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PREFACE

These notes are based upon a one-quarter course I gave for first
year graduate students at the University of Chicago in 1985 and
again in 1986. The aim of this course was to introduce the students
to substantive and important results in a diversity of areas within
analysis to which functional analysis makes an important contri-
bution, and to demonstrate the unity of perspective and technique
that the functional analytic approach offers. The course assumed
a basic knowledge of measure theory and the elementary theory of
Banach and filbert spaces. (In Chicago, this material is covered
in the preceding quarter. There are, of course, many satisfactory
expositions of this material in the literature.) In these notes, we
have summarized this necessary background information in Chap-
ter 0. In the remaining chapters, whose general content the reader
will discover in the table of contents, our approach was to focus
upon central theorems; thus, we do not develop all possible related
machinery and foundations concerning a given subject, but enough
framework and examples to be able to present these theorems in
an understandable yet concise manner. Most of the material in
the first five chapters was covered in the quarter; the sixth chapter
I added because the notes felt unfinished without it. A natural
alternative for a quarter would be to cover chapters 1—3 and 5—6.
One should be able to cover all six chapters in a semester.

The task of writing these notes was greatly facilitated by the
lecture notes taken by Paul Burchard during the course. He pre-
pared them with great care and made a number of improvements
in the exposition. The task of presenting the lectures was greatly
facilitated by the interest, effort, and enthusiasm of the graduate
students at the University of Chicago who attended the course. To
Paul Burchard, in particular, and to the class in general, I wish to
express my appreciation.

ix





BACKGROUND

O.A. Review of Basic Functional Analysis

We review in this preliminary chapter some basic definitions,
results, and examples concerning Banach spaces.

We let k be the field R or C, and E a vector space over k.

DEFINITION A.!. A norm onE isamapll II: E—.R such that
(1) lIzil � 0 and Hxfl = 0 if and only if x = 0.

(ii) For c E k and x E, tlcxlt = IcflIxJI.
(iii) Ox + yfl � IIxII + Iti'Il. (triangle inequality)

If E is endowed with a given norm we call E a normed linear (or
vector) space.

EXAMPLE A.2: (a) Let X be a compact space and C(X) the space
of k-valued continuous functions on X. For f E X, define 11111 =
sup{If(x)IIx X). We remark that Il/Il < oosince Xis compact.
(b) More generally, let X be any Hausdorif space and let BC(X)
be the space of bounded continuous functions on X. Then defining

as in (a), BC(X) has the structure of a normal vector space.
(c) On k", we have a variety of norms. For example, for z =
(xj,. E k', = is a norm, as is IkIk0 =

We remark that with U we have k" = C({I, . . ., n)),
where C(X) is as in (a).

We now recall the basic normal spaces of measure theory.
Throughout these notes, by "measure" we always mean a positive
o-finite measure. Now let (X, p) be a measure space. If f: X — k
is measurable, and I � p < oo, we set = If We
let LP(X) = {f I Iliflil, < oo). The map f Ilifilip is not a norm
on the vector space CP(X). Namely, if / = 0 a.e., but / is not
identically 0, then we have = 0 for a nonzero /. However,

ifi is a semi-norm in the following sense.

I



2 Background

DEFiNiTION A.3. If E is a vector space over k, a semi-norm on E
is a map liii: E R such that:

(i) IlzlI � 0
(ii) flczjI = id Iizll for c E k, a E E.
(iii) flz + iiil flail + vilyil.

EXAMPLE A.4: Any semi-norm on a vector space B yields
a normed linear space in the following way. Let E0 = {z E
B (haul = 0). Then B0 C B is a linear subspace and the map
Ill (i(: B —. R factors to a map It fi: —+ II which is a norm on
the space E/Eo. For the seminorms ifi ilip on £P(X) defined above,
we denote the corresponding normed space by LP(X) and the norm
by ii '1,,. In this case B0 = {f: X —+ ku is measurable and I =
0 a.e.). Thus, we can view LP(X) as the space of measurable func-
tions on X such that f lfi' <oo, with two such functions being
identified if they agree a.e.

Example A.4 represents one use of the notion of a seminorm.
However seminorins shall play a basic role in later developments
in these notes.
EXAMPLE A.5: If (X, p) is a measure space, Y is a topologi-
cal space, and f: X Y is measurable, we recall that is E Y
is said to be in the essential range of / if for any open neigh-
borhood U of p(f'(U)) > 0. If Y = Ic, then / is called
essentially bounded if the essential range is a bounded set, and
we let £°°(X) = (/: X —. Ic I is essentially bounded). We de-
fine = sup{(zf z is in the essential range off). As in the
previous examples is a semi-norm, and the corresponding
normed space and norm are denoted by L°°(X), Jj

We remark that one can define LP(X) for 0 <p < 1 as well,
however in that case fl (ft, does not satisfy the triangle inequality.

If E is a normed linear space, we define a metric on E by
d(z,y) = liz — vU.

DEFINITION A.6. If E is a normed linear space, B is called a
Banach space if E is complete with respect to the metric defined
by the norm.

EXAMPLE A.7: (a) If X is a Hausdorif space, BC(X) is complete.
In particular, if X is compact C(X) is complete.
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(b) (Riesz-Fischer theorem). If (X, p) is a measure space, LP(X)
is complete for 1 � p � 00.

It is often useful to know when a subapace of a normed space
is dense.

THEOREM A.8. (Stone-Weierstrass) Let X be a compact Hans-
dorff space, and A C C(X) be a linear subspace. Suppose further
that

(1) A is a subalgebra, i.e. is closed under multiplication.
(ii) A contains the constant functions.
(iii) A separates points; i.e., for z, y E X, there is some

/ E A such that 1(x) f(y).
(iv) Incasek=C,fEAimplieslEA.

Then A is dense in C(X).

EXAMPLE A.9: (a) Suppose X C R" is a compact set. Let P(X) C
C(X) be the restrictions of polynomial functions on to X. Then
A.8 applies and 'P(X) is dense in C(X).
(b) Let S' c C be the unit circle. Let P(S') be the set of functions
of the form 1(z) = where N is an arbitrary finite
natural number. Then P(S') is dense in C(S1).
(c) Let X be a compact Hausdorif space and A C C(X x X) be the
set of all finite linear combinations of functions of the form (x, y) —+
f(x)g(y) where f,g E C(X). Then A is dense in C(X x X).

PROPOSITION A.1O. Let X be a locally compact separable met-
ric space and a measure on X which is finite on compact sets.
Let C C(X) be the set of compactly supported continuous
functions. Then for any p,1 � p < 00, is dense in LP(X).

A.1O follows directly from "regularity" of the measure.
For any open set U C R", we shall always suppose U is en-

dowed with Lebesgue measure, unless we specifically state other-
wise.

PROPOSITION A.11. Let U C R" be an open set and Cr(U) be
the space of smooth functions with compact support contained in
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U, i.e. support(f) C U. Then for 1 � p < oo,Cr(U) is dense in
LP(U). (For a proof, see B.6 below.)

A map T: E —i F between normed spaces is continuous if it
is continuous with respect to the topologies defined by the metrics
on E, F. A linear map T: E —. F is called bounded if there is a
number B such that IITzII Blizil for all x E E. Equivalently, if
weset Er={XEEIIIZII�r),thenT(Ei)CF'n.
PROPOSITION A.12. if B, F are normed spaces, and T: B F is
a linear map, then the following are equivalent:

(a) T is continuous.
(b) T is bounded.
(c) T is continuous at 0 E E.

DEFINITION A.13. (1) A linear bijection T: E —. F is called an
isomorphism of the normed spaces E, F if T and T' are continu-
ous. A linear map T: E —. F is called an isometry if lITxII =
for all z B. T is called an isometric isomorphism if it is both
an isometry and an isomorphism. Equivalently, T is a bijective
isometry.
(ii) Itfl and fi 112 are norms on a vector space B, H lii and H 112
are called equivalent if the identity map (E, fl III) —+ (E, 11112)18
an isomorphism. By A.12, this is equivalent to the existence of a
constants b, c> 0 such that

bIIxlIt � � dlxiii

for all z B.

In finite dimensions, any bijective continuous linear map T is
automatically an isomorphism, since all linear maps (and in par-
ticular are continuous. For Banach spaces we have:

PRoPosITIoN A.14. (Open mapping theorem). if T: B F is a
continuous bijection of Ban ach spaces, then T is an isomorphism.
(Equivalently, T is an open map.)

We let B(E, F) denote the space of bounded linear maps from
E to F. it is clearly a vector space, and becomes a normed linear
space if we define, for T B(E, F), 11Th = sup{IlTzhh I lixhi S 1).
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PRoPosITIoN A.15. 1fF is a Ban ach space, so is B(E, F).

EXAMPLE A.16: If E is a normed linear space, we denote B(E, k)
by E, and B(E, E) by B(E). Then E is always a Banach space
and B(E) will be a Banach space if E is Banach.

EXAMPLE A.17: If dimE < oo, so that E k" as a vector space,
then any linear functional (i.e. linear map into k) on E is continu-
ous. Thus, E as a vector space. The norm on E of course
depends upon the norm on E.

If X is a measure space, f E LP(X) and h then

fh E L'(X) as long as p and q are related by ! = 1. (For

p = 1, we let q = oo). In fact, we have the basic Holder inequality:
IIfhIIi < Fix 1 � p � oo. For h L9(X) let
L1'(X)' be given by )th(f) = f/h.
PRoPosITIoN A.18. The map L9(X) LP(X),h i—. is an

isometric isomorphism for I ( p < oo. For p = oo this is an
(injective) isometry, but is not ui general an isomorphism.

Suppose now that X is a compact metric space. Let M(X)
denote the space of probability measures on X, i.e. measures with
p(X) = 1. For p E M(X), define A,, C(X)' by = f fdp.

THEOREM A.19. (Riesz representation theorem). The map M(X)
—' C(X)', p is a bijection of M(X) with (A C(X) I

A(f) � 0 for 1).

COROLLARY A.20. For k = R, every A E C(X) can be written

uniquely as — where i't, are finite measures. Fork = C,
every A C(X) can be written uniquely as — + —

A,4) where pj, 1 <1 4, are finite measures.

In all the above examples it. is easy to see that for any z E
E, x 0, there is some A E with A(z) 0. This holds in
general.

THEOREM A.21. (Hahn-Banach) Let E be a normed linear space
and F C E a linear subspace. For any A E F, there is some

E E such that F = A and = hAil.
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COROLLARY A.22. If x E E, then there exists some A E E with
IIAU = 1 and lizil.

REMARK A.23: The proof of the Hahn-Banach theorem works for
spaces with a semi-norm, not just a norm. As we shall need this
Later on, we state this version now. Let E be a linear space with
a semi-norm Let F C E be a linear subspace. Suppose
A: F k is linear and B > 0 such that IA(z)l < for all
XE F. Then there is a Linear map A: E k such that AIF = A

and IA(x)I < BIIxfI for all x E E.

DEFINITION A.24. Let E be a vector space over k. An inner
product onEisamap( , ):EXE—.ksuchthat

a) (,)is bilinear for h = K; or for h = C is bilinear over K, linear
over C in the first variable, and satisfies (z, iy) = —i(z, y).

b) (x,z)> 0 and (z,z)= 0 if and only if x = 0.

EXAMPLE A.25: (a) For B = z = (zi,. . . , Zn),W = (w1,..
E k's, let (z,w)=
(b) For E = L2(X), let (f,g) =

Any inner product on E defines a norm on B by =
(z, x)h/2, and thus B is also a normed linear space. A complete in-
ner product space is called a Hilbert space. Both k" and L2(X) are
thus Hubert spaces. We remark that is identical to L2({1,. . ., n))
with counting measure.

A subset A C E, where B is a Hubert space is called or-
thonormal if flxfl = 1 for all zE A and z,y A, z y implies
z ..L y, i.e. (z, v) = 0. A is called a maximal orthonormal set if it
is not a proper subset of an orthonormal set. Every orthonormal
subset of a Hilbert space is contained in a maximal orthonormal
set by Zorn's lemma. A maximal orthonormal set is also called an
orthonormal basis.

PROPOSITION A.26. Let E be a Hubert space and A C E an
orthonormal set. Then the following are equivalent:

(i) A is maximal.
(ii)
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(iii) For any y E, y can be uniquely expressed as y =
EXEA •x where E k and E <00. Further-
more every such sum converges, and c5 = (y,z).

(iv) Finite linear combinations of elements of A are dense
mE.

COROLLARY A.27. Let E be a Hubert space. The map E —.
E given by x *—' where = (y, z) is a norm preserving
bijection, preserving addition. For h = R, this is linear; for h =
C,Acr

COROLLARY A.28. Let W B be a closed linear subspace of a
ililbert space. Let W1 = {y 0 for alit W). Then
W1 is a closed linear subspace such that W W1 = E.

EXAMPLE A.29: (L2-Fourier series) Let S1 be the circle with the
measure p = normalized arc length, i.e. p = (arc length)/2ir. For
each n, —00 < n < 00, let = z". Then {J,J is orthonormal
by direct computation, and is maximal orthonormal by Example
A.9.a and Proposition A.26. Thus for every f L2(S'), we have
f = (Here of course the infinite sum is convergent
in L2. Other types of convergence, with varying hypotheses on f,
are more delicate.)

DEFINITION A.30. A normed linear space is called separable if it
is separable as a metric space, i.e. it has a countable dense subset.

EXAMPLE A.31: (a) If X is a compact metric apace, C(X) is
separable.
(b) If X is a separable metric space and p is a measure on X,
then for 1 � p < 00, LP(X) is separable. In general, L°°(X) is not
separable.
(c) A Hubert space is separable if and only if there is a countable
maximal orthonormal set. In this case every maximal orthonormal
set is countable.

We conclude this review by recalling that every metric space
B has a "completion" If B is a normed linear space, then
will be a Bausch space in which B is isometrically embedded as a



Background

dense subspace. If E is an inner product space, 1' will be a Hubert
space. If E is separable, will be separable as well.

O.B. Some special properties of integration in

We collect here some basic properties concerning integration
in H" that are not features of general measure spaces. Unlike the
review in section A, we shall here provide complete proofs. The
first result concerns differentiation under an integral. For U C R'
open, we let, as usual, Ck(U) be the space of k-times continuously
differentiable functions on U, and those functions in Ck(U)
that have compact support, and this support is contained in U.

LEMMA B. 1. Let X be a measure space, I C ft open and f: I x
X —+ C a measurable function. Suppose that for each x E X, f(., z)
E C'(I) and that for each t E I, f(1,.),

f(t, x)dx and G(t) = x)dz. If G is continuous,
then F is C' and F'(t) = G(t).

PROOF: Fix t E I and let e > 0. Choose 6 such that IsI < 6

implies + s) — <c. Then for Ihl <5, we have

F(t+h)—F(t) G
h

=
1(t,x)

=

= + s,z)dz)ds
—

(by Fubini)
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= 1J(j[j + s,z)dz
—

= I—f [G(i + a) — G(t)JdsI

<E:.

Thus F'(t) = G(1).

We now wish to show that Cr(Q) is dense in LP(Q) for any
open (1 C R". This is a consequence of an extremely useful general
"smoothing" procedure that we now describe. Suppose 6: ftfl R
is measurable with 6 > 0 and fö = 1. Then 6(i)dt is of course a
probability measure on as is 8(1 — z)dt for any z The
measure 6(1 — x)dt is just the "translation" of 6(i)dt by z. Given
another function f, we consider the function z f 1(1)6(1 — z) di,
when this is defined. This function) which of course depends upon
6 and f, has at z the value which is simply the average of f with
respect to the probability measure 6(1 — z)dt. It is algebraically a
bit more convenient to consider the function defined this way by
6 and f, where 6(z) = 8(—z). Thus, we define the convolution
of 6 and f by (6 * f)fr) = f f(t)6(z — 1) dt (when this integral
is defined). Of course, if 6(z) = 6(—z), as will often be the case
in our applications, (6 * f)(z) agrees with the expression above.
This definition has the advantage that (8 * f)(z) = (f *

as one sees immediately from the change of variables I, = 2 — I.
From the definition we see that ifS is supported on (1 f fltfl � c),
then (6 * f)(z) will be a. weighted average of the values of f over
{v I flu — zfl e). To illustrate how to obtain approximations to /
by this procedure, suppose for the moment that I Then
f is uniformly continuous. Hence for any r> 0 we can find 0
so that fly — � e implies jf(y) — f(z)f r. If 6 is supported on
{t flifi <e), it follows that for any z,

(6 * f)(z)
= J JQ)[6(z — t)dtJ

= J f(1)[6(z — t)diJ
a'
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Since 11(t) — f(z)I r for all such t and 6(z — t)dt is a probability
measure, we have I(6*f)(z)—f(z)I r as well. Hence, by shrinking
the support of 8 we can approximate I uniformly by functions of
the form 6 * f.

We now discuss this more formally and obtain approximations
in

DEFINITION B.2. If 6,J are measurable functions on we set

(6 * f)(z)
= J f(t)6(z — t)dt

whenever the integral is absolutely convergent.

PROPOSTION B.3.
(1) 1(6 E L'(R") and I E then

5*f E L"(W') and flS * ff5,, S II6IIiIIftIp•

(ii) 1(5 E Cr(R'3) and f E LP(R"),.then

6*1 E and —(6 * I) = * f.

(iii) It6,f E (R") then

(iv) IfSEL1,JELP,hEL9 then

(8 * f, h) = (f,6 * h) where 6(z) = 6(—z) (and (I, h)
= / f1).

PRooF: (1) This is clear for p = oo. For p < oo, let I, L' where
1/p+ 1/q = 1. It suffices to see that (6*1). h and
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II(6*f)hlIi by virtue of A.18. Since 6*1 = 1*6,
we have

Jl(6 * f)(x)h(z)idz JJ lf(z — i)6(t)h(x)ldidz

� / 16(t)l(/ lf(z — i)lIh(z)Idz)dl

Since

/ = J If(z —

we obtain

11(6 * f)hiIi /
(ii) Choose R so that supp(6) C (I I 11th R). Hence, for any z,

(6 s f)(z) / f(t)6(z — t)di.
lltlI�R+IfrN

Thus, if we fix zo, then for all z with liz — zohI < 1, we have

(6* f)(x)
= / x(i)f(i)6(t — z)dt

where x(t) is the characteristic function of

A = {t I lull < R+ lIzolI + 1).

I.e., for llz—zoIl � 1, (6*f)(z) = (ösf)(z) where / = xl The point
of this is that A is bounded, so f E LP(R') implies f E L'(FV').
To deduce (ii), we may apply B.l once we know that h
and f E L1(R") implies h s f is continuous. However, since h is
uniformly continuous, if —+ z we have h(z — 1)
uniformly in I which clearly implies continuity of h * 1.
(iii) follows from (ii) and the fact that 6 $ f = f * 6.
(iv) follows from the definitions and Fubini's theorem.

Now let 6 E Cr(R') with 6> 0, 6(z) = 6(—z), f6 = 1 and
6(x) = 0 if Ikil � 1. For each e> 0, let = Then

� 0, = 1 and is supported on the ball around 0 of radius
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DEFINITION B .4. The functions are called an approximate iden-
tity for RTh.

This terminology is motivated by:

PROPOSITION B.5. For any 1 p < oo and f E we have
61*f—sfinP(R")ase--iO.

Paoop: First suppose / Then the discussion preceding
Definition B.2 shows *1—' I pointwise. Furthermore ff �
111000 and since f has compact support, if c < I all • / are
supported on a common compact set. Therefore the dominated
convergence theorem implies * / —, f in LP(R"). Given any I
LI', and any r> 0, choose such that — ffl,, <r/4.
Then in LI',

— Jfl + li6 * — (by B.3.i)
<r/2 + 116 * —

For c sufficiently small1 we have fl6,, s — ( r/2, and hence
11o11—f0 <r.

