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Preface

Over the past 30 years, the world has witnessed the rapid development of optoelectronic
devices based on III-V compound semiconductors. Past effort has mainly been directed
to the theoretical understanding of, and the technology development for, these devices in
applications in telecommunication networks and compact disk (CD) data storage. With
the growing deployment of such devices in new fields such as illumination, display, fiber
sensor, fiber gyro, optical coherent tomography, etc., research on optoelectronic devices,
especially on those light emitting components, continues to expand with the pursuit of
many experimental explorations on new materials such as group-III nitride alloys and
II-VI compounds and novel structures such as quantum wires, dots, and nanostructures.

As the manufacturing technology becomes mature and standardized and few uncer-
tainties are left, design and simulation become the major issue in the performance
enhancement of existing devices and in the development of new devices. Recent progress
in numerical techniques as well as computing hardware has provided a powerful platform
that makes sophisticated computer-aided design, modeling, and simulation possible. So
far, the development of optoelectronic devices seems to replicate the history of electronic
devices: from discrete to integrated, from technology intensive to design intensive, from
trial-and-error experiments to computer-aided simulation and optimization.

The purpose of this book is to bridge the gap between the theoretical framework and
the solution to real-world problems, or, more specifically, to bridge the gap between
our knowledge acquired on electromagnetic field theory, quantum mechanics, and semi-
conductor physics and optoelectronic device design and modeling through advanced
numerical tools.

Advanced optoelectronic devices are built on compound semiconductor material sys-
tems with complicated geometrical structures; they are also operated under varying
conditions. For this reason, we can find hardly any easy, intuitive, and analytical solu-
tions to the first-principle-based governing equations that accurately describe the closely
coupled physical processes inside such devices. Although solutions are relatively easy
to obtain from the equations derived from the phenomenological model, assumptions
have to be made in such a model, which often ignores some important effects and fails to
achieve quantitative agreement between theoretically predicted and practically measured
results.

Therefore, obtaining the solution directly from the physics-based governing equations
through numerical techniques seems to be a promising approach to bridge the gap as
mentioned above, as not only a qualitative, but also a quantitative matching between
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the theory and experiment is achievable. This book is intended for readers who want to
link their understanding of the device physics through the theoretical framework they
have already acquired to the design, modeling and simulation of real-world devices and
innovative structures.

This book will focus on semiconductor-based optoelectronic devices such as laser
diodes (LDs), electro-absorption modulators (EAMs), semiconductor optical amplifiers
(SOAs), and superluminescent light emitting diodes (SLEDs) in various applications.
Numerical methods will be used throughout the analysis of these devices.

Derived from physics-based first principles, governing equations will be given for the
description of different physical processes, such as light propagation, optical gain gen-
eration, carrier transport and thermal diffusion, and their interplays inside the devices.
Different numerical techniques will be discussed in detail along with the process of seek-
ing the solution to these governing equations. Discussions on device design optimizations
will also be followed, based on the interpretation of the numerical solutions.

The methodology introduced in this book hopefully will help its readers to learn (1)
how to extract the governing equations from first principles for the accurate description
of their devices; and more importantly, (2) how to obtain the numerical solution to those
governing equations once derived. Practical design and simulation examples are also
given to support the approaches used in this book.

I am in debt to my colleague and friend, Professor W.-P. Huang, who showed me the
prospect of computer-aided design, modeling and simulation in this field 15 years ago,
and with whom I had countless stimulating discussions on almost every topic involved in
this book, from the material physics to waveguide theory, from the model establishment
to result interpretation, and from the modeling methodology to numerical algorithm. I
would like to thank Dr. T. Makino (former Nortel), Dr. K. Yokoyama (former NTT), Dr.
T. Yamanaka (NTT), Dr. C.-L. Xu (RSoft Inc.), Dr. J. Hong (Oplink Inc.), Dr. A. Shams
(former Photonami Inc.), Professor S. Sadeghi (University of Alabama at Huntsville),
Professor W. Li (University of Wisconsin at Platteville), Professor Y. Luo (Tsinghua
University), Professor Y.-H. Zhang (Arizona State University), Ms. T.-N. Li (InPhenix
Inc.), Ms. N. Zhou (AcceLink Co.), Mr. M. Mazed (IP Photonics Inc.), Professor T.
Luo (University of Minnesota), Professor C.-Q. Xu (McMaster University), Professor
M. Dagenais (University of Maryland at College Park), Dr. J. Piprek (former University
of California at Santa Barbara), and many other colleagues and friends in this field, for
numerous insightful and inspiring discussions and interactions on various subjects in this
book, during and after our research collaborations. I am grateful to Ms. Y.-P. Xi, who
helped me with the simulation of SOAs and SLEDs, and Mr. Q.-Y. Xu, who helped me
with the simulation of crosstalks in the integrated DFB laser and monitoring photodetec-
tor. I am also grateful to Professor S.-H. Chen (Huazhong University of Sci. and Tech.)
and her graduate students, who helped me to create most of the schematic diagrams in the
first eight chapters and all the three-dimensional device structure drawings in Chapters 10
and 12. I would also like to thank my graduate students and many other graduate students
in the Department of Electrical and Computer Engineering at McMaster University who
took my course on this subject, for their valuable comments and suggestions. Finally, I
appreciate the constant help and great patience of Dr. J. Lancashire and Ms. S. Koch.



1 Introduction

1.1 The underlying physics in device operation

Figure 1.1 shows the major physical processes and their linkages in the operation of
optoelectronic devices.

To capture these physical processes, we need the following models and knowledge:

(1) a model that describes wave propagation along the device waveguide (electromag-
netic wave theory);

(2) a model that describes the optical properties of the device material platform
(semiconductor physics);

(3) a model that describes carrier transport inside the device (quasi-electrostatic theory);
(4) a model that describes thermal diffusion inside the device (thermal diffusion theory).

Therefore, the above four aspects should be included in any model established for
simulation of optoelectronic devices.

1.2 Modeling and simulation methodologies

There are two major approaches in device modeling and simulation.

(1) Physics modeling: a direct approach based on the first principle physics-based model.

The required governing equations in the preceding four aspects are all derived from
first principles, such as the Maxwell equations (including electromagnetic wave theory
for the optical field distribution and quasi-electrostatic theory for the carrier transport),
the Schrödinger equation (for the semiconductor band structure), the Heisenberg equation
(for the gain and refractive index change), and the thermal diffusion equation (for the
temperature distribution).

This model gives the physical description of what exactly happens inside the device
and is capable of providing predictions on device performance in every aspect, once the
device building material constants, the structural geometrical sizes, and the operating
conditions are all given.

This approach is usually adopted by device designers who work on developing devices
themselves.
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Fig. 1.1. The physical processes and their linkages in the operation of optoelectronic devices. Noted in
brackets are the first principle equations that govern these processes.

However, such a modeling technique is usually complex and sophisticated numerical
tools have to be invoked in solving the equations involved. Computationally it is usually
expensive.

(2) Behavior modeling: an indirect approach based on an equivalent or phenomenolog-
ical model.

The governing equations in the preceding four aspects are extracted from first prin-
ciples under various assumptions. Hence they are greatly simplified compared with the
equations in the physics-based model. Those frequently used methods in the extraction
of the simplified equations include: (1) reducing or even eliminating spatial dimensions;
(2) neglecting the dependence that causes only relatively slow or small variation; and
(3) ignoring the physical processes that have little direct effect on the aspects of inter-
est. Another method is to replace the original local or discrete variable by a global or
integrated variable in the description of the physical process, as the latter usually obeys
a certain conservation law, hence a corresponding balance equation can be derived in a
simple form.

This model does not give the description of what exactly happens inside the device
but is capable of providing the same device terminal performance as the physics-based
model. Therefore, if the device is treated as a black box, this model will provide the
correct output for any given input.

This approach is usually adopted by circuit and system designers who just use rather
than develop devices.
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Although this modeling technique is usually simple and computationally inexpensive,
it has two major drawbacks that prevent its application in device design and development.
The first demerit is that it can give hardly any physical insights. Little information can
be obtained on how to make a device work better by improving the design. The second
demerit is that it often relies on non-physical input parameters, such as effective constants
or phenomenologically introduced coefficients, which are usually difficult to obtain.

In optoelectronic device modeling, we normally take a combination of the preceding
two approaches. Depending on different simulation requirements, we usually retain a
minimum set of the necessary physics-based equations and replace the rest by simplified
ones.

1.3 Device modeling aspects

In device modeling, we normally look at the following aspects.

(1) Device steady state performance.
No time dependence needs to be considered in this simulation. The device character-
istics are usually modeled as functions of the bias.

(2) Device small-signal dynamic performance.
Based on the small-signal linearization, a direct current (DC) at a fixed bias plus a
frequency domain analysis are required in this simulation.

(3) Device large-signal dynamic performance.
A direct time-domain analysis is required in the simulation.

(4) Noise performance.
Either a semi-analytical frequency domain analysis or a numerical time-domain
analysis is required in this simulation.

1.4 Device modeling techniques

A typical procedure for optoelectronic device modeling and simulation includes:

(1) input geometrical structures;
(2) input material constants;
(3) set up meshes;
(4) initialize solvers (pre-processing);
(5) input operating conditions;
(6) scale variables (physical to numerical);
(7) start looping;
(8) call carrier solver;
(9) call temperature solver;

(10) call material solver;
(11) call optical solver;
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(12) go back to step 7 until convergence;
(13) scale variables (numerical to physical);
(14) output assembly (post-processing).

To start this procedure, however, one must have an initial device structure, which relies
on one’s understanding of the device physics and on one’s experience accumulated from
analysis and interpretation of the results obtained from device design, modeling and
simulation practice.

Other than the initial structure, we still need to collect all the input parameters required
by the numerical solvers. These parameters are usually obtained from open literature,
experiment, or calibration.

The following are a number of numerical techniques that are often involved in
optoelectronic device modeling:

(1) partial differential equation (PDE) solvers (boundary value and mixed boundary
and initial value problems);

(2) ordinary differential equation (ODE) solvers (initial and boundary value problems);
(3) algebraic eigenvalue problem solvers;
(4) linear and non-linear system of algebraic equations solvers;
(5) root searching routine;
(6) minimization or maximization routine;
(7) function evaluations, interpolation and extrapolation routines;
(8) numerical quadratures;
(9) fast Fourier transform (FFT) and digital filtering routines;

(10) pseudo-random number generation.

The key issue in device modeling is to establish numerical solvers for PDEs, which
usually follows a procedure as shown below.

(1) Scale the variables in given PDEs.
(2) Set up computation window and mesh grids.

(These two steps translate a physical problem into a numerical problem.)

(3) Equation discretization through, e.g., finite difference (FD) scheme.
(4) Boundary processing.

(These two steps translate PDEs into a system of algebraic equations.)

(5) Start Newton’s iteration for the system of non-linear algebraic equations.

(This step translates the system of non-linear algebraic equations into a system of linear
algebraic equations.)

(6) Find solution to the system of linear algebraic equations.
Direct method (for moderate size or dense coefficient matrix).
Iterative method (for large size sparse coefficient matrix).
Convergence acceleration (for iterative method).
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(7) Convergence acceleration for Newton’s iteration.

(The numerical solution will be obtained after this step.)

(8) Scale variables and post processing.

(A physical solution will be obtained after this step.)

1.5 Overview

This book is divided into three parts. The first part, comprising Chapters 2, 3, 4, and
5, is on the derivation and explanation of governing equations that model the closely
coupled physics processes in optoelectronic devices. The second part, Chapters 6, 7, 8,
and 9, is devoted to numerical solution techniques for the governing equations arising
from the first part and explains how these techniques are jointly applied in device simu-
lation. Chapters 10, 11, and 12 form the third part, which provides real-world design and
simulation examples of optoelectronic devices, such as Fabry–Perot (FP) and distributed
feedback (DFB) LDs, EAMs, SOAs, SLEDs, and their monolithic integrations.



2 Optical models

2.1 The wave equation in active media

2.1.1 Maxwell equations

The behavior of the optical wave is generally governed by the Maxwell equations

∇ × ⇀

E(⇀r , t) = − ∂

∂t

⇀

B(⇀r , t), (2.1)

∇ × ⇀

H(⇀r , t) = ∂

∂t

⇀

D(⇀r , t) + ⇀

J (⇀r , t), (2.2)

∇ · ⇀

D(⇀r , t) = ρ(⇀r , t), (2.3)

∇ · ⇀

B(⇀r , t) = 0, (2.4)

where
⇀

E and
⇀

H indicate the electric and magnetic fields in V/m and A/m, respectively, r
and t represent the space coordinate vector and time variable, respectively,

⇀

D the electric
flux density in C/m2,

⇀

B the magnetic flux density in Wb/m2,
⇀

J the current density in
A/m2, and ρ the charge density in C/m3.

In semiconductors, the constitutive relation reads

⇀

D(⇀r , t) =
∫ t

−∞
ε(⇀r , t − τ)

⇀

E(⇀r , τ )dτ, (2.5)

⇀

B(⇀r , t) = µ0
⇀

H(⇀r , τ ), (2.6)

with ε and µ0 denoting the time domain permittivity of the host medium and permeability
in a vacuum in F/m and H/m, respectively.

Noting that

ε(⇀r , t) = ε0[δ(t) + χ(⇀r , t)], (2.7)

with ε0 denoting the permittivity in a vacuum in F/m and χ the dimensionless time-
domain susceptibility of the host medium, equation (2.5) can also be written as

⇀

D(⇀r , t) = ε0

∫ t

−∞
[δ(t − τ) + χ(⇀r , t − τ)]

⇀

E(⇀r , τ )dτ = ε0
⇀

E(⇀r , t) + ⇀

P (⇀r , t), (2.8)
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where the induced polarization of the host medium in C/m2 is defined as

⇀

P (⇀r , t) ≡ ε0

∫ t

−∞
χ(⇀r , t − τ)

⇀

E(⇀r , τ )dτ. (2.9)

For an electromagnetic field at optical frequencies

ρ = 0. (2.10)

In a passive area without any radiative recombination process

⇀

J = 0. (2.11)

In an active area with a spontaneous emission process

⇀

J = ⇀

J sp. (2.12)

It is worth mentioning that, in an active area, the stimulated emission process will
be included in the susceptibility, as it is a purely homogeneous process induced by
a given electric field. Therefore, the stimulated emission process is excluded from
equation (2.12), as the driven current must be a purely inhomogeneous source.

By using equations (2.5) and (2.6), the electrical and magnetic flux densities
⇀

D and
⇀

B can be eliminated from equations (2.1) and (2.2); hence we obtain

∇ × ⇀

E = −µ0
∂

∂t

⇀

H, (2.13)

∇ × ⇀

H = ε0
∂

∂t

⇀

E + ∂

∂t

⇀

P + ⇀

J sp. (2.14)

At least in principle, equations (2.13), (2.14) and (2.9) can be solved directly under
the given semiconductor material property described by the susceptibility χ over
the entire device structure and the spontaneous emission source

⇀

J sp in the active
area. For example, a finite difference time domain (FDTD) approach can be used
to discretize equations (2.13) and (2.14) on Yee’s unit cells [1]. Each electrical and
magnetic field component can therefore be solved through the resulted recursion
in the time domain on those cells that fill out the whole device domain. How-
ever, although FDTD based numerical solvers have been very successful in dealing
with passive structures, they have seldom been employed for solving active struc-
tures because of the highly dispersive material property with embedded non-linearity
and distributed inhomogeneous driving source. Moreover, every component of the
electrical and magnetic fields must be handled as an unknown variable, which
exhausts memory capacity and hence makes the computation impossible for devices
with sizeable domains. For this reason, a wave equation model with a reduced
number of unknown variables is usually more convenient in dealing with active
devices.
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2.1.2 The wave equation

The duality principle implies that it is not necessary to use both electrical and magnetic
fields to describe optical wave propagation: either an electrical or magnetic field will be
sufficient. To reduce the number of variables involved, we perform ∇× on both sides of
equation (2.13) and replace the right hand side (RHS) ∇ × ⇀

H with equation (2.14) to
obtain

∇(∇ · ⇀

E) − ∇2 ⇀

E = −µ0

(
ε0

∂2

∂t2
⇀

E + ∂2

∂t2
⇀

P + ∂

∂t

⇀

J sp

)
. (2.15)

From equations (2.3), (2.8), (2.10) and (2.9), we also have

∇ · ⇀

E = − 1

ε0
∇ · ⇀

P = −
∫ t

−∞
∇ · [χ(⇀r , t − τ)

⇀

E(⇀r , τ )
]

dτ

= −
∫ t

−∞
χ(⇀r , t − τ)

[∇ · ⇀

E(⇀r , τ )
]

dτ −
∫ t

−∞
[∇χ(⇀r , t − τ) · ⇀

E(⇀r , τ )
]

dτ.

(2.16)

If we restrict our model to those structures with

∇χ(⇀r , t) · ⇀

E(⇀r , t) ≈ 0, (2.17)

we find
∇ · ⇀

E = 0. (2.18)

Hence equation (2.15) becomes

∇2 ⇀

E = 1

c2

∂2

∂t2
⇀

E + 1

c2ε0

∂2

∂t2
⇀

P + µ0
∂

∂t

⇀

J sp, (2.19)

with
c ≡ 1/

√
(µ0ε0), (2.20)

defined as the speed of light in a vacuum in m/s.
Condition (2.17) holds for those structures with weak optical guidance, i.e., χ only

changes slightly in the plane perpendicular to the wave propagation direction, as such
∇Tχ(⇀r , t) · ⇀

ET(⇀r , t) ≈ 0. Along the wave propagation direction (assumed to be z),
however, ∂χ/∂z does not need to be small since Ez ≈ 0 anyway. Therefore, wave
equation (2.19) holds even for devices with non-uniform structures along the wave
propagation direction, e.g., distributed feedback (DFB) or distributed Bragg reflector
(DBR) lasers, as long as the wave is weakly guided in the cross-section.

Expressions (2.19) and (2.9) form the wave equation model that describes optical
wave propagation in a weakly guided device structure. In the wave equation (2.19),
the only term on the left hand side (LHS) gives the spatial diffraction of the electrical
field, while the first term on the RHS gives the time dispersion of the electrical field.
The balance of these two terms gives the inherent property of the optical wave, i.e., the
propagation in space. The second term on the RHS denotes the contribution from the
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wave–media interaction where the convolution reveals that the wave at a certain time
t will be affected by the whole past “history” of the media response. This is simply
because the media cannot instantaneously respond to the incident wave. The last term
on the RHS represents the contribution of the spontaneous emission known as a noise
current source. As the only inhomogeneous term, it plays a crucial role as the “seed”
in light-emitting devices. Without the inclusion of this inhomogeneous contribution in
equation (2.19), a laser will never lase as equation (2.19) would have only zero solution
because of its homogeneity.

In comparison with the Maxwell equations in their original form, the wave equation
model is physically straightforward and has minimum required unknown variables
involved. However, equation (2.19) contains the second order derivatives with respect
to time and is in the form of a hyperbolic partial differential equation (PDE). Unlike an
elliptical PDE with only static solutions, or a parabolic PDE with solutions exponentially
approaching its steady state, a hyperbolic PDE takes harmonic oscillations as its inherent
solution and bears no time-invariant steady state. Therefore, stability will always be an
issue in looking for its solutions if the initial value is not well posed or not sufficiently
smooth.

Knowing that a hyperbolic PDE takes the harmonic wave as its “static” solution,
we can therefore write the general solution of the wave equation (2.19) in the form of a
“modulated” wave, i.e., a harmonic wave with “slow-varying” envelope. By doing so, we
should be able to extract a governing equation for this envelope from equation (2.19). As
the envelope changes more slowly, the new equation will take a reduced time derivative
and hence become more stable.

2.2 The reduced wave equation in the time domain

We assume that the optical wave is composed of harmonic waves with discrete
frequencies and relatively slow-varying envelopes

⇀

E(⇀r , t) = 1

2

∑
k

⇀uk(
⇀r , t)e−jωkt + c.c., (2.21)

with ⇀uk and ωk indicating the kth harmonic wave envelope function in V/m and angular
frequency in rad/s, respectively, and where c.c. means complex conjugate. By further
assuming the linearity of equation (2.19) (i.e., χ has no explicit dependence on

⇀

E),
we take only a single frequency (k = 0) in the following derivations without losing
generality: when multiple frequencies are involved, it is trivial to consider a summation
in a linear system because of the superposition principle. For the same reason, we can
drop the complex conjugate part by considering

⇀

E(⇀r , t) = ⇀u(⇀r , t)e−jω0t , (2.22)

only, with ω0 as the harmonic wave frequency (or reference frequency) and with the
subscript of the envelope function omitted. Since equations (2.19) and (2.9) are all real,
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if we take our real-world optical wave as the real (or imaginary) part of equation (2.22),
our real-world result will then be the real (or imaginary) part of the solution obtained
from equations (2.19) and (2.9). The reason that we use a complex exponential function
to replace the sinusoidal function is that the former is the eigenfunction of any linear
and time-invariant system, whereas the latter is not, unless it forms a proper linear
combination, i.e., a complex exponential function.

Replacing the optical field in equation (2.9) with equation (2.22) yields

⇀

P (⇀r , t) = ε0

∫ t

−∞
χ(⇀r , t − τ)⇀u(⇀r , τ )e−jω0τ dτ = ε0F

−1 [
χ̃(⇀r , ω)̃⇀u(⇀r , ω − ω0)

]
≈ ε0χ̃(⇀r , ω0)F

−1 [̃
⇀u(⇀r , ω − ω0)

] = ε0χ̃(⇀r , ω0)
⇀u(⇀r , t)e−jω0t ,

(2.23)

with ⇀̃u and χ̃ indicating the frequency domain responses of the slow-varying harmonic
wave envelope function and susceptibility, respectively, and F−1[. . .] the inverse Fourier
transform. Equation (2.23) holds only when the susceptibility varies much faster than the
slow-varying envelope in the time domain; or equivalently, the bandwidth of χ̃ is much
larger than that of ⇀̃u in the frequency domain. In optoelectronic devices, this is usually
true as long as the base-band signal (hence the slow-varying envelope) does not consist
of very short pulses. Since the full width half maximum (FWHM) bandwidth of χ̃ is
usually as broad as 5–10 THz (i.e., around 50–100 nm in a C-band centered at 1550 nm),
i.e., χ can respond to any time change slower than sub-picosecond, any base-band signal
that varies slower than 10 ps would make equation (2.23) a valid approximation.

We now plug both equations (2.22) and (2.23) into equation (2.19) to obtain

j
2ω0

c2
[1 + χ̃(⇀r , ω0)]

∂⇀u

∂t
= −∇2⇀u − ω2

0

c2
[1 + χ̃(⇀r , ω0)]⇀u + µ0ejω0t

∂

∂t

⇀

J sp, (2.24)

where under the slow-varying envelope assumption (|∂2⇀u/∂t2| � ω2
0|⇀u|), ∂2⇀u/∂t2 is

dropped.
Equation (2.24) is the reduced wave equation in the time domain. It governs the

slow-varying envelope of an optical field that is assumed in a harmonic wave form
with optical frequency ω0. Compared with equation (2.19), equation (2.24) has the
fast-varying harmonic factor (e−jω0t ) excluded, hence has a reduced time derivative
order. Numerically, stable solutions can be obtained through time domain discretization
by following the envelope change (∂⇀u/∂t), rather than by following the optical wave
change (∂

⇀

E/∂t) itself. This normally results in a great saving of progressive steps as the
former changes much slower than the latter in the time domain.

Actually, equation (2.24) is solved directly only when the device structure does not
have any dominant feature in space and hence the wave does not form any time-invariant
spatial pattern known as a “mode.” In waveguide based optoelectronic and photonic
devices, however, the wave is confined at least along one dimension. Therefore, an
optical mode can be introduced at least along this dimension and the wave will travel in
the reduced spatial dimensions. For this reason, equation (2.24) can be further simplified
for waveguide based optoelectronic and photonic devices as shown in Section 2.4.
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2.3 The reduced wave equation in the space domain

Because of the symmetry embedded in wave equation (2.19) in respect of time and space,
in principle we can also assume that the optical wave is composed of plane waves with
discrete propagation constants and relatively slow-varying envelope functions. More
specifically, by assuming that the propagation of these plane waves is all in the z direction,
we can write

⇀

E(⇀r , t) = 1

2

∑
k

⇀vk(
⇀r , t)ejβkz + c.c., (2.25)

with ⇀vk and βk indicating the kth plane wave envelope function in V/m and propagation
constant in rad/m, respectively. In equation (2.25), the envelope function is only slow-
varying in z but can change arbitrarily in the perpendicular xy plane. Again, under the
linear assumption of equation (2.19), we need only to consider

⇀

E(⇀r , t) = ⇀v(⇀r , t)ejβ0z. (2.26)

Replacing the optical field in equation (2.9) with equation (2.26) yields

⇀

P (⇀r , t) = ε0

∫ t

−∞
χ(⇀r , t − τ)⇀v(⇀r , τ )ejβ0z dτ = ⇀p(⇀r , t)ejβ0z, (2.27)

with the slow-varying polarization envelope function defined as

⇀p(⇀r , t) ≡ ε0

∫ t

−∞
χ(⇀r , t − τ)⇀v(⇀r , τ )dτ . (2.28)

We now plug both equations (2.26) and (2.27) into equation (2.19) to obtain

∂2⇀v

∂x2
+ ∂2⇀v

∂y2
+ 2jβ0

∂⇀v

∂z
= 1

c2

∂2⇀v

∂t2
+ 1

c2ε0

∂2 ⇀p

∂t2
+ β2

0
⇀v + µ0e−jβ0z

∂

∂t

⇀

J sp, (2.29)

where under the slow-varying envelope assumption (|∂2⇀v/∂z2| � β2
0 |⇀v |), ∂2⇀v/∂z2 is

dropped.
Equation (2.29) is the reduced wave equation in the space domain. Together with

equation (2.28), it governs the slow-varying envelope of an optical field which is assumed
in a modulated plane wave form with its propagation constant β0 in the z direction.
Compared with equation (2.19), equation (2.29) has the fast-varying phase factor (ejβ0z)

excluded, hence it has a reduced (from second to first) spatial derivative order in at least
one of the three dimensions. However, unlike equation (2.24), equation (2.29) is not
well posed [2]. Therefore, no finite difference algorithm in the time domain will lead to a
stable solution to equation (2.29). For this reason, we do not use equation (2.29) directly
but proceed to reduce the time derivative orders following the method in Section 2.2 to
make equation (2.29) a well-posed problem.
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2.4 The reduced wave equation in both time and space domains − the
traveling wave model

In waveguide based optoelectronic and photonic devices, the optical wave usually
propagates along one direction and is fully or partially confined in the cross-sectional
plane perpendicular to the propagation direction. Either starting from the reduced wave
equation in the time domain (2.24) or starting from the reduced wave equation in the
space domain (2.29), we can further simplify the optical governing equation under such
a condition.

2.4.1 The wave equation in fully confined structures

If the optical wave propagates only along z and is fully confined in the cross-sectional
xy plane, and if the waveguide transverse structure is uniform along z, we can write the
optical field in equation (2.19) as

⇀

E(⇀r , t) = 1

2
⇀s φ(x, y)e(z, t)ej(β0z−ω0t) + c.c., (2.30)

where

⇀s = unit vector along the polarization direction of the optical field
⇀

E,
φ(x, y) = cross-sectional field distribution in 1/m known as the optical mode or the

eigenfunction of the optical waveguide,
e(z, t) = longitudinal field envelope function in V taking relatively slow change with

time and along the propagation direction,
ej(β0z−ω0t) = dimensionless propagation factor in the form of f (z − vt) known as a

(harmonic) plane wave traveling at a phase velocity defined by ω0/β0.

Expression (2.30) clearly shows that the optical field is factorized into a fast-varying
plane wave traveling along z, which is also modulated by an envelope function with
slow variation in z and t , and a fixed mode profile in the cross-sectional area without
any change in the z direction.

A typical example of such a structure, known as the ridge waveguide, is illustrated in
Fig. 2.1.

Under the linear assumption made in equation (2.19), we can rewrite equation (2.30) as

⇀

E(⇀r , t) = ⇀xφ(x, y)e(z, t)ej(β0z−ω0t), (2.31)

with ⇀x indicating the unit vector along x. Here we have considered only one polarization
direction, taken to be x, without losing generality. Comparing equation (2.31) with
equation (2.22), we know that the optical envelope function in equation (2.24) must be
in the form

⇀u(⇀r , t) = ⇀xφ(x, y)e(z, t)ejβ0z. (2.32)

As a consequence of (2.32), again our final result will be the real part of the solution
only.
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Fig. 2.1. A ridge waveguide structure in which the optical field can be factorized into a modulated plane
wave traveling in the z direction and a mode profile in the xy plane without change in z.

Replacing the envelope function in equation (2.24) by expression (2.32), we find:{
j
2k0

c
[1 + χ̃(⇀r , ω0)]∂e(z, t)

∂t
+ 2jβ0

∂e(z, t)

∂z

}
φ(x, y)

= −e(z, t)

{
∂2

∂x2
+ ∂2

∂y2
−β2

0 + k2
0[1 + χ̃(⇀r , ω0)]

}
φ(x, y) + µ0e−j(β0z−ω0t)

∂Jspx

∂t
,

(2.33)

where k0 ≡ ω0/c and Jspx ≡ ⇀

J sp · ⇀x. Under the slow-varying envelope assumption
(|∂2e/∂z2| � |β0|2|e|), ∂2e/∂z2 is dropped from equation (2.33). Since the optical field
is fully confined in the cross-sectional area with a background material refractive index
distribution denoted as n(x, y, ω0), we will be able to find the time-invariant optical
field distribution in the xy plane, known as the optical mode, by solving the following
eigenvalue problem:(

∂2

∂x2
+ ∂2

∂y2

)
φ(x, y) + k2

0n2(x, y, ω0)φ(x, y) = β2
0φ(x, y), (2.34)

subject to the normalization condition∫
�

φ2(x, y)dx dy = 1, (2.35)

with � indicating the entire cross-sectional area in m2 where the optical mode spreads.
Substitute the spatial derivative terms in the xy plane in equation (2.33) by

equation (2.34), multiply the optical mode φ(x, y) on both sides of the equation obtained,
and integrate over the entire cross-sectional area to yield

1

neff c

{∫
�

[1 + χ̃(⇀r , ω0)]φ2(x, y)dx dy

}
∂e(z, t)

∂t
+ ∂e(z, t)

∂z

= j
k0

2neff

{∫
�

[1 + χ̃(⇀r , ω0) − n2(x, y, ω0)]φ2(x, y)dx dy

}
e(z, t) + s̃(z, t), (2.36)
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where the inhomogeneous spontaneous emission contribution in V/m is given as

s̃(z, t) ≡ − je−j(β0z−ω0t)

2neff ω0

√(
µ0

ε0

)∫
�

∂Jspx

∂t
φ(x, y)dx dy, (2.37)

with the dimensionless effective index defined as neff ≡ β0/k0.
In optoelectronic and photonic devices with full wave confinement in the cross-

sectional area, external bias is usually applied along the wave propagation direction
in z, which introduces a material gain and an associated refractive index change inside
the active region along this direction. Noting that the material gain per wavelength cycle
(i.e., g/k0 = gc/ω0 = gλ0/2π , with λ0 denoting the reference wavelength in a vacuum)
and the refractive index change (i.e., �n), both induced by the external bias, appear to
be much smaller than the background (i.e., under zero external bias or “cold cavity”)
material refractive index n(x, y, ω0), which is uniform along z, we find

n2(⇀r , ω0) = [n(x, y, ω0) + �n(z, ω0)]2

≈ n2(x, y, ω0) + 2n(x, y, ω0)�n(z, ω0), (2.38)

g(⇀r , ω0) = g(z, ω0) − α(x, y, z), (2.39)

1 + χ̃(⇀r , ω0) =
[
n(⇀r , ω0) − j

2k0
g(⇀r , ω0)

]2

≈ n2(x, y, ω0) + 2n(x, y, ω0)�n(z, ω0) − j

k0
n(x, y, ω0)[g(z, ω0) − α(x, y, z)].

(2.40)

In equations (2.38) to (2.40), we have defined the following:

n(⇀r , ω0) = dimensionless material refractive index,
n(x, y, ω0) = dimensionless cross-sectional area refractive index under zero bias,

also known as the background or “cold cavity” refractive index,
�n(z, ω0) = dimensionless bias induced refractive index change, non-zero only

inside the active region,
g(⇀r , ω0) = material gain in 1/m,
g(z, ω0) = bias induced interband stimulated emission gain (or loss, when it is

negative) in 1/m, non-zero only inside the active region,
α(x, y, z) = optical loss in 1/m because of non-interband processes such as free-

carrier absorption and scattering.

We have also dropped higher order terms such as (�n)2, (g/k0)
2 and (�n)(g/k0).

By utilizing equation (2.40) and noting that the interband stimulated emission gain
g(z, ω0) and the associated refractive index change �n(z, ω0) exist only inside the active
region, we can derive∫

�

[1 + χ̃(⇀r , ω0)]φ2(x, y)dx dy ≈
∫

�

n2(x, y, ω0)φ
2(x, y)dx dy ≡ n2 (2.41a)



Optical models 15

and ∫
�

[1 + χ̃(⇀r , ω0) − n2(x, y, ω0)]φ2(x, y)dx dy

≈
[

2�n(z, ω0) − j

k0
g(z, ω0)

] ∫
�ar

n(x, y, ω0)φ
2(x, y)dx dy

+ j

k0

∫
�

n(x, y, ω0)α(x, y, z)φ2(x, y)dx dy

≈ n�

[
2�n(z, ω0) − j

k0
g(z, ω0)

]
+ j

k0
nα(z), (2.41b)

with �ar defined as the cross-sectional area of the active region. Also in deriving
equation (2.41b), we have utilized the following approximations:

∫
�ar

n(x, y, ω0)φ
2(x, y)dx dy ≈ n

∫
�ar

φ2(x, y)dx dy = n� (2.42)

and∫
�

n(x, y, ω0)α(x, y, z)φ2(x, y)dx dy ≈ n

∫
�

α(x, y, z)φ2(x, y)dx dy = nα(z),

(2.43)
with the optical confinement factor and optical modal loss defined as

� ≡
∫
�ar

φ2(x, y)dx dy∫
�

φ2(x, y)dx dy
=

∫
�ar

φ2(x, y)dx dy, (2.44)

α(z) ≡
∫
�

α(x, y, z)φ2(x, y)dx dy∫
�

φ2(x, y)dx dy
=

∫
�

α(x, y, z)φ2(x, y)dx dy. (2.45)

Finally, we plug equations (2.41a) and (2.41b) into equation (2.36) to yield

1

vg

∂e(z, t)

∂t
+ ∂e(z, t)

∂z
=

[
jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
e(z, t) + s̃(z, t),

(2.46)

where vg ≡ c/ng ≈ cneff /n
2 and neff ≈ n are assumed, and where ng is the group index

and vg is the group velocity.
Equation (2.46) governs the envelope function of the optical wave propagating along

+z. For the optical wave that propagates along the opposite direction (−z), we just
need to use −z to replace z in equation (2.46) as both the material property and the
spontaneous emission contribution have bidirectional symmetry along ±z. Therefore,
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we obtain(
1

vg

∂

∂t
+ ∂

∂z

)
ef (z, t) =

[
jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
ef (z, t) + s̃ f (z, t),

(2.47a)(
1

vg

∂

∂t
− ∂

∂z

)
eb(z, t) =

[
jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
eb(z, t) + s̃ b(z, t),

(2.47b)

where we have used the superscripts f and b to indicate the forward and backward
propagating wave envelope functions, respectively. In equation (2.47), because the
inhomogeneous spontaneous emission contributes to both the forward and backward
propagating waves, we have s̃ b(z, t) = s̃ f (−z, t) with s̃ f given by equation (2.37).

The one-dimensional (1D) slow-varying envelope equation (2.47) along the wave
propagation direction (i.e., ±z), together with the two-dimensional (2D) eigenvalue
equation (2.34) in the cross-sectional area (i.e., the xy plane), form the governing
equations for modeling the optical wave that propagates along ±z and is fully confined
by the waveguide in the cross-sectional xy plane. These equations can be solved subject
to certain initial and boundary conditions. Since the initial and boundary conditions are
related to the operating conditions and structures of specific devices, we will find the
effect of these conditions on device performance through examples in Chapter 10.

Once the optical mode φ(x, y), the forward (along +z) and the backward (along −z)

slow-varying envelopes ef (z, t) and eb(z, t) are solved by equations (2.34) and (2.47),
respectively, the real-world optical field is obtained by using

⇀

E(⇀r , t) = 1

2
⇀xφ(x, y)[ef (z, t)ejβ0z + eb(z, t)e−jβ0z]e−jω0t + c.c. (2.48)

As seen in the derivation process, we find that this model is valid under the following
conditions.

(1) Assumptions on the optical wave.
• Wave propagates along the device in a longitudinal direction only.
• Wave is fully confined in the cross-sectional area perpendicular to the propagation

direction.
• Wave has discrete optical frequencies with relatively slow-varying envelopes.

(2) Assumptions on the material.
• Material has linear optical property.
• Material takes no time to respond to any variation of optical wave envelope.

Also, in the above derivations, we have assumed that the optical wave has:

• a single operating frequency (i.e., ω0);
• a single optical mode (i.e., the waveguide supports a single guided mode only);
• a single polarization state (assumed to be along x).
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However, equations (2.34) and (2.47) can readily be expanded to model the optical
wave with multiple operating frequencies, or multiple modes, or arbitrary polarization
states, by utilizing the linear superposition theory and the mode orthogonality. Therefore,
the last three constraints are removable.

By comparing equation (2.31) with equation (2.26), we find that the optical envelope
function in equation (2.29) can be written as

⇀v(⇀r , t) = ⇀xφ(x, y)e(z, t)e−jω0t . (2.49)

Inserting equation (2.32) into equation (2.23) yields

⇀

P (⇀r , t) = ⇀xε0χ̃(⇀r , ω0)φ(x, y)e(z, t)ej(β0z−ω0t). (2.50)

Further, comparing equation (2.50) with equation (2.27), we also find

⇀p(⇀r , t) = ⇀xε0χ̃(⇀r , ω0)φ(x, y)e(z, t)e−jω0t . (2.51)

By replacing the optical field and polarization envelope functions in equation (2.29) by
expressions (2.49) and (2.51), respectively, and utilizing equations (2.34) and (2.35), we
obtain equation (2.36) again, as it should be. This confirms that equation (2.47) is the
reduced wave equation both in time and space domains; it can be obtained from the full
wave equation (2.19) by reducing the time derivative and the space derivative in either
sequence. The condition under which the time derivative can be reduced requires the
optical field to take an amplitude-modulated harmonic wave in the time domain, with its
modulation bandwidth (i.e., the base bandwidth) much smaller than the harmonic wave
frequency (i.e., the carrier frequency), as required by the time slow-varying envelope
assumption. The condition under which the spatial derivative can be reduced in a certain
direction requires the optical field to take an amplitude-modulated plane wave in that
direction, with its modulation bandwidth (i.e., the maximum spatial frequency) much
smaller than the propagation constant, as required by the spatial slow-varying envelope
assumption. Since equation (2.47) has been derived under both conditions, it governs the
(slow-varying) envelope function of an optical field in the form of a modulated harmonic
plane wave in a certain direction (along z in this derivation). A harmonic plane wave in
a certain direction describes a plane wave propagating along that direction. Therefore,
equation (2.47) governs the (slow-varying) envelope functions of the two traveling plane
waves along ±z, respectively.

2.4.2 The wave equation in partially confined structures

In some applications, the waveguide transverse structure is not uniform along the wave
propagation direction. A typical example is a horizontally varied structure such as the
horn waveguide [3] shown in Fig. 2.2.

In such a structure, the optical wave is confined only in the vertical direction y, rather
than in the entire cross-sectional xy plane. Therefore, instead of equation (2.31), we have
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Fig. 2.2. A horn waveguide structure in which the optical wave is confined only in the y direction and is
propagating along both z and x directions.

to write the optical field in the form of [4]

⇀

E(⇀r , t) = ⇀xφ(y)e(x, z, t)ej(β0z−ω0t), (2.52)

with φ(y) indicating the optical field distribution (or the 1D optical mode) along
y in 1/m1/2, and e(x, z, t) the envelope function in V/m1/2. In accordance with
equation (2.52), we will use

⇀u(⇀r , t) = ⇀xφ(y)e(x, z, t)ejβ0z, (2.53)

to replace equation (2.32) as well. Plugging (2.53) into (2.24), multiplying the 1D optical
mode φ(y) on both sides of the equation obtained, and integrating along the vertical
direction y yields

1

neff c

{∫
�y

[1 + χ̃(⇀r , ω0)]φ2(y)dy

}
∂e(x, z, t)

∂t
+ ∂e(x, z, t)

∂z

= j

2neff k0

∂2e(x, z, t)

∂x2
+ jk0

2neff

{∫
�y

[1 + χ̃(⇀r , ω0) − n2(y, ω0)]φ2(y)dy

}
× e(x, z, t) + s̃(x, z, t), (2.54)

where the 1D optical mode along y can be found by solving the following eigenvalue
problem

∂2

∂y2
φ(y) + k2

0n2(y, ω0)φ(y) = β2
0φ(y), (2.55)

subject to the normalization condition∫
�y

φ2(y)dy = 1. (2.56)

In expressions (2.54) to (2.56), �y indicates the entire vertical range along y in m
where the 1D optical mode spreads. Note that n(y, ω0) denotes the dimensionless back-
ground or “cold cavity” material refractive index distribution along y. Again, ∂2e/∂z2
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is dropped from equation (2.54) under the slow-varying envelope assumption. Finally,
in equation (2.54), the inhomogeneous spontaneous emission contribution in V/m3/2 is
given as

s̃(x, z, t) ≡ − je−j(β0z−ω0t)

2neff ω0

√µ0

ε0

∫
�y

∂Jspx

∂t
φ(y)dy. (2.57)

In such a waveguide structure, the active region usually expands to an entire xz plane
within one of the vertically stacked layers in the y direction. In accordance with the
active region distribution, the external bias is usually applied on the top xz plane, which
introduces a material gain and an associated refractive index change inside the active
region. Similarly to equations (2.38) to (2.40), by assuming that the bias induced material
gain per wavelength cycle and the associated refractive index change are perturbations in
the background material refractive index distribution, which is uniform in the xz plane,
we find

n2(⇀r , ω0) ≈ n2(y, ω0) + 2n(y, ω0)�n(x, z, ω0), (2.58)

g(⇀r , ω0) = g(x, z, ω0) − α(x, y, z), (2.59)

1 + χ̃(⇀r , ω0) =
[
n(⇀r , ω0) − j

2k0
g(⇀r , ω0)

]2

≈ n2(y, ω0) + 2n(y, ω0)�n(x, z, ω0) − j

k0
n(y, ω0) [g(x, z, ω0) − α(x, y, z)] .

(2.60)

In equations (2.58) to (2.60), we have dropped the higher order terms (�n)2, (g/k0)
2

and (�n)(g/k0).
By utilizing equation (2.60) and noting that the interband stimulated emission gain

g(x, z, ω0) and the associated refractive index change �n(x, z, ω0) exist only inside the
active region, we can further derive∫

�y

[1 + χ̃(⇀r , ω0)]φ
2(y)dy ≈

∫
�y

n2(y, ω0)φ
2(y)dy ≡ n2 (2.61a)

and ∫
�y

[
1 + χ̃(⇀r , ω0) − n2(y, ω0)

]
φ2(y)dy

≈
[

2�n(x, z, ω0) − j

k0
g(x, z, ω0)

] ∫
�ary

n(y, ω0)φ
2(y)dy

+ j

k0

∫
�y

n(y, ω0)α(x, y, z)φ2(y)dy

≈ n�

[
2�n(x, z, ω0) − j

k0
g(x, z, ω0)

]
+ j

k0
nα(x, z), (2.61b)
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with �ary defined as the active region vertical thickness along y. In deriving (2.61b), we
have utilized the following approximations:∫

�ary

n(y, ω0)φ
2(y)dy ≈ n

∫
�ary

φ2(y)dy = n�, (2.62)∫
�y

n(y, ω0)α(x, y, z)φ2(y)dy ≈ n

∫
�y

α(x, y, z)φ2(y)dy = n α(x, z), (2.63)

with the optical confinement factor and optical modal loss defined as

� ≡
∫
�ary

φ2(y)dy∫
�y

φ2(y)dy
=

∫
�ary

φ2(y)dy, (2.64)

α(x, z) ≡
∫
�y

α(x, y, z)φ2(y)dy∫
�y

φ2(y)dy
=

∫
�y

α(x, y, z)φ2(y)dy. (2.65)

Finally, we plug equations (2.61a) and (2.61b) into equation (2.54) to yield

1

vg

∂e(x, z, t)

∂t
+ ∂e(x, z, t)

∂z
= j

2neff k0

∂2e(x, z, t)

∂x2

+
[

jk0��n(x, z, ω0) + 1

2
�g(x, z, ω0) − 1

2
α(x, z)

]
e(x, z, t) + s̃(x, z, t), (2.66)

where again vg ≡ c/ng ≈ cneff /n
2 and neff ≈ n are assumed.

Equation (2.66) governs the envelope function of the optical wave propagating along
+z. For the optical wave that propagates along the opposite direction (−z), we just need
to use −z to replace z in equation (2.66) because of the material bidirectional symmetry
along ±z. Therefore, we obtain(

1

vg

∂

∂t
+ ∂

∂z

)
ef (x, z, t) = j

2neff k0

∂2

∂x2
ef (x, z, t)

+
[

jk0��n(x, z, ω0) + 1

2
�g(x, z, ω0) − 1

2
α(x, z)

]
ef (x, z, t) + s̃ f (x, z, t), (2.67a)(

1

vg

∂

∂t
− ∂

∂z

)
eb(x, z, t) = j

2neff k0

∂2

∂x2
eb(x, z, t)

+
[

jk0��n(x, z, ω0) + 1

2
�g(x, z, ω0) − 1

2
α(x, z)

]
eb(x, z, t) + s̃ b(x, z, t),

(2.67b)

where again the superscripts f and b distinguish the forward and backward propagating
wave envelope functions, and the inhomogeneous spontaneous emission contributions
to the forward and backward propagating waves, with s̃ f given by equation (2.57) and
s̃ b(x, z, t) = s̃ f (x, −z, t), respectively.

Therefore, the 2D slow-varying envelope equation (2.67) in the xz plane, together
with the 1D eigenvalue equation (2.55) in y, form the governing equations for modeling
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the partially confined (along the vertical direction y) optical wave propagation along ±z.
Because of the lack of lateral confinement (in the x direction), the 2D envelope function
diffracts laterally as indicated by an extra second-order derivative term in respect of x in
the governing equation (2.67). Therefore, as the solution of equation (2.67), the envelope
function changes only slowly with z and t , which indicates the wave propagation along
±z; its change in x, however, will be determined by the boundary conditions imposed
in the x direction, which is normally related to the device lateral structure, and its rate of
change may not slow. Again, equations (2.67) and (2.55) can be solved, once the initial
and boundary conditions are specified for a given device.

Finally, the real-world optical field is obtained using

⇀

E(⇀r , t) = 1

2
⇀xφ(y)[ef (x, z, t)ejβ0z + eb(x, z, t)e−jβ0z]e−jω0t + c.c. (2.68)

2.4.3 The wave equation in periodically corrugated structures

In DFB or DBR lasers and other grating based devices, periodically corrugated structures
must be employed to provide distributed reflections along with the waveguide. A typical
example of such a periodically corrugated waveguide structure is shown in Fig. 2.3.

Unlike the previous structures, in which the forward and backward propagating waves
have no interaction until they reach the waveguide ends, such a waveguide allows the
forward and backward waves to couple to each other as they propagate through the
periodically perturbed structure along the waveguide. Moreover, a periodic structure
with period � can be expanded as a summation of many harmonic grating orders with
their wave numbers ranking as m2π/�, where m = 0, ±1, ±2, . . . , ±∞. Assuming
that the grating harmonic component in the Mth (M ≥ 1) order couples the forward and
backward propagation waves along the waveguide direction (±z), the mth (m > M)
order components will fast decay and hence are negligible. The mth (m < M) order
components will, however, couple the forward and backward propagating waves to the
radiation waves which leave the waveguide at a certain angle to the propagation direction
along ±z [5, 6, 7].

y

z

xo

Fig. 2.3. A periodically corrugated waveguide structure in which the propagating waves along ±z are
distributively coupled because of the reflections of the grating.
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Since the Mth harmonic order of the grating wave number couples the forward and
backward propagation constants, we must have

2δ = β0 −
(

M
2π

�
− β0

)
= 2

(
β0 − Mπ

�

)
� 2β0, (2.69)

where 2δ is the difference of the propagation constants between the original forward and
the backward coupled to forward (through the grating backward scattering) propagating
waves. Note that −2δ, on the other hand, is the difference in the propagation constants
between the original backward and the forward coupled to backward (again through the
grating backward scattering) propagating waves. A necessary condition for the forward
(and the backward) propagating wave to be sustainable inside the waveguide is apparently
that the two forward (and the two backward) propagating wave components have the
same propagation constants, known as phase matching. For passive waveguides, we
immediately find that the phase matching condition arises at δ = 0. In active waveguides,
however, the component with the fastest growing amplitude (because of the gain) does not
necessarily correspond to δ = 0. Therefore, the active waveguide may allow sustainable
forward and backward propagating waves to have their propagation constants detuned
from ±Mπ/� (i.e., the Bragg condition), or δ �= 0. On the scale of β0 (or π/�), the
detuning (δ) must be very small, i.e., δ/β0 � 1, as otherwise the amplitude loss because
of the phase mismatch cannot be compensated for by the amplitude growth from the
gain. Therefore, waves with large detuned propagation constants away from the Bragg
condition cannot exist. Equation (2.69) addresses such a quasi-phase matching condition
in active waveguides.

In accordance with the phase matching condition, we can take the propagation con-
stants of the forward and backward propagating waves as±Mπ/� instead of the previous
±β0 to facilitate deriving the coupled wave equations shown below. However, it is worth
mentioning that, by taking ±β0 as the propagation constants of the forward and back-
ward propagating waves in decomposing the total optical field (2.71), we can also get a
consistent result.

Also, from the phase matching condition, coupling between the forward and backward
propagating waves with propagation constant ±Mπ/� and the radiation waves with
propagation constant βr can only happen at

βr = ±
(

Mπ

�
− m

2π

�

)
= ±M − 2m

�
π, (2.70a)

with m = 1, 2, 3, . . . , M/2 for even M and m = 1, 2, 3, . . . , (M − 1)/2 for odd M ,
respectively. Equation (2.70a) can also be written as

βr = M − 2m

�
π, (2.70b)

with m = 1, 2, 3, . . . , M − 1.
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Therefore, in periodically corrugated waveguide structures, we have to retain both
forward and backward propagating waves, as well as all the radiation waves that satisfy
the phase matching conditions, in decomposing the optical field for deriving the reduced
wave equation in both time and space domains. For this reason, we plug

⇀u(⇀r , t) = ⇀x

{
φ(x, y)

[
ef (z, t)ej Mπ

�
z + eb(z, t)e−j Mπ

�
z
]

+
M−1∑
m=1

êm(x, y)ej M−2m
�

πz

}
,

(2.71)
into (2.24) to obtain

1 + χ̃

neff c
φ

(
ej Mπ

�
z ∂ef

∂t
+ e−j Mπ

�
z ∂eb

∂t

)
+ φ

(
ej Mπ

�
z ∂ef

∂z
− e−j Mπ

�
z ∂eb

∂z

)
=

j
1

2neff k0

M−1∑
m=1

ej M−2m
�

πz

[
∂2

∂x2
+ ∂2

∂y2
+ k2

0(1 + χ̃) −
(

M − 2m

�

)2

π2
]
êm

+ j
k0

2neff

(
1 + χ̃ − n2 + 2neff δ

k0

)
φ

(
ef ej Mπ

�
z + ebe−j Mπ

�
z

)
− j

ejω0t

2neff ω0

√(
µ0

ε0

)
∂Jspx

∂t
,

(2.72)

where equations (2.34) and (2.69) have been used while ∂2ef /∂z2 and ∂2eb/∂z2 have
been dropped under the slow-varying envelope assumption. Strictly speaking, the radi-
ation wave amplitudes êm should have (z, t) dependence as well, since the forward and
backward propagating waves are actually the sources of these radiation waves and the
former certainly depends on (z, t). However, as will be seen in equation (2.82), the
dependence of êm on (z, t) is implicit (i.e., through ef and eb only), therefore, we can
ignore the partial derivatives of êm to (z, t) as the changes of êm on (z, t) are adiabatic.
For this reason, we only record êm as explicit functions of (x, y).

Usually the grating itself, i.e., the corrugated part, can be viewed as a perturbation
in an optical waveguide with full confinement in the cross-sectional area, which has
been discussed in Section 2.4.1 and is known as the unperturbed reference waveguide.
Following the change in the grating, the material properties, i.e., the refractive index and
gain, all change periodically along the wave propagation direction z. Therefore, we can
expand the periodically changed material properties into Fourier series by writing

n2(⇀r , ω0) =
⎡⎣n(x, y, ω0) +

+∞∑
m=−∞,m�=0

�nm(x, y)ejm 2π
�

z + �n(z, ω0)

+
+∞∑

m=−∞,m�=0

δnmejm 2π
�

z

⎤⎦2

≈ n2(x, y, ω0) + 2n(x, y, ω0)�n(z, ω0)

+ 2n(x, y, ω0)

+∞∑
m=−∞,m�=0

[�nm(x, y) + δnm] ejm 2π
�

z, (2.73)



24 Optoelectronic Devices: Design, Modeling, and Simulation

and

g(⇀r , ω0) = g(z, ω0) +
+∞∑

m=−∞,m�=0

�gmejm 2π
�

z −
⎡⎣α(x, y, z) +

+∞∑
m=−∞,m�=0

�αm(x, y)ejm 2π
�

z

⎤⎦
= g(z, ω0) − α(x, y, z) +

+∞∑
m=−∞,m�=0

[�gm − �αm(x, y)] ejm 2π
�

z, (2.74)

with �nm, δnm, �gm, and �αm denoting the mth Fourier expansion coefficient of the
material refractive index, the (bias induced) index change, the (bias induced) stimu-
lated emission gain, and the optical loss, respectively. In these expansions, the Fourier
coefficients are obtained through

�nm(x, y) = 1

�

∫ �

0
np(x, y, z)e−jm 2π

�
z dz, (2.75a)

δnm = 1

�

∫ �

0
�np(z)e−jm 2π

�
z dz, (2.75b)

�gm = 1

�

∫ �

0
gp(z)e−jm 2π

�
z dz, (2.75c)

�αm(x, y) = 1

�

∫ �

0
αp(x, y, z)e−jm 2π

�
z dz, (2.75d)

for m = 0, ±1, ±2, . . ., with np, �np, gp, and αp denoting the periodically corrugated
part of the material refractive index, the (bias induced) index change, the (bias induced)
stimulated emission gain and the optical loss, respectively. Also in equations (2.73) and
(2.74), the DC components (i.e., the 0th order coefficients �n0, δn0, �g0, and �α0)

are merged with their corresponding terms in the reference waveguide where the grating
does not exist (i.e., n, �n, g, and α, respectively). Although it is always possible to
select the unperturbed reference waveguide in such a way that the average np in one
period is equal to zero, hence �n0 = 0, it is generally not possible to have all the
DC components disappear for a given corrugated structure, no matter how we select
our reference. Therefore, we should not forget to include the DC contribution of the
corrugated part to the material properties given in equations (2.73) and (2.74).

From equations (2.73) and (2.74), we can derive

1 + χ̃(⇀r , ω0) =
[
n(⇀r , ω0) − j

2k0
g(⇀r , ω0)

]2

≈ 1 + χ̃0(
⇀r , ω0) + 2n(x, y, ω0)

+∞∑
m=−∞,m�=0

Am(x, y)ejm 2π
�

z, (2.76a)

with

Am(x, y) ≡ �nm(x, y) + δnm − j

2k0
[�gm − �αm(x, y)], (2.76b)



Optical models 25

and

1 + χ̃0(
⇀r , ω0) ≡ n2(x, y, ω0) + 2n(x, y, ω0)�n(z, ω0)

− j

k0
n(x, y, ω0)[g(z, ω0) − α(x, y, z)], (2.76c)

given as the total (i.e., vacuum plus host medium) susceptibility of the unperturbed
reference waveguide.

Plugging equation (2.76a) into equation (2.72), and collecting all the forward

propagating terms with factor ej Mπ
�

z yields

1 + χ̃0

neff c
φ

∂ef

∂t
+ φ

∂ef

∂z
= jk0

2neff

(
1 + χ̃0 − n2 + 2neff δ

k0

)
φef

+ jk0n

neff
AMφeb + jk0

2neff

M−1∑
m=1

Amêm − j
e−j( Mπ

�
z−ω0t)

2neff ω0

√(
µ0

ε0

)
∂Jspx

∂t
. (2.77a)

Collecting all the backward propagating terms with factor e−j Mπ
�

z yields

1 + χ̃0

neff c
φ

∂eb

∂t
− φ

∂eb

∂z
= jk0

2neff

(
1 + χ̃0 − n2 + 2neff δ

k0
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+ jk0n
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�
z+ω0t)

2neff ω0
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ε0
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∂Jspx

∂t
. (2.77b)

And collecting all the radiation wave terms with factors ej M−2m
�

πz yields[
∂2

∂x2
+ ∂2

∂y2
+ k2

0n2 −
(

M − 2m

�

)2

π2
]
êm = −k2

0nφ(A−mef + AM−meb), (2.77c)

where m = 1, 2, 3, . . . , M − 1.
Multiplying the optical mode φ(x, y) on both sides of equations (2.77a) and (2.77b),

and integrating over the entire cross-sectional area yields(
1

vg

∂

∂t
+ ∂

∂z

)
ef (z, t) =

[
jδ + jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
ef (z, t)

+ jκMeb(z, t) + jk0

2neff
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m=1

∫
�

Am(x, y)êm(x, y)φ(x, y)dx dy + s̃ f (z, t),

(2.78a)(
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vg
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)
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jδ + jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
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+ jκ−Mef (z, t) + jk0
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∫
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(2.78b)
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where equations (2.41a), (2.41b), (2.35) and (2.37) have been used. Also, in deriving
(2.78a) and (2.78b), we have used

k0

∫
�

n(x, y, ω0)AM(x, y)φ2(x, y)dx dy

= k0

∫
�

n(x, y, ω0)

[
�nm(x, y) + δnm − j

2k0
�gm + j

2k0
�αm(x, y)

]
φ2(x, y)dx dy

= n
[
κ IC
m + κGCr

m − jκGCi
m + jκLC

m

]
≡ nκm, (2.79)

where

k0

∫
�

n(x, y, ω0)�nm(x, y)φ2(x, y)dx dy ≈ nk0

∫
�

�nm(x, y)φ2(x, y)dx dy ≡ nκ IC
m ,

(2.80a)

k0

∫
�

n(x, y, ω0)

(
δnm − j

2k0
�gm

)
φ2(x, y)dx dy

≈ n

(
k0δnm − j

2
�gm

)
≡ n(κGCr

m − jκGCi
m ), (2.80b)

j

2

∫
�

n(x, y, ω0)�αm(x, y)φ2(x, y)dx dy ≈ jn

2

∫
�

�αm(x, y)φ2(x, y)dx dy ≡ jnκLC
m .

(2.80c)

(note that IC, GCr, GCi, and LC indicate the index coupling, the real part of the gain
coupling, the imaginary part of the gain coupling, and the loss coupling, respectively.)

With its RHS viewed as an inhomogeneous driven source, equation (2.77c) can be
formally solved by a Green’s function approach. To do this, we need to solve [8, 9]

[
∂2

∂x2
+ ∂2

∂y2
+ k2

0n2(x, y, ω0) −
(

M − 2m

�

)2

π2
]
Gm(x, y; x′, y′) = δ(x − x′, y − y′),

(2.81)

for m = 1, 2, 3, . . . , M −1 subject to the boundary conditions associated with the given
waveguide structure. Once Green’s functions are obtained, we can readily express the
radiation waves in terms of the driven source, i.e., the forward and backward propagating
waves

êm(x, y) = −k2
0

∫
�

n(x′, y′, ω0)φ(x′, y′)[A−m(x′, y′)ef (z, t)

+ AM−m(x′, y′)eb(z, t)]Gm(x, y; x′, y′)dx′ dy′

= hf
m(x, y)ef (z, t) + hb

m(x, y)eb(z, t), (2.82)
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where

hf
m(x, y) = −k2

0

∫
�
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≈ −k2
0n

∫
�

φ(x′, y′)A−m(x′, y′)Gm(x, y; x′, y′)dx′ dy′

hb
m(x, y) = −k2

0

∫
�

n(x′, y′, ω0)φ(x′, y′)AM−m(x′, y′)Gm(x, y; x′, y′)dx′ dy′

≈ −k2
0n

∫
�

φ(x′, y′)AM−m(x′, y′)Gm(x, y; x′, y′)dx′ dy′, (2.83)

with m = 1, 2, 3, . . . , M − 1. Finally, we plug equation (2.82) into equations (2.78a)
and (2.78b) to obtain(
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φ(x′, y′)AM−m(x′, y′)Gm(x, y; x′, y′)dx′ dy′
]

φ(x, y)dx dy,

(2.85b)

κbf
r = k0

2neff

M−1∑
m=1

∫
�

Am−M(x, y)hf
m(x, y)φ(x, y)dx dy

= −k3
0

2

M−1∑
m=1

∫
�

Am−M(x, y)

[ ∫
�

φ(x′, y′)A−m(x′, y′)Gm(x, y; x′, y′)dx′ dy′
]
φ(x, y)dx dy,

(2.85c)
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κbb
r = k0

2neff

M−1∑
m=1

∫
�

Am−M(x, y)hb
m(x, y)φ(x, y)dx dy

= −k3
0

2

M−1∑
m=1

∫
�

Am−M(x, y)

[ ∫
�

φ(x′, y′)AM−m(x′, y′)Gm(x, y; x′, y′)dx′ dy′
]
φ(x, y)dx dy,

(2.85d)

with Am given in equation (2.76b), φ and Gm the solutions to equations (2.34) and (2.81),
respectively.

Equation (2.84), known as the coupled traveling wave equation, governs the slow-
varying envelope functions of the forward and backward propagating waves. Comparing
with equation (2.47), we find that the grating introduces distributed mutual coupling
between the originally independently propagated forward and backward traveling waves
along ±z. The coupling coefficient κm can be taken as the ratio between the transmitted
and reflected (due to the grating) waves per unit length, and is given by equation (2.79).
It consists of four components as shown in equation (2.80a–c).

(1) κ IC
m = (background) index coupling coefficient due to the periodically corrugated

material background refractive index change; as shown in equation (2.80a), it is
proportional to the mth Fourier expansion coefficient �nm, which is in turn deter-
mined by equation (2.75a), the corrugated material refractive index shape np in one
period;

(2) κGCr
m = index change coupling coefficient or real part of the gain coupling coefficient

due to the periodically corrugated material gain-induced index change; it is bias
dependent and, as shown in equation (2.80b), is proportional to the mth Fourier
expansion coefficient δnm, which is in turn determined by equation (2.75b), the
(bias induced) corrugated index change shape �np in one period;

(3) κGCi
m = gain coupling coefficient or imaginary part of the gain coupling coefficient due

to the periodically corrugated stimulated emission gain change; it is bias dependent
and, as shown in equation (2.80b), is proportional to the mth Fourier expansion
coefficient �gm, which is in turn determined by equation (2.75c), the (bias induced)
corrugated stimulated emission gain shape gp in one period;

(4) κLC
m = loss coupling coefficient due to the periodically corrugated optical loss change;

as shown in equation (2.80c), it is proportional to the mth Fourier expansion coeffi-
cient �αm, which is in turn determined by equation (2.75d), the corrugated optical
loss shape αp in one period.

Since κm �= κ−m in general, from equation (2.84) we know that the coupling from
the backward to forward and the coupling from the forward to backward propagating
waves, measured by κm and κ−m, respectively, are not symmetric. However, they do
have restricted relations if the grating has a single coupling mechanism and has either
symmetry or anti-symmetry.Actually, since the grating shape function must be real, from
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equation (2.75a–d) we have

�n−m = (�nm)∗, δn−m = (δnm)∗,

�g−m = (�gm)∗, and �α−m = (�αm)∗. (2.86)

Consequently, from equation (2.80a–c) we find

κ IC−m = (κ IC
m )∗,

κGCr−m = (κGCr
m )∗,

κGCi−m = (κGCi
m )∗,

κLC−m = (κLC
m )∗, (2.87)

if φ is a fully confined guided mode (hence φ is real). From equations (2.79) and (2.87),
we know that for a purely index-coupled grating structure, κm = κ IC

m + κGCr
m , hence

κ−m = (κm)∗. In particular, if the purely index-coupled grating structure is symmetric
(e.g., the grating length is an integral number of half grating periods), κm is real and
κ−m = κm; whereas, if the purely index-coupled grating structure is anti-symmetric
(e.g., the grating length is an integral number of grating periods), κm is imaginary and
κ−m = −κm. For a purely gain- or loss-coupled grating structure, κm = −jκGCi

m + jκLC
m ,

hence κ−m = −j(κGCi
m )∗ + j(κLC

m )∗. In particular, if the purely gain- or loss-coupled
grating structure is symmetric, κm is imaginary and κ−m = κm; whereas, if the purely
gain- or loss-coupled grating structure is anti-symmetric, κm is real and κ−m = −κm.
For a complex-coupled grating structure, where both index and gain or loss coupling
appear, or for a grating structure that is neither symmetric nor anti-symmetric, both κm

and κ−m are complex.
From equation (2.84), we know that a real κm (or κ−m) brings in a phase shift, whereas

an imaginary κm (or κ−m) brings in an amplitude change, to the reflected wave. There-
fore, different coupling mechanisms (i.e., index and gain or loss coupling) or grating
symmetries (which can be controlled by the phase at either or both ends of the grat-
ing) may result in completely different “wave filtering” effects and give different lasing
wavelength or side mode suppression ratio (SMSR) in DFB and DBR lasers or different
reflection and transmission spectra in grating based devices. We will find the effect of
different gratings in Chapter 10 through examples.

Also as seen in equation (2.84), from the backward to forward and from the forward
to backward, the coupling coefficients between the propagating waves are given by κM

and κ−M , respectively, which is consistent with our original assumption that it is the
Mth grating order that couples the forward to the backward propagating wave and vice
versa.

The second difference between equations (2.84) and (2.47) is that there is an extra
phase shift coefficient jδ associated with the propagating term that has nothing to do
with the feedback. If we remove the grating by setting both κm and κ−m to zero, this
term still exists. This term naturally appears because we have shifted our reference
propagation constants from the original ±β0 (when there is no grating) to ±Mπ/�
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(i.e., the grating Bragg wave number) for the forward and backward propagating waves,
respectively. If we persist in using ±β0 as our reference propagation constants even
for grating structures, we just need to replace the slow-varying envelope functions ef

and eb by ef ejδz and ebe−jδz in equation (2.84), respectively, and we will find that the
resulting equation remains the same except that the extra phase shift term jδ disappears
and the coupling coefficients are modified from κm and κ−m to κme−2jδz and κ−me2jδz,
respectively. Apparently, if we switch off the grating again, the resulting equation returns
to equation (2.47).

Finally, if M > 1, the grating makes both forward and backward propagating waves
couple themselves to the radiation waves ranking in order from 1 to M − 1. Such
coupling brings in two major effects as seen in equation (2.84). Firstly, it introduces
additional phase shift and amplitude loss to the forward and backward propagating still
waves, scaled by the real and imaginary parts of κ ff

r and κbb
r , respectively. Secondly, it

provides extra couplings from the backward to forward and from the forward to back-
ward propagating waves, scaled by κ fb

r and κbf
r , respectively. However, these effects

are proportional to the second order perturbation of the grating, simply because any
self-coupling of the forward or backward propagating wave and any mutual coupling
between the forward and backward coupling waves through the radiating waves must
experience the coupling between the propagating and the radiating waves twice: firstly
from the propagating waves to the radiating waves and then back to the propagating
waves. Otherwise, the radiating waves go away and nothing will be recaptured by the
propagating waves. Since the coupling strength between the propagating and the radiat-
ing waves is in proportion to the grating strength (i.e., the periodically corrugated part
or the grating Fourier expansion coefficients), the propagating to the radiating wave
coupling and the recapture of the radiating wave by the propagating wave must have a
coupling strength in proportion to the square of the grating strength. This can also be
seen from equations (2.85a–d). Actually, taking the extreme case in equation (2.81) by
assuming that the system does not give any spreading or damping to the impulse, as the
response to the impulse, or the solution to equation (2.81), Green’s functions will all
become the δ-function. From equations (2.85a–d), we find

κ ff
r = −k3

0

2

M−1∑
m=1

∫
�

Am(x, y)A−m(x, y)φ2(x, y)dx dy, (2.88a)

κ fb
r = −k3

0

2

M−1∑
m=1

∫
�

Am(x, y)AM−m(x, y)φ2(x, y)dx dy, (2.88b)

κbf
r = −k3

0

2

M−1∑
m=1

∫
�

Am−M(x, y)A−m(x, y)φ2(x, y)dx dy, (2.88c)

κbb
r = −k3

0

2

M−1∑
m=1

∫
�

Am−M(x, y)AM−m(x, y)φ2(x, y)dx dy. (2.88d)
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These self-coupling and mutual coupling coefficients bridged through the radiation wave
are therefore given explicitly in the second order of the grating strength measured by Am.

The above discussion suggests that, towards the first order approximation, the radiation
effects are negligible in equation (2.84) even for higher order gratings with M > 1.
Naturally, if the grating is of the first order with M = 1, no radiation can happen and
those coefficients are zero according to equations (2.85a–d).

The coupled traveling wave equation (2.84) can be solved subject to certain initial and
boundary conditions. Again, since the initial and boundary conditions are related to the
operating conditions and structures of specific devices, we will find the effect of these
conditions on device performance through examples shown in Chapter 10.

Finally, the real-world optical field is obtained by

⇀

E(⇀r , t) = 1

2
⇀xφ(x, y)

[
ef (z, t)ej Mπ

�
z + eb(z, t)e−j Mπ

�
z

]
e−jω0t

+ 1

2
⇀x

M−1∑
m=1

êm(x, y)ej( M−2m
�

πz−ω0t) + c.c. (2.89)

2.5 Broadband optical traveling wave models

Unlike a single mode semiconductor laser that oscillates at a narrow wavelength range,
some optoelectronic devices operate in a broad wavelength band, such as semiconductor
optical amplifiers (SOA) in wavelength division multiplexing (WDM) systems where
multiple wavelength channels must be processed, or gain-clamped (GC) SOAs where
the lasing wavelength (for gain clamping) and the signal channel are far separated, or a
superluminescent light-emitting diode (SLED) in which light emitted over a broadband
is essential. For these broadband devices, the assumption in equation (2.23) is no longer
valid as the medium dispersiveness is not negligible, i.e., the induced polarization of the
host medium cannot instantly respond to the change of input field. Therefore, we have to
use a different treatment from equation (2.23) in deriving the optical governing equations.
Generally, there are three ways of dealing with this problem. The first approach is to retain
the integration form of equation (2.9) in all of the derivations from Section 2.2 to 2.4. As
a result, we will obtain differential–integral equations instead of differential equations.
This is a natural consequence of a host medium with a limited response time: the induced
polarization appears to have a memory as the host medium always responds to a fast-
varying excitation field with a certain delay. To compute such delayed response, we have
to count in the whole history by summing all the delayed components at any time instant,
which gives us the convolution terms in the original differential equations. In principle,
this approach can be numerically implemented through a digital filtering method in the
time domain [10], yet its stability and convergence have not been proved, not to mention
its poor computational efficiency. To show this general approach notwithstanding, we
will follow a procedure similar to the one in Section 2.4.1 and designate it a direct
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convolution model. We will also introduce two other approaches based on some further
approximations, which are stable, convergent, and more efficient in many applications
[11, 12].

In this chapter, we take only the fully confined waveguide structure as an exam-
ple. Similar derivations can readily be extended to partially confined or periodically
corrugated waveguides.

2.5.1 The direct convolution model

If the optical field has a broadband, equation (2.23) is no longer valid because of the
dispersiveness of the material susceptibility in the field band. However, we can view the
susceptibility as a summation of a constant at the reference frequency and a frequency
dependent part, or

χ̃(⇀r , ω) = χ̃(⇀r , ω0) + �χ̃(⇀r , ω). (2.90)

Equation (2.23) can then be written as

⇀

P (⇀r , t) = ε0F
−1{[χ̃(⇀r , ω0) + �χ̃(⇀r , ω)]̃⇀u(⇀r , ω − ω0)}

= ε0χ̃(⇀r , ω0)F
−1 [̃

⇀u(⇀r , ω − ω0)
] + ε0F

−1 [
�χ̃(⇀r , ω)̃⇀u(⇀r , ω − ω0)

]
= ε0χ̃(⇀r , ω0)

⇀u(⇀r , t)e−jω0t + ε0

∫ t

−∞
�χ(⇀r , t − τ)⇀u(⇀r , τ )e−jω0τ dτ. (2.91)

By replacing the field in equation (2.91) with equation (2.32), we obtain

⇀

P (⇀r , t) = ⇀xε0φ(x, y)ej(β0z−ω0t)

[
χ̃(⇀r , ω0)e(z, t) +

∫ t

−∞
�χ(⇀r , t − τ)e(z, t)ejω0(t−τ) dτ

]
= ⇀xφ(x, y)ej(β0z−ω0t) [ε0χ̃(⇀r , ω0)e(z, t) + �p(⇀r , t)] , (2.92)

with the slow-varying envelope of the polarization defined as

�p(⇀r , t) ≡ ε0

∫ t

−∞
�χ(⇀r , t − τ)e(z, τ )ejω0(t−τ) dτ. (2.93)

Insert equations (2.31) and (2.92) into the general wave equation (2.19), multiply the
optical mode φ(x, y) on both sides of the equation obtained, and integrate over the entire
cross-sectional area to yield

1

vg

∂e(z, t)

∂t
+ ∂e(z, t)

∂z
=

[
jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
e(z, t)

+ jk0

2neff ε0
�p(z, t) + s̃(z, t), (2.94)

where

�p(z, t) ≡ ε0

∫ t

−∞
�χ(z, t − τ)e(z, τ )ejω0(t−τ) dτ, (2.95)
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with

�χ(z, t) =
∫

�

�χ(⇀r , t)φ2(x, y)dx dy. (2.96)

Similarly to the derivation of equation (2.46), under the slow-varying envelope assump-
tion (|∂2e/∂z2| � |β0|2|e| and |∂2e/∂t2| � |ω0|2|e|), ∂2e/∂z2 and ∂2e/∂t2 are dropped
in deriving equation (2.94). Note that ∂�p/∂t is also dropped for the reason explained
in [13]. Equations (2.34), (2.35), (2.41a), and (2.41b) are also used with the spontaneous
emission contribution given by equation (2.37).

Equation (2.94) governs the envelope function of the optical wave propagating along
+z. For the optical wave that propagates along the opposite direction (−z), we simply
need to use −z to replace z in (2.94), as both the material property and the spontaneous
emission contribution have bidirectional symmetry along ±z. Therefore, we obtain(

1

vg

∂

∂t
+ ∂

∂z

)
ef (z, t) =

[
jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
ef (z, t)

+ jk0

2neff ε0
�pf (z, t) + s̃ f (z, t) (2.97a)(

1

vg

∂

∂t
− ∂

∂z

)
eb(z, t) =

[
jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
eb(z, t)

+ jk0

2neff ε0
�pb(z, t) + s̃ b(z, t), (2.97b)

where

�pf ,b(z, t) ≡ ε0

∫ t

−∞
�χ(z, t − τ)ef ,b(z, τ )ejω0(t−τ) dτ. (2.98)

In equation (2.97), we have used the superscripts f and b to indicate the forward and
backward propagating wave envelope functions, respectively. Also in equation (2.97),
as the inhomogeneous spontaneous emission contributions to the forward and backward
propagating waves, s̃ f is given by equation (2.37) and s̃ b(z, t) = s̃ f (−z, t), respectively.

Comparing equation (2.97) with equation (2.47), we find that the extra convolution
term defined by equation (2.98) describes the broadband effect. Namely, because of the
dispersiveness of the material susceptibility, as it passes through such material, the optical
field depends not only on the instantaneous susceptibility, but also on the past susceptibil-
ity. If we view the material susceptibility as a system impulse response function, and the
optical field as an input signal, then as the output signal the polarization carries the whole
history of the system response to the input signal, which is represented by the convolution
of the system impulse response and the input signal. Only if the system takes no time to
respond to any fast-varying signal, i.e., the system frequency domain transfer function is
a constant with unlimited bandwidth, expression (2.90) reduces to χ̃(⇀r , ω) = χ̃(⇀r , ω0)

or �χ̃(⇀r , ω) = 0, and we have �pf ,b(z, t) = 0 accordingly. Although in the real world
there is no material (except a vacuum) bearing unlimited bandwidth, if the input signal
has a narrow band, we can still approximate the system transfer function as a constant in
the entire signal bandwidth, provided that the bandwidth of the system transfer function
is much broader. Under such an approximation, the system still responds to the input
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signal without any delay in time. We can also understand that this is a situation in which
the system carries no memory, so that its historical behavior has no effect on the current
response. Therefore, we still have �pf ,b(z, t) = 0, hence equation (2.47) when the opti-
cal field has a narrow band in comparison with the material susceptibility. In this sense,
we can view equation (2.47) as a special case of equation (2.97).

As a general governing equation for the broadband optical field, equation (2.97)
can be solved directly by exploring a digital filtering algorithm, which is discussed
in Section 6.2.3.

2.5.2 The effective Bloch equation model

The frequency domain equivalent to equation (2.98) is

�p̃ f ,b(z, ω) = ε0�χ̃(z, ω − ω0)e
f ,b(z, ω). (2.99)

If we further write the frequency dependent part of the material susceptibility into a
summation of the Lorentzian function [14]

�χ̃(z, ω) =
M∑
i=1

Ai(z)

ω + ω0 − ωp(z) − δi(z) + j�i(z)
, (2.100)

equation (2.99) becomes

�p̃ f ,b(z, ω) = ε0

M∑
i=1

Ai(z)e
f ,b(z, ω)

ω − ωp(z) − δi(z) + j�i(z)
=

M∑
i=1

�p̃
f ,b
i (z, ω), (2.101)

where

�p̃
f ,b
i (z, ω) ≡ ε0

Ai(z)e
f ,b(z, ω)

ω − ωp(z) − δi(z) + j�i(z)
. (2.102)

In the above expression, ωp denotes the material gain peak frequency, Ai , δi , and �i

Lorentzian fitting parameters. They are all real numbers measured in rad/s. Actually,
equation (2.100) assumes that the material gain and refractive index change profiles take
the usual Lorentzian shape and its Kramers–Kronig transform in the form of

�g(z, ω) = k0

n�

M∑
i=1

Ai(z)�i(z)

[ω + ω0 − ωp(z) − δi(z)]2 + �2
i (z)

, (2.103a)

�n(z, ω) = 1

2n�

M∑
i=1

Ai(z)[ω + ω0 − ωp(z) − δi(z)]
[ω + ω0 − ωp(z) − δi(z)]2 + �2

i (z)
. (2.103b)

This result becomes obvious if we first rewrite equation (2.40) in the form

χ̃(⇀r , ω) = n2(x, y, ω0) − 1 + 2n(x, y, ω0)�n(z, ω)

− j

k0
n(x, y, ω0)[g(z, ω0) + �g(z, ω) − α(x, y, z)], (2.104)
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then compare it with (2.90) to identify

χ̃(⇀r , ω0) = n2(x, y, ω0) − 1 − j

k0
n(x, y, ω0)[g(z, ω0) − α(x, y, z)], (2.105a)

�χ̃(⇀r , ω) = 2n(x, y, ω0)�n(z, ω) − j

k0
n(x, y, ω0)�g(z, ω). (2.105b)

In equation (2.104), we have split the material gain into a constant and a frequency
dependent part, whereas the constant and frequency dependent components of the mate-
rial refractive index are ascribed to the background refractive index and refractive index
change, respectively. We have also assumed that the optical loss is dispersiveless. By
taking the Fourier transform on both sides of equation (2.96) and replacing the frequency
dependent material susceptibility in the integrand on the RHS with equation (2.105b),
we find

�χ̃(z, ω) =
∫

�

�χ̃(⇀r , ω)φ2(x, y)dx dy ≈ 2n��n(z, ω) − j

k0
n��g(z, ω), (2.106)

where approximations similar to equations (2.41b) and (2.42) are used with n and � given
by equations (2.41a) and (2.44), respectively. Finally, equations (2.105a) and (2.105b)
are obtained by setting the imaginary and real parts of equation (2.100) equal to the
respective parts of equation (2.106).

We know from our physics-based gain model described in Chapter 4 that the semicon-
ductor material gain is a summation over all contributions from transition pairs between
the momentum matched conduction band electron and valence band hole. In bulk semi-
conductors, such summation in a three-dimensional (3D) momentum space is converted
into a continuous integration over all possible electron-hole energy differences by the
introduction of a 3D density of state (DOS) function. The integrand indeed takes the same
form as equation (2.103a) if we let M = 1. Although we do not expect a Lorentzian
function to retain the Lorentzian shape after being integrated in respect to one of its
parameters, which means equation (2.103a) can never be strictly valid for bulk semi-
conductors, we can always look for the best fit between the rigorous physics-based gain
model and the gain given in equation (2.103a) by choosing proper fitting parameters
within the optical field bandwidth. That is to say, we first compute the physics-based
gain numerically, then extract the fitting parameters in equation (2.103a) by minimizing
the error between such obtained gain and the analytical gain calculated through equation
(2.103a) over the entire optical field bandwidth. Once such a fitting is successful (i.e., the
minimized error is less than a predetermined small value), we obtain a set of parameters
that makes equation (2.103a) valid. In semiconductor quantum well (QW) structures,
conduction band electrons and valence band holes have discrete energy levels along one
direction. Hence the material gain is a summation over all contributions from the allowed
transitions between these discrete energy levels. We should certainly set M in equation
(2.103a) equal to the number of allowed (discrete) transitions. However, in computing
the material gain, a summation is still required in the rest of the 2D momentum space.
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This summation is converted into a continuous integration over all possible electron-
hole energy differences by the introduction of a 2D DOS function. The integrand, again,
takes the same form as the term inside the summation on the RHS of equation (2.103a).
For the same reason as explained above, equation (2.103a) is not strictly valid for semi-
conductor QW structures either. However, we can still rely on the above mentioned
fitting algorithm to obtain a set of parameters in equation (2.103a) to ensure its val-
idation within the optical field bandwidth. Once parameters in equation (2.103a) are
extracted, equation (2.103b) is uniquely determined through the Kramers–Kronig trans-
formation where there are no more free parameters, hence no more unknowns. Before
we return to explore the effective Bloch equation, it is worth mentioning that equation
(2.103a) is strictly valid for semiconductor quantum dot (QD) structures, as the rigorous
physics-based QD gain takes a form identical to equation (2.103a).

By rewriting equation (2.102) in the form

jω�p̃
f ,b
i (z, ω) =

[
jωp(z)+ jδi(z)+�i(z)

]
�p̃

f ,b
i (z, ω)+ jε0Ai(z)e

f ,b(z, ω), (2.107)

we readily obtain the effective Bloch equation by further taking the inverse Fourier
transform

∂

∂t
�p

f ,b
i (z, t) = [jωp(z) + jδi(z) + �i(z)]�p

f ,b
i (z, t) + jε0Ai(z)e

f ,b(z, t), (2.108)

where i = 1, 2, 3, . . . , M.Also, taking the inverse Fourier transform of equation (2.101)
and substituting the polarization contribution term (i.e., the extra convolution term) in
equation (2.97) by the RHS of the resulting equation, we find(
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eb(z, t) =
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jk0��n(z, ω0) + 1

2
�g(z, ω0) − 1

2
α(z)

]
eb(z, t)

+ jk0

2neff ε0

M∑
i=1

�pb
i (z, t) + s̃ b(z, t). (2.109b)

Equations (2.109) and (2.108) form a complete set of governing equations for dealing
with the broadband optical field, where instead of computing the convolution equation
(2.98) directly, we solve M effective Bloch equations in the form of equation (2.108)
with their parameters obtained by a best matching of a rigorous physics-based gain to the
one given in equation (2.103a). As a replacement of equation (2.98), equation (2.108)
provides an alternative way of taking into account the history. Equation (2.98) reveals
that the history can be computed through storing the historical responses and adding
them together at the current step. In this case, we just need to memorize the history



Optical models 37

without much extra computational effort. Equation (2.108), however, indicates that the
history can also be accounted for by computing the effect of the history at the current
step. As opposed to the previous case, we now need extra computational effort in solving
the effective Bloch equation without much extra memory requirement. In short, equation
(2.98) memorizes the history while equation (2.108) computes the history. Therefore,
we need fewer memory units but more CPU time to implement equation (2.108).

2.5.3 The wavelength slicing model

In some optoelectronic devices, the optical field has multiple discrete wavelength com-
ponents spreading over a broad range, with each component changing with time because
of modulation, such as in SOAs for in-line amplification in WDM systems or in directly
modulated multi-mode Fabry–Perot (FP) laser diodes. The optical field can therefore be
viewed as a multi-channel band limited modulation signal. If the modulation bandwidth
is smaller than the channel frequency spacing, instead of equation (2.31), we can write
an optical field with N wavelength channels in the form

⇀

E(⇀r , t) = ⇀xφ(x, y)

N∑
k=1

ek(z, t)e
j(β0z−ωkt), (2.110)

with ωk indicating the kth channel reference frequency (carrier frequency), ek the kth
channel slow-varying longitudinal field envelope function, and k = 1, 2, 3, . . . , N .
Plugging equation (2.110) into equation (2.9) yields

⇀

P (⇀r , t) = ⇀xε0φ(x, y)ejβ0z
N∑

k=1

∫ t

−∞
χ(⇀r , t − τ)ek(z, τ )e−jωkτ dτ

= ⇀xε0φ(x, y)ejβ0z
N∑

k=1

F−1[χ̃(⇀r , ω)̃ek(z, ω − ωk)]

≈ ⇀xε0φ(x, y)ejβ0z
N∑

k=1

χ̃(⇀r , ωk)F
−1 [̃ek(z, ω − ωk)]

= ⇀xε0φ(x, y)ejβ0z
N∑

k=1

χ̃(⇀r , ωk)ek(z, t)e
−jωkt . (2.111)

In equation (2.111), we have utilized our presumption that ek’s are slow-varying
functions of time hence every ẽk has a narrow band centralized at ωk . As mentioned in
Section 2.2, the material susceptibility can respond to very fast input function changes
with time, which means that its frequency domain counterpart χ̃ is relatively smooth.
Therefore, in dealing with the product of a smooth (χ̃) and a comb-like (

∑N
k=1 ẽk)

function, we can view the latter as a sampling function. The result of the product becomes
the sampling function itself with its sharp peak amplitudes modulated by values of
the smooth function sampled at these peaks. That is to say, the continuous smooth
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0

Eg F c-F v

Optical signal channels
(with non-overlapping narrow bandwidth)

Spontaneous emission gain
(with broad bandwidth)

Stimulated emission gain or loss
(with broad bandwidth)

E = �v

Fig. 2.4. Material stimulated and spontaneous emission gain profiles and narrow-banded, non-overlapping
optical signal channels. When the signal passes through such material with an ultra-broad
bandwidth, interferences between signal channels are negligible. Note that Eg is the gain
medium bandgap energy, F c − F v is the quasi-Fermi level separation due to external injection,
and E is the photon energy variable.

function χ̃ can be replaced by a set of discrete constants sampled at channel reference
frequencies (ωk’s) corresponding to ẽk’s, and consequently be taken out of the inverse
Fourier transform. This is illustrated by Fig. 2.4.

By inserting equations (2.110) and (2.111) into equation (2.19), multiplying the optical
mode φ(x, y) on both sides of the equation obtained, and integrating over the entire
cross-sectional area, we obtain

N∑
k=1

e−jωkt
1

vgk

∂ek(z, t)

∂t
+

N∑
k=1

e−jωkt
∂ek(z, t)

∂z

=
N∑

k=1

[
j
�ωk

c
n + jk0��n(z, ωk) + 1

2
�g(z, ωk) − 1

2
α(z)

]
ek(z, t)e

−jωkt + e−jω0t s̃(z, t),

(2.112)

where the group velocity is rescaled by

vgk = vgω0/ωk, (2.113)

and ωk + ω0 is approximated by 2ω0 and

�ωk ≡ ωk − ω0. (2.114)

In deriving equation (2.112), again we have dropped ∂2e/∂z2 and ∂2e/∂t2 because of
the slow-varying envelope assumption (|∂2e/∂z2| � |β0|2|e|and |∂2e/∂t2| � |ω0|2|e|).
Equations (2.34), (2.35), (2.41a), and (2.41b) are also used with the spontaneous emission
contribution given by equation (2.37). In particular, we have assumed that the mate-
rial background refractive index and optical loss are dispersiveless. Consequently, the
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following expressions hold along with equation (2.112) in a similar way to equations
(2.38) to (2.40)

n2(⇀r , ωk) = [n(x, y, ωk) + �n(z, ωk)]2 ≈ [n(x, y, ω0) + �n(z, ωk)]2

≈ n2(x, y, ω0) + 2n(x, y, ω0)�n(z, ωk), (2.115)

g(⇀r , ωk) = g(z, ωk) − α(x, y, z), (2.116)

1 + χ̃(⇀r , ωk) = [n(⇀r , ωk) − j

2k0
g(⇀r , ωk)]2

≈ n2(x, y, ω0) + 2n(x, y, ω0)�n(z, ωk)

− j

k0
n(x, y, ω0)[g(z, ωk) − α(x, y, z)]. (2.117)

Multiplying by ejωlt and taking a time average over a certain period T on both sides
of equation (2.112) yields

1

vgl

∂el(z, t)

∂t
+ ∂el(z, t)

∂z
=[

j
�ωl

c
n + jk0��n(z, ωl) + 1

2
�g(z, ωl) − 1

2
α(z)

]
el(z, t) + sl(z, t), (2.118)

where l = 1, 2, 3, . . . , N and the spontaneous emission contribution is a time-averaged
result of equation (2.37)

sl(z, t) ≡ 1

T

∫ t+T

t

e j(ωl−ω0)t s̃(z, t)dt

= − j

2neff ω0T

√(
µ0

ε0

)∫ t+T

t

e−j(β0z−ωlt)

[ ∫
�

∂Jspx

∂t
φ(x, y)dx dy

]
dt.

