each component. Since we know from the CBR that the total mass-density
is close to ρC , the sum of the omegas for all the components must be unity.

Figure 9.1 illustrates the magnitude of various components of the present mass-energy
density of the Universe in the �CDM model. The values of the components given as a
percentage correspond to the the values of omega for the component. It is illuminating to
spend some time commenting on the values.

Radiation: For the first 60,000 years of cosmic history, the mass-energy density of the
early Universe was dominated by radiation. But today, radiation has been redshifted by the
expansion of the Universe, and it contributes only a small fraction, about 0.005%, of the
total mass-energy density.

Chemical Elements: By chemical elements, I mean elements other than hydrogen and
helium. Although they are crucial for our existence, they contribute only a very small
percentage, about 0.025%, of the total mass-energy density. Important for us, chemistry
is not so important in the composition of the Universe.

Neutrinos: Neutrinos are elementary particles. They come in three types: the electron-
neutrino, the muon-neutrino, and the tau-neutrino. They have no electric charge, but they
are related to charged leptons, electrons, muons, and taus by a symmetry. Very roughly,

2 The notation ‘AB’ stands for ‘After Bang’.
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Figure 9.1 The present composition of the Universe in the�CDM model. See the text for explanation
and elaboration.

you can imagine an electron neutrino as what would be left over if you could remove
the electric charge from an electron. In the present composition of the Universe, they are
even more important than the chemical elements, contributing about 0.17% of the present
composition.

Hydrogen and Helium: Most of the normal matter in the Universe is in the form of
a diffuse gas of hydrogen and helium that pervades large-scale structures such as galaxy
clusters. Although it has a much larger fraction of the present mass-energy density than
chemical elements (as defined earlier), it still contributes only about 4% to the total com-
position.

This exhausts the list of the components we understand. The rest of the Universe, 95%,
is dark and not understood!

Dark Matter: About 24% of the present Universe is in the form of a type of matter we
do not see. In the next section, I will talk about the observational evidence for dark matter.
Dark matter is the subject of this essay. Using �DM = 0.24 and h = 1/

√
2, the useful

quantity �DMh
2 takes the value �DMh

2 = 0.12.
Dark Energy: In the standard �CDM model, most of the mass-energy of the present

Universe is contributed by a non-zero value of Einstein’s cosmological constant. Dark
energy is the name for the phenomenon that causes the recent expansion velocity of the
Universe to increase with time. It contributes about 71% to the present composition.
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Why do we care about dark matter? One reason is that it is a very significant fraction
of the present Universe. If the goals of cosmology include understanding the composition
of the Universe, dark matter can hardly be ignored. Another reason to care about it is that
it plays a dominant role in the formation of structure in the Universe. Without dark matter,
structure in the Universe would have evolved and formed in a very different way. This is not
to say there would not be structure in the Universe without dark matter, but the large-scale
structure of the Universe would be quite different.

Is the exact percentage of dark matter finely tuned? If it would be 14% or 34% rather
than 24% would the evolution of the Universe or the formation of large-scale structure,
galaxies, stars, or planets have been much affected? It does not appear so. In fact, it is hard
to argue that dark matter is needed at all for our existence. I will return to some of these
issues in the conclusion section.

9.2 A Brief History of the Discovery of Dark Matter

The first indications that there was more to the matter distribution than meets the eye go
back at least to the 1930s. But for many decades, physicists (and astronomers as well)
regarded the indications as an astronomical curiosity and not a fundamental issue. I do not
think that there was any one single observation that awakened physicists and astronomers
to the realisation that dark matter was real and fundamental. Rather, it was the slow accu-
mulation of evidence that became stronger with time, as well as several influential scientists
taking the matter seriously. Although there was not a single paper that jolted astronomers
and physicists at the time, in hindsight, we can pick a few papers out of many that illustrate
the growth of the observational evidence for dark matter.

A good starting point is the 1932 paper of Jan Oort [29], ‘The Force Exerted by the
Stellar System in the Direction Perpendicular to the Galactic Plane and Some Related
Problems’. In this paper, Oort studied the distribution of (later-type) stars in the direc-
tion perpendicular to the galactic plane and deduced the gravitational force necessary to
maintain the observed distribution. One of the purposes of his paper was ‘the derivation
of an accurate value for the total amount of mass, including dark matter [my emphasis],
corresponding to a unit of luminosity surrounding of the sun’. So the phrase ‘dark matter’
makes an appearance at least as early as 1932. Oort also determined the mass in units
of the solar mass, M� = 2 × 1033 g, and the observed stellar luminosity in solar units,
L� = 4 × 1033 erg s−1. The number he found for the mass-to-light ratio within our solar
neighbourhood (in solar units) was (M/L)� ∼ 1.8, remarkably close to the modern value.
Of course, Oort found some indications about the distribution of dark matter that did not
turn out to be true; for instance, Oort said ‘There is an indication that the invisible mass is
more strongly concentrated to the galactic plane than that of visible stars’. Characteristic
of Oort, it is a complete and insightful analysis. Today it is thought that the dark matter
determined by Oort has a significant contribution of non-baryonic matter.
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Another significant paper on the subject of dark matter from the 1930s is the 1937 paper
of Fritz Zwicky [38], ‘On the Masses of Nebulae and of Clusters of Nebulae’.3 In this paper,
Zwicky proposes three methods for determining ‘nebular’ (galaxy) masses: the first method
makes use of the virial theorem to determine the mass of galaxy clusters (in particular, the
Coma cluster). Zwicky found a mass for Coma of 4.5 × 1010M� – again, remarkably close
to the presently accepted value. This led to a mass-to-light ratio of about (M/L)� ∼ 500
for the Coma cluster. The second method is gravitational lensing. This prescient suggestion
would not come to fruition for many decades. Zwicky’s third proposal was to use the
statistical spatial distribution of different types of nebulae. This method did not prove to
be a useful technique. The modern interpretation of Zwicky’s result is that some of the dark
matter is baryonic (the intracluster hydrogen and helium in Figure 9.1), but most of it is
non-baryonic dark matter.

By the end of the 1930s, there was evidence that a significant fraction (if not the bulk)
fraction of matter associated with galaxies and clusters was dark. We now regard this as one
of the fundamental unsolved issues in astronomy/physics, but it did not attract the attention
of physicists (or many astronomers, for that matter) for several decades.

The significance of dark matter in astronomy and physics was only appreciated
beginning in the 1970s. Both theoretical and observational advances contributed to the
awareness.

The first theoretical proposal that non-baryonic matter could be dynamically important
is embedded in the paper of Cowsik and McClelland [9], ‘An Upper Limit on the Neutrino
Rest Mass’. It was not known in 1972 that neutrinos have a small mass, but recent neutrino
oscillation experiments imply that they do, and thus, they contribute a (small) fraction of
the mass density of the Universe. While neutrinos are not ‘the’ dark matter, they provide an
existence proof for a weakly interacting particle relic of the early Universe. Since neutrinos
are weakly interacting and massive, they qualify as WIMPs (weakly interacting massive
particles).

The most important dark matter observational program in the 1970s was the develop-
ment of solid evidence for dark matter based on galactic rotation curves. Prominent among
the astronomers working in this area at the time was Vera Rubin and collaborators (see, e.g.,
her classic paper with Kent Ford on the rotation of the Andromeda nebula [31]), although
it is possible to find much earlier results along the same line (e.g., Horace Babcock’s
paper on the rotation of Andromeda [2], or even earlier attempts to measure the mass-to-
light ratio of Andromeda by Hubble in 1929 [20]). Deducing the mass-to-light ratio from
galactic rotation curves was a technique simple enough for even physicists to understand,
as opposed to the astronomy-dense papers of Oort and Zwicky.

While in the 1970s, there was a growing awareness of the issue of dark matter, most
physicists who knew about it still considered it just a curiosity. That dark matter merited

3 Much of this paper is contained in a less well known paper of Zwicky from 1933 [37] published in German using the phrase
dunkle materie.
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the attention of particle physicists was largely due to the influential paper of Benjamin Lee
and Steven Weinberg, ‘Cosmological Lower Bound on Heavy Neutrino Masses’ [25]. In
this paper, Lee and Weinberg showed that a heavy neutrino with mass in the GeV range
would be produced from weak interactions in the thermal plasma of the early Universe
and survive in the correct numbers to be the dark matter.4 Although Lee and Weinberg do
not use the term ‘dark matter’, they concluded the article with the statement ‘the gravi-
tational field of these heavy neutrinos would provide a plausible mechanism for closing
the Universe’. ‘Closing the Universe’ was used to mean that the heavy neutrinos would
provide the unaccounted-for mass density necessary if the total mass-energy density would
be the critical density. After Lee and Weinberg, it was considered legitimate for particle
physics to work in cosmology, especially on the subject of dark matter. The heavy neutrino
was the first example of a cold thermal relic – a particle species that was once in local
thermodynamic equilibrium (LTE) and froze out of equilibrium when it was non-relativistic
(or only semi-relativistic). Cold thermal relics as dark matter will be the main thrust of
this chapter.

Since the 1970s, the observational evidence for dark matter has grown. The evidence
comes from observations and theoretical considerations on a wide range of astronomical
scales – from our local solar neighbourhood (essentially Oort’s approach) to dwarf galaxies,
galaxies, groups of galaxies, clusters, superclusters, and across the entire Universe (for a
non-technical review, see Reference [30]).

9.3 Dark Matter Bestiary

Astronomy has presented physicists with the problem that the bulk of the matter density
in the Universe is dark. What could be the nature of the dark matter? Theorists have not
been silent on this question; they have proposed dozens (perhaps hundreds) of ideas for the
nature of dark matter. It would be tedious to discuss them all (or even list them all). Here, I
will just give some broad categories, delve into one particular category, and then focus on
just one of the subcategories.

The three broad categories for dark matter are

1. MOND/TeVeS: We only deduce that unseen dark matter exists because of the effect it
exerts on objects we do see. If the gravitational force law does not follow Einstein’s
theory of general relativity, or if the response of test particles to the gravitational force
on astronomical scales of interest does not obey Newtonian dynamics, then dark matter
may not exist at all. The idea of MOND (MOdified Newtonian Dynamics) was proposed
by Milgrom in 1983 [27]. The relativistic version of MOND, known as TeVeS, was first
proposed by Bekenstein in 2006 (see Reference [3]).

4 Although the model is associated with the names Lee and Weinberg, it was discovered independently by a number of people
[10, 21, 32, 35].
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2. MACHOs: (MAssive Compact Halo Objects): The MACHO idea is that dark matter is
baryonic but is contained in objects that either do not emit light (e.g., big black holes or
rocky rogue planets unassociated with stellar systems) or objects that are very inefficient
at emitting light (neutron stars or little dim stars like brown dwarf stars).

3. A yet-to-be-discovered species of elementary particle: The first ‘particle’ candidate for
dark matter was a light (mass of a few electron volts) neutrino (see Section 9.2). The
Lee-Weinberg heavy neutral lepton was the first proposal that an undiscovered species
of elementary particle could be dark matter. The new particle explanation is the most
studied possibility today.

Today there are still MOND/TeVeS adherents, and the Laser Interferometer Gravitational-
Wave Observatory (LIGO) discovery of gravitational waves from a massive (about 30M�)
black-hole binary system has injected new enthusiasm into MACHO fans. I will not go
into the quite considerable literature arguing against MOND/TeVeS and MACHOs, but
just follow my instinct that the most promising possibility is that dark matter is a new
elementary particle.

9.3.1 Particle Dark Matter Taxonomy

Even within the class of particle dark matter candidates, one could fill a chapter just listing
the possibilities, so some taxonomy of particle dark matter is necessary. For the sake of
simplicity, I will classify relic particles from the Big Bang into two broad classes: thermal
relics (or relics that are the result of the decay from or oscillation from thermal relics) and
nonthermal relics.

Nonthermal relics are particles whose present abundance does not depend on whether or
not they were in LTE in the thermal bath. Examples are particles produced in cosmological
phase transitions. These include Bose-Einstein condensates, axions, axion miniclusters,
and solitons. There are also nonthermal relics that were produced through gravitational
production during inflation (WIMPzillas).

Thermal relics were once in LTE with the primordial plasma. Their present abundance is
determined by when they decoupled from thermal equilibrium (when they froze out). Ther-
mal relics include (sub-)eV mass neutrinos, sterile neutrinos, gravitini, the lightest super-
symmetric particles, and the lightest Kaluza-Klein particle. Some of the thermal relics, like
light neutrinos, froze out when they were relativistic. But the most promising particle dark
matter candidates froze out when they were non-relativistic (or mildly relativistic). These
are referred to as cold thermal relics. That is the possibility I will develop.

9.3.2 Cold Thermal Relics: Origin of Species

The first assumption in the cold thermal relic scenario is that there is an undiscovered
particle species that is stable, or at least has a lifetime much greater than the age of the
Universe. The second assumption for cold thermal relics is that there is no asymmetry
between particles and antiparticle associated with the species. Finally, it is assumed that the
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species was in chemical equilibrium with standard model (SM) particles at temperatures
greater than the mass of the dark matter (DM) particle, and it dropped out of chemical
equilibrium when it was non-relativistic.

What would keep the massive cold thermal relic from decaying? Two possible schemes
have been employed. The first is to assume that the particle is the lightest particle that
carries some conserved additive quantum number. A familiar example of a particle that is
stable because of an additive quantum number is the proton, which is stable because of
conservation of baryon number. It is also possible that the particle is stable because it is the
lightest state that carries a multiplicative quantum number (i.e., a conserved parity). In this
case, the particle could only be created or destroyed in pairs or associated with another like-
parity particle. If it was the lightest odd-parity state, it could not decay into an even-parity
final state containing SM particles.

The number of baryons that survived annihilation in the early Universe is determined by
the asymmetry between baryons and anti-baryons (see Chapter 5). Presumably, there is a
similar asymmetry in the leptonic sector. The origin of this asymmetry between matter and
antimatter is unknown. While there are dark matter scenarios where the relic abundance is
determined by an asymmetry in the dark sector (for a review, see Reference [36]), the usual
assumption in the cold thermal relic scenario is that there is no asymmetry.

In discussing equilibrium (or lack of it), we make the important distinction between
kinetic equilibrium and chemical equilibrium. Let’s denote the dark matter particle species
as χ . Kinetic equilibrium is established and maintained through processes like χ + γ ←→
χ + γ , where the net number of χ does not change in the process. Here, γ stands for
any particle in the thermal bath. If such reactions are effective in establishing kinetic
equilibrium, the phase-space occupancy of the species would be either the usual Fermi-
Dirac or the Bose-Einstein distribution, depending on whether the particle has half-integer
spin (Fermi-Dirac) or integer spin (Bose-Einstein).

If the particle species is in chemical equilibrium, then its chemical potential is related
to all other chemical potentials in all processes that involve the species. For example, if χ
interacts with species a, b, and c through the process χ + a ←→ b + c, then chemical
equilibrium will establish μχ + μa = μb + μc. Consider the process χ + γ ←→ χ + γ ,
except now let γ represent a particle with zero chemical potential (like actual photons)
or with a chemical potential much less than the temperature, so it can be ignored (like
for quarks and leptons when relativistic). If μγ = 0, then chemical equilibrium gives no
information (i.e., the empty relationμχ = μχ ). However, if the process is χ+χ̄ ←→ b+c,
there is information provided by the assumption of chemical equilibrium. Again, consider
the case of μb = μc = 0. If this process is effective, establishing chemical equilibrium,
then recalling that the lack of an asymmetry implies μχ = μχ̄ , we have μχ+μχ̄ = 2μχ =
2μχ̄ = 0.5

5 In the case χ is self-conjugate and stable because of conservation of some parity, we could consider the process
χ + χ ←→ b + c and reach the same conclusion about μχ .
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Whether in chemical equilibrium, kinetic equilibrium, or not in equilibrium at all, the
number density n of a particle with g internal degrees of freedom can be written in terms
of the phase-space density of the species f ( �p):

n = g

(2π)3

∫
f ( �p) d3p. (9.1)

Since we are assuming the Universe is homogeneous and isotropic, there is no preferred
location or direction, which implies the phase-space density only depends on | �p| or, equiva-
lently, depends only on the energyE. If the particle is in kinetic equilibrium, the distribution
is given by f (E) = exp

[
(E − μ)/T ± 1

]−1, where μ is the chemical potential of the
species and +1 obtains for Fermi-Dirac and −1 obtains for Bose-Einstein particles. Since
we are assuming there is no asymmetry in the DM species, the chemical potential for
particles must be equal to the chemical potential for antiparticles. If, in addition, the particle
is in chemical equilibrium, the distribution is given as stated previously with zero chemical
potential, and the equilibrium abundance is determined byM/T .

If a particle is relativistic (T � m) and in kinetic equilibrium, the number density for
a boson with zero chemical potential is n = g(ζ(3)/π2)T 3 and 3/4 of that result for a
fermion. Here, ζ(3) = 1.202. . . is the Riemann zeta function. If a particle is non-relativistic
(T � m) and in kinetic equilibrium, its number density is identical for fermions and bosons
and is given by n = g(mT/2π)3/2 exp[−(m − μ)/T ]. If, in addition, the particle is non-
relativistic and in chemical equilibrium, then n = g(mT/2π)3/2 exp[−m/T ]; i.e., μ = 0.
If we ignore factors of order unity like the number of internal degrees of freedom, ζ(3), π ,
etc., then the number density of a particle of massm in chemical equilibrium relative to the
equilibrium number density of a massless particle is unity for T � m and proportional to
(m/T )3/2 exp[−m/T ] for T � m.

Processes that keep the cold thermal relic in chemical equilibrium are the production of
the species from SM particles (e.g., the production process SM particle + SM particle →
DM particle + DM particle, and the annihilation process DM particle + DM particle →
SM particle + SM particle). Processes keeping the cold thermal relic in kinetic equilibrium
are process like DM + SM particle ←→ DM + SM particle.

Here, we note the important observation that, in the non-relativistic regime, the rates for
reactions establishing kinetic equilibrium are larger than the rates for reactions establishing
chemical equilibrium. The rate (per χ ) for the process χ + γ → χ + γ is proportional
to nγ σχγ→χγ , while the rate (per χ ) for the process χ + χ → γ γ is proportional to
nχσχχ→γ γ . (Here, again, γ represents a light particle species.) Since in the non-relativistic
regime, nχ � nγ , the first process is exponentially larger than the second process by a
factor of roughly exp[m/T ]. Also, in the regime T � m, the rate for production of a pair
of χs is suppressed because it is exponentially unlikely for a collision of two light particles
to have sufficient centre-of-mass energy to produce the pair.

With the knowledge from the preceding excursion into equilibrium considerations, we
can state the basic cold thermal relic scenario. The initial conditions are that at temperatures
above the mass of the particle, the species is in kinetic and chemical equilibrium. If the
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interactions are sufficiently strong, the particle will remain in chemical equilibrium, even as
the temperature drops somewhat below the mass. If the species is still in chemical equilib-
rium at temperatures below the mass, the relative abundance of the species (relative to, say,
photons) becomes exponentially suppressed by the Boltzmann factor exp(−m/T ). As the
Universe further cools below the mass of the species, kinetic equilibrium is maintained, but
the particle eventually drops out of chemical equilibrium. This is because, at temperatures
much less than the mass of the species, the abundance of χ is so small it is exponentially
unlikely for a χ to find another χ with which to annihilate (and it is exponentially unlikely
for light particles to have sufficient collisional energy to pair-produce χs in a collision). At
this point the species is said to be frozen out (or the abundance frozen in). Since the particle
froze out when non-relativistic, it is a cold thermal relic. After freeze-out, the abundance
of the species only changes because of the dilution in the number density caused by the
expansion of the Universe.

So freeze-out (and, hence, the present abundance) of a cold thermal relic is governed by
the interplay between the DM-SM interaction strength (set in the realm of particle physics)
and the expansion rate of the Universe (gravity). These are very disparate forces that act
in concert to determine the present abundance of the DM particle species and, hence, its
contribution to �.

If one knows the properties of the DM candidate, then it is possible to calculate the cross
sections for annihilation and production and find the rate for production and annihilation
of DM. The rate of processes keeping the particles in chemical equilibrium should be
compared to the expansion rate of the Universe. If the equilibration rates are much greater
than the expansion rate, the particle will track its equilibrium chemical abundance. If the
equilibration rates are much less than the expansion rate of the Universe, then the particle
is frozen out, and its abundance changes only through the expansion of the Universe.

We can do quite a bit better than the preceding qualitative argument. The evolution of n,
the number density of a cold thermal relic, is determined by a Boltzmann equation:

ṅ = −3Hn− 〈σAv〉
(
n2 − n2

eq

)
. (9.2)

In this equation, the overdot represents the time derivative, H is the expansion rate of the
Universe, 〈· · · 〉 denotes a thermal average, σAv is the total annihilation cross section times
the Møller flux, and neq is the equilibrium abundance of the species with zero chemical
potential. It is easy to understand the physical meaning of the terms on the right-hand side of
Eq. (9.2): −3Hn represents the dilution of the number density due to expansion, −〈σAv〉n2

represents the decrease in the number density due to annihilation, and 〈σAv〉n2
eq is the

increase in the number density due to production. The final abundance of the species is
calculated assuming the species is in chemical equilibrium at T > m and is kept in chemical
equilibrium through production and annihilation processes until the rate for the processes
keeping the species in chemical equilibrium drop below the expansion rate of the Universe.
The expansion rate is H = ȧ/a, where a(t) is the Robertson-Walker scale factor, the
only dynamical metric degree of freedom in a homogeneous and isotropic Universe. After
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Figure 9.2 Origin of species for a cold thermal relic. Plotted is the relative abundance (say, the
abundance relative to photons) as a function of the mass of the species divided by the temperature.
The dashed line is the chemical equilibrium abundance. Illustrating the relative abundance, rather
than the number density, removes the decrease of the number density due to expansion.

freeze-out, we can ignore interactions that change the number of χ ; i.e., set 〈σAv〉 = 0, and
then ṅ/n = −3ȧ/a, which implies n ∝ a−3. Since a3 is a volume element, the number
density decreases as the volume of the Universe. So, after the species is frozen out, it
decreases only due to the expansion of the Universe.

Before giving some quantitative results, it is possible to anticipate how things work.
The more strongly the DM particle interacts with SM particles, the longer it will stay
in equilibrium, and the lower will be its abundance when eventually it freezes out. This
general feature is illustrated in Figure 9.2, where it is indicated that increasing the inter-
action strength, here characterised by the annihilation cross section σA, leads to a smaller
abundance today. The more weakly interacting a particle, the larger is its contribution to
the present mass density. In cosmology, at least, the weak shall dominate!

There are analytic approximations for the final abundance resulting from the Boltzmann
equation. Assuming that σAv is a constant in the non-relativistic limit (s-wave annihilation),
the contribution to � from a cold thermal relic is approximately6

�h2 � 0.12 × 10−36 cm2

σs
(〈σAv〉 = σs in the non-relativistic limit) . (9.3)

As expected, the result decreases as the cross section increases. It is interesting to note that
the result is independent of the mass of the species, or it depends on the mass of the species

6 To be sure, there are many effects that can complicate this simple result: there may be a velocity dependence to the
annihilation cross section, there may be resonances in the annihilation process, there is a logarithmic dependence of the mass,
there might be asymmetries between particle and antiparticle, etc. The variations on the simple theme have kept many theorists
(the author included) busy for many years.



356 Edward W. Kolb

only insofar as the annihilation cross section depends on the mass of the species. If σAv is
proportional to the velocity-squared in the non-relativistic limit (p-wave annihilation), then
the estimate for �h2 as a function of the annihilation cross section is modified:

�h2 � 0.12 × 10−35 cm2

σp
(〈σAv〉 = σpv2 in the non-relativistic limit). (9.4)

Using the fact that h̄c = 1.97 × 10−14 GeV-cm, we can convert the cross section in
cm2 to units of GeV−2. Including the fine-structure constant α as a proxy for the square
of a coupling constant, we can express 10−36 cm2 as approximately α2/(150 GeV)2. This
suggests that 150 GeV is the mass scale for the cold thermal relic. Since 150 GeV is around
the weak scale, this suggests that the cold thermal relic has weak-scale mass and interaction
strength. Because the particle is weakly interacting and massive, it is called a WIMP (recall,
this stands for weakly interacting massive particle). While the term WIMP is often used
interchangeably with the term dark mater, we will reserve the term WIMP for a cold thermal
relic with weak-scale mass and interactions. The fact that the interaction strength for a cold
thermal relic is comparable to the scale of weak interactions is sometimes called the ‘WIMP
miracle’. Since, in principle, the cross section could have turned out to be anything, the fact
that it is the magnitude associated with a known interaction is suggestive. But a miracle?
Of course, apparent miracles often turn out to be mere coincidences. It is perhaps best not
to use the term ‘miracle’ in science. Merriam-Webster’s online dictionary defines miracle
as ‘an extraordinary event manifesting divine intervention in human affairs’ – surely an
inappropriate term for a scientific model. In this context, Wikipedia probably has a better
description of the word miracle as something ‘often used to give an impression of great and
unusual value in a trivial context’.

In deriving Eqs. (9.3) and (9.4), it was assumed that the expansion rateH is given by the
standard cosmology. In the standard cosmology, the early-Universe expansion rate is given
by H ∼ G

1/2
N g

1/2
∗ T 2, again, GN is Newton’s gravitational constant, T is the radiation

temperature, and g∗ counts the number of effective degrees of freedom. Here we again
see the interplay between the particle physics of the DM and the overall expansion of the
Universe. This is reminiscent of the interplay of the expansion rate of the Universe and
nuclear cross sections that determine the abundance of the light elements produced in Big
Bang nucleosynthesis.

Since the dark matter density in the vicinity of the solar system is about 0.4 GeV cm−3,
the local number density of WIMPs is about 3 × 10−3 cm−3 for a WIMP mass of 150
GeV (for different WIMP masses, the number density estimate should be multiplied by
[150 GeV/m]. The local velocity of the WIMPs should be the galactic rotation velocity
at our location in the Milky Way, about 220 km s−1. This yields a local flux of about
70,000 cm−2 s−1. Again, if the mass differs from 150 GeV, the flux estimate should be
multiplied by (150 GeV/m).

This leads to this remarkable story: while you are reading this article, invisible things
are passing through you. A mysterious invisible particle species surrounds you, a relic
of the first fraction of a second of the life of the Universe, and a few million are in
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your living room, flying around at speeds of about 800,000 kilometres per hour. About
a million-million will pass through you while reading this essay, but you cannot see them,
feel them, taste them, or smell them. And yet, they are the dominant form of matter in the
Universe today, and they shape the large-scale structure of the Universe. That is truly a
fantastical story.

Fantastical stories in science require observational or experimental verification. If the
cold thermal relic idea is correct, the dark matter froze out of LTE when the Universe
was about 10−9 s AB and the temperature of the Universe was about 1014 K. How can we
directly observe this?

The most basic idea of the Big Bang model is that our Universe emerged from a state
of high temperature and density 13.8 billion years ago and, throughout its history, has
been evolving as it expanded and cooled. The Universe was different in the past and
will be different in the future. How can we prove the Universe was different in the past?
Astronomers can prove the Universe evolves because they literally can watch the Universe
evolve. Unlike palaeontologists, astronomers can employ time machines to look back in
time. These time machines are familiar telescopes. Because of the finite velocity of light,
as we look out in space, we look back in time. When we look at our Sun, we see the Sun
as it existed eight minutes before we observe it because it takes light eight minutes to reach
us from the Sun. If we look at a bright star in the night sky, we are observing the star not
as it is the night we observe it but as it existed about a decade ago because bright, nearby
stars are about 10 light year distant. If we look through a telescope at a nearby galaxy about
a million light years away, the light we observe left the galaxy a million years ago, before
Homo sapiens walked the Earth. We see distant objects there and then, not there and now.
The farther out in space we look, the further out in time we see. Since the light from more
distant objects was emitted at an earlier time, distant objects appear younger to us.

But we cannot use telescopes to look out in space and back in time to observe the freeze-
out of WIMPs because for the first 380,000 years of the history of the Universe, it was so
hot and dense that it was opaque to electromagnetic radiation. We cannot see beyond the
‘last-scattering surface’ 380,000 years AB, when the temperature was about 0.1 eV.

We cannot see directly the freeze-out of WIMPs, but the fact that there must be some
dark matter–standard model interactions is the key to observing WIMPs. Figure 9.3 illus-
trates how this works. In the figure is a representation of dark matter–standard model
interactions necessary to establish DM in LTE and to determine its freeze-out temperature
and subsequent abundance. In the simple illustration, two dark matter particles (denoted
DM) interact with two standard model particles (denoted SM). The freeze-out abundance is
determined by the annihilation cross section DM + DM → SM + SM7, which is described
in the diagram by the downward arrow. Freeze-out of dark matter means that annihilation
of dark matter is insignificant on average in the Universe. Here, ‘on average’ means where

7 For simplicity we do not differentiate between particle and antiparticle. If the dark matter species is not self-conjugate it
should properly be dark matter particle + dark matter antiparticle. If the SM particle is charged under one of the SM
interactions it should properly be a SM particle plus its SM antiparticle.
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Figure 9.3 A cold thermal relic must be coupled to SM particles through some interaction, indicated
by the shaded grey area. The relic abundance is determined by the WIMP annihilation cross section.
The same interaction should be able to describe WIMP production from SM particles, as well as
WIMP-SM scattering.

the local density of dark matter is approximately the average density of dark matter in the
Universe. But if we could concentrate dark matter and increase its local density to values
much greater than the average density in the Universe, the same processes responsible
for the annihilation of dark matter into SM particles in the early Universe would happen
today. Conveniently, nature does this concentration for us. Dark matter should accumulate
in the galactic centre, in galaxy clusters, in dwarf galaxies, and in the Sun and Earth in
abundances much greater than the average throughout the Universe. In these locations, DM
annihilation into high-energy SM particles should be happening today. If we can detect the
unambiguous signal of these processes, we would have evidence of particle dark matter.
This search strategy is known as indirect detection. It will be discussed in Section 9.5.1.

The diagram in Figure 9.3 is a cartoon version of a Feynman diagram. Feynman’s rules
allow us to read the diagram in other directions as well. Reading the diagram top down
describes annihilation of DM into standard model particles, while reading the diagram
bottom up describes the process by which standard model particles collide and produce
WIMPs. Since WIMPs are more massive than stable standard model particles (perhaps
much more massive), there is a large threshold energy required to produce the dark matter.
This large energy can be produced in particle colliders such as the CERN Large Hadron
Collider (LHC), which collides protons at high energy. The production and detection of
dark matter is another method to prove the WIMP hypothesis. This will be discussed in
Section 9.5.2.
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Finally, the diagram in Figure 9.3 can be read left to right (or right to left) to describe
the scattering of a WIMP with an SM particle. Techniques that attempt to detect WIMPs
through their scattering with some SM target material are known as direct detection tech-
niques. Direct detection will be discussed in Section 9.5.3.

Before the discussion of direct detection, indirect detection, and collider production and
detection of dark matter, I will make some remarks about the role of dark matter in the
formation of structure in the Universe.

9.4 Role of Dark Matter in the Formation of Structure

The purpose of this section is to examine the role of dark matter in structure formation.
To do so first requires us to understand the formation of structure in baryons without dark
matter, then to understand the evolution of perturbations in a universe containing only dark
matter, and, finally, to put things together and understand the evolution of a universe with
both baryons and dark matter.

The basis of modern cosmology is the Einstein field equations, Gμν = (κ/c4)Tμν . On
the left-hand side of the Einstein equations, Gμν is the Einstein tensor, constructed from
the Ricci curvature tensor, the Ricci scalar curvature, and the metric tensor gμν (the Ricci
tensor is a contraction of the Riemann curvature tensor, and the Ricci scalar is the trace of
the Ricci tensor). On the right-hand side, κ = 8πGN and Tμν is the stress-energy tensor
which contains information about matter, energy, forces, and particles and how they are
distributed in space-time. Einstein’s equations are a mathematical expression of the idea
that the stress-energy tensor appearing on the right-hand side informs the left-hand side
and determines how space and time are curved, warped, and bent and how space expands.
In turn, the curvature on the left-hand side connects to the right-hand side and tells matter
and radiation how to respond to the geometry.

Note the use of plural in the phrase Einstein field equations. It may appear to be a
single equation, but when the tensor nature of the expression is expanded in component
form, it is, in general, 10 beastly non-linear partial differential equations. Clearly, some
approximation is needed for cosmological solutions. The usual approximation is to assume
that the Universe is spatially homogeneous (the same at every point) and isotropic (the
same in every direction). The assumption of homogeneity and isotropy is a statement of
the Cosmological Principle, which states that there is no special point or no special set of
points in the Universe: the Universe is the same everywhere, and every observer sees the
same Universe.

The great advantage of the Cosmological Principle is that a homogeneous/isotropic
metric has only one dynamical degree of freedom that is only a function of time, the scale
factor a(t). The 10 beastly non-linear partial differential equations of the most general
solution become two rather tame ordinary differential equations for a single degree of
freedom, a(t).

The scale factor represents the expansion of the Universe. In a perfectly homogeneous
and isotropic Universe, the distance between any two objects scales with the scale factor
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due to the expansion of the Universe. If, in such a universe, the scale factor today is denoted
as a0 and the distance between any two objects is D0, then at some earlier time t , the
distance between the two objects was D(t) = D0[a(t)/a0], where the scale factor at the
earlier time is denoted as a(t).

The idea of the Cosmological Principle appears in the very first paper on relativis-
tic cosmology, Einstein’s 1917 paper Kosmologische Betrachtungen zur allgemeinen
Relativitätstheorie (Cosmological Considerations in the General Theory of Relativity)
[12], the famous paper in which he introduced the cosmological constant. In that paper,
Einstein states ‘if we are concerned with the structure [of the Universe] only on large scales,
we may represent matter to ourselves as being uniformally distributed over enormous
spaces’.

From the very start, the Cosmological Principle was understood to be a simplification.
Today, observations tell us that on the largest scales, the Universe does appear to be
homogeneous and isotropic, but clearly, on small scales, it is not. Whether the
‘small-scale’ inhomogeneities are important for the large-scale evolution of the Universe
is a matter of debate (see, e.g., References [6, 16]). For the purposes of the present chapter,
we will assume the Universe is homogeneous/isotropic on large scales and adopt the
standard Friedmann-Lemaı̂tre-Robertson-Walker model for the cosmological background
evolution.

Taking a homogeneous universe as a starting point, how do we account for inhomo-
geneities such as galaxies, galaxy clusters, filaments, and other structures? The simple
answer is a phenomenon known to Newton: gravitational instability. Newton realised that
an infinite, perfectly uniform distribution of matter would be static in a world governed
by classical Newtonian mechanics. Every mass point would be attracted gravitationally to
every other mass point in the Universe, but because of the symmetry, each mass point would
be pulled equally in every direction, and the Newtonian forces would cancel. Newton also
realised that any departure from absolute uniformity of the mass distribution would render
the system unstable: regions with higher than average density would accrete matter from
regions of lower density. This is a runaway situation. The rich become richer and the poor
become poorer.

Of course, to study the evolution of structure, we must have information about the
initial size and nature of the departures from homogeneity. Motivated by the idea of infla-
tion (and consistent with observations), we will assume that, in the early Universe, there
were perturbations in all fluids (radiation, baryons, neutrinos, and dark matter) and that
the perturbations around the time of decoupling of matter and radiation, about 400,000
years AB, were small (of order 10−4 or so). We will also assume, again consistent with
observations as well as expectations from inflation, that the perturbations were ‘adiabatic’.
If the perturbations are adiabatic, there are no entropy perturbations, only pure density
perturbations. A more appropriate description of these types of perturbations is ‘isen-
tropic’ perturbations. All components of the mass-energy density participate in isentropic
perturbations. An over-density in photons is accompanied by an over-density in baryons
and dark matter.
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9.4.1 Growth of Structure in a Baryon-Only Universe

The simple picture of Newtonian gravitational instability is not directly applicable to the
cosmological situation because (1) there is a pressure force on baryons, (2) the Universe
is expanding, and (3) in some instances, a fully general-relativistic consideration must
supplant the Newtonian picture.

It is easy to extend the Newtonian analysis of gravitational instability to the situation
where there is pressure support to oppose collapse. The classical analysis of Jeans studies
the growth (or lack thereof) of small perturbations from homogeneity. It analyses the
interplay between the force of gravity, which drives the system to collapse, and the pres-
sure force, which opposes the collapse. The result is that if the region contains sufficient
mass (mass larger than the Jeans mass), gravity wins, and it will collapse, while if the
region is sufficiently small, pressure forces can support the over-density, and the system
will not collapse. Furthermore, if the Jeans criterion is satisfied, the collapse is exponential
in time.

Some of the same considerations are at play in an expanding universe, but there are
important differences. Here, I will just list some of the differences that will be important
when considering the role of dark matter in structure formation:

1. The Jeans mass in baryons, the minimum mass in baryons that will collapse, evolves
in the expanding Universe. Before the decoupling of baryons and radiation at a
redshift of 1 + z = a0/a(t) � 1,100 (a0 is the present value of the scale factor),
the pressure support was provided by radiation, and the Jeans mass in baryons was
MJ (baryons) � 8×1027M�/(1+z)3. After recombination, the pressure support is pro-
vided by non-relativistic baryons, so the pressure is much smaller than in the radiation-
dominated epoch, which leads to a precipitous drop in the Jeans mass:MJ (baryons) �
106M�[(1 + z)/1,100]3/2. The evolution of the baryonic Jeans mass is shown in
Figure 9.4.

2. We define the Hubble radius RH as RH(t) = H−1(t), where H(t) is the expansion
rate of the Universe. Perturbations on scales larger than the Hubble radius cannot be
treated by Newtonian/Jeans considerations and require a fully general-relativistic calcu-
lation. Roughly speaking, perturbations on scales larger than RH do not evolve; they are
‘frozen’. The evolution of the mass in baryons within the Hubble-radius as a function of
time is also shown in Figure 9.4.

3. Where collapse occurs in an expanding universe, the expansion of the universe impedes
collapse, and the growth of small perturbations is not exponential in time but a power-
law in time due to ‘Hubble drag’.

4. In a matter-dominated universe, perturbations on sub-Hubble-radius scales that meet the
Jeans criterion grow in time as t2/3.

5. In a radiation-dominated universe, perturbations on sub-Hubble-radius scales that meet
the Jeans criterion only grow logarithmically in time.

6. Perturbations do not grow in a spatial-curvature-dominated universe.
7. Perturbations do not grow in a universe dominated by a cosmological constant.
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Figure 9.4 The evolution of mass scales associated with baryons as a function of 1 + z = a0/a(t)

(a0 is the present scale factor). The solid curve labelled MJ is the baryonic Jeans mass. Small
perturbations grow only for masses larger than the Jeans mass. Before decoupling, pressure support
is provided by the coupling of baryons to photons. After decoupling pressure, support is provided by
non-relativistic hydrogen atoms, hence the drop in the Jeans mass at decoupling. The dashed curve
labelled MH is the mass in baryons within the Hubble radius. Small perturbations on mass scales
larger than the Hubble radius do not grow. Thus, baryonic perturbations only grow after decoupling
since the Jeans mass is less than the Hubble-radius mass only after decoupling. The dotted curve
labelled MS is the Silk mass. Collisional (Silk) damping erases perturbations on mass scales less
than the Silk mass. This figure is representational. Several crude assumptions have been made, like
that the approximation that the Universe becomes matter dominated at decoupling.

Another important effect in a cosmological setting is collisional damping, which erases
baryonic perturbations on interesting scales. For most of the history of the early Universe,
it is valid to assume that the baryon/photon fluid is a ‘perfect’ fluid because the baryons
and photons are tightly coupled, and the mean-free-paths of baryons and photons are much
less than scales of interest.8 But as decoupling of matter and radiation is approached, the
mean-free-path of photons grow as the Universe passes from matter in an ionised state
with free electrons and baryons to a state with matter in the form of neutral hydrogen; in
other words, the assumption of a perfect fluid breaks down. We are assuming an initial
condition of adiabatic (isentropic) perturbations, so the photon and baryon perturbations
are correlated. As the photons begin to stream out of over-dense regions, they drag baryons
along with them, smoothing the baryonic perturbations. In a cosmological context, this
collisional damping is known as Silk damping [33].

8 The mean free path of an electron, λe = (nγ σT )−1, is much less than the photon mean-free-path, λγ = (neσT )−1 because the

number density of photons is about 1010 that of electrons. Here, σT is the Thomson cross section.
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The photon mean-free-path in the non-relativistic limit (T � me) is λγ = (XeneσT )−1,
where σT is the Thomson cross section, Xe, is the ionisation fraction, and ne is the total
electron density (bound and free). In a time t , a photon will have t/λγ collisions and
undergo a random walk. As it random-walks out of the perturbations, the photons will drag
baryons out of the perturbations. The Silk scale reaches a maximum around decoupling;
then, after the electrons and protons recombine, the photons decouple from baryons, and
photons no longer can drag the baryons out of perturbations. The Silk scale is shown in
Figure 9.4. After decoupling, baryon perturbations are damped for mass scales below about
1013M�.

So now we can put everything together and predict what the growth of structure would be
in a dark-matter-less universe where the only matter components are baryons and electrons.

1. For perturbations of a size smaller than the Hubble radius, a Newtonian/Jeans analysis
is applicable.

2. In the radiation-dominated (or curvature-dominated or cosmological-constant-
dominated) era perturbations do not grow. When the universe becomes matter dom-
inated, perturbations on mass scales greater than the Jeans mass grow as t2/3.

3. The Jeans mass becomes smaller than the horizon mass only after recombination.
4. By the time of recombination, collisional (Silk) damping strongly damped perturbations

on scales less than about 1013M�

In the baryon-only matter model, structure formation begins only after decoupling when
the baryon Jeans mass drops and only on mass scales larger than the Silk mass scale, about
1013M�. In this model universe, structure formation proceeds by a top-down fragmentation
of perturbations on a mass scale larger than 1013M�. This does not seem to be the way
structure formed in our Universe, suggesting that we do not live in a baryon-only universe.

There is another reason to believe that we do not live in a baryon-only universe.
Perturbations do not grow in a radiation-dominated universe; they only grow when the
universe becomes matter dominated and then grow as t2/3 or linearly in the scale factor a.
Observationally, today, � in baryons is about 4.4 × 10−2. (This value is consistent with
the expectation from considerations of primordial nucleosynthesis.) The value of � in
relativistic degrees of freedom (photons and neutrinos) today is about 4.4 × 10−5, so today
ρradiation/ρbaryons ∼ 10−3. In expansion, ρradiation scales as (1 + z)4 and ρbaryons scales as
(1 + z)3, so the ratio ρradiation/ρbaryons ∝ (1 + z). Since the ratio today is 10−3, the scale
factor at the time of equal baryon and radiation density was 1 + z ∼ 1,000. If structure
formation does not commence until after decoupling and when the universe becomes
matter dominated (which, in a baryon-only model, happens at about the same time),
perturbations grew by at most a factor of 103 from matter domination until today. In order
for cosmological structures to form, the perturbations must grow to become non-linear, so
the perturbation amplitude at decoupling must be at least 10−3. This is larger than what we
see in cosmic background radiation (CBR) measurements by a factor of at least 10.9

9 For isentropic perturbations, the radiation perturbation amplitude is 1/3 as large as the matter perturbation amplitude.
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In conclusion, in a baryon-only universe, structure must form top-down from fragmen-
tation of structures of mass larger 1013M�. Furthermore, for non-linear structures to form
today, the amplitude of perturbations must be larger than allowed from CBR measurements.

Clearly structure as observed in our Universe did not form in a baryon-photon-neutrino
universe. There must be something more in the mix. That something more is dark matter.

9.4.2 Growth of Dark-Matter Perturbations

Dark matter does not interact with radiation; in fact, it is collisionless. Rather than anal-
yse fluid equations, in principle, one must solve the collisionless Boltzmann equation. In
practice, one analyses moments of the collisionless Boltzmann equation. The analysis is
similar to the Jeans analysis except the velocity dispersion of dark matter plays the role
corresponding to the role played by the sound speed in the fluid equations.

Since dark matter is collisionless, it does not suffer Silk (collisional) damping. However,
dark matter perturbations may suffer collisionless damping (or Landau damping). Again, in
order to account for collisionless phase mixing, it is necessary to integrate the collisionless
Boltzmann equation. However, it is possible to estimate the scale of collisionless damping.

If the collisionless species has a non-zero velocity dispersion with respect to the rest
frame of the plasma, they will freely propagate out of over-dense regions and into under-
dense regions, smoothing out inhomogeneities. Since we know how the velocity of a freely
propagating particle redshifts in expansion, we can calculate the free-streaming distance.

Of course, if the dark matter is dead cold, then the free-streaming distance vanishes
and the perturbations are undamped. Note that ‘cold’ refers to the velocity of the dark
matter around the time of decoupling. Cold thermal relics are cold because the mass of the
particle species is large compared to the temperature of the species around decoupling. But
in general, dark-matter relics are cold because their velocity is small around decoupling.
Another example of cold dark matter is the axion. Although axions are expected to have a
mass smaller than the temperature of the Universe at decoupling (about 1/3 eV), they are
cold because they were produced as a Bose condensate and a have small velocity dispersion.

In the other extreme, if dark matter is ‘hot’ (has a significant velocity around the time of
decoupling), perturbations will suffer collisionless damping; perturbations will be damped
on scales less than the free-streaming length. The quintessential example of hot dark matter
is a light-mass neutrino. The contribution to � for a (two-component) neutrino of mass
mν is �νh2 = mν/91 eV. So if the neutrino is the dark matter, �ν = 0.24, and using
h2 = 1/2 we findmν = 11 eV. We know the neutrino temperature and when it became non-
relativistic. Calculating the free-streaming length until the time of matter-radiation equality
when the perturbations can grow, we find that the free streaming length corresponds to a
present distance of λFS � 100 Mpc, containing, on average, a mass of about 2×1016M�.10

10 These numbers come from a more exact calculation [5] of the free-streaming length. The free-streaming length from the more
exact calculation is about a factor of 2 larger than the approximate calculation.
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Figure 9.5 The dark matter perturbation spectrum is processed by collisionless damping. Shown
are the perturbation spectra at some time after decoupling as a function of the mass in dark matter
within the perturbation for three choices for dark matter: cold, dark matter that is non-relativistic (zero
velocity) at decoupling; hot, dark matter that is semi-relativistic at decoupling; and warm, dark matter
that is somewhere between hot and cold. (For aficionados, the ‘perturbation spectrum’ is k3/2 |δk |,
and for hot dark matter, I have chosen a neutrino of mass 11 eV, the appropriate mass if that species
of neutrino contributes � = 0.24.)

The dark matter perturbation amplitude processed by collisionless damping is shown
in Figure 9.5. For the figure, it was assumed that dark matter today has a value of
�= 0.24, h2 = 1/2, and the initial perturbation spectrum is a Harrison-Zeldovich spectrum.
The spectrum shown represents the spectrum before the growth of perturbations after the
Universe becomes matter dominated. For neutrino hot dark matter, the perturbations are
damped for length scales today of about 2 × 1016M�. This is much larger than individual
galaxy masses, so in a hot dark matter universe, structure forms top down.

Of course, there is the intermediate case of ‘warm’ dark matter. For warm dark matter,
the dark matter is colder than neutrinos but hotter than cold dark matter. A sample warm
dark matter spectrum is also shown in Figure 9.5.

Numerical simulations of structure formation highly disfavour hot dark matter. It seems
that dark matter must be cold, or if it is warm, it must be very close to the spectrum for
cold dark matter down to mass scales as small as astrophysically important for structure
formation.

A universe with cold dark matter has another advantage over a baryon-only universe.
We know from Big Bang nucleosynthesis and astronomical observations that the baryon
density contributes only�B = 4.4 × 10−2. As mentioned before, this means that a baryon-
only universe became matter dominated around z ∼ 1,000. If we include dark matter, the
total dark matter � plus the baryon � is about 0.3, or about an order of magnitude larger
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than a baryon-only universe. Therefore, structure formation can start earlier, with a smaller
value of the perturbation amplitude, consistent with CBR measurements.