COROLLARY B.6. is dense in LP(iTZ) for any open 11 C
R"(l

PROOF: It suffices to see that the closure of contains C0(fl).
1ff E C0(fl), let d = dist(aupp(f), 8t2) (and let d = oo if = R".)
If c < d/2, we have * I C0(fl) since is supported on the
c-ball around 0, and 6 * / E C°°(W') by B.3. Finally B.5 implies
6, sf—. fin LP(fl).
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TOPOLOGICAL VECTOR SPACES

AND OPERATORS

1.1 Examples of spaces

A basic point of a norm on a space of functions is of course that
it gives US ft framework for discussing the convergence of a sequence
of functions to another, say —. f. Roughly speaking, in chapter
o we discussed norms which enabled us to deal with uniform con-
vergence (e.g., the norm on BC(X)) or V-convergence. In various
situations, we may be interested in other types of convergence. For
example we may wish to consider pointwise convergence. One can
show, for example, that there is no norm on C([O, I]) such that
f —+ / pointwise if and only if Din — ill 0. Similarly, for C(R),
it is natural to consider f uniformly on compact subsets of
R. Once again, there is no norm on C(R) for which this is equiv-
alent to convergence in norm. In a somewhat different direction,
instead of uniform convergence, we may wish to control the deriva-
tives of functions as well. Thus, for smooth functions on R, we may
wish to consider —. / if for all r. Here again, the
framework of normed spaces is not adequate. However all these
examples can be dealt with by considering a. topology defined by
a suitable family of seminorms.

DEFINITION 1.1.1. A topological vector space (hereafter abbre-
viated by TVS) is a vector space E together with a Hausdorff
topology for which the vector space operations are continuous.

Thus, a normed space is a TVS in a natural way.

DEFINITION 1.1.2. Let E be a vector space and {fl 1k a
family of seminorms on E. The family is called sufficient it for all
zE E,z 0, there is some a El such that 0.

The following is completely straightforward.

13
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PROPOSITION 1.1.3. If (fi flu) is a sufficient family of seminorms
on E, let E have the topology generated by all the open II 1k-balls.
Then E is a TVS. Furthermore, for a net in E we have fp /
in this topology if and only if for all we have — /lk 0.

The sufficiency of the family is needed in Proposition 1.1.3
to show that the topology is Hausdorif. If (H 1k) is a countable
sufficient family, then the topology on E is first countable, i.e. has
for each point a countable basis for the open sets containing that
point. In that case, we can understand convergence by speaking of
sequences rather than nets. In fact, in this case E will be metriz-
able.

PROPOSITION 1.1.4. Suppose (H 1k Ii n < oo) is a countable
sufficient family of seminorms on E. Then the topology on E is
met rizable.

PROOF: For each n, let d,,(z, y) = Define d(x, y) =
d,,(z, y)/2". Then one easily verifies that d is a metric and

dfrj,x) —' 0 if and only if for each 0, which in turn
is true if and only if flzj — 0. Thus, convergence in the
metric is equivalent to convergence in the topology.

EXAMPLE 1.1.5: Let X be a Hausdorif space, and for each z E X
define 1k on C(X) by I x E X) is a
sufficient family and —. / is equivalent to pointwiae convergence.

EXAMPLE 1.1.6: Let X be a Hausdorif space and for each compact
subset K C X, define 1111K on C(X) by Il/IlK = I z E
K). Then fit K C X compact) is a sufficient family and
f, —. / means uniform convergence on compact subsets. If X is
a-compact, i.e., X = U, where (4 is open and K, =
is compact, then the same topology is defined by the countable
sufficient family (Ii 1k = 1111K,1).

One can make similar constructions for I/-norms. Namely,
let X be a separable metric space and p a measure on X which is
finite on compact sets. Fix p,l ( p oo. We say that f is locally

if for every compact subset K C X, ft K E LP(K). We let
be the space of locally I/-functions.
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EXAMPLE 1.1.7: For K C X compact and I E define

11111K = (fK 1ff)". Then (II IlK) is a sufficient family and

f means L"- convergence on compact sets. As in 1.1,6, if X is a-
compact, the topology is defined by a countable sufficient family.

We now discuss examples in which the topology takes into
account the size of derivatives. We first establish some notation.
Let c R" be an open set. For i = 1,.. . , n, let aj be a non-
negative integer, and write a = (Gi, .. . For a function I on
Il we let

80
D°' —

.

if this exists. We set lal = E'—1 a. We let = {f:
k exists and is continuous for all a with Ial � r}, and
C°°(1l) = flr�i An element of C°°(O) is called a smooth
function. By we simply mean C(Q). We let BC"(fZ) = {f E

I D"f is bounded on 12, for all Iaf < r), and BC°° (12) =
ft BC'(12).
EXAMPLE 1.1.8: For each a with lal < r, define on
by 111110 = sup{ID0f(x)l $

x E fl). Then (II I laI < r) is a
(finite) sufficient family of seminorms. We have —. f if and
only if —. D"f uniformly on 12 for all faI r.

REMARK 1.1.9: Topologies given by a finite sufficient family of
semi-norms are actually given by norms, although the way the
seminorms are combined to yield a norm is not canonical. For
example, if {II I i = 1,..., n) is a sufficient family of seminorms
on E, the topology is given by the norm IIzII' = IIzlk. It
is given as well by the norm HxU' = In fact, if
N : R' Ris any norm on K", then flxlIN = N(IIzlI,,...
is a norm on E which yields the appropriate topology. In a given
situation one specific choice of N may be most convenient.

EXAMPLE 1.1.10: Let 12 C K" be open. For each a with lal < r
and each compact set K C 12, define flfllo,K = sup{ID°f(z)l
K). Then {lI Ila,x I IaI � r, K C 12 compact) is a sufficient family
of seminorms on C'(f2). We have f if and only if for all IaI �
r, D0f uniformly on compact sets. Since 12 is u-compact,
the topology can be given by a countable family of seminorms.
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Similarly, by taking all a, we obtain a countable sufficient family
of seminorms on C°°(1z) such that —. f if and only if for all
a, D°f, —+ D"f uniformly on compact sets. We shall refer to this
as the "C°°- topology" on

We shall next consider examples in which the size of the deriva-
tives is measured by an I/-norm. However, we first pause to discuss
completeness.

DEFINITION 1.1.11.
(a) If E is a TVS and C E is a sequence, is called

Cauchy if for every open neighborhood U of 0, we have —

Zm E U for n, m sufficiently large.
(b) E is called complete if every Caucby sequence converges.
(c) E is called a Frechet space if it is complete and the topology

is given by a countable sufficient family of semi-norms.

REMARKS 1.1.12: (a) If the topology on E is given by (It
then z,, is Cauchy if and only if it is fi -Cauchy for each a. I.e.,
for all a and e> 0, there is some N such that n, m> N implies

— Z,nhfa <C.
(b) Every Banach space is a Frechet space.
(c) Every Frechet space is metrizable by Proposition 1.1.4. How-
ever, the metric constructed in the proof of 1.1.4 is not a complete
metric.

PRolosiTloN 1.1.13. All the examples 1.1.5—1.1.10 are complete.

PROOF: All the follow easily from Example 0.7. We shall
prove completeness of as an illustration, the other examples
following in a similar manner. Suppose is Cauchy. Write

= U K1 where K1 is compact and K1 = tT1 where Ug C fi is
open, and U1 C U14.t. For each a and each i, is fl lk1-Cauchy
where we have written Q fl licK,. By 0.7 (a), for each a
and i, there is a continuous function f defined on K1 such that
fj Jo and D'fj uniformly on K1. Suppose we knew
f, = on U1. Then we would have Jo E C°°(Q) and I, —. Jo
in the topology of C°°(Q). It therefore suffices to see ía =
which follows by induction from the following fact of calculus.
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LEMMA 1.1.14. Let Of denote the i-tb partial derivative off.
Suppose is a sequence of C1-functions such that fj —. f uni-
formlyonanopensetU C R'. Suppose that we also haveO5f, —.g
uniformly on U where g is continuous. Then Of exists in U and
in fact Ojf = g.

We now turn to further examples, namely the Sobolev spaces,
in which the size of derivatives is measured by Li-norms.
EXAMPLE 1.1.15: (Sobolev spaces) Let fl C R" be open. Fix
p, 1 � p < and let denote the usual I/-norm. Fix k � 0
and for Ial < k, let = We

= {f E C°°(cz) <oo for all (k).

Then (II j < k) defines a finite sufficient family of semi-
norms on C°°(IZ)p,r,. It follows that C°°(fl)p,k becomes a normed
space with, for example (cf Remark 1.1.9), the norm

IIfIIp,k = IIfIIp,ci =
lal�k

We clearly have Cr(Q) C for any p, k. Furthermore
= C°°(Q) n In particular, is not com-

plete, and in this is easily seen to be true in general. We define
to be the completion of is called the

(p, k)-Sobolev space of fl. By Proposition A.11 we have LP'°(fl) =
While we have C LP(I1), it is not immediately

clear that elements of Pk(12) can be thought of as functions (or at
least functions modulo null sets). We shall now show that they can
be, while at the same time present an alternative view of
The basic idea is the notion of a weak derivative.

We begin by recalling the following consequence of the product
rule for differentiation.

LEMMA 1.1.16. (Integration by parts). Suppose f C°°(fl) and
C R" is open. Then for any i,

L = — J(Osf)SQ.
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Hence, for any a

ji . DG4O = (_1)101 ço.

For convenience, when our domain of integration, say 12, is
understood, we shall write (f, = f whenever f'p is integrable.

DEFINITION 1.1.17. Suppose f, h are locally integrable functions
on (2 (i.e. f, h E We say that h is the weak cr-th partial
derivative off on (1 and write is = Dgf, if for all we
have

(f, =

LEMMA 1.1.18. If a weak a-th derivative exists, it is unique (up
to sets of measure 0). In particular, if I I)"! =
for any a.

PROOF: It clearly suffices to see that h E and = 0
for all Cr(fl) implies is = 0. It suffices to see, for every
U C (2 open with TI C (2 and TI compact, that hIU 0. Thus, by
passing to is, U for each such U, we need only consider the case
is L1(fZ) and compact. We remark that if we had h LP(Q)
for any p> 1, we would have h = 0, by virtue of the isomorphism
LP(12) = and the fact that Cr(f)) is dense in for
q < oo (B.6). We shall deduce the same for h E L' ((2) by reducing
to such a case. Namely, let V C 12 be open with V C IL Let be
an approximate identity for R" (B.4). Then for c sufficiently small
we have 6 Cr(cl) for any Cr(V). Thus, 0.
Hence (6, * h, = 0 (by B.3 (iv)). However 6, * is is smooth and
hence (8, * h)J V C L2(V). Since Cr(V) is dense in L2(V), we
have (6, * = 0. As e —i 0,6, * h —+ is in L'(R") (B.5), and
hence hJ V = 0. Since this is true for all such V C (2, is = 0.

EXAMPLE 1.1.19: Let / C(H). Suppose there are finitely many
points E < such that f is differen-
tiable. Then the weak derivative duf exists and is equal to f'(t)
for any t {tj,. . . ,t,j. This is a simple exercise in integration by
parts. (Exercise 1.23.)
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DEFINITION 1.1.20. Let = (I I Df exists for all IaI �
k and DJ We define a norm on by

=
IoI�k

(As in Remark 1.1.9, we could take IIfII,',k =
etc., as may be convenient.)

We clearly have C°°(Cl)p,k C in a norm preserving
way.

PROPOSITION 1.1.21. WPk(1l) is a Banach space. Hence LPk(Q)
can be realized as the closure of in WP.k([1).

PROOF: (fj be a fi IIp,k-Cauchy sequence in WPtA(fZ). Then
is Cauchy in LP(fl) for every IaI � k. By completeness

of LP(cl), we have E LP(Q) for some It suffices to
show, letting Jo = f, that = /.,., for then f,, / in WP1k(c)).
By definition, for all IaI S k and all E (f,,, =

Letting n oo we have =
(_1)baI(fa,w), and hence = Df as required.

In fact, one has equality LPk(C�) = for any open
U C We give the proof here for (� = R". The general case is
more delicate.

We first collect some simple properties of weak derivatives.

PROPOSITION 1.1.22.

(a) 1ff WPk((2) and cr1 + I/SI � k, then =
/.

(b) 1ff WPk(Q) and then 'pf E
(c) If 6 and / E then 6 s f E

and = 6sDf for all
IaL�k.

Paoop: (a) is a stra3ghtforward exercise in the definition of weak
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derivative. To see (b), let C6°°(1Z). Then C°(cl). Hence

=

(f, (f,
= — (f8,ço,

= —((87f)co +

where 871 is the weak derivative in fl. It follows that 87(1 co) =
+ One now completes the proof by induction.

c) We have 6 * 1 C°°(R") by B.3 (ii), and 6. E for
Iaf < k by B.3.(i). Thus, it suffices to see $ f) = 6 *

Let E Cr(R'). Then

(6 • Df,co) = •w) (B.3 (iv))
(_1)IaI(f, Da(8* * (since 6 * E

= * (B.3 (iii))
= (.....1)tGl(6 * f,

This verifies the assertion.

PRoposiTioN 1.1.23. LPk(Rfl) = WPib(RhI).

PaooF: Let f E Let be an approximate identity
(B.4). Since by 1.1.22 (c), it suffices to see 61*f —
f in as e —. 0. However, for each IcwI � k,61 * Df —,

in by B.5 and hence by 1.1.22 (c), Da(61 * f) .,
in LP(R'). This clearly implies * f —. / in WPik(RTh).

In concluding this section on some basic examples of topolog-
ical vector spaces, we discuss some features of dual spaces. If E is
a TVS, we let E = {A: B k A is linear and continuous).

LEMMA 1.1.24. (Hahn-Banach) If the topology on B is defined by
a sufficient family of seminorms, then for each z B, z 0, there
is some A EE, such that 0.

PROOF: Let fi fi be a seminorm in the sufficient family with ((zfl
0. By Remark A.23 there is a linear map A: E —. k such that
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X(x) 0 and for all y E E, � flyfl. If 0 in E, then
—+ 0 and hence 0, which implies continuity.

DEFINITioN 1.1.25. Let E be a TVS defined by a sufficient family
of seminorms.

(a) The weak topology on B is the topology defined by
the (sufficient by 1.1.24) family of seminorms (II I

B') where IIXIIA =
(b) The B' is the topology on B' de-

fined by the (sufficient by definition) family of semi-
norms (II )k I z E E) where = IA(z)I.

Thus, Za z in the weak topology on E if and only if for
every E B', A(za) —+ )t(x). Similarly, —+ in the
topology on E' if and only if A(z) for all z E E.
EXAMPLE 1.1.26: Suppose 1 < p < oo, and I)'(R) with
llfnU, = 1 and C (n, n + 11. Then f, —' 0 in the weak
topology of LP(R). To see this, it suffices to see that for any h E
L'(R), where +q1 = 1, we have —. Oasn —# 00.
However, given any e > 0, for n sufficiently large we have

(J — (J Ihi')"• (...oo,n)

Since = 0 on (—oo,n) and = 1, we have f < c for
n large, as required.

EXAMPLE 1.1.27: Let. E = C([O, 1)). We recall that M([0, 1])
denotes the space of probability measures on (0, lb so that we
have M([O, 1)) C C([0, (Cf. A.19.) Let #0 E M([0, 11) be
the measure supported on (0). Let p,, E M((O, lJ) be the nor-
malized Lebesgue measure supported on (0, 1/n). For each n, we
can clearly find f E C([O, 1)) such that = =
1/2, and = 0. The last condition is of course the same as

= 0. It follows that in the norm on C([0, 1))', we have
him — poll � 1/2. On the other hand, it is clear that in some sense
we should have p,, —. po. This sense is captured by the

we claim that in fact p,, #0 in the
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topology. To see this, we need to see that for each / E C(EO, I]) we
have f f fdpo = 1(0). However, by continuity of / at 0,
for any c > 0 we have for n sufficiently large that 11(z) — /(0)1 <e
on [0,1/n], and hence — 1(0)1 <e.

One of the most useful features of the weak-i-topology is the
following result.

THEOREM 1.1.28. Let E be a normed linear space. Then (the
unit ball in E) is compact with the

PROOF: The proof of this will follow easily from Tychonoff's theo-
rem: the product of compact spaces is compact. Namely, for each
z E E, let = {c E k lixill. Then is compact, and
hence so is = IIZEEBX, with the product topology. There is a
natural map i: E £2, namely (i(A)), = A(x). That A(x) E
follows from the fact that E E, i.e. � 1. Since a net Wa £2

converges to w E £2 if and only if (W0)t Wr for all z, it follows
that us a homeomorphism of with i(E7). It therefore suf-
fices to see that i(E) C £2 is a closed set. For each z, y E E,
let = {w E £2 w, + and for each c E k and
z E E,tIc,t = {w E £2 = cw.}. Then each and
is closed in [2 and i(E) = ft1, ft completing the
proof.

COROLLARY 1.1.29. Let X be a compact metric space. Then
M(X) is compact with the weak--topology.

PROOF: By 0.19, M(X) = {A E � 0 for 1 2 0 and
A(1) = 1). For each f, (A I MI) � 0) is closed in the
topology. Thus, M(X) = fl,�o{A I MI) � 0) fl{A I A(1) = 1), and
hence is closed in C(Xfl.

REMARK: Although E' is not in general metrizable with the weak-
topology even if E is separable, E will be metrizable. (See

exercise 1.10). Thus, M(X) is actually a compact metrizable space
ifX is.

Here is another useful fact about the
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PROPOSITION 1.1.30. Let E be a TVS defined by a sufficient fain-
ily of seminorms. Then any element of (E, weak- is
of the form A i-. Afr) for some x E.

PRooF: Suppose E k is weak-i continuous and linear.
Then k < 1)) is open in E. Hence, there are finitely
many elements EEand > 0 such that

< 1)) {A E E tMzOI < for all 1 � i � n}.

In particular, if A E with A(xj) = 0 for all i, then = 0 for
all i and c, and hence < 1 for c k. This clearly implies

= 0. We rephrase this as follows. Let I: E' k'2 be given by
1(A) = (A(zi),. . . , Then the above remarks simply assert
that J(A) = 0 implies çc'(A) = 0. It follows that factors through
f(E'), i.e. there is a linear map f(E) k such that =
Since f(E) C k", we have for some cj E k that =
E for any (al.. E f(E). Thus,

= = =

Thus x = E is the required element.

REMARK 1.1.31:
(a) In addition to L2(X), W21k(Q) (and hence L2k(fl)) are all

Hubert spaces. Namely, for h E W2k(fZ) we define (f, =
Elo,�k(D°f, where < , >o denotes the ordinary in-
ner product on L2(1Z). Thus for this inner product we have
11f112,k = (E IIDOIIIL0)hI2.

(b) If E is a Hubert space, then we have a natural identification of
E with E. The weak--topology on E thus defines a topol-
ogy on E, and this is clearly just the weak topology on E.
Thus, the unit ball iii E is compact with the weak topology.

1.2. Examples of operators

We begin by establishing some notation, generalizing that of
A.13.
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If E, F are TVS's, we let B(E, F) be the space of continuous
linear maps E -. F. If E = F, we write B(E,F) = B(E). If
T B(E, F) is bijective with a continuous inverse, then T will be
called an isomorphism of E and F. If E = F, then T will be called
an automorphism of E and we let Aut(E) C B(E) be the set of
automorphisms. If E is a normed space, we let Iso(E) C Aut(E)
be the set of isometric automorphisms. If dimE < oo, we shall
often write Aut(E) = GL(E) GL(n, k) where n = dimE.

Our first examples are multiplication operations.
EXAMPLE 1.2.1: Let (X,p) be a measure space and E L°°(X).
Define LP(X) —' LP(X) by = . f. Then for any
1 <p � oo, is bounded, and in fact = To see
this, we clearly have so that � IIwlIoo.
On the other hand, choose a measurable A with 0 < p(A) <
oo and � — e for z E A. Then the characteristic
function XA E L"(X) and IkøxAlIp � — e)IIYAIIP. This es-
tablishes the asserted equality.

EXAMPLE 1.2.2: For Li C II" open and E BCk(12), define
My,: C°°(Li)p,fr C°°(fl),,,5 by = pf. One easily checks
that this is bounded (and in fact � ckIIw))Bck(n) for some
constant c*), and hence extends to a bounded operator M,
LP.k(Li)

REMARK 1.2.3: We can interpret the above as follows. Let
B(LP(X)) and have the norm topologies (0.15). Then
the map M (i.e. M,) defines an isometry M: L00(X) ._+

B(LP(X)) and a bounded injection M: BCL(1Z) B(LPk(1Z)).

We now turn to translation operators.
If X is a set and X X is a bijection, then defines a

"translation operator" on spaces of functions on X. Namely,
if f: X —. k, then we have = f(ip1(z)), i.e. =
10 With various hypotheses on X we can form various func-
tion spaces, and T, will under suitable hypotheses on define a
continuous operator on this space.
EXAMPLE 1.2.4: (a) Let X be a Hausdorif space and

E Homeo(X) (where Homeo(X) is the group of homeomor-
phisms of X.) Then Tv,: BC(X) —. BC(X) is an isometry, with
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(b) Suppose X is a locally compact separable metric space and
E llomeo(X). Give C(X) the structure of a Frechet space

with the topology of uniform convergence on compact sets. Then
C(X) —. C(X) is an isomorphism (with inverse

We now consider translations on We need a pre-
liminary definition.