(2.119)

In deriving equation (2.118), we have utilized the assumption that the modulation band-
width is smaller than the channel frequency spacing, as such, every envelope function
related term, i.e., |∂ek/∂t |, |∂ek/∂z|, and |ek| is a slow-varying function of time com-
pared with the fast-varying factor e j(ωl−ωk)t when l �= k. Therefore, these terms can be
viewed as constants and taken out of the integrals. As a result, the time-average integral
is simply reduced to

1

T

∫ t+T

t

e j(ωl−ωk)tdt = e j(ωl−ωk)(t+T ) − e j(ωl−ωk)t

j(ωl − ωk)

= e j(ωl−ωk)(t+ T
2 )

sin
[
(ωl − ωk)

T
2

]
(ωl − ωk)

T
2

→ δlk, (2.120)

as (ωl − ωk)T /2 → ∞. Hence we obtain equation (2.118). Actually, this result is very
similar to the phase matching condition. Because of our pre-assumption, there is no
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overlap of base-bands from different wavelength channels in the frequency domain.
Therefore, there is no interference between different channels in the time domain in
an average sense, because of the rapid phase change in time given by e j�ωt , with �ω

indicating the channel frequency difference. Consequently, if and only if an equation in
the form of equation (2.118) holds for every channel, equation (2.112) becomes possible.

If we consider wave propagations in both directions along ±z by following the
approach introduced in Section 2.4.1 from equations (2.46) to (2.47), equation (2.118)
can readily be expanded to(

1

vgk

∂

∂t
+ ∂

∂z

)
ef
k(z, t) =

[
j
�ωk

c
n + jk0��n(z, ωk)

+ 1

2
�g(z, ωk) − 1

2
α(z)

]
ef
k(z, t) + sf

k(z, t), (2.121a)(
1

vgk

∂

∂t
− ∂

∂z

)
eb
k(z, t) =

[
j
�ωk

c
n + jk0��n(z, ωk)

+ 1

2
�g(z, ωk) − 1

2
α(z)

]
eb
k(z, t) + sb

k(z, t), (2.121b)

with k = 1, 2, 3, . . . , N . Also in equation (2.121), as the averaged inhomogeneous
spontaneous emission contributions to the forward and backward propagating waves, sf

k

is given by equation (2.119) and sb
k(z, t) = sf

k(−z, t), respectively.
Equation (2.121) is the governing equation for the broadband optical field with discrete

wavelength channels and with each channel modulation bandwidth smaller than the
channel spacing. If there is only one channel left, we can choose ω0 as that channel
frequency and equation (2.121) is reduced to equation (2.47) as we expected. In this sense,
equation (2.121) is an extension of equation (2.47) with the interference contribution
between different channels completely ignored, which is true when the base-bands of
different channels do not overlap in the frequency domain. Once we cannot be certain
that the broadband optical field comprises only discrete wavelength components, or we
find that there is an overlap between the base-bands of any two different channels, we
have to give up this wavelength slicing model and return to the direct convolution model
or effective Bloch equation model.

2.6 Separation of spatial and temporal dependences − the standing wave
model

Although the material susceptibility in equation (2.24) is given in its frequency domain
value at the reference frequency, it can still be an implicit function of time because of the
change of operating condition applied to the material. For example, changes of carrier
injection or static electric field may introduce gain or absorption and refractive index
changes in semiconductors. If these changes are introduced through the time-dependent
external forward or backward bias, the material susceptibility will change with time
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accordingly through such bias. For this reason, we can write the material susceptibility
in the form of

1 + χ̃(⇀r , ω0) ≈ 1 + χ̃V (⇀r , ω0) + dχ̃V (⇀r , ω0)

dV
�V (t). (2.122)

In equation (2.122), χ̃V and dχ̃V /dV indicate the frequency domain material suscep-
tibility and its derivative with respect to the external bias at an arbitrary static external
bias V and the reference frequency ω0, respectively; �V (t) = V (t + �t) − V (t), the
difference in the external bias between time t + �t and an arbitrary reference time t . To
make equation (2.122) valid, we have to let |�V | � 1. This is always possible for any
continuous time-dependent function once we let �t → 0. Through equation (2.122), the
material susceptibility is split into a time-invariant and a time-dependent part, with its
time dependence given in an explicit form. As such, neither χ̃V nor dχ̃V /dV has time
dependence anymore.

Using equation (2.122), we can rewrite equation (2.24) as

j
2ω0

c2
[1 + χ̃(⇀r , ω0)]∂

⇀u

∂t

= −∇2⇀u − ω2
0

c2

[
1 + χ̃V (⇀r , ω0) + dχ̃V (⇀r , ω0)

dV
�V (t)

]
⇀u + µ0e jω0t

∂

∂t

⇀

J sp.

(2.123)

If we can solve the following eigenvalue problem

∇2⇀v(⇀r ) + ω2
0

c2
[1 + χ̃V (⇀r , ω0)]⇀v(⇀r ) = β2

V
⇀v(⇀r ), (2.124)

subject to the boundary condition defined by the device structure and for any given static
bias V, we will be able to separate the spatial and temporal variables in equation (2.123)
by an integral transformation over the space domain, with the kernel function of the
integral transform given as the eigenfunction obtained from equation (2.124). More
specifically, we can expand our solution to equation (2.123) in the form

⇀u(⇀r , t) =
∑
l∈L

Ul(t)
⇀v l (

⇀r ), (2.125a)

where integer l indicates the lth eigenvalue and eigenfunction, L the whole eigenvalue
set, and Ul(t) the time-dependent coefficient of the lth eigenfunction. Equation (2.125a)
is valid since, as the solution to the eigenvalue problem in equation (2.124), ⇀v l (

⇀r ) (l ∈ L)

forms a complete and orthogonal set that can be used as a base to expand any continuous
function. If the eigenvalues are continuous, l becomes a real vector in 3D and we should
use a continuous integral instead of the discrete summation in equation (2.125a)

⇀u(⇀r , t) =
∫

L

U⇀
l
(t)⇀v⇀

l
(⇀r )d

⇀

l . (2.125b)

In the most general case, equation (2.124) gives both discrete and continuous eigen-
solutions so we should use the summation of the RHS of both equations (2.125a) and
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(2.125b) to expand our solution. In this section, we will assume that there exist only
discrete eigensolutions in equation (2.124), so equation (2.125a) will be used through-
out. However, the generality of this approach will not be affected as we can achieve
similar conclusions if equation (2.125b) or a combination of equations (2.125a) and
(2.125b) is used.

Plugging equation (2.125a) into equation (2.123), multiplying by ⇀vm(r) and integrat-
ing both sides yields

dUm(t)

dt
= vg

2

[
j
β2

V m

nk0
+ �gV mm(t)

]
Um(t) + vg

2

∑
l∈L,l �=m

�glm(t)Ul(t) + vg̃sm(t),

(2.126)
with m ∈ L, and

�gV lm(t) ≡ j
k0

n

∫
�

⇀vm(⇀r )
dχ̃V (

⇀r ω0)
dV

�V (t)⇀v l (
⇀r )d⇀r∫

�
⇀v2

m(r)d⇀r
, (2.127)

s̃m(t) ≡ − je jω0t

2nω0

√(
µ0

ε0

)∫
�

⇀vm(⇀r ) ∂
∂t

⇀

J sp d⇀r∫
�

⇀v2
m(r)d⇀r

. (2.128)

In deriving equation (2.126), we have used equation (2.124) and the orthogonal
condition among eigenfunctions∫

�

⇀vm(⇀r )⇀v l (
⇀r )d⇀r = δml

∫
�

⇀v2
m(⇀r )d⇀r , (2.129)

with an approximation made similarly to equation (2.41a)∫
�

⇀vm(⇀r )[1 + χ̃(⇀r , ω0)]⇀v l (
⇀r )d⇀r ≈

∫
�

⇀vm(⇀r )n2(⇀r , ω0)
⇀v l (

⇀r )d⇀r

≈ n2
∫

�

⇀vm(⇀r )⇀v l (
⇀r )d⇀r = n2δml

∫
�

⇀v2
m(r)d⇀r ,

(2.130)

and with � in the above integrals defined as the entire space in which the optical field
spreads.

Because of the homogeneity of the eigenequation (2.124), we can assign any dimen-
sions to the eigenfunction ⇀vm(⇀r ). The dimensions of the time-dependent coefficient
Um(t) can therefore be assigned arbitrarily since equation (2.126) can always be nor-
malized as long as the inhomogeneous spontaneous emission contribution is scaled in
the same way. A convenient option is to assign |Um(t)|2 as the dimensionless photon
number of the mth eigenfunction. As such, ⇀vm(⇀r ) and s̃m(t) will take V/m and 1/m as
their units, respectively.

Equation (2.126) gives the optical rate equation in its general form with the cross-
coupling coefficients and inhomogeneous spontaneous emission contribution given by
equations (2.127) and (2.128), respectively. Once we expand the optical field through
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time-invariant eigenfunctions, known as optical modes, their amplitudes are governed
by equation (2.126). Following this approach, the spatial and temporal dependence of
the optical field is separated through mode expansion, with optical modes carrying only
the spatial dependence and their amplitudes describing only the temporal dependence.
These optical modes are solutions to the eigenvalue problem equation (2.124) subject
to the device boundary condition, whereas their amplitudes are governed by the opti-
cal rate equation (2.126). Apparently, equation (2.124) has no time dependence and is
determined by the device structure under a static bias. Equation (2.126), on the other
hand, is a set of ordinary differential equations (ODEs) without spatial dependence. Once
equation (2.124) is solved, the parameters in equation (2.126), i.e., the self-coupling and
cross-coupling coefficients, can be found from the solution of equation (2.124) (i.e.,
the eigenvalues) and from equation (2.127), respectively, hence equation (2.126) can be
solved. It is also worth mentioning that the optical rate equation (2.126) is related to
the device structure and operating condition (i.e., external bias) only through these self-
coupling and cross-coupling parameters. Since parameter changes in an equation within
a certain range can hardly change the nature of its solution, we know that the nature of
the solution to equation (2.126) has little dependence on the detailed device structure
and operating condition. Therefore, once we find a full solution of equations (2.124)
and (2.126) for a certain “reference” device structure and “typical” operating condition,
we do not expect any substantial change in the solution of equation (2.126) when the
device structure and its operating condition deviate slightly from the “reference” struc-
ture and “typical” condition. In this sense, this model has its particular advantage in
device structure refining and operation optimization.

A major drawback of this model, however, lies in the truncation of the modal expan-
sion expressed in equation (2.125a). For any practical device, we need to extract power
from at least one of its facets. More specifically, for an edge emitting device, we have to
take power from the wave propagation direction along the cavity (z). Therefore, energy
is not conserved inside the device cavity because of leakage at one or both facets. This
fact indicates that, at least along the z direction, the optical field has a traveling wave
component that cannot be expressed by a summation of a limited number of standing
wave components. Hence the number of modes (i.e., the number of standing wave com-
ponents) required in the expansion equation (2.125a) must be infinity. Fortunately, the
number of eigenfunctions, or optical modes obtained from equation (2.124) is also infin-
ity and their completeness is guaranteed [15]. Expansion in the form of equation (2.125a)
is therefore theoretically valid for any case if we allow the summation to include an infi-
nite number of modes. In practical computations, however, equation (2.125a) must be
truncated, which brings the problem of how many terms must be retained to guarantee
a certain accuracy. This unfortunately seems to be an open problem, although we have
the following general guidance.

(1) For devices with more “closed” cavity or resonator structures with a higher quality
(Q) factor, more power is stored inside the device and hence less energy leakage
results. Fewer modes in equation (2.125a) will be required to ensure a given accuracy.
Examples of such devices are various semiconductor lasers.
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(2) For devices with more “open” cavity or resonator structures with a poor Q factor,
less power is stored inside the device and hence high energy leakage results. More or
even infinite modes will be required which makes equation (2.125a) computation-
ally meaningless. Examples of such devices are SOAs, SLEDs and optoelectronic
modulators.

To explore this approach further, we will again focus on the fully confined waveguide
structure, as it is quite straightforward to expand this approach to other structures as
mentioned in Section 2.4. Actually, comparing equation (2.122) with equation (2.40),
we find

1 + χ̃V (⇀r , ω0) = n2(x, y, ω0) + 2n(x, y, ω0)�nV (z, ω0)

− j

k0
n(x, y, ω0)[gV (z, ω0) − α(x, y, z)], (2.131)

and

dχ̃V (⇀r , ω0)

dV
= 2n(x, y, ω0)

d�nV (z, ω0)

dV
− j

k0
n(x, y, ω0)

dgV (z, ω0)

dV
, (2.132)

where we have assumed that the background refractive index and the optical loss are
not external bias dependent, and have expanded the implicit time-dependent material
gain and induced refractive index change in an explicit time-dependent form similar to
equation (2.122). In the fully confined waveguide structure, we can write the 3D optical
mode in equation (2.124) in a form similar to equation (2.32) with the time dependence
removed

⇀v(⇀r ) = ⇀xφ(x, y)e(z)e jβ0z, (2.133)

where e(z) is a slow-varying function along z and is known as the optical longitudinal
mode distribution. Plugging equations (2.131) and (2.133) into equation (2.124), multi-
plying the transverse optical mode φ(x, y) on both sides of the equation obtained, and
integrating over the entire cross-sectional area yields

de(z)

dz
+

[
−jk0��nV (z, ω0) − 1

2
�gV (z, ω0) + 1

2
α(z)

]
e(z) = −j

β2
V

2β0
e(z), (2.134)

where ∂2e/∂z2 is dropped under the slow-varying envelope assumption (|∂2e/∂z2| �
|β0|2|e|). In deriving equation (2.134), equations (2.34), (2.35), and (2.41b) to (2.43) are
also used with the optical confinement factor � and optical modal loss α defined as in
equations (2.44) and (2.45), respectively.
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To consider wave propagation in both directions along ±z, we can readily expand
equation (2.134) by following the approach introduced in Section 2.4.1

def (z)

dz
+

[
− jk0��nV (z, ω0) − 1

2
�gV (z, ω0) + 1

2
α(z)

]
ef (z) = −j

β2
V

2β0
ef (z),

(2.135a)

−deb(z)

dz
+

[
− jk0��nV (z, ω0) − 1

2
�gV (z, ω0) + 1

2
α(z)

]
eb(z) = −j

β2
V

2β0
eb(z),

(2.135b)

with the 3D optical mode expression (2.133) modified to

⇀v(⇀r ) = ⇀xφ(x, y)[ef (z)ejβ0z + eb(z)e−jβ0z]. (2.136)

Equation (2.135) forms an eigenvalue problem subject to the boundary condition given
at the two facets of the device waveguide, which is normally in the form

ef (0) = Rl(ω0)e
b(0)

eb(L) = Rr(ω0)e
f (L), (2.137)

with Rl and Rr denoting the left and right facet amplitude reflectivity, respectively. We
have also assumed in equation (2.137) that the device waveguide is between 0 and L.
Also, under equation (2.136) the orthonormal condition (2.129) is reduced to∫ L

0
[ef

m(z)e jβ0z + eb
m(z)e−jβ0z][ef

l (z)e
jβ0z + eb

l (z)e
−jβ0z]dz

= δml

∫ L

0
[ef

m(z)e jβ0z + eb
m(z)e−jβ0z]2dz, (2.138)

where equation (2.35) is used.
In a single mode waveguide, as the solution to equation (2.34) subject to the boundary

condition of the cross-sectional structure, the transverse optical mode φ(x, y) is unique.
As the solution to equation (2.135) subject to the boundary condition equation (2.137),
however, the longitudinal optical mode pair ef ,b(z) is not unique. Actually, there must be
an infinite number of longitudinal mode pairs because of the energy leakage. Therefore,
the 3D mode index should be assigned to the longitudinal mode pair ef ,b(z). We further
plug equations (2.132) and (2.136) into equation (2.127) to obtain

�gV lm(t) =
�
∫ L

0

[
jk0

d�nV (z,ω0)
dV

+ 1
2

dgV (z,ω0)
dV

]
�V (t)

[
ef
m(z)eb

l (z) + eb
m(z)ef

l (z)
]

dz∫ L

0 ef
m(z)eb

m(z)dz
,

(2.139)

where equation (2.42) is used and those fast oscillation terms with factors e±2jβ0z are all
dropped.
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Finally, by combining equations (2.22), (2.125a), and (2.136), we find the real-world
optical field

⇀

E(⇀r , t) = 1

2
⇀xφ(x, y)

∑
l∈L

Ul(t)
[
ef

l (z)e
jβ0z + eb

l (z)e
−jβ0z

]
e−jω0t + c.c. (2.140)

As opposed to the traveling wave model equation (2.47) described in Section 2.4.1,
equations (2.135), (2.139), and (2.126) form the standing wave model where the lon-
gitudinal field envelope function has been split into a spatially dependent part, the
longitudinal optical mode, and a time-dependent part, the mode amplitude, or the photon
amplitude once it is normalized to a dimensionless quantity. Instead of solving PDEs
in the longitudinal direction and time, we just need to solve a 1D eigenvalue problem
(ODE) for the longitudinal mode and a set of rate equations (ODEs) for the mode ampli-
tude, with the former accounting for the optical field longitudinal dependence and the
latter describing the optical field time dependence, respectively. As for the optical field
transverse dependence, both models describe it in the same way through the transverse
optical mode governed by the eigenvalue problem equation (2.34) defined in the 2D
cross-section. Published work [16, 17, 18, 19, 20, 21] reveals that the standing wave
model is far more efficient in static and small signal analysis for semiconductor lasers,
especially for single mode lasers or when the number of lasing modes is limited to only
a few. In large signal dynamic analysis, however, this method loses its computational
efficiency very rapidly as the external bias changes with time more abruptly or as the
number of modes required in expansion (2.125a) grows. Actually, to describe an abrupt
change of the external bias in the time domain, we have to let longitudinal modes and
associated eigenvalues float with the static bias to ensure the validity of equation (2.122)
(i.e., to ensure |�V | � 1). Therefore, the longitudinal eigenequation (2.135) needs to be
solved at multiple static bias values, which increases the computational effort.Also, from
equation (2.139) it is easy to conclude that the computational effort required on these
coefficients in describing the cross-coupling terms in the optical rate equation (2.126)
grows quadratically as the number of required longitudinal modes. Only for those struc-
tures under certain operation conditions where the longitudinal spatial hole burning
(LSHB) effect is negligible, is equation (2.139) reduced to

�gV lm(t) = �

(
2jk0

d�nV

dV
+ dgV

dV

)
�V (t)δml. (2.141)

Consequently, the optical rate equation (2.126) is greatly simplified to

dUm(t)

dt
= vg

2

[
j
β2

V m

nk0
+2jk0�

d�nV

dV
�V (t)+�

dgV

dV
�V (t)

]
Um(t)+vg̃sm(t), (2.142)

where all the cross-coupling terms disappear. Obviously, the numerical computation will
be extremely efficient in this situation. Other approaches have also been developed in an
effort to reduce the computational cost of the cross-coupling coefficients described by
equation (2.139) [22]. In situations where these approaches are applicable, the standing
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wave approach is still more efficient compared with the traveling wave method, even in
large signal dynamic analysis.

In summary, the standing wave model serves as a complement of the traveling wave
model in static and small signal analysis of devices with high Q resonant structure such as
semiconductor lasers. It also has advantages in device structure refining and operation
optimization. We will return to the numerical implementation and application of this
model in Section 6.3.

2.7 Photon rate and phase equations − the behavior model

For some users, optoelectronic devices are viewed as symbolic nodes without physical
dimensions. Such nodes process input signals and send them out as output signals.
Therefore, only the terminal performance of such a device is of interest. A device model
with only time dependence is thus desired and is referred to as the behavior model.

Actually, if we approximate the longitudinal optical field as uniformly distributed,
equation (2.135) reduces to

β2
V = β0[2k0��nV (z, ω0) − j�gV (z, ω0) + jα(z)]. (2.143)

Under uniform field distribution, the LSHB disappears, hence equation (2.142) is
applicable. Plugging equation (2.143) into equation (2.142) yields

dU(t)

dt
= vg

2
[2jk0��n(t) + �g(t) − α]U(t) + vg̃s(t), (2.144)

where we write �nV + (d�nV /dV )�V (t) and gV + (dgV /dV )�V (t) as �n(ω0) and
g(ω0), respectively. They still have implicit time dependence through the external bias.

By letting U(t) = √
(S(t))e jϕ(t), where S(t) = |U(t)|2 and ϕ(t) indicate the photon

number and phase, respectively, we find from equation (2.144)

dS(t)

dt
= vg[�g(ω0) − α]S(t) + Rsp(t), (2.145)

dϕ(t)

dt
= vgk0��n(ω0) + Fsp(t). (2.146)

In equations (2.145) and (2.146), the spontaneous emission photon number and phase
noises are defined as

Rsp(t) ≡ 2vgRe[s̃(t)U∗(t)], (2.147)

and
Fsp(t) ≡ vgIm[s̃(t)U∗(t)]/S(t), (2.148)

respectively.
Equations (2.145) and (2.146) are the photon rate and phase equations used for model-

ing the device behavior from an optical aspect. The photon number is related to the output
optical power of the device, whereas the time derivative of the photon phase determines
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the optical frequency deviation from its reference frequency ω0. We will skip further
discussion on this model as this book mainly focuses on physics-based models.

2.8 The spontaneous emission noise treatment

Although the spontaneous emission contribution can be theoretically calculated through
expressions given in above sections, we would rather take a phenomenological approach
in evaluating the noise contribution to avoid unnecessary complication in implementa-
tions, because an exact treatment of noise without quantization of the optical field is
not possible [23, 24, 25, 26, 27]. In this treatment, we will utilize the fact that, despite
its random nature, the noise power can be evaluated directly. Fortunately, with respect
to most of a device’s characteristics, only the noise power matters. This approach is
therefore justified.

Actually, by taking a small step dz and integrating the steady state equation (2.46)
along the wave propagation direction (z), we find

e(z + dz) = e
[

jk0��n(z,ω0)+ 1
2 �g(z,ω0)− 1

2 α(z)
]

dze(z) + s̃(z)dz, (2.149)

where the spontaneous emission contribution is added at the end of this step so that it is
not yet amplified.

From the energy transmission point of view, propagation of the guided mode opti-
cal wave inside the waveguide is equivalent to plane wave propagation inside a
free-space filled by the effective index, neff , of this mode. Since the absolute value
of the Poynting vector of the latter (i.e., the plane wave) can be evaluated through
|S| = (ε0c/2)neff |φ(x, y)|2|e(z)|2 = (neff

√
(ε0/µ0)/2)|φ(x, y)|2|e(z)|2, and the abso-

lute value of the Poynting vector is the power density flow along the wave propagation
direction, we know that

∫
�

|S|dx dy = (neff
√

(ε0/µ0)/2)|e(z)|2 is the power carried
by the optical wave e(z) as it propagates along the waveguide, where we have utilized
the fact that the optical wave is confined in the cross section � (as the guided mode) and
is normalized.

Multiplying equation (2.149) by its complex conjugate and a factor of neff
√

(ε0/µ0)/2
in 1/� on both sides yields

P(z + dz) = e[�g(z,ω0)−α(z)]dzP (z) + neff d2
z

2

√(
ε0

µ0

)
|̃s(z)|2. (2.150)

In equation (2.150), we have ignored cross terms as the noise has a random phase,
which makes the averaged contribution zero. Equation (2.150) clearly shows a power
balance with the last term on its RHS indicating the spontaneous emission noise power
contribution within the small step dz. On the other hand, the spontaneous emission noise
power contribution in a small section dz can be phenomenologically evaluated as [28, 29]

neff d2
z

2

√(
ε0

µ0

)
|̃s(z)|2 = γ�vggsp(z, ω0)�ω0, (2.151)
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with γ denoting the dimensionless coupling coefficient of the spontaneous emission over
the entire spatial sphere and spread over the entire frequency spectrum to the waveguide
mode at the reference frequency, � = h/2π the reduced Planck’s constant in J s, and
gsp the spontaneous emission gain in 1/m. The phenomenological parameter γ must
be introduced since spontaneously emitted photons go in every direction in a spatial
sphere whereas the waveguide is built in one direction. Therefore, the waveguide cannot
capture all these photons, and hence we need a parameter to describe the percentage of
photons coupled to the guided mode [30, 31]. Moreover, spontaneously emitted photons
take every possible frequency over the entire emission spectrum, and a coupling factor
therefore needs to be introduced to represent the proportion of the photons emitted in
the neighborhood of the reference frequency, as only these photons will be coupled
to the operating frequency. It is also worth mentioning that the material spontaneous
emission gain introduced here and the material stimulated emission gain (simply called
material gain) introduced in Section 2.4 are not the same unless the ground state is
completely empty. The stimulated emission gain, triggered by incoming photons, is the
net contribution of the downward transition (which emits photons) minus the upward
transition (which absorbs photons) between the excited and ground state, whereas the
spontaneous emission gain is the contribution of the downward transition only. We will
further discuss the calculation of these gains in Chapter 7 on the implementation of our
material model.

As a Langevin noise source, the amplitude and phase of the spontaneous emission
noise s̃(z, t) given in equation (2.37) can be approximately modeled by the Gaussian and
uniformly distributed random processes, respectively. The Gaussian distributed random
process takes zero mean with the autocorrelation function given as [32, 33, 34, 35]

〈|̃s(z, t)||̃s(z′, t ′)|〉 = 2
√(

µ0

ε0

)
γ�gsp(z, ω0)�ω0

neff
δ(z − z′)δ(t − t ′), (2.152)

where δ denotes the Dirac function. At the steady state as dz → 0, z → z′, t → t ′, δ(z−
z′) → 1/dz, and δ(t − t ′) → vg/dz, the LHS and RHS of (2.152) approach < |̃s(z)|2 >

and 2
√

(µ0/ε0)[γ�vggsp(z, ω0)�ω0/(neff d2
z )], respectively, which is consistent with

(2.151). The uniformly distributed random process for the phase of s̃(z, t) is over [0, 2π ].
In numerical calculations, the spontaneous emission contribution given in the form of
equation (2.37) is therefore modeled by two independent random number generators
(RNGs): the RNG that takes the Gaussian distribution with zero mean and autocorrelation
in the form of equation (2.152) describes the amplitude, the other RNG that takes the
uniform distribution over [0, 2π ] represents the phase of s̃(z, t).

The spontaneous emission noise s̃(x, z, t) given in equation (2.57) can be treated by
a similar approach, with its amplitude autocorrelation function modified to

< |̃s(x, z, t)||̃s(x′, z′, t ′)| >= 2
√(

µ0

ε0

)
γ�gsp(z, ω0)�ω0

neff
δ(x − x′)δ(z − z′)δ(t − t ′),

(2.153)

where as x → x′, δ(x−x′) → dx , with dx denoting the length of a small section along x.
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Still following a similar approach, we obtain the amplitude autocorrelation function
of the spontaneous emission noise sl(z, t) given in equation (2.119) as

< |sl(z, t)||sl(z
′, t ′)| >= 2

√(
µ0

ε0

)
γs�gsp(z, ωl)�ω0

neff
δ(z − z′)δ(t − t ′), (2.154)

with γs only counting the spatial coupling factor.
We again apply this approach to deal with the spontaneous emission noise in the

standing wave model. Actually, by ignoring those cross-coupling terms in the optical
rate equation (2.126) and integrating it over a small time step �t , we find

Um(t + �t) = e
vg
2

[
j
β2
V m
nk0

+�gV mm(t)
]
�t

Um(t) + vg�ts̃m(t), (2.155)

where the spontaneous emission contribution is added at the end of this step. Multiplying
equation (2.155) by its complex conjugate and �ω0 on both sides yields

Pm(t + �t) = e
vg

[
Im(β2

V m
)

nk0
+�gV mm(t)

]
�t

Pm(t) + (vg�t)2| s̃m(t)|2. (2.156)

In equation (2.156), we have ignored all cross terms due to the random phase of the
noise, which leads to zero averaged contribution. Equation (2.156) clearly shows a power
balance with the last term on its RHS indicating the spontaneous emission noise power
contribution within the small time step �t . Therefore, following equation (2.151), we
find

(vg�t)2| s̃m(t)|2 = γ�vggsp(ω0)�ω0, (2.157)

with

gsp(ω0) =
∫ L

0 gsp(z, ω0)e
f
m(z)eb

m(z)dz∫ L

0 ef
m(z)eb

m(z)dz
. (2.158)

We again assume that the amplitude and phase of the spontaneous emission noise
s̃m(t) given in equation (2.128) follow a Gaussian and a uniform distributed random
process, respectively. The Gaussian distributed random process takes zero mean with its
autocorrelation function given as

< | s̃m(t)|| s̃m(t ′)| >= γ�gsp(ω0)�ω0

vg�t
δ(t − t ′). (2.159)

The uniform distributed random process for the phase of s̃m(t) is over [0, 2π ].
In the behavior model, �ω0dS(t)/dt has the dimensions of optical power; according

to equation (2.145), �ω0Rsp(t) must be the spontaneous emission noise power. Its mean
value can therefore be estimated as

< �ω0Rsp(t) >= γ�vggsp(ω0)�ω0. (2.160)
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Regarding the spontaneous emission contribution to the photon phase, since it is
inversely proportional to the photon number according to equation (2.148), we can take
it as a random process with zero mean.

By taking out their mean values, we define

R̃sp(t) ≡ Rsp(t) − γ�vggsp(ω0) (2.161)

and
F̃sp(t) ≡ Fsp(t) (2.162)

Hence the photon rate and phase equation can be rewritten as

dS(t)

dt
= vg[�g(ω0) − α]S(t) + γ�vggsp(ω0) + R̃sp(t), (2.163)

dϕ(t)

dt
= vgk0��n(ω0) + F̃sp(t), (2.164)

where R̃sp(t) and F̃sp(t) are independent Gaussian distributed random processes with
zero means and autocorrelation functions given by [36, 37]

< R̃sp(t)R̃sp(t
′) > = 2γ�vggsp(ω0)S(t)δ(t − t ′), (2.165)

< F̃sp(t)F̃sp(t
′) > = γ�vggsp(ω0)

2S(t)
δ(t − t ′). (2.166)

Different random distributions (such as the Poisson distribution) can also be assigned
to the spontaneous emission noise. We find, however, that no appreciable difference
can be found in modeling those deterministic device characteristics, as long as the
noise autocorrelation function follows equations (2.152) to (2.154), (2.159), (2.165),
and (2.166) [12] [38].

Finally, it is worth mentioning that in the above expressions for spontaneous emission
noise powers and autocorrelation functions, we have absorbed Petermann’s factor [39]
into the spontaneous emission noise coupling coefficient γ or γs, instead of showing it
explicitly. This is because we have followed a phenomenological approach instead of
using the original noise amplitude expressions given in equations (2.37), (2.57), (2.119),
(2.128), (2.147) and (2.148). Since the focus of this book is on numerical modeling and
solution techniques, a rigorous treatment [40, 41, 42, 43, 44] of the spontaneous emission
noise is beyond our scope.
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3 Material model I: Semiconductor
band structures

To be able to model material optical properties such as the gain and refractive index
change, also known as material excitations, we need first to solve the single electron
band structure in semiconductors. That is to say, we will solve the material eigenstates
before we consider their excitations. Our discussion in this chapter is limited to compound
semiconductors with direct bandgaps where k–p theory is applicable.

3.1 Single electron in bulk semiconductors

3.1.1 The Schrödinger equation and Hamiltonian operator

For a system with K nuclei with charge Zk and N electrons, we can write the time-
dependent Schrödinger equation in the form

j�
∂

∂t
�(⇀r , t) = ⇀

H�(⇀r , t), (3.1)

with its Hamiltonian operator given as [1]

⇀

H = − �
2

2m0

N∑
n=1

∇2
n − �

2

2

K∑
k=1

∇2
k

Mk

+ 1

2

e2

4πε0

N∑
n,m=1,n�=m

1

|⇀r n − ⇀r m|

− e2

4πε0

K∑
k=1

N∑
n=1

Zk

|⇀r n − ⇀

Rk|
+ 1

2

e2

4πε0

K∑
k,l=1,k �=l

ZkZl

| ⇀

Rk − ⇀

Rl |
. (3.2)

In equations (3.1) and (3.2), ψ indicates the dimensionless wave function of the
N electron system, m0 the electron mass in kg, Mk the kth nucleus mass in kg, e the
elementary charge in C. Since the Hamiltonian operator has no explicit time dependence,
by introducing

�(⇀r , t) = e−j
εh
�

tψ(⇀r ), (3.3)

we obtain the steady-state Schrödinger equation

⇀

Hψ(⇀r ) = εhψ(⇀r ). (3.4)
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In equation (3.4), ψ(⇀r ) and εh denote the eigenfunction and eigenvalue of the given
Hamiltonian operator, known as the system wave function and energy, respectively. The
first and second terms in equation (3.2) are the summations of the kinetic energy of
the electrons and nuclei, respectively, the third and last terms the summations of the
Coulomb interactions (repulsion) between the electrons and nuclei, respectively, and the
fourth term the summation of the Coulomb interactions (attraction) between the nuclei
and the electrons. The extra factor of 1/2 in the third and last terms rectifies the double
counting in repulsion energy summation.

Without any approximation of the Hamiltonian in the form of equation (3.2), the static
Schrödinger equation (3.4) can only be solved exactly for a system of one nucleus with
one electron, e.g., a hydrogen atom, under the mass–center coordinates.

Because the nuclei move much slower than the electrons, pure nuclei contributions can
be ignored according to the Born–Oppenheimer approximation. Hence the Hamiltonian
is reduced to

⇀

H=− �
2

2m0

N∑
n=1

∇2
n+ e2

8πε0

N∑
n,m=1,n�=m

1

|⇀r n−⇀r m|−
e2

4πε0

K∑
k=1

N∑
n=1

Zk

|⇀r n− ⇀

Rk|
. (3.5)

Under such a Hamiltonian, the static Schrödinger equation (3.4) can still be solved
exactly only for a few simple systems with no more than two electrons, e.g., a helium
atom.

In considering the Hamiltonian for a single electron (e.g., the nth electron) in this sys-
tem, we can employ the Hartree self-consistent model by taking the interaction between
all the electron pairs as an average effect on the nth electron. Hence, the Hamiltonian
for the nth electron becomes

⇀

Hn = − �
2

2m0
∇2

n − e2

4πε0

K∑
k=1

Zk

|⇀r n − ⇀

Rk|

+ e2

8πε0

N∑
m=1,m�=n

∫
φ∗

m(⇀r m)
1

|⇀r n − ⇀r m|φm(⇀r m)d⇀r m. (3.6)

Once the wave function for the nth electron φn(
⇀r n) is solved by using equation (3.6)

in equation (3.4), we obtain the electron wave function for the whole system as

ψ(⇀r ) =
N∏

n=1

φn(
⇀r n). (3.7a)

Unfortunately, this model is proven not to be accurate in many cases. The reason is
that the spin of the electron is not considered. With spin, the electron wave function of
the whole system must be anti-symmetric under the (two electron) swapping operation.
However, equation (3.7a) is obviously a symmetric function under such an operation.
To solve this problem, the wave function should be fitted into the Slater determinant in
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the following form rather than equation (3.7a)

ψ(⇀r ) = 1√
N !

∣∣∣∣∣∣∣∣∣
φ1

⇀r 1
φ2

⇀r 1
. . . φN

⇀r 1

φ1
⇀r 2

φ2
⇀r 2

. . . φN
⇀r 2

. . . . . . . . . . . .

φ1
⇀r N

φ2
⇀r N

. . . φN
⇀r N

∣∣∣∣∣∣∣∣∣ . (3.7b)

Consequently, the Hamiltonian in equation (3.6) needs to be modified to the following
Hartree–Fock form

⇀

Hnφn(
⇀r n) =

[
− �

2

2m0
∇2

n − e2

4πε0

K∑
k=1

Zk

|⇀r n − ⇀

Rk|

]
φn(

⇀r n)

+ e2

8πε0

N∑
m=1

∫
φ∗

m(⇀r m)
1

|⇀r n − ⇀r m| [φm(⇀r m)φn(
⇀r n) + φn(

⇀r m)φm(⇀r n)] d⇀r m. (3.8a)

In looking for the single electron eigenstates, we assume that the effect of all the
other electrons, i.e., the Coulomb and the exchange operator as the last two terms in
equation (3.8a), can be approximated by grouped repulsion centers that coincide with
the nuclei in the form of

e2

4πε0

K∑
k=1

σn

|⇀r n − ⇀

Rk|
. (3.8b)

We will consider the inter-electron many-body effect, in its exact form only when we cal-
culate the optical gain and refractive index change in chapter 4. In this chapter, therefore,
the Hamiltonian is reduced to

⇀

Hn = − �
2

2m0
∇2

n − e2

4πε0

K∑
k=1

Zk − σn

|⇀r n − ⇀

Rk|
. (3.9)

In bulk semiconductors with perfect crystalline structures, all the nuclei rank in order
in the 3D space and form a periodic structure. We can further write the Hamiltonian in
equation (3.9) in the form

⇀

H 0 = − �
2

2m0
∇2 + V0(

⇀r ) =
⇀p2

2m0
+ V0(

⇀r ), (3.10)

with ⇀p ≡ �∇/j denoting the momentum operator, ⇀p2/(2m0) = −�
2∇2/(2m0) the

electron kinetic energy operator, and

V0(
⇀r ) = − e2

4πεr
, (3.11)

the Coulomb potential energy, which is periodic

V0(
⇀r ) = V0[⇀r + ⇀

R(⇀n)], (3.12)
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over the entire bulk semiconductor. In equation (3.11), ε denotes the bulk semiconductor
background frequency domain permittivity. The lattice vector

⇀

R in equation (3.12) is
defined as

⇀

R(⇀n) ≡
3∑

i=1

ni
⇀ai, (3.13)

with ni as an integer defined on [−Ni/2, Ni/2] for i = 1, 2, 3. In equation (3.13) ⇀ai

denotes the primitive vector of the lattice and Ni the total number of primitive cells
along dimension Li with i = 1, 2, 3, respectively. Li’s (for i = 1, 2, 3) define a 3D bulk
semiconductor with

Li = |⇀ai |Ni. (3.14)

Equation (3.10) reveals that the Hamiltonian comprises the kinetic energy and the
Coulomb potential energy. It is clear that the kinetic energy is the energy of a free electron
moving in a vacuum box that occupies the same space as the bulk semiconductor, whereas
the Coulomb potential energy describes the additional effect on this electron if we fill
the vacuum box with a semiconductor lattice.

3.1.2 Bloch’s theorem and band structure

The idea behind the Bloch theorem is to find a simple operator
⇀

P , which commutes
with the Hamiltonian operator

⇀

H 0. As such, the eigenstates of
⇀

H 0 can be chosen as the
eigenstates of

⇀

P simultaneously. If the eigenstates of
⇀

P can be readily determined, we
can use them to block-diagonalize the Hamiltonian, hence reducing the solution domain.
In this particular case,

⇀

P is selected as the lattice translation operator

⇀

Pψ(⇀r ) = ψ[⇀r + ⇀

R(⇀n)]. (3.15)

By taking p as the eigenvalue of the lattice translation operator
⇀

P , we have
⇀

Pψ(⇀r ) =
pψ(⇀r ), which means

pψ(⇀r ) = ψ[⇀r + ⇀

R(⇀n)]. (3.16)

It is apparent that we must have |p| = 1 as otherwise the wave function ψ would be
unbounded (i.e., ψ → ∞ as |p| > 1 and ψ → 0 as |p| < 1) if we repeatedly apply
equation (3.15). We can therefore select

p = e j⇀k ·⇀R(⇀n ), (3.17)

with
⇀

k introduced as the wave vector in 1/m. Hence equation (3.16) becomes

ψ[⇀r + ⇀

R(⇀n)] = e j⇀k ·⇀R(⇀n )ψ(⇀r ). (3.18)

By introducing the periodic boundary condition at each facet of the 3D bulk
semiconductor, i.e., ψ[⇀r + ⇀

R(
⇀

N/2)] = ψ[⇀r + ⇀

R(− ⇀

N/2)], we find

e
j⇀k ·

3∑
i=1

Ni
⇀a i = 1. (3.19)
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This is possible only if we let

⇀

k =
3∑

i=1

ni

Ni

⇀

bi, (3.20)

with
⇀

bi defined such that
⇀

bi · ⇀al = 2πδil .
⇀

bi’s are known as the primitive vectors of
the reciprocal lattice and can be explicitly expressed in the form of primitive vectors
through

⇀

b1 = 2π
⇀a2 × ⇀a3

|⇀a1 · (⇀a2 × ⇀a3)| ,
⇀

b2 = 2π
⇀a3 × ⇀a1

|⇀a2 · (⇀a3 × ⇀a1)| ,
⇀

b3 = 2π
⇀a1 × ⇀a2

|⇀a3 · (⇀a1 × ⇀a2)| .
(3.21)

Since the Hamiltonian operator is invariant under the lattice translation according to
equations (3.10) and (3.12),

⇀

P commutes with
⇀

H 0. By applying
⇀

P on both sides of the
single electron Schrödinger equation in bulk semiconductors

⇀

H 0�(⇀r ) = εh�(⇀r ), (3.22)

we find the LHS and RHS are

⇀

P
⇀

H 0ψ(⇀r ) = ⇀

H 0
⇀

Pψ(⇀r ) = ⇀

H 0ψ[⇀r + ⇀

R(⇀n)],

and
⇀

Pεhψ(⇀r ) = εh
⇀

Pψ(⇀r ) = εhψ[⇀r + ⇀

R(⇀n)],
respectively. Hence ψ[⇀r + ⇀

R(⇀n)] also serves as a solution of equation (3.22). We can
therefore write the general solution to equation (3.22) as a linear combination of all
possible ψ[⇀r + ⇀

R(⇀n)]’s with the lattice vector
⇀

R given in equation (3.13), giving

ψ(⇀r ) =
3∑

i=1

Ni/2∑
ni=−Ni/2

Ani
ψ[⇀r + ⇀

R(⇀n)], (3.23)

where An is the coefficient of the nth term in the linear combination.
Plugging equation (3.18) into equation (3.23) yields

ψ(⇀r ) =
3∑

i=1

Ni/2∑
ni=−Ni/2

Ani
e j⇀k ·⇀R(⇀n )ψ(⇀r ) or

3∑
i=1

Ni/2∑
ni=−Ni/2

Ani
e j⇀k ·⇀R(⇀n ) = 1.

This must be valid for all
⇀

k ’s given in the form of equation (3.20), hence

Ani
= 1

N1N2N3
e−j⇀k ·↼R(⇀n ). (3.24)
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Equation (3.23) can therefore be written as

ψ(⇀r ) = 1

N1N2N3

3∑
i=1

Ni/2∑
ni=−Ni/2

e−j⇀k ·↼R(⇀n )ψ[⇀r + ⇀

R(⇀n)]

= e j⇀k ·⇀r 1

N1N2N3

3∑
i=1

Ni/2∑
ni=−Ni/2

e−j⇀k ·[⇀r +↼
R(⇀n )]ψ[⇀r + ⇀

R(⇀n)]

= e j⇀k ·⇀r u⇀
k
(⇀r ), (3.25)

with the lattice wave function defined as

u⇀
k
(⇀r ) ≡ 1

N1N2N3

3∑
i=1

Ni∑
ni=1

e−j⇀k ·[⇀r +↼
R(⇀n )]ψ[⇀r + ⇀

R(⇀n)]. (3.26)

We can easily prove that u⇀
k
[⇀r + ⇀

R(⇀n)] = u⇀
k
(⇀r ) since the summation on the RHS of

equation (3.26) goes through every possible lattice, hence the lattice wave function is a
periodic function in terms of the lattice vector

⇀

R. Equation (3.25) is known as Bloch’s
theorem. It does not provide a final solution but effectively reduces the solution domain
from ψ(⇀r ) in the entire bulk semiconductor that comprises N1N2N3 primitive cells to
u⇀

k
(⇀r ) in one primitive cell. The latter obeys an equation obtained by plugging the Bloch

equation (3.25) back into the static Schrödinger equation (3.22) with the Hamiltonian
operator given in equation (3.10), which is in the form[

− �
2

2m0
(∇ + jk)2 + V0(

⇀r )

]
u⇀

k
(⇀r ) = εhu⇀

k
(⇀r ). (3.27)

Once the new eigenvalue problem equation (3.27) is solved in a primitive cell, the
single electron wave function in the entire bulk semiconductor can be found from
equation (3.25). In dealing with equation (3.27), however, we have to take the wave vec-
tor

⇀

k as a varying parameter and solve the eigenvalue problem for all the possible values
of ⇀r restricted by equation (3.20), i.e., in the first Brillouin zone (BZ). Therefore, strictly
speaking we have to solve equation (3.27) N1N2N3 times. In this sense, equation (3.27)
does not appear easier to solve than equation (3.22). Fortunately, there are many effi-
cient approaches developed for solving equation (3.27) under various assumptions and
for different applications, which drastically reduce its computational cost [2, 3, 4]. In our
applications, the material optical property is the major concern. Therefore, there is no
need to solve equation (3.27) accurately for the

⇀

k ’s that are not in the neighborhood of
their extremes, as states having such

⇀

k values are almost empty anyway in the time scale
in which we are interested. Particularly for those semiconductors with direct bandgaps,
the extremes line up at a single

⇀

k . Therefore, we need only to solve equation (3.27) once
at this extreme

⇀

k , and then expand our solution to its neighborhood through the pertur-
bation approach. Known as the k–p theory, this model is well justified for our purpose,
and hence we will use it throughout this chapter.
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Before moving on to solve equation (3.27), we will further extract the in-depth
information given by Bloch’s theorem.

First, for each wave vector
⇀

k in the first BZ there is a discrete infinite set of eigenvalues
εh. This conclusion becomes clearer if we utilize the knowledge that the lattice periodicity
lies in both V0 and u⇀

k
to transform equation (3.27) into an algebraic equation. Actually,

by introducing the reciprocal lattice vector in 1/m

⇀

G( ⇀m) ≡
3∑

i=1

mi
⇀

bi, (3.28)

with mi = 0, ±1, ±2, ±3 . . . , taking any integer for i = 1, 2, 3, we can expand V0 and
u⇀

k
into Fourier series

V0(
⇀r ) =

3∑
i=1

∞∑
mi=−∞

Ṽ⇀
G

e j⇀
G(⇀m)·⇀r , (3.29)

u⇀
k
(⇀r ) =

3∑
i=1

∞∑
mi=−∞

ũ⇀
k ⇀g

e j⇀
G(⇀m)·⇀r , (3.30)

where

Ṽ⇀
G

= 1

�

∫
�

V0(
⇀r )e−j⇀

G(↼m)·⇀r d⇀r , (3.31)

ũ⇀
k

⇀
G

= 1

�

∫
�

u⇀
k
(⇀r )e−j⇀

G(↼m)·⇀r d⇀r , (3.32)

with � denoted as the whole volume of the bulk semiconductor. (If the bulk is rectangular
in shape and the primitive cell is a simple cubic, we simply have � = L1L2L3.)

Substituting equation (3.29) and (3.30) into equation (3.27) and equating the various
Fourier components yields

�
2

2m0
[⇀

k + ⇀

G( ⇀m)]2ũ⇀
k

⇀
G

+
3∑

i=1

∞∑
m′

i=−∞
Ṽ⇀

G
′ ũ⇀

k (⇀
G−⇀

G
′
) = εhũ⇀

k
⇀
G

. (3.33)

Equation (3.33) is an infinite set of linear algebraic equations. For non-trivial solutions,
for each

⇀

k in the first BZ, we must let its determinate be zero, which results in an algebraic
equation of an infinite order for the unknown eigenvalue εh. In principle we can solve
this equation to obtain εh. Hence we have an infinite number of discrete εh’s for each

⇀

k

in the first BZ. Therefore, we can explicitly record εh as εn⇀
k

. The positive integer n runs
through an ascending order to index these discrete εh’s with n = 1 marking the smallest
εh.As illustrated by Fig. 3.1, since �

⇀

G = ∑3
i=1

⇀

bi � �
⇀

k = ∑3
i=1

⇀

bi/Ni , or the spacing
between the adjacent reciprocal lattice vectors is much larger than the spacing between
the adjacent wave vectors, we find from equation (3.33) that the change in the eigenvalue
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Fig. 3.1. The creation of energy bands in a one-dimensional lattice where energy bandgaps appear
because of the disturbance of the periodic potential that is non-vanishing only at the reciprocal
lattice in the wave vector domain.

εh caused by the change in the reciprocal lattice vector
⇀

G must be larger than that caused
by the change in the wave vector

⇀

k . And this conclusion holds for any periodic potential
energy V0 as it has only non-vanishing Fourier components on the reciprocal lattice and
has no

⇀

k dependence. Therefore, εn⇀
k

is densely distributed in
⇀

k but sparsely distributed
in n since �ε|�n = εn⇀

k
− ε(n−1)⇀k

> �ε|�⇀
k

= |εn⇀
k

− εn(⇀k −�⇀
k )|. Normally the bulk

volume is huge in relation to the primitive cell, or Ni � 1 for i = 1, 2, 3; also we have
�

⇀

k = ∑3
i=1

⇀

bi/Ni → 0 and hence
⇀

k becomes continuous as well as εn⇀
k

because of the
one to one correspondence between εn⇀

k
and

⇀

k as revealed by equation (3.33). However,
εn⇀

k
still changes discretely with n. This explains the well-known inherent energy band

structure associated with the periodic potential.
Noticing that the BZ boundaries are the bisecting planes where Bragg scattering

occurs, whereas inside the BZ there are no such boundaries, we may conclude that
εn⇀

k
must be an analytical function of

⇀

k inside the BZ whereas its non-analytical depen-
dence on

⇀

k is allowed only at the boundaries. Actually, for crystal structures with certain
symmetry, the solution to equation (3.27) can be real. One such example is for struc-
tures with inversion symmetry V0(

⇀r ) = V0(−⇀r ), the solution to equation (3.27) does
not change if ⇀r and

⇀

k are inverted simultaneously. Hence it is always possible to select
the solution to be real at all

⇀

k . According to equation (3.11), V0(
⇀r ) = −e2/(4πεr) =

−e2/(4πε
√

(x2 + y2 + z2)) = V0(−⇀r ), there is inversion symmetry for the Coulomb
potential and hence the periodic function u⇀

k
can be real. Further following Bloch’s the-

orem equation (3.25), we find that if
⇀

k does not lie on a BZ boundary, as a complex
variable, the wave function ψ is not the same as ψ∗. Hence the probability flux density
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k0

4th BZ 4th BZ3rd BZ 3rd BZ2nd BZ 2nd BZ1st BZ

Extended BZ

Bands with
negative effective mass

Fig. 3.2. The single electron band structure in a one-dimensional lattice and Brillouin zones. If we assume
that the electrons fill up to the second band, the grey area that comprises the top valence and
bottom conduction bands is the area of our interest, as the two major processes in optoelectronic
devices, i.e., the electron transition and transport all happen inside this area.

defined by ψ∗∇ψ − ψ∇ψ∗ does not vanish. This implies that for a small perturbation
(e.g., an externally applied electrical field) the single electron eigenstate and its energy
will change accordingly. This change is made by mixing of the original state with states
having a neighboring wave vector whose energies are arbitrarily close to the original
energy. That is to say, εn⇀

k
is a continuous function of

⇀

k . However, once
⇀

k lies on a
BZ boundary in a certain direction, ψ itself becomes a periodic function in the same
direction according to equation (3.18) and hence it satisfies equation (3.27). Therefore,
ψ can be a real function and there is no flux carried by such states in this direction. As
such, a small perturbation may not be sufficient to change its original state and energy, or
dεn⇀

k
/d

⇀

k = 0 in the direction along which those states have their wave vectors
⇀

k on the
BZ boundary. These states correspond to the extremes on the εn⇀

k
∼ ⇀

k curves at which
bandgaps appear once �ε|�n �= 0, as illustrated by Fig. 3.2 for the 1D case.

Although in the above derivations we have restricted
⇀

k by equation (3.20), i.e., in
the first BZ, Bloch’s theorem can readily be expanded to any

⇀

k at the reciprocal lattice.
Actually, equation (3.25) can also be written as

ψ(⇀r ) = e j[⇀k +⇀
G(⇀m)]·⇀r [e−j[⇀

G(⇀m)]·⇀r u⇀
k
(⇀r )] = e j[⇀k +⇀

G(⇀m)]·⇀r v⇀
k +⇀

G(⇀m)(
⇀r ), (3.34)
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where v⇀
k +⇀

G(⇀m)(
⇀r ) ≡ e−j[⇀

G(⇀m)]·⇀r u⇀
k
(⇀r ). From

v⇀
k +⇀

G(⇀m)[⇀r + ⇀

R(⇀n)] = e−j[⇀
G(⇀m)]·[⇀r +⇀

R(⇀n )]u⇀
k
[⇀r + ⇀

R(⇀n)]
= e−j[⇀

G(⇀m)]·⇀r u⇀
k
(⇀r ) = v⇀

k +⇀
G(⇀m)(

⇀r ),

we can tell that, similarly to u⇀
k
, v⇀

k +⇀
G(⇀m) is still a periodic function of the lattice.

Hence equation (3.34) indicates that Bloch’s theorem holds for any
⇀

k + ⇀

G( ⇀m). Similarly
to equation (3.27), we obtain the following governing equation for v⇀

k +⇀
G(⇀m)

{
− �

2

2m0
[∇ + jk + j

⇀

G( ⇀m)]2 + V0(
⇀r )

}
v⇀
k +⇀

G(↼m)(
⇀r ) = εhv⇀

k +⇀
G(↼m)(

⇀r ). (3.35)

By expanding periodic functions V0 and v⇀
k +⇀

G(⇀m) into Fourier series and substituting
them into equation (3.35), we find that the Fourier components of v⇀

k +⇀
G(⇀m) obey exactly

the same equation as equation (3.33). Therefore, by tracing the smallest eigenvalue as
⇀

k

varies over the entire reciprocal space, we will be able to recover all the eigenvalues as
⇀

k varies in the first BZ. For this reason, there are two alternative schemes to depict the
band structure εh. In the first scheme (reduced BZ scheme), it is recorded as εn⇀

k
where

⇀

k is restricted to the first BZ as we described above. In the second scheme (extended BZ
scheme), however, it is just recorded as ε⇀

k
but

⇀

k is allowed to take on any value in the

entire reciprocal space, i.e.,
⇀

k = ∑3
i=1 [mi + (ni/Ni)]⇀

bi with ni as an integer defined
on [−Ni/2, Ni/2] and mi as any integer for i = 1, 2, 3.

Although we will use the reduced BZ scheme throughout this chapter, the second
scheme is still introduced here because we are attempting to establish a link between
single electron behavior in a vacuum and in the bulk semiconductor. Actually, if we
take away the semiconductor lattice in real space by turning off the potential energy in
the Hamiltonian operator, we will obtain a well-known result, i.e., a single electron in a
vacuum behaves like a free electron with a static wave function specified by e j⇀k ·⇀r /

√
�,

which actually represents a plane wave if we restore the time-dependent factor e−j
εh
�

t

which has been taken out in equation (3.3). The plane wave vector is defined as
⇀

k =∑3
i=1 (2πli/Li)(

⇀

bi/|⇀bi |) with li indicating any integer and
⇀

bi/|⇀bi | the unit vector in
the reciprocal space for i = 1, 2, 3. It is obvious that we can also write the wave vector
as

⇀

k = ∑3
i=1 (li/Ni)

⇀

bi = ∑3
i=1 [mi + (ni/Ni)]⇀

bi with ni as an integer defined on
[−Ni/2, Ni/2] and mi as any integer for i = 1, 2, 3. For this free electron, its energy–
wave vector dependence is found as ε⇀

k
= �

2|⇀k |2/(2m0). We can take this picture as a
description into the second scheme with the wave vector

⇀

k defined in the extended BZ.
With the periodic potential energy turned on, the single electron wave function in the
bulk semiconductor is modified to the Bloch function in equation (3.34), which is still
defined in the extended BZ. The wave function is now factorized by a “global” plane
wave function and a periodic “local” function. The former is just the same plane wave: a
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solution for a free electron in a vacuum taking the same space with the periodic potential
(i.e., the semiconductor lattice structure) removed. The latter reflects the effect of the
periodic potential of the semiconductor lattice structure on a single electron. In particular,
at the BZ centers, i.e., ni = 0 for i = 1, 2, 3,

⇀

k = ⇀

G( ⇀m), this periodic function obeys a
reduced equation having the same form as the one that governs a fully bound electron.
In this sense, the first factor in the Bloch function describes the global behavior of the
electron in the entire bulk semiconductor, whereas the second factor depicts the local
behavior of the electron in a primitive cell perturbed by its neighboring cells (because of
its

⇀

k dependence). Therefore, if the periodic potential is taken away, the second factor
disappears and we obtain a pure plane wave function which is indeed the solution of a
free electron in a vacuum occupying the same space. On the other hand, at the BZ centers
or reciprocal lattice points, the first factor disappears and we obtain a pure localized wave
function which is the solution of a fully bound electron around the lattice in real space.
More specifically, for Coulomb potential these bound states are similar to electron states
in a hydrogen atom. This solution structure is dictated by the boundary conditions in the
bulk semiconductor. The periodic boundary assumption at each facet of the bulk gives
only a “loose” constraint on the allowed values taken by the wave vector

⇀

k . Once we
allow the bulk dimensions to go to infinity this constraint is virtually removed as

⇀

k can
take any real value as �

⇀

k → 0. This condition imposes no constraint on the electron
states at all, as for any given wave vector

⇀

k , we can always find a corresponding state with
an energy given as ε⇀

k
= �

2|⇀k |2/(2m0). The condition at the BZ boundaries because
of the Bragg scattering of the periodic lattice in real space, however, gives a “tight”
constraint on the allowed states. Such constraint, however, is imposed only on the states
at the BZ boundaries, with no effect on the states inside the BZ. This means that ε⇀

k
can

possibly become discrete once
⇀

k takes a value at the BZ boundary, and is not affected
otherwise. Hence we have the well-known bulk semiconductor band structure. Since the
wave function of a single electron in a bulk semiconductor can be viewed as a periodic
local function under the influence of the semiconductor lattice modulated by a global free
electron wave function in a vacuum space, this electron is partially bound and partially
free, as opposed to its two extremes, i.e., a fully bound electron around a lattice and a fully
free electron in a vacuum. In the classical model, a single electron in a bulk semiconductor
moves around a lattice and in the whole bulk space simultaneously. Consequently its
motion can be seen as an orbit around a lattice (with momentum ⇀p = �∇/j) and free
motion in the entire empty space (with momentum �

⇀

k), as revealed by equation (3.27).
In bulk semiconductors, the wave vector

⇀

k must be conserved modulo any reciprocal
lattice vector

⇀

G i.e., k1 + k2 ≡ 0(mod G). It is analogous to ordinary momentum in free
space but with the extra feature that it is conserved only within one primitive reciprocal
cell, or one BZ. For an optical process, because of the negligible photon wave vector,
we must have the two excitations at vectors

⇀

k1 and
⇀

k2 to satisfy
⇀

k1 + ⇀

k2 = 0, or
⇀

k1 = −⇀

k2, which means that in bulk semiconductors we have to let
⇀

k1 = ⇀

G( ⇀m) − ⇀

k2

where
⇀

G( ⇀m)−⇀

k2 and
⇀

k1 are in the same BZ. In the reduced BZ scheme, this condition is
conveniently interpreted as meaning that only vertical transitions between energy bands
with different index n at the same

⇀

k are allowed. This is the major reason that we choose
the reduced BZ scheme to model the material optical property.
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To facilitate following-up derivations in k–p theory, we adopt the Dirac notation to
rewrite the static Schrödinger equation (3.22) as

⇀

H 0|φ b
n⇀
k
〉 = εn⇀

k
|φ b

n⇀
k
〉, and the Bloch

equation (3.25) as 〈⇀r |φ b
n⇀
k
〉 = e j⇀k ·⇀r 〈⇀r |n⇀

k〉, with |φ b
n⇀
k
〉 and |n⇀

k〉 representing a single
electron state in a bulk semiconductor and a periodic lattice state, respectively. The latter
obeys equation (3.27), which can also be expressed as

{
− �

2

2m0
[∇ + jk]2 + V0(

⇀r )

} ∣∣n⇀

k
〉 = εn⇀

k

∣∣n⇀

k
〉
,

or

(
⇀

H 0 + �

m0

⇀

k · ⇀p)
∣∣n⇀

k
〉 = (εn⇀

k
− �

2k2

2m0
)
∣∣n⇀

k
〉
. (3.36)

Finally, we have following orthonormal conditions

〈
φ b

m⇀
k

∣∣∣φ b

n⇀
k

′
〉
= δ⇀

k
⇀
k

′δmn and
〈
m

⇀

k
∣∣n⇀

k
〉 = δmn. (3.37)

3.1.3 Solution at k⇀ = 0: Kane’s model

At
⇀

k = 0, equation (3.36) becomes

⇀

H 0 |n〉 = (−�
2∇2

2m0
− e2

4πεr
) |n〉 = εn⇀

k
|n〉 . (3.38)

Equation (3.38) has the same form as the equation that describes a single electron in a
hydrogen atom with ⇀r denoting the difference coordinate. The solution to equation (3.38)
is therefore in the form [5]

|n〉 = ∣∣RrYθϕ

〉
. (3.39)

The angular dependent component in equation (3.39) follows the spherical harmonic
function

Y lm
θϕ = √(

2l + 1

4π

(l − |m|)!
(l + |m|)!

)
(−1)

m+|m|
2 e jmϕPl|m|(cos θ), l ⊂ I (integer), m = 0, ±1, . . . , ±l

(3.40a)
with

Plm(x) = 1

2l l! (1 − x2)
m
2

dl+m

dxl+m
(x2 − 1)l, (3.40b)

denoting the Legendre function. The radial dependence can be expressed in the form of
Laguerre polynomials [5].
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The first few spherical harmonic functions are

l = 0, m = 0, Y 00
θϕ = 1√

(4π)
→ |0, 0〉 ≡ j |S〉 , (3.41a)

l = 1, m = 0, Y 10
θϕ = √(

3

4π

)
cos θ = √(

3

4π

)
z

r
→ |1, 0〉 ≡ |Z〉 , (3.41b)

l = 1, m = ±1, Y 1±1
θϕ = ∓√(

3

8π

)
sin θe±jϕ

= ∓√(
3

8π

)
x ± jy

r
→ |1, ±1〉 ≡ ∓|X〉 ± j |Y 〉√

2
,

(3.41c)

with l = 0 and l = 1 denoting the single s-state and triple degenerated p-states,
respectively.

According to equations (3.41a) to (3.41c), in the coordinate representation we can
record the angular-dependent component in the eigenstates of equation (3.38) (i.e., the
orbital angular momentum eigenstates |l, m〉) as

⎡⎢⎢⎣
|0, 0〉
|1, 1〉

|1, −1〉
|1, 0〉

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
j 0 0 0

0 − 1√
2 − j√

2 0

0 1√
2 − j√

2 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

|S〉
|X〉
|Y 〉
|Z〉

⎤⎥⎥⎦ or

⎡⎢⎢⎣
|S〉
|X〉
|Y 〉
|Z〉

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎣
−j 0 0 0
0 − 1√

2
1√
2 0

0 j√
2

j√
2 0

0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

|0, 0〉
|1, 1〉

|1, −1〉
|1, 0〉

⎤⎥⎥⎦ . (3.42)

The eigenvalues related to the single s-state (conduction band) and triple degenerated
p-states (valence band) are Es and Ep, respectively. Under the orbital angular momen-
tum base [|0, 0〉 , |1, 1〉 , |1, −1〉 , |1, 0〉]T (where [. . .]T means taking the transpose
operation), Hamiltonian

⇀

H 0 is diagonalized

⇀

H 0 →

⎡⎢⎢⎣
Es 0 0 0
0 Ep 0 0
0 0 Ep 0
0 0 0 Ep

⎤⎥⎥⎦
|0, 0〉
|1, 1〉

|1, −1〉
|1, 0〉

≡ H 0. (3.43)

When we consider the electron spin effect, however, each state will further split into
two degenerated states. Therefore, under the extended base

[|0, 0 ↑〉 , |1, 1 ↑〉 , |1, −1 ↑〉 , |1, 0 ↑〉 , |0, 0 ↓〉 , |1, 1 ↓〉 , |1, −1 ↓〉 , |1, 0 ↓〉]T,

(3.44)
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the 8 × 8 Hamiltonian is diagonalized as

⇀

H 0 →
[

H 0 0
0 H 0

]
8×8

,

with the diagonalized 4 × 4 block H 0 given in equation (3.43).
However,

⇀

H 0 is not sufficient to describe the spin effect. We must include the spin–
orbit coupling in the Hamiltonian, which changes the Hamiltonian from equation (3.10)
to [6]

⇀

H 0 + �

4m2
0c2

(∇V × ⇀p) · ⇀σ, (3.45)

where
⇀σ =

[
0 1
1 0

]
x̂ +

[
0 −j
j 0

]
ŷ +

[
1 0
0 −1

]
ẑ, (3.46)

is the Pauli spin matrix.
Consequently, equation (3.36) becomes

[ ⇀

H 0 + �

m0

⇀

k · ⇀p + �

4m2
0c2

(∇V × ⇀p) · ⇀σ + �

4m2
0c2

(∇V × �
⇀

k) · ⇀σ ] ∣∣n⇀

k
〉

=
(

εn⇀
k

− �
2k2

2m0

) ∣∣n⇀

k
〉
. (3.47)

The last (fourth) term in the modified Hamiltonian is relatively small in comparison
with the second last (third) term because the electron global free moving momentum is
much smaller than its local orbiting momentum, i.e., �

⇀

k � ⇀p. By neglecting the last
term on the LHS of equation (3.47), we find[

⇀

H 0 + �

m0

⇀

k · ⇀p + �

4m2
0c2

(∇V × ⇀p) · ⇀σ

] ∣∣n⇀

k
〉 =

(
εn⇀

k
− �

2k2

2m0

) ∣∣n⇀

k
〉
. (3.48)

Because of the extra term introduced by the spin–orbit coupling, the new Hamiltonian
will not be diagonalized under equation (3.44). However, under the re-ordered base

[|0, 0 ↓〉 , |1, −1 ↑〉 , |1, 0 ↓〉 , |1, 1 ↑〉 , |0, 0 ↑〉 , |1, 1 ↓〉 , |1, 0 ↑〉 , |1, −1 ↓〉]T,

(3.49)
the 8 × 8 Hamiltonian can still be block-diagonalized as[

H 0
0 H

]
8×8

,

with the 4 × 4 block given as [7, 8]

H =

⎡⎢⎢⎢⎣
Es 0 kP 0

0 Ep − �
3

√
(2)�

3 0

kP
√

(2)�

3 Ep 0
0 0 0 Ep + �

3

⎤⎥⎥⎥⎦ , (3.50)
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where
⇀

k = kẑ is assumed with the following definitions

P ≡ −j
�

m0
〈S| pz |Z〉 , (3.51a)

� ≡ j
3�

4m2
0c2

〈
X|∂V

∂x
py − ∂V

∂y
px |Y

〉
. (3.51b)

Equation (3.50) can readily be diagonalized again. Actually, taking the reference energy
such that Ep + �/3 = 0 and Es = Eg, we find equation (3.50) to be

H =

⎡⎢⎢⎢⎣
Eg 0 kP 0

0 − 2�
3

√
(2)�

3 0

kP
√

(2)�

3 −�
3 0

0 0 0 0

⎤⎥⎥⎥⎦ . (3.52)

The associated determinantal equation becomes det |H − ExI | = 0 or

Ex = 0, and Ex(Ex − Eg)(Ex + �) − k2P 2(Ex + 2�/3) = 0. (3.53)

At
⇀

k = 0, we find the solutions are Ex = 0, Ex = Eg, Ex = −�. In the neighborhood
of

⇀

k = 0, by following a normal perturbation approach, we can find the solution to
equation (3.53). Actually, by letting Ex = 0 + ε(k2) in equation (3.53), we obtain

ε(k2)(−Eg)(�) − k2P 2(2�/3) = 0, or ε(k2) = −2k2P 2/(3Eg).

Then by letting Ex = Eg + ε(k2) in equation (3.53), we obtain

Egε(k
2)(Eg+�)−k2P 2(Eg+2�/3) = 0, or ε(k2) = k2P 2(Eg+2�/3)/[Eg(Eg+�)].

Finally by letting Ex = −� + ε(k2) in equation (3.53), we obtain

(−�)(−� − Eg)ε(k
2) − k2P 2(−�/3) = 0, or ε(k2) = −k2P 2/[3(Eg + �)].

From equation (3.48), Ex = εn⇀
k

− �
2k2/(2m0), hence we find:

• conduction band εc
⇀
k

= Eg +�
2k2/(2m0)+k2P 2(Eg +2�/3)/[Eg(Eg +�)], (3.54a)

• heavy-hole band εhh
⇀
k

= �
2k2/(2m0), (3.54b)

• light-hole band εlh
⇀
k

= �
2k2/(2m0) − 2k2P 2/(3Eg), (3.54c)

• spin–orbit split band εso
⇀
k

= −� + �
2k2/(2m0) − k2P 2/[3(Eg + �)]. (3.54d)

To obtain the associated eigenvectors, by using the upper Hamiltonian block in
equation (3.52), we have⎡⎢⎢⎢⎣

Eg − Ex 0 kP 0

0 − 2�
3 − Ex

√
(2)�

3 0

kP
√

(2)�

3 −�
3 − Ex 0

0 0 0 −Ex

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

an

bn

cn

dn

⎤⎥⎥⎦ = 0. (3.55)
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From equation (3.55), we find that the heavy-hole band (i.e., |1, 1 ↑〉, with its energy
eigenvalue 0 at

⇀

k = 0) is still decoupled from the other bands. However, the conduction
band (i.e., |0, 0 ↓〉, with its energy eigenvalue Eg at

⇀

k = 0), the light-hole band (i.e.,
|1, −1 ↑〉, with its energy eigenvalue 0 at

⇀

k = 0), and the spin–orbit split band (i.e.,
|1, 0 ↓〉, with its energy eigenvalue −� at

⇀

k = 0) are coupled under the spin–orbit
interaction. Therefore, equation (3.55) is reduced to⎡⎢⎣ Eg − Ex 0 kP

0 − 2�
3 − Ex

√
(2)�

3

kP
√

(2)�

3 −�
3 − Ex

⎤⎥⎦
⎡⎣ an

bn

cn

⎤⎦ = 0. (3.56)

In the neighborhood of
⇀

k = 0 and under the normalization condition a2
n + b2

n + c2
n = 1,

we find:

• Conduction band

⎡⎢⎣ 0 0 0

0 − 2�
3 − Eg

√
(2)�

3

0
√

(2)�

3 −�
3 − Eg

⎤⎥⎦
⎡⎣ ac

bc

cc

⎤⎦ = 0,

or ac = 1, bc = cc = 0.

• Light-hole band

⎡⎢⎣ Eg 0 0

0 − 2�
3

√
(2)�

3

0
√

(2)�

3 −�
3

⎤⎥⎦
⎡⎣ alh

blh

clh

⎤⎦ = 0,

or alh = 0, blh = 1√
3 , clh = √ 2

3 .

• Spin–orbit split band

⎡⎢⎣ Eg + � 0 0

0 �
3

√
(2)�

3

0
√

(2)�

3
2�
3

⎤⎥⎦
⎡⎣ aso

bso

cso

⎤⎦ = 0,

or aso = 0, bso = √ 2
3 , cso = − 1√

3 .

Therefore, the Hamiltonian block equation (3.52) is diagonalized to⎡⎢⎢⎢⎢⎢⎣
Eg + �2k2

2m0
+ k2P 2(Eg+2�/3)

Eg(Eg+�)
0 0 0

0 −� + �2k2

2m0
− k2P 2

3(Eg+�)
0 0

0 0 �2k2

2m0
− 2k2P 2

3Eg
0

0 0 0 �2k2

2m0

⎤⎥⎥⎥⎥⎥⎦
under the new base subset

[|0, 0 ↓〉 ,
1√
3

|1, −1 ↑〉+√(
2

3

)
|1, 0 ↓〉 ,

√(
2

3

)
|1, −1 ↑〉− 1√

3
|1, 0 ↓〉 , |1, 1 ↑〉]T.

(3.57a)
A similar approach applies to the lower Hamiltonian block in equation (3.52) as well.

Hence we obtain the same diagonalized Hamiltonian under following base subset

[|0, 0 ↑〉 ,
1√
3

|1, 1 ↓〉 + √(
2

3

)
|1, 0 ↑〉 ,

√(
2

3

)
|1, 1 ↓〉 − 1√

3
|1, 0 ↑〉 , |1, −1 ↓〉]T.

(3.57b)



70 Optoelectronic Devices: Design, Modeling, and Simulation

We name the new base as:

• conduction band energy εc
⇀
k =0

= Eg, and state

|0, 0 ↓↑〉 = j |S ↓↑〉 , (3.58a)

• heavy-hole band energy εhh
⇀
k =0

= 0, and state

∣∣∣∣3

2
,

3

2

〉
≡ |1, 1 ↑〉 = − 1√

2
(|X ↑〉 + j |Y ↑〉)∣∣∣∣3

2
, −3

2

〉
≡ |1, −1 ↓〉 = 1√

2
(|X ↓〉 − j |Y ↓〉), (3.58b)

• light-hole band energy εlh
⇀
k =0

= 0, and state

∣∣∣∣3

2
, −1

2

〉
≡ 1√

3
|1, −1 ↑〉 + √(

2

3

)
|1, 0 ↓〉 = 1√

6
(|X ↑〉 − j |Y ↑〉) + √(

2

3

)
|Z ↓〉∣∣∣∣3

2
,

1

2

〉
≡ 1√

3
|1, 1 ↓〉 + √(

2

3

)
|1, 0 ↑〉 = − 1√

6
(|X ↓〉 + j |Y ↓〉) + √(

2

3

)
|Z ↑〉 ,

(3.58c)

• spin–orbit split band energy εso
⇀
k =0

= −�, and state

∣∣∣∣1

2
, −1

2

〉
≡ √(

2

3

)
|1, −1 ↑〉 − 1√

3
|1, 0 ↓〉 = 1√

3
(|X ↑〉 − j |Y ↑〉) − 1√

3
|Z ↓〉∣∣∣∣1

2
,

1

2

〉
≡ √(

2

3

)
|1, 1 ↓〉 − 1√

3
|1, 0 ↑〉 = − 1√

3
(|X ↓〉 + j |Y ↓〉) − 1√

3
|Z ↑〉 .

(3.58d)

Unfortunately, this approach is oversimplified and hence its result is not accurate. For
example, equation (3.54b) obviously gives the wrong sign of the heavy-hole mass. The
inaccuracy comes from the truncation of the eigenstates: there are an infinite number of
eigenstates in the angular momentum base |l, m〉, but we have considered only the first
four (or eight if we have the electron spin effect included) in dealing with equation (3.38).
Although such a truncation has little effect on the solution at

⇀

k = 0, it spoils the pertur-
bation solution obtained in the neighborhood of

⇀

k = 0, as the rest of the eigenstates that
have been ignored in this analysis indeed have significant effect on those retained states
at

⇀

k �= 0.
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3.1.4 Solution at k⇀ �= 0: Luttinger–Kohn’s model

Since the above solution is correct only at
⇀

k = 0, for
⇀

k �= 0, we attempt to modify the
perturbation approach by including the effect of the rest of the bands in the full solution
to equation (3.48) other than the conduction, heavy-hole, light-hole, and spin–orbit split
bands. For this purpose, Lowdin’s renormalization method [9] is employed where we
assign the strongly coupled bands to one group (group A) and leave the weakly coupled
bands in another (group B). The bands in group A will be treated simultaneously as
the fundamental (unperturbed) component based on the result obtained at

⇀

k = 0 from
Kane’s model, while the bands in group B will be treated as a perturbation to the former.
An iteration algorithm can be established to refine the result to the required accuracy.

In k–p theory, we attempt to obtain the solution in the neighborhood of
⇀

k = 0, hence
we identify

⇀

H
′ ≡ (�/m0)

⇀

k · ⇀p (3.59)

in (3.48) as a perturbation to the Hamiltonian operator at
⇀

k = 0. As such, equation (3.48)
can be rewritten as[

⇀

H 0 + �

4m2
0c2

(∇V × ⇀p) · ⇀σ + �
2k2

2m0
+ ⇀

H
′
] ∣∣n⇀

k
〉 = εn⇀

k

∣∣n⇀

k
〉
. (3.60)

We expand the solution to equation (3.60) in terms of the solution obtained at
⇀

k = 0,
i.e., the states given in equation (3.58a–d) plus those that have been truncated, and
separate them into two groups [10, 11]

∣∣n⇀

k
〉 =

A∑
j

aA
j (

⇀

k)

∣∣∣nA
j

〉
+

B∑
v

aB
v (

⇀

k)

∣∣∣nB
v

〉
, (3.61)

with group A containing the following six strongly coupled valence bands, i.e., the two
degenerated (at

⇀

k = 0) heavy-hole and two degenerated light-hole bands, and the two
spin–orbit split bands

∣∣∣nA
1

〉
≡

∣∣∣∣3

2
,

3

2

〉 ∣∣∣nA
2

〉
≡

∣∣∣∣3

2
,

1

2

〉 ∣∣∣nA
3

〉
≡

∣∣∣∣3

2
, −1

2

〉
∣∣∣nA

4

〉
≡

∣∣∣∣3

2
, −3

2

〉 ∣∣∣nA
5

〉
≡

∣∣∣∣1

2
,

1

2

〉 ∣∣∣nA
6

〉
≡

∣∣∣∣1

2
, −1

2

〉
, (3.62)

and group B containing all remaining bands, respectively.
From Section 3.1.3, we know that

⇀

H ⇀
k =0

∣∣∣nA
j

〉
≡

[
⇀

H 0 + �

4m2
0c2

(∇V × ⇀p) · ⇀σ

] ∣∣∣nA
j

〉
= εA

j

∣∣∣nA
j

〉
, (3.63)

with subscript j = 1, 2, 3, 4, 5, 6, εA
1 = εA

2 = εA
3 = εA

4 = 0, and εA
5 = εA

6 = −�.

(3.64)
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The bands in group B (
∣∣nB

v

〉
) are unknown, so are the expanding coefficients in both

groups (aA
j and (aB

v ).
From Lowdin’s theory in Appendix A, coefficients in group A are obtained by solving

the following linear algebraic equations

6∑
j=1

(UA
ij − Eδij )a

A
j (

⇀

k) = 0, (3.65)

with i = 1, 2, 3, 4, 5, 6 belonging to group A. To first order accuracy we have

UA
ij ≈ (

⇀

H 1)ij +
B∑

v �=i,j

(
⇀

H 1)iv(
⇀

H 1)vj

E − (
⇀

H 1)vv
, (3.66)

where
⇀

H 1 ≡ ⇀

H ⇀
k =0 + �

2k2

2m0
+ ⇀

H
′
. (3.67)

Noting that group A bands are either degenerate or almost degenerate (since � ∼ 0)

at
⇀

k = 0, as
⇀

k �= 0, E in expression (3.66) can be replaced by the averaged eigenvalue
of those group A bands, i.e., −�/3.

For states in group A, i, j ⊂ A, we have

(
⇀

H 1)ij = (
⇀

H ⇀
k =0)ij +

(
�

2k2

2m0

)
ij

+ (
⇀

H
′
)ij = (εA

j + �
2k2

2m0
)δij , (3.68)

since (
⇀

H
′
)ij =

(
�

m0

⇀

k · ⇀p
)

ij
= 0.

For states in group B, v ⊂ B �= i, j , we also have

(
⇀

H ⇀
k =0)iv = (

⇀

H ⇀
k =0)vj =

[
�

2k2

2m0

]
iv

=
[

�
2k2

2m0

]
vi

= 0, (3.69)

because of the orthogonality among different eigenstates.
Moreover, we find

(
⇀

H
′
)iv =

(
�

m0

⇀

k · ⇀p

)
iv

=
∑

α=x,y,z

�kα

m0
pα

iv

(
⇀

H
′
)vj =

(
�

m0

⇀

k · ⇀p

)
vj

=
∑

α=x,y,z

�kα

m0
pα

vj , (3.70)

for i, j ⊂ A, v ⊂ B �= i, j , and pα
iv ≡ 〈

nA
i

∣∣pα

∣∣nB
v

〉
, pα

vj ≡ 〈
nB

v

∣∣pα

∣∣∣nA
j

〉
, with

α = x, y, z and
⇀p ≡

∑
α=x,y,z

⇀pα = pxx̂ + pyŷ + pzẑ. (3.71)
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If we further define
εB
v ≡ (

⇀

H 1)vv, (3.72)

equation (3.66) is reduced to

UA
ij ≈

(
εA
j + �

2k2

2m0

)
δij +

B∑
v �=i,j

(
⇀

H
′
)iv(

⇀

H
′
)vj

(−�/3) − εB
v

=
(

εA
j + �

2k2

2m0

)
δij + �

2

m2
0

B∑
v

1

(−�/3) − εB
v

∑
α,β=x,y,z

kakβpa
ivp

β
vj

=
(

εA
j + �

2k2

2m0

)
δij +

∑
α,β=x,y,z

[
�

2

m2
0

B∑
v

pa
ivp

β
vj

(−�/3) − εB
v

]
kakβ, (3.73)

where equations (3.68) to (3.72) are used.
Under the following definitions

A ≡ �
2

2m0
+ �

2

m2
0

B∑
v

〈X| px |v〉 〈v| px |X〉
(−�/3) − εB

v
, (3.74a)

B ≡ �
2

2m0
+ �

2

m2
0

B∑
v

〈X| py |v〉 〈v| py |X〉
(−�/3) − εB

v
, (3.74b)

C ≡ �
2

m2
0

B∑
v

〈X| px |v〉 〈v| py |Y 〉 + 〈X| py |v〉 〈v| px |Y 〉
(−�/3) − εB

v
, (3.74c)

and

− �
2

2m0
γ1 ≡ 1

3
(A + 2B), (3.75a)

− �
2

2m0
γ2 ≡ 1

6
(A − B), (3.75b)

− �
2

2m0
γ3 ≡ 1

6
C, (3.75c)

Equation (3.65) can be recorded in matrix form [12]

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P + Q −S R 0 − S√
2

√
(2)R

−S∗ P − Q 0 R −√
(2)Q

√ (
3
2

)
S

R∗ 0 P − Q S
√ (

3
2

)
S∗ √

(2)Q

0 R∗ S∗ P + Q −√
(2)R∗ − S∗√

2

− S∗√
2 −√

(2)Q∗ √ (
3
2

)
S −√

(2)R P + � 0
√

(2)R∗ √ (
3
2

)
S∗ √

(2)Q∗ − S√
2 0 P + �

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

aA
1

aA
2

aA
3

aA
4

aA
5

aA
6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= E

⎡⎢⎢⎢⎢⎢⎢⎢⎣

aA
1

aA
2

aA
3

aA
4

aA
5

aA
6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.76)



74 Optoelectronic Devices: Design, Modeling, and Simulation

where we have introduced

P ≡ �
2γ1

2m0
(k2

x + k2
y + k2

z ), (3.77a)

Q ≡ �
2γ2

2m0
(k2

x + k2
y − 2k2

z ), (3.77b)

R ≡
√

(3)�2

2m0
[−γ2(k

2
x − k2

y) + j2γ3kxky], (3.77c)

S ≡
√

3�
2γ3

m0
(kx − jky)kz, (3.77d)

as the energies that compose the Luttinger–Kohn Hamiltonian matrix elements UA
ij in

the wave vector (momentum) domain.
In these expressions, parameters γ1,2,3 are known as the material Luttinger band

structure constants. They are normally found by experiment rather than through
equations (3.75a–c) and (3.74a–c). In numerical implementations, these parameters can
be found from a semiconductor material database such as [13, 14].

By solving equation (3.76), we will be able to obtain the eigenvalues En as εn⇀
k

in
equation (3.60) and the eigenstate coefficients aA

jn with j = 1, 2, 3, 4, 5, 6 and n =
1, 2, 3, 4, 5, 6 (due to the double degeneracy, there are only three different eigenvalues)
under the following normalization condition

6∑
j=1

|aA
jn(

⇀

k)|2 = 1, (3.78)

with n = 1, 2, 3, 4, 5, 6.
Therefore, we obtain the valence band energies (εn⇀

k
) and the corresponding lattice

states in the neighborhood of
⇀

k = 0 in the form of

∣∣n⇀

k
〉 ≈

6∑
j=1

aA
jn(

⇀

k)

∣∣∣nA
j

〉
, (3.79a)

with the base
∣∣∣nA

j

〉
for j = 1, 2, 3, 4, 5, 6 given in equations (3.62) and (3.58b–d) as the

eigensolution at
⇀

k = 0. Finally, following Bloch’s theorem, the normalized bulk semi-
conductor valence band electron (hole) wave function corresponding to εn⇀

k
is given as

〈
⇀r /φbv

n⇀
k

〉
= e j⇀k ·⇀r

√
�

〈
⇀r /n

⇀

k
〉 = e j⇀k ·⇀r

√
�

6∑
j=1

aA
jn(

⇀

k)
〈
⇀r /nA

j

〉
, (3.79b)

where n = 1, 2, 3, 4, 5, 6.
If we let group A contain only a single band

∣∣nA
0

〉 ≡ |0, 0 ↓〉 or
∣∣nA

0

〉 ≡ |0, 0 ↑〉,
we still have equation (3.63) with εA

0 = Eg. Again from Lowdin’s theory, the group A
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coefficient is obtained from

(UA
00 − Eδ00)a

A
0 (

⇀

k) = 0, (3.80)

where to first order accuracy we have

E = UA
00 ≈ (

⇀

H 1)00 +
B∑

v �=0

(
⇀

H 1)0v(
⇀

H 1)v0

E − (
⇀

H 1)vv
,

= Eg + �
2k2

2m0
+ �

2

m2
0

B∑
v

∑
α,β=x,y,z

kakβpa
0vp

β

v0

Eg − εB
v

,

= Eg + �
2k2

2me

. (3.81)

In equation (3.81), we have defined the conduction band effective mass as

1

me

≡ 1

m0
(1 + 2

m0k2

B∑
v

∑
α,β=x,y,z

kakβpa
0vp

β

v0

Eg − εB
v

). (3.82)

From the normalization condition we find aA
0 (

⇀

k) = 1. Therefore, we obtain the con-
duction band energy E, i.e., εn⇀

k
in equation (3.60), as given in equation (3.81) and the

double degenerated lattice state in the neighborhood of
⇀

k = 0 in the form∣∣n⇀

k
〉 ≈

∣∣∣nA
0

〉
= |0, 0 ↓〉 and |0, 0 ↑〉 , (3.83a)

with the base
∣∣nA

0

〉
given in equation (3.58a) as the eigensolution at

⇀

k = 0. Finally,
following Bloch’s theorem, the normalized bulk semiconductor conduction band electron
wave function is given as

〈
⇀r

∣∣∣ φ bc
n⇀
k

〉
= e j⇀k ·⇀r√

�

〈
⇀r
∣∣ n

⇀

k
〉 = e j⇀k ·⇀r√

�

〈
⇀r

∣∣∣ nA
0

〉
= e j⇀k ·⇀r√

�
〈⇀r | 0, 0 ↓↑〉 . (3.83b)

In summary, for bulk material, the conduction band (double degenerated sub-bands
with opposite spin) energy is given in equation (3.81) with the effective mass defined by
equation (3.82). The valence band (three pairs of double degenerated sub-bands at

⇀

k = 0,
total six sub-bands) energies are obtained by solving the eigenvalue equation (3.76).

The conduction band electron lattice state is given by equation (3.83a), which is the
same as the eigenstate at

⇀

k = 0, and is also the same as the eigenstate when there is
no spin–orbit interaction. This eigenstate is given in equations (3.41a) through (3.58a),
with its space domain angular distribution taking the same form as an s-orbiting electron
in a hydrogen atom, as shown in Fig. 3.3a.