9.4.3 Fine-Tuning of Dark Matter for Structure Formation?

Dark matter is needed to explain the structure we see in the Universe today. Furthermore,
the dark matter has to be cold (or very nearly cold). The model of gravitational instability
in a universe with baryons and cold dark matter explains well the observed large-scale
structure of the Universe. Whether this simple model is the answer or nature is more
complicated remains to be seen. But the fact that we require dark matter for the Universe
to turn out as observed raises the fine-tuning question.

The fine-tuning question can be stated in many ways; here, I will just address if small
departures from the standard cold dark matter model would lead to a universe much differ-
ent than observed. The answer, of course, depends on the meaning of the word ‘small’. If
small refers to changing the present value of dark matter from 24% to, say, 24% ± a few
percentage points, the Universe today would be more or less as observed. If�DM is ‘much’
smaller than 24%, then in a flat universe, the deficit has to be made up by something
else. If that something else is a larger value of the cosmological constant, then that would
spell trouble for structure formation because the Universe would have become dark-energy
dominated earlier, and structure growth would have been shut down earlier.

9.5 Testing the WIMP Hypothesis

In the WIMP scenario that we are assuming here, the dark matter was in chemical and
kinetic equilibrium with the primordial plasma when the dark species was relativistic, so
there must be some coupling between WIMPs and standard model particles. In Section
9.3.2, we saw how the present mass density of a cold thermal relic was set by the cross
section for annihilation of dark matter into standard model particles. We also saw that
obtaining the desired present mass density of dark matter requires the WIMP to have
an annihilation cross section of about 10−36 cm2. Figure 9.3 illustrates the relationship
between the annihilation cross section responsible for setting the present mass density of
a cold thermal relic and other processes involving dark matter (DM) and standard model
(SM) particles. In this section, we exploit the SM-DM connection to explore ways of testing
the WIMP hypothesis.

Unfortunately, knowledge of the DM annihilation cross section in the early Universe
does not give us direct knowledge of the DM-SM interactions today. The basic reason
is that freeze-out of a WIMP happened when the WIMP was mildly non-relativistic. For
both s-wave and p-wave annihilation, the WIMP froze out at a temperature TF given by
TF ∼ m/20. For a Boltzmann distribution, this would correspond to a mean velocity of
〈v2〉1/2 ∼ 0.4.11

11 Of course, velocities are given in units of the speed of light.
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But for indirect detection and direct detection, the relevant mean velocity of WIMPs is
more like 10−3, well into the non-relativistic regime. Thus, for indirect and direct detection
searches, we expect the velocity dependence of the WIMP annihilation and scattering
cross sections in the non-relativistic limit to be crucial. What we know from the criterion
that WIMPs have the correct dark matter density is that [σv]NR ∼ 10−36 cm2, where the
notation refers to the cross section times the velocity in the non-relativistic limit, and the
velocity is the velocity around freeze-out, v ∼ 0.4. If [σv]NR is velocity independent,
then it would be the same for dark matter annihilation today, where the velocities are
much smaller than the velocity at freeze out. If, however, the dark matter annihilation is
velocity dependent (p-wave), then [σv]NR in our galaxy would be a factor of 10−3/0.4
times smaller since we expect galactic WIMPs to have a velocity of about v ∼ 10−3.

The same type of considerations apply to direct detection through WIMP-nucleus scat-
tering. Certain types of scatterings are velocity dependent, while others are velocity inde-
pendent. For some models, the velocity dependence of the annihilation cross section is
different than the velocity dependence of the scattering cross section. Another complication
in using the annihilation cross section information from freeze-out is that it is typically
about annihilation into quarks, while for direct detection, the WIMP scatters with a nucleus
(which, of course, contains quarks). The typical momentum transfer in WIMP-nucleus
scattering is small enough that the WIMP can see more than one nucleon. Therefore it
is necessary to relate the WIMP-quark cross section to a WIMP-nucleus cross section.
This involves a form factor. Furthermore, certain scatterings are spin indendent (and thus
coherent) and others are spin dependent and couple to the spin of the nucleus. This means
that in the spin-dependent case, some nuclear targets are more sensitive than others for
WIMP detection.

It is also not straightforward to relate the non-relativistic annihilation cross section from
freeze-out to the cross section for production of dark matter at colliders. To see how this
issue might arise imagine that the non-relativistic WIMP annihilation at freeze-out proceeds
through the WIMP pair producing some massive intermediate state that also couples to a
pair of SM particles. If the mass of the intermediate state, MI , is less than the mass of the
WIMP, m, then the cross section is proportional to M−4

I or M−2
I , depending on whether

the intermediate state is a boson or a fermion.12 Production at colliders would also proceed
through the intermediate state. However, now the total centre-of-mass energy in the process
may be much larger thanMI , and the production cross section would be determined by the
centre-of-mass energy and notMI .

In conclusion, if WIMPs are the dark matter, then for velocities of about 0.4c,
σAv ∼ 10−36 cm2. Using this to inform us about present-day annihilation rates, present-day
WIMP-nucleon scattering rates, or the prospects for production and detection of WIMPs
at colliders, is model dependent. Nevertheless, in spite of uncertainties, knowledge of the
non-relativistic annihilation cross section is precious, and the search for WIMPs is intense:
the hunt is on!

12 Here, I have assumed for simplicity, I have assumed that the annihilation proceeds through the s-channel.
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9.5.1 Indirect Detection

To set the scale for indirect detection, we can change units for [σv]NR from 10−36 cm2

by multiplying by the speed of light to obtain [σv]NR = 3 × 10−26 cm3 s−1. If locally
the number density of WIMPs is nWIMP, then locally the annihilation rate would be
[σv]NR n

2
WIMP = [σv]NR (ρDM/m)

2, where ρDM is the local dark matter density and m
is the WIMP mass. It is more convenient to express the annihilation rate in terms of ρDM

because that is what is inferred from astronomical measurements.
Operationally, a ground-based or space-based telescope points at some ‘region of inter-

est’ to search for a signal. The region of interest is defined by some angular region on the
sky described by two angles b and l.13 Now the detector will see all particles in the line of
sight s from the region of interest. As an example, let’s imagine we are looking for a signal
from the galactic centre. Generally, we know the dark matter mass density as a function
distance r from the galactic centre. Our mastery of geometry allows us to express r in term
of s, l, and b. So the analogue of [σv]NR (ρDM/m)

2 is a factor that just depends on the
mass and mass density of WIMPs as a function of r:

J (line of sight over region of interest) =
∫
ρ2

DM [r(s,l,b)]

2m2
ds cos b db dl . (9.5)

Note that the units of this expression are cm−5.
There is considerable uncertainty in ρDM(r) near the centre of dark matter halos. To

illustrate the uncertainty, I will present three density profiles often assumed to be a universal
form for dark matter halos: the Navarro-Frenk-White profile ρDM(r) = ρ0(r/rS)

−1(1 +
r/rS)

−2 [28], the Einasto profile ρDM(r) = ρ0 exp
{−(2/a) [(r/rS)a − 1

]}
[11], and a

profile with a central core ρDM(r) = ρ0(1+r/rS)−1(1+r2/r2
S)

−2 [7]. In these profiles, rS
is a scale height (different for different profiles) that depends on the object, ρ0 is the density
at some value of r , and the Einasto profile has an additional parameter a. The profiles are
presented in graphical form for the Milky Way in Figure 9.6. (Recall that the annihilation
rate is proportional to the local density squared.) In the calculation of J , the uncertainties
are the dark matter density and the dark matter mass.

Now we are interested in d�i(E)/dE, the differential intensity (number of particles
of type i per area, per time, per solid angle, and per energy) observed from the region of
interest. If the differential number of particles produced per energy in an annihilation is
dNi/dE, then

d�i(E)

dE
= dNi

dE

[σv]NR
4π

J , (9.6)

where J is given in Eq. (9.5). The additional uncertainties include the annihilation cross
section ([σv]NR is here assumed to be velocity independent), the spectrum, and the

13 Galactic longitude (l) measures the angular distance along the galactic equator from the galactic centre, and galactic latitude
(b) measures the angle north or south of the galactic equator when viewed from Earth. Of course, any coordinate system
would suffice.
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Figure 9.6 Three dark matter density profiles for the Milky Way galaxy. The curve labelled NFW is
the Navarro-Frenk-White profile [28], the curve labelled Einasto is the Einasto profile [11], and the
curve labelled cored is a profile with a core at the centre, in this case taken from Burkert [7].

number of particles of type i produced per annihilation. While we expect [σv]NR ∼
3 × 10−26 cm3 s−1, the spectrum of particles produced in the annihilation is model
dependent.

The final step in the procedure is to convert the initial spectrum of the annihilation
products into the final particle spectrum that would be detected. For instance, if quarks
are produced in the annihilation, then fragmentation and hadronisation of the quark jets
and subsequent decay of particles like pions and muons must be taken into account.
Further environmental interactions like inverse Compton scattering, synchrotron radiation,
bremsstrahlung, and scattering by magnetic fields will further affect the spectrum. Luckily,
the decay, fragmentation, and hadronisation processes are well understood. The interaction
of the annihilation products with the ambient astrophysical environment depends on
understanding the environment.

Now I turn to the question of where to look and what to look for. First, what do we
look for?

• Charged particles, electrons, positrons, and anti-protons: Charged particles are easy to
detect, but there are astronomical backgrounds, and they are bent by magnetic fields, so
it is impossible to know where they originated.

• Continuum photons and neutrinos: Photons are easy to detect; neutrinos are challenging
to detect. There are astronomical backgrounds, but the photons and neutrinos should
point back to their sources.

• Monoenergetic photon line: A monoenergetic photon line would come from the annihila-
tion of dark matter into two particles, at least one of which is a photon. This is considered
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to be a golden detection signal since the astronomical background of line production is
negligible. However, instrumental resolution makes it difficult to resolve line signals, and
in most models, the annihilation channel into the two-photon final state is expected to be
small.

Now, where should we look? Numerical simulations of structure formation in a cold
dark matter universe yield dark matter halos on a variety of scales and roughly self-similar
in form. The simulations of halos of the size and mass of the Milky Way have a smooth
component modelled by one of the profiles described earlier. Since structure formed
hierarchically in a cold dark matter universe, small dark matter halos collapsed first and
then, through the processes of mergers and acquisitions, formed larger objects. However,
some remnant of the original small halos should survive. The large end of the subhalo
distribution is revealed by numerical N -body simulations, and in the small-mass end,
theoretical extrapolations and arguments suggest that the halo of the Milky Way should
be full of subhalos of mass in the range about 10−5–10−6M�. The larger subhalos should
be visible as low-surface-brightness dwarf spheroidal companions to the Milky Way such
as Sculptor and Fornax, while the smaller subhalos should be very baryon poor, hence
invisible to us.

With this information, we can identify the three most promising places to look:

• The galactic centre: The advantages of looking toward the galactic centre is that we know
where to look, and it is expected to produce the largest signal of the three locations we
will examine. The disadvantage is that the galactic centre is a pretty active place and has
the largest backgrounds of the three places.

• Nearby small subclumps of dark matter: These small subhalos have essentially no
baryons (therefore no stars) and, hence, should provide a very clean signal. The
disadvantage of small subclumps is that we do not know where they are, and although
the signal is clean, it is probably about a factor of 1,000 times smaller than the signal
from the galactic centre.

• Dwarf spheroidals: The dwarf spheroidals are dark matter rich, with mass-to-light ratios
as large as (M/L)� � 3,000, so there should be a clean signal with little background.
We also know where to look for them. The disadvantage is that they are far away from
Earth, and the expected signal is down another factor of 1,000 or so. The signal can be
enhanced by ‘stacking’ the signals from different dwarf spheroidals.

A large number of balloon experiments, space-based telescopes, ground-based γ -ray
telescopes, and neutrino facilities have been deployed in indirect detection searches. These
facilities are in remote, hostile locations like space, the upper atmosphere, Antarctica,
the South Pole, Namibia, and Arizona. Every couple of years, a signal for dark matter
annihilation is claimed or suggested. The issue with indirect detection is that one can have
a signal that is statistically striking, but no one believes it because of background issues.
Many data sets can produce a signal if the background is ‘under-modelled’. On the other
hand, a true signal can be removed by ‘over-modelling’ the background.
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A variety of techniques today have reached sensitivities where one can reasonably
expect to see a signal. In the meantime, there is still a lot of observational and modelling
work to do: a better understanding of the galactic centre, better angular resolution that can
help resolve background sources and remove emission correlated with gas, better spectral
resolution that can help resolve emission lines, greater collecting area to help with lower
signals, clever new techniques like dwarf stacking, and a variety of observations to inform
us about backgrounds. While today there is no convincing signal, there is still discovery
space, and the hunt continues.

9.5.2 Collider Production and Detection

Now let’s turn to the program for producing and identifying WIMPs at colliders in par-
ticular, hadron colliders like the CERN Large Hadron Collider (LHC). If the freeze-out
annihilation of WIMPs contains quarks in the final state (presumably quark + antiquark),
then the collision of protons of sufficient centre-of-mass energy should produce WIMPs.14

The velocity dependence of the non-relativistic annihilation cross section in the freeze-
out calculation is irrelevant in the relativistic limit appropriate for colliders. The bigger
uncertainty is whether the collision has centre-of-mass higher than any intermediate state
in the production process. This, of course, is model dependent.

In discussion of the search strategy for WIMPs at the LHC, it is useful to consider a
broad classification of WIMPs into two classes: social WIMPs and maverick WIMPs.

Social WIMPs are be friended by other new particles of similar mass. The quintessential
example of a social WIMP is if the WIMP is the lightest supersymmetric particle. In super-
symmetry (SUSY), every known elementary particle has an associated superpartner. If the
particle is a boson, the superpartner is a fermion and vice versa. The superpartners are odd
under a type of parity known as R-parity, while the known SM particles are even under R.
This means that the lightest superparticle would be stable if R-parity is conserved because
a final state containing only SM particles would have even parity. In many realisations of
SUSY, the lightest superpartner can be a WIMP with the requisite annihilation cross section
to be dark matter. Let’s take the example that the lightest superparticle is the neutralino, a
combination of the superpartners of the photino, the Z-boson, and the Higgs. If the neu-
tralino has a mass within reach of the LHC, one would expect other superparticles to also
be within reach, including squarks (superpartners of the quarks), sleptons (superpartners of
charged leptons), gluinos (superpartners of gluons), etc. So if neutralinos can be produced
at the LHC, one expects first to see gluinos, squarks, etc., because they are more strongly
interacting and easier to produce and detect. So the search strategy would involve first
searching for the supersymmetric comrades of the WIMP. In spite of huge, heroic efforts
by an army of theorists, phenomenologists, and experimentalists, low-energy SUSY has

14 A proton contains three ‘valence’ quarks (the three quarks responsible for the quantum numbers of a proton), as well as ‘sea’
quark-antiquark pairs and gluons. So the high-energy collision of two protons can produce quark-antiquark collisions at the
constituent level.
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not been discovered at the LHC. It could be that the SUSY scale is just beyond reach of
the LHC, or there may be surprising twists in SUSY phenomenology. While the search box
for SUSY has shrunk (and is shrinking every day), there is still some unexplored discovery
space, and perhaps it is too soon to throw in the towelino.

Maverick WIMPs, on the other hand, have no like-mass friends; they are loners. There-
fore, we have to somehow discover the WIMP in the debris of the collision. In the process
proton + proton −→ WIMP + WIMP, the final-state WIMPs would not interact in the
detector, so the visible process is proton + proton −→ nothing: not a promising signal.
Collider experimentalists often say that looking for new particles in the debris of high-
energy collisions is like looking for a needle in a haystack. Looking for maverick WIMPs
is like looking for an invisible needle in a haystack!

But there is a strategy to detect collider-produced WIMPs by searching for missing-
energy signals [4]. While the final state of two WIMPs leaves no signal, if one includes
initial-state radiation, where a gluon, quark, or other gauge boson is emitted, one can have,
for instance, a final state of WIMP + WIMP + quark/gluon jet. The quark/gluon jet would
recoil against the WIMP pair. Since the WIMPs would not be detected, the signal in the
detector would be a quark/gluon jet carrying of momentum that seems to be unbalanced.
The process appears to have missing momentum in the final state since the WIMP pair is
invisible.

The issue in searching for maverick WIMPs through missing energy signatures is that
there are other processes that can mimic the effect of missing momentum. For instance, the
final state can contain neutrinos that would be undetectable (although neutrinos are WIMPs,
they are not the WIMP). Luckily, the sophistication of the analysis to remove standard
model backgrounds from monojet signals is truly remarkable, and one can account for and
subtract the signal from neutrinos and other SM processes that appear to have missing
momentum.

The present situation in the search for maverick WIMPs is similar to the situation for
the search for social WIMPs: heroic efforts but no signal. If dark matter is a SUSY relic,
some indication of SUSY should be discovered at the LHC. Gluinos, squarks, charginos
(SUSY partners of theW±), or sleptons will be seen before a WIMP. The search strategies
are well developed. If dark matter is a maverick particle, the only hope is missing-energy
signals. The technique is most effective for lower-mass WIMPs, and there is no guarantee
that [σv]NR determined from freeze-out is directly applicable to collider searches. Again,
there is still unexplored search regions, and the search continues.

9.5.3 Direct Detection

Finally, we consider the search for WIMPs through direct detection. The idea is that we are
swimming in a sea of WIMPs, and although they have ‘weak’ interactions, they must have
some coupling to standard model particles since they were in LTE in the early Universe.
If we had sufficiently sensitive detectors free from background, we should occasionally be
able to detect the scattering of a WIMP.
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The experimental approach that has yielded the best limits looks for nuclear recoil from
WIMP scattering with a nucleus. This technique has been used for over three decades [1].
For WIMP scattering with a nucleus, a simple estimate for the event rate in would be
R = N nDM v σ , where N is the number of target nuclei in the detector, nDM v is the flux
of WIMPs, and σ is the scattering cross section. It is useful to take this expression for the
event rate and make it a little more sophisticated and relevant for experiment. Of interest is
the differential rate per recoil energy ER expressed in terms of the differential cross section
with respect to the recoil energy. This can be expressed as

dR

dER
= N ρDM

m

∫
vMIN

d3v v f (v)
dσ

dER
, (9.7)

where ρDM/m is the local WIMP mass density, f (v) is the local WIMP velocity phase-
space distribution, and vMIN is the minimum velocity to cause a recoil energy above detec-
tion threshold.

From Eq. (9.7), we see the interplay of astrophysics, particle theory, and experimental
physics. The determination of ρDM and f (v) comes from astrophysics, particle theory
provides m and dσ/dR while a given experiment determines the number of targets, the
mass and spin of the target nuclei, and the threshold energy that goes into the determination
of vMIN.15

The usual assumption for f (v) is a Maxwellian velocity distribution with 〈v2〉1/2 =
220 km s−1, and the usual assumption for ρDM is 0.4 GeV cm−3 at our location in the Milky
Way. This would result in an average recoil energy of a few to a few dozen keV for most
target nuclei employed. These estimates for f (v) and ρDM represent the average values
found from numerical simulations at our location in dark matter halos the mass of the
Milky Way. However, there are rare places, like in a dark matter subclump, where the
values may differ.

The WIMP-nucleus cross section is crucial. It may be proportional to the velocity of the
WIMPs or the momentum transfer in the scattering. This would greatly decrease the sensi-
tivity of an experiment. For some models, the WIMP-nucleus couplings is proportional to
the nuclear spin, so a target nucleus with zero spin would be insensitive. Finally, it is usually
assumed that the WIMP-nucleon coupling is universal. But if WIMPs couple differently
to neutrons and protons, the interpretation of experimental limits would be modified. If
WIMPs are hadrophobic and only couple to leptons, the nuclear recoil technique is not
appropriate.

Throughout the world, there are a couple of dozen experiments in mines and tunnels
(to reduce background) using a variety of detection techniques (superheated bubbles, ioni-
sation, phonons, light) searching for a dark matter signal. The present limits are shown in
Figure 9.7 for spin-independent scattering and spin-dependent scattering. The shaded area
at the bottom of the spin-independent graph denoted coherent neutrino scattering is the

15 The threshold energy is related to vMIN by ETH = 2μ2 v2
MIN/MN , where μ is the WIMP-nucleus reduced mass andMN is

the mass of the target nucleus.
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Figure 9.7 Dark matter direct detection limits. The left panel shows the limit on the WIMP scattering
cross section for zero-momentum transfer from a number of experiments for spin-independent
interactions, and the right panel is a similar graph for spin-dependent interactions. Completed
experiments are indicated by black curves and proposed experiments by grey curves. The currently
excluded area is shaded. The figures were adapted from figures by Michael Fedderke.
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upper value for the cross section where the signal from neutrino scattering will have to be
dealt with. There are two sources for these background neutrinos: solar neutrinos for low
mass (low-momentum transfer) and the diffuse background of neutrinos from other sources
at high mass (higher-momentum transfer). Of course, there is no way to shield the detector
from background neutrinos.

From the figures, one can see that planned experiments will explore practically all of the
region above the coherent neutrino background for spin-independent interactions. There
is significant white space to be explored for spin-dependent scattering. Before leaving the
figure, it is remarkable to note the size of the cross section limits. The present limits for
spin-independent scattering are pushing 10−45 cm2, or 1 zeptobarn! Future experiments
will push 10−48 cm2, which is 1 yoctobarn!

As with indirect detection efforts and collider detection efforts, the efforts to see
WIMPs through direct detection proceeds unabated. There are some obvious goals. The
spin-dependent limits should be pushed to the neutrino floor. There is a large amount of
real estate to be explored for spin-dependent scattering. It is also desirable to push the
limits to smaller mass (smaller recoil energy). That will probably require new detection
techniques beyond nuclear recoil. If one does see a signal, then it should be possible to test
for annual variation caused by the Sun’s motion through the WIMP sea. Different targets
would help resolve the question of the WIMP mass. Finally, an experiment with sufficient
directional sensitivity to the incoming WIMP would add a lot.

9.5.4 The WIMP Decade

Evidence for dark matter has been around for eight decades. The idea that the dark matter
is a WIMP has been around for four decades [25]. Indirect detection was first discussed in
1978 [34], and direct detection was proposed as early as 1985 [15]. The search for SUSY
is decades old; the search for WIMPs through missing momentum signals is more recent
[4]. But it is only in the 2010s that the three detection techniques have reached sufficient
sensitivity that they can eat into expected regions. This truly was the WIMP decade!

If we are through the WIMP decade without a WIMP signal, what does that mean? While
the simple WIMP hypothesis is really being squeezed (and the SUSY-WIMP hypothesis
squeezed even more so), there are still regions of parameter space where the simple WIMP
hypothesis can live. Let me give a simple example. Suppose the WIMP is a Majorana
fermion χ that couples to quarks in a form that mimics a Fermi-type interaction:16

�−2 χγ μγ5χ q̄γμ(CV − CAγ5) q, (9.8)

where � is some mass scale. For an interaction of this form, the annihilation of WIMPs to
quarks in the non-relativistic limit is proportional to v2. While this would lead to a mild

16 The Fermi interaction describing the coupling of neutrinos to quarks is (GF /
√

2)ν̄γμ(1 − γ5)ν q̄γμ(CV − CAγ5) q, where
GF is the Fermi constant with units of mass−2 and CV and CA are constants of order unity. One can demonstrate that for
Majorana fermions, χγμχ vanishes, so the expression in Eq. (9.8) would take a form similar to the Fermi interaction.
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suppression for freeze-out, it would mean that indirect detection limits do not apply. For
direct detection, the part of the operator that contains q̄γμγ5 q leads to a spin-dependent
interaction, and the limits are not strong. The part of the operator proportional to q̄γμ q
when coupled to χγμγ5χ is suppressed by v2 or momentum-transfer squared. Therefore,
direct-detection limits can be evaded. Furthermore, if the WIMP is massive enough, collider
limits can be skirted.

While there are ways to evade present constraints, if cosmologists live by the Bayesian
reasoning, they often profess, they would admit that the lack of a WIMP signal makes the
simple WIMP hypothesis less likely.17

But an important word in the previous paragraph is ‘simple’. There are scores of tweaks
to the simple WIMP model described here – too many to enumerate. Also, implicitly
assumed in the analysis presented here is the assumption that 100% of the dark matter
abundance resides in a single particle. That may seem naı̈ve since the visible matter we do
see is comprised of a rich variety of forms.

In spite of uncertainties and lack of experimental evidence, for the WIMP hypothesis,
perhaps the best thing to do is to keep calm and carry on with the experimental program!

9.6 What If Dark Matter Is Not a WIMP?

A wide range of possible candidates for dark matter was discussed in Section 9.3. In the
sections following where I concentrated on the possibility that the dark matter was a cold
thermal relic – i.e., a WIMP. One of the reasons the WIMP hypothesis is so attractive is
that the necessity of a WIMP–standard model coupling leads to several avenues to discover
WIMPs (although falsifying the WIMP hypothesis is more challenging). But what if dark
matter is not the simple WIMP discussed before?

Of course, one possibility is that it is a variant of the simple WIMP hypothesis. One
variant is ‘freeze-in’ models where the dark matter never obtains LTE but is produced due
to dark matter–standard model interactions. The current techniques for detecting WIMPs
may still bear fruit in this case. Another possibility is that dark matter is a WIMP, but it is
leptophilic and couples to leptons rather than hadrons. In this case, direct-detection limits
based on nuclear recoil would not apply.

In the three decades since theoretical physicists turned their attention to the dark matter
problem, a large number of possible solutions have been proposed. As mentioned before, it
would be tedious to mention them all. But it is interesting to note that the range of masses of
proposed candidates cover 81 orders of magnitude, from 10−22 eV (10−56 g) Bose-Einstein
condensates [18], to 10−8M� (1025 g) axion miniclusters [17, 22]. In this chapter, I have
concentrated on weakly interacting dark matter, but candidates have been proposed with
interactions ranging from strongly interacting [23] to interacting only gravitationally [8,
24]. If particle dark matter is the answer, the properties of the dark matter should fall in that
wide range; one can hardly imagine it wider!

17 Of course, in Bayesian reasoning, if your prior is unity, then no amount of negative evidence can change that.
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9.7 Final Remarks on Dark Matter and Fine-Tuning

There are some curious aspects to dark matter. First, one might ask why dark matter exists
at all. After all, we have a Standard Model of particle physics capable to accounting for
(at least in principle) all laboratory experiments and interactions. Our everyday world
experience does not scream out for the existence of dark matter. It is only when astronomers
look to the heavens that something seems amiss. Astronomical observations do not fit
the standard cosmological model without dark matter and dark energy. If not for irksome
astronomers, physicists would be happy without dark matter (and dark energy). This brings
to mind the famous quote attributed to I. I. Rabi in 1936 when he learned of the discovery of
the muon with surprising properties: ‘who ordered that?’ Indeed, who ordered dark matter
and dark energy? There are couple of ways to answer the question of why dark matter
exists. One possible response is that nature demands it. Dark matter is part of nature, and
when we understand the grander, deeper theory underpinning the current Standard Model
of particle physics, dark matter will naturally be part of the theory. If so, to ask why dark
matter exists is like asking why are there is a third generation of quarks and leptons. Another
possible answer is to evoke the Anthropic Principle (for a review, see Reference [26]) and
say that if not for dark matter, the Universe would not have turned out the way it did, and
we would not be here to ask the question. Perhaps there are other universes in a multiverse
without dark matter and without pesky astronomers. Some question whether the Anthropic
Principle explains anything and point out that people without ideas can still have principles.
But I am not sure that even a principle as accommodating as the Anthropic Principle can
explain why there is dark matter. After all, one could imagine arranging the Universe in a
way to accommodate galaxies, stars, planets, and people without dark matter.

Although perhaps one can imagine living in a universe without dark matter, it would not
look like our Universe, at least with regard to large-scale structure. In Section 9.4, we saw
that in a baryon-only universe structure would form top-down from the fragmentation of
large structures. While this does not appear to be the way structure formed in our Universe,
it would still eventually lead to structure.

Another curious aspect to the present composition of the Universe is the six-to-one
ratio of dark matter to baryons. A priori, this could be larger or smaller. The baryon
density seems to be set by the matter-antimatter asymmetry. While it is possible that such
a mechanism is responsible for the dark matter density, most scenarios have dark matter
arising some other way. Why would matter of such different origins end up being of the
same order of magnitude? Curious indeed! There does not seem to be any anthropic reason
for the six-to-one ratio. Perhaps not every coincidental numbers should be considered
fine-tuning.

If dark matter is a WIMP, the presently observed dark matter density is the result of
freeze-out in the early Universe. As discussed in Section 9.4, the freeze-out of WIMPs
depends on the interplay of the scattering processes and the expansion rate of the Universe.
There is some degree of tuning to get the necessary dark matter density, but the tuning is
not excessive.



378 Edward W. Kolb

One might also ask why neutrinos contribute a small but non-negligible amount to the
mass-energy budget. Whether neutrinos are massless or have perhaps 10 times the mass
they do, there does not seem to be a large cosmological consequence.

Since 95% of the Universe is dark and mysterious, perhaps it is not surprising that not
all fundamental cosmological questions (such as tuning) can be answered. One thing that
would greatly help point us to the answers would be the discovery of dark matter, perhaps
in this decade, the new decade of the WIMP!
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Fine-Tuning for Life
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Fine-Tuning: From Star to Galaxies Formation

j o s e p h s i l k

Abstract

Numerical simulations have had a huge impact on our visualisations of star and galaxy
formation, and thereby have greatly facilitated data modelling, interpretation, and forecast-
ing. However, little fundamental understanding has emerged. Galaxy formation involves
certain types of fine-tuning, as do star formation and the growth of supermassive black
holes. In this chapter, I will discuss the interplay of these diverse astrophysical phenomena
and show that simple back-of-the-envelope calculations can provide insights into the origin
of the fundamental scales of stars and galaxies and their fine-tuning.

10.1 Introduction

If the fundamental constants of nature differed from their measured values, life as we know
it would not have emerged. Imagine a universe in which the fine-structure constant was
slightly larger or smaller than the actual value that we measure. Stars like the Sun are
witness to a titanic battle between the forces of electromagnetism and gravity. The solar
system formed from the ashes of burnt-out stars. If this equilibrium is slightly, the very
existence of nuclear-burning stars is at risk. In such a universe, stars would never have
formed or might have collapsed to black holes. Galaxy formation could be obliterated or
drastically modified. Supermassive black holes could be far more or far less massive. All of
these issues merit some reflection in the context of fine-tuning of the fundamental constants
of nature (see Chapter 1).

Massive numerical simulations have had a huge impact on our visualisations of star and
galaxy formation and thereby have greatly facilitated data modelling and interpretation.
The significance of simulations for phenomenological predictions and forecasting cannot
be overemphasised. However, one can reasonably ask whether this is any more than a
convenient, albeit powerful, tool for developing future observing proposals or designing
new telescopes or whether simulations have led to the emergence of any fundamental
understanding of the natural phenomena. The response seems to be depressingly brief: no!

383
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I show here that back-of-the-envelope calculations cannot only provide insights into the
findings of simulations but can also account for the fundamental scales of stars and galaxies
and their fine-tuning.

It is well known that simple physical arguments can account for the fundamental scaling
relations of stars and galaxies – including Larson’s laws [23], the Tully-Fisher [49], Faber-
Jackson [13], Kennicutt-Schmidt [21, 35], and Magorrian [14, 17, 25] relations. To be fair
to simulators, the dispersion in these relations contains most of the relevant physics and
can only be adequately explored via state-of-the-art numerical simulations over a vast and
currently inadequate dynamical range. Here, however, I focus not on the scaling laws but on
the actual scales: characteristic, minimum, and maximum, from protostars to stars, galaxies,
and supermassive black holes.

Unlike the scientists of antiquity, astronomers today have two significant advantages.
One consists of the huge telescopes that peer back in time to the edge of the Universe.
A second is the mastery of modern physics and mathematics, which has greatly discouraged
the philosopher cosmologists and their theologian counterparts from entering the fray. I do
not mean to be completely discouraging; there are fundamental limits to the questions that
cosmology can answer.

The fossil radiation from the Big Bang, the cosmic microwave background, contains
the ultimate fossil clues. Infinitesimal fluctuations in the temperature track tiny variations
in density. Slight excesses in density, seen as hotspots, have slightly more gravity and so
attract the surrounding matter. The slight under-densities, viewed as cold spots, behave in
the opposite way: matter leaks out. This capitalistic view of the Universe, the rich becoming
richer and the poor becoming poorer, works for gravity as mass is either accumulated or
lost. We end up forming either massive clouds or empty voids. We are presently 13.8 billion
years after the Big Bang. The fossil radiation is a glimpse of the past: it emerges from the
early Universe 380,000 years after the Big Bang. So now we have a timeline for the first
stars. The fluctuations grew for about a billion years until the first star-forming clouds
collapsed. These weighed a million times the mass of the Sun. We are sure of this, at least
as a lower bound, because the less massive clouds are cooler. It takes a certain amount
of energy between colliding hydrogen atoms in order for atomic collisions to release
energy and allow the gas to radiate. If this does not happen, the gas cannot contract and
become denser. If the gas cannot lose energy and fragment into dense clumps, the first stars
cannot form.

Then, in the next 10 billion years or so, evolution proceeded relentlessly. The first
stars exploded and polluted nearby clouds. Clouds merged together to make more massive
clouds. These clouds were at first the sizes of small galaxies; those we call dwarf galaxies.
And many of these merge together into our Milky Way galaxy. Massive galaxies, such as
our own Milky Way, are surrounded by a cloud of leftover debris.

10.2 Stellar Basics

Eddington once famously said that a physicist on a cloud-bound planet could predict that
there are stars. What is a star? A galaxy is an agglomeration of billions of stars. All devolves
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around knowing their masses. Why should a star like the Sun weigh in at two billion trillion
trillion tons? By a Sun-like star, I mean a star with the same colour, or spectral type, and
composition. All such stars weigh a solar mass – no more, no less. And all other stars,
countless in number, are between a 10th of and 100 times the mass of the Sun. Once we
converge on the notion of a star, we inevitably wonder where it came from. This inevitably
leads us into a description of the first stars in the Universe. Although they disappeared long
ago, they left traces and fossils that we try to decipher.

Nearby, in Time and Space

But let’s begin with the nearest star, our Sun. First, how did it form? A cloud of interstellar
gas cooled down. It collapsed under its own gravity. The cloud fragmented into dense
clumps of cold gas. Each of these gave birth to a star. A forming star was surrounded
by a nebula of cold gas and dust that had too much rotation to collapse. Instead, the nebula
cooled and formed a dusty gaseous disc that spun around the central object, which we refer
to as a protostar, destined, as it shrank further, to be a star. The protostellar disc had its own
destiny: to form planets.

Most of the stars were a 10th of the mass of the Sun. Relatively few were 10 solar masses
or more. Most stellar mass is in stars of around half of the mass of the Sun. And then there
were the Sun-like stars. The more massive a star, the more rapidly it aged. Stars radiate by
thermonuclear burning of hydrogen in their cores. A helium nucleus has atomic mass 4. It
consists of two protons and two neutrons. It forms by combining four protons along with
two electrons, to form a helium nucleus of mass 4 and charge 2 in atomic units. In fact,
the helium nucleus weighs 7% less than four protons. This 4% is released as energy via
Einstein’s famous equation, E = mc2. That is how the Sun battles gravity. Thermonuclear
energy supplies the thermal pressure that supports the Sun. The fuel supply is good for
billions of years.

When the hydrogen fuel supply in the core of the Sun, where the hydrogen is hot enough
to burn, is exhausted, the Sun contracts, and the core heats up. Helium is ignited, and it
burns by thermonuclear reactions into carbon. This reaction releases so much luminosity
that the outer part of the Sun swells up into a red giant. Our sun is fated to become a red
giant in about four billion years. At this time, the Sun’s atmosphere will encompass the
orbit of the Earth, burning any surface organic material into ashes. Once the helium energy
supply is exhausted, the core contracts into a white hot star about the size of the Earth, but a
million times denser. We call this a white dwarf. The atmosphere is ejected in the beautiful
phenomenon that we see as a planetary nebula. The white dwarf gradually cools down. Our
galaxy is teeming with old white dwarfs, descendants of Sun-like stars.

A star that is 10 or 30 times the mass of the Sun has a much more accelerated evolution.
It burns up its nuclear fuel at a rate of the cube of its mass. This means that its lifetime as
a hydrogen-burning star may be only a hundred million years or even a few million years.
These are tiny timescales in the grand cosmic scheme; many such events occur over the
10 billion year time span of our galaxy. So we can use our galaxy as an astronomical zoo:
it contains stars at all stages of their evolution, from birth to death. We can visualise the
birth, adolescence, maturity, and old age of stars.
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Eddington’s Amazing Insight

Decades before we knew the energy source that powered the stars, how did famed
astronomer Sir Arthur Eddington conclude that stars are inevitable? Eddington made
his reputation by being one of the first to understand the significance of Einstein’s theory
of general relativity, published in 1915. Perhaps as a Quaker and conscientious objector,
he had more time on his hands. But he realised that a key prediction, that gravity bends
light, could be tested during the next total eclipse of the Sun by studying the deviations
in positions of stars close to the edge of the Sun that otherwise were totally obscured
by sunlight. This test occurred in 1919, when Eddington secured the possibility of the
leadership of a solar eclipse expedition to Principe to substitute for the military service
he refused. Viewed from this island off the west coast of Africa, totality would endure
more than six minutes, one of the longest total eclipses of the century, and allowing ample
time to photograph the stars visible near the position of the Sun. The measurement was a
success, revealing the displacement predicted by Einstein’s theory of the bending of light
by gravity, twice that expected according to Newtonian gravitation.

Eddington became famous overnight, and even more so did Einstein. Eddington’s major
achievements, however, were in theoretical astrophysics, where he pioneered our modern
understanding of stars. He reasoned that a star is a giant ball of gas supported by gravity.
Here is what he wrote in 1926 (with very slight amendment):

We can imagine a physicist on a cloud-bound planet who has never heard tell of the stars calculating
the ratio of radiation to gas pressure for a series of globes of gas of various sizes, stating say, with
a globe of mass 10 gm., then 100 gm., 1000 gm. and so on, so that her nth globe contains 10n gm.
Regarded as a tussle between gas pressure and radiation pressure, the contest is overwhelmingly
one-sided except between Nos. 33–35, where we may expect something interesting to happen. What
‘happens’ is the stars. We draw aside the veil of cloud beneath which our physicist has been working
and have her look up at the sky. There she will find a thousand million globes of gas nearly all of
mass between her 33rd and 35th globes, that is to say, between 1/2 and 50 times the sun’s mass.

Eddington realised that the pressure of radiation is highly destabilising. He had studied
giant globes of gas supported by the balance between their own gravity and the interior
pressure of the gas. But as one turned up the mass, and consequently the gravity, the centre
became so hot that the pressure of radiation exceeded that of the gas. And this was enough
to blow the globe apart. And if the mass was too small, the centre of the globe was so cold
that it could not resist gravity, so he reasoned. That is how he deduced, from pure thought,
the mass range of the stars.

In the century that followed, astronomers measured the masses of many stars, typically
by using the orbits in binary systems, and confirmed Eddington’s reasoning. Most stars are
similar in mass to the Sun, more typically half or a third the mass of the Sun.

10.3 Stellar Mass-Scales

Let us begin with how stars are made, by fragmentation of molecular clouds. What deter-
mines the scale of the first gravitationally bound clumps of gas, the building blocks of stars?
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My analysis will be analytic and order of magnitude, designed to bring out the underlying
physical scalings. All examples involve fundamental constants and illustrate the role of
fine-tuning.

10.3.1 The Minimum Protostellar Fragment Mass

I first derive the collapse time of a collapsing cold gas sphere of either (1) uniform density or
(2) non-uniform density. For simplicity, I take an isothermal sphere density profile ρ(r) =
v2
s /(2πGr

2), where the sound speed is expressed in terms of the temperature v2
s = kT /mp,

and turbulence and magnetic support are neglected.
Some simple scaling relations between fragment mass M , radius R, and free-fall time

tff are R = vstff = M1/3ρ−1/3 = GMv−2
s , and ρ = M/R3 = v6

sM
−2G−3. The lumi-

nosity of an optically thick fragment satisfies

Lrad = σ4πT 4R2 = σ4πT 4G2M2v−4
s . (10.1)

The accretion rate onto a protostellar core that is surrounded by such a sphere con-
trols the rate of gravitational energy release. The gravitational energy release from
contraction is Lg = GM2R−1t−1

dyn = GM2R−2vs = v5
s G

−1. Hence, equating Lrad = Lg,
σ4πT 4G2M2v−4

s = v5
s G

−1 or M = V
9/2
s T −2G−3/2(σ4π)−1/2 = constT 1/4. To convert

to fundamental units, I use σ = (2π5/15)k4h−3c−2 and write T dimensionlessly as
kT /mpc

2 to obtain

M

mp
= α−3/2

g α1/2
(
kT

mpc2

)1/4

. (10.2)

I also write T in units of Rydbergs, 1Ry = α2mec
2/2 to get a crude estimate of the cooling

levels and energy radiated by atomic or molecular excitations. Dimensionless constants to
a small power can fix this. Then one has

M = α−3/2
g α

(
me

mp

)1/4 (
kT

1Ry

)1/4

. (10.3)

This opacity-limited minimum fragment scale is around 0.01M� [30, 38] (see Figure 10.1).
Note that the definition of ‘gravitational coupling constant’, which explicitly connects

the gravitational and electromagnetic couplings between two protons, is αg = Gm2
p/h̄c =

6×10−39. One can also write this as αg = Gm2
p/h̄c = (mp/mpl)2, where the Planck mass

is
√
h̄c/G. We shall see that the characteristic mass of a star is α−3/2

g = (mpl/mp)3 = 2 ×
1057. Note that the ratio of the attractive gravitational force to the repulsive electromagnetic
force between two protons is α−1αg (see also Chapter 2).

Attainable temperatures are 10 K in nearby molecular cloud cores and 1,000 K in
primordial clouds with only trace amounts of H2 as coolants. The sound speed and accretion
rate vary considerably over this temperature range. However, one always finds that the
minimum mass limited by opacity is aroundM ∼ 0.01M�. Remarkably, detailed numerical
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~T 3/2 / r1/2Jeans mass

density

Figure 10.1 Opacity-limited fragmentation. The Jeans mass-scale decreases with increasing density
until opacity intervenes, and the fragment can no longer radiate freely. This sets a minimum mass-
scale of about 0.01M�.

simulations of star formation find a similar characteristic minimum mass-scale. Fragmen-
tation that is limited by opacity inevitably occurs down to this scale. Some physics must be
added to arrive at a typical stellar mass of order a solar mass.

10.3.2 The Characteristic Mass of a Star

There is a problem with molecular cloud fragmentation. Stars are much more massive than
the minimum fragment mass. The initial mass function of stars was first developed by
Edwin Salpeter [33]. His great insight was to realise that counts of massive stars, being
short-lived, underestimate the initial mass function by a large factor. This one insight
removed any motivation for a non-stellar origin for the heavy elements as Gamow had
once hoped to find in the Big Bang.

Two more pieces of astrophysics are needed to go from fragments to stars. First, the
fragments grow by accretion to the stellar mass range. Second, accretion must be halted, to
produce decreasing numbers of massive stars and to avoid producing overly massive stars.
This occurs via feedback, from deuterium burning to magnetically suppressed accretion
and magnetically driven outflows for low-mass stars to ionisation fronts and winds for
massive stars.

The Role of Deuterium Burning

Deuterium burning marks an important phase in the contraction of a star to the main
sequence. A minimum mass is needed for deuterium burning to occur; otherwise, one
simply has a brown dwarf powered only by gravitational contraction.
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I follow and reassess the arguments of Krumholz [22], in which he reevaluates the
gravitational fragmentation mass for a protostar by using accretion to set the protostellar
luminosity and deuterium burning to set the central temperature. He argues that approxi-
mately half of the Bonnor-Ebert mass forms the protostar – namely,

M∗ ≈ 0.6

√(
kbTe

μH2MHG

)3 1

ρe
. (10.4)

Here, Te is the gas temperature at the edge of the gas accreting to form the star, and ρe is
the local gas density, averaged over the collapsing region. He fixes Te from the protostellar
luminosity, assuming dust opacity dominates, and obtains the luminosity from the energy
released by accretion onto the central protostar. The scalings are L ∝ TcṀ∗ ∝ MTcρ

1/2
e ,

and the central temperature Tc is fixed by deuterium burning to be constant (in terms of
fundamental constants, it is proportional to the Gamow energy, EG, for the D burning
reaction, itself ∝ α2mHc

2). The temperature Te is determined by the central luminosity,
and for the case of fiducial Milky Way–type dust cooling in a n = 3/2 polytrope, scales as
(�L/M)1/4. The interstellar pressure enters via the assumption that surface density (more
physically, dust opacity) is constant and, consequently, pism ∝ �2.

The resultant scaling for stellar mass is

M∗ ∝ α−3/2
g α2/3p−1/18 

−4/3
c , (10.5)

where c = (EG/4kTc)1/3 ∼ 10 and Tc ≈ 106 K at the onset of the deuterium burning that
determines the onset of the formation of the star. Krumholz, in fact, normalises the inter-
stellar pressure to the Planck pressure c7/h̄G2 and thereby introduces what is an unhelpful
dependence of the characteristic stellar mass on the gravitational fine-structure parameter,
Gm2

p/h̄c, obtaining

M∗ = AKmp
(
α41

α25
g

)1/18 (
p

pPlanck

)−1/18

, (10.6)

where Ak is a dimensionless constant.
In fact, it is more appropriate to normalise the temperature to natural atomic units –

namely, to a Rydberg kTryd = α2mec
2/2. After all, quantum gravity has little relevance for

star formation. Only atomic or molecular processes, specifically Ly-α emission or molecu-
larH2 rotational excitations, are effective for primordial star formation, with T ∼ 1,000 K,
and, of course, in the present epoch interstellar medium, star formation occurs at T ∼ 10 K.
The pressure at the boundary of the protostar can be written to within dimensionless factors
of order unity as

p = ρkT

mp
= v8

s

G3M2
. (10.7)

For purposes of normalisation, I use a fiducial value vs = αc, equivalent to the Rydberg
energy kTRyd of an electron. Now, rewriting the expression for the characteristic mass, I
find that
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M∗ = ASmHα−3/2
g α1/6

(
kTc

mpc2

)4/9
(
c8m4

p

e6p

)
, (10.8)

where AS is a dimensionless factor of order unity. After inserting the previous expression
for the pressure in terms of vs , this reduces to

M∗ = ASmHα−3/2
g α−1/2

(
mp

me

)1/4 (
kTc

mpc2

)1/2 (TRyd
T

)1/4

. (10.9)

Krumholz’s conclusion, as corrected here, is essentially unchanged: the only depen-
dence ofM∗ on astrophysical parameters is via the interstellar pressure, and the dependence
is exceedingly weak. There is still an explicit dependence on the deuterium burning temper-
ature. However. there is no longer any scaling with ambient pressure, rather with ambient
temperature. Note that the temperature scaling is the inverse of that found for opacity-
limited fragmentation. The scaling in fundamental units gives a mass-scale of around a
solar mass.

Magnetically Driven Feedback

There is a competition between accretion and nuclear energy-driven feedback from
the protostar. This limits growth of the protostar. Accretion and feedback are key to
understanding the masses of subsequent generations of stars. First, there is accretion to
grow the protostellar fragments. The accretion rate in the core of a collapsing isothermal
cloud is tacc ∼ v3

s /G, where vs is the local speed of sound. At typical cold molecular
cloud temperatures, T ∼ 10 K, vs ∼ 0.3 km/s and Ṁ ∼ 3 × 10−6 M�/yr. The protostar
is powered by gravitational contraction over a Kelvin-Helmholtz time. This is of order
tKH ∼ GM2/(RL) ∼ 3.105yr for the Sun at a typical protostellar luminosity of 10L� and
radius of 10R�. One can form a star of around a third of a solar mass before feedback can
occur once the onset of energy release by nuclear burning intervenes. This corresponds to
the characteristic mass of a star.

Such phenomena as magnetically regulated contraction, controlled by dissipation of
magnetorotational energy, play an important role early in the pre-main-sequence phase in
determining the distribution of stellar masses. All of this culminates via feedback in the
form of stellar winds from low-mass and ionisation fronts from massive young stars. The
net effect is that typical stars have masses of order a third of a solar mass, with a mass
function at birth that extends roughly as the inverse square of stellar mass to about 200
solar masses, above which stable stars cannot form because of Eddington’s argument: they
would be radiation-pressure dominated and unstable.