DEFINITION 1.2.5. If (X, p) is a measure space and ço: X —+ X
is a measurable map, we say that p is 'p-invariant, or that 'p is
measure preserving (p being understood) if 'p.p = p where we
define ('p,p)(A) = p(rp'(A))) for all measurable A C X. (This is
equivalent to f(f o ço)dp = f fdp for all bounded Borel functions
f. If 'p is bijective with measurable inverse, then p is p-in variant
if and only if it is invariant.)

EXAMPLE 1.2.6: (a) For X = R" with Lebesgue measure, and any
t E H", ço(z) = z + I is measure preserving.
(b) For X = R" with Lebeague measure and any 'p E GL(n, K),
(i.e. 'p is a linear automorphism of H"), then 'p:H" —+ H" is
measure preserving if and only if = 1. This is essentially
the definition of the determinant.

DEFINITION 1.2.7. Let (1 C H" be open. A map 'p: Q — is
called a diffeomorphism if 'p is a homeomorphism and 'p and
are smooth.

We remark that by the chain rule this implies is invertible
for all x 11.

EXAMPLE 1.2.8: II ço: is a diffeomorphism, then 'p pre-
serves Lebesgue measure if and only if Idet d'pI = 1 for all z E S).
To see this, we simply recall that the change of variable formula
for integration implies that for any bounded Borel function

J(f ° 'p)Idetd'pIdp
= f fdp.

Thus

J(f o
= / fdp
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for all such f if and only if Idet = 1 a.e., and since x is
continuous, this is equivalent to Idet = 1 for all x.

EXAMPLE 1.2.9: Suppose p: X .-' X is a measure preserving bi-
jection with a measurable inverse. Then LP(X) LP(X) is
an isometric isomorphism for all p, 1 � p � 00. TIns is immediate
from

Jii ° = J(IfI' o çQ)dp
= J JJIP.

(For p = 00, will be an isometric isomorphism aimply with the
hypotheses that = 0 if and only if p(A) = 0 rather
than the stronger assumption that p be invariant.. Thus, for ex-
ample, if ça: Cl 11 is any diffeomorphism, will be an isometric
isomorphism of L°°(Cl).)

EXAMPLE 1.2.10: Suppose w: Cl —' (1 is a diffeomorphism. Then
C°°(fl) —. is an isomorphism where C°°((Tl) has the

Frechet space topology defined in 1.1.10.

We now define differential operators.

DEFINITION 1.2.11. Let Cl C R' be open. A differential operator
of order r on Cl is an operator D: C°°(Cl) C°°(fl) of the form

(Df)(z) = aØ(x)(Df)(x)

where C°°(1l). That is,

D=

M is multiplication.

D will be continuous if has the (1.1.10).
We say that D has order r if it has order <r and some a0(z)
o where = r. A differential operator will define continuous
operators on other spaces under suitable hypotheses.
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EXAMPLE 1.2.12: Suppose D is of order r and all coefficients
a0 E BC°°(fl). Then D induces continuous operators (for r
D: —, and D: LP*k(O) ..

EXAMPLE 1.2.13: (Embedding operators). There are numerous
continuous inclusioias between the various spaces we have defined.
Thus, for k � £, we have Ck(tl) is continuous, and

.1 is continuous. There are some non-obvious
inclusions as well. (See Section 5.2, for example.)

EXAMPLE 1.2.14: (Integral operators). For simplicity we shall
consider integral operators on L2(X). We let (X, p) be a measure
apace and K L2(X x X,,u x p). Define TK : L2(X) —' L2(X) by
(TKI)(x) = Ix K(x,y)f(y)dp(y). We need to verify that TKJ E
L2(X). For each z E X, let = K(x, y). Then by Fubini's
theorem, L2(X) for a.e. z E X. Thus, (TKJ)(x) =
and hence is defined (a.e.) To see TKI E L2(X), observe that

=

� IlK uI2IfH2dz

= 111112

= 111112 IK(x, y)l2dxdy.

Thus, HTKJII2 � Il/Il IIKlIL2xxx. This not only shows that
TKJ E L2(X), but that IITKII < IIKIIL2(xxx).

EXAMPLE 1.2.15: In the aboveexaniple, takeX = {l,. . .,n) with
counting measure, then K = {K(i,j)) is simply an n x n matrix.
(As usual, we then write K(i,j) = Kq). The formula for TK IS
just the usual correspondence of a linear operator on K" to an
n x n matrix. We can thus view the functions K on X x X as a
generalization of a matrix and integral operators as a generalization
of the formula for applying matrices to vectors.

REMARK 1.2.16: If X is compact, p(X) < and K E C(X x
X), then C C(X). This follows from the facts that the
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map X —' C(X) given by z i—i is continuous (which is simply
a point set topology exercise), the inclusion C(X) L2(X) is
continuous, and (TKJ)(x) =

REMARK 1.2.17: Let E be a separable Hilbert space with or-
thonormal basis Then any bounded linear operator T is de-
termined by {Tej }, and hence by { (Te1, Ci)). Thus, exactly as in
finite dimensions, we associate to T a matrix (now infinite), namely

= (Tej, from which we can recover T by "matrix multiplica-
tion". I.e. if z = Eajej, we have (Tx)1 = Consider now the
example E = with orthonormal basis ej(j) = öq. If Mc, E
B(t2(N)) is a multiplication operator for E t°°(N), then has
a "diagonal" matrix. I.e. = 0 if i 5. If K x N),
then the matrix for is just K itself, i.e. (TK = K(i, j).

REMARK 1.2.18: Unlike the case of finite dimensions, not every
T B(L2(X)) is of the form Tic for some K L2(X x X). See
3.1.5, for example.

We now turn to adjoint operators.

DEFINITION 1.2.19. Let E,F be TVS!s, and T: E —. F a con-
tin uous linear map. Define the adjoint T' of T by T: F
E',T(A)= AoT.

REMARK 1.2.20: Clearly T' is linear. Its continuity depends upon
the topologies on B', F'. it is immediate from the definitions that
1" is always continuous if E', F' have the weak-'-topologies.

LEMMA 1.2.21. II E, F are formed, then flTQ = 11TH.

PROOF: For A E F',x E we have I(T'A)(x)l = IA(Tx)I �
HAlt 111'fl llzIl. Hence H7"AH � hAil, which implies 117" II �
For the reverse inequality, let c > 0 and choose x with lizhl =
1 and lITzlI � 11TH—c. By Hahu-Banach, we can find A E F' such
that HAH = 1 and IA(Tz)i = IITzlI. Then i(T'A)(x)l = IA(Tx)l =
IITxII � 11TH—c. Since hIzil = lI.'l1 = 1, this implies IIT"Il � 11TH—c.

EXAMPLE 1.2.22: Suppose E is a Hubert space. Let i: E B' be
the bijection (i(x))(y) = (y, z). If T E B(E), then 7" B(E'),
and hence defines an operator in B(E) via the identification i.
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I.e., we obtain an operator T' = o T' o i. To see what T'
is we observe that joT' = T' oi implies that for all z,y B
we have (Tx, y) = (ar, T'y). By a standard abuse of notation, we
shall denote T' by T. Thus, for any T B(E), we have T E
B(E) with Or II = 11Th and 1" is characterized by the equation

= (z,T'y). If {ej) is an orthonormal basis, then the ma-
trix for 7" with respect to is = (T'ej,e,) = (e1,Te1) =
(Tea, e) = Thus, as in finite dimensions, 7" is the conjugate
transpose.

DEFINITION 1.2.23. (a) If B is a Hubert space and 7' E B(E),
then T is called self-adjoint if T = T'.
(b) An operator U E B(E) is called unitary if U is an isometric
isomorphism, or equivalently, if U is surjective and (Ux, Uy) =
(x, y) for all x, y. Thus, U is unitary if and only if = U'.
(c) If B is a If ilbert space, we shall often denote Iso(E) by U(E).

EXAMPLE 1.2.24: If L00(X), let. B(L2(X)) be the cor-
responding multiplication operator. Then (M,)' = This is
immediate as it suffices to see for all I, h L2(X), that h) =
(f, which is clear. Thus, is seif-adjoint if and only if =
a.e.; that is, is real valued. Similarly, is unitary if and only
if = I, i.e. = I. Thus, Mc, is unitary if and only if

= 1 a.e., that is, = 1 a.e.

1.3. Operator topologies and groups of operators

Let E, F be TVS's and B(E, F) the space of continuous linear
maps B F. Asin the case F = k(so that B(E, F) becomes E'),
there are various topologies of interest that we can put on B(E, F).
We indicate these here only for E, F normed, but it is easy to see
when and how to generalize to topologies defined by a family of
seminorms.

DEFINITION 1.3.1. Let B, F be normed spaces.
(a) The norm topology on B(E, F) is just that defined by the

norm on B(B, F). Thus, Ta T if and only if Tli 0.
(b) For x B, define the seminorm 111k on B(E, F) by =

hITxII. The topology on B(E, F) defined by the family
(II x E B) is called the strong operator topology. Thus
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T0 —. T if and only if TaX —, Tx in F for all z E; i.e.
— TZIIF —, 0 for all x E. When F = k, the strong

operator topology on E' is the same as the
(c) For x E E and A E F, define the seminorm on B(E, F)

by = IA(Tz)I. The topology on B(E, F) defined by
the family {tI IkA x E E, A E F) is called the weak op..
erator topology. Thus Ta — T if and only if for all x E E,
T0x Tx in F where F has the weak topology, i.e.

A F. When B(E,F) = E, the weak opera-
tor topology also coincides with the topology.

EXAMPLE 1.3.2: Let E be a Ililbert space, {ej) an orthonormal
basis. Suppose 11Th � 1. Then T in the weak oper-
ator topology if and only if for all i, j the matrix entry )•j

Convergence in the strong operator topology is equivalent to
convergence of each column in the L2-norm, i.e. convergence of

Tej in V. Convergence in norm requires convergence of
the columns uniformly as we vary the coLumns.

In many situations, it is natural to consider not just one oper-
ator but rather a group of operators. For example, for each I R"
we have R" —. defined by = z — I. In turn, each

defines a translation operator = 1',: —

Here it is clearly natural to consider at once the family of opera-
tors {T1 I t rather than a single fixed operator. To put this
example in a suitable context, we recall the notion of a topological
group and a group action.

DEFINITION 1.3.3. A topological group is a group G together with
a Hausdorff topology such that the group operations are con tinu-
otis.

EXAMPLE 1.3.4:
(a) with addition.
(b) R — {0) with multiplication.
(c) GL(n,R) = nxn invertible matrices. Since GL(n,R) C

it has a natural topology and GL(n, R) is a topological group.
(d) Closed subgroups of GL(n, R) are topological groups. For

example, SL(n,R) = {A E GL(n,R) I det(A) = 1), and
0(n) = (A GL(n,R) 1 = hlzhI for all x H").
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(e) If E is a normed space, Iso(E) is a topological group with
the strong operator topology. In particular, if E is a Hubert
space, U(E) is a topological group with the strong operator
topology. In fact, the strong operator topology and the weak
operator topology coincide on U(E). (See exercise 1.21.)

DEFINITION 1.3.5. A (lefl) action of a group C on a space X is
amapGxX —+X, which we denote such that

(gh).z = g.(h.z) and e•x = z. If G is a topologicalgroup and X is

a topological space, we say the action is continuous if C x X —. X
is a continuous map. In that case, for each g E C the map z '-. g . z
is a homeomorphism of X with inverse

EXAMPLES 1.3.6: (a) R" acts on itself by translation. I.e. for
i ER', we have z+1.
(b) 0(n) acts on by rotation (i.e. matrix multiplication).
More precisely, we have the action 0(n) x S"1 — given by
A . z = A(z), ordinary matrix multiplication.
(c) Similarly, we have GL(n,R) acting on

DEFINITION 1.3.7. If C is a group and V is a vector space, a

representation of G on V is a homomorphism G GL(V), where

GL(V) is the group of invertible linear maps on V. If E is a TVS, a

representation of G on E is a homomorphism G —+ Aut(E). If
C is a topological group, we speak of a representation of G on E be-
ing a continuous representation when Aut(E) C B(E) has a given

topology (e.g. strong operator, weak operator). If E is a normed

space, a representation is called an isometric representation if

C Iso(E) C Aut(E), and ifE is a Hubert space, an isometric

representation will also be called a unitary representation.

REMARK 1.3.8: (a) A continuous action of a group on X gives
a group of homeomorphisms of X. Each homeomorphism yields
a translation operator as in section 1.2. We thus obtain, under
various assumptions on the action, various representations of C on
various spaces of functions.
(b) A representation w: C —+ Aut(E) is continuous for the strong
operator topology if and only if it is continuous at e E C. (See
exercise 1.12.)

As a basic example, we have:
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PRoPosITIoN 1.3.9. Let G be a topological group acting contin-
uously on a locally compact space X. Let be the space
of compactly supported functions with the norm topology. Let
x: G be given by T(g)f)(z) = f(g'x). Then s is
continuous where has the strong operator topology.

PROOF: It suffices to see (by 1.3.8(b)) that if f E and c>
0, then for all g in a neighborhood of e E G we have Il'(g)f—f II
Since supp(f) is compact and X is locally compact, we can find
an open set U C X with compact closure such that supp(f) C
U. Then for each z E supp(f), continuity of the action implies
there is an open neighborhood 1Jr of z and an open neighborhood
Wr of e in G such that C U. We have by compactness that
for some finite set x1,. . E supp(f) that supp(f) C
Then W = fl W,,, will be an open neighborhood of e such that
W supp(f) C U. This implies for g W, that supp(ir(g)f) C TI.
Therefore, we need only show that for g in an open neighborhood
W' C W that ff(g'z) — f(x)I <c for z E U.

We achieve this by repeating the same sort of argument. For
each x E TI, we can choose an open neighborhood of z such
that 11(v) — < c/2 for y By continuity of the action,
we can choose open neighborhoods of e in G and such that

c Choose a (new) finite set z1, ... z, such that TI C
U-1 Y1,. Let W' = Then if g E (W')' (which is
open since taking inverse in G is a homeomorphism) and y TI, we
have for some i that y E C U1 and hence g'y C Thus

jf(g'y) — f(v)l � lf(g'v) — f(z,)I + — f(v)l e/2 + c/2.

This completes the proof.

For example, this shows that the representation s: R"
given by (s(t)f)(z) = f(z — 1) is continuous.

We now turn to the analogous result for actions on LI'- spaces.
This will imply, for example, that the representation n: R" —,

given by the same formula as above is continuous (for
the Btrong operator topology) for any 1 � p < oo.
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PROPOSITION 1.3.10. Let X be a locally compact met rizable space
and G a topological group acting continuously on X. Suppose p
is a measure on X which is 0- invariant, i.e. invariant for every
homeomorphism (g 0) of X. Suppose further that p(A) < 00
for every compact subset A C X. Then for 1 � p < the repre-

0—. Iso(LP(X)),(i(g)f)(x) = f(g'x), is continuous
(for the strong operator topology).

To see that g —+ i(g)f is continuous for all / E LP(X),
it suffices (cf. exercise 1.13) to see this for J E since the
latter is dense (A.10). But if g0 —. e, we have already seen in
Proposition 1.3.9 that —. f uniform'y and that we may
suppose supp(f) C iT for some fixed compact set iT.
This easily implies convergence in 1/, which is what is required.

EXAMPLE 1.3.11: The representation in Proposition 1.3.10 is
not continuous in general if we give Iso(LP(X)) the norm topology.
For example, let R act on R by translations. Then for any I > 0
we have

lI(w(I) — = X(O,qIIp � IIX[o,tlIIp.

Thus, lk(') — � 1 for any I > 0, and hence we cannot have
x(t) i(0) = I as 1 —. 0.

DEFINITION 1.3.12. If G —. GL(V) is a representation, we
define the adjoint by G —. GL(V), ir(g) =

LEMMA 1.3.13. Let be a representation of 0 on a TVS E. Then
* will be a representation of 0 on E if either:

(1) E has the
or,

(ii) E is normed and E' has the norm topology.
(The issue here is whether ir(g): E --. E is continuous. We are
not discussing continuity of the representation in g.)

The proof is immediate from the definitions.
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EXAMPLE 1.3.14: (a) Let G and X satisfy the hypotheses of
Proposition 1.3.10. Let t be the representation of C on LP(X), for
1 < p < oo. Then r will be the representation of C on
(p' + q1 = 1) where we identify L"(X) Lf(X).
(b) Let X be a compact metric space and suppose 0 acts contin-
uously on X. Then 0 acts on C(X), say by the representation w.
Thus C acts on C(X) by where = Afr(g)_1f).
Since / � 0 implies ir(g)f � 0, if A = for some measure p
(cf. A.19), then w'(g) will also be of the form One can check
(exercise 1.24) that v = g.p where g is identified with the homeo-
morphism of X it defines by the action and g.p is as in Definition
1.2.5, i.e. (g.p)(A) =
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PROBLEMS FOR CHAPTER 1

1.1. Show that any two norms on a finite dimensional vector space
are equivalent.

1.2. If dim E < oo, show that any topology given by a sufficient
family of seminorms is given by a norm.

1.3. Show that any finite dimensional normed space is Banach.
1.4. If B is a Hubert space show that dimE < co if and only if

there is a compact neighborhood of 0.
1.5. Show there is no norm on C(1O, 11) such that convergence in

this norm is equivalent to pointwise convergence.
1.6. If B is a TVS, a subset U C E is called balanced if x E

U and c E k with id � 1 implies cx U. If U is a convex (see
Definition 2.1.2) balanced neighborhood of 0 E B, let lixit =
inf{c E R 0,x/c U). Show that flIt is a seminorm on
U.

1.7. If E is a TVS, E is called locally convex (hereafter, LCTVS),
if every neighborhood of 0 E E contains a convex balanced
open neighborhood of 0.
(a) Show that B is locally convex if and only if the topology
is defined by a sufficient family of seminorms.
(b) If k = R, show that B is Locally convex if and only if every
neighborhood of 0 E B contains a convex open neighborhood
of 0.

1.8. If E is a TVS, show that E is locally convex and metrizable
if and only if the topology is defined by a countable sufficient
family of seminorms.

1.9. Suppose E is a normed space and F C E is a closed linear
subspace. Define N: B/F —. R by N(z+F) = inf{IIx+yII ii' E
F).
(a) Show that N is a norm on B/F.
(b) Show the natural map E — B/F is continuous.
(c) If B' is another normed space and T E B(E, E') with
T(F) = 0, show that the induced map ElF —, E' is continu-
ous.
(d) If E is Banach, show that B/F is as well.

1.10 If B is a separable normed space, show that the unit ball
E C E is a separable metrizable space with the
topology.
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1.11. (a) If E is a normed space and Iso(E) the group of isometric
isomorphisms of E, show Iso(E) is a topological group with
the strong operator topology.
(b) Show that Iso(E) acts continuously on E where the latter
has the

1.12. if G is a topological group and Eisa normed space, show that
a representation s: 0 Iso(E) is continuous if and only if it
is continuous at e 0.

1.13. Suppose E is a normed space and A E B(E), with
hAil � C for some C R. Show A in the strong
operator topology if and only if there is a dense set E0 C B
such that Ax for all x E B.

1.14. Let Q C R' be open and D: —, A differential
operator D: C00(fZ) —. C°°(CZ) is called a formal adjoint of
D if for all E C°°(tl) and E Cr(1z), we have =

D'b) (where (I, h) = Ii;).
(a) If a formal adjoint exists, show it is unqiue.
(b) Show that every D has a formal adjoint. (Hint: first con-
sider the cases D = D

D =
E = L°°(R). For each n, define A, E E by =

(2n)1 f$f
(a) Show A,,
(b) Using compactness of let A be a weak-i accumulation
point of (A,,). Show A is not of the form A; for any I L'(R)
where Aj(h) = f/h. (Thus, L°°(R) L'(R)).

1.16. If X is a topological space, let M(X) be the set of probabil-
ity measures on X. We have a natural inclusion M(X) '.-.
BC(X). Give an example to show that if X is not compact,
M(X) need not be compact in the weak--topology.

1.17. Let A E GL(n,R) and TA: C°°(R") —+
(a) Show that TA induces a bounded operator on LPk(Rn).
(b) Show that TA induces an isometry of L2*(Rhs) (with re-
spect to some equivalent norm) if and only if A is orthogonal.