The valence band electron (hole) lattice states are given by equation (3.79a), which
are all linear combinations of eigenstates at

⇀

k = 0.The coefficients are obtained by
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Electron s-orbit Electron p-orbit

Electron p-orbit

z z

z

y y

y

x x

x

(a) (b)

(c)

Fig. 3.3. Single electron space domain angular distributions in centralized Coulomb attractive field.
(a) s-orbit. (b) and (c) p-orbit.

solving the linear algebraic equations (3.76) once the eigenvalues are found, subject to
the normalization condition of equation (3.78). Those eigenstates at

⇀

k = 0 are given as
equations (3.58b–d) through (3.62). They are again the linear superposition of eigen-
states at

⇀

k = 0 when there is no spin–orbit interaction. The latter are expressed as
equations (3.41b&c), with their space domain angular distributions taking the same form
as a triple degenerated p-orbiting electron in a hydrogen atom, as shown in Fig. 3.3b&c.

3.1.5 Solution under 4 × 4 Hamiltonian and axial approximation

The above k–p theory under Luttinger–Kohn’s implementation (6 × 6 Hamiltonian) can
readily be expanded to have more bands included in group A, to form, e.g., an 8 × 8
Hamiltonian in dealing with semiconductors with a narrow bandgap where the coupling
between the conduction and valence bands is strong, or even a 10 × 10 Hamiltonian
in dealing with diluted nitrides where an extra nitrogen resonant band appears in the
neighborhood of the conduction band edge [15]. For GaAs and InPbased semiconductors,
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the spin–orbit split bands have an appreciably different energy from the degenerated
heavy- and light-hole bands at

⇀

k = 0, i.e., � is significant. Therefore, we need just to
deal with a reduced 4 × 4 Hamiltonian with the two spin–orbit split bands excluded.
We can further block diagonalize the 4 × 4 Hamiltonian to obtain two decoupled 2 × 2
Hamiltonians, through which an analytical solution is obtained.

Actually, by dropping the two spin–orbit split bands, we find the following 4 × 4
Luttinger–Kohn Hamiltonian from equation (3.76)

H
LK

⎡⎢⎢⎣
aA

1
aA

2
aA

3
aA

4

⎤⎥⎥⎦ ≡ −

⎡⎢⎢⎣
P + Q −S R 0
−S∗ P − Q 0 R

R∗ 0 P − Q S

0 R∗ S∗ P + Q

⎤⎥⎥⎦
⎡⎢⎢⎣

aA
1

aA
2

aA
3

aA
4

⎤⎥⎥⎦ = E

⎡⎢⎢⎣
aA

1
aA

2
aA

3
aA

4

⎤⎥⎥⎦ .

(3.84)

The 4 × 4 Hamiltonian H
LK

in equation (3.84) can be transformed into

H = UH
LK

U
+ = −

⎡⎢⎢⎣
P + Q R′ 0 0

R
′∗ P − Q 0 0

0 0 P − Q R′
0 0 R

′∗ P + Q

⎤⎥⎥⎦ , (3.85)

where

R′ ≡ |R| − j|S|, R
′∗ ≡ |R| + j|S|, R ≡ |R|e jθR , S ≡ |S|e jθS . (3.86)

Under this transformation, the old base is linked to the new base through⎡⎢⎢⎣
∣∣nA

1

〉∣∣nA
2

〉∣∣nA
3

〉∣∣nA
4

〉
⎤⎥⎥⎦ ≡ U

+

⎡⎢⎢⎣
|1〉
|2〉
|3〉
|4〉

⎤⎥⎥⎦ =

⎡⎢⎢⎣
α 0 0 α

0 −β∗ β∗ 0
0 β β 0

−α∗ 0 0 α∗

⎤⎥⎥⎦
⎡⎢⎢⎣

|1〉
|2〉
|3〉
|4〉

⎤⎥⎥⎦ , (3.87)

where

α ≡ e j[(θS+θR)/2+π/4]/√2,

β ≡ e j[(θS−θR)/2+π/4]/√2, (3.88)

with the unitary transformation matrix in equation (3.85) given by

U ≡

⎡⎢⎢⎣
α∗ 0 0 −α

0 −β β∗ 0
0 β β∗ 0
α∗ 0 0 α

⎤⎥⎥⎦ . (3.89)

It is easy to prove that we indeed have UU
+ = U

+
U = UU

−1 = U
−1

U = 1, where

U
+

and U
−1

are the Hermitian conjugate and inverse matrix of U , respectively.
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Therefore, by diagonalizing the two decoupled 2 × 2 Hamiltonians in equation (3.85)
individually, we obtain the following eigenvalues

Eb
hh = −P + √

(Q2 + |R|2 + |S|2), (3.90a)

Eb
lh = −P − √

(Q2 + |R|2 + |S|2). (3.90b)

Since the eigenvalues of the two 2 × 2 Hamiltonians are identical, we find that the
energies in equation (3.90a&b) are double degenerated. Therefore, the valence band
structure comprises two double degenerated sub-bands, known as the double degenerated
heavy-hole and light-hole bands, respectively; the reason will soon be revealed.

By substituting eigenvalues in equations (3.90a&b) into the following equations

[
P + Q + E R′

R
′∗ P − Q + E

] [
c1

c2

]
= 0,

[
P − Q + E R′

R
′∗ P + Q + E

] [
c3

c4

]
= 0,

(3.91)

we can find the coefficients under the new base

c1(E) = −R′
√

((P + Q + E)2 + |R|2 + |S|2) c2(E) = P + Q + E√
((P + Q + E)2 + |R|2 + |S|2)

c3(E) = P + Q + E√
((P + Q + E)2 + |R|2 + |S|2) c4(E) = −R

′∗
√

((P + Q + E)2 + |R|2 + |S|2) ,
(3.92)

with the normalization condition |c1(E)|2 + |c2(E)|2 = |c3(E)|2 + |c4(E)|2 = 1
satisfied.

The double degenerated eigenstates are given as

[ |hh1〉
|hh2〉

]
= C(Eb

hh)

⎡⎢⎢⎣
|1〉
|2〉
|3〉
|4〉

⎤⎥⎥⎦ = C(Eb
hh)U

⎡⎢⎢⎣
∣∣nA

1

〉∣∣nA
2

〉∣∣nA
3

〉∣∣nA
4

〉
⎤⎥⎥⎦ , (3.93a)

[ |lh1〉
|lh2〉

]
= C(Eb

lh)

⎡⎢⎢⎣
|1〉
|2〉
|3〉
|4〉

⎤⎥⎥⎦ = C(Eb
lh)U

⎡⎢⎢⎣
∣∣nA

1

〉∣∣nA
2

〉∣∣nA
3

〉∣∣nA
4

〉
⎤⎥⎥⎦ , (3.93b)

with the coefficient matrix defined as

C(E) =
[

c1(E) c2(E) 0 0
0 0 c3(E) c4(E)

]
. (3.94)
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We can also write these lattice states in a general form similar to equation (3.79a)

⎡⎢⎢⎣
∣∣1⇀

k
〉∣∣2⇀

k
〉∣∣3⇀

k
〉∣∣4⇀

k
〉
⎤⎥⎥⎦ =

⎡⎢⎢⎣
|hh1〉
|hh2〉
|lh1〉
|lh2〉

⎤⎥⎥⎦ = [aA
jn(

⇀

k)]4×4

⎡⎢⎢⎣
∣∣nA

1

〉∣∣nA
2

〉∣∣nA
3

〉∣∣nA
4

〉
⎤⎥⎥⎦ , (3.95)

with

[aA
jn(

⇀

k)]4×4 ≡

⎡⎢⎢⎣
c1(E

b
hh) c2(E

b
hh) 0 0

0 0 c3(E
b
hh) c4(E

b
hh)

c1(E
b
lh) c2(E

b
lh) 0 0

0 0 c3(E
b
lh) c4(E

b
lh)

⎤⎥⎥⎦U. (3.96)

For a large variety of group III-V compound semiconductors, we have

γ1 > γ2 ≈ γ3. (3.97)

Therefore, we can introduce an axial approximation by introducing an effective Luttinger
parameter

γ = (γ2 + γ3)/2, (3.98)

to replace both γ2 and γ3 in the formula for R in equation (3.77c). Since the crys-
talline structures of these group III-V compounds are not simple cubic, there is no
inherent isotropy in the kxky plane. The axial approximation, however, removes the slight
anisotropy of the band structure along different directions in the kxky plane, resulting in
cylindrical symmetry around the kz axis.

Using equations (3.97) and (3.98) we find

R ≈ −
√

(3)�2γ

2m0
(kx − jky)

2 =
√

(3)�2γ

2m0
(k2

x + k2
y)e

j
[
π−2 tan

(
ky
kx

)]
,

S =
√

(3)�2γ3

m0
(kx − jky)kz =

√
(3)�2γ3

m0
kz

√
(k2

x + k2
y)e

−j tan
(

ky
kx

)
.

Plugging these expressions into equation (3.86) yields

R′ =
√

(3)�2γ

2m0
(k2

x + k2
y)

(
1 − j

2γ3

γ

kz√
(k2

x + k2
y)

)
. (3.99)

Equation (3.88) becomes

α ≡ 1√
2

e
j
[

3
4 π− 3

2 tan
(

ky
kx

)]
, β ≡ 1√

2
e

j
[
− 1

4 π+ 1
2 tan

(
ky
kx

)]
. (3.100)
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According to equation (3.90a&b), we obtain

E b
hh ≈ −�

2k2

2m0
(γ1 − 2γ2) = − �

2k2

2mhh
, (3.101a)

E b
lh ≈ −�

2k2

2m0
(γ1 + 2γ2) = −�

2k2

2mlh
, (3.101b)

with

mhh ≡ m0

γ1 − 2γ2
, mlh ≡ m0

γ1 + 2γ2
, (3.102)

defined as the valence band heavy hole and light-hole effective mass, respectively. As
mhh > mlh always holds, we can easily identify equations (3.101a&b) as the heavy-hole
and the light-hole energy band, respectively.

3.1.6 Hamiltonians for different semiconductors

As a summary of this section, we give the following examples on Hamiltonian selection
in k–p theory based on Luttinger–Kohn’s model.

• Two bands in group A (heavy-hole and light-hole) with 4×4 Hamiltonian: InGaAs-
AlGaAs-GaAs, InGaP-AlInGaP-GaAs, InGaAsP-InP and AlGaInAs-InP [12].

• Three bands in group A (heavy-hole, light-hole, and spin–orbit split) with 6×6 Hamil-
tonian: InGaAsP-InP, AlGaInAs-InP and group III nitrides with a wurtzite structure
such as InGaN-AlGaN [16].

• Four bands (e.g., conduction, heavy-hole, light-hole, and spin–orbit split) with 8×8
Hamiltonian: wide bandgap group II-VI compounds [17], group III nitrides with
wurtzite structure such as InGaN-AlGaN [18], group III antimonides, and narrow
bandgap group II-VI compounds [19].

• Five bands (e.g., N-resonant, conduction, heavy-hole, light-hole, and spin–orbit split)
with 10×10 Hamiltonian: diluted nitrides such as GaInNAs-AlGaAs-GaAs [20].

3.2 Single electron in semiconductor quantum well structures

3.2.1 The effective mass theory and governing equation

As shown in Fig. 3.4, a semiconductor quantum well (QW) has dimensions on an inter-
mediate scale which is comparatively larger than a single lattice but much smaller than
the dimensions of a bulk semiconductor. As such, the QW can be viewed as a local
disturbance in the semiconductor lattices in the background, and consequently a single
electron will experience not only the periodic Coulomb potential, but also a potential
disturbance on an intermediate scale introduced by the QW.

Therefore, a single electron in a semiconductor QW structure follows the steady-state
Schrödinger equation with a modified Hamiltonian for bulk semiconductors to take into
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Fig. 3.4. The one-dimensional semiconductor quantum well structure.

account the potential change inside the QW

[ ⇀

H b + V (⇀r )] |ψ〉 =
[

⇀

H 0 + �

4m2
0c2

(∇V × ⇀p) · ⇀σ + V (⇀r )

]
|ψ〉 = εh |ψ〉 , (3.103)

where we have defined

⇀

H b ≡ ⇀

H 0 + �

4m2
0c2

(∇V × ⇀p) · ⇀σ =
⇀p2

2m0
+ V0 + �

4m2
0c2

(∇V × ⇀p) · ⇀σ, (3.104)

as the Hamiltonian for bulk semiconductors with spin–orbit interaction. In this expres-
sion,

⇀

H b is periodic with respect to the lattice. However,
⇀

H b +V (⇀r ) is no longer periodic
because of the local disturbance on an intermediate scale described by V (⇀r ). Therefore,
Bloch’s theorem is not directly applicable.

In Section 3.1, we have already obtained the solution for bulk semiconductors, i.e.,
⇀

H b|φ b
n⇀
k
〉 = εn⇀

k
|φ b

n⇀
k
〉. Following Bloch’s theorem, we have 〈⇀r |φ b

n⇀
k
〉 = e j⇀k ·⇀r 〈⇀r |n⇀

k〉
with |n⇀

k〉 ≈ |nA
0 〉 = |0, 0 ↓〉, |0, 0 ↑〉 and |n⇀

k〉 ≈ ∑6
j=1 aA

jn(
⇀

k)|nA
j 〉, where n =

1, 2, 3, 4, 5, 6 as the periodic lattice states for the double degenerated conduction band
electron and the valence band electron (hole), respectively. To solve equation (3.103)
further with an extra potential contribution (V ) in the Hamiltonian, at first sight, we might
consider using Lowdin’s renormalization theorem again. However, this extra potential
contribution is by no means a perturbation, hence the expansion in the perturbation
approach will never converge.

The effective mass theory is therefore introduced to solve equation (3.103) [10].
Actually, to best utilize what we have obtained from the bulk “background” material,

we take a generalized integral transform on equation (3.103) anyway by utilizing the bulk
eigenstates as the core function. That is to say, we expand the solution to equation (3.103)
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by taking the bulk eigenstates as the base

|ψ〉 = 1

(2π)3

∫
BZ

∑
n

fn(
⇀

k)

∣∣∣φ b

n
⇀

k

〉
d3⇀

k = 1

(2π)3

∫
BZ

∑
n

fn(
⇀

k)e j⇀k ·⇀r ∣∣n⇀

k
〉
d3⇀

k, (3.105)

where the integration goes over the first BZ in the wave vector (momentum) space.
On the one hand, equation (3.105) shows that the solution to equation (3.103) is the

inverse integral transform of a momentum domain expression (fn) under a discrete set of

core functions
(〈

⇀r /φ b
n⇀
k

〉)
. Since a “global” wave with any specific envelope is a linear

superposition of plane waves (following Fourier’s theorem), the solution to the QW
structure in equation (3.103), as shown in the first equation of (3.105), can therefore be
viewed as a linear superposition of the eigenstates of the bulk background with the QW
removed. On the other hand, this solution can also be viewed as a superposition of the
periodic lattice wave functions of the bulk background. In bulk semiconductors, a single
electron wave function can be factorized as a global plane wave and a periodic local lattice
wave function. In QW structures, however, a single electron wave function is factorized
as a global wave with a specific envelope and the original periodic local lattice wave
function, as given in the second equation of (3.105). By removing the semiconductor
lattices, in bulk material we obtain a vacuum space, hence the single electron eigenstate
is described by a plane wave; in a QW structure, however, we obtain a space filled by
a non-uniform potential distribution V (⇀r ), hence the single electron eigenstate must be
described by a wave having its envelope with a specific shape determined by the given
potential. Since an arbitrary wave can be viewed as a linear superposition of those plane
waves, again we can expand such a wave in a QW structure in terms of the plane waves.
Finally, we consider the lattice effect by introducing the periodic lattice wave function
as a factor in such an expansion to obtain equation (3.105).

As bulk semiconductor eigenstates and periodic lattice states,
∣∣∣φ b

n⇀
k

〉
and n

⇀

k are solved

in Section 3.1, our task is then to find those coefficients fn(
⇀

k) in expansion (3.105). For
this purpose, we substitute equation (3.105) into equation (3.103) to yield

1

(2π)3

∫
BZ

∑
n

(εn⇀
k

− εh)fn(
⇀

k)

∣∣∣φ b
n⇀
k

〉
d3⇀

k + 1

(2π)3

∫
BZ

∑
n

fn(
⇀

k)V (⇀r )

∣∣∣φ b
n⇀
k

〉
d3⇀

k = 0.

(3.106)

Multiply
〈
φ b

m⇀
k

′
∣∣∣ on both sides of equation (3.106) to obtain

(εm⇀
k

′ − εh)fm(
⇀

k
′
) + 1

(2π)3

∫
BZ

∑
n

fn(
⇀

k)
〈
φm⇀

k
′
∣∣∣V (⇀r )

∣∣φn⇀
k

〉
d3⇀

k = 0,

or

(εn⇀
k

− εh)fn(
⇀

k) + 1

(2π)3

∫
BZ

∑
m

fm(
⇀

k
′
)
〈
φn⇀

k

∣∣V (⇀r )

∣∣∣φm⇀
k

′
〉
d3⇀

k
′ = 0, (3.107)

where orthonormal condition (3.37) has been used.
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Noting |n⇀

k〉’s periodicity on the lattice, we find

〈
φn⇀

k

∣∣V (⇀r )

∣∣∣φm⇀
k

′
〉
=

∫
�

V (⇀r )φ∗
n⇀
k
(⇀r )φm⇀

k
′(⇀r )d3⇀r

=
∫

�

V (⇀r )u∗
n⇀
k
(⇀r )um⇀

k
′(⇀r )e−j(⇀k −⇀

k
′
)·⇀r d3⇀r

=
∫

�

V (⇀r )

⎡⎣ 3∑
i=1

∞∑
li=−∞

C̃⇀
G

e j⇀
G(⇀l )·↼r

⎤⎦ e−j(⇀k −⇀
k

′
)·⇀r d3⇀r (3.108)

=
3∑

i=1

∞∑
li=−∞

C̃⇀
G

∫
�

V (⇀r )e−j[⇀k −⇀
k

′−⇀
G(⇀l )]·⇀r d3⇀r

=
3∑

i=1

∞∑
li=−∞

C̃⇀
G

Ṽ [⇀

k − ⇀

k
′ − ⇀

G(
⇀

l )],

with Ṽ denoting the inverse Fourier transform of the potential energy V (⇀r ). Also, in
equation (3.108) the Fourier expansion of u∗

n⇀
k
(⇀r )um⇀

k
′(⇀r ) is used since the product of

periodic functions on the lattice is still a periodic function on the lattice.
If we assume that V (⇀r ) is a slow-varying function in space in terms of the lattice,

the DC component in Ṽ will be dominant. Therefore, Ṽ [⇀

k − ⇀

k
′ − ⇀

G(
⇀

l )] �= 0 only if
⇀

k − ⇀

k
′ − ⇀

G(
⇀

l ) = 0. Since both
⇀

k and
⇀

k
′

are within the first BZ,
⇀

k − ⇀

k
′ − ⇀

G(
⇀

l ) = 0
will be possible only if

⇀

G(
⇀

l ) = 0 and
⇀

k = ⇀

k
′
. The associated Fourier coefficient can be

evaluated through

C̃⇀
G=0 = 1

�

∫
�

u∗
n⇀
k
(⇀r )um⇀

k
′(⇀r )d3⇀r = δnm. (3.109)

Equation (3.108) can therefore be simplified to〈
φn⇀

k

∣∣V (⇀r )

∣∣∣φm⇀
k

′
〉
≈ Ṽ (⇀

k − ⇀
k

′)δnm. (3.110)

Plugging (3.110) into (3.107) yields

(εn⇀
k

− εh) fn(
⇀

k) + 1

(2π)3

∫
BZ

fn(
⇀

k
′
)Ṽ (

⇀

k − ⇀

k
′
)d3⇀

k
′ = 0. (3.111)

By introducing an envelope function in the space domain defined as the inverse Fourier
transform of the coefficient fn(

⇀

k) in the momentum domain, we have

Fn(
⇀r ) = 1

(2π)3

∫
BZ

fn(
⇀

k)e j⇀k ·⇀r d3⇀

k. (3.112)

By taking the inverse Fourier transform of equation (3.111), we finally obtain

[εn(∇/j) + V (⇀r )]Fn(
⇀r ) = εhFn(

⇀r ). (3.113)
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Once the eigenvalue problem equation (3.113) is solved for εh and Fn, from
equation (3.105), we find the single electron state

|ψ〉 =
∑
n

1

(2π)3

∫
BZ

∣∣n⇀

k
〉
fn(

⇀

k)e j⇀k ·⇀r d3⇀

k

≈
∑
n

|n〉 1

(2π)3

∫
BZ

fn(
⇀

k)e j⇀k ·⇀r d3⇀

k =
∑
n

Fn(
⇀r ) |n〉, (3.114)

where |n⇀

k〉 ≈ |n〉 has been assumed in the neighborhood of
⇀

k = 0, i.e., the weak
dependence of |n⇀

k〉 on
⇀

k has been ignored, which is a valid assumption in k–p theory.
Actually, we can further expand the lattice state |n⇀

k〉 in terms of the base |n〉 (i.e.,
the lattice state at

⇀

k = 0, or the BZ center) in equation (3.105). Those
⇀

k dependent
coefficients will merge with fn while equation (3.109) still holds for

⇀

k = ⇀

k
′ = 0,

therefore, we will reach the same effective mass equation in the form of equation (3.113),
and equation (3.114) will be strictly valid. In addition, this approximation is not necessary
if computational efficiency is not a concern, as we can always solve equation (3.113) to
obtain εh and Fn, take the inverse of the Fourier transform to find fn, and use the first
equation (3.114) to compute the electron state.

From equation (3.114), we find that the solution to equation (3.103) is simply a periodic
local lattice wave function at the BZ center (〈⇀r /n〉) modulated by an envelope function.
The former is purely determined by the periodic semiconductor lattice background,
whereas the latter is determined by the QW induced potential disturbance with the lattice
background removed: the lattice has only an aggregate effect through its own eigenvalue,
i.e., the kinetic energy εn(∇/j), as in equation (3.113). More specifically, for a given bulk
semiconductor energy dependence on

⇀

k (e.g., the parabolic dependence known as the
parabolic band in most cases), the lattice effect is parameterized in equation (3.113) (e.g.,
in a parabolic band, the lattice effect is brought into one parameter, i.e., the effective
mass, only). This indicates that the main property of the envelope function depends on
the QW structure only. The lattice background can only affect the parameter but not the
shape of the envelope function. Therefore, to some extent, we can separate the design of
the QW structure from the selection of its lattice background, i.e., the bulk semiconductor
as its host medium.

3.2.2 Conduction band (without degeneracy)

For the conduction band, the above scheme is straightforward as we know that the bulk
semiconductor eigenvalue is explicitly given as Eg + �

2k2/(2me). Therefore, we have

ε0(∇/j) = Eg − �
2∇2

2me

. (3.115)

Hence equation (3.113) becomes[
−�

2∇2

2me

+ V (⇀r )

]
F c

0 (⇀r ) = (εc
0 − Eg)F

c
0 (⇀r ), (3.116)
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where εh is further denoted as εc
0 to indicate explicitly that this eigenvalue belongs to

the conduction band s-state and superscript c is also appended to the envelope function
for the same reason.

As an eigenvalue problem, equation (3.116) may have multiple discrete and/or contin-
uous eigenvalues depending on the given potential disturbance V (⇀r ) and boundary con-
ditions. Once equation (3.116) is solved for εc

0j and F c
0j (

⇀r ), following equation (3.114),
we find the corresponding conduction band electron states as∣∣∣φqc

j

〉
= F c

0j (
⇀r )

∣∣∣nA
0

〉
= F c

0j (
⇀r ) |0, 0 ↑↓〉 . (3.117)

3.2.3 Valence band (with degeneracy)

For the valence band, the above scheme is not directly applicable as the bulk semicon-
ductor eigenvalues are not given in the explicit form. The reason is that the Hamiltonian
is not diagonalized under base

∣∣n⇀

k
〉
because of the degeneracy between some of the states

at
⇀

k = 0. However, such degeneracy can be eliminated by selecting a proper linear com-
bination of eigenstates

∣∣n⇀

k
〉
at

⇀

k = 0 as the new base. That is to say, under a transformed
base constructed by a proper combination of

∣∣n⇀

k
〉

at
⇀

k = 0, such a problem will disap-
pear. Actually, taking the same expansion as equation (3.61), with the base selected as
equation (3.62) and with those group B states ignored, we find from equation (3.105)

|ψ〉 = 1

(2π)3

∫
BZ

6∑
n=1

fn(
⇀

k)e j⇀k ·⇀r
∣∣∣nA

n

〉
d3⇀

k. (3.118)

By following the approach set out in Section 3.2.1, we obtain equation (3.111) again
with n = 1, 2, 3, 4, 5, 6. Since εn⇀

k
in equation (3.111) is the valence band energy of the

bulk semiconductor, according to equation (3.65), we have

εn⇀
k
fn(

⇀

k) =
6∑

m=1

UA
nmfm(

⇀

k), (3.119)

with n = 1, 2, 3, 4, 5, 6. Substituting (3.119) into (3.111) yields

6∑
m=1

UA
nm fm(

⇀

k) − εh fn(
⇀

k) + 1

(2π)3

∫
BZ

fn(
⇀

k
′
)Ṽ (

⇀

k − ⇀

k
′
)d3⇀

k
′ = 0, (3.120)

with n = 1, 2, 3, 4, 5, 6. By taking the inverse Fourier transform of equation (3.120),
we obtain

6∑
m=1

[ŨA
nm + V (⇀r )δnm]F v

m(⇀r ) = εv
nF

v
n (⇀r ), (3.121)

with n = 1, 2, 3, 4, 5, 6 and εh in equation (3.120) recorded as εv
n in equation (3.121)

to indicate explicitly that this eigenvalue belongs to those valence band states. The
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superscript v is also appended to the envelope function for the same reason. It forms a
Fourier transform pair with fn as defined in equation (3.112).

By applying the inverse Fourier transform on equation (3.73), we find those Luttinger–
Kohn matrix elements as

ŨA
nm =

(
εA
m − �

2∇2

2m0

)
δnm +

∑
α,β=x,y,z

[
�

2

m2
0

B∑
v

pa
nvp

β
vm

(−�/3) − εB
v

](
−j

∂

∂α

)(
−j

∂

∂β

)
,

(3.122)

with n, m = 1, 2, 3, 4, 5, 6. They all become operators in the space domain.
Equation (3.122) can still be written in the Luttinger–Kohn Hamiltonian matrix form

H̃LK = −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̃ + Q̃ −S̃ R̃ 0 − S̃√
2

√
(2)R̃

−S̃∗ P̃ − Q̃ 0 R̃ −√
(2)Q̃

√(
3
2

)
S̃

R̃∗ 0 P̃ − Q̃ S̃
√(

3
2

)
S̃∗ √

(2)Q̃

0 R̃∗ S̃∗ P̃ + Q̃ −√
(2)R̃∗ − S̃∗√

2

− S̃∗√
2 −√

(2)Q̃∗ √(
3
2

)
S̃ −√

(2)R̃ P̃ + � 0
√

(2)R̃∗ √(
3
2

)
S̃∗ √

(2)Q̃∗ − S̃√
2 0 P̃ + �

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(3.123)
with the operators in equation (3.123) defined as

P̃ ≡ −�
2γ1

2m0
∇2 = −�

2γ1

2m0

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
, (3.124a)

Q̃ ≡ −�
2γ2

2m0

(
∂2

∂x2
+ ∂2

∂y2
− 2

∂2

∂z2

)
, (3.124b)

R̃ ≡ −
√

(3)�2

2m0

[
−γ2

(
∂2

∂x2
− ∂2

∂y2

)
+ j2γ3

∂2

∂x∂y

]
, (3.124c)

S̃ ≡ −
√

(3)�2γ3

m0

(
∂2

∂x∂z
− j

∂2

∂y∂z

)
. (3.124d)

As an eigenvalue problem, equation (3.121) may have multiple discrete and/or con-
tinuous eigenvalues depending on the given potential disturbance V (⇀r ) and boundary
conditions. Once equation (3.121) is solved for εv

nj and F v
nj (

⇀r ), n = 1, 2, 3, 4, 5, 6,
with the operators given as equation (3.124a–d) in the Luttinger–Kohn Hamiltonian
equation (3.123), following equation (3.118), we find the valence band electron (hole)
states as ∣∣∣φqv

j

〉
=

6∑
n=1

F v
nj (

⇀r )

∣∣∣nA
n

〉
, (3.125)

with
∣∣nA

n

〉
, n = 1, 2, 3, 4, 5, 6 given in equations (3.58b–d) through (3.62).
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3.2.4 Quantum well band structures

The above effective mass theory is derived for a 3D potential disturbance V (⇀r ). There-
fore, the governing equations are applicable not only to QW structures, but also to
quantum wire and quantum dot structures. For 1D QW structure along the z direction,
the spatial dependence of the potential disturbance is reduced to 1D, i.e., we have V (z)

in equation (3.103). The envelope function defined in equation (3.112) becomes a mixed
space and wave vector domain quantity, with its 1D space dependence along z and 2D
wave vector dependence in the kxky plane

Fn(kx, ky, z) = e j(kxx+kyy)

2π
√

�

∫
BZ

fn(
⇀

k)e jkzzdkz, (3.126)

with � defined as the cross-sectional area of the bulk semiconductor.
For those non-degenerated bands such as the conduction band, fn(

⇀

k) = f0(kz), which
makes the space and wave vector dependent parts in equation (3.126) separable

Fn(kx, ky, z) = e j(kxx+kyy)

2π
√

�

∫
BZ

f0(kz)e
jkzzdkz = e j(kxx+kyy)

√
�

F c
0 (z), (3.127)

where the 1D space domain envelope function is defined as

F c
0 (z) ≡ 1

2π

∫
BZ

f0(kz)e
jkzzdkz. (3.128)

Therefore, in the cross-section (i.e., the xy plane), we still have the bulk semiconductor
solution, i.e., the plane wave in the form of e j(kxx+kyy)/

√
�. As such, in the effective

mass equation (3.113), we should only replace kz with −j∂/∂z but leave kx and ky as
they are since the inverse Fourier transform is performed only on kz. Hence we have

[
−�

2

2

d

dz

(
1

me

d

dz

)
+ �

2k2
t

2me

+ V (z)

]
F c

0 (z) = (εc
0 − Eg)F

c
0 (z), (3.129)

where k2
t ≡ k2

x + k2
y . The effective mass me in equation (3.129) has been taken inside

the first derivative operator because of its z dependence, which guarantees the existence
of the second order derivative of the envelope function (i.e., the continuity of the wave
function and its first order derivative that correspond to the probability and the probability
flux, respectively) hence the Hermitian of the Hamiltonian is assured [21].

For a given potential disturbance in the QW structure, equation (3.129) can be solved
for εc

0j and F c
0j (z). We then find the conduction band electron states as

∣∣∣φqc
j

〉
= e j(kxx+kyy)

√
�

F c
0j (z)

∣∣∣nA
0

〉
= e j(kxx+kyy)

√
�

F c
0j (z) |0, 0 ↑↓〉 . (3.130a)
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Therefore, in a semiconductor QW structure the conduction band electron wave
functions are given as

〈
⇀r

∣∣∣ φ
qc
j

〉
= e j(kxx+kyy)

√
�

F c
0j (z)

〈
⇀r

∣∣∣ nA
0

〉
= e j(kxx+kyy)

√
�

F c
0j (z) 〈⇀r | 0, 0 ↑↓〉 . (3.130b)

For degenerated bands such as the valence band, in the cross-section we do not have
a simple plane wave solution because of the inseparable operator dependence along
z and in the xy plane, which is a result of the coupling between the eigenstates (a
linear combination of the orbital angular momentum eigenstates |l, m〉) in coordinate
representation. This can be understood as the state having orbital angular symmetry in
the bulk semiconductor losing its symmetry in the QW structure. The only exception is
when the state has the highest orbital angular symmetry, i.e., a spherical shape, as we
have discussed above for the conduction band electron.

Following equations (3.118) and (3.126), we can expand the valence band electron
(hole) state as

|ψ〉 = e j(kxx+kyy)

2π
√

�

∫
BZ

6∑
n=1

fn(
⇀

k)e jkzz
∣∣∣nA

n

〉
dkz. (3.131)

By following the approach described in Section 3.2.1, we find that equation (3.111)
is modified to

(εn⇀
k

− εh)fn(
⇀

k) + 1

2π

∫
BZ

fn(
⇀

k
′
)Ṽ (kz − k′

z)dk′
z = 0, (3.132)

with n = 1, 2, 3, 4, 5, 6. Since εn⇀
k

in equation (3.132) is the valence band energy of the
bulk semiconductor, equation (3.119) still holds with n = 1, 2, 3, 4, 5, 6. Substituting
equation (3.119) into (3.132) yields

6∑
m=1

UA
nm fm(

⇀

k) − εh fn(
⇀

k) + 1

2π

∫
BZ

fn(
⇀

k
′
)Ṽ (kz − k′

z)dk′
z = 0, (3.133)

with n = 1, 2, 3, 4, 5, 6. Multiplying e j(kxx+kyy)/
√

� on both sides of equation (3.133)
and taking the inverse Fourier transform, we obtain

6∑
m=1

[ŨAZ
nm + V (z)δnm]F v

m(kx, ky, z) = εv
nF

v
n (kx, ky, z), (3.134)

with n = 1, 2, 3, 4, 5, 6 and εh in equation (3.133) recorded as εv
n in equation (3.134)

to indicate explicitly that this eigenvalue belongs to those valence band states. The
superscript v is also appended to the mixed space and wave vector domain envelope
function for the same reason. It forms a 1D Fourier transform pair in z with fn as defined
in equation (3.126).
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By applying the 1D inverse Fourier transform in terms of z to equation (3.73), we find
the Luttinger–Kohn matrix elements

ŨAZ
nm =

[
εA
m + �

2k2
t

2m0
− �

2

2m0

d2

dz2

]
δnm +

∑
α,β=x,y,z

[
�

2

m2
0

B∑
v

pa
nvp

β
vm

(−�/3) − εB
v

]
�α�β,

(3.135)

with �α = −jd/dα if α = z, and �α = kα if α = x, y, �β = −jd/dβ if β = z, and
�β = kβ if β = x, y, where n, m = 1, 2, 3, 4, 5, 6. They are operators in z and normal
functions of kx and ky .

Equation (3.135) can still be written as the Luttinger–Kohn Hamiltonian matrix that
takes the same form as equation (3.123) but with the “partial” operators modified to

P̃ Z ≡ �
2γ1

2m0
(k2

t − d2

dz2
), (3.136a)

Q̃Z ≡ �
2γ2

2m0
(k2

t + 2
d2

dz2
), (3.136b)

R̃Z ≡
√

(3)�2

2m0

[
−γ2(k

2
x − k2

y) + j2γ3kxky

]
, (3.136c)

S̃Z ≡ −j

√
(3)�2γ3

m0
(kx − jky)

d

dz
. (3.136d)

As an eigenvalue problem, equation (3.134) may have multiple discrete and/or continu-
ous eigenvalues depending on the given potential disturbance V (z) and boundary condi-
tions. Once equation (3.134) is solved for εv

nj and F v
nj (kx, ky, z), n = 1, 2, 3, 4, 5, 6,

with the “partial” operators given as equations (3.136a–d) in the Luttinger–Kohn
Hamiltonian matrix elements having the same form as equation (3.123), by following
equations (3.131) and (3.126), we find the valence band electron (hole) states

∣∣∣φqv
j

〉
=

6∑
n=1

F v
nj (kx, ky, z)

∣∣∣nA
n

〉
, (3.137a)

with
∣∣nA

n

〉
, n = 1, 2, 3, 4, 5, 6 given in equations (3.58b–d) through (3.62). Finally, in

the semiconductor QW structure the valence band electron (hole) wave functions are

〈
⇀r /φ

qv
j

〉
=

6∑
n=1

F v
nj (kx, ky, z)

〈
⇀r /nA

n

〉
. (3.137b)

If we drop the two spin–orbit split bands, the left 4 × 4 can readily be diagonalized
into two decoupled 2 × 2 blocks under a new base [|1〉 |2〉 |3〉 |4〉]T [22, 23]. The
new base is linked to the original base through a unitary transformation matrix shown
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in equations (3.87) and (3.89). The eigenvalue problem, equation (3.134), is therefore
reduced to

[
�

2k2
t (γ1 + γ2)

2m0
− �

2(γ1 − 2γ2)

2m0

d2

dz2
+ V (z)

]
F v

1 +
√

(3)�2kt

2m0

(
γ kt − j2γ3| d

dz
|
)

F v
2

= −εvF v
1√

(3)�2kt

2m0

(
γ kt + j2γ3| d

dz
|
)

F v
1 +

[
�

2k2
t (γ1 − γ2)

2m0
− �

2(γ1 + 2γ2)

2m0

d2

dz2
+ V (z)

]
F v

2

= −εvF v
2 ,

and

[
�

2k2
t (γ1 − γ2)

2m0
− �

2(γ1 + 2γ2)

2m0

d2

dz2
+ V (z)

]
F v

3 +
√

(3)�2kt

2m0

(
γ kt − j2γ3| d

dz
|
)

F v
4

= −εvF v
3√

(3)�2kt

2m0

(
γ kt + j2γ3| d

dz
|
)

F v
3 +

[
�

2k2
t (γ1 + γ2)

2m0
− �

2(γ1 − 2γ2)

2m0

d2

dz2
+ V (z)

]
F v

4

= −εvF v
4 ,

where equations (3.85), (3.86), and (3.136a–d) have been used. Axial approximation is
also used for simplification of equation (3.136c). As such, it is reduced to

R̃Z ≡ −
√

(3)�2γ

2m0
(kx − jky)

2.

Following the convention of using the terms “heavy” and “light” holes according to their
masses in the z direction, we define

mhhz = m0

γ1 − 2γ2
, mhht = m0

γ1 + γ2
, mlhz = m0

γ1 + 2γ2
, mlht = m0

γ1 − γ2
. (3.138)

Therefore, the governing equation for the mixed space and wave vector domain envelope
function becomes

[
�

2k2
t

2mhht
− �

2

2

d

dz

(
1

mhhz

d

dz

)
+ V (z)

]
F v

1 +
√

(3)�2kt

2m0

(
γ kt − j2γ3| d

dz
|
)

F v
2 = −εvF v

1

√
(3)�2kt

2m0

(
γ kt + j2γ3| d

dz
|
)

F v
1 +

[
�

2k2
t

2mlht
− �

2

2

d

dz

(
1

mlhz

d

dz

)
+ V (z)

]
F v

2 = −εvF v
2 ,

(3.139a)
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[
�

2k2
t

2mlht
− �

2

2

d

dz

(
1

mlhz

d

dz

)
+ V (z)

]
F v

3 +
√

(3)�2kt

2m0

(
γ kt − j2γ3| d

dz
|
)

F v
4 = −εvF v

3

√
(3)�2kt

2m0

(
γ kt + j2γ3| d

dz
|
)

F v
3 +

[
�

2k2
t

2mhht
− �

2

2

d

dz

(
1

mhhz

d

dz

)
+ V (z)

]
F v

4 = −εvF v
4 ,

(3.139b)

where the effective masses in the z direction have been taken inside the first derivative
operator for the reason given after equation (3.129).

Equation (3.138) clearly shows that the valence band effective mass becomes
anisotropic and mass reversal occurs since the heavy hole has a smaller in-plane mass
than the light hole. From equation (3.139a&b), we find that in the neighborhood of
⇀

k t = 0 the two sets of equations degenerate with the off-diagonal coupling terms all
disappearing. These equations thus reduce to[

−�
2

2

d

dz

(
1

mhhz

d

dz

)
+ V (z)

]
F v

1,4 = −εvF v
1,4[

−�
2

2

d

dz

(
1

mlhz

d

dz

)
+ V (z)

]
F v

2,3 = −εvF v
2,3. (3.140)

Since mhhz > mlhz, we must have |εv
hh| < |εv

lh| according to equation (3.140), and
therefore in contrast to the bulk semiconductor, the heavy-hole and light-hole bands are
no longer degenerate at

⇀

k t = 0 in a QW structure and the heavy-hole band will always
be on top (since a hole has negative energy in our reference). For this reason, one would
imagine also that the heavy-hole band and light-hole band will have crossing points
since the heavy-hole band edge (at

⇀

k t = 0) is above the light-hole band edge, yet the
heavy-hole band drops more rapidly as

⇀

k t increases because of its smaller in-plane mass
(mhht < mlht) [21]. However, the band crossing can never happen physically, which
means that our solution does not any longer allow the bands to take parabolic shapes.
This is known as band mixing, a well-known effect in semiconductor QW structures [12].

3.3 Single electron in strained layer structures

3.3.1 A general approach

The strain tensor induced in a crystal lattice can generally be expressed as

e ≡ [
eαβ

]
α,β=x,y,z

, (3.141)

where eαβ is a dimensionless relative shift in the space domain because of the lattice
deformation.

In strained materials, all governing equations such as equations (3.48) for bulk semi-
conductors and (3.103) for semiconductor QW structures still hold with every coordinate
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in the space domain in the strained system. However, material parameters are all given
in the unstrained system. Therefore, the strain effect will be reflected by transferring the
wave functions back from the strained coordinate system to the unstrained coordinate
system, so as to make the description for the strained structure consistent [24, 25].

Assuming that ⇀r and ⇀r ′ are the space vectors in the unstrained and strained systems,
respectively, we can link the two coordinate systems through

r ′
α = rα +

∑
β=x,y,z

eαβrβ. (3.142)

Since the strain has always to be small to avoid lattice relaxation through dislocation,
its effect is a typical perturbation of the unstrained system. By ignoring all of the terms
of the order of O(e2) or higher, we have

rα = r ′
α −

∑
β=x,y,z

eαβrβ = r ′
α −

∑
β=x,y,z

eαβ

⎡⎣r ′
β −

∑
γ

eβγ rγ

⎤⎦
= r ′

α −
∑

β=x,y,x

eαβr ′
β +

∑
β=x,y,x

eαβ

∑
γ=x,y,z

eβγ rγ ≈ r ′
α −

∑
β=x,y,z

eαβr ′
β

=
∑

β=x,y,z

(δαβ − eαβ)r ′
β,

or
rβ ≈

∑
α=x,y,z

(δβα − eβα)r ′
α. (3.143)

We also find

∂

∂r ′
α

≡
∑

β=x,y,z

∂rβ

∂r ′
α

∂

∂rβ
≈

∑
β=x,y,z

(δαβ − eαβ)
∂

∂rβ
= ∂

∂rα
−

∑
β=x,y,z

eαβ

∂

∂rβ
,

(3.144a)

∂2

∂r
′2
α

≈
⎡⎣ ∑

β=x,y,z

(δαβ − eαβ)
∂

∂rβ

⎤⎦⎡⎣ ∑
β=x,y,z

(δαβ − eαβ)
∂

∂rβ

⎤⎦
≈

∑
β=x,y,z

(δαβ − 2eαβ)
∂2

∂rα∂rβ
= ∂2

∂r2
α

− 2
∑

β=x,y,z

eαβ

∂2

∂rα∂rβ
. (3.144b)

Therefore, we have

kαpα′ ≈ kαpα −
∑

β=x,y,z

kαeαβpβ, (3.145)

V0(
⇀r ′) ≈ V0(

⇀r ) +
∑

α,β=x,y,z

V
αβ

0 eαβ, (3.146)
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where V
αβ

0 is the derivative of the lattice periodic potential V0(
⇀r ′) with respect to eαβ .

For bulk materials, the most complicated Hamiltonian in equation (3.48) can therefore
be converted back from the deformed lattice (because of the strain) to the normal lattice
where there is no strain [26]

⇀p2

2m0
+ V0(

⇀r ′) + �

m0

⇀

k · ⇀p + �

4m2
0c2

(∇V × ⇀p) · ⇀σ

≈ −�
2∇2

2m0
+ V0(

⇀r ) + �

m0

⇀

k · ⇀p + �

4m2
0c2

(∇V × ⇀p) · ⇀σ +
∑

α,β=x,y,x

Sαβeαβ,

(3.147)

where

Sαβ = �
2

m0

∂2

∂rα∂rβ
+ V

αβ

0 − �

m0
kαpβ. (3.148)

The contribution of the lattice conversion related to the spin–orbit interaction has been
dropped as it is of a higher order.

Taking the last term in equation (3.147) as a perturbation and by following the same
procedures as in Section 3.1.4, we find that equation (3.73) should be modified to

UAS
ij =

(
εA
j + �

2k2

2m0

)
δij +

∑
α,β=x,y,z

[
�

2

m2
0

B∑
v

pa
ivp

β
vj

(−�/3) − εB
v

]
kakβ+

∑
α,β=x,y,z

S
αβ
ij eαβ,

(3.149)
with

S
αβ
ij =

〈
nA

i

∣∣∣ Sαβ
∣∣∣nA

j

〉
, (3.150)

for strained bulk semiconductors. From equation (3.149), we find that a mapping from
eαβ to kαkβ can be established. Therefore, we can skip all derivations to append our
final results directly from bulk semiconductor and QW structures to strained bulk semi-
conductor and strained layer QW structures, respectively, by following an analogous
approach.

3.3.2 Strained bulk semiconductors

In bulk semiconductors, for the conduction band, following the mapping eαβ ↔ kαkβ ,
we find

k2
x ↔ exx, k2

y ↔ eyy, k2
z ↔ ezz,

�
2

2me

↔ ac.

As such, we further obtain

�
2k2

2me

↔ ac(exx + eyy + ezz).

By defining the conduction band hydrostatic energy as

P c
e ≡ ac(exx + eyy + ezz), (3.151)
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we find that the only effect introduced by the strain is that the eigenvalue has a shift at
⇀

k = 0 in the amount of conduction band hydrostatic energy according to equation (3.149).
Therefore, we find that equation (3.81) should be modified to

E = Eg + �
2k2

2me

+ P c
e . (3.152)

The conduction band electron lattice state
∣∣nA

0

〉
is still the same, as given in

equation (3.83a).
For the valence band, following the mapping eαβ ↔ kαkβ , we find

k2
x ↔ exx, k2

y ↔ eyy, k2
z ↔ ezz, kxky ↔ exy, kxkz ↔ exz, kykz ↔ eyz,

and

− �
2

2m0
γ1 ↔ −Sd

v = av, − �
2

2m0
γ2 ↔ −Su

3
= b

2
, − �

2

2m0
γ3 ↔ −S′

u

3
= d

2
√

3
,

with Sd
v , Su, and S′

u defined as different components of S
αβ
ij in equation (3.150). As such,

the following mappings can be established

�
2γ1

2m0
(k2

x + k2
y + k2

z ) ↔ −av(exx + eyy + ezz),

�
2γ2

2m0
(k2

x + k2
y − 2k2

z ) ↔ −b

2
(exx + eyy − 2ezz),

√
(3)�2

2m0
[−γ2(k

2
x − k2

y) + j2γ3kxky] ↔
√

(3)b

2
(exx − eyy) − jdexy,

√
(3)�2γ3

m0
(kx − jky)kz ↔ −d(exz − jeyz).

By introducing the following definitions:

• valence band hydrostatic energy P v
e ≡ −av(exx + eyy + ezz), (3.153a)

• valence band shear energy Qe ≡ − b
2 (exx + eyy − 2ezz), (3.153b)

• Re ≡
√

(3)b
2 (exx − eyy) − jdexy (3.153c)

• Se ≡ −d(exz − jeyz), (3.153d)

we find that the resulting Luttinger–Kohn Hamiltonian matrix still takes the same form as
given in equation (3.76), but with the energies in its elements given in equation (3.77a–d)
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modified to

P̃ ≡ �
2γ1

2m0
(k2

x + k2
y + k2

z ) + P v
e , (3.154a)

Q̃ ≡ �
2γ2

2m0
(k2

x + k2
y − 2k2

z ) + Qe, (3.154b)

R̃ ≡
√

(3)�2

2m0
[−γ2(k

2
x − k2

y) + j2γ3kxky] + Re, (3.154c)

S̃ ≡
√

(3)�2γ3

m0
(kx − jky)kz + Se, (3.154d)

according to equation (3.149). The parameters ac, av, b, and d used in this section are the
material deformation potential constants. They can be found in a semiconductor material
database such as [13, 14].

Once equation (3.76) is solved with such modified energies in the Luttinger–Kohn
Hamiltonian matrix elements subject to the normalization condition (3.78), we can obtain
the valence band electron (hole) states through equation (3.79a) with the unchanged base
|nA

j 〉, j = 1, 2, 3, 4, 5, 6 given in equations (3.58b–d) through (3.62).

3.3.3 Strained layer quantum well structures

By using the mapping approach introduced in dealing with strained bulk semiconductors
in Section 3.3.2 and the effective mass theory introduced in Section 3.2, we can readily
obtain governing equations for the band structure of a single electron in strained layer
QW structures.

Actually, for the conduction band electron, equation (3.116) should be modified to

[
−�

2∇2

2me

+ V (⇀r )

]
F c

0 (⇀r ) = (εc
0 − Eg − P c

e )F c
0 (⇀r ). (3.155)

Once equation (3.155) is solved for εc
0j and F c

0j (
⇀r ), the electron state is obtained

through equation (3.117).
For the valence band electron (hole), equation (3.121) should still be solved with the

Hamiltonian given in equation (3.123). However, in replacing equations (3.124a–d), we
should use the following operators to construct the Luttinger–Kohn Hamiltonian matrix
elements in equation (3.123)

P̃ = −�
2γ1

2m0

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
+ P v

e , (3.156a)
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Q̃ = −�
2γ2

2m0

(
∂2

∂x2
+ ∂2

∂y2
− 2

∂2

∂z2

)
+ Qe, (3.156b)

R̃ ≡ −
√

(3)�2

2m0

[
−γ2

(
∂2

∂x2
− ∂2

∂y2

)
+ j2γ3

∂2

∂x∂y

]
+ Re, (3.156c)

S̃ ≡ −
√

(3)�2γ3

m0

(
∂2

∂x∂z
− j

∂2

∂y∂z

)
+ Se. (3.156d)

Once equation (3.121) is solved for εv
nj and F v

nj (
⇀r ), n = 1, 2, 3, 4, 5, 6, through the

operators given in equations (3.156a–d) through (3.123), the valence band electron (hole)
states are obtained through equation (3.125).

3.3.4 Semiconductors with the zinc blende structure

For zinc blende structures with in-plane (i.e., in the xy plane) biaxial strains, equation
(3.141) is reduced to

exx = eyy �= ezz, exy = eyx = exz = ezx = eyz = ezy = 0. (3.157)

When the strain is introduced by a lattice mismatch between two layers, we have

exx = eyy = a0 − a

a
≡ e0, and ezz = −2

C12

C11
e0, (3.158)

with a0 and a denoted as the lattice constant of the unstrained (substrate) layer and the
strained layer, respectively. Cij ’s are the material elastic stiffness constants, which can
be found from a semiconductor material database [13, 14].

As such, for semiconductors with a zinc blende structure, we find

P c
e = 2ace0

(
1 − C12

C11

)
, P v

e = −2ave0

(
1 − C12

C11

)
,

Qe = −be0

(
1 + 2

C12

C11

)
, Re = Se = 0. (3.159)

In particular, in strained bulk semiconductors, when considering the 4×4 Luttinger–
Kohn Hamiltonian with the spin–orbit split bands excluded from group A, we find that
the strain changes only the diagonal elements in equation (3.84). Therefore, the same
diagonalizing technique introduced in Section 3.1.5 is still applicable and hence we can
find analytical solutions. Actually, by noticing equations (3.154a–d) and (3.159), we can
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write the Luttinger–Kohn Hamiltonian in equation (3.84) as

−

⎡⎢⎢⎣
P + P v

e + Q + Qe −S R 0
−S∗ P + P v

e − Q − Qe 0 R

R∗ 0 P + P v
e − Q − Qe S

0 R∗ S∗ P + P v
e + Q + Qe

⎤⎥⎥⎦ ,

(3.160)

to show the strain effect explicitly, where the matrix elements R and S are still given by
equation (3.77a–d).Adopting the same approach by which we obtain equation (3.90a&b)
from equation (3.84), we find the following analytical expressions for the valence band
energies in the strained bulk semiconductors

Ebs
hh = −(P + P v

e ) + √(
(Q + Qe)

2 + |R|2 + |S|2
)
, (3.161a)

Ebs
lh = −(P + P v

e ) − √(
(Q + Qe)

2 + |R|2 + |S|2
)
. (3.161b)

Under biaxial compressive strain, a > a0, e0 < 0, according to equation (3.159), we
have P c

e < 0, P v
e > 0, and Qe > 0. Comparing with the unconstrained case, we find that

the conduction band will shift down by the conduction band hydrostatic energy (P c
e ), the

heavy-hole band will shift down by the valence band hydrostatic energy (P v
e ) plus a shift

up by almost the shear energy (Qe, once |Q + Qe| � √
(|R|2 + |S|2), e.g., at

⇀

k = 0),
and the light-hole band will shift down by the valence band hydrostatic energy (P v

e ) plus
another shift down by almost the shear energy (Qe, once |Q + Qe| � √

(|R|2 + |S|2),
e.g., at

⇀

k = 0). As a result, the degenerated heavy-hole and light-hole band at
⇀

k = 0 will
split by twice the shear energy (2Qe), with the heavy-hole band on top.

Under biaxial tensile strain, a < a0, e0 > 0, according to equation (3.140), we have
P c

e > 0, P v
e < 0, and Qe < 0. Comparing with the unconstrained case, we find that

the conduction band will shift up by the conduction band hydrostatic energy (P c
e ), the

heavy-hole band will shift up by the valence band hydrostatic energy (P v
e ) plus a shift

down by almost the shear energy (Qe, once |Q+Qe| � √
(|R|2 +|S|2), e.g., at

⇀

k = 0),
and the light-hole band will shift up by the valence band hydrostatic energy (P v

e ) plus
another shift up by almost the shear energy (Qe, once |Q+Qe| � √

(|R|2 +|S|2), e.g.,
at

⇀

k = 0). As a result, the degenerated heavy-hole and light-hole bands at
⇀

k = 0 will
also split by twice the shear energy (2Qe), but with the light-hole band on top.

In strained layer QW structures, strain produces similar effects. However, in a QW
structure there is no degeneracy at

⇀

k = 0 between the heavy-hole and light-hole bands,
with the heavy-hole band always on top. In this case, the heavy-hole and light-hole bands
will be further apart at

⇀

k = 0 by the compressive strain. On the contrary, the heavy-
hole and light-hole bands will be brought closer at

⇀

k = 0 by a tensile strain. Under a
considerable tensile strain, reversal may happen with the light-hole band on top.

The strain effect on both a bulk semiconductor and a QW structure is illustrated in
Figs. 3.5(a) and (b), respectively.

The strain has other effects on the band structure, such as enhancing the material
anisotropy and changing the effective mass [12, 21]. These effects are more complicated
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Fig. 3.5. The strain effect on band edge energies. (a) In bulk semiconductors. (b) In QW structures.

in QW structures where mass reversal and band mixing occur even without strain [21].
Discussion on these effects, however, is beyond the scope of this book.

3.4 Summary of the k−p theory

To summarize this chapter following the k–p approach, a step by step procedure is set
out below showing how the band structure is calculated for a single electron in bulk
semiconductors and in QW structures, with or without strain applied.

Step 1 uniform lattice at k = 0.
Hamiltonian: kinetic energy + periodic lattice potential.
Solution technique: Bloch’s theorem.

(1) Factorize the solution as a global plane wave and a periodic local function.
(2) Map to a single hydrogen atom system in solving the local function.

Drawbacks:

(1) valid only for k = 0;
(2) spin–orbit coupling effect is missing.
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Step 2 uniform lattice at k = 0 with spin–orbit coupling.
Hamiltonian: kinetic energy + periodic lattice potential + s–o energy.
Solution technique: Kane’s approach.

(1) Treat the s–o energy as a perturbation term.
(2) Ignore the existence of other bands except for the conduction band, the heavy-hole

band, the light-hole band and the s–o split band.

Drawback:

(1) poor accuracy.

Step 3 uniform lattice in the neighborhood of k = 0 with spin–orbit coupling.
Hamiltonian: kinetic energy + periodic lattice potential + s–o energy + k–p energy.
Solution technique: Luttinger–Kohn’s approach.

(1) Treat the k–p energy as a perturbation term.
(2) Effect of the rest of the bands is included in considering the bands of interest.
(3) Degeneracy eliminated through proper combination of the base functions.

This is the final step for bulk semiconductors.

Step 4 uniform lattice in the neighborhood of k = 0 with spin–orbit coupling + QW.
Hamiltonian: kinetic energy + periodic lattice potential + s–o energy + k–p energy

+ non-periodic QW potential energy.
Solution technique: effective mass theory.

(1) Factorize the solution as a global wave envelope with an unknown shape and a
specific set of periodic local functions, i.e., the L–K base function obtained for bulk,
which is equivalent to an integral transform taking the L–K base as the core function.

(2) Under this transform, the unknown shape satisfies an integral equation; the only inte-
gral term involves the newly added QW potential energy, which can be approximated
to a convolution, and provided that this extra energy does not change drastically in
the lattice scale, under the inverse Fourier transform, a set of PDEs is obtained for
the unknown shape in the space domain.

(3) Solve the set of PDEs to obtain the unknown shape in the space domain, and construct
the final solution by taking a combination of L–K base functions modulated by the
PDE solution in the space domain.

This is the final step for QW structures without strains applied.

Step 5 uniform lattice in the neighborhood of k = 0 with spin-orbit coupling + QW
+ strain.

Hamiltonian: kinetic energy + periodic lattice potential + s–o energy + k–p energy
+ non-periodic QW potential energy + lattice deformation energy.

Solution technique: perturbation method.
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(1) Treat the lattice deformation energy as a perturbation.
(2) Since the lattice deformation energy is still periodic, the treatment is similar to the

L–K approach.
(3) Mapping is used to skip the tedious derivations for the effective Hamiltonian matrix.

This is the final step for QW structures or bulk semiconductors with strains applied.

References
[1] R. M. Martin, Electronic Structure, 1st edn (Cambridge, UK: Cambridge University Press,

2004).
[2] J. M. Thijssen, Computational Physics, 1st edn (Cambridge, UK: Cambridge University

Press, 1999).
[3] J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures, 1st edn

(London, UK: Cambridge University Press, 2003).
[4] P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials

Properties, 3rd edn (New York: Springer-Verlag, 2001).
[5] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd edn (Oxford, UK: Pergamon

Press, 1977).
[6] L. Schiff, Quantum Mechanics, 1st edn (New York: McGraw-Hill, 1968).
[7] E. O. Kane, Band structure of indium antimonide. Journal of Phys. Chem. Solids, 1 (1957),

249–61.
[8] E. O. Kane, The k·p method. In Semiconductor and Semimetals, Vol. 1, ed. R. K. Willardson

and A. C. Beer. (New York: Academic, 1966).
[9] P. Lowdin, A note on the quantum-mechanical perturbation theory. Journal of Chem. Phys.,

19 (1951), 1396–401.
[10] J. M. Luttinger and W. Kohn, Motion of electrons and holes in perturbed periodic fields.

Phys. Rev., 97 (1955), 869–83.
[11] J. M. Luttinger, Quantum theory of cyclotron resonance in semiconductors: general theory.

Phys. Rev., 102 (1956), 1030–41.
[12] S. L. Chuang, Physics of Optoelectronic Devices, 1st edn (New York: John Wiley & Sons,

1995).
[13] Landolt-Bornstein, Vol. 17 Semiconductors, ed. O. Madelung, M. Schulz, and H. Weiss.

In Numerical Data and Fundamental Relationships in Science and Technology, ed. K. H.
Hellwege. (Berlin: Springer-Verlag, 1982).

[14] S. Adachi, Physical Properties of III-V Semiconductor Compounds, InP, InAs, GaAs, GaP,
InGaAs, and InGaAsP, 1st edn (New York: John Wiley & Sons, 1992).

[15] W. Shan, W. Walukiewicz, J. W. Ager III, et al., Band anticrossing in GaInNAs alloys. Phys.
Rev. Lett., 82:6 (1999), 1221–4.

[16] C. Y.-P. Chao and S. L. Chuang, Spin-orbit-coupling effects on the valence-band structure
of strained semiconductor quantum wells. Phys. Rev. B, 46:7 (1992), 4110–22.

[17] Y. Rajakarunanayake, R. H. Miles, G. Y. Wu, and T. C. McGill, Band structure of ZnSe-ZnTe
superlattices. Phys. Rev. B, 37:17 (1988), 10212–5.

[18] S. L. Chuang and C. S. Chang, K·p method for strained wurtzite semiconductors. Phys. Rev.
B, 54:4 (1996), 2491–504.

[19] X. C. Zhang, A. Pfeuffer-Jeschke, K. Ortner, et al., Rashba splitting in n-type modulation-
doped HgTe quantum wells with an inverted band structure. Phys. Rev. B, 63 (2001), 245305-
1–8.



Material model I: Semiconductor band structures 101

[20] S. Tomic and E. P. O’Reilly, Optimization of material parameters in 1.3-µm InGaAsN-GaAs
lasers. IEEE Photon. Tech. Lett., 15:1 (2003), 6-8.

[21] W. W. Chow and S. W. Koch, Semiconductor Laser Fundamentals: Physics of the Gain
Materials, 1st edn (Berlin: Springer-Verlag, 1999).

[22] D. Ahn and S. L. Chuang, Optical gain in a strained-layer quantum-well laser. IEEE Journal
of Quantum Electron., QE-24:12 (1988), 2400–6.

[23] S. L. Chuang, Efficient band-structure calculations of strained quantum wells using a two-
by-two Hamiltonian. Phys. Rev. B, 43 (1991), 9649–61.

[24] C. Kittel, Introduction to Solid State Physics, 1st edn (New York: Wiley & Sons, 1971).
[25] C. Kittel, Quantum Theory of Solids, 1st edn (New York: Wiley & Sons, 1967).
[26] G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors, 1st edn

(New York: Wiley & Sons, 1974).



4 Material model II: Optical gain

Based on the single electron band structures that have been solved in Chapter 3, we are
ready to derive models for calculation of material optical properties.

4.1 A comprehensive model with many-body effect

4.1.1 Introduction

As summarized in Table 4.1, a real world physics process is described in the time–space
domain with time and space vectors as arguments. Through Fourier transform, we can
also analyze this process in the frequency (energy) – wave vector (momentum) domain
with the frequency and wave vector as arguments. The original arguments and their
alternatives form conjugate pairs which satisfy Heisenberg’s uncertainty relation.

Table 4.2 shows all possible combinations for describing a physics process in different
domains.

Selecting a suitable domain to describe a physics process may bring the following
advantages:

• a derivative operation in the original domain (time or space) will become an algebraic
operation in the alternative domain (frequency or momentum). Therefore, under an
integration transform with the core function obtained from solving an eigenvalue
problem, a linear differential equation can be converted to an algebraic equation. In
particular, if the linear differential equation contains only invariant parameters, this
integration transform is the Fourier transform where the plane wave function serves
as the core function, as it is the eigenfunction of any linear and parameter invariant
system.

• any periodic function in one domain will be a discrete function after being transformed
into its conjugate domain. For example, a periodic time domain function must have a
discrete frequency or energy spectrum, a periodic space domain function must have a
discrete wave vector or momentum dependence, and vice versa.

As will be seen in this chapter, many-body interactions among polaritons (through
which photons are emitted), electrons, holes, and phonons (lattice wave) can be described
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Table 4.1. The original and alternative arguments

Original argument Relation Alternative argument

Time (t) single-side Fourier transform frequency (ω) or energy
(E = �ω)

Space vector (⇀r ) Fourier transform wave vector (
⇀
k ) or

momentum (p = �
⇀
k )

Table 4.2. The description domains for a physical process

Combination Eigenstate Application

Time–space domain ⇀r = a(t) classic matter trajectory
Time–momentum domain

⇀
k = b(t) many-body interaction

Frequency–space domain ω = c(⇀r ) band diagram
Frequency–momentum domain ω = d(

⇀
k ) classic wave dispersion curve

in the time–momentum domain through the Heisenberg equation, through which the
material optical properties such as gain and refractive index change can also be extracted.
As opposed to conventional time–space domain modeling, we need to deal only with
ODEs rather than PDEs in this approach, at the cost of having to solve a large number
of equations rather than a few.

4.1.2 The Heisenberg equation

If we stay in the eigenstates that have been solved in Chapter 3, and attribute the time
evolution of any physical quantity to its associated operator (

⇀

O) dependence on time,
we will obtain the Heisenberg equation in the form of [1]

j�
d

⇀

O

dt
= [ ⇀

O,
⇀

H ] = ⇀

O
⇀

H − ⇀

H
⇀

O, (4.1)

with
⇀

H denoting the system Hamiltonian.
There are several advantages of using this picture to describe many-body interactions

in the time–momentum domain:

• there is no need to introduce or compute any new eigenstates;
• the governing equation is readily obtained in the form of equation (4.1), once we find

the system Hamiltonian and the density distribution operators for particles involved
in the interaction;

• bookkeeping is easier in counting those interactions.
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4.1.3 A comprehensive model

In the many-body microscopic model for semiconductors, interaction between conduc-
tion band electrons and valence band holes, which generates polaritons contributing
to the electromagnetic wave at optical wavelength, and other interactions between
electrons, holes and phonons, i.e., Coulomb repulsion between electrons, Coulomb repul-
sion between holes, Coulomb attraction between electrons and holes, and scattering of
electrons and holes by phonons, should be considered.

By introducing the annihilation and creation operators for conduction band elec-
trons, for valence band holes, and for phonons, respectively, we can write the system
Hamiltonian in the wave vector domain as [2, 3]

⇀

H = ⇀

H kin + ⇀

H pol + ⇀

HC + ⇀

H sct. (4.2)

The terms on the RHS of equation (4.2) are the kinetic energy, the carrier and field
(i.e., the electron–hole pair and the optical field) interaction energy, the carrier Coulomb
interaction energy, and the carrier–phonon scattering energy Hamiltonians. The first term
is given by

⇀

H kin =
∫

�

d⇀r

[
⇀

ψ
+
(⇀r )(−�

2∇2

2mn

)
⇀

ψ(⇀r )

]
=

∑
n=c,v

∑
⇀
k

εn⇀
k
â+
n⇀
k
ân⇀

k

=
∑

⇀
k

(εc⇀
k
â+

c⇀
k
âc⇀

k
+ εv⇀

k
â+

v⇀
k
âv⇀

k
)

=
∑

⇀
k

[(Eg + εe⇀
k
)â+

⇀
k

â⇀
k

+ εh⇀
k
b̂+
−⇀

k
b̂−⇀

k
]. (4.3)

Throughout this chapter, we use the hat symbol (ô) and the vector symbol (
⇀

O) to present
the microscopic and macroscopic operators, respectively, with symbols ô+ and

⇀

O
+

indicating the Hermitian conjugate operators of ô and
⇀

O, respectively. In equation (4.3),
we have the field operator of all electrons (i.e., conduction band electrons and valence
band holes) defined as

⇀

ψ(⇀r , t) ≡ |ψ〉 〈ψ | =
∑

n=c,v

∑
⇀
k

ân⇀
k
(t)

〈
⇀r
∣∣ φn⇀

k

〉
, (4.4)

with |ψ〉 defined as the state for all electrons, |φn⇀
k
〉 and 〈⇀r |φn⇀

k
〉 the single electron state

and wave function, respectively. Also in equations (4.3) and (4.4), n denotes the band
index integer, mn the nth band electron effective mass, εn⇀

k
= �

2k2/(2mn) the nth band
electron energy, ân⇀

k
and â+

n⇀
k

the nth band electron annihilation and creation operator,
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respectively. In this model, we have considered only two bands, i.e., the conduction band
and valence band, and have defined

εc⇀
k

= �
2k2/(2me), εh⇀

k
= �

2k2/(2mh) = −�
2k2/(2mv) = −εv⇀

k
, (4.5)

as the conduction and valence band energies, respectively. For convenience, we have
further introduced â⇀

k
and â+

k as the conduction band electron, b̂⇀
k

and b̂+
⇀
k

as the valence
band hole annihilation and creation operators, respectively. In deriving the last part
of equation (4.3), we have used relations b̂+

−⇀
k

= âv⇀
k

(the annihilation of a valence

band electron is the creation of a valence band hole), and b̂−⇀
k

= â+
v⇀
k

(the creation
of a valence band electron is the annihilation of a valence band hole). As such, we
find â+

v⇀
k
âv⇀

k
= b̂−⇀

k
b̂+
−⇀

k
= 1 − b̂+

−⇀
k
b̂−⇀

k
by utilizing the anticommutation relation for

the Fermion operator. The reference energy is chosen such that the constant energy term∑
⇀
k

εv⇀
k

is zero. The summation over the entire
⇀

k space also includes different spin states.
The second term on the RHS of equation (4.2) is the carrier (electron and hole) and

field (electromagnetic wave at optical wavelength) interaction Hamiltonian, which is
given in the form

⇀

H pol = −�
⇀

P · ⇀

E

= −
∑

⇀
k

(µ⇀
k
â+

⇀
k

b̂+
−⇀

k
+ µ∗

⇀
k
b̂−⇀

k
â⇀
k
) · ⇀

E. (4.6)

In equation (4.6),
⇀

E is the electrical field of the optical wave propagating inside the
medium that we are analyzing,

⇀

P the polarization operator of the medium, and µ⇀
k

the
dipole matrix element between the conduction and valence bands given in the form

⇀µ⇀
k

= e
〈
φc

⇀
k

∣∣⇀r ∣∣φv
⇀
k

〉
, (4.7)

with
∣∣φc

⇀
k

〉
and

∣∣φv
⇀
k

〉
representing the single conduction band electron and single valence

band hole state, respectively. Once the band structure for a single electron is solved,
following this definition, the dipole matrix elements are readily obtained. The electron
and hole eigenstates (i.e., the energy bands or discrete energy levels and wave functions)
can be calculated for a given structure through the method introduced in Chapter 3.

Considering either a direct or an exchange electron–electron collision process as
shown in Fig. 4.1, we can write the carrier Coulomb interaction Hamiltonian as the
third term on the RHS of equation (4.2) in the form

⇀

HC =
∫

�

d⇀r 1

∫
�

d⇀r 2

[
⇀

ψ
+
(⇀r 1)

⇀

ψ
+
(⇀r 2)

e2

4πε0|⇀r 1 − ⇀r 2|
⇀

ψ(⇀r 2)
⇀

ψ(⇀r 1)

]
= 1

2

∑
⇀
k ,⇀k

′

∑
⇀q �=0

V|⇀q |
[
â+

c(⇀k +⇀q )
â+

c(⇀k
′−⇀q )

â
c⇀
k

′ âc⇀
k

+â+
v(⇀k +⇀q )

â+
v(⇀k

′−⇀q )
â

v⇀
k

′ âv⇀
k

+ 2â+
c(⇀k +⇀q )

â+
v(⇀k

′−⇀q )
âv⇀

k
′ âc⇀

k

]
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Fig. 4.1. The electron–electron collision process, in which total momentum is conserved.

= 1

2

∑
⇀
k ,⇀k

′

∑
⇀q �=0

V|⇀q |
(

â+
⇀
k +⇀q

â+
⇀
k

′−⇀q
â⇀
k

′ â⇀
k

+ b̂+
⇀
k +⇀q

b̂+
⇀
k

′−⇀q
b̂⇀
k

′ b̂⇀
k

−2â+
⇀
k +⇀q

b̂+
⇀
k

′−⇀q
b̂⇀
k

′ â⇀
k

)
+

∑
⇀
k

∑
⇀q �=0

V|⇀q |b̂+
−⇀

k
b̂−⇀

k
, (4.8)

with the first two terms within parenthesis on the RHS describing the intraband carrier
interaction, i.e., the conduction band electron and valence band hole Coulomb repulsion,
and the third term the interband carrier interaction, i.e., the conduction band and valence
band hole Coulomb attraction. In deriving equation (4.8), we have used the fact that
the Coulomb scattering does not change the spin orientations of the electrons involved.
The contribution from ⇀q = 0 must be excluded since it has to be cancelled by the
corresponding terms of the electron–ion and ion–ion Coulomb interaction. We have also
dropped the terms that do not conserve the number of electrons in each band since such
terms do not conserve energy. In equation (4.8), the unscreened Coulomb potential in
the wave vector domain is obtained from

V⇀
k ,⇀k

′
,⇀k

′−⇀q ,⇀k +⇀q
=

∫
�

d⇀r 1

∫
�

d⇀r 2

[
φ∗

⇀
k +⇀q

(⇀r 1)φ
∗
⇀
k

′−⇀q
(⇀r 2)

e2

4πε0|⇀r 1 − ⇀r 2|φ⇀
k

′(⇀r 2)φ⇀
k
(⇀r 1)

]
.

(4.9a)

For bulk semiconductors, we approximate all carrier wave functions involved in
equation (4.9a) to plane waves. Therefore, equation (4.9a) reduces to

V⇀
k ,⇀k

′
,⇀k

′−⇀q ,⇀k +⇀q
= 1

�2

∫
�

d⇀r 1

∫
�

d⇀r 2[
e−j(⇀k +⇀q )·⇀r1 e−j(⇀k

′−⇀q )·⇀r2
e2

4πε0|⇀r1 − ⇀r2 |
e j⇀k

′·⇀r2 e j⇀k ·⇀r1

]
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= e2

4πε0�2

∫
�

d
⇀

R1

∫
�

d⇀r2

[
e−j⇀q ·(⇀r1

−⇀r2
)

|⇀r1 − ⇀r2 |

]

= e2

4πε0�

∫
�

d⇀r

(
e−j⇀q ·⇀r

r

)
.

To make this integration converge, we further multiply the integrand by an extra decay
factor e−ar in the radial direction and then take the limit as a → 0. As such, we obtain

V|⇀q | ≡ e2

4πε0�
lim
a→0

∫
�

d⇀r

(
e−j⇀q ·⇀r e−ar

r

)

= e2

2ε0�
lim
a→0

∫ ∞

0
dr

∫ π

0
r sin θdθ(e−jqr cos θe−ar )

= e2

ε0�q
lim
a→0

∫ ∞

0
e−ar sin(qr)dr

= e2

ε0�q2
lim
a→0

1

1 + (a/q)2
= e2

ε0�q2
, (4.9b)

with the wave vector ⇀q defined in the 3D wave vector domain.
For an idealized quantum well (i.e., a square well with infinite barrier), equation (4.9a)

becomes

V⇀
k ,⇀k

′
,⇀k

′−⇀q ,⇀k +⇀q
= 1

�2

∫
�

d⇀r t1

∫
Z1

dz1

∫
�

d⇀r t2

×
∫

Z2

dz2

[
e−j(⇀k t+⇀q t)·⇀r t1F ∗(z1)e

−j(⇀k t′−⇀q t)·⇀r t2F ∗(z2)

× e2

4πε0|⇀r1 − ⇀r2 |
ej⇀k

′
t ·⇀r t2F(z2)e

j⇀k t ·⇀r t1F(z1)

]

= e2

4πε0�2

∫
�

d⇀r t1

∫
�

d⇀r t2

[
e−j⇀q t ·(⇀r t1

−⇀r t2
)

|⇀r t1 − ⇀r t2|
]

= e2

4πε0�

∫
�

d⇀r t

(
e−j⇀q t ·⇀r t

rt

)
.

By following the same method in obtaining equation (4.9b), we find

V|⇀q | ≡ e2

4πε0�
lim
a→0

∫
�

d⇀r t

(
e−j⇀q t ·⇀r t e−art

rt

)
= e2

4πε0�
lim
a→0

∫ 2π

0

∫ ∞

0
e−(a+jq cos ϕ)rdr dϕ
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= e2

2πε0�
lim
a→0

∫ π

0

1

a + jq cos ϕ
dϕ

= e2

2πε0�
lim
a→0

π√
(a2 + q2)

= e2

2ε0�q
, (4.9c)

with the wave vector ⇀q defined in the 2D wave vector domain.
Similarly to arbitrary quantum wells, the Coulomb potential depends on wave

functions of the involved carrier states

V⇀
k ,⇀k

′
,⇀k

′−⇀q ,⇀k +⇀q
= 1

�2

∫
�

d⇀r t1

∫
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dz1

∫
�

d⇀r t2

∫
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⇀
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′
t−⇀q t
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× e2

4πε0|⇀r 1 − ⇀r 2|ej⇀k
′
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k
′
t
(z2)e

j⇀k t ·⇀r t1F⇀
k t

(z1)

]

= e2

4πε0�2

∫
Z1

dz1

∫
Z2

dz2

{
F ∗

⇀
k t+⇀q t

(z1)F
∗
⇀
k

′
t−⇀q t

(z2)

×
[ ∫

�

d⇀r t1

∫
�

d⇀r t2
e−j⇀q t ·(⇀r t1−⇀r t2)

|⇀r 1 − ⇀r 2|
]
F⇀

k
′
t
(z2)F⇀

k t
(z1)

}
.

According to [4], this integral is evaluated through

V|⇀k −⇀
k

′| ≡ e2

2ε0�|⇀k − ⇀
k

′|
∫

Z1

dz1

∫
Z2

dz2

[
F ∗

⇀
k +⇀q

(z1)F
∗
⇀
k

′−⇀q
(z2)

× e−|⇀k −⇀
k

′||z1−z2|F⇀
k

′(z2)F⇀
k
(z1)

]
, (4.9d)

with wave vectors
⇀

k ,
⇀

k
′
, and ⇀q all defined in the 2D wave vector domain.

The last term on the RHS of equation (4.2) is the carrier scattering Hamiltonian, which
is given as

⇀

H sct =
∑
⇀
k ,⇀q

�G⇀q

[
â+

⇀
k +⇀q

â⇀
k
(b̂LO

⇀q
+ b̂LO+−⇀q

) + b̂+
⇀
k +⇀q

b̂⇀
k
(b̂LO

⇀q
+ b̂LO+−⇀q

)
]
, (4.10)

with b̂LO
⇀q

and b̂LO+
⇀q

defined as the annihilation and creation operators of the longitudinal
optical (LO) phonons, respectively. Equation (4.10) describes scattering of electrons or
holes inside the conduction or valence band by emitting or absorbing LO phonons. Note
that G⇀q is the Fröhlich electron – LO phonon coupling matrix element that gives the
linear interaction coefficient of an electron or hole with lattice polarization [2, 5]

G|⇀k | = √
[

ωLOṼ|⇀k |
2�

(
1

ε∞
− 1

ε

)]
, (4.11)
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with ωLO denoted as the LO phonon angular frequency, ε∞ the frequency domain per-
mittivity of the medium at high frequency. In equation (4.11), Ṽ|⇀k | is the screened wave
vector domain Coulomb potential which will be derived in Section 4.3.2.

By introducing

f̂ e
⇀
k

≡ â+
⇀
k

â⇀
k
, f̂ h

⇀
k

≡ b̂+
−⇀

k
b̂−⇀

k
, p̂⇀

k
≡ b̂−⇀

k
â⇀
k
, (4.12)

as the conduction band electron, the valence band hole and the polariton number operator,
respectively, we find the governing equations for these operators through the Heisenberg
equation (4.1)

df̂ e
⇀
k

dt
= j

�
[ ⇀

H, f̂ e
⇀
k
],

df̂ h
⇀
k

dt
= j

�
[ ⇀

H, f̂ h
⇀
k
], dp̂⇀

k

dt
= j

�
[ ⇀

H, p̂⇀
k
], (4.13)

with the Hamiltonian given by equation (4.2).
Equation (4.13) is a set of ODEs in the time–wave vector domain. Once they are

solved, we obtain the corresponding macroscopic conduction band electron and valence
band hole densities as

Ne(t) = 1

�

∑
⇀
k

f e
⇀
k
, Nh(t) = 1

�

∑
⇀
k

f h
⇀
k
, (4.14)

respectively.According to equation (4.6), the macroscopic polarization operator is linked
to the polariton number operator by

⇀

P = 1

�

∑
⇀
k

(⇀µ⇀
k
p̂+

k + ⇀µ∗
⇀
k
p̂⇀

k
). (4.15)

Therefore, the macroscopic polarization is given as

⇀

P (t) ≡ <
⇀

P >= 1

�

∑
⇀
k

(⇀µ⇀
k
p∗

k + ⇀µ∗
⇀
k
p⇀

k
). (4.16)

In equations (4.14) and (4.16), by taking away the hat, we use symbol o ≡ < ô > to
represent the average value (i.e., the expectation) of operator ô.

4.1.4 General governing equations

Equation (4.13) can be simplified by utilizing the properties of the bilinear product of
Fermion operators in the form of α̂⇀

k
β̂⇀

k
. Actually, we have [5]

[α̂⇀
k
β̂⇀

k
, γ̂⇀

k
′ δ̂⇀

k
′ ] = 0, for

⇀

k �= ⇀

k
′
, (4.17a)

[α̂+
⇀
k

α̂⇀
k
, β⇀

k
′ ] = [α̂⇀

k
α̂+

⇀
k

, β⇀
k

′ ] = 0, for
⇀

k �= ⇀

k
′
, (4.17b)
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α̂+
⇀
k

α̂⇀
k

+ α̂⇀
k
α̂+

⇀
k

= 1, (4.17)

α̂⇀
k
α̂⇀

k
= α̂+

⇀
k

α̂+
⇀
k

= 0. (4.17a)

By rewriting equation (4.2) as

⇀

H = ⇀

H kin + ⇀

H pol + ⇀

HC + ⇀

H sct

=
∑

⇀
k

[(Eg + εe⇀
k
)f̂ e

⇀
k

+ εh⇀
k
f̂ h

⇀
k
] −

∑
⇀
k

(µ⇀
k
p̂+

⇀
k

+ µ∗
⇀
k
p̂⇀

k
) · ⇀

E + ⇀

HC + ⇀

H sct,

(4.18)

and by utilizing equation (4.17a) we find from equation (4.13)

df̂ e
⇀
k

dt
= j

�
[(Eg + εe⇀

k
)f̂ e

⇀
k

+ εh⇀
k
f̂ h

⇀
k

− (⇀µ⇀
k
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⇀
k

+ ⇀µ∗
⇀
k
p̂⇀

k
) · ⇀

E, f̂ e
⇀
k
]

+ j

�
[ ⇀

HC + ⇀

H sct, f̂
e
⇀
k
], (4.19a)

df̂ h
⇀
k

dt
= j

�
[(Eg + εe⇀

k
)f̂ e

⇀
k

+ εh⇀
k
f̂ h

⇀
k

− (⇀µ⇀
k
p̂+

⇀
k

+ ⇀µ∗
⇀
k
p̂⇀

k
) · ⇀

E, f̂ h
⇀
k
]

+ j

�
[ ⇀

HC + ⇀

H sct, f̂
h
⇀
k
], (4.19b)

dp̂⇀
k

dt
= j

�
[(Eg + εe⇀

k
)f̂ e

⇀
k

+ εh⇀
k
f̂ h

⇀
k

− (⇀µ⇀
k
p̂+

⇀
k

+ ⇀µ∗
⇀
k
p̂⇀

k
) · ⇀

E, p̂⇀
k
]

+ j

�
[ ⇀

HC + ⇀

H sct, p̂⇀
k
]. (4.19c)

The following commuting relations can also be found from equation (4.17b–d)

[ f̂ e
⇀
k
, f̂ e

⇀
k
] = [ f̂ h

⇀
k
, f̂ h

⇀
k
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, p̂⇀
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⇀
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⇀
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⇀
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⇀
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â⇀
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[f̂ h
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â⇀
k
) − b̂+

−⇀
k
b̂−⇀

k
â+
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⇀
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.

By utilizing these commuting relations, we can further simplify equation (4.19a–c) to
obtain

df̂ e
⇀
k

dt
= j

�
(⇀µ⇀

k
p̂+

⇀
k

− ⇀µ∗
⇀
k
p̂⇀
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) · ⇀

E + j

�
[ ⇀

HC, f̂ e
⇀
k
] + j

�
[ ⇀

H sct, f̂
e
⇀
k
], (4.20a)
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⇀
k

dt
= j
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k
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⇀
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) · ⇀
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⇀
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k
], (4.20b)
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= − j
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k
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⇀
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k
]. (4.20c)

Taking the average value (i.e., the expectation) of the operator equations (4.20a–c), we
find

df e
⇀
k
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· ⇀
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· ⇀
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< [ ⇀

HC, f̂ e
⇀
k
] > + j

�
< [ ⇀
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(4.21a)
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· ⇀
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⇀
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· ⇀
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(4.21b)
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+ εh⇀
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· ⇀
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�
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�
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] > . (4.21c)

Dealing with the carrier (i.e., the conduction band electron and valence band hole)
and polariton number operators commuting with the kinetic energy and carrier-field
interaction Hamiltonians is different from dealing with number operators commuting
with the Coulomb Hamiltonian. In the former, closed forms can still be reached in terms
of the carrier and polariton number operators, but in the latter we do not have closed forms
due to the virtually countless number operators involved in the microscopic domain.
Actually, the Coulomb Hamiltonian not only couples every single number operator to
every other single operator, it also couples every single operator to every other pair,
every pair to every other pair, and so on. As a result, the commutation between the
Coulomb Hamiltonian and the number operator must have an almost infinite number of
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expansion terms in order to describe these interactions in every possible combination. To
make computation of such a commutation possible, we have to truncate the expansion.
Therefore, we follow the Hartree–Fock approach to rank the expansion in order of number
operators, and view the higher order term as the one with more number operators involved
in a product form. In such an expansion ordered from the lowest to the highest, we will
only keep:

(1) zeroth order terms, i.e., those terms proportional to the polariton number operator,
which bring in a Coulomb potential dependent energy shift to the valence band and
a Coulomb field renormalization term to the dipole matrix element;

(2) first order terms, i.e., those terms proportional to the product of the carrier num-
ber and polariton operators and the product of two different polariton operators,
which bring in an effect known as the exchange energy shift and also Coulomb field
renormalization on the dipole matrix element;

(3) second order terms, i.e., the terms proportional to the product of three and four
different carrier number operators, and the product of three different carrier number
operators and one polariton operator, which describe the carrier–carrier collision and
bring in a high order correction to the Coulomb field renormalization on the dipole
matrix element due to such a collision.

The rest of the terms involved in the Coulomb interaction are all neglected. The zeroth and
first order terms are proportional to the Coulomb potential, whereas the second order
term is proportional to the product of the Coulomb potentials. Using equations (4.8),
(4.12), (4.17a–d), we find [3, 6, 7]
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⇀
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⇀
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where we have defined
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(4.23c)

In equation (4.23c), the generalized Dirac function is defined as [6]

g(x) ≡ lim
γ→0

[
j

x + jγ

]
= πδ(x) + jPV

(
1

x

)
, (4.24)

with PV (1/x) indicating the principal value integral of 1/x. In the last equations of
(4.22a) and (4.22b) there is no zeroth order term. The first two terms on the RHS are
both first order, which involves the Coulomb interaction between two different polaritons,
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whereas the last two terms are both second order, which describes the carrier–carrier col-
lision. In the last equation of (4.22c), the first two terms on the RHS are both zeroth order,
where the first term gives a Coulomb potential dependent energy shift to the valence band
through the self-coupling, and the second term contributes to the Coulomb field renor-
malization on the dipole matrix element through the cross-coupling. The third and fourth
terms are both first order, which describes Coulomb interactions between a single carrier
and a single polariton, where the former introduces an exchange energy shift and the lat-
ter still contributes to the Coulomb field renormalization. Finally, the last term is second
order, which gives the carrier–carrier collision effect on the polariton. It brings in a high
order correction to the Coulomb field renormalization. As shown in equations (4.23a–c),
for those second order terms in equation (4.22a–c), the Coulomb potential is replaced
by its screened counterpart, for reasons we explain later in Section 4.3.1.

In dealing with carrier–phonon scattering, i.e., the last commutator in equation (4.21a–
c), we will assume that the LO phonons move much faster than carriers, so that in
the carrier–phonon scattering process, the LO phonons are at their equilibrium status
described by the Bose–Einstein distribution in the form

f
p
⇀q

= 〈f̂ p
⇀q
〉 = 〈b̂LO+

⇀q
b̂LO

⇀q
〉 = f̄

p
⇀q

≡ 1

e�ωLO/kBT − 1
, (4.25)

with f̂
p
⇀q

defined as the LO phonon number operator, f
p
⇀q

the expectation of f̂
p
⇀q

, f̄
p
⇀q

the

steady state solution of f
p
⇀q

, kB the Boltzmann constant in J/K, and T the semiconductor
lattice (ambient) temperature in K. Under this assumption we can solve the carrier–
phonon scattering commutator through a second-order perturbation approach, i.e.,
formally integrate the last commutator in equations (4.21a–c) and iterate twice, to obtain

< [ ⇀

H sct, f̂
e
⇀
k
] > = j

∑
⇀q �=0,±

�
e−p
⇀q ,±f

p
⇀q

+ j
∑

⇀q �=0,±
�e

⇀q ,±, (4.26a)

< [ ⇀

H sct, f̂
h
⇀
k
] > = j

∑
⇀q �=0,±

�
h−p
⇀q ,±f

p
⇀q

+ j
∑
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�h

⇀q ,±, (4.26b)

< [ ⇀
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k
] > = j

∑
⇀q

�
p
⇀
k ⇀q

p⇀
k +⇀q

, (4.26c)

where we have defined

�
e/h−p
⇀q ,± ≡ 2π�

2G2|⇀q |δ[ε(e/h)⇀k
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2

)]
, (4.27b)
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�
p
⇀
k ⇀q

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
2 ∑

α=e,h

∑
⇀
l �=0

G2
|⇀l |

{
g
[
εα⇀

k
− εα(⇀k −⇀

l ) − �ωLO

] [(
1 − f α

⇀
k −⇀

l

)
f

p
⇀
l

+f α
⇀
k −⇀

l

(
1 + f

p
⇀
l

)]
+ g

[
εα⇀

k
− εα(⇀k −⇀

l ) + �ωLO

][(
1 − f α

⇀
k −⇀

l

) (
1 + f

p
⇀
l

)
+ f α

⇀
k −⇀

l
f

p
⇀
l

]}
⇀q = 0

�
2 ∑

α=e,h
G2|⇀q |

{
g
[
εα⇀

k
− εα(⇀k −⇀q ) − �ωLO

] [(
1 − f α

⇀
k

)
f

p
⇀q

+ f α
⇀
k

(
1 + f

p
⇀q

)]
+ g

[
εα⇀

k
− εα(⇀k −⇀q ) + �ωLO

][(
1 − f α

⇀
k

) (
1 + f

p
⇀q

)
+ f α

⇀
k

f
p
⇀q

]}
. ⇀q �= 0

(4.27c)

Finally, substituting equations (4.22a–c) and (4.26a–c) into equations (4.21a–c) we
obtain the governing equations for the expectations of the microscopic polariton number,
conduction band electron number, and valence band hole number

dp⇀
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, (4.28a)
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where we have defined
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with

ω̄⇀
k

≡ 1

�
(Eg + εe⇀

k
+ εh⇀

k
). (4.31)

More specifically, for bulk semiconductors, we have

ω̄⇀
k

= 1

�

(
Eg + �

2k2

2me
+ �

2k2

2mh

)
= 1

�

(
Eg + �

2k2

2mr

)
, (4.32)

where 1/mr ≡ 1/me + 1/mh with mr known as the reduced electron–hole effective
mass.