Derivation of the actual form of the mass function at stellar birth is a complex process,
in which self-regulation by outflow-driven turbulence plays a role. Stellar self-regulation
is strongly dependent on stellar mass, the more massive stars having stronger outflows that
drive turbulence and progressively raise the Jeans mass, inhibiting the number of forming
stars and leading to a Salpeter-like initial mass function (IMF) [39]. There are other sources
of turbulence, including self-gravity, cloud collisions, spiral density waves, driving by
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stellar bars, and mergers with dwarf galaxies. The IMF can be derived in a general way and
incorporated into a Press-Schechter-like mass function that is controlled by molecular cloud
turbulence [19]. One consequence is that a top-heavy IMF can be generated in extreme
situations [4].

10.3.3 The Minimum Mass of a Star

Magnetic fields play a crucial role in star formation via enabling transfer of angular momen-
tum. This is often manifested via magnetically driven protostellar outflows, which are
observed over a wide range of mass-scales. The amplification of fields via a dynamo
is an essential precursor to low-mass star formation. Fields are most likely seeded by a
Biermann battery. In an interstellar cloud of scale L, electron density ne, turbulent – includ-
ing thermal – velocity dispersion vs , and pressure p, the Biermann mechanism combines
differential rotation and pressure gradients to generate a seed field

BBier = c

ene

p

Lvs
. (10.10)

The conventional dynamo appeals to a differentially rotating protostellar disc that devel-
ops magnetorotational instabilities (MRI) instabilities. These require a minimum field in
order for the electron Larmor radius to be less than the scale of the most rapidly growing
mode. The MRI disc requires a minimum field of

BMRI = π3
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To initiate the MRI dynamo, we require [41] the Biermann battery to provide the initial
seed BBier > BMRI.

To reduce this further, I set

p = 2nekT ; kT = mpv2
s ; ρ = 3v6

s

4πG3M2
; mpv
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2
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For MRI to be seeded, the protostellar mass cannot exceed a critical value,

MMRI <
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Magnetically driven feedback is seen to be important for current epoch star formation.
One may compare this with the typical stellar mass: α−3/2

g mp. We infer that
MMRI <∼ 0.1M�, where T ∼ TRyd. Magnetically driven feedback in current-epoch star
formation is relevant for the upper limit on the mass of a brown dwarfs, a star that is too
low in mass to achieve thermonuclear ignition. In the primordial situation, where much
larger characteristic stellar masses are formed, magnetic feedback may still play a role, via
seeding of the MRI dynamo, in allowing some lower-mass stars to form.
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10.3.4 The Fate of Stars Like Our Sun: White Dwarfs

We can calculate from first principles the mass of a white dwarf. The Sun will end up as a
a white dwarf, a compact star whose nuclear fuel supply is exhausted and is supported by
degeneracy pressure of the electrons. This phenomenon occurs at sufficiently high density,
when nuclear fuel resources are exhausted and there is no thermal pressure support. The
Pauli exclusion principle comes into play, forbidding fermions from occupying the same
quantum state, and manifests itself as a quantum pressure.

For a white dwarf, there are two regimes:

1. If degenerate but non-relativistic, pe = n�p2/me = n5/3h̄2/me, where �p = h̄n1/3,
ne = �x−3, and (�x)(�p) = h̄. This yields GM/R = pe/ρ ∝ n5/3.

2. If degenerate and relativistic, then pe = nec�p = h̄cn4/3, with GM/R = pe/ρ =
h̄c(M/R3)1/3/m

4/3
p . This leads to the white dwarf mass MWD =

(
h̄c/G3/2m−3

p

)
.

Rewriting this expression, the white dwarf mass is

MChandra ≈ α−3/2
g mp. (10.14)

In summary, two dimensionless fine-structure constants – combining quantum, electro-
magnetic, and gravitational forces – determine the future of our sun, the mass of the white
dwarf to which it will collapse. The energy release en route is manifested by the formation
of an ultraluminous red giant, followed by the expulsion of a planetary nebula, leaving the
white-dwarf remnant in its centre. Planetary nebulae are among the most beautiful objects
photographed in the sky.

10.3.5 The Most Massive Stars

Let us next see what determines the upper limit on the mass of a star. One of the greatest
battles of all time occurs when the force of gravity faces up to the electromagnetic force.
Gravity is an incredibly weak force. But it adds up. For stars, its main opponent, elec-
tromagnetism, provides pressure and sums over positive and negative charges. So while
the repulsive electromagnetic force between a pair of protons is stronger than the attractive
gravitational force by about 40 powers of 10, if we consider enough atoms with protons and
electrons whose charges cancel, the forces can balance each other. When we turn on gravity,
many of the atoms are crushed into bare nuclei by the immense pressure that itself opposes
the force of gravity. The magic number for an equilibrium between electromagnetic and
gravitational force is about the mass of the Sun, give or take Eddington’s factor of 10 or
100 – which, in a nutshell, is why we are here.

One can show that the upper limit on the mass of a hydrogen-burning star is mmax ≈
α

−5/3
g α2/3mp. For a massive star, we use opacity τ = κρR, where κ = σT /mp and σT is

the Thomson scattering cross section. The luminosity is given by

L = (κρ)−1∇(σ4πT 4R2) ≈ σ4πT 4R2/τ = v5
s /G. (10.15)
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Then the electron scattering opacity can be expressed as
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The resulting expression for the maximum stellar mass is

M = α−5/3
g α7/3

(
me

mp

)1/6 (
τ

τes

)1/3

. (10.17)

Here, τ is the optical depth expressed in terms of the Rosseland mean opacity. The explicit
dependence on opacity is seen to be very weak.

Massive stars are short-lived because of their prolific burning of nuclear fuel. They
explode after exhausting their nuclear fuel supply. Their masses are so large that there is
no stable end point. Their cores collapse to form neutron stars, objects that are a thousand
times more compact than white dwarfs, and supported by the quantum degeneracy pressure
of neutrons. Such stars, if of initial mass less than about 25M�, end up as neutron stars.
These are made of the most extreme form of matter with the nuclei so compacted together
that the stars are essentially at nuclear density. The maximum mass of a neutron star is
calculated to be three solar masses. The parent stars lose matter by driving winds as they
evolve and end their lives as neutron stars. The radius of a solar mass neutron star is about
10 kilometres.

So much energy is released in this final collapse that a huge explosion blows off the
outer layers of the star. This is a supernova explosion. The light released in this immense
explosion, heralding the death throes of a massive star, is about that of the luminosity of an
entire galaxy, some tens of billions of suns. The impact of such a violent explosion on the
surrounding interstellar gas results in spectacular images of shock waves igniting quiescent
gas clouds into glowing ribbons of hot gas that extend over hundreds of light years.

We observe objects well above the maximum mass of compact stars, produced by the
death and collapse of massive hydrogen-burning stars. Stars that are initially more than
about 25M� cannot eject more than 90% of their initial mass. Any compact object that is
more massive than 3M� must be a black hole. One cannot pack matter any more densely
than a neutron star without forming a black hole. The most massive stars collapse into black
holes when their supply of nuclear fuel is exhausted. We measure their masses because
there often is a close companion star whose atmosphere is heated by the gravity of its black
hole companion and which emits prolifically in X-rays. Prior to 2016, the existence of
black holes was conjecture and inference, although sound physical reasoning reinforced
our belief in the existence of black holes. But the reasoning was indirect. The LIGO
gravitational wave detectors provided the ultimate breakthrough via detection of merging
black holes [1].

But one question leads to another. What came first, before the star clusters of Population
III? Like that of the legendary old lady at a talk, often attributed to nineteenth-century
philosopher William James, who had an answer as to what came first. Your cosmology is
rubbish, she said – the world is supported by a giant turtle. So what supports the turtle?
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It’s a second turtle. And what supports that? It’s turtles all the way down, she continued.
This paradox of infinite regression is more commonly known as the chicken-and-egg prob-
lem: which came first? We believe that the smallest galaxies came first. Let us see what
determines the mass of a galaxy today.

10.3.6 The First Stars

The most massive stars of all directly collapse into black holes. This is where our search
for the first stars leads us. For we expect that the first stars were exclusively massive
compared to the Sun. The early Universe was metal-free, consisting just of hydrogen
and helium atoms. Now, metals control gas cooling and, hence, gas pressure. Because in
today’s Universe interstellar clouds are highly contaminated by metals, gas cooling is very
effective. This means that the ability to support massive clouds from the compressive effects
of gravity is greatly reduced. The clouds fragment into smaller clumps, and it is these that
form stars today. The typical star in the Milky Way is about a third the mass of the Sun.

In the early Universe, conditions were different. There was pristine gas, hydrogen and
helium. The lack of effective cooling by the metal pollutants meant that fragmentation was
relatively ineffective. We refer to the first, zero metallicity, generation of stars as Population
III. The gas temperature even in dense clouds is controlled by molecular hydrogen cooling.
The typical temperature is determined by the lowest rotational level of H2 and is around
1,000 K. This means that the sound speed is of order 3 km/s, and, hence, the accretion rate
is around Ṁ ∼ 3×10−3M�yr−1. Unimpeded accretion would generate typical first stars of
thousands of solar masses. Such masses could accumulate in accreting gas over the typical
Kelvin-Helmholtz timescale of a million years before strong energy release in the form of
ionising photons occurs.

To better estimate how feedback intervenes to prevent all first stars being thousands of
solar masses, consider the relation between mass and luminosity, L ∝ M3. Inserting this
into the expression for the duration of the Kelvin-Helmholtz phase, one sees that tKH ∝
1/MR. Let us assume vs is controlled by molecular physics and require tKH to be less
than tacc for effective feedback above a mass Mcr. Then, let’s use the protostellar opacity
constraint κρR ∼ 1 to set R ∼ (κM)1/2 to deduceMcr ∝ T −1, where T is the temperature
of the accreting gas. I conclude that feedback is effective today in cold molecular clouds
but much less effective by a factor ∼ 100 in mass threshold in the primordial stellar case.
Hence, the characteristic mass of the first stars is of order 100M�.

Numerical simulations, including the effects of feedback on the accreting gas, show that
there is considerable mass loss, and the typical mass of a first Population III star ranges from
hundreds of solar masses at high redshift (z > 20), where there is intense UV radiation, to
tens of solar masses at lower redshifts, where the UV background is lower and H2 cooling
is more effective [20].

These massive stars lived fast and furiously, dying in supernova explosions after millions
of years. They generated elements like carbon, oxygen, and iron. The explosions polluted
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their environment. Once enough pollution of heavy elements occurred and enhanced cool-
ing at low temperatures, the typical gas accretion rates onto protostellar fragments were
greatly reduced. Once a metallicity [Z] >∼ − 4 was reached, the first generation of exclu-
sively massive stars gave way to formation of normal stars whose typical masses were of
order a solar mass. There were fewer more-massive stars, and the mass range of Population
II spanned the full range that Eddington had envisaged. Their low metallicity tells us that
these are mostly old stars that formed early in the history of our Milky Way galaxy.

The spectra of the most metal-poor halo stars reveal fossil tracers from a previous
generation of long-extinct stars of the first generation. The ratios of certain elements to
a standard tracer such as iron are useful age indicators since iron is ejected in supernovae
throughout the history of the galaxy. If we find a very iron-poor environment, we can be
sure it is old. And if, in that environment, there are overabundant traces of unusual elements
not normally produced in today’s Universe, we can attribute such clues to the ashes from
the first generation of short-lived stars, incorporated into the clouds that made all later stars.
It as though we have silent witnesses to a long-vanished crime scene.

10.3.7 So What If G Was Different?

Imagine we live in a universe with a very different value of Newton’s constant. If G were
too small, there would not be time to make stars within the age the Universe. The lifetime
of a nuclear-fuelled star is proportional to GM . Since the mass of a star is of order α−3/2

G ,
its lifetime is proportional to G−1/2. So if G were smaller by a factor of 108, carbon
would not be formed, and we would not be here. This argument assumes the age of the
Universe has nothing to do with G, as it is dominated by dark energy – that is to say, the
energy density associated with the cosmological constant, or some 10 billion years when it
becomes dominant (see Chapter 3 for more details). That’s the modern view.

Robert Dicke had a somewhat different take on this [10]. In the case of a closed
Friedmann universe, considered by many at that time to be the most natural choice of a
cosmological model, the age of the universe depends as G−1/2, and so stars are inevitably
fine-tuned to produce carbon. However, for an Einstein–de Sitter universe, or an open
universe, we would need to be at a special epoch. This can be expressed as Dirac’s
coincidence [11] between the scales of cosmology, involving G and H0, and quantum
physics, involving α and h̄.

10.3.8 Our Lack of Understanding of Star Formation Physics

Here is one recent example to demonstrate the fragility of our current knowledge of star
formation. In our Milky Way galaxy, most dense molecular gas, where much of galactic
star formation occurs in giant molecular clouds (GMCs), is in the ∼ 3 kpc radial distance
molecular ring. However, within ∼ 0.5 kpc radial distance, the central molecular zone
(CMZ) contains massive giant molecular clouds of typical mass ∼ 106M� and density
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∼ 100 cm−3, amounting to ∼ 20% of the dense molecular gas in the galaxy, but with the
star formation efficiency suppressed by an order of magnitude compared to the molecular
ring [2].

Compare this result with ALMA molecular mapping of the nearest starburst galaxy,
NGC 253, which reveals some 10 GMCs of higher-density n∼ 2,000 cm−3 and mass
107 M� in its central molecular zone that are somewhat more extreme than those in normal
galactic star–forming discs. The star formation efficiency (per free-fall time) in NGC 253
GMCs matches the standard ∼1% for star-forming disc galaxies.

The most remarkable fact, however, is that the measured Mach number in these star-
forming GMCs is ∼ 90, versus ∼ 10 in the star-forming GMCs in the MWG disc [24]. The
turbulence driver in the Milky Way’s GMCs is usually considered to be either the central bar
or energy released via gravitational contraction. Perhaps the comparison between the MWG
and NGC 253 indicates one should blame star formation, but the details of the turbulence
driving are far from evident. Indeed, the extreme turbulence measured in the GMCs in
the star-forming zone of NGC 253 and their star formation efficiency, comparable to that
in most galactic disc GMCs, along with the relative longevity of the observed NGC 253
inner GMCs per disc crossing time (the cloud free-fall time is ∼ 0.7 Myr, and the disc
crossing time is ∼ 3 Myr), seem to demand another explanation for the turbulence driver.
This might possibly involve magnetic compression [3], although cloud survival remains to
be demonstrated.

10.4 Galactic Scales

I now turn to larger scales. Galaxies have a characteristic mass. There is a limit to the mass
of a galaxy. Essentially all galaxies host central supermassive black holes. The masses of
supermassive black holes scale with the galaxy mass. About 10% of the time, these objects
are fed enough gaseous or stellar fuel to be visible as active galactic nuclei or quasars.
There are universal scaling relations involving galactic or SMBH masses, and these various
relations involve fundamental constants and, hence, fine-tuning.

The Characteristic Mass of a Galaxy

The mass function of galaxies [29] comes from cold dark matter assembly via gravita-
tional instability in the expanding Universe, seeded by primordial density fluctuations (see
Chapter 6). The luminosity function of galaxies [34] arises from baryonic dissipation and
gravity. Both functions are described by a power-law with an exponential cut-off at high
masses. Both functions have a characteristic scale, in mass and in luminosity. It is possible
to connect these scales and derive the characteristic mass of a galaxy in terms of funda-
mental constants.

To demonstrate this, I compare the free-fall time with the cooling time for an isothermal
sphere. This yields a necessary condition for efficient star formation. The cooling rate
is [46], with an update including time-dependent ionisation in radiatively cooling gas [18].
For a gas cloud of galactic mass, I use the cooling function
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where vc is the circular velocity of a test particle in the galaxy at the half-mass radius,
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, and Eγ =α2c2me. Here, β = 0.5 describes bremsstrahlung, and

β = −0.5 approximates bound-free cooling. For a hydrogen-helium plasma at 105 −107K,
β ≈ −0.5 is a reasonable approximation. I set tc = 3kT /(2�Hn) and td = GMg/(2v3

c ),

where Mg is the dynamical mass of a galaxy. The characteristic mass of a galaxy can now
be expressed as
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Remarkably, this gives the characteristic stellar mass of a galaxy [31, 37]. If the cooling
time is set equal to the free-fall time, this yields a reasonable limit on the maximum
dissipation time needed to guarantee efficient star formation, which is a necessary although
not a sufficient condition for star formation.

One can make the preceding result more precise by considering a more general
parametrisation of the cooling function,
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where the correction to free-fall via addition of bound-free cooling is

gbf = 1 + α2

2
me/mp (c/vs)

2 . (10.21)

The characteristic galaxy mass in baryons is now
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This amounts to approximately 1011M�. Note that, ignoring factors of order a few, the
mass of a star is α−3/2

g , whereas the mass of a galaxy is α5α−2
g mp/me, since vs/c ∼ α.

Hence, the number of stars in a typical galaxy is α5α
−1/2
g mp/me ∼ 1012.

We see explicitly that gbf(vs/c)
2 ≈ constant over a wide range of temperatures. This

is true for H+He cooling but remains more or less the case even when metal cooling is
included. One can account, from first principles, for the characteristic Schechter luminosity
L∗ as the mass in baryons that can cool efficiently within a dynamical time and form
stars (see Figure 10.2). By abundance matching, one also infers the dark mass–to-light
ratio associated with the galaxies, again in terms of fundamental constants. It does not
matter whether the gaseous halo is a monolithic collapsing cloud supported by gravity or a
collection of clouds contained by the same gravity field: the shock velocities are essentially
the same.
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Figure 10.2 The halo mass function and the galaxy luminosity function. The normalisation of the
luminosity function is from observed galaxy counts, whereas the dark matter halo function is renor-
malised to match at the critical, or Schechter luminosity. L∗ is calculated by the cooling requirement.
This gives the characteristic luminosity of a galaxy or L∗ ∼ 3 × 1010L�. The renormalised ratio
gives the predicted mass-to-luminosity ratio for L∗ galaxies. Figure taken from Reference [45].

Next, I consider continuing accretion of gas on timescales longer than the free-fall time.
This is relevant to make the most massive galaxies and would be appropriate to the massive
central galaxy in a cluster. In the previous derivation, I replace the galaxy dynamical time
with the age of the Universe – i.e., I set the gas cooling time equal to the Hubble time. This
provides the maximum baryonic mass of a galaxy. The additional factor is

tH

td
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(

12πGρ

H 2
0

)1/2

=
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9

2

ρg

ρ̄(z)

)1/2

≈ 25. (10.23)

This nicely accounts for typical masses of the most massive galaxies, these being the
brightest cluster galaxies. On group and scales, cooling is so long that star formation
is inefficient. Galaxies survive as discrete objects, modulo merging, and supermassive
galaxies are rare.

Confrontation of Theory and Observations

Galaxies span a range of mean densities. At the epoch of first collapse, or formation,
the mean gas density, averaged over the halo virial radius, is largely determined by the
epoch at which the halo initially decoupled from the expanding Universe (see Figure 10.3).
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Figure 10.3 All galaxies form by dissipation in their protogalaxy gas-rich phase; clusters do not. The
dotted line demarcates the region where dissipation occurs within a free-fall time. The thick dashed
line shows the halo dark matter evolution, corresponding to the evolution of the virialised density
with decreasing redshift. This is normalised to the CMB temperature fluctuations, for an assumed
nearly scale-invariant power spectrum. All systems that dissipate and form stars lie above this line,
at higher densities. Intergalactic clouds, detected as the Ly-α forest, lie below this line. Progressively
more massive objects collapse later, in bottom-up evolution.

It then contracted by a factor of two to virialise at an over-density of 18π2 relative to the
background at this formation epoch, in the simplest spherically symmetric, non-dissipative
model. Hence, dwarf galaxies, which form earliest, have the densest halos.

Baryons dissipate and are denser than the dark halo matter. Hence, the condition for
cooling within a free-fall time provides a demarcation zone in the baryon density–virial
temperature diagram. The latter translates to stellar velocity dispersion in the spheroid,
useful in order to make more direct contact with the galaxy data. Galaxies of all Hubble
types fall within the dissipation region, from the most massive old elliptical galaxies to the
younger disc star-forming galaxies, and all the way down in mass to the dwarf galaxies.
On the most massive scales for collapsed systems, groups and clusters of galaxies are at
sufficiently low density because of late formation that they lie outside the dissipation region,
thereby accounting for their being systems of discrete galaxies.

The predicted correlation of the data in the density-temperature plane is re-expressed in
more precise empirical correlations. These include the Faber-Jackson relation, the funda-
mental plane for early-type galaxies, and the Tully-Fisher relation for later-type galaxies.
All of these are manifestations of the relations between the stellar mass or luminosity of
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a galaxy, its stellar velocity dispersion or rotation rate, and its size. The stellar velocity
dispersion for slowly rotating early-type galaxies as well as the rotation curves for disc
galaxies and rapidly rotating early-type galaxies are largely controlled by the dark matter
content, at least in the outer parts of the galaxies, as is also the case for dwarf galaxies.
Intergalactic clouds fall into this general arrangement. They have not collapsed and, indeed,
many have been heated and expanded, so they are marginally self-gravitating. They lie
below the galaxy locus.

10.5 Supermassive Black Holes

There are two distinct varieties of black holes: those in the range of 3–100 solar masses,
formed by stellar death, and the supermassive variety at the centres of galaxies, observed to
weight from a 100,000 to some 10 billion solar masses, and formed mostly by gas accretion.
The accreting gas forms an accretion disc and fuels the black hole, and gravitational energy
is released in violent explosions, outflows, or plasma jets. We observe the effects of black
hole outbursts on their environment, effects for which we have no alternative explanation.
These include the vast outpourings of energy from compact regions in the remote objects
we call quasars, the most luminous objects in the Universe.

Essentially all galaxies contain central massive black holes. The Milky Way has a central
supermassive black hole of some four million solar masses that today is quiescent. But
millions of years ago, it was active. Traces of exploded debris are seen around our galactic
centre that arose in a violent explosion. We do not know in any definitive detail how
supermassive black holes form, whether from the mergers of many stellar black holes
or possibly by swallowing large amounts of interstellar gas that accretes into the centres
of galaxies. Black hole capture of stars and gas accretion are aided by the mergers of
galaxies that stir up the gravity field and reduce gas angular momentum near the black hole,
and facilitate fuelling by directing material inwards. Astronomers observe a correlation
between central black hole mass and the total mass of stars in the spheroidal components
of galaxies: the latter are the oldest stars of the galaxy. The disc component of a galaxy
contains many young stars and is a recent acquisition. This tells us that massive black holes
co-evolved along with the oldest components of galaxies. Massive black holes formed far
away and a long time ago. These immensely luminous objects in the nuclei of galaxies were
active when the Universe was young. Current data taken with the world’s largest telescopes
suggest that supermassive black holes formed along with the first galaxies.

We see very massive black holes in the early Universe as quasars because they accrete
interstellar gas. The gas heats up in an accretion disc, and glows in X-rays, and the black
hole grows as it feeds. Quasars are the most luminous objects in the Universe. The mass-
doubling time for a typical massive black hole is about 50 million years. This has two
implications. First, we expect to find massive black holes a few hundred million years after
the Big Bang. And, indeed, black holes as massive as 10 billion solar masses are found
when the Universe was a billion years old. Second, we probably need seeds, smaller black
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holes, to accrete gas or merge to make the massive ones. If we started from typical stellar
black holes, around 10 or 20 solar masses, there would not be time enough to grow the
monsters that we find at early epochs.

Quasars also fulfill another important function in the course of massive galaxy evolution
at late times. Quasar eruptions continue sporadically as gas clouds are captured by and feed
the central supermassive black hole. These events succeed in cleaning out the interstellar
medium in the immediate environment of the host galaxy, as will be discussed later. The
result is a massive galaxy that is said to be red and dead. Red because there are only old
stars, and old stars are cool and hence red. Dead because young stars are not forming in the
absence of molecular gas clouds.

Radio Jets

Supermassive black holes at the centres of galaxies are generally dormant giants. They
become reactivated only when fresh gaseous fuel is provided. This may happen after bil-
lions of years, when a merger occurs with a nearby galaxy. This is observed when we peer
into the distant Universe with our largest telescopes and observe galaxies in their youth.
We occasionally see powerful jets of plasma that drive giant radio-emitting lobes. These
are vigorous outflows that collide with and eject interstellar gas clouds into the surrounding
circumgalactic medium, where the gas eventually cools and ends up as intergalactic clouds,
to enrich new generations of galaxies.

Powerful radio jets are produced in the black hole ergosphere by release of energy
arising from the rotation and winding-up of magnetic fields. The supermassive black hole
acts like a gigantic flywheel, with the spin of space providing the momentum. Gripping
the flywheel is presumably done with powerful magnetic fields, thought to be omnipresent.
The fields initially have a dipole pattern but soon tangle up because of the differential spin
and turbulence. Magnetic reconnection releases huge amounts of energy that is initially
channelled along the axis of rotation, emerging as a collimated jet and continuing for
thousands of parsecs.

One can estimate the jet power from the Bondi accretion rate. Suppose a fraction α of
the Bondi accretion rate mass flux fuels the radio jet with efficiency ηc2. One has Pj =
4παηGM2

BHσ
−3ρc2. I evaluate the ambient density as follows. I assume the SMBH is

immersed in the cooled core of a cluster or massive galaxy. I set local dynamical time
equal to cooling time to obtain

1√
3πGρc/32

= 3kTmp(
2�0

√
T
T0
ρc

), (10.24)

or

ρ ≈ σ 2T0Gπm
2
pk�

−2
0 . (10.25)

I infer that

Pj = M2
BHσ

−1[4παηGT0Gπm
2
pk/�

2
0] ∝ M7/4

BH orM9/5
BH (10.26)
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for the range of the usual MBH–σ scaling relation. This tells us that jet power and any
associated signals, such as γ -ray signals or high-energy cosmic ray and neutrino contribu-
tions, come predominantly from the most massive galaxies, typically the brightest cluster
galaxies.

Quasar energy release regulates the limiting black hole mass. This happens during the
formation phase of the black hole and the massive galaxy, inferred from the observed
correlation between bulge (old stellar) component and black hole mass to be coeval. Hence,
we control the growth of black holes observationally, at least in constraining the growth by
accretion. Growth also occurs by mergers of stars with black holes and of black holes with
each other. But this stellar merger rate is inefficient and, hence, likely to be subdominant.
Supermassive black holes generally formed long ago in the nuclei of forming galaxies.

SMBH Growth

I assume that the growing SMBH is fed by spherical Bondi accretion. This is most likely
an upper limit on the actual accretion, which may be geometrically limited. However,
filamentary flow will feed the central accretion disc, and the overall mass supply will be
enhanced over the mass reservoir within the Bondi radius. Hence, Bondi accretion may
give a reasonable estimate. I compare the Bondi rate πG2M2

BHρ/v
3
s with the Eddington-

limited accretion rate onto the SMBH, GMBH4πmp/(ησT c). I assume that the accretion
onto the SMBH is cooling limited, and expect that vs ∼ 10km/s, as appropriate for the
Lyman-alpha-cooling primordial clouds – typically of mass ∼ 108−109M� – that are
often assumed to be the sites for the first SMBHs, or at least for their seeds. In the case
of a massive galaxy, the nuclear gas will be enriched and ionised. If photo-ionised, the
effective value of vs will be similar; if collisionally ionised, it will be somewhat larger.
Data on nuclear emission lines generally motivate photoionisation models.

The ratio should give a measure of the Eddington ratio fE , provided that we evaluate ρ
carefully. I implement the following argument. I adopt a generalised power-law profile for
the inner host galaxy, ρ(r) = ρ1/2(r1/2/r)

β, where ρ1/2δcf
−1
b ρ0(1+z)3, r1/2 = fbrDM

1/2 =
GMsphv

−2
c , and β = 1 for a NFW profile. I evaluate the density at the gravitational capture

radius of the SMBH. This yields ρ(rBH) = ρ1/2(Msph/MBH)
β . The Eddington ratio can

now be written as

fEdd = Ṁaccr
BH

ṀEdd
=
(
vc

vs

)3 (Msph

MBH

)β−1 (
δc

fb

)1/2

ηn0σT t0(1 + z)3/2. (10.27)

For the accretion rate, one may fit the expression given by [9], and I obtain Ṁacc =
1
2Msph,0(1 + z)5/2t−1

0 . Assume a fraction facc ends up in the spheroid. I obtain

Msph, z = Msph,0 exp

(
−3

4
faccz

)
. (10.28)

Now we writeMsph, z, evaluated at r1/2, as

Msph,z = 4π(3 − β)−1ρ1/2r
3
1/2 (10.29)
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and obtain

Msph,0 = v3
c

G

(
3 − β

4πGρ0

)1/2 (
fb

δc(1 + z)3
)1/2

. (10.30)

This specifies vc at redshift z in terms of present-day spheroid mass,

vc,z = (GMsph,0)
1/3
(

4πρ0δc

3 − β
)1/6

(1 + z)1/2e−z/4
(
δc

fb

)1/6

. (10.31)

The spheroid half-mass radius is then given by

r3
1/2,z = 3 − β

4πρ0

fbe
− 3

4faccz

δc(1 + z)3Msph,0. (10.32)

The redshift scaling applies if z is equal to or less than the redshift of spheroid formation.
Next, we estimate the redshift scaling of black hole to spheroid mass. We have

MSR
BH

Msph,z
= vcfgσT

((3 − β)4πG)1/2mp ρ
1/2
1/2 . (10.33)

This gives the explicit z dependence

MSR
BH

Msph,z
= fg σT

mp

(
δcρ0

fb(3 − β)
)2/3 (Msph,0

4π

)1/3

(1 + z)2 exp (−faccz/4) . (10.34)

At constant accretion efficiency, black holes are expected to be more obese, relative to
the associated stellar components, by an order of magnitude at z >∼ 5. This is essentially
consistent with the high-redshift data [50].

The Mass of a Seed MBH

We find massive black holes a few hundred million years after the Big Bang. And, indeed,
black holes as massive as 10 billion solar masses are found when the Universe was a billion
years old. To explain this, we need seeds, smaller black holes, to accrete gas or merge to
make the massive ones. If we started from typical stellar black holes, around 10 or 20 solar
masses, there would not be time enough to grow the monsters we find. Intermediate-mass
black holes undergo catastrophic accretion as dwarf-mass halos merge to eventually form
supermassive black holes in massive galaxies.

How the seeds are formed is somewhat of a mystery. Presumably, they are formed from
the first generation of million-solar-mass clouds formed after the Big Bang. These clouds
were chemically pure; no heavy elements had been formed yet in supernovae. This means
that cooling occurs by hydrogen-atom excitations. Electrons jump from one atomic orbit to
a higher, more energetic level, due to a collision with another atom or electron, and then de-
excite by emitting a photon. Atomic cooling provides a powerful channel for losing energy
and guarantees that the clouds will undergo direct collapse to form black holes, typically
of 10,000 solar masses. The only obstacle is that too much cooling may occur. Hydrogen
molecules are a catalyst for cooling as they are more easily excited than hydrogen atoms.
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Trace amounts of hydrogen molecules form from residual ionisation and H− formation,
and the enhanced cooling leads fragmentation into stars. This fate can be avoided if there is
enough turbulence present, as this can remove the molecules in shocks or via UV radiation
from nearby stars and black holes that destroy any molecules in their vicinities.

For a seed black hole, Ly-α cooling is thought to be the prevalent cooling mechanism
for black hole feeding. Take vc to correspond to mpv2

c = 0.75Ry = 10.2eV, correspond-
ing approximately to the sound speed in a medium where Ly-α cooling (n= 2 to n= 1)

prevails. This is equivalent to vref = αc
(
me
mp

)1/2
. The inferred black hole mass mass is

Mseed =
(
vc

vref

)5
α5

α2
g

(
me

mp

)1/2

. (10.35)

The ratio of seed black hole to galaxy mass is α2
(
me
mp

)3/2 ∼ 10−7. This will provide the

necessary boost for Eddington-limited growth to form supermassive black holes at early
epochs.

Astrophysics of SMBH

Most massive galaxies are elliptical galaxies and today are indeed red and dead. All contain
massive central black holes. Because of the paucity of interstellar gas, these black holes are
not being fed and are not active. Occasionally, there is a merger, most typically with a small
galaxy. If this contains gas, some of this will fall into the black hole and drive a new phase
of activity.

A massive black hole lurks in the centre of our own galaxy. The Milky Way black hole
is located in the constellation of Sagittarius. Studies of orbiting stars allowed a precise
mass determination. The stars can be directly resolved in our galactic centre at infrared
wavelengths, and their orbital motions and speeds around the black hole have been followed
for more than a decade.

Our massive black hole is a bright source of radio waves, one of the brightest in the sky,
hence its name Sagittarius A. Despite the radio emission, it is not very active today. The
X-ray emission from Sagittarius A is very low, and we infer that it is currently lacking
fuel, accreting very little gas from its surroundings. But in the past, the situation was
occasionally very different, and Sagittarius A has experienced outbursts of violent activity.
About 10 million years ago, a giant explosion occurred that left behind traces in the gamma
ray sky. The Fermi gamma ray satellite telescope image has revealed twin bubbles of
gamma ray emission hundreds of light years in extent that attest to the violence of this
explosion a million years ago.

Quasars are much more vigorous manifestations of black hole activity. Their scaled-up
outbursts and X-ray luminosities enable us to detect them at the far end of the Universe.
Perhaps the most intriguing result of studies with the largest telescopes show that intense
black hole activity and extreme rates of star formation occur in the same objects. They
are also driving powerful outflows of gas. This is one of the biggest mysteries of structure
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formation. Why are these phenomena coinciding at early epochs, especially reaching
extreme rates of star formation and mass loss that are rarely seen in the absence of
supermassive black holes?

Perhaps black hole feeding, with its immense energy release, is a consequence of star
formation, with the stellar debris feeding the black hole. If so, this fails to address the
extreme intensity of star formation seen in many of the most distant galaxies. Both AGN
activity and star formation bursts may be the collateral damage from gas-accretion events.
Gas-rich galaxy mergers can provide the gas supply responsible both for star formation and
supermassive black hole fuelling. In a merger, gas-cloud orbits are perturbed, and some
clouds are directed into the capture zone of the supermassive black hole to refuel its activity.
The increase in gas mass stimulates star formation at the same time.

An alternative pathway has the powerful outflows from the black holes compressing
nearby clouds and triggering an intense burst of star formation in the surrounding clouds.
This is predicted analytically [42] and in simulations [16]. Of course, the vigorous outflows
show that the star formation rate is being quenched. But this may have been preceded by
a phase of triggering that induced the jets and winds. Predicted signatures include star
formation by positive feedback, leaving an imprint on the kinematics of stars formed via
AGN ouflow-triggered star formation. Such kinematic tracers would be both long-lived and
differ from the more chaotic kinematics of cloud collision and/or SN-induced star formation
in the conventional scenario of gravitationally unstable disc star formation [12].

Observational evidence has recently been found for positive feedback by AGN, despite
the expected short duty cycle before negative feedback kicks in. Examples include stacked
star-forming galaxies [5] that show evidence of radial trajectories of hypervelocity stars,
as found in the Milky Way and interpreted as being induced by Fermi-bubble-type explo-
sions millions of years ago [44], and in AGN-driven outflows [27]. Indications of positive
feedback via enhanced star formation rates are also found in green valley, X-ray detected
AGN galaxies [26]; in a Seyfert galaxy [8]; along with simultaneous negative and positive
feedback in an obscured radio-quiet quasar [7].

SMBH Feedback and theMBH-σ Scaling Relation

Black hole feeding, with its immense energy release, may be a consequence of star for-
mation, with the stellar debris feeding the black hole. It more likely is fed by gas streams
similar to those that replenish the gas reservoir and drive star formation. Alternatively, a
merger between two galaxies helps shed gas angular momentum and allows gas to pour
into the vicinity of the massive central black hole. The paucity of major mergers favours
the merger hypothesis only for the most luminous quasars.

The outpouring of energy from the accreting SMBH exerts strong feedback on the
surrounding interstellar medium. It is conjectured that there is first a period of positive
feedback during which gas clouds are compressed and a burst of star formation is triggered,
followed a million years later by a phase of gas-outflow and star formation quenching
because of the combined effects of AGN outflows and supernovae from the newly formed
massive stars [40]. A key issue is the efficiency of the coupling of the high-energy ejecta
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with the surrounding ISM. This may involve momentum or energy conservation in order
to explain the massive outflows of escaping gas observed from the host galaxy. Nuclear
outflows are observed at ∼ 0.1c, and these drive outflows on galactic scales at typical
velocities of thousands of km/s which are responsible for depleting the gas reservoir and
quenching star formation [15, 48]. Quenching must occur in order to explain the red and
dead nature of early-type galaxies, and SMBHs are the principal culprit.

It is not simply momentum conservation of the SMBH ejecta that drives galactic winds.
Reality, as found by simulations and observations, is more complicated. Feedback by mas-
sive black holes is controlled by the balance between gravitational attraction and radiation
pressure acting on ionised accreting gas. The former is controlled by

LEdd

c
= GMMgas

r2
(10.36)

and the latter by

LEdd = 4πcGMBHmp/σT . (10.37)

When blowout occurs at a high enough rate, the gas reservoir is exhausted, and star for-
mation terminates. This should apply for a homogeneous ISM when theMBH − σ relation
saturates, and then

MBH = 3 × 109
(

σ

300 km/s

)4

.

Mechanical feedback by SMBH is driven both by jets and winds. Jets drive bow shocks
that interact much as do winds, geometrical factors aside. The Eddington luminosity and
Eddington mass-outflow rate are related byLEdd = ηc2ṀEdd. We can infer the central wind
velocity, since LEdd/c = vwṀEdd and the outflow speed is vw = ηc ∼ 0.1c for a nuclear
wind, as observed.

There are two limiting cases that correspond to momentum or energy conserving out-
flows. Momentum balance gives MBH = σ 4(σT /mp)/(πG

2). Inclusion of cooling results
in failure to eject enough material to quench star formation, failing to attain both the
massive galaxy luminosity function and the massive black hole scaling relation.

Energy balance 1/2Moutflowv
2
shock = const means that the momentum increases as

P ∝ 1/vw. This results in enough momentum boost to reduce excessive SMBH feedback
and growth, thereby reproducing the normalisation of the Magorrian relation. The predicted
scaling is given by

MBH = ασ 5 (σT /mp)

(πηcG2)
. (10.38)

Naı̈ve application of this expression gives too low a normalisation for the observed relation.
These results apply to highly simplified outflows. Cosmological gas accretion is ignored, as
is the more realistic ISM structure. In reality, inflow is not quenched in a multiphase ISM.
One needs nuclear momentum at a level ∼ 10LEdd/c [43]. Because the ISM is multiphase,
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a more realistic treatment is needed, as diffuse gas is ejected more easily, whereas dense
gas clumps tend to fall in.

Simulations with cosmological accretion converge on the energy-driving case, albeit
needing more effective coupling than single photon radiation scattering as in the preceding
naı̈ve formulae. Energy-driven outflows can reach momentum fluxes exceeding 10LEdd/c

within the innermost 10 kpc of the galaxy. The observed large-scale AGN-driven outflows
seem to be energy driven, according to simulations. The momentum of the swept-up shell
grows with decreasing shell velocity and, hence, gives effective outflows that shut off star
formation and can recover the observed normalisation [6].

Observations favour energy conservation, connecting nuclear outflows from accretion
discs around the AGN at ∼ 0.1c with kiloparsec-scale galactic-scale molecular outflows at
several hundreds of km/s. The more massive the central SMBH is, the stronger the quasar
outflow is found to be [32]. The spheroid mass and SMBH mass both grow with time
because of the merger and gas accretion history.

There is a large variance in the scaling relations. In particular, while IMBH and SMBH
generally lie on theMBH–σ relation, there is more dispersion in theMBH–M∗ relation. For
early-type massive galaxies, star formation is preferentially quenched in the quasar phase;
hence, the SMBH can be overmassive relative to the stellar component. Indeed, a much
broader dispersion is found of black hole mass to stellar mass [51] at high redshift relative
to the nearby universe, with some extraordinarily massive SMBH outliers [36]. For late-
type galaxies, continuing star formation at late times is more important, and black holes
can be under-massive. Consequently, while there is expected to be little deviation in the
MBH–σ relation, which primarily samples the gravitational potential, there should be a
trend for SMBH at high redshift to often be obese and for IMBH, necessarily observed at
low redshift, to be anorexic [28], as observed.

10.6 Conclusions

We have made immense progress in star and galaxy formation over the past several decades.
Much of this is driven by data from space and terrestrial telescopes–ranging from Spitzer,
Hubble, and Herschel to IRAM and ALMA. Much is also driven by numerical simulations
at ever-improving resolution. It is possible to understand some of the key scales in terms of
the fine-tuning of fundamental parameters. I discussed estimates for, among other charac-
teristic scales, the typical protostellar fragment mass, stellar mass, maximum stellar mass,
galaxy mass, maximum galactic mass, supermassive black hole mass, and SMBH seed
mass. I showed how feedback may be characterised by ratios of fundamental constants,
both for galaxies and supermassive black holes.

The essence of this discussion ultimately is star formation. The truth remains that sim-
ulations of star formation, especially in the cosmological context, cannot span the essen-
tial dynamical range between galaxy and star formation. Our models for star formation
remain phenomenological rather than fundamental, and all predictions for the high-redshift
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universe should consequently be taken with a grain of salt. Semi-analytical models of
galaxy formation have 50 or more parameters. These parameters are set phenomenologi-
cally, based on studies of the nearby universe, and one cannot be confident that similar rules
for star formation apply at high redshift. Numerical simulations rely on sub-grid modelling
of star formation physics. The paradigm is reasonable but, again, is based on experience
deduced from nearby regions of star formation. The early Universe differs in being not only
gas rich but also AGN and quasars being far more prevalent, given that their duty cycles
render them almost permanently in active mode.

Galaxy formation is not well understood in our vicinity, where, for example, only half
the baryon content of the Universe is accounted for. There are problems in understanding
the cored nature and the abundance of dwarf galaxies, for which, admittedly, there are
solutions that, however, require a certain degree of fine-tuning. Similar remarks apply to
the prevalence of bulgeless galaxies and of ultra-diffuse galaxies in our vicinity.

The most direct evidence for fine-tuning is usually associated with the adopted strength
of gravity. If the gravitational constant is too low, stars do not evolve sufficiently to produce
the carbon needed for life. On the larger scales, galaxies provide the backdrop for star for-
mation. Here, the most relevant parameter is the strength of the initial density fluctuations,
often attributed to inflation-boosted quantum fluctuations (see Chapter 4). Over a modest
range, this determines the abundance of galaxies and their epoch of formation.

If, however, one varies the fluctuation strength by an order of magnitude or more,
one runs into serious problems. If the initial fluctuations are much too large, the Uni-
verse contains relatively few galaxies but predominantly supermassive black holes. If the
fluctuations are much too small, there are no galaxies [47]. The fluctuation strength is
a phenomenological parameter that cannot be directly related to fundamental constants;
rather, it is a product of inflation and of poorly constrained inflationary physics.

It is not clear, short of a compelling theory of inflation, how one can control the initial
conditions of the Universe. Inflation cannot generate isotropy and flatness of space from
generic initial conditions. Nor is there a simple measure of initial conditions, although we
know that our observed Universe represents a small subset of possible universes. Here, I
prefer to focus on the phenomenology of galaxies and stars and to link this phenomenology
to the fundamental constants of nature, motivated by the possibility that these may vary
between possible universes. That is the cosmic connection that one can develop without
straying too far beyond observational constraints.
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How Special Is the Solar System?

m a r i o l i v i o

Abstract

Given the fact that Earth is so far the only place in the Milky Way galaxy known to harbour
life, the question arises of whether the solar system is in any way special. To address this
question, I compare the solar system to the many recently discovered exoplanetary systems.
I identify two main features that appear to distinguish the solar system from the majority of
other systems: (1) the lack of super-Earths and (2) the absence of close-in planets. I examine
models for the formation of super-Earths, as well as models for the evolution of asteroid
belts, the rate of asteroid impacts on Earth, and of snow lines, all of which may have some
implications for the emergence and evolution of life on a terrestrial planet. Finally, I revisit
an argument by Brandon Carter on the rarity of intelligent civilisations, and I review a few
of the criticisms of this argument.

11.1 Introduction

The discovery of thousands of extrasolar planets in the Milky Way galaxy in recent years
(e.g., [13] and references therein) has led to the realisation that our galaxy may contain
(on average) as many as 0.16 Earth-size planets and 0.12 super-Earths (planets with a mass
of a few Earth masses) per every M-dwarf habitable zone [46]. The habitable zone is that
relatively narrow region in orbital distances from the central star that allows for liquid water
to exist on the surface of a rocky planet (see Chapter 12). Given that it is still the case that,
to date, Earth is the only place known to support complex life (or any life form, for that
matter), the plethora of potentially habitable extrasolar planets raises the important question
of whether the solar system is, in any sense, special. This question is further motivated by
the so-called Fermi Paradox – the absence of any signs for the existence of other intelligent
civilisations in the Milky Way [81, 97]. It is interesting to explore, therefore, the status of
the solar system in the context of the entire known population of extrasolar planets.

The solar system includes eight planets (suggestions for a ninth planet are yet to be
confirmed [14]), and two belts composed of generally smaller bodies – the asteroid belt and
the Kuiper belt. In an attempt to compare the solar system to other exoplanetary systems,
Martin and Livio [106] first considered the statistical distributions of orbital separations

412
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and eccentricities of the observed exoplanetary orbits. To this goal, and in order to allow
for a more meaningful statistical analysis, they performed a transformation on the available
data that makes them closer to a normal distribution [20]. Specifically, they transformed the
data with the function

yλ(a) =
{
aλ−1
λ

if λ �= 0

log a if λ = 0 ,
(11.1)

where a is the examined parameter (e.g., eccentricity or semimajor axis), and λ is a constant
determined through the process described in Eq. (11.4). The maximum likelihood estimator
of the mean of the transformed data is

yλ =
n∑
i=1

yλ,i

n
, (11.2)

where yλ,i = yλ(ai) and ai is the ith measurement of the total of n. Similarly, the maximum
likelihood estimator of the variance of the transformed data is

s2
λ =

n∑
i=1

(yλ,i − yλ)2
n

. (11.3)

Martin and Livio [106] chose λ such that they maximise the log likelihood function

�(λ) = n

2
log(2π)− n

2
− n

2
log s2

λ + (λ− 1)
n∑
i−1

log ai . (11.4)

The new distribution, yλ(a), becomes an exact normal distribution if λ = 0 or 1/λ is an
even integer.

Figure 11.1 shows the Box-Cox transformed eccentricities for 539 extrasolar planets
with measured eccentricities. As we can see, Jupiter lies at −0.97σ from the mean, and the
Earth (the unlabelled arrow) is at −1.60σ . In other words, while the eccentricities in the
solar system (ranging from e = 0.0068 for Venus to e = 0.21 for Mercury) are on the low
side compared to the general distribution of exoplanets, they are not altogether exceptional.
Furthermore, since the mean eccentricity of a planetary system appears to be anti-correlated
with the number of the planets in the system [91], the relatively low mean eccentricity of
the solar system is actually the one expected for an eight-planet system (a conclusion that
is further strengthened when selection biases are taken into account; e.g., [74, 118, 163]).

An examination of the transformed distribution of the semimajor axis for 5,289
candidate planets in the Kepler sample shows that Jupiter lies at 2.4σ from the mean
(Figure 11.2). At first blush, this may suggest that the largest planet in the solar system is
rather special, but a closer inspection reveals that this fact most likely result from selection
effects. For example, if we repeat the analysis after removing planets found through transits
(a method favouring planets that are close in, which is only complete in the Kepler sample
for periods of up to one year [160]), we find that Jupiter’s deviation from the mean is
reduced to 1.44σ . This trend appears to be further strengthened by the fact that the number
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Figure 11.1 Box-Cox transformed distribution of exoplanet eccentricities. The total number of
exoplanets is 539.
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Figure 11.2 Box-Cox transformed distribution of exoplanet semimajor axis, including all planet
candidates. The total number of planets is 5,289.

of detections by direct imaging is constantly increasing, suggesting that there may indeed
exist an entire population of planets with semimajor axes longer than those of Jupiter,
which have so far escaped detection.