1.18. Show Cr(R") is dense in with the weak-f-topology,
but not the norm topology.

1.19. (a) Suppose E,F are Banach spaces and Ac B(E,F). Sup-
pose that for all x E E, (IfTxjf T .4) is bounded in R.



Topological Vector Spaces and Operators 37

Show (11Th) is bounded. Hint: Let AN = {x E h)TxhI S
N for all T E A). Then use the Baire category theorem.
(b) Show that any sequence in E that converges in the weak
topology is bounded. Show any sequence in E that is
convergent is bounded.
(c) Show that weakly compact subsets of E and weak- com-
pact subsets of E' are bounded.

1.20. Let X be a finite measure space. Via multiplication operators,
we have an identification L°°(X) C B(L2(X)). Show that the
weak operator topology on L°°(X) is the same as the weak-i
topology (as the dual of L'(X).)

1.21. Let. E be a Hubert space and U(E) the group of unitary oper-
ators. Show that the strong operator topology and the weak
operator topology are the same on U(E).

1.22. (a) Suppose {E,) are Hilbert spaces. Define E = ((1" f2,. .

E B1 and 111412 < oo). Show that B is a Hubert space
(usually denoted by EE1). If C B is an orthonormal
basis, show {fjj)j.,, is an orthonormal basis of B, where we
identify E1 C E in the obvious way.
(b) Suppose E is a Hubert space, and B1 C B is a closed
subapace. Suppose B1 J. Ej for i j, and that the linear
span of U,Ej is dense in E. Show B
(c) If (X, p) is a measure space which is expressed as a count-
able disjoint union (X,p) = show L2(X) is natu-
rally isomorphic to EeL2(X1).

1.23 Prove the assertion in Example 1.1.19.
1.24 Prove the assertion in Example 1.3.14(b).
1.25 Let C fl$ be open and u C°(1l). Suppose for all :� k

that Du exists and E Show u Ck(1Z).

1.26 Suppose D1, i = 1,2, is a differential operator of order < r'.
a) Show D1 o D2 is a differential operator of order ( rj + r2.
b) Show D1 o — o D1 is a differential operator of order
�(ri+r2—1).
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CONVEXITY AND FIXED POINT THEOREMS

2.1. Kakutani-Markov fixed point theorem
In the next two sections we describe fixed point theorems

which in particular will yield results about the existence of in-
variant finite measures for certain group actions.

DEFINITIoN 2.1.1. IfagroupO acts on aspaceX apointx E X
is called a fixed point if gx = x for all g.

We recall that an action of the group Z on X is specified by
giving a single invertible map X —' X. In this case, there are
some fixed point theorems known by topological methods. For
example, the Brouwer fixed point theorem asserts that any contin-
uous map X —' X has a fixed point if X is homeomorphic to
the closed ball in H". it is clear, however, that one may have home-
omorphisms of other spaces with no fixed points. For example, a
non-trivial rotation of the circle clearly has no fixed points. Any
fixed point of course defines an invariant measure by taking the
point mass at the fixed point. On the other hand, rotation on the
circle, whiLe having no fixed points, clearly leaves the arc length
measure invariant. The Kakutani-Markov theorem, which is the
main goal of this section, implies that every homeomorphism of a
compact space has an invariant measure. There are two main ingre-
dients. First is the compactness of M(X) in the weak-s-topology
(Corollary 1.1.29). The other is convexity.

DEFINITION 2.1.2. It E is a vector space, a set A C E is called
convex if x,yE A, t E[O,1) impliestz+(1 —t)yE A.

EXAMPLE 2.1.3: (a) If E is a vector space and fill is a seminorm on
E, then open or closed 1111-balls around any point Xo (i.e. {x I fix —

xofl < r) or {x I ))z — zoll < r}) are convex.
(b) If X is a compact space, M(X) C G(X) is convex.

38
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(c) hE E (and k =R), then for anyr ER, {x E EIA(z) <r}
and {x � r) are convex.

(d) If (AC,) are convex sets, so is fl AC,.

(e) IfEisaTVSandACEisconvex,soisA.

DEFINITION 2.1.4. (a) If A C B, we define the convex hull of A,
denoted by co(A), to be the unique smallest convex set containing
A. This exists by 2.1 .3 (d) and is equal tofl{B C C B and B
is convex).
(b) If B is a TVS, and A C B, we define the closed convex hull,
denoted by ?.o(A), to be the unique smallest closed convex set con-
taining A. By 2.1.3 (d), (e), = co(A) = n{B C E A C
B and B is closed and convex}.

THEOREM 2.1.5. (Kakutani-Markov) Let E be a TVS whose topol-
ogy is defined by a sufficient family of seminorms. Suppose G is an
abelian group and 0 —. Aut(E) is a representation. Let A C E
be a compact convex set that is 0-invariant, i.e. C A for all
g E 0. Then there is a 0-fixed point in A.

PROOF: For each g G and ii o, define Me,, B(E) by
= Since A is convex and 0-invariant, we have

M019(A) C A for all n, g. Let G be the semigroup of operators
generated

I
n 0, g G}, (i.e. all finite compositions of

such operators). Since G is abelian, G is commutative and we
clearly have T(A) C A for all T E G. We claim flTEG. T(A)
and that every element is a 0-fixed point. To see the intersection is
non-empty, since each T(A) is compact (since A is compact and T
is continuous), it suffices to see that for any finite set T1,.. . ,

T, (A) However, if we let S = T1 G, then
5(A) C T1(T2o. . C Ti(A). Since 0' is commutative, we
also have S = T2oT1o. . and hence S(A) C T2(A). Similarly,
S(A) C Z(A) for each i, showing that S(A) C flTi(A).
Now suppose y E flrEo. T(A). Then for each n 0 and g E G,
there is some x E A such that y = + .. . + Then

— y = (ir(g'2)x — x)/n. Let be one of the seminorms
defining the topology. Then for each n we have � 2B/n
where B = sup {flafl a E A). (This exists since A is compact and
fl fl: B — R is continuous by definition.) Since this is true for all
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n, — yfl = 0, and since this is true for all seminorms in a
sufficient family, 7r(g)y = y for any g E G.

CoRoLLARY 2.1.6. Let G be an abelian group acting continuously
on a compact metric space X. Then there is a G- invariant prob-
ability measure on X.

PRooF: M(X) C(X) is compact, convex with the
topology. By 1.3.13, 1.3.l4webavearepresentationofG on
leaving M(X) invariant. Thus, Theorem 2.1.5 implies the result.

EXAMPLE 2.1.7: It is not true that any group acting on a compact
metric space has an invariant measure. For example, if we let

[0, 11 —' [0, 11 be = x2, the only invariant probability
measures are supported on (0, 1). (See exercise 2.9.) Thus, if
we identify with a homeomorphism of S1 by identifying 0 and
1, we obtain a homeomorphism whose only invariant measure is
supported at a given point x0. Let be any homeomorphisin
of moving Xo, e.g. a rotation. Then the (non-abelian) group
generated by has no invariant measure on

2.2. Haar measure for compact groups

Let. G be a topological group. Then G acts on itself by left
(or right) translation. I.e. for g E G, we define the action of
g on G to be g . h = gh, where gh is simply multiplication. Under
the assumption that G is locally compact, the following theorem
asserts that there is always an essentially unique invariant measure.
This result is fundamental for many aspects of the study of such
groups.

THEOREM 2.2.1. (Haar) Let G be a locally compact (second count-
able) group. Then:

(1) There is a measure p which is invariant under left transla-
tions and is finite on compact subsets.
(ii) p is unique up to positive scalar multiple.
(iii) The measure class of p is the unique invariant measure
class. More precisely if v is a measure such that g.v i' (i.e.
they have the same null sets), then ii p.
(iv) p(G) <co it and only jIG is compact.
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The measure p is called the (left) Haar measure on G. If G is
compact, we usually normalize so that p(G) = 1.

We shall not prove this result in general, although we shall
prove it for G compact. In the compact case, this was first estab-
lished by von Neumann. here we shall see it as a consequence of
a simple convexity argument (due to Kakutani.) We first discuss
some examples.

EXAMPLE 2.2.2: (a) For G = Haar measure is Lebesgue
measure.
(b) For G = S', Haar measure is arc length. For the torus

= (S' Haar measure is the product of the arc length mea-
sures on the factors.
(c) If G is discrete, hlaar measure is counting measure.
(d) (This example requires some knowledge of manifolds and is
not used in the sequel.) Suppose M is an oriented n- dimensional
manifold. We let w be a non-vanishing section of det(TM) =
A"(TM) M, the top exterior power of the cotangent bundle of
M. Then w determines in a canonical way a measure on M. If
a group G acts on M, it acts on sections of det(TM), and will
be G-invariant if and only if is G-invariant. Now let M = G
be a Lie group. To construct an invariant measure on G, we need
only construct an invariant section of det(TM). however, a basic
argument of Lie theory shows that such invariant sections exist
and in fact are in bijective correspondence with A"(TM)e where
e E G is the identity. Thus, the existence of an invariant measure
for Lie groups follows easily from basic constructions in the theory
of manifolds.

We now turn to the proof of the existence of an invariant prob-
ability measure for compact groups. We shall argue in a framework
similar to that of Section 2.1. Namely, if X is a compact space, we
shall realize M(X) C C(X) as a compact convex set, and
produce a fixed point in M(X) for a compact group action.

THEOREM 2.2.3. Let E be a Banach space and G be a compact
group. Let G Iso(E) be a continuous isometric representa-
tion of G (where Iso(E) has the strong operator topology). Let
A C E be a compact convex G-invariant subset (for the adjoint
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r of s acting on E) where has the weak-4'-topology. Then
there is a C-fixed point in A.

Compactness of C will be used only in the following lemma
we need for the proof. It says, roughly, that we can take one of
the seminorms on E defining the weak-s-topology and make it
C-invariant.

LEMMA 2.2.4. Fix any x E E. Define hAil0 for A E by hAil0 =
Ig C). Then

(i) II lb is a semi-norm on E.
(ii) II Ho is C-invariant, i.e. for all A E, h E C, we have
0w(h)AhIo = hl"hIo.
(iii) For any 0 � r < 00,11 Ho: E R is continuous on
with the weak-'- topology.
(iv) If A(z) 0, then hAil0 > 0.

PROOF: We first remark that since C is compact and is continu-
ous, the map g w(g)z has compact image in E. Since A is contin-
uous on E, hAil0 is a well- defined real number. Then (i), (ii), and
(iv) are straightforward from the definitions. To see (iii), suppose
A0 A in the weak-f-topology where 11A011, hiAtt r. We claim
hA0 — All0 —+ 0. Letting = A0 — A, it suffices to see IhIioIlo —, 0,
assuming 0 in the weak-f- topology and � 2r for all
a. Fix c > 0. Since {i(g)z g E C) is compact, we can choose a
finite e/4r-dense subset {s(gj)x I i = 1,. . ., n). Since 0 in
weak-, for a sufficiently large we have < c/2 for all
i, 1 i n. Then for any g E C we have for all i

� 1130 (ir(g)x — 1(gj)(x))f + 1130

( — + c/2.

Choosing iso that <c/4r, we have 1130(R(g)z)I �
e for all g C, and hence c as required.

PROOF OF THEOREM 2.2.3: We can apply Zorn's lemma to (B C
A B is compact, convex, C-invariant) with the ordering B � C
if and only if B c C. We deduce that there is a minimal C-
invariant compact convex subset of A. Replacing A by this set,
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we may thus assume that A contains no proper convex compact
C-invariant subset. We then wish to deduce that A consists of one
point.

Suppose not. Then we can find x E such that Aj(z) A2(z)
for some A11A2 E A. Using this x, form the semi-norm II lb as

in Lemma 2.2.4. For A E A and r > 0, we let B(A;r) = {i3
A (JIA — P11° < r). By Lemma 2.2.4, these are all open sets in
A. We also set, for r 0, = {fl E A hA — 1311o < r).
These are all closed convex subsets. Let d be the ho-diameter
of A, i.e. d = sup{IIA — Phlo I A is compact
and II ho is continuous on A, d < oo. By our choice of x (used
to define II Do), we have 0 < d < oo. We claim that it suffices
to find w A and r < d such that r) = A. To see this,
we simply observe that for such anw, we have w Th(A; r) for
all A E A, and hence B = flA€A B(A; r) But B C A is
clearly compact and convex, and we have B A since r < d. To
obtain a contradiction to the minimality property of A, it only
suffices to see that B is C-invariant. However, since II lb is G-
invariant, (g)A; r) = r)), and hence = B
for all g C.

To complete the proof, it therefore suffices to construct such
an w A and r < d. Since A is compact, we can find a fi-
nite set w1,. . A such that A = B(w1;d/2). Let

= A w A since A is convex. Then for
any A A we have

11w — All0 � lIwi — Au0.

Each — All0 � d by the definition of d, but for at least one i we
have liwi — All0 <d/2. Thus,

11w — All0 � + (n — 1)d)
= (2fl

1)d.

Therefore, letting r = completes the proof.
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COROLLARY 2.2.5. (von Neumann) If G is any compact group,
and X is any compact space on which G acts continuously, then
there is a G- invariant probability measure on X. In particular,
there is a probability measure on G invariant under left transla-
tions.

PRooF: This follows from Theorem 2.2.3, using Proposition 1.3.9.

We now turn to the uniqueness assertion (ii) of Theorem 2.2.1
for G compact. It will be convenient at the same time to establish
bi-invariance. Namely, we have that p is left-invariant if p(gA) =
p(A) for all g, A. We can define p to be right invariant if p(Ag) =
A for all g,A. We call p bi-invariant if it is both left and right
invariant.

PaorosmoN 2.2.6. Let G be a compact group, and p M(G)
with p left invariant. Then p is the unique left invariant probability
measure, and p is bi-in variant.

PROOF: Let v be a right invariant probability measure on G. (This
exists either by appeal to Theorem 2.2.3 applied to G acting on
itself by right translations, or by taking ii = I.p, where 1(g) =
g'.) Then for any / E C(G), we have (by right invariance of ii)

J f(yz)dp(z)dv(y) = J(J dp(x)
= J

Similarly, by left invariance of p,

/ = /1
Thus p = ii, showing bi-invariance. Since p' = r' for any other left
invariant p' M(G), we have p = p', showing uniqueness.

REMARK 2.2.7: It is not true that left Haar measure on a general
locally compact group is bi-invariant. A group for which this holds
is called unimodular. For an example of a non-unimodular group
see exercise 3.12.

We now indicate some first applications of the existence of
Haar measure for compact groups.
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COROLLARY 2.2.8. Let G be a compact group and V a finite di-
mensional vector space. Let i: G —. GL(V) be a continuous rep-
resentation. Then there is a (positive definite) inner product ( , )
on V which is G - invariant, i.e. (ir(g)v, ir(g)w) = (v, w) for all
v, w V. In other words i is orthogonal (resp. unitary) if k = R
(resp. C).

PROOF: Let ( , ) be any inner product on V. Let

(v,w) =

where p is llaar measure. Then one easily checks that (, ) satisfies
the required conditions.

As a consequence of Corollary 2.2.8 we obtain complete re-
ducibility of a finite dimensional representation of a compact group.

DEFINITION 2.2.9. Suppose V is a finite dimensional vector space
and 7r: G —' GL(V) is a representation. Then is called irreducible
if the only subspaces are (0) and V. is called
completely reducible if V = l', where V1 is variant
and irreducible.

11
EXAMPLE 2.2.10: Fort R, let = I I. Thus R —.

\0 1)
GL(2, R) is a representation. The space Re1 C R2 is invariant and
irreducible (since it is 1- dimensional.) But is not completely
reducible.

PROPOSITION 2.2.11. Let G be a group and G U(n) be a
(finite dimensional) unitary representation. Then

(1) every 7r(G)- invariant subspace has a invariant corn-
plemen t.
(ii) is completely reducible.

PROOF: If V is invariant and is unitary then V1 is invari-
ant. Namely, if w V1 and g E C, then for all v V we
have (,r(g)w,v) = (w,w(g)v) = This is 0 since
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E V. Since V®V' = C", this proves (i). Tosee (ii), sim-
ply argue by induction on n. Namely, if is not irreducible, write
C" = V1 ® V3 where are ir(G)-invariant and dim <dim V.
Write i(g) = s,(g) where s'j(g) = s(g) Then apply
the induction hypothesis to

The same argument clearly works for orthogonal representa-
tions over R.

COROLLARY 2.2.12. If G is a compact group, then any continuous
representation G —. GL(V), with dim V < oo, is completely
reducible.

Proposition 2.2.11 and Corollary 2.2.8.

We shall discuss the case of infinite dimensional representa-
tions in Section 3.3. We conclude this section with some examples
of compact groups.
EXAMPLE 2.2.13: (a)Wehavealreadymentionedo(n) C GL(n,R)
and U(n) C GL(n, C) as examples. in fact any compact subgroup
of GL(n, R) (reap. GL(n, C)) is conjugate to a closed subgroup of
0(n) (reap. U(n)). Namely, if G C GL(n, R) is compact, then
by Corollary 2.2.8 there is a positive definite inner product on R"
such that G leaves the inner product invariant. Let Vj,. . . , v,, be
an orthonormal basis with respect to this inner product, and let
T E GL(n,R) be given by Te, = v,. Then T'GT leaves the stan-
dard inner product invariant, i.e. T'GT C 0(n). The argument
over C is similar.
(b) Any finite group is compact. Hence any (possibly infinite)
product of finite groups is compact. Furthermore, any closed sub-
group of a product of finite groups is compact. (There are a number
of groups that arise naturally in an algebraic setting that have nat-
ural realizations of this form, for example, the p-adic integers, or
the Gable group of an infinite CaJole extension.)

2.3. Krein-Millnian Theorem

The Krein-Millman theorem concerns a geometric feature of a
compact convex set A, which allows one to describe A in terms of
a certain natural subset of A.
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DEFINITION 2.3.1. If B is a vector space and x,y E, we let
[x, = {ix + (1 — t)y E [0, 1)) and (x, y) = (ix + (1 — i)y It
(0,1)). Let A C E be a convex set. If x E A, we say that z
is an extreme point of A if x E [y, z) for some y, z E A implies
x = y or x = z. Equivalently, x (y, z) implies x = y = z. More
generally, if 0 B C A is convex, we say that B is an extreme set
in A if y,z E A and (y,z)riB 0, implies[y,z] C B. (Thus {x) is
an extreme set if and only if z is an extreme point.) We let ex(A)
be the set of extreme point,s of A.

EXAMPLE 2.3.2: (a) In R", the extreme points of a closed convex
polyhedron are just the vertices. Every edge, face, etc. is an
extreme set, although there are other extreme sets.
(b) The set of extreme points of a closed ball in R'2 (usual inner
product) is precisely the boundary sphere.

EXAMPLE 2.3.3: Let X be a compact metric space. Then
ex(M(X)) = I

x X). (See exercise 2.10.)

THEOREM 2.3.4. (Krein-Millman) Let E be a TVS whose topol-
ogy is defined by a sufficient family of seminorms. If A C E is
compact, convex, then = A. (We recall that ) de-
notes the closed convex hull (Definition 2.1.4j.)

For the proof, we need the following generalized version of
Ilahn-Banach.

LEMMA 2.3.5. Suppose B is a real TVS whose topology is defined
by a sufficient family of seminorms. Let A C B be closed and
convex, and xE E and x A. Then there is some A E and a
Rsuch that A(a)<a<A(x) for allaEA.

The proof of Lemma 2.3.5 is indicated in exercise 2.1.
PROOF OF THEOREM 2.3.4: By restricting the field of scalars if
necessary, we may assume B is a real vector space. We claim
first that every closed convex extreme subset B of A contains an
extreme point of A. To see this, we observe that we can apply
Zorn's lemma to the collection of closed convex subsets C of B
which are extreme in A (ordered by reverse inclusion) to show
that there is a minimal such subset. We claim that C consists of
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a single point, i.e. is an extreme point. If we have z, y E C, z
y, by Hahn-Banach we can find I E such 1(z) < 1(y). Let
M = max{f(z) z E C) which exists since C is compact. Let
D={wECIf(w)=M}. ThenDis an extreme set of A, DC
C, and D C since z D. This contradicts the minimality of C,
showing the existence of extreme points in B.