Equations (4.28a–c) are coupled first order non-linear ODEs. Since the solution of
a first order linear ODE in the form df (t)/dt = −jA(t)f (t) + B(t) can generally be
written as f (t) = [∫ B(t)ej

∫
A(t)dt dt]e−j

∫
A(t)dt + C, we find that the coefficient A(t)

and the inhomogeneous driving term B(t) serve as the exponential growth rate and the
“seed,” respectively, in the evolution of the solution with time. More specifically, if A(t)

can be viewed as a constant in the time scale of our interest, the real and imaginary part
of A(t) becomes the harmonic frequency and gain of the solution, respectively.

Therefore, in the governing equation for the polariton number, equation (4.28a), the
first term on the RHS describes the “coherence” level of the polaritons, as the transition
energy matrix given in equation (4.29) is always real. If we remove the Coulomb poten-
tial, this matrix becomes diagonalized, which means there is no interference between
different polaritons. Under this assumption, a polariton with momentum �

⇀

k will oscil-
late at its own harmonic frequency ω̄k̄ that is determined by the transition energy as
given in equation (4.31). Different polaritons with different momentum will oscillate at
different frequencies without mixing. With the Coulomb potential included, however,
the non-zero off-diagonal matrix element couples and mixes polaritons with different
momentum. Such a coupling brings in a dephasing effect to polaritons so the oscillation
frequency of a polariton with momentum �

⇀

k may be pulled away from its own harmonic
frequency ω̄⇀

k
, and other polaritons with their momentum different from �

⇀

k may take the
harmonic frequency ω̄⇀

k
. It is also interesting to note that

∑
⇀
k

�⇀
k

⇀
k

′ = �ω̄⇀
k

′ , that is to say,
the contribution of the Coulomb interaction to the summation of the off-diagonal column
elements cancels out with that of the diagonal elements. Moreover, for a given

⇀

k (i.e.,
along the same row of matrix �̄ = [�⇀

k
⇀
k
]), the contributions of the Coulomb interaction

to the diagonal element and off-diagonal elements have opposite signs. This leads to a
compensation effect on the Coulomb interaction to some extent. This observation also
suggests that, in solving equation (4.28a), we either ignore the Coulomb potential com-
pletely, or consider its effect on both diagonal and off-diagonal elements. Considering
the Coulomb effect only on the diagonal elements with the off-diagonal elements ignored
(i.e., with the polariton coupling ignored) would be likely to lead to a large error.If the
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coupling between different polaritons is a weak effect, we can treat the off-diagonal terms
as an inhomogeneous driving force. Actually, by splitting the diagonal and off-diagonal
elements in �̄ = [�⇀

k
⇀
k
] into two separate terms, we obtain from equation (4.28a)
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k +⇀q

. (4.33)

The second term on the RHS of equation (4.33) provides the “seed” to the polariton evo-
lution, which is in proportion to the population inversion f̂ e

⇀
k

+ f̂ h
⇀
k

−1 with the coefficient
known as the renormalized Rabi frequency given as equation (4.30). It is obvious that the
Coulomb interaction brings in two major effects; one is an exchange shift added to the
transition energy, which tunes the oscillation frequency of the polaritons and hence shifts
the material gain or absorption profiles around in the frequency domain. The other is a
Coulomb field renormalization term added to the dipole matrix element energy ( ⇀µ⇀

k
· ⇀

E),
which changes the “seed” intensity and hence either enhances or reduces the strength of
the material gain or absorption. Since the Coulomb interaction brings in contributions to
the first and second terms on the RHS of equation (4.33) in the opposite sign, depending
on the sign of the population inversion, it has a different impact on the material gain and
absorption profiles. Actually, once the population is inverted, i.e., f̂ e

⇀
k

+ f̂ h
⇀
k

− 1 > 0, the
Coulomb interaction introduces an energy shift that will effectively decrease the transi-
tion energy from �ω̄⇀

k
, and will effectively enhance the dipole matrix element. On the

contrary, if the population is not inverted, i.e., f̂ e
⇀
k

+ f̂ h
⇀
k

−1 < 0, the Coulomb interaction
brings in an energy shift that will effectively increase the transition energy from �ω̄⇀

k
, and

will effectively reduce the dipole matrix element. Therefore, models without the many-
body Coulomb interaction effect included (e.g., the free carrier model) will mistakenly
position the material gain profile at the shorter wavelength side and will underestimate
the material gain strength. It will affect the absorption calculation in the opposite way,
i.e., without the inclusion of Coulomb interaction in the model, the material absorption
profile will be mistakenly positioned at the longer wavelength side with its absorption
strength overestimated. This effect is illustrated by Fig. 4.2.

As for the last two terms on the RHS of equation (4.28a), they provide higher order
corrections to the first term. Unlike matrix elements �⇀

k
⇀
k

that are all real, matrix elements
�⇀

k
⇀
k

′ and �
p
⇀
k ⇀q

defined as equations (4.23c) and (4.27c) are generally complex since the

generalized Dirac function given in equation (4.24) is complex. Therefore, the imaginary
part of �⇀

k
⇀
k

′ and �
p
⇀
k ⇀q

provide direct correction on �⇀
k

⇀
k

′ , which means the carrier–carrier

collision and carrier–phonon scattering also introduce transition energy shifts through
the diagonal elements �⇀
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⇀
k

and �
p
⇀
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and dephasings through the off-diagonal elements
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, because of the change of carrier energy in such processes. The

real parts of �⇀
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′ and �
p
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introduce attenuations (i.e., damping of the oscillation) to
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Fig. 4.2. The many-body Coulomb interaction effect on gain and absorption profiles.

the polariton through their diagonal elements and damping to other coupled polaritons
through their off-diagonal elements. The contribution of the off-diagonal elements can
also be viewed as being brought to the dipole matrix element. The imaginary parts of
the off-diagonal elements Im[�⇀

k (⇀k
′ �=⇀

k )] and Im[�p
⇀
k (⇀q �=0)

] may effectively enhance or

reduce the dipole matrix element, whereas the real parts of the off-diagonal elements
Re[�⇀

k (⇀k
′ �=⇀

k )] and Re[�p
⇀
k (⇀q �=0)

] will introduce a dephasing effect to the dipole matrix

element as they turn the equivalent Rabi frequency complex. Again, it is easy to prove
that

∑
⇀
k

∑
⇀
k

′ �⇀
k

⇀
k

′p⇀
k

′ = 0, which means the carrier–carrier collision induced second-
order Coulomb interaction brings in a purely interference effect to the polaritons because
of conservation of the total kinetic energy in such a collision process. The off-diagonal
elements have the effect of partially canceling out the influence of the diagonal elements
[6]. Therefore, it is crucial to consider the contribution of the higher order many-body
Coulomb interaction to both diagonal and off-diagonal terms in the polariton equation
simultaneously. This means that if the Coulomb interaction is included up to a certain
order in the diagonal term, the cross-coupling (off-diagonal) terms with the Coulomb
interaction of the same order must be included simultaneously.

In the governing equations for the carrier (electron and hole) number equations
(4.28b&c), the first two terms on the RHS give the net carrier change when interact-
ing with the polariton. The Coulomb interaction modifies the Rabi frequency, which
can be viewed as a change on the dipole matrix element. After renormalization of the
transition energy and the dipole matrix element, the set of governing equations (4.33),
as a replacement of equations (4.28a–c) with the zeroth and first order Coulomb interac-
tions included, resemble two-level Bloch equations. In this sense, equations (4.28b&c)
are still in the form of carrier rate equations, with a modified Rabi frequency that includes
an extra term describing the correction on the carrier recombination and creation rates.
This extra term comes from the cross-coupling between different polaritons because of
the Coulomb interaction.
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If we consider only many-body carrier transport with the carrier–phonon scattering
process ignored, only the third and forth terms on the RHS of equations (4.28b&c) will
remain and we obtain the carrier–carrier Boltzmann equation

df
e/h
⇀
k

dt
= −1

�
(�

e/h−out
⇀
k

+ �
e/h−in
⇀
k

)f
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⇀
k

. (4.34)

As given in equations (4.23a&b), both �
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⇀
k

/� and �
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k

/� are carrier f
e/h
⇀
k

depen-

dent. By letting df
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⇀
k

/dt = 0, we find the steady state solution f̄
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of equation (4.34)
by solving
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known as the detailed balance equation. Actually, the solution to equation (4.35) follows
the well-known quasi-Fermi distribution in the form

f̄
e/h
⇀
k

≡ 1

e

ε
−F c/v

(e/h)
⇀
k

kBT + 1

, (4.36)

with F c/v defined as the quasi-Fermi level in the conduction band and valence band,
respectively. These quasi-Fermi levels are measured from their respective band edges.
Equation (4.35) clearly shows that �

e/h−out
⇀
k

/� and �
e/h−in
⇀
k

/� represent the electron

and hole effective rate of scattering out of and into the
⇀

k state, respectively. The detailed
balance equation (4.35) describes a quasi-equilibrium at which the scattering into each
state is balanced by the scattering out of that state. Once the time scale of interest is
larger than the relaxation time required to reach the balance, i.e., the time for f

e/h
⇀
k

→
f̄

e/h
⇀
k

through carrier–carrier interaction, we can always take the carriers at their quasi-
equilibrium states which means that although collision happens constantly, there is no
change to the carrier number at state

⇀

k , since the number of carriers escaping from this
state on average is the same as the number of carriers captured by this state. When such
a balance is reached for all of the

⇀

k states, carriers must take the quasi-Fermi distribution
as given in equation (4.36).

To understand the transient process in which a given initial carrier distribution evolves
itself, through electronic injection or optical pumping, into a quasi-Fermi distribution,
we can formally integrate the carrier–carrier Boltzmann equation to obtain
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with f
e/h
⇀
k

(0) indicating the given initial state. In equation (4.37) we have introduced a
relaxation time τ r

⇀
k

defined as

τ r
⇀
k

≡ �

�
e/h−out
⇀
k

(f̄
e/h
⇀
k

) + �
e/h−in
⇀
k

(f̄
e/h
⇀
k

)
, (4.38)
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Fig. 4.3. The evolution of the electron distribution. The solid line on the right marked with circled 0 is the
initial distribution, which is assumed to be the electron static distribution in an N doped region
with a broader energy bandgap. The dashed lines marked with circled ee1, ee2, and ee∞ are the
electron intermediate and final distributions without the electron–phonon scattering process
included, whereas the dotted lines marked with circled ep1 and ep2 are the electron intermediate
distributions without the electron–electron collision process included. The solid line on the left
marked with circled ∞ is the final distribution as the time goes to infinity (normally only a few
picoseconds in a real time scale), which forms the quasi-Fermi distribution in the active region
with a narrower energy bandgap. The electron quasi-Fermi levels at the initial and final states are
marked as F c(0) and F c(∞), respectively. The conduction band edges of the N doped region
and the active region are marked as Ec(0) = Ecn and Ec(∞) = Ecar, respectively. The inset
sketch on the very right shows the time evolution sequence. Valleys appear in the electron
distribution as it evolves through the electron–phonon scattering process with the
electron–electron collision process switched off, which indicates the occurrence of LO phonon
emission. The spacing of these valleys equals the LO phonon energy. Without electron–phonon
scattering, the electrons must be settled at a quasi-Fermi distribution with a higher temperature
shown as the curve marked with circled ee∞. With both electron–electron collision and
electron–phonon scattering considered, on their way to evolving to the quasi-Fermi distribution,
the electrons exchange energies with LO phonons and are cooled down, since the energy
exchange leads to a pure energy loss of the electrons. As a result, the electrons will be finally
settled at a quasi-Fermi distribution with a lowered temperature that is balanced with the LO
phonons, or the lattice. This process also describes electron injection from a heterojunction, as
discussed in Chapter 5.

which is the inverse of the summation of the effective electron or hole net decay rates.
Solution of equation (4.37) shows that after a few τ⇀

k
r ’s that are normally on a sub-

picosecond scale, the carriers reach their steady states described by the quasi-Fermi
distributions [3, 6], regardless of their initial distributions, as illustrated by Fig. 4.3.

Finally, the last two terms on the RHS of equations (4.28b&c) describe the carrier–
phonon scattering contribution to the carrier number change. We can actually append
these two terms to equation (4.34) to obtain the carrier–carrier and carrier–phonon
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Boltzmann equation as

df
e/h
⇀
k

dt
= −1

�
(�

e/h−out
⇀
k

+ �
e/h−in
⇀
k

)f
e/h
⇀
k

+ 1

�
�

e/h−in
⇀
k

− 1

�

∑
⇀q �=0,±

�
e/h−p
⇀q ,± f

p
⇀q

− 1

�

∑
⇀q �=0,±

�
e/h
⇀q ,± . (4.39)

According to equations (4.27a&b), and under the assumption that f
p
⇀q

reaches its steady

state f̄
p
⇀q

as given in equation (4.25), the added carrier–phonon scattering terms both
contribute to the net decay rate and the inhomogeneous driving source, therefore, the
scattering process will change the effective carrier relaxation time and the carrier static
distribution. Actually, because of the discrete LO phonon frequency, its distribution in
the wave vector

⇀

k domain is also discrete. Therefore, the carrier–phonon scattering has
peaks in its relaxation process from its initial distribution to a static distribution [3], as
illustrated by Fig. 4.3. These peaks appear at the

⇀

k values corresponding to energies
at ε(e/h)⇀k

− n�ωLO, with n = 1, 2, 3, . . . If we consider both carrier–carrier collision
and carrier–phonon scattering, the peaks are submerged by the smooth carrier–carrier
relaxation [3, 6] as described by equation (4.37), which is also illustrated by Fig. 4.3.
It is worth mentioning that carrier–carrier collision is a momentum and kinetic energy
conserved process. Therefore, through the relaxation process, although carriers (electron
and hole) change profiles from their initial distributions to the quasi-Fermi distributions,
their total energy remains the same as the initial excitation energy, which makes the
effective plasma temperature well above the semiconductor lattice temperature. Dissi-
pation of the carrier energy, i.e., the plasma cooling, will happen through carrier–photon
scattering. Without considering the carrier–phonon scattering process, the carriers would
converge to quasi-Fermi distributions with a higher (plasma) temperature, which is cer-
tainly not the case in the real world. Only through this scattering process, carriers will
lose energy to the LO phonons and will eventually take the lattice temperature and
converge to the quasi-Fermi distributions at the cooled lattice temperature. This is the
scattering effect on the carrier static distribution, which does not change the (quasi-Fermi)
distribution form; rather, it changes the parameter, i.e., the temperature, in the distribution
function.

In summary, after a relaxation process, carrier–carrier interaction (collision) makes
the carriers take a quasi-Fermi distribution regardless of their initial excitation profiles,
whereas carrier–phonon interaction (scattering) cools the carriers’ temperature to the
lattice temperature so that carriers eventually take a quasi-Fermi distribution with the
lattice temperature. This relaxation process is normally on a scale of sub-picoseconds to
a few picoseconds.

Once the governing equations (4.28a–c) are solved in a self-consistent manner, we
obtain the microscopic polariton numbers and carrier numbers at all

⇀

k states. Through a
summation in the wave vector space as shown in equations (4.14) and (4.16), we obtain
the macroscopic polarization, electron and hole densities. Consequently, those material
optical properties can be extracted from the polarization.



122 Optoelectronic Devices: Design, Modeling, and Simulation

4.2 The free-carrier model as a zeroth order solution

4.2.1 The free-carrier model

The free-carrier model is established under the following assumptions.

(1) Rate equation approximation
Carrier–carrier collision and carrier–phonon scattering are very fast processes, which
means that it takes negligible time for the injected electrons and holes to reach their
quasi-Fermi distributions at the lattice temperature. The interaction between carriers
and polaritons makes carriers only slightly deviate from their steady states. Once
such an interaction disappears, carriers should rapidly damp down to their steady
states with the quasi-Fermi distributions. Therefore, the carrier–carrier and carrier–
phonon interactions in equation (4.28a) are phenomenologically replaced by terms
in the form of −γa(f

e/h
⇀
k

− f̄
e/h
⇀
k

), with γa introduced as a phenomenological carrier
damping factor.

(2) Full screening approximation
The Coulomb interaction between carriers (electrons and holes) is fully screened.
As a consequence, its effects on the transition energy and dipole matrix elements are
ignored. However, we phenomenologically introduce a polariton damping factor γ

in the time domain to describe its spectral broadening, which is one of the final effects
of the Coulomb interaction. With the Coulomb interaction completely ignored, we
should have a purely inhomogeneously broadened polariton, hence an optical gain,
spectrum. Unfortunately, this is not true in the real world.Actually, the optical gain of
semiconductors always shows a short wavelength range homogeneous broadening
to some extent [6]. This is the reason we bring in the phenomenological polariton
damping factor γ to capture qualitatively the gain broadening behavior without
expensive calculations on the many-body Coulomb effect involved.

Under these two assumptions, the governing equations (4.28a–c) reduce to

dp⇀
k

dt
= −(jω̄⇀

k
+ γ )p⇀

k
− j

�
(⇀µ⇀

k
· ⇀

E)(f e
⇀
k

+ f h
⇀
k

− 1), (4.40a)

df e
⇀
k

dt
= 2

�
Im[(⇀µ∗

⇀
k

· ⇀

E)p⇀
k
] − γa(f

e
⇀
k

− f̄ e
⇀
k
), (4.40b)

df h
⇀
k

dt
= 2

�
Im[(⇀µ∗

⇀
k

· ⇀

E)p⇀
k
] − γa(f

h
⇀
k

− f̄ h
⇀
k
). (4.40c)

In the free-carrier model, the phenomenological polariton and carrier damping factor,
γ and γa in rad/s, can be obtained only through fitting the calculated result to the
experimental data.

The solution to these equations can be obtained only in conjunction with the initial
conditions. There are two methods of dealing with the initial conditions.
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(1) The injection is not directly applied to the active region (i.e., the material that we
are studying).
In this case, equation (4.14) has to be used with both Ne(t) and Nh(t) determined by
solving the equations that govern carrier transport in the external region, which will
be discussed in Chapter 5. The initial carrier distributions inside the active region
must be given as well, which we can assume is at equilibrium, so that electrons and
holes follow Fermi–Dirac distributions with the unified Fermi level determined by
the charge neutral condition Ne(0) + N−

A = Nh(0) + N+
D , or

1

�

∑
⇀
k

f e
⇀
k

+ N−
A = 1

�

∑
⇀
k

f h
⇀
k

+ N+
D , (4.41)

at t = 0 with N−
A and N+

D defined as the ionized acceptor and donor concentrations
inside the active region, respectively.

(2) Injection is applied to the active region directly.
In this case, a blocked injection term

�
e/h
⇀
k

= ηtrJ

edN0
f̄

e/h
⇀
k 0

(1 − f
e/h
⇀
k

), (4.42)

should be introduced as an inhomogeneous driving term in the carrier equations. In
equation (4.42), ηtr indicates the carrier transport efficiency inside the active region,
J the injection current density, d the active region thickness, N0 and f̄

e/h
⇀
k 0

the total
carrier density and quasi-Fermi distribution in the absence of the optical field (i.e.,
⇀

E = 0).

4.2.2 The carrier rate equation

Considering a scheme with direct injection (applied to the active region) and with
other carrier consumption mechanisms (such as spontaneous emission and carrier non-
radiative decay because of defect capture) included, we can rewrite the carrier equations
(4.40b&c) as

df e
⇀
k

dt
= 2

�
Im[(⇀µ∗

⇀
k

· ⇀

E)p⇀
k
] + �e

⇀
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k
), (4.43a)

df h
⇀
k

dt
= 2
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Im[(⇀µ∗
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· ⇀

E)p⇀
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⇀
k

− B⇀
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f e

⇀
k
f h

⇀
k

− Ahf
h
⇀
k

− γa(f
h
⇀
k

− f̄ h
⇀
k
), (4.43b)

with B⇀
k

and Ae/h introduced as the spontaneous emission rate constant and electron/hole
non-radiative decay constant, respectively. In the comprehensive model described in
Section 4.1, carrier radiative recombination through spontaneous emission was not
taken into account since we did not quantize the non-coherent spontaneously emitted
field. Defects in semiconductors were not considered either, because of their random
nature. Therefore, we add on these carrier consumption mechanisms in this chapter in a
phenomenological manner.
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Making summations over all of the states in the wave vector space and dividing the
active region volume on both sides of equations (4.43a&b) gives

dNe(t)

dt
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(4.44a)
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(4.44b)

In deriving equations (4.44a&b), we have utilized the fact that the total number of carriers
(electrons and holes) must be conserved throughout the carrier–carrier and carrier–
phonon interactions (i.e., collision and scattering). Since carriers eventually reach their
steady state,

∑
⇀
k

f
e/h
⇀
k

= ∑
⇀
k

f̄
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k

.
By assuming

⇀

E(t) = 1

2

⇀

Ẽe−jωt + c.c., (4.45)
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⇀

P (t) = 1

2

⇀

P̃ e−jωt + c.c., (4.46)

with
⇀

Ẽ and
⇀

P̃ introduced as the slow-varying envelope functions.
Comparing equation (4.46) with (4.16) we obtain

⇀
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We also find
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(4.48)
where we have defined the injection efficiency as

ηe/h ≡ ηtr
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Finally, we have
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Substituting equations (4.47), (4.48) and (4.50) into (4.44) gives the carrier rate equations

dNe(t)

dt
=

⇀

E(t)

�
· Im(

⇀

P̃ e−jωt ) + ηeJ

ed
− �spon − AeNe(t), (4.51a)
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E(t)

�
· Im(
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P̃ e−jωt ) + ηhJ

ed
− �spon − AhNh(t). (4.51b)

For low carrier densities, ε(e/h)⇀k
−F c/v � kBT , equation (4.36) reduces to the Maxwell–

Boltzmann distribution
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⇀
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kBT . (4.52)

For bulk semiconductors, substituting equation (4.52) and ε(e/h)⇀k
= �

2k2/2me/h into
equation (4.50) yields
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with the spontaneous recombination rate B defined as
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In deriving equation (4.53), we have also used
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with the parabolic conduction and valence band edge densities defined as
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≈ 2.51 × 1019
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T

300
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cm−3. (4.56)

Plugging equation (4.53) into (4.51a&b) we obtain the carrier rate equations in the most
popular form. If the active region is doped, we still have the carrier rate equations in the
form of (4.51a&b), but the carrier consumption term because of spontaneous emission
on the RHS of these equations must be modified to [6]
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with f̄
D/A
⇀
k

denoting the Fermi–Dirac distributions of the ionized donor and acceptor
carriers, respectively.

4.2.3 The polariton rate equation

We can formally integrate the polariton equation (4.40a) to obtain [6]
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where the carrier number expectations are replaced by their steady state quasi-Fermi
distributions.

Under the rate equation approximation, the time domain slow-varying factors can be
taken out of the integral in equation (4.58). Hence we find
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Under a rotating-wave approximation [8], we obtain
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Therefore, the slow-varying envelope of the macroscopic polarization defined by
equation (4.46) is obtained by plugging equation (4.60) into (4.47)
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with Ẽµ defined as the projection of vector
⇀

Ẽ along the direction of vector ⇀µ⇀
k

. In
equation (4.61), we have the Lorentzian line-shape function defined as

L(x) = γ 2

γ 2 + x2
. (4.62)

The direction of
⇀

P̃ is along ⇀µ⇀
k

as well.

4.2.4 The susceptibility

By taking the Fourier transform of equation (2.9) we find the frequency domain
susceptibility as
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Therefore, from
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in accordance with equation (4.61). In equation (4.64), we have also utilized the fact that

P̃ and Ẽµ are in the same direction as
⇀

P̃ is along ⇀µ⇀
k

.
Consequently, we obtain the semiconductor material gain and refractive index change

according to equation (2.104)
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We note that the susceptibility extracted from equation (4.64) is the one induced by
carrier injection only, with the background value n2 − 1 excluded. Calculation of the
material background refractive index n, or the relative permittivity εr = ε/ε0 = n2, is
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briefly discussed in Section 4.3.2 in evaluating the screened Coulomb potential. In-depth
study of this topic is beyond the scope of this book. One can always refer to [9] or find
its value directly in a semiconductor material database [10].

4.3 The screened Coulomb interaction model as a first order solution

4.3.1 The screened Coulomb interaction model

Ascreened Coulomb interaction model is established under the following assumptions.

(1) Phenomenological collision approximation.
The carrier–carrier collision and carrier–phonon scattering are phenomenologically
described by the carriers’ rapid relaxation towards their steady states at the lattice
temperature, with their effect on the polariton incorporated into a damping factor in
the time domain to depict its spectral broadening, as in Section 4.2.

(2) Screened Coulomb potential approximation.
Bare Coulomb interaction between the charged carriers (electrons and holes) is
replaced by the plasma screened Coulomb potential applied to every individual
charged carrier. As a consequence, effects such as transition energy shift and dipole
matrix element renormalization appear because of inclusion of the screened Coulomb
force. Actually, the approach of using a screened Coulomb potential to replace the
bare one in the last term of a truncated operator–Hamiltonian commutator series is
similar to the renormalization method, which is also known as a windowing tech-
nique to minimize the truncation error. It is for this reason that we always use the
screened Coulomb potential in the highest order interaction energies retained in our
governing equations. That is to say, if we retain up to the second order operator–
Hamiltonian commutator expansion terms in our governing equations, as we did for
equation (4.28a–c), the screened Coulomb potential should be used in the second
order interaction energy matrices �

e/h−out
⇀
k

, �e/h−in
⇀
k

, �⇀
k

⇀
k

′ , �e/h−p
⇀q ,± , �e/h

⇀q ,± , and �
p
⇀
k ⇀q

as shown in equations (4.23a–c) and (4.27a–c), whereas the bare Coulomb poten-
tial should still be used in the combined zeroth and first order interaction energy
matrix �⇀

k
⇀
k

′ and in the Rabi frequency �⇀
k

as shown in equations (4.29) and (4.30),
respectively, to avoid double counting the second order effect. However, if we retain
only up to the first order operator–Hamiltonian commutator expansion terms in our
governing equations, the screened Coulomb potential should be used in �⇀

k
⇀
k

′ and
�⇀

k
as they are related to the last terms in the truncation.

Under these two assumptions, the governing equations (4.28a–c) reduce to

dp⇀
k

dt
= − j

�

∑
⇀
k

′
(�⇀

k
⇀
k

′ − j�γ δ⇀
k

⇀
k

′)p⇀
k

′ − j

�
(⇀µ⇀

k
· ⇀

E)(f e
⇀
k

+ f h
⇀
k

− 1), (4.66a)
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df e
⇀
k

dt
= 2

�
Im[�∗

⇀
k
p⇀

k
] − γa(f

e
⇀
k

− f̄ e
⇀
k
), (4.66b)

df h
⇀
k

dt
= 2

�
Im[�∗

⇀
k
p⇀

k
] − γa(f

h
⇀
k

− f̄ h
⇀
k
), (4.66c)

where �⇀
k

⇀
k

′ , �⇀
k

are still in the form of equations (4.29) and (4.30), respectively, but
with the Coulomb potential given in the screened form rather than in the bare form given
as equation (4.9a–d). Thus we have

�⇀
k

⇀
k

′ ≡
⎧⎨⎩ �ω̄⇀

k
− ∑

⇀
l �=⇀

k

Ṽ|⇀l −⇀
k |(f e

⇀
l

+ f h
⇀
l

− 1)
⇀

k
′ = ⇀

k

Ṽ|⇀k ′−⇀
k |(f e

⇀
k

+ f h
⇀
k

− 1)
⇀

k
′ �= ⇀

k

, (4.67)

�⇀
k

≡ 1

�

(
⇀µ⇀

k
· ⇀

E +
∑
⇀
l �=⇀

k

Ṽ|⇀l −⇀
k |p⇀

l

)
. (4.68)

4.3.2 The screened Coulomb potential

The screened Coulomb potential can be derived from the following self-consistent
Hartree–Fock model [6]. In this model, on the one hand, by using the screened Coulomb
potential to truncate the operator–Hamiltonian commutator, we can find an expression
for the carrier distribution in terms of the screened Coulomb potential. On the other
hand, the screened Coulomb potential and the carrier distribution must satisfy Poisson’s
equation, from which we can find the screened Coulomb potential by eliminating the
carrier distribution through substituting it with the previously obtained expression.

Assuming that a test electron at the origin, i.e.,

f e
0 (⇀r ) = δ(⇀r ), (4.69)

is adiabatically introduced to a background electron plasma distribution f e(⇀r ). Because
of the disturbance, the original background f e(⇀r ) will be redistributed to f̃ e(⇀r ). We can
express the screened (by the redistributed background) electrostatic potential φ̃(⇀r ) in
Poisson’s equation

∇2φ̃(⇀r ) = − e

ε0
[f e

0 (⇀r ) + f̃ e(⇀r )], (4.70)

which is derived from the Maxwell equations for an electrostatic field.
Taking the Fourier transform of the above equation yields Poisson’s equation in the

wave vector domain

φ̃⇀
k

= e

ε0k2

(
1

�
+ f̃ e

⇀
k

)
, (4.71)

or

Ṽ|⇀k | = eφ̃⇀
k

= e2

ε0k2

(
1

�
+ f̃ e

⇀
k

)
, (4.72)

where

φ̃⇀
k

= 1

�

∫
�

d⇀r [e−j⇀k ·⇀r φ̃(⇀r )], f̃ e
⇀
k

= 1

�

∫
�

d⇀r [e−j⇀k ·⇀r f̃ e(⇀r )], (4.73)
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and according to equation (4.69)

1

�

∫
�

d⇀r [e−j⇀k ·⇀r f e
0 (⇀r )] = 1

�

∫
�

d⇀r [e−j⇀k ·⇀r δ(⇀r )] = 1

�
.

By switching off the background electron plasma, we obtain the unscreened Coulomb
potential V|⇀k | = eφ⇀

k
= e2/(ε0�k2), which is the same as equation (4.9b).

Therefore, the screened Coulomb potential can be rewritten in the form

Ṽ|⇀k | = e2

ε0�k2
(1 + f̃ e

⇀
k
�) = V|⇀k |(1 + f̃ e

⇀
k
�). (4.74)

On the other hand, the redistribution of the background electron plasma from the original
f e(⇀r ) (or f e

⇀
k

in the wave vector domain) to f̃ e(⇀r ) (or f̃ e
⇀
k

in the wave vector domain) is
driven by the screened Coulomb potential

Ṽ (⇀r ) = eφ̃(⇀r ), (4.75)

(or Ṽ|⇀k | = eφ̃⇀
k

in the wave vector domain). This process is governed by the time–wave
vector domain equation of motion for the electron density operator.

By letting the original background electron plasma number operator be

f̂ e
⇀
k

≡ â+
⇀
k

â⇀
k
, (4.76)

and the screened background electron plasma density operator be

⇀

F
e
⇀
l

≡
∑

⇀
k

â+
⇀
k −⇀

l
â⇀
k
/�, (4.77)

we can write the system Hamiltonian as

⇀

H eff =
∑

⇀
k

εe
⇀
k
â+

⇀
k

â⇀
k

+ �
∑

⇀
l

Ṽ|⇀l |
⇀

F
e
−⇀

l
. (4.78)

As the expected values of the original background electron plasma number and the
screened background electron plasma density operators, we have

f e
⇀
k

= 〈â+
⇀
k

â⇀
k
〉, (4.79)

and
f̃ e

⇀
k

≡ 〈 ⇀

F
e
⇀
k
〉, (4.80)

where the inverse Fourier transform of f̃ e
⇀
k

is the background electron plasma redistribu-
tion caused by the disturbance of the test electron

f̃ e(⇀r ) =
∑

⇀
l

e j⇀l ·⇀r f̃ e
⇀
l

=
∑

⇀
l

e j⇀l ·⇀r 〈 ⇀

F
e
⇀
l
〉. (4.81)
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The equation of motion for the screened background electron plasma number operator
â+

⇀
k −⇀

k
′ â⇀

k
in the time–wave vector domain can be expressed in the form of the Heisenberg

equation

j�
d

dt
â+

⇀
k −⇀

k
′ â⇀

k
= [â+

⇀
k −⇀

k
′ â⇀

k
,

⇀

H eff ]

= (εe
⇀
k

− εe
⇀
k −⇀

k
′)â+

⇀
k −⇀

k
′ â⇀

k
+

∑
⇀
l

Ṽ|⇀l |(â+
⇀
k −⇀

k
′ â⇀

k +⇀
l

− â+
⇀
k −⇀

k
′−⇀

l
â⇀
k
).

(4.82)

Taking the expected value of equation (4.82) and keeping only those slowly varying
terms with

⇀

l = −⇀

k
′
, we find

j�
d

dt
〈â+

⇀
k −⇀

k
′ â⇀

k
〉 = (εe

⇀
k

− εe
⇀
k −⇀

k
′)〈â+

⇀
k −⇀

k
′ â⇀

k
〉 + Ṽ|⇀k ′|(〈â+

⇀
k −⇀

k
′ â⇀

k −⇀
k

′ 〉 − 〈â+
⇀
k

â⇀
k
〉)

= (εe
⇀
k

− εe
⇀
k −⇀

k
′)〈â+

⇀
k −⇀

k
′ â⇀

k
〉 + Ṽ|⇀k ′|(f

e
⇀
k −⇀

k
′ − f e

⇀
k
). (4.83)

We assume that 〈â+
⇀
k −⇀

k
′ â⇀

k
〉 has a solution of the form e(−jω+δ/�)t (damped harmonic

oscillation), where δ → 0 indicates that the perturbation (test electron) is switched on
adiabatically, i.e., we had a homogenous background electron plasma at t → −∞. We
further assume that the original background electron plasma number expectation f e

⇀
k

also
follows this response. Under these assumptions, the above equation in the time–wave
vector domain can be transformed into the frequency–wave vector domain as

�(ω + jδ)〈â+
⇀
k −⇀

k
′ â⇀

k
〉 = (εe

⇀
k

− εe
⇀
k −⇀

k
′)〈â+

⇀
k −⇀

k
′ â⇀

k
〉 + Ṽ|⇀k ′|(f

e
⇀
k −⇀

k
′ − f e

⇀
k
)

or

〈â+
⇀
k −⇀

k
′ â⇀

k
〉 = Ṽ|⇀k ′|

f e
⇀
k −⇀

k
′ − f e

⇀
k

�ω + jδ + εe
⇀
k −⇀

k
′ − εe

⇀
k

. (4.84)

Substituting equation (4.77) into (4.80) and replacing the screened background electron
plasma number expectation by equation (4.84) we obtain

f̃ e
⇀
k

′ = 1

�

∑
⇀
k

〈â+
⇀
k −⇀

k
′ â⇀

k
〉 = Ṽ |⇀k ′|

�

∑
⇀
k

f e
⇀
k −⇀

k
′ − f e

⇀
k

�ω + jδ + εe
⇀
k −⇀

k
′ − εe

⇀
k

. (4.85)

Plugging equation (4.85) into the screened Coulomb potential formula (4.74) yields

Ṽ|⇀k | = V|⇀k |

⎛⎝1 + Ṽ|⇀k |
∑

⇀
l

f e
⇀
l −⇀

k
− f e

⇀
l

�ω + jδ + εe
⇀
l −⇀

k
− εe

⇀
l

⎞⎠ ,

or

Ṽ|⇀k | = V|⇀k |/

⎛⎝1 − V|⇀k |
∑

⇀
l

f e
⇀
l −⇀

k
− f e

⇀
l

�ω + jδ + εe
⇀
l −⇀

k
− εe

⇀
l

⎞⎠ . (4.86)
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Following a similar approach, we can include the hole contribution to obtain

Ṽ|⇀k | = V|⇀k |
εr,⇀k

(ω)
= V|⇀k |/

⎡⎣1 − V|⇀k |
∑

⇀
l

∑
α=e,h

f α
⇀
l −⇀

k
− f α

⇀
l

�ω + jδ + εα
⇀
l −⇀

k
− εα

⇀
l

⎤⎦ , (4.87)

where

εr,⇀k
(ω) ≡ 1 − V|⇀k |

∑
⇀
l

∑
α=e,h

f α
⇀
l −⇀

k
− f α

⇀
l

�ω + jδ + εα
⇀
l −⇀

k
− εα

⇀
l

. (4.88)

Equation (4.88) is known as the Lindhard formula for the relative permittivity of
semiconductors, where the excitonic screening is neglected [11, 12]. Under such an
approximation, the screening effect of the electron–hole plasma equals the sum of the
effects resulting from the separate electron and hole plasmas.

The Lindhard formula can be further simplified under more specific conditions. For
example, under the long wavelength (

⇀

k → 0) limit, the Lindhard formula (4.88) is
reduced to the classical Drude formula

εr,⇀k =0(ω) = 1 − ω2
pl

ω2
, (4.89)

where
ω2

pl ≡ Ne2/(ε0mr) (4.90)

with N = Ne = Nh given in equation (4.14) and mr the reduced electron–hole effective
mass. Expression (4.89) is the same as the material permittivity dispersion formula
derived from a phenomenological dipole oscillator model with the damping ignored.

A better approximation comes from replacing the continuum of electron and hole pair
excitations, represented by the continuum of poles in the Lindhard formula (4.88), by a
single effective plasmon pole [13]

1

ε
r ,⇀k

(ω)
= 1/[1 − V|⇀k |

∑
⇀
l

∑
α=e,h

f α
⇀
l −⇀

k
− f α

⇀
l

�ω + jδ + εα
⇀
l −⇀

k
− εα

⇀
l

]

≈ 1 + V|⇀k |
∑

⇀
l

∑
α=e,h

f α
⇀
l −⇀

k
− f α

⇀
l

�ω + jδ + εα
⇀
l −⇀

k
− εα

⇀
l

→ 1 + ω2
pl

(ω + jδ/�)2 − ω2
k

, (4.91)

where

ω2
k ≡ ω2

pl(1 + k2

κ2
) + C(

�k2

4mr
)2, (4.92)

with

κ ≡ √
(

e2

ε0

∑
α=c,v

∂N

∂Fα

)
, (4.93)
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as the inverse static screening length, and C as a numerical constant between 1 and 4.
Under the static plasmon pole approximation, equation (4.91) is further simplified to

1

εr,⇀k
(ω)

= 1 − ω2
pl

ω2
k

= (ω2
pl/κ

2) + C(�/4mr)
2k2

ω2
pl + (ω2

pl/κ
2)k2 + C(�/4mr)2k4

k2. (4.94)

Hence we find the screened Coulomb potential under the static plasmon pole approxi-
mation

Ṽ|⇀k | = V|⇀k |
(ω2

pl/κ
2) + C(�/4mr)

2k2

ω2
pl + (ω2

pl/κ
2)k2 + C(�/4mr)2k4

k2, (4.95)

with ω2
pl and κ given by equations (4.90) and (4.93), respectively.

4.3.3 Solution under zero injection and the exciton absorption

Under zero injection, equation (4.66a) becomes

dp⇀
k

dt
= −(jω̄⇀

k
+ j

�

∑
⇀
l �=⇀

k

Ṽ|⇀l −⇀
k | + γ )p⇀

k
+ j

�

⇀µ⇀
k

· ⇀

E + j

�

∑
⇀
k

′ �=⇀
k

Ṽ|⇀k ′−⇀
k |p⇀

k
′ , (4.96)

with ω̄⇀
k

given by equation (4.31).
Under the plane-wave optical field assumption, i.e.,

⇀

E(t) = 1

2
⇀

E0ej(⇀k 0·⇀r −ωt) + c.c., (4.97)

with
⇀

k0 indicating the optical wave vector, by taking the Fourier transform of
equation (4.96) to convert it from the time–wave vector domain to the frequency–wave
vector domain, we find

−jωp̃⇀
k

= −(jω̄⇀
k

+ j

�

∑
⇀
l �=⇀

k

Ṽ|⇀l −⇀
k | + γ )p̃⇀

k
+ j

�
(⇀µ⇀

k
· ⇀

E0)e
j⇀k 0·⇀r + j

�

∑
⇀
k

′ �=⇀
k

Ṽ|⇀k ′−⇀
k |p̃⇀

k
′ ,

(4.98)
where

p⇀
k

≡ (1/2)p̃⇀
k

e−jωt , (4.99)

is assumed. In (4.98), the space coordinate ⇀r indicates the distance between the con-
duction band electron and valence band hole, whereas ⇀r indicates the space coordinate
of the electron–hole pair mass center. Under such an arrangement, the polariton has
no dependence on ⇀r . This is the reason a specific slow-varying envelope in the optical
field has been assumed to be in the form of equation (4.97). Equation (4.98) can also be
rewritten as

[�ω̄⇀
k

+
∑
⇀
l �=⇀

k

Ṽ|⇀l −⇀
k | − �(ω + jγ )]p̃⇀

k
= (⇀µ⇀

k
· ⇀

E0)e
j⇀k 0·⇀r +

∑
⇀
k

′ �=⇀
k

Ṽ|⇀k ′−⇀
k |p̃⇀

k
′ . (4.100)
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Therefore, by taking the inverse space Fourier transform of equation (4.100) to convert
it from the frequency–wave vector domain to the frequency–space domain, we obtain[

−�
2∇2

2mr
− e2

4πεr
+ Eg − �(ω + jγ )

]
p̃(⇀r ) = (⇀µ · ⇀

E0)e
j⇀k 0·⇀r δ(⇀r )�, (4.101)

for bulk semiconductors, where equations (4.87), (4.9b) and (4.32) have been used with
ε ≡ ε0εr(ω). εr(ω) is the space–frequency domain relative permittivity obtained by
taking the inverse space Fourier transform of εr,⇀k

(ω) given by the Lindhard formula
(4.88). The wave vector

⇀

k dependence on the dipole matrix element ⇀µ⇀
k

can be ignored
provided that only a small

⇀

k value in the neighborhood of the fundamental absorption
edge is considered.

To solve the inhomogeneous equation (4.101), the related homogeneous equation in
the form (

−�
2∇2

2mr
− e2

4πεr

)
ϕn(

⇀r ) = εnϕn(
⇀r ), (4.102)

must be solved first. Actually, the eigenvalue problem equation (4.102), also known as
the Wannier equation [2, 3], takes the form of the Schrödinger equation for the relative
motion of an electron and a hole interacting with the attractive Coulomb potential,
which is analogous to the electron orbiting problem in a hydrogen atom. The solutions
of equation (4.102) are the Wannier excitons [6].

The solution to the inhomogeneous equation (4.101) can therefore be constructed as
a linear superposition of the eigenfunctions obtained from equation (4.102)

p̃(⇀r ) =
∑
m

pmϕm(⇀r ). (4.103)

Substituting equation (4.103) into (4.101), multiplying by ϕ∗
n(⇀r ) and integrating over

the entire space � we obtain [2]

pn = (⇀µ · ⇀

E0)�ϕ∗
n(0)

εn + Eg − �(ω + jγ )
ej⇀k 0·⇀r , (4.104)

where the orthonormal condition for the eigenfunction of equation (4.102)∫
�

d⇀r [ϕ∗
m(⇀r )ϕn(

⇀r )] = δmn, (4.105)

has been used.
Replacing the coefficient in equation (4.103) with (4.104), taking the Fourier transform

on the obtained expression to find p̃⇀
k

, and substituting the result into equation (4.99)
yields

p⇀
k

= 1

2
e−jωtF [p̃(⇀r )] = 1

2
ej(⇀k 0·⇀r −ωt)

∑
m

(⇀µ · ⇀

E0)ϕ
∗
m(0)

εm + Eg − �(ω + jγ )

∫
�

d⇀r [ϕm(⇀r )e−j⇀k ·⇀r ].
(4.106)
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From equation (4.47), we obtain

P̃ = E0µej⇀k 0·⇀r |µ|2
∑
m

ϕ∗
m(0)

εm + Eg − �(ω + jγ )

1

�

∑
⇀
k

∫
�

d⇀r [ϕm(⇀r )e−j⇀k ·⇀r ]

= 2Ẽµ|µ|2
∑
m

|ϕ∗
m(0)|2

εm + Eg − �(ω + jγ )
, (4.107)

where E0ej⇀k 0·⇀r = Ẽ has been used by comparing equation (4.97) with (4.45). Again,

Ẽµ is the projection of vector
⇀

Ẽ along the direction of ⇀µ. P̃ and Ẽµ are in the same

direction as
⇀

P̃ is along ⇀µ.
Therefore, we find the susceptibility given by

χ̃(ω) = P̃

ε0Ẽµ

= 2|µ|2
ε0

∑
m

|ϕm(0)|2
εm + Eg − �(ω + jγ )

= 2|µ|2
ε0�γ

∑
m

|ϕm(0)|2
[(

εm + Eg

�
− ω

)
/γ + j

]
L

(
εm + Eg

�
− ω

)
, (4.108)

with the Lorentzian line-shape function defined by equation (4.62).
The corresponding material absorption and refractive index change are given as

α(ω) = −k0

n
Im[χ̃(ω)] = − 2ω|µ|2

ε0nc�γ

∑
m

|ϕm(0)|2L
(

εm + Eg

�
− ω

)

= −2ω|µ|2
ε0nc�

∑
m

|ϕm(0)|2 γ

γ 2 + [(εm + Eg)/� − ω]2
, (4.109a)

�n(ω) = 1

2n
Re[χ̃(ω)] = |µ|2

ε0n�γ

∑
m

|ϕm(0)|2 (εm + Eg)/� − ω

γ
L(

εm + Eg

�
− ω)

= |µ|2
ε0n�

∑
m

|ϕm(0)|2 (εm + Eg)/� − ω

γ 2 + [(εm + Eg)/� − ω]2
. (4.109b)

For bulk semiconductors, the eigenvalue problem equation (4.102) can be solved for
both bound (discrete) and continuum states [14, 15, 16, 17]. The energies and wave
functions at ⇀r = 0 are given as

εm = − εR

m2
, |ϕm(0)|2 = 1

πa3
0m3

, (4.110a)

with m = 1, 2, 3, . . . for the bound states with negative eigenvalues (εm < 0) and

E = �
2k2

2mr
, |ϕE(0)|2 = 1

4πεRa3
0

eπ/
√

(E/εR)

sinh(π/
√

(E/εR))
, (4.110b)
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for the continuum states with positive eigenvalues (E > 0), where the Bohr radius and
the Rydberg energy are defined as

a0 ≡ 4πε�
2

mre2
, (4.111)

εR ≡ �
2(1/a0)

2

2mr
= mre4

2�2(4πε)2
, (4.112)

respectively.
Substituting equations (4.110a&b) into (4.109a), we find

α(ω) = −α0{4
∑
m

γ̄ /m3

γ̄ 2 + [� + 1/m2]2
+

∫ ∞

0
dx[ eπ/

√
x

sinh(π/
√

x)

γ̄

γ̄ 2 + [x − �]2
]},

(4.113)

where the relative transition energy and half-linewidth energy in the Lorentzian line-
shape function (both normalized by the Rydberg energy), and the absorption coefficient
are defined as

� ≡ (�ω − Eg)/εR, (4.114a)

γ̄ ≡ �γ /εR, (4.114b)

α0 ≡ ω|µ|2
2πε0nca3

0εR
. (4.114c)

Equation (4.113) is in the form of the Elliot formula [14], which reveals that the absorption
spectrum comprises a set of discrete exciton resonance absorption peaks and a continuous
absorption floor due to the ionized states. The exciton absorption peaks are a consequence
of the electron–hole Coulomb attraction, which has some unique features. Firstly, the first
absorption peak (m = 1) appears at �1 = −1, which corresponds to �ω1 = Eg − εR, or
a transition energy below the bandgap energy. The rest of the peaks (m > 1) have their
transition energies rapidly converging to, but never greater than the bandgap energy in
accordance with �ωm = Eg −εR/m2. Secondly, as the peak transition energies approach
the bandgap, each peak absorption value drops very rapidly in the order of 1/m3. For
example, the absorption strength of the second peak is only 1/8 of that of the first peak.
As for continuous absorption, equation (4.113) shows a constant value starting from the
bandgap (� = 0) and near the band edge (� → 0), which indicates that the continuous
absorption spectrum is step-function like in the neighborhood of the band edge. This
conclusion is justified if we let γ̄ → 0, hence γ̄ /[γ̄ 2 + [x − �]2] → πδ(x − �), and
the integral in equation (4.113) approaches a constant∫ ∞

0
dx[ eπ/

√
x

sinh(π/
√

x)

γ̄

γ̄ 2 + [x − �]2
] →

∫ ∞

0
dx

[
πδ(x − �)eπ/

√
x

sinh(π/
√

x)

]

= πeπ/
√

�

sinh(π/
√

�)
= 2π

1 − e−2π/
√

�
→ 2π.
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In the free-carrier model with the Coulomb interaction ignored, however, an exciton
resonance peak does not appear and the continuous absorption spectrum shows a square-
root function like shape near the band edge, in accordance with equation (4.65a). From
these analyses, we can conclude that it is crucial to include the many-body Coulomb
interaction effects under a zero or weak injection where the carrier density is low. Under
a strong injection where the carrier density is high, however, the free-carrier model may
offer reasonably accurate results. This is because the Coulomb interaction is effectively
screened under a high carrier density. This implies that, in real world applications, we
should include the many-body Coulomb interaction effects in our material models for the
simulation of photodetectors (PDs), electro-absorption modulators (EAMs), and photo-
luminescent (PL) assessment of epitaxial wafers where the carrier density remains at
a low level. The free-carrier model, on the other hand, can be sufficient for modeling
laser diodes, semiconductor optical amplifiers, superluminescent light emitting diodes,
and light emitting diodes where the carrier density is at a considerable level because of
the injection.

For QW structures, the eigenvalue problem equation (4.102) can be solved for both
bound (discrete) and continuum states [18, 19, 20]. By following a similar approach, we
will be able to find the material absorption and refractive index change including the 2D
exciton effect from equations (4.109a&b).

4.3.4 Solution under arbitrary injection

Under an arbitrary injection, the polariton equation (4.66a) can be rewritten as

dp⇀
k

dt
= −[jω̄⇀

k
− j

�

∑
⇀
l �=⇀

k

Ṽ|⇀l −⇀
k |(f e

⇀
l

+ f h
⇀
l

− 1) + γ ]p⇀
k

− j

�
(⇀µ⇀

k
· ⇀

E +
∑

⇀
k

′ �=⇀
k

Ṽ|⇀k ′−⇀
k |p⇀

k
′)(f e

⇀
k

+ f h
⇀
k

− 1). (4.115)

Comparing with the equivalent equation in the free-carrier model (4.40a), we find:

(1) The bandgap has been changed.
The renormalized bandgap becomes

ω̄′
⇀
k

≡ ω̄⇀
k

− 1

�

∑
⇀
l �=⇀

k

Ṽ|⇀l −⇀
k |(f e

⇀
l

+ f h
⇀
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− 1)

= 1

�

⎡⎣�
2k2

2mr
+ Eg −

∑
⇀
l �=⇀

k

Ṽ|⇀l −⇀
k |(f e

⇀
l

+ f h
⇀
l

− 1)

⎤⎦
= 1

�

[
�

2k2

2mr
+ εg

]
, (4.116)
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where

εg ≡ Eg −
∑
⇀
l �=⇀

k

Ṽ|⇀l −⇀
k |(f e

⇀
l

+ f h
⇀
l

− 1)

= Eg +
∑
⇀
l �=⇀

k

Ṽ|⇀l −⇀
k | −

∑
⇀
l �=⇀

k

Ṽ|⇀l −⇀
k |(f e

⇀
l

+ f h
⇀
l
)

= εV
g + �εCH + �εSX

⇀
k

, (4.117)

with the Coulomb potential included bandgap energy, the Coulomb hole self-energy
(Debye shift), and the screened exchange shift defined as [3, 6]

εV
g ≡ Eg +

∑
⇀
l �=⇀

k

V|⇀l −⇀
k | = Eg +

∑
⇀q �=0

V|⇀q |, (4.118a)

�εCH ≡
∑
⇀
l �=⇀

k

(Ṽ|⇀l −⇀
k |−V|⇀l −⇀

k |) =
∑
⇀q �=0

(Ṽ|⇀q |−V|⇀q |), (4.118b)

�εSX
⇀
k

≡ −
∑
⇀
l �=⇀

k

Ṽ|⇀l −⇀
k |(f e

⇀
l

+ f h
⇀
l
), (4.118c)

respectively.
If the bare Coulomb potential has been included in the hole kinetic energy (e.g.,

through the hole effective mass), it should not be double counted and hence we have
εV

g ≡ Eg instead of equation (4.118a).
Under the static plasmon pole approximation equation (4.94), the Debye shift can

be found as [3]

�εCH = −2εRa0κ/
√

(
1 +

√
(C)a2

0κ2εR

�ωpl

)
, (4.119)

with κ given by equation (4.93) and C a numerical constant between 1 and 4, as
specified in Section 4.3.2.

The screened exchange shift is carrier (electron and hole) dependent, hence it is
also

⇀

k dependent.
(2) The inhomogeneous driving source has extra contributions from other polariton com-

ponents in the wave vector domain, which brings in the coupling between different
polaritons.

We still formally integrate equation (4.115) to obtain [3]

p⇀
k

= − j

�

∫ t

−∞
dτ

⎧⎨⎩
⎡⎣⇀µ⇀

k
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⇀
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k |p⇀

k
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⎤⎦ (f e
⇀
k

+ f h
⇀
k

− 1)e
(jω̄′

⇀
k

+γ )(τ−t)

⎫⎬⎭ ,

(4.120)
where (4.117) is used.
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Under the rate equation approximation, those time domain slow-varying factors can
be taken out of the integral in equation (4.120). Also, by employing the rotating-wave
approximation, equation (4.120) becomes

p⇀
k

= − j

�
(f̄ e

⇀
k

+ f̄ h
⇀
k

− 1)

{ ⇀µ⇀
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·
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Ẽ

2

e−jωt
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k

′+γ )(τ−t)
] }

. (4.121)

We can now solve equation (4.121) by following a perturbation approach. Actually,
as the zeroth order solution with the screened Coulomb potential ignored, we have

p
(0)
⇀
k

= − j
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(f̄ e

⇀
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+ f̄ h
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2
χ
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⇀
k

, (4.122)

with the microscopic zeroth order susceptibility defined as

χ
(0)
⇀
k

≡ − jµ⇀
k

�

f̄ e
⇀
k

+ f̄ h
⇀
k
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. (4.123)

Substituting equation (4.122) into the RHS of (4.121), we find the first order
contribution
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Ṽ|⇀k ′−⇀
k |

∫ t

−∞
dτ [p(0)

⇀
k

′ (τ )e
(jω̄⇀

k
′+γ )(τ−t)]

= − jẼµ
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where
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k

≡ 1

µ⇀
k

∑
⇀
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′ �=⇀
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Ṽ|⇀k ′−⇀
k |χ

(0)
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′ . (4.125)

Such a process may continue by looking for higher orders so as to obtain a more accu-
rate solution. However, based on the Pade approximation [21], the following summing
technique may greatly reduce the computational effort [22]

p⇀
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= p
(0)
⇀
k

+ p
(1)
⇀
k

+ · · · = Ẽµe−jωt

2
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k

. (4.126)
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Plugging equation (4.126) into (4.47) yields
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Therefore, we find the susceptibility given by

χ̃(ω) = P̃

ε0Ẽµ
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Consequently, we obtain the semiconductor material gain and refractive index change
from

g(ω) = −k0
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4.4 The many-body correlation model as a second order solution

4.4.1 The many-body correlation model

In this model, we deal directly with the general governing equations (4.28a–c) derived
from the Heisenberg equation with the second order terms in operator–Hamiltonian
commutator expansions retained. This is equivalent to removing the first approximation
in the screened Coulomb interaction model introduced in Section 4.3 and modifying
the second approximation there to gain a higher level of accuracy by adding on the
many-body Coulomb correlations.
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We rewrite equations (4.28a–c) in the following form to show the governing equations
explicitly in the many-body correlation model
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In equations (4.130a–c), the first order interaction energy matrix �⇀
k

⇀
k

′ and the Rabi
frequency �⇀

k
are given by equations (4.29) and (4.30) with the bare Coulomb potential,

whereas the second order interaction energy matrices �
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⇀q ,± , and �
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that account for the carrier–carrier collision and carrier–phonon scatter-

ing are given by equations (4.23a–c) and (4.27a–c) with the screened Coulomb potential,
for the reason we have explained in the beginning of Section 4.3.

4.4.2 A semi-analytical solution

Again, we rewrite equation (4.130a) in the form
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(4.131)
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where we have defined
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By formally integrating equation (4.131), we obtain
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If the time scale of interest is significantly longer than a few picoseconds, we can
assume that carriers have reached their steady states described by their quasi-Fermi dis-
tributions. Therefore, we can take the time domain slow-varying factors out of the integral
in equation (4.133). Also under the rotating-wave approximation, equation (4.133)
becomes
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Still following a perturbation approach, we find the zeroth order solution as
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with the microscopic zeroth order susceptibility defined as
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Noting∫ t
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we obtain the first order solution
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with q⇀
k

and s⇀
k

defined as
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≡ 1
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⇀
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′ . (4.139)

It is obvious that, as the injection increases, s⇀
k

decreases in accordance with
equation (4.139).

Using the same summing technique, we obtain
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(4.140)

Plugging equation (4.140) into (4.47) yields
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. (4.141)
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Therefore, we find the susceptibility from

χ̃(ω) = P̃
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(4.142)

with the γ⇀
k

dependent Lorentzian line-shape function defined as

Lγ⇀
k

(x) =
γ 2

⇀
k

γ 2
⇀
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. (4.143)

Consequently, we obtain the semiconductor material gain and refractive index change
from
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(4.144a)

�n(ω) = 1
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(4.144b)

4.4.3 The full numerical solution

Our task is now to solve equations (4.130a–c) in a self-consistent manner for any given
total carrier densities Ne(t) and Nh(t) defined by equation (4.14), where the optical field
in the form of equation (4.45) is also given, which will be cancelled in calculating the
susceptibility.

To enlarge the time domain step size in numerical integrations, we will take the
fast-varying harmonic wave factor e−jωt explicitly out of the polaritons and leave the
equations for the slow-varying envelope functions. According to equation (4.45), we can
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assume [6]

p⇀
k

= p̃⇀
k

e−jωt , (4.145)

where p̃⇀
k

is the slow-varying envelope function of the polariton. Under this assumption
and by noting that dp⇀

k
/dt = e−jωtdp̃⇀

k
/dt − jωe−jωt p̃⇀

k
, we find
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In equation (4.146a), the zeroth and first order contributions are
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where we have defined
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The second order carrier–carrier collision contribution is∑
⇀
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k |Ṽ|⇀k ′′−⇀

k
′|)

× g[−εα⇀
k

− εβ⇀
k

′′ + εα⇀
k

′ + εβ(⇀k
′′−⇀

k
′+⇀

k )]
× [(1 − f α

⇀
k

)(1 − f
β
⇀
k

′′)f
β
⇀
k

′′−⇀
k

′+⇀
k

+ f α
⇀
k

f
β
⇀
k

′′(1 − f
β
⇀
k

′′−⇀
k

′+⇀
k
)]

= J 1
⇀
k
p̃⇀

k
+

∑
α,β=e,h

[J 2
⇀
k αβ

(1 − f α
⇀
k

) + J 3
⇀
k αβ

f α
⇀
k

], (4.149)

where we have defined
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′(2Ṽ 2
|⇀k ′−⇀

k | − δαβṼ|⇀k ′−⇀
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The second order carrier–phonon scattering contribution is∑
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where we have defined
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In equations (4.146b&c), the Rabi frequency and the carrier–phonon scattering
contribution can be written as
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Substituting equations (4.147), (4.149), and (4.151) into (4.146a), and equations
(4.153) and (4.154) into (4.146b&c), respectively, we finally obtain
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Equations (4.156a–c) form a set of coupled ODEs. In these equations, the coeffi-
cients (i.e., the summations in the wave vector domain) may still depend on unknown
variables p̃⇀

k
′ �=⇀

k
and f

e/h
⇀
k

′ �=⇀
k

at other
⇀

k values in the wave vector domain. Therefore,

equations (4.156a–c) are quasi-linear and need to be solved numerically.
Some features of the coefficients (i.e., the wave vector domain summations) are

summarized in Table 4.3.
Once equations (4.156a–c) are solved for p̃⇀

k
and f

e/h
⇀
k

, by following equation (4.47),

we will be able to obtain the slow-varying envelope of the macroscopic polarization P̃ .
Finally, the susceptibility can be extracted by χ̃(ω) = P̃ /(ε0Ẽµ).
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Table 4.3. Coulomb interaction energies. The table shows the coefficients in the Heisenberg equations
that govern the slow-varying envelope function of the polariton number expectation, and the
conduction band electron and valence band hole number expectations

V and Ṽ are the bare and screened Coulomb potential in the wave vector domain.

Dependence

Integral p̃⇀
k

′ �=⇀
k

f
e/h
⇀
k

′ �=⇀
k

Coulomb
potential

Interaction
order

Remarks

I1
⇀
k

no yes V 0th , 1st energy shift, real

I2
k

yes no V 0th, 1st dipole renormalization, complex
J 1
k

no yes Ṽ 2nd carrier collision, complex

J
2/3
⇀
k αβ

yes yes Ṽ 2nd carrier collision, complex

K1
⇀
k

no yes Ṽ 2nd phonon scattering, complex

K
2/3
⇀
k α

yes no Ṽ 2nd phonon scattering, complex

�
(e/h)−out/in
⇀
k

no yes Ṽ 2nd carrier collision, real

L
(e/h)−out/in,p
⇀
k

no yes Ṽ 2nd phonon scattering, real
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5 Carrier transport and thermal
diffusion models

5.1 The carrier transport model

5.1.1 Poisson and carrier continuity equations

The electrical signals involved in optoelectronic devices are either DC (for biasing) or
at a relatively low frequency (for modulation) compared with the optical frequency.
As such, the time-dependent change in the magnetic field is negligible. The Maxwell
equations are simplified to

∇ × ⇀

E(⇀r , t) = 0, (5.1)

∇ × ⇀

H(⇀r , t) = ∂
⇀

D(⇀r , t)

∂t
+ ⇀

J (⇀r , t), (5.2)

∇ · ⇀

D(⇀r , t) = ρ(⇀r , t), (5.3)

Equation (5.1) suggests that we can introduce an electrostatic potential �(⇀r , t) in V
by defining

⇀

E(⇀r , t) = −∇�(⇀r , t), (5.4)

as it is usually easier to deal with a scalar variable.
Knowing that the material dispersion is negligible within the electric signal band-

width, or
⇀

D(⇀r , t) =
∫ t

−∞
ε(⇀r , t − τ)

⇀

E(⇀r , τ )dτ ≈ ε̃(⇀r )
⇀

E(⇀r , t), (5.5)

with ε̃ indicating the frequency domain permittivity of the host medium measured at a
low (electrical signal) frequency, we obtain from equations (5.2)–(5.5)

∂∇ · ⇀

D(⇀r , t)

∂t
+ ∇ · ⇀

J (⇀r , t) = ∂ρ(⇀r , t)

∂t
+ ∇ · ⇀

J (⇀r , t)

= ∇ · [∇ × ⇀

H(⇀r , t)] = 0, (5.6)

∇ · ε̃(⇀r )
⇀

E(⇀r , t) = −∇ · ε̃(⇀r )∇�(⇀r , t) = ρ(⇀r , t). (5.7)

In semiconductor optoelectronic devices, the total current density consists of the
electron and hole current densities

⇀

J (⇀r , t) = ⇀

J e(
⇀r , t) + ⇀

J h(
⇀r , t), (5.8)
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while the total charge density consists of the motionless space charge densities and the
mobile electron and hole densities

ρ(⇀r , t) = e[Nh(
⇀r , t) − Ne(

⇀r , t) + N+
D (⇀r ) − N−

A (⇀r )]. (5.9)

Note that
⇀

J e and
⇀

J h in equation (5.8) indicate the electron and hole current densities in
A/m2, Ne and Nh in equation (5.9) the electron and hole densities in 1/m3, and N+

D and
N−

A the ionized donor and acceptor concentrations in 1/m3, respectively.
Plugging equations (5.8) and (5.9) into (5.6) and (5.7) we obtain

e
∂

∂t
[Nh(

⇀r , t) − Ne(
⇀r , t)] + ∇ · [⇀

J e(
⇀r , t) + ⇀

J h(
⇀r , t)] = 0, (5.10)

∇ · ε̃(⇀r )∇�(⇀r , t) = −e[Nh(
⇀r , t) − Ne(

⇀r , t) + N+
D (⇀r ) − N−

A (⇀r )]. (5.11)

By further introducing an electron–hole pair recombination rate R(⇀r , t), we can split
equation (5.10) into two equations to govern electrons and holes, respectively

∇ · ⇀

J e(
⇀r , t) − e

∂

∂t
Ne(

⇀r , t) = eR(⇀r , t), (5.12a)

∇ · ⇀

J h(
⇀r , t) + e

∂

∂t
Nh(

⇀r , t) = −eR(⇀r , t). (5.12b)

Equation (5.11), known as Poisson’s equation, and (5.12a&b), known as the carrier
(electron and hole) continuity equations, form the classical carrier transport model. They
are directly derived from the Maxwell equations for quasi-electrostatic fields. However,
this classical model is not sufficient for modeling carrier transport as there are two
vectorial and three scalar unknown variables but only three scalar equations. We still
need two vectorial equations that link the current density, the carrier density and the
potential distributions together. Such a relation, known as the carrier transport equation,
can be established at either microscopic or macroscopic level, depending on the area we
are dealing with inside the device.

5.1.2 The drift and diffusion model for a non-active region

Although in principle the carrier transport equation should be established at the micro-
scopic level so as to take into account all the interactions in the transport, such as
carrier–carrier collision and carrier–phonon scattering, we can find the corresponding
macroscopic quantity through statistics. We have discussed this model in Chapter 4
where the Boltzmann equation resulted from the Heisenberg equation. Despite its accu-
racy, since it is derived from first principles, a major drawback of this model is the huge
burden involved in numerical computation. In the non-active region of a bulk semicon-
ductor in an optoelectronic device, this model seems to be an overkill as the only effect in
such a region on the carrier and on the optical wave is a combined sum loss, i.e., carrier
consumption in the transport process (through various non-radiative and spontaneous
emission recombinations) and optical wave attenuation (through free-carrier absorption).
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There is no direct interaction between the carrier and the optical wave. That is to say,
in the non-active region, the optoelectronic device is no more than an electronic device.
Therefore, a phenomenological drift and diffusion model that has been extremely suc-
cessful in modeling bulk semiconductor based electronic devices can be employed here
justifiably.

In bulk semiconductors, carriers can be viewed as classical particles with negligible
matter wave behavior. Phenomenologically, the driving force of the current flow com-
prises the potential gradient (i.e., charged carrier drift under the electric field), the carrier
diffusion (because of its non-uniform distribution), and the thermal gradient (because of
the Seebeck effect), hence we can write

⇀

J = eDN

(
−∇�

VT

+ ∇N

N
+ ∇T

2T

)
,

where it is not difficult to deduce that coefficient D should be the carrier diffusivity in
m2/s by dimension matching, since the driving forces are all normalized in 1/m. By
utilizing the well-known Einstein relation D/µ = kBT/e = VT and DT = D/2T [1]
with µ and DT denoted as the carrier mobility in m2/(V s) and thermal diffusivity in
m2/(K s), we can write the carrier transport equations for electron and hole, respectively

⇀

J e = −eµeNe(
⇀r , t)∇[�(⇀r , t) + �C(⇀r )] + eDe∇Ne(

⇀r , t) + eDT
e Ne(

⇀r , t)∇T (⇀r , t),

(5.13a)
⇀

J h = −eµhNh(
⇀r , t)∇[�(⇀r , t) − �V(⇀r )] − eDh∇Nh(

⇀r , t) − eDT
h Nh(

⇀r , t)∇T (⇀r , t).

(5.13b)

In equations (5.13a&b), the conduction and valence band edge variations at hetero-
junctions are given by [2, 3, 4]

e�C(⇀r ) = χ − χr + kBT ln

(
Nc

Ncr

)
, (5.14a)

e�V(⇀r ) = −(Eg − Egr) − (χ − χr) + kBT ln

(
Nv

Nvr

)
, (5.14b)

with χ indicating the electron affinity in eV, Eg the bandgap energy in eV, and Nc/v

the parabolic conduction and valence band edge densities defined as in equation (6.56),
respectively. Subscript r on χ , Eg and Nc/v indicates the corresponding quantities in the
reference material, which is normally selected as the substrate.

Therefore, in the non-active region, Poisson’s equation (5.11), the carrier continuity
equations (5.12a&b), which are universally valid, plus the phenomenological drift and
diffusion equations (5.13a&b) form a complete model that governs carrier transport in
the non-active region. We usually call this the classical carrier transport model.

By substituting the current densities in equations (5.13a&b) into the carrier continuity
equations (5.12a&b), we can write the classical carrier transport equations in a rather
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compact form with the current densities eliminated

∇ · ε̃(⇀r )∇�(⇀r , t) = −e[Nh(
⇀r , t) − Ne(

⇀r , t) + N+
D (⇀r ) − N−

A (⇀r )], (5.15a)

∂Ne(
⇀r , t)

∂t
= −R(⇀r , t) − ∇ · µe(

⇀r )Ne(
⇀r , t)∇[�(⇀r , t) + �C(⇀r )]

+ ∇ · De(
⇀r )∇Ne(

⇀r , t) + ∇ · DT
e (⇀r )Ne(

⇀r , t)∇T (⇀r , t), (5.15b)

∂Nh(
⇀r , t)

∂t
= −R(⇀r , t) + ∇ · µh(

⇀r )Nh(
⇀r , t)∇[�(⇀r , t) − �V(⇀r )]

+ ∇ · Dh(
⇀r )∇Nh(

⇀r , t) + ∇ · DT
h (⇀r )Nh(

⇀r , t)∇T (⇀r , t), (5.15c)

where we have assigned the spatial dependence to every material parameter as, depending
on the device structure design, these parameters can be very different for layers with
different material composition or different doping concentration.

5.1.3 The carrier transport model for the active region

As discussed in Chapter 4, it is critical to include the many-body Coulomb effect inside
the active region where the interband carrier–photon interaction, i.e., the stimulated
emission, takes place. Macroscopic models unfortunately cannot handle such an effect,
hence we have to use the set of equations derived in Chapter 4 to find the microscopic
carrier (electron and hole) and polariton number expectations in a self-consistent manner,
and we will be able to find the macroscopic carrier densities and polarization through
summations in the wave vector domain.

Unless the carriers are directly injected into the active region, which is not possible in
reality, the injection condition for the active region is given by the carrier transport result
in the non-active region which bridges the electrodes and the active region. Therefore,
we have to solve the problem of how to link the macroscopic carrier densities that we
find through the drift and diffusion carrier transport model in the non-active region to
the microscopic carrier number expectations in the active region.

As illustrated by Fig. 5.1, to solve this problem, we consider a four-band model inside
the active region. The top conduction band electrons and bottom valence band holes have
their energies matching with the conduction band electrons and valence band holes in the
non-active region, respectively. For these electrons and holes, known as the hot carriers
because of their higher kinetic energies, we still have the classical carrier transport
equations introduced in Section 5.1.2. The lower conduction band (or energy level in
QW) electrons and upper valence band (or energy level in QW) holes, known as the
cold carriers, interact with the optical wave through stimulated emission and absorption,
hence the microscopic model introduced in Chapter 4 has to be adopted with the many-
body Coulomb effect included in case it is necessary. Since the origin of a cold carrier is a
hot carrier when it loses part of its energy through the carrier–phonon scattering process,
we can establish a coupling between the hot and cold carriers phenomenologically by
modifying their governing equations.
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Hot electron transport Top conduction band

Hot electron quasi-Fermi level

Lower conduction band (bulk)
or energy levels (QW)

Cold electron quasi-Fermi level

Cold hole quasi-Fermi level

Upper valence band (bulk) 
or energy levels (QW)

Hot hole quasi-Fermi level

Bottom valence band
Hot hole transport

Hole filled

Real process Equivalent process

Hole left

Electron–phonon
scattering

P side adjacent layerActive regionN side adjacent layer

Fig. 5.1. The four-band model for the active region. The top conduction band and hot electron
quasi-Fermi level are aligned with those in the N side adjacent layer, while the bottom valence
band and hot hole quasi-Fermi level are aligned with those in the P side adjacent layer. Through
the carrier–phonon scattering process, the hot electrons drop to the lower conduction band (bulk)
or energy levels (QW) and the hot holes jump to the upper valence band (bulk) or energy levels
(QW), between which the stimulated emission takes place.

Actually, without the coupling introduced, we can rewrite the general governing
equations (4.28a–c) for cold carriers in a more compact form as

df
e/h,C
⇀
k

dt
= F e/h(f

e/k,C
⇀
k

), (5.16)

with F e/h(. . .) representing the functions on the RHS of equations (4.28b&c), respec-
tively. Similarly, the microscopic governing equations for hot carriers can be written as

df
e/h,H
⇀
k

dt
= Ge/h(f

e/k,H
⇀
k

) − γ
e/h
H (f

e/k,H
⇀
k

− f
e/k,H
⇀
k

), (5.17)

with Ge/h(. . .) representing a certain function which converges to the RHS of equations
(5.15b&c) after a summation in the wave vector domain, γ

e/h
H a phenomenologically

introduced damping factor, and f
e/k,H
⇀
k

the hot electron and hole steady state quasi-
Fermi distributions, respectively. If we make a summation over all of the states in the
wave vector domain, equation (5.17) reduces to (5.15b&c) for the hot electrons and
holes, respectively.
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Now, we have to consider the coupling between the hot and cold electrons and holes.
Because of carrier–phonon scattering, hot carriers may lose their energies and turn them-
selves into cold carriers and vice versa. Therefore, we modify equations (5.16) and
(5.17) to

df
e/h,C
⇀
k

dt
=

f
e/h,H
⇀

k

τ
e/h
cl

−
f

e/h,C
⇀
k

τ
e/h
ht

+ F e/h(f
e/k,C
⇀
k

), (5.18)

df
e/h,H
⇀
k

dt
= −

f
e/h,H
⇀
k

τ
e/h
cl

+
f

e/h,C
⇀
k

τ
e/h
ht

+ Ge/h(f
e/k,H
⇀
k

) − γ
e/h
H (f

e/k,H
⇀
k

− f
e/k,H
⇀
k

), (5.19)

with the first and second term on the RHS of these equations accounting for the hot
carrier cooling and the cold carrier heating process, respectively. The conduction band
electron and valence band hole cooling (τ

e/h
cl ) and heating (τ

e/h
ht ) time constant are

phenomenologically introduced. For cold carriers, cooling and heating are gaining and
losing processes, respectively. The opposite is true for hot carriers. Hence we have
selected signs in equations (5.18) and (5.19) to take these contributions into account.

We have no intention of solving the extra equation (5.19), hence we make a summation
over the wave vector domain and divide the active region volume on both sides to obtain

∂NH
e (⇀r , t)

∂t
= −NH

e (⇀r , t)

τ e
cl

+ NC
e (⇀r , t)

τ e
ht

− R(⇀r , t) − ∇ · µe(
⇀r )NH

e (⇀r , t)∇[�(⇀r , t) + �C(⇀r )]
+ ∇ · De(

⇀r )∇NH
e (⇀r , t) + ∇ · DT

e (⇀r )NH
e (⇀r , t)∇T (⇀r , t), (5.20a)

∂NH
h (⇀r , t)

∂t
= −NH

h (⇀r , t)

τ h
cl

+ NC
h (⇀r , t)

τ h
ht

− R(⇀r , t) + ∇ · µh(
⇀r )NH

h (⇀r , t)∇[�(⇀r , t) − �V(⇀r )]
+ ∇ · Dh(

⇀r )∇NH
h (⇀r , t) + ∇ · DT

h (⇀r )NH
h (⇀r , t)∇T (⇀r , t), (5.20b)

where we have assumed that, within the time scale of interest, the hot carriers have
reached their steady states with quasi-Fermi distributions. Hence equation (5.18) can be
further written as

df
e/h,C
⇀
k ,⇀r

dt
= f

e/h,H
⇀
k ,⇀r

τ
e/h
cl

−
f

e/h,C
⇀
k ,⇀r

τ
e/h
ht

+ F e/h(f
e/k,C
⇀
k ,⇀r

), (5.21)

where

f
e/h,H
⇀
k ,⇀r

(t) = 1

e
εH
(e/h)�k−F

c/v
H (⇀r ,t)

kBT + 1

, (5.22)

with εH
(e/h)⇀k

and F
c/v
H denoted as the hot carrier conduction and valence band energies

and quasi-Fermi levels measured from their band edges, respectively.
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In equations (5.21) and (5.22), the space vector ⇀r can be viewed as a parameter
assigned to the hot carrier quasi-Fermi distribution since at different locations inside the
active region, the macroscopic hot carrier densities are generally not uniform, hence their
quasi-Fermi levels are ⇀r dependent. Although the microscopic governing equations for
the cold carrier number expectations f

e/h
⇀
k ,

⇀r
(and the polariton number expectation p⇀

k ,
⇀r
)

are ODEs with no space dependence, for every space location ⇀r inside the active region,
we still have to solve an individual set of ODEs in the wave vector domain, which has
⇀r dependent parameters. These ⇀r dependent parameters come from the non-uniform hot
carrier coupling contribution as shown in equations (5.21) and (5.22), and from the non-
uniform optical field distribution according to the general governing equations (4.28a–c).

The hot carrier conduction and valence band energies can be found by solving the
single electron eigenstates in the N and P side materials adjacent to the active region,
respectively. If the bands that host the hot carriers (i.e., the top conduction band and
bottom valence band) are parabolic, we further have εH

(e/h)⇀k
= �

2k2/(2mH
e/h) with mH

e/h
indicating the hot carrier conduction and valence band effective mass, respectively.

The hot carrier quasi-Fermi levels are determined by

NH
e/h(

⇀r , t) = 1

�

∑
⇀
k

1

e
εH
(e/h)�k−F

c/v
H (⇀r ,t)

kBT + 1

, (5.23)

with the macroscopic hot carrier densities on the LHS given as the solution of the
modified classical carrier transport equations (5.20a&b). Note that in equation (5.23),
the time scale must be longer than a few picoseconds, to ensure that the hot carriers are
settled in their steady states before NH

e/h changes.
The macroscopic cold carrier densities in equation (5.20a&b) are linked to the

microscopic cold carrier number expectations through

NC
e/h(

⇀r , t) = 1

�

∑
⇀
k

f
e/h,C
⇀
k ,

⇀r
. (5.24)

Finally, we have to modify Poisson’s equation (5.15a) to take account of the
contribution from both carriers

∇ · ε̃(⇀r )∇�(⇀r , t) = −e[NC
h (⇀r , t) − NC

e (⇀r , t)

+ NH
h (⇀r , t) − NH

e (⇀r , t) + N+
D (⇀r ) − N−

A (⇀r )]. (5.25)

Now, the modified classical carrier transport equations (5.25) and (5.20a&b) for
the hot carriers, and the modified microscopic many-body model equations (4.28a)
and (5.21) for the cold carriers form a complete set that models the carrier behavior
inside the active region. The hot and cold carriers are described in the macroscopic and
microscopic domains respectively, which couple to each other through phenomenolog-
ically introduced cooling and heating damping terms. The macroscopic to microscopic
domain conversion of the hot carrier is given by equations (5.22) and (5.23), whereas
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the microscopic to macroscopic domain conversion of the cold carrier is given by
equation (5.24).

5.1.4 Simplifications of the carrier transport model

If the cooling time constant is much shorter, the first terms on the RHS of
equations (5.20a&b) are dominant, hence we find

∂NH
e/h(

⇀r , t)

∂t
≈ −NH

e/h(
⇀r , t)

τ
e/h
cl

,

which means

NH
e/h(

⇀r , t) ≈ NH
e/h(

⇀r , 0)e
− t

τ
e/h
cl → 0 as τ

e/h
cl → 0. (5.26)

Since the total carrier number must be conserved in the coupling process between the
hot and cold carriers, we must conclude that all the hot carriers have turned themselves
into cold carriers within a negligible time period scaled by τ

e/h
cl .

Next we will introduce two different time scales, one for the classical hot car-
rier transport process denoted as t and the other for the microscopic cold carrier
equations (4.28b&c) denoted as t ′. The short time scale t ′ varies from 0 to T ′ with
T ′ denoted as the time period required for the microscopic cold carriers to reach their
static quasi-Fermi distribution. The long time scale t is conventional but any macro-
scopic variables including those involved in the classical carrier transport equations can
be evaluated only at a discrete set t = 0, T ′, 2T ′, 3T ′, . . .

Now instead of equation (5.21), we still have the original governing
equations (4.28b&c) for the cold carrier number expectations in time scale t ′, but with
their initial conditions given by the static hot carrier distributions with their quasi-Fermi
levels determined by the total hot carrier density. As a result, equations (4.28b&c) can
now be solved through

f
e/h,C
⇀
k ,⇀r

(t ′ = 0) = 1

e
εH
(e/h)�k−F

c/v
H (⇀r ,t=mT ′)
kBT + 1

. (5.27)

The quasi-Fermi level in equation (5.27) can be determined by equation (5.23) at
t = mT ′ with m = 0, 1, 2, 3, . . . Once the cold carriers reach their steady state after
the time period T ′ in accordance with the solution of equations (4.28b&c), we can solve
the classical carrier transport equation again for the next time instant in the t scale, i.e.,
at t = (m + 1)T ′. In repeating this process, we must retain condition (5.26), i.e., there
are no hot carriers left inside the active region as they are all turned into cold carriers
instantaneously. And as such, we do not need to modify Poisson’s equation (5.25). The
only carriers inside the active region are now the cold carriers given by equation (5.24).
At the active region boundary, we must match the carrier densities in the non-active
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region with the cold carrier densities inside the active region

Ne(
⇀r = ⇀r n, t = mT ′) = NC

e (⇀r = ⇀r n, t = mT ′), (5.28a)

Nh(
⇀r = ⇀r p, t = mT ′) = NC

h (⇀r = ⇀r p, t = mT ′), (5.28b)

with ⇀r n/p denoting the space points at the active region boundaries adjacent to the N and
P side materials, respectively, and m = 0, 1, 2, 3, . . .

We must note that the cold carrier densities are still ⇀r dependent because of the non-
uniform optical field distribution inside the active region according to the microscopic
model equations (4.28a–c). Therefore, as a direct consequence of zero hot carriers inside
the active region, we can conclude that the non-uniform (cold) carrier distribution inside
the active region is dictated by the optical field only, and has nothing to do with carrier
transport inside the active region.

One advantage of using this model instead of the more comprehensive model intro-
duced in Section 5.1.3 is that the microscopic governing equations introduced in
Chapter 4, i.e., equations (4.28a–c), are directly applicable. Hence the associated solution
techniques are still valid. Besides, there is no need to assume any cooling and heating
time constants, which are difficult to obtain anyway.

Amajor drawback of this model is that it completely ignores the competing cold carrier
heating process, which may not be true for some device structures, especially when
operated under a high lattice temperature because of the raised ambient temperature or
strong injection.

In edge emitting devices, although the current and potential distributions are gen-
erally non-uniform along the device longitudinal (wave propagation) direction, which
leads to non-zero ∂�/∂z, ∂Ne,h/∂z and ∂T /∂z in the classical carrier transport model,
in the active region where there is stimulated emission, these terms are negligible.
This is because the carrier redistribution due to such a direct transport process is much
slower than the redistribution brought about through the longitudinal spatial hole burning
(LSHB) effect, which can be understood as photon-assisted carrier transport. Because
of LSHB, the carrier density must be low in the place where the optical field is strong,
since more carriers are consumed through the stimulated emission process, and vice
versa. As such, the carrier density distribution is dictated by the optical field distribution
along the wave propagation direction, since the optical wave propagates much faster than
the direct carrier transport. That is to say, the longitudinal carrier density distribution
is determined by the carrier–photon–carrier (i.e., stimulated emission/absorption–wave
propagation–stimulated emission/absorption) process rather than by the direct carrier
transport process. As such, the carrier transport process can be considered only in the
cross-sectional area, hence equations (5.25) and (5.20a&b) all reduce to 2D in the xy

plane perpendicular to the optical wave propagation direction z inside the active region

∇t · ε̃(⇀r )∇t�(⇀r , t) = −e[NC
h (⇀r , t) − NC

e (⇀r , t) + NH
h (⇀r , t)

− NH
e (⇀r , t) + N+

D (⇀r ) − N−
A (⇀r )] , (5.29a)
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− R(⇀r , t)
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H
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+ ∇t · DT
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e (⇀r , t)∇t T (⇀r , t), (5.29b)
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+ NC
h (⇀r , t)
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ht

− R(⇀r , t)

+ ∇t · µh(
⇀r )NH

h (⇀r , t)

× ∇t [�(⇀r , t) − �V(⇀r )] + ∇t · Dh(
⇀r )∇tN

H
h (⇀r , t)

+ ∇t · DT
h (⇀r )NH

h (⇀r , t)∇t T (⇀r , t), (5.29c)

with ∇t ≡ ⇀x∂/∂x + ⇀y∂/∂y. Because of the non-uniformity of the optical wave intensity
along the wave propagation direction z, the cold carrier densities NC

e/h will generally
be z dependent. Therefore, every variable in equations (5.29a–c) still has z dependence,
although the carrier transport effect along z is ignored. However, for uniform device struc-
tures along the waveguide direction z, the material parameters such as the mobilities, the
carrier and thermal diffusivities, and the heterojunction band edge variations are z inde-
pendent. In this sense, the 2D carrier transport equations (5.29a–c) are valid individually
in each cross-sectional sheet (i.e., the xy plane) along the optical wave propagation direc-
tion (z) and are coupled to each other only through the optical wave from sheet to sheet.

5.1.5 The free-carrier transport model

Under the free-carrier assumption, we can rewrite the microscopic governing
equations (4.43a&b) for the cold carriers by replacing the direct injection term �

e/h
⇀
k

with the hot–cold carrier coupling term as shown in equation (5.21)
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− Aef
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k

− γa(f
e/h,C
⇀
k

− f
e/h,C
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k

). (5.30)

Making a summation over the wave vector domain and dividing the active region
volume on both sides of equation (5.30) yields

∂NC
e/h(

⇀r , t)

∂t
= NH

e/h(
⇀r , t)

τ
e/h
cl

− NC
e/h(

⇀r , t)

τ
e/h
ht

+
⇀

E(⇀r , t)

�
· Im[

⇀

P̃ (⇀r , t)e−jωt ]

− BNC
e (⇀r , t)NC

h (⇀r , t) − Ae/hN
C
e/h(

⇀r , t), (5.31)

where equations (5.22)–(5.24), (4.47) and (4.53) have been used.
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If we define the stimulated emission and non-radiative plus spontaneous emission
recombination rates as [5, 6, 7, 8, 9, 10]

Rst(
⇀r , t) ≡ −

⇀

E(⇀r , t)

�
· Im[

⇀

P̃ (⇀r , t)e−jωt ], (5.32a)

R
e/h
nr+sp(

⇀r , t) ≡ Ae/hN
C
e/h(

⇀r , t) + BNC
e (⇀r , t)NC

h (⇀r , t), (5.32b)

and equation (5.31) becomes
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h (⇀r , t)
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h (⇀r , t)

τ h
cl

− NC
h (⇀r , t)

τ h
ht

− Rst(
⇀r , t) − Rh

nr+sp(
⇀r , t). (5.33b)

Finally, either equations (5.20a&b) and (5.25), or equations (5.29a–c) together with
equations (5.33a&b), form a complete carrier transport model inside the active region
under the free-carrier assumption.