Martin and Livio [106] also found that the masses of the gas giants in the solar sys-
tem fit nicely within the distribution of extrasolar planets (Figure 11.3; the observations
of small terrestrial planets are most likely still affected by selection effects), as do their
densities (Figure 11.4). In addition, Dressing et al. [47] showed, that Earth and Venus can be



How Special Is the Solar System? 415

– 4 – 3 – 2 – 1 0 1 2
0.0

0.2

0.4

0.6

0.8

log(m)

PD
F

JupiterSUEMe VMa N

Figure 11.3 The exoplanet mass distribution. The arrows indicate the masses of the planets in the
solar system. The vertical lines show the range of planets considered to be super-Earths. The total
number of exoplanets is 1,516.

Figure 11.4 Densities of planets as a function of their mass. The dark circles show the exoplanets
(a total of 287), and the lighter grey squares the planets in our solar system. The vertical lines again
indicate the range of super-Earths.

modelled with a ratio of iron to magnesium silicate similar to that of the low-mass extrasolar
planets.

Is there anything, then, in terms of planetary and orbital properties, that makes the solar
system (even somewhat) special? Martin and Livio [106] identified two properties that are
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at least intriguing: (1) the lack of super-Earths and (2) the lack of very close-in planets.
Let’s briefly discuss each one of these characteristics.

11.2 Lack of Super-Earths

Super-Earths are planets with masses typically between 1 and 10 Earth masses. They are
very common in exoplanetary systems. In fact, more than half of the observed Sun-like stars
in the solar neighbourhood are orbited by one or more super-Earths with periods of days
to months (e.g., [12, 23, 55, 109]). Furthermore, systems observed to contain a super-Earth
usually have more than one. Most recently, observations of the star Trappist-1 found that
it hosts at least seven Earth-size planets. Their orbits, six of which form a near-resonant
chain (with orbital periods of 1.51, 2.42, 4.04, 6.06, 9.1, and 12.35 days), suggest that
these planets formed farther from their host star and then migrated inwards (e.g., [146]).
If super-Earths form via mergers of inwardly migrating cores, then having more than one
super-Earth is theoretically expected (e.g., [39]).

The fact that the solar system does not contain any close-in super-Earths does set it
somewhat apart from most observed exoplanetary systems. Before I examine potential
reasons for this lack of super-Earths, it is interesting to contemplate whether not containing
super-Earths (by a planetary system) can in any way be related to the emergence of life
in such a system. It is interesting to note that the presence of super-Earths may affect the
formation process and properties of terrestrial planets. In particular, Izidoro et al. [80] found
that if a super-Earth migrates slowly enough through the habitable zone of its host star (the
range of orbital radii that allows for liquid water to exist on a rocky planetary surface), then
terrestrial planets subsequently forming in this region would be rich in volatiles – far from
being an Earth twin. A super-Earth at a very small orbital radius could also (in principle, at
least) disturb the dynamical stability of a terrestrial planet in the habitable zone. In contrast,
the terrestrial planets in the solar system are expected to remain dynamically stable until
the Sun expands to become a red giant (e.g., [86]). Finally, a super-Earth relatively close
to the orbital distance of a terrestrial planet could significantly affect the rate of asteroid
impacts on such a planet (see Section 11.5.3 for an extensive discussion).

11.3 Lack of Close-In Planets or Debris

The second element that appears to distinguish the solar system from most observed exo-
planetary systems is the lack of very close-in planets (or, for that matter, any type of mass).
Specifically, while Mercury is at 0.39 AU from the Sun, other exoplanetary systems harbour
planets much closer to their host star [15]. In particular, most systems observed to have
three or more planets contain a planet with a semimajor axis smaller than that of Mercury.

Again, it is not clear to what extent (if at all) the absence of close-in planets is related
to the Earth’s habitability. In the next section, I examine the conditions that are necessary
for the formation of super-Earths and their potential implications for the two characteristics
that make the solar system somewhat special.
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11.4 On the Formation of Super-Earths

Super-Earths either form in situ with no significant migration through the protoplanetary
disc or they form outside the snow line (the distance from the central star where the
temperature is sufficiently low for water to solidify; [88]) and then migrate inwards. Chiang
and Laughlin [35] used observations of super-Earths with orbital periods of P � 100 days
to construct a minimum-mass extrasolar nebula (MMEN) with a surface density of the gas
disc of (R is the distance from the star)

�MMEN = 9,900

(
R

1 AU

)−1.6

g cm−2. (11.5)

Equation (11.5) gives a somewhat higher value for the surface density than the minimum
mass solar nebula (MMSN, which gives 1,700 g cm−2 at R = 1 AU, required to form the
planets in our solar system [70, 155]). However, it is not clear whether the MMSN is appli-
cable at distances smaller than 0.4 AU (inside Mercury’s orbit). Hansen and Murray [67, 68]
found that forming super-Earths in situ required having about 50–100M⊕ of rocky material
interior to 1 AU. Other researchers suggested that super-Earths form farther out in the disc
(where solid material is more readily available) and migrate inwards (e.g., [39, 78, 147]).

Martin and Livio [103] showed that in fully turbulent disc models (i.e., discs in which
the magnetorotational instability generates viscosity throughout) planets that are close to
their host stars cannot form in situ since the mass of the disc interior toR = 1 AU is too low
(Figure 11.5). Martin and Livio [103] have also shown, however, that in fully turbulent discs
super-Earths can (in principle, at least) form farther out, followed by inward migration.

Still, it is generally believed that protoplanetary discs are not fully turbulent. Rather, they
most likely contain an unionised region of low or no turbulence, known as a ‘dead zone’
(e.g., [58, 141]). The dead zone blocks the accretion and allows material to accumulate until
it becomes self-gravitating. (Note though that it has been suggested that the Hall effect can
‘revive’ the dead zone under certain conditions, e.g., [89]).

Martin and Livio [103] considered two prescriptions for determining the surface den-
sity in the dead zone. In the first, they assumed that the disc surface layers are ionised
by external sources to a maximum surface density depth of �crit/2 (see discussion in
Section 11.4.1). In the second, they assumed that the surface density is determined via
a critical magnetic Reynolds number (e.g., [52, 69]), ReM,crit, such that the zone is ‘dead’
if ReM < ReM,crit. By following the time-dependent evolution of the disc, they showed
that at early times the disc undergoes FU Orionis-type outbursts (see also [5, 165]). These
outbursts occur as the extra heating by self-gravity triggers the magnetorotational instability
within the dead zone (when the infall accretion rate is still high). At later times, as the
accretion rate decreases, there are no further outbursts (Figure 11.6). Planets that survive
must form after the cessation of outbursts; otherwise, they are likely to be swept into
the star during accretion episodes. Through time-dependent numerical simulations, Martin
and Livio [103] have demonstrated that depending on the dead-zone parameters, the disc
surface density and the mass inside of 1 AU can build up to several times that of the MMEN
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Figure 11.5 Disc mass up to a radius R = 1 AU as a function of time (lower curve) and the total disc
mass up to 40 AU (upper curve) for a fully turbulent disc model. The infall accretion rate was assumed
to decrease exponentially, from an initial Ṁ � 10−5 M� yr−1, on a timescale of tff = 105 yr. The
dashed lines show the mass at R < 1 AU for the MMSN and MMEN.

(Eq. (11.5)) and, therefore, that the formation of super-Earths in this region is possible
(figure 11.6).

11.4.1 Application to the Solar System

There are two possible explanations for the fact that the solar system does not contain any
super-Earths: (1) either the conditions in the solar nebula were such that super-Earths could
not have formed or (2) super-Earths did form but were later removed by some mechanism.
In the latter possibility, it is highly unlikely that the removal mechanism was that of ejection
through planet-planet scattering since the average eccentricity in the solar system is low and
the planets are quite coplanar. Consequently, if super-Earths had indeed formed in the solar
system, they must have been ‘swallowed’ by the Sun.

There is another constraint that determines the likely formation site. As I noted earlier,
if the super-Earths had formed outside the snow line, unless they migrated on a timescale
shorter than 0.01–0.1 Myr, they would have shepherded the rocky material interior to their
orbit, thereby depleting the Earth’s formation zone. This would have made the Earth (and
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Figure 11.6 Disc mass up to a radius of R = 1 AU as a function of time (lower curve) and total disc
mass up to a radius of 40 AU (upper curve). The disc has a dead zone defined by ReM,crit = 5 × 104.
The dashed lines show the mass inside R = 1 AU for the MMSN (lower) and MMEN (upper).

other terrestrial planets) volatile-rich and more similar to a water world than to the current
Earth. Consequently, if they formed at all, super-Earths in the solar system likely formed
in the innermost regions, inside Mercury’s orbit.

This suggests a way (in principle) to solve both the lack of super-Earths problem and the
lack of close-in planets in the solar system through a single mechanism: super-Earths could
form close to the Sun, clear the inner region of debris, and then fall into the Sun following
migration through the gas disc. For this chain of events to actually happen requires some
degree of fine-tuning. Specifically, the surface density in the active (turbulent) layer must be
sufficiently large for the planets to migrate into the Sun but at the same time small enough
to allow the planets to form in situ to begin with. For a super-Earth to migrate into the Sun,
it must do so on a timescale shorter than the time it takes the disc to accrete (the viscous
timescale). By equating the timescale for type I migration (obtained when the planet is not
massive enough to open a gap in the disc) with the viscous timescale in the disc, Martin
and Livio [103] found that the minimum surface density for the planet to migrate into the
Sun is given by
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�min = 940.5
( α

0.01

)(H/R
0.05

)4(
M

M�

)2(
R

5 AU

)−3/2( a

1 AU

)−1/2
(
Mp

5M⊕

)−1

g cm−2.

(11.6)

Here, α is the viscosity parameter, H/R is the disc aspect ratio, M is the mass of the star,
R is the radial distance from the central star, a is the orbital radius of the planet, andMp is
the planet’s mass.

Generally, it is expected that the surface layers of the disc are ionised by cosmic rays or
X-rays from the central star (e.g., [62, 108]), to a maximum surface density depth of�crit/2
(on each of the disc surfaces). Therefore, if �crit > �min, super-Earths formed in situ will
migrate into the Sun at the end of the disc’s lifetime. If, on the other hand, �crit < �min,
then migration may not be able to allow the super-Earth to be accreted (even if some type I
migration takes place). Given the sensitive dependence of �min on the disc’s aspect ratio
and, therefore, on its temperature (see Eq. [11.6]), Martin and Livio [103] speculated that
in the solar system, super-Earths formed close to the inner boundary of the dead zone of a
relatively cool disc (smallH/R). In that case, there was sufficient time for the super-Earths
to migrate and be accreted by the Sun. This would explain both the clearing of the region
inside Mercury’s orbit and the lack of super-Earths. In this scenario, Mercury and Mars
would have formed from a relatively narrow annulus of rocky debris in the orbital range
of 0.7–1 AU (see also [66]), where the annulus is being truncated at its inner edge by the
clearing process. This would explain the relatively small masses of these planets.

I should note that an alternative mechanism, known as the ‘grand tack’, has been sug-
gested for pushing the super-Earths into the Sun [15, 150]. In this scenario, Jupiter migrates
inwards to 1.5 AU before it gets locked into a resonance with Saturn, and then both Jupiter
and Saturn move outwards to their current positions. The migration of Jupiter causes the
innermost super-Earths to be shepherded into the Sun.

To conclude this section, the lack of super-Earths in the solar system appears to be
somewhat puzzling. However, the second characteristic that makes the solar system some-
what special – the fact that there are no planets or debris inside of Mercury’s orbit – may
not be a coincidence. Super-Earths that formed in situ in the inner region of a disc that
contains a dead zone could have cleared it of all solid material, with the super-Earths
subsequently spiralling into the Sun. Martin and Livio [103] showed that for the dead
zone to last a sufficiently long time for the super-Earths to form, the surface density in
the active (turbulent) layer must satisfy �crit � 100 g cm−2. At the same time, for the
super-Earths to eventually migrate into the Sun during the final accretion process, �crit

needs to be sufficiently large so that there would still be sufficient material in the disc.
Satisfying both of these constraints (and for the dead zone to last throughout the entire
disc lifetime) requires the disc to be sufficiently cool during late accretion. The necessary
level of fine-tuning is not excessive, but it still makes the solar system somewhat special in
this respect.

An additional element in the solar system that may have played a role in the emergence
and evolution of life on Earth is the existence of an asteroid belt, with its associated
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characteristics. In the next section, I discuss asteroid belts and their possible functions in
determining the habitability of terrestrial planets.

11.5 The Potential Significance of Asteroid Belts for Life

There are several ways in which the presence of an asteroid belt in a solar system can (in
principle, at least) affect the habitability of a terrestrial planet:

1. Since terrestrial planets tend to form in the dry regions of protoplanetary discs [105],
water must be later delivered to the rocky surface, and one of the possible mechanisms
is through asteroid impacts (e.g., [120]).

2. Large moons can stabilise the rotation axis of planets against chaotic motion, thereby
preventing weather extremes. The formation of such moons may again require asteroid
or planet impacts (e.g., [25, 136]).

3. Life itself or its ingredients may have been delivered to Earth by asteroids (e.g.,
[50, 77]).

4. Since the early Earth was molten, gravitational settling resulted in the Earth’s crust being
depleted of heavy elements such as iron and gold. Some of those are essential for life,
and they were probably brought to the crust by asteroids (e.g., [157]).

5. Finally, on a more speculative note, the dominance of mammals and the emergence of
intelligent life on Earth might not have happened if it were not for the asteroid impact
that brought about the extinction of the dinosaurs [3].

While all of these potential effects are somewhat uncertain, even if only one of them is
operative, it makes the study of the formation and evolution of asteroid belts important for
understanding life on a terrestrial planet.

The asteroid belt in our own solar system is composed of millions of irregularly shaped
bodies made of rock, ices, and metals. It is located between the inner terrestrial planets and
the outer giant planets, and its total current mass is about 5 × 10−4 M⊕, with about 80% of
the mass being contained in the three largest asteroids: Ceres, Pallas, and Vesta.

Observations and models of the solar system suggest that at the time of planetesimal
formation, the snow line – the radial location outside which ice forms – was located inside
the asteroid belt [1, 120]. In particular, while the asteroids in the inner part of the belt
are dry, those more distant than about 2.7 AU (from the Sun) are icy C-class objects. It is
generally believed that the asteroid belt is the result of gravitational perturbations caused by
Jupiter. Those perturbations did not allow planetesimals to merge and grow, which resulted
in violent collisions producing fragmentation rather than fusion (e.g., [49]).

Since giant planets likely form outside the snow line [119] because the density of solid
material there is much higher (due to water ice condensation [130]), Martin and Livio
[101] proposed that asteroid belts (if they form at all) should be located around the snow
line. To test their hypothesis, they calculated the expected location of the snow line in
protoplanetary disc models and compared their results with observations of warm dust in
exoplanetary systems, since those may indicate the location of exo-asteroid belts.
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Figure 11.7 Radius of the observed warm dust. The shaded regions show the snow border found
from numerical models at times t = 106 yr (upper) and t = 107 yr (lower). The solid line shows the
analytic approximation to the water snow line, given by Eq. (11.7). The open triangles show the
individual systems in Table 11.1. The filled circle shows the location of our solar system’s water
snow line and the range indicates the extent of our asteroid belt.

11.5.1 Water Snow Lines and Asteroid Belts

The water snow line marks the distance from the star exterior to which ice forms. It is
thought to occur at a temperature of about 170 K (e.g., [88]). In an extended region down
to about 100 K, the snow border, icy and dry planetesimals can coexist [100].

Particles that migrate through the disc accumulate near the snow line, in a region of
relatively small radial extent. This allows them to grow through collisions. Consequently,
the formation rate of planetesimals increases by an order of magnitude or more when
crossing the snow line (since the solid surface density doubles).

Martin and Livio [101] modelled the evolution of the water snow line in a layered
protoplanetary disc with a dead zone (e.g., [5, 165]). They found that the snow line moves
inward over time, but that its location is only weakly dependent on the mass of the central
star. Figure 11.7 shows the radius R of the inner and outer edges of the water snow
border found from numerical simulations (corresponding to temperatures of T = 170 K
and 100 K, at times t = 106 yr and 107 yr). The functional dependence on the stellar mass
can be heuristically derived as follows: the temperature that is obtained in the disc as a
result of accretion obeys T 4 ∝ M/R3. If we scale this to the radial location of the water
snow line in the solar system, we obtain

Rsnow � 2.7

(
M

M�

)1/3

AU. (11.7)

To compare the theoretical predictions with observations, Martin and Livio [101] used
observations of debris discs that have a warm infrared component, which could be attributed
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Table 11.1 Observations of warm dust belts that may be exo-asteroid belts.

M Rdust Tdust Age
Source ID Name Spectral type (M�) (AU) (K) (Myr) Reference

HD 12039 G3/5V l.02 4–6 109 30 [71]
HD 13246 F8V 1.06 3.5 ± 0.9 166 ± 18 30 [116]
HD 15115 F2 1.5 4 ± 2 179 ± 46 12 [117]
HD 15745 FO (1.6) 6 ± 2 147 ± 22 12 [117]
HD 16743 FO/F2III/IV (3.2) 8 ± 3 147 ± 24 10–50 [117]
HD 22049 ε Eri K2V 0.82 3 ± 1 100–150 850 [8]
HD 30447 F3V (1.5) 6 ± 3 159 ± 36 30 [117]
HD 38678 ζ Lep A2 IV-V(n) 2.3 3 327 231 [114]
HD 53143 G9V/K1V 0.8 4 120 ± 60 1 [32]
HD 53842 F5V 1.20 5.4 ± 1.4 151 ± 24 30 [116]
HD 86087 HR 3927 AOV 2.44 7 80 50 [32]
HD 98800 K4/5V (0.7) 2.2 160 10 [98]
HD 109085 η Corvi F2V 1.43 2 180 1000 [32]
HD 113766 F3/F5V (1.5/1.4) 4 200 16 [32]
HD 152598 FOV l.43 9.3 ± 1.5 135 ± 11 210 ± 70 [116]
HD 169666 F5 1.35 4.2 ± 0.6 198 ± 13 21,00 [116]
HD 172555 HR 7012 A51V-V 2.0 5.8 ± 0.6 200 12 [32]
HD 181296 η Tel AOVn 2.9 5 115 12 [32]
HD 192758 FOV (1.6) 7 ± 3 154 ± 31 40 [117]
HD 218396 HR 8799 A5V 1.5 8 ± 3 150 ± 30 30–160 [33, 122]
Samples from Morales et al. [119], median values (range)
19 solar-type stars GOV (KOV-F5) (l.l (0.8–1.4)) 177 (99–220) 270 (40–900)
50 A-type stars AOV (B8-A7) (2.9 (1.8–3.8)) 203 (98–324) 100 (5–1000)

Note. The masses in parentheses have been derived from the spectral type.

to an asteroid belt. Table 11.1 lists a compilation of such debris discs with their determined
temperature and inferred radius. Also included in the table are the median temperature
values for two samples from Morales et al. [119], for which radii were not determined.
The radii and temperatures of these putative asteroid belts are also shown in Figures 11.7
and 11.8, respectively. As we can see from the figures, both the radii and the temperatures
agree with the numerical models of the snow line. This supports the proposed scenario
of Martin and Livio [101], in which the location of asteroid belts is around the water
snow line.

11.5.2 Giant Planet Location

Figure 11.9 shows the periastron separation for 520 giant planets (with masses larger than
10M⊕) as a function of the central star’s mass [161]. Also shown in the figure is the lower
limit of the distances of the water snow line obtained in the numerical models of Martin
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Figure 11.8 The temperature of the observed warm dust. The shaded region marks the snow border.
Open triangles show the individual systems in Table 11.1. Filled diamonds show two samples from
Morales et al. [119]. The filled circle indicates our solar system.
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Figure 11.9 The distribution of observed giant planet periastron separation, p, against the mass of the
central star,M . The open triangle shows where Jupiter lies. The shaded region shows the icy domain
outside of the lower limit to the water snow line predicted by numerical models.

and Livio [101]. The region exterior to the water snow line is shaded. The planets that
are observed to be close to their host star are thought to have migrated inwards through a
gas-rich disc [64, 92]. Only giant planets that form when the gas is already considerably
depleted can avoid migration. Simulations show that the conditions required for a gas giant
around a Sun-like star to linger around Jupiter’s orbital distance are obtained only in about
1%–2% of the systems [6].
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In systems in which giant planet migration occurs, we do not expect to find substantial or
compact asteroid belts, since the asteroids are scattered to larger distances or are accreted
by the planet or the central star [53]. The observed warm dust belts listed in Table 11.1,
therefore, likely remained intact because the giant planets in these systems migrated little
or not at all. For this non-migration to have happened, the giant planets must have formed
towards the end of the lifetime of the protoplanetary disc.

Figure 11.9 shows that only 19 out of 520 giant planets (less than 4% of these observed
systems) are located outside the water snow line. These statistics suggest that only a small
fraction of the observed systems contain a compact asteroid belt, making our solar system
somewhat special. I should note, however, that the observed statistics are almost certainly
affected by selection effects because planets with larger orbital separations are more diffi-
cult to detect (see, e.g., [40] for a discussion).

To conclude this part, in our solar system, Jupiter may have migrated only by about
0.2–0.3 AU [121]. The asteroid belt was probably much more massive initially, consisting
of about one Earth mass. Due to Jupiter’s migration, however slight, most of this mass
has been ejected, leaving behind only about 0.001 of the original mass. This course of
events may have also been important for the emergence and evolution of life on Earth,
since had the asteroid belt remained very massive, the number of impacts on Earth (due
to the continued perturbations from Jupiter) might have been too high to allow for the
evolutionary processes to follow their course. For example, any planet around Tau Ceti
(which may be orbited by five planets) would experience many more impacts than Earth,
due to a much more massive debris disc in that system. It may therefore be that the time
interval during which the giant planet should form is rather restricted, if it is to allow
complex life to emerge and evolve. Too much migration may altogether disrupt the asteroid
belt, and too little may produce far too many devastating impacts. This conclusion assumes,
of course, that some asteroid impacts are indeed necessary for life. Interestingly, asteroids
are presently regarded as a potential threat for humanity in the future, and NASA has been
testing a computer program called Scout that is supposed to act as a celestial intruder alert
system to warn against incoming asteroids. In that sense, asteroids can giveth and asteroids
can taketh away.

Given that not only the individual impacts themselves but also their rate can have
significant effects on the habitability of terrestrial planets, it is important to examine a
few of the elements that determine this rate. Specifically, a high rate of asteroid impacts
can render a highly cratered planet not hospitable for life. On the other hand, too low a rate
could suppress the delivery of elements that are essential for the emergence and evolution
of life.

11.5.3 Asteroid Impacts on Terrestrial Planets

Introduction

As I noted earlier, if asteroid belts form at all, they most likely form around the location
of the water snow line, interior to giant planets. Throughout the time that the gas disc still
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exists, the eccentricities and inclinations of the asteroids are damped by tidal interactionsx
with the protoplanetary discs (e.g., [7, 85, 153]). The lifetime of the gas disc is typically a
few million years [64], after which it is being dispersed by photoevaporation (see discussion
in [4]). After the gas disc is removed, gravitational perturbations clear asteroids at many
resonance locations (e.g., [37, 61, 112]). This clearing creates potential Earth (and other
terrestrial planets) impactors. In the solar system, Jupiter and Saturn, which are the largest
planets, are the main drivers of the dynamical evolution of the asteroid belt, even though
the effects that Jupiter had on the collision rate with the Earth is debated [75, 76]. Similarly,
giant planets can be the driving force of evolution (if an asteroid belt exists) in exoplanetary
systems.

Resonances that play a major role in the asteroid belt dynamics are mean-motion reso-
nances and secular resonances. In a mean-motion resonance, the ratio of the orbital periods
of two objects is a ratio of two integers. Several of the known mean-motion resonances in
the solar system, such as the Kirkwood gaps [43, 115, 128], are found within the asteroid
belt. Secular resonances arise when the apsidal precession rate of two objects orbiting a
common central object are close to each other (e.g., [56, 162]). From our perspective here,
the most important secular resonance in the solar system is the ν6 resonance ([19, 113] and
references therein). It relates the apsidal precessions of the asteroids and Saturn, and it sets
the inner boundary (at about 2 AU) of the solar system’s asteroid belt. Each resonance has a
certain libration width in semimajor axis over which it is effective. Asteroids that fall within
a libration width undergo perturbations that cause their eccentricities to increase to the point
where they are either ejected from the system or they collide with a planet or the central
star. Regions in which libration widths overlap are dynamically chaotic regions [125], and
almost all asteroids are cleared from such regions. The outer edge of the asteroid belt in the
solar system (at about 3.3 AU) is determined by the overlapping of Jupiter’s resonances.

The fact that many of the exoplanetary systems contain a super-Earth (e.g., [82];
Figure 11.10) raises the additional question of how the presence of a super-Earth in
the solar system might have affected the rate of asteroid impacts on Earth. Smallwood
et al. [143] studied in particular multi-planet systems in which there had been no process
(e.g., migration) that could have destroyed the asteroid belt or could have prevented the
formation of terrestrial planets. More specifically, they investigated how the architecture of
systems such as the solar system affects the rate of asteroid impacts on Earth (or a similar
terrestrial planet).

The Numerical Method: N -body Simulations

Smallwood et al. [143] used the hybrid symplectic integrator in the orbital dynamics pack-
age MERCURY to model the structure of the asteroid belt and the rate of impacts on Earth
(see [30] for details of the package). The motions of Jupiter, Saturn, a super-Earth, Earth,
and a distribution of asteroids all orbiting a central object were simulated. The asteroids
were assumed to gravitationally interact with the star and the planets but not with each
other. The evolution of the orbit of each asteroid was followed for ten million years.
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Figure 11.10 Planet masses and semimajor axes of observed exoplanets (from [65]). The area
between the dashed lines contains the range of super-Earth masses used in the simulations described
in Section 11.5.3. The transparent grey box highlights the observed super-Earths with a semi-major
axis corresponding to the inner solar system.

In the solar system, there are more than 10,000 asteroids with high-accuracy measure-
ments of their semimajor axes. The mean of those values is 〈a〉 = 2.74 ± 0.616 AU. The
mean eccentricity is 〈e〉 = 0.148 ± 0.086, and the mean inclination 〈i〉 = 8.58o ± 6.62o

(see description in [124]). At the same time, the precise initial distribution of the asteroids
within the belt (immediately following the dispersal of the protoplanetary gas disc) is not
accurately known. In their simulations, Smallwood et al. [143] therefore assumed a uniform
distribution (see also [87]), with the semimajor axis of each asteroid given by

ai = (amax − amin) ξr + amin, (11.8)

where amin = 1.558 AU is the inner boundary of the distribution, amax = 4.138 AU is the
outer boundary, and ξr is a randomly generated number between 0 and 1. The inner and
outer boundaries were based on the structure of the solar system, with amin being three Hill
radii (the region in which a body’s gravity dominates) beyond the semimajor axis of Mars,
and amax being three Hill radii inside Jupiter’s orbit. The Hill radius is given by

RH = ap
(
Mp

3Ms

)1/3

, (11.9)

where ap is the planet’s semimajor axis, Mp is its mass, and Ms is the mass of the star.
No asteroids are likely to be located within three Hill radii because this is the planet’s
gravitational reach (e.g., [31, 60, 123]).
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The orbit of each asteroid is defined by six orbital elements: (1) the semi-major axis, a,
which was taken to be distributed uniformly in the range amin < a < amax; (2) the inclina-
tion angle i, randomly chosen from the range 0o–10o; (3) the eccentricity, e, randomly
generated from the range 0.0–0.1; (4) the longitude of the ascending node, n; (5) the
argument of perihelion (the angle from the ascending node to the object’s periastion), g;
(6) the mean anomaly (angular distance from pariastion),Ma . The last three elements were
uniformly randomly sampled from the range 0o–360o. Given that the solar system is stable
over long timescales [48, 79], the current orbital parameters of the planets were also taken
as initial parameters.

To test their numerical scheme, Smallwood et al. [143] first checked the scalability of
the results with respect to the number of asteroids used and the radius used for the Earth.
Based on these tests, they decided to run their simulations with 104 asteroids and an inflated
Earth, with a radius of 2×106 km (otherwise, the number of impacts during the simulation
is too low to allow for statistically significant conclusions). Neglecting asteroid-asteroid
interactions was fully justified by the fact that the timescale for asteroid-asteroid collisions
is much longer (in fact, of the order of the age of the solar system) than the timescale for
action by resonance effects (of the order of 1 Myr; e.g., [44]).

The Effects of the Architecture of the Inner Solar System

Since Martin and Livio [106] identified the absence of super-Earths as perhaps the most
significant characteristic that distinguishes the solar system from other exoplanetary sys-
tems, Smallwood et al. [143] first varied the mass and semimajor axis of an artificially
added super-Earth in the inner solar system. The super-Earth initially was taken to be in
a circular orbit with zero inclination. The super-Earth’s mass was varied in the different
simulations in the range 1–10M⊕, and its semimajor axis was taken to be in the range
0.2–1.4 AU. In each one of the simulations, Smallwood et al. [143] followed the dynamics
for 10 Myr and determined the number of asteroid impacts on Earth (which was inflated
in radius, as described earlier), impacts on Jupiter, Saturn, and the central star; the number
of asteroids ejected from the system (achieving semimajor axes larger than 100 AU); and
the number of asteroids remaining within the initial distribution of the asteroid belt. All the
runs were then compared to that of a solar system without a super-Earth in order to evaluate
the significance of the absence of a super-Earth in our solar system. Figure 11.11 gives the
total number of collisions with Earth during the period of 10 Myr. Overall, the trend is that
the addition of a super-Earth interior to the Earth’s orbit increases the number of asteroid
collisions with the Earth.

When the super-Earth is located exterior to the Earth’s orbit, the total number of impacts
onto the Earth is lower than in the absence of a super-Earth. For the parameters used in the
simulations, a 10M⊕ super-Earth located at a semimajor axis of 0.8 AU produced the largest
number of impacts on Earth, whereas a 10M⊕ super-Earth located at 1.20 AU caused the
lowest number of impacts. At the same time, when the super-Earth was placed at 1.2 and
1.4 AU, the number of asteroids ejected from the system increased significantly. Generally,
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Figure 11.11 The total number of collisions with the (inflated) Earth as a function of the semimajor
axis of the super-Earth. The stars represent simulations with a 10M⊕ super-Earth and the circles with
a 5M⊕ super-Earth. The square represents the simulation without a super-Earth.
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Figure 11.12 Evolution of the asteroid distribution without a super-Earth.

for interior (to the Earth’s orbits) super-Earths, the number of impacts was found to increase
with increasing distance from the Sun.

Smallwood et al. [143] also examined the evolution of the asteroid belt itself, and this is
shown in Figures 11.12–11.15. The four panels show a simulation with no super-Earth
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Figure 11.13 Evolution of the asteroid distribution with a 10M⊕ super-Earth located at a semimajor
axis of 0.8 AU.
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Figure 11.14 Evolution of the asteroid distribution with a 10M⊕ super-Earth located at 1.2 AU.

(fig. 11.12), one with a 10 M⊕ super-Earth at a= 0.8 AU (Figure 11.13), one with a
10M⊕ super-Earth at a= 1.2 AU (Figure 11.14), and one with a 10M⊕ super-Earth at
a= 1.4 AU (Figure 11.15). The distribution of the asteroids was calculated every million
years for 10 Myr. As time progresses, perturbations caused by mean-motion and secular
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Figure 11.15 Evolution of the asteroid distribution with a 10M⊕ super-Earth at 1.4 AU.

resonances with Jupiter and Saturn clear out regions in the asteroid distribution. The most
important mean-motion resonances are the 3:1, 5:2, 7:3, and 2:1. These are located at
2.5 AU, 2.8 AU, 2.9 AU, and 3.3 AU, respectively. Overlapping libration widths of the
mean-motion resonances produce Jupiter’s chaotic region, which is located from about
3.6 AU to the outer edge of the asteroid distribution (at about 4.13 AU). The resonance that
plays the most important role in determining the number of collisions with Earth is the ν6

resonance, which I will discuss in detail in the following paragraphs.
There are five potential outcomes for the fate of each asteroid during the various sim-

ulations: it can be ejected from the solar system, impact the Earth, collide with another
planet, collide with the Sun, or remain in the asteroid belt. The ejections and impacts
with the Earth are shown in Figures 11.16–11.19, by the black circles and grey squares,
respectively. Figure 11.16 shows the results for a system with no super-Earth. Figure 11.17
contains a 10M⊕ at a semimajor axis of a = 0.8 AU. Figure 11.18 has a 10M⊕ super-Earth
at a = 1.2 AU, and Figure 11.19 has a 10M⊕ super-Earth at a = 1.4 AU. The figures show
the initial semimajor axis for each asteroid (that is, its point of origin) as a function of the
time of its final outcome. Asteroids that were originally at resonance locations are cleared
out because their eccentricities increase through the action of the mean-motion and secular
resonances. The locations of the mean-motion resonances between Jupiter and the super-
Earth are shown on the vertical axis at the right-hand side. Placing a 10M⊕ super-Earth at
a = 0.8 AU widens the ν6 secular resonance, thereby increasing the number of asteroids
perturbed into Earth-impacting orbits. When the super-Earth is placed exterior to Earth’s
orbit, two effects act to decrease the number of impacts on Earth: (1) the ν6 resonance is
suppressed, and (2) a 2:1 mean-motion resonance is created within the asteroid belt, which
acts to cause additional clearing out of asteroids. When a 10M⊕ super-Earth is placed at
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Figure 11.16 The original semimajor axis of each asteroid as a function of the time when the final
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represented by the dashed lines.
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Figure 11.17 Same as Figure 11.16, with a super-Earth located at 0.8 AU.
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Figure 11.18 Same as Figure 11.16, with a super-Earth located at 1.2 AU.
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Figure 11.19 Same as Figure 11.16, with a super-Earth located at 1.4 AU.
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Figure 11.20 The collision rate with Earth per million years. The left panel involves a 10M⊕ super-
Earth, and the right panel a 5M⊕ super-Earth.

1.4 AU, it creates a chaotic zone which is produced by the overlapping of the libration
widths of the super-Earth’s 6:5, 4:3, and 7:5 mean-motion resonances. In turn, this chaotic
zone clears a large number of asteroids from the inner parts of the asteroid belt. The chaotic
region can be clearly seen in Figure 11.19.

The effects of the mass of the super-Earth on the rate of asteroid impacts on Earth is
shown in Figure 11.20. What is depicted is the number of impacts per million years for a
super-Earth with a mass of 10M⊕ (left panel) and a mass of 5M⊕ (right panel), for various
semimajor axis values. The initial spike in the impact rate is due to the fact that the number
of asteroids in the belt is larger at the beginning of the simulations than at their end. The fact
that a 10M⊕ super-Earth at 1.4 AU produces the highest impact rate at 1 Myr is due to the
chaotic region created by the super-Earth. The rate, however, rapidly declines as asteroids
are cleared out. Over the 10 Myr duration covered by the simulation, a super-Earth located
at 0.8 AU produces the highest rates, both for a 10M⊕ super-Earth and a 5M⊕ one.

As I have noted earlier, the ν6 resonance is a major contributor to the rate of asteroid
impacts on Earth. In fact, the majority of the asteroids colliding with the Earth originate
from the location of the ν6 resonance in the asteroid belt. Specifically, in the simulations of
Smallwood et al. [143] without a super-Earth, the total number of asteroid impacts on Earth
produced by secular resonances was about 2.5 times higher than that produced by mean-
motion resonances. If asteroid impacts were indeed important for the emergence and/or
evolution of life on Earth, then the ν6 resonance may have played a significant role in our
planet’s habitability. The ν6 resonance involves both Saturn and Jupiter. Basically, Jupiter
increases the precession frequency of the asteroids so that they fall into a resonance with the
apsidal precession rate of Saturn. In Figure 11.21 (taken from [143]), I show the precession
rate of a test particle as a function of orbital separation. The solid horizontal line marks the
eigenfrequency of Saturn (found using a generalised form of secular perturbation theory;
e.g., [124]). The top-left panel of Figure 11.21 represents our solar system since it includes
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Figure 11.21 The precession rate of a test particle as a function of semimajor. The horizontal
line represents the gi eigenfrequency of Saturn. The intersection of the precession rate with the
eigenfrequency denotes the location of a secular resonance. Top-left: a system with no super-Earth.
Top-right: a 10M⊕ super-Earth at a = 0.8 AU. Bottom-left: a 10M⊕ super-Earth at a = 1.2 AU.
Bottom-right: a 10M⊕ super-Earth at a = 1.4 AU.

Earth, Jupiter, Saturn, and the asteroid belt. The intersection of the particle’s precession rate
with Saturn’s eigenfrequency represents the location of the ν6 resonance, at about 2 AU.

The introduction of a super-Earth can change the asteroid precession rate so as to either
enhance or altogether remove the resonance with Saturn, depending on the super-Earth’s
location. For example, when the super-Earth has a semimajor axis of 0.8 AU, the precession
rate (of the test particle) is close to Saturn’s eigenfrequency for semimajor axis values in
the range 1.5–2.0 AU, which enhances the ν6 resonance (top-right panel in Figure 11.21).
On the other hand, when the super-Earth is exterior to Earth’s orbit, the ν6 resonance is
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removed – the precession rate of the test particle does not intersect Saturn’s eigenfrequency
(bottom panels; the left is for a super-Earth at 1.2 AU, and the right for 1.4 AU). This
behaviour agrees with that observed in Figures 11.16–11.19, where an interior super-Earth
produced a widening of the libration width of the ν6 resonance, while an exterior super-
Earth led to the disappearance of the resonance. The agreement of the numerical results
with the behaviour expected from the generalised form of the secular perturbation theory
(represented in Figure 11.21) gives great confidence in the numerical simulations.

The Effects of the Architecture of the Outer Solar System

In the next step, Smallwood et al. [143] considered the effects of the orbital properties
of the giant planets. They found that the location of the ν6 resonance is rather insensitive
to changes in Saturn’s mass, moving outward only slightly as the mass is increased. The
resonance was found to be much more sensitive to changes in Saturn’s orbital separation
from the Sun. Specifically, as Saturn is moved outward, the resonance location moves
inward. However, I should note that Saturn’s orbital location may not be accidental, since
it is close to a 5:2 resonance with Jupiter. To further investigate the effects of the architec-
ture of the giant planets, Smallwood et al. [143] ran additional simulations while varying
Saturn’s mass and semimajor axis. They found that increasing Saturn’s semimajor axis
(from its nominal ∼9.5 AU) results in the location of the ν6 resonance moving eventually
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Figure 11.22 The original semimajor axis of each asteroid as a function of the time when the final
outcome occurred, when Saturn is located at a = 8 AU. The dash-dotted line marked 4:1 represents
a mean-motion resonance between the asteroids and Saturn. The dashed lines represent mean-motion
resonances with Jupiter. Grey squares denote impacts on Earth and circles ejections.
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Figure 11.23 The same as Figure 11.22, with Saturn at a = 12 AU.

outside the boundaries of the asteroid belt. Decreasing the semimajor axis moved the ν6

resonance towards the middle (and then outer) region of the asteroid belt. These results
are also reflected in Figures 11.22–11.23. Figure 11.22 shows the initial semimajor axis
for each asteroid as a function of the time of its final outcome, when Saturn’s semimajor
axis is decreased to be a= 8.0 AU. Figure 11.23 shows the results when Saturn is taken
to be at a= 12.0 AU. For a= 8.0 AU, the ν6 resonance shifts to the outer part of the
asteroid belt, which decreases the number of impacts on Earth (compared to a = 9.5 AU)
but increases the number of ejections. When Saturn’s semimajor axis is taken to be 12.0 AU,
the ν6 resonance is located outside the asteroid distribution. Overall, Smallwood et al.’s
simulations [143] showed that Saturn’s orbital semimajor axis has a significant effect on the
location of the ν6 secular resonance and thereby on the rate of asteroid impacts on Earth.

To conclude this section, it appears that the ν6 resonance plays an important role in
producing asteroid impacts on terrestrial planets in the inner part of a planetary system.
The architecture of both the inner part and of the outer part affect the location of the ν6

resonance and thereby the rate of impacts. Super-Earths with masses larger than 5M⊕ and
interior to the Earth’s orbit would have increased the impact rate, while super-Earths exte-
rior to the Earth’s orbit would have decreased it. The position of Saturn in the solar system
also had a significant effect on the rate of asteroid impacts on Earth. Significantly changing
the semimajor axis of Saturn in both directions would have generally resulted in a decrease
in the number of asteroid collisions with the Earth. However, since the orbital location of
Saturn is close to being in the 5:2 resonance with Jupiter, it may not be accidental.
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11.5.4 The CO Snow Line

Introduction

The most abundant volatiles in a protoplanetary disc are H2O, CO, and CO2. A snow
line marks the location in the disc where the midplane temperature is sufficiently low
so that a volatile condenses out of the gas phase and becomes solid. The snow line of
each volatile has its own radial distance from the central star, with the water snow line
being the closest to the star. As I have noted earlier, giant planets are expected to form
outside the water snow line because the density of solids there is higher (e.g., [130, 135]).
In general, the composition of planets and their atmospheres is largely determined by the
location of their formation relative to the snow lines [127]. While the water snow line
is found at a temperature of about 170 K (see Section 11.5.1), the CO snow line occurs
at TCO,snow = 17 K [126]. Comets from the solar system’s Kuiper belt show different
amounts of CO, suggesting that they formed close to the CO snow line [2]. The Kuiper
belt is thought to have formed in the region extending from about 27 AU (from the Sun)
to about 35 AU [90]. Since the CO snow line would have been in this region at the time
of planetesimal formation, it could mark the transition from the planet-forming zone to the
dwarf planet/small icy body–forming zone.

While it is very difficult to detect the water snow line in exosolar systems (because of
its relative proximity to the host star), the CO snow line presents an easier target because it
is farther away. The best observed extrasolar snow line is in the disc around TW Hya. This
star has a mass of 0.8M� and an age of less than 10 Myr [72]. Qi et al. [133] detected in the
star’s vicinity the reactive ion N2H+, which is only present when CO is frozen out. These
authors determined the radial distance of the CO snow line to be 28–31 AU, very similar to
our own solar system.

Since CO ice is needed to form methanol – a building block of more complex organic
molecules – we need to understand the evolution of the CO snow line because that evolution
plays a crucial role in the origin of the prebiotic molecules that had led to the emergence
of life on Earth [156]. Recall that comets had intensely bombarded the young Earth,
apparently delivering those ingredients that were necessary for life. I should note that
debris discs – the equivalent of the solar system’s Kuiper belt – are extremely common in
exosolar systems and, hence, the solar system is not special in that sense. Similarly, systems
that have giant planets that are the equivalent of Jupiter, may be expected to have
Oort clouds.

Martin and Livio [102] studied the evolution of the CO snow line using two protoplane-
tary disc configurations: (1) a fully turbulent disc model and (2) the more likely model for
a protoplanetary disc – a disc with a dead zone (low-turbulence region).

A Turbulent Disc Model

In fully turbulent discs, material is assumed to orbit at radius R with a Keplerian angular
velocity � =

√
GM∗/R3, whereM∗ is the star’s mass (e.g., [131]). The effective viscosity
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in a disc in which turbulence is driven by the magnetorotational instability (MRI) is usually
parameterised in the form [139]

ν = α c
2
s

�
, (11.10)

where α is the viscosity parameter and cs is the sound speed at midplane. In a steady state,
mass conservation produces a surface density of

� = Ṁ

3πν
, (11.11)

where Ṁ is the infall (onto the disc) accretion rate. The surface temperature, Te, in such a
disc is given by energy conservation

σT 4
e = 9

8

Ṁ

3π
�2 + σT 4

irr, (11.12)

where Tirr is the irradiation (by the central star) temperature (e.g., [24]), given by

Tirr =
(

2

3π

)1/4 (
R

R∗

)−3/4

T∗. (11.13)

Here, R∗ and T∗ are the star’s radius and temperature [36]. The midplane temperature of
the disc is related to its surface temperature through T 4

c = τT 4
e , where τ is the optical depth

given by

τ = 3

8
κ
�

2
, (11.14)

and the opacity is κ = aT bc .
While the precise values of a and b do not have a strong effect on the inferred disc’s

temperature, values appropriate for the low temperatures in the vicinity of the CO snow
line are those obtained from absorption by dust, a = 0.053, b = 0.74 (e.g., [164]). Martin
and Livio [102] solved for the CO snow line radius by equating the central temperature Tc
to TCO,snow. Their results for RCO,snow as a function of the accretion rate are presented by
the short-dashed curve in Figure 11.24, where the assumed parameters were M∗ = 1M�,
R∗ = 3R�, T∗ = 4,000 K, TCO,snow = 17 K, and α = 0.01. Since the accretion rate drops
in time, time is the implicit coordinate in this figure. The value of the viscosity parameter
α is rather uncertain [84], consequently the figure also presents the results (by the long-
dashed curve) obtained for α = 10−4.

The figure demonstrates that the observed location of the CO snow line in our solar
system (at 27–35 AU), and in the solar system analogue TW Hydra (at 28–31 AU), cannot
be explained by a fully turbulent disc model. Specifically, in this model, the CO snow line
moves in too close to the central star during the low-accretion-rate phase towards the end
of the disc’s lifetime.
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Figure 11.24 Evolution of the CO snow line as a function of the accretion rate in a steady-state
disc. The dashed lines show a fully MRI turbulent disc with a viscosity parameter of 0.01 (short-
dashed) and 0.0001 (long-dashed). The solid line represents a disc with a self-gravitating dead zone.
The shaded region indicates the location of the CO snow line in our solar system at the time of
planetesimal formation.

I should note that since irradiation is the dominant heating source (over viscous heating)
on the scale of tens of AU, we can ignore the viscous heating term in Eq. (11.12), to find an
approximate analytic solution that represents very closely the dashed lines in Figure 11.24
for accretion rates of up to about 10−8 M� yr−1. This analytic approximation is given by

RMRI
CO,snow � 13.2

( α

0.01

)−2/9
(
M∗
M�

)1/9 (
Ṁ

10−8M� yr−1

)2/9

(
TCO,snow

17 K

)−0.95 (
R∗

3R�

)2/3 (
T∗

4000 K

)8/9

AU.

(11.15)

Since the fully turbulent disc model fails to reproduce the observed CO snow line,
Martin and Livio [102] also calculated time-dependent disc models with a dead zone to
follow the evolution of the CO snow line.

A Disc with a Dead Zone

A dead zone is formed when the ionisation fraction is not high enough for the MRI to
drive turbulence. Typically, the hot part of the disc (close to the central star), where the
midplane temperature is higher than some critical value, Tc � 800 K [149], is thermally
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ionised (and, therefore, MRI turbulent.) Farther away from the central star, either cosmic
rays or the X-ray flux from the star are the dominant sources of ionisation [62]. These
sources can only penetrate the surface layers, down to a surface density of �crit. Where
� > �crit, a dead zone exists at the midplane, with a surface density of �g =� − �crit.
The precise value of�crit depends on the ionising source, being around �crit � 200 g cm−2

if cosmic rays dominate [57] but much lower if X-rays dominate [108]. In the very outer
parts of the disc (in terms of distance from the central star), where �<�crit, the exter-
nal ionisation sources can penetrate all the way to the midplane, and that part is again
MRI active.

In the dead-zone (low-viscosity) region, material can accumulate to the point where the
disc becomes self-gravitating. This is expected to occur when the Toomre [148] parameter
Q = cs�/πG� drops below a critical value Qcrit. Martin and Livio [102] took Qcrit = 2.
This drives gravitational turbulence, with an effective viscosity parameter

ν = αg c
2
s

�
. (11.16)

Martin and Livio [102] adopted the functional form αg = α exp(−Q4) [104, 165].
They considered a model in which a molecular cloud collapses onto a disc, and they

took the initial accretion rate to be 2 × 10−6M� yr−1 and assumed that the accretion rate
decreases exponentially on a timescale of 105 years. The initial surface density of the disc
was taken to be that of a turbulent steady disc around a 1M� star, with an accretion rate of
2 × 10−6M� yr−1. The disc was modelled on a radial grid of 200 points evenly distributed
in logR from R = 1 AU to R = 200 AU. The infalling material was added at R = 195 AU.
To allow for a comparison, Martin and Livio [102] modelled one disc to be fully turbulent
and the other to contain a dead zone, with �crit = 10 g cm−2 (corresponding to ionisation
by X-rays).