Now suppose A Note that we clearly have A 3
Thus, we may choose z E A, z By Lemma

2.3.5 we can find a R and A E E such that A(y) <a < A(z)
for all y E As above, we let M be the maximum value
of A on A, and let B = {z E A A(z) = M). Then B is an
extreme subset of A, and since M > a, we have 4,.
However, by the preceding paragraph, B contains an extreme point
of A, which is a contradiction.

CoRoLLARY 2.3.6. If E is a TVS whose topology is defined by
a sufficient family of semi-norms, and A C E is compact, convex
(and 4,), then ex(A) 4,.

As an application of 2.3.6, we consider invariant measures.

DEFINITIoN 2.3.7. Suppose a topological group G acts continu-
ously on a compact metric space X. Let p E M(X) be G-invariant.
We say that p is ergodic (for the G-action) if A C X is a mea-
surable G- invariant set (i.e. gA = A for all g E G) implies
p(A) = 0 or p(A) = 1.

EXAMPLE 2.3.8: (a) Let X = 51 = (z E C lxi = 1), and p =
normalized arc Length. Suppose G is S' acting on itself by multi-
plication. Thus, for z = z acts on S' by rotation by angle a.
Clearly the only invariant sets (measurable or not) are S' and 4,,
hence p is ergodic.
(b) With X as above, fix a E N. Consider the i-action generated
by the homeomorphism 4,(z) = Then p is not necessar-
ily ergodic for this i-action. Namely, if a = then I 0 E
(0, z/2) U (z, 3ir/2)} is clearly invariant and of measure 1/2. A
simple modification of the argument shows that p will not be er-
godic for the i-action defined by any a with E Q. On the
other hand, if or/2ir Q, then p will be ergodic. This can be seen
for example by a Fourier series argument. (See exercise 2.13).
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PROPOSITION 2.3.9. If a topological group G acts continuously
on a compact metric space X, let M(X)° C M(X) be the set of
G-invariant Then M(X)G is compact and convex. If

then any p ex(M(X)°) is ergodic.

PROOF: The first assertion is immediate. If p is not ergodic, let
A C X be invariant and measurable with 0 < p(A) < 1. For B C
X with p(B) > 0, let PB E M(X) be PB(Z) = p(Z fl B)/p(B).
Since A, and hence X — A, are G-invariant, we have PA,PX—A E
M(X)°, and p = + (1 — i)pX—A where t = p(A). Thus, p is
not extreme in M(X)'.

COROLLARY 2.3.10. If G is an abelian group acting continuously
on a compact metric X, then there is an ergodie, G-invariant p E
M(X).

PROOF: This follows from the Kakutani-Markov theorem, Propo-
sition 2.3.9, and Corollary 2.3.6.
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PRoBLEMs FOR CHAPTER 2

2.1. Prove the following version of the Hahn-Banach theorem. Let
E be a LCTVS, A E closed and convex, and z E with
x E A. Show there is some I E and c E R such that
Re(f(y)) <c < Re(f(z)) for all y E A.
Hint: Choose a convex balanced U such that (z + U)n A =
If 0 E A, consider the seminorm defined by A + U/2. (cf.
Problem 1.6.)

2.2. Suppose A C B are compact sets in an LCTVS, with B con-
vex. Show that every extreme point of lies in A.

2.3. If (X,i) is a measure space, a mean on L°°(X) is a norm
continuous linear functional rn: L°°(X) —. C such that
(i)m(l)=1.
(ii) / � 0 implies_m(f) � 0.

(iii) m(7) = m(f).
(a) Let M(X) be the set of means on L°°(X). Show M(X)

is a closed convex subset of the unit ball in L00(X).
(b) Let X = R" with Lebesgue measure. Then m E M(R")

is called invariant if for all f L°°(R") and all t
we have m(f) = m(w(t)f) where = f(z — i).
Show that an invariant mean on R" exists.

(c) if m is an invariant mean and A C R" is bounded, show
rn(xA) =0.

(d) If m is an invariant mean and I E L°°(R") vanishes off a
compact set, show m(f) = 0.

(e) If in is an invariant mean, show in: L°°(R") —. C is not

2.4. Define invariant means on and derive results analogous to
those of problem 2.3.

2.5. Let E be a Banach space and suppose T E Aut(E) satisfies the
condition 11Th � C for all n E Z (where C E R). Show there
18 an equivalent norm on E, say J j, such that T is isometric
with respect to I. Hint: For x E E, define 1(n) = 111"zII.
Then f E t°°(Z). Apply problem 2.4.

2.6. if G is a compact group, p is Haar measure, and U C G is
open, show ti(U)> 0.

2.7. Let E be a TVS which is either a Banach space with the
weak topology or the dual of a Banach space with the
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topology.
(a) Let A C E be compact. Let p E M(A), i.e. is a
probability measure on A. Show there is a unique point b(p) E
E such that for all A E E0, )i(b(p)) = [A A(a)dp(a). (b(p) is
called the barycenter of p.) What is b(p) if p is supported on
a finite set? hint: Use Proposition 1.1.30.
(b) Show the map i—+ b(p) defines a continuous map M(A) —
E where M(A) has the (You may want to
use problem 1.19.)
(c) Show that b(M(A)) is precisely
(d) Show that is compact.

2.8. (a) Let A C U2 be a circle. Show that the map b: M(A) —.
is not injective.

(b) Let A C H2 consist of three non-colincar points. Show
that b: M(A) is a homeomorphism.

2.9. Let I = [0, 11 and I : I I be 1(x) = z2. Find all f- invariant
probability measures on I.

2.10 If X is a compact hlausdorif space, show ex(M(X)) = Ix
X} where is the probability measure supported on {x).

2.11 If E is a Banach space, G a compact group and G
Aut(E) is a continuous representation (for the strong operator
topology), show there is an equivalent norm on E for which
is isometric. (Cf. problem 2.5). If E is a hubert space, show
that this norm can be taken to come from an inner product
onE.

2.12 Suppose G is a compact group and G acts continuously on
a compact metrizable space X. Show there is a metric on X
(defining the same topology) that is G-invariant, i.e. d(gx, gy)
= d(z, y) for all z, y E X, and all g G. (hint: Let p be any
metric. Then average.)

2.13 (a) Suppose a E R, a/2w Q. Suppose I L2(S') with
f(e*az) = 1(z) for all z. Let 1(z) = be the L2-
Fourier expansion of f. Show = 0 if n 0.
(b) Verify the ergodicity assertion in Example 2.3.8(b).
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COMPACT OPERATORS

3.1. Compact operators and Hilbert-Schmidt operators
Certain natural classes of operators between Banach spaces

have properties considerably stronger than boundedness.

DEFINKTION 3.1.1. If E, F are Banach spaces, a bounded operator
T: E —. F is called a compact operator if T(Ei) is compact in F.
Equivalently, T(B) is compact for every bounded set B.

EXAMPLE 3.1.2: If T has finite rank, i.e. dimT(E) <oo, then T
is compact.

LEMMA 3.1.3. Suppose E B(E, F) are compact and —

Tfl —.0. Then T is compact.

PRooF: It suffices to see that T(E1) is totally bounded, i.e. for
any e > 0, there is a finite c-dense set. For any z, y E1 and any
n, we have

flTz — � IITx — + — + — Tyfl

<211T — + —

Fix ii sufficiently large so that lIT — � c/4. Then choose a
finite e/2-dense set for say

Tfr1), . . . , T(z,.) is c-dense in T(E1).

EXAMPLE 3.1.4: Suppose B is a Hubert space with orthonormal
basis {c,) and T E B(E) is given by the diagonal matrix

T is compact if and only if —.

0 as i oo; equivalently, for any c > 0, {i I > c) is finite.
To see this, first suppose A, —. 0. Then for each n, let =

52
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ifi < n and = Oifi> n. Then has finite rank and
hence is compact, and it is straightforward to see that lIT— TThII =

aup{l)i,I 1> n}. (In fact this follows from 1.2.1 and 1.2.17.) Thus
by 3.1.3, T is compact. Conversely, if there is some e with S =
(iliAd > e) infinite, then for i,j S we have — Te1112 =
lAiI2+IA1 12 � Therefore {Tej)IES obviously has no convergent
subsequence, showing that T is not compact.

The next result gives an important class of compact operators.

THEOREM 3.1.5. Let X be a compact space with a finite measure
p. If K C(X x X), then the integral operator

(TKJ)(X)
=

y)f(y)dp(y)

defines a compact operator L2(X) —. L2(X).

REMARK: (A simple modification of the proof will show that the
same formula defines a compact operator on LP(X) for any 1 �
p<oo.)
PRooF: First suppose K is of the form

K(x, y) = for E C(X).

Then

(TKJ)(z) =

so that
TK(L2(X)) C .,'pn).

In particular, Tx has finite rank and hence is compact. For a
general K, we can find K1 of the above form with K, K uni-
formly. (Example A.9 (c).) Furthermore TK, — TK = TIC_K
and hence IlTxj — TKII � IlK, — KIIL2(xxx) (by Example 1.2.14.)
Since K, —+ K uniformly, K, K in L2(X x X), and hence
llTx, — TKII — 0. The result now follows from Lemma 3.1.3.

We shall shortly present another proof of 3.1.5, assuming only
that K L2(X x X).
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DEFINITIoN 3.1.6. Let E be a Hubert space with orthonormal ba-
sis If T E B(E), then T is called a Hubert-Schmidt operator
if

1T1112 <00, i.e. <00.

Equivalently

While this appears to depend on the basis, we show it does
not.

LEMMA 3.1.7. If {ej) and {fj} are orthonormal bases, then

>.1(Te,,es)I2 =
ill

PRoOF: We have

E(EI(Tej,ei)12) = EIITejII2

=
'I'

=

Thus,

I
The right hand side is independent of the orthonormal basis
and hence so is the left side.

DEFINITION 3.1.8. If T is Hubert-Schmidt, we define the hubert-
Schmidt norm ofT, by

11Th2 =

where is the matrix of T with respect to any orthonormal basis.

We remark that the proof of Lemma 3.1.7 shows:
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COROLLARY 3.1.9. If T is Hubert-Schmidt, so is T, and 11Th3 =
lIT' 112.

LEMMA 3.1.10. If T is If ilbert-Schmidt then 11TH � 11Th2.

PROoF: Let be an orthonormal basis of E, and x E. Then
z = E c,ej. Therefore

1lTz112 =

By Cauchy-Schwarz, this is

� lcjl2)

� I(Tej,e,)12
1,J

�
This proves the lemma.

PROPOSITION 3.1.11. If T is Hubert-Schmidt, then T is compact.

PROOF: Let {e8) be an orthonormal basis. For each n, define E

B(E) by Tee, = if i < n, = 0 if i> n. Then
T — is hubert-Schmidt with lIT — =

llTeiII2. Since E, hlTeiII2 < co, we have lIT — —. 0 as
n —. oo. By Lemma 3.1.10, lIT — T is
compact.

PROPOSITION 3.1.12. Let X be a measure space and K E L2(X x
X). Then TK : L2(X) —. L2(X) is Hubert-Schmidt and hence
compact. Furthermore, IITK 112 = IIKlI2.

PROOF: We let E L2(X) be = K(x,y). (This is in
L2(X) for a.e. z by Fubini's theorem.) Let {ej} be an orthonormal



56 Chapter Three

basis of L2(X). Then

IITKeiII2 = I(Ticei)(x)12 dx

=

= dx

=
=

REMARK 3.1.13: a) Let denote the space of llilbert-Scliniidt
operators on E. With the Hubert-Schmidt norm, B2(E) is ac-
tually a hubert space. Namely, if B is an orthonormal basis,
then B2(E) can be identified with £2(B x B). We have the inner
product on B2(E) given by (T, S) = or equivalently,
(T,S)
b) One can form spaces analogous to B3(E) for any p, 1 � p < 00,
using an £P-type norm. The most important such operators are
"trace class operators", where p = 1.

c) The Banach space B(E) is also an algebra under composition,
for any Banach space E. We have that the space of compact op-
erators, which we denote by C B(E), is a closed (by 3.1.3)
linear subspace. In fact, is a closed two sided ideal in the
algebra B(E). This follows from the following easy fact.

PROPOSITION 3.1.14. If T : E —. F, S F L are bounded
linear maps between Banach spaces, then SoT is compact if either
S or T is compact.

3.2. Spectral theorem for compact operators
If E is a finite dimensional Hubert space and T E B(E) is

self-adjoint then the spectral theorem in finite dimensions asserts
that T has an orthonormal basis of eigenvectors. In this section, we
generalize this result to compact seLl-adjoint operators on a general
Hubert space.
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DEFINITIoN 3.2.1. Let E be a Banach space and T E B(E). For
= {ZEEITX=Ax). ThenEA C Eisaclosed

linear subspace. A is called an eigen value if EA (0), and x E EA
is called an eigen vector with ci gen value A.

EXAMPLE 3.2.2: In contrast to finite dimensions, a seif-adjoint
bounded operator need not have any eigenvalues. For example, let
T = multiplication by the (L°°) function z z on L2([0, 1)).
Then (M,) = = M,,, so that T is seif-adjoint. However, if
TI = Af for some f E L2([O, 1]), then Af(x) = xf(x) a.e., and
hence / = 0 in L2([0, 1J).

The main result of this section is:

THEOREM 3.2.3. (Spectral theorem for compact operators) Sup..
pose E is a Hubert space and T B(E) is compact and self-adjoint.
Then E has an orthonormal basis consisting of eigen vectors for T.
Furthermore, for each A 0, dim EA < oo, and for each o,
{A c and dimEA >0) is finite.

Before proving the theorem, we collect some general facts
about seif-adjoint operators.

LEMMA 3.2.4. Let E be a Hubert space and T B(E).
1) If T = T and W is T-invariant (i.e., T(W) C W),

then W1 is also T-in variant.
ii) If T = T, then for alix E we have (Tz,x) ER.

In particular, all eigen values are real.
iii) 11Th = sup{I(Tx, v)I I hixil, IIvhI S 1).
iv) IfT=T, then IITII=sup(RTx,x)hlIlzhl� 1).
v)

If y E W1, then for any x W, (x, Ty) = (Tx, y) =
0 since Tx W.
ii) (Tx, x) = (x,Tx) = (Tx, x) = (Tx, x).
iii) Clearly l(Tz, v)I � 11TH if hixhl, lIvlI � 1. Conversely, assume
T 0. For any y with Ty 0, we have for x = Ty/hlTyhl that
I(Ty, x)I = hITyhI. Taking the supremum over all y with flyfi = 1

yields 11711.
iv) Let a = sup{l(Tx,x)l

I
hIzhI � 1). We clearly have a < 11Th.
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By (iii), to prove (iv) it. suffices to see I(Tz, v)l � aHzlI 11141 for all
z, y. As this inequality is unchanged if we multiply p by a complex
number of modulus 1, we may assume (Tx, y) E R. We now express
(Tx, y) in terms of expressions of the form (Tw, w). Namely, we
have

(T(x + p), (x + y)) = (Tx, z) + (Tx, y) + (Ty, z) + (Ty, y).

Since T = T and (Tx, y) R, this reduces to

(T(z + y), (z + y)) = (Tx, z) + 2(Tx, y) + (Ty, y).

Similarly,

(T(x — (z — y)) = (Tx, x) — 2(Tz, y) + (Ty, y).

Subtracting the last equation from the one preceding it, we obtain

4(Tz, y) = (T(z + v) x +y) — (T(x — y), x — y)

Therefore,
I(Tx, v)l < + 1412 + flz — yfl2).

By the parallelogram inequality, we have

liz + 1/112 + liz — 1/112 < 2(11x1i2 + 111/112)

and thus
RTx, vH � + flu112)

For any a > 0, we apply this last equation to *&' We thus
have for all z,yE E and 0>0 that

I(Tz,y)I < +
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We clearly need only consider 0, and we now set a =
IIvII/IIxII. We then obtain I(Tx, y)$ a as required.
v) If Tx = Ax and Ty = then we have

(Tx,y) = A(z,y), and (Tx,y) = (x,Ty) =

Since A we have (z,y) = 0.

PROOF OF THEOREM 3.2.3: We first claim that we can find at
least one non-zero eigenvector (assuming, of course, that E (0)).
If T = 0, then any vector is an eigenvector, so we may assume
T 0. By Lemma 3.2.4(iv) we can choose E with = 1

and A where IAI = flTII. Since T is compact, by
passing to a subsequence we may assume —' y for some y E E.
Since A 0, we must have y 0 as well. We now observe that
(using T 1" and 3.2.4(u)),

— Axn112 = IITZnII2 — + A21(xnII2

<211Th2 — Z,t).

As n -+ oo, we thus have — 0. Since y, we
thus have Ax, — y as well. Applying T to this last convergence
we have —. Ty. But we also have from —+ y that

Ày. Hence Ty = Ày, and hence y is an eigenvector.
We now complete the proof. By Zorn's lemma we can choose

an orthonormal set of elgenvectors for T which is maximal among
all orthonormal sets of eigenvectors. Let W be the closure of the
span of these vectors. It suffices to see W = E, i.e., that W1 (0).
We clearly have TW C W, and hence, by 3.2.4(i), we have TW1 C
W1. Then B(W1) is self-adjoint, and if W1 (0),
then by the preceding paragraph, there is an eigenvector for T
in W1. This clearly contradicts the maximality property of the
orthonormal set generating W and proves the first assertion of
3.2.3. The remaining assertions follow from Example 3.1.4.

Theorem 3.2.3 can be easily extended to apply to a commuting
family of self-adjoint compact operators.
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COROLLARY 3.2.5. Let {TOJQEJ be a subset of B(E) such that
each Ta is compact, self-a4joint, and TaTp = TftTa for all E I.
Then there is an orthonormal basis {e1} of E such that e3 an
eigen vector for every Ta.

We give the proof for two commuting operators 5, T. The
general case is similar and is left as an exercise. (Exercise 3.16)

PROOF: Let EA be the elgenspace for T as in Theorem 3.2.3. Then
if v EA, T(Sv) = STy = S(Jiv). In other words, is an S-
invariant subspace. Since S is seif-adjoint and S (and hence
S lEA) is compact, we may choose an orthonormal basis of EA
consisting of elgenvectors for S (and clearly for T as well.) Taking
the union over all gives the required orthonormal basis of E
(using 3.2.4(v)).

From 3.2.5, we can also extend 3.2.3 to compact normal oper-
ators.

DEFINITION 3.2.6. If T E B(E) (B a hubert space), then T is
called normal i(TT = rT.
EXAMPLE 3.2.7: a) If T = T, clearly T is normal. If E is a
complex space then p(T) is normal for any polynomial p. (If E is
real, then p(T) is seif-adjoint for any (real) polynomial.)
b) If U is unitary, then U = U1, so U is normal. We note,
however, that a unitary operator can be compact only if dim(E) <
oo. (See exercise 3.1.).

REMARK 3.2.8: Given any T B(E), we can write T = T2+T +
In other words, we have T = T3 + iT2 where T, are self-

adjoint. One easily verifies: a) This representation of T is unique;
and b) T is normal if and only if T1 and T2 commute (Exercise
3.17). We thus have from 3.2.5 and 3.2.3:

COROLLARY 3.2.9. If T is a compact normal operator then E
has an orthonormal basis of eigen vectors of T. For each). 0,
dimEA <oo, and for all e> 0, (.\ I � £ and dimEA > 0) is
finite.
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CoRoLLARY 3.2.10. If {TG}(,EI is a family of compact normal
operators, and = for all a, /3 I, then B has an or-
thonormal basis {e,) such that ej is an eigenvector(or each E I.

REMARK 3.2.11: Let e1 be the orthonorma) basis given by 3.2.9.
Then Tej = Ajej for C, —. 0. We have Te1 = Thus
for T = T1 + iT2 with T, seif-adjoint, we have T1e1 = R.eQij)e1,
T2e1

As indicated in 3.2.7(b), the spectral theorem for compact op-
erators is inadequate for dealing with unitary operators in infinite
dimensions. We shall prove a more general spectral theorem in
section 4.3 that will apply to unitary operators.
3.3 Peter-Weyl Theorem

Given any representation x of a group C, a standard approach
to understanding x is to

a) express x in terms of irreducible representations; and
b) understand all the irreducible representations.

In this section we prove a basic theorem concering (a) for repre-
sentations of compact groups.

DEFINITION 3.3.1. Let G be a locally compact group with left in-
variant measure .t which is finite on compact subsets (cf. 2.2.1).
We define the (left) regular representation of G to be the represen-
tation of G on L2(G) given by (w(g)f)(x) = f(g'z) (This is a
continuous unitary representation by 1.3.10.)