For the active region of bulk semiconductors, the hot and cold electrons and holes
stay in the same conduction and valence band but with different wave vectors and
kinetic energies, respectively. As such, the transition between hot and cold carriers takes
negligible time compared with any other processes. Therefore, it becomes unnecessary
to separate the hot and cold carriers. Actually, by adding equations (5.20a) and (5.33a),
(5.20b) and (5.33b), respectively, we obtain

∂Ne(
⇀r , t)

∂t
= −Rst(

⇀r , t) − Re
nr+sp(

⇀r , t) − ∇ · µe(
⇀r )Ne(

⇀r , t)∇[�(⇀r , t) + �C(⇀r )]
+ ∇ · De(

⇀r )∇Ne(
⇀r , t) + ∇ · DT

e (⇀r )Ne(
⇀r , t)∇T (⇀r , t), (5.34a)

∂Nh(
⇀r , t)

∂t
= −Rst(

⇀r , t) − Rh
nr+sp(

⇀r , t) + ∇ · µh(
⇀r )Nh(

⇀r , t)∇[�(⇀r , t) − �V(⇀r )]
+ ∇ · Dh(

⇀r )∇Nh(
⇀r , t) + ∇ · DT

h (⇀r )Nh(
⇀r , t)∇T (⇀r , t), (5.34b)

where we have defined the total electron and hole densities inside the bulk active region as

Ne/h(
⇀r , t) ≡ NC

e/h(
⇀r , t) + NH

e/h(
⇀r , t). (5.35)

In deriving equations (5.34a&b), we have merged the non-radiative and spontaneous
emission recombination rates from both hot and cold carriers and have utilized the fact
that the hot carriers make no contribution to the stimulated emission rate, whereas the
cold carriers make no contribution to the current density divergence, i.e.,

∇ · ⇀

J
C
e/h = −eµe/hN

C
e/h∇[� ± �C/V] ± eDe/h∇NC

e/h ± eDT
e/hN

C
e/h∇T = 0,

according to equations (5.33a&b).
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Accordingly, Poisson’s equation (5.25) becomes

∇ · ε̃(⇀r )∇�(⇀r , t) = −e[Nh(
⇀r , t) − Ne(

⇀r , t) + N+
D (⇀r ) − N−

A (⇀r )]. (5.36)

Equations (5.36) and (5.34a&b) form the set of governing equations in the free-carrier
model for the bulk active region [11, 12]. They take the same form as the governing
equations for the non-active region as shown in equations (5.15a–c), with the only
difference being an extra term added to account for the contribution of the stimulated
emission to the carrier consumption, which exists only inside the active region.

For the active region of a semiconductor QW structure, the hot carriers stay in the
continuum bands, whereas the cold carriers are at the discrete energy levels bound by
the QW. As a result, there might be noticeable electron and hole cooling and heat time
constants, known as the capture (by the QW) and escape (from the QW) times [13, 14, 15,
16, 17, 18, 19, 20, 21, 22]. Therefore, we have to keep the hot and cold carriers separated
and solve the Poisson equation (5.25) or (5.29a), the hot carrier transport equations
(5.20a&b) or (5.29b&c), and the cold carrier rate equations (5.33a&b) simultaneously
under the 3D or 2D carrier transport case, respectively.

5.1.6 Recombination rates

As mentioned previously in this chapter, carriers are consumed through radiative and
non-radiative processes: the radiative process comprises stimulated and spontaneous
emissions, only the former interacting with the optical wave guided by the device.

Carrier stimulated emission recombination happens only inside the active region and is
described by equation (5.32a). Utilizing the relation between the slow-varying envelopes
of the polarization and the optical field, equation (4.64), and noting that it holds at every
space point, i.e., P̃ (↼ r, t) = ε0χ̃(⇀r , ω)Ẽµ(⇀r , t), we obtain

Rst(
⇀r , t) = −|Ẽµ(⇀r , t)| cos(ωt − ϕẼ)

�
Im[ε0χ̃(⇀r , ω)Ẽµ(⇀r , t)e−jωt ]

= −ε0|Ẽµ(⇀r , t)|2
�

Im[χ̃(⇀r , ω)e−j(ωt−ϕẼ) cos(ωt − ϕẼ)]

= −ε0|Ẽµ(⇀r , t)|2
2�

{Im[χ̃(⇀r , ω)] + Im[χ̃(⇀r , ω)e−j2(ωt−ϕẼ)]}, (5.37)

with ϕẼ denoted as the phase of Ẽµ. In deriving equation (5.37), we have explicitly
shown the space and slow-varying time dependences of P̃ and Ẽµ.

Noting that carriers cannot follow the fast change in the second term on the RHS of
equation (5.37) (in order to be consistent with the rotating-wave approximation) and
following equation (2.104), we find

Rst(
⇀r , t) ≈ −ε0|Ẽµ(⇀r , t)|2

2�
Im[χ̃(⇀r , ω)] = n

2�ω0

√(
ε0

µ0

)
g(⇀r , ω)|Ẽµ(⇀r , t)|2. (5.38)
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The spontaneous emission and non-radiative recombinations happen in both the
active and non-active regions. Several mechanisms contribute to the non-radiative
recombinations. Other than phenomenologically introduced carrier decay, known as the
Shockley–Read–Hall (SRH) recombination, as shown in equation (5.32b) there are still
Auger recombinations, including band to bound state transitions and band to band Auger
impact ionizations [5, 7, 23, 24]. The contribution of the former processes to the recom-
bination rate has its highest order proportional to the carrier density squared, whereas
the contribution of the latter processes to the recombination rate has its highest order
proportional to the carrier density cubed. Therefore, we merge the contribution of the
former processes with that of the SRH and spontaneous emission recombinations, and
add the latter contribution to the non-radiative plus spontaneous emission recombination
rate. Then equation (5.32b) is modified to

R
e/h
nr+sp(

⇀r , t) = Ae/hNe/h(
⇀r , t) + BNe(

⇀r , t)Nh(
⇀r , t)

+ Ce/hNe(
⇀r , t)Nh(

⇀r , t)Ne/h(
⇀r , t), (5.39)

with Ce/h introduced as the electron and hole Auger recombination constants, respec-
tively.

However, equation (5.39) gives generally different non-radiative plus spontaneous
emission recombination rates for electrons and holes, which is in conflict with the
condition which applied when we split equation (5.10) into (5.12a&b). This problem
comes from the fact that equation (5.39) only considers electron and hole capture,
which is a consumption of the electrons and holes of interest. The recombination rate
in equations (5.12a&b), however, is introduced as a net contribution that accounts for
the rate of loss minus gain of electrons and holes through these non-radiative processes.
Only the spontaneous emission recombination is automatically balanced as electrons
and holes are consumed in pairs through this process. To solve this problem, we must
include the electron and hole emission in the SRH and Auger recombinations as well,
which gives the gain in the electrons and holes of interest. Therefore, by considering
the net carrier consumption, we obtain the non-radiative plus spontaneous emission
recombination rate as

Rnr+sp(
⇀r , t) = [Ne(

⇀r , t)Nh(
⇀r , t) − Ne0(

⇀r )Nh0(
⇀r )]

×
[

1

τeNh(
⇀r , t) + τ hNe(

⇀r , t) + Ne0(
⇀r )τeAe/Ah + Nh0(

⇀r )τhAh/Ae

+ B + CeNe(
⇀r , t) + ChNh(

⇀r , t)

]
, (5.40)

with Ae/h in 1/s, τe/h in s, B in m3/s and Ce/h in m6/s defined as the electron and hole
SRH decay rate, SRH time constant, spontaneous emission and Auger recombination
coefficients, and Ne0/h0 the electron and hole densities at their thermal equilibrium
states, respectively. Actually, the product of the electron and hole densities at thermal
equilibrium is usually negligibly small. For properly designed optoelectronic devices,
the non-radiative plus spontaneous emission recombination is approximately zero in the
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non-active region, since in the N side material the hole density Nh is low whereas in the P
side material the electron density Ne is low, which leads to a small product of the electron
and hole densities NeNh everywhere outside the active region. Inside the active region,
however, both the electrons and holes have high densities, hence the non-radiative plus
spontaneous emission recombination cannot be significant according to equation (5.40).

All of the recombination rates (Rst and Rnr+sp) have dimensions 1/m3s.

5.2 The carrier rate equation model

As mentioned in Section 5.1.4, the carrier distribution inside the active region is dictated
by the distribution of optical wave intensity due to the LSHB. If the carrier transport effect
in the cross-sectional region is negligible, we just need a 1D model along the longitudinal
(i.e., the wave propagation) direction. Actually, a carrier rate equation can be extracted
phenomenologically through balancing the carrier generation and recombination rates
of time-dependent processes, as energy must be conserved for any process.

It is obvious that the carrier change rate must be equal to the total carrier generation
rates minus the total carrier consumption rates. The carrier change rate is its time deriva-
tive. Carriers can be generated only through current injection, whereas both stimulated
emission and non-radiative plus spontaneous emission recombinations consume carriers.
Therefore, we obtain the following carrier rate equation

∂N(z, t)

∂t
= ηJ (z, t)

ed
− [AN(z, t) + BN2(z, t) + CN3(z, t)]

− neff

2�ω0

√(
ε0

µ0

)
�

�ar
g(z, ω0)|e f (z, t)e jβ0z + e b(z, t)e−jβ0z|2, (5.41)

where N is the minority carrier density in 1/m3 inside the active region, J the injec-
tion current density in A/m2, η the injection efficiency, A 1/s, B m3/s and C m6/s
the minority carrier SRH, spontaneous emission, and Auger recombination coefficients,
respectively. In addition, neff denotes the effective index of the guided optical mode, �

the confinement factor, d the active region thickness in 1/m, and �ar the cross-sectional
area of the active region in 1/m2, respectively.

In equation (5.41) we have assumed a charge neutrality condition inside the active
region so that the electron and hole densities are equalized [25]. We have also modified
the non-radiative plus spontaneous emission recombination rate accordingly by merging
the electron and hole contributions and dropping the product of electron and hole density
at the thermal equilibrium. We have used equation (5.38) for the stimulated emission
recombination rate with Ẽµ substituted by the slow-varying envelope function of the
optical field in Chapter 2. Since the reference frequency of the optical field is now given
at ω0, we have to take the material optical gain at the same frequency. Our intention in
using an arbitrary reference frequency ω in Chapter 4 and in Section 5.1 is to find the
whole material gain profile and refractive index change dispersion curve. In deriving the
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optical wave and carrier governing equations, however, we need to deal with just one
(or a few) specific reference frequency at which the device operates.

In looking at the device performance and the device cavity (i.e., the structure along the
longitudinal direction) design problems, equation (5.41) is often used in conjunction with
the optical governing equations given in Chapter 2. In this approach the material optical
gain is supplied by semi-analytical expressions obtained in Chapter 4 from the free-
carrier gain model or many-body gain models under Pade approximations (with only

⇀

k

domain summations or converted integrals involved), or even by analytical formulas that
are further extracted or simplified from these expressions, as will be seen in Chapter 7.
Similarly to the design of the cross-sectional structure including the active region, we can
work on the material gain model (for the active region design), the 2D carrier transport
model in the cross-section (for current injection design through the PN junction), and
the 2D optical field eigenvalue problem in the cross-section (for the optical wave guide
design) separately. In device modeling, these calculations then provide the effective
parameters for the longitudinal 1D equations. As such, we just need to handle a few
individual 2D problems (for gain, carrier and optical field) in the cross-section plus
a 1D self-consistent problem with every aspect (i.e., gain, carrier, and optical field in
cross-section) incorporated along the longitudinal (wave propagation) direction, instead
of solving the full 3D problem with every aspect coupled together. This method seems
to offer us an excellent balance between accuracy and efficiency in practice. As will be
seen in examples given in Chapters 10, 11, and 12, we will mainly rely on this approach
to model our optoelectronic device.

Finally, it is worth mentioning that, if there exists a gain grating inside the active
region as given by equation (2.74), the carrier density will exhibit a grating pattern as
well because of the LSHB effect according to equation (5.41) [26, 27]. Although the
carrier transport process tends to smear out such rapid local change, it cannot catch
up with the burning speed. Hence a static carrier grating pattern is sustained inside the
cavity. Since the carriers contribute to the gain, the gain coupling strength becomes
field dependent. As such, the gain-coupled grating becomes non-linear as its coupling
coefficient depends on the optical field intensity. This effect, on the one hand, complicates
device operation, on the other hand it leaves us increased flexibility to tailor the structure
and operating conditions for better performance [28, 29, 30, 31, 32, 33].

5.3 The thermal diffusion model

5.3.1 The classical thermal diffusion model

In the material and carrier transport models we have discussed so far, the temper-
ature has been assumed as a constant everywhere, which is unfortunately not true.
Because of various non-uniformly distributed heating sources, the temperature inside
the optoelectronic device is not uniform and is unbalanced with respect to the ambient
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temperature, especially under a high current injection. Since the material gain and refrac-
tive index change are both sensitive functions of temperature, it is crucial to find the
accurate temperature distribution inside the device.

The temperature distribution is governed by the classical thermal diffusion
equation [34]

ρT(⇀r )CT(⇀r )
∂T (⇀r , t)

∂t
= ∇ · κT(⇀r )∇T (⇀r , t) + H(⇀r , t), (5.42)

where ρT is the density of the semiconductor in kg/m3, CT the specific heat capacity in
J/K kg and κT the thermal conductivity in W/Km.

Both the lattice and carriers contribute to the specific heat capacity and thermal con-
ductivity, but in semiconductors, the carrier contributions are negligible [35], which
greatly simplifies the solution technique required to solve equation (5.42). With the car-
rier contributions ignored, the total specific heat capacity and thermal conductivity are
replaced by the lattice specific heat capacity and thermal conductivity constants which
can be found from the semiconductor material databases [36, 37] directly.

In equation (5.42), H(⇀r , t) is the heat generation rate that serves as the driving force
and is measured by the power density in W/m3. Equation (5.42) shows a power density
balance as required by the energy conservation condition. The heating sources inside
the device include Joule heating, recombination heating, Thomson heating, and optical
absorption heating. The Thomson heating is in a higher order, thus it is negligible. With
the rest of the heating sources taken into consideration, we can express the heat generation
rate as

H(⇀r , t) = |Je(
⇀r , t)|2

eµeNe(
⇀r , t)

+ |Jh(
⇀r , t)|2

eµhNh(
⇀r , t)

+ Rnr+sp(
⇀r , t){F c(⇀r , t) − F v(⇀r , t) + T (⇀r , t)[Pe(

⇀r ) + Ph(
⇀r )]}

+ (1 − ηext)Rst(
⇀r , t){F c(⇀r , t) − F v(⇀r , t) + T (⇀r , t)[Pe(

⇀r ) + Ph(
⇀r )]},

(5.43)

with Je/h denoting the electron and hole current density, ηext the total external quantum
efficiency, F c/v the conduction band electron and valence band hole quasi-Fermi level,
and Pe/h the electron and hole thermoelectric power in J/K, respectively.

Once the electron and hole carrier densities are obtained, the electron and hole current
densities can readily be obtained from the drift and diffusion model, equations (5.13a&b).
The electron and hole thermoelectric powers can be linked to the electron and hole
thermal diffusivities through

Pe/h = eDT
e/h

µe/h
. (5.44)

In equation (5.43), the first two terms on the RHS account for Joule heating due
to current flow through the non-active region. The third term on the RHS describes
recombination heating through the non-radiative and spontaneous emission process.



Carrier transport and thermal diffusion models 167

Hole quasi-Fermi level

Scattering

Photon release

Stimulated recombination

Scattering

Electron quasi-Fermi level

Phonon release
(extra heating)

Vacancies left

Phonon release
(extra heating)

Fig. 5.2. Extra heating through carrier cooling. The non-radiative and radiative recombination processes
leave vacancies below the electron quasi-Fermi level and above the hole quasi-Fermi level. The
above quasi-Fermi level hot electrons and below quasi-Fermi level hot holes fill the vacancies by
giving up their energies to the lattice (i.e., through phonon release), which results in extra
heating.

The last term on the RHS denotes optical absorption heating. Note also that it is not
only the conduction band electrons below the quasi-Fermi level F c and the valence band
holes above the quasi-Fermi level F v that contribute to heat generation through non-
radiative recombinations and part of the radiative recombinations (through spontaneous
and stimulated emissions) because of optical absorption. The conduction band electrons
above the quasi-Fermi level F c and valence band holes below the quasi-Fermi level F v

also contribute. This is because the non-radiative, spontaneous emission and stimulated
emission leave vacancies for electrons below F c and for holes above F v, therefore,
electrons above F c and holes below F v have the chance to occupy these vacancies
by releasing their energies to the lattice, as illustrated by Fig. 5.2. Hence extra heat is
generated through such a carrier cooling process. This extra contribution is accounted
for by the terms related to thermoelectric power on the RHS of equation (5.43).

Actually, by utilizing the relations between thermal diffusivity, carrier diffusivity and
carrier mobility revealed in Section 5.1.2, we find

T (⇀r , t)[Pe(
⇀r ) + Ph(

⇀r )] = eT (⇀r , t)

[
DT

e (⇀r )

µe(
⇀r )

+ DT
h (⇀r )

µh(
⇀r )

]

= e

2

[
De(

⇀r )

µe(
⇀r )

+ Dh(
⇀r )

µh(
⇀r )

]
= kBT (⇀r , t). (5.45)
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Therefore equation (5.43) is finally reduced to

H(⇀r , t) = |Je(
⇀r , t)|2

eµeNe(
⇀r , t)

+ |Jh(
⇀r , t)|2

eµhNh(
⇀r , t)

+ [Rnr+sp(
⇀r , t) + (1 − ηext)Rst(

⇀r , t)][F c(⇀r , t) − F v(⇀r , t) + kBT (⇀r , t)].
(5.46)

In general, the thermal diffusion equation is in 3D with ∂T /∂z included. In edge
emitting devices, however, this term is negligible, for the reason that has been explained
in Section 5.1.4. As such, the thermal diffusion equation is reduced to 2D in the xy plane
perpendicular to the optical wave propagation direction z inside the active region

ρT(⇀r )CT(⇀r )
∂T (⇀r , t)

∂t
= ∇t · κT(⇀r )∇t T (⇀r , t) + H(⇀r , t), (5.47)

with the heat generation rate given by equation (5.46). In proportion to the optical field
intensity distribution along the longitudinal direction z, the stimulated emission rate
Rst also varies along this direction in accordance with equation (5.38). In addition, the
electron and hole current and carrier densities are all z dependent. The heating source
H , therefore, becomes z dependent. As such, every variable in equation (5.47) still has z

dependence, although the direct thermal diffusion effect along z is ignored. However, for
uniform device structures along the waveguide direction where the material parameters
are z independent, the 2D thermal equation (5.47) holds locally in each individual cross-
sectional sheet (i.e., the xy plane) along the optical wave propagation direction (z). They
are coupled to each other only through the inhomogeneous heating source.

5.3.2 A one-dimensional thermal diffusion model

As a further simplification of the 2D thermal model, we can ignore the lateral (x) heat
conduction by introducing adiabatic boundaries and assuming a uniform temperature
distribution in this direction (x). Further, if we ignore the difference in thermal conduc-
tivity for layers with different material compositions inside the device, equation (5.47)
is reduced to [38]

∂T (y, z, t)

∂t
= κT

ρTCT

∂2T (y, z, t)

∂y2
+ 1

ρTCT
H(y, z, t). (5.48)

In equation (5.48), the second order derivative along the vertical direction y (i.e., along
the thermal dissipation direction) can be integrated through a space Fourier transform
(by assuming a constant ρTCT for all the layers) or through a transfer matrix method (if
ρTCT is piecewisely uniform within each layer). Therefore, equation (5.48) becomes an
ODE and can readily be used as the governing equation for a thermal model. To be able
to use equation (5.48) in conjunction with the 1D optical and 1D carrier rate equation
model to complete our device simulation loop, we further write the heat generation rate
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in a form consistent with those models

H(y, z, t) = |J (z, t)|2
eµrN(z, t)

+
[
AN(z, t) + BN2(z, t) + CN3(z, t)

+(1 − ηext)
neff

2�ω0

√(
ε0

µ0

)
�

�ar
g(z, ω0)|e f (z, t)e jβ0z + e b(z, t)e−jβ0z|2

]
× [Eg + kBT (y, z, t)], (5.49)

with the effective mobility defined as

1

µr
≡ 1

µe
+ 1

µh
. (5.50)

Once we substitute equation (5.49) into (5.48) and integrate the resulting equation in
y, we can find the temperature inside the active region for a given boundary condition
(e.g., the heat sink temperature). The active region temperature then becomes z and t

dependent only, hence can be solved with the carrier density, the material gain and the
optical field in a self-consistent manner.

In many real applications, the device series resistance is easily measurable, therefore,
we can present the heat generation rate in terms of all measurable parameters

H(z, t) = [I 2(z, t)Rs + Eg

e
I (z, t) − Pop]/�ar, (5.51)

with Rs denoting the device series resistance in �, Pop the total output optical power in
W, �ar the active region volume in m3, and I the bias current in A. Equation (5.51) can
easily be obtained through the energy conservation condition.
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6 Solution techniques for optical
equations

6.1 The optical mode in the cross-sectional area

There are numerous optical mode solvers that deal with optical eigenvalue problems
in a scalar form as shown in equation (2.34), or in a more comprehensive vectorial
version [1, 2, 3, 4, 5, 6, 7], in order to obtain the optical field distribution (i.e., the
optical mode) in the cross-sectional area. In contrast to dealing with a 1D slab waveguide
problem where an analytical approach (such as a transfer matrix method) exists, a general
2D eigenvalue problem has to be treated numerically. Among many different numerical
approaches, the finite difference method (FD) seems to be a popular one for its balance
between implementation complexity, computational efficiency and accuracy.

In the 2D domain, equation (2.34) is posed as a boundary value problem of a PDE
of elliptical type. Hence, discretization of equation (2.34) under the FD scheme is fairly
straightforward since stability is not a concern. For example, we can always stay with the
center discretization scheme to gain a second order accuracy. The boundary treatment,
however, is crucial especially for those 2D structures with piecewise uniformity, which
is most commonly seen in semiconductor optoelectronic devices.

At physical boundaries inside the computation domain, the refractive index is dis-
continuous, whereas as the solution to equation (2.34), the scalar optical mode must
be continuous. Therefore, special treatments are necessary at such boundary points
[8, 9, 10, 11]. For example, in many numerical solvers we do not select any mesh grid
point at the boundary points to avoid refractive index assignment at these boundaries.
A different treatment is to assign the arithmetically or harmonically averaged refractive
index to the boundary points, depending on the discretization scheme.

Although the optical field decays exponentially for guided modes outside the wave-
guide core, it extends to infinity in the cross-sectional area in dielectric waveguides.
Therefore, we have to truncate the computation domain by introducing an artificial
window. As such, artificial boundary conditions must be introduced to prevent any
unphysical reflections of the optical wave at the computation window edge. Among the
available selections, such as the transparent boundary condition (TBC) [12], the absorb-
ing boundary condition (ABC) [13] and the perfectly matched layer (PML) boundary
condition [14], the latter seems to be the best choice for its great success in solving many
waveguide problems.

Numerical techniques for solving the scalar mode problem are fairly mature and so we
do not intend to repeat them in this book. The solution technique for the semi-vectorial



Solution techniques for optical equations 173

modes (e.g., the modes in a ridge waveguide structure) is virtually the same, in that
we need to solve just two scalar mode equations [15, 16]. Open problems still exist
for full vectorial modes in strongly guided or asymmetric waveguides where different
discretization and boundary treatment skills are necessary. However, this topic is beyond
the scope of this book.

6.2 Traveling wave equations

6.2.1 The finite difference method

Different traveling wave equations have been extracted in Chapter 2 to treat different
device longitudinal structures. However, they all fit into the same format as shown here(

1

vg

∂

∂t
± ∂

∂z

)[
F(z, t)

R(z, t)

]
=

[
A11(z, t) A12(z, t)

A21(z, t) A22(z, t)

] [
F(z, t)

R(z, t)

]
+

[
Cf (z, t)

Cr(z, t)

]
,

(6.1)

where f means forward propagating and r means reverse propagating.
We will still follow a FD approach to seek the numerical solution of equation (6.1).

As shown in Fig. 6.1, by setting up a mesh defined as

t = k�t, k = 0, 1, 2, . . . , z = n�z, n = 1, 2, 3, . . . , N + 1, (6.2)

and by following an upwind scheme [17, 18], i.e.,

∂F

∂t
= Fn+1,k+1 − Fn+1,k

�t

∂F

∂z
= Fn+1,k − Fn,k

�z

∂R

∂t
= Rn−1,k+1 − Rn−1,k

�t

∂R

∂z
= Rn,k − Rn−1,k

�z
, (6.3)

t

k +1

k –1

k

1 2 n –1 n +1n N N +1

z

∆t

∆z

L = N∆z

Fig. 6.1. The mesh set-up for finite difference discretization.
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equation (6.1) can be discretized as

[
Fn+1,k+1

Rn−1,k+1

]
= (1 − η)

[
Fn+1,k

Rn−1,k

]

+ η

[
1 + A11

n,k�z A12
n,k�z

A21
n,k�z 1 + A22

n,k�z

][
Fn,k

Rn,k

]
+ η�z

[
Cf

n,k

Cr
n,k

]
, (6.4)

where n = 1, 2, 3, . . . , N for Fn with F1 = RlR1, and n = 2, 3, . . . , N + 1 for Rn with
RN+1 = RrFN+1. We have also defined

η = vg�t/�z, (6.5)

and have used subscripts n and k to represent the corresponding value sampled at the
mesh point z = n�z and t = n�t .

Since the upwind scheme is forward-time, backward-space (FT–BS) for both the right-
going wave F and the left-going wave R, it is straightforward to prove its consistency.
Actually, through the following Taylor expansions

Fn+1,k+1 = Fn,k + ∂F

∂t

∣∣∣∣
n,k

�t + 1

2

∂2F

∂t2

∣∣∣∣
n,k

�t2 + O(�t3) + ∂F

∂z

∣∣∣∣
n,k

�z

+ 1

2

∂2F

∂z2

∣∣∣∣
n,k

�z2 + O(�z3)

Fn+1,k = Fn,k + ∂F

∂z

∣∣∣∣
n,k

�z + 1

2

∂2F

∂z2

∣∣∣∣
n,k

�z2 + O(�z3),

Rn−1,k+1 = Rn,k + ∂R

∂t

∣∣∣∣
n,k

�t + 1

2

∂2R

∂t2

∣∣∣∣
n,k

�t2 + O(�t3) − ∂R

∂z

∣∣∣∣
n,k

�z

+ 1

2

∂2R

∂z2

∣∣∣∣
n,k

�z2 + O(�z3)

Rn−1,k = Rn,k − ∂R

∂z

∣∣∣∣
n,k

�z + 1

2

∂2R

∂z2

∣∣∣∣
n,k

�z2 + O(�z3),

we find

(
1

vg

∂

∂t
± ∂

∂z

)[
F(z, t)

R(z, t)

]
→

⎡⎢⎢⎣
Fn+1,k+1 − Fn+1,k

vg�t
+ Fn+1,k − Fn,k

�z
Rn−1,k+1 − Rn−1,k

vg�t
− Rn,k − Rn−1,k

�z

⎤⎥⎥⎦



Solution techniques for optical equations 175

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

vg

∂F

∂t
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+ 1

2vg

∂2F
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�z + O(�z2)

1

vg
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2vg

∂2R
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+ 1
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�t→0,�z→0−→

⎡⎢⎢⎢⎣
1

vg

∂F

∂t

∣∣∣∣
n,k

+ ∂F

∂z
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n,k

1

vg

∂R

∂t
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− ∂R

∂z

∣∣∣∣
n,k

⎤⎥⎥⎥⎦ ,

and [
A11(z, t) A12(z, t)

A21(z, t) A22(z, t)

][
F(z, t)

R(z, t)

]
→

[
A11

n,k A12
n,k

A21
n,k A22

n,k

][
Fn,k

Rn,k

]
.

Therefore, the discretization scheme, equation (6.4), is consistent with the original
equation (6.1) [18]. This analysis also gives us a hint that the upwind scheme is of
first order accuracy in terms of the mesh size �t and �z.

The stability condition of this scheme can be found through the well-known von
Neumann analysis. Actually, we know the conclusion that the necessary and sufficient
condition for the homogeneous version of equation (6.1)(

1

vg

∂

∂t
± ∂

∂z

)[
F(z, t)

R(z, t)

]
=

[
A11(z, t) A12(z, t)

A21(z, t) A22(z, t)

] [
F(z, t)

R(z, t)

]
, (6.6)

to be stable under a consistent one-step scheme is that the equation(
1

vg

∂

∂t
± ∂

∂z

)[
F(z, t)

R(z, t)

]
= 0, (6.7)

is stable under the same scheme [18]. On the other hand, by letting[
Fn,k

Rn,k

]
→

[
f0ξ

k(ejβ�z)n

r0ξ
k(e−jβ�z)n

]
, (6.8)

and substituting equation (6.8) into (6.6), we find

ξ = 1−η+�

2
±√

((
�

2

)2

− η2[1 + (A11
n,k + A22

n,k)�z + (A11
n,kA

22
n,k − A12

n,kA
21
n,k)�z2]

)
.

(6.9)
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where

�

2
= η[cos(β�z) + A11

n,k + A22
n,k

2
�z cos(β�z) − j

A11
n,k − A22

n,k

2
�z sin(β�z)]. (6.10)

By setting A11
n,k , A12

n,k , A21
n,k , and A22

n,k to zero, we find ξ = 1 − η + ηe±jβ�z, or

|ξ |2 = 1 − 4η(1 − η) sin2
(

β�z

2

)
. (6.11)

Therefore, by lettingη ≤ 1, known as the Courant–Friedrichs–Lewy stability criterion,
we have |ξ |2 ≤ 1 from equation (6.11), which means that the upwind scheme is stable
for equation (6.7) and hence for (6.6).

By retaining up to the first order of �z terms in equations (6.9) and (6.10), we find

ξ ≈ 1 + η�z

⎡⎣A11
n,k + A22

n,k

2
± √

⎛⎝(
A11

n,k + A22
n,k

2

)2

+ A12
n,kA

21
n,k

⎞⎠⎤⎦ . (6.12)

Since the above scheme is stable, we have to drop the solution corresponding to the
plus sign in the bracket on the RHS of equation (6.12), which will lead to |ξ |2 > 1, hence
the result is in conflict. As such, if A12

n,kA
21
n,k = 0, our selection of η has nothing to do

with ξ , so that we can always set η = 1 to gain maximum efficiency in our simulation.
However, if A12

n,kA
21
n,k �= 0, we might want to select η < 1 to reinforce the stability. The

reason is that the optical equation may not be the only equation that we are dealing with.
If it needs to be solved simultaneously with other equations, implicit dependence of the
parameters A11

n,k , A12
n,k , A21

n,k , and A22
n,k on the field components F and R exists, which

implies a weak non-linearity of the optical equation. Therefore, running at the edge, i.e.,
setting η = 1, could bring instability.

Although we have discussed the stability of the homogeneous equation (6.6), whereas
the optical equation is inhomogeneous as shown in equation (6.1), the conclusion of
the von Neumann analysis is not affected. Hence the upwind scheme is also stable
for equation (6.1). Finally, the convergence of the upwind scheme is guaranteed by its
consistency and stability.

The upwind (FT–BS) scheme can also be implemented as

∂F

∂t
= Fn,k+1 − Fn,k

�t

∂F

∂z
= Fn,k − Fn−1,k

�z

∂R

∂t
= Rn,k+1 − Rn,k

�t

∂R

∂z
= Rn+1,k − Rn,k

�z
. (6.13)
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In accordance with equation (6.13), (6.1) becomes[
Fn,k+1

Rn,k+1

]
= η

[
Fn−1,k

Rn+1,k

]
+ η

[
1−η
η

+ A11
n,k�z A12

n,k�z

A21
n,k�z

1−η
η

+ A22
n,k�z

][
Fn,k

Rn,k

]

+ η�z

[
Cf

n,k

Cr
n,k

]
. (6.14)

Similarly to equation (6.4), this scheme is consistent and stable once η ≤ 1, hence
equation (6.14) gives the convergence solution to (6.1).

Acombination of equations (6.4) and (6.14) can be used to smooth the field distribution
if the parameters A11, A12, A21, and A22 change rapidly as functions of z. Actually, by
moving one spatial step forward (i.e., n → n + 1), and one spatial step backward (i.e.,
n → n − 1) in the first and second equation of (6.14), respectively, we obtain[

Fn+1,k+1

Rn−1,k+1

]
= η

[
Fn,k

Rn,k

]
+ (1 − η)

[
Fn+1,k

Rn−1,k

]

+ η�z

[
A11

n+1,k A12
n+1,k 0 0

0 0 A21
n−1,k A22

n−1,k

]⎡⎢⎢⎣
Fn+1,k

Rn+1,k

Fn−1,k

Rn−1,k

⎤⎥⎥⎦ + η�z

[
Cf

n+1,k

Cr
n−1,k

]
.

(6.15)

Taking the arithmetic average of equations (6.4) and (6.15) we obtain[
Fn+1,k+1

Rn−1,k+1

]
= η

[
Fn,k

Rn,k

]
+ (1 − η)

[
Fn+1,k

Rn−1,k

]
+ η�z

2

[
A11

n,k A12
n,k

A21
n,k A22

n,k

][
Fn,k

Rn,k

]

+ η�z

2

[
A11

n+1,k A12
n+1,k 0 0

0 0 A21
n−1,k A22

n−1,k

]⎡⎢⎢⎣
Fn+1,k

Rn+1,k

Fn−1,k

Rn−1,k

⎤⎥⎥⎦ + η�z

2

[
Cf

n+1,k + Cf
n,k

Cr
n−1,k + Cr

n,k

]
.

(6.16)

It should be noted that equation (6.16) is still a first order accuracy scheme as there is
no new mesh point as defined in equation (6.2) involved. An obvious difference between
equations (6.16) and both (6.4) and (6.14) is that not only are the parameter values at the
space point n, but also their values at a forward space step n + 1 for F and a backward
space step n−1 for R are involved. Hence equation (6.16) gives a better average once the
parameters A11, A12, A21, and A22 are not uniform along z. This scheme is particularly
useful once we need to select η � 1 to ensure stability, while there is no need to select a
very small �t , as in this case we will have to deal with the large space step �z � vg�t .

It is possible to use a different combination of equations (6.4) and (6.14) to gain a
second order accuracy in space as there are three different points in space involved in
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evaluating these equations. However, the increased complication in implementing such
a scheme does not seem to be justified by the accuracy gained.

The reason that we have considered only the upwind (i.e., FT–BS) scheme is because
the forward-time and forward-space (FT–FS) scheme is unstable although it is consistent,
since, following the von Neumann analysis, we have

|ξ |2 = 1 + 4η(1 + η) sin2
(

β�z

2

)
, (6.17)

which leads to |ξ |2 > 1 for any η > 0.
With a modification known as the Lax–Friedrichs method [19], the FT–FS scheme

becomes stable, hence it converges. However, it provides poor accuracy since the Lax–
Friedrichs scheme brings in the numerical dissipation through an equivalent diffusion
term which decreases the optical field intensity spuriously.

There are also backward-time schemes such as the backward-time, backward-space
(BT–BS) discretization

∂F

∂t
= Fn,k+1 − Fn,k

�t

∂F

∂z
= Fn,k+1 − Fn−1,k+1

�z

∂R

∂t
= Rn,k+1 − Rn,k

�t

∂R

∂z
= Rn+1,k+1 − Rn,k+1

�z
, (6.18)

and the backward-time, forward-space (BT–FS) discretization

∂F

∂t
= Fn,k+1 − Fn,k

�t

∂F

∂z
= Fn+1,k+1 − Fn,k+1

�z

∂R

∂t
= Rn,k+1 − Rn,k

�t

∂R

∂z
= Rn,k+1 − Rn−1,k+1

�z
. (6.19)

In accordance with equations (6.18) and (6.19), (6.1) becomes[
(1 + η)Fn,k+1 − ηFn−1,k+1

(1 + η)Rn,k+1 − ηRn+1,k+1

]

=
[

1 + ηA11
n,k�z ηA12

n,k�z

ηA21
n,k�z 1 + ηA22

n,k�z

][
Fn,k

Rn,k

]
+ η�z

[
Cf

n,k

Cr
n,k

]
, (6.20)

and [
ηFn+1,k+1 + (1 − η)Fn,k+1

ηRn−1,k+1 + (1 − η)Rn,k+1

]

=
[

1 + ηA11
n,k�z ηA12

n,k�z

ηA21
n,k�z 1 + ηA22

n,k�z

][
Fn,k

Rn,k

]
+ η�z

[
Cf

n,k

Cr
n,k

]
, (6.21)

respectively.
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Table 6.1. A summary of the features of first order finite difference discretization schemes

FS BS

FT (explicit) consistent but unstable, becomes stable
under L–F modification, but still has
power dissipation

consistent, stable, hence converges if
vg�t ≤ �z

BT (implicit) consistent, stable, hence converges if
vg�t > �z

consistent, unconditionally stable,
hence converges

It is straightforward to prove that both the BT–BS and BT–FS schemes are consistent.
By following the von Neumann analysis, we also have

|ξ |2 = 1

1 + 4η(1 + η) sin2(
β�z

2 )
, (6.22)

and

|ξ |2 = 1

1 − 4η(1 − η) sin2(
β�z

2 )
, (6.23)

for the BT–BS and BT–FS schemes, respectively.
Therefore, we come to the conclusion that the BT–BS scheme is unconditionally stable,

hence equation (6.20) always converges to (6.1). The BT–FS scheme, however, is stable
under the condition η > 1, hence equation (6.21) converges to (6.1) if vg�t > �z.

In contrast to the schemes of equations (6.4), (6.14), or (6.16) where the field at the
next time step is explicitly expressed by the field at the current time step, the schemes
of equations (6.20) and (6.21) are implicit, since there are only relations connecting the
fields at the next and current time steps. In this case, we have to solve a system of linear
equations, or invert a matrix, so as to obtain the field at the next time step for a field
given at the current time step. This approach increases the complexity of implementation
and computational burden significantly. Despite this drawback, we may still find some
applications of these implicit schemes where the given problem requires vg�t > �z.
For example, in DC biased or low speed modulated optoelectronic devices with a strong
LSHB effect, we have to use a small space step to capture the highly non-uniform field
distribution along the cavity, whereas there is no need to take a small time step, and
either BT–FS or BT–BS can be found to be useful. Another potential application of these
backward-time implicit schemes is in dealing with the inverse propagation problem,
where we may need to find out which initial function will lead to a given final state, for
tasks like signal waveform optimization.

The features of the different schemes are summarized in Table 6.1.
In order to gain a higher (second) order of accuracy, one may think to use the center

difference scheme. However, it is well known that the forward-time, explicit center-space
(FT–ECS) scheme with the center-space difference evaluated at the previous time step,
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is unstable. The forward-time, implicit center-space (FT–ICS) scheme represented by

∂F

∂t
= Fn,k+1 − Fn,k

�t

∂F

∂z
= Fn+1,k+1 − Fn−1,k+1

2�z

∂R

∂t
= Rn,k+1 − Rn,k

�t

∂R

∂z
= Rn+1,k+1 − Rn−1,k+1

2�z
, (6.24)

will lead to[ η
2 Fn+1,k+1 + Fn,k+1 − η

2 Fn−1,k+1

− η
2 Rn+1,k+1 + Rn,k+1 + η

2 Rn−1,k+1

]

=
[

1 + ηA11
n,k�z ηA12

n,k�z

ηA21
n,k�z 1 + ηA22

n,k�z

][
Fn,k

Rn,k

]
+ η

[
Cf

n,k�z

Cr
n,k�z

]
. (6.25)

Since

(
1

vg

∂

∂t
± ∂

∂z

)[
F(z, t)

R(z, t)

]
→

⎡⎢⎢⎣
Fn,k+1 − Fn,k

vg�t
+ Fn+1,k+1 − Fn−1,k+1

2�z
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2�z

⎤⎥⎥⎦
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⎡⎢⎢⎢⎣
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∂z
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∂2F
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vg

∂R

∂t
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− ∂R
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+ 1

2vg

∂2R
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�t + O(�t2) + O(�z2)
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1
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∂F
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∣∣∣∣
n,k

+ ∂F

∂z

∣∣∣∣
n,k

1

vg

∂R

∂t

∣∣∣∣
n,k

− ∂R

∂z

∣∣∣∣
n,k

⎤⎥⎥⎦ ,

and [
A11(z, t) A12(z, t)

A21(z, t) A22(z, t)

] [
F(z, t)

R(z, t)

]
→

[
A11

n,k A12
n,k

A21
n,k A22

n,k

][
Fn,k

Rn,k

]
,

the discretization scheme, equation (6.25), is consistent with the original equation (6.1)
[18]. The von Neumann analysis also shows that this scheme is unconditionally stable
since

|ξ |2 = 1

1 + η2 sin2(β�z)
≤ 1, (6.26)

hence equation (6.25) gives the convergent solution to (6.1).
Unfortunately, these backward-time schemes are all implicit so that we have to solve

an extra system of linear equations, or to invert a matrix at each time step, which increases
the implementation complexity and brings in a considerable extra computational burden.
The accuracy gained usually does not offset the extra cost.

The staggered leapfrog method provides a second order accuracy in both time and
space, and has been proven to be a consistent and stable scheme. Unfortunately, it often
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fails to converge when equation (6.1) has to be solved with the carrier equations in a self-
consistent manner because of decoupling between the adjacent mesh points. Although
by introducing an artificial diffusion term, or through using a two-step Lax–Wendroff
scheme [19], we can have the decoupling problem solved, the numerical dissipation
appears again.

The Crank–Nicholson scheme has second order accuracy in both time and space, and
is consistent and unconditionally stable. Actually, under discretization [18]

∂F

∂t
= Fn,k+1 − Fn,k

�t

∂F

∂z
= 1

2

(
Fn+1,k+1 − Fn−1,k+1

2�z
+ Fn+1,k − Fn−1,k

2�z

)
∂R

∂t
= Rn,k+1 − Rn,k

�t

∂R

∂z
= 1

2

(
Rn+1,k+1 − Rn−1,k+1

2�z
+ Rn+1,k − Rn−1,k

2�z

)
,

(6.27)

at mesh point n and k + 1/2, equation (6.1) becomes

η

[
Fn+1,k+1 − Fn−1,k+1

−Rn+1,k+1 + Rn−1,k+1

]
+ 2

[
2 − ηA11

n,k+1�z −ηA12
n,k+1�z

−ηA21
n,k+1�z 2 − ηA22

n,k+1�z

][
Fn,k+1

Rn,k+1

]

= η

[−Fn+1,k + Fn−1,k

Rn+1,k − Rn−1,k

]
+ 2

[
2 + ηA11

n,k�z ηA12
n,k�z

ηA21
n,k�z 2 + ηA22

n,k�z

][
Fn,k

Rn,k

]

+ 2η�z

[
Cf

n,k+1 + Cf
n,k

Cr
n,k+1 + Cr

n,k

]
. (6.28)

It is straightforward to prove that equation (6.28) is consistent with (6.1). The von
Neumann analysis shows that

|ξ |2 =
∣∣∣∣1 ∓ j η

2 sin(β�z)

1 ± j η
2 sin(β�z)

∣∣∣∣2 ≡ 1. (6.29)

Therefore, the Crank–Nicholson scheme, equation (6.28), converges to (6.1). The only
drawback of this scheme is its implicit nature.

An approach similar to the Crank–Nicholson scheme is the box scheme with
discretization [18]
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�t
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)
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2
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Rn+1,k+1 − Rn,k+1
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+ Rn+1,k − Rn,k

�z

)
, (6.30)
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at mesh point n + 1/2 and k + 1/2, or

[
A11(z, t) A12(z, t)

A21(z, t) A22(z, t)

][
F(z, t)

R(z, t)

]
+
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]

→ 1

4
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]
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n,k+1 A22

n,k+1

][
Fn,k+1

Rn,k+1

]
+ 1

4

[
A11
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]

+ 1
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[
Cf
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]
+ 1
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[
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[
Cf

n,k

Cr
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]
. (6.31)

The expression for this scheme is therefore obtained by plugging equations (6.30) and
(6.31) into (6.1).

Through similar consistency and von Neumann stability analyses as shown above, we
find that the box scheme also has second order accuracy in both time and space, and is con-
sistent and unconditionally stable, hence giving a convergent solution to equation (6.1).
The drawback of the box scheme, again, is its implicit nature.

Although the Crank–Nicholson and box schemes offer higher accuracy, larger dis-
cretization steps should be allowed. However, the non-uniformity of the parameters
A11, A12, A21, and A22 affects the accuracy as well, since we have used a linear interpo-
lation of these parameters at the half mesh points, (n, k + 1/2) for the Crank–Nicholson
and (n + 1/2, k + 1/2) for the box schemes, respectively. In this sense, if the param-
eters are highly non-uniform in space (z) and time (t), we still have to choose small
�z and �t in these schemes to ensure accuracy. However, if the parameters are only
highly non-uniform in space (z), but change slowly in time (t), we can use the Crank–
Nicholson scheme where the parameters are not interpolated in space, and hence less
error is involved.

Other than the direct discretization methods that have been successfully implemented
in a variety of different versions in laser modeling [20, 21, 22, 23], the indirect dis-
cretization methods based on the operator split [24], e.g., split-step, alternating-direction
implicit (ADI), and integral transformation or eigenfunction expansion, are also gaining
popularity because of their balance between computational accuracy and efficiency [25].
The integral transformation or eigenfunction expansion method is actually a stand-
ing wave approach which will be discussed in Section 6.3. The ADI method based
on rational (Pade) factorizations is more like a pure numerical algorithm with little
physics, and hence it will not be discussed in this book. We next focus on the split-step
method.
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6.2.2 The split-step method

In dealing with the optical traveling wave equation (6.1), we may rewrite it in the form

± ∂

∂z

[
F(z, t)

R(z, t)

]
=

[
A11(z, t) − 1

vg

∂
∂t

A12(z, t)

A21(z, t) A22(z, t) − 1
vg

∂
∂t

][
F(z, t)

R(z, t)

]
+

[
Cf (z, t)

Cr(z, t)

]
.

(6.32)
If we consider the nth subsection in a waveguide with length �z as shown in Fig. 6.2,

temporarily ignoring the variable and parameter dependence on time at a frozen time
instant t = k�t , ignoring the z dependence of the parameters, and ignoring the inhomo-
geneous spontaneous emission contributions, we find that the fields at the entrance and
exit of this subsection, i.e., Fn,k , Rn,k and Fn+1,k , Rn+1,k , are governed by

± d

dz

[
F(z)

R(z)

]
=

[
a11 a12

a21 a22

] [
F(z)

R(z)

]
, (6.33)

with

a11 ≡ A11
n,k − 1

vg

∂

∂t
, a12 ≡ A12

n,k, a21 ≡ A21
n,k, a22 ≡ A22

n,k − 1

vg

∂

∂t
, (6.34)

introduced as constants. The right- and left-going waves F and R are assumed to be z

dependent only, evaluated at time t = k�t .
Equation (6.33) can readily be solved subject to the given boundary conditions at the

entrance of this subsection, i.e.,[
F(0)

R(0)

]
=

[
Fn,k

Rn,k

]
,

d

dz

[
F(z)

R(z)

]
z=0

=
[

a11 a12

−a21 −a22

] [
F(0)

R(0)

]
=

[
a11 a12

−a21 −a22

] [
Fn,k

Rn,k

]
,

(6.35)

with Fn,k and Rn,k taken as given variables.
Actually, equation (6.33) can be made decoupled as

d2F(z)

dz2
− (a11 − a22)

dF(z)

dz
+ (a12a21 − a11a22)F (z) = 0

d2R(z)

dz2
− (a11 − a22)

dR(z)

dz
+ (a12a21 − a11a22)R(z) = 0. (6.36)

The general solution to equation (6.36) can be found as

F(z) = e
a11−a22

2 z[C1 cosh(γ z) + C2 sinh(γ z)]
R(z) = e

a11−a22
2 z[C3 cosh(γ z) + C4 sinh(γ z)], (6.37)
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Fn,k

Rn,k Rn +1,k

Fn +1,k

R(z)

F (z)

∆z

a12

a11

a21

a22

Fig. 6.2. Coupled wave integration in the nth subsection at a frozen time instant t = k�t .

where

γ = ±√
((

a11 + a22

2

)2

− a12a21

)
. (6.38)

Plugging equation (6.37) into (6.35) yields

F(0) = C1 = Fn,k,
dF

dz

∣∣∣∣
z=0

= a11 − a22

2
C1 + γC2 = a11Fn,k + a12Rn,k,

R(0) = C3 = Rn,k,
dR

dz

∣∣∣∣
z=0

= a11 − a22

2
C3 + γC4 = −a21Fn,k − a22Rn,k,

or

C1 = Fn,k, C2 = a11 + a22

2γ
Fn,k + a12

γ
Rn,k,

C3 = Rn,k, C4 = −a21

γ
Fn,k − a11 + a22

2γ
Rn,k. (6.39)

Substituting equation (6.39) into (6.37) and setting z = �z, we obtain[
Fn+1,k

Rn+1,k

]
= e

a11−a22
2 �z

[
a′

11 a′
12

a′
21 a′

22

] [
Fn,k

Rn,k

]
, (6.40)

where

a′
11 ≡ cosh(γ�z) + a11 + a22

2γ
sinh(γ�z), a′

12 ≡ a12

γ
sinh(γ�z),

a′
21 ≡ −a21

γ
sinh(γ�z), a′

22 ≡ cosh(γ�z) − a11 + a22

2γ
sinh(γ�z). (6.41)

In considering the time dependence of these traveling waves, we need to make explicit
the time derivative operator hidden in those matrix elements. Noting that, with respect
to the right- and left-going waves, F travels from n to n + 1 but R travels from n + 1
to n, we need to express Fn+1,k and Rn,k in terms of Fn,k and Rn+1,k , since both the
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former and the latter group of variables should be aligned in the time domain. This can
readily be realized by converting equation (6.40) to[

Fn+1,k

Rn,k

]
= 1

a′
22

⎡⎣e
a11−a22

2 �z a′
12

−a′
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Rn+1,k

]
.

(6.42)

From equations (6.34) and (6.32), we know that a12 and a21, i.e., A12
n,k and A21

n,k ,
are the cross-coupling (through, e.g., reflection from the grating) coefficients between
the right- and left-going waves. They are normally smaller than the self-coupling (i.e.,
amplitude gain or attenuation and phase shift through propagation) coefficients a11 and
a22. Therefore, we can ignore the cross-coupling term in equation (6.42) in restoring the
time dependence. As a result, equation (6.42) becomes

[
Fn+1,k

Rn,k

]
≈ 1

cosh(γ�z) − sinh(γ�z)

[
e

a11−a22
2 �z 0

0 e− a11−a22
2 �z

][
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]
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2 �z 0

0 e− a11−a22
2 �z

][
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]

≈ e
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2 �z
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e
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0 e− a11−a22
2 �z

][
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Rn+1,k

]

=
[

ea11�z 0
0 ea22�z

] [
Fn,k
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]
= e

− �z
vg

∂
∂t

[
eA11

n,k�z 0

0 eA22
n,k�z

][
Fn,k

Rn+1,k

]
,

(6.43)

where we have utilized γ ≈ (a11 + a22)/2 according to equations (6.38) and (6.34).
Equation (6.43) can then be written as

e
�z
vg

∂
∂t

[
Fn+1,k

Rn,k

]
=

[
eA11

n,k�z 0

0 eA22
n,k�z

][
Fn,k

Rn+1,k

]
,

or

[
Fn+1,k+1

Rn,k+1

]
=

[
eA11

n,k�z 0

0 eA22
n,k�z

][
Fn,k

Rn+1,k

]
, (6.44)

where the relation
et0

∂
∂t f (t) = f (t + t0), (6.45)
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has been used. In equation (6.44), the time step �t must be selected such that

�t = �z/vg. (6.46)

Equation (6.44) clearly shows that, to reflect the time dependence in wave propagation
through subsection �z, we just need to restore a proper time delay �t = �z/vg between
the waves at the exit and at the entrance. Since F and R travel in opposite directions,
their entrances and exits are swapped. This is the reason we have used equation (6.42)
instead of (6.40) to sort the waves according to their time sequence.

Substituting equation (6.34) into (6.42) with the time derivative operator ignored, we
find the space-independent part of equation (6.42) as[

Fn+1,k

Rn,k

]
= 1

cosh(γn,k�z) − A11
n,k+A22

n,k

2γn,k
sinh(γn,k�z)⎡⎢⎣ e
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−A22
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2 �z A12
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γn,k
sinh(γn,k�z)

A21
n,k

γn,k
sinh(γn,k�z) e− A11

n,k
−A22

n,k
2 �z

⎤⎥⎦[
Fn,k

Rn+1,k

]
, (6.47)

with γn,k redefined as

γn,k ≡ ±√
(

A11
n,k + A22

n,k

2

)2

− A12
n,kA

21
n,k. (6.48)

Finally, combining the space-dependent part (6.47) with the time-dependent part (6.44)
and counting in the inhomogeneous spontaneous emission contributions, we obtain[
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Rn,k+1

]
= 1
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Fn,k
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]
+ �z

[
Cf

n,k

Cr
n,k

]
.

(6.49)

Equation (6.49) forms a general split-step algorithm where the wave dependences on
time and on space are treated sequentially rather than simultaneously within every sub-
section. Without the distributed coupling between the contra-propagated waves through
reflection, and under the assumption that the parameters are constants within a subsec-
tion, such a treatment is accurate because the time and space operators are commutable.
With distributed coupling, however, equation (6.49) is obtained with the distributed delay
along the subsection counted as a maximum delay. Obviously, as the coupling becomes
stronger, we have to reduce the subsection length �z to ensure accuracy.



Solution techniques for optical equations 187

t

k +1 Fn,k +1 Rn,k +1

Fn –1,k

Fn +1,k +1

Rn +1,kFn,k
k

n  –1 n +1n z

Scheme 1

Scheme 2

Fig. 6.3. Comparison between two split-step schemes. Parameters in the first scheme, equation (6.49), are
consistent in space (z), but inconsistent in time, whereas parameters in the second scheme,
equation (6.51), are consistent in time, but inconsistent in space (z).

Because of the symmetry between the time and space operators in the traveling wave
equation, we can also write equation (6.1) as

1
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∂

∂t

[
F(z, t)

R(z, t)

]
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[
A11(z, t) − ∂

∂z
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]
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]
.

(6.50)
By following a similar approach, we find
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(6.51)

where equation (6.46) still holds and

γn,k ≡ ±√
⎛⎝(

A11
n,k − A22

n,k

2

)2

+ A12
n,kA

21
n,k

⎞⎠. (6.52)

As split-step algorithms, schemes (6.49) and (6.51) are illustrated in Fig. 6.3.
Through these derivations, we find that, in equation (6.49), the space dependence

of the parameters A11, A12, A21, A22 and the inhomogeneous spontaneous emission
contributions is consistent, whereas their time dependence is not. On the contrary, in
equation (6.51), the time dependence of these parameters is consistent, whereas their
space dependence is not. One way to improve accuracy is to use their arithmetically
averaged values at mesh points (n, k) and (n, k+1), and (n, k) and (n+1, k) to replace the
original values at (n, k) in equations (6.49) and (6.51), respectively. However, parameter
values at mesh point (n, k+1) are usually unknown, which means such an improvement is
only viable for equation (6.51). We may also conclude that equation (6.49) is preferred if
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the parameters are smooth functions of time t but highly non-uniform in space z, whereas
equation (6.51) is preferred in the opposite situation where the parameters change rapidly
with time t but are smooth functions of space z.

It is also clear that the transient frequency method [26, 27] through assuming

1

vg

∂

∂t

[
F(z, t)

R(z, t)

]
≈ β(z, t)

[
F(z, t)

R(z, t)

]
, (6.53)

is a special case of scheme (6.49). Equation (6.53) assumes a harmonic time dependence
of the waves in each individual subsection. With equation (6.45), this assumption is
not necessary, which makes the split-step schemes, equations (6.49) and (6.51), more
comprehensive. For example, equations (6.49) and (6.51) can be employed either to
model wave propagation in the laser diode, where the wave is indeed quasi-harmonic,
or to model pulse propagation in the SOA, where the wave is far from harmonic.

This method also bridges the traveling wave and standing wave approaches. If we
solve equation (6.33) as an eigenvalue problem for the entire device subject to the
boundary condition defined at the two facets, to obtain the eigenvalues and eigenfunctions
known as the net complex gain (i.e., amplitude gain and frequency detuning) and the
longitudinal mode, we can construct our solution to equation (6.32) as a superposition of
these eigenfunctions, simply because the eigenfunction set is complete. In this sense we
can view the standing wave approach as a one-step split-step method at steady state with
∂/∂t → 0 to obtain all possible spatial distributions that are allowed by the longitudinal
structure and boundary condition, plus a rate equation analysis to find out how these
distributions are combined at any time instant.

There is also a high order split-step method that uses the Lie–Trotter–Suzuki product
formula to approximate the time evolution operator, where the stability of the algorithm
is guaranteed [28]. Since we use this method just as a mathematical tool, we will skip
any detailed discussion on this topic. The application of this method can be found from,
e.g., [29].

6.2.3 Time domain convolution through the digital filter

In solving the broadband optical wave equation (2.97), we have to find the polar-
ization given in equation (2.98), which reflects the delayed response of the material.
Equation (2.98) can conveniently be implemented in the frequency domain. However,
we need to perform the fast Fourier transform (FFT) algorithm back and forth at every
progressing time step, which not only brings a considerable computational burden, but
also causes a possible aliasing problem in the time domain because of the frequency
domain discretization. Therefore, the following time domain convolution is realized
through a digital filtering approach [30, 31].

Actually, by truncating the frequency domain susceptibility (as can be seen in
Chapter 4, the susceptibility is usually obtained from the material model in the fre-
quency domain directly) beyond a bandwidth of our interest, we construct two periodic
functions in the frequency domain which match the real and imaginary parts of the
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Fig. 6.4. Construction of the periodic susceptibility for digital filter extraction.

retained susceptibility within the band of interest to us, as shown in Fig. 6.4. Namely,
we construct

�χ̃P (z, ω) = �χ̃ r
P (z, ω) + j�χ̃ i

P (z, ω), (6.54)

with a period of
ωB ≡ (ω0 + ωh) − (ω0 + ωl) = ωh − ωl, (6.55)

where ωh and ωl are the upper and lower cut-off frequencies at which we truncate
the frequency domain susceptibility. Within the frequency band of interest, i.e., for
ωl < ω < ωh, we let

�χ̃P (z, ω) = �χ̃(z, ω), (6.56)

where �χ̃(z, ω) can be obtained from equation (2.90) once χ̃(z, ω) is obtained from the
material solver.

Since �χ̃(z, ω) is periodic in terms of ω, through the Fourier expansion, we obtain

�χ̃ r
P (z, ω) =

∞∑
n=−∞

cr
n(z)e

jnT ω, (6.57a)

�χ̃ i
P (z, ω) =

∞∑
n=−∞

ci
n(z)e

jnT ω, (6.57b)

where

ci
n(z) = T

2π

∫ ωh

ωl

�χ̃ r
P (z, ω)e−jnT tdt, (6.58a)

ci
n(z) = T

2π

∫ ωh

ωl

�χ̃ i
P (z, ω)e−jnT tdt, (6.58b)

and
T ≡ 2π/ωB. (6.59)
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Therefore, we find the inverse Fourier transform of �χ̃P (z, ω) to be

�χP (z, t) = F−1[�χ̃P (z, t)] = F−1[�χ̃ r
P (z, ω)] + jF−1[�χ̃−i

P (z, ω)]

=
∞∑

n=−∞
[cr

n(z) + jci
n(z)]δ(t − nT ). (6.60)

To make equation (6.60) computable, we still need to truncate the summation on its
RHS. Actually, by introducing a set of real numbers wn, such that the spectrum (Fourier
transform) of the truncated series

�χP (z, t) ≈
N∑

n=−N

wn[cr
n(z) + jci

n(z)]δ(t − nT ), (6.61)

will have minimum error in comparing with �χ̃(z, ω) within the frequency band of
interest, i.e., ωl < ω < ωh, we find wn by minimizing

εerror =
M∑

m=1

{
N∑

n=−N

wn[cr
n(z) + jci

n(z)]e jnT ωm − �χ̃(z, ωm)

}2

, (6.62)

with ωl < ωm < ωh, m = 1, 2, 3, . . . , M denoting a set of frequency samples within
the band of interest. Hence equation (6.61) is fully determined with a minimum error for
an integer N selected in truncating equation (6.60).

In computing convolution equation (2.98), we can therefore use �χP (z, t) in
equation (6.61) to replace �χ(z, t). The only difference is that �χ(z, t) is continu-
ous, whereas �χP (z, t) is discrete. The latter is a sampling version of the former with
the sampling rate guaranteed dense enough to capture any fast change in time domain
as we need, since we can always set ωB sufficiently large. As a result, equation (2.98)
becomes

�pf ,b(z, t) ≈ ε0

∫ t

−∞
�χP (z, t − τ)ef ,b(z, τ )e jω0(t−τ)dτ

= ε0

∫ t

−∞

M∑
n=−M

wn[cr
n(z) + jci

n(z)]δ(t − nT − τ)ef ,b(z, τ )e jω0(t−τ)dτ

= ε0

M∑
n=−M

wne jnT ω0 [cr
n(z) + jci

n(z)]ef ,b(z, t − nT ). (6.63)

Note that, for a given material system, �χ̃(z, ω) is determined, hence extraction of
the coefficients in equation (6.63), i.e., cr

n, c
i
n, wn, n = 0, ±1, ±2, . . . , ±N , needs to be

executed only once. As opposed to integration (2.98) in its original form, equation (6.63)
can be computed in a much more efficient way, as we need simply to perform a series
of shift and add operations.
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6.3 Standing wave equations

In dealing with the standing wave model, we have to solve equations (2.135), (2.139)
and (2.126). Equation (2.139) involves only numerical quadrature that has been exten-
sively discussed in, e.g., [19]. Equation (2.126) is a set of ODEs, the solution technique
for which will be discussed in Chapter 7. As for equation (2.135), it fits into a form
similar to equation (6.32), hence the related solution technique can be built in a similar
way, known as the transfer matrix method. However, there are two unique problems
that we face in solving equation (2.135) and we will focus on these two points in this
section.

The first problem is how to split the terms in equation (2.122). Depending on how we
select the reference for the external bias, we have three different strategies.

The first strategy is to use the zero bias as the reference, known as the “cold cav-
ity” model [32]. The advantage of this model is that the parameters in equation (2.135)
are not bias dependent, hence they are not time dependent. Therefore, we just need to
solve equation (2.135) once. The drawback, however, is that usually a large number
of the eigenfunctions (i.e., the longitudinal optical modes) obtained as the solution to
equation (2.135) have to be retained in the mode expansion (2.125a) to ensure accuracy.
This increases the computational burden of equations (2.139) and (2.126) as the com-
putational complexity is proportional to the square of (not linearly proportional to) the
number of the modes retained, because of the cross-coupling terms in equations (2.139)
and (2.126). For this reason, as the number of modes retained increases, the required
computation time grows fairly rapidly. It is clear that once the square root of the number
of modes retained becomes comparable to the total time steps, the advantage gained by
not solving the eigenvalue problem, equation (2.135), repeatedly at every time step will
be cancelled out.

The second strategy is to use the adiabatic bias as the reference, known as the
“floating bias” model [33]. As opposed to the “cold cavity” model, the advantage of
the “floating bias” is that only a minimum number of modes needs to be retained in
equation (2.125a). For single mode operated devices such as DFB lasers, we appreciate
this feature as only one mode needs to be retained, which makes solving equations (2.139)
and (2.126) extremely efficient. The major drawback, however, is that we have to solve
equation (2.135) repeatedly at every time step. In reality, we may find a situation in which
the bias is adiabatic for the whole time range (e.g., in DC analysis) or within a time period
(e.g., in the top or bottom flat part of a square pulsed bias). Since there is no need to
solve equation (2.135) repeatedly for adiabatic biases without an appreciable difference,
by storing the modes for consecutive steps where the adiabatic bias is invariant, we may
reduce the computation time significantly. As a last point to make this model clear, the
adiabatic bias can be obtained through the step-function decomposition for an arbitrary
given time-dependent bias function

V (t) = V (0)U(t) +
∫ t

0

dV (τ)

dτ
U(t − τ)dτ , (6.64)
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where U(t) is the step function and the integral should be replaced by a corresponding
summation in numerical implementations.

The third strategy is somewhere between the other two; i.e., we use a fixed, but not
necessarily zero adiabatic bias as the reference, known as the “hot cavity” model. Using
such a reference, equation (2.135) is still solved only once, which is similar to the “cold
cavity” model. However, since we choose a reference that is in the neighborhood of
an area in which the optical field undergoes little change, there is no need to retain a
large number of modes in equation (2.125a) either, as the chance that we may miss the
operating mode is slight. An obvious selection in laser modeling is to use the threshold
bias as the reference. It is well known that for a bias above the threshold, the carrier
density and hence the gain is somehow clamped, especially when the LSHB effect is
not severe. As a result, the longitudinal optical field distribution, i.e., the longitudinal
optical mode, undergoes little change from its shape at the threshold bias. Once the
modes are solved at the threshold bias, we are certain that the optical field under above-
threshold biases will not skip the combination of the few modes that have been found
at the threshold. To determine the threshold bias, one can always use the uniform field
assumption where the solution can be obtained analytically. The exact equation (2.135)
will then be solved under such an obtained threshold for the “hot cavity” modes. The
drawback of this model lies in the fact that it is sometimes difficult to find such a reference
bias point, especially for device structures with a weak resonance or low quality factor.
The standing wave model is suitable only for resonant structures, as otherwise we would
not even be able to find any modes, but for the device structures to which this model is
applicable, usually we can find a non-zero reference bias at which the required number
of modes in the expansion is greatly suppressed.

These three strategies are illustrated in Fig. 6.5. We can actually establish a mapping
between these models and well-known methods in modeling passive optical waveguides.
The “cold cavity” and “hot cavity” models correspond to “global mode” expansion,
whereas the “floating bias” model is similar to “local mode” expansion. For example, in
an analysis of the horn waveguide with the mode expansion method, we could use a set
of modes obtained from (1) one end of the structure, (2) the structure with an averaged
width, or (3) the structure with the exact width at each cross-section, where (1) and (2)
are known as the “global mode” (though with different reference), and (3) is known as
the “local mode” expansion method, respectively. With our bias mapped to the width of
the horn waveguide, we find that the “cold cavity” and “hot cavity” models correspond
to methods (1) and (2) or “global mode” expansion, while the “floating bias” model
corresponds to method (3) or “local mode” expansion.

The second problem is related to solving equation (2.135) itself.Although the formula-
tions related to equation (2.135) are similar to equations (6.40) and (6.41) from subsection
to subsection, the solution techniques are completely different as equation (2.135) is
posed as an eigenvalue problem subject to the boundary condition at the two ends of the
device, whereas problem equation (6.32), as the origin of equations (6.40) and (6.41),
is not.

Generally, with the coupling between the right- and left-going traveling waves con-
sidered to be caused by the distributed reflection, equation (2.135) can be posed in a
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Fig. 6.5. Modal expansions taking different references.

similar form to equation (6.32) for any given adiabatic bias, i.e.,

± d

dz

[
F(z)

R(z)

]
=

[
A11(z) A12(z)

A21(z) A22(z)

] [
F(z)

R(z)

]
, (6.65)

with the unknown eigenvalue embedded in A11 and A22. Because of the generally non-
uniform dependence of the parameters on space z, we do not expect any analytical
solutions to equation (6.65). Following the transfer matrix approach [34], we subdivide
the device into subsections along z, with each subsection short enough such that the
parameters can be approximated as constants. As such, the solution to equation (6.65)
in each subsection takes a form similar to equations (6.40) and (6.41)[
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and

γn ≡ ±√
((

A11
n + A22

n

2

)2

− A12
n A21

n

)
. (6.68)

In equation (6.66), the coefficient matrix on the RHS is named as the transfer matrix,
through which we can link the right- and left-going waves at the two ends of the device
through

[
FN+1

RN+1

]
=

1∏
n=N

[
a11
n a12

n

a21
n a22

n

] [
F1

R1

]
=

[
a11 a12

a21 a22

] [
F1

R1

]
, (6.69)

with the final matrix elements a11, a12, a21, and a22 obtained numerically from the
multiplication of N 2 × 2 matrices. At resonance, the field is self-sustained without any
input. According to the boundary condition (2.137), we have[

FN+1

RrFN+1

]
=

[
a11 a12

a21 a22

] [
RlR1

R1

]
. (6.70)

Therefore, the resonance condition is obtained by

RrRla
11 + Rra

12 − Rla
21 − a22 = 0. (6.71)

As the unknown, the eigenvalue is embedded in equation (6.71) through the matrix
elements. Hence equation (6.71) is the eigenequation that determines the eigenvalues.

Once the eigenvalues are found from equation (6.71) through a root-searching algo-
rithm, the corresponding field distributions, or the optical modes, can be found through[

F ′
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R′
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]
=
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[
a11
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n
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n a22

n

][
Rl

1

]
, (6.72)

for m = 1, 2, 3, . . . , N . For the kth mode, we should use the kth eigenvalue obtained as
the solution to equation (6.71) in those elements in the transfer matrices from subsection
to subsection.

Once the field prior to normalization is found through equation (6.72), the normaliza-
tion factor can be computed through

C = √
(

1 + |Rl|2 +
N∑

m=1

(|F ′
m+1|2 + |R′

m+1|2)
)

. (6.73)

Finally, the normalized optical mode is found through[
F1

R1

]
= 1

C

[
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1

]
,

[
Fm+1

Rm+1

]
= 1

C

[
F ′
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R′

m+1

]
, (6.74)

for m = 1, 2, 3, . . . , N .
In solving equation (6.71), a complex variable numerical root-searching routine has

to be employed. Usually, Muller’s method [35, 36] is preferred in developing such a
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routine because it is possible to obtain complex roots even with a real number initial
guess, whereas in the more popular Newton’s method or the secant method, one can
never find a complex root starting from a real number initial guess. One can also employ
the approach in [37] for complex root-searching.

Depending on the complexity of the structure, in case the searching fails or hits the
wrong root, we can always rely on a successive scanning algorithm that guarantees the
search’s success. Actually, we can always start searching from a simple grating structure
(e.g., with zero facet reflection) for which we know the solution. Taking this solution
as the initial guess and altering the parameters one by one, gradually towards the given
structure, we can always find the correct root as long as we keep updating the initial
guess with the previous searching outcome.

To find the exact solution as the initial guess, we can always look at the simplest case
where the parameters in equation (6.65) are constants with zero reflections at the device
facets.

Noting that[
a11(x) a12(x)

a21(x) a22(x)

] [
a11(y) a12(y)

a21(y) a22(y)

]
=

[
a11(x + y) a12(x + y)

a21(x + y) a22(x + y)

]
, (6.75)

where

a11(x) ≡
[

cosh(γ x) + A11 + A22

2γ
sinh(γ x)

]
e

A11−A22
2 x

a22(x) ≡ A12

γ
sinh(γ x)e

A11−A22
2 x

a21(x) ≡ −A21

γ
sinh(γ x)e

A11−A22
2 x

a22(x) ≡
[

cosh(γ x) − A11 + A22

2γ
sinh(γ x)

]
e

A11−A22
2 x, (6.76)

with γ still defined by equation (6.68) with constant parameters A11, A12, A21, and A22,
we find

1∏
n=N

[
a11(�z) a12(�z)

a21(�z) a22(�z)

]
=

[
a11(L) a12(L)

a21(L) a22(L)

]
, (6.77)

with L introduced as the total device length in the z direction.
Since the eigenequation (6.71) reduces to a22 = 0 under the zero reflection assumption,

we find from equations (6.76) and (6.77)

cosh(γL) − A11 + A22

2γ
sinh(γL) = 0, or γ coth(γL) = A11 + A22

2
, (6.78)

which is the same as [38] when we apply equation (6.65) to DFB laser diodes.
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Equation (6.78) is given in a transcendental form and we are able to find some prop-
erties possessed by the eigenvalues. For example, in DFB laser diodes with a first order
grating, from equations (2.84) and (2.135), we find

def (z)

dz
=

[
jδ + jk0��nV (z, ω0) + 1

2
�gV (z, ω0) − 1

2
ᾱ(z) − j

β2
V

2β0

]
ef (z)

+ jκ1e
b(z, t) − deb(z)

dz

=
[

jδ + jk0��nV (z, ω0) + 1

2
�gV (z, ω0) − 1

2
ᾱ(z) − j

β2
V

2β0

]
eb(z)

+ jκ−1e
f (z, t). (6.79)

By comparing equation (6.79) with (6.65) and ignoring the space dependence of the
parameters, we find

A11 = jδ + jk0��nV + 1

2
�gV − 1

2
ᾱ − j

β2
V

2β0
, A12 = jκ1

A21 = jκ−1, A
22 = jδ + jk0��nV + 1

2
�gV − 1

2
ᾱ − j

β2
V

2β0
, (6.80)

once we map ef (z) and eb(z) to F(z) and R(z), respectively. Hence equation (6.78)
becomes

γ coth(γL) = α + jβ, or γ 2 coth2(γL) = γ 2 − κ1κ−1, (6.81)

with

γ = ±√ (
(α + jβ)2 + κ1κ−1

)
, or α + jβ = ±√ (

γ 2 − κ1κ−1

)
, (6.82)

and the virtual gain and detuning defined as

α ≡ 1

2
�gV − 1

2
ᾱ + Im(β2

V )

2β0

β ≡ δ + k0��nV − Re(β2
V )

2β0
. (6.83)

Once the virtual gain and detuning are found as the root of equation (6.81) for any
given coupling coefficients κ1 and κ−1, we obtain the imaginary and real part of the
eigenvalue.

In the purely index coupled grating, once the grating is symmetric or anti-symmetric,
we have κ1 = κ−1 = |κ| or κ1 = −κ−1 = j|κ|. In either case, equations (6.81) and
(6.82) become

γ 2 coth2(γL) = γ 2 − |κ|2, (6.84)

and
α + jβ = ±√

(γ 2 − |κ|2). (6.85)
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It is clear that, according to equation (6.84), if γ is a solution, −γ and ±γ ∗ are all
solutions, since (γ 2)∗ = (γ ∗)2, [coth2(γ )]∗ = coth2(γ ∗). As a result, we find from
equation (6.85) that if (α, β) is a solution, (±α, ±β) will be solutions as well, since√ (

γ 2 − |κ|2)∗ = √ (
(γ ∗)2 − |κ|2).

Similarly, in purely gain or loss coupled gratings, once the grating is symmetric
or anti-symmetric, we have κ1 = κ−1 = j|κ| or κ1 = −κ−1 = |κ|. In either case,
equations (6.81) and (6.82) become

γ 2 coth2(γL) = γ 2 + |κ|2, (6.86)

and
α + jβ = ±√ (

γ 2 + |κ|2
)

. (6.87)

Thus we still have a similar conclusion. An apparent difference between these two
particular grating structures is that in the purely index coupled grating, β = 0 is not a
solution as, otherwise, γ will be real according to equation (6.85), which makes the LHS
of equation (6.84) > γ 2 but the RHS of (6.84) < γ 2. However, for purely gain or loss
coupled gratings, real γ with β = 0 can be a solution according to equations (6.87) and
(6.86).

We may conclude that, if κ1κ−1 is real, as the root of equation (6.81), γ and hence
(α, β) appear in quadriads. That is to say, the solution to the eigenequation (6.78) has
quadruple-degeneracy once the product of A12 and A21 is real. If A12A21 is complex
or the parameters in equation (6.65) have space dependence, although such degeneracy
breaks, we can still find three other accompanying roots in the neighborhood of (α, −β)

and (−α, ±β) for every root at (α, β). Following this guidance, it is unlikely that we
will miss any root if Muller’s algorithm is adopted for root-searching.

A final problem is to determine which root should be qualified as the eigenvalue with
its corresponding eigenfunction retained as an optical mode in the expansion (2.125a).
This is not a mathematical problem and so we need the physics on the mode ranking.
Actually, for roots γ with similar β, we should retain those with smaller α, while for roots
γ with similar α, we should retain those with smaller |β|, since the modes with smaller
α and |β| need smaller gain and are less detuned, which qualifies them as the lower
order modes to be retained. Particularly in lasers, the eigenequation is the oscillation
condition. Modes with smaller α and |β| have lower thresholds and are closer to phase
matching. As the injection increases from zero, these modes will reach their amplitude
and phase oscillation conditions first and hence become the lasing modes. For roots with
large α but small |β|, or small α but large |β|, we should rank the lower order modes
as those with smaller |γ |. Lastly, for modes with similar |γ | but different α and |β|, we
should leave all of them as the modes in the expansion (2.125a).
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7 Solution techniques for material gain
equations

7.1 Single electron band structures

For bulk semiconductors, a band structure calculation is made to diagonalize the
Luttinger–Kohn Hamiltonian matrix to find the energies as the eigenvalues and the
electron (and hole) wave functions as the eigenfunctions. For low dimension matrices,

we can pose the eigenvalue problem as det |HLK − EI | = 0 and use a root-searching
routine to find the eigenvalues as the roots of this equation. For high dimension matri-
ces, however, the root-searching scheme is less efficient and hence we should switch
to the matrix computation methods. Since the matrices involved are Hermitian, a num-
ber of algorithms can be used, such as the Jacobian transformation, or the Householder
reduction (to tridiagonal matrix) plus orthogonal-lower-triangular (QL) iteration [1, 2].

For QW structures, we have to solve the 1D coupled ODEs posed as the boundary
value problem. Either the FD method with the center discretization scheme or the transfer
matrix method [3, 4, 5] can be employed. In some device applications (e.g., in EAMs
and PDs), the potential applied to the QW changes with the external bias, which deforms
the QW and unbinds the conduction band electron and valence band hole. As a result, the
conduction band electron and valence band hole may stay at the partially bound state, a
status similar to the leaky mode in a slanted or curved dielectric waveguide. In looking
for the energy bands and wave functions through the FD method for the conduction band
electrons and valence band holes as the eigensolutions to the effective mass equations,
i.e., equations (3.129) for electrons and (3.134) for holes, we have to incorporate the
absorbing boundary condition or the more efficient PML boundary condition in a similar
way to [6, 7] to truncate the computation window. We will skip the details of the single
electron band structure calculation since there is a vast amount of related work in open
literature [8].

7.2 Material gain calculations

7.2.1 The free-carrier gain model

The material susceptibility is generally computed in the wave vector domain by solving
a group of simultaneous ODEs. In the free-carrier model with the many-body effect
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ignored, the material gain and refractive index change are given as the wave vector
domain summations shown in equations (4.65a&b). Since the band structure of the
active region material must be solved anyway, we usually perform the summation (or
integration) with respect to the transition energy (E = �ω⇀

k
) rather than to the wave

vector (
⇀

k) by utilizing the pre-solved band structure, or the dispersion relation between
E and

⇀

k . The reason is that the summation (or integration) over E has a limited lower
bound (i.e., the bandgap energy) while the integrand drops to zero rapidly near the upper
bound.

Actually, for bulk semiconductors, we have∑
⇀
k

= 2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dnx dny dnz = 2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dkx dky dkz

(
dnx

dkx

dny

dky

dnz

dkz

)

= 2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dkx dky dkz

(
Lx

2π

Ly

2π

Lz

2π

)
= 2�

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dkx dky dkz

= 2�

(2π)3

∫ ∞

0

∫ π

0

∫ 2π

0
k2
r dkr sin θk dθk dϕk, (7.1a)

with nx , ny , and nz indicating the number of states in the wave vector domain along the
x, y, and z directions, respectively, Lx , Ly , and Lz the dimensions of the bulk in a real
3D space domain where LxLyLz = �.

With spherical symmetry, equation (7.1a) reduces to∑
⇀
k

= �

π2

∫ ∞

0
k2
r dkr ≡ �

π2

∫ ∞

0
k2 dk. (7.1b)

For QW structures, we have∑
⇀
k

=
∑
nz

2
∫ ∞

−∞

∫ ∞

−∞
dnx dny = 2

∑
nz

∫ ∞

−∞

∫ ∞

−∞
dkx dky

(
dnx

dkx

dny

dky

)

= 2
∑
nz

∫ ∞

−∞

∫ ∞

−∞
dkx dky

(
Lx

2π

Ly

2π

)
= 2�

(2π)2

∑
nz

∫ ∞

−∞

∫ ∞

−∞
dkx dky

= 2�

(2π)2

∑
nz

∫ ∞

0

∫ 2π

0
ktdkt dϕk. (7.2a)

With cylindrical symmetry, equation (7.2a) reduces to∑
⇀
k

= �

π

∑
nz

∫ ∞

0
kt dkt . (7.2b)

In accordance with equation (4.32), for parabolic bands, the dispersion relation for bulk
semiconductors can be written as

E ≡ �ω⇀
k

= Eg + εe⇀
k

+ εh⇀
k

=
(

Eg + �
2k2

2me
+ �

2k2

2mh

)
= Eg + �

2k2

2mr
, (7.3)
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with the wave vector k defined in a 3D domain.
For QW structures, we have

E ≡ �ω⇀
k

= Eg + εe⇀
k

+ εh⇀
k

=
(

Eg + εc
m + �

2k2
t

2me
+ εv

n + �
2k2

t

2mh

)
= Emn

g + �
2k2

t

2mr
,

(7.4)

with εc
m and εv

n indicating the energy of the mth and nth discrete states bound by the QW
on the conduction and valence band side, respectively, kt the wave vector defined in a
2D domain (i.e., in the kxky plane), and

Emn
g ≡ Eg + εc

m + εv
n. (7.5)

Therefore, for bulk semiconductors with spherical symmetry, equation (7.1b) becomes

∑
⇀
k

= �

π2

∫ ∞

0
k2 dk = �

2π2

(
2mr

�2

) 3
2
∫ ∞

Eg

√
(E − Eg) dE = �

∫ ∞

Eg

ρ3D(E) dE,

(7.6)
with the 3D density of states in terms of the transition energy E defined as

ρ3D(E) ≡ 1

2π2

(
2mr

�2

) 3
2 √

(E − Eg). (7.7)

For QW structures with cylindrical symmetry, equation (7.2b) becomes

∑
⇀
k

= �

π

∑
nz

∫ ∞

0
kt dkt = mr�

π�2

∑
m,n

∫ ∞

Emn
g

dE = �ρ2D

∑
m,n

∫ ∞

Emn
g

dE, (7.8)

with the 2D density of states in terms of the transition energy E defined as

ρ2D ≡ mr

π�2Lz

, (7.9)

where Lz is the thickness of the QW. We find from equation (7.9) that the 2D density of
states is a constant without dependence on the transition energy.

For bulk semiconductors, we can also rewrite the quasi-Fermi distributions for the
conduction band electrons and valence band holes given in equation (4.36) as functions
of the transition energy

fc(E) ≡ f
e
⇀
k

= 1

e
εe

⇀
k

−F c

kBT + 1

= 1

e

(
�2k2
2me

+Eg

)
−(F c+Eg)

kBT + 1

= 1

e

mr
me (E−Eg)+Eg−Fc

kBT + 1

= 1

e

mr
me E+ mr

mh
Eg−Fc

kBT + 1

, (7.10a)
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and

fv(E) ≡ f
h
⇀
k

= 1

e
εh

⇀
k

−Fv

kBT + 1

= 1

e

�2k2
2mh

+Fv

kBT + 1

= 1

e

mr
mh

E− mr
mh

Eg+Fv
kBT + 1

, (7.10b)

with Fc ≡ F c + Eg and Fv ≡ −F v introduced as the conduction and valence band
quasi-Fermi levels measured universally from the valence band edge at

⇀

k = 0.
The dipole matrix element defined in equation (4.7) can also be written in terms of the

transition energy E once the single electron band structure is solved. Hence we record
µ⇀

k
as µ(E).

According to equations (4.65a&b), the bulk semiconductor material gain and refractive
index change are computed by

g(ω) = ω

ε0nc

∫ ∞

Eg

dE

{
ρ3D(E)|µ(E)|2[fc(E) + fv(E) − 1] γ �

(�γ )2 + (E − �ω)2

}
,

(7.11a)

�n(ω) = − 1

2ε0n

∫ ∞

Eg

dE

{
ρ3D(E)|µ(E)|2[fc(E) + fv(E) − 1] E − �ω

(�γ )2 + (E − �ω)2

}
.

(7.11b)

Noting that the downward transition is scaled by the product of the conduction band
electron and valence band hole populations, i.e., fc(E)fv(E), while the upward tran-
sition is scaled by the product of the valence band electron and conduction band hole
populations, i.e., [1 − fc(E)][1 − fv(E)], we find that equation (7.11a) clearly shows
that the stimulated emission gain is proportional to the difference between the downward
transition and the upward transition, i.e.,

fc(E)fv(E) − [1 − fc(E)][1 − fv(E)] = fc(E) + fv(E) − 1.

Since the spontaneous emission gain is proportional to the downward transition only,
which is scaled by fc(E)fv(E), and the spontaneous emission gain must have the same
coefficient as the stimulated emission gain according to the Einstein relation, we can
conclude that, for bulk semiconductors, the spontaneous emission gain is given as

gsp(ω) = ω

ε0nc

∫ ∞

Eg

dE

{
ρ3D(E)|µ(E)|2fc(E)fv(E)

γ �

(�γ )2 + (E − �ω)2

}
. (7.12)

According to equation (4.14), the conduction and valence band quasi-Fermi levels are
linked to the conduction band electron and valence band hole densities through

Ne/h = 1

�
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k
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e/h
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k

= 1

π2
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0
dk
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e
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E
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E−F c/v
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(
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kBT

)
, (7.13)
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with the Fermi–Dirac integral given as

Fp(x) ≡ 1

�(p + 1)

∫ ∞

0
du

up

eu−x + 1
. (7.14)

Also, in equation (7.13), the parabolic conduction and valence band edge densities Nc/v

have been defined by equation (4.56).
For QW structures, the quasi-Fermi distributions in equation (4.36) become

f m
c (E) ≡ f

e,m
⇀
k

= 1

e
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k
−F c
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e
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(7.15a)

and

f n
v (E) ≡ f

h,n
⇀
k

= 1

e
εh⇀

k
−Fv

kBT + 1

= 1

e
εv
n+ �2k2

t
2mh

+Fv

kBT + 1

= 1

e
εv
n+ mr

mh
(E−Emn

g )+Fv

kBT + 1

. (7.15b)

Therefore, from equation (4.65a&b) we find that, for QW structures, the material gain
and refractive index change are computed by

g(ω) = ωρ2D

ε0nc

∑
m,n

∫ ∞

Emn
g

dE

{
|µ(E)|2[f m

c (E) + f n
v (E) − 1] γ �

(�γ )2 + (E − �ω)2

}
,

(7.16a)

�n(ω) = − ρ2D

2ε0n

∑
m,n

∫ ∞

Emn
g

dE

{
|µ(E)|2[f m

c (E) + f n
v (E) − 1] E − �ω

�γ 2 + (E − �ω)2

}
.

(7.16b)

Consequently, the QW structure spontaneous emission gain is given as

gsp(ω) = ωρ2D

ε0nc

∑
m,n

∫ ∞

Emn
g

dE

{
|µ(E)|2f m

c (E)f n
v (E)

γ �

(�γ )2 + (E − �ω)2

}
. (7.17)
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According to equation (4.14), the conduction and valence band quasi-Fermi levels are
linked to the conduction band electron and valence band hole densities through

Ne/h = 1

�

∑
⇀
k

f
e/h
⇀
k

= 1

�

∑
⇀
k

1

e
ε
(e/h)

⇀
k

−F c/v

kBT + 1

= 1

π

∑
m,n

∫ ∞

0
dkt

[
kt

e
ε
c/v
m/n

+�2k2
t /(2me/h)−F c/v

kBT + 1

]

= me/h

π�2

∑
m,n

∫ ∞

0
dε

1

e
ε+ε

c/v
m/n

−F c/v

kBT + 1

= 2

(
Nc/v

2

)2/3 ∑
m,n

ln

(
1 + e

F c/v−ε
c/v
m/n

kBT

)
,

(7.18)

with the parabolic conduction and valence band edge densities Nc/v defined in
equation (4.56). Note that, similarly to the 2D carrier densities introduced for the QW,
the dimension of the carrier densities defined in the first equation on the RHS of (7.18)
is 1/cm2.

7.2.2 The screened Coulomb interaction gain model

In the screened Coulomb interaction model, the material gain and refractive index change
are given by equations (4.129a&b), respectively. In computing ω⇀

k
′ and q⇀

k
, we must note

that the screened Coulomb potential Ṽ|⇀k ′−⇀
k | is a function of the difference between two

wave vectors
⇀

k
′ − ⇀

k . As a result, in using equations (7.1a) and (7.2a) to convert the
summations into integrals in the wave vector domain, we have neither spherical sym-
metry in bulk nor cylindrical symmetry in the QW. For this reason, we only replace
the summations in equations (4.116), (4.117), (4.125), and (4.129a&b) with the corre-
sponding integrals as shown in equations (7.1a) and (7.2a) for bulk semiconductors and
QW structures, respectively, without further transforming the integrals from the wave
vector domain into the energy domain. For details on handling these wave vector domain
integrals, one can refer to, e.g., [9, 10].

7.2.3 The many-body gain model

In the semi-analytical many-body gain model, the material gain and refractive index
change are calculated using equations (4.144a&b), respectively. Again, in computing
ω⇀

k
′ , γ⇀

k
, q⇀

k
, and ⇀s ⇀

k
using equations (4.132a&b), (4.138), (4.139), and (4.132c), since

both the screened and bare Coulomb potentials depend on the differences between wave
vectors, there is no symmetry that can be utilized to simplify the integration in the
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wave vector domain. Therefore, after converting the summations into integrals through
equations (7.1a) and (7.2a) for bulk semiconductors and QW structures, respectively, we
have to compute those integrals in the wave vector domain directly. These computations
only involve numerical quadratures, hence we will not discuss the details. One can always
refer to [11, 12] for various related techniques.