The disc was found to be gravo-magneto unstable for high accretion rates, which caused
unsteady accretion onto the central star (for a similar behaviour, see also [5, 104]). The
evolution of the CO snow line as a function of time is shown in Figure 11.25. The dashed
line represents the fully turbulent disc, and the solid line, represents the disc with a dead
zone. At late times, the model with the dead zone has a snow line radius that is considerably
larger than that obtained for a turbulent disc and one which is consistent with the observa-
tions of the solar system and of TW Hya. The small (and brief) repetitive increases in the
snow line radius at early times are caused by FU Orionis-type outbursts. Basically, with a
dead zone, the small amount of self-gravity heats the more massive disc with a dead zone,
and this causes the CO snow line radius to move outward, as required by observations. For
low accretion rates, Martin and Livio [102] were able to find an analytic solution for the
CO snow line radius in a disc with a dead zone. This is given by

Rdead
CO,snow � 29.3

(
M∗
M�

)1/9 (
R∗

3 R�

)2/3 (
T∗

4,000 K

)8/9 (
TCO,snow

17 K

)−0.61

AU. (11.17)
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Figure 11.25 Evolution of the CO snow line in a time-dependent disc with an exponentially
decreasing infall accretion rate. The dashed line shows a fully MRI turbulent disc, and the solid
line, a disc with a dead zone. The shaded region indicates the location of the CO snow line in our
solar system at the time of planetesimal formation.

This approximate solution agrees very well with the solid line in Figure 11.24, where the
CO snow line radius is shown as a function of the accretion rate.

I should note that the CO snow line in the disc around the Herbig Ae star HD 163296
has been found to lie at a radius of 155 AU [107, 132]. For the observed parameters of this
system:M∗ = 2.3M�,R∗ = 2R�, T∗ = 9,333 K, and Ṁ = 7.6×10−8M� yr−1, the model
of Martin and Livio [102] with a dead zone would predict a snow line radius of only 62 AU
(a fully turbulent disc would give the even much smaller 37 AU). Disc flaring in this system
could potentially account for this discrepancy, since approximations for the temperatures
of flared discs would result in CO snow line radii larger than 100 AU (e.g., [36]).

In general, the analytic solution for the radius of the CO snow line could prove useful in
determining the composition (and thereby maybe the habitability) of exosolar planets.

11.5.5 Conclusion of Sections 11.1–11.5

An examination of the physical properties of our solar system reveals that it is not extremely
unusual when those are compared to the characteristics of the other observed exoplanetary
systems. Still, there is no doubt that a few of the solar system’s parameters have made it
conducive to the emergence and evolution of life. For example, low eccentricity planets (as
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observed in the solar system) have a more stable temperature throughout the entire orbit,
which may make them more likely to harbour life [158]. Planetary systems with a low mean
eccentricity are also more likely to have a long-term dynamical stability.

The age of the solar system (about 4.5 billion years) may also be favourable for the
emergence of complex life (which on Earth took some three billion years). However, I
should note that since the current age of the Sun is about half of its total lifetime and about
half the age of the Milky Way’s disc, one can expect that roughly half of the stars in the disc
are even older than the Sun. It is still the case, though, that if life can emerge and evolve
around low-mass stars (that are much more numerous and live much longer), then one could
expect complex life to be much more abundant in the future (about a trillion years from
now; see, e.g., Chapter 12). If that is indeed the case, then the appearance of complex life
on Earth could be regarded as very early. More recent work suggests, however, that planets
around most M-dwarfs may experience serious atmosphere erosion and are therefore not
likely to harbour life [94].

As I have already noted, the existence of terrestrial planets in the habitable zone around
their host star is quite common [18, 46].

The metallicity of the host star (and of the protoplanetary disc) also does not appear
too special in the solar system. The metallicity plays a role in determining the structure of
the planetary system that forms [22, 151]. The metallicity was found to be correlated with
the probability for the star to have a giant planet orbiting it [51, 134, 144]. However, the
correlation is much less clear for lower-mass planets [21, 110]. While planets with radii
smaller than four Earth radii are observed around stars with a wide range of metallicities,
the average metallicity of stars hosting planets with Rp < 1.7R⊕ is close to solar [22]. It is
unclear, therefore, whether having a near-solar metallicity is somehow related to forming
Earth-size planets.

The variability of the Sun has also been compared to the activity of the stars in the Kepler
sample, with rather ambiguous conclusions. While Basri and collaborators [10, 11] found
the Sun to be quite typical, with only a quarter to a third of the sample being more active,
McQuillan and his collaborators [111] found the Sun to be relatively quiet, with 60% of
the stars being more active. The difference in the conclusions stems primarily from the fact
that fainter stars were included in McQuillan et al. [111] (and also from some differences
in defining the activity level of the Sun). Since 90% of M-dwarfs are more active than the
Sun, the inclusion of lower-mass stars makes the Sun quiet in comparison. Compared to
other Sun-like stars, however, the Sun is quite typical.

As I have noted throughout Section 11.5, the existence of a compact asteroid belt may be
conducive to initiating life. Current observations do not allow us to determine categorically
how common asteroid belts are. However, the list of unresolved debris disc candidates now
contains hundreds of examples [34], and of these, about two-thirds are better modelled by
a two-component (rather than a single) dust disc arising from two separate belts [83]. The
two-belt configuration of our solar system may therefore be quite ubiquitous.

In Sections 11.2 and 11.3, I identified the lack of super-Earths and the lack of planets
interior to Mercury’s orbit as perhaps the two main characteristics that make the solar
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system somewhat special. Even though I have shown that the presence of super-Earths
could affect the rate of asteroid impacts on Earth, it is not obvious that this influenced the
Earth’s habitability. One feature that should be further investigated is the effect of a close-in
super-Earth on the dynamical stability of a terrestrial planet in the habitable zone.

The bottom line from the discussion so far is simple. There may be many factors that are
necessary, but maybe not sufficient, for life to emerge and evolve on a planet. If we were
to multiply the probabilities for all of these factors (in a Drake-type equation) together, we
could end up with a very small probability for life in the Milky Way. Without a concrete
knowledge of which ones of these factors are truly essential for life, however, such an
exercise would merely represent our ignorance. If we blindly consider every single aspect
of the solar system, we will obviously find it to be unique. From the parameters that I have
considered here, however, I have not identified any feature that would argue for the Earth
being exceptionally rare. This is what makes Section 11.6 particularly interesting, since
in it I discuss a claim by astrophysicist Brandon Carter, who argues that extraterrestrial
intelligent life is exceedingly rare.

11.6 How Rare Are Extrasolar Intelligent Civilisations?

11.6.1 Introduction

The existence of the so-called Fermi Paradox, the absence of any signs for the existence
of other intelligent civilisations in the Milky Way galaxy, coupled with an interesting
argument raised by astrophysicist Brandon Carter ([28], to be discussed later) as well as
the absence of any physical law that mandates complexification, have convinced a few
researchers that intelligent life may be exceedingly rare in the Milky Way (e.g., [9, 42,
152]). If true, such a reality could have implications far beyond the practical ones (i.e.,
the search for extraterrestrial intelligence). In fact, it would fly in the face of Copernican
modesty, which argues that humanity should not be in any way ‘special’ in the grand
cosmic scheme. Over the years, Carter’s argument has generated a considerable amount
of discussion, so I will briefly review it here, together with a few of the criticisms that have
been raised.

11.6.2 Carter’s Argument

Carter’s argument [138] can be explained in very simple terms, as follows. Examine the
typical timescale for biological evolution (and the emergence of intelligent life) on a planet,
τ�, and the lifetime of the central star of that planetary system τ∗. If the two timescales are
a priori entirely independent quantities (that is, intelligent life can develop at some random
time with respect to the main-sequence lifetime of the star), then one can expect that one
of the following relations holds: either τ� � τ∗ or τ� � τ∗. The probability that τ� ∼ τ∗ is
very small for two truly independent quantities when each one of the two can assume a very
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broad range of values. If, however, generally τ� � τ∗, it is very difficult to understand why
in the very first system in which we found an existing intelligent civilisation (the Earth-Sun
system), we find that τ� ∼ τ∗ (to within a factor of two; the lifetime of our Sun is about
10 billion years, and it took about 4.5 billion years for intelligent life to evolve). I take τ�
to mean roughly the timescale for the appearance of land life. This means, Carter argues,
that generally τ� � τ∗. In that case, however, it is clear that because of observational
selection, the first system found to harbour intelligent life is likely to exhibit τ� ∼ τ∗, since
a civilisation would not have developed for τ� � τ∗ (the evolution of life requires the star
as an energy source). Consequently, Carter concludes, typically τ� � τ∗, and intelligent
civilisations do not develop. The Earth, in this case, is an extremely rare exception.

Carter’s argument, if true, has very significant implications from both scientific and
philosophical perspectives. In particular, it puts a very heavy burden of responsibility on
humanity, as one of the very few (or only!) intelligent civilisation in the galaxy. It should
come as no surprise, therefore, that several criticisms of the argument have emerged over
the years since its publication.

11.6.3 Criticisms of Carter’s Argument

The first significant criticism of Carter’s argument, primarily on logical and methodological
grounds, was launched by Wilson [159]. Wilson first explained that Carter’s argument
really involves three timescales: τ∗ – the main-sequence lifetime of stars like the Sun
(∼10 Gyr), τ� – the time that biological evolution has taken on Earth (∼4 Gyr), and
τ̄ – the timescale that would intrinsically be the most likely one required for the evolution
of intelligent life. Wilson then points out that we really have no idea what the value of τ̄
is since we do not understand all the biological processes involved in the appearance of
intelligence and we have only a single observed case of biological evolution (on Earth).
Wilson explains that Carter’s argument states that τ̄ has to satisfy τ̄ � τ∗ or τ̄ � τ∗, and
he rules out τ̄ ∼ τ∗ as explained earlier, even though we are completely ignorant about τ̄ .

In particular, Wilson points out that when Carter assumes only the three ranges of values
τ̄ � τ∗, τ̄ � τ∗, and τ̄ ∼ τ∗, he excludes the possibility, for instance, that τ̄ is less than
τ∗, but not much less. Wilson also argues that since we are ignorant about the value of
τ̄ , the possibility τ̄ ∼ τ∗ cannot truly be ruled out. In addition, Wilson explains that the
claim that τ� should not differ from a given value of τ̄ is not equivalent to the claim
that τ̄ should not be different from a given value of τ�, since our knowledge of the value
of a statistical quantity cannot be significantly enhanced by the evidence provided by a
single case.

Finally, Wilson argues that the imprecision of the coincidence between τ� and τ∗ (a
factor of two), also lessens the explanatory power of a very high value of τ̄ and thereby
decreases the confirmatory power of the rough coincidence τ� ∼ τ∗.

Taking a different approach, I attempted to refute Carter’s argument on astrophysical
grounds in Livio [95]. In that paper, I used a very simple toy model for the evolution of the
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Earth’s atmosphere to demonstrate that Carter could be wrong, because of a fundamental
assumption in his argument. Specifically, I showed that the two timescales τ� and τ∗ could
in principle, at least, be correlated, in which case the entire logical structure of the argument
(which is based on their being independent) collapses. Here is a brief description of how a
τ�-τ∗ relation could arise.

On the face of it, it appears that τ� is determined entirely by biochemical reactions
and Darwinian evolution, while τ∗ is determined by the rate energy is produced by
nuclear burning reactions, and, therefore, it appears that the two timescales are, indeed,
totally independent. However, we should note the following: the absorption of UV
radiation by nucleic acids peaks in the range 2,600–2,700 Å, and the absorption of
UV radiation by proteins in the range 2,700–2,900 Å [29, 41, 137]. Such radiation essen-
tially kills all cell activity [16]. The only atmospheric constituent that efficiently absorbs
radiation in the 2,000–3,000 Å range is O3 [154]. The appearance of land life, therefore,
may have to await the accumulation of a protective layer of ozone in the atmosphere
(e.g., [17, 99]).

The evolution of the concentration of oxygen in a planetary atmosphere is very complex,
and calibrations have to rely solely on the one existing example – Earth. On Earth, dynamic
rising and falling of oxygen levels started perhaps as early as three billion years ago on
a background of generally rising levels from low to intermediate to high (see, e.g., [99]
for a recent review). Most of the oxygen produced on Earth was of biotic origin. In the
very early (non-biotic) stages (which may have lasted more than a billion years), however,
oxygen was primarily released from the photodissociation of water vapor [26]. From our
perspective here, the important point is that the initial (albeit very small) rise in oxygen can
be produced by non-biological processes (in addition to the dissociation of water vapor, the
splitting of CO2 by intense UV radiation can also contribute; e.g., [45]). The duration of
this phase is roughly inversely proportional to the intensity of the UV radiation in the range
1,000–2,000 Å (since water has significant absorption peaks in the ranges 1,100–1300 Å
and 1,600–1,800 Å). Consequently, for a given planet size and orbit, the timescale for the
build-up of sufficient shielding from lethal radiation (and, concomitantly, the timescale for
the appearance of land life, τ�) is dependent on the spectral type of the star and thereby
on τ∗ (since on the main sequence the spectral type is directly related to the mass, and
τ∗ ∼ 1010(M/M�)−2.45 yr). As an aside, I should note that the mere concept of a ‘habitable
zone’ for the planet already introduces a correlation between the star’s properties and the
habitability of a planet.

Livio and Kopelman [96] used typical main sequence relations – (L/L�)= (M/M�)3.45,
(R/R�)= (M/M�)β (with β in the range 0.6–1, applicable at least for spectral types
around that of the Sun or smaller), and empirical fractions for the UV radiation emitted in
the 1,000–2,000 Å range [27, 145] – to obtain the approximate relation

τ�

τ∗
∼ 0.4

(
τ∗
τ�

)1.7

. (11.18)
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As I have noted before, the potential existence of such a relation undermines a key assump-
tion in Carter’s argument. The fact that we found a relation of the form τ�/τ∗ = f (τ∗),
where f (τ∗) is a monotonically increasing function (at least for a certain range of stel-
lar spectral types), has another interesting consequence. For a Salpeter initial mass func-
tion [138], the distribution of stellar lifetimes behaves approximately as ψ(τ∗) ∼ τ∗. This
expresses the known fact that the number of stars increases with increasing τ∗. Since f (τ∗)
also increases with τ∗ (Eq. (11.18)), but complex life cannot emerge if τ� > τ∗, this implies
that it is most probable that in the first place where we would encounter intelligent life,
we will find that τ�/τ∗ ∼ 1, as in the Earth-Sun system. In other words, the observation
on which Carter based his argument finds a natural explanation, and it does not have any
implications for the frequency of extrasolar life. Note that this conclusion does not depend
on the precise functional form of f (τ∗) = τ�/τ∗, as long as such a relation exists, and it is
a monotonically increasing function of τ∗.

Since in order to obtain the τ�-τ∗ relation I had to make a few extremely simplifying
assumptions, I would not claim that this completely refutes Carter’s argument. In particular,
if instead of the one-to-one function in Eq. (11.18) there is an extremely wide ‘band’, this
would be almost equivalent to there being no τ�-τ∗ relation at all, in which case Carter’s
argument can be recovered. The preceding discussion does demonstrate, however, that
Carter’s argument could be wrong from an astrophysical perspective. I should emphasise
that even a complete refutation of Carter’s argument does not mean that extrasolar intelli-
gent civilisations exist – only that an argument for their non-existence is wrong.

A criticism on a more fundamental level was raised by Ćirković et al. [38]. These
authors pointed out that Carter’s argument relies first of all on the assumption that well-
defined timescales for the astrophysical and biological processes actually exist. Secondly,
Carter assumes that the timescale on the astrophysical side is even fixed and approximately
known. Ćirković et al. [38] noted, in particular, that processes other than the evolution of
the host star can affect the habitability of a planet. They correctly asserted that Carter’s
argument regards the Earth-Sun system as a ‘closed box’, while concepts such as the galac-
tic habitable zone (the region in the galaxy characterised by such physical parameters that
it allows for life to emerge and evolve; e.g., [63, 93]) demonstrate a level of connectedness
not envisaged by Carter. Other effects such as ‘snowball Earth’, glaciation episodes, and
geophysical processes such as those governing the carbon-silicate cycle also demonstrate
the existence of relevant timescales shorter than the main-sequence lifetime of the host star
(e.g., [59, 73]). I should also point out that since some astrophysical processes and events
exist (such as gamma ray bursts (GRBs); or spiral-arm crossings by the solar system) that
can altogether terminate or at least strongly affect biological evolution (see, e.g., [129, 142]
for recent references on GRBs and [140] on spiral-arm crossings), the governing timescales
may be the ones associated with maximising the chances of life being able to survive these
cosmic cataclysms rather than the lifetime of the star (the timescale for atmospheric loss for
planets around M-dwarfs is also much shorter than the main-sequence lifetime [94]). These
timescales are dictated primarily by the values of the Hubble constant Ho and the value



448 Mario Livio

of the cosmological constant � (in the context of a �CDM cosmology). It is interesting
to note, in this respect, that using cosmological N -body simulations, Piran et al. [129]
concluded that we find ourselves in a favourable spot in the cosmological phase space, in
that the exposure of the solar system to GRBs is minimised while the number of hydrogen-
burning stars (around which complex life can in principle evolve) is maximised.

The bottom line is clear: Carter’s argument should not be taken as a discouragement
from searching for other intelligent civilisations in the Milky Way. With the realisation that
punctuated equilibrium could characterise the evolution of life even on the galactic scale,
even the possibility of τ�� τ∗ cannot be convincingly rejected, since life can independently
appear several times and then become extinct through catastrophic events.

Irrespective of Carter’s argument, however, there are other reasons to suspect that we are
not the only intelligent species to have ever existed in the Universe as a whole. For exam-
ple, Frank and Sullivan [54] used the exoplanets statistics obtained by the Kepler Space
Observatory to evaluate the probability that humanity is the only technological civilisation
to have ever existed. They showed that for that to be true, the probability that a habitable-
zone planet develops a technological species must be smaller than 10−24, essentially the
reciprocal of the expected number of rocky, habitable-zone planets in the observable Uni-
verse. So, unless the evolution to technology is truly extraordinarily improbable, chances
are that other such civilisations existed at some point in the Universe’s lifetime.

To conclude this entire chapter, I have not identified any physical parameters which
convincingly demonstrate that life on Earth, or even intelligent life, is unique, either in the
Universe as a whole or even in the Milky Way galaxy. Ongoing space mission such as TESS
(launched in 2019) and upcoming missions such as JWST and WFIRST (to be launched in
2021 and the mid-2020s, respectively), as well as ground-based telescopes (such as a next-
generation Extremely Large Telescope) will detect and start to characterise the atmospheres
of super-Earth and Earth-like planets, in the search for biosignatures. Chances are that even
if we do not detect extrasolar life in the next two to three decades, we will at least be
able to place some meaningful limits on how rare life that dominates the planetary surface
chemistry (so that it significantly alters the atmosphere) really is.
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On the Temporal Habitability of Our Universe

a b r a h a m l o e b

Abstract

Is life most likely to emerge at the present cosmic time near a star like the Sun? We consider
the habitability of the Universe throughout cosmic history and conservatively restrict our
attention to the context of ‘life as we know it’ and the standard cosmological model,
�CDM. The habitable cosmic epoch started shortly after the first stars formed, about
30 Myr after the Big Bang, and will end about 10 Tyr from now, when all stars will die. We
review the formation history of habitable planets and find that unless habitability around
low-mass stars is suppressed or appears preferentially early, life is most likely to exist near
∼ 0.1M� stars 10 trillion years from now. Spectroscopic searches for biosignatures in the
atmospheres of transiting Earth-mass planets around low-mass stars will determine whether
present-day life is indeed premature or typical from a cosmic perspective.

12.1 Introduction

The known forms of terrestrial life involve carbon-based chemistry in liquid water [130,
131]. In the cosmological context, life could not have started earlier than 10 Myr after the
Big Bang (z � 140) since the entire Universe was bathed in a thermal radiation background
above the boiling temperature of liquid water. Later on, however, the Universe cooled to a
habitable epoch at a comfortable temperature of 273–373 K between 10 and 17 Myr after
the Big Bang [159].

The phase diagram of water allows it to be liquid only under external pressure in an
atmosphere which can be confined gravitationally on the surface of a planet. To keep the
atmosphere bound against evaporation requires strong surface gravity of a rocky planet
with a mass comparable to or above that of the Earth [229, 276].

The emergence of ‘life as we know it’ requires stars for two reasons. Stars are needed
to produce the heavy elements (carbon, oxygen, and so on, up to iron) out of which rocky
planets and the molecules of life are made. Stars also provide a heat source for powering the
chemistry of life on the surface of their planets. Each star is surrounded by a habitable zone
where the surface temperature of a planet allows liquid water to exist. The approximate
distance of the habitable zone, rHZ, is obtained by equating the heating rate per unit area
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from the stellar luminosity, L, to the cooling rate per unit area at a surface temperature
of THZ ∼ 300 K, namely (L/4πr2

HZ)∼ σT 4
HZ, where σ is the Stefan-Boltzman constant

[130, 131].
Starting from the vicinity of particular stars, life could potentially spread. This process,

so-called panspermia, could be mediated by the transfer of rocks between planetary sys-
tems [1]. The ‘astronauts’ on such rocks could be microscopic animals such as tardigrades,
which are known to be resilient to extreme vacuum, dehydration, and exposure to radiation
that characterise space travel. In 2007, dehydrated tardigrades were taken into a low Earth
orbit for 10 days. After returning to Earth, most of them revived after rehydration, and
many produced viable embryos [87]. Life which arose via spreading will exhibit more
clustering than life which arose spontaneously, and so the existence of panspermia can
be detected statistically through excess spatial correlations of life-bearing environments.
Future searches for biosignatures in the atmospheres of exoplanets could test for pansper-
mia: a smoking-gun signature would be the detection of large regions in the Milky Way
where life saturates its environment, interspersed with voids where life is very uncommon.
In principle, detection of as few as several tens of biologically active exoplanets could
yield a highly significant detection of panspermia [151]. Once life emerges on the surface
of a planet, it is difficult to extinguish it completely through astrophysical events (such as
quasar activity, supernovae, gamma ray bursts, or asteroid impacts) other than the death of
the host star. Life is known to be resilient to extreme environments and could be protected
from harmful radiation or heat if it resides underground or on the deep ocean floor [236].

Panspermia is not limited to galactic scales and could extend over cosmological
distances. Some stars and their planets are ejected from their birth galaxies at a speed
approaching the speed of light, through a gravitational slingshot from pairs of supermassive
black holes which are formed during galaxy mergers [104, 161]. The resulting population
of relativistic stars roaming through intergalactic space could potentially transfer life
between galaxies separated by vast distances across the Universe.

The spread of life could be enhanced artificially through the use of spacecrafts by
advanced civilisations. Our own civilisation is currently starting to develop the technol-
ogy needed to visit the nearest stars with a travel time of decades through the propul-
sion of lightweight sails to a fraction of the speed of light by a powerful laser.1 The
existence of advanced civilisations could be revealed through the detection of industrial
pollution in the atmospheres of planets [152], the detection of powerful beacons of light
used for propulsion [103] and communications [164], or through artificial lights [163]. The
search for signatures of advanced civilisations is the richest interdisciplinary frontier, offer-
ing interfaces between astronomy and other disciplines, such as biology (astrobiology),
chemistry (astrochemistry), statistics (astro-statistics), or engineering (astroengineering).
Moreover, the prospects for communication with aliens could open new disciplines on
the interface with linguistics (astro-linguistics), psychology (astro-psychology), sociology

1 www.breakthroughinitiatives.org/Concept/3.

www.breakthroughinitiatives.org/Concept/3.
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(astro-sociology), philosophy (astro-philosophy) and many other fields. ‘Are we alone?’
is one of the most fundamental questions in science; the answer we find to this question
is likely to provide a fresh perspective on our place in the Universe. Although primitive
forms of life are likely to be more abundant, intelligent civilisations could make themselves
detectable out to greater distances.

The search for life was reinvigorated by the Kepler satellite which revealed that a sub-
stantial fraction of the stars in the Milky Way galaxy host habitable Earth-mass planets
around them [73, 179, 207, 235]. Indeed, the nearest star to the Sun, Proxima, whose mass is
only 12% of the solar mass, was recently found to host an Earth-mass planet in the habitable
zone. This planet, Proxima b, is 20 times closer to its faint stellar host than the Earth is to the
Sun [9]. Dwarf stars like Proxima are the most abundant stars in the Universe, and they live
for trillions of years, up to a thousand times longer than the Sun. If life could form around
them, it would survive long into the future. The prospects for life in the distant cosmic
future can therefore be explored by searching for biosignatures around nearby dwarf stars.
For example, the existence of an atmosphere around Proxima’s planet could be detected
relatively soon by measuring the temperature contrast between its day and night sides [140].
Speaking of the cosmic future, it is interesting to note that planets or rocky debris are known
to exist around stellar remnants, such as white dwarfs [150, 259] and neutron stars [216].
The Sun is currently at the middle of its lifetime on its way to becoming a white dwarf.
White dwarfs, which are billions of years old and exist in abundance comparable to that
of Sun-like stars, have a surface temperature similar to that of the Sun but are a hundred
times smaller in size. As a result, the habitable zone around them is a hundred times closer
than the Earth is to the Sun [2]. Searches for biosignatures in the atmospheres of habitable
planets which transit white dwarfs could potentially be conducted in the near future [162].
Counting all possible host stars and extrapolating to cosmological scales, there might be
as many as ∼ 1020 habitable planets in the observable volume of the Universe at present
[25, 275].

In the following sections of this chapter, we discuss the habitability of the Universe
as a function of cosmic time, starting from the earliest habitable epoch in Section 12.2.
According to the Standard Model of cosmology, the first stars in the observable Universe
formed ∼ 30 Myr after the Big Bang at a redshift, z ∼ 70 [82, 159, 160, 193]. Within a
few Myr, the first supernovae dispersed heavy elements into the surrounding gas, enriching
the second-generation stars with heavy elements. Remnants from the second generation of
stars are found in the halo of the Milky Way galaxy and may have planetary systems in
the habitable zone around them [182], as discussed in Section 12.3. The related planets are
likely made of carbon, and water could have been delivered to their surface by icy comets,
in a similar manner to the solar system. The formation of water is expected to consume most
of the oxygen in the metal poor interstellar medium of the first galaxies [29], as discussed
in Section 12.4. Therefore, even if the cosmological constant was bigger than its measured
value by up to a factor of ∼103 so that galaxy formation was suppressed at redshifts z � 10,
life could have still emerged in our Universe due to the earliest generation of galaxies [158],
as discussed in Section 12.5. We conclude in Section 12.6 with a calculation of the relative
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likelihood per unit time for the emergence of life [165], which is of particular importance
for studies attempting to gauge the level of fine-tuning required for the cosmological or
fundamental physics parameters that would allow life to emerge in our Universe.

12.2 The Habitable Epoch of the Early Universe

12.2.1 Section Background

We start by pointing out that the cosmic microwave background (CMB) provided a uniform
heating source at a temperature of Tcmb = 272.6 K × [(1 + z)/100] [85] that could have
made by itself rocky planets habitable at redshifts (1+z) = 100–137 in the early Universe,
merely 10–17 million years after the Big Bang.

In order for rocky planets to exist at these early times, massive stars with tens to hundreds
of solar masses, whose lifetimes are much shorter than the age of the Universe, had to
form and enrich the primordial gas with heavy elements through winds and supernova
explosions [110, 198]. Indeed, numerical simulations predict that predominantly massive
stars have formed in the first halos of dark matter to collapse [41, 160]. For massive
stars that are dominated by radiation pressure and shine near their Eddington luminosity
LE = 1.3 × 1040 erg s−1(m/100M�), the lifetime is independent of stellar mass m and set
by the 0.7% nuclear efficiency for converting rest mass to radiation, ∼ (0.007mc2)/LE =
3 Myr [43, 78]. We next examine how early such stars formed within the observable volume
of our Universe.

12.2.2 First Planets

In the standard cosmological model, structure forms hierarchically – starting from small
spatial scales, through the gravitational growth of primordial density perturbations [160].
On any given spatial scale R, the probability distribution of fractional density fluctuations
δ is assumed to have a Gaussian form, P(δ)dδ = (2πσ 2)−1/2 exp{−δ2/2σ 2}dδ, with
a root-mean-square amplitude σ(R) that is initially much smaller than unity. The initial
σ(R) is tightly constrained on large scales, R � 1 Mpc, through observations of the CMB
anisotropies and galaxy surveys [5, 211], and is extrapolated theoretically to smaller scales.
Throughout the discussion, we normalise spatial scales to their so-called co-moving values
in the present-day Universe. The assumed Gaussian shape of P(δ) has so far been tested
only on scales R � 1 Mpc for δ � 3σ [232], but was not verified in the far tail of the
distribution or on small scales that are first to collapse in the early Universe.

As the density in a given region rises above the background level, the matter in it
detaches from the Hubble expansion and eventually collapses, owing to its self-gravity, to
make a gravitationally bound (virialised) object like a galaxy. The abundance of regions
that collapse and reach virial equilibrium at any given time depends sensitively on both
P(δ) and σ(R). Each collapsing region includes a mix of dark matter and ordinary
matter (often labelled as ‘baryonic’). If the baryonic gas is able to cool below the virial
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temperature inside the dark matter halo, then it could fragment into dense clumps and
make stars.

At redshifts z � 140, Compton cooling on the CMB is effective on a timescale compa-
rable to the age of the Universe, given the residual fraction of free electrons left over from
cosmological recombination (see section 2.2 in Reference [160] and also Reference [215]).
The thermal coupling to the CMB tends to bring the gas temperature to Tcmb, which at
z∼ 140 is similar to the temperature floor associated with molecular hydrogen cool-
ing [108, 113, 244]. In order for virialised gas in a dark matter halo to cool, condense,
and fragment into stars, the halo virial temperature Tvir has to exceed Tmin ≈ 300 K, corre-
sponding to Tcmb at (1 + z)∼ 110. This implies a halo mass in excess of Mmin = 104M�,
corresponding to a baryonic massMb,min = 1.5×103M�, a circular virial velocity Vc,min =
2.6 km s−1, and a virial radius rvir,min = 6.3 pc (see section 3.3 in Reference [160]). This
value of Mmin is close to the minimum halo mass to assemble baryons at that redshift (see
section 3.2.1 in Reference [160] and figure 2 of Reference [250]).

The corresponding number of star-forming halos on our past light cone is given by [193],

N =
∫ (1+z)=137

(1+z)=100
n(M > Mmin,z

′)
dV

dz′
dz′, (12.1)

where n(M >Mmin) is the co-moving number density of halos with a mass M>Mmin

[233], and dV = 4πr2dr is the co-moving volume element with dr = cdt/a(t). Here,
a(t) = (1 + z)−1 is the cosmological scale factor at time t , and r(z) = c

∫ z
0 dz

′/H(z′) is
the co-moving distance. The Hubble parameter for a flat Universe is

H(z) ≡ (ȧ/a) = H0

√
�m(1 + z)3 +�r(1 + z)4 +��, (12.2)

with �m, �r and �� being the present-day density parameters of matter, radiation, and
vacuum, respectively. The total number of halos that existed at (1 + z) ∼ 100 within our
entire Hubble volume (not restricted to the light cone), Ntot ≡ n(M > Mmin,z = 99) ×
(4π/3)(3c/H0)

3, is larger than N by a factor of ∼ 103.
For the standard cosmological parameters [211], we find that the first star-forming halos

on our past light cone reached its maximum turnaround radius2 (with a density contrast of
5.6) at z ∼ 112 and collapsed (with an average density contrast of 178) at z ∼ 71. Within
the entire Hubble volume, a turnaround at z ∼ 122 resulted in the first collapse at z ∼ 77.
This result includes the delay by�z ∼ 5.3 expected from the streaming motion of baryons
relative to the dark matter [82].

The preceding calculation implies that rocky planets could have formed within our
Hubble volume by (1+z) ∼ 78 but not by (1+z) ∼ 110 if the initial density perturbations
were perfectly Gaussian. However, the host halos of the first planets are extremely rare,
representing just ∼ 2×10−17 of the cosmic matter inventory. Since they lie ∼ 8.5 standard
deviations (σ ) away on the exponential tail of the Gaussian probability distribution of initial
density perturbations, P(δ), their abundance could have been significantly enhanced by

2 In the spherical collapse model, the turnaround time is half the collapse time.
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primordial non-Gaussianity [166, 172, 189] if the decline of P(δ) at high values of δ/σ is
shallower than exponential. The needed level of deviation from Gaussianity is not ruled out
by existing data sets [212]. Non-Gaussianity below the current limits is expected in generic
models of cosmic inflation [173] that are commonly used to explain the initial density
perturbations in the Universe.

12.2.3 Section Summary and Implications

In the discussion thus far, we highlighted a new regime of habitability made possible for
∼ 6.6 Myr by the uniform CMB radiation at redshifts (1 + z) = 100 − 137, just when the
first generation of star-forming halos (with a virial mass � 104M�) turned around in the
standard cosmological model with Gaussian initial conditions. Deviations from Gaussianity
in the far (8.5σ ) tail of the probability distribution of initial density perturbations, already at
these redshifts, could have led to the birth of massive stars, whose heavy elements triggered
the formation of rocky planets with liquid water on their surfaces.3

Thermal gradients are needed for life. These can be supplied by geological variations
on the surface of rocky planets. Examples for sources of free energy are geothermal energy
powered by the planet’s gravitational binding energy at formation and radioactive energy
from unstable elements produced by the earliest supernova. These internal heat sources (in
addition to possible heating by a nearby star) may have kept planets warm even without the
CMB, extending the habitable epoch from z ∼ 100 to later times. The lower CMB temper-
ature at late times may have allowed ice to form on objects that delivered water to a planet’s
surface and helped to maintain the cold trap of water in the planet’s stratosphere. Planets
could have kept a blanket of molecular hydrogen that maintained their warmth [208, 241],
allowing life to persist on internally warmed planets at late cosmic times. If life persisted
at z � 100, it could have been transported to newly formed objects through panspermia.
Under the assumption that interstellar panspermia is plausible, the redshift of z ∼ 100 can
be regarded as the earliest cosmic epoch after which life was possible in our Universe.

Finally, we note that an increase in the initial amplitude of density perturbations on the
mass-scale of 104M� by a modest factor of 1.4 × [(1 + z)/110] would have enabled star
formation within the Hubble volume at redshifts (1+ z) > 110 even for perfectly Gaussian
initial conditions.

12.3 CEMP Stars: Possible Hosts to Carbon Planets in the Early Universe

12.3.1 Section Background

The questions of when, where, and how the first planetary systems actually formed in cos-
mic history remain crucial to our understanding of structure formation and the emergence

3 The dynamical time of galaxies is shorter than ∼ 1/
√

200 = 7% of the age of the Universe at any redshift since their average
density contrast is � 200. After the first stars formed, the subsequent delay in producing heavy elements from the first
supernovae could have been as short as a few Myr. The supernova ejecta could have produced high-metallicity islands that
were not fully mixed with the surrounding primordial gas, leading to efficient formation of rocky planets within them.
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of life in the early Universe [159]. The short-lived, metal-free, massive first-generation
stars ultimately exploded as supernovae (SNe) and enriched the interstellar medium (ISM)
with the heavy elements fused in their cores. The enrichment of gas with metals that had
otherwise been absent in the early Universe enabled the formation of the first low-mass stars
and perhaps marked the point at which star systems could begin to form planets [42, 57, 89].
In the core accretion model of planet formation (e.g., [123, 201]), elements heavier than
hydrogen and helium are necessary not only to form the dust grains that are the building
blocks of planetary cores but also to extend the lifetime of the protostellar disc long enough
to allow the dust grains to grow via merging and accretion to form planetesimals [80, 126,
138, 271].

In the past four decades, a broad search has been launched for low-mass Population II
stars in the form of extremely metal-poor sources within the halo of the Galaxy. The HK
survey [23], the Hamburg/ESO Survey [55, 268], the Sloan Digital Sky Survey (SDSS;
[274]), and the SEGUE survey [270] have all significantly enhanced the sample of metal-
poor stars with [Fe/H] < −2.0. Although these iron-poor stars are often referred to in the
literature as ‘metal-poor’ stars, it is critical to note that [Fe/H] does not necessarily reflect a
stellar atmosphere’s total metal content. The equivalence between ‘metal-poor’ and ‘iron-
poor’ appears to fall away for stars with [Fe/H] < −3.0 since many of these stars exhibit
large overabundances of elements such as C, N, and O; the total mass fractions, Z, of the
elements heavier than He are therefore not much lower than the solar value in these iron-
poor stars.

Carbon-enhanced metal-poor (CEMP) stars comprise one such chemically anomalous
class of stars, with carbon-to-iron ratios [C/Fe] ≥ 0.7 (as defined in [11, 45, 196]). The
fraction of sources that fall into this category increases from ∼15%–20% for stars with
[Fe/H] < −2.0, to 30% for [Fe/H] < −3.0, to ∼75% for [Fe/H] < −4.0 [22, 88, 196].
Furthermore, the degree of carbon enhancement in CEMP stars has been shown to notably
increase as a function of decreasing metallicity, rising from [C/Fe] ∼ 1.0 at [Fe/H] = −1.5
to [C/Fe] ∼ 1.7 at [Fe/H] = −2.7. [45]. Given the significant frequency and level of carbon
excess in this subset of metal-poor Population II stars, the formation of carbon planets
around CEMP stars in the early Universe presents itself as an intriguing possibility.

From a theoretical standpoint, the potential existence of carbon exoplanets,
consisting of carbides and graphite instead of Earth-like silicates, has been suggested by
Reference [143]. Using the various elemental abundances measured in planet-hosting stars,
subsequent works have sought to predict the corresponding variety of terrestrial exoplanet
compositions expected to exist [34, 47, 48]. Assuming that the stellar abundances are
similar to those of the original circumstellar disc, related simulations yield planets with
a whole range of compositions, including some that are almost exclusively C and SiC;
these occur in discs with C/O > 0.8, favourable conditions for carbon condensation [144].
Observationally, there have also been indications of planets with carbon-rich atmospheres –
e.g., WASP-12b [170] and carbon-rich interiors – e.g., 55 Cancri e [171].

In this section, we explore the possibility of carbon planet formation around the iron-
deficient but carbon-rich subset of low-mass stars, mainly CEMP stars. Standard definitions
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of elemental abundances and ratios are adopted. For element X, the logarithmic absolute
abundance is defined as the number of atoms of element X per 1012 hydrogen atoms,
log ε(X) = log10 (NX/NY)+ 12.0. For elements X and Y, the logarithmic abundance ratio
relative to the solar ratio is defined as [X/Y] = log10 (NX/NY) − log10 (NX/NY)�. The
solar abundance set is that of Reference [14], with a solar metallicity Z� = 0.0134.

12.3.2 Star-Forming Environment of CEMP Stars

A great deal of effort has been directed in the literature towards theoretically understanding,
the origin of the most metal-poor stars and, in particular, the large fraction that is carbon-
rich. These efforts have been further perturbed by the fact that CEMP stars do not form a
homogenous group but, rather, can be further subdivided into two main populations [22]:
carbon-rich stars that show an excess of heavy neutron-capture elements (CEMP-s,
CEMP-r, and CEMP-r/s), and carbon-rich stars with a normal pattern of the heavy
elements (CEMP-no). In the following sections, we focus on stars with [Fe/H] ≤ −3.0,
which have been shown to fall almost exclusively in the CEMP-no subset [10].

A number of theoretical scenarios have been proposed to explain the observed elemental
abundances of these stars, though there is no universally accepted hypothesis. The most
extensively studied mechanism to explain the origin of CEMP-no stars is the mixing and
fallback model, where a ‘faint’ Population III SN explodes but, due to a relatively low
explosion energy, only ejects its outer layers, rich in lighter elements (up to magnesium);
its innermost layers, rich in iron and heavier elements, fall back onto the remnant and
are not recycled in the ISM [253, 254]. This potential link between primeval SNe and
CEMP-no stars is supported by recent studies which demonstrate that the observed ratio
of carbon-enriched to carbon-normal stars with [Fe/H] < −3.0 is accurately reproduced if
SNe were the main source of metal enrichment in the early Universe [60, 65]. Furthermore,
the observed abundance patterns of CEMP-no stars have been found to be generally well
matched by the nucleosynthetic yields of primordial faint SNe [35, 121, 122, 125, 133, 177,
178, 248, 254, 272]. These findings suggest that most of the CEMP-no stars were probably
born out of gas enriched by massive, first-generation stars that ended their lives as Type II
SNe with low levels of mixing and a high degree of fallback.

Under such circumstances, the gas clouds which collapse and fragment to form these
CEMP-no stars and their protostellar discs may contain significant amounts of carbon
dust grains. Observationally, dust formation in SNe ejecta has been inferred from isotopic
anomalies in meteorites where graphite, SiC, and Si3N4 dust grains have been identified
as SNe condensates [278]. Furthermore, in situ dust formation has been unambiguously
detected in the expanding ejecta of SNe such as SN 1987A [119, 167] and SN 1999em [79].
The existence of cold dust has also been verified in the supernova remnant of Cassiopeia
A by SCUBA’s recent submillimetre observations, and a few solar masses worth of dust is
estimated to have condensed in the ejecta [75].

Theoretical calculations of dust formation in primordial core-collapsing SNe have
demonstrated the condensation of a variety of grain species, starting with carbon, in the
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ejecta, where the mass fraction tied up in dust grains grows with increasing progenitor
mass [139, 197, 247]. References [177, 178] consider, in particular, dust formation in weak
Population III SNe ejecta, the type believed to have polluted the birth clouds of CEMP-no
stars. Tailoring the SN explosion models to reproduce the observed elemental abundances
of CEMP-no stars, they find the following. (1) For all the progenitor models investigated,
amorphous carbon (AC) is the only grain species that forms in significant amounts; this is
a consequence of extensive fallback, which results in a distinct, carbon-dominated ejecta
composition with negligible amounts of other metals – such as Mg, Si, and Al – that can
enable the condensation of alternative grain types. (2) The mass of carbon locked into
AC grains increases when the ejecta composition is characterised by an initial mass of C
greater than the O mass; this is particularly true in zero-metallicity supernova progenitors,
which undergo less mixing than their solar metallicity counterparts [125]. In their stratified
ejecta, C-grains are found only to form in layers where C/O > 1. In layers where C/O < 1,
all the carbon is promptly locked in CO molecules. (3) Depending on the model, the mass
fraction of dust (formed in SNe ejecta) that survives the passage of a SN reverse shock
ranges between 1% and 85%. This percentage is referred to as the carbon condensation
efficiency. (4) Further grain growth in the collapsing birth clouds of CEMP-no stars, due
to the accretion of carbon atoms in the gas phase onto the remaining grains, occurs only if
C/O > 1 and is otherwise hindered by the formation of CO molecules.

Besides the accumulation of carbon-rich grains imported from the SNe ejecta, Fischer-
Tropsch-type reactions (FTTs) may also contribute to solid carbon enrichment in the
protostellar discs of CEMP-no stars by enabling the conversion of nebular CO and H2 to
other forms of carbon [141]. Furthermore, in carbon-rich gas, the equilibrium condensation
sequence changes signifcantly from the sequence followed in solar composition gas
where metal oxides condense first. In nebular gas with C/O � 1, carbon-rich compounds
such as graphite, carbides, nitrides, and sulfides are the highest-temperature condensates
(T ≈ 1,200–1,600 K) [144]. Thus, if planet formation is to proceed in this C-rich gas, the
protoplanetary discs of these CEMP-no stars may spawn many carbon planets.

12.3.3 Orbital Radii of Potential Carbon Planets

Given the significant abundance of carbon grains, both imported from SNe ejecta and
produced by equilibrium and non-equilibrium mechanisms operating in the carbon-rich
protoplanetary discs, the emerging question is, would these dust grains have enough time
to potentially coagulate and form planets around their host CEMP-no stars?

In the core accretion model, terrestrial planet formation is a multistep process, starting
with the aggregation and settling of dust grains in the protoplanetary disc [12, 21, 123,
155, 191, 201]. In this early stage, high densities in the disc allow particles to grow from
submicron size to metre size through a variety of collisional processes including Brownian
motion, settling, turbulence, and radial migration. The continual growth of such aggregates
by coagulation and sticking eventually leads to the formation of kilometre-sized planetes-
imals, which then begin to interact gravitationally and grow by pairwise collisions and,
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later, by runaway growth [155]. In order for terrestrial planets to ultimately form, these
processes must all occur within the lifetime of the disc itself, a limit which is set by the
relevant timescale of the physical phenomena that drive disc dissipation.

A recent study by Reference [271] of clusters in the Extreme Outer Galaxy (EOG)
provides observational evidence that low-metallicity discs have shorter lifetimes (< 1 Myr)
compared to solar metallicity discs (∼ 5–6 Myr). This finding is consistent with models
in which photoevaporation by energetic (ultraviolet or X-ray) radiation of the central star
is the dominant disc dispersal mechanism. While the opacity source for EUV (extreme-
ultraviolet) photons is predominantly hydrogen and is thus metallicity independent, X-ray
photons are primarily absorbed by heavier elements, mainly carbon and oxygen, in the
inner gas and dust shells. Therefore, in low-metallicity environments where these heavy
elements are not abundant and the opacity is reduced, high-density gas at larger columns
can be ionised and will experience a photoevaporative flow if heated to high enough tem-
peratures [80, 100].

Assuming that photoevaporation is the dominant mechanism through which circum-
stellar discs lose mass and eventually dissipate, we adopt the metallicity-dependent disc
lifetime, derived in Reference [80] using X-ray+EUV models [81],

tdisc ∝ Z0.77(4−2p)/(5−2p), (12.3)

where Z is the total metallicity of the disc and p is the power-law index of the disc
surface density profile (�∝ r−p). A mean power-law exponent of p ∼ 0.9 is derived by
modelling the spatially resolved emission morphology of young stars at (sub)millimetre
wavelengths [7, 8], and the timescale is normalised such that the mean lifetime for discs of
solar metallicity is 2 Myr [80]. Thus, the disc lifetime is dominated by carbon dust grains in
the CEMP-no stars considered here. We adopt the carbon abundance relative to solar [C/H]
as a proxy for the overall metallicity Z We adopt the carbon abundance relative to solar
[C/H] as a proxy for the overall metallicity Z, since the opacity – which largely determines
the photoevaporation rate and, thus, the disc lifetime – is dominated by carbon dust grains
in the CEMP-no stars we consider in this work.

The timescale for planet formation is believed to be effectively set by the time it takes
dust grains to settle into the disc midplane. The subsequent process of runaway planetesimal
formation, possibly occurring via a series of pairwise collisions, must be quick because,
otherwise, the majority of the solid disc material would radially drift towards the host star
and evaporate in the hot inner regions of the circumstellar disc [12]. We adopt the one-
particle model of Reference [74] to follow the mass growth of dust grains via collisions
as they fall through and sweep up the small grains suspended in the disc. Balancing the
gravitational force felt by a small dust particle at height z above the midplane of a disc with
the aerodynamic drag (in the Epstein regime) gives a dust-settling velocity of

vsett = dz

dt
= 3�2

Kzm

4ρcsσd
, (12.4)
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where σd =πa2 is the cross section of the dust grain with radius a and cs =
√
kBT (r)/μmH

is the isothermal sound speed with mH being the mass of a hydrogen atom and μ = 1.36
being the mean molecular weight of the gas (including the contribution of helium).
�K =

√
GM∗/r3 is the Keplerian velocity of the disc at a distance r from the central star of

massM∗, which we take to beM∗ = 0.8 M� as representative of the low masses associated
with CEMP-no stars [53, 88]. The disc is assumed to be in hydrostatic equilibrium with a
density given by

ρ(z,r) = �(r)

h
√

2π
exp

(
− z2

2h2

)
, (12.5)

where the disc scale height is h = cs/�k . For the disc surface density �(r) and temper-
ature T (r) profiles, we adopt the radial power-law distributions fitted to (sub-)millimetre
observations of circumstellar discs around young stellar objects [6–8],

T (r) = 200 K
( r

1 AU

)−0.6
(12.6)

�(r) = 103 g/cm2
( r

1 AU

)−0.9
. (12.7)

Although these relations were observationally inferred from discs with solar-like abun-
dances, we choose to rely on them for our purposes given the lack of corresponding mea-
surements for discs around stars with different abundance patterns.