EXAMPLE 3.3.2: Consider the case C = S', the unit circle in
C. We have seen that an orthonormal basis of L2(S') is given
by n E Z}, where = z". (Example A.29) There are
of course many other orthonormal bases of L2(S') but one of
the reasons (among others) that makes a special choice is
that it solves problem (a) above for the regular representation.
More precisely, for any a E S1, = = a"z', i.e.

= Thus, is a simultaneous eigenvector for all of
the operators ir(o), a S1. In other words

L2(S*)=EC.en



62 Chapter Three

and C Ia a 1-dimensional (and hence irreducible) invariant sub-
space for w.

EXAMPLE 3.3.3: In contrast to the situation for the circle, the reg-
ular representation of R has no 1-dimensional invariant subspace.
To see this, observe that for / in such a subapace, we have for I E R
that i(t)f = cgf for some Since i is unitary, =1
so Icti = 1. For any interval I C R,

J = J k(t)112 = / 1c1f12 = / 1112.

If / 0, we can choose a compact 1 so that 1/12 = a > 0. We
can then clearly choose a sequence 1,, such that {I — are all
mutually disjoint. Then

contradicting / E L2(R). In fact, there are no finite dimensional
invariant subspaces of L2(R) for the regular representation. For if
there were, then the spectral theorem in finite dimensions (e.g. in
the form of Corollary 3.2.10) would imply there is a 1-dimensional
invariant subapace, which we have just seen is impossible.

The Peter-Weyl theorem describes the decomposition of the
regular representation of a compact group. While more complete
versions are available, we shall content ourselves here with the
following form of this result.

THEOREM 3.3.4. (Peter-Weyl) Let G be a compact group, and
the regular representation on L2(G). Then L2(G) = where
dim H1 <oo, and H1 is invariant and irreducible for

The idea of the proof is based on the simple observation that
if S, T E B(E), and ST = TS, then S leaves the eigenspaces of T
invariant (ci. the proof of 3.2.5). Since G is compact, we will be
able to construct many integral operators (compact by 3.1.5) which
commute with all i(g). The eigenspaces of a related compact self-
ajoint operator will be invariant for T, and those corresponding
to non-0 eigenvalues will be finite dimensional. To see how to
get integral operators commuting with T(g), we first prove the
following general lemma.
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LEMMA 3.3.5. Suppose X is a compact metric space and that
a topological gioup G acts continuously on X. Let p M(X)
be G-invariant and K E C(X x X) be G-in variant; i.e., satisfies
K(gz,gy)=K(z,y) for all x,y€X,gEG. LetTK :L2(X)—.
L2(X) be the associated integral operator (Example 1.2.14). Let

be the representation of G on L2(X) given by =
f(g'z). Then TK1r(g) = T(g)TK for all g E G.

PRooF': (TK o ir(g))(f)(z) = f K(z, y)f(g' y)dp(y). Using in-
variance of p, we may replace y by gy. Thus,

(TK o x(g)) (f)(z)
= J K(z, gy)f(y) dp(y)

= J K(g'x,y)f(y)dgi(y) =

REMARK 3.3.6: For actions under the very genera) hypothesis of
3.3.5, there may well not be any G-invariant K C(X x X).
However, if X = G (so that G is a compact group), there are
many. Namely, for any E C(G), let K(x, y) = %o(x'y). Then
we clearly have K(gz, gy) = K(x,y) for all x, y E C.

PROOF OF THEOREM 3.3.4: By Zorn's lemma, we may choose a
maximal collection {V5) of mutually orthogonal, finite dimensional,
ir(G)-invariant subapaces Vj C L2(G) with irreducible for w.
Let W = EVJ. We claim W = L2(G). If not, then we can
choose f W1, / 0. Since C(G) is dense in L'(G), we can
find E C(G) such that J) 0. Define K E C(G x G) by
K(z, y) = Then the integral operator T = Tx is compact
by 3.1.5 and commutes with all i'(g) by 3.3.5, 3.3.6. The operator
TT is clearly seif-adjoint and compact (by 3.1.14). Furthermore,
it too commutes with all ir(g). To see this, it suffices to see that T
commutes with all x(g). But s(g) is unitary, so x(g) =
Hence

Tx(g) = TT(g') = = (Tw(g')) = w(g)T.
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We can thus write, by the spectral theorem (3.2.3),

0
L2(G) = ker(rT) ®

where BA is the corresponding elgenspace for T*T, and for A 0,
dim BA <oo. By 3.3.5, each BA is invariant for

Now let I': L2(G) —.
W is clearly G-invariant by construction, and x is unitary, will
be G-invariant as well. (Namely, if y W1, g E G, then for all
x E W we have

(ir(g)y, x) = (y, s(g) z) = (y, w(g' )z) = 0

since W is G-invariant.) It follows easily that P also commutes
with all Therefore, PEA C W1 will also be G-invariant.
(Namely, R(g)(PEA) = = PEA.) Since we clearly have
dim P(EA) <cc, this will contradict the maximality of {V1) if we
can show that at least one PEA (0) (for A 0.)

However, if PEA = (0) for all A 0, then EE,, C W, and
therefore W1 C (EeEA)i, i.e., C kerT'T. But if TTz = 0,
then 0 = (T"Tx, z) = (Tx,Tz), so Tx = 0. Thus, we would have
W1 C kerT. However,

(Tf)(e)
= J K(c, y)f(y) dy

= J çp(y)f(y) dy = (so, j) 0.

By Remark 1.2.16, Tf is continuous, and hence Tf 0 in L2(G).
However, / E Wi-, and this contradicts W1 C ker(T). This com-
pletes the proof.

For specific groups, one can obtain Theorem 3.3.4 in a more
explicit way, as for the circle in Example 3.3.2. We shall now
indicate an alternative proof of 3.3.4 for a very natural class of
groups which gives some further insight into the spaces
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EXAMPLE 3.3.7: Let G C GL(n,R) be a compact subgroup. We
can view GL(n, R), and hence G, as a subspace of the n x n matri-
ces For each r, let Pr be the space of polynomial func-
tions on of degree at most r, (i.e., polynomial functions
with the variables being the matrix entries). Each g E G acts
on flX simply by matrix multiplication. Furthermore, for a fixed
g, this map RnXn is linear, and hence if I so is
z .—. f(g'x). In particular, if we let V,. C C(G) be given by
Vr = {(f IG)If Pr), then ir(g)Vr = Vr where is the regular
representation. We also have Vr C , dim V,. < 00, and U Vj

is (uniformly) dense in C(G). This last assertion follows from the
Stone-Weierstrass theorem (A.8). Thus, it is dense in L2(G). We
now let Hr = (2? Vr I 2? .1 Vr_i). Then dim Hr < 00, (H,.) are
mutually orthogonal, E°L = L2(G), and Hr is invariant under

A similar argument works for G C GL(n, C), (where one
also needs to consider the conjugates P,..)

REMARK 3.3.8: In examples 3.3.2, 3.3.7, we see that the finite
dimensional invariant subspaces of L2(G) that we constructed ac-
tually consisted of continuous functions. In fact, one can show that
this is true in general. (See exercise 3.18).

Theorem 3.3.4 can be used to prove a similar result about an
arbitrary unitary representation of G.

THEOREM 3.3.9. Let a be any continuous (strong operator topol-
ogy) representation of a compact group G on a Hubert space E.
Then we can write E = Vj where V1 is invariant and irreducible
for a-, and dim V1 <oo.

PRooF: Using Zorn's lemma exactly as in the beginning of the
proof of 3.3.4, we see that it suffices to show that for any such
a we can find at least one non-trivial finite dimensional invariant
subepace. Fix any x E, lizil = 1. Define the map T: E — C(G)
by (T(y))(g) = (y,o(g)z) for any yE E. Then IT(y)(g)t � Ilyll, so

T is a bounded linear map. Clearly, T 0, since (T(z))(e) 0.
We then may view T as defining a bounded linear map T: E
L2(G), T 0. We claim that Ta-(h) = i(h)T for all h E G, where
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i is the regular representation. Namely,

(T(or(h)y)) (g) = (o(h)y, o(g)z)

= (y, u(h)or(g)z)
= (y,c(htg)z)

= (ir(h) (T(y)) ) (g).

The adjoint operator T : L2(G) —. E (using the identification
of a Hubert space with its dual as in example 1.2.22) will satisfy

= Tir(h)' for all h, and since a, are unitary, we will
have o(h)T = TT(h) for all h. Since T 0, we have 7' 0 (ci.
1.2.21). Thus, by Theorem 3.3.4, there is some finite dimensional

subspace V c L2(G) such that T V 0. To com-
plete the proof, we observe that o(h)T V = Tir(h)V = T V, so
that TV is o(G)-invariant, and it is clearly finite dimensional.
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PROBLEMS FOR CHAPTER 3

3.1 If E is a Hubert space and T E B(E) is compact, show T(E)
does not contain a closed infinite dimensional subapace.

3.2 Suppose X is a finite measure space and K1 ,-K2 E L2(X x X).
Suppose TK is the corresponding integral operator on L2(X),
i = 1,2. Show TK1 o TK3 is also an integral operator.

3.3 Let T B(L2(X)) and suppose T is hubert-Schmidt. Show
there is a unique K L2(X x X) such that T = TK.

3.4 Suppose E is Hubert and T B(E) is compact. Show there is
a sequence of finite rank operators (i.e., dim < oo)
such that lIT — Tnll ' 0.

3.5 Suppose (X, d) is a compact metric space and S C C(X) is
a subset. Then S is called equiconUnuous if it is "uniformly
uniformly continuous". I.e., for all e > 0 there is S > 0 such
that d(x,y) < 5 implies 11(z) — < c for all 1 S.
Suppose S is equicontinuous and there is a constant B such
that lf(x)I � B for all z E X and / E S. Show S has compact
closure in C(X). (This is the Arzela-Ascoli theorem.)

3.6 Let (2 C be open and X C (2be compact. Show that the
restriction mappings / (I jX) defines a compact operator
BC1((1) —' C(X). hint: Problem 3.5.

3.7 If T is a compact linear map between Banach spaces, show T
is also compact. Hint: problem 3.5.

3.8 a) Suppose G is a compact abelian group. Show L2(G) =
where each V, is a one-dimensional G-invariant sub-

space (under the regular representation). Show = Ch1
where : G S' C C is a homomorphism. b) What is
this decomposition for G = S' x ... x S')?

3.9 Let w be the regular representation of R" on Suppose
V L2(R") is r(R")-invariant. a) If u L'(R") and f V,
show usfE V. b) Show is dense in V.

3.10 a) Let K : [0, 11 x (0, 1] R be the characteristic function of
{(z,y) I zi � —z + 1). Find all eigenvalues of TK acting on
L2([O, 1J).
b) Let E be a Hilbert space with orthonormal basis Let
T B(E) be strictly upper triangular with respect to this
basis, i.e., (Tej, e.) = 0 if i j. Find all eigenvalues of T.

3.11 If X is a compact metric space with a finite measure, and K €
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C(X x X), show the integral operator TK defines a compact
operator on LP(X) for 1 � p < 00.

3.12 Let G be the group of 2 x 2 matrices of the form

{ (:
Show that G is not unimodular.

3.13 Let X be a separable metric space and p a finite measure on
X. Let 'p E L°°(X). Show that the multiplication operator
M,0 is compact if and only if

i) is atomic (i.e. is of the form where
is supported on and c1 > 0;) and,

ii) for any c > 0, (zj I � c) is finite, where is as
in (1).

3.14 If E is a hubert space with orthonormal basis {e1} then T E
B(E) is compact if and only if (Tej , ei) -4 0 as i, j oo.

3.15 If B L2(X) and 'p E show that A is an eigenvalue
of if and only if there is a set A C X with p(A) > 0 and
'p(x) A for all x E A.

3.16 Prove the assertion of Corollary 3.2.5 in general.
3.17 Prove the assertion in Remark 3.2.8.
3.18 Suppose G is a compact group and V C L2(G) is finite dimen-

sional and R(G)-invariant, where x is the regular representa-
tion. Show V C C(G). Hint: let 'p E C(G) and consider the
integral operator constructed in 3.3.6. Show TK(V) C V, and
try to use 1.2.16.
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GENERAL SPECTRAL THEORY

4.1. Spectrum of an operator

We saw in example 3.2.2 that a general bounded seif-adjoint
operator may have no eigenvectors at all. Thus, if we wish to ob-
tain a theorem along the tines of the spectra) theorem for compact
operators in a more general setting, we need to weaken the notion
of eigenvalue. In this chapter, we shall always assume k = C.

DEFINITION 4.1.1. Let E be a Banach space and T B(E).
Then we say that A E C is in the spectrum of T if (T — Al)
Aut(E), i.e., is not an invertible operator. We set o(T) = {A E
C A is in the spectrum of T).

EXAMPLE 4.1.2: a) if A is an elgenvalue, then clearly A E o(T).
If dimE < co, then A E c(T) if and only if it is an elgenvalue.
b) Let E be a Hubert space with orthonormal basis {ej}. Define
T E B(E) by = where Oaai —. oo. Suppose
however that for all 1, Aj 0. Then 0 is not an elgenvalue (i.e.,
kerT = 0), but 0 E o(T). To see this, observe that if T is invertible
we must have = Since A, 0, this cannot be a
bounded operator.

EXAMPLE 4.1.3: a) Let B = L2(X), and suppose L°°(X).
Let T be the multiplication operator on B (example 1.2.1).
Then for any A E C, T—AI = lf(T—AI)' exists, it must
be M1/(,...A). Thus, (T— AI)1 exists if and only if 1/(ço(z)— A) E
L°°(X). This is equivalent to A ess (example A.5).
Thus, = ess

b) We remark that 4.1.2(b) can be considered as a special case
of 4.1.3(a). Namely, if we take X to be the natural numbers with
counting measure, then T in 4.1.2(b) is precisely where =
A,. (Cf. Remark 1.2.17.) The condition that 0 is equivalent

69
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to the condition that = {Aj} U {O}.
c) An argument similar to that of example 3.2.2 shows that Mçp
(in the generality of (a)) will have an eigenvector with eigenvalue

if and only if there is a set A C X with i.i(A) > 0 and =.\
for all x E A. (See exercise 3.15)

If E is a Hubert space and T = T, we have seen that every
eigenvaiue is real (3.2.4(il)). If T is unitary, then clearly every
eigenvalue has modulus 1. We now wish to show that these facts
are true more generally, namely for the spectrum.

DEFINITION 4.1.4. If E is a Banach space and T B(E), we
say that T is bounded below if there is some k > 0 such that
IlTzIl � for all x E.

LEMMA 4.1.5. If T B(E), then T is invertible if and only if T
is bounded below and T(E) is dense.

PROOF: If T is invertible, then we can take k = Con-
versely, if T is bijective and bounded below, then T' will be
bounded and � Thus, we need only verify that T is
surjective. Given y E B, choose z,, E such that —+ v. Since

is Cauchy and — TXmII � — ZmII, we also have
that is Cauchy. Since E is complete, we have z,, x for
some z. Therefore Tz, and so Ta = y.

LEMMA 4.1.6. Suppose E is a Hubert space and T E B(E). If
T, T are bounded below, then T is invertible.

PROOF: By 4.1.5, it suffices to see that T(E) is dense. How-
ever, from the defining equation for the adjoint, we have =
kerr, and since is bounded below = (0).

PRoPosITION 4.1.7. Let E be a Hilbert space, T E B(E).
a) If T = T, then 0(T) C R.
b) If T is unitary, then o(T) C {z E C = 1).

PROOF: a) By 4.1.6, we need to show that if I Im 0, then
T — Al and (T — Al) = T — are bounded below. (It clearly
suffices to do this for A.) Let hail = 1. Then

IKT — AI)(z)Il ? l((T — AI)z, = l(Tx, a) — A(z, z)l.
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Since (Tx, x) E R by 3.2.4(11) and lizil = 1, we have IKT — Al)xII �
Im AJ. This clearly suffices.

b) As in (a), we need to show that if IAI 1, then T — Al and
T' —Xi are bounded below. (Since T' is unitary, it again suffices
to check this for T— Al.) We have

IRT — AI)(x)I1 � I(IITxlI — IIAzIDI = — IAI)UxIfJI

since IITxII = flzfl. That is, for all x,

I1(T— � 1(1 — IADIIIxH.

The following result yields the relation between the spectrum
of T and that of polynomials in T.

PROPOSITION 4.1.8. Let E be a Banach space, T E B(E) and
p E C[X). Then o'(p(T)) = p(o'(T)).

PROOF: It suffices to prove this if p is a monic polynomial. First
suppose A E o(p(T)). Then p(T) — Al is not invertible. Let {A1}
be the roots of the polynomial p(x) — A. Then we have

p(T) — Al = 1TI(T — Al).

It follows that for some i, T — is not invertible, i.e.,
A E p(o(T)).

Conversely, let A E p(o(T)). I.e., for some a o'(T), we have
p(a) — A = 0. Thus a = for some io, where the {A1) are
as above. Since E o-(T), T — Aj01 is either non-injective or
non-eurjective (by A.14). If it is not injective, then rewriting

p(T) — Al = (T — A11). . . (T —

Al is not injective. If it is not surjective, then
we write

p(T) .—AI= (T— A11)..(T—
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and deduce that p(T) — Al is not aurjective either. Hence A

We now turn to the main general results the spectrum of
an operator on a Banach space. We shall need some elementary
results about analytic functions with values in a Banach space.
We recall first that a series E71 xg in a Banach space is called
absolutely convergent if lIxiII < oo. Since

m m

the partial sums of an absolutely convergent series are Cauchy.
Thus, absolute convergence implies convergence.

DEFINITION 4.1.9. Let 5) C C be an open set and F be a Banach
space. A function f 5) —. F is called analytic it for all ZO E U,
there is some r> 0 with {z I — zol <r} C 5) and some E F
such that for all Iz — zoI <r we have

1(z) = —

the sum converging absolutely.

The following facts are generalizations to Banach space valued
functions of standard facts from the theory of functions of one
complex variable. The usual proofs carry over to the case of a
Banach space with no difficulty.

LEMMA 4.1.10. a) Given a sequence E F, let

R = 'n-.oo

Then the series E°0 —

i) converges absolutely for jz — < R, and
ii) diverges if Ir — z0 > R.
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b) 1ff: (2 F is analytic and zo (2, then the local expression

1(z) = —

is valid for I z — I
< R, where

R=max{tItz—zoI<t)Cfl.

c) (Liouville's theorem) If / : C —+ F is analytic and bounded,
then f is constant.

DEFINITION 4.1.11. a) If T E B(E), we let C — o(T) = R(T).
The space R(T) is called the resol vent set of T.
b) Let 11Th0 = A E o(T)). 11Th0 is called the spectral
radius of T.

Some basic properties of o(T) axe contained in:

THEOREM 4.1.12. a) o(T) is a non-empty compact set with
11Th0 � flTfl.
b) R(T) is open and the function f : R(T) B(E) given by
1(A) = (Al — T)' is analytic.

To prove 4.1.12, we need the following lemma.

LEMMA 4.1.13. a) If T E B(E) and UTU < 1, then (I — T) E
Aut(E) and(I—T)'
b) If > flTfl, then (Al — T) Aut(E) and (Al — T)' =

PROOF: a) Since HTU < 1, the series is absolutely conver-
gent, and hence convergent, say to S. Let SN = 7". Then
(I — T)SN = SN(l — T) = I — Letting N — oo, we obtain
S=(l—T)'.
b) Al — T = A(l — Since (IT/All < 1, (Al — T)' exists and
is equal to A'
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PROOF OF THEOREM 4.1.12: We first observe that 4.1.13 asserts
that � 11Th. We next prove (b). This will prove that o(T)
is closed and bounded. We shall deal with the assertion o(T)
after proving (b).

Let E R(T). Then for 31 E C we write A1—T = (31—31o)I+
— 1'). Since 31o E R(T), we can write this as

(31!— T) = (31o1 — T)(I — (Ao — — T)').
By 4.1.13(a), we have (311 — T) is invertible if fl(Ao — —

T)111 < 1, i.e., < This shows that. R(T)
is open. Furthermore, for such 31, we have (again by 4.1.13(a))that

(Al — (Aol — — A)"(Aol —

i.e., (A1—T)—' = where =
This proves that 1(a) is analytic.

Finally, we prove that o(T) #0. If o(T) = 0, then 1(i) =
(Al — T)' is analytic on all C. We claim it is also bounded. By
continuity, it is bounded on the compact set hAl < 211T11}. On
the other hand, if P1> 211Th, we have by Lemma 4.1.13(b) that.