In the full numerical approach, a necessary step is to evaluate the parameters that
appeared in the system of ODEs given as equations (4.146a)–(4.156c) or their mod-
ified versions as described in Section 5.1.3. These parameters are all evaluated by
the wave vector domain integrals converted from the corresponding summations by
equations (7.1a) and (7.2a) for bulk semiconductors and QW structures, respectively.
These converted integrals are all given in Appendix B.

Since these parameters have to be evaluated for every
⇀

k value and updated at every
time step along with the integration of the ODEs, efficient computation of these param-
eters through the wave vector domain integrals is crucial. Actually, in computing the
parameters that account for the second order Coulomb interactions listed in Table 4.3,
we can always isolate the integral in the neighborhood of the singular point from the rest.
For the integration in the neighborhood of the singular point, we can convert it back into
a summation of only a few terms, hence the contribution of the singular point is obtained
virtually analytically. For the integration in areas where the integrand has no singular
point, we can always implement the Monte-Carlo integration algorithm [8] since the
integrand in the left domain is not strongly peaked locally. In applying the Monte-Carlo
method, a uniform sampling scheme can be applied directly to the whole integration
domain with the isolated singular point neighborhood included as well. The integrand
value will then be set to zero if the sample indeed falls inside the neighborhood, to avoid
double counting. This strategy simplifies the implementation without much cost in this
particular case. We do not lose accuracy by doing this since the isolated singular point
neighborhood takes a very small fraction of the entire integration domain, which makes
the probability that the sampling point will fall into this neighborhood negligible, hence
the sampling is still efficient.

A step-by-step procedure for the full numerical implementation of this model for QW
structures is shown below.

(1) Initialization.

Input the external optical field: E (from the optical solver).
Input the electron and hole densities: Ne and Nh (from the carrier transport solver).
Input the conduction band electron and valence band hole energies: ε(e/h)⇀k

(from the
band structure solver).

Input the conduction band electron and valence band hole wave functions:
〈⇀r |φq(c/v)

n (kx, ky, z)〉 (from the band structure solver).
Input the dipole matrix element: µ⇀

k
(from the band structure solver).

Under the parabolic band assumption, according to equation (7.4), we have

ε(e/h)⇀k
= ε

c/v
m/n + �

2k2
t /(2me/h).
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At the steady state, the carrier densities are linked to their quasi-Fermi levels through
equation (7.18), or

Ne/h(t
′ → T ′) = 2

(
Nc/v

2

)2/3 ∑
m,n

ln
(

1 + e
F

c/v
T ′ −ε

c/v
m/n

kBT

)
. (7.19)

In order to be consistent with the macroscopic carrier transport model, the microscopic
processes are described in a short time scale t ′ ⊂ [0, T ′] as introduced in Section 5.1.4.

If there is only one pair of bound electron and hole states inside the QW, we can
readily obtain the static quasi-Fermi levels through

F
c/v
T ′ = ε

c/v
1/1 + kBT ln

[
e

2Ne/h
(Nc/v/2)2/3 − 1

]
. (7.20)

Otherwise, we have to solve the transcendental equation (7.19) to find the static quasi-
Fermi levels corresponding to the given steady state electron and hole densities. These
static quasi-Fermi levels will be used later for setting up the integration bounds in the
wave vector domain.

The initial carrier (electron and hole) distributions will be assumed to be at the quasi-
equilibrium states with their initial quasi-Fermi levels aligned with those in the adjacent
layers (bulk semiconductors). For the given carrier densities N(e/h)0 in the adjacent N
and P type layers, we can find their quasi-Fermi levels by reversing equation (7.13)

F
c/v
0 = kBT F−1

1/2

[
N(e/h)0

Nc/v

]
, (7.21)

with F−1
1/2[. . .] indicating the inverse Fermi–Dirac integral in the order of 1/2. Since F

c/v
0

are the quasi-Fermi levels measured from the adjacent layer conduction and valence band
edges, respectively, when measured by the QW conduction and valence band edges, the
quasi-Fermi levels should be given as

F c/v = F
c/v
0 + �Ec/v = kBT F−1

1/2

[
N(e/h)0

Nc/v

]
+ �Ec/v, (7.22)

where �Ec/v indicates the conduction and valence band edge offset between the N and
P side adjacent layers and the QW, respectively, as illustrated by Fig. 7.1.

Therefore, we find the initial conditions for the conduction band electron and valence
band hole number expectations

f
e/h
⇀
k

(0) = 1

e

�2k2
t /(2me/h)+ε

c/v
m/n

−�Ec/v

kBT
−F−1

1/2

(
N(e/h)0
Nc/v

)
+ 1

. (7.23)

We also set the initial condition for the polariton number expectation as

p⇀
k
(0) = 0. (7.24)
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Initial electron quasi-Fermi level

Conduction band edge

Conduction band offset
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Valence band offset
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Initial hole quasi-Fermi level

F0
c

F0
v

Fc

Fv

∆E c

∆Ev

Fig. 7.1. Initial electron and hole quasi-Fermi levels with respect to different references.

(2) Wave vector domain discretization.

For QW structures, the wave vector domain is in the 2D kxky plane. Under the polar
coordinate system, we set

ϕk from 0 to 2π, dϕk = 2π/Nϕ. (7.25)

kt from 0 to π/d, dkt = max[0.2π/d, max(
√ (

2meF
c
T ′
)
/�,

√ (
2mhF

v
T ′
)
/�)]/Nk.

(7.26)

In equation (7.26), the static quasi-Fermi levels F
c/v
T ′ are computed in the initialization

step.

(3) Integration.

As an efficient and accurate numerical quadrature approach, the Gaussian–Legendre
method [1] can be implemented to evaluate the integrals reflecting the zeroth and first
order Coulomb interaction contributions listed in Table 4.3. Similarly to the second order
Coulomb interaction terms, we can use the singular point isolation plus the Monte-Carlo
integration method [8] as previously introduced.

(4) Solving system of ODEs.

For a system of ODEs given in the form

d

dt
yk(t

′) = Fk[yk(t
′), t ′], (7.27)

with k = 1, 2, 3, . . . , K , and known initial values yk(t
′
j ), there are several different

schemes to obtain yk(t
′
j+1). By continuously marching in the time domain following

such a scheme, we will be able to find all the unknowns yk(t
′) with k = 1, 2, 3, . . . , K

in the time domain.
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The major difference, however, between these schemes lies in the different ways
of compromising between the number of evaluations on the derivative functions (the
right hand side of the ODEs) at each marching step and the marching step size. The
latter method (e.g., Bulirsch–Stoer’s implementation of the Richardson extrapolation
[1]) uses fewer evaluations of the derivative functions but the marching step size cannot
be large. On the contrary, the former method (e.g., Cash–Karp’s implementation of the
fifth order Runge–Kutta method [1]) takes the maximum possible marching step size by
an adaptive approach which guarantees a preset accuracy. Its drawback, however, is in
the repeated evaluation of the derivative functions.

In dealing with equations (4.156a–c) or their modified versions as described in
Section 5.1.3, those ODEs take simple derivative function forms with their parameters
being very difficult to evaluate, since time-consuming integrations in the wave vector
domain are involved in computing these parameters. Because of the dependence of the
parameters on the unknown variables themselves, i.e., the implicit non-linearity of the
ODEs, we have to update these parameters at every time step. Moreover, the accuracy of
the unknown functions computed at each converged time step is crucial, as otherwise the
parameters evaluated based on these functions would be spoiled as well, which amplifies
the error at each following time step and rapidly makes the result diverge. On the con-
trary, evaluation of the derivative functions on the RHS of ODEs, equation (7.27), can be
executed efficiently. For this reason, the adaptive Runge–Kutta algorithm is the preferred
approach for saving computation time. With those algorithms based on the Richardson
extrapolation, however, it is most likely that we will have to update the parameters more
often in order to secure accuracy, which will result in extremely low efficiency, since
the time required for evaluating those wave vector domain integrals is overwhelming,
despite all the measures we can take as described previously.

At time step t ′j with the converged result [yk(t
′
j ), t

′
j ], the fifth order Runge–Kutta

algorithm is implemented giving

yk(t
′
j+1) = yk(t

′
j ) +

6∑
i=1

cidki + O(h6), (7.28a)

with the embedded fourth order formula in the form

y∗
k (t ′j+1) = yk(t

′
j ) +

6∑
i=1

c∗
i dki + O(h5). (7.28b)

Hence the estimated error is

�k ≡ yk(t
′
j+1) − y∗

k (t ′j+1) =
6∑

i=1

(ci − c∗
i )dki . (7.29)

In equations (7.28a&b) and (7.29), as given in Appendix C, parameters dki , i =
1, 2, 3, 4, 5, 6, are obtained through evaluations of the derivative functions on the RHS
of ODEs, equation (7.27). Constants ci and c∗

i are also listed in Appendix C.
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Since such an error is in the order of h5, we obtain

h0 = h min
k

|�0k

�k

|0.2. (7.30)

For an initial forward time marching step h, equation (7.28a) provides us the solution of
ODEs at t ′j+1 = t ′j + h, while equation (7.30) supplies us the step h0 at which the error
is bound by a given tolerance �0k .

Finally, a flow chart is given in Fig. 7.2, which summarizes numerical computation
of the material susceptibility (i.e., the gain and refractive index change) using the many-
body gain model.

Set optical frequency

Initialization

Wave vector domain
discretization

Time domain marching

At converged time
step?

Yes

Yes

No

ODE derivative evaluation

ODE solution at next time  
step through adaptive  
Runge–Kutta algorithm

Wave vector domain
integration

Solutions still vary?

No

Susceptibility calculation

Interpolation for smooth
susceptibility spectrum

Coarse scan optical frequency

Update time step

Fig. 7.2. Procedure for susceptibility calculation using the many-body gain model.
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7.3 Parameterization of material properties

In modeling of the device performance, the material optical properties, including the
stimulated emission gain, spontaneous emission gain, and refractive index change, will
be most frequently invoked. Therefore, these calculations have to be done analytically.
Otherwise, we cannot afford the time spent on the computation. For example, if we take
30 points along the horizontal direction, 100 points along the vertical direction and 20
sections along the longitudinal direction, we get a total of 60 000 points. Suppose we need
ten iterations on average to make all the equations converge at a single operating point; in
total we would need to calculate the material gains and refractive index change 600 000
times.Assuming that the material model in its original form is computed numerically, and
assuming that the numerical model takes only 1 minute to complete all the executions,
we still need at least 600 000 minutes or 10 000 hours for calculation of the device
performance at just a single operating point. This is obviously not viable.

The reason that we suffer an extremely low efficiency is because there is a huge
redundancy if we use the above strategy. Actually, we do not expect that the material
properties are all different at those points. There must be many different points with the
same material properties. However, in the above strategy, the rigorous material model
is called for anyway for every point, regardless of whether this call exactly repeats a
previous calculation or not. As a result, most of the time is wasted on repeated calls.

To solve this problem, we should follow a different strategy.

(1) Identify all the possible variables that can cause material property change, e.g., the
carrier densities, the temperature, and the operating wavelength.

(2) Estimate the maximum varying range of each variable.
(3) Identify a mesh grid in the variable space, confined by the estimated range in each

variable dimension.
(4) Compute the material properties on this grid by invoking the numerical model; it is

guaranteed that there is no redundancy in this case, as the material properties must
be different at different grid points once the grid is constructed stop by step as per
(1)–(3).

(5) Extract analytical formulas by searching for the best fit between such formulas and
the material properties found at the mesh grid.

(6) Use such extracted analytical formulas for device performance computation.

The above steps (1)–(5) need to be executed just once for a given material and active
region structure. Compared with the old strategy, with the help of the sophisticated
interpolation routine, the mesh grid in step (3) comprises many fewer points at which the
rigorous material model needs to be invoked. For example, ten different carrier density
levels, five different temperature levels, and five different operating wavelengths are
normally enough for the extraction of sufficiently accurate analytical formulas (with
error <5%) covering a feasible device operating range (e.g., carrier density from 0.5 ×
1018 cm3 to 5×1018 cm3, temperature from 273–353 K, and a wavelength spectral range
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around 50 nm). The total number of times the rigorous material model is invoked is only
250, which makes this approach far more efficient.

We normally assume that the analytical formulas for the stimulated emission and
spontaneous emission gains take a polynomial form as functions of the carrier densities,
with their orders and coefficients all extracted through fitting to the gains calculated
by the numerical model (i.e., the rigorous material model) at a set of equally spaced
carrier densities. By assuming an exponential dependence of every coefficient on the
temperature, we can have all the characteristic temperature parameters extracted through
fitting to the gains calculated by the numerical model under a set of equally spaced
temperatures again. Finally, we use rational forms to express the frequency dependence
of the gains. Again, the orders and coefficients can be extracted by fitting the analytical
form to the gain profiles obtained numerically.

Following a similar approach, the analytical formula for the material refractive index
change can be obtained.

The extracted analytical formulas for the material gains and refractive index change
generally take a universal form as shown [13]

[ I∑
i=0

aie
T −Tref

T a
i (Ne)

i +
I∑

i=0

bie
T −Tref

T b
i (Nh)

i

] L∑
l=0

cle

T −Tref
T c
l ωl

M∑
m=0

dme
T −Tref

T d
m ωm

. (7.31)

The orders (I, L, M) and coefficients (ai, bi, cl, dm, T a
i , T b

i , T c
l , T d

m) are all extracted
through fittings as mentioned above. Note that Tref is a reference temperature and is
normally chosen to be room temperature (e.g., 300 K).

Finally, a phenomenological non-linear gain saturation factor in the form

1

1 + εsat|φ(x, y)|2[|e f (z, t)|2 + |e b(z, t)|2] , (7.32)

is multiplied into the analytical gain formula to count in the strong field-induced spectral
hole burning (SHB) effect, which has been neglected in the gain models introduced
in Chapter 4. In equation (7.32), εsat is introduced as the non-linear gain saturation
coefficient.
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8 Solution techniques for carrier
transport and thermal diffusion
equations

8.1 The static carrier transport equation

In describing the solution technique for the classical carrier transport equation in a
steady state, we follow a step-by-step FD procedure that is commonly used in many
numerical approaches for solving PDEs. Without losing generality, we will use the 2D
equations (5.29a–c) and (5.33a&b) as our example, which is the model most commonly
used for solving the cross-sectional carrier transport problem in semiconductor lasers
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. At the steady state, these equations can be written as

∇t · ε̃(⇀r )∇t�(⇀r ) = −e[NC
h (⇀r ) − NC

e (⇀r )

+ NH
h (⇀r ) − NH

e (⇀r ) + N+
D (⇀r ) − N−

A (⇀r )], (8.1a)

0 = −NH
e (⇀r )

τ e
cl

+ NC
e (⇀r )

τ e
ht

− R(⇀r ) − ∇t · µe(
⇀r )NH

e (⇀r )∇t [�(⇀r ) + �C(⇀r )]

+ ∇t · De(
⇀r )∇tN

H
e (⇀r ) + ∇t · DT

e (⇀r )NH
e (⇀r )∇t T (⇀r ), (8.1b)
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τ h
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τ h
ht

− R(⇀r ) + ∇t · µh(
⇀r )NH
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+ ∇t · Dh(
⇀r )∇tN

H
h (⇀r ) + ∇t · DT

h (⇀r )NH
h (⇀r )∇t T (⇀r ), (8.1c)

0 = NH
e (⇀r )

τ e
cl

− NC
e (⇀r )

τ e
ht

− Rst(
⇀r ) − Re

nr+sp(
⇀r ), (8.1d)

0 = NH
h (⇀r )

τ h
cl

− NC
h (⇀r )

τ h
ht

− Rst(
⇀r ) − Rh

nr+sp(
⇀r ). (8.1e)

Adding equations (8.1b) to (8.1d), and (8.1c) to (8.1e), respectively, ignoring the hot
carrier non-radiative plus spontaneous emission recombination contribution R in (8.1b)
and (8.1c) and supplying these contributions for the cold carriers in (8.1d) and (8.1e)
with equation (5.40), ignoring the cold carrier contributions to the electrostatic potential,
since they only exist in the active region and cancel out each other under the quasi-charge
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Table 8.1. Variable scaling chart

Variable Scaling factor Value

x, y x0 max |x − y|, x, y ∈ �

�, �C, �V �0 kT /e

NH
e , NH

h , N+
D , N−

A C0 max |N+
D (x, y) − N−

A (x, y)|, x, y ∈ �

De, Dh D0 max[De(x, y), Dh(x, y)], x, y ∈ �

µe, µh µ0 D0/�0
Rst, Rnr+sp R0 D0C0/x2

0
t T0 x2

0/D0

neutrality condition NC
e ≈ NC

h , and ignoring the Seebeck effect yields

∇t · ε̃(⇀r )∇t�(⇀r ) = −e[NH
h (⇀r ) − NH

e (⇀r ) + N+
D (⇀r ) − N−

A (⇀r )], (8.2a)

∇t · De(
⇀r )∇tN

H
e (⇀r ) − ∇t · µe(

⇀r )NH
e (⇀r )∇t [�(⇀r ) + �C(⇀r )] = Rst(

⇀r ) + Rnr+sp(
⇀r ),

(8.2b)

∇t · Dh(
⇀r )∇tN

H
h (⇀r ) + ∇t · µh(

⇀r )NH
h (⇀r )∇t [�(⇀r ) − �V(⇀r )] = Rst(

⇀r ) + Rnr+sp(
⇀r ),

(8.2c)

Further noting that these equations will be solved in a series of cross-sectional sheets
(i.e., in 2D xy planes) perpendicular to the wave propagation direction z, we can take
the space argument z as a parameter hence ⇀r only indicates x⇀x + y⇀y in dealing with
equation (8.2a–c).

8.1.1 Scaling

As the unknown variables, the electrostatic potential �, the electron and hole densities
NH

e and NH
h in equations (8.2a–c) are of different orders of magnitude when measured

by their conventional units and show different behaviors in regions with different space
charge densities and different recombination rates.The first step is to scale these equations
appropriately to avoid any overflow or underflow problems or loss of significant digits.
A typical scaling method is given in Table 8.1 [12].

Equations (8.2a–c) will be transformed into the following form after such scaling

∇t · [λ2(x, y)∇t φ(x, y)] − [n(x, y) − p(x, y) − C(x, y)] = 0, (8.3a)

∇t · dn(x, y)∇t n(x, y) − ∇t · µn(x, y)n(x, y)∇t [φ(x, y) + φC(x, y)] − R(x, y) = 0,

(8.3b)

∇t · dp(x, y)∇tp(x, y) + ∇t · µp(x, y)p(x, y)∇t [φ(x, y) − φV (x, y)] − R(x, y) = 0,

(8.3c)
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with the scaled variables and parameters defined as

x ≡ x/x0

y ≡ y/x0

t ≡ t/T0

φ(x, y) ≡ �(x, y)/�0

n(x, y) ≡ NH
e (x, y)/C0

p(x, y) ≡ HH
h (x, y)/C0

λ2(x, y) ≡ �0̃ε(x, y)/(ex2
0C0)

C(x, y) ≡ [N+
D (x, y) − N−

A (x, y)]/C0

dn,p(x, y) ≡ De,h(x, y)/D0

µn,p(x, y) ≡ µe,h(x, y)/µ0

φC,V(x, y) ≡ �C,V(x, y)/�0

R(x, y) ≡ [Rst(x, y) + Rnr+sp(x, y)]/R0. (8.4)

8.1.2 Boundary conditions

Equations (8.3a–c) are posed as a boundary value problem in a 2D domain representing
the device geometry. In principle, the boundaries can be split into two parts, as set out
below. One represents the real physical boundaries, such as contacts and interfaces to
insulating material and between semiconductors with different material compositions or
doping concentrations, whereas the other represents the artificial boundaries that have
to be introduced to truncate the computation window.

(1) Artificial boundary.

At the artificial boundary, we assume either natural boundary conditions that guarantee
that the domain under consideration is self-contained

∂φ

∂⇀n
= 0,

∂n

∂⇀n
= 0, and

∂p

∂⇀n
= 0, (8.5a)

with ⇀n indicating the boundary surface normal direction, or specify the pre-estimated
Dirichlet values for the electrostatic potential and carrier densities

φ = φ0, n = n0, and p = p0. (8.5b)

The applicability of these boundary conditions has to be justified by physical reasoning.
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(2) Physical boundary 1 – Ohmic contact.

Note that

φ(t) − φb = φbias(t),

np − n2
i = 0 and n − p − C = 0, (8.6a)

or

n = 0.5[√
(
C2 + 4n2

i

)
+ C], (8.6b)

p = 0.5[√
(
C2 + 4n2

i

)
− C], (8.6c)

where

n2
i = NcNve−Eg/kT /C2

o , (8.7)

with φb, φbias introduced as the built-in potential and the external bias voltage, and
Nc,v the parabolic conduction and valence band edge densities given in equation (4.56),
respectively.

(3) Physical boundary 2 – Schottky contact.

Note that

φ(t) − φb + φs = φbias(t), (8.8a)

with φs defined as the Schottky barrier height. Under the reverse bias

⇀

Jn · ⇀n = −evn[n − 0.5(
√ (

C2 + 4n2
i

)
+ C)], (8.8b)

⇀

Jp · ⇀n = evp[p − 0.5(
√ (

C2 + 4n2
i

)
− C)], (8.8c)

where
⇀

Jn,p are the electron and hole current densities, vn,p the electron and hole
thermionic recombination velocities at the contact, respectively.

(4) Physical boundary 3 – the insulator contact.

Note that

εsem
∂φ

∂⇀n
− εins

φbias(t) − φ

dins
= Qint, (8.9a)

where εsem and εins represent the dielectric constant of the semiconductor and the insu-
lator, respectively, dins the thickness of the insulator, φbias the electrostatic potential
applied to the insulator, Qint the charges at the surface. Quite often the existence of the
surface charge can be neglected and the insulator is very thick; under these assumptions,
equation (8.9a) reduces to

∂φ

∂⇀n
= 0. (8.9b)
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We still have

⇀

Jn · ⇀n = −eRsurf , (8.9c)
⇀

Jp · ⇀n = eRsurf , (8.9d)

with Rsurf defined as the surface recombination rate. It is also quite often the case that
surface recombination can be ignored. This will lead to a zero current flow condition in
the boundary surface normal direction.

(5) Physical internal interface – the heterojunction.

In compositionally non-uniform semiconductors, forces in addition to the electrostatic
field apply to electrons and holes at the heterojunction boundaries, and the non-uniform
densities-of-states modify electron and hole diffusion. Both effects, known as the
rigid band and density-of-states effects, have been included by the additional terms
φC,V in equations (8.3b&c) [13]. These additional terms φC,V have been given in
equations (5.14a&b).

8.1.3 The initial solution

The scaled equations (8.3a–c) constitute a singularly perturbed boundary value problem
with λ as the perturbation parameter. We can therefore solve equation (8.3a) for λ = 0
(charge neutral solution) first and use this solution as our initial guess to start the iterations
in the numerical approach.

8.1.4 The finite difference discretization

We will use a rectangular-shaped computation window with Nx mesh lines parallel to
the x axis, Ny mesh lines parallel to y axis, and with the first and the last line coinciding
with the computation window boundaries. Therefore, we have NxNy mesh grid points
on which an approximate solution for the PDEs (8.3a–c) needs to be found.

To deal with such boundary value problems, we will use the most popular center
discretization scheme, with non-uniform mesh allowed. In the 2D version of this scheme,
for any inner point, we replace the differential equations by difference equations where
only the nearest four neighboring points are invoked. Hence this scheme is also known
as the classical five-point discretization.

By introducing [12]

hi = xi+1 − xi, i = 1, . . . , Nx − 1, (8.10)

kj = yj+1 − yj , j = 1, . . . , Ny − 1, (8.11)
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and

ui, j = u(xi, yj ), i = 1, . . . , Nx, j = 1, . . . , Ny, (8.12a)

ui+1/2, j = u[(xi + xi+1)/2, yj ], i = 1, . . . , Nx − 1, j = 1, . . . , Ny, (8.12b)

ui, j+1/2 = u[xi, (yj + yj+1)/2], i = 1, . . . , Nx, j = 1, . . . , Ny − 1, (8.12c)

with u representing any of the unknown variables φ, n, or p in equations (8.3a–c), we
replace all the first order partial derivatives through the Taylor expansion

∂u

∂x
|i, j = ui+1/2, j − ui−1/2, j

(hi + hi−1)/2
+ hi−1 − hi

4

∂2u

∂x2
|i, j + O(h2), (8.13a)

∂u

∂y
|i, j = ui, j+1/2 − ui, j−1/2

(kj + kj−1)/2
+ kj−1 − kj

4

∂2u

∂y2
|i, j + O(k2). (8.13b)

In this scheme, the local truncation error for a uniform or quasi-uniform mesh, e.g.,
a mesh defined as hi+1, kj+1 = hi, kj [1 + O(hi, kj )], is of the second order in the
mesh spacing. In dealing with the carrier transport equations, however, a strongly non-
uniform mesh is often mandatory since the solution may exhibit a smooth change in
some regions of the device, whereas in others it may vary rapidly. We can therefore only
expect a truncation error of the first order in terms of the mesh spacing.

According to equations (8.13a&b), Poisson’s equation (8.3a) becomes

λ2
i+1/2, j

∂φ
∂x

|i+1/2, j − λ2
i−1/2, j

∂φ
∂x

|i−1/2, j

(hi + hi−1)/2
+ O(h)

+ λ2
i, j+1/2

∂φ
∂y

|i, j+1/2 − λ2
i, j−1/2

∂φ
∂y

|i, j−1/2

(kj + kj−1)/2
+ O(k) − ni, j + pi, j + Ci, j = 0.

(8.14)

The mid-interval potential derivative values can be further estimated through

∂φ

∂x
|i+1/2, j = φi+1, j − φi, j

hi

+ O(h2),
∂φ

∂x
|i−1/2, j = φi, j − φi−1, j

hi−1
+ O(h2),

∂φ

∂y
|i, j+1/2 = φi, j+1 − φi, j

kj

+ O(k2),
∂φ

∂y
|i, j−1/2 = φi, j − φi, j−1

kj−1
+ O(k2).

(8.15)

Substituting equation (8.15) into (8.14) we obtain

λ2
i+1/2, j

φi+1, j −φi, j

hi
− λ2

i−1/2, j

φi, j −φi−1, j

hi−1

(hi + hi−1)/2

+
λ2

i, j+1/2
φi, j+1−φi, j

kj
− λ2

i, j−1/2
φi, j −φi, j−1

kj−1

(kj + kj−1)/2
− ni, j + pi, j + Ci, j = 0. (8.16)

This is the final discretized form of Poisson’s equation (8.3a) with the local truncation
error linearly proportional to the mesh spacing.
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Taking J0 = eD0C0/x0 as the normalization constant, we reintroduce the normalized
electron and hole current densities as the intermediate variables according to the drift
and diffusion model

Jnx = −
[
dn

∂n

∂x
− µnn

∂(φ + φC)

∂x

]
, Jny = −

[
dn

∂n

∂y
− µnn

∂(φ + φC)

∂y

]
,

Jpx = dp

∂p

∂x
+ µpp

∂(φ − φV)

∂x
, Jpy = dp

∂p

∂y
+ µpp

∂(φ − φV)

∂y
. (8.17)

According to equations (8.13a&b) and (8.17), carrier continuity equations (8.3b&c)
become

(−Jnx)|i+1/2, j − (−Jnx)|i−1/2, j

(hi + hi−1)/2
+ O(h)

+ (−Jny)|i, j+1/2 − (−Jny)|i, j−1/2

(kj + kj−1)/2
+ O(k) − R|i, j = 0 (8.18a)

Jpx |i+1/2, j − Jpx |i−1/2, j

(hi + hi−1)/2
+ O(h)

+ Jpy |i, j+1/2 − Jpy |i, j−1/2

(kj + kj−1)/2
+ O(k) − R|i, j = 0. (8.18b)

The discretization of the carrier continuity equations (8.18a&b) is more crucial because
of their embedded non-linearities when solved in a self-consistent manner with Poisson’s
equation (8.16) through the drift and diffusion model, equation (8.17).

In conventional FD schemes, differential equations obtained at an intermediate step
are discretized again through an FD scheme, which, however, is only suitable in dealing
with linear PDEs as the discretization order in terms of the mesh spacing is preserved. In
non-linear equations, however, such a repeating FD discretization strategy could bring
in huge errors unless higher order FD discretization is introduced, depending on the non-
linear function dependence, since the discretization order in terms of the mesh spacing
could be reduced through the non-linear operation. Using the electron current density
in the x direction as an example, according to equations (8.17), (8.13a) and (8.12b), we
find

(−Jnx)|i+1/2, j = dn|i+1/2, j

[
ni+1, j − ni, j

hi

+ O(h2)

]
− µn|i+1/2, j

[
ni+1, j + ni, j

2
+ O(h2)

][
φi+1, j + φCi+1, j − φi, j − φCi, j

hi

+ O(h2)

]
= dn|i+1/2, j

[
ni+1, j − ni, j

hi

+ O(h2)

]
− µn|i+1/2, j

[
ni+1, j + ni, j

2

φi+1, j + φCi+1, j − φi, j − φCi, j

hi

+ O(h)

]
,

(8.19a)
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(−Jnx)|i−1/2, j = dn|i−1/2, j [ni, j − ni−1, j

hi−1
+ O(h2)]

− µn|i−1/2, j [ni, j + ni−1, j

2
+ O(h2)][φi, j + φCi, j − φi−1, j − φCi−1, j

hi−1
+ O(h2)]

= dn|i−1/2, j [ni, j − ni−1, j

hi−1
+ O(h2)]

− µn|i−1/2, j [ni, j + ni−1, j

2

φi, j + φCi, j − φi−1, j − φCi−1, j

hi−1
+ O(h)].

(8.19b)

Substituting equations (8.19a&b) into the first term on the RHS of (8.18a) yields

(−Jnx)|i+1/2, j − (−Jnx)|i−1/2, j

(hi + hi−1)/2
= dn|i+1/2, j

[
ni+1, j − ni, j

hi(hi + hi−1)/2
+ O(h)

]
− µn|i+1/2, j

[
ni+1, j + ni, j

2

φi+1, j + φCi+1, j − φi, j − φCi, j

hi(hi + hi−1)/2
+ O(1)

]
− dn|i−1/2, j

[
ni, j − ni−1, j

hi−1(hi + hi−1)/2
+ O(h)

]
+ µn|i−1/2, j

[
ni, j + ni−1, j

2

φi, j + φCi, j − φi−1, j − φCi−1, j

hi−1(hi + hi−1)/2
+ O(1)

]
.

(8.20)

It is obvious that, as h → 0, the discretization error on the RHS of equation (8.20)
generally does not approach zero. Therefore, we conclude that equation (8.18a) does not
converge under the conventional FD scheme.

Although higher order FD schemes can solve this problem, it needs more mesh grid
points to be invoked, which will greatly complicate the implementation and make the
matrix involved no longer sparse. And the latter in turn reduces the computational
efficiency.

Therefore, in order to make equations (8.18a&b) converge, we have to find a solution to
the normalized current densities at the intermediate step in the order of O(h2) and O(k2).
Actually, by following the well-known Scharfetter and Gummel approach [14], we can
find the normalized current densities by integrating equation (8.17) along each mesh
interval. Such current densities obtained have a quadratic dependence of the local trun-
cation error on the mesh spacing, which ensures the convergence of equations (8.18a&b).
This algorithm is implemented through the following steps.

As the first step, we expand the current densities

Jnx(x, yj ) = Jnx |i+1/2, j + [x − (xi + hi/2)]∂Jnx

∂x
|i+1/2, j + O(h2)

Jny(xi, y) = Jny |i, j+1/2 + [y − (yj + kj /2)]∂Jny

∂y
|i, j+1/2 + O(k2), (8.21a)
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Jpx(x, yj ) = Jpx |i+1/2, j + [x − (xi + hi/2)]∂Jpx

∂x
|i+1/2, j + O(h2)

Jpy(xi, y) = Jpy |i, j+1/2 + [y − (yj + kj /2)]∂Jpy

∂y
|i, j+1/2 + O(k2), (8.21b)

within themeshsquarex ∈ [xi, xi+1],y ∈ [yj , yj+1]centralizedat [xi +hi/2, yj +kj /2].
In the next step, by plugging equation (8.17) into (8.21a&b), we obtain a set of first

order differential equations for the carrier densities defined inside the mesh square x ∈
[xi, xi+1], y ∈ [yj , yj+1], if we ignore the higher order terms in mesh spacing, i.e.,
O(h2) and O(k2). Taking the electron current density in the x direction as an example
again, within the mesh interval x ∈ [xi, xi+1], y = yj , we have

µnn
∂(φ + φC)

∂x
− dn

∂n

∂x
= Jnx |i+1/2, j + [x − (xi + hi/2)]∂Jnx

∂x
|i+1/2, j , (8.22)

subject to the boundary conditions

n(xi, yj ) = ni, j , and n(xi+1, yj ) = ni+1, j . (8.23)

Actually, by assuming that Jnx |i+1/2, j , ∂Jnx/∂x|i+1/2, j , and the partial derivative of
the electrostatic potential in equation (8.22) are all constants within [xi, xi+1], which is
the assumption that we have already invoked in equation (8.21a) for obtaining (8.22)
itself and in equation (8.15) for obtaining the discretized Poisson’s equation (8.16),
respectively, we can solve equation (8.22) as a first order linear ODE to determine the
variation of the electron density along the path x ∈ [xi, xi+1], y = yj . In doing this, a
scaled Einstein relation is assumed for the scaled carrier diffusivities and mobilities and
both quantities are assumed to be constant in the mesh interval [xi, xi+1]. The general
solution to equation (8.22) is

n(x, yj ) = Ceφ(x,yj )+φC(x,yj ) + hi

Jnx |i+1/2, j

µn|i+1/2, j

1 − eφ(x,yj )+φC(x,yj )

φi+1, j + φCi+1, j − φi, j − φCi, j

+ O(h3),

(8.24)

with x ∈ [xi, xi+1]. By matching the solution in equation (8.24) to the boundary
conditions (8.23), we obtain

ni, j = Ceφi, j +φCi, j + hi

Jnx |i+1/2, j

µn|i+1/2, j

1 − eφi, j +φCi, j

φi+1, j + φCi+1, j − φi, j − φCi, j

, (8.25a)

ni+1, j = Ceφi+1, j +φCi+1, j + hi

Jnx |i+1/2, j

µn|i+1/2, j

1 − eφi+1, j +φCi+1, j

φi+1, j + φCi+1, j − φi, j − φCi, j

.

(8.25b)

By eliminating the integration constant C from equations (8.25a&b), we obtain

Jnx |i+1/2, j = µn|i+1/2, j

hi

[B(φi, j + φCi, j − φi+1, j − φCi+1, j )ni, j

− B(φi+1, j + φCi+1, j − φi, j − φCi, j )ni+1, j ], (8.26)



Solution techniques for carrier transport and thermal diffusion equations 223

with the Bernoulli function defined as

B(x) ≡ x

ex − 1
. (8.27)

From equations (8.25a) and (8.26), we find

C = ni, j e−(φi, j +φCi, j ) − hi

Jnx |i+1/2, j

µn|i+1/2, j

e−(φi, j +φCi, j ) − 1

φi+1, j + φCi+1, j − φi, j − φCi, j

. (8.28)

Substituting equation (8.28) into (8.24) yields

n(x, yj ) = eφ(x,yj )+φC(x,yj )−(φi, j +φCi, j )ni, j − hi

Jnx |i+1/2, j

µn|i+1/2, j

eφ(x,yj )+φC(x,yj )−(φi, j +φCi, j ) − 1

φi+1, j + φCi+1, j − φi, j − φCi, j

= eφ(x,yj )+φC(x,yj )−(φi+1, j +φCi+1, j ) − 1

eφi, j +φCi, j −φi+1, j −φCi+1, j − 1
ni, j + eφ(x,yj )+φC(x,yj )−(φi, j +φCi, j ) − 1

eφi+1, j +φCi+1, j −φi, j −φCi, j − 1
ni+1, j

= 1 − e
(φi+1, j +φCi+1, j −φi, j −φCi, j )

x−xi−hi
hi

1 − eφi, j +φCi, j −φi+1, j −φCi+1, j
ni, j + 1 − e

(φi+1, j +φCi+1, j −φi, j −φCi, j )
x−xi
hi

1 − eφi+1, j +φCi+1, j −φi, j −φCi, j
ni+1, j

= [1 − gi, j (x, φ)]ni, j + gi, j (x, φ)ni+1, j , (8.29)

where equation (8.26) and following expansions

φ(x, yj ) + φC(x, yj ) = φi, j + φCi, j + ∂(φ + φC)

∂x
|i, j (x − xi) + · · ·

= φi, j + φCi, j + φi+1, j + φCi+1, j − (φi, j + φCi, j )

hi

(x − xi) + O(h2)

φ(x, yj ) + φC(x, yj ) = φi+1, j + φCi+1, j + ∂(φ + φC)

∂x
|i+1, j (x − xi+1) + · · ·

= φi+1, j + φCi+1, j + φi+1, j + φCi+1, j − (φi, j + φCi, j )

hi

× (x − xi − hi) + O(h2)

have been used with the growth function in equation (8.29) introduced as

gi, j (x, φ) ≡ 1 − e
(φi+1, j +φCi+1, j −φi, j −φCi, j )

x−xi
hi

1 − e(φi+1, j +φCi+1, j −φi, j −φCi, j )
. (8.30)

According to equation (8.30), the growth function reduces to a linear function

gi, j (x, φ) = x − xi

hi

, (8.31)

once φi+1, j + φCi+1, j = φi, j + φCi, j . This indicates a linear interpolation in
equation (8.29) or a consistent FD scheme, which is expected since the carrier density
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equations (8.3b&c) all degenerate to linear equations under zero electrostatic potential
change (i.e., zero field and zero drift).

By following fully analogous approaches we obtain expressions for n(xi, y), p(x, yj ),
and p(xi, y), where x ∈ [xi, xi+1] and y ∈ [yj , yj+1].

In the third step, by following equation (8.17), we express all of the current densities
required in equations (8.18a&b) in terms of the electrostatic potential and carrier densities
obtained in the form of equation (8.26) and its analogs.

In the final step, by substituting the current densities obtained above into equations
(8.18a&b), we obtain the discretized carrier continuity equations

µn|i+1/2, j

B(φi+1, j + φCi+1, j − φi, j − φCi, j )ni+1, j − B(φi, j + φCi, j − φi+1, j − φCi+1, j )ni, j

hi(hi + hi−1)/2

− µn|i−1/2, j

B(φi, j + φCi, j − φi−1, j − φCi−1, j )ni, j − B(φi−1, j + φCi−1, j − φi, j − φCi, j )ni−1, j

hi−1(hi + hi−1)/2

+ µn|i, j+1/2
B(φi, j+1 + φCi, j+1 − φi, j − φCi, j )ni, j+1 − B(φi, j + φCi, j − φi, j+1 − φCi, j+1)ni, j

kj (kj + kj−1)/2

− µn|i, j−1/2
B(φi, j + φCi, j − φi, j−1 − φCi, j−1)ni, j − B(φi, j−1 + φCi, j−1 − φi, j − φCi, j )ni, j−1

kj−1(kj + kj−1)/2

− R|i, j = 0, (8.32a)

µp|i+1/2, j

B(φi, j − φVi, j − φi+1, j + φVi+1, j )pi+1, j − B(φi+1, j − φVi+1, j − φi, j + φVi, j )pi, j

hi(hi + hi−1)/2

− µp|i−1/2, j

B(φi−1, j − φVi−1, j − φi, j + φVi, j )pi, j − B(φi, j − φVi, j − φi−1, j + φVi−1, j )pi−1, j

hi−1(hi + hi−1)/2

+ µp|i, j+1/2
B(φi, j − φVi, j − φi, j+1 + φVi, j+1)pi, j+1 − B(φi, j+1 − φVi, j+1 − φi, j + φVi, j )pi, j

kj (kj + kj−1)/2

− µp|i, j−1/2
B(φi, j−1 − φVi, j−1 − φi, j + φVi, j )pi, j − B(φi, j − φVi, j − φi, j−1 + φVi, j−1)pi, j−1

kj−1(kj + kj−1)/2

− R|i, j = 0. (8.32b)

Once the electrostatic potential is solved using equation (8.16) on the mesh grid at the
first order of accuracy in terms of the mesh spacing, the discretized carrier continuity
equations (8.32a&b) have a local truncation error linearly proportional to the mesh
spacing. If the mesh is uniform or quasi-uniform, equations (8.32a&b) will be at the
first order of accuracy in terms of the mesh spacing anyway, regardless of the accuracy
achieved by the electrostatic potential.

The boundary conditions must be incorporated in this discretization scheme as
well. For edge emitting optoelectronic devices, we usually impose the Ohmic, infinity
insulator, and artificial boundaries, as illustrated in Fig. 8.1.

For the top Ohmic contact along the horizontal direction (x), we have the Dirichlet
boundary condition

φi, j = φbias|i, j + φb|i, j , (8.33a)
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Fig. 8.1. Boundary conditions imposed on the carrier transport solver.

and
ni, j = Ci, j , and pi, j = n2

i |i, j /Ci, j , (8.33b)

if Ci, j > 0, or
pi, j = |Ci, j |, and ni, j = n2

i |i, j /|Ci, j |, (8.33c)

if Ci, j < 0.
Equations (8.33b&c) are obtained from (8.6b&c) based on the assumption that |C| �

2ni .
For the top infinity insulator contacts along the horizontal direction (x) without surface

charge and recombination, we have the Neumann boundary conditions

∂φ

∂y
|i, j = 0, (8.34a)

Jny |i, j = 0, and Jpy |i, j = 0. (8.34b)

Amirror image approach can be taken to discretize these quantities at the boundary point.
For the equidistance grid, by applying the center linear interpolation

ui, j = 0.5[ui, j+1/2 + ui, j−1/2] + O(k2
j ), (8.35)

to equations (8.34a&b), we find

∂φ

∂y
|i, j+1/2 = −∂φ

∂y
|i, j−1/2 + O(k2

j ), (8.36a)

and

Jny |i, j+1/2 = −Jny |i, j−1/2 + O(k2
j )

Jpy |i, j+1/2 = −Jpy |i, j−1/2 + O(k2
j ). (8.36b)
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The quantities defined by equations (8.36a&b) represent the artificial images which
implicitly resolve the boundary conditions (8.34a&b). By substituting equations (8.36a)
into (8.14), and (8.36b) into (8.18a&b), respectively, we obtain the discrete Poisson’s
equation and carrier continuity equations at the boundary

λ2
i+1/2, j

∂φ
∂x

|i+1/2, j − λ2
i−1/2, j

∂φ
∂x

|i−1/2, j

(hi + hi−1)/2

− (λ2
i, j+1/2 + λ2

i, j−1/2)
∂φ
∂y

|i, j−1/2

kj−1
− ni, j + pi, j + Ci, j = 0, (8.37a)

and

(−Jnx)|i+1/2, j − (−Jnx)|i−1/2, j

(hi + hi−1)/2
− 2(−Jny)|i, j−1/2

kj−1
− R|i, j = 0, (8.37b)

Jpx |i+1/2, j − Jpx |i−1/2, j

(hi + hi−1)/2
− 2Jpy |i, j−1/2

kj−1
− R|i, j = 0. (8.37c)

Following a similar approach to that used in obtaining equation (8.16) and (8.32a&b),
we finally have

λ2
i+1/2, j

φi+1, j −φi, j

hi
− λ2

i−1/2, j

φi, j −φi−1, j

hi−1

(hi + hi−1)/2

− (λ2
i, j+1/2 + λ2

i, j−1/2)(φi, j − φi, j−1)

k2
j−1

− ni, j + pi, j + Ci, j = 0, (8.38a)

µn|i+1/2, j

B(φi+1, j + φCi+1, j − φi, j − φCi, j )ni+1, j − B(φi, j + φCi, j − φi+1, j − φCi+1, j )ni, j

hi(hi + hi−1)/2

− µn|i−1/2, j

B(φi, j + φCi, j − φi−1, j − φCi−1, j )ni, j − B(φi−1, j + φCi−1, j − φi, j − φCi, j )ni−1, j

hi−1(hi + hi−1)/2

− µn|i, j−1/2
B(φi, j + φCi, j − φi, j−1 − φCi, j−1)ni, j − B(φi, j−1 + φCi, j−1 − φi, j − φCi, j )ni, j−1

k2
j−1/2

− R|i, j = 0, (8.38b)

µp|i+1/2, j

B(φi, j − φVi, j − φi+1, j + φVi+1, j )pi+1, j − B(φi+1, j − φVi+1, j − φi, j + φVi, j )pi, j

hi(hi + hi−1)/2

− µp|i−1/2, j

B(φi−1, j − φVi−1, j − φi, j + φVi, j )pi, j − B(φi, j − φVi, j − φi−1, j + φVi−1, j )pi−1, j

hi−1(hi + hi−1)/2

− µp|i, j−1/2
B(φi, j−1 − φVi, j−1 − φi, j + φVi, j )pi, j − B(φi, j − φVi, j − φi, j−1 + φVi, j−1)pi, j−1

k2
j−1/2

− R|i, j = 0. (8.38c)
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For the bottom artificial boundary along the horizontal direction (x), we usually apply
the Neumann boundary conditions specified by equation (8.5a), or

∂φ

∂y
|i, j = 0,

∂n

∂y
|i, j = 0, and

∂p

∂y
|i, j = 0. (8.39)

According to equation (8.17), equation (8.39) is equivalent to (8.34a&b). Hence
equations (8.38a–c) apply to the bottom artificial boundary as well.

For the artificial boundaries along the vertical direction (y), we still have the Neumann
boundary conditions specified by equation (8.5a), or

∂φ

∂x
|i, j = 0,

∂n

∂x
|i, j = 0, and

∂p

∂x
|i, j = 0. (8.40)

According to equation (8.17), (8.40) is equivalent to

∂φ

∂x
|i, j = 0, (8.41a)

Jnx |i, j = 0, and Jpx |i, j = 0. (8.41b)

Therefore, by following an approach similar to that used in obtaining equation (8.35)
through (8.38c), we obtain

− (λ2
i+1/2, j + λ2

i−1/2, j )(φi, j − φi−1, j )

h2
i−1

+
λ2

i, j+1/2
φi, j+1−φi, j

kj
− λ2

i, j−1/2
φi, j −φi, j−1

kj−1

(kj + kj−1)/2
− ni, j + pi, j + Ci, j = 0, (8.42a)

− µn|i−1/2, j

B(φi, j + φCi, j − φi−1, j − φCi−1, j )ni, j − B(φi−1, j + φCi−1, j − φi, j − φCi, j )ni−1, j

h2
i−1/2

+ µn|i, j+1/2
B(φi, j+1 + φCi, j+1 − φi, j − φCi, j )ni, j+1 − B(φi, j + φCi, j − φi, j+1 − φCi, j+1)ni, j

kj (kj + kj−1)/2

− µn|i, j−1/2
B(φi, j + φCi, j − φi, j−1 − φCi, j−1)ni, j − B(φi, j−1 + φCi, j−1 − φi, j − φCi, j )ni, j−1

kj−1(kj + kj−1)/2

− R|i, j = 0, (8.42b)

− µp|i−1/2, j

B(φi−1, j − φVi−1, j − φi, j + φVi, j )pi, j − B(φi, j − φVi, j − φi−1, j + φVi−1, j )pi−1, j

h2
i−1/2

+ µp|i, j+1/2
B(φi, j − φVi, j − φi, j+1 + φVi, j+1)pi, j+1 − B(φi, j+1 − φVi, j+1 − φi, j + φVi, j )pi, j

kj (kj + kj−1)/2

− µp|i, j−1/2
B(φi, j−1 − φVi, j−1 − φi, j + φVi, j )pi, j − B(φi, j − φVi, j − φi, j−1 + φVi, j−1)pi, j−1

kj−1(kj + kj−1)/2

− R|i, j = 0. (8.42c)

Under such imposed boundary conditions and the associated discretization schemes,
there is no inconsistency problem at the four corner points. That is to say, either from
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equations (8.38a–c) or (8.42a–c), we have

− (λ2
i+1/2, j + λ2

i−1/2, j )(φi, j − φi−1, j )

h2
i−1

− (λ2
i, j+1/2 + λ2

i, j−1/2)(φi, j − φi, j−1)

k2
j−1

− ni, j + pi, j + Ci, j = 0, (8.43a)

− µn|i−1/2, j

B(φi, j + φCi, j − φi−1, j − φCi−1, j )ni, j − B(φi−1, j + φCi−1, j − φi, j − φCi, j )ni−1, j

h2
i−1/2

− µn|i, j−1/2
B(φi, j + φCi, j − φi, j−1 − φCi, j−1)ni, j − B(φi, j−1 + φCi, j−1 − φi, j − φCi, j )ni, j−1

k2
j−1/2

− R|i, j = 0, (8.43b)

− µp|i−1/2, j

B(φi−1, j − φVi−1, j − φi, j + φVi, j )pi, j − B(φi, j − φVi, j − φi−1, j + φVi−1, j )pi−1, j

h2
i−1/2

− µp|i, j−1/2
B(φi, j−1 − φVi, j−1 − φi, j + φVi, j )pi, j − B(φi, j − φVi, j − φi, j−1 + φVi, j−1)pi, j−1

k2
j−1/2

− R|i, j = 0. (8.43c)

8.1.5 Solution of non-linear algebraic equations

After discretization, we obtain equations (8.16) and (8.32a&b) for the inner points,
equations (8.33a–c) for the points along the top boundary with the Ohmic contact,
equations (8.38a–c) for the points along the top boundary with the infinity insulator
contact and for the points along the bottom artificial boundary that truncates the compu-
tation domain, equations (8.42a–c) for the points along the vertical artificial boundaries
that truncate the computation domain, and equations (8.43a–c) for the four corner points.
To be solved, these equations can generally be written as

F̂ (ŵ) = 0, (8.44)

where

F̂ =
[
f̂φ(ŵ), f̂n(ŵ), f̂p(ŵ)

]T

, (8.45)

ŵ =
[
φ̂, n̂, p̂

]T

. (8.46)

In accordance with the classical Newton’s method, we have the following iteration
scheme in looking for the solution

ŵk+1 = ŵk − B−1(ŵk)F (ŵk), (8.47)

or
B(ŵk)(ŵk+1 − ŵk) = −F(ŵk), (8.48)
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to avoid an expensive inversion of matrix B(ŵk), where B(ŵk) = F ′(ŵk) is the Jacobian
matrix.

In application of the classical Newton’s method to our equations, there is a gen-
eral tendency to overestimate the length of the actual correction step for the iteration,
known as the overshoot problem. To solve this problem, a few modified schemes can be
considered [15, 16, 17].

Modification A.

Let

B(ŵk) = 1

tk
F ′(ŵk), (8.49)

where the parameter tk is chosen as the largest of 1/2i with i = 1, 2, 3, . . . , which makes

||F ′−1(ŵk)F [ŵk − tkF
′−1(ŵk)F (ŵk)]|| < ||F ′−1(ŵk)F (ŵk)||, (8.50)

or

||D−1(ŵk)F [ŵk − tkF
′−1(ŵk)F (ŵk)]|| < ||D−1(ŵk)F (ŵk)||, (8.51)

with D(ŵk) denoted as the main diagonal of F ′(ŵk).
The parameter tk can also be selected as

tk = 1/[1 + κk||F(ŵk)||], (8.52)

with κk such that

1 − ||F(ŵk+1)||
||F(ŵk)|| < δtk δ ∈ (0, 1). (8.53)

Modification B.

Let

B(ŵk) = skI + F ′(ŵk), (8.54)

where the parameter sk is selected as

sk = σk||F(ŵk)|| σk > 0, (8.55)

with σk such that

||F(ŵk+1)|| < ||F(ŵk)||. (8.56)

Modification C.

As a combination of the two previous modifications, we let

B(ŵk) = 1

tk
[skI + F ′(ŵk)]. (8.57)
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The quality of B(ŵk) can be evaluated by

lim
α→0

1

α
||F [ŵk − αB−1(ŵk)F (ŵk)] − F(ŵk)|| = C > 0, (8.58)

where C is a positive constant.
From equation (8.48), we find that a solution of a system of linear algebraic equations

at each iteration step is required. The result of the linear algebraic equations obtained here
is just an incremental correction to the intermediate approximation of the solution, and
therefore the accuracy required is only to preserve the convergence of Newton’s algo-
rithm. Hence, to obtain the overall solution to the non-linear system more efficiently, we
may consider bringing in some modifications to solving the system of linear algebraic
equations in order to reduce the computation cost, although the iteration steps in solv-
ing the non-linear system might increase because of such modifications. As a result, a
successive over-relaxation (SOR) Newton’s method is introduced [12].

Actually, the linear equation system (8.48) at the kth iteration step can be written as⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f̂φ

∂φ̂

∂f̂φ

∂n̂

∂f̂φ

∂p̂

∂f̂n

∂φ̂

∂f̂n

∂n̂

∂f̂n

∂p̂

∂f̂p

∂φ̂

∂f̂p

∂n̂

∂f̂p

∂p̂

⎤⎥⎥⎥⎥⎥⎥⎥⎦
k

⎡⎣ δφ̂k

δn̂k

δp̂k

⎤⎦ = −
⎡⎢⎣ f̂φ(φ̂k, n̂k, p̂k)

f̂n(φ̂k, n̂k, p̂k)

f̂p(φ̂k, n̂k, p̂k)

⎤⎥⎦ , (8.59)

where we have defined

δφ̂k = φ̂k+1 − φ̂k, δn̂k = n̂k+1 − n̂k, and δp̂k = p̂k+1 − p̂k. (8.60)

Under the assumption that the Jacobian matrix is definite and that all blocks in the
main diagonal of equation (8.59) are non-singular, we can use a classical block iteration
scheme for the solution of the kth iteration step⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂f̂φ

∂φ̂
0 0

∂f̂n

∂φ̂

∂f̂n

∂n̂
0

∂f̂p

∂φ̂

∂f̂p

∂n̂

∂f̂p

∂p̂

⎤⎥⎥⎥⎥⎥⎥⎥⎦
k

⎡⎣ δφ̂k

δn̂k

δp̂k

⎤⎦
m+1

= −
⎡⎢⎣ f̂φ(φ̂k, n̂k, p̂k)

f̂n(φ̂k, n̂k, p̂k)

f̂p(φ̂k, n̂k, p̂k)

⎤⎥⎦

−

⎡⎢⎢⎢⎢⎣
0

∂f̂φ

∂n̂

∂f̂φ

∂p̂

0 0
∂f̂n

∂p̂
0 0 0

⎤⎥⎥⎥⎥⎦
k

⎡⎣ δφ̂k

δn̂k

δp̂k

⎤⎦
m

.

(8.61)
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Equation (8.61) can therefore be solved as three decoupled linear equation systems
sequentially

∂f̂φk

∂φ̂
δφ̂km+1 = −f̂φ(φ̂k, n̂k, p̂k) − ∂f̂φk

∂n̂
δn̂km − ∂f̂φk

∂p̂
δp̂km

= −ωf̂φ(φ̂k, n̂k + δn̂km, p̂k + δp̂km), (8.62a)

∂f̂nk

∂n̂
δn̂km+1 = −f̂n(φ̂k, n̂k, p̂k) − ∂f̂nk

∂φ̂
δφ̂km+1 − ∂f̂nk

∂p̂
δp̂km

= −ωf̂n(φ̂k + δφ̂km+1, n̂k, p̂k + δp̂km), (8.62b)

∂f̂pk

∂p̂
δp̂km+1 = −f̂p(φ̂k, n̂k, p̂k) − ∂f̂pk

∂φ̂
δφ̂km+1 − ∂f̂pk

∂n̂
δn̂km+1

= −ωf̂p(φ̂k + δφ̂km+1, n̂k + δn̂km+1, p̂k), (8.62c)

with ω < 1 introduced as a relaxation parameter.
Note that for the reduced problem under the charge neutral assumption, equation

(8.62a) can hardly converge since ∂f̂φ/∂φ̂ = 0.
Finally, we come to the step of solving the system of linear equations. As a result of

using the FD discretization scheme, the linear equation system involved is usually sparse.
Therefore, a number of special numerical techniques can be invoked to solve these sparse
linear equations efficiently. Since these techniques have little physics involved, we list
them in Appendix D and skip further discussions.

8.2 The transient carrier transport equation

Solving the transient carrier transport equation through a numerical approach is similar
to the time domain marching techniques introduced in dealing with the optical traveling
wave equations. The similarity comes from the fact that both optical traveling wave
equations and carrier transport equations are PDEs with first order time derivatives,
hence they are both of the parabolic type. However, the optical traveling wave equations
are linear and have first order spatial derivatives along the propagation direction, although
they may have the second order spatial derivatives along other directions such as in a horn
waveguide. On the contrary, although the carrier transport equations have second order
spatial derivatives which bring in a damping effect to some extent through the diffusion,
they are explicitly non-linear. As a result, in contrast to solving the optical traveling wave
equation, where we still manage to find an explicit marching scheme (i.e., the upwind or
FT–BS scheme), there seems to be no stable explicit scheme available in dealing with
the carrier transport equations.

By introducing dm = tm+1 − tm and using the symbol um to represent u(x, y, tm), we
have the following three stable discretization schemes.

(1) Full backward time difference method (fully implicit).
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In this method

f̂φ(φ̂m+1, n̂m+1, p̂m+1) = 0, (8.63a)

n̂m+1 − n̂m

dm

− f̂n(φ̂m+1, n̂m+1, p̂m+1) = 0, (8.63b)

p̂m+1 − p̂m

dm

− f̂p(φ̂m+1, n̂m+1, p̂m+1) = 0. (8.63c)

In the fully explicit discretization scheme, the stable condition requires the time step
dm = O(h2 + k2), which is not feasible in practice. Therefore, this scheme is of little
use in dealing with our problem.

(2) Mock’s method (semi-implicit) [18, 19, 20].

Noting that the Poisson equation can be converted to

∇ ·
(

λ2∇ ∂φ

∂t

)
− ∂n

∂t
+ ∂p

∂t
= 0, (8.64)

we have

∇ ·
(

λ2∇ φ̂m+1 − φ̂m

dm

)
− f̂n(φ̂m+1, n̂m, p̂m) + f̂p(φ̂m+1, n̂m, p̂m) = 0, (8.65a)

n̂m+1 − n̂m

dm

− f̂n(φ̂m+1, n̂m+1, p̂m) = 0, (8.65b)

p̂m+1 − p̂m

dm

− f̂p(φ̂m+1, n̂m+1, p̂m+1) = 0. (8.65c)

(3) Modified Mock’s method (semi-implicit).

In this method

n̂m+1 − n̂m

dm

− f̂n(φ̂m, n̂m+1, p̂m) = 0, (8.66a)

p̂m+1 − p̂m

dm

− f̂p(φ̂m, n̂m+1, p̂m+1) = 0, (8.66b)

∇ · (λ2∇φ̂m+1) − r(φ̂m+1 − φ̂m) − (n̂m+1 − p̂m+1 − Ĉ) = 0, (8.66c)

where r is an appropriate positive and bounded damping function.

8.3 The carrier rate equation

Since the carrier rate equation (5.41) is posed as an ODE initial value problem, the solu-
tion technique is similar to that which has been discussed in Section 7.2.3. Equation (5.41)
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is normally solved in conjunction with the optical traveling wave or standing wave
equations, where the time marching step is usually dictated by the stability requirement
of the optical equations. With such a time step, the lower order Runge–Kutta or even
Euler method would work as well for the carrier rate equation. Hence, we will not go
into detail.

8.4 The thermal diffusion equation

In device performance simulations, the thermal diffusion equation is normally solved
in every cross-sectional 2D sheet (i.e., in the xy plane) consistently with the carrier
transport equations. As a typical linear diffusion equation, (5.47) is posed as a mixed
initial-boundary value problem of parabolic type PDE. Since the spatial derivatives in
such a diffusive equation are in the second order, the FT–ECS scheme is stable.

Actually, we can write equation (5.47) in the form

∂T (x, y, t)

∂t
= b(x, y)∇t · d(x, y)∇t T (x, y, t) + f (x, y, t). (8.67)

Under the FT–ECS scheme, we can discretize equation (8.67) to obtain

T k+1
i, j − T k

i, j

�t
= bi, j

di+1/2, j (T
k
i+1, j − T k

i, j ) − di−1/2, j (T
k
i, j − T k

i−1, j )

(�x)2

+ bi, j

di, j+1/2(T
k
i, j+1 − T k

i, j ) − di, j−1/2(T
k
i, j − T k

i, j−1)

(�y)2
+ f k

i, j ,

(8.68)

where the symbol uk
i, j represents u(x = i�x, y = j�y, t = k�t). Following the

method introduced in Section 6.2.1, we can prove that the scheme, equation (8.68), is
consistent and stable once

�t ≤ min
i, j

⎧⎪⎪⎨⎪⎪⎩
1

2bi, j

[
dj+1/2,i

(�x)2 + di, j+1/2

(�y)2

]
⎫⎪⎪⎬⎪⎪⎭ . (8.69)

Therefore, the explicit scheme (8.68) gives a convergent solution to equation (8.67)
subject to condition (8.69).

In DC analysis, the explicit scheme is not necessarily efficient since we need to march
many time steps before we can reach the steady state. Therefore, we prefer the explicit
scheme which allows us to use a large time step in such applications.
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Actually, either the FT–ICS or the Crank–Nicholson scheme would fulfill this task.
For example, the Crank–Nicholson scheme can be implemented as
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2
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i, j ). (8.70)

It is straightforward to prove that this scheme is consistent and unconditionally stable.
Hence equation (8.70) gives the convergent solution to equation (8.67) under any time
step. The drawback is the implicit nature of this scheme, which forces us to solve a
system of linear equations at every time step.

Concerning an efficient solution of the linear equation system at each time step in
equation (8.70), we can further take an ADI approach by splitting each time step into
two halves; in each half we deal only with one space dimension. The advantage of this
Crank–Nicholson plus ADI scheme lies in the fact that, at each time sub-step, only the
solution of a linear tridiagonal system is required. As such, the linear equation system
will be solved in the most efficient way. The following scheme modifies equation (8.70)
through the ADI approach
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Equation (8.71) is consistent and unconditionally stable, hence it gives the convergent
solution to equation (8.67). It is of second order accuracy in terms of time and space
steps �t , �x, and �y. In addition, we need only to solve a tridiagonal linear equation
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system at each half time step. Therefore, we can may conclude that equation (8.71) is a
superior discretization scheme.
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9 Numerical analysis of device
performance

9.1 A general approach

9.1.1 The material gain treatment

As explained in Section 7.3, it is neither feasible nor necessary to compute the material’s
optical properties through the physics based gain model in an “online” manner. It is not
feasible because of the huge number of times that the gain model has to be invoked. It
is not necessary because on many of the times that the model is called up it provides
exactly the same results.

For this reason, we take an “offline” approach by calling up the physics based gain
model at a coarse mesh grid constructed by multiple variables (i.e., the electron and hole
densities, the temperature and the frequency) which covers the entire device operation
range, and by establishing a set of analytical formulas which reproduce the required
material optical property (i.e., the stimulated and spontaneous emission gains and the
refractive index change) in the device operation range. By assuming a universal poly-
nomial, exponential and rational dependence on the carrier density, temperature and
frequency, respectively, such formulas are therefore parameterized with the unknown
parameters obtained from searching for the best fit between the results from the formu-
las and from the rigorous calculation on the mesh grid points. Interpolations might be
necessary to refine the mesh grid before such a fitting.

Once the analytical formulas are extracted, they will be used as the material model
to replace the rigorous model for calculation of gains and refractive index change in an
“online” manner.

Figure 9.1 (a) and (b) show comparisons of the stimulated emission gain and refractive
index change calculated by the rigorous gain model and analytical formulas.

For a given active region structure with adjacent layers, the rigorous gain is obtained
through the following procedure.

Firstly, the single electron band structure is solved for the active region comprising
the bulk semiconductor, equation (3.76), or the QW structure, equations (3.129) and
(3.134). If the strained layer is involved, equations (3.76), (3.129), and (3.134) should be
solved with the modified energies in the Luttinger–Kohn Hamiltonian matrix elements
(3.154a–d), (3.155), and (3.156a–d), for the bulk semiconductor and QW structure,
respectively.
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Fig. 9.1. Comparison between results calculated by the rigorous gain model and analytical formulas.
(a) The stimulated emission gain. (b) The refractive index change. The rigorous gain is obtained
from an active region comprising five 5 nm thickness In0.748Al0.070Ga0.182As QWs separated
by six 10 nm thickness In0.529Al0.193Ga0.278As barrier layers.

Secondly, the stimulated emission gain and refractive index change are calcu-
lated directly through the free-carrier model, equations (4.65a&b), or the screened
Coulomb interaction model, equations (4.109a&b), (4.129a&b), or the many-body
model, equations (4.144a&b), or indirectly though solving the governing equations
(4.156a–c) in the many-body gain model. In each case, the conduction band electron
and valence band hole carrier densities at their respective boundaries between the active
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region and the N and P type adjacent layer, the temperature and the operating optical
frequency are all given as input variables. Such a calculation needs to be done repeatedly
for different combinations of the input variables on the above mentioned coarse mesh
grid. The spontaneous emission gain can be obtained by following the approach we have
used in Section 7.2.1. In these calculations, the conduction band electron and valence
band hole energies and wave functions, as the eigensolutions found in the first step, are
either used directly in the quasi-Fermi distributions and the Lorentzian line-shape func-
tions or indirectly through the dipole matrix elements and the bare or screened Coulomb
potential.

Strictly speaking, for the active region comprising the QW structure, the single electron
band structure in step one and the classical Poisson equation must be solved in a self-
consistent manner for every given external bias and temperature, as the varying external
potential and the non-uniform distribution of the electron and hole wave functions will
directly or indirectly (through the Coulomb interaction potential) distort the built-in
potential distribution between the well and barrier in the QW structure. However, we
usually neglect such dependence under the strong forward bias where the high carrier
density screens the Coulomb interaction and the high stimulated emission recombination
rate justifies the quasi-charge neutral assumption inside the active region. Therefore, the
band structure in the first step needs to be solved only once. One can refer to [1, 2] for
self-consistent treatment of the material gain and the band structure under a forward bias
for elevated temperatures. In modeling reversely biased devices such as PDs and EAMs,
however, we have to solve the band structure in step one repeatedly for every different
external voltage applied to the structure, as the built-in QW potential distribution will be
heavily distorted, which has significant impact on the energies and wave functions of the
bound conduction band electrons and valence band holes as explained in Section 7.1.

9.1.2 The quasi-three-dimensional treatment

In considering the memory required and computation time involved, we find that it is
usually impossible to implement a self-consistent numerical solver to model the device
performance in full 3D. For this reason, we follow a quasi-3D approach to treat the
equations [3].

The 3D device structure is firstly divided into a number of subsections along the
wave propagation, or the longitudinal direction z. Under a given external bias, in each
subsection, equation (2.34) for the optical field distribution (transverse optical mode),
equations (5.29a–c), (5.33a&b) for the electrostatic potential distribution and carrier
densities, and equation (5.47) for the temperature distribution are solved in the 2D
cross-sectional xy plane using the FD approach, where different computation window
sizes and mesh grids are adopted for the optical equation, the carrier equations, and the
temperature equation in order to treat different distributions efficiently. A local interpola-
tion technique is used to obtain the values of the different variables at an arbitrary mesh
grid point.
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For the 2D carrier and temperature distributions obtained in each subsection, the
material gains and refractive index change are calculated through a set of analytical
formulas extracted beforehand. For the transverse optical mode and effective index
obtained in each subsection, the confinement factor and various coupling coefficients
are calculated. In most applications, the transverse optical mode, the effective index and
other optical modal parameters need to be calculated only once at the very beginning
as they normally experience very little change over the entire device operation range. A
perturbation approach can be used if significant changes in the transverse optical mode
and effective index are found, due to the carrier or temperature induced material refractive
index change. Other parameters such as the optical loss, due to non-interband processes
such as the free carrier absorption, can also be calculated as long as the transverse optical
mode, the carrier density and temperature distributions are all found in each subsection.

Up to this stage, all the material and optical modal parameters that appear in the optical
wave equations (either in traveling wave or in standing wave equations) are obtained
in each subsection along the longitudinal direction. These material and optical modal
parameters are usually different from subsection to subsection (i.e., z dependent).

In summary, by a subdivision of the 3D device structure along the optical wave prop-
agation direction into N 2D sheets, under every bias or time step, the 2D optical, carrier
transport and thermal diffusion equations are solved in every sheet, plus the 1D optical
(traveling or standing) wave equation is solved along the wave propagation direction,
where the material gains and refractive index change are calculated through a set of ana-
lytical formulas obtained by an “offline” pre-extraction as explained in Section 9.1.1.
Depending on the device to be modeled and the performance to be calculated, these 2D
and 1D equations may need to be solved just once or iteratively until a global conver-
gence between the optical field distribution (in each 2D sheet and along the longitudinal
1D direction), the carrier density distributions (in each 2D sheet), and the temperature
distribution (in each 2D sheet) is achieved. Those device characteristics can therefore
be extracted through a post-processor based on the solutions to those equations.

For example, the output optical power from the left and right facet can be obtained by

Pl = neff

2

√
ε0

µ0
(1 − |Rl|2)|e(0)|2,

and

Pr = neff

2

√
ε0

µ0
(1 − |Rr|2)|e(L)|2, (9.1)

with e(0) and e(L) denoted as the lasing mode optical field slow-varying envelope
function in V at the left and right facet, respectively.

The lasing mode frequency is computed through

ω = ω0 + d

dt

[
e(z, t)

|e(z, t)|
]

|t→∞, (9.2)
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where the phase of the lasing mode, i.e., e(z, t)/|e(z, t)| should not have z dependence
as t → ∞. While equation (9.2) strictly follows the definition, it cannot be conveniently
used for the lasing frequency calculation if the laser has multiple longitudinal modes
or if the laser works at an unstable (i.e., self-pulsation) mode. A more comprehensive
approach is to take the fast Fourier transform (FFT) of the optical field slow-varying
envelope function to convert it from the time domain to the frequency domain with its
DC component aligned with the reference frequency ω0. From the peak positions on
such an obtained optical spectrum, we find the lasing mode frequencies.

9.2 Device performance analysis

9.2.1 The steady state analysis

At the steady state, the time derivatives in the governing equations should be set to
zero except for the traveling wave equation for the laser, in which the time derivatives
of the slow-varying envelope functions should be replaced by ∂ef ,b/∂t = −j�ωef ,b,
since the laser will generally oscillate at frequency ω0 + Re[�ω] with its linewidth
proportional to |Im[�ω]|. That is to say, at the steady state, the laser generates a time
harmonic or more precisely, a quasi-harmonic (i.e., with a non-zero linewidth) optical
wave as its output. Since the reference frequency is fixed at ω0, if the lasing oscillation
happens at a detuned frequency away from ω0, the slow-varying envelope functions
must contain a phase factor in the form of e−j�ωt at the steady state rather than a time-
independent constant, as in the latter case the lasing frequency would be set right at the
reference frequency, which conflicts with our presumption following the fact that lasing
may happen at a detuned frequency. As for the standing wave equation, any possible
detuning has been included in the eigenvalue of the longitudinal mode equation (2.135).

Thus, the traveling wave equation will reduce to an eigenvalue problem with the
complex frequency deviation �ω as the eigenvalue and the slow-varying envelopes ef ,b

as the eigenfunctions. For example, equation (2.84) becomes

∂ef (z)

∂z
=
[

j
�ω

vg
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2
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r
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+ j(κM + κ f b
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e b(z)

+ j(κ−M + κ bf
r )e f (z), (9.3)

subject to the boundary conditions (2.137). In equation (9.3), the inhomogeneous spon-
taneous emission contributions to the forward and backward propagating (i.e., the right-
and left-going) waves are ignored.
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Comparing with the standing wave longitudinal mode equation (6.79), we find that
the two equations (9.3) and (6.79) are identical if

�ω = −vgβ
2
V

2β0
. (9.4)

We can follow the general procedure introduced in Section 9.1.2 to solve the steady
state equations in a self-consistent manner. Once the transverse optical mode, the carrier
density distributions, and the temperature distributions are found in each cross-sectional
sheet, and the material and optical modal parameters are obtained, the static optical
field distribution along the cavity known as the optical standing wave pattern, or the
longitudinal optical mode, as well as the complex frequency deviation can readily be
obtained under the given facet and operating conditions through the transfer matrix
method discussed in Section 6.3. They are obtained as the eigenfunction and eigenvalue
of equation (9.3), respectively.

As the eigenvalue of the device, the complex frequency deviation takes a clear physical
meaning: its real part is the detuning of the lasing frequency from the reference and its
imaginary part is the net gain known as the difference between the modal gain provided
by the injection and the total loss scaled by the group velocity of the optical wave. The
total loss comprises the modal losses through various non-interband absorption processes
seen by the optical wave propagating along the waveguide inside the laser cavity and
the terminal loss due to the optical power’s escape from both ends of the cavity. (It
is the escaped optical power that forms the laser output.) As the net gain of the laser,
the imaginary part of the complex frequency deviation is also a measure of the laser
coherence: it is the linewidth of the lasing mode on the spectrum, while its reciprocal
gives the laser coherent time.

Once the longitudinal optical mode is obtained, the stimulated emission recombina-
tion rate has to be updated and the carrier transport equations and the thermal equation
in each cross-sectional sheet have to be solved again. Under a strong injection, even the
transverse optical mode in each cross-sectional sheet needs to be updated for any signifi-
cant change in the refractive index induced by the varying carrier density or temperature.
This iteration will continue until no further changes can be detected on the longitudinal
optical mode and complex frequency deviation.

Under a different bias, we have to let such an iteration loop start all over again. The
full procedure for laser DC analysis is summarized below.

(1) 3D geometrical structure input.
(2) Material constant input.
(3) Material gain calculation on sampled points in variable space.
(4) Analytical material model extraction.
(5) Longitudinal subdivision (in z direction).
(6) Mesh set-up for cross-sectional sheets (in xy plane).
(7) Solver initialization.
(8) Operating condition input (possible looping starts here).
(9) Variable scaling (physical to numerical).
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(10) 2D-1D- iteration loop starts.
(11) Call 2D transverse optical mode solver.
(12) Call 2D carrier transport solver.
(13) Call 2D temperature solver.
(14) Calculate the material and optical modal parameters.
(15) Call longitudinal optical mode solver.
(16) Go to the iteration starting point (step 10) if not converged, otherwise continue.
(17) Variable scaling (numerical to physical).
(18) Post processing for required output assembly.
(19) Go to step 8 for operating condition (bias and temperature) looping, until the

maximum settings are reached, otherwise continue.
(20) Stop.

In the subdivision along the device’s longitudinal direction, a subsection length in 50–
100 wavelength periods is normally sufficient to capture the non-uniform distribution of
the optical slow-varying envelope function caused by the LSHB. This requires 10–40
subsections in total for modeling a typical semiconductor laser operated in the C-band and
with a cavity length around 0.25–1 mm. In the DC analysis, there is no stability concern
as there is no time domain evolution involved. Therefore, there is no other constraint on
setting up the subsection length, hence computational effort would be greatly reduced if
an adaptive longitudinal subdivision scheme were introduced for lasers with long cavity
lengths. Such an adaptive scheme can be established through, for example, repeatedly
doubling the subsection number (starting from one) until a converged longitudinal optical
mode is obtained. In the process of searching for the optimized subsection number, the
carrier rate equation (5.41) and the 1D thermal diffusion equation (5.48) can be used
instead of the rigorous 2D carrier transport equations and thermal diffusion equations.
The rigorous 2D models will be invoked only after the subsections are set up along the
longitudinal direction. Solving the 2D carrier transport equations usually needs more time
than completing all other processes, hence the overhead spent on minimizing the total
subsection number required is well justified. A more advanced approach is to allow the
subsections to take non-uniform lengths. For a given longitudinal structure, we can obtain
an initial longitudinal optical field distribution by using, e.g., only one subsection.Anon-
uniform subsection division strategy can therefore be selected to make the subsection
length inversely proportional to the derivative of the total optical field intensity with
respect to z. As a result, each subsection length, hence the total subsection number, will
be optimized and the number of times that the 2D carrier transport solver is invoked will
be reduced.

In many applications, the carrier rate equation (5.41) can be solved instead of invoking
the 2D carrier transport solver for those intermediate steps in the iteration. That is to say,
the rigorous 2D carrier transport solver will be invoked only at the beginning and end of
the iteration. It is called up at the beginning because we need a set of rather “close” initial
values. It is called up again at the end because we need the final result to be accurate. The
intermediate values only help us to reach the final convergence. Hence their accuracy is
not pursued as these values will be dropped anyway.
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9.2.2 The small-signal dynamic analysis

The small-signal dynamic analysis is straightforwardly based on the DC analysis [4, 5, 6].
By assuming the time-dependent external bias to be in the form

I (t) = I0 + �I (t) = I0 + I1e−jω1t + I2e−jω2t , (9.5)

or

V (t) = V0 + �V (t) = V0 + V1e−jω1t + V2e−jω2t , (9.6)

with |�I (t)| � I0 and |�V (t)| � V0, we can expand all other variables such as
the optical field slow-varying envelope functions (both amplitudes and phases), the
carrier density distributions, and the temperature distributions in the time-harmonic
forms

u(t) = u0 + �u(t)

= u0 + A1
1e

−jω1t + A1
2e

−jω2t

+ A2
1,1e−j2ω1t + A2

2,2e−j2ω2t + A2
2,1e−j(ω2+ω1)t + A2

2,−1e−j(ω2−ω1)t

+ A3
1,1,1e−j3ω1t + A3

2,2,2e−j3ω2t + A3
2,1,1e−j(ω2+2ω1)t

+ A3
2,−1,−1e−j(ω2−2ω1)t + A3

2,2,1e−j(2ω2+ω1)t + A3
2,2,−1e−j(2ω2−ω1)t

+ · · ·, (9.7)

with |�u(t)| � u0. In equation (9.7), A1
1/2 indicates the first order (linear) modulation

response, A2
(1,1)/(2,2) the second order harmonic distortion response, A2

(2,1)/(2,−1) the sec-

ond order inter-modulation distortion response, A3
(1,1,1)/(2,2,2) the third order harmonic

distortion response, A3
(2,1,1)/(2,−1,−1)/(2,2,1)/(2,2,−1) the third order inter-modulation dis-

tortion response, etc. Those higher order harmonic or inter-modulation distortions come
from the non-linearity dependence of the variables on the external bias embedded in the
governing equations.

Substituting expressions (9.5) or (9.6) and (9.7) for every variable into the governing
equations with the time derivatives directly performed on those harmonic terms, we
will obtain a set of equations which balances the terms in the same harmonic order.
For example, by balancing the time-independent terms involving I0 or V0, and u0’s,
we obtain the steady state equations again. By balancing the terms with the same
harmonic factor e−jω1t or e−jω2t (not both), we obtain the small-signal linear mod-
ulation response equations. By following this approach, we can obtain the response
equations for all the second, third, or even higher order harmonic and inter-modulation
distortions.

Each set of equations becomes time independent and hence can be respectively treated
as the DC governing equations with the corresponding frequency taken as a parameter.
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These corresponding frequencies are: ω1 or ω2 for the linear modulation response, 2ω1

or 2ω2 for the second order harmonic distortion response, ω2 + ω1 and ω2 − ω1 for
the second order inter-modulation distortion response, 3ω1 or 3ω2 for the third order
harmonic distortion response, ω2 +2ω1, ω2 −2ω1, 2ω2 +ω1, and 2ω2 −ω1 for the third
order inter-modulation distortion response, etc. We can vary these frequencies and solve
the equations at each frequency to obtain the variable small-signal modulation response
over a frequency bandwidth.

In most applications, we need to calculate the optical power modulation response,
also known as the intensity modulation (IM) response, and the accompanying phase
modulation response, also known as the parasitic frequency modulation (FM) responses,
at various orders. These modulation responses are normally scaled by the external bias
small-signal modulation amplitude and are defined as
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inter- modulation distortion responses.

These small-signal responses actually provide the derivative information of the output
optical power and lasing frequency in the neighborhood of their DC values corresponding
to the DC bias I0. Therefore, they should be independent of the input (i.e., the external
bias) small-signal modulation amplitude.

This method is usually applied to the optical standing wave model, since the variable
harmonic expansions can be implemented through the amplitude rate equation (2.126)
analytically. If the carrier rate equation model is also used, such an expansion can also
be analytically performed on these equations. As a result, after the DC calculation at the
reference bias, the small-signal modulation responses can be obtained through a set of
linear algebraic equations, hence their values can be expressed in closed forms where
only numerical quadratures are involved.

Without this advantage, we can follow the large-signal analysis approach by taking
equation (9.5) or (9.6) as the time-dependent external bias to compute directly the output
variables in the time domain. Once the time domain variables are obtained, we can find
their frequency domain spectra through the FFT. In these optical spectra, we should
find a set of peaks at those harmonic frequencies. The heights of the peaks, therefore,
give the modulation response. By scanning the small-signal input (i.e., the external bias)
modulation frequency, we will be able to obtain the modulation response over a frequency
bandwidth.
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9.2.3 The large-signal dynamic analysis

The large-signal dynamic analysis is performed by solving all the governing equations
in the time domain directly. The following sequential scheme is usually adopted for
large-signal analysis.

(1) 3D geometrical structure input.
(2) Material constant input.
(3) Material gain calculation on sampled points in variable space.
(4) Analytical material model extraction.
(5) Longitudinal subdivision (in z direction).
(6) Mesh set-up for cross-sectional sheets (in xy plane).
(7) Solver initialization.
(8) Variable scaling (physical to numerical).
(9) Time domain progression starts (by setting �t = η�z/vg).

(10) Operating condition input (read in bias as function of time).
(11) Call 2D transverse optical mode solver.
(12) Call 2D carrier transport solver.
(13) Call 2D temperature solver.
(14) Calculate the material and optical modal parameters.
(15) Call longitudinal optical (traveling or standing) wave equation solver.
(16) Go to the progression starting point (step 9) if the maximum time is not reached,

otherwise continue.
(17) Variable scaling (numerical to physical).
(18) Post processing for required output assembly.
(19) Stop.

The major difference between the time domain large-signal approach and the steady
state approach introduced in Section 9.2.1 is that there is no iteration required for solution
convergence in the time domain approach once the explicit scheme is used. However,
this is usually at the cost of using small sequential steps. Before reaching a steady state,
we may have to experience many such steps.

Ideally, the device subsection length �z and the time progression step �t should
be independently selected. The former should be considered to catch up to the spatial
non-uniformity of the variables along the device longitudinal direction due to the LSHB,
whereas the latter should be designed to follow changing of the variables due to the time-
dependent bias. Therefore, we may have two possibilities if the two steps are chosen from
different considerations. One makes the progression faster, �z/�t > vg and the other
makes it slower, �z/�t < vg, both in comparison with the physical wave propagation
at vg. In order to make the marching algorithm stable, in the former case we have to use
the implicit scheme, whereas in the latter case we can take the explicit scheme.

Without the constraint from the physical problem, we may use either an explicit or
implicit marching algorithm depending on which carrier transport solver will be used.
If the carrier rate equation solver is called up, we can use any explicit scheme as the
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evaluation of the carrier density distribution is very efficient. On the contrary, if the
rigorous carrier transport solver has to be invoked, we should pick an implicit scheme
which allows us to use larger time steps; hence we would call up the rigorous carrier
transport solver fewer times.

9.3 Model calibration and validation

Although strictly speaking the physics based model takes only the structural geometri-
cal dimensions and the basic material constants as input parameters, we may still miss
some important parameters because rigorous computation of these parameters may not
be feasible or cannot justify the effort spent on the calculation, such as the non-radiative
recombination constants and the non-linear gain saturation coefficient in equation (7.32),
as the former needs knowledge of the full band structure (i.e., the E–

⇀

k relation), not just
the band structure in the neighborhood of

⇀

k = 0 [7, 8, 9], whereas the latter needs to
have the Boltzmann transport equation solved to count in the transient carrier–phonon
scattering process [10, 11, 12, 13]. Some parameters are almost unobtainable due to their
randomness, such as the optical scattering loss incurred as the wave propagates along
the cavity. Finally, some material constants (such as the background refractive indices,
the material compositions, the doping concentrations, and the strain quantities, etc.) and
geometrical dimensions (such as the QW thickness, the grating periods, and the grating
phase shifts at section ends, etc.) vary quite significantly for different device fabrication
technologies, different fabrication facilities, or even different batches fabricated at dif-
ferent times. This makes simulation results disagree with experimentally measured data.
Therefore, the numerical solver needs to be calibrated and validated.

Taking the semiconductor laser as an example, different sets of parameters can be
extracted depending on different models. For example, effective parameters in the rate
equation model have been successfully extracted [14, 15, 16]. However, in physics-based
laser modeling, we need to extract those intrinsic laser parameters rather than effective
parameters. The emission spectra [17], various small-signal modulation responses [18]
and far-field patterns can be used for this purpose.

Parameter extraction and solver calibration usually follow such a sequence. We firstly
use the measured optical far-field pattern and optical spectrum to extract the background
refractive indices, the cross-sectional waveguide structure, and the longitudinal cavity
structure [19]. Figure 9.2 shows the calculated optical spectra before and after calibration
in comparison with the measured spectrum. The nominal input parameters used for the
initial spectrum calculation and the extracted parameters through fitting our calculated
spectrum to the measured spectrum are listed in Table 9.1. The spectrum is calculated
based on the standing wave transfer matrix approach [20]. The fitting approach is based
on a genetic algorithm (GA) [21, 22] that does not need any derivative evaluation of
the target function and offers global optimization. In the fitting process, we let the input
parameters vary until the best fitting spectrum is obtained. The corresponding input
parameter set is therefore taken as the parameters after calibration.
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Table 9.1. A comparative list of nominal and extracted parameters

Parameter Nominal value Extracted value

Straight waveguide section length, µm 100 100
Grating section length, µm 150 150
Effective index 3.2172 3.2172
Group index 3.6031 3.6031
Confinement factor 1.7998% 1.7998%
Grating period, nm 238.0 238.0
Normalized index coupling coefficient 2.0000 1.6726
Normalized gain/loss coupling coefficient 0.0 0.0
Rear facet amplitude reflectivity (HR coated) 0.75 0.81
Rear facet phase 0.0 35◦
Front facet amplitude reflectivity (AR coated) 0.05 0.16
Front facet phase 0.0 143◦
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Fig. 9.2. Comparison between the measured semiconductor DFB laser spectrum and the calculated
spectra before and after calibration. The semiconductor DFB laser has a two-sectional partially
corrugated structure with the rear (the straight waveguide section end) and front (the grating
section end) facets high reflection (HR) and anti-reflection (AR) coated, respectively. The
nominal parameters (i.e., the parameters before the calibration) and the extracted parameters
(i.e., the parameters after calibration) are listed in Table 9.1.

At the second step, the measured I–V (bias current – bias voltage) and (dI/dV )/I

curves can be used to calibrate those parameters in the carrier transport model.
At the third step, the measured L–I (output optical power – bias current) and small-

signal modulation response curves under different ambient temperatures can be used to
calibrate the non-radiative recombination constants, the optical modal loss, the non-linear
gain saturation coefficient, and the thermal parameters.
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Up to this stage, all the input parameters invoked by the numerical model have been
fixed. We will use these parameters to simulate, e.g., the time domain large-signal output
optical power waveform under a given modulation pattern. Once the simulated result
agrees with the measured waveform of the same device, we confirm the consistency of
this model.

Shown in Figs. 9.3 and 9.4 are the calibrated results in terms of the measured L–I

and small-signal IM response.
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Fig. 9.5. Comparison between measured and calculated large-signal output optical power waveforms
under the modulation of a binary bit stream. The bias current comprises a 10.6 mA DC
component plus 20 mA peak-to-peak AC square pulses with an equal on and off duration in
400 ps, which is equivalent to a non-return to zero (NRZ) 1-0 regular bit stream at 2.5 Gbps. In
this simulation, the laser parameters are all fixed either through self-consistent calculations or
through the above fitting processes. As such, no flexible fitting parameter is used.

Figure 9.5 shows a comparison between the simulated and measured large-signal
output optical power waveforms.Areasonable agreement between these results indicates
the consistency of the model framework and confirms the accuracy of the numerical
solution techniques, since there is no flexible fitting parameter used in this step.
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10 Design and modeling examples of
semiconductor laser diodes

10.1 Design and modeling of the active region for optical gain

10.1.1 The active region material

Specification of the lasing wavelength and substrate material availability usually dictate
the active region material selection. However, in some wavelength bands, the selection
of the material is not unique. For example, either one of the following systems: InGaAsP
on InP substrate [1], InAlGaAs on InP substrate [2], InGaAsN on GaAs substrate [3],
and InAsPN on GaAs substrate [4], can be chosen as the active region material for
semiconductor laser diodes emitting in the 1300 nm band. In this section, however, we
will compare only the first two systems, which seem to be more mature in production.
Table 10.1 summarizes the features of the two active region structures made of the two
different material systems.

Unlike the InGaAsP/InPheterojunction with a smaller conduction band offset (∼36% )
compared to the valence band offset (∼64% ), the InAlGaAs system has a larger offset
(∼71%) on the conduction band side.As such, the InAlGaAs system has a better confining
effect on the injected electrons. Hence it has better temperature characteristics as a result
of the effective reduction of electron current leakage, which is the dominant form of
leakage due to the high electron mobility [2].