The rate of grain growth, dm/dt , is determined by the rate at which grains, subject to
small-scale Brownian motion, collide and stick together as they drift towards the disc mid-
plane through a sea of smaller solid particles. If coagulation results from every collision,
then the mass growth rate of a particle is effectively the amount of solid material in the
volume swept out the particle’s geometric cross section,

dm

dt
= fdgρσd

(
vrel + dz

dt

)
(12.8)

where dz/dt is the dust-settling velocity given by Equation (12.3) and

vrel =
√

8kBT (m1 +m2)

πm1m2
≈
√

8kBT

πm
(12.9)

is the relative velocity in the Brownian motion regime between grains with masses m1 =
m2 = m. To calculate the dust-to-gas mass ratio in the disc fdg , we follow the approach
in Reference [124] and relate two expressions for the mass fraction of C: (1) the fraction
of carbon in the dust, fdgMC,dust /Mdust , where Mdust is the total dust mass and MC,dust
is the carbon dust mass ; and (2) the fraction of carbon in the gas, μCnC/μnH , where μC is
the molecular weight of carbon (∼ 12mp) and nC and nH are the carbon and hydrogen
number densities, respectively.
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We then assume that a fraction fcond (referred to from now on as the carbon condensa-
tion efficiency) of all the carbon present in the gas cloud is locked up in dust, such that

fcond
μCnC

μnH
= fdg MC,dust

Mdust
. (12.10)

Since faint Population III SNe are believed to have polluted the birth clouds of CEMP-no
stars, and the only grain species that forms in non-negligible amounts in these ejecta is
amorphous carbon [177, 178], we set Mdust = MC,dust . Rewriting Eq. (12.9) in terms of
abundances relative to the Sun, we obtain

fdg = fcond μC
μ

10[C/H]+log ε(C)�−12, (12.11)

where log ε(C)� = 8.43 ± 0.05 [14] is the solar carbon abundance.
For a specified metallicity [C/H] and radial distance r from the central star, we can then

estimate the time it takes for dust grains to settle in the disc by integrating Eqs. (3.2) and
(3.6) from an initial height of z(t = 0) = 4h with an initial dust grain mass of m(t = 0) =
4πa3

init ρd/3. The specific weight of dust is set to ρd = 2.28 g cm−3, reflecting the mate-
rial density of carbon grains expected to dominate the circumstellar discs of CEMP-no
stars. The initial grain size ainit is varied between 0.01 and 1 μm to reflect the range
of characteristic radii of carbon grains found when modelling CEMP-no star abundance
patterns [177]. Comparing the resulting dust-settling timescale to the disc lifetime given
by Eq. 12.1 for the specified metallicity, we can then determine whether there is enough
time for carbon dust grains to settle in the midplane of the disc and there undergo runaway
planetesimal formation before the disc is dissipated by photoevaporation. For the purposes
of this simple model, we neglected possible turbulence in the disc which may counteract
the effects of vertical settling, propelling particles to higher altitudes and thus preventing
them from fully settling into the disc midplane [12]. We have also not accounted for the
effects of radial drift, which may result in the evaporation of solid material in the hot inner
regions of the circumstellar disc.

As the dust-settling timescale is dependent on the disc surface density�(r) and temper-
ature T (r), we find that for a given metallicity, [C/H], there is a maximum distance rmax

from the central star out to which planetesimal formation is possible. At larger distances
from the host star, the dust-settling timescale exceeds the disc lifetime, and so carbon
planets with semimajor axes r > rmax are not expected to form. A plot of the maximum
semimajor axis expected for planet formation around a CEMP-no star as a function of the
carbon abundance relative to the Sun [C/H] is shown in Figure 12.1 for carbon condensation
efficiencies ranging between fcond = 0.1 and 1. As discovered in Reference [127], where
the critical iron abundance for terrestrial planet formation is considered as a function of the
distance from the host star, we find a linear relation between [C/H] and rmax,

[C/H] = log
( rmax

1 AU

)
− α, (12.12)

where α = 1.3,1.7, and 1.9 for fcond = 0.1,0.5, and 1, respectively, assuming an initial
grain size of ainit = 0.1μm. These values for α change by less than 1% for smaller initial
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Figure 12.1 The maximum distance rmax from the host star out to which planetesimal formation is
possible as a function of the star’s metallicity, expressed as the carbon abundance relative to that
of the Sun, [C/H]. The dotted, dashed, and solid black curves correspond to the results obtained
assuming carbon condensation efficiencies of 10%, 50%, and 100%, respectively, and an initial grain
size of ainit = 0.1 μm. The grey dash-dotted curve corresponds to the distance at which the disc
temperature approaches the sublimation temperature of carbon dust grains, Tsub,C ∼ 2,000 K; the
formation of carbon planetesimals will therefore be suppressed at distances that fall below this line,
r � 0.02 AU. The coloured vertical lines represent various observed CEMP stars with measured
carbon abundances, [C/H].

grain sizes, ainit = 0.01 μm, and by no more than 5% for larger initial grain sizes ainit =
1 μm; given this weak dependence on ainit , we only show our results for a single initial
grain size of ainit = 0.1 μm. The distance from the host star at which the temperature of
the disc approaches the sublimation temperature of carbon dust, Tsub,C ∼ 2,000 K [135],
is depicted as well (dash-dotted grey curve). At distances closer to the central star than
r � 0.02 AU, temperatures well exceed the sublimation temperature of carbon grains; grain
growth and subsequent carbon planetesimal formation are therefore quenched in this inner
region.

Figure 12.1 shows lines representing various observed CEMP stars with measured
carbon abundances – mainly HE 0107-5240 [53, 54], SDSS J0212+0137 [35], SDSS
J1742+2531 [35], G 77-61 [24, 62, 213], and HE 2356-0410 [195, 223]. These stars all
have iron abundances (relative to solar) [Fe/H] < −3.0, carbon abundances (relative to
solar) [C/Fe] > 2.0, and carbon-to-oxygen ratios C/O > 1. This latter criteria maximises
the abundance of solid carbon available for planet formation in the circumstellar discs by



On the Temporal Habitability of Our Universe 471

Table 12.1 Basic dataa for CEMP stars considered in this section.

Star log gb [Fe/H] [C/Fe] C/Oc Source

HE 0107-5240 2.2 −5.44 3.82 14.1 [54, 58]
SDSS J0212+0137 4.0 −3.57 2.26 2.6 [35]
SDSS J1742+2531 4.0 −4.77 3.60 2.2 [35]
G 77-61 5.1 −4.03 3.35 12.0 [24, 213]
HE 2356-0410d 2.65 −3.19 2.61 >14.1 [223]

a Abundances based on one-dimensional LTE model-atmosphere analyses
b Logarithm of the gravitational acceleration at the surface of stars expressed in cm s−2

c C/O = NC/NO = 10[C/O]+log ε(C)�−log ε(O)�
d CS 22957-027

optimising carbon grain growth both in stratified SNe ejecta and later, in the collapsing
molecular birth clouds of these stars. It also advances the possibility of carbon planet
formation by ensuring that planet formation proceeds by a carbon-rich condensation
sequence in the protoplanetary disc. SDSS J0212+0137 and HE 2356-0410 have both been
classified as CEMP-no stars, with measured barium abundances [Ba/Fe] < 0 (as defined
in [22]); the other three stars are barium indeterminate with only high upper limits on
[Ba/Fe], but are believed to belong to the CEMP-no subclass given their light-element
abundance patterns. The carbon abundance, [C/H], dominates the total metal content of
the stellar atmosphere in these five CEMP objects, contributing more than 60% of the
total metallicity in these stars. A summary of the relevant properties of the CEMP stars
considered in this analysis can be found in Table 12.1. We find that carbon planets may be
orbiting iron-deficient stars with carbon abundances [C/H] ∼ −0.6, such as HE 2356-0410,
as far out as ∼ 20 AU from their host star in the case where fcond = 1. Planets forming
around stars with less carbon enhancement – i.e., HE 0107-5240 with [C/H] ∼ −1.6 are
expected to have more compact orbits, with semimajor axes r < 2 AU. If the carbon
condensation efficiency is only 10%, the expected orbits grow even more compact, with
maximum semimajor axes of ∼ 5 and 0.5 AU, respectively.

12.3.4 Mass-Radius Relationship for Carbon Planets

Next we present the relationship between the mass and radius of carbon planets that we
have shown may theoretically form around CEMP-no stars. These mass-radius relations
have already been derived in the literature for a wide range of rocky and icy exoplanet
compositions [86, 148, 230, 256, 277]. Here, we follow the approach of Reference [277]
and solve the three canonical equations of internal structure for solid planets:

1. Mass conservation

dm(r)

dr
= 4πr2ρ(r) (12.13)
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2. Hydrostatic equilbrium

dP (r)

dr
= −Gm(r)ρ(r)

r2
(12.14)

3. The equation of state (EOS)

P(r) = f (ρ(r),T (r)) (12.15)

m(r) is the mass contained within radius r , P(r) is the pressure, ρ(r) is the density of the
spherical planet, and f is the unique equation of state (EOS) of the material of interest – in
this case, carbon.

Carbon grains in circumstellar discs most likely experience many shock events during
planetesimal formation which may result in the modification of their structure. The coag-
ulation of dust into clumps, the fragmentation of the disc into clusters of dust clumps, the
merging of these clusters into ∼ 1 km planetesimals, the collision of planetesimals during
the accretion of meteorite parent bodies, and the subsequent collision of the parent bodies
after their formation all induce strong shock waves that are expected to chemically and
physically alter the materials. Subject to these high temperatures and pressures, the amor-
phous carbon grains polluting the protoplanetary discs around CEMP stars are expected
to undergo graphitisation and may even crystallise into diamond [202, 243, 246]. In our
calculations, the equation of state at low pressures, P ≤ 14 GPa, is set to the third-order
finite strain Birch-Murnagham EOS (BME; [30]) for graphite,

P = 3

2
K0

(
η7/3 − η5/3

) [
1 + 3

4

(
K

′
0 − 4

) (
η2/3 − 1

)]
, (12.16)

where η = ρ/ρ0 is the compression ratio with respect to the ambient density, ρ0, K0

is the bulk modulus of the material, and K
′
0 is the pressure derivative. Empirical fits to

experimental data yield a BME EOS of graphite (ρ0 = 2.25 g cm−3) with parameters
K0 = 33.8 GPa and K

′
0 = 8.9 [109]. At 14 GPa, we incorporate the phase transition from

graphite to diamond [109, 192] and adopt the Vinet EOS [262, 263],

P = 3K0η
2/3
(

1 − η−1/3
)

exp

[
3

2

(
K

′
0 − 1

) (
1 − η−1/3

)]
(12.17)

with K0 = 444.5 GPa and K
′
0 = 4.18 empirically fit for diamond, ρ0 = 3.51 g cm−3 [66].

(As pointed out in Reference [230], the BME EOS is not fit to be extrapolated to high pres-
sures since it is derived by expanding the elastic potential energy as a function of pressure
keeping only the lowest-order terms.) Finally, at pressures P � 1,300 GPa, where electron
degeneracy becomes increasingly important, we use the Thomas-Fermi-Dirac (TFD) theo-
retical EOS ([227]; equations (40)–(49)), which intersects the diamond EOS at P ∼ 1,300
GPa. Given that the full temperature-dependent carbon EOSs are either undetermined or
dubious at best, all three EOSs adopted in this section are room-temperature EOSs for the
sake of practical simplification.
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Figure 12.2 Mass-radius relation for solid homogenous, pure carbon planet.

Using a fourth-order Runge-Kutta scheme, we solve the system of equations simul-
taneously, numerically integrating Eqs. (12.13) and (12.14) begining at the planet’s cen-
tre with the inner boundary conditions M(r = 0)= 0 and P(r = 0) = Pcentral, where
Pcentral is the central pressure. The outer boundary condition P(r =Rp)= 0 then defines
the planetary radius Rp and total planetary massMp =m(r =Rp). Integrating these equa-
tions for a range of Pcentral, with the appropriate EOS, P = P(ρ), to close the system
of equations, yields the mass-radius relationship for a given composition. We show this
mass-radius relation for a purely solid carbon planet in Figure 12.2. We find that for
massesMp � 800 M⊕, gravitational forces are small compared with electrostatic Coulomb
forces in hydrostatic equilibrium, and so the planet’s radius increases with increasing mass,

Rp ∝ M1/3
p . However, at larger masses, the electrons are pressure ionised, and the resulting

degeneracy pressure becomes significant, causing the planet radius to become constant and

even decrease for increasing mass, Rp ∝ M−1/3
p [117]. Planets which fall within the mass

range 500 � Mp � 1,300 M⊕, where the competing effects of Coulomb forces and electron
degeneracy pressure cancel each other out, are expected to be approximately the same size,
with Rp � 4.3 R⊕, the maximum radius of a solid carbon planet. (In the case of gas giants,
the planet radius can increase due to accretion of hydrogen and helium.)

Although the mass-radius relation illustrated in Figure 12.2 may alone not be enough to
confidently distinguish a carbon planet from a water or silicate planet, the unique spectral
features in the atmospheres of these carbon planets may provide the needed fingerprints.
At high temperatures (T � 1,000 K), the absorption spectra of massive (M ∼ 10–60 M⊕)
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carbon planets are expected to be dominated by CO, in contrast with the H2O-dominated
spectra of hot massive planets with solar-composition atmospheres [143]. The atmospheres
of low-mass (M � 10 M⊕) carbon planets are also expected to be differentiable from
their solar-composition counterparts due to their abundance of CO and CH4 and lack
of oxygen-rich gases like CO2, O2, and O3 [143]. Furthermore, carbon planets of all
masses at low temperatures are expected to accommodate hydrocarbon synthesis in their
atmospheres; stable long-chain hydrocarbons are, therefore, another signature feature that
can help observers distinguish the atmospheres of cold carbon planets and more confidently
determine the bulk composition of a detected planet [143].

The detection of theoretically proposed carbon planets around CEMP stars will provide
us with significant clues regarding how early planet formation may have started in the
Universe. While direct detection of these extrasolar planets remains difficult given the
low luminosity of most planets, techniques such as the transit method are often employed
to indirectly spot exoplanets and determine physical parameters of the planetary system.
When a planet ‘transits’ in front of its host star, it partially occludes the star and causes
its observed brightness to drop by a minute amount. If the host star is observed during
one of these transits, the resulting dip in its measured light curve can yield information
regarding the relevant sizes of the star and the planet, the orbital semimajor axis, and the
orbital inclination, among other characterising properties.

12.3.5 Section Summary and Implications

We explored the possibility of carbon planet formation around the iron-deficient, carbon-
rich subset of low-mass stars known as CEMP stars. The observed abundance patterns of
CEMP-no stars suggest that these stellar objects were probably born out of gas enriched
by massive first-generation stars that ended their lives as Type II SNe with low levels
of mixing and a high degree of fallback. The formation of dust grains in the ejecta of
these primordial core-collapsing SNe progenitors has been observationally confirmed and
theoretically studied. In particular, amorphous carbon is the only grain species found to
condense and form in non-negligible amounts in SN explosion models that are tailored to
reproduce the abundance patterns measured in CEMP-no stars. Under such circumstances,
the gas clouds which collapse and fragment to form CEMP-no stars and their protoplanetary
discs may contain significant amounts of carbon dust grains imported from SNe ejecta. The
enrichment of solid carbon in the protoplanetary discs of CEMP stars may then be fur-
ther enhanced by Fischer-Tropsch-type reactions and carbon-rich condensation sequences,
where the latter occurs specifically in nebular gas with C/O � 1.

For a given metallicity [C/H] of the host CEMP star, the maximum distance out to
which planetesimal formation is possible can then be determined by comparing the dust-
settling timescale in the protostellar disc to the expected disc lifetime. Assuming that disc
dissipation is driven by a metallicity-dependent photoevaporation rate, we find a linear
relation between [C/H] and the maximum semimajor axis of a carbon planet orbiting its
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host CEMP star. Very carbon-rich CEMP stars, such as G 77-61 and HE 2356-0410 with
[C/H] � −0.7–−0.6, can host carbon planets with semimajor axes as large ∼ 20 AU
for 100% carbon condensation efficiencies; this maximum orbital distance reduces to
∼ 5 AU when the condensation efficiency drops by an order of magnitude. In the case of
the observed CEMP-no stars HE 0107-5240, SDSS J0212+0137, and SDSS J1742+2531,
where the carbon abundances are in the range [C/H] � −1.6–−1.2, we expect more
compact orbits, with maximum orbital distances rmax � 2, 4, and 6 AU, respectively, for
fcond = 1 and rmax � 0.5 − 1 AU for fcond = 0.1.

While the shallow transit depths of Earth-mass carbon planets around HE 0107-5240
and HE 2356-0410 may evade detection, current and future space-based transit surveys
promise to achieve the precision levels (∼ 0.001%) necessary to detect planetary systems
around CEMP stars such as SDSS J0212+0137, SDSS J1742+2531, and G 77-61. If gas
giant (Jupiter-scale) planets form around CEMP stars, their transits would be much easier
to detect than rocky planets. However, they are not likely to host life as we know it. There
are a number of ongoing, planned, and proposed space missions committed to this cause,
including CoRot (COnvection ROtation and planetary Transits), Kepler, PLATO (PLAne-
tary Transits and Oscillations of stars), TESS (Transiting Exoplanet Survey Satellite), and
ASTrO (All Sky Transit Observer), which are expected to achieve precisions as low as
20–30 ppm (parts per million) [26, 267].

Short orbital periods and long transit durations are also key ingredients in boosting
the probability of transit detection by observers. G 77-61 is not an optimal candidate in
these respects since, given its large carbon abundance ([C/Fe] ∼ 3.4), carbon planets may
form out to very large distances and take up to a century to complete an orbit around the
star for fcond = 1 (Pmax ∼ 10 years for 10% carbon condensation efficiency). The small
stellar radius, R∗ ∼ 0.5 R�, also reduces chances of spotting the transit since the resulting
transit duration is only ∼ 30 hours at most. Carbon planets around larger CEMP stars with
an equally carbon-rich protoplanetary disc, such as HE 2356-0410 (R∗ ∼ 7 R�), have a
better chance of being spotted, with transit durations lasting up to ∼ 3 weeks. The CEMP-
stars SDSS J0212+0137, and SDSS J1742+2531 are expected to host carbon planets with
much shorter orbits, Pmax ∼ 16 years for 100% condensation efficiency (Pmax ∼ 1 year
for fcond = 0.1), and transit durations that last as long as ∼ 60 hours. If the ability to
measure transit depths improves to a precision of 1 ppm, then potential carbon planets
around HE 0107-5240 are the most likely to be spotted (among the group of CEMP-no
stars considered here), transiting across the host star at least once every ∼ 5 months (10%
condensation efficiency) with a transit duration of 6 days.

While our calculations place upper bounds on the distance from the host star out to
which carbon planets can form, we note that orbital migration may alter a planet’s location
in the circumstellar disc. As implied by the existence of ‘hot Jupiters’, it is possible for a
protoplanet that forms at radius r to migrate inward through gravitational interactions with
other protoplanets, resonant interactions with planetesimals with more compact orbits, or
tidal interactions with gas in the surrounding disc [201]. Since Figure 12.1 only plots rmax,
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the maximum distance out to which a carbon planet with [C/H] can form, our results
remain consistent in the case of an inward migration. However, unless planets migrate
inwards from their place of birth in the disc, we do not expect to find carbon exoplanets
orbiting closer than r � 0.02 AU from the host stars since at such close proximities,
temperatures are high enough to sublimate carbon dust grains.

Protoplanets can also be gravitationally scattered into wider orbits through interactions
with planetesimals in the disc [107, 260]. Such an outward migration of carbon planets
may result in observations that are inconsistent with the curves in Figure 12.1. A planet
that formed at radius r � rmax still has room to migrate outwards without violating the
‘maximum distance’ depicted in Figure 12.1.

Detection of the carbon planets that we suggest may have formed around CEMP stars
will provide us with significant clues regarding how planet formation may have started
in the early Universe. The formation of planetary systems not only signifies an increas-
ing degree of complexity in the young Universe, but it also carries implications for the
development of life at this early junction [159]. The lowest metallicity multi-companion
system detected to date is around BD+20 24 57, a K2-giant with [Fe/H] = −1.0 [194],
a metallicity value once believed to yield low efficiency for planet formation [99, 209].
More recent formulations of the metallicity required for planet formation are consistent
with this observation, estimating that the first Earth-like planets likely formed around
stars with metallicities [Fe/H] � −1.0 [127]. The CEMP stars considered in this section
are extremely iron deficient, with [Fe/H] � −3.2, and yet, given the enhanced carbon
abundances which dominate the total metal content in these stars ([C/H] � −1.6), the for-
mation of solid carbon exoplanets in the protoplanetary discs of CEMP stars remains a real
possibility.

An observational program aimed at searching for carbon planets around these low-mass
Population II stars could therefore potentially shed light on the question of how early
planets and, subsequently, life could have formed after the Big Bang.

12.4 Water Formation during the Epoch of First Metal Enrichment

12.4.1 Section Background

Water is an essential ingredient for life as we know it [130]. In the interstellar medium
(ISM) of the Milky Way and also in external galaxies, water has been observed in the
gas phase and as grain surface ice in a wide variety of environments. These environments
include diffuse and dense molecular clouds, photon-dominated regions (PDRs), shocked
gas, protostellar envelopes, and discs (see review in Reference [258]).

In diffuse and translucent clouds, H2O is formed mainly in gas-phase reactions via
ion-molecule sequences [111]. The ion-molecule reaction network is driven by cosmic-
ray or X-ray ionisation of H and H2, which leads to the formation of H+ and H+

3 ions.
These interact with atomic oxygen and form OH+. A series of abstractions then lead to
the formation of H3O+, which makes OH and H2O through dissociative recombination.
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This formation mechanism is generally not very efficient, and only a small fraction of the
oxygen is converted into water; the rest remains in atomic form or freezes out as water
ice [114].

Reference [237] showed that the abundance of water vapor within diffuse clouds in
the Milky Way galaxy is remarkably constant, with xH2O ∼ 10−8, which is ∼ 0.1% of the
available oxygen. Here, xH2O is the H2O number density relative to the total hydrogen
nuclei number density. Towards the galactic centre this value can be enhanced by up to a
factor of ∼3 [186, 238].

At temperatures � 300 K, H2O may form directly via the neutral-neutral reactions,
O + H2 → OH + H, followed by OH + H2 → H2O + H. This formation route is
particularly important in shocks, where the gas heats up to high temperatures and can drive
most of the oxygen into H2O [72, 132].

Temperatures of a few hundreds K are also expected in very-low-metallicity gas envi-
ronments, with elemental oxygen and carbon abundances of � 10−3 solar [42, 98, 199],
associated with the epochs of the first enrichment of the ISM with heavy elements, in
the first generation of galaxies at high redshifts [160]. At such low metallicities, cool-
ing by fine-structure transitions of metal species such as the [CII] 158 μm line, and by
rotational transitions of heavy molecules such as CO, becomes inefficient and the gas
remains warm.

Could the enhanced rate of H2O formation via the neutral-neutral sequence in such
warm gas compensate for the low oxygen abundance at low metallicities?

Reference [199] studied the thermal and chemical evolution of collapsing gas clumps
at low metallicities. They found that for models with gas metallicities of 10−3–10−4 solar,
xH2O may reach 10−8, but only if the density, n, of the gas approaches 108 cm−3. Pho-
todissociation of molecules by far-ultraviolet (FUV) radiation was not included in their
study. While at solar metallicity dust grains shield the interior of gas clouds from the FUV
radiation, at low metallicities, photodissociation by FUV becomes a major removal process
for H2O. H2O photodissociation produces OH, which is then itself photodissociated into
atomic oxygen.

Reference [115] developed a theoretical model to study the abundances of various
molecules, including H2O, in PDRs. Their model included many important physical
processes, such as freeze-out of gas species, grain surface chemistry, and also photodis-
sociation by FUV photons. However, they focused on solar metallicity. Intriguingly,
Reference [19] reports a water abundance close to 10−8 in the optically thick core of their
single PDR model for a low metallicity of 10−2 (with n= 103 cm−3). However, Bayet
et al. did not investigate the effects of temperature and UV intensity variations on the water
abundance in the low-metallicity regime.

Recently, a comprehensive study of molecular abundances for the bulk ISM gas as
functions of the metallicity was studied in Reference [204] and Reference [28]; these
models, however, focused on the ‘low-temperature’ ion-molecule formation chemistry.

In this section, we present results for the H2O abundance in low-metallicity gas envi-
ronments for varying temperatures, FUV intensities, and gas densities. We find that for
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temperatures T in the range 250–350 K, H2O may be abundant, comparable to or higher
than that found in diffuse galactic clouds, provided that the FUV intensity to density ratio
is smaller than a critical value.

12.4.2 Model Ingredients

We calculate the abundance of gas-phase H2O for low-metallicity gas parcels that are
exposed to external FUV radiation and cosmic-ray and/or X-ray fluxes. Given our chemical
network, we solve the steady-state rate equations using our dedicated Newton-based solver
and obtain xH2O as function of T and the FUV intensity to density ratio.

We adopt a 105 K diluted black-body spectrum, representative of radiation produced by
massive Population III stars. The photon density in the 6–13.6 eV interval, is nγ ≡ nγ,0IUV,
where nγ,0 = 6.5 × 10−3 photons cm−3 is the photon density in the interstellar radiation
field [70], and IUV is the ‘normalised intensity’. Thus, IUV = 1 corresponds to the FUV
intensity in the Draine ISRF.

Cosmic-ray and/or X-ray ionisation drive the ion-molecule chemical network. We
assume an ionisation rate per hydrogen nucleon ζ (s−1). In the galaxy, [63] and Refer-
ences [120] showed that ζ lies within the relatively narrow range 10−15–10−16 s−1. We
therefore introduce the ‘normalised ionisation rate’ ζ−16 ≡ (ζ/10−16 s−1). The ionisation
rate and the FUV intensity are likely correlated, as both should scale with the formation
rate of massive OB stars. We thus set ζ−16 = IUV as our fiducial case but also consider the
cases ζ−16 = 10−1IUV and ζ−16 = 10IUV.

Dust shielding against the FUV radiation becomes ineffective at low metallicities. How-
ever, self-absorption in the H2 lines may significantly attenuate the destructive Lyman-
Werner (11.2–13.6 eV) radiation [71, 240], and high abundances of H2 may be maintained
even at low metallicity [28]. In the models presented here, we assume an H2 shielding
column of at least 5 × 1021 cm−2. (For such conditions, CO is also shielded by the H2.)
The LW flux is then attenuated by a self-shielding factor of fshield ∼ 10−8, and the H2

photodissociation rate is only 5.8 × 10−19IUV s−1. With this assumption, H2 photodissoci-
ation by LW photons is negligible compared to cosmic-ray and/or X-ray ionisation as long
as IUV < 85ζ−16.

However, even when the Lyman-Werner band is fully blocked, OH and H2O are pho-
todissociated because their energy thresholds for photodissociation are 6.4 and 6 eV, respec-
tively. For the low metallicities that we consider, photodissociation is generally the domi-
nant removal mechanism for H2O and OH. We adopt the calculated OH and H2O photodis-
sociation rates calculated by Reference [28].

We assume thermal and chemical steady states. In the Milky Way, the bulk of the ISM
gas is considered to be at approximate thermal equilibrium, set by cooling and heating
processes. We discuss the relevant chemical and thermal timescales in Section 12.4.4.

Given the before mentioned assumptions, the steady-state solutions for the species abun-
dances depend on only two parameters, the temperature T and the intensity-to-density
ratio IUV/n4. Here, n4 ≡ (n/104 cm−3) is the total number density of hydrogen nuclei
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normalised to typical molecular cloud densities. T and IUV/n4 form our basic parameter
space in our study.

12.4.3 Chemical Model

We consider a chemical network of 503 two-body reactions, between 56 atomic, molecular,
and ionic species of H, He, C, O, S, and Si. We assume cosmological elemental helium
abundance of 0.1 relative to hydrogen (by number). For the metal elemental abundances, we
adopt the photospheric solar abundances, multiplied by a metallicity factor Z′ (i.e., Z′ = 1
is solar metallicity). In our fiducial model, we assume Z′ = 10−3, but we also explore cases
withZ′ = 10−2 andZ′ = 10−4. Since our focus here is on the very-low-metallicity regime,
where dust grains play a lesser role, we neglect any depletion on dust grains and dust-grain
chemistry (except for H2, as discussed further below). Direct and induced ionisations and
dissociations by the cosmic-ray/X-ray field (∝ ζ ) are included. For the gas-phase reactions,
we adopt the rate coefficients given by the UMIST 2012 database [183].

The formation of heavy molecules relies on molecular hydrogen. We consider two
scenarios for H2 formation: (1) pure gas-phase formation and (2) gas-phase formation plus
formation on dust grains. In the gas phase radiative-attachment

H + e → H− + ν (12.18)

followed by associative-detachment

H− + H → H2 + e (12.19)

is the dominant H2 formation route.
H2 formation on the surface of dust grains is considered to be the dominant formation

channel in the Milky Way. We adopt a standard rate coefficient [49, 116, 128],

R � 3 × 10−17 T
1/2
2 Z′ cm3 s−1, (12.20)

where T2 ≡ (T /100 K). In this expression, we assume that the dust-to-gas ratio is linearly
proportional to the metallicity Z′. Thus, in scenario (b) H2 formation on dust grains domi-
nates even for Z′ = 10−3. Scenario (a) is the limit where the gas-phase channel dominates,
as appropriate for dust-free environments or for superlinear dependence of the dust-to-gas
ratio on Z′.

12.4.4 Timescales

The timescale for the system to achieve chemical steady state is dictated by the relatively
long H2 formation timescale. In the gas phase (scenario (1)) it is

tH2 = 1

k2 n xe
≈ 8 × 108 ζ

−1/2
−16 n

−1/2
4 T −1

2 yr, (12.21)
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where xe = 2.4 × 10−5(ζ−16/n4)
1/2T 0.38

2 is the electron fraction as set by ionisation
recombination equilibrium, and k2 ≈ 1.5 × 10−16T 0.67

2 cm3 s−1 is the rate coefficient
for reaction (12.18).

For formation on dust grains (∝ Z′), the timescale is generally shorter, with

tH2 = 1

R n
≈ 108 T

−1/2
2 n−1

4

(
10−3

Z′

)
yr. (12.22)

Gas clouds with lifetimes t � tH2 will reach chemical steady state.
The relevant timescale for thermal equilibrium is the cooling timescale. For low-

metallicity gas with Z′ = 10−3, the cooling proceeds mainly via H2 rotational excita-
tions [98]. If the cooling rate per H2 molecule (in erg s−1) is W(n,T ), then the cooling
timescale is given by

tcool = kB T

W(n,T )
. (12.23)

Here, kB is the Boltzmann constant. For n = 104 cm−3 and T = 300 K, W ≈ 5 × 10−25

(xH2/0.1) erg s−1 [147], and the cooling time is very short, ≈ 2 × 103(0.1/xH2) yr. For
densities much smaller than the critical density for H2 cooling, W ∝ n and tcool ∝ 1/n.
In the opposite limit, W saturates and tcool becomes independent of density. We see that,
generally, tcool � tH2 .

Because the free-fall time

tff =
(

3π

32Gρ

)1/2

= 5 × 105 n
−1/2
4 yr (12.24)

is generally much shorter than tH2 , chemical steady state may be achieved only in stable,
non-collapsing clouds, with lifetimes � tff . Obviously, both tH2 and tcool must be also
shorter than the Hubble time at the redshift of interest.

12.4.5 Results

Next, we present and discuss our results for the steady-state, gas-phase H2O fraction
xH2O ≡ nH2O/n, as function of temperature T and the FUV intensity-to-density ratio
IUV/n4.

12.4.6 xH2O as a function of T and IUV/n4

Figure 12.3 shows log10(xH2O) contours for the two scenarios described in Section 12.4.3.
In one, H2 forms in pure gas-phase (scenario (a) – left panel), and in the other, H2 forms
also on dust-grains (scenario (b) – right panel). Our fiducial parameters are Z′ = 10−3 and
ζ−16 = IUV. In the upper-left region of the parameter space, xH2O is generally low, � 10−9.
In this regime, H2O forms through the ion-molecule sequence, which is operative at low
temperatures. In the lower-right corner, the neutral-neutral reactions become effective and
xH2O rises.
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Figure 12.3 The fractional H2O abundance xH2O as a function of T and IUV/n4, for Z′ = 10−3

and ζ−16/IUV = 1, assuming pure gas-phase chemistry (scenario (a) – left panel), and including H2
formation on dust grains (scenario (b) – right panels). In both panels, the solid line indicates the 10−8

contour, which is a characteristic value for the H2O gas phase abundance in diffuse clouds within
the Milky Way galaxy. At high temperatures (or low IUV/n4 values), the neutral-neutral reactions
become effective, and xH2O rises.

In both panels, the solid line highlights the xH2O = 10−8 contour, which resembles
the H2O gas phase-abundance in diffuse and translucent Milky Way clouds. This line also
delineates the borderline between the regimes where H2O forms via the ‘cold’ ion-molecule
sequence and the ‘warm’ neutral-neutral sequence. The temperature range at which the
neutral-neutral sequence kicks in is relatively narrow, ∼ 250–350 K, because the neutral-
neutral reactions are limited by energy barriers that introduce an exponential dependence
on temperature.

The dependence on IUV/n4 is introduced because the FUV photons photodissociate OH
and H2O molecules and therefore increase the removal rate of H2O and at the same time
suppress formation via the OH + H2 reaction. This gives rise to a critical value for IUV/n4,
below which H2O may become abundant.

For pure gas-phase H2 formation (scenario (a) – left panel), the gas remains predomi-
nantly atomic, and H2O formation is less efficient. In this case, xH2O � 10−8 only when
IUV/n4 is smaller than a critical value of

(IUV/n4)
(a)
crit = 2 × 10−2. (12.25)

However, when H2 formation on dust is included (scenario (b) – right panel), the hydrogen
becomes fully molecular, and H2O formation is then more efficient. In this case, xH2O may
reach 10−8 for IUV/n4 smaller than

(IUV/n4)
(b)
crit = 3 × 10−1, (12.26)

an order of magnitude larger than for the pure gas phase formation scenario.



482 Abraham Loeb

Figure 12.4 The xH2O = 10−8 contour, for variations in Z′ (upper panels) and in ζ−16/IUV (lower
panels), assuming pure gas-phase chemistry (scenario (a) – left panels) and including H2 formation
on dust grains (scenario (b) – right panels).

12.4.7 Variations in Z′ and ζ−16/IUV

In Figure 12.4, we investigate the effects of variations in the value of Z′ and the normalisa-
tion ζ−16/IUV. The figure shows the xH2O = 10−8 contours for scenarios (a) (left panels)
and (b) (right panels). As discussed earlier, H2O is generally more abundant in scenario (b)
because the hydrogen is fully molecular in this case, and, therefore, the 10−8 contours are
located at higher IUV/n4 values in both right panels.

The upper panels show the effect of variations in the metallicity value Z′ for our fiducial
normalisation ζ−16 = IUV. In both panels, the oxygen abundance rises, and xH2O increases
with increasing Z′. Thus, at higher Z′, the 10−8 contours shift to lower T and higher
IUV/n4 and vice versa. An exception is the behaviour of theZ′ = 10−2 curve, for which the
metallicity is already high enough so that reactions with metal species dominate H2O
removal for IUV/n4 � 10−2. The increase in metallicity then results in a decrease of the
H2O abundance, and the 10−8 contour shifts to the right. For IUV/n4 � 10−2, removal by
FUV dominates, and the behaviour is similar to that in the Z′ = 10−3 and Z′ = 10−4 cases.

The lower panels show the effects of variations in the ionisation rate normalisation
ζ−16/IUV for our fiducial metallicity value of Z′ = 10−3. First, we consider the pure gas
phase formation case (scenario (a) – lower-left panel). For the two cases ζ−16/IUV = 1
and 10−1, the H2O removal is dominated by FUV photodissociation and, therefore, is
independent of ζ . As shown by Reference [28], the H2O formation rate is also independent



On the Temporal Habitability of Our Universe 483

of ζ when the H2 forms in the gas phase. Therefore, xH2O is essentially independent of ζ ,
and the contours overlap. For the high ionisation rate ζ−16/IUV = 10, the proton abundance
becomes high, and H2O reactions with H+ dominate H2O removal. In this limit, xH2O

decreases with ζ , and the 10−8 contour moves down.
When H2 forms on dust (scenario (b)–lower-right panel), the H2O formation rate via the

ion-molecule sequence is proportional to the H+ and H+
3 abundances, which rise with ζ .

Since the gas is molecular, the proton fraction is low, and the removal is always dominated
by FUV photodissociations (independent of ζ ). Therefore, in this case, xH2O increases with
ζ−16/IUV, and the curves shift up and to the left, towards lower T and higher IUV/n4.

12.4.8 Section Summary and Implications

We have demonstrated that the H2O gas phase abundance may remain high even at very low
metallicities of Z′ ∼ 10−3. The onset of the efficient neutral-neutral formation sequence at
T ∼ 300 K may compensate for the low metallicity and form H2O in abundance, similar
to that found in diffuse clouds within the Milky Way.

We have considered two scenarios for H2 formation, representing two limiting cases: one
in which H2 is formed in pure gas phase (scenario (a)), and one in which H2 forms both
in gase phase and on dust grains, assuming that the dust abundance scales linearly with Z′

(scenario (b)). Recent studies by References [84, 91, 112] suggest that the dust abundance
might decrease faster than then linearly with decreasing Z′. As shown by Reference [28],
for Z′ = 10−3 and dust abundance that scales as Z′β with β ≥ 2, H2 formation is dom-
inated by the gas phase formation channel. Therefore, our scenario (a) is also applicable
for models in which dust grains are present, with an abundance that scales superlinearly
with Z′. For both scenarios (a) and (b), we have found that the neutral-neutral formation
channel yields xH2O � 10−8, provided that IUV/n4 is smaller than a critical value. For
the first scenario, we have found that this critical value is (IUV/n4)crit = 2 × 102. For the
second scenario, (IUV/n4)crit = 3 × 10−1.

In our analysis, we have assumed that the system had reached a chemical steady state.
For initially atomic (or ionised) gas, this assumption offers the best conditions for the
formation of molecules. However, chemical steady state might not always be achieved
within a cloud lifetime or even within the Hubble time. The timescale to achieve chemical
steady state (from an initially dissociated state) is dictated by the H2 formation process
and is generally long at low metallicities. For Z′ = 10−3 and our fiducial parameters, the
timescales for both scenarios are of order of a few 108 years (see, e.g., Reference [27])
and are comparable to the age of the Universe at redshifts of ∼ 10. The generically high
water abundances we find for warm conditions and low metallicities will be maintained in
dynamically evolving systems, so long as they remain H2 shielded.

Our results might have interesting implications for the question of how early could have
life originated in the Universe [159]. Our study addresses the first step of H2O formation in
early enriched, molecular gas clouds. If such a cloud is to collapse and form a protoplan-
etary disc, some of the H2O may make its way to the surfaces of forming planets [258].
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However, the question of to what extent the H2O molecules that were formed in the initial
molecular clouds are preserved all the way through the process of planet formation is
beyond the scope of this section.

12.5 An Observational Test for the Anthropic Origin
of the Cosmological Constant

12.5.1 Section Background

The distance to Type Ia supernovae [142, 206] and the statistics of the cosmic microwave
background anisotropies [211] provide conclusive evidence for a finite vacuum energy
density of ρV = 4 keV cm−3 in the present-day Universe. This value is a few times larger
than the mean cosmic density of matter today. The expected exponential expansion of the
Universe in the future (for a time-independent vacuum density) will halt the growth of
all bound systems such as galaxies and groups of galaxies including the nearby Virgo
cluster [44, 76, 190]. It will also redshift all extragalactic sources out of detectability
(except for the merger remnant of the Milky Way and the Andromeda galaxies to which
we are bound) – marking the end of extragalactic astronomy, as soon as the Universe ages
by another factor of ten [157].

The observed vacuum density is smaller by tens of orders of magnitude than any plau-
sible zero-point scale of the Standard Model of particle physics. Weinberg [264] first sug-
gested that such a situation could arise in a theory that allows the cosmological constant to
be a free parameter. On a scale much bigger than the observable Universe, one could then
find regions in which the value of ρV is very different. However, if one selects those regions
that give life to observers, then one would find a rather limited range of ρV values near its
observed magnitude, since observers are most likely to appear in galaxies as massive as the
Milky Way galaxy which assembled at the last moment before the cosmological constant
started to dominate our Universe. Vilenkin [261] showed that this so-called ‘anthropic
argument’ [18] can be used to calculate the probability distribution of vacuum densities
with testable predictions. This notion [77, 92, 93, 180, 244, 245, 265] gained popularity
when it was realised that string theory predicts the existence of an extremely large num-
ber [38, 95, 129, 175], perhaps as large as ∼ 10100–10500 [13], of possible vacuum states.
The resulting landscape of string vacua [242] in the ‘multiverse,’ encompassing a volume
of space far greater than our own inflationary patch, made the anthropic argument appealing
to particle physicists and cosmologists alike [214, 245, 266].

The time is therefore ripe to examine the prospects for an experimental test of the
anthropic argument. Any such test should be welcomed by proponents of the anthropic
argument, since it would elevate the idea to the status of a falsifiable physical theory. At the
same time, the test should also be welcomed by opponents of anthropic reasoning, since
such a test would provide an opportunity to diminish the predictive power of the anthropic
proposal and suppress discussions about it in the scientific literature.

Is it possible to dispute the anthropic argument without visiting regions of space that
extend far beyond the inflationary patch of our observable Universe? The answer is yes if
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one can demonstrate that life could have emerged in our Universe even if the cosmological
constant would have had values that are much larger than observed. In this section, we
propose a set of astronomical observations that could critically examine this issue. We make
use of the fact that dwarf galaxies formed in our Universe at redshifts as high as z ∼ 10
when the mean matter density was larger by a factor of ∼ 103 than it is today4 [160]. If
habitable planets emerged within these dwarf galaxies or their descendents (such as old
globular clusters which might be the tidally truncated relics of early galaxies [184, 187]),
then life would have been possible in a universe with a value of ρV that is a thousand times
bigger than observed.

12.5.2 Prior Probability Distribution of Vacuum Densities

On the Planck scale of a quantum field theory which is unified with gravity (such as string
theory), the vacuum energy densities under discussion represent extremely small deviations
around ρV = 0. Assuming that the prior probability distribution of vacuum densities,
P∗(ρV ), is not divergent at ρV = 0 (since ρV = 0 is not favoured by any existing theory), it
is natural to expand it in a Taylor series and keep only the leading term. Thus, in our range
of interest of ρV values [92, 93, 265],

P∗(ρV ) ≈ constant . (12.27)

This implies that the probability of measuring a value equal to or smaller than the observed
value of ρV is ∼ 10−3 if habitable planets could have formed in a Universe with a value of
ρV that is a thousand times bigger than observed.

Numerical simulations indicate that our Universe would cease to make new bound
systems in the near future [44, 76, 190]. A universe in which ρV is a thousand times
larger would, therefore, make dwarf galaxies until z ∼ 10 when the matter density was
a thousand times larger than today. The question of whether planets can form within these
dwarf galaxies can be examined observationally, as we discuss next. It is important to note
that once a dwarf galaxy forms, it has an arbitrarily long time to convert its gas into stars
and planets because its internal evolution is decoupled from the global expansion of the
universe (as long as outflows do not carry material out of its gravitational pull).

12.5.3 Extragalactic Planet Searches

Gravitational microlensing is the most effective search method for planets beyond our
galaxy. The planet introduces a short-term distortion to the otherwise smooth light curve
produced by its parent star as that star focuses the light from a background star which
happens to lie behind it [176, 203]. In an extensive search for planetary microlensing

4 We note that although the cosmological constant started to dominate the mass density of our Universe at z ∼ 0.4, its impact on
the formation of bound objects became noticeable only at z ∼ 0 or later [44, 76, 190]. For the purposes of our discussion, we
therefore compare the matter density at z ∼ 10 to that today. Coincidentally, the Milky Way galaxy formed before ρV
dominated but it could have also formed later.
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signatures, a number of collaborations named PLANET [3], μFUN [273], and RoboNET
are performing follow-up observations on microlensing events which are routinely detected
by the groups MOA [33] and OGLE [251]. Many ‘planetary’ events have been reported,
including a planet of a mass of ∼ 5 Earth masses at a projected separation of 2.6AU from
a 0.2 M� M-dwarf star in the microlensing event OGLE-2005-BLG-390Lb [20] and a
planet of 13 Earth masses at a projected separation of 2.3 AU from its parent star in the
event OGLE-2005-BLG-169 towards the galactic bulge – in which the background star
was magnified by the unusually high factor of ∼ 800 [102]. Based on the statistics of these
events and the search parameters, one can infer strong conclusions about the abundance
of planets of various masses and orbital separations in the surveyed star population [32,
94, 102]. The technique can be easily extended to lenses outside our galaxy and out to the
Andromenda galaxy (M31) using the method of pixel lensing [15, 56, 61]. For the anthropic
experiment, we are particularly interested in applying this search technique to lensing of
background Milky Way stars by old stars in foreground globular clusters (which may be
the tidally truncated relics of z ∼ 10 galaxies), or to lensing of background M31 stars by
foreground globular clusters [118] or dwarf galaxies such as Andromeda VIII [188]. In
addition, self-lensing events in which foreground stars of a dwarf galaxy lens background
stars of the same galaxy are of particular interest. Such self-lensing events were observed in
the form of caustic-crossing binary lens events in the Large Magellanic Cloud (LMC) and
the Small Magellanic Cloud (SMC) [67]. In the observed cases, there is enough information
to ascertain that the most likely lens location is in the Magellanic Clouds themselves. Yet
each caustic-crossing event represents a much larger number of binary lens events from
the same lens population; the majority of these may be indistinguishable from point-lens
events. It is therefore possible that some of the known single-star LMC lensing events are
due to self-lensing [67], as hinted at by their geometric distribution [105, 225].

As mentioned earlier, another method for finding extragalactic planets involves transit
events in which the planet passes in front of its parent star and causes a slight temporary
dimming of the star. Spectral modelling of the parent star allows to constrain both the
size and abundance statistics of the transiting planets [52, 205]. Existing surveys reach
distance scales of several kpc [174, 255] with some successful detections [37, 136, 252].
So far, a Hubble Space Telescope search for transiting Jupiters in the globular cluster 47
Tucanae resulted in no detections [96] (although a pulsar planet was discovered later by a
different technique in the low-metallicity globular cluster Messier 4 [234], potentially indi-
cating early planet formation). A future space telescope (beyond the TESS,5 Kepler,6 and
COROT7 missions which focus on nearby stars) or a large-aperture ground-based facility
(such as the Giant Magellan Telescope [GMT],8 the Thirty-Meter Telescope [TMT],9 or the

5 https://tess.gsfc.nasa.gov.
6 http://kepler.nasa.gov/.
7 http://smsc.cnes.fr/COROT/.
8 www.gmto.org/.
9 www.tmt.org/.

https://tess.gsfc.nasa.gov
http://kepler.nasa.gov/
http://smsc.cnes.fr/COROT/
www.gmto.org/
www.tmt.org/
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European Extremely Large Telescope [EELT]10) could extend the transit search technique
to planets at yet larger distances (but see Reference [205]). Existing searches [52] identified
the need for a high signal-to-noise spectroscopy as a follow-up technique for confirming
real transits out of many false events. Such follow-ups would become more challenging at
large distances, making the microlensing technique more practical.

12.5.4 Observations of Dwarf Galaxies at High Redshifts

Our goal is to study stellar systems in the local Universe which are the likely descendents of
the early population of z ∼ 10 galaxies [221]. In order to refine this selection, it would be
desirable to measure the characteristic size, mass, metallicity, and star formation histories
of z ∼ 10 galaxies (see Reference [160] for a review on their theoretically expected proper-
ties). As already mentioned, it is possible that the oldest globular clusters are descendents
of the first galaxies [220].