�
Since 11Th � we deduce that � 1/11Th, showing
that / is bounded. By 4.1.10(c), / is constant. This would imply
311— T is constant, which is clearly impossible. This completes the
proof.

We now turn to obtaining more precise information on

THEoREM 4.1.14. (Spectral radius formula) ForT E B(E), IITIIQ
= T"fl'I" (and in particular, this limit exists).

PRooF: By compactness of o(T), (R(T) — (0))- lu (0) is an open
set, and we define h on this set by

( for

h(z) =
for z=0
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By 4.1.12(b), h is analytic on 0 < Izi < 11Th;', and by 4.1.13(b),
we have for Izi < 1lT11' that h(z) = In particular,
h is analytic at 0 as well. By 4.1.10(b), we have that the expansion
h(z) = holds for Izt < flTfl;', and hence that the radius
of convergence, say R, for this series satisfies R � 11Th;1. On the
other hand, we cannot have H> 11Th;', for then Al —T would be
invertible for all Al> R'. If R' <11Th,, this would contradict
the definition of 11Th,,. Therefore, we have R = 11Th;', and by
4.1.10(a) we have 11Th,, =

It therefore remains only to prove that the limit exists. To
see this, we remark that if 0, and lim <00, to see urn
exists it suffices to see that for each m, rm � Thus, we fix
m> 0 and for n> m write n = qm+r where q,r are non-negative
integers, r < m. Then

= II(Tm),Tihh/, <

< (hlTmhhh/m)I_r/iITlr/t).

As n 00, r/n 0. Thus, � and this
completes the proof.

We have the following important consequence.

COROLLARY 4.1.15. If E is a Hubert space and T E B(E) is
normal, then 11Th,, = IITII.

PRooF: By 4.1.14, it suffices to see that 11Th = for any
infinite set of positive integers. In particular, it suffices to see this
for powers of 2, and by induction to see that 11T211 111112. We

have
11Th2 = sup l(Tz,Tx)l = sup l(rTz,x)l.

flzIl�1

By 3.2.4(iv), (since is self-adjoint), we thus have

11Th2 = IIT'TlI.
However, we also have

HrTn = sup
llxll=1

= sup I(T2z, T2x)11/2 (since TT =
111=1

= hIT2II.
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EXAMPLE 4.1.16: We consider some examples for 2 x 2 matrices.
o\a)T= JisnormalforA4EC. Wehaveo(T)={A1,A2),

= max(IA1(, 1A21). Clearly (ITO = HTOC. We have

07=1
\O

and = lITlt.

/1 A\
b) Let T=

),
A 0. Then Tis not normal. We have

o(T) = {1}, 11Th0 = 1, but 11711 = (1 + (A(2)1/2. Then T'1 =
/1 nA\

0 1 ),
= (1 + InAI2)"2, and we see —' 1, as

required by 4.1.14.

An examination of the proofs of 4.1.12—4.1.14 shows that only
certain properties of B(E) were used. Namely, we make the fol-
lowing definition.

DEFINITIoN 4.1.17. A Banach algebra B is a Banach space which
is also an algebra such that IlzyII flzfl fly(( for all z, y B. It B
has an identity e, we also require that = 1.

As basic examples, we have B(E) where E is a Banach space,
and C(X) where X is compact and multiplication is simply point-
wise multiplication. We shall consider a few more examples in sec-
tion 4.2, but here we just record the fact that 4.1.12—4.1.14 hold
for Banach algebras with identity, with precisely the same proofs.
To state these results we need:

DEFINITION 4.1.18. Let B be a Ban ach algebra with identity. For
z B, let o(z) = (A E C — Ac does not have an inverse in B).
Let R(z) = C — u(z). We define I)x90 = A E o(z)}.
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THEOREM 4.1.19. Let B be a Banach algebra with identity, and
let x E B. Then:
a) is a non-empty compact set, and 114Q � lixil.
b) R(x) is open and the function f : R(x) —' B given by f(z) =
(Ae — x)' is analytic.
c) = (and in particular, this limit exists.)
d) If lixil < 1, then e — z is invertible.

As indicated above, the proof of 4.1.19 is identical to that of
4.1.12—4.1.14.

4.2. The spectral theorem for seif-adjoint operators
The spectral theorem for compact self-adjoint operators gives

us an essentially complete description of such operators. We now
generalize that result to the non-compact case. For convenience,
we shall assume all our Hilbert spaces are separable.

DEFINITION 4.2.1. Let E1,E2 be Hubert spaces, T1 E B(E1).
Then T1 and T2 are called unitarily equivalent if there is a uni-
tary map U : —+ E2 such that UT1U—' = T2.

EXAMPLE 4.2.2: Let E1 = £2(Z+). Let A, C with —# 0,

and let T1 B(E) be given by T1x1 = A1x,, where {x1} is the
orthonormal basis = X{i}, the characteristic function of {i). If

7'2 E B(E2) is any compact seif-adjoint operator, then the spectral
theorem for compact operators (3.2.3) asserts that T2 is unitarily
equivalent to an operator of the form T1, for a suitable choice
of {Aj, namely {A,) is the set of eigenvalues of 2'2. Thus, the
spectral theorem for compact operators can be expressed as saying
that every compact self-adjoint operator is unitarily equivalent to a
"model example" of such an operator. We recall (cf. 1.2.17) that T1
can also be viewed as a multiplication operator My,, £00(Z+),
on £2(Z+), where = A,. Thu8, Theorem 3.2.3 can be viewed as
the assertion that every compact self-adjoint operator is unitarily
equivalent to a multiplication operator on a discrete measure space.
Here is one form of the generalization we shall prove. We shall see
a more precise statement later.

THEOREM 4.2.3. (Spectral theorem for self-adjoint operators) Let
T B(E) be seif-adjoint. Then T is unitarily equivalent to a
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multiplication operator. More precisely, there is a measure space
(X, p) and E such that T and are unitarily equivalent
(where M, acts on L2(X)).

This result has the effect of reducing questions about T to
questions about where the situation is often transparent.

In proving 4.2.3, it will be important to consider not just T
but p(T) for any polynomial p. The set {p(T)) C B(E) is of course
a subalgebra. It will be useful to have some properties of this and
related algebras, and hence we make the following definition.

DEFINITION 4.2.4. A C'-algebra is a Banach algebra A with an
additional operation A —' .4, z z, such that

i) = z
ii) conjugate linear, i.e., (cx) = &, (x+y) = z+y.
iii) (xy) =
iv) flzzfl = 11z112.

v) If A has an identity I, then P = I.

EXAMPLE 4.2.5: a) If X is a compact space, then C(X) is a
algebra with identity, under pointwise multiplication, with f = f.
This C-algebre is clearly commutative.
b) If (X, p) is a measure space, then L°°(X) is a commutative
C-a)gebra with identity, again with pointwise multiplication and
1• = f.
EXAMPLE 4.2.6: Let B be a Banach apace. Then B(E) is a Ba-
nach algebra with identity under composition. If E is a Hubert
space, then B(E) is a C-algebra where T is the adjoint. (To see
(iv), observe that ))TTfl = sup111<1 )(TTz, x)I by 3.2.4(iv), since

is seif-adjoint. Thus, HTTII = = 11TH2.)
Clearly B(E) is a non-commutative C-algebra.

EXAMPLE 4.2.7: a) If A is a C-algebra any closed subalgebra.
B C .4 which contains I and is closed under * is a C-algebra. If
B is not closed but is a subalgebra such that I E B and B = B,
then U C .4 will be a C-algebra.
b) For example, let T E B(E). Then {p(T) p is a polynomial) is
clearly a subalgebra of B(E), but it will not in general be closed
under *. However, if T = T, then {p(T)) will be a commutative
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C-subalgebra of B(E). If T is normal, then {p(T, T) p is a
polynomial in 2 variables} will be a commutative subalgebra closed
under and hence its closure will be a commutative
of B(E).

DEFINITIoN 4.2.8. If A1,A2 are C-algebras, a map M : A1
A2 is called an isomorphism if M is an isometric isomorphism of
Banach spaces, M is a homomorphism of algebras with identity,
and M(x*) = M(x). (That is, as one expects, M preserves all
the structures present.)

EXAMPLE 4.2.9: Let (X, p) be a measure space. Then M : L00(X)
B(L2(X)), M(ço) = (the multiplication operator) is an

isomorphism of the C-algebra L°°(X) with its image, i.e., with a
commutative of operators on L2(X). It is isometric by
1.2.1 (cf. 1.2.3), is clearly an algebra homomorphism, and =

In example 4.2.9, functions are converted into operators. The
problem we confront in proving Theorem 4.2.3 is the converse
namely to convert operators into functions. The following result,
which is really just a reorganization of some of the results of section
4.1, does this, but not in the form asserted in 4.2.3. It is, however,
a basic step on the way to 4.2.3. For a polynomial p E C[X],
and subset A C C, we regard p as an element of C(A). (Of
course, p IA may be identically 0.) We let P(A) C C(A) be given
by P(A) = {(pIA) IPE C[XJ}.

THEOREM 4.2.10. Let T E B(E) be seif-adjoint, and AT C B(E)
be the closure of {p(T) I p E C[X]}. (Thus, AT is a commutative
C-subalgebra of B(E); cf. 4.2.7.) Then there is a unique isomor-
phism of C-algebras 4 : C(o(T)) AT such that =
p(T) for all p CEX).

PROOF: The map : C[X] AT given by p p(T) is clearly
an algebra homomorphism. Furthermore, p(T) = p(T)*, where
is obtained by taking complex conjugation of all coefficients. We
also have the algebra homomorphism CEXI Pfr(T)), given by
p I—P o(T) = 0, then by Proposition 4.1.8, o(p(T)) =
{O}, i.e., lp(T)IIg = 0. Since p(T) is normal, Corollary 4.1.15
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implies p(T) = 0. It follows that the map factors to a map
$ : P(o(T)) — such that o(T)) = p(T). To ease no-
tation we shall now simply write pJ o(T) as p. As an element
of C(o(T)), we have = I E o(T)), which by
4.1.8 gives = IIp(T)IIo. Once again by 4.1.15 then we have

= IIp(T)II. That is, 4 is an isometry into the Banach space
AT. By Stone-Weierstraas (A.8], P(o(T)) C C(o(T)) is dense,
and hence 4 extends uniquely to an isometry 4 : Cfr(T)) Ar.
Since $(P(o(T))) is dense in by definition, 4 : C(o(T)) —.
is an isometric isomorphism. That 4 is an algebra homomorphism
and that it commutes with * follow easily from the fact that these
are true on P(o(T)).

Via the isomorphism of Theorem 4.2.10 we have associated
to each operator in (in particular to T) a continuous function
on o(T). However, in this association we have not kept track of
the Hilbert space E. Injecting this further information into the
framework of Theorem 4.2.10 will enable us to prove 4.2.3. We
first need a definition.

DEFINITION 4.2.11. a) If T E B(E), a vector x E E is called T-
cyclic if the smallest closed T-invariant subspace of E containing
x is E itself. Equivalently, fp(T)x p a polynomial} is dense in E.
b) More generally, if B C B(E) is a subalgebra we say that z is
B-cyclic if Bz is dense in E.

The study of operators or algebras of operators is facilitated
by:

PROPOSITION 4.2.12. Let A C B(E) be a subalgebra which is
closed under Then E = where are mutually orthog-
onal A-invariant subspaces, each possessing a cyclic vector.

PROOF: By Zorn's lemma, we let V C E be a closed A-invariant
subspace maximal with respect to the existence of such a decom-
postion V = of V. By Lemma 3.2.4(i), is also A-
invariant. If V1 (0), choose any z E V1, z 0. Then the
decomposition V = contradicts maximality of V.
Thus,V=E.

The following result, combined with Theorem 4.2.10 proves
the spectral theorem (4.2.3) for operators with a cyclic vector.
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THEOREM 4.2.13. Let A C B(E) be a commutativeC-subalgebra
with I E A, and suppose there is an A-cyclic vector in E. Suppose
furt her that there is an isomorphism of C'-alge bras F : A
where X is a compact metrizable space. Then there is a measure p
on X such that all elements of A are simultaneously unitary equiv-
alent to multiplication operators on L2(X). More precisely, there
is a unitary map U : L3(X) —. E such that U'TU = MF(T) for
aJITEA.

PROOF: Let v E E be an A-cyclic vector. We can assume (lvii = 1.
Forf E C(X), denote F'(f) byT;. Definep(f) = (Tjv,v). Then
p : C(X) —, C is linear, and IIT,ii = 11111 (since F is an
isometry). That is, p E C(X), < 1, and in fact ((pfl = I since
if 1 is the constant function with value 1, then p(l) = (Tiv,v) =
(Iv,v) = I. Suppose I C(X) is non-negative. Then I =
for some g E C(X), and hence p(f) = (Tg,v,v) = (Tgv,T,v) � 0
since F is an isomorphism of C-algebraa. Thus, by the
representation theorem (A.19), p defines a probability measure on
X, which we continue to denote by p. That is, we have p E M(X)
such that for all f E C(X), f fdp = (Tjv, v).

Now define U C(X) —e E by Uf = T;v. We claim this is
an isometry for C(X) considered as a subspace of L2(X), i.e., for
C(X) with the L2-norm. Namely,

11U1112 = = (Tjv,T;v) = (17Tjv,v)
= (Tj;v,v)

=JJfdp

Furthermore, U(C(X)) = Ày is dense in B. Thus, U extends to a
unitary isomorphism L2(X) .—. B.

Finally, we see that for 1,9 E C(X) that

(U-1T,U)g = U'TjT,v = U1T1,v =fg = M1g.

Since C(X) C L2(X) is dense, we have U1T1U = M1 for all
/ C(X), and letting I = F(T) we obtain the theorem.
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COROLLARY 4.2.14. (Spectral theorem for seif-adjoint operators)
a) (Theorem 4.2.3) Every self-adjoint operator is unitary

equivalent to a multiplication operator.
b) If T has a cyclic vector, then up to unitary equivalence we

may take E = L2fr(T)) for some probability measure on
o(T), and T to be multiplication by the function %o(z) =
x.

PROOF: b) follows immediately from Theorems 4.2.10 and 4.2.13.
To see a), by 4.2.12 we can write E = where Tj = TIE1
has a cyclic vector. Applying (b), we can find E and
a unitary operator : E1 L'(o(T,),izj) such that =

where E L°°(o(T1)) is given by = z. Define

E_-IEL2(o(T,),p,)

Let (X, p) be the disjoint union of the measure spaces (o(T1), p1).
Define : X R by X = Since cr(Tj) C o-(T), we have

<11Th0 for all i, and hence E L°°(X). We have a natural
unitary isomorphism V : —. L2(X,p) such that

Mu,.

Then V o U : E —' L2(X) gives a unitary equivalence of T with

REMARK 4.2.15: a) One can easily strengthen the assertion of
4.2.14(a) to assert that the measure in question be finite. See ex-
ercise 4.4.
b). Assertion (b) is of course much more explicit than (a). One
can generalize the formulation in (b) to obtain the same type of
statement for a general seif-adjoint operator without assuming the
existence of a cydic vector. We now sketch this development, leav-
ing the details as an exercise. First suppose (X, p) is a measure
space and H is a Hubert space. Then

L2(X; H) = {f: X —. J Ill dp(x) < oo}
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is a filbert space with inner product

(1,9) = du(z).

More generally, for each i E {oo} U 14, let H be a (separable)
Hubert space of dimension i. Let be a partition of
X, i.e., a disjoint decomposition of X into measurable sets (some
of which may be null). Let 'P be this partition (together with its
indexing). If we have an assignment z J(x) where 1(z)
for z X1, we say that I is measurable if f ,Xj is measurable for
all i. We let

L2(X;P)={flf(z)€ forzEX1,

and such that

J Ill dp(z) <
x

Then L2(X; 1') is a filbert space. If the partition is trivial, i.e.,
X = X,, for some fixed n, then L2(X;V) = In partic-
ular, if X = X1, then L2(X;P) = L2(X).

In general, we have a natural unitary isomorphism

L2(X;P)

E L°°(X), we then have a generalized multiplication
operator on L3(X;7') given by = One
easily verifies that = as in the usual case.

We can then formulate the spectral theorem in general as:

COROLLARY 4.2.16. (Spectral theorem) Let E be a Hubert space,
and T E B(E) be selt-adjoint. Then there is a measure i'
M(o(T)) and an indexed partition P of (or(T), p) such that T
is unitarily equivalent to the multiplication operator on

where p(z) = z.

PROOF: We first indicate the proof for the case where E =
where each B1 is T-invariant and has a cyclic vector. As in the
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proof of 4.2.14(a), we have T is unitary equivalent to
on

®

where = z. We can write o(T) as a disjoint union, o(T) =
A1 WA, WA1, where pj(A3_j) = 0 and Then
Mu,, is unitary equivaLent to

on

T is unitarily equivalent to

MqpilA,

on

L'(or(T),piIAi)

L2(o(T),p1IA13) @

Since ,iiIAi, and = we have
M, on L'((o(T), pjIAia);C'). (Cf. exercise

4.4.) Thus, letting Xj = A1 WA,, X, = A12, we have that T is uni-
tarily equivalent to on L'((o(T),p);P) where P = {X1,X,)
and p P1 +P2. The argument in general (i.e., for an arbitrary de-
composition into T-cyclic subspaces) is similar, but with the usual
notational (and some measure theoretic) complications. We leave
this as an exercise.

As in the case of compact operators, one would like a spectral
theorem for a commuting family of seif-adjoint operators, which
would in particular yield a spectral theorem for normal (and hence
unitary) operators. Theorem 4.2.13 gives us the required conclu-
sion. The hypotheses of 4.2.13 are satisfied by the C-algebra
generated by a single seif-adjoint operator by Theorem 4.2.10. In
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the next section, we see how to obtain the hypotheses of 4.2.13
more generally.

4.3. Gelfand's theory of commutative C-algebras

The aim of this section is to show that for any commutative
C-algebra of operators A C B(E) that there is a compact space
X such that A is isomorphic to C(X). (Furthermore, if A is sep-
arable, so is X.) As a corollary of 4.2.13, we then deduce that
the elements of A are simultaneously unitarily equivalent to mul-
tiplication operators, exactly as in the case of a single seif-adjoint
transformation.

Given any Banach space B, we can always realize B as a space
of functions, namely as functions on B. Thus, for each x E B, we

have er : B —* C given by = A(z). By restricting this to B
we obtain a map B C(Bfl, where Bt is a compact space with
the weak s-topology. The problem with this for our purposes is
that even if B is an algebra, the map B —. C(Bfl is not in general
an algebra homomorphism. To remedy this, we make the following
definition.

DEFINITION 4.3.1. Let B be a Banach algebra with identity. We
let = {A E B A : B —+ C is an algebra homomorphism, with

It is straightforward that is closed in B with the weak s-
topology. Thus = B fl B is a compact subset of B with the
weak s-topology. Since for A E we have

= A(zy) = A(x)A(gi) =

the map z i.-. defines an algebra homomorphi8m.

DEFINITION 4.3.2. If B is a Banach algebra with identity, the
algebra : B —. C(B1) given by (41(z))(A) = A(x)
is called the Gelfand transform of B.

While we have dealt with one problem by introducing we
have created another, namely the question of the existence of el-
ements in At this point, we have not even established that

0. However, the main result of this section is:
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THEOREM 4.3.3. If E is a Hubert space and A C B(E) is a coin-
mutative (7-algebra of operators with I E .4 then = A and
the Gelfand transform is an isomorphism of (7-algebras.

Before turning to the proof of 4.3.3, we give some examples.

ExAMPLE 4.3.4: Let X be a compact (Hausdorif) space. For each
z X, let E C(X) be A,(f) = 1(z). (That is, corresponds
to the point measure at. z.) Clearly, E C(X). We claim in
fact that X —+ C(X), z s-+ As,, is a homeomorphism. It is clearly
injective, continuous, and since X is compact, it suffices to see it is
surjective. Let A C(X). We claim first that there is some z E X
such that 1(x) = 0 whenever A(f) = 0. This suffices, for then we
have for each f that )t(f — A(f). 1) = 0; therefore f(z) — )1(f) = 0,
and hence A = If no such z exists then for each z choose

E C(X) such that A(f,) = 0 but f
by either Re(f,) or Im(f4, we can assume f, is real valued, and
by taking (and using the fact that A is multiplicative), we can
assume � 0 for all y E X and 0. By compactness of

we can choose a finite set xi... such that g =
is strictly positive on X. Since A(g. =

A(g) 0, contradicting the assumption that = 0.