In accordance with the active region designs in Table 10.1, the calculated transverse
electric (TE) mode material gain profiles are shown in Fig. 10.1. Since we have used
the same well thickness and the same number of QWs in these two material systems,
the sheet carrier density in the InAlGaAs and InGaAsP QWs is the same at each carrier
injection level. From this result we find that, at the low carrier density, the peak gain of
the InAlGaAs system is higher. However, as the carrier density increases, the gain of the
InAlGaAs system saturates and the gain of the InGaAsP system surpasses it. Particularly
at low carrier densities, the InAlGaAs system has a much broader gain bandwidth.
These observations indicate that the InAlGaAs system has a lower transparency carrier
density as opposed to the InGaAsP system. Therefore, to take full advantage of the
InAlGaAs system, we should always retain lower carrier densities inside the InAlGaAs
QWs to obtain a higher differential gain. In this case, we will be able to obtain a lower
threshold in DC operation and a better device dynamic performance, as will be discussed
in Section 10.1.2. Using the InAlGaAs system with a low carrier density gives us an
extra advantage in conjunction with the DFB cavity design. Actually, as the ambient
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Table 10.1. Designs of laser active regions with different material systems and different strains at
1310nm

All layers are undoped.

InGaAsP/InP
system

Thickness
(nm)

Composition of In(1−x)

GaxAsyP(1−y) (x, y)
Remarks λg (nm) and
strain∗

Barrier 10 (0.181, 0.395) 1150, 0.0
Well × 6 5 (0.081, 0.547) 1355, CS1.2%
Barrier × 6 10 (0.181, 0.395) 1150, 0.0
Barrier 10 (0.350, 0.130) 1000, 0.0

InAlGaAs/InP
system

Thickness
(nm)

Composition of
In(1−x−y)AlxGayAs(x, y)

Remarks λg (nm) and
strain∗

Well × 6 5 (0.151, 0.145) 1440, CS1.2%
Barrier × 6 10 (0.350, 0.130) 1000, 0.0
Bulk – (0.265, 0.573) 1275, 0.0
Barrier 10 (0.181, 0.395) 1150, 0.0
Well × 6 5 (0.636, 0.987) 1450, TS1.2%
Barrier × 6 10 (0.181, 0.395) 1150, 0.0
Barrier 10 (0.350, 0.130) 1000, 0.0
Well × 6 5 (0.000, 0.642) 1460, TS1.2%
Barrier × 6 10 (0.350, 0.130) 1000, 0.0

∗ CS = compressive strain, TS = tensile strain.
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Fig. 10.1. TE mode material gain profiles for compressively strained InAlGaAs and InGaAsP QW
structures.

temperature rises, the gain profile exhibits a red-shift at a rate of about 0.25 nm/K as
shown in Fig. 9.1(a). It is still higher than the rate of the Bragg wavelength red-shift
due to the effective index increase with temperature. As a result, the lasing wavelength
moves off the gain peak towards the blue side. In the InGaAsP system, a significant gain
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drop at the lasing wavelength will occur. In the InAlGaAs system, however, the lasing
wavelength sees little change in gain.

At a high carrier density, however, both systems have broad gain bandwidth but the
InGaAsP system has significantly higher gain, as this system has relatively high trans-
parent carrier density and hence it saturates at a higher carrier injection level. This
observation suggests that in device applications where the cavity has to retain high car-
rier densities, such as in SOAs and SLEDs, the advantage of less current leakage in the
InAlGaAs system could be offset by the disadvantage of lower gain compared with the
InGaAsP system.

Once we cannot switch freely between the two material systems, e.g., we are limited
by the fabrication technology, to equalize the performance we should use more QWs or
longer cavity length in devices made of the InAlGaAs system and vice versa in devices
made of the InGaAsP system, as both measures help to reduce and increase the sheet
carrier densities inside the InAlGaAs and InGaAsP QWs, respectively. This will be
further discussed in Section 10.1.2.

Figure 10.2 shows a comparison of TE mode gains of these two material systems
under different compressive strains. Other than the known effect as shown in Fig. 3.5(b),
we find that the compressive strain introduces a pure reduction in the transition energy,
as a result of P c

e − P v
e + Qe > 0. Moreover, in the InAlGaAs system, the compressive

strain seems effectively to broaden the gain profile bandwidth as the expansion on the red
(longer wavelength) side is greater than the shrinkage on the blue (shorter wavelength)
side. In the InGaAsP system, the compressive strain seems to have an optimum value
(1.2%) at which the peak gain is the highest.

For the sake of comparison, we also show in Fig. 10.3(a&b) the calculated transverse
magnetic (TM) mode material gains for the QW structures with tensile strain and the
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Fig. 10.3. Comparison of material gain profiles between the compressively strained QWs (TE mode gain)
and the tensilely strained QWs (TM mode gain). (a) The InGaAsP system (where bulk material
gain is also plotted). (b) The InAlGaAs system.

bulk material gains, for the InGaAsP and InAlGaAs systems at 1310 nm, respectively.
The structures and parameters are all listed in Table 10.1.

While the bulk material gain is about ten times smaller, the TM mode gains of the
QW structures with tensile strain is higher than the TE mode gains of the QW structures
with compressive strain for both material systems. Despite the in-plane mixing effect
between the heavy-hole and light-hole bands as mentioned in Section 3.2.4, the dipole
matrix element between the electron and light-hole band transition in the QW with



Design and modeling examples of semiconductor laser diodes 255

tensile strain is higher than that between the electron and heavy-hole band transition
in the QW with compressive strain because of the larger overlap between the electron
and light-hole wave functions. It is also apparent that the QWs with tensile strains have
higher transparent carrier density and consequently saturate at high carrier density levels
for both material systems. Therefore, to achieve better device performance, we have to
retain higher sheet carrier density inside the QWs with tensile strain as opposed to the
QWs with compressive strain, which suggests that we use fewer QWs or a shorter cavity
length when the tensile strain is incorporated.

10.1.2 The active region structure

As opposed to the bulk material active region, the main advantage of the active region
produced by the QW structure lies in its high differential gain at low carrier densities,
since the gain in the QW structure grows faster than in bulk as the carrier density increases
due to the difference in their density of states [5]. However, if there is no second bound
electron state inside the QW, as the carrier density grows to high levels, the QW gain
starts to saturate, again due to the constant density of states in the QW. (On the valence
band side, usually both heavy-hole and light-hole states are bound and, due to the band
mixing effect, there is no selection rule to forbid the transition of electrons to these bands.
Thus, saturation is mainly brought by electrons.) Therefore, the differential gain of the
QW structure drops as the injected carrier density inside the QW increases. Actually,
the gain provided by a QW has a sub-linear dependence on the sheet carrier density due
to the constant density of states and the sub-linear quasi-Fermi level dependence on the
sheet carrier density according to equations (7.20) and (7.16a). Therefore, the derivative
of the gain with respect to the sheet carrier density has to drop as the sheet carrier density
increases.

Compared with the bulk material active region, although the transparent carrier density
in the QW structure is higher (as the step-function-like density of states becomes non-
zero at an energy level higher than the band edge), the threshold current for lasers
with a QW active region is still lower, due to the high differential gain at low carrier
density. In an FP laser with negligible LSHB effect, the carrier density is fixed and
almost uniformly distributed inside the cavity after lasing, hence the differential gain
has no effect to the laser output power–bias current dependence when the bias current
goes beyond the threshold, as can be seen by the steady state solution of the optical
and carrier rate equations. Thus, the differential gain will not affect the FP laser DC
performance except for its threshold current. However, the differential gain does have
significant impact on the laser dynamic performance, e.g., the 3 dB bandwidth of the
small-signal IM response [6, 7]. To achieve a low threshold in DC operation as well as
a high modulation bandwidth in alternating current (AC) operation, we have to retain a
low carrier density in the entire operation range to maintain a high differential gain in
the QW structure.

Therefore, for the design of directly modulated lasers with QW structures, retaining a
low carrier density inside the active region can be taken as an important rule to guarantee
not only a superior DC, but also a superior AC, performance compared with bulk active
region lasers.
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We have other applications where high carrier density inside the cavity is preferred, in
order, e.g., to maintain a high gain and a high saturation power in SOAs, or to broaden the
emission bandwidth in SLEDs. Since these devices are not modulated, low differential
gain will not degrade the performance. Hence we can still use the QW structure as the
active region for these devices.

In any of the above mentioned applications, we need to control the level of carrier
density inside the active region. In a bulk active region, the differential gain is mod-
erate but drops very little as the carrier density increases. In an active region with a
QW structure, however, the differential gain is much higher but drops more rapidly
as the carrier density increases. Therefore, unless we need to maintain both high car-
rier density and high differential gain, in which case we would rather select the bulk
active region, we should always take a QW structure as the active region. Besides, the
implementation of strains in a QW structure is much easier, due to the limitation on the
maximum strain–layer thickness product. For this reason, we will mainly focus on QW
structures.

In a QW structure design for the active region, there are a number of parameters
that need to be determined, including the number of QWs, the well thickness, the well
bandgap energy and the strain on the well (i.e., the well material composition), the barrier
bandgap energy and the strain on the barrier (i.e., the barrier material composition).

Usually the design goals are:

(1) sufficient gain and differential gain to cover the specified lasing wavelength;
(2) balance on the optical confinement factor and carrier (electron and hole) transport;
(3) higher differential gain and lower transparent carrier density;
(4) control on gain profile bandwidth (broad or narrow);
(5) low temperature dependence.

While every design parameter except the number of QWs can affect the gain peak
position, we leave its tuning to the final stage, since there is the least constraint on the
alignment of gain peak to the required lasing wavelength (possibly with some detuning).

Other than some special devices where low optical confinement factors are required,
such as SOAs for linear amplification, most devices including lasers need larger optical
confinement factors. The optical confinement is mainly determined by the number of
QWs and the well thickness. To achieve a specific optical confinement factor, we can
either select more and thinner QWs or fewer and thicker QWs. On the one hand, we prefer
more and thinner QWs as the latter option leads to a lesser quantum effect, and leads to
the bulk semiconductor at the extreme case. Besides, to avoid the state filling induced
gain saturation [7], we prefer to let the laser operate at moderate sheet carrier densities
inside the QWs. The structure with more QWs will therefore raise the bias current at
which saturation starts to appear inside the QWs due to the dilution of the sheet carrier
density, a similar effect to extending the laser cavity length [6]. On the other hand, a
structure with too many QWs increases the threshold current, as the sheet carrier density
in each well will be diluted under a fixed bias current. Hence a higher bias current is
required to reach the transparent sheet carrier density in each QW. Although this effect
can be compensated for by reducing the laser cavity length, unwanted side effects such
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as poor thermal characteristics and broadened lasing mode linewidth are brought in as
well. Moreover, a structure with too many QWs also creates carrier transport problems,
as it is getting more difficult for electrons to reach the P side wells and for holes to reach
the N side wells with the growing number of QWs. When insufficient injection occurs,
population inversion will not happen inside those wells at the two edges. As a result,
these wells absorb light rather than emit light. Although this may not be a severe problem
in lasers or SOAs with identical wells due to photon assisted carrier transport [8], it may
cause insufficient injection to those wells with higher transition energies in lasers or
SOAs with non-uniform QWs, or in SLEDs where the photon assisted carrier transport
effect is negligible.

For different applications with different specification devices, the optimized number
of QWs can be very different and is closely correlated with other device parameters such
as the cavity length. Hence a full device simulation is necessary before we can know the
best number.

Therefore, at the very beginning, we have to take a trial number of QWs to start the
design–simulation–modification loop.

For a fixed trial number of QWs, the well thickness is then fixed in order to meet the
required optical confinement factor, and consequently the maximum allowed strain is
set, since the total strained QW thickness cannot go beyond a certain critical value at
which the strain will be relaxed.

For the fixed number of QWs and well thickness, we can then select the bandgap energy
difference between the barrier and the well. This value must be selected to balance carrier
injection and confinement, as well as the number of bound states (discrete energy levels)
required. Usually we select relatively lower barriers for more wells to facilitate carrier
injection. We usually do not apply any strain to the barrier unless we run out of other
degrees of freedom. Hence the barrier composition is determined.

Finally, we can jointly tune the well bandgap energy and the strain applied to the wells
at the previously determined well thickness and barrier height to align the gain peak to
a specific value determined by the lasing wavelength. Hence the well composition is
determined.

In the laser design example as shown in Table 10.1, six 5 nm QWs are selected on
trial. The barrier bandgap wavelength is selected as 1150 nm for the InGaAsP system.
For the InAlGaAs system, however, we usually choose a barrier with a higher bandgap
energy, as otherwise the small valence band offset may hardly bind any heavy-hole band.
Thus the well bandgap energy and the strain are selected to align the gain peak around
1310 nm.

As shown in Fig. 10.1 and Fig. 10.2, we have already achieved initial designs with
reasonable results. Suppose that we have to tune the obtained gain profile towards the red
(longer wavelength) side for 35 nm in order, e.g., to acquire a higher differential gain, or
to prevent the gain from moving off the lasing wavelength at low ambient temperatures,
we can achieve this target by changing a number of parameters, such as reducing the well
bandgap energy, or reducing the barrier height (barrier bandgap energy), or increasing
the strain, or increasing the well thickness. Figure 10.4 shows the effects of changing
these parameters in the InAlGaAs system.
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Fig. 10.4. Effects of parameter tuning on gain profiles in the InAlGaAs QW structure.

As can be seen from Fig. 10.4, all these approaches shift the gain peak to a longer
wavelength as expected. A common feature is that there is always a gain bandwidth
broadening accompanying the gain peak red-shift.

In addition to the common effect, we still make the following observations based on
this simulation.

(1) Reducing the well or the barrier bandgap energy has an almost identical effect on
the gain profile.

Note that these two approaches change the barrier–well depth (i.e., the bandgap energy
difference between the barrier and the well) in an opposite way. The original bandgap
energy difference is 1.2405(1.0−1.0/1.44) = 379 meV, the first approach increases the
bandgap energy difference to 1.2405(1.0 − 1.0/1.495) = 411 meV, whereas the second
approach reduces it to 1.2405(1.0/1.15 − 1.0/1.44) = 217 meV. Therefore, we prefer
to have the low barrier height design to facilitate carrier transport. This conclusion holds
only in this particular case since only the light-hole band becomes unbound in the second
approach, whereas there is no extra bound state found in the first approach. With respect
to the TE gain, exclusion of the light-hole band has little effect.

(2) Increasing the compressive strain increases the gain bandwidth.

While it offers a relatively higher gain at a low carrier density, increased compressive
strain indeed reduces the gain at high carrier densities, which indicates a deterioration of
the differential gain at high injection level for the QW structure with high compressive
strain. This suggests using relatively high strain for laser design but relatively low strain
for SOA or SLED design.
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(3) Increasing the well thickness provides lower gain and slightly narrower bandwidth.

This can be attributed to the equivalent reduction of the quantum effect. Therefore, we
should always avoid taking this approach in practice.

In the design process, normally we need only to invoke the free-carrier gain model, as
computational efficiency is the major concern. Only in the final simulation of a designed
structure can we invoke the many-body gain model in order to obtain more accurate
results. This strategy works well in practice since the free-carrier gain model does not
seem to give any wrong prediction of gain dependence on design parameters, although
its accuracy could be poor [9, 10, 11].

10.2 Design and modeling of the cross-sectional structure for optical and
carrier confinement

10.2.1 General considerations in the layer stack design

The design of the cross-sectional structure is required to provide both optical and carrier
confinement. Despite the many designs proposed historically, only buried heterostruc-
ture (BH) and ridge waveguide (RW) structures, as shown in Fig. 10.5(a&b), are used
practically for device production currently. We will then compare these two structures
on their ability to confine the optical field and to prevent the current leakage. To focus on
the cross-sectional structures, we will take the previously designed InAlGaAs system as
the active region and use a simple Fabry–Perot (FP) structure with a length of 250 µm
and as-cleaved facets with equal amplitude reflectivities at 0.565 as the laser cavity.

The parameters in the BH and RW cross-sectional structures are summarized in
Table 10.2.

As shown by Table 10.2, the barriers and QWs in the previously designed active
region are sandwiched between two graded index separate confinement heterojunction
(GRINSCH) regions made of InAlGaAs layers. This well-known design provides us
sufficient degrees of freedom simultaneously to optimize confinement of electrons and
holes in a small region near the QWs and of the optical wave along the vertical direction
[12]. Without this design, it is hard to prevent a deep penetration of the evanescent
tail of the optical wave outside the QWs into the heavily doped cladding layers, which
leads to strong free-carrier absorptions. Without sufficient doping in the P and N side
cladding layers, however, we cannot achieve efficient hole and electron injections into
the active region [13]. Moreover, this design also flattens the optical mode profile inside
the active region, hence the contribution of the material gain from each individual QW
will be more balanced. Two wide bandgap InAlAs layers have also been inserted outside
the GRINSCH regions on both the P and N sides, to block electron leakage further and
to confine the optical mode better.

An exponentially growing doping profile is used in the P type InP cladding layer
from the bottom (closer to the active region) to the top (closer to the cap), which is the
best compromise between the conflicting requirements on increasing the hole injection
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Fig. 10.5. Device design. (a) The ridge waveguide. (b) The buried heterostructure.

efficiency and reducing the optical free-carrier absorption. Actually, as the evanescent
tail of the optical wave decays exponentially inside the cladding layer, an exponentially
growing doping profile would make a minimum effective overlap between the optical
field and the doping concentration, under the constraint that a given averaged doping
concentration must be achieved in the cladding layer [13].

Due to the many constraints, there are actually not too many choices of design for the
layer stack along the vertical direction. While following the above mentioned general
guidance, we have to fine tune the top and bottom GRINSCH regions and to optimize
the doping profiles on both P and N sides according to different device specifications for
different applications. Since the fine tuning of the vertical layer stack is usually problem
dependent, which results in scattered optimized structure parameters in different appli-
cations, we will not go into further details on the vertical layer design but shift our focus
to two seemingly more common problems in the RW and BH structure, one for each.

10.2.2 The ridge waveguide structure

The main advantage of the RW structure is its ease of fabrication. However, it has
drawbacks in performance. Due to concerns about reliability, we have to let the ditch



Design and modeling examples of semiconductor laser diodes 261

Table 10.2. Laser cross-sectional structures

The table sets out designs for the InAIGaAs/InP system at 1310 nm.

Layer Thickness
(nm)

Composition of
In(1−x−y) AlxGayAs
or In(1−x)GaxAsy
P(1−y) (x, y)

Doping
concentration
(1018/cm3)

Remarks
λg (nm)
and strain

Cap P-InGaAs 200 (0.468, 1.000) 10.0 (P) 1654, 0.0
Graded doped P-InP 1800 (0.000, 0.000) 1.0-0.5 (P) 918.6, 0.0
Etching stop InGaAsP 10 (0.108, 0.236) 0.5 (P) 1050, 0.0
Spacer InP 50 (0.000, 0.000) 0.3 (P) 918.6, 0.0
Blocking P-InAlAs 50 (0.479, 0.000) 0.3 (P) 829.2, 0.0
GRINSCH InAlGaAs 100 (0.380, 0.090)-

(0.350, 0.130)
undoped 950–1000,

0.0
Barrier InAlGaAs 10 (0.350, 0.130) undoped 1000, 0.0
Well InAlGaAs × 6 5 (0.155, 0.145) undoped 1440,

CS1.2%
Barrier InAlGaAs × 6 10 (0.350, 0.130) undoped 1000, 0.0
GRINSCH InAlGaAs 100 (0.350, 0.130)-

(0.380, 0.090)
undoped 1000–950,

0.0
Blocking N-InAlAs 50 (0.479, 0.000) 2.0 (N) 829.2, 0.0
Buffer N-InP 650 (0.000, 0.000) 1.0 (N) 918.6, 0.0
Etching stop InGaAsP 10 (0.108, 0.236) 1.0 (N) 1050, 0.0
Substrate N-InP 100 000 (0.000, 0.000) 3.0 (N) 918.6, 0.0
RW width 2000 nm etching 2000 nm to the first etching stop on P side
BH width 2000 nm etching 3110 nm to the second etching stop on N side and regrowth
Blocking N-InP 2265 (0.000, 0.000) 0.5 (N) 918.6, 0.0
Blocking P-InP 845 (0.000, 0.000) 0.5 (P) 918.6, 0.0

that forms the ridge stop above the active region. In this case, the optical wave overlaps the
unpumped active region along the horizontal direction. Therefore, we face a problem
in selection of the spacer layer thickness measured from the active region top to the
ditch bottom beside the ridge. If we leave a thin or zero spacer, the hole current leakage
is minimum and the ridge has the strongest control on the optical mode horizontally.
However, the active region outside the ridge becomes totally absorptive due to the zero
injection of the hole. Besides, the ridge guidance could become so strong that the second
transverse optical mode is brought closer to the cut-off edge. As a result, the second
mode also gets a chance to lase under higher injection levels as its threshold is greatly
reduced. A well-known consequence of the higher order transverse mode excitation is
a kink in the output optical power–bias current curve and the beam steering [14]. On
the contrary, a thick spacer may cause an overflow of holes into the area that even the
optical field does not reach, which leads to a complete waste, as illustrated by Fig. 10.6.
Besides, the ridge will have little effect on the optical mode profile, which leads to an
elliptical shaped far-field pattern with poor aspect ratio, and consequently causes a poor
coupling to the optical fiber.
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Fig. 10.6. Hole current leakage and the unpumped active region absorption of the optical field.

Therefore, optimization of the spacer thickness is a unique problem in the RW structure
and has a significant impact on the laser performance. We calculated the RW structure
with four different spacer layer thicknesses and show the results in Figs. 10.7 to 10.10.
In these figures, the horizontal axis shows the spacer layer thickness measured from the
top barrier boundary. As such, the first structure marked with the spacer thickness 0 is
the structure with the ditch beside the ridge etched all the way down to the top of the first
barrier layer. This is the thinnest possible spacer if the well is not allowed to be etched.
The second structure marked with the spacer thickness 150 nm is the structure with the
ditch beside the ridge etched to the top of the P side InAlAs layer. It is obvious that the
thickness of the spacer comes from the P side GRINSCH region thickness (100 nm) plus
the InAlAs layer thickness (50 nm). The third structure marked with the spacer thickness
200 nm is the structure shown in Table 10.2, in which we leave an extra InP spacer layer
50 nm in addition to the GRINSCH region and the InAlAs layer underneath the ditch
beside the ridge. The last structure marked with the spacer thickness 300 nm is the same
as the third one, except that the thickness of the InP spacer layer now is 150 nm instead
of 50 nm. These structures correspond to the (closed and open) circles in the figures.

Figure 10.7 shows the calculated effective indices and confinement factors for these
structures. As the spacer thickness grows, both effective index and confinement factor
increase slightly. From these curves we find that the structure with a thicker spacer will
have slightly higher modal gain.

Figure 10.8 shows the calculated horizontal and vertical divergence angles in the far-
field pattern of these structures. The vertical divergence angle only increases slightly as
the spacer gets thicker, as the optical field distribution in the vertical direction is mainly
determined by the vertical layer stack. The horizontal divergence angle, however, reduces
rapidly as the spacer thickness increases, which indicates a rapid optical field expanding
along the horizontal direction. The aspect ratio takes almost a perfect value (1.03:1
for vertical:horizontal) for the structure with the thinnest spacer (at the very left of the
figure), and deteriorates rapidly as the spacer thickness increases. It becomes 1.97:1 at
the very right of the figure, which indicates that the far-field pattern of the structure with
the 300 nm spacer becomes elliptical.
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laser.

Figure 10.9 shows the calculated threshold currents and the injection efficiencies at the
threshold of the FP lasers made in cross-sectional designs with the identical cavity spec-
ified in Section 10.2.1. The injection efficiency drops as the spacer thickness increases
due to hole leakage as expected. Such a drop is minor when the spacer thickness increases
from 0 nm to 150 nm, but gains momentum after the spacer goes beyond 150 nm. This
is because the first 150 nm thick spacer comprising the GRINSCH and InAlAs layer is
undoped, whereas the part of the spacer thicker than 150 nm is made of the P doped InP
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layer. The threshold current, however, presents a minimum around our standard design
shown in Table 10.2. This can be understood from Fig. 10.10, which shows the calculated
differential efficiencies and the output powers at 100 mA bias for these structures. Since
the differential efficiency is inversely proportional to the optical modal loss, a structure
with higher differential efficiency means it has lower optical modal loss. Figure 10.10
shows that a thicker spacer has lower modal loss although the optical field extends more
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into the active region outside the ridge, as shown by the reduction of the horizontal
divergence angle in the far-field pattern. Due to the hole leakage in structures with a
thicker spacer, the unpumped active region outside the ridge is actually pumped by the
leaked holes from the spacer and electrons from the bottom N side layer. As a result,
the absorption in this region disappears, hence the modal loss reduces. Since there is no
spatial synchronization between the extended optical field and the leaked holes, if the
field extends more, the modal loss increases, if the field extends less, the leaked holes
are wasted. While modal loss affects both differential efficiency and threshold, the hole
leakage affects only the threshold. As a combination, there must be an optimum spacer
thickness at which the device has the lowest threshold: a thinner spacer results in high
modal loss as no leaked holes can be consumed to pump the active region outside the
ridge; a thicker spacer may still cause the same problem if the field extended farther than
the leaked holes, or may cause the leaked holes to be wasted if the field extended nearer
than the leaked holes. In either case, the device threshold increases.

Figure 10.9 shows that in this particular case the optimum spacer is the design in
Table 10.2. Structures with a thinner spacer have higher injection efficiency but lower
differential efficiency, which means that in such structures the leakage is low but the
optical modal loss is high. Therefore, the optical field in such structures extends farther
than the hole leakage in the active region outside the ridge. The structure with a thicker
spacer, however, has lower injection efficiency but almost the same differential efficiency,
which means that in this structure the leakage is high but the optical modal loss is the
same. Therefore, the optical field in this structure extends nearer than the hole leakage.
In the active region outside the ridge, the extended optical field and the leaked holes
have the best match in the structure shown in Table 10.2.

10.2.3 The buried heterostructure

The BH solves the hole leakage and optical wave evanescent tail absorption problems
simultaneously, as the entire active region is pumped and surrounded by materials with
wider bandgap energy. Any horizontal leakage path is blocked either by the deple-
tion region of a reversely biased P–N junction or by semi-insulating semiconductors.
However, regrowth is required to fabricate this structure, which increases the cost.

From the device performance point of view, an obvious question is how to select the
width of the active region for low threshold current and high differential efficiency.

As the width of the active region grows, the optical confinement factor increases and
hence the modal gain increases whereas the modal loss decreases, which results in low
threshold current and high differential efficiency. However, the wide active region dilutes
the carrier (electron and hole) densities and leads to high threshold current. Lateral spatial
hole burning may also occur, which reduces the effective modal gain [15]. Besides, the
increased width of the waveguide may lead to multiple transverse optical mode operation
and the kink may show up again in the device output power–bias current curve.

We have calculated the BH with three different widths and show the results in
Figs. 10.11 to 10.14. In these figures, the horizontal axis shows the width of the active
region and each structure corresponds to a pair of closed and open circles.
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laser.

Figure 10.11 shows the calculated effective indices and confinement factors for these
structures. As the width increases, both effective index and confinement factor increase
as expected. Hence the structure with a wider active region has a higher modal gain.

Figure 10.12 shows the calculated horizontal and vertical divergence angles in the far-
field pattern of these structures. While the horizontal divergence angles are all slightly
smaller than the vertical divergence angles for all structures, the structure with the nar-
rowest width has the best aspect ratio. To reach a perfect aspect ratio, not only do we



Design and modeling examples of semiconductor laser diodes 267

 78

 78.5

 79

 79.5

 80

 80.5

 81

 1.6  1.8  2  2.2  2.4
 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

C
u

rr
en

t 
in

je
ct

io
n

 e
ff

ic
ie

n
cy

 [
%

]

T
h

re
sh

o
ld

 c
u

rr
en

t 
[m

A
]

Active region width [µm] 

Solid line: current injection efficiency at threshold

Dashed line: threshold current

Fig. 10.13. The current injection efficiency and threshold current as functions of the active region width in
the BH FP laser.

 33

 33.5

 34

 34.5

 35

 35.5

 36

 1.6  1.8  2  2.2  2.4
 32

 32.5

 33

 33.5

 34

 34.5

 35

D
if

fe
re

n
ti

al
 e

ff
ic

ie
n

cy
 [

m
W

/m
A

]

O
u

tp
u

t 
p

o
w

er
 [

m
W

]

Active region width [µm] 

Solid line: single facet differential efficiency

Dashed line: single facet output power at 100 mA

Fig. 10.14. The differential efficiency and output power at 100 mA as functions of the active region width in
the BH FP laser.

have to adjust the width of the active region, but also the GRINSCH region design in
the vertical layer stack.

Figure 10.13 shows the calculated threshold currents and the injection efficiencies
at the threshold of FP lasers of cross-sectional design with an identical cavity to that
specified in Section 10.2.1. The injection efficiency increases as the width increases.
The threshold current, however, has a maximum when the width is 2.0 µm. Note that
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this width depends on the number of QWs inside the active region and the cavity length,
as the sheet carrier densities in the QWs are jointly determined by these parameters for
a given bias current. If we want to push this threshold current maximum away from the
width that we normally select for the active region, we should either reduce the cavity
length, or reduce the number of QWs, as these approaches will increase the sheet carrier
density in the QWs for a fixed bias current.

Figure 10.14 shows the calculated differential efficiencies and the output powers at
100 mA bias for these structures. It is apparent that, as the width of the active region
increases, both the differential efficiency and the output power increase.

Therefore, we conclude that for the previously designed active region with six QWs,
the BH with a width of 2.5 µm is preferred for its high efficiency and low threshold.
Its relatively poor aspect ratio in the far-field pattern can be rectified by fine tuning
of the GRINSCH region in the vertical layer stack, without impairing performance
otherwise.

By further increasing the width of the active region to 3 µm, we find that the effective
index of the second transverse optical mode increases significantly, which is an indication
that this mode could also have a chance of lasing under a high injection level.

10.2.4 Comparison between the ridge waveguide structure and buried heterostructure

Finally, we give comparisons of the output power–bias current dependence under
different ambient temperatures between the RW structure and BH in Fig. 10.15.

As shown in this figure, the BH is indeed superior to the RW structure at room tempera-
ture (300 K). However, under the lifted ambient temperature at 358 K, the performance of
the RW structure surpasses that of the BH, since the current leakage through the reversely
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Fig. 10.15. Comparison of the output power–bias current dependences between RW and BH FP lasers at
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biased P–N junction grows rapidly with temperature in the BH, whereas the current
leakage has little change with ambient temperature in the RW structure. This result is
consistent with experimental observation [16], which suggests that, for high temperature
operations, either an RW structure or a BH with a semi-insulating blocking layer instead
of a reversely biased P–N junction should be used.

10.3 Design and modeling of the cavity for lasing oscillation

10.3.1 The Fabry–Perot laser

By assuming that the FP laser facets are as-cleaved, we have the cavity length as the only
design parameter in performance optimization for FP lasers. However, in the previous
active region design, we have left the number of QWs yet to be determined, as it is a
“global” parameter that impacts the device performance. In this section, we will jointly
vary the number of QWs and the cavity length to find the dependence of the device
performance on these changes.

As discussed in Section 10.1.2, to take advantage of the QW structures in the laser
design we need to retain a low carrier density inside the QWs, hence a high differential
gain is obtainable. At a fixed bias current, if we use more QWs in the active region, the
sheet carrier density in each QW is lower, hence the gain contributed by each QW is
lower. However, the confinement factor must be higher for an active region with more
QWs. For optimized GRINSCH regions and fixed well thickness, it is reasonable to
expect that the confinement factor will increase linearly with the number of QWs, once
the total thickness of QWs (i.e., the product of the well thickness and the total QW
number) does not go beyond, e.g., a quarter of the optical wavelength inside the active
region [6]. Due to the sub-linear dependence of the gain provided by each QW on the
sheet carrier density, as discussed in Section 10.1.2, the total modal gain increases with
the number of QWs. To make this argument clear, we assume that gSQW = �f (N2D),
where gSQW represents the modal gain of a single QW, � the confinement factor of a
single QW, N2D the sheet carrier density, and f (x) a sub-linear function for which we
have f (x)/a < f (x/a) for x > x0, f (x0) = 0, f (x) > 0, and a > 1. Consequently,
the modal gain of an active region with M QWs will be gMQW = M�f (N2D/M), where
the sheet carrier density has to be diluted M times for a fixed bias current. It is apparent
that gMQW > gSQW. In lasing operation, the gain is fixed by the total loss if we ignore
the spatial and spectral hole burning effects. Therefore, the structure with M QWs just
needs to retain lower sheet carrier densities inside the QWs to reach the same gain.
Consequently, it will have a higher differential gain. In this sense, we prefer to have
more QWs. However, there is a fixed transparent sheet carrier density for each QW; only
beyond this will the gain be positive. As M increases, a higher bias current is required
to reach this transparent sheet carrier density in each QW. Therefore, compared with the
single QW structure, the multiple QW structure has higher differential gain and higher
transparent carrier density. We may conclude that there must be an optimum M at which
the threshold current will be the lowest.
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Alternatively, the sheet carrier density can be adjusted through the cavity length for
a given number of QWs. Therefore, for a given number of QWs, there should be an
optimum cavity length at which the threshold will be the lowest.

This conclusion, also known as the QW scaling rule [17], is usually treated as a major
guideline in designing QW lasers. The fact that the number of QWs and the cavity length
can be jointly selected to achieve the lowest threshold current brings us great convenience
in laser design. For example, if the cavity length has to be chosen to satisfy other device
specifications, we can select the number of QWs to achieve the minimum threshold. Or
we can adjust the cavity length to achieve the lowest threshold if the number of QWs is
fixed by other conditions.

To confirm this conclusion, we will model RW FP lasers with different numbers of
QWs and different cavity lengths by taking the previously designed active region made
of the InGaAsP system as an example. The cross-sectional layer structure is given in
Table 10.3. The ridge is 2 µm wide and 2 µm deep.

Figure 10.16 shows calculated threshold current as a function of the FP laser cavity
length for structures with six and three QWs. This figure gives a consistent result with [6],
which confirms the existence of the lowest threshold for any combination of the number
of QWs and cavity length. In dealing with real world design problems, the cavity length
is normally selected to meet the specifications for the differential efficiency or output
power, the small-signal IM 3 dB bandwidth, or the thermal characteristics. Once the
cavity length is set, we should follow Fig. 10.16, or results from similar calculations, or
even simple estimations [18], to determine the number of QWs. It is worth mentioning
that there is a maximum number of QWs beyond which the scaling rule is no longer
valid. This can easily be understood if we rewrite the scaled gain in the form gMQW =
G(M)f (N2D/M), where G(M) ≈ M� for small M’s but becomes a sub-linear function
of M as well when M goes beyond a certain integer number. Once M is so large that
gMQW ≤ gSQW = �f (N2D), the scaling rule fails. If the threshold current is the major
concern, we prefer to choose more QWs combined with its optimum cavity length, as
the optimum threshold current in the structure with more QWs is still slightly lower than
that in the structure with fewer QWs.

Figure 10.17 gives the calculated output power–bias current curves for FP lasers with
six and three QWs at different cavity lengths. It shows that the shortest cavity has the
largest differential efficiency as expected.As can be seen from the figure, while threshold
current depends on both the number of QWs and the cavity length, differential efficiency
has little to do with the former. This suggests that, in FP laser design, we should select
the cavity length by fitting the specified differential efficiency first, and then select the
optimized number of QWs to achieve the lowest possible threshold current.

Up to this stage, we have completed a loop of FP laser design with the help of the
numerical simulation tools. At the beginning, we have started with a trial QW number.
If the specifications are met, we complete our design loop. Otherwise, we have to adjust
the number of QWs and start all over again. By always taking the optimum number
of QWs to start the next round of design, we may expect a rapid convergence of this
trial-and-error approach, as the selection of the number of QWs is no longer blind from
the second round onwards.
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Table 10.3. Laser cross-sectional structures

Layer Thickness
(nm)

Composition of
In(1−x)GaxAsy
P(1−y) (x, y)

Doping
concentration
(1018/cm3)

Remarks λg
(nm) and strain

Cap P-InGaAs 200 (0.468, 1.000) 10.0 (P) 1654, 0.0
Graded doped P-InP 1 800 (0.000, 0.000) 1.0-0.5 (P) 918.6, 0.0
Etching stop InGaAsP 10 (0.108, 0.236) 0.5 (P) 1050, 0.0
Spacer InP 50 (0.000, 0.000) 0.3 (P) 918.6, 0.0
GRINSCH InGaAsP 50 (0.108, 0.236) undoped 1050, 0.0
GRINSCH InGaAsP 50 (0.145, 0.317) undoped 1100, 0.0
Barrier InGaAsP 10 (0.181, 0.395) undoped 1150, 0.0
Well InGaAsP × 3 or 6 5 (0.081, 0.547) undoped 1355, CS1.2%
Barrier InGaAsP × 3 or 6 10 (0.181, 0.395) undoped 1150, 0.0
GRINSCH InGaAsP 75 (0.145, 0.317) undoped 1100, 0.0
GRINSCH InGaAsP 75 (0.108, 0.236) undoped 1050, 0.0
Buffer N-InP 650 (0.000, 0.000) 1.0 (N) 918.6, 0.0
Substrate N-InP 100 000 (0.000, 0.000) 3.0 (N) 918.6, 0.0

The table sets out design for the InGaAsP/InP system at 1310 nm.
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10.3.2 Distributed feedback lasers in different coupling mechanisms through grating
design

A major problem of the FP laser is its poor control of the lasing wavelength due to
the multiple longitudinal mode operation brought about by the narrow spacing between
the wavelengths of these modes on a spectrum compared with the gain bandwidth.
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Through the introduction of a wavelength dependent cavity loss, various DFB struc-
tures with different coupling mechanisms realized by different grating designs solve this
problem.

The fundamental difference between FP and DFB lasers is in their feedback, for while
the traveling waves along the opposite directions in the FP cavity do not interfere until
they reach the facets, the traveling waves inside the DFB cavity couple to each other as
they propagate along the cavity. A wavelength discrimination mechanism is therefore
brought in by such distributed coupling, since only the waves at the phase matched
wavelengths will add constructively and establish a standing wave, or a longitudinal
mode, inside the cavity.

As opposed to a constant cavity loss given in an explicit form of the structure parame-
ters | ln(|Rl||Rr|)/(2L)| at an equally spaced wavelength comb in an FP laser, the cavity
loss dependence on the wavelength in DFB lasers is given implicitly by a dispersion (or
an eigenvalue) equation, e.g., shown in equations (6.81) and (6.82) when the LSHB effect
is negligible. The lasing modes correspond to the solutions of the dispersion equation:
the lasing wavelength and the cavity loss are linked to the imaginary and real part of the
solution. Actually, if we split the complex dispersion equation into two real equations,
we will find the latter to be a set of coupled amplitude and phase resonance conditions.
However, in contrast to the FP cavity, the amplitude and phase resonance conditions are
coupled in the DFB cavity. Therefore, we do not take the real form of the dispersion
equation as it neither provides any clearer physical picture nor simplifies the solution
technique.

Despite the complexity in solving the dispersion equation (6.81) when the LSHB is
negligible, or the original rigorous eigenvalue problem, equation (6.65), we may still
state generally that a common feature in DFB lasers is that cavity loss at the lasing
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wavelength is inversely proportional to the normalized coupling factors κ±ML, with the
coupling coefficients κ±M given in equation (2.79).

Therefore, the design guidelines that have been summarized for FP lasers are still
valid for DFB lasers if we use 1/(|κ±M |L) to replace | ln(|Rl||Rr|)/(2L)|.

An extra design problem in the DFB laser, however, is its lasing wavelength control.
First of all, the lasing wavelength must be linked to the Bragg wavelength

λB = 2neff , (10.1)

at which β0 = 2πneff /λ = π/ or δ = 0. This is the wavelength at which the wave sees
the maximum reflection as it travels through the cold cavity (passive waveguide). It is
apparent that, for a DBR laser, lasing will take place right at this wavelength. Since the
DBR laser can be viewed as an FP laser with its mirror reflectors at the facets replaced
by the wavelength selective grating reflectors, the cavity loss at the Bragg wavelength
becomes the smallest due to the highest reflections presented by the gratings at this
wavelength. In DFB lasers, however, this is not a generally valid conclusion as discussed
in Section 6.3. For example, in the most commonly used first order purely index-coupled
gratings, κMκ−M = κ−1κ1 is real and we find that δ = 0 can never be a solution since
equation (6.81) has no real solution for γ . Physically, this is also understandable: due
to the maximum reflection, the wave at the Bragg wavelength must have the shortest
penetration into the grating region; since the grating region is also the gain region in DFB
lasers, the Bragg wave then sees the least gain and hence it cannot be the lasing mode.
On the contrary, at the zero-reflection wavelengths, maximum transmission through the
grating region is obtained.Although the waves at these particular wavelengths experience
the highest gain, they cannot be the lasing modes either since no reflection happens and
hence no resonance can be established. In this sense, lasing should occur somewhere in
between, i.e., the traveling waves at the lasing wavelength should be partially reflected
by the grating to establish a resonance, they should be partially transmitted in order
to experience the gain in the grating region. Thus, the phase matching and amplitude
sustaining (i.e., the calculation of the round trip gain and the loss, or the unitary net gain)
conditions are mixed, in a form of equation (6.81). Only when the required threshold
gain for lasing approaches zero do the lasing wavelengths approach the zero-reflection
wavelengths, as the waves may acquire sufficient gain to reach their thresholds through
only a single pass. Therefore, we may conclude that lasing will occur neither at the Bragg
wavelength, nor at the zero-reflection wavelengths of the corresponding grating without
gain (i.e., under zero bias). As the threshold gain approaches zero, however, lasing will
occur near these zero-reflection wavelengths of the unbiased grating. Since the cavity
loss of the DFB laser is proportional to 1/(|κ±M |L), for gratings with higher |κ±M |L,
the required threshold gain must be lower. Hence we find that the lasing wavelength of
DFB lasers with high |κ±M |L should be very close to the zero-reflection wavelengths
of the unbiased grating.

The zero-reflection wavelengths of the unbiased uniform grating without facet reflec-
tions can be found analytically through launching a field into the input port of the grating
and calculating the resulting reflected and transmitted fields. Actually, according to
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equation (6.69), for a given input field F1, the reflected and transmitted field can be
obtained through

[
FN+1

0

]
=
[

a11 a12

a21 a22

] [
F1
R1

]
, (10.2)

or
R1 = −(a21/a22)F1, (10.3)

and
FN+1 = [(a11a22 − a12a21)/a22]F1. (10.4)

Once the LSHB effect is ignored, we obtain the reflectivity and transmissivity as

R ≡ R1

F1
= −a21

a22
= jκ−1 sinh(γL)

γ cosh(γL) − (α + jβ) sinh(γL)
, (10.5)

and

T ≡ FN+1

F1
= a11a22 − a12a21

a22
= γ

γ cos h(γL) − (a + jβ) sin h(γL)
, (10.6)

where equations (6.75) to (6.77), (6.80), and (6.82) have been used with γ 2 = (α +
jβ)2 + κ−1κ1.

For a passive waveguide with either the symmetric or the anti-symmetric purely index-
coupled gratings α = 0 and κ−1κ1 = |κ|2, and we have

γ = ±j
√(

β2 − |κ|
)2 ≡ ±ju, (10.7)

and

R = κ−1 sin(uL)

β sin(uL) − ju cos(uL)
, (10.8)

and

T = ju

β sin(uL) + ju cos(uL)
. (10.9)

For either real (if β ≥ |κ|) or imaginary (if β < |κ|)u, we have

|R|2 = ju

β2| sin(uL)|2 + |u|2| cos(uL)|2 , (10.10)

and

|T |2 = |u|2
β2| sin(uL)|2 + |u|2| cos(uL)|2 . (10.11)

Therefore, at uL = kπ , or

βL = ±√(|κL|2 + (kπ)2
)
, (10.12)
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k = ±1, ±2, . . ., we have |R| = 0 and |T | = 1.
At βL = 0, or

uL = j|κL|, (10.13)

we have |R| = | tanh(κL)| (maximum) and |T | = 1/| cosh(κL)| (minimum).
Hence, for the uniform grating on the passive waveguide, we find the maximum reflec-

tion at the Bragg wavelength where βL = 0, and zero-reflection, or full transmission
at multiple wavelengths where βL = ±√(|κL|2 + (kπ)2

)
, k = ±1, ±2, . . . Normally,

we define the Bragg stop-band width as the difference between the two smallest βL’s
that reach the zero-reflection around the Bragg condition (βL = 0), i.e.,

�βL ≡ √(|κL|2 + π2
)

−
(
−√(|κL|2 + π2

))
= 2

√(|κL|2 + π2
)
. (10.14)

According to equations (6.83) and (2.69), we find the corresponding Bragg stop-band
wavelength as

�λB ≈ λ2
B

2πneff
�δ = λ2

B

2πneff
�β = λ2

B
√(|κL|2 + π2

)
πneff L

. (10.15)

Note that λB in equation (10.1) and �λB in equation (10.15) can therefore be employed
to estimate the lasing wavelengths of DFB lasers, as we know that the lasing wavelengths
will be in the neighborhood of λB and bounded by �λB, as can be seen by comparing
equation (10.14) to Fig. 2 in [19].

For a purely index-coupled uniform grating, as the grating normalized coupling factor
(κL) increases, the lasing wavelengths approach λB ± �λB/2.

For a purely gain-coupled uniform grating, however, the lasing wavelength is at the
Bragg wavelength λB, as discussed in Section 6.3.

For a complex-coupled grating in general, we know that the lasing wavelength falls
in a range from λB − �λB/2 to λB + �λB/2.

A complete solution of the lasing wavelength and the threshold gain has to be found
numerically by solving equation (6.65) through, e.g., the transfer matrix method. For
uniform gratings with negligible LSHB effect and zero facet reflections, one can find the
solution from equation (6.81) through, e.g., a root searching routine based on Muller’s
algorithm. The solutions for some specific structures have also been in published [19].

Since there have been numerous works published on the DFB laser design and simu-
lation [20, 21, 22], we will not go into every detail in this book. Rather, through a few
simulation examples, we will show the main features of some DFB lasers with different
coupling mechanisms realized by different gratings.

In these examples, we will still take the previous active region and cross-sectional layer
structure design, but with the purely index-coupled, in-phase partially gain-coupled, and
loss-coupled grating structures inserted, respectively, as summarized in Table 10.4. All
these DFB lasers are assumed to have ridge waveguides with identical ridge width at
2.5 µm and identical ridge height at 2.5 µm. While the gratings are formed at different
layers with different etching depths, all these structures have the same grating period
at 242 nm with duty cycle at 50%. They also have the same cavity length at 300 µm.
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Table 10.4. Laser cross-sectional structures

The table sets out designs with different gratings in the InGaAsP/InP system at 1550 nm.

Layer Thickness
(nm)

Composition of
In(1−x)Gax

AsyP(1−y) (x, y)

Doping
concentration
(1018/cm3)

Remarks λg
(nm) and strain

Cap P-InGaAs 200 (0.468, 1.000) 10.0 (P) 1654, 0.0
Graded doped P-InP 2300 (0.000, 0.000) 1.0–0.5 (P) 918.6, 0.0
Etching stop InGaAsP 10 (0.108, 0.236) 0.5 (P) 1050, 0.0
Spacer InP 120 (0.000, 0.000) 0.3 (P) 918.6, 0.0
Grating index-coupled 40 (0.280, 0.606) undoped 1300, 0.0

loss-coupled 40 (0.443, 0.949) undoped 1600, 0.0
gain-coupled 0 – – –

Spacer InP 10 (0.000, 0.000) undoped 918.6, 0.0
*GRINSCH InGaAsP 15 (0.145, 0.317) undoped 1100, 0.0
GRINSCH InGaAsP 15 (0.216, 0.469) undoped 1200, 0.0
Barrier InGaAsP 10 (0.255, 0.553) undoped 1260, 0.0
Well InGaAsP × 6 5 (0.189, 0.778) undoped 1591, CS1.2%
Barrier InGaAsP × 6 10 (0.255, 0.553) undoped 1260, 0.0
GRINSCH InGaAsP 20 (0.242, 0.525) undoped 1240, 0.0
GRINSCH InGaAsP 20 (0.216, 0.469) undoped 1200, 0.0
GRINSCH InGaAsP 20 (0.181, 0.395) undoped 1150, 0.0
GRINSCH InGaAsP 20 (0.145, 0.317) undoped 1100, 0.0
GRINSCH InGaAsP 20 (0.108, 0.236) undoped 1050, 0.0
Buffer N-InP 500 (0.000, 0.000) 1.0 (N) 918.6, 0.0
Substrate N-InP 100 000 (0.000, 0.000) 3.0 (N) 918.6, 0.0

Purely index-coupled grating using the 1300 nm grating layer in 40 nm and etching through
loss-coupled grating using the 1600 nm grating layer in 40 nm and etching through
in-phase partially gain-coupled grating etching from the top GRINSCH layer on P side (marked with *)
down to 80 nm until the center barrier layer and removing the 1300 nm grating layer.

To prevent a poor SMSR and mode hopping due to the dual mode operation, the rear
and front facets of the purely index-coupled DFB laser are high-reflective (HR) and
anti-reflective (AR) coated with amplitude reflectivities at 0.87 and 0.01, respectively.
In the two complex-coupled DFB lasers, however, the facets are all as-cleaved with the
amplitude reflectivity at 0.565, since they intrinsically work at a single mode, as can be
seen from the solution to equation (6.81).

The purely index-coupled grating is made on the InGaAsP grating layer outside the
GRINSCH region on the P side, with the bandgap wavelength at 1300 nm. The grating
depth is the layer thickness at 40 nm.

The in-phase partially gain-coupled grating is made on top of the GRINSCH region
on the P side, and etching is assumed down to 80 nm, hence half of the QWs (three) are
removed periodically along the cavity. Since the modal gain in the sections with six QWs
is higher than that in the sections with three QWs, in accordance with the argument in the
beginning of Section 6.3.1, other than the index-coupling, a gain-coupling mechanism
also appears. Since the section with a higher modal gain also has a higher effective index,
the grating is in-phase partially gain-coupled.
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The loss-coupled grating is the same as the purely index-coupled grating, except
that the bandgap wavelength of the InGaAsP grating layer is set at 1600 nm. Due to
its narrower bandgap compared with the lasing wavelength, the grating layer is also
absorptive. Therefore, other than the index-coupling, a loss-coupling mechanism also
exists, which makes this structure loss-coupled.

The calculated coupling coefficients are, for the purely index-coupled structure,
80.0 /cm, for the in-phase partially gain-coupled structure, 125 /cm with a gain cou-
pling ratio of 25%, and for the loss-coupled structure, 128 /cm with a loss coupling ratio
of 20%. Thus, the normalized coupling factor for the purely index-coupled structure
is κL = 2.4. For the in-phase partially gain-coupled structure, the normalized cou-
pling factor is κL = 3.75 + 0.25(j + αLEF)gm/κ , where αLEF indicates the linewidth
enhancement factor [23], and gm the modal gain, both bias dependent. For this par-
ticular structure, after lasing, the calculated modal gain is approximately fixed at
42.5 /cm, and consequently the fixed αLEF is around −1.39. Thus, we approximately
have κL = 3.75 + 0.25(j + αLEF)gm/κ = 3.63 + j0.085 when the bias current is
above the threshold. Actually, as the bias current increases, due to the growing LSHB
effect, the averaged modal gain has to increase slightly to compensate its inefficient
overlapping with the optical field along the cavity, which causes the real and imagi-
nary parts of the normalized coupling factor to decrease slightly (due to the contribution
of the negative αLEF) and increase, respectively. Therefore, the ratio between the gain
and index coupling increases with the bias current, which, as a well-known feature of
the in-phase gain-coupled grating, helps the structure to maintain a high SMSR despite
the increase of LSHB. Finally, for the loss-coupled structure, the normalized coupling
factor is κL = 3.84 − j0.029. A major difference between the gain- and loss-coupled
gratings is that the loss coupling is not bias dependent [24]. As a result, the loss-coupled
grating only provides a mechanism that eliminates the lasing of the red edge mode on
the Bragg stop-band without any self-tuning ability to adapt to a changed bias con-
dition. Note that the loss-coupled DFB laser is different from the anti-phase partially
gain-coupled DFB laser. The latter not only provides the index-coupling and out-of-phase
gain-coupling mechanisms simultaneously, but also adapts its gain-to-index coupling
ratio to the changed bias condition, as the imaginary part of its coupling coefficient is
bias dependent [25, 26, 27]. This structure can be realized, e.g., through a periodically
etched reversely doped grating layer near the active region.

Figure 10.18 shows the calculated output power–bias current dependences for these
DFB lasers. The purely index-coupled DFB laser has higher differential efficiency due to
its smaller |κL|. Its output powers from the front and rear facets are different due to the
asymmetric coating. Compared with the loss-coupled DFB laser, the in-phase partially
gain-coupled DFB laser has slightly higher differential efficiency as its |κL| is slightly
higher; besides, its modal loss is slightly lower. Finally, we find that, as the bias current
increases, the differential efficiency of the in-phase partially gain-coupled DFB laser
slightly increases. This can be attributed to the minor reduction of its |κL|.Actually, since
αLEF is negative, as the bias current increases, the reduction in the real part of κL cannot
be offset by the increase in its imaginary part. Therefore, |κL| still decreases as the bias
increases, which makes the output power a superlinear function of the bias current. This
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Fig. 10.18. Comparison of the output power–bias current dependences between DFB lasers with different
coupling mechanisms.

effect will be more pronounced if |αLEF| is larger or the LSHB is more strongly dependent
on the bias. It is apparent that we will reach the opposite conclusion if αLEF > 0, or we
have an anti-phase partially gain-coupled structure with αLEF < 0. Knowing this feature,
we must rule out the possibility of using complex-coupled DFB lasers in applications
where direct analog modulations are employed, such as in community antenna television
(CATV) or wireless signal fiber-optic transmission networks, due to their poor linearity
in the output power–bias current dependence.

Figure 10.19 shows the calculated side mode suppression ration (SMSR)–bias current
dependences for these DFB lasers. We find that, while complex-coupled DFB lasers have
excellent SMSR, the purely index-coupled DFB laser’s SMSR is marginal, although its
facets are HR and AR coated. This could be partially due to its relatively low |κL|.
However, as we raise the normalized coupling factor, the LSHB also becomes severe.
Under a random grating phase at the HR coated rear facet, the yield distribution would
be more random. The fact that the in-phase partially gain-coupled DFB laser has an
even higher SMSR than the loss-coupled DFB laser, although the former has a slightly
lower |κL|, can be attributed to its higher gain-to-index coupling ratio, as we know that
the threshold gain difference between the first and second modes increases with this
ratio [19].

Figure 10.20 shows the calculated optical spectra for these DFB lasers with their bias
currents all set to 50 mA. Due to the InP filled, deeply-etched grating and the removal of
the top 1300 nm InGaAsPgrating layer, the in-phase partially gain-coupled DFB structure
has the lowest effective index. Hence it has the shortest Bragg wavelength, as we have
set the same grating period for all these structures. Regarding the loss-coupled DFB
laser, it has the longest Bragg wavelength as its effective index is the highest, because
the original InGaAsP grating layer in the purely index-coupled structure is replaced by a
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Fig. 10.20. Comparison of the optical spectra between DFB lasers with different coupling mechanisms.

1600 nm InGaAsP layer, which has a higher refractive index. We also find that the Bragg
stop-band (not the unbiased waveguide Bragg stop-band, but the stop-band appearing in
the spectrum with bias) widths of these DFB lasers are proportional to their |κL| values.
Finally, it is again confirmed that the in-phase partially gain-coupled DFB laser has its
lasing wavelength at the red edge of the stop-band (not 100%, as the probability of lasing
at the blue edge of the stop-band is small but not zero if we scan the facet phases [28]),
whereas the loss-coupled (or anti-phase partially gain-coupled) DFB laser has its lasing
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Fig. 10.21. Comparison of the small-signal IM responses between DFB lasers with different coupling
mechanisms.

wavelength at the blue edge of the stop-band (again, not 100%, as the probability of
lasing at the red edge of the stop-band is small but not zero if we scan the facet phases).
The lasing wavelength of the purely index-coupled DFB laser is randomly located at the
red or blue edges of the stop-band with a 50:50 probability (slightly higher on the blue
edge if we include the LSHB effect). It happens that the lasing wavelength is on the red
edge of the stop-band in this particular case.

Figure 10.21 shows the calculated small-signal IM responses of these DFB lasers
with their bias currents all set to 50 mA. Since these lasers have different differential
efficiencies, their output powers are different for the same bias. The seemingly broadest
3 dB small-signal IM bandwidth in the purely index-coupled DFB laser comes from its
highest power output at 50 mA. We find from Fig. 10.18 that the power ratio between
the purely index-coupled DFB laser and the complex-coupled DFB laser is about 14/6.
Since the IM response peak related relaxation oscillation frequency scales with the
square root of the power [29], the relaxation oscillation frequency of the purely index-
coupled DFB laser should be

√
(14/6) ≈ 1.5 times that of the complex-coupled DFB

laser. However, from Fig. 10.21, we find that the relaxation oscillation frequency of the
purely index-coupled DFB laser is only about 1.26 times that of the in-phase partially
gain-coupled DFB laser (i.e., 12.6 GHz to 10 GHz). We conclude that the relaxation
oscillation frequency of the in-phase partially gain-coupled DFB laser is highest if the
IM responses are measured under the same output power. Consequently, the in-phase par-
tially gain-coupled DFB laser has the highest 3 dB small-signal IM bandwidth. Since the
two complex-coupled DFB lasers have about the same output power at 50 mA according
to Fig. 10.18, we find from Fig. 10.21 that the in-phase partially gain-coupled DFB laser
has a higher 3 dB small-signal IM bandwidth than the loss-coupled DFB laser. While the
two complex-coupled DFB lasers have about the same relaxation oscillation frequency,
the loss-coupled DFB laser has an obviously higher damping rate.
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10.3.3 Lasers with multiple section designs

Despite the many advantages of DFB lasers compared with the FP laser, the uniform
grating purely index-coupled DFB laser intrinsically operates at dual modes, due to the
imbedded symmetry in its structure as discussed in Section 6.3. Although this rarely
happens in reality, due to the symmetry breaking by the asymmetric facet reflections or
grating phases and the LSHB, the SMSR is poor and mode hopping may appear at the
red and blue edges of the Bragg stop-band. Asymmetric AR and HR coatings at the front
and rear facets help to raise the SMSR and solve the mode hopping problem, but there is
still no precise control on the lasing wavelength. The probability of lasing at the red and
blue edges of the Bragg stop-band is 50:50 due to the difficulty of cleaving the device
facet at a deterministic grating phase. In applications where precise lasing wavelengths
are required, e.g., in dense wavelength division multiplexing (DWDM) systems and in
monolithic integrations, the yield becomes a major issue. Although complex-coupled
DFB lasers have this problem solved, their reliability could be a concern in making
products. Therefore, the quarter-wavelength phase-shifted grating DFB structure [30]
and a variety of its derived versions, such as the single [31] or dual octant-wavelength
phase-shifted grating DFB structure, the partially corrugated DFB structure [32], and
the quarter-wavelength phase-shifted asymmetric grating DFB structure, etc., have been
proposed with intrinsic single mode operation, high SMSR and precise control on the
lasing wavelength.

Here we consider a few examples of such DFB lasers with multiple sections. Their
active region and cross-sectional layer structure designs are the same as the purely index-
coupled single section (uniform grating) DFB laser detailed in Table 10.4. All these
multiple section DFB lasers are still assumed to have ridge waveguides with identical
ridge width at 2.5 µm and identical ridge height at 2.5 µm. All the gratings are identical
to the one used for the single section purely index-coupled DFB laser, i.e., with a period
of 242 nm and a duty cycle of 50%.All these DFB lasers have identical total cavity length
at 400 µm. In the quarter-wavelength phased-shifted DFB laser, there are two identical
sections at an equal length of 200 µm with a 180◦ grating phase shift in between. The
device rear and front facets are AR and AR coated with identical reflections at 1%. In
the dual octant-wavelength phase-shifted DFB laser, there are three identical sections
in different lengths. The two equal-length edge sections are 150 µm, the intermediate
section is 100 µm. There are two identical 90◦ grating phase shifts from section to section.
Again, the device rear and front facets are AR and AR coated with identical reflections at
1%. The partially corrugated DFB laser comprises two sections, a conventional 100 µm
long FP section with identical cross-sectional structure but without the grating, and a
300 µm long DFB section. The device rear (FP side) and front (DFB side) facets are HR
and AR coated with amplitude reflectivities at 0.87 and 0.01, respectively. This device
is actually the previous purely index-coupled DFB laser with an extended FP section of
100 µm inside the cavity.

Figure 10.22 shows the calculated output power–bias current dependences for these
DFB lasers. The partially corrugated DFB laser has the smallest κL (2.4), hence it has
the highest differential gain. Moreover, almost doubled output power can be collected
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Fig. 10.22. Comparison of the output power–bias current dependences between DFB lasers with different
multiple section designs.

from its front facet as the device is HR and AR coated. The facets of the other two
DFB lasers, however, have to be AR and AR coated. As a result, half of their powers
are simply wasted, as the monitoring PD usually does not need such high power. This
is a major drawback of the multiple section DFB lasers with symmetric phase-shifted
gratings.

Figure 10.23 shows the calculated side mode suppression ration (SMSR)–bias current
dependences for these DFB lasers. All these structure have excellent SMSR without
significant difference.

Figure 10.24 shows the calculated optical spectra for these DFB lasers. While the
quarter-wavelength phase-shifted DFB laser has its lasing wavelength precisely posi-
tioned at the Bragg wavelength, the dual octant-wavelength phase-shifted DFB laser has
its lasing wavelength located inside the Bragg stop-band, with its position fixed once the
device structure (i.e., the coupling coefficient and each section length) is fixed. Although
in both structures their lasing wavelengths still shift with the operating condition, i.e.,
the bias and the ambient temperature, it is the best we can achieve: with symmetric
phase-shifted DFB structures, the lasing wavelength is deterministic at given operating
conditions, hence there is not a yield problem from the device design point of view.
The lasing wavelength of the partially corrugated DFB laser, however, may appear at
the blue or red edge, or even inside the Bragg stop-band. It is jointly determined by the
section length and the grating phase between the DFB and FP sections. While the grating
phase between the DFB and FP sections is probably controllable, the length of the FP
section is still random. An FP length change in a quarter-wavelength, i.e., λ/(4neff ), or
in the sub-micron range is sufficient to bring in a field reflection with opposite phase and
change the oscillation condition. Thus, small fluctuations in the FP section length still
cause a yield problem in production.



Design and modeling examples of semiconductor laser diodes 283

 15

 20

 25

 30

 35

 40

 45

 50

 0  20  40  60  80  100

S
M

S
R

 [
d

B
]

Bias current [mA]

Solid line: quarter-wavelength phase-shifted DFB, AR/AR

Dashed line: dual octant-wavelength phase-shifted DFB, AR/AR

Dotted line: partially corrugated DFB, HR/AR

Fig. 10.23. Comparison of the SMSR–bias current dependences between DFB lasers with different multiple
section designs.

–160

–150

–140

–130

–120

–110

–100

–90

–80

 1.535  1.54  1.545  1.55  1.555  1.56

R
el

at
iv

e 
in

te
n

si
ty

 [
d

B
]

Wavelength [µm] 

Solid line: quarter-wavelength phase-shifted DFB, AR/AR
Dashed line: dual octant-wavelength phase-shifted DFB, AR/AR
Dotted line: partially-corrugated DFB, HR/AR

Fig. 10.24. Comparison of the optical spectra between DFB lasers with different multiple section designs.

Figure 10.25 shows the calculated optical field distributions along the cavity for these
DFB lasers. It is apparent that the quarter-wavelength phase-shifted DFB laser has a
strong LSHB near the center region where the grating has the phase shift. For this
reason, the dual octant-wavelength phase-shifted DFB laser is proposed to reduce this
effect. Actually, as can be seen from this figure, the field distribution in the dual octant-
wavelength phase-shifted DFB laser is indeed flatter.

In summary, we conclude that, if we view the purely index-coupled single section
(uniform grating) DFB structure and the quarter-wavelength phase-shifted DFB structure
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as the two extremes, the dual octant-wavelength phase-shifted DFB structure is a design
in between: if we extend the center section to the full cavity, we obtain the former
structure; if we shrink the center section to zero, we obtain the latter structure. As we
move the center section length but fix the total cavity length, the lasing wavelength
must sweep through the Bragg stop-band. On the other hand, if we view the purely
index-coupled single section DFB structure and the FP structure as the two extremes,
the partially corrugated DFB structure is a design in between: if we shrink the FP section
to zero, we obtain the former structure; if we extend the FP section to the full cavity,
we obtain the latter structure. As we extend the FP section length but fix the total cavity
length, the Bragg stop-band gradually shrinks and submerges into the FP comb.

Without the complex coupling involved, there seems to be a trend that we cannot
achieve both high power efficiency and precise wavelength control simultaneously in
DFB lasers. We have either to throw away half of the power for precise wavelength
control (as in a quarter-wavelength phase-shifted DFB laser), or give up the wavelength
control to some extent as a trade for high power (as in a partially corrugated DFB laser).
Whether it is possible to realize a design with both precise wavelength control at 100%
yield and full power efficiency is still an open problem.
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11 Design and modeling examples of
other solitary optoelectronic devices

11.1 The electro-absorption modulator

11.1.1 The device structure

The schematic structure of electro-absorption modulators (EAMs) with shallowly-etched
(left) and deeply-etched (right) ridge waveguides is shown in Fig. 11.1.

The cross-sectional layer structure of a typical EAM operated in the 1550 nm
wavelength band is shown in Table 11.1.

The device ridge waveguide has width 1.5 µm and height 2.0 µm and 3.0 µm in the
shallow and deep ridge design, respectively. Thus, the etched ditch stops on top of the
active region in the shallow ridge design but goes through the active region in the deep
ridge design, as shown schematically in Fig. 11.1. The length of the EAM is set to be
200 µm in device performance modeling.

11.1.2 Simulated material properties and device performance

Figure 11.2 shows the calculated energy band edge diagrams of the device active region
under different reverse bias voltages. Due to the compressive strain applied to the QWs,
the heavy-hole and light-hole band edges in the QW material split, with the heavy-hole
band edge on top.

Active regions

Fig. 11.1. Shallowly etched (left) and deeply etched (right) ridge waveguide structures in EAMs.
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Table 11.1. EAM cross-sectional structure

The table sets out a design in the InGaAsP/InP system at 1550 nm.

Layer Thickness
(nm)

Composition of
In(1−x)GaxAsy
P(1−y) (x, y)

Doping
concentration
(1018/cm3)

Remarks λg (nm)
and strain

Cap P-InGaAs 200 (0.468, 1.000) 10.0 (P) 1654, 0.0
Cladding P-InP 1800 (0.000, 0.000) 0.5 (P) 918.6, 0.0
Etching stop 10 (0.108, 0.236) 0.5 (P) 1050, 0.0
Spacer InP 50 (0.000, 0.000) undoped 918.6, 0.0
SCH InGaAsP 100 (0.216, 0.469) undoped 1200, 0.0
Barrier 6 (0.196, 0.343) undoped 1100, TS0.27%
Well × 10 9 (0.356, 0.871) undoped 1574, CS0.35%
Barrier × 10 6 (0.196, 0.343) undoped 1100, TS0.27%
SCH InGaAsP 80 (0.216, 0.469) undoped 1200, 0.0
Buffer N-InP 600 (0.000, 0.000) 1.0 (N) 918.6, 0.0
Etching stop 10 (0.108, 0.236) 0.5 (P) 1050, 0.0
Substrate N-InP 100 000 (0.000, 0.000) 3.0 (N) 918.6, 0.0
Modified well 9 (0.318, 0.826) undoped 1545, CS0.46%
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Fig. 11.2. Energy band diagrams along the device vertical direction under different reverse bias voltages.

Figures 11.3(a&b) show the calculated conduction band electron and valence band
heavy-hole and light-hole wave functions under 1 V reverse bias.

Figures 11.4(a&b) give the calculated material absorptions for the TE and TM modes
under different reverse bias voltages, respectively.
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Fig. 11.3. The wave functions of the bound states inside the QW under 1 V reverse bias. (a) The first
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second and third valence band heavy-hole.

Figures 11.5(a&b) give the calculated refractive index changes for the TE and TM
modes under different reverse bias voltages, respectively, with the refractive index
change at zero bias taken as the reference.

Figures 11.6(a&b) show the calculated shallow ridge EAM insertion loss under zero
bias, and the extinction ratios under different reverse bias voltages for the TE and TM
modes, respectively.

Figures 11.7(a&b) show the calculated shallow ridge EAM chirp parameters under dif-
ferent reverse bias voltages for the TE and TM modes, respectively. The chirp parameter



Design and modeling examples of other solitary optoelectronic devices 291

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1.3  1.35  1.4  1.45  1.5  1.55  1.6  1.65  1.7

T
E

 m
o

d
e 

m
at

er
ia

l a
b

so
rp

ti
o

n
 [

1/
cm

]

Wavelength [µm] 

From top to bottom: 0 V, –1 V, –2 V, –3 V, –4 V

(a)

 0

 5000

 10000

 15000

 20000

 1.3  1.35  1.4  1.45  1.5  1.55  1.6  1.65  1.7

T
M

 m
o

d
e 

m
at

er
ia

l a
b

so
rp

ti
o

n
 [

1/
cm

]

Wavelength [µm] 

From top to bottom: 0 V, –1 V, –2 V, –3 V, –4 V

(b)

Fig. 11.4. Material absorption spectra under different reverse bias voltages. (a) For the TE mode. (b) For
the TM mode.

is defined as

C(λ) ≡ 4π

λ

�n(λ, V )

α(λ, V ) − α(λ, 0)

with �n(λ, V ) and α(λ, V ) indicating the device modal refractive index change and
modal absorption under bias voltage V at wavelength λ. Through these curves, we
can clearly recognize the exciton absorption peak positions, as sharp turns of the chirp
parameter appear at the peak wavelengths. These curves also show that considerable
chirps occur at the transparent edge of the EAM (i.e., for wavelengths longer than
1.65 µm), which suggests that an efficient phase modulator can be built in this region.
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Fig. 11.5. Refractive index change spectra under different reverse bias voltages. (a) For the TE mode.
(b) For the TM mode.

11.1.3 Design for high extinction ratio and low insertion loss

In the shallow ridge waveguide design, the light extended outside the ridge along the
horizontal direction overlaps with the unbiased active region, since the active region is
not etched through the outside of the ridge. Therefore, as light passes through the EAM,
it has a poor confinement and suffers constant absorption in the unbiased active region
outside the ridge. The former reduces the extinction ratio while the latter increases the
insertion loss.

Since the EAM always works under reverse bias, the carrier density will never be
high inside the active region. Thus, exposure of the active region side walls will not
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Fig. 11.6. Insertion loss under zero bias and extinction ratios under different reverse bias voltages in the
EAM with a shallow RW structure. (a) For the TE mode. (b) For the TM mode.

normally give rise to any appreciable reliability issue. Hence we can follow the deep
ridge waveguide design by etching through the active region as shown in Fig. 11.1.

The calculated cross-sectional optical modes in shallow and deep ridge waveguides are
shown in Figs. 11.8(a&b) respectively. The extracted effective indices, the group indices,
and the confinement factors for these two structures are summarized in Table 11.2. We
find that the total confinement factor (for the ten QWs) is indeed higher in the deep ridge
waveguide although its effective index becomes lower, when compared to the shallow
ridge waveguide.
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Consequently, we can calculate the insertion loss and extinction ratios under different
reverse bias voltages for the deep ridge EAM and show the comparative results in
Figs. 11.9(a&b) for the TE and TM modes, respectively. From these calculations, we
find that both the extinction ratio and insertion loss are improved, although the latter is not
significant. This is because the confinement increase raises the device modal absorption,
which offsets the effect of removing the constant absorption from the active region
outside the ridge. As a result, the reduction in the insertion loss is hardly appreciable
unless we reduce the confinement factor in the deep ridge EAM as well. This can actually



Design and modeling examples of other solitary optoelectronic devices 295

1

0.8

0.6

0.4

0.2

0
8

6
4

2
0 0

0.5
1

1.5
2

Horizontal distance (x ) [µm]Horizontal distance (y ) [µm]

E
x 

(T
E

)
(a)

1(b)

0.8

0.6

0.4

0.2

0
6

4

2

0 0
0.5

1
1.5

2

Vertical distance (y ) [µm] Horizontal distance (x ) [µm]

E
x 

(T
E

)

Fig. 11.8. Cross-sectional optical field distributions in EAMs. (a) With a shallow RW structure. (b) With a
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be realized by redesigning the cross-section layer structure. However, it will be at a cost
of spoiling the extinction ratio.

While it is obvious that the insertion loss and the extinction ratio are scaled similarly by
the device length, the operating conditions (bias and wavelength) are left to us as the last
few degrees of freedom in device design work unless these conditions are pre-specified.
However, we will leave them for the more challenging task of equalizing the TE and TM
absorptions, as it is crucial for solitary EAMs when they are not monolithically integrated
with semiconductor lasers. To complete this section, we show the dependences of the
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Table 11.2. Optical modal parameters

The table gives a comparison between shallow and deep RW structures.

Shallow ridge
waveguide

Deep ridge
waveguide

Effective Group Confinement Effective Group Confinement
index index factor index index factor

Total TE 3.2247 3.5386 16.05% 3.2056 3.5818 17.55%
Total TM 3.2145 3.5229 15.24% 3.2003 3.5569 16.83%
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Fig. 11.10. Insertion loss and extinction ratios under different reverse bias voltages in EAMs with different
lengths. (a) The TE mode. (b) The TM mode.

insertion loss and extinction ratio on cavity length under a few different reverse bias
voltages in Figs. 11.10(a&b) for the TE and TM modes, respectively.

11.1.4 Design for polarization independent absorption

From the simulation results in Sections 11.1.2 and 11.1.3, we find that the absorption
peak value of the TM mode is higher than that of the TE mode. This is attributed to
the larger dipole matrix element between the (conduction band) electron and (valence
band) light-hole compared to that between the (conduction band) electron and (valence



298 Optoelectronic Devices: Design, Modeling, and Simulation

band) heavy-hole. As can be seen from Fig. 11.3(a), the overlap between the electron and
light-hole wave functions is larger than the overlap between the electron and heavy-hole
wave functions.

However, at the absorption spectrum edge that is used by the EAM, the TE mode
absorption is usually larger, as the wavelength of the TM mode absorption peak is
shorter because the light-hole band edge is lower, which results in a higher transition
energy from the conduction band to the light-hole band. For this reason, to align the
TE and TM mode absorption spectrum edges, we have either to use the tensile strain
to lift the light-hole band edge and hence to red-shift the TM mode absorption peak
(towards a longer wavelength), or to reduce the gap between the heavy-hole and light-
hole band edge by, e.g., weakening the QW effect. To facilitate the implementation, we
will follow the latter approach by increasing the QW bandgap energy. As a result, on the
valence band side, the heavy-hole band edge will be lowered more than the light-hole
band edge, hence their difference will be reduced. On the spectrum, this is effectively
a blue-shift of the TE mode absorption peak to reach a better alignment with the TM
mode peak. Theoretically, this can also be realized by reducing the barrier height, which
gives us the advantage that the operating wavelength will change very little. However,
this approach needs to have the whole cross-sectional layer structure redesigned for both
optical and carrier confinement. Since this book’s focus is on explaining ideas rather
than on tedious engineering work, we will follow the easier approach regardless of the
operating wavelength shift.

We must also notice that the confinement of the ridge waveguide to these two polariza-
tion modes is also different, which may offset part of the material absorption difference
in one way or another, and bring us totally different modal absorptions. Since the ridge
waveguide always has a better confinement to the TE than to the TM mode, we have to
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maintain a slightly higher TM absorption in an effort to bring the material TE and TM
absorptions closer, to leave room for the final modal absorption balance.

A modified QW design is given in the last line in Table 11.1. The calculated material
absorptions for the TE and TM modes under a 2 V reverse bias are shown in Fig. 11.11,
where the results from the original structure are also plotted for the sake of comparison.
We find that the TE absorption peak indeed has a blue-shift, whereas the TM absorption
peak is almost unaffected.As a result, the two absorption edges are well aligned. We have
also slightly increased the compressive strain to the QW in order to get the same slope
for the TE and TM absorption edges, with TM absorption slightly above TE absorption.

Finally, Fig. 11.12 shows the TE and TM mode insertion losses and extinction ratios
under a 2 V reverse bias for the EAM with a deeply-etched ridge waveguide and with the
modified QWs, from which we find that the absorptions for the TE and TM polarization
modes are almost perfectly aligned.

11.2 The semiconductor optical amplifier

11.2.1 The device structure

Two traveling wave SOAs, one in the 1300 nm band and the other in the 1500 nm band,
are modeled in this section. Both SOAs have ridge waveguide structures with the same
ridge height of 2.5 µm but with different ridge widths of 1.4 µm for the 1300 nm SOAand
1.6 µm for the 1550 nm SOA, respectively. These SOAs have the same length, namely
1 mm, with all facets assumed to be perfectly AR coated with zero reflection. Their
cross-sectional layer structures are given in Table 11.3.
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Table 11.3. Cross-sectional structures for SOAs

The table sets out designs for 1300 nm band and 1500 nm band SOAs in the InGaAsP/InP system.

Layer Thickness
(nm)

Composition of
In(1−x)GaxAsy
P(1−y) (x, y)

Doping
concentration
(1018/ cm3)

Remarks λg
(nm) and strain

Cap P-InGaAs 200 (0.468, 1.000) 10.0 (P) 1654, 0.0
Graded doped P-InP 2300 (0.000, 0.000) 0.7–0.1 (P) 918.6, 0.0
Etching stop 10 (0.108, 0.236) 0.1 (P) 1050, 0.0
Spacer InP 100 (0.000, 0.000) 0.1 (P) 918.6, 0.0
SCH 1300 nm 100 (0.181, 0.395) undoped 1150, 0.0
InGaAsP 1500 nm 120 (0.181, 0.395) undoped 1150, 0.0

Barrier 1300 nm 10 (0.181, 0.395) undoped 1150, 0.0
1500 nm 10 (0.249, 0.539) undoped 1250, 0.0

Well × 4 1300 nm 5 (0.114, 0.556) undoped 1347, CS1.0%
1500 nm 5 (0.212, 0.797) undoped 1600, CS1.1%

Barrier × 4 1300 nm 10 (0.181, 0.395) undoped 1150, 0.0
1500 nm 10 (0.249, 0.539) undoped 1250, 0.0

SCH InGaAsP 1300 nm 100 (0.181, 0.395) 0.5 (N) 1150, 0.0
1500 nm 120 (0.181, 0.395) 0.5 (N) 1150, 0.0

Buffer N-InP 500 (0.000, 0.000) 1.0 (N) 918.6, 0.0
Substrate N-InP 100 000 (0.000, 0.000) 3.0 (N) 918.6, 0.0

In both structures, relatively low compressive strains of 1.0% and 1.1% for the 1300 nm
and 1500 nm band SOAs, respectively, are applied to the QWs. Since SOAs are normally
operated at high carrier density levels inside the active region, we use a relatively low
compressive strain to maintain a high material gain in operation, by following the con-
clusion obtained in Section 10.1.2. An exponentially growing doping profile is again
adopted in the P type InP cladding to achieve a compromise between hole injection
efficiency and optical free-carrier absorption. This design is more crucial to SOAs with
a small confinement factor design for linear in-line amplifications, as there is usually a
stronger evanescent tail of the optical wave overlapping with the P cladding layer if the
confinement factor is reduced.

11.2.2 Simulated semiconductor optical amplifier performance

The calculated stimulated and spontaneous emission gain spectra for the two SOAs are
shown in Figs. 11.13(a&b), and Figs. 11.14 (a&b), respectively.

The simulated time domain optical output power waveforms are shown in Fig. 11.15,
where both SOAs are under a DC bias of 120 mA. The input optical signals have their
channel wavelengths set at 1300 nm (for the first SOA designed for the 1300 nm band)
and 1510 nm (for the second SOA designed for the 1500 nm band), respectively. Their
waveforms, however, are identical, comprising an ideal binary square pulse stream
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Fig. 11.13. (a) Results for the material (stimulated emission) TE and TM gain profiles. (b) Results for the TE
and TM spontaneous emission power spectra; different carrier densities in the 1300 nm band
SOA.

in a sequence 1011100101, with symbols 0 and 1 power readings at −20 dBm and
0 dBm, respectively, and with identical symbols 0 and 1 time durations at 400 ps. In this
case, the input signal is equivalent to a non-return-to-zero (NRZ) binary bit stream at
2.5 Gbps.

Figure 11.16 gives the calculated optical gain dependences on the input optical power
for the two SOAs when both are biased under 120 mA.

Finally, Fig. 11.17 shows the calculated noise figures for the two SOAs under different
bias currents.
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Fig. 11.14. (a) Results for the material (stimulated emission) TE and TM gain profiles. (b) Results for the TE
and TM spontaneous emission power spectra; different carrier densities in the 1500 nm band
SOA.

11.2.3 Design for performance enhancement

In applications such as linear in-line amplification, SOAs need to be designed with a
high saturation power or a broad linear gain region. It then becomes crucial to reduce the
device confinement factor [1, 2]. By reducing the number of QWs, we manage to reduce
the confinement factor and obtain higher saturation powers, as shown in Fig. 11.18, in
which simulated optical gains are plotted as functions of input optical power under a
constant bias current of 120 mA for SOAs with their active regions comprising different
numbers of QWs. Because of the reduction in the confinement factor, the small-signal
optical gain drops as a side effect, despite the increased carrier density inside the QWs
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Table 11.4. Cross-sectional structure for SLED

The table sets out a design for an 820 nm band SLED in the GaAs/AlGaAs system.

Layer Thickness
(nm)

Composition of
AlxGa(1−x)As (x)

Doping
concentration
(1018 /cm3)

Remarks λg
(nm) and strain

Cap P-GaAs 200 (0.000) 10.0 (P) 870.2, 0.0
Cladding P-AlGaAs 1300 (0.500) 0.7 (P) N/A, 0.0
GRINSCH AlGaAs 100 (0.300) 0.2 (P) 685.7, 0.0
GRINSCH AlGaAs 100 (0.225) undoped 726.7, 0.0
Barrier 10 (0.150) undoped 771.0, 0.0
Well × 3 5–8 (0.000) undoped 870.2, 0.0
Barrier × 3 10 (0.150) undoped 771.0, 0.0
GRINSCH AlGaAs 100 (0.225) undoped 726.7, 0.0
GRINSCH AlGaAs 100 (0.300) 0.8 (N) 685.7, 0.0
Buffer N-AlGaAs 1500 (0.500) 1.0 (N) N/A, 0.0
Substrate N-GaAs 100 000 (0.000) 3.0 (N) 870.2, 0.0

for invariant bias current. The reason has been explained in Section 10.3.1. However, we
can always extend the SOA length to obtain higher gains without significant reduction
in the saturation power. That is to say, we should use a low confinement factor with a
long cavity design in a SOA to achieve high gain and high saturation power.

11.3 The superluminescent light emitting diode

11.3.1 The device structure

The device to be modeled is an 820 nm band SLED with the cross-sectional layer structure
summarized in Table 11.4. The device has a ridge waveguide structure with the ridge
width and height 2.0 µm and 1.5 µm, respectively. The device length is 800 µm with the
front facet perfectly AR coated with zero reflection and the rear facet either perfectly
AR coated or HR coated with an amplitude reflection of 0.9.

11.3.2 Simulated superluminescent light emitting diode performance

The calculated stimulated and spontaneous emission gain spectra for the TE and TM
modes with different QW widths are shown in Figs. 11.19(a&b) and Figs. 11.20(a&b),
respectively.

It is found that, as expected, the gain profile has a blue-shift as the QW thickness
reduces. However, such a shift is not linearly proportional to the thickness reduction.
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Fig. 11.19. Material (stimulated emission) gain spectra for different QW widths under different carrier
densities. (a) For the TE mode. (b) For the TM mode.

11.3.3 Design for performance enhancement

By combining QWs with different widths, we may flatten and broaden both the stim-
ulated emission and spontaneous emission gain spectra. For example, a combination
of three QWs with thicknesses of 8 nm, 5 nm, and 6 nm from the P to N side would
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Fig. 11.20. Spontaneous emission power spectra for different QW widths under different carrier densities.
(a) For the TE mode. (b) For the TM mode.

give the calculated stimulated emission and spontaneous emission spectra shown in
Figs. 11.21(a&b) and Figs. 11.22(a&b) for the TE and TM modes.

With the expanded gain profile design, the calculated output powers with the rear facet
either AR or HR coated are shown in Fig. 11.23 as functions of the bias current.
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Fig. 11.21. Material (stimulated emission) gain spectra for a combination of three QWs in different widths
under different carrier densities. (a) For the TE mode. (b) For the TM mode.

Finally, Fig. 11.24 shows the calculated output optical power spectra under different
bias currents. The ripples appearing in the spectra are attributed to transitions between
discrete energy levels inside the QWs. Fine tuning of the thicknesses of the QWs and
of the heights of the barriers (i.e., the composition of the barrier AlGaAs) might be
necessary in order to obtain broad and smooth spectral profiles.
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12 Design and modeling examples of
integrated optoelectronic devices

12.1 The integrated semiconductor distributed feedback laser and
electro-absorption modulator

12.1.1 The device structure

A schematic structure of an integrated semiconductor DFB laser and EAM is shown in
Fig. 12.1.

The cross-sectional layer structures in the DFB and EAM sections are shown in
Tables 12.1 and 12.2, respectively.

Both sections of this device are made of a ridge waveguide with the same ridge
width of 2.0 µm, but with different ridge heights of 2.0 µm in the DFB laser section and
3.0 µm in the EAM section, respectively. Thus, the etched ditch stops on top of the laser
active region but goes through the modulator active region. This design makes a better
match of the effective indices between the DFB laser and EAM sections and hence the
reflection from the interface between these two sections will be effectively reduced. The
deep etching in the modulator section also improves the far-field pattern emitted from
the front facet. Finally, by removing the EAM active region outside the ridge, the EAM
insertion loss will reduce and its extinction ratio will increase as shown in Section 11.1.3.

The laser section and the modulator section are 300 µm and 200 µm long, respectively,
the electrodes are isolated by a 10 µm wide and 1.0 µm deep trench etched across the
ridge. The DFB laser has a uniform purely index-coupled grating with a normalized
coupling coefficient of 4. This design is a balance between the output optical power,
immunity to feedback from the modulator, and the lasing wavelength uncertainty in a
range roughly equal to the Bragg stop-band width. The rear (i.e., the DFB laser side) and
the front (i.e., the EAM side) facets are HR and AR coated, respectively, with amplitude
reflectivities of 0.87 and 0.01, respectively.

Before the growth of the buffer N type InP layer, an InGaAsP etching stop layer is
pre-buried to facilitate the final ridge etching in the EAM section. Different GRINSCH
structures are designed for the DFB laser and EAM sections in such a way that the optical
mode profiles in these two sections will be best matched. In the DFB laser section, a
floating grating design is adopted to control the uniformity as the yield in the integrated
optoelectronic device is usually a major concern.Again, an exponentially growing doping
profile is used in the P type InP cladding layer in the DFB laser section for the reason
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Table 12.1. Cross-sectional structure for DFB laser

The table sets out a design for the DFB laser section in the InGaAsP/InP system at
1550 nm.

Layer Thickness
(nm)

Composition of
In(1−x)GaxAsy

P(1−y) (x, y)

Doping
concentration
(1018/cm3)

Remarks λg

(nm) and
strain

Cap P-InGaAs 200 (0.468, 1.000) 10.0 (P) 1654, 0.0
Graded doped P-InP 1800 (0.000, 0.000) 0.7–0.2 (P) 918.6, 0.0
Etching stop 10 (0.108, 0.236) 0.2 (P) 1050, 0.0
Spacer InP 50 (0.000, 0.000) undoped 918.6, 0.0
Grating InGaAsP 80 (0.249, 0.539) undoped 1250, 0.0
Spacer InP 20 (0.000, 0.000) undoped 918.6, 0.0
SCH InGaAsP 10 (0.249, 0.539) undoped 1250, 0.0
Barrier 10 (0.249, 0.539) undoped 1250, 0.0
Well × 5 5.5 (0.122, 0.728) undoped 1571, CS1.50%
Barrier × 5 10 (0.249, 0.539) undoped 1250, 0.0
GRINSCH InGaAsP 10 (0.249, 0.539) 0.5 (N) 1250, 0.0
GRINSCH InGaAsP 20 (0.216, 0.469) 0.5 (N) 1200, 0.0
GRINSCH InGaAsP 20 (0.181, 0.395) 0.5 (N) 1150, 0.0
GRINSCH InGaAsP 20 (0.145, 0.317) 0.5 (N) 1100, 0.0
GRINSCH InGaAsP 20 (0.108, 0.236) 0.5 (N) 1050, 0.0
Buffer N-InP 650 (0.000, 0.000) 1.0 (N) 918.6, 0.0
Etching stop 10 (0.108, 0.236) 3.0 (N) 1050, 0.0
Substrate N-InP 100 000 (0.000, 0.000) 3.0 (N) 918.6, 0.0

P cladding

Metal contact

DFB grating
Contact cap

P cladding

DFB–LD
active region

Metal contactEAM active region

N substrate

Insulator

Fig. 12.1. An integrated DFB LD and EAM structure.
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Table 12.2. Cross-sectional structure for EAM section

The table sets out a design for the EAM section in the InGaAsP/InP system at 1550 nm.