Recently, a large number of faint early galaxies, born less than a billion years after the
Big Bang, have been discovered (see, e.g., [134, 219]). These include starburst galaxies
with star formation rates in excess of ∼ 0.1 M� yr−1 and dark matter halos [239] of
∼ 109−11 M� [39, 40, 218, 219, 228] at z ∼ 5–10. Luminous Lyα emitters are routinely
identified through continuum dropout and narrow-band imaging techniques [39, 40]. In
order to study fainter sources which were potentially responsible for reionisation, spec-
troscopic searches have been undertaken near the critical curves of lensing galaxy clus-
ters [134, 228], where gravitational magnification enhances the flux sensitivity. Because of
the foreground emission and opacity of the Earth’s atmosphere, it is difficult to measure
spectral features other than the Lyα emission line from these feeble galaxies from ground-
based telescopes.

In one example, gravitational lensing by the massive galaxy cluster A2218 allowed the
detection of stellar system at z = 5.6 with an estimated mass of ∼ 106 M� in stars [228].
Detection of additional low-mass systems could potentially reveal whether globular clusters
formed at these high redshifts. Such a detection would be feasible with the James Webb
Space Telescope.11 Existing designs for future large-aperture (> 20 m) infrared telescopes
(such as the GMT, TMT, and EELT mentioned earlier) would also enable researchers to
measure the spectra of galaxies at z ∼ 10 and infer their properties.

Based the characteristics of high-z galaxies, one would be able to identify present-day
systems (such as dwarf galaxies or globular clusters) that are their likely descendents [69,
269] and search for planets within them. Since the lifetime of massive stars that explode as
core-collapse supernovae is two orders of magnitude shorter than the age of the Universe
at z ∼ 10, it is possible that some of these systems would be enriched to a high metallicity
despite their old age. For example, the cores of quasar host galaxies are known to possess
super-solar metallicities at z � 6 [68].

10 www.eso.org/sci/facilities/eelt.
11 www.jwst.nasa.gov/.

www.eso.org/sci/facilities/eelt
www.jwst.nasa.gov/
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12.5.5 Section Summary and Implications

In future decades, it would be technologically feasible to search for microlensing or tran-
sit events in local dwarf galaxies or old globular clusters and to check whether planets
exist in these environments. Complementary observations of early dwarf galaxies at red-
shifts z ∼ 10 can be used to identify nearby galaxies or globular clusters that are their
likely descendents. If planets are found in local galaxies that resemble their counterparts at
z ∼ 10, then the precise version of the anthropic argument [77, 92, 180, 261, 264] would
be weakened considerably, since planets could have formed in our Universe even if the
cosmological constant, ρV , was three orders of magnitude larger. For a flat probability
distribution at these ρV values (which represents infinitesimal deviations from ρV = 0
relative to the Planck scale), this would imply that the probability for us to reside in a
region where ρV obtains its observed value is lower than ∼ 10−3. The precise version of
the anthropic argument [77, 92, 180, 261, 264] could then be ruled out at a confidence
level of ∼ 99.9%, which is a satisfactory measure for an experimental test. The envisioned
experiment resonates with two of the most active frontiers in astrophysics, namely the
search for planets and the study of high-redshift galaxies, and if performed, it would have
many side benefits to conventional astrophysics.

We note that in the hypothetical universe with a large cosmological constant, life need
not form at z ∼ 10 (merely 400 million years after the Big Bang) but rather any time later.
Billions of years after a dwarf galaxy had formed, a typical astronomer within it would see
the host galaxy surrounded by a void which is dominated by the cosmological constant. Of
course, the volume density of life in such a case is smaller than in our Universe.

An additional factor that enters the likelihood function of ρV values involves the
conversion efficiency of baryons into observers in the Universe. A universe in which
observers only reside in galaxies that were made at z ∼ 10 might be less effective at making
observers. The fraction of baryons that have assembled into star-forming galaxies above
the hydrogen cooling threshold by z ∼ 10 is estimated to be ∼ 10% [160], comparable to
the final fraction of baryons that condensed into stars in the present-day Universe [90]. It is
possible that more stars formed in smaller systems down to the Jeans mass of ∼ 104−5 M�
through molecular hydrogen cooling [41]. Although today most baryons reside in a warm-
hot medium of ∼ 2 × 106 K that cannot condense into stars [50, 64], most of the cosmic
gas at z ∼ 10 was sufficiently cold to fragment into stars as long as it could have cooled
below the virial temperature of its host halos [160]. The star formation efficiency can
be inferred [69] from dynamical measurements of the star and dark matter masses in
local dwarfs or globulars that resemble their counterparts at z ∼ 10. If only a small
portion of the cosmic baryon fraction (�b/�m) in dwarf galaxies is converted into stars,
then the probability of obtaining habitable planets would be reduced accordingly. Other
physical factors, such as metallicty, may also play an important role [156]. Preliminary
evidence indicates that planet formation favours environments which are abundant in heavy
elements [83], although notable exceptions exist [234].

Unfortunately, it is not possible to infer the planet production efficiency for an alternative
universe purely based on observations of our Universe. In our Universe, most of the baryons
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which were assembled into galaxies by z ∼ 10 are later incorporated into bigger galaxies.
The vast majority of the z ∼ 10 galaxies are consumed through hierarchical mergers to
make bigger galaxies; isolated descendents of z ∼ 10 galaxies are rare among low-redshift
galaxies. At any given redshift below 10, it would be difficult to separate observationally
the level of planet formation in our Universe from the level that would have occurred
otherwise in smaller galaxies if these were not consumed by bigger galaxies within a
universe with a large vacuum density, ρV . In order to figure out the planet production
efficiency for a large ρV , one must adopt a strategy that mixes observations with theory.
Suppose we observe today the planet production efficiency in the descendents of z ∼ 10
galaxies. One could then use numerical simulations to calculate the abundance that these
galaxies would have had today if ρV was ∼ 103 times bigger than its observed value. This
approach implicitly takes into account the possibility that planets may form relatively late
(after ∼10 Gyr) within these isolated descendents, irrespective of the value of ρV . The
late time properties of gravitationally bound systems are expected to be independent of the
value of ρV .

In our discussion, we assumed that as long as rocky planets can form at orbital radii
that allow liquid water to exist on their surface (the so-called habitable zone [130]), life
would develop over billions of years and eventually mature in intelligence. Without a better
understanding of the origin of intelligent life, it is difficult to assess the physical conditions
that are required for intelligence to emerge beyond the minimal requirements stated earlier.
If life forms early, then civilisations might have more time to evolve to advanced levels. On
the other hand, life may be disrupted more easily in early galaxies because of their higher
density (making the likelihood of stellar encounters higher) [92, 245], and so it would be
useful to determine the environmental density observationally. In the more distant future, it
might be possible to supplement the study proposed here by the more adventurous search
for radio signals from intelligent civilisations beyond the boundaries of our galaxy. Such
a search would bring an extra benefit. If the anthropic argument turns out to be wrong
and intelligent civilisations are common in nearby dwarf galaxies, then the older, more
advanced civilisations among them might broadcast an explanation for why the cosmolog-
ical constant has its observed value.

12.6 The Relative Likelihood of Life as a Function of Cosmic Time

12.6.1 Section Background

Currently, we only know of life on Earth. The Sun formed ∼ 4.6 Gyr ago and has a
lifetime comparable to the current age of the Universe. But the lowest-mass stars near
the hydrogen burning threshold at 0.08 M� could live a thousand times longer, up to 10
trillion years [146, 224]. Given that habitable planets may have existed in the distant past
and might exist in the distant future, it is natural to ask, what is the relative probability for
the emergence of life as a function of cosmic time? In this section, we answer this question
conservatively by restricting our attention to the context of ‘life as we know it’ and the
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standard cosmological model (�CDM).12 Note that since the probability distribution is
normalised to have a unit integral, it only compares the relative importance of different
epochs for the emergence of life but does not calibrate the overall likelihood for life in the
Universe. This feature makes our results robust to uncertainties in normalisation constants
associated with the likelihood for life on habitable planets.

Next, we express the relative likelihood for the appearance of life as a function of cosmic
time in terms of the star formation history of the Universe, the stellar mass function, the
lifetime of stars as a function of their mass, and the probability of Earth-mass planets
in the habitable zone of these stars. We define this likelihood within a fixed co-moving
volume which contains a fixed number of baryons. In predicting the future, we rely on an
extrapolation of star formation rate until the current gas reservoir of galaxies is depleted.

12.6.2 Formalism

Master Equation

We wish to calculate the probability dP (t)/dt for life to form on habitable planets per unit
time within a fixed co-moving volume of the Universe [153]. This probability distribution
should span the time interval between the formation time of the first stars and the maximum
lifetime of all stars that were ever made (∼ 10 Tyr).

The probability dP (t)/dt involves a convolution of the star formation rate per
co-moving volume, ρ̇∗(t ′), with the temporal window function, g(t − t ′,m), due to the
finite lifetime of stars of different masses, m, and the likelihood, ηEarth(m), of forming an
Earth-mass rocky planet in the habitable zone (HZ) of stars of different masses, given the
mass distribution of stars, ξ(m), times the probability, p(life|HZ), of actually having life
on a habitable planet. With all these ingredients, the relative probability per unit time for
life within a fixed co-moving volume can be written in terms of the double integral,

dP

dt
(t) = 1

N

t∫
0

dt ′
mmax∫
mmin

dm′ξ(m′)ρ̇∗(t ′,m′)ηEarth(m
′)p(life|HZ)g(t − t ′,m′), (12.28)

where the prefactor 1/N assures that the probability distribution is normalised to a unit
integral over all times. The window function, g(t − t ′,m), determines whether a habitable
planet that formed at time t ′ is still within a habitable zone at time t . This function is non-
zero within the lifetime τ∗(m) of each star, namely g(t− t ′,m) = 1 if 0 < (t− t ′) < τ∗(m),
and zero otherwise. The quantities mmin and mmax represent the minimum and maximum
masses of viable host stars for habitable planets, respectively. Next, we provide more details
on each of the various components of the preceding master equation.

12 We address this question from the perspective of an observer in a single co-moving Hubble volume formed after the end of
inflation. As such, we do not consider issues of self-location in the multiverse nor of the measure on eternally inflating
regions of space-time. We note, however, that any observers in a post-inflationary bubble will, by necessity of the eternal
inflationary process, only be able to determine the age of their own bubble. We therefore restrict our attention to the question
of the probability distribution of life in the history of our own inflationary bubble.
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Stellar Mass Range

Life requires the existence of liquid water on the surface of Earth-mass planets during
the main stage lifetime of their host star. These requirements place a lower bound on the
lifetime of the host star and, thus, an upper bound on its mass.

There are several proxies for the minimum time needed for life to emerge. Certainly,
the star must live long enough for the planet to form, a process which took ∼ 40 Myr
for Earth [185]. Moreover, once the planet has formed, sufficient cooling must follow to
allow the condensation of water on the planet’s surface. The recent discovery of the earliest
crystals, zircons, suggests that these were formed during the Archean era, as much as 160
Myr after the planet formed [257]. Thus, we arrive at a conservative minimum of 200 Myr
before life could form; any star living less than this time could not host life on an Earth-like
planet. At the other end of the scale, we find that the earliest evidence for life on Earth
comes from around 800 Myr after the formation of the planet [185], yielding an upper
bound on the minimum lifetime of the host star. For the relevant mass range of massive
stars, the lifetime, τ∗, scales with stellar mass,m, roughly as (τ∗/τ�) = (m/M�)−3, where
τ� ≈ 1010 yr. Thus, we find that the maximum mass of a star capable of hosting life (mmax)
is in the range 2.3–3.7 M�. Due to their short lifetimes and low abundances, high-mass
stars do not provide a significant contribution to the probability distribution, dP (t)/dt , and
so the exact choice of the upper mass cut-off in the preceding range is unimportant. The
lowest-mass stars above the hydrogen burning threshold have a mass m = 0.08M�.

Time Range

The stars resulted in a second generation of stars, enriched by heavy elements, merely a few
Myr later. The theoretical expectation that the second generation stars should have hosted
planetary systems can be tested observationally by searching for planets around metal-poor
stars in the halo of the Milky Way galaxy [182].

Star formation is expected to exhaust the cold gas in galaxies as soon as the Universe
ages by a factor of a few (based on the ratio between the current reservoir of cold gas
in galaxies [90] and the current star formation rate), but low-mass stars would survive
long after that. The lowest-mass stars near the hydrogen burning limit of 0.08 M� have a
lifetime of order 10 trillion years [146]. The probability dP (t)/dt is expected to vanish
beyond that time.

Initial Mass Function

The initial mass function (IMF) of stars ξ(m) is proportional to the probability that a star
in the mass range between m and m+ dm is formed. We adopt the empirically calibrated,
Chabrier functional form [51], which follows a log-normal form for masses under a solar
mass, and a power-law above a solar mass, as follows:

ξ(m) ∝

⎧⎪⎪⎨⎪⎪⎩
(
m

M�

)−2.3

m > 1M�

a exp

(
− ln(m/mc)2

2σ 2

)
M�
m

m ≤ 1M�
, (12.29)
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Figure 12.5 The Chabrier [51] mass function of stars, ξ(m∗), plotted with a normalisation integral of
unity.

where a = 790, σ = 0.69, and mc = 0.08 M�. This IMF is plotted as a probability
distribution normalised to a unit integral in Figure 12.5.

For simplicity, we ignore the evolution of the IMF with cosmic time and its dependence
on galactic environment (e.g., galaxy type or metallicity [59]), as well as the uncertain
dependence of the likelihood for habitable planets around these stars on metallicity [182].

Stellar Lifetime

The lifetime of stars, τ∗, as a function of their mass, m, can be modelled through a piece-
wise power-law form. For m < 0.25 M�, we follow Reference [146]. For 0.75 M� <

m < 3 M�, we adopt a scaling with an average power-law index of −2.5 and the proper
normalisation for the Sun [226]. Finally, we interpolate in the range between 0.25 and 0.75
M� by fitting a power-law form there and enforcing continuity. In summary, we adopt,

τ∗(m) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1.0 × 1010 yr

(
m

M�

)−2.5

0.75M� < m < 3M�

7.6 × 109 yr

(
m

M�

)−3.5

0.25M� < m ≤ 0.75M�

5.3 × 1010 yr

(
m

M�

)−2.1

0.08M� ≤ m ≤ 0.25M�

. (12.30)

This dependence is depicted in Figure 12.6.

Star Formation Rate

We adopt an empirical fit to the star formation rate per co-moving volume as a function of
redshift, z [169],
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Figure 12.6 Stellar lifetime (τ∗) as a function of mass.

Figure 12.7 Star formation rate, ρ̇∗, as a function of the cosmic time t (left panel) and redshift
z (right panel), based on an extrapolation of a fitting function to existing data [169]. Although
this extrapolation has inherent uncertainties, it provides a reasonable benchmark for theoretical
expectations.

ρ̇∗(z) = 0.015
(1 + z)2.7

1 + [(1 + z)/2.9]5.6
M�yr−1Mpc−3, (12.31)

and truncate the extrapolation to early times at the expected formation time of the
first stars [159]. We extrapolate the cosmic star formation history to the future or
equivalently negative redshifts −1 ≤ z< 0 (see, e.g., ref. [16]) and find that the co-
moving star formation rate drops to less than 10−5 of the current rate at 56 Gyr into
the future. We cut off the star formation at roughly the ratio between the current reservoir
mass of cold gas in galaxies [90] and the current star formation rate per co-moving
volume. The resulting star formation rate as a function of time and redshift is shown in
Figure 12.7.
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Probability of Life on a Habitable Planet

The probability for the existence of life around a star of a particular mass m can be
expressed in terms of the product between the probability that there is an Earth-mass planet
in the star’s habitable zone (HZ) and the probability that life emerges on such a planet:
P(life|m) = P(HZ|m)P (life|HZ). The first factor, P(HZ|m), is commonly labelled ηEarth

in the exoplanet literature [249].
Data from the NASA Kepler mission implies ηEarth values in the range of 6.4+3.4

−1.1% for

stars of approximately a solar mass [179, 207, 235] and 24+18
−8 % for lower-mass M-dwarf

stars [73]. The result for solar mass stars is less robust due to lack of identified Earth-like
planets at high stellar masses. Owing to the large measurement uncertainties, we assume a
constant ηEarth within the range of stellar masses under consideration. The specific constant
value of ηEarth drops out of the calculation due to the normalisation factor N .

There is scope for considerable refinement in the choice of the second factor p(life|HZ).
One could suppose that the probability of life evolving on a planet increases with the
amount of time that the planet exists or that increasing the surface area of the planet
should increase the likelihood of life beginning. However, given our ignorance, we will
set this probability factor to a constant, an assumption which can be improved upon by
statistical data from future searches for biosignatures in the molecular composition of the
atmospheres of habitable planets [151, 162, 222, 231]. In our simplified treatment, this
constant value has no effect on dP (t)/dt since its contribution is also cancelled by the
normalisation factor N .

12.6.3 Results

The top and bottom panels in Figure 12.8 show the probability per log time interval
tdP (t)/dt = dP/d ln t and the cumulative probability P(< t) = ∫ t

0 [dP (t ′)/dt ′]dt ′ based
on Eq. 12.28 for different choices of the low-mass cut-off in the distribution of host stars for
life-hosting planets (equally spaced in lnm). The upper stellar mass cut-off has a negligible
influence on dP/d ln t , due to the short lifetime and low abundance of massive stars. In
general, dP/d ln t cuts off roughly at the lifetime of the longest-lived stars in each case, as
indicated by the upper axis labels. For the full range of hydrogen-burning stars, dP (t)/d ln t
peaks around the lifetime of the lowest mass stars t ∼ 1013 yr with a probability value that
is a thousand times larger than for the Sun, implying that life around low-mass stars in the
distant future is much more likely than terrestrial life around the Sun today.

12.6.4 Section Summary and Implications

Figure 12.8 implies that the probability for life per logarithm interval of cosmic time,
dP (t)/d ln t , has a broad distribution in ln t and is peaked in the future, as long as life
is likely around low-mass stars. High-mass stars are shorter lived and less abundant and
hence make a relatively small contribution to the probability distribution.



On the Temporal Habitability of Our Universe 495

Figure 12.8 Probability distribution for the emergence of life within a fixed co-moving volume of the
Universe as a function of cosmic time. We show the probability per log time, tdP/dt (top panel) as
well as the cumulative probability up to a time t , P(< t) (bottom panel), for different choices of the
minimum stellar mass, equally spaced in logm between 0.08M� and 3M�. The contribution of stars
above 3 M� to dP (t)/dt is ignored due to their short lifetimes and low abundances. The labels on
the top axis indicate the formation time of the first stars, the time when the cosmic expansion started
accelerating (i.e., when the density parameter of matter, �m, was twice that of the vacuum, ��), the
present time (now) and the lifetimes of stars with masses of 0.08 M�,0.15 M�, and 0.27 M�. The
lines correspond to the masses indicated in the legend, from right to left.
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Future searches for molecular biosignatures (such as O2 combined with CH4) in the
atmospheres of planets around low-mass stars [162, 222, 231] could inform us whether
life will exist at late cosmic times [137]. If we were to insist that life near the Sun is
typical and not premature i.e., require that the peak in dP (t)/d ln t would coincide with
the lifetime of Sun-like stars at the present time – then we must conclude that the physical
environments of low-mass stars are hazardous to life. This outcome could be the result
of a more conventional line of reasoning [217]). It could be a natural outcome, for exam-
ple, from the enhanced UV emission and flaring activity of young low-mass stars during
their extended (∼ Gyr long) pre-main-sequence phase, which is capable of stripping rocky
planets of their atmospheres [200]. The habitable zone is much closer in around low-mass
stars, leading to tidal locking and extreme temperature contrast due between the permanent
day and night sides [140] as well as an increased impact of the stellar wind and enhanced
stellar variability in stripping the atmospheres of rocky planets [4, 17, 31, 168]. The recent
discoveries of a habitable planet around the nearest, 0.12 M� star Proxima Centauri [9]
and of three transiting habitable planets around the 0.08 M� star TRAPPIST-1 [97] offer
new prospects for testing the conjecture. Empirical testing is crucial since self-selection
arguments, such as the one associated with the peak in dP (t)/d ln t , are known to be subject
to statistical caveats [36, 101, 149]. Moreover, Figure 12.8 makes the implicit assumption
that the emergence of life does not correlate with the early stages of planet formation,
providing an equal probability for appearing early or late. In particular, water loss from the
surface of a planet could be substantial at late times, suppressing the survival of life over
trillions of years.

Values of the cosmological constant below the observed one should not affect the prob-
ability distribution, as they would introduce only mild changes to the star formation history
due to the modified formation history of galaxies [44, 190]. However, much larger val-
ues of the cosmological constant would suppress galaxy formation and reduce the total
number of stars per co-moving volume [158], hence limiting the overall likelihood for life
altogether [264].

Our results provide a new perspective on the so-called coincidence problem, why do we
observe�m ∼ �� [46]? The answer comes naturally if we consider the history of Sun-like
star formation, as the number of habitable planets peaks around present time form ∼ 1M�.
We note that for the majority of stars, this coincidence will not exist as dP (t)/dt peaks in
the future, where �m � ��. The question is, then, why do we find ourselves orbiting a
star like the Sun now rather than a lower-mass star in the future?

We derived our numerical results based on a conservative set of assumptions and guided
by the latest empirical data for the various components of Eq. (12.28). However, the emer-
gence of life may be sensitive to additional factors that were not included in our formula-
tion, such as the existence of a moon to stabilise the climate on an Earth-like planet [145],
the existence of asteroid belts [181], the orbital structure of the host planetary system (e.g.,
the existence of nearby giant planets or orbital eccentricity), the effects of a binary star
companion [106], the location of the planetary system within the host galaxy [154], and
the detailed properties of the host galaxy (e.g., galaxy type [59] or metallicity [127, 156]),
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including the environmental effects of quasars, gamma ray bursts [210], or the hot gas in
clusters of galaxies. These additional factors are highly uncertain and complicated to model
and were ignored for simplicity in our analysis.

The probability distribution dP (t)/d ln t is of particular importance for studies attempt-
ing to gauge the level of fine-tuning required for the cosmological or fundamental physics
parameters that would allow life to emerge in our Universe.
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Climbing Up the Theories of Nature: Fine-Tuning
and Biological Molecules

g e o r g e e l l i s , j e a n - p h i l i p p e u z a n, a n d d av i d s l o a n

Abstract

The understanding of the world around us requires the use of various theories represent-
ing different levels of emergent structure. While they enjoy a decoupling, they are not
completely independent. It has been acknowledged that the possibility for complexity to
emerge sets constraints, indeed a fine-tuning, on the fundamental constants of nature. It
turns out that at each level of emergent complexity, new such constraints appear. It is not
clear whether they are more stringent or obviously satisfied in view of constraints relevant
for lower levels. We discuss the connection between fine-tuning of fundamental physics,
atomic physics, chemistry, and biology to highlight the importance of the analysis of the
connection between these different theories in relation to fine-tuning.

13.1 Introduction

13.1.1 The Basic Idea

Fine-tuning relates the existence of life to the values of physical constants. Only certain
values of the fundamental constants will allow any life whatsoever to exist [2, 16, 23, 24].
This is because these parameters underlie existence of galaxies, stars, and planets with
suitable heavy elements out of which organic molecules can be constructed. However, they
also underlie the values of energies and angles in molecules and, hence, also govern the
organic chemistry and molecular biology that underlie all living systems, so these, too, will
only be possible for a restricted range of these constants. It is a fundamental problem to
find out what these relations and limitations are.

Fundamental constants of physics are parameters in the theory that cannot be reduced
to other parameters [30, 33]. The following are two key points:

• They are dependent on the theoretical framework used.

• They should be dimensionless to be physically meaningful.

Examples: the fine-structure constant α= e2/(h̄c) and electron-proton mass ratio
μ=me/mp are key dimensionless fundamental constants. The speed of light c, Planck’s
constant h̄, and gravitational constant G are not fundamental constants because they are
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not dimensionless. You can make their value whatever you want by your choice of units
(e.g., you can always set c = 1 by choice of time and length units [10]).

There is no agreement on the number of constants or what they are; a comprehensive
survey has been given in Reference [27] as well as Chapter 2 of this volume. As mentioned
earlier, only a limited range of values of these constants is compatible with existence of life
of any kind [2, 16, 23, 24].

Fine-tuning discussions conventionally involve only issues to do with

• Existence of galaxies

• Existence of key elements out of which organic molecules can be made: C, N, O, P, S (as
a result of stellar nucleosynthesis followed by explosions of first generation stars)

• Existence of second-generation stars with planets, some of which have an atmosphere
and water, perhaps with a moon.

While all these are necessary, they are not sufficient. They do not touch the nature of life
itself. That is what we touch on here.

Biologically Important Molecules

One needs also the existence of essential organic molecules and aqueous solutions, thus

• Water with a suitable dipole [3]

• Nucleic acids: suitable DNA [4] and RNA

• Organic molecules: suitable proteins [22]

One also needs lipids and carbohydrates, but their structure is not so crucial. Proteins are
the key molecules that do the needed work in all sorts of ways [22], e.g.,

• Catalysis: speeding up reactions by a huge amount (enzymes)

• Controlling gene expression (gene transcription factors, gene corrections)

• Logical operations: controlling flow of ions into and out of axons (e.g., voltage gated ion
channels [12])

DNA is important only because it creates proteins at the right time and place [6] (because
of gene transcription networks). However, that role is, of course, crucial. RNA is, in effect,
at the present time a support actor for DNA (although it may have played a different more
role at earlier epochs).

The reader should note that what is presented here is very much a work in progress.
We explore a variety of approaches and obtain some preliminary results, but there is much
work to be done. In effect, this chapter is an outline of a research program rather than a
presentation of results from a completed such program.

13.1.2 The Hierarchy of Structure

Nature confronts us with structures of different scales, complexities, and properties – from
fundamental particles to molecules and cells to planets, stars, and galaxies. Each of them
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can be described by a scientific theory, with its own ontology and structures. The structures
form a hierarchy of theories organised in modules in interaction (see References [8, 9, 11]
for a discussion). Indeed, those theories are not independent. Higher levels are built on more
fundamental theories. And higher-level theories set the context in which the dynamics of
the lower-level theories develop. This is related to both bottom-up action and top-down
causation [11].

The fact that we can understand the Universe and its laws has deep implications for this
structure of theories. At each step in our construction of physical theories, we have been
dealing with phenomena below a typical energy scale, mostly because of technological
constraints, and it has turned out (empirically) that we always have been able to design a
consistent theory that is valid in such a restricted regime. This is not expected in general
and is deeply rooted in the mathematical structure of the theories that describe nature.
They have to enjoy a scale decoupling principle in the sense that there exist energy scales
below which effective theories are sufficient to understand a set of physical phenomena
that can be observed. Effective theories are then the most fundamental concepts in the
scientific approach to the understanding of nature, and they always come with a domain
of validity inside which they are efficient to describe all related phenomena [28, 29]. They
are a successful explanation at a given level of complexity based on the concepts of that
particular level.

This implies that the structure of the theories is such that there is a kind of stability
and independence of higher levels with respect to more fundamental ones. It follows that
various disciplines have developed independently in almost quasi-autonomous domains,
each of them having its own ontology and dynamics that are independent of our ability to
formulate a theory explaining these concepts in lower-level terms. In each case, we can
hope to relate the concepts and constants of a given level to those of an underlying level.
For instance, we understand that the proton is a composite structure of three quarks, and
we may try to determine its physical characteristic (charge, mass, gyromagnetic factor,
quantum numbers) in terms of those of these more fundamental entities [19]. However,
we know that this can only be achieved for some structures, since there exist emergent
phenomena (information, life, consciousness) that cannot be reduced to the concepts of a
lower level.

13.1.3 Fundamental Physics

Today, gravitation is well described by general relativity, and the most fundamental (experi-
mentally tested) theory of matter is the Standard Model of particle physics. This is a theoret-
ical construction based on an action and many choices such as the mathematical description
of the matter fields (this is not completely arbitrary and is based on representations of
the Poincaré group, which allows one to define scalar, spinor, vector, etc., structures, but
we decide to identify each kind of particle with a particular mathematical structure [31]),
symmetries (such as SU(2) or SU(3)), and constants. None of them can be explained by
the theory at hand. In particular, it is important for the constants to be measurable [21].
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Table 13.1 List of the fundamental constants of our Standard Model. See Reference [21]
for further details of the measurements.

Constant Symbol Value

Speed of light c 299,792,458 m s−1

Planck constant (reduced) h̄ 1.054 571 628(53) × 10−34 J s
Newton constant G 6.674 28(67) × 10−11 m2 kg−1 s−2

Weak coupling constant (at mZ) g2(mZ) 0.6520 ± 0.0001
Strong coupling constant (at mZ) g3(mZ) 1.221 ± 0.022
Weinberg angle sin2 θW(91.2 GeV)MS 0.23120 ± 0.00015

Electron Yukawa coupling he 2.94 × 10−6

Muon Yukawa coupling hμ 0.000607
Tauon Yukawa coupling hτ 0.0102156
Up Yukawa coupling hu 0.000016 ± 0.000007
Down Yukawa coupling hd 0.00003 ± 0.00002
Charm Yukawa coupling hc 0.0072 ± 0.0006
Strange Yukawa coupling hs 0.0006 ± 0.0002
Top Yukawa coupling ht 1.002 ± 0.029
Bottom Yukawa coupling hb 0.026 ± 0.003

Quark CKM matrix angle sin θ12 0.2243 ± 0.0016
sin θ23 0.0413 ± 0.0015
sin θ13 0.0037 ± 0.0005

Quark CKM matrix phase δCKM 1.05 ± 0.24

Higgs potential quadratic coefficient μ̂2 −(250.6 ± 1.2) GeV2

Higgs potential quartic coefficient λ 1.015 ± 0.05
QCD vacuum phase θQCD 10−9

For this model, they actually are and have been; see Table 13.1. There is no way to express
them in terms of more fundamental quantities (else they would not be fundamental con-
stants), and there is no equation for them. Testing their constancy reveals that the hypothesis
that they are constant is a good hypothesis, at least to the level of accuracy and timescale
over which the experiment is conducted [27]. In case of disagreement, one can promote
them to a dynamical field but then would have to explain why they are almost frozen
[26, 27].

It is also important to remember that any measurement is just a comparison between two
physical systems, one usually defining a system of units. It follows that only dimensionless
constants can be measured [10], and only the change of such constants would change the
physics. We will consider only these parameters. Given a list ofN constants, one can always
pick three of them to define units so that one is left with N − 3 fundamental parameters
that affect the magnitude of any physical process.

Coming back to the Standard Model of particle physics, we have assumed it is our
fundamental theory, even though it does not incorporate massive neutrinos and dark matter,
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so that we know it calls for an extension. This theory offers the possibility of space for
higher levels of complexity to emerge. Changing the value of the fundamental constants
may result in the technical impossibility for nuclei to be stable – which is an example
of fine-tuning. The issue is, how fine-tuned is the Universe? This is what we shall now
illustrate, keeping in mind that we would like to estimate how far up the chain of physical
theories of higher complexity levels these fine-tunings propagate.

13.1.4 Towards Higher Complexity

Scaling Up to Nuclear Physics

The first level to consider above fundamental particle physics is nuclear physics. There,
one needs to determine how cross sections, binding energies, lifetimes of unstable nuclei
(or of the neutron), or simply characteristics such as the mass of the protons depends on the
fundamental constants listed in Table 13.1. This has been intensively investigated, and we
refer to References [26, 27] for reviews. They are of huge importance for the description of
Big Bang nucleosynthesis and for stellar nucleosynthesis. As examples, one can compute
the binding energy of the deuterium or the lifetime of the proton.

The dependence of the Hoyle state on the nuclear parameters and the fine-structure
constant was studied in Reference [7]. It was shown there that the requirement that one
forms both carbon-12 and oxygen-16 in population III stars set a constraint on α of the order
of 10−3. The dependence of the mass of the proton and gyromagnetic factors are described
in Reference [19]. It is important to realise that the connection from QCD to nuclear physics
is difficult and intricate so that the accuracy of these scaling is lively debated.

Scaling Up to Atomic Physics

The goal of this chapter is to describe the effect of a change in the value of the fundamental
constants on the structure of molecules, where the most importat relevant atoms are H, C,
N, O, P, and S. It will thus focus on the standard Schrödinger equation,

ih̄∂tψ(r,t) = Hψ(r,t), (13.1)

where H is the Hamiltonian. As far as atomic physics and chemistry are concerned, this
Hamiltonian depends on a few constants: the fine-structure constant α, the masses of the
nuclei mI , the mass of the electron me, and the gyromagnetic factors of the nuclei and
electrons gI and ge. The observables are of two types – either dimensionless, such as
geometric conformations and angles, or dimensional, such as bond lengths, energy levels,
and magnetic and electric moments. These quantities affect the properties of matter. For
example, a change in the electric and magnetic properties of the water molecule can impact
those of water in a drastic way – e.g., if it changes the solid-liquid phase boundary in the
phase diagram, which has a negative slope [3], contrary to most substances. This feature is
important for the development of life as we know it.
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Hypothesis: If one changes fundamental constants, such as α and μ, chemistry will not work the
same in the case of larger molecules. It will change conformation and so change biological function.

A delicate issue is whether a change that alters all scales simultaneously would affect
biological function or not or, rather, just result in the same function but rescaled in size.
It would affect relevant energies, which are, of course, crucial to biology; this might or
might not affect function because, for example, the photoelectric effect is not determined
by the Schrödinger equation and would scale differently. Presumably, this would alter some
functions – for example, those related to photosynthesis and vision – crucial ways.

The text is organised as followed. Section 13.2 describes the Schrödinger equation,
focusing on the issue of units and dimensions. We then detail how to compute the effects
of a variation of the constants on the properties of molecule in Section 13.3 and apply this
to some simple molecules in Section 13.4. The issue of conformal scaling is considered in
Section 13.5. We then draw some implications in Section 13.6 in particular, in evaluating
whether the fine-tuning required from chemistry is greater or less than that arising from
successful carbon production in stars.

13.2 Quantum Physics and Observables

The link from physics to chemistry is via the Schrödinger equation (13.1).

13.2.1 Schrödinger Equation in Dimensionless Form

As discussed previously, one can start by rewriting it in dimensionless form. For instance,
among the constants of the problem we can pick (me,h̄,c) to construct our standard units
in the form

�a = h̄

mec
ta = h̄

mec2
Ea = mec2. (13.2)

and then perform the rescalings

τ = t/ta, ρ = r

�a
, E = E

Ea
, μi ≡ mi

me
. (13.3)

It follows that Eq. (13.1) takes the form

i∂τψ(ρ,τ ) = −
(

1

2

me

m
�+ V

)
ψ(ρ,τ ), (13.4)

where � is Laplacian associated to ρ and V = V/mec
2 is a dimensionless potential. For

instance, the ionisation energy of hydrogen −EI = 1
2mec

2α2 = 13.60580 eV in standard
units reduces to −EI = 1

2α
2 in these atomic units. What is important is that the ratios of any

energies will be independent of the choice of the units. The Bohr radius a0 = h̄/mecα =
5.29 × 10−11 m in standard units reduces to a0 = 1/α in these atomic units.
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This means that we are working with the Hamiltonian

H =
∑

electrons

1

2
P 2
i +

∑
nuclei

1

2μ2
I

P 2
I + V ≡

∑
electrons

Te +
∑

nuclei

TN(μi)+ V(α,μi,gi) (13.5)

so that one needs to solve

H |ψ〉 = E |ψ〉 . (13.6)

13.2.2 Example: Hydrogen Atom

For the hydrogen atom including fine and hyperfine structure, we get for the electron

i∂τψe(ρ,τ ) = −
(

1

2

me

mp
�+ α

ρ
+ W

mec2

)
ψe(ρ,τ ), (13.7)

where the termW includes the fine and hyperfine structure. The dimensionless potential V
is the last two terms in (13.7) and is no longer a function of (α/ρ). It is explicitly given by

V = α

ρ
+ α

2ρ3

ge

2

L
h̄

.
S
h̄

− �2

8
+ παδ(ρ)

+ αgp
2

me

mp

{
− 1

2ρ3

L
h̄

.
I
h̄

+ 2π

3

ge

2

I
h̄

.
S
h̄
δ(ρ)+ 1

4ρ3

ge

2

[
3

(
S
h̄

.n
)(

I
h̄

.n
)

− I
h̄

.
S
h̄

]}
,

(13.8)

where the first line is the non-relativistic term, the second line is the the fine-structure
terms (discussed further in Section 13.5.2), and the final one is the hyperfine-structure
terms. Indeed, it involves only dimensionless quantities: α,μ := me/mp, ge and gp. So
solving this equation will result in dimensionless energies – i.e., energies in units of mec2:
E = E/mec2. The optical lines are given by

En = α2

2n2 (1 + μ)−1 (13.9)

and the fine structure by

EnlJ = 1 + α2

2n2
− α4

2n4

(
n

J + 1/2
− 3

4

)
+ · · · (13.10)

For a full solution, of course, we also need to include the nucleus – or nuclei, in the case of
heavier atoms – as in Eq. (13.5).

13.2.3 Metre Dependence on Fundamental Constants

In the international system of units, the second and the metre are defined by a hyperfine
transition in 133Cs. This implies that when the constants are varied, the physical systems to
which the system of study is compared are also modified.
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In general, the hyperfine frequency in a given electronic state of an alkali-like atom –
such as 133Cs, 87Rb, 199Hg+ – is given by

νhfs � R∞c × Ahfs × gi × α2 × μ̄× Fhfs(α), (13.11)

where gi = μi/μN is the nuclear g factor. Ahfs is a numerical factor depending on each
particular atom, and we have set Frel = Fhfs(α). The Rydberg constant R∞ is given by
R∞ = α/4πa0 – i.e., α2/4π in atomic units. Similarly, the frequency of an electronic
transition is well approximated by

νelec � R∞c × Aelec × Felec(Z,α), (13.12)

where – as before – Aelec is a numerical factor depending on each particular atom and
Felec is the function accounting for relativistic effects, spin-orbit couplings, and many-
body effects. Even though an electronic transition should also include a contribution from
the hyperfine interaction, it is generally only a small fraction of the transition energy and,
thus, should not carry any significant sensitivity to a variation of the fundamental constants.

It follows that the metre, defined as L1m ≡ c/νCs, scales as

L−1
1m = R∞ × Ahfs × gi × α2 × μ̄× FCs(α). (13.13)

The relativistic corrections can be characterised by introducing the sensitivity of the
relativistic factors to a variation of α,

κα ≡ ∂ lnF

∂ lnα
. (13.14)

Table 13.2 summarises the values of some of them. Indeed, a reliable knowledge of these
coefficients at the 1%–10% level is required to deduce limits to a possible variation of the
constants. The interpretation of the spectra in this context relies, from a theoretical point
of view, only on quantum electrodynamics (QED) so that we can safely obtain constraints
on (α,μ,gi), still keeping in mind that the computation of the sensitivity factors requires
numerical N -body simulations.

Table 13.2 Sensitivity of various transitions on a
variation of the fine-structure constant.

Atom Transition Sensitivity κα

1H 1s − 2s 0.00
87Rb hf 0.34
133Cs 2S1/2(F = 2)− (F = 3) 0.83
171Yb+ 2S1/2 − 2D3/2 0.9
199Hg+ 2S1/2 − 2D5/2 −3.2
87Sr 1S0 − 3P0 0.06
27Al+ 1S0 − 3P0 0.008
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13.3 Influence on the Structure of Molecules

In this section, we set up a general procedure for finding the effect of a variation of
fundamental constants on chemical structure.

13.3.1 Evaluating the Effect of a Change in the Constants

The starting point of the analysis is the Schrödinger equation (13.1). In most problems, it
can only be solved numerically or by means of perturbation theory. The main idea is then
that the full Hamiltonian H can be split as H = H0 + W , where H0 has eigenstates that
can be computed, andW is a perturbation.

The existing constraints on the time variation of the fundamental constants teach us that
we are looking for small effects so that perturbation theory is a well-suited approach. The
Hamiltonian depends on a set of constants, ca , the value of which is ca0 in the laboratory
today. It can be decomposed as

H(ci) = H0 +W (13.15)

with

H0 ≡ H(ca = ca0) (13.16)

and

W ≡
∑
a

(
δH

δ ln ca

∣∣∣∣
ca=ca0

)
δ ln ca (13.17)

since we assume that δca/ca � 1. Given the general structure of the Hamiltonian (see
Eqs. (13.5), and (13.6)), one concludes that the dependences on the fine-structure constant
and gyromagnetic factor appear only in the potential while the masses appear in both the
potential and kinetic terms. Hence, rescaling the perturbation potential as W = W/mec

2,
we get

W =
∑
a

(
δH
δ ln ca

∣∣∣∣
ca=ca0

)
δ ln ca ≡

∑
a

faδ ln ca, (13.18)

which defines fa .
We shall now perform a perturbation on the value of the fundamental constants. We

work with the rescaled adimensional quantities. Indeed, solving the Schrödinger equation
with the Hamiltonian H0 may require us to use another perturbation expansion in terms of
the parameter of the interaction potential. Let us assume this leads to a set of eigenmodes∣∣ϕip〉 associated to energies E0

p so that i labels degenerate states of same energy:

H0

∣∣∣ϕip〉 = E0
p

∣∣∣ϕip〉 . (13.19)
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As usual, the eigenstates form an orthonormal basis of the space of states,〈
ϕip|ϕjq

〉
= δpqδij,

∑
p,i

∣∣∣ϕip〉 〈ϕip∣∣∣ = 1. (13.20)

Perturbation theory allows one to determine the perturbed energy levels and associated
eigenstates. The derivation can be found in many textbooks. In a case of a non-degenerate
state, one gets, at first order,

En = E0
n + 〈

ϕp|W|ϕp
〉

(13.21)

for the energy and

∣∣ψp〉 = ∣∣ϕp〉+∑
n �=p

∑
i

〈
ϕin|W|ϕp

〉
E0
p − E0

n

∣∣∣ϕin〉 (13.22)

for the eigenstate.

13.3.2 Effect on Bond Length

A molecule withN atoms and P electrons has a state that is specified by �RI for the position
of the atoms and �ri for the position of the electrons so that we are looking for a wave
function ψ( �RI,�ri;ca). The bond length is then given by

�IJ ≡ 〈ψ |RIJ |ψ〉 (13.23)

for a given bond between nuclei I and J with �RIJ ≡ �RJ − �RI . However, this has units.
We can define two dimensionless quantities, either the bound length compared to the metre
(the value of which depends on the value of the constants; see Section 13.2.3, or in units of
the Bohr radius a0,

�̃IJ ≡ �IJ

L1m
, λIJ ≡ �IJ

�a
. (13.24)

Both are dimensionless quantities, the variation of which characterises a change in the
geometry of the molecule. Another quantity that satisfies this criteria is the ratio between
different bond lengths,

αIJ ;KL ≡ �IJ

�KL
. (13.25)

Given the preceding description, we get that

δλ
(p)
IJ =

∑
a

⎛⎝∑
n �=p

∑
i

〈
ϕin |fa|ϕp

〉
E0
p − E0

n

〈
ϕp |RIJ |ϕin

〉
+ c.c.

⎞⎠ δ ln ca (13.26)
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for the state p. What is usually called the bound length refers to the fundamental state. It
follows that the sensitivity of the bond length to the variation of the constant ca is

δλIJ

δ ln ca
=
∑
n �=p

∑
i

〈
ϕin |fa|ϕp

〉
E0
p − E0

n

〈
ϕp |RIJ |ϕin

〉
+ c.c., (13.27)

where p is the fundamental state. This expression depends only on the energies and eigen-
states of the standard molecule so that it can be computed from existing codes.

13.3.3 Effect on the Geometry

Angles are dimensionless so that a good indicator of the change of the geometry is

β
̂IJK

≡
〈
ψ

∣∣∣∣∣ �RIJ . �RIK
RIJRIK

∣∣∣∣∣ψ
〉

. (13.28)

As before, we deduce the sensitivity of the angle to the constant ca as

δβ
̂IJK

δ ln ca
=
∑
n �=p

∑
i

〈
ϕin |fa|ϕp

〉
E0
p − E0

n

〈
ϕp

∣∣∣∣∣ �RIJ . �RIK
RIJRIK

∣∣∣∣∣ϕin
〉

+ c.c. (13.29)

13.4 Applications

The simplest applications to test the effect of changing the fine-structure constant on molec-
ular structure are the hydrogen atom (Section 13.4.1) and hydrogen molecule (Section
13.4.2). We thank Peter Atkins for discussions and help with this section. Atkins’s book
Molecular Quantum Mechanics [1] (MQM) is a great resource as regards concepts and
calculational methods. The next simplest application is the water molecule (Section 13.4.3),
which is of considerable biological importance.

13.4.1 Hydrogen Atom

The constants needed in what follows, chosen in order to simplify the equations, are

α = e2/4πε0h̄, β = h̄/(2mec), γ = ch̄, (13.30)

which imply

e2/4πε0 = αch̄ = αγ, h̄2/(2me) = βh̄c = βγ . (13.31)

The energies (see [1], p. 89; Z = 1) are

En = − mee
4

32π2ε2
0 h̄

2
.

1

n2
= − me

2h̄2

(
e2

4πε0

)2

.
1

n2
= −γα

2

4β
.

1

n2
. (13.32)
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The orbital of lowest energy (1s; n = 1,l = 0,ml = 0) is ([1], p. 88 and Y from p. 78)

�1s(r,θ,φ) = 1

π1/2

(
1

a0

)3/2

e−r/a0 = 1

π1/2

(
α

2β

)3/2

e−2βr/α . (13.33)

The most probable distance of the electron from the nucleus is the Bohr radius a0:

a0 = (4πε0h̄2)/(mee
2) = 2β

α
⇒ ∂a0

∂α
= −2β

α2
= −a0

α
. (13.34)

That is,

∂ ln a0/∂α = −1/α = −1/137 = −0.0007. (13.35)

As expected, an increase in α (an increase in charge) decreases the size of the atom.

13.4.2 Hydrogen Molecule

The Hamiltonian for the hydrogen molecule has terms for the two protons and the two
electrons, all interacting though a Coulomb potential,

H = −1

2

∑
i=1,2

P 2
i − 1

2μp

∑
I=1,2

P 2
I + α

R12
+ α

r12
−
∑
I,i

α

rI i
, (13.36)

from which we extract the dependence on α and μp separately:

fα = α

R12
+ α

r12
−
∑
I,i

α

rI i
, fμp = + 1

2μp

∑
I=1,2

P 2
I . (13.37)

To determine specific values, we follow Peter Atkins thus: consider the hydrogen
molecule ion (H+

2 ). From [1], p. 265 in the LCAO approximation, for an internuclear
separation R, with s = R/a0 = αR/2β, one has

E+ − E1s = αγ

R
− j ′ + k′

1 + S (13.38)

j ′ = j0

R
{1 − (1 + s)e−2s} = αγ

R

[
1 −

(
1 + αR

2β

)
e−αR/β

]
(13.39)

k′ = j0

a0
1 + se−s = 2α2

β

[
1 + αR

2β

]
e−αR/2β (13.40)

S =
(

1 + s + 1

3
s2
)
e−s =

[
1 + αR

2β
+ 1

3

(
αR

2β

)2
]
e−αR/2β . (13.41)

Exploring numerically how the energy varies with r for different values of α results in
Figures 13.1–13.3. The key outcome is the result,

Variation of the fine-structure constant by about 6% gives a change in the bond length of the hydrogen
ion molecule by about 6%.

This agrees with the above result (Eq. (13.35)) for the hydrogen atom.
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Figure 13.1 Graph of energies of the system as a function of radius. Units: Angstroms (but note that
the metre depends on α). Binding will correspond to a minimum. Various values of α are shown.
The middle one is the physical value of α. The upper and lower are ±6% change in the binding
radius.