Layer Thickness
(nm)

Composition of
In(1−x)GaxAsy

P(1−y) (x, y)

Doping
concentration
(1018/cm3)

Remarks λg

(nm) and
strain

Cap P-InGaAs 200 (0.468, 1.000) 10.0 (P) 1654, 0.0
Cladding P-InP 1850 (0.000, 0.000) 0.5 (P) 918.6, 0.0
GRINSCH InGaAsP 50 (0.108, 0.236) undoped 1050, 0.0
GRINSCH InGaAsP 50 (0.181, 0.395) undoped 1150, 0.0
Barrier 6 (0.196, 0.343) undoped 1100, TS0.27%
Well × 10 9 (0.336, 0.861) undoped 1580, CS0.45%
Barrier × 10 6 (0.196, 0.343) undoped 1100, TS0.27%
GRINSCH InGaAsP 20 (0.181, 0.395) undoped 1150, 0.0
GRINSCH InGaAsP 25 (0.108, 0.236) undoped 1050, 0.0
Buffer N-InP 650 (0.000, 0.000) 1.0 (N) 918.6, 0.0
Etching stop 10 (0.108, 0.236) 3.0 (N) 1050, 0.0
Substrate N-InP 100 000 (0.000, 0.000) 3.0 (N) 918.6, 0.0

explained in Section 10.2.1. Compressive strains are also applied to both QWs in the
DFB laser and EAM sections to eliminate TM mode emission in the laser and to enhance
the extinction ratio in the modulator. In the DFB laser section, we have used a slightly
higher strain level of 1.5% in order to achieve a relatively high gain under the laser
operating condition, as revealed in Section 10.1.2.

12.1.2 The interface

The calculated optical modes in the DFB laser and EAM sections are shown in
Figs. 12.2(a&b), respectively. The calculated effective indices for the TE mode in the
DFB laser and EAM sections are 3.177 and 3.206, respectively. If using the same shallow
ridge height in the DFB laser and EAM sections, i.e., without the deep etching (through
the active region) in the EAM section, the calculated TE mode effective index in the
EAM section would be 3.225.

The calculated far-field pattern emitted from the front facet is shown in Fig. 12.3, an
aspect ratio of 1.36:1 (vertical:horizontal) is achieved, as can be seen.

12.1.3 Simulated distributed feedback laser performance

Figures 12.4, 12.5, and 12.6 show the calculated DFB laser spectrum, the output power –
bias current dependence, and the side mode suppression ratio (SMSR) – bias current
dependence under different grating phases at the HR coated rear facet.

From Fig. 12.4, we find that the lasing wavelengths are within a range from 1559.5 nm
to 1563.5 nm. The spacing is around 4 nm as expected, which equals the Bragg stop-band
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Fig. 12.2. Cross sectional optical field distributions. (a) In the DFB laser section. (b) In the EAM section.

width, as the lasing mode must be on either side of the Bragg stop-band edge for an
index-coupled uniform grating DFB laser as discussed in Section 10.3.2.

Both Figs. 12.5 and 12.6 show that mode hopping happens at a specific grating phase
among the equally sampled eight different grating phases from 0◦ to 360◦. This is actually
a mode switching from one Bragg stop-band edge to the other. Figure 12.5 also shows
that at a different specific grating phase the output power is extremely low. Actually, the
majority of the power goes to the other direction with this grating phase. Hence the output
power from the rear facet is higher despite the HR coating, due to the favorable grating
phase condition. Therefore, we may conclude that the yield due to the random grating
phase at the HR coated rear facet is roughly 75%, since there are two counts of failures
among the eight uniformly sampled grating phases. Provided that other fabrication related
issues on the yield can be controlled, this structure-dependent non-uniformity gives the
inherent limit to the yield of such an integrated device.
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Fig. 12.4. DFB laser spectra under different grating phases at the HR coated rear facet.

12.1.4 Simulated electro-absorption modulator performance

Figure 12.7 shows the calculated modal absorption spectra under different reverse bias
voltages. We have only plotted the absorptions of the TE mode since a DFB laser with
compressively strained QW structure emits the TE mode only.

Figure 12.8 gives the calculated TE mode extinction ratios under different reverse bias
voltages.

Figure 12.9(a) shows the calculated TE mode insertion loss under zero bias and the
extinction ratio under 2 V reverse bias in the wavelength range of interest.As shown in the
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figure, within the possible lasing wavelength range, i.e., from 1559.5 nm to 1563.5 nm,
a 2 V reverse bias voltage will provide an extinction ratio over 44 dB. An insertion loss
below 15.7 dB is also achievable over the same wavelength range. This design is certainly
far from an optimized one. In dealing with real world problems, however, we can take
this design as an initial step from which we proceed towards an optimized structure. For
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Fig. 12.8. EAM extinction ratios for the TE mode under different reverse bias voltages.

example, Fig. 12.9(a) gives us the hint that if we move our operating wavelength towards
the blue side, we may reach a better performance as the insertion loss does not increase
as fast as the extinction ratio. If we cannot afford any increase in the insertion loss, we
could cut down the EAM length to scale down the loss. Although the extinction ratio
will be scaled down as well, we still obtain an increased gap between the insertion loss
and the extinction ratio. For example, by blue-shifting the entire operating wavelength
range by 3 nm and cutting the EAM section length by half (i.e., to 100 µm), we obtain
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Fig. 12.9. Insertion loss under zero bias and extinction ration under 2 V reverse bias for the EAMs. (a) In a
length of 200 µm within the original operating wavelength range. (b) In a length of 100 µm
within a 3 nm blue-shifted operating wavelength range.

an almost flat extinction ratio around 40 dB under a 2 V reverse bias, with a reduced
insertion loss below 10 dB in the wavelength range from 1556.5 nm to 1560.5 nm, as
shown in Fig. 12.9(b). Therefore, at the cost of dropping the extinction ratio by 4 dB, we
manage to cut the insertion loss by 5.7 dB.

We may also consider reducing the normalized coupling coefficient in the DFB laser to
increase the laser output power and reduce the uncertainty range of the lasing wavelength,
since the Bragg stop-band width shrinks as the normalized coupling coefficient decreases.
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Fig. 12.10. Chirp parameter spectra under different reverse bias voltages.

However, this will reduce the laser’s immunity to reflection from the modulator, which
may adversely affect the SMSR or cause lasing mode instability [1, 2].

Finally, Fig. 12.10 shows the calculated chirp parameter spectra under different reverse
bias voltages.

12.2 The integrated semiconductor distributed feedback laser and
monitoring photodetector

12.2.1 The device structure

A schematic structure of an integrated semiconductor DFB laser and monitoring PD is
shown in Fig. 12.11. Less popular than the DFB laser and EAM integration that has
found many applications in long haul fiber-optic communication backbone networks,
this integrated device has been proposed as a component in in-line bidirectional optical
diplexer transceivers as the optical network unit (ONU) for passive optical network
(PON) based access networks such as fiber-to-the-home (FTTH) systems. As shown in
Fig. 12.12, this integrated device is used as a directly modulated laser source for upstream
signal transmission through a single mode fiber (SMF), and as a passive waveguide to
receive the incoming downstream optical signal from the SMF and to couple the light to
a conventional surface incident type PD positioned at the rear end of the device through
hybrid integration. The monolithically integrated PD with the DFB laser is for monitoring
laser output power and for absorbing the back-traveling laser beam. Knowing that the
upstream signal carrier (at 1310 nm) is on the blue (i.e., shorter wavelength) side of the
downstream signal carrier (at 1490 nm) according to the ITU standard [3], and by utilizing
the fact that an active region designed for lasing at 1310 nm can be made transparent
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Fig. 12.11. An integrated DFB LD and monitoring PD structure.
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Fig. 12.12. Structure of the in-line bidirectional optical diplexer transceiver.

to light at 1490 nm, we take this integration design to provide the functionality of a
wavelength demultiplexer, which has to be used in bidirectional transceivers to separate
the upstream and downstream signals carried by different wavelength channels but shared
by the same space channel during the transmission.

In this design, the DFB laser section and the monitoring PD section share an identical
structure but separated electrode, with the active region gain peak as well as the DFB
grating Bragg wavelength designed near 1310 nm. The DC bias and modulation signal
currents are applied to the DFB laser section only. As the lasing happens near 1490 nm,
the output optical power from the front facet will be coupled to the SMF. The output
power from the rear end enters into the unbiased or reversely biased monitoring PD
section and gets absorbed. The photocurrent can therefore be picked up at the monitoring
PD electrode for laser power control. The incoming downstream signal at 1490 nm is
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coupled to the device waveguide through the SMF simultaneously. Since the waveguide
in both sections is designed to be transparent at 1490 nm, the incoming light will simply
pass through the waveguide and reach the rear end hybrid PD for signal detection. The
residual light near 1310 nm escaping from the rear facet will be rejected by a thin film
low pass filter (LPF) mounted or directly coated on the surface of the hybrid PD to avoid
direct optical crosstalk through the detection PD at 1490 nm which responds to both
channels. The device front facet is AR coated for both channels, whereas its rear facet is
HR and AR coated for the 1310 nm and 1490 nm channels, respectively, for the obvious
reason of giving further discrimination on power in these two channels to avoid crosstalk
in the detection PD.

The cross-sectional layer structure of this device is shown in Table 12.3.Anon-uniform
QW design is used for the active region to flatten the material gain in the neighborhood of
the operating wavelength (1310 nm). As a result, the laser will perform more uniformly
within the operating temperature range of 233 K to 358 K specified for ONUs in PON
based FTTH networks [3].

Both sections of this device have the same ridge with a width of 2.0 µm and a height
of 2.0 µm. The DFB laser section and monitoring PD section are 300 µm and 700 µm
long, respectively, the electrodes are isolated by a 10 µm wide and 1.0 µm deep trench
etched across the ridge. The DFB laser has a uniform purely index-coupled grating with a
normalized coupling coefficient of 2.1, which is optimized in terms of the laser overall DC
and dynamic performance. This design is a balance between threshold current, output
optical power, SMSR and mode stability, immunity to external feedback, and small-
signal intensity modulation bandwidth. In the neighborhood of 1310 nm, the front (i.e.,
the DFB laser side) and the rear (i.e., the monitoring PD side) facets are AR and HR
coated, respectively, with amplitude reflectivities at 0.01 and 0.87, respectively.

In the DFB laser section, again, a floating grating design is adopted to control the
uniformity of the device. An exponentially growing doping profile is also used in the
P type InP cladding layer. A slightly higher compressive strain of 1.5% and a well
thickness of 5 nm are applied to every QW regardless of material composition. The
barriers are uniform and unstrained, with their bandgap wavelength at 1000 nm. The
material composition of the QWs and the well thickness are jointly fine-tuned to set the
gain peak detuned from the lasing wavelength for about 10 nm on the red side. Since
the required lasing wavelength is at 1310 nm, and we have to set the Bragg grating
period in accordance with this wavelength, the gain peak, therefore, must be aligned
with 1320 nm. Again, this is a balanced design dictated by the required device DC and
dynamic performance over the required temperature operating range. Actually, without
this detuning the device will have a low small-signal modulation bandwidth due to the low
differential gain. Besides, the device DC performance drops at low temperatures under
high injection, since the carrier induced gain peak blue-shift makes the gain drop rapidly
at the Bragg wavelength. With further detuning, however, the device DC performance
deteriorates at higher ambient temperatures, due to the faster red-shift of the gain peak
compared to the Bragg wavelength shift, which makes the lasing wavelength move
further away from the gain peak. Consequently, there is not sufficient gain at the lasing
wavelength again [4].
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Table 12.3. Cross-sectional structure for integrated DFB laser

The table sets out design for the integrated DFB laser and monitoring PD in the InAlGaAs/InP
system at 1310 nm.

Layer Thickness
(nm)

Composition of
In(1−x)GaxAsy
P(1−y) (x, y)

Doping
concentration
(1018/cm3)

Remarks λg
(nm) and strain

Cap P-InGaAs 200 (0.468, 1.000) 10.0 (P) 1654, 0.0
Graded doped

P-InP
1800 (0.000, 0.000) 1.0–0.5 (P) 918.6, 0.0

Etching stop
InGaAsP

10 (0.108, 0.236) 0.5 (P) 1050, 0.0

Spacer InP 140 (0.000, 0.000) 0.5 (P) 918.6, 0.0
Grating

InGaAsP
40 (0.249, 0.539) 0.3 (P) 1250, 0.0

Spacer InP 40 (0.000, 0.000) 0.3 (P) 918.6, 0.0
Blocking

P-InAlAs
50 (0.479, 0.000) 0.3 (P) 829.2, 0.0

GRINSCH 50 (0.380, 0.090) undoped 950–1000, 0.0
InAlGaAs –(0.350, 0.130)

Barrier
InAlGaAs

8.5 (0.350, 0.130) undoped 1000, 0.0

Well InAlGaAs 5 (0.137, 0.116) undoped 1501, CS1.50%
Barrier

InAlGaAs
8.5 (0.350, 0.130) undoped 1000, 0.0

Well InAlGaAs 5 (0.190, 0.063) undoped 1359, CS1.50%
Barrier

InAlGaAs
8.5 (0.350, 0.130) undoped 1000, 0.0

Well InAlGaAs 5 (0.155, 0.098) undoped 1451, CS1.50%
Barrier

InAlGaAs
8.5 (0.350, 0.130) undoped 1000, 0.0

Well InAlGaAs 5 (0.137, 0.116) undoped 1501, CS1.50%
Barrier

InAlGaAs
8.5 (0.350, 0.130) undoped 1000, 0.0

Well InAlGaAs 5 (0.190, 0.063) undoped 1359, CS1.50%
Barrier

InAlGaAs
8.5 (0.350, 0.130) undoped 1000, 0.0

Well InAlGaAs 5 (0.155, 0.098) undoped 1451, CS1.50%
Barrier

InAlGaAs
8.5 (0.350, 0.130) undoped 1000, 0.0

GRINSCH 100 (0.350, 0.130) undoped 1000–950, 0.0
InAlGaAs –(0.380, 0.090)

Blocking
N-InAlAs

30 (0.479, 0.000) 2.0 (N) 829.2, 0.0

Buffer N-InP 500 (0.000, 0.000) 1.0 (N) 918.6, 0.0
Substrate N-InP 100 000 (0.000, 0.000) 3.0 (N) 918.6, 0.0
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12.2.2 Simulated distributed feedback laser performance

Figures 12.13 and 12.14 give the calculated 1310 nm channel output optical power
and SMSR dependences on the bias current under different ambient temperatures. It
shows that such a DFB laser design performs quite uniformly over the temperature
range from 233 K to 358 K. Without the red-shift detuning of the gain peak from the
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Fig. 12.13. The output power–bias current dependences of the integrated DFB laser under different ambient
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Bragg wavelength as mentioned in Section 12.2.1, the device SMSR drops at low ambi-
ent temperature under high injection, due to the blue-shift of the gain peak. A sign of
such an effect emerges even in the present design, in which a 10 nm red-shift of the gain
peak from the Bragg wavelength has been introduced, as can be seen from Fig. 12.14,
in which the SMSR under the low ambient temperature drops continually as the bias
current increases.

12.2.3 Crosstalk modeling

A potential problem of this device lies in the 1310 nm channel to 1490 nm channel
crosstalk due to the gain and phase modulations. Due to the imbedded homogeneity of
material gain caused by the many-body effect, signal switches on and off in the DFB laser
section will not only change the gain at 1310 nm, but will change the entire gain profile.
Thus, the gain or loss at 1490 nm will fluctuate as well. This effect brings in a direct
gain modulation to the 1490 channel. An even worse effect is the phase modulation
due to the induced refractive index change. Linked to the material gain through the
Kramers–Kronig transformation, the refractive index sees its maximum change at the
gain profile edge, which happens to fall in the neighborhood of 1490 nm. As a result, the
phase of the light in the 1490 nm channel will fluctuate with the modulation current when
it passes through the DFB laser section. Due to self-interference caused by reflections
from any possible interface between the front facet and the detection PD surface, such
parasitic phase modulation will be translated into intensity modulation. Hence the phase
modulation becomes another source of crosstalk.

Figures 12.15(a–d) show the calculated material gain profile and refractive index
change at different carrier density injection levels. Figure 12.16 gives the calculated
average carrier density inside the active region as a function of the bias current.

As clearly shown in Fig. 12.15(b), the material gain indeed changes roughly from
−75 /cm to 75 /cm at 1490 nm, when the injected electron and hole densities vary from
0 to 3 × 1018 cm3, which roughly corresponds to the maximum device operating range,
i.e., the bias current applied to the device ranging from 0 to 100 mA, as confirmed
by Fig. 12.16. Therefore, as the downstream light at 1490 nm passes through the DFB
section, it experiences a material gain fluctuation once the DFB laser section is modu-
lated.As the gain roughly changes from 0 at the transparency carrier densities to 2000 /cm
at the maximum injected electron and hole densities around 3 × 1018 /cm3 at 1310 nm,
as shown in Fig. 12.15(a), we can roughly estimate that, as the bias current applied to
the DFB section changes from its DC value to its peak value (assumed to be 100 mA),
the material gain presents a dynamic range from 0 to 2000 cm at 1310 nm, and from 0
to 75 cm at 1490 nm. Hence the relative gain fluctuation at 1490 nm, once normalized
by the gain change at 1310 nm, is about −14 dB. Although the non-linear process in the
DFB laser section may suppress the gain fluctuation at 1490 nm, the crosstalk induced
by such gain correlation between 1310 nm and 1490 nm can still be considerable. Since
the monitoring PD section is either unbiased or reversely biased, as the light at 1490 nm
passes through this section, it also suffers a loss due to the material absorption around
−75 /cm. In the cross-sectional layer structure design, we have considered this issue by
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using relatively thin InAlAs blocking layers. As a result, the light at 1490 nm has poor
confinement and hence the modal loss is effectively reduced. This design also helps to
suppress the modal gain fluctuation at 1490 nm.

Figures 12.15(c&d) indicate that the refractive index changes at 1490 nm and at
1310 nm are on a roughly equal scale. Thus, the parasitic phase modulation at 1490 nm
due to the bias change in the DFB laser section is not negligible. Either we have to reduce
the residual reflections of the light at 1490 nm to prevent conversion of the phase modu-
lation into intensity modulation due to self-interference, or we have to utilize the phase
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Fig. 12.15. (cont.)

modulation to cancel out the direct gain modulation as mentioned above by controlling
the round trip delay due to the residual reflections at 1490 nm.

Figure 12.17 shows simulated time domain parasitic modulation in the 1490 nm chan-
nel when the input to the device is just a DC light. A DC bias current plus a 1-0 regular
square pulse stream with an equal on and off duration of 200 ps is applied to the DFB
laser section. We find that, as the output light at 1310 nm is directly modulated, the wave-
form pattern is also copied to the passing light in the 1490 nm channel through the above
mentioned effects. Figure 12.18 shows the corresponding frequency domain base-band
spectrum of the light at 1490 nm. It clearly shows that many harmonic frequency lines
appear due to the parasitic modulation. If we define the crosstalk as the intensity ratio
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between the strongest (which is the first in this case) harmonic component and the DC
(undistorted) component, we find from Fig. 12.18 that the crosstalk is around −21 dB.

Figure 12.19 shows the calculated power of the light at 1490 nm and the crosstalk as
functions of the change in the round trip phase delay defined as �φ ≡ 4π

∫ L

0 �ndz/λ,
where L = 1000 µm indicates the total length of the DFB laser and monitoring PD
sections, λ = 1490 nm the downstream channel wavelength, and �n the refractive index
change at 1490 nm. If the monitoring PD section is not biased, the change in the round
trip phase delay comes from the DFB section only. In Fig. 12.19, the crosstalk lobes cor-
respond to the regions where the direct gain modulation and phase modulation induced
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inside the device.

intensity changes are added in in-phase and anti-phase fashions alternately.At the bound-
aries of these regions, crosstalk decreases rapidly due to the cancellation of the two
crosstalk mechanisms, which gives us the hint that we should make our device operate
at these boundary points so that the crosstalk will be minimized.
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Appendices

A Lowdin’s renormalization theory

Using the projection operator |ϕn〉 〈ϕn| we can expand a state |φ〉 through base |ϕn〉,
n = 1, 2, 3, . . . , i.e., |φ〉 = ∑∞

n=1 |ϕn〉 〈ϕn | φ〉 = ∑∞
n=1 an |ϕn〉, where we have utilized∑∞

n=1 |ϕn〉 〈ϕn| ≡ 1 and an ≡ 〈ϕn | φ〉. Therefore, multiply both sides of equation
⇀

H |φ〉 = E |φ〉 by 〈ϕm| to yield

∞∑
n=1

(Hmn − Eδmn)an = 0, (A.1)

where we have defined Hmn ≡ 〈ϕm| ⇀

H |φn〉 and 〈ϕm | ϕn〉 = δmn is used.
According to Lowdin’s renormalization theory, equation (A.1) can also be written as

(Hmm − E)am +
∞∑

n�=m

Hmnan = 0. (A.2)

Now, we partition the complete set of eigensolutions into two groups A and B, with
group A containing all those eigenvalues that we are interested in and group B the rest.
Our intention is to find the solution for group A states but with the effect of group B
states included. If we only put one eigensolution into group A, this method reduces
to the normal perturbation approach. However, when there are strongly coupled states,
e.g., energy degenerated states, multiple states can be put into group A, which makes
this method perfectly suitable for treating the degenerated valence band. Under such a
partition, equation (A.2) becomes

(Hmm − E)am +
A∑

n�=m

Hmnan +
B∑

n�=m

Hmnan = 0, (A.3)

or

am =
A∑

n�=m

Hmn

E − Hmm

an +
B∑

n�=m

Hmn

E − Hmm

an. (A.4)
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Firstly, we use a
(0)
m ≈ ∑A

n�=m
Hmn

E−Hmm
an to plug into the second term on the RHS of

equation (A.4) to obtain

a(1)
m ≈

A∑
n�=m

Hmn

E − Hmm

an +
B∑

n�=m

Hmn

E − Hmm

A∑
α �=n

Hnα

E − Hnn

aα

=
A∑

n�=m

Hmn

E − Hmm

an +
A∑

n�=α

1

E − Hmm

B∑
α �=m

HmαHαn

E − Hαα

an

=
A∑

n�=m

Hmn +
B∑

α �=m

HmαHαn

E−Hαα

E − Hmm

an

=
A∑
n

Hmn +
B∑

α �=m

HmαHαn

E−Hαα
− Hmnδmn

E − Hmm

an. (A.5)

Such an iteration process can be performed repeatedly by substituting equation (A.5)
into the second term on the RHS of (A.4), and hence we obtain

am =
A∑
n

UA
mn − Hmnδmn

E − Hmm

an, (A.6)

with

UA
mn ≡ Hmn +

B∑
α �=m

HmαHαn

E − Hαα

+
B∑

α,β �=m,n
α �=β

HmαHαβHβn

(E − Hαα)(E − Hαα)
+ · · · . (A.7)

Equation (A.6) is equivalent to

A∑
n

(UA
mn − Eδmn)an = 0, (A.8)

for states belonging to group A, or n ⊂ A and m ⊂ A.
Once those group A coefficients are obtained by solving equation (A.8), we can also

find the group B coefficients according to equation (A.6)

aγ =
A∑
n

UA
γ n − Hγnδγn

E − Hγγ

an, (A.9)

for states belonging to group B, or γ ⊂ B.
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A necessary condition for the expansion (A.7) to converge is

|Hmγ | � |E − Hγγ |, (A.10)

for states m and γ belonging to groups A and B, or m ⊂ A and γ ⊂ B, respectively.
In particular, to first order accuracy, equation (A.7) becomes

UA
mn = Hmn +

B∑
α �=m

HmαHan

E − Hαα

. (A.11)

B Integrations in the many-body gain model

For quantum well structures, by following equation (7.2a), we convert the wave vec-
tor domain summations into integrals in computing the coefficients summarized in
Table 4.3. These coefficients appear in the governing ODEs, i.e., equation (4.156a)
for the slow-varying envelope function of the polariton number expectation, and
equations (4.156b&c) for the conduction band electron and valence band hole num-
ber expectations, respectively. In the following derivations, we will also rewrite
equation (4.9d) as

V|⇀k −⇀
k

′| = e2�(|⇀k − ⇀

k
′|)

2ε0�|⇀k − ⇀

k
′| . (B.1)

The 1st order diagonal summation is

I 1
⇀
k

≡
∑
⇀
l �=⇀

k

V|⇀l −⇀
k |( f e

⇀
l

+ f h
⇀
l

− 1) =
∑
⇀
l �=⇀

k

e2�(|⇀l − ⇀

k |)
2ε0�|⇀l − ⇀

k | ( f e
⇀
l

+ f h
⇀
l

− 1)

=
∑
nz

e2

4π2ε0

∫ ∞

0

∫ 2π

0
lrdlr dϕl

×
{

�
[√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)]

( f e
lr ϕl

+ f h
lr ϕl

− 1)
√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
) |lr �=kr

⋃
ϕl �=ϕk

}

=
∑
nz

[∫ kr−�

0
dlrφ1(kr , ϕk, lr ) +

∫ ∞

kr+�

dlrφ1(kr , ϕk, lr )

+
∫ kr+�

kr−�

dlrφ1(kr , ϕk, lr )|ϕl �=ϕk

]
, (B.2a)

where

φ1(kr , ϕk, lr ) ≡ e2lr

4π2ε0

∫ 2π

0
dϕl

{
�
[√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)]

√ (
k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
) ( f e

lr ϕl
+f h

lr ϕl
−1)

}
.

(B.2b)
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The 1st order non-diagonal summation is

I 2
⇀
k

≡
∑

⇀
l �=⇀

k

V|⇀l −⇀
k |p̃⇀

l
=
∑

⇀
l �=⇀

k

e2�(|⇀l − ⇀
k |)

2ε0�|⇀l − ⇀
k | p̃⇀

l

=
∑
nz

e2

4π2ε0

∫ ∞

0

∫ 2π

0
lrdlr dϕl

�
[√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)]

p̃lrϕl√ (
k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
) |lr �=kr

⋃
ϕl �=ϕk

=
∑
nz

[∫ kr−�

0
dlrφ2(kr , ϕk, lr ) +

∫ ∞

kr+�

dlrφ2(kr , ϕk, lr )

+
∫ kr+�

kr−�

dlrφ2(kr , ϕk, lr )|ϕl �=ϕk

]
, (B.3a)

where

φ2(kr , ϕk, lr ) ≡ e2lr

4π2ε0

∫ 2π

0
dϕl

{
�
[√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)]

√ (
k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
) p̃lrϕl

}
.

(B.3b)
The 2nd order diagonal summation is

J 1
⇀
k

≡
∑

α,β=e,h

∑
⇀
k

′′

∑
⇀
l �=0

(
2Ṽ 2

|⇀l | − δαβṼ|⇀l |Ṽ|⇀k ′′−⇀
l −⇀

k |
)

× g
[
εα⇀

k
+ εβ⇀

k
′′ − εα(⇀k +⇀

l ) − εβ(⇀k
′′−⇀

l )

]
×
[
f α

⇀
k +⇀

l
(1 − f

β
⇀
k

′′)f
β
⇀
k

′′−⇀
l

+ (1 − f α
⇀
k +⇀

l
)f

β
⇀
k

′′(1 − f
β
⇀
k

′′−⇀
l
)
]

=
(

e2

2ε0�

)2 ∑
α,β=e,h

∑
⇀
k

′′

∑
⇀
l �=0

[
2�(|⇀l |)
ε⇀
l
|⇀l | − δαβ�(|⇀k ′′ − ⇀

l − ⇀

k |)
ε⇀
k

′′−⇀
l −⇀

k
|⇀k ′′ − ⇀

l − ⇀

k |

]
�(|⇀l |)
ε⇀
l
|⇀l |

×
δ + j

[
εα⇀

k
+ εβ⇀

k
′′ − εα(⇀k +⇀

l ) − εβ(⇀k
′′−⇀

l )

]
δ2 +

[
εα⇀

k
+ εβ⇀

k
′′ − εα(⇀k +⇀

l ) − εβ(⇀k
′′−⇀

l )

]2

×
[
f α

⇀
k +⇀

l
(1 − f

β
⇀
k

′′)f
β
⇀
k

′′−⇀
l

+ (1 − f α
⇀
k +⇀

l
)f

β
⇀
k

′′(1 − f
β
⇀
k

′′−⇀
l
)
]

=
(

e2

4π2ε0

)2 ∑
α,β=e,h

∑
nz1

∑
nz2

∫ ∞

0

∫ 2π

0
k

′′
r dk

′′
r dϕ

k
′′
∫ ∞

0

∫ 2π

0
dlr dϕl

{{
2�(lr )

ε(lr , ϕl)lr

−
δαβ�

[
Q(kr, ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
]

ε(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)Q(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

}
�(lr )

ε(lr , ϕr)

× δ + iε�1αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

δ2 + ε2
�1αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
F1αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)

}
|lr �=0

=
∑

α,β=e,h

∑
nz1

∑
nz2

∫ ∞

0

∫ 2π

0
k

′′
r dk

′′
r dϕ

k
′′
[∫ ∞

�

dlrφ3αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr )

]
,

(B.4a)
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where we have defined

φ3αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr ) ≡ φ31αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr ) + φ32αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr ),

(B.4b)

φ31αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr ) ≡
(

e2

4π2ε0

)2 ∫ 2π

0
dϕl

{{
2�(lr )

ε(lr , ϕl)lr

−
δαβ�

[
Q(kr, ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
]

ε(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)Q(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

⎫⎬⎭ �(lr )

ε(lr , ϕl)

× δ + jε�1αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

δ2 + ε2
�1αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
F11αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)

}
|lr �=0, (B.4c)

φ32αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr ) ≡
(

e2

4π2ε0

)2 ∫ 2π

0
dϕl

{{
2�(lr )

ε(lr , ϕl)lr

−
δαβ�

[
Q(kr, ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
]

ε(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)Q(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

⎫⎬⎭ �(lr )

ε(lr , ϕl)

× δ + jε�1αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

δ2 + ε2
�1αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
F12αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)

}
|lr �=0. (B.4d)

We have also defined

Q(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl) ≡ |⇀k ′′ − ⇀
l − ⇀

k |
= √(

k2
r + k

′′2
r + l2

r − 2krk
′′
r cos(ϕk − ϕ

k
′′ ) + 2kr lr cos(ϕk − ϕl) − 2k

′′
r lr cos(ϕ

k
′′ − ϕl)

)
,

(B.4e)

ε(lr , ϕl) ≡ ε⇀
l

= 1 − V|⇀l |
∑

⇀x

∑
α=e,h

f α
⇀x −⇀

l
− f α

⇀x

�ω + iδ + εα(⇀x −⇀
l ) − εα⇀x

= 1 − e2�(lr )

4π2ε0lr

∑
α=e,h

∑
nz

∫ ∞

0

∫ 2π

0
xr dxr dϕx

f1(lr , ϕl, xr , ϕx)

�ω + jδ + εδ1(lr , ϕl, xr , ϕx)
,

(B.4f )

f1(lr , ϕl, xr , ϕx) ≡ f α
⇀x −⇀

l
− f α

⇀x
= f α

d1ϕd1
− f α

xrϕx
, (B.4g)

d1 =
√

(x2
r + l2

r − 2xr lr cos(ϕx − ϕl)), (B.4h)

ϕd1 ≡ tan−1
[

xr sin ϕx − lr sin ϕl

xr cos ϕx − lr cos ϕl

]
, (B.4i)

εδ1(lr , ϕl, xr , ϕx) ≡ εα(⇀x −⇀
l ) − εα

⇀x ≈ �
2

2mα

(|⇀x − ⇀

l |2 − |⇀x|2)

= �
2

2mα

[
l2
r − 2lrxr cos(ϕl − ϕx)

]
, (B.4j)
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ε(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl) ≡ ε⇀
k

′′−⇀
l −⇀

k
= 1 − V|⇀k ′′−⇀

l −⇀
k |

×
∑

⇀x

∑
α=e,h

f α
⇀x −(⇀k

′′−⇀
l −⇀

k )
− f α

⇀x

�ω + jδ + εα[⇀x −(⇀k
′′−⇀

l −⇀
k )] − εα⇀x

= 1 −
e2�

[
Q(kr, ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
]

πεQ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

∑
α=e,h

∑
nz

∫ ∞

0

∫ 2π

0

f2(lr , ϕl, xr , ϕx)xr dxr dϕx

�ω + jδ + εδ2(lr , ϕl, xr , ϕx)
,

(B.4k)

f2(lr , ϕl, xr , ϕx) ≡ f α
⇀x −(⇀k

′′−⇀
l −⇀

k )
− f α

⇀x
= f α

d2ϕd2
− f α

xrϕx
, (B.4l)

d2 ≡ √ (
Q2 + x2

r − 2Qxr cos(ϕq − ϕx)
)

, (B.4m)

ϕq ≡ tan−1

[
kr sin ϕk − k

′′
r sin ϕ

k
′′ + lr sin ϕl

kr cos ϕk − k
′′
r cos ϕ

k
′′ + lr cos ϕl

]
, (B.4n)

ϕd2 ≡ tan−1

[
xr sin ϕx − kr sin ϕk + k

′′
r sin ϕ

k
′′ − lr sin ϕl

xr cos ϕx − kr cos ϕk + k
′′
r cos ϕ

k
′′ − lr cos ϕl

]
, (B.4o)

εδ2(lr , ϕl, xr , ϕx) ≡ εα[⇀x −(⇀k
′′−⇀

l −⇀
k )] − εα⇀x

≈ �
2

2mα

[
|⇀x − (

⇀

k
′′ − ⇀

l − ⇀

k)|2 − |⇀x|2
]

= �
2

2mα

[
Q2 − 2Qxr cos(ϕq − ϕx)

]
, (B.4p)

ε�1αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl) ≡ εα⇀
k

+ εβ⇀
k

′′ − εα(⇀k +⇀
l ) − εβ(⇀k

′′−⇀
l )

≈ �
2

2mα

(|⇀k |2 − |⇀k + ⇀

l |2) + �
2

2mβ

(|⇀k ′′|2 − |⇀k ′′ − ⇀

l |2)

= − �
2

2mα

[
l2
r + 2kr lr cos(ϕk − ϕl)

]
− �

2

2mβ

[
l2
r − 2k

′′
r lr cos(ϕ

k
′′ − ϕl)

]
, (B.4q)

F1αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl) ≡ F11αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

+ F12αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl), (B.4r)

F11αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl) ≡ f α
⇀
k +⇀

l
(1 − f

β
⇀
k

′′)f
β
⇀
k

′′−⇀
l

= f α
d3ϕd3

(1 − f
β

k
′′
r ϕ

k
′′
)f

β
d4ϕd4

,

(B.4s)

F12αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl) ≡ (1 − f α
⇀
k +⇀

l
)f

β
⇀
k

′′(1 − f
β
⇀
k

′′−⇀
l
)

= (1 − f α
d3ϕd3

)f
β

k
′′
r ϕ

k
′′
(1 − f

β
d4ϕd4

), (B.4t)

d3 ≡ √ (
k2
r + l2

r + 2kr lr cos(ϕk − ϕl)
)

, (B.4u)
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ϕd3 ≡ tan−1
[

kr sin ϕk + lr sin ϕl

kr cos ϕk + lr cos ϕl

]
, (B.4v)

d4 ≡ √ (
k

′′2
r + l2

r − 2k
′′
r lr cos(ϕ

k
′′ − ϕl)

)
, (B.4w)

ϕd4 ≡ tan−1

[
k

′′
r sin ϕ

k
′′ − lr sin ϕl

k
′′
r cos ϕ

k
′′ − lr cos ϕl

]
. (B.4x)

The 2nd order non-diagonal summation is

J 2
⇀
k αβ

=
∑
⇀
k

′′

∑
⇀
l �=⇀

k

(
2Ṽ 2

|⇀l −⇀
k | − δαβṼ|⇀l −⇀

k |Ṽ|⇀k ′′−⇀
l |
)

× g
[
−εα⇀

k
− εβ⇀

k
′′ + εα⇀

l
+ εβ(⇀k

′′−⇀
l +⇀

k )

] [
p̃⇀

l
(1 − f

β
⇀
k

′′)f
β
⇀
k

′′−⇀
l +⇀

k

]
=
(

e2

2ε0�

)2∑
⇀
k

′′

∑
⇀
l �=⇀

k

⎡⎣ 2�(|⇀l − ⇀

k |)
ε⇀
l −⇀

k
|⇀l − ⇀

k | − δαβ�(|⇀k ′′ − ⇀

l |)
ε⇀
k

′′−⇀

l
|⇀k ′′ − ⇀

l |

⎤⎦ �(|⇀l − ⇀

k |)
ε⇀
l −⇀

k
|⇀l − ⇀

k |

×
δ + j

[
−εα⇀

k
− εβ⇀

k
′′ + εα⇀

l
+ εβ(⇀k

′′−⇀
l +⇀

k )

]
δ2 +

[
−εα⇀

k
− εβ⇀

k
′′ + εα⇀

l
+ εβ(⇀k

′′−⇀
l +⇀

k )

]2

[
p̃⇀

l
(1 − f

β
⇀
k

′′)f
β
⇀
k

′′−⇀
l +⇀

k

]

=
(

e2

4π2ε0

)2∑
nz1

∑
nz2

∫ ∞

0

∫ 2π

0
k

′′
r dk

′′
r dϕ

k
′′
∫ ∞

0

∫ 2π

0
lr dlr dϕl

×
{{

2�
[√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
) ]

ε(kr , ϕk, lr , ϕl)
√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)

−
δαβ�

[√ (
k

′′2
r + l2

r − 2k
′′
r lr cos(ϕ

k
′′ − ϕl)

) ]
ε(lr , ϕr , k

′′
r , ϕk

′′ )
√(

k
′′2
r + l2

r − 2k
′′
r lr cos(ϕ

k
′′ − ϕl)

)}

× �
(√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
))

ε(kr , ϕk, lr , ϕl)
√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)

× δ + jε�2αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

δ2 + ε2
�2αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
F2αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)

}
|lr �=kr

⋃
ϕl �=ϕk

=
∑
nz1

∑
nz2

∫ ∞

0

∫ 2π

0
k

′′
r dk

′′
r dϕ

k
′′
[∫ kr−�

0
dlrφ4αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr )

+
∫ ∞

kr+�

dlrφ4αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr )

+
∫ kr+�

kr−�

dlrφ4αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr )|ϕl �=ϕk

]
, (B.5a)
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where we have defined

φ4αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr )

≡
(

e2

4π2ε0

)2

lr

∫ 2π

0
dϕl

{{
2�

[√(
k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)]

ε(kr , ϕk, lr , ϕl)
√(

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)

−
δαβ�

[√(
k

′′2
r + l2

r − 2k
′′
r lr cos(ϕ

k
′′ − ϕl)

)]
ε(lr , ϕr , k

′′
r , ϕk

′′ )
√(

k
′′2
r + l2

r − 2k
′′
r lr cos(ϕ

k
′′ − ϕl)

)}

× �
(√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
))

ε(kr , ϕk, lr , ϕl)
√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)

× δ + jε�2αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

δ2 + ε2
�2αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
F2β(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)

}
. (B.5b)

We have also defined

ε(kr , ϕk, lr , ϕl) ≡ ε⇀
l −⇀

k

= 1 − V|⇀l −⇀
k |
∑

⇀x

∑
α=e,h

f α
⇀x −(⇀l −⇀

k )
− f α

⇀x

�ω + jδ + εα[⇀x −(⇀l −⇀
k )] − εα⇀x

= 1 − e2�
[√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)]

4π2ε0
√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)

×
∑

α=e,h

∑
nz

∫ ∞

0

∫ 2π

0
xr dxr dϕx

f3(kr , ϕk, lr , ϕl, xr , ϕx)

�ω + iδ + εδ3(kr , ϕk, lr , ϕl, xr , ϕx)
, (B.5c)

f3(kr , ϕk, lr , ϕl, xr , ϕx) ≡ f α
⇀x −(⇀l −⇀

k )
− f α

⇀x
= f α

d5ϕd5
− f α

xrϕx
, (B.5d)

d5 ≡ √ (
x2
r + k2

r + l2
r − 2xrkr cos(ϕx − ϕk) + 2xr lr cos(ϕx − ϕl)

− 2kr lr cos (ϕk − ϕl)
)

, (B.5e)

ϕd5 ≡ tan−1
[

xr sin ϕx − kr sin ϕk + lr sin ϕl

xr cos ϕx − kr cos ϕk + lr cos ϕl

]
, (B.5f )

εδ3(kr , ϕk, lr , ϕl, xr , ϕx) ≡ εα[⇀x −(⇀l −⇀
k )] − εα⇀x ≈ �

2

2mα

[
|⇀x − (

⇀

l − ⇀

k)|2 − |⇀x|2
]

= �
2

2mα

[
k2
r + l2

r − 2xrkr cos(ϕx − ϕk) + 2xr lr cos(ϕx − ϕl) − 2kr lr cos(ϕk − ϕl)
]
,

(B.5g)
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ε(lr , ϕl, k
′′
r , ϕk

′′ ) ≡ ε⇀
k

′′−⇀
l

= 1 − V|⇀k ′′−⇀
l |
∑

⇀x

∑
α=e,h

f α
⇀x −(⇀k

′′−⇀
l )

− f α
⇀x

�ω + iδ + εα[⇀x −(⇀k
′′−⇀

l )] − εα⇀x

= 1 −
e2�

[√ (
k

′′2
r + l2

r − 2k
′′
r lr cos(ϕ

k
′′ − ϕl)

)]
4π2ε0

√ (
k

′′2
r + l2

r − 2k
′′
r lr cos(ϕ

k
′′ − ϕl)

)
×
∑

α=e,h

∑
nz

∫ ∞

0

∫ 2π

0
xr dxr dϕx

f4(lr , ϕl, k
′′
r , ϕk

′′ , xr , ϕx)

�ω + iδ + εδ4(lr , ϕl, k
′′
r , ϕk

′′ , xr , ϕx)
, (B.5h)

f4(lr , ϕl, k
′′
r , ϕk

′′ , xr , ϕx) ≡ f α
⇀x −(⇀k

′′−⇀
l )

− f α
⇀x

= f α
d6ϕd6

− f α
xrϕx

, (B.5i)

d6 ≡ √ (
x2
r + l2

r + k
′′2
r − 2xr lr cos(ϕx − ϕl) + 2xrk

′′
r cos(ϕx − ϕ

k
′′ )

−2lrk
′′
r cos(ϕl − ϕ

k
′′ )
)

, (B.5j)

ϕd6 ≡ tan−1
[

xr sin ϕx − lr sin ϕl + k
′′
r sin ϕ

k
′′

xr cos ϕx − lr cos ϕl + k
′′
r cos ϕ

k
′′

]
, (B.5k)

εδ4(lr , ϕl, k
′′
r , ϕk

′′ , xr , ϕx) ≡ εα[⇀x −(⇀k
′′−⇀

l )] − εα⇀x ≈ �
2

2mα

[
|⇀x − (

⇀

k
′′ − ⇀

l )|2 − |⇀x|2
]

= �
2

2mα

[
l2
r + k

′′2
r − 2xr lr cos(ϕx − ϕl)

+ 2xrk
′′
r cos(ϕx − ϕ

k
′′ ) − 2lrk

′′
r cos(ϕl − ϕ

k
′′ )

]
, (B.5l)

ε�2αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl) ≡ −εα⇀
k

− εβ⇀
k

′′ + εα⇀
l

+ εβ(⇀k
′′−⇀

l +⇀
k )

≈ �
2

2mα

(|⇀l |2 − |⇀k |2) + �
2

2mβ

(|⇀k ′′ − ⇀

l + ⇀

k |2 − |⇀k ′′|2)

= �
2

2mα

(l2
r − k2

r ) + �
2

2mβ

[
k2
r + l2

r + 2k
′′
r kr cos(ϕk − ϕ

k
′′ )

− 2k
′′
r lr cos(ϕ

k
′′ − ϕl) − 2kr lr cos(ϕk − ϕl)

]
, (B.5m)

F2β(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl) ≡ p̃⇀
l
(1 − f

β
⇀
k

′′)f
β
⇀
k

′′−⇀
l +⇀

k
= p̃lrϕl

(1 − f
β

k
′′
r ϕ

k
′′
)f

β
d7ϕd7

,

(B.5n)

d7 ≡ √ (
k2
r + k

′′2
r + l2

r + 2krk
′′
r cos(ϕk − ϕ

k
′′ ) − 2kr lr cos(ϕk − ϕl)

−2k
′′
r lr cos(ϕ

k
′′ − ϕl)

)
, (B.5o)

ϕd7 ≡ tan−1
[

kr sin ϕk + k
′′
r sin ϕ

k
′′ − lr sin ϕl

kr cos ϕk + k
′′
r cos ϕ

k
′′ − lr cos ϕl

]
. (B.5p)
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Similarly, we have

J 3
⇀
k αβ

≡
∑
⇀
k

′′

∑
⇀
l �=⇀

k

(
2Ṽ 2

|⇀l −⇀
k | − δαβṼ|⇀l −⇀

k |Ṽ|⇀k ′′−⇀
l |
)

× g

[
− εα⇀

k
− εβ⇀

k
′′ + εα⇀

l
+ εβ(⇀k

′′−⇀
l +⇀

k )

][
p̃⇀

l
f

β
⇀
k

′′
(

1 − f
β
⇀
k

′′−⇀
l +⇀

k

) ]
=
∑
nz1

∑
nz2

∫ ∞

0

∫ 2π

0
k

′′
r dk

′′
r dϕ

k
′′
[ ∫ kr−�

0
dlrφ5αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr )

+
∫ ∞

kr+�

dlrφ5αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr )

+
∫ kr+�

kr−�

dlrφ5αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr )|ϕl �=ϕk

]
, (B.6a)

where we have defined

φ5αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr ) ≡
(

e2

4π2ε0

)2

lr

×
∫ 2π

0
dϕl

{{
2�

[√ (
k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)]

ε(kr , ϕk, lr , ϕl)
√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)

−
δαβ�

[√ (
k

′′2
r + l2

r − 2k
′′
r lr cos(ϕ

k
′′ − ϕl)

)]
ε(lr , ϕr , k

′′
r , ϕk

′′ )
√ (

k
′′2
r + l2

r − 2k
′′
r lr cos(ϕ

k
′′ − ϕl)

)}

× �
[√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)]

ε(kr , ϕk, lr , ϕl)
√ (

k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)

× δ + jε�2αβ(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

δ2 + ε2
�2αβ(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
F3β(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)

}
, (B.6b)

F3β(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl) ≡ p̃⇀
l
f

β
⇀
k

′′
(

1 − f
β
⇀
k

′′−⇀
l +⇀

k

)
= p̃lrϕl

f
β

k
′′
r ϕ

k
′′

(
1 − f

β
d7ϕd7

)
.

(B.6c)

The phonon related diagonal contribution is

K1
⇀
k

≡ �
2
∑

α=e,h

∑
⇀
l �=0

G2
|⇀l |
{
g
[
εα⇀

k
− εα(⇀k −⇀

l ) − �ωLO
] [

(1 − f α
⇀
k −⇀

l
)f

p
⇀
l

+ f α
⇀
k −⇀

l
(1 + f

p
⇀
l
)
]

+ g
[
εα⇀

k
− εα(⇀k −⇀

l ) + �ωLO
] [

(1 − f α
⇀
k −⇀

l
)(1 + f

p
⇀
l
) + f α

⇀
k −⇀

l
f

p
⇀
l

] }
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= e2
�ωLO

4ε0�

(
1

ε∞
− 1

ε0

) ∑
α=e,h

∑
⇀
l �=0

�(|⇀l |)
ε⇀
l
|⇀l |

{
δ + j

[
εα⇀

k
− εα(⇀k −⇀

l ) − �ωLO
]

δ2 + [
εα⇀

k
− εα(⇀k −⇀

l ) − �ωLO
]2

×
[
(1 − f α

⇀
k −⇀

l
)f

p
⇀
l

+ f α
⇀
k −⇀

l
(1 + f

p
⇀
l

)
]

+ δ + j
[
εα⇀

k
− εα(⇀k −⇀

l ) + �ωLO
]

δ2 + [
εα⇀

k
− εα(⇀k −⇀

l ) + �ωLO
]2

×
[
(1 − f α

⇀
k −⇀

l
)(1 + f

p
⇀
l
) + f α

⇀
k −⇀

l
f

p
⇀
l

] }
= e2

�ωLO

8π2ε0

(
1

ε∞
− 1

ε0

) ∑
α=e,h

∑
nz

∫ ∞

0

∫ 2π

0
dlr dϕl

�(lr )

ε(lr , ϕl)

×
{

δ + j [ε�3α(kr , ϕk, lr , ϕl) − �ωLO]

δ2 + [ε�3α(kr , ϕk, lr , ϕl) − �ωLO]2
F4α(kr , ϕk, lr , ϕl)

+ δ + j [ε�3α(kr , ϕk, lr , ϕl) + �ωLO]

δ2 + [
ε�3αβ(kr , ϕk, lr , ϕl) + �ωLO

]2 F5α(kr , ϕk, lr , ϕl)

}

=
∑

α=e,h

∑
nz

∫ ∞

0
dlrφ6α(kr , ϕk, lr ), (B.7a)

where we have defined

φ6α(kr , ϕk, lr ) ≡ e2
�ωLO

8π2ε0

(
1

ε∞
− 1

ε0

)∫ 2π

0
dϕl

�(lr )

ε(lr , ϕl)

×
{

δ + j [ε�3α(kr , ϕk, lr , ϕl) − �ωLO]

δ2 + [ε�3α(kr , ϕk, lr , ϕl) − �ωLO]2
F4α(kr , ϕk, lr , ϕl)

+ δ + j [ε�3α(kr , ϕk, lr , ϕl) + �ωLO]

δ2 + [ε�3α(kr , ϕk, lr , ϕl) + �ωLO]2
F5α(kr , ϕk, lr , ϕl)

}
.

(B.7b)

We have also defined

ε�3α(kr , ϕk, lr , ϕl) ≡ εα⇀
k

− εα(⇀k −⇀
l ) ≈ �

2

2mα

(|⇀k |2 − |⇀k − ⇀
l |2)

= − �
2

2mα

[
l2
r − 2kr lr cos(ϕk − ϕl)

]
, (B.7c)

F4α(kr , ϕk, lr , ϕl) ≡ (1 − f α
⇀
k −⇀

l
)f

p
⇀
l

+ f α
⇀
k −⇀

l
(1 + f

p
⇀
l
)

=
1 − f α

d8ϕd8
+ f α

d8ϕd8
e�ωLO/kBT

e�ωLO/kBT − 1
, (B.7d)
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F5α(kr , ϕk, lr , ϕl) ≡ (1 − f α
⇀
k −⇀

l
)(1 + f

p
⇀
l
) + f α

⇀
k −⇀

l
f

p
⇀
l

=
(1 − f α

d8ϕd8
)e�ωLO/kBT + f α

d8ϕd8

e�ωLO/kBT − 1
, (B.7e)

d8 ≡ √ (
k2
r + l2

r − 2kr lr cos(ϕk − ϕl)
)

, (B.7f )

ϕd8 ≡ tan−1
[

kr sin ϕk − lr sin ϕl

kr cos ϕk − lr cos ϕl

]
. (B.7g)

The phonon related non-diagonal contribution is

K2
⇀
k α

≡ �
2
∑
⇀
l �=0

p̃⇀
k +⇀

l
G2

|⇀l |
{
g
[
εα⇀

k
− εα(⇀k −⇀

l ) − �ωLO
]
f

p
⇀
l

+ g
[
εα⇀

k
− εα(⇀k −⇀

l ) + �ωLO
]
(1 + f

p
⇀
l
)

}
= e2

�ωLO

4ε0�

(
1

ε∞
− 1

ε0

)∑
⇀
l �=0

�(|⇀l |)
ε⇀
l
|⇀l | p̃⇀

k +⇀
l

{
δ + j

[
εα⇀

k
− εα(⇀k −⇀

l ) − �ωLO
]

δ2 + [
εα⇀

k
− εα(⇀k −⇀

l ) − �ωLO
]2 f

p
⇀
l

+ δ + j
[
εα⇀

k
− εα(⇀k −⇀

l ) + �ωLO
]

δ2 + [
εα⇀

k
− εα(⇀k −⇀

l ) + �ωLO
]2 (1 + f

p
⇀
l
)

}

= e2
�ωLO

8π2ε0

(
1

ε∞
− 1

ε0

)∑
nz

∫ ∞

0

∫ 2π

0
dlr dϕl

�(lr )

ε(lr , ϕl)
p̃d3ϕd3

×
{

δ + j [ε�3α(kr , ϕk, lr , ϕl) − �ωLO]

δ2 + [ε�3α(kr , ϕk, lr , ϕl) − �ωLO]2

1

e�ωLO/kBT − 1

+ δ + j [ε�3α(kr , ϕk, lr , ϕl) + �ωLO]

δ2 + [ε�3α(kr , ϕk, lr , ϕl) + �ωLO]2

e�ωLO/kBT

e�ωLO/kBT − 1

}
=
∑
nz

∫ ∞

0
dlrφ7α(kr , ϕk, lr ), (B.8a)

where we have defined

φ7α(kr , ϕk, lr ) ≡ e2
�ωLO

8π2ε0

(
1

ε∞
− 1

ε0

)∫ 2π

0
dϕl

�(lr )

ε(lr , ϕl)
p̃d3ϕd3

×
{

δ + j [ε�3α(kr , ϕk, lr , ϕl) − �ωLO]

δ2 + [ε�3α(kr , ϕk, lr , ϕl) − �ωLO]2

1

e�ωLO/kBT − 1

+ δ + j [ε�3α(kr , ϕk, lr , ϕl) + �ωLO]

δ2 + [ε�3α(kr , ϕk, lr , ϕl) + �ωLO]2

e�ωLO/kBT

e�ωLO/kBT − 1

}
. (B.8b)
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Similarly, we have

K3
⇀
k α

≡ �
2
∑
⇀
l �=0

p̃⇀
k +⇀

l
G2

|⇀l |
{
g
[
εα⇀

k
− εα(⇀k −⇀

l ) − �ωLO
]
(1 + f

p
⇀
l
)

+ g
[
εα⇀

k
− εα(⇀k −⇀

l ) + �ωLO
]
f

p
⇀
l

}
=
∑
nz

∫ ∞

0
dlrφ8α(kr , ϕk, lr ), (B.9a)

where we have defined

φ8α(kr , ϕk, lr ) ≡ e2
�ωLO

8π2ε0

(
1

ε∞
− 1

ε0

)∫ 2π

0
dϕl

�(lr )

ε(lr , ϕl)
p̃d3ϕd3

×
{

δ + j [ε�3α(kr , ϕk, lr , ϕl) − �ωLO]

δ2 + [ε�3α(kr , ϕk, lr , ϕl) − �ωLO]2

e�ωLO/kBT

e�ωLO/kBT − 1

+ δ + j [ε�3α(kr , ϕk, lr , ϕl) + �ωLO]

δ2 + [ε�3α(kr , ϕk, lr , ϕl) + �ωLO]2

1

e�ωLO/kBT − 1

}
. (B.9b)

The carrier–carrier collision coefficients are

�
e/h−out
⇀
k

≡ π
∑

α=e,h

∑
⇀
l �=0

∑
⇀
k

′′

(
2Ṽ|⇀l | − δ(e/h)αṼ|⇀k ′′−⇀

l −⇀
k |
)
Ṽ|⇀l |

× δ
[
ε(e/h)⇀k

+ εα⇀
k

′′ − ε(e/h)(⇀k +⇀
l ) − εα(⇀k

′′−⇀
l )

]
(1 − f

e/h
⇀
k +⇀

l
)f α

⇀
k

′′(1 − f α
⇀
k

′′−⇀
l
)

= π

(
e2

2ε0�

)2 ∑
α=e,h

∑
⇀
l �=0

∑
⇀
k

′′

[
2�(|⇀l |)
ε⇀
l
|⇀l | − δ(e/h)α�(|⇀k ′′ − ⇀

l − ⇀

k |)
ε⇀
k

′′−⇀
l −⇀

k
|⇀k ′′ − ⇀

l − ⇀

k |

]
�(|⇀l |)
ε⇀
l
|⇀l |

× δ
[
ε(e/h)⇀k

+ εα⇀
k

′′ − ε(e/h)(⇀k +⇀
l ) − εα(⇀k

′′−⇀
l )

]
(1 − f

e/h
⇀
k +⇀

l
)f α

⇀
k

′′(1 − f α
⇀
k

′′−⇀
l
)

= 1

π3

(
e2

4ε0

)2 ∑
α=e,h

∑
nz1

∑
nz2

∫ ∞

0

∫ 2π

0
k

′′
r dk

′′
r dϕ

k
′′
∫ ∞

0

∫ 2π

0
dlr dϕl

{{
2�(lr )

ε(lr , ϕl)lr

−
δ(e/h)α�

[
Q(kr, ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
]

ε(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)Q(kr , ϕk, k
′′
r , ϕk

′′ , lr , ϕl)

}
�(lr )

ε(lr , ϕr)

× δ
[
ε�1(e/h)α(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
]
F12(e/h)α(kr , ϕk, k

′′
r , ϕk

′′ , lr , ϕl)
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The carrier–phonon scattering coefficients are
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with
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C Cash−Karp’s implementation of the fifth order
Runge−Kutta method [1]

For a system of ODEs
d

dt
yk(t

′) = Fk

[
yk(t

′), t ′
]
, (C.1)
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Table A.1. Cash−Karp coefficients

i ai bi1 bi2 bi3 bi4 bi5 ci c∗
i

1 – – – – – – 37/378 2825/27648
2 1/5 1/5 – – – – 0 0
3 3/10 3/40 9/40 – – – 250/621 18575/48384
4 3/5 3/10 –9/10 6/5 – – 125/594 13525/55296
5 1 –11/54 5/2 –70/27 35/27 – 0 277/14336
6 7/8 1631/55296 175/512 575/13824 44275/110592 253/4096 512/1771 1/4

the fifth order Runge–Kutta algorithm is implemented as

yk(t
′
j+1) = yk(t

′
j ) +

6∑
i=1

cidki + O(h6), (C.2)

with the embedded fourth order formula in the form

y∗
k (t ′j+1) = yk(t

′
j ) +

6∑
i=1

c∗
i dki + O(h5). (C.3)

The parameters are evaluated through
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[
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′
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]
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]
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′
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[
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[
yk(t

′
j ) + b51dk1 + b52dk2 + b53dk3 + b54dk4, t
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]
dk6 = hFk

[
yk(t

′
j ) + b61dk1 + b62dk2 + b63dk3 + b64dk4 + b65dk5, t

′
j + a6h

]
. (C.4)

The coefficients in equations (C.2), (C.3) and (C.4) are given in [2], as in Table A.1.

D The solution of sparse linear equations [3, 4]

To solve a non-linear system of algebraic equations, we need to employ the iteration
algorithm developed from Newton’s method or its derived versions. At each iteration
step, a system of linear algebraic equations in the form

Ax = B, (D.1)
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must be solved. In dealing with such a problem, we generally have two available
approaches, known as the direct method and the iterative method.

D.1 The direct method

In seeking for the solution of equation (D.1), we need to factorize the coefficient matrix
A to make

PAQ = LU, (D.2)

where P and Q are permutation matrices and L and U are lower and upper triangular
matrices, respectively.

Prior to starting the factorization of a matrix, a diagonal scaling scheme can be
introduced to make all non-zero elements of comparable size in order to minimize the
round-off error

D−1Ax = D−1B, (D.3)

D−1/2AD−1/2D1/2x = D−1/2B, (D.4)

where D is a diagonal matrix formed by the main diagonal of A.
The former is a single row scaling while the latter is a row and column double scaling.

Obviously, the double scaling scheme is applicable only if all main diagonal elements
of A are positive or negative. A unique feature of the double scaling scheme is that it
preserves the symmetry of A.

When a sparse matrix is factorized, the fill normally increases, i.e., the factors of a
matrix taken together are usually not as sparse as the matrix itself. A transformation in
the form

PAP −1Px = PB, (D.5)

can be introduced to reduce the fill, where P is the permuting matrix to make the permuted
matrix PAP −1 exhibit a different fill. For an appropriate choice of P , we can often reduce
the fill significantly.

For example, for a rectangular mesh with Nx in the vertical and Ny in the horizontal,
we will have a matrix A of the order of Nx × Ny . The number of non-zero elements
prior to factorization is usually around 5–9×(Nx ×Ny), depending on the discretization
scheme. After the factorization, however, the total number of non-zero elements grows
significantly. By reordering the mesh points, i.e., performing equation (D.5), we will
be able to reduce the increment on the non-zero elements in the factorized matrices. In
doing so, we usually take the following principles.

(1) If Nx > Ny , order the mesh points along Ny (the shorter one), then along Nx (the
longer one). For example, if Nx = 5, Ny = 4, do not order the mesh point along
Nx = 5:

16 17 18 19 20
11 12 13 14 15
6 7 8 9 10
1 2 3 4 5

, (D.6)
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but along Ny = 4

4 8 12 16 20
3 7 11 15 19
2 6 10 14 18
1 5 9 13 17

. (D.7)

(2) The total non-zero elements in the factorized matrices will be fewer if we order the
mesh points along the diagonals:

7 11 15 18 20
4 8 12 16 19
2 5 9 13 17
1 3 6 10 14

. (D.8)

There are still better numbering strategies such as reverse diagonal, one-way
dissection, nested dissection, and minimum degree methods [5]. However, the imple-
mentation is a non-trivial task and the improvement on reducing the number of
non-zero elements is not so significant.
Particularly, if the matrix A can be permuted such that

PAP −1 =
[

DR CR

CB DB

]
, (D.9)

where DR and DB are diagonal matrices of rank nR and nB , rank(A) = nR + nB ,
respectively, we can introduce checker-board ordering

12 4 16 8 20
2 14 6 18 10

11 3 15 7 19
1 13 5 17 9

, (D.10)

or the alternating diagonal ordering

13 5 17 9 20
2 14 6 18 10

11 3 15 7 19
1 12 4 16 8

. (D.11)

Either one will offer us fewer non-zero elements after factorization.
It should be noted that all the above ordering procedures are designed only to

make the fill smaller after the factorization. It is assumed that column and row
interchanges to maintain numerical stability are not necessary for the factorization.
This is true only for positive (or negative) definite matrices. Fortunately, the linear
systems arising from the discretization of the PDEs by various FD schemes usually
have this property.
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D.2 The iterative method

(1) Relaxation method.

From equation (D.1), we have

Cx + (A − C)x = B. (D.12)

An iterative scheme can be established for equation (D.12) as

Cxk+1 = (C − A)xk + B, (D.13)

if equation (D.13) can trivially be solved through

xk+1 = (I − C−1A)xk + C−1B ≡ Mxk + C−1B. (D.14)

The basis for the application of relaxation methods to a system is splitting of the
coefficient matrix A

A = D − L − U, (D.15)

with D as a non-singular matrix, L as a strict lower triangular matrix and U as a strict
upper triangular matrix.

For matrix C, there are usually four selection schemes:
(A) The Jacobi method.

CJ = D, and MJ = D−1(L + U). (D.16)

Advantages:
If D is diagonal, the solution can be vectorized easily, leading to high efficiency for

vector computing.
If MJ is symmetric (which can easily be achieved if A is symmetric), MJ only has real

eigenvalues, which allows the application of many convergence acceleration methods.
The major disadvantage is its poor convergence property.
(B) The Gauss–Seidel method.

CGS = D − L, and MGS = (D − L)−1U. (D.17)

(C) The successive over-relaxation (SOR) method.

CSOR = 1

ω
D − L, and MSOR = (D − ωL)−1 [ωU + (1 − ω)D] . (D.18)

When ω = 1, the SOR method reduces to the G–S method.
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(D) The symmetric SOR (SSOR) method.

CSSOR,1 = 1

ω
D − L

CSSOR,2 = 1

ω
D − U, (D.19a)

CSSOR,1xk+1/2 = (CSSOR,1 − A)xk + B

CSSOR,2xk+1 = (CSSOR,2 − A)xk+1/2 + B, (D.19b)

MSSOR = (D − ωU)−1 [ωL + (1 − ω)D]

× (D − ωL)−1 [ωU + (1 − ω)D] . (D.19c)

Usually the convergence of the SSOR method differs very marginally from that of the
SOR method. However, matrix MSSOR preserves the symmetry of A, which enables the
application of acceleration methods, whereas MSOR is always non-symmetric. For this
reason, the SSOR method is used only in conjunction with acceleration methods.

(2) The alternating-direction implicit (ADI) method.

By assuming
A = H + V, (D.20)

we have

(H + αk+1I )xk+1/2 = (αk+1I − V )xk + B

(V + αk+1I )xk = (αk+1I − H)xk+1/2 + B, (D.21)

where αk+1 is a positive constant acting as an acceleration parameter. The iteration matrix
is therefore given by

MADI = (V + αk+1I )−1(αk+1I − H)(H + αk+1I )−1(αk+1I − V ). (D.22)

The ADI method is convergent for arbitrary positive αk+1 when at least one of H and V

is positive definite and the other is not negative definite. An optimum sequence of αk+1,
however, can greatly improve the average rate of convergence.

For coefficient matrix A with bounded diagonal non-zero elements, we usually put the
horizontal neighbors in H and vertical neighbors in V with the main diagonal elements of
A equally divided and then put into H and V . The coefficient matrices in equation (D.21)
are tri-diagonal after proper permutations, hence (D.21) can be solved by direct (implicit)
methods.

(3) The strongly implicit (SI) method.

From equation (D.13), we find that matrix C should be selected as close to A as
possible in order to accelerate the convergence. If we can find

A + N = LU, (D.23)
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with ||N || � ||A||, we can readily select C = LU , hence equation (D.13) becomes

LUxk+1 = Nxk + B. (D.24)

Obviously, iterations based on equation (D.24) will converge rapidly.

(4) Convergence acceleration.

(A) The Lyusternik method.
Following equation (D.14), by assuming x∗ = xk − ek = xk+1 − ek+1, where x∗ is

the exact solution and ek the error, we have ek+1 = Mek = λek + δk , with λ as the
maximum eigenvalue of M . Therefore

x∗ = xk + xk+1 − xk

1 − λ
− δk

1 − λ
≈ xk + xk+1 − xk

1 − λ
, (D.25)

where ||δk|| < 1 − λ. If λ can be evaluated as the spectral radius of the iteration matrix,
equation (D.25) can be viewed as the extrapolation of x∗.

All eigenvalues of the iteration matrix are required to be real and positive for this
acceleration method.

(B) The Aitken method.
Following equation (D.14), we can also represent the extrapolation scheme given as

x∗
i ≈ xi

k + xi
k+1 − xi

k

1 − xi
k+1−xi

k

xi
k−xi

k−1

. (D.26)

In this scheme, there is no need to evaluate λ.
(C) The semi-iterative method.
All iterative methods considered so far, i.e., the relaxation, ADI, and SI methods are

one-step stationary approaches that consist of the mapping

xk+1 = Mxk + B. (D.27)

An optimal method may not follow this form as information obtained from earlier
iterations is not utilized as feedback to improve the iteration.

Therefore, in the semi-iterative method, we try multiple-step mapping

yk = Nk(xk, xk−1, . . . , x0), (D.28)

with
lim

k→∞(yk − x∗) = 0. (D.29)

For example, we may use the following linear combination scheme

yk =
k∑

i=0

ck
i xi, (D.30)
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with
k∑

i=0

ck
i = 1. (D.31)

This method is equivalent to a scheme in which the iterates xi pass through an extra
finite impulse response (FIR) filter at a length of k + 1.

A non-stationary two-step iterative method is given by

yk+1 = ωk+1(Myk + B) + (1 − ωk+1)yk−1, (D.32)

with

ω1 = 1, and ωk+1 = 1 + Ck−1(1/ρ)

Ck+1(1/ρ)
, (D.33)

where Ck(x) = cos
[
k cos−1(x)

]
, x ∈ [−1, 1], k > 0 is the kth Chebyshev polyno-

mial and ρ = λmax = −λmin, with λmax and λmin denoting the maximal and minimal
eigenvalues of a symmetric iteration matrix M with real eigenvalues only.

This scheme also shows that it is not necessary to express the accelerated solutions
yk explicitly in terms of the iterates xk , which is equivalent to letting the iterates xk pass
through an extra infinite impulse response (IIR) filter.

(D) The conjugate gradient method.
This method comes from minimization of the target function

1

2
(Az − B)T A−1(Az − B). (D.34)

When A is positive definite, the target function is zero (and minimal) only for z = x∗,
the solution of equation (D.1).

By defining the residual vector as

rk = Axk − B, (D.35)

we construct
xk+1 = xk + λkdk, (D.36)

where

λk = − dT
k rk

dT
k Adk

, (D.37)

d0 = −r0, and dk+1 = −rk+1 + rT
k+1Adk

dT
k Adk

dk. (D.38)

Obviously, this algorithm would terminate theoretically after rank(A) iterations since
no more orthogonal search directions exist. However, the existence of round-off errors
may need further iterations until the residual is sufficiently small.

This method can also be used to accelerate the general iteration scheme equation
(D.13), once C is symmetric and positive definite.
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Actually, we establish the following algorithm

Csk = rk, (D.39)

xk+1 = xk + λkek, (D.40)

e0 = −s0, and ek+1 = −sk+1 + sT
k+1Aek

eT
k Aek

ek, (D.41)

r0 = Ax0 − B, and rk+1 = rk + λkAek, (D.42)

λk = eT
k rk

eT
k Aek

. (D.43)

When λk = 1, sT
k+1Aek = 0, this algorithm reduces to equation (D.13).

If C = I , this algorithm reduces to the basic conjugate gradient method, equations
(D.35)–(D.38). Thus, the basic conjugate gradient method can be understood as the
accelerated Jacobi method for the preconditioned system

D−1/2AD−1/2D1/2x = D−1/2B, (D.44)

where D is the main diagonal of A.
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absorbing boundary condition (ABC), 172
active region, 157–159
active region boundary, 158, 159
active region volume, 156
ADI approach, 234, 352
ADI method, 182, 352, 353
Aitken method, 353
alternating current (AC), 255
alternating-direction implicit see ADI approach
alternating-direction implicit method, see ADI

method
amplitude-modulated harmonic wave, 17
amplitude-modulated plane wave, 17
anti-reflective (AR) coat, 276, 278, 281, 282, 299,

305, 307, 314, 323
associated refractive index, 19
Auger impact ionization, 163
Auger recombination, 163, 164

background refractive index, 44
backward-time backward-space (BT–BS), 178, 179
backward-time forward-space (BT–FS), 178, 179
backward-time implicit scheme, 179
backward-time scheme, 178, 180
band edge, 156
band structure, 79
Bernoulli function, 223
Bloch equation, 36, 37, 40, 59, 65
Bloch function, 63, 64
Bloch’s theorem, 57, 59–61, 75, 81
Bohr radius, 136
Boltzmann equation, 152
Boltzmann transport equation, 246
Born–Oppenheimer approximation, 55
Bose–Einstein distribution, 114
bottom valence band, 157
boundary value, 4
box scheme, 181, 182
Bragg condition, 275
Bragg scattering, 61, 64
Bragg stop-band, 275, 279, 281, 282, 284, 313, 315
Bragg stop-band wavelength, 275
Brillouin zone (BZ), 59–64, 82–84

Brillouin zone (BZ) centers, 64, 84

broadband optical field, 40
bulk active region, 162
bulk semiconductor, 56–60, 63, 64, 161

3D, 57
buried heterostructure (BH), 259, 260, 265, 268, 269

carrier density, 158, 159, 163
2D, 205

carrier and temperature distribution, 2D, 239
carrier distribution, 159
carrier rate equation, 1D, 168
carrier redistribution, 159
carrier transport, 1

2D, 162, 242
carrier transport equation, 152, 157, 158

2D, 160, 242
carrier transport model, 2D, 165
carrier–carrier collision, 152, 344

second order, 146
carrier–phonon scattering, 152, 156

second order, 146
carrier–phonon scattering coefficient, 346
carrier–phonon scattering contribution, 147
Cash–Karp’s implementation, 209
center difference scheme, 179
channel frequency spacing, 39
charge neutrality condition, 164
classical carrier transport equation, 158
classical carrier transport model, 159
classical Drude formula, 132
classical thermal diffusion equation, 166
cold carrier, 156–159
cold carrier densities, 157–159
cold carrier distribution, non-uniform, 159
community antenna television (CATV), 278
complex-coupled DFB laser, 278, 280
conduction, 157
conduction band, 66, 68–70, 75, 81, 84, 85, 88, 93
conduction band hydrostatic energy, 93, 94
conservation law, 2
continuum band, 162
convergence acceleration, 4, 5
cooling and heating damping term, 157
cooling and heating time constant, 159
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cooling time constant, 158
Coulomb interaction, 55
Coulomb potential, 61
Coulomb potential energy, 56, 57
coupled ODEs, 148

1D, 200
coupled traveling wave equation, 28
coupling contribution, 157
coupling matrix, 108
Courant–Friedrichs–Lewy stability criterion, 176
Crank–Nicholson plus ADI scheme, 234
Crank–Nicholson scheme, 181, 182, 234
cross-sectional area, 159, 164
cross-sectional region, 164
cross-sectional structure, 165
current density divergence, 161

degenerated heavy- and light-hole band, 77, 78
dense wavelength division multiplexing (DWDM),

281
density of states (DOS)

3D, 202
2D, 202

density of state (DOS) function
3D, 35
2D, 36

differential–integral equation, 31
digital filtering, 4

algorithm, 34
direct current (DC), 3, 24, 151, 179, 255, 323, 328

analysis, 191, 233, 241–243
bias, 244, 300, 322, 328
calculation, 244
component, 24, 83, 240, 329
governing equations for, 243
operation, 251, 255
performance, 255, 323
value, 244, 326

direct discretization method, 182
direct injection term, 160
direct method, 4
Dirichlet boundary condition, 224
discrete energy levels, 162
discretization scheme, 172, 180
distributed Bragg reflector (DBR), 8, 21, 29
distributed feedback (DFB), 5, 8, 21, 29, 191, 195,

251, 272, 281, 282, 313, 328
DFB grating, Bragg wavelength, 321
DFB laser, 272, 273, 275–284, 313–318, 320–329

purely index-coupled, 280, 281
uniform grating, 281, 283, 284

DFB laser spectrum, 315
DFB section, 326
DFB side, 281

drift and diffusion model, 166

dual octant-wavelength phase-shifted DFB laser,
282, 283

dynamic performance, 323

edge emitting device, 43, 159, 168
effective Hamiltonian matrix, 100
effective index, 48
eigenfunction expansion, 182
eigenstate, 66, 75, 78, 81, 82
eigenvalue, 66, 78
eigenvalue equation, 75

1D, 20
2D, 16

eigenvalue problem, 4
1D, 46
2D, 172

Einstein relation, 153
electro-absorption modulator (EAM), 5, 137, 200,

238, 288, 291, 292, 294, 295, 298, 299,
313–315, 317, 319, 321

shallow ridge EAM chirp parameter, 290
shallow ridge EAM insertion loss, 290

electromagnetic wave theory, 1
electron and hole Auger recombination constant, 163
electron and hole capture, 163
electron and hole densities, 163, 164
electron density, 164
electron spin effect, 66
electrons and holes, 161, 163, 164
Elliot formula, 136
elliptical PDE, 9
energy conservation condition, 166
envelope function, 9, 11–13, 15, 17, 18

2D, 21
Euler method, 233

exciton effect, 2D, 137

Fabry–Perot (FP) devices, 5, 37, 259, 272, 281, 282
FP laser, 255, 263, 267, 269–273, 281
FP section, 281, 282, 284
FB side, 281
FP structure, 259, 284

fast Fourier transform (FFT), 4, 188, 240, 244
Fermi–Dirac distribution, 126
Fermi–Dirac integral, 204, 207
fiber-to-the-home (FTTH), 321, 323
finite difference (FD) method, 4, 172, 200, 220, 221,

223, 231
FD approach, 173, 238
step-by-step FD procedure, 214

finite difference time domain (FDTD), 7
finite impulse response (FIR) filter, 354
forward-time backward-space (FT–BS), 174, 176,

178, 231
forward-time explicit center-space (FT–ECS), 179,

233
forward-time forward-space (FT–FS), 178
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forward-time implicit center-space (FT–ICS), 180,
234

Fourier component, 60, 61
Fourier transform, 36, 38, 84, 86

1D, 88
1D inverse, 89

Fröhlich electron–LO phonon, coupling matrix, 108
free-carrier assumption, 161
free-carrier gain model, 165
frequency domain, 3
full width half maximum (FWHM), 10
fully confined waveguide structure, 44

gain, 1
gain-clamped (GC) SOAs, 31
gain-coupled DFB laser, 277, 278
Gauss–Seidel (G–S) method, 351
Gaussian distributed random process, 49–51
Gaussian distribution, 49
Gaussian–Legendre method, 208
generalized Dirac function, 117
genetic algorithm (GA), 246
governing equation, 2, 9, 12, 31, 34, 118, 121, 122
graded index separate confinement heterojunction

(GRINSCH), 259, 260, 262, 263, 267–269,
276, 313, 314

grating shape function, 28
Green’s function, 26, 30
GRINSCH, see graded index separate confinement

heterojunction
group velocity, 38

Hamiltonian, 55–57, 67–69, 76–78, 80, 81, 85, 87,
93, 99

Hamiltonian block, 69
Hamiltonian operator, 54, 55, 57–59, 63
harmonic distortion response, 243
harmonic wave frequency, 9
Hartree self-consistent model, 55
Hartree–Fock form, 56
heat generation, 167
heavy-hole band, 68, 70, 91
Heisenberg equation, 1, 103, 109, 131, 140, 152
Heisenberg’s uncertainty relation, 102
heterojunction band edge, 160
hole density, 164
hole SRH decay rate, 163
hot carrier, 156–159

conduction and valence band, 156, 157
density, 158
quasi-Fermi levels, 157, 158

hot–cold carrier coupling, 160
Householder reduction, 200
high-reflective (HR) coat, 276, 278, 281, 282, 305,

307, 313, 315, 323
hyperbolic PDE, 9

in-phase partially gain-coupled DFB laser, 278, 280
index-coupled DFB laser, 278
index-coupled uniform grating DFB laser, 281, 315
indirect discretization method, 182
infinite impulse response (IIR) filter, 354
inhomogeneous spontaneous emission contribution,

40, 42, 183, 240
initial and boundary values, 4
initial quasi-Fermi levels, 207
initial value, 4
integral transformation, 182
integrated semiconductor DFB laser, 313
intensity modulation (IM), 280

response, 244
response peak, 280

inverse Fourier transform, 83, 85–87
iterative method, 4
ITU standard, 321

Jacobi method, 351
Jacobian matrix, 229
Jacobian transformation, 200
Joule heating, 166

k–p theory, 54, 65, 80, 84
Kane’s model, 65, 71
kinetic energy, 99, 161
Kramers–Kronig transformation, 36

Laguerre polynomials, 65
Langevin noise source, 49
large-signal dynamic performance, 3
laser diode (LD), 5
lattice deformation energy, 99
lattice temperature, 159
Lax–Friedrichs method, 178
Lax–Wendroff scheme, 181
Legendre function, 65
Lie–Trotter–Suzuki product formula, 188
light-hole band, 68–70, 91
Lindhard formula, 132
linear algebraic equation, 230
linear differential equation, 102
longitudinal mode, 45, 46
longitudinal optical (LO) phonon, 108, 109, 121
longitudinal optical mode, 45, 46
longitudinal spatial hole burning (LSHB), 46, 47,

159, 164, 165, 179, 192, 242, 245, 272, 277,
278, 281

effect of, 255, 272, 274, 275, 277, 280
Lorentzian line-shape function, 127, 135, 136, 144,

238
loss-coupled DFB laser, 277, 278, 280
low pass filter (LPF), 323
Lowdin’s renormalization, 71, 81, 332
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Lowdin’s theory, 72, 74
Luttinger–Kohn’s approach, 99, 100
Luttinger–Kohn base, 99
Luttinger–Kohn Hamiltonian, 77, 86, 96, 97
Luttinger–Kohn Hamiltonian matrix, 86, 89, 94, 95,

200, 236
Luttinger–Kohn matrix, 89
Luttinger–Kohn matrix element, 86, 89
Luttinger–Kohn’s model, 71, 80
Lyusternik method, 353

macroscopic domain, 157
macroscopic hot carrier density, 157
many-body correlation model, 141
many-body Coulomb effect, 154
many-body gain model, 165
many-body model, 157
material background refractive index, 38
material excitation, 54
material gain, 35, 49
material gain model, 165
material susceptibility, 40, 41
Maxwell equations, 1, 6, 9, 129, 151, 152
Maxwell–Boltzmann distribution, 125
mesh grid, 4
microscopic cold carrier equation, 158
microscopic cold carrier number expectations, 157
microscopic domain, 157
microscopic governing equations, 157, 159, 160
microscopic model, 159
microscopic to macroscopic domain conversion, 158
mixed boundary, 4
modulation bandwidth, 39, 40
monitoring photodetector, 282
monolithic integration, 5
Monte-Carlo integration, 206
Monte-Carlo method, 206, 208
Muller’s algorithm, 275

N side material, 157, 159, 164
Neumann boundary condition, 225, 227
Newton’s iteration, 4, 5
non-active region, 158
non-periodic QW potential energy, 99
non-physical input parameters, 3
non-radiative plus spontaneous emission

recombination rate, 161, 163
non-radiative recombination, 163, 167
non-return-to-zero (NRZ) binary bit stream, 301

octant-wavelength phase-shifted DFB laser, 281
one-dimensional equation, 165
one-dimensional model, 164
one-dimensional space, 87
operator–Hamiltonian commutator, 129

expansion, 128, 140
series, 128

optical absorption heating, 166, 167
optical eigenvalue problem, 172
optical field, 162

2D, 165
optical field distribution, 157, 159

non-uniform, 159
optical governing equation, 165
optical longitudinal mode distribution, 44
optical loss, 38, 44
optical mode

1D, 18
3D, 44, 45

optical rate equation, 1D, 168
optical network unit (ONU), 321, 323
optical wave and carrier governing equation, 165
optical wave equation, 1D, 239
optical wave propagation, 8
optoelectronic modulator, 44
ordinary differential equation (ODE), 4, 43, 46, 103,

109, 116, 157, 168, 191, 200, 206, 209, 210,
222, 232, 347

P side material, 157, 159, 164
Pade approximation, 165
parabolic PDE, 9
parasitic frequency modulation (FM) responses, 244
partial differential equation (PDE), 4, 9, 46, 99, 103,

172, 214, 218, 220, 231, 233
partially corrugated DFB laser, 281, 282, 284
passive optical network (PON), 321, 323
Pauli spin matrix, 67
perfectly matched layer (PML), 200

boundary condition, 172
periodic Coulomb potential, 80
Petermann’s factor, 51
phase, 162
phase noise, 47
photo-luminescent (PL) assessment, 137
photodetector (PD), 137, 200, 238, 321–324, 326,

329
PD electrode, 322

Planck’s constant, 49
plane wave function, 102
Poisson’s equation, 129, 152, 153, 157, 158, 162,

219, 220, 226, 232, 238
polariton number expectation, 157
polarization envelope function, 17
Poynting vector, 48
pseudo-random number generation, 4

QL iteration, 200
quantum dot (QD), 36
quantum well (QW), 80–82, 84, 99, 137, 154, 162,

200, 202, 205, 207, 238, 251, 253–257, 259,
268–270, 276, 288, 293, 299, 300, 302, 305,
306, 308, 314, 323, 324
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quantum well (QW) (Cont.)
active region, 255
bandgap energy, 298
effect, 298
laser, 270
material, 288
potential energy, 99
scaling rule, 270
structure, 35, 36, 82, 87–89, 91, 93, 95, 97–100,

137, 162, 200–202, 204–206, 208, 236, 238,
253–256, 258, 269, 317

1D, 87
thickness, 246, 257, 305

quarter-wavelength phase-shifted DFB laser,
281–284

quasi-charge neutrality condition, 214
quasi-electrostatic theory, 1
quasi-Fermi distribution, 119–122, 156–158, 204,

238
quasi-Fermi levels, 156–158, 166, 167, 203, 205,

207

radiative and non-radiative processes, 162
radiative recombination, 167
random number generator (RNG), 49
rational (Pade) factorization, 182
recombination heating, 166
recombination rate, 163, 164
refractive index change, 1
ridge waveguide (RW), 12, 259, 260, 262, 268–270
root searching, 4
rotating-wave approximation, 162
Runge–Kutta method, 209, 233
Rydberg energy, 136

s–o energy, 99
scaled Einstein relation, 222
Scharfetter and Gummel approach, 221
Schottky barrier height, 217
Schrödinger equation, 1, 54, 58, 59, 65, 80, 134

static, 55, 65
steady-state, 54, 80

self-consistent manner, 169, 181
self-consistent problem, 1D, 165
semi-analytical expressions, 165
semi-vectorial mode, 172
semiconductor band structure, 64
semiconductor laser, 47
semiconductor lattice structure, 64
semiconductor optical amplifier (SOA), 5, 31, 37,

44, 188, 253, 256–258, 299–302, 305
gain-clamped (GC), 31

semiconductor optoelectronic devices, 172
semiconductor QW structure, 162
Shockley–Read–Hall (SRH) recombination, 163,

164

side mode suppression ratio (SMSR), 29, 276–278,
281, 282, 315, 319, 321, 324, 325

single mode fiber (SMF), 321, 322
single mode waveguide, 45
single-electron band structure, 54
slab waveguide, 1D, 172
Slater determinant, 55
slow-varying envelope, 16, 162

of the polarization, 162
slow-varying envelope function, 11, 28, 124, 144,

145, 164, 239, 240, 242, 243
1D, 16
2D, 20

slow-varying time dependences, 162
small-signal dynamic performance, 3
small-signal IM response, 248, 255, 280
small-signal linear modulation response equations,

243
small-signal linearization, 3
small-signal modulation bandwidth, 323
space Fourier transform, 168
spectral hole burning (SHB), 212
spherical harmonic function, 65, 66
spin effect, 67
spin–orbit coupling, 67
spin–orbit interaction, 69, 75, 76, 81, 93
spin–orbit split, 80
spin–orbit split band, 68–71, 77, 89
split-step method, 182
split-step, alternating-direction implicit (ADI), 182
spontaneous and stimulated emissions, 167
spontaneous emission, 47–51, 163, 164, 166, 167

and Auger recombination coefficients, 163
contribution, 38, 39, 48
gain, 49
noise, 49–51
noise coupling coefficient, 51
noise power, 48, 50, 51
recombination, 163, 164
recombination rate, 161, 163

spontaneously emitted photons, 49
SRH time constant,163
staggered leapfrog method, 180
static hot carrier distribution, 158
static quasi-Fermi level, 207
steady state performance, 3
stimulated and spontaneous emission, 162
stimulated emission, 159, 161, 162, 164, 167

gain, 49
process, 159
rate, 161, 168
recombination, 162, 164

strongly implicit (SI) method, 352
successive over-relaxation (SOR) method, 230, 351

symmetric (SSOR) method, 352
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superluminescent light emitting diode (SLED), 5,
31, 44, 253, 256–258, 305

Taylor expansion, 174
thermal diffusion, 1, 168

equation, 1, 168, 242
thermal diffusivities, 160
thermal equilibrium, 164
thermal equilibrium state, 163
Thomson heating, 166
3 dB small-signal IM bandwidth, 280
three-dimensional (3D) space, 41, 56, 201
three-dimensional (3D) mode index, 45
three-dimensional (3D) momentum space, 35
three-dimensional (3D) device, 239
three-dimensional (3D) domain, 202
three-dimensional (3D) potential disturbance, 87
three-dimensional (3D) wave vector, 107
top conduction band, 157
transparent boundary condition (TBC), 172
transverse electric (TE) mode, 251, 253, 254, 299,

315, 317
TE absorption, 299
TE absorption peak, 299
TE and TM modes, 294, 297–299, 305, 307
TE and TM polarization modes, 299
TE mode absorption peak, 298

transverse magnetic (TM) mode, 253, 254, 299, 315
TM absorption, 299
TM mode absorption peak, 298, 299

two-dimensional (2D) cross-section, 46
two-dimensional (2D) domain, 202, 216
two-dimensional (2D) equation, 214
two-dimensional (2D) momentum space, 35
two-dimensional (2D) sheet, 233, 239
two-dimensional (2D) thermal equation, 168
two-dimensional (2D) thermal model, 168
two-dimensional (2D) wave vector, 87, 108

valence band, 66, 71, 75, 78, 80, 81, 85, 86, 88, 89,
91, 156, 157

valence band electron, 81, 86, 89, 95, 96
valence band hydrostatic energy, 94, 97
valence band shear energy, 94
von Neumann analysis, 175, 176, 178, 180–182

Wannier equation, 134
Wannier exciton, 134
wave equation, 7–12

model, 8, 9
wave envelope function, 11, 20, 33
wave function, 104, 105, 108, 135
wave propagation, 1
wave propagation direction, 8, 159
wave vector, 161

domain, 156, 157
wave–media interaction, 9
waveguide, 1, 10, 12, 19, 21

structure, 23, 32
wavelength division multiplexing (WDM), 31, 37