Figure 13.2 Variation of energy with radius (on the x-axis marked 0–4) against change in the fine-
structure constant α on the y-axis. For each value of α, the minimum energy gives the binding radius.
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Figure 13.3 Finding the minimum. Graph of dE/dr as a function of radius. Various values of α are
shown. The middle line is the physical value of α, the lowest curve is α reduced by 5.6%, and the
highest curve is α increased by 6.4%. Both give ±6% change in the binding radius, which may be
the anthropic bound (Section 13.6).
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-

+

Figure 13.4 The water molecule has a crucial dipole moment because of its H-O-H angle of 104.5◦.
From [18], Figure 2.5.

13.4.3 Water Molecule

The water molecule H2O [3] is a significant biological molecule because it is an excellent
solvent that is liquid at room temperature, but freezes from the top because ice floats (frozen
water is less dense than liquid water).

Water forms a liquid at room temperature because of its H-O-H angle of 104◦, resulting
in a dipole moment (the positive charges on the hydrogen atoms and negative charge on the
oxygen atom are not aligned; Figure 13.4). Electrical attraction between water molecules
due to this dipole reduces intermolecular distances, increasing the interaction energy and
so raising its boiling point. Water is also a good solvent, because this polarity enables it to
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be strongly attracted to other polar molecules such as NaCl and, indeed, to disrupt them
into their component atoms.

Hamiltonian

The Hamiltonian for the water molecule is given by the general formula for any molecule.
Let i label the electrons in a molecule and I the nuclei, with masses mi and MI ; then the
non-relativistic equation is

H� = E�, (13.42)

where

H = − h̄2

2me

∑
i

∇2
i − h̄2

2me

∑
i

∇2
I + e2

4πε0

∑
(I,J )

ZIZJ

rIJ

− e2

4πε0

∑
(i,I )

ZI

riI
+ 1

2

e2

4πε0

∑
(i,j) �=)

1

rij
, (13.43)

where all positions are determined with respect to the oxygen nucleus. rIJ are the inter-
nuclear distances, riI the electron to nucleus distances, and Rij the inter-electron distances.

In the case of the water molecule with the most abundant isotope of oxygen, there are
two hydrogen nuclei (protons of atomic mass 1), one oxygen nucleus (atomic mass 16),
and 18 electrons.

Standard Lore

The general geometric form of molecules of the form AXmEn – where A is the central
atom, X is the other atom, and E is the free electron pairs – is depicted in Figure 13.5.
The sum m + n determines the geometry. Water, and all its isotopes, have m + n = 4
and are of form f in Figure 13.5. Because of the attraction by the nuclei of the X atom,
a bonding pair is always further away from the central atom than a free electron pair (i.e.,
a non-bonding pair). The electronic interaction, always repulsive, is then always stronger
between two non-bonding pairs than between two bonding pairs. Hence, the interactions
can be ordered as non-bonding/non-bonding > non-bonding/bonding > bonding-bonding.
Hence, in practice, the existence of a non-bonding doublet results in the deformation of the
angle of the molecule because of the competition between the different replsive actions of
the doublets. This induces a dipolar moment, which is important for the interaction between
the molecules. It follows that

A free doublet leads to the opening of the E-A-X angles and the closure of the angle X-A-X.

Water enjoys a tetrahedral symmetry but with only two summits occupied by a hydrogen
atom. It follows that its opening angle is 104.45o instead of 109.47o, which it would be
if the symmetry were exact (and as it actually is for methane CH4). To compare, NH3 is
similar but has an opening angle of 107o (see Figure 13.6). This shows that while the angle
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Figure 13.5 Configuration of molecules of the type AXmEn.

is determined in the first approximation by pure geometry, it also depends on the electric
forces and the competition between bonding and non-bonding pairs. The more non-bonding
the pairs, the smaller the angle.

13.4.4 Effect of the Variation of the Constants

On the numerical side, King et al. [15] have already investigated the effect of variation
of the fundamental constants on water in detail via massive computer calculations. They
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Figure 13.6 Tetragonal molecules. The opening angle changes when an atom is replaced by an
electronic pair. It is perfect for methane (a), θ = 109.47o, and descreases for amonia (b), θ = 107o,
and water (c), θ = 104.47o.

state, ‘The dramatic advances of recent decades in electronic structure methods, numerical
algorithms, and raw computing power permit the determination of solutions very close to
the ab initio limit for molecular systems of reasonable size’.

Their method is as follows. For non-relativistic chemistry and the Schrödinger equation,
the relevant equation is (13.43). To solve it, one can use the Born-Oppenheimer approxima-
tion, whereby the electronic part of the Schröedinger equatin is first solved with clamped
nuclei [15]. Then,

Ĥ0�e =
⎡⎣− h̄2

2me

∑
i

∇2
i + e2

4πε0

∑
(I,J )

ZIZJ

rIJ
− e2

4πε0

∑
(i,I )

ZI

riI
+ 1

2

e2

4πε0

∑
(i,j �=)

1

rij

⎤⎦�e
(13.44)

= εe(ρnuc)�e, (13.45)

yielding a potential energy surface (ρnuc) for the motion of the nuclei as a function of the
scaled nuclei positions ρnuc. The resulting nuclear wave equation is then solved for the final
rovibronic energy levels:[

−1

2

∑
I

β

μI
∇2
I + εe(ρmuc)

]
�nuc = ε�nuc. (13.46)

The topography of the surfaces εe(ρnuc) provides the basis for ascribing geometrical struc-
ture to molecules [15]. The local minima of this multi-dimensional wave surface correspond
to the three-dimensional molecular structures of chemistry, allowing bond lengths and
angles to be estimated. The results depend on basis sets chosen.
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Figure 13.7 The water molecule bond length (Angstroms) as a function of the fine-structure
constant α, computed for various basis sets.

Figure 13.8 The water molecule angle (degrees) as a function of the fine-structure constant α,
calculated using various basis sets.

Figure 13.7 shows the water bond length as a function of α computed for various basis
sets (for details, see [15]). Figure 13.8 shows the water molecule angle as a function of
α, and Figure 13.9 shows the resulting variation of the dipole moment as a function of α.
Finally, Figure 13.10 shows the bond length and angle as a function of the electron-proton
mass ration μ.



Climbing Up the Theories of Nature: Fine-Tuning and Biological Molecules 529

Figure 13.9 The water molecule dipole moment in Debyes as a function of the fine-structure constant
α, calculated using various basis sets.
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Figure 13.10 The water molecule bond length in Angstroms (left) and angle in degrees (right) as a
function of the electron-proton mass ratio μ.

These interesting figures show that, indeed, there is an effect on key molecules if the
variation in α and μ is large enough. Note that unlike the H2 molecule, the radius of
separation for water appears to increase as the coupling, through α, increases. This

13.5 The Issue of Scaling

However a key issue now arises: what if what we have been working out is just a similarity
transformation, that leaves biological function unchanged? (Section 13.5.1). That leads to
a consideration of relativistic effects in biology (Section 13.5.2).
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13.5.1 What about Conformal Invariance?

Maybe a variation of α is just a change in size or, equivalently, of units (cf. Section 13.2.3).
To explore this, consider a simple quantum mechanical system which has only a single
force law acting, with a homogeneous potential term V (λr) = λnV (r), which has a linear
dependence on some coupling constant C – e.g., V (r) = C|r1 − r2|n.

Use this in the Schrödinger equation for a system of particles:

−h̄2

2m
∇2ψ(r) = (V (r)+ E)ψ(r), (13.47)

If we change C, we can find a second solution to our equations by defining a second
wave function ξ(r) = ψ(λr), which will solve the Schrödinger equation with a different
eigenvalue (energy level) but the same shape; altering C does not affect the angular modes
that come into our solution.

To see this, suppose we look at a Coulomb potential, V (r) ∝ C/r , and take a solution
to the Schrödinger equation ψ(r). If change our coordinate system to R = 2r , and let
ξ(R) = ψ(2r), then in this system, ∇2

R = ∇2
r /4, and V̂ ξ = V̂ ψ/2. Thus, if we reduce C

by a factor of two and call the new potential V , we find that

−h̄2

2m
∇2ξ(R)− V ′(R)ξ(R)+ = 1

4

(
−h̄2

2m
∇2ψ(r)− V (r)ψ(r)

)
= E

4
ψ(r) = E

4
ξ(R).

(13.48)

So in reducing the coupling by a factor of two, we find that there is a solution of exactly
the same shape as before, but with all distances doubled and one quarter of the energy. This
leads us to consider conformal changes.

Conformal change: By rescaling the potential by C, it just changes all lengths together: it’s just a
larger molecule. Perhaps its biological function is unchanged?

But firstly, energies matter also. It is not clear whether one would obtain a rescaled system
with the same conformational properties and energies rescaled to allow the same biological
function but with different size systems or not. Specifically, some key effects related, for
example, to chlorophyll and rhodopsin depend on photon energies E = hν that are not
related to the Schrödinger equation and will not scale with α. Secondly, there are spin
effects in biology that are not conformally invariant. This has to account for the changes
in angles shown in the results of (13.8) of King et al. [15], which clearly demonstrate that
the molecular changes with variation of α do not just result in a change of scale. QED and
relativistic effects matter (Figure 13.11).

13.5.2 Relativistic Effects

According to Likhtenshtein [17], ‘The pivotal role of electron spin interactions in Nature
cannot be overestimated’. It can be shown, for example, to have significant effects on brain
function [25].
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Figure 13.11 QED and relativistic effects on the bond angle (degrees) of the water molecule as a
function of the fine-structure constant [15].

The relativistic terms for the hydrogen atom including fine and hyperfine structure were
given in (13.8); we now discuss the fine-structure terms given there. This structure can be
determined using perturbation theory; that is, by setting

H = H0 +W . (13.49)

The spin-orbit interaction is described in dimensionless form by

WS,O

mec2
= α

2ρ3

ge

a

(
L
h̄

.
S
h̄

)
, (13.50)

where ge is the electron gyromagnetic factor. The second correction arises from the (v/c)2

relativistic terms and is of the form

Wrel = − P4

8m3
ec

2
. (13.51)

The third and last correction is known as the Darwin term and arises from the fact that
in the Dirac equation, the interaction between the electron and the Coulomb field is local.
But the non-relativistic approximation leads to a non-local equation for the electron spinor
that is sensitive to the field in a zone of order the Compton wavelength centred on r. It
follows that

WD = πh̄2q2

m2
ec

2
δ(r). (13.52)

The average in an atomic state is of order

〈WD〉 = πh̄2q2/(2m2
ec

2)|ψ(0)|2 ∼ mec2α4 ∼ α2H0. (13.53)
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Its dimensionless version is (not forgetting that the Dirac distribution has a dimension)

WD

mec2
= παδ(ρ). (13.54)

These interactions will no longer be scale invariant under change of α.
In the calculations of King et al. [15], they state the following: the dimensionless ratios

that have consequences for chemistry are the fine-structure constant α = e2/(h̄c) and
the electron-proton mass ratio μ = me/mp. In conventional, non-relativistic quantum
chemistry within the Born-Oppenheimer approximation, it is assumed that both ratios are
negligibly small. The most important relativistic effects in chemistry can be investigated
by means of the Cowan-Griffin Hamiltonian in which Ĥ0 is augmented with one-electron
mass-velocity and Darwin terms:

Ĥ1 = α2

⎡⎣−1

8

∑
i

∇4
i + π

2

∑
I,j

δ(ρIi)

⎤⎦ . (13.55)

The consequences of finite me/mp ratios on chemical systems can be probed by means of
the diagonal Born-Oppenheimer correction (DBOC)

EDBOC = −μ
2

∑
I

1

μI

〈
�e|∇2

I |�e
〉

. (13.56)

This is what is represented directly in Figure 13.11 and indirectly through the (Figures 13.8
and 13.9), where the angle and dipole moment depend on the fundamental constants.

13.6 Extrapolations and Conclusions

Can we extend these results to key organic molecules?

13.6.1 Scaling to Biology: Organic Molecules

The structure of DNA has very tight constraints in order for it to function. In order for
the DNA helix structure to exist, one needs the equality between the lengths of A+ T and
G + C to be equal. According to Reference [4], ‘The distance between adjacent sugars or
phosphates in the DNA chain is 6 Angstroms. It must be between 5.5 and 6.5 Angstroms
for it to work’. This means that we require

δ

(
�A+T
�G+C

)
< 10%. (13.57)

How this relates to a constraint on the fine-structure constant is unclear without detailed
study using the methods of King et al. [15]. This may not be as hopeless as it sounds
because of the very regular structure of the molecule in its double-helix form, so there
will be symmetries that can be exploited. However, one might hope that the results will
be indicated by those for the water molecule, given that the underlying equation is the
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same. This constraint on a dimensionless parameter that specifies the geometry and thus
the possibility to build a helix should be of the order of between 6% and 10% variation in
α. However, this rough estimate could be completely wrong.

13.6.2 Proteins: Voltage Gated Ion Channels

As mentioned at the beginning of this chapter, what one really wants is to study the via-
bility of molecules such as voltage gated ion channels, which play a key role in biol-
ogy [12], under variation of the fundamental constants. This is much more difficult than
DNA because their tertiary and quaternary structure is so much more complex [5, 20].
However, it may not be completely hopeless because they are made of subunits such as α
and β helices that have a more regular form. This may be hopeless, but it is worth stating
as a long-term goal.

13.6.3 A General Theorem?

Peter Atkins has provided the following argument for the general case. Let i label the
electrons in a molecule and I , the nuclei. Using constants as in (13.30), the Hamiltonian
can be written as

H = −βγ
∑
i

∇2
i − αγ

∑
(i,I )

ZI

riI
+ 1

2
αγ

∑
(i,j?)

1

rij
+ 1

2
αγ

∑
I,J �=I

ZIZJ

rIJ
. (13.58)

Taking partial derivatives,

∂H

∂α
= −γ

∑
(i,I )

ZI

riI
+ 1

2
γ
∑
(i,j)

1

rij
+ 1

2
γ
∑
I,J �=I

ZIZJ

rIJ
= H

α
+ βγ

α

∑
i

∇2
i . (13.59)

∂H

∂β
= −γ

∑
i

∇2
i . (13.60)

From the first of these expressions,〈
∂H

∂α

〉
= 1

α
〈H 〉 + βγ

α

〈∑
i

∇2
i

〉
. (13.61)

And then from the second, 〈
∂H

∂α

〉
= 1

α
〈H 〉 − β

α

〈
∂H

∂β

〉
. (13.62)

From the Hellmann-Feynman theorem [13, 14], which states that for a parameter P and
exact, normalised wave function, 〈

∂H

∂P

〉
= d

dP
, (13.63)
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this expression, with 〈H 〉 = E, becomes

dE

dα
= E

α
− β

α

dE

dβ
(13.64)

or

α

E

dE

dα
+ E

β

dE

dβ
= 1 ⇔ d lnE

d lnα
+ d lnE

d lnβ
= 1, (13.65)

This equation with f = lnE, x = lnα, and y = lnβ – has the form df/dx + df/dy = 1
and, therefore, has the solution (with a constant of integration ln k) f = ax + by + ln k,
with a + b = 1. That is,

ln kE = a lnα + b lnβ + ln k = ln kαaβb. (13.66)

It then follows that, regardless of the identity of the molecule,

E = kαaβb with a + b = 1. (13.67)

This is consistent with the H atom, where En ∝ α2/β, for which a = 2,b = −1.
Dimensional analysis helps to take this further. Write k = γ κ , with γ = ch̄ (as

in (13.30)). Then,

E = κγαaβb. (13.68)

The dimensions are as follows:

[E] = [κ][γ ][αa][βb] : [ML2T −2] = [κ][ML3T −2][1]a[L]b = [κ][ML3+bT −2],
(13.69)

which implies that

[κ] = L−(b+1). (13.70)

One can then try the following. The only combination of fundamental constants in the
Hamiltonian that has dimensions of length form the combination β. Therefore, κ must
be proportional to β−(b+1). However, κ is independent of β (it is proportional to the
constant k). Therefore, the only value of b that is allowed is b = −1, with the implication
that [κ] = [1] and a = 2. Therefore,

E = κγα2β−1. (13.71)

for some constant κ , which is

E = 2mec
2κ α2, ⇔ E = E

mec2
= κ α2, (13.72)

which is what we get for the hydrogen atom. And if the argument is valid, this is the
case for all atoms and molecules, regardless of their identity (solids too, which are just big
molecules). A puzzle is the result forH+

2 , where this is not the case, but this may be because
the LCAO treatment of H+ there is an approximation, whereas this result (depending as it
does on the Hellmann-Feynman theorem) is for exact energies and wave functions.
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If an argument like this works, it will suggest how energies scale with α (and other
constants), which is key to one of the major themes of biology: metabolism [32]. As
mentioned before, there cannot just be a scaling of metabolic effects with α because some,
such as photosynthesis, are independent of α.

13.6.4 Other Scales

Finally, we return to considering the relation of this work to other scales.

• Nuclear scale: stable nuclei possible.

• Stellar scale: existence of stable nuclei due to stellar processes. Requires the Hoyle state
to exist.

• Galactic to stellar scale: existence of galaxies, stars, and planets due to cosmological and
astrophysical processes. Requires restricted cosmological parameters.

The fine-structure constant α and mass ratio μ are not the only relevant constants for these
effects to be favourable; thus, there, in principle, can be many physical situations where
life cannot occur (e.g., because carbon does not come into being), even though the organic
molecules would functon fine, were they to come into existence.

13.6.5 Fine-Tuning Relations

The effect of fine-tuning on biomolecules has importance in the understanding of the fine-
tuning of the Uxniverse. We can ask a series of questions:

1. Are constraints from physics (stability of nuclei) stronger than those of biology?
2. Are constraints propagating?
3. Can we argue that if the constraints for the formation of carbon-12, etc., are satisfied,

then conditions for life (at least on those parameters) are satisfied? Or do they set further
non-trivial constraints?

We can ask, which sets the tighter limits: physics/astrophysics or biology?

It appears from the preceding that it is likely that the physics constraints are indeed tighter
than the constraints from water and biomolecules. As regards α:

• Stellar nucleosynthesis limits, holding everything else fixed, give limits � 10−3.

• This seems much tighter than the likely limits from water.

• This may or may not be tighter than limits from DNA and proteins, but an initial estimate
based on the preceding argument is that it will indeed be tighter.

As regards μ: there are only combinations of limits. Limts on μ per se are unclear.
If physics uniquely leads to molecules compatible with life in this way, then in some

sense, physics foresees the existence of life.

Why? This is a conundrum: physics seems fine-tuned to expect life.



536 George Ellis, Jean-Philippe Uzan, and David Sloan

Physics

Life

Standard Model
of particle physics

Existence of
molecules

Figure 13.12 Fundamental physics and biology: the Standard Model of particles physics might have
been implemented with a variety of fundamental constants (oval on left). The set that actually
occurred (small circle on left) is in the small subset of these possibilities that leads to possible
existence of molecules compatible with life (open circle on right).

13.7 Conclusion

It is a legitimate and important question to quantify the dependence of higher levels of com-
plexity on the parameters of a fundamental theory. In particular, it allows one to discuss the
level at which the fine-tuning on the fundamental constant is the more stringent. This can
be compared to Darwinian selection, which takes place simultaneously but with different
timescales, on the scale of the gene, the cell, the organ, the animal, and the population.

Two final issues remain. First, what about other forms of life? Is it too restrictive to only
allow the consideration of water and organic molecules? Our viewpoint is that it is only
organic molecules, and specifically proteins [22], that have the capacity to produce the
complexity of living systems that respond to the environment in an adaptive way and allow
biology to emerge from physics [12]. We do not believe life could come into existence with-
out being based in carbon and its huge variety of organic molecules that allow extraordinary
complexity of function, as characterised by the possibility spaces of molecular biology [32].

Second, we have not considered the relation to a more fundamental theory that might
underlie the Standard Model of particle physics. We do not believe enough is known to
make reliable estimates in this regard.
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perturbations and, 361

curvature fluctuations, 9–10

dark energy, 6, 50, 232
approaches to, 68
cosmological effects of vacuum and, 82–86
density of, 3
energy density and, 217
equations of state, 217
large-scale structure and, 87, 111
mass-energy density and, 347
microstructure of space and, 15
models for dynamical, 89–94
modified gravity vs, 95–97
observing properties of, 87–89
relativistic theory of gravity and, 95

dark matter (DM), 6, 176, 196, 232, 345
annihilation cross sections of, 354, 366, 367
annihilation of, 357
axions and, 308
categories of, 205, 350–351
cold, 205, 364
collisionless, 364
decoupling and, 364
discovery of, 348–350
energy density, 119
fine-tuning and, 377–378
fine-tuning for structure formation, 366
freeze-out and, 357
growth of perturbations, 364–366
Higgs mass and, 328
hot, 205, 364
large-scale structure and, 7, 348, 366, 377
non-WIMP, 376
percentage of universe, 348
production cross sections of, 354
SAP and, 51–52
scalar fields as, 93–94
structure formation and, 359–366
subclumps of, 370
symmetric universe and, 186
taxonomy of particle, 351
transfer function for, 220
warm, 205

dark matter halos, 104, 198, 226, 230, 373
density profiles, 368
galaxy formation and, 226
structure formation and, 370
virialised, 203

dark-matter halos, 368
Darwin term, 531

Darwinian evolution, 446
darwinism, 76–77
DBOC. See diagonal Born-Oppenheimer correction
de Sitter

eternal inflation and, 154
expansion, 156
invariance, 162
quantum scalar field in, 153
space, 102

dead zones, 440–442
debris discs, 438
decoupling, 51, 263

baryons and, 362
dark matter and, 364
field, 249
neutrino, 178
photon-matter, 205
scale, 167, 238, 513
Silk scale and, 363
structure formation and, 363

density contrast, 220
density fluctuations, 461

generation of, 207–209
gravity and, 7
large-scale structure and, 24
normalisation of, 102
primordial, 50, 197, 396
quantum origin of, 25
SAP and, 50

density parameter, SAP and, 47
density perturbations, 198, 208
deuterium, 190, 191, 258

binding energy of, 254
fragility of, 266
role of burning, 388–390

deuterons, 45, 253, 258, 265
DFSZ model. See Dine-Fischler-Srednicki-Zhitnitsky

model
diagonal Born-Oppenheimer correction (DBOC), 532
diffusion damping. See Silk
dimensional regularisation, 327
Dine-Fischler-Srednicki-Zhitnitsky model

(DFSZ model), 339
dipole moment, of water, 524
diprotons, 45, 258
Dirac

coincidence, 395
equation, 531
fermionic representations, 249
large-number hypothesis, 78
quantisation, 163

discrete symmetries, 176
dissipation region, 399
dissociative recombination, 476
distance-ladder technique, 346
DM. See dark matter
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DNA, 512
structure of, 532–533

dust shielding, 478
dust-settling

timescale, 469
velocity, 467

dwarf galaxies, 230, 399, 488
habitable planets and, 485
observations of, at high-redshifts, 487

dwarf spheroidal galaxies, 370
dwarf stars, 460
dynamical dark energy, models for, 89–94

EAGLE galaxy formation simulation, 105
Earth, 447

age of, 77
gravitational settling and, 421

Earth-mass planets, 460
Eddington

limit, 49, 392
luminosity, 36, 406, 461
mass outflow rate, 406
ratio, 402

EDM. See electric dipole moment
EELT. See European Extremely Large Telescope
effective theories, 238, 513
effective viscosity parameter, 441
eigenfrequencies, of Saturn, 435
Einasto profile, 368
Einstein equations, 115, 116

anisotropic initial conditions and, 145
perturbed, 131

Einstein field equations, 359
Einstein gravity, 96
Einstein-de Sitter growth rates, 212, 214
Einstein-de Sitter model, 80, 86, 105

background density and, 224
Einstein-Hilbert action, 113

Starobinsky model and, 141
electric dipole moment (EDM), 336
electric fine structure constant, 26
electromagnetic

binding energy, 250, 270
coupling constant, 246
field, 246

electromagnetic force, 282
non-trivial chemistry and, 11

electromagnetic interaction, 252
CP conservation and, 335

electromagnetism, 22, 25, 323
electron degeneracy energy, 33
electron field, energy of, 310–312
electron mass, 310, 317, 318

fine-tuning of, 310
quantum mechanics and, 310

electronic transition, 518

electron-photon interaction, 311–312
electron-positron pair emission, 305
electrons, 176, 244–246

self-energy of, 69
WIMP detection and, 369

electron-scattering opacity, 35, 39
electrostatic Coulomb forces, 473
electrostatic energy, 43
electroweak

baryogenesis, 189
fine-tuning in, 323–333
interactions, 243–245
mixing angle, 249
scale, 307, 308, 331
unification, 24

electroweak symmetry breaking (EWSB), 309, 323,
326, 339

technicolour models and, 329
elementary Higgs boson, 329
elementary particles, dark matter as, 351
energy budget, 117

scalar fields and, 126
energy conservation, 114

virial theorem and, 224
energy density

critical, 118
dark energy and, 217
dark matter, 119
matter and, 211
neutrino, 119
photon, 117
power spectrum shape changes and, 219

energy scales, 97
energy-momentum conservation, 310
energy-momentum tensors, 206
ensemble reasoning, 75–77

anthropic vacuum and, 102
SAP and, 82

entropy
conservation of, 184
microwave background and, 48
neutrinos and, 263
per baryon, 48
per particle, 99
per photon, 179

EOG. See Extreme Outer Galaxy
EOS. See equations of state
Epstein regime, 467
equations of state (EOS), 117

solid planet internal structure and, 472
eternal inflation, 12, 13, 15, 154–157, 160, 161

de Sitter space and, 154
multiverse and, 164

Euler equation, 209, 210
European Extremely Large Telescope (EELT), 487
EUV. See extreme ultraviolet
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event horizon
de Sitter space and, 103
of Universe, 12

evolutionary biology, 77
EWSB. See electroweak symmetry breaking
exoplanet statistics, 448
exoplanets, 75, 412

atmospheres of, 459
carbon, 476
close-in planets or debris and, 416
compositions of, 471
detection of, 474, 475
elemental abundances and, 464
giant planets and, 426
mass distribution of, 413
super-Earths and, 416, 426
warm dust and, 421

extragalactic high luminosity sources, 181
extragalactic planet searches, 485–487
extra-Solar intelligent civilisations, 444–448
extrasolar planets, 412
Extreme Outer Galaxy (EOG), 467
extreme ultraviolet (EUV), 467
Extremely Large Telescope, 448

Faber-Jackson relation, 399
far-ultraviolet (FUV), 477

photodissociation by, 481, 482
water and, 481

Fermi
constant, 28, 314
model, 314
Paradox, 412, 444

Fermi-Dirac gases, 262
chemical potential and, 352
kinetic equilibrium and, 352

fermions, 244, 257, 314, 327
chiral, 328
cold thermal relics and, 351–353
EWSB and, 329
Majorana, 375
mass of, 317
SUSY and, 328

55 Cancri e, 464
filaments, 203
fine-structure constant, 69, 270, 519, 522

DNA and, 533
fine-tuning, 3

anthropic, 21
anthropic arguments and, 309
of baryon asymmetry parameter, 174, 178–179
biological molecules and, 511
biologically important molecules and, 535
cosmological constant and, 69, 340
of CP angle, 309
of dark matter, for structure formation, 366
dark matter amounts, 348

dark matter and, 377–378
defining, 68–71
electron field energy, 310–312
of electron mass, 310
electro-weak sector, 323–333
galaxy formation and, 383
inflation and, 139–142
life and, 178
measures for particle physics, 319–323
naturalness in particle physics and, 68–69
nuclear physics and, 257–260
particle physics problems of, 309
quantifying, for particle physics, 317–323
Standard Model puzzles, 120
in strong sector, 333–339
of structure formation, 231–233
types of, 28
Universe evolution and, 54

first metal enrichment epoch, water formation during,
476–484

first planets, 461–463
Fischer-Tropsch-type reactions (FTTs), 466, 474
flat Universe, 462
flatness problem, 101, 124–125

inflation and, 126
flavour symmetry, 318
FLRW form. See Friedmann-Lemaı̂tre-Robertson
fluctuations, 9–10

in CBR, 346
CMB, 127
density, 7, 24, 50, 207–209, 461
power spectrum of, 150
quantum, 75
stochastic, 157

Fokker-Planck equation, 162–163
Fourier modes, 211
free-fall time, 397, 399
free-streaming distance, 364
freeze-out

cold thermal relics and, 354, 355
DM and, 357
temperature, 46
time, 48
of WIMPs, 357

freeze-out time, 48
Friedmann equation, 37, 83, 85, 91, 116, 128,

140, 214
baryon asymmetry parameter and, 192–193
cosmological dynamics and, 260
critical energy density and, 118
Hubble flow parameter and, 129
linear power spectrum and, 219
matter perturbation growth and, 217

Friedmann-Lemaı̂tre-Robertson-Walker form
(FLRW form), 114, 115, 131, 145, 206, 218,
260, 360

FTTs. See Fischer-Tropsch-type reactions
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fundamental constants
nuclear physics and, 240–242

FUV. See far-ultraviolet

galactic centre, 368, 370, 400, 401, 404, 477
galactic habitable zone, 447
galactic rotation curves, 6, 349, 400
galactic scales, 396–400, 535
galaxies

black holes at centers of, 400
characteristic mass of, 396–398
distribution of, 203
gravitational potential well, 6
gravity and formation of, 7–8
luminosity function of, 230
mass of clusters of, 205, 230, 349
mergers of, 489
motions of, 6
number of, 12
rotation curves of, 6, 205
semi-anthropic formation of, 102–106
Seyfert, 181
x-ray emitting clusters of, 181

galaxy formation, 33, 49, 232
numerical simulations and, 383–384

galaxy scale, 33
gamma rays, 180
gamma-ray bursts (GRBs), 447
Gamow energy, 272, 274, 305, 389
gas accretion events, 405
gas giants, 473, 475

locations of, 423–425
mass of, 414

gas-phase H2 formation, 480, 481
gauge

coupling constants, 248, 257
couplings, 283, 329
electroweak bosons, 323
hierarchy problem, 328–333
invariance, 323

gauge bosons, 244, 327
GCM. See Generator Coordinate Method
Gell-Mann matrices, 244
Gell-Mann–Nishijima relation, 245
gene expression, 512
General Relativity, 360

credibility of, 13
gravity and, 113
Planck scale and, 4

Generator Coordinate Method (GCM), 300
Geneva stellar code, 288
geophysical processes, 447
geothermal energy, 463
g-factors, 251–252
Giant Magellan Telescope (GMT), 486, 487
giant molecular clouds (GMCs), 395

giant planets
locations of, 423–425
orbital properties of, 436
snow line and, 421

GIM mechanism, 316
glaciation episodes, 447
global PQ symmetry, 338
globular clusters, 487
gluinos, 372
GMCs. See giant molecular clouds
GMT. See Giant Magellan Telescope
grand unified theory (GUT), 24, 176, 249

baryogenesis and, 189
Higgs mass and, 325
inflation and scale of, 125, 127, 140
scale, 24, 189
unification energy, 7

graphite, 464
gravitation, 240, 463, 513
gravitational collapse, 131
gravitational constant, 26, 53, 193, 206, 242, 345,

356, 387, 408, 511
gravitational instability

inhomogeneities and, 360
structure formation and, 207

gravitational lensing, 6, 386
galaxy cluster mass estimation from, 205, 349

gravitational magnification, 487
gravitational microlensing, 485
gravitational potential, 83, 96

linear growth phase and, 209–210
Poisson equation for, 209
scaling relations and, 407

gravitational potential well, 6
gravitational waves, 131, 393

discovery of, 351
inflation and, 133

gravitino, 351
gravity, 8, 22, 458

constraints on, 7–8
dark energy vs modified, 95–97
density fluctuations and, 7
Einstein, 96
galaxy formation and, 7
General Relativity and, 113
Lagrangian for, 127
mass and, 4
Newtonian, 209
quantum, 27, 116
quantum vacuum fluctuations and, 131
relativistic theory of, 95
stellar evolution and, 279

GRBs. See gamma-ray bursts
ground states, anthropic arguments and, 340
GUT. See grand unified theory
gyromagnetic factors, 251–252, 519, 531
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habitability, 458, 460, 463
habitable epoch, 458, 461–463
habitable planets, 485, 489–492, 494
habitable zone, 75, 412, 489, 494, 496
hadron colliders, 371–372
halo cooling, 195
halo mass function, 226–228, 230
haloes, star-forming, 462
Hamiltonians, 515, 517, 519

Cowan-Griffin, 532
for water, 525

Harrison-Zeldovitch power spectrum (HZ power
spectrum), 165, 219, 365

Hawking temperature, 31
heat death of Universe, 54
heavy elements

asteroids and, 421
binding energies and, 255
disc composition and, 467
life and, 458
supernovae and, 464

heavy nuclei, 81
Heisenberg uncertainty principle, 310
helium

abundance of, 479
after BBN, 267
burning, 285
cosmological nucleosynthesis and, 46
mass-energy density and, 347
primordial, 196, 292
primordial nucleosynthesis and levels of, 203
in stars, 385

helium mass fraction, 191, 195
helium-burning phase, 42
Hellmann-Feynman theorem, 533, 534
Hertzprung-Russel diagram (HR diagram), 283, 288
hierarchy problem, 69, 326, 328–333
Higgs

boson, 34, 189, 371
electroweak fine-tuning and, 325
elementary, 329
EWSB and, 329
pNGB and, 330

coefficients, 241, 514t
couplings, 325
doublets, 258, 338
field, 141, 166, 215, 247, 324
hierarchy problem, 329
mass, 28, 34, 309, 320

higher-order corrections to, 325–328
inflation and, 332
quantum corrections to, 325
SUSY and, 329

mechanism, 243
scalar doublet, 247
vev, 250, 255, 268, 283, 324, 327, 340

high-redshift galaxies, 487–488

Hill radius, 427
homogeneity, 206, 360

Cosmological Principle and, 360
homogeneous initial conditions, 142–143
horizon, 120–123, 125. See also event horizon

CMB observation and, 87
cosmic, 12, 17
cosmological, 207
particle, 207
quantum fluctuations and, 205

hot Big Bang model, 48, 111, 117, 120
hot dark matter, 205, 364
Hoyle level, carbon production and, 282
Hoyle state, 253, 272–274, 302, 515
HR diagram. See Hertzprung-Russel diagram
Hubble drag, 93, 211, 212
Hubble expansion rate, 211, 222, 268
Hubble flow, 103, 209, 222
Hubble parameter, 11, 147, 153, 183, 193, 346,

447, 462
Hubble radius, 78, 111, 207, 214

dark matter and, 361
inhomogeneities smaller than, 149
perturbations and, 361

Hubble Space Telescope, 486
Hubble volume, 12, 462
hydrogen, 258, 517

cloud cooling and, 403, 462
constant and atoms of, 521–522
constant and molecules of, 522
cosmic ray and x-ray ionisation of, 476, 478
ionisation potential of, 80
mass-energy density and, 347
radius of, 27
recombination and, 120
relativistic effects and, 531
in stars, 385
thermal photon ionisation of, 70
water formation and, 476, 478–479

hydrostatic equilibrium, 278, 472, 473
hypercharge, 245–247
hyperfine frequency, 518
HZ power spectrum. See Harrison-Zeldovitch

power spectrum

ice, asteroids and, 421
IMBH. See intermediate-mass black hole
IMF. See initial mass function
industrial pollution, 459
inflation, 111

advantages, 165–166
avoiding self replication and, 157–160
constraints on, 135–139
doubts and criticisms about, 112
end of, 130
eternal, 13, 15, 154–157, 160, 161
field theory and, 126
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inflation (cont.)
fine-tuning and, 139–142
flatness problem and, 125
gravitational waves and, 133
GUT scale and, 125, 127, 140
Higgs mass and, 332
horizon problem and, 125
large field, 142
large-scale structure and, 131
multiverse and, 160–165
perturbations and, 131–135, 360
quantum fluctuations and, 98, 205
quantum fluctuations of field, 75
realising phase of, 126–131
scalar fields and, 98
stochastic, 152–153, 160
trans-Planckian problem of, 150
UV sensitivity of, 166

inflationary cosmological perturbations, 131–135
inflationary initial conditions, 142–149
inflationary phase, 12, 25
inflationary potential, free parameters of, 139–142
inflaton

field, 111–112, 126–128, 130, 131, 140–141,
207–208

Higgs field and, 166
Hubble parameter and, 153
inhomogeneous distribution of, 148
Klein-Gordon equation and, 152, 153
quantum behavior of, 153

self-coupling, 148
initial conditions

anisotropic, 143–144
homogeneous, 142–143
inflationary, 142–149
inhomogeneous, 145–149
for perturbations, 149–152

initial mass function (IMF), 390, 491–492
instantons, 334, 335
Integrated Sachs-Wolfe effect, 6
intelligent life, 79
intergalactic clouds, 401
intermediate-mass black hole (IMBH), 407
interstellar medium (ISM), 180, 406, 464,

476, 478
intra-cluster gas, 181
ionisation

cosmic rays and x-rays as source of, 441
fraction, 440
hydrogen potential for, 80
normalisation of rate of, 482
re-ionisation, 131
temperature, 39
thermal photons and, 70

ion-molecule sequences, 476, 478, 480, 481
iron-poor stars, 464
isentropic perturbations, 360

ISM. See interstellar medium
isospin, 334
isotropy, 206

Cosmological Principle and, 359
of microwave background, 47, 123

James Webb Space Telescope, 448, 487
Jeans

criterion, 361
length, 212, 214–216
mass, 49, 361–363, 390, 488

Jupiter, 424–426
asteroid impacts and, 434–435
asteroid precession rate and, 435
Saturn orbit and, 434, 435, 437

JWST mission. See James Webb Space Telescope

Kaluza-Klein
excitations, 331
particle, 351

Kelvin-Helmholtz time-scale, 394
Kepler Space Observatory, 7, 17, 448, 460, 475,

486, 494
Keplerian velocity, 468
k-essence, 91–93
Kim-Shifman-Vainstein-Zakharov model (KSVZ

model), 339
kinetic equilibrium, cold thermal relics and, 352–353
Kirkwood gaps, 426
KK excitations. See Kaluza-Klein
Klein-Gordon equation, 128, 129, 145, 152, 153
KSVZ model. See Kim-Shifman-Vainstein-Zakharov

model
Kuiper belt, 412, 438
Kullback-Leibler divergence, 138

Lagrangians
dark energy and, 97
for electron-photon interaction, 311–312
for gravity, 127
for k-essence, 92
for non-gravitational interactions, 245, 247
of QCD, 244, 334, 337
scalar field, 89
zero levels, 97

Lambda Cold Dark Matter (�CDM), 25, 35, 104, 105,
120, 195, 346, 448, 458

landscape hypothesis. See also string landscape, 99
Langevin equation, 153, 154, 156, 158
Large Electron Positron collider (LEP), 320, 329
Large Hadron Collider (LHC), 5, 320, 328, 341

SUSY particles and, 329
WIMP testing with, 357, 371–372

Large Magellanic Cloud (LMC), 486
large-number hypothesis, 78
large-scale structure, 345

baryon asymmetry parameter and, 196–199
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coincidences of time and, 70
dark energy and, 87, 111
dark matter and, 6, 348, 366, 377
density fluctuations and, 24
inflation and, 131
linear regime and, 196–198
nonlinear regime and, 198–199
quantum fluctuations and, 131

Laser Interferometer Gravitational Observatory
(LIGO), 52, 351, 393

last scattering surface, 111
laws of nature, 3

multiverse and, 12
LEP. See Large Electron Positron collider
leptogenesis, 189
leptons, 244, 246, 307

generations of, 308
Levi-Civita tensor, 245
LHC. See Large Hadron Collider
life

artificial spread of, 459
asteroid belts and, 412–444
carbon existence and, 35
comets and, 438
emergence of, 3, 458
fine-tuning and, 178
heavy elements and, 458
radiation and, 446
relative likelihood for, 489–497
search for, 460
thermal gradients and, 463

light, speed of, 24
light elements, synthesis of, 265, 292
LIGO. See Laser Interferometer Gravitational

Observatory
Lilly-Madau diagram, 103
linear growth phase, 209–211
linear perturbation theory, 218, 220, 224
linear power spectrum, 218–220
linear regime

baryon asymmetry parameter changes in,
196–198

structure formation and, 209–220
lithium

abundance of, 267, 275
primordial, 189–190
reactions influencing, 276

little Higgs models, 330
LMC. See Large Magellanic Cloud
Local Group, 103
local thermodynamic equilibrium (LTE), 350, 351
logical operations, 512
low-metallicity discs, 467
LTE. See local thermodynamic equilibrium
Lyman Werner radiation, 478
Lyman-alpha-cooling primordial clouds, 402
Lyα emitters, 487

MACHOs. See MAssive Compact Halo Objects
Magellanic Clouds, 486
magnetically-driven feedback, 390–391
magneto-rotational instabilities (MRI), 391, 439, 440
Magorrian relation, 406
main-sequence phase, 32, 288, 444, 446
Majorana fermions, 375
Mars, 420, 427
mass, 250–251, 291

of asteroid belt, 425
of black holes, 31
of celestial objects, 4
of clusters of galaxies, 205, 230, 349
constants determining, 31
eigenstates, 314
electron, 310, 317, 318
fermion, 317
of galaxies, 396–398
gravity and, 5
habitable planets and stellar, 490–492
of neutrinos, 248, 349
of pions, 254
proton, 5
quarks and, 251, 255, 257, 334
of scalars, 328
of seed massive black holes, 403–404
solid planet internal structure and

conservation of, 471
of stars, 4, 5–494

mass-energy density
chemical elements and, 346
dark energy and, 347
dark matter and, 347
hydrogen and helium, 347
neutrinos and, 346
radiation and, 346

MAssive Compact Halo Objects (MACHOs), 351
mass-radius relationships, for carbon planets, 471–474
mass-to-light ratio, 348
matter. See also anti-matter; dark matter; specific types

budget, 69
density, 70, 80, 193

matter types and, 205
WAP and, 80

distribution, 203
energy density and, 211
fields, 513
perturbation growth, 216
radiation decoupling from, 361

matter-antimatter asymmetry. See baryon asymmetry
matter-antimatter symmetry, 177
matter-radiation equality, 69, 80, 122

cosmic coincidence and, 90
maverick WIMPs, 372
MBH−σ scaling relation, 405–407
M-dwarf stars, 494
measure problem, 67
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Mendeleev table, 238, 292
Mercury, 420, 443
MERCURY orbital dynamics package, 426
Mészáros effect, 214, 219
metacosmology, 61
metallicity, 443, 464, 477, 479, 482, 487

CEMP stars and, 474
disc lifetime and, 467, 469
early stars and, 394–395
of gas environments, 477
primordial nucleosynthesis and, 267
stellar evolution and, 280, 282, 284

metal-poor stars, 464
meter, dependence on fundamental constants, 518–519
methane, 525
methanol, 438
metric tensor, 113, 131, 206
microphysics

limits of testing of, 13
macrophysics connections to, 24

microstructure of space, dark energy and, 15
microwave background. See cosmic microwave

background
Milky Way, 7, 12, 384, 395, 405, 412, 444, 478, 491
minimum mass solar nebular (MMSN), 417–418
minimum-mass extrasolar nebular (MMEN), 417, 419
minisuperspace approximation, 164
Minkowskian momentum, 313
MMEM. See minimum-mass extrasolar nebular
MMSN. See minimum mass solar nebular
modified gravity, dark energy vs, 95–96
MOdified Newtonian Dynamics (MOND), 350, 351
molecular biosignatures, 496
molecular structure

constant and, 519–521
hydrogen, 522
water, 524–525

Møller flux, 354
momentum conservation, 406
MOND. See MOdified Newtonian Dynamics
Moon, 180
moons

life emergence and, 496
weather extremes and, 421

MRI. See magneto-rotational instabilities
M-theory, 21, 25

string landscape variant of, 50
Mukhanov’s potential, 157, 164
multiverse, 12–15, 21, 57–58, 60, 166

anthropic arguments and, 82, 340
anthropic vacuum and, 99
avoiding self replication and, 157–160
ensemble reasoning and, 75–77
eternal inflation and, 154–157, 164
inflation and, 160–165
stochastic fluctuations and, 157
stochastic inflation and, 152–153

string landscape and, 164
vacuum density and, 484

muons, 180, 244, 245

NACRE rate, 286, 301, 304
Nambu-Goldstone boson (NGB), 330, 334
natural selection, 76
naturalness, 317–319

BG and, 320, 321
low-energy states and, 319
measures of, 321–322
in particle physics, 68–69
quantitative formalisation of, 320
supersymmetry models and, 320

Navarro-Frenk-White profile (NFW), 368
n-body simulations, 426–428
NEC. See Null Energy Condition
net baryon asymmetry, 187
neutral-neutral reactions, 477, 480, 483
neutrinos, 244, 245, 247, 351

cosmic plasma equilibrium with, 263
decoupling temperature of, 178
energy density of, 118
entropy and, 263
equations of state, 118
flavours of, 177, 178
mass of, 247, 349
mass-energy density and, 347
muon, 315
non-zero masses of, 328
nucleon-anti-nucleon annihilation and, 181
primordial nucleosynthesis and, 263–264
scatting of, 373
sterile, 351
supernovae and, 40–41
types of, 346
WIMP detection and, 369

neutron stars, 393
neutrons, 43

EDM for, 336
Pyramid of Complexity and, 54
quantum degeneracy pressure of, 393

neutron-to-proton ratio, 46, 264
Newton constant, 113, 241, 268, 514

effects of changes in, 395
Newtonian

gravity, 209
mechanics, 360

Newton’s gravitational constant, See gravitational
constant

NFW. See Navarro-Frenk-White profile
NGB. See Nambu-Goldstone boson
Noether

current, 334
theorem, 89

non-anthropic tunings, 28, 34
nonlinear perturbation growth, 198
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non-linear growth, 220–231
non-trivial chemistry, 10–11
non-WIMP dark matter, 376
nuclear

binding energy, 250
constants, 289–290
fusion, 10–11
ignition, 32
interaction, 252
parameters, 268

carbon production and, 286–288
effects of variation of, 271–277
element diversity and, 292

physics, 237, 240, 291–292, 515
fine-tuning and, 256–260
gyromagnetic factors and, 251–252
stellar evolution and, 279

reactions
binding energies and, 254–255
resonance energies of, 256, 305–306

scale, 535
nucleic acids, 446, 512
nucleons, 55, 176, 182, 252

density, 186
interactions of, 252, 253

carbon production and, 282
parameterisation of, 274

nucleosynthesis, 5, 10, 24, 45, 120, 177, 238, 240,
258, 260, 515

baryon asymmetry parameter and, 189–192,
195–196

carbon production and, 271, 272
CNO production in, 271
cosmological, 46–47, 55
deuterium destruction after, 266
larger baryon asymmetry range and, 191–192
non thermal, 267
p-process, 239
parameters for, 268–271
primordial, 190–192, 260–277

cosmological dynamics and, 260
early phases of Universe and, 260–264
helium levels and, 203
light elements from, 292
mechanism of, 264–265
neutrinos and, 263–264
observations on, 266–268
parameters for, 268–271
radiation era at thermodynamical

equilibrium, 262
thermal history and, 261

resonance energies and, 256
r-process, 238
s-process, 238
standard, 190–191
stellar, 278–291, 515

steps of, 264
in supernovae, 238

Null Energy Condition (NEC), 161
number density

of cold thermal relics, 354, 355
of water, 477
of WIMPs, 356, 367

numerical integration of cross sections, 301–302
numerical simulations

for asteroid impacts on terrestrial planets, 426–428
of star and galaxy formation, 383

observable Universe
during inflation, 205
limits of, 12
number of protons in, 37
size of, 35

observables, 516–518
observer selection, 74–75
OGLE group, 486
Oort cloud, 438
opacity, 120
open universe, 101

perturbations in, 213
orbital eccentricity, 14, 412
orbital radii, of potential carbon planets, 466–471
organic molecules, 512, 532
oxygen

atmospheric concentration of, 446
disc composition and, 466
production of, 446
stellar production of, 282, 288
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positrons, 175, 369
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radioactive energy, 463
Randall-Sundrum models (RS models), 331
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re-ionisation, 131
relativistic cosmology, 113–117, 360
relativistic theory of gravity, 95
relics

abundance of, 182–183, 186, 352
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zeta function, 353

RNA, 512
rocky planets, 461, 463, 489
rotation curves, 6, 349, 400
R-parity, 371
r-process, 239
RS models, See Randall-Sundrum models
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formation of, 417–421
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