EXAMPLE 4.3.5: Let T E B(E) be seif-adjoint. Then by 4.2.10,
C(o(T)). Thus, by 4.3.4, we have a homeomorphism Ar

o(T). Combining the explicit isomorphisms of 4.2.10 and 4.3.4 we
can state this as follows. For each a E o(T), there exists a unique
Aa E Ar such that A0(T) = a, and = p(a) for any
polynomial p. Every A is of the form A0 for some (unique)
aEo(T).

From Example 4.3.5 we deduce two facts about A for a (7-
algebra of operators.

LEMMA 4.3.6. Let A c B(E) be a commutative of
operators, I A. Then:

i) For all A E A and T E A, A(T') = A(T). Hence, the Gelfand
transform commutes with

ii) For A A we have flAil = 1. In particular, A = A1.
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PROOF: 1) Since A for any T E A, we deduce from
4.3.5 that A(T) ER ifT = T. (Recall o(T) CR ifT = T.) If
S E A, we can write S = T1 + IT2 where 77 = T1 (cf. 3.2.8), and
S =Tj—iT2. Thus

A(S) = A(Ti) — iA(T2) =

ii) From 4.3.5, we see that if T E A and T = T, IA(T)I < =
11Th for all A E and in particular for all A E A. Given any S E
A with IISH � 1, we have that SS is seif-adjoint and IIS'SII � 1.

Thus, IA(SS)I � 1. However, by (I),

A(S'S) = X(S) = IA(S)12.

Thus, IA(S)1 < 1, so UAII < 1. Since A(1) = = 1.

As we discussed above, a main problem for a general A is the
existence of elements in A. For A, of course, the Hahn-Banach
theorem assures the existence of many elements. For A, we then
have the following analogous basic result. We first observe that if
B is a Bausch algebra with identity and A E b, then any x E B
for which A(z) = 0 cannot be invertible. (This follows from the
fact that A(z)A(z1) = A(xx') = A(1) = 1.) The presence of
sufficiently many elements of B is then given by:

THEOREM 4.3.7. Suppose B is a commutative Banach algebra
with identity. If z E B is not invertible, then there is some A
such that A(z) = 0.

The key to the proof of 4.3.7 is the following observation.

LEMMA 4.3.8. (Gelfand-Mazur) If B is a Banach algebra with
identity and B is a division ring (i.e., all non-zero elements are
invertible) then B C, i.e. B consists of scalar multiples of e.

PROOF: If z B, there is some A E C such that z — Ac is not
invertible (Theorem 4.1.19). Then z — Ac = 0, i.e., z E C . e.
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PROOF OF 4.3.7: As in any commutative ring with identity, for
any non-invertible x E B there is, by Zorn's lemma, a maximal
(proper) ideal I C B with x E I. We claim that I is closed. Clearly
its closure 7 is also an ideal, so it suffices to see, by maximality, that
7 is also proper. However, if I is proper, then a neighborhood of e
fails to intersect I by 4.1.19, and hence e 7. Since I is a maximal
ideal, B/I is a field and since I is closed, B/I is a Banach field
(Exercise 1.9). By 4.3.8, B/I C. Thus : B -+ B/I C,
we have A E B and A(x) = 0.

From 4.3.7, we have:

COROLLARY 4.3.9. Let E be a Hubert space and A C B(E) a

commutative C-algebra with I A. Let $ : A C(A1) be the
Gelfand transform. Then for any T E A, image($(T)) o-(T).

PROOF: By 4.3.8, we have A = if a E o(T), then T — a!
is not invertible, and hence, by 4.3.7, there is A E .4 such that
A(T — al) = 0, i.e., A(T) = aA(I) = a. Thus (tI'(T))(A) = a.

REMARK 4.3.10: in fact, one can easily show range =
although we do not use this. (See exercise 4.11.)

We can now prove Theorem 4.3.3.

PROOF OF 4.3.3: By Lemma 4.3.6, we have A = A1 and
A C(A) is an algebra homomorphism with tZ.(T') = and

= 1. By definition of we have 114'(T)lI � UTI1. We
claim in fact that this is an equality. By Corollary 4.3.9, we have� IITIk and by 4.1.15, since any T E .4 is normal, we
have PITH0 = HTII. Thus, = 11TH.

To complete the proof, it therefore suffices to see that '1' is
surjective, and since is an isometry of Banach spaces, to see
that is dense in C(A). Since is a subalgebra of c(A)
containing 1, is closed under conjugation, and separates points by
definition, density follows by Stone-Weierstrass (AS).

COROLLARY 4.3.11. (Spectral theorem for commutative
C-algebras) Let E be a Hubert space and A C B(E) a commu-
tative C-algebra, I E .4. Then the conclusions of Theorem 4.2.13
hold.
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COROLLARY 4.3.12. (Spectral theorem for normal operators). If
T is a normal operator, then T is unitarily equivalent to a multi-
plication operator.

4.4. Mean ergodic theorem
We now apply the spectral theorem to obtain a general result

about unitary operators. This result had its origins in studying the
translation operator defined by a finite measure preserving home-
omorphism. We first discuss this situation.

Let X be a compact metric space and : X E X a homeomor-
phism. Suppose p E M(X) is invariant. We recall (Definition
2.3.7) that p is called ergodic for if A C X is measurable and

= A implies p(A) = 0 or p(A) = 1. Since we shall now take
p as fixed, we shall then simply say that is ergodic.

DEFINITION 4.4.1. is called mixing if for all measurable A, B C
X (say with p(B) > 0), we have

Jim p(p"(A) n B)/p(B) = p(A).

Heuristically, this means that for any B, the proportion of B
taken up by is approximately p(A), as long as n is large.
Thus, by repeated application, ço spreads A throughout all of X in
a very even manner.

PRoPosiTioN 4.4.2.

If then
p(A) = 1.

EXAMPLE 4.4.3: The converse of 4.4.2 is false. For example, if
0 Q1 then rotation by a is ergodic (Example 2.3.8 and exer-

cise 2.13). However, it. is easy to see that it is not mixing (Exercise
4.9).

We can understand a difference between mixing and ergod-
icity by viewing the former as a strong, quantitative form of the
latter, which is fundamentally a qualitative notion. It is however
a basic result that although ergodicity does not imply mixing, it
does imply a weaker quantitative property.
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DEFINITION 4.4.4. is called mixing in mean if for all measurable
A, B C X with p(B) > 0, p(co"(A)flB)/i4B) is Cesaro convergent
to p(A). That is,

lim /4(%d'(A) fl B)/p(B) = p(A).

THEOREM 4.4.5. (Mean ergodic theorem, I) is ergodic if and
only if it is mixing in mean.

To prove 4.4.5, we first prove a general result about unitary
operators.

THEOREM 4.4.6. (Mean ergodic theorem, 11; von Neumann) Let
E be a Hubert space and U E B(E) a unitary operator. Let
E0 = {x EIUZ = x) and P0 : E0 be orthogonal projection.
Then

PO

in the strong operator topology.

PROOF: By the spectral theorem we can assume E = L2(X) and
U = Mq, where E L°°(X) with Ijt'(x)I = 1 a.e.. We then must
have that E0 = {f E L3(X) 1/(z) =0 for (a.e.) z such that

1). Therefore P0 = Mx,..,(,). Hence, it suffices to see that

M* —i

in the strong operator topology. That 1., for all / L2(X)

(!
—

_+ 0.

Since f E L2 and

1N-1
E X,_J(1)f � 2,
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this will follow by the dominated convergence theorem if we can
show

I a.e.

Since = 1, it suffices to see that if In = 1, then

N—I (0
urn =

N—.ooN
1 —1n=O

But if z #1, then

N-i NI I 1—n
N1—z'

n=O

and since = 1, this clearly converges to 0 as N —.. co.

REMARK: Theorem 4.4.6 has a more elementary proof, i.e., one
that does not involve an application of the spectral theorem. How-
ever, the argument we have given here shows clearly how the spec-
tral theorem reduces a question about an operator to one about a
function. In this case, the latter question is easily answered.

To deduce 4.4.5 from 4.4.6, we need the following simple re-
mark.

LEMMA 4.4.7. If ço : X X is ergodic and I : X —+ C is measur-
able with / o = / a.e., then / is constant (a.e.).

PRooF: By considering real and imaginary parts, we may assume
1(X) C R. Let

X1 = fl (x I = 1(z))
nEz

Then p(Xi) = = X1, and for z E X1 we have f(ço(z)) =
1(z). If / is not constant a.e., then there is some a R such that
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0< < 1, and hence 0 <p(Xi flf1(—oo,a)) < 1.
However, we clearly have p(Xi nf'(—oo, a)) = Xjnf'(—oo, a),
contradicting ergodicity.

PROOF OF THEOREM 4.4.5: Letting B = A (as in the proof of
4.4.2) we see that mixing in mean implies ergodicity. For the con-
verse, let U be the unitary operator given by translation by
That is, (Uf)(x) = f(4o'(x)). \Vc want to see that for all A,B,

fl B) —t

We convert this to an assertion about U. Since jt(A) = (XA, 1),

= (1,XB), and

= =

it suffices to see that for all 1,9 E L2(X) we have

—+ (f,1)(1,g)

By 4.4.6 and 4.4.7, we have

(f,1)1

where (f, 1)1 = Pof is projection onto the constant functions. Sim-
ply taking the inner product with g yields the desired result.

REMARK: One can formulate the theory of stationary stochastic
processes in terms of a measure preserving transformation of a
space with a probability measure, together with a function (i.e.,
random variable) on this space. The mean ergodic theorem applied
to this situation then yields the weak law of large numbers.
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PROBLEMS FOR CHAPTER 4

4.1 If B is a Hubert space (over C) and T E B(E) with (Tx, z) = 0
for allxE B, showT0.

4.2 If T E B(E), show T is normal if and only if IITxII = IITxfl
for all x E E.

4.3 Show that every T E B(E) can be uniquely expressed as T =
T1 + iT2 where Tj E B(E) with = Show that T is
normal if and only if T1T2 = T2T1.

4.4 If X is a measure space and L°°(X), let be multipli.-
cation by p ii (i.e., they have the same null
sets), show that there is a unitary operator U : L2(X, p) —'
L2(X,v) such that for any E L°°(X,p) (= L°°(X,v)) we
have U'M,U =

4.5 What is the spectrum of the operator in problem 3.10(a)?
4.6 Let {ej) be an orthonormal basis of E. Suppose T B(E) is

strictly upper triangular, i.e., (Tej, ej) = 0 if i � j.
a) If dimE < oo, show o(T) = (0).
b) Give an example to show that we need not have = {0}
if dimE = oo. Hint: If = T(span{ei,... what is
(J_S)...1?

4.7 a) Give an example of two seif-adjoint operators T1,T2 E
B(E), with cyclic vectors, such that o'(Ti) = o(T2), but T1
is not unitary equivalent to T2.
b) If we further assume T1 are compact and injective, show T1
is unitary equivalent to

4.8 If T = T, show that T = (norm topology) where
each is of the form c2!'1, where c1 C and Pj is an
orthogonal projection operator in E with i. Pj(E) for

and P,T=TP1 for allj.
4.9 Let : —+ S1 be given by co(z) = where a E R is fixed.

Show that is not mixing.
4.10 Prove Corollary 3.2.5 in general.
4.11 If .4 C B(E) is a commutative Ce.-algebra with I E .4, and 4

is the Gelfand transform, show that for any T .4 we have
image(I(T)) = a(T)

4.12 If T B(E), show that T is a linear combination of at most
4 unitary operators.
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4.13 II T E B(E) is normal, T is called positive if (Tx, x) � 0 for
all x E E. For T normal, show the following are equivalent:
1) T is positive.
ii) o(T) C [0, oo).
iii) T = SS for some S E B(E).
iv) T = A2 for some seif-adjoint A E B(E).

4.14 Let X be a compact Hausdorif space. For x E X let
C(X) C be 1(z). Show that is a maximal
ideal in C(X) and that every maximal ideal is of this form.

4.15 Suppose A C B(E) is a C-algebra, with I E A. For T
A, let o(T) denote the spectrum (as element of B(E)) and
o4T) denote the 8pectrum as an element of A, so that o(T) C
o4T).
i) Show = boundary(o(T)).
ii) If T = T, show o4T) = o(T). (Hint: c(T) CR).
iii) Show OA(T) = o(T) for any T E A. (Hint: If S .4 and
S is invertible in B(H), so is SS.)

4.16 Let A be a Banach algebra with identity, and B(A) the Banach
algebra of bounded linear maps on A. If z A, let B(A)
be mx(y) = zy. Show that CA(z) = oB(A)(m4.

4.17 Prove the following version of the mean ergodic theorem. Let
U be a unitary operator and P the orthogonal projection onto
the space of U-invariant vectors. Show

-4P

in the strong operator topology as (n — m) —. oo.
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FOURIER TRANSFORMS AND
SOBOLEV EMBEDDING THEOREMS

5.1 Basic properties of the Fourier transform and the
Plancherel theorem

In this section we introduce the Fourier transform for func-
tions on This is an enormously useful and flexible tool. In
particular, we shall apply it in section 5.2 to prove the Sobolev
embedding theorem, and see in this section how it provides an
explicit unitary equivalence of the unitary operators given by the
regular representation of R" with a family of multiplication oper-
ators. (The existence of such an equivalence is guaranteed by the
spectral theorem (4.3.11).)

For ease of notation we let dx be Lebesgue measure on
but usually use the measure dm = dx. The reason for
this choice of normalization (which of course is not necessary but
merely a convenience) will become apparent later. We remark
that we may still use Fubini's theorem freely since dma, x dma, =

Also for notational convenience we consider two copies of
Euclidean space, which we denote by K", a". For z E K", E a",

= (x1,... = (ci,... we set = (Thus,
it may (or may not) be helpful to think of A" as the dual of R".)
For functions f, g defined on R", we let (f, g) = f dm whenever
fg is integrable.

DEFINITION 5.1.1. 1ff L1(R"), we define the Fourier transform
off, denoted by / or .F(f), by

= / f(x)&'frOdm(x) =

95
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PROPOSITION 5.1.2. F: —. BC(ft'), and as a map be-
tween these Banach spaces F is bounded with IIFH � 1.

PRooF: Clearly f = huh. Therefore f is bounded on
bound hlfili. Furthermore

+ h) — = / — 1) dm(x).

Therefore, as h 0 the dominated convergence theorem implies
+ h) — f is continuous.

In fact, for / E V (R'9, J is not only bounded but vanishes
at oo. We define C0(A") C by

PROPOSITION 5.1.3. (Riemann-Lebesgue lemma) If I E
then / E Co(A'). Thus, F: C0(A") is bounded with
IIFII�1.

PROOF: We let p denote the regular representation of on any
LP(R"). Thus (p(t)f)(z) = f(z — t). In the equation

J
make the change of variables x z — We obtain

= I dm(x).

Adding this to the defining equation of we obtain

= / (i — dm(x),
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and hence

�
As —, 00, —. 0, so the result follows by 1.3.10.

One somewhat unsatisfactory feature of the conclusion of 5.1.3
is that a function in need not be in any for p < 00.
Although we shall return later to the question of the integrability
properties of f in more detail1 here we wish only to see that for a
large class of V-functions f, we will have / in LI'. We begin with
a general remark on integrability. For n = 1, one easily computes
that

(1
E Lu).

Hence, for any n, we have

1

Therefore, if h is a measurable function on ft's with
bounded, it follows that h

PROPOSITION 5.1.4.

a) 1(1 (so that then

I"
b) 1ff E then for any forf <k

=

c) If / E then /€ C0(ft")n LP(A") for every
p�1.
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PRooF: (a) follows via integration by parts. Namely,

= / dm(z)

= —/1(z)
8

dm(z)

= —ii, J dm(z)

=

(b) follows from (a) by induction. To verify (c), we observe that
since E Cr(R") C Proposition 5.1.2 and (b) imply
that is bounded for all a, and hence so is + eJ)f(e).
It follows from our remarks above that / E Since we also
have / Co(R") by 5.1.3, it follows that f E L"(ft') for all p> 1.

We observe that (c) shows that for at least a dense subset in
L' we havef E L'(ft9. Conclusion (b), however, is of interest
far beyond using it to verify (c). Namely, it shows that under F,
the operator D° is converted into a simple multiplication. This
will clearly be more useful if we can recapture / from f, i.e., invert
F. ft is to this issue that we now turn. First, we collect some
simple facts.

LEMMA 5.1.5. Let p be the regular representation ofR" (or fri);
i.e., (p(t)f)(z) = f(z — t) (and similarly for a"). For each a

fl a 0, define (Saf)(x) = f(x/a) where / is a function on B",
and similarly define = where h is a function on
ñ". Then:

1) =
ii) (p(l)f)(e) =

iii) =
iv) =

PRooF: Straightforward, using at most a change of variables.

We will also need the following sample calculation of a Fourier
transform.
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LEMMA 5.1.6. Let w(x) = e_113I12/2. Then =

PROOF: We claim

= j dm(x).

Writing this as a product of such equalities, it suffices to verify this
for n = 1. Then

I = I
JR J

— I
JR+ie

— I

— f
— JR+ie

2/2
.

2/2 dz=e hm I

Since e_z2/2 is analytic, the integral along a closed curve is 0, and
hence the above expression

— urn
1N

e_z2/ + 1
—

where C1 is the straight line from —N to and C2 is the line
from N + to N. Since 0 uniformly as Re(z)I —+ 00,
we obtain

f
i_co

It is a well known calculus exercise that this latter integral is 1.

REMARK: It is exactly at this point that the particular choice of
normalization of Lebesgue measure becomes relevant. Otherwise,
we would have = cp for some constant c.

We now define the inverse Fourier transform.
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DEFINITIoN 5.1.7. IfhE define the inverse Fouriertrans-
form !i of h by

= J
We also denote ui by (h).

Clearly, all the results we have stated so far for F have ana-
logues for F*. One can either repeat essentially the same compu-

tation for F, of more simply observe that ii = so that in fact
is very simply described in terms of F itself.
The first property we observe about F* is that it behaves like

an adjoint.

LEMMA 5.1.8. 1ff and h then (F(f),h) =

(f,
PROOF: By Fuhini's theorem we have

(F(f), h)
= J

j J

= / f(z)(J
= (f,F*(h)).

We now use 5.1.8 to establish:

THEOREM 5.1.9. 1ff E Cr(R'), then FFJ =
PRooF: We first observe that it suffices to show (F* Ff)(O) = 1(0)
for all f E To see this, for any t E R" we apply Lemma
5.1.5. Thus, assuming equality at t = 0, we have for any t that

1(i) = (p(—i)f)(0)
= FF(p(—i)f)(0) (since p(—t)f E Cr(RTh))
= F1 (by 5.1.5(i))
= F (If) (i) (by definition).
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To prove equality at 0, we observe that

(Y'Ff)(O) = /1

and hence we want to show (J, 1) = 1(0) for any / E

Fix any function E C°°(A')n such that 1 � � 0, and
= 1. Then as a —+ 00, 1 pointwise (where =

is as in 5.1.5). Furthermore, we clearly have 0 < 1.

Thus, by the dominated convergence theorem (j, — (J, 1) as
a —. oo. By Lemma 5.1.8, we have = (f,SaçP), and by
5.1.5(iii) for F' we have

(J, S&IQ) = = / dm(x).

Making the change of variables x —. z/a, we obtain

=

Letting a —. oo, the dominated convergence theorem implies that
the integral converges to

1(0)/ dm(z).

Therefore, we deduce that for any f

(/,1) = /(0)J dm(x).

(This already shows that F7f = cf for some constant c =
independent of f.) —

To evaluate the constant fwdm, we may choose any çø we

like (satisfying the above conditions.). Taking = we
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have by Lemma 5.1.6 (and the fact that = that = 1.
This completes the proof.

REMARK: With a different choice of normalization for Lebesgue
measure, we would have F*Ff = cf where c 1. Cf. the remark
following the proof of 5.1.6. We also clearly have FF*h = h for

COROLLARY 5.1.10. For f,g E we have (Ff,Fg) =
(f,g).

PROOF: g E implies Fg

(Fl, Yg) = rFg) by 5.1.8

=(f,g) by5.1.9.

THEOREM 5.1.11. (Plancherel) The map F: n —+

extends uniquely to a unitary operator F : —*

PROOF: By Corollary 5.1.10, hF/ha = 111112 for f E
Thus, F extends uniquely to an isometry F:
L2(1F). We claim that if f E L2(R") n L'(R'), then = I.
To see this, choose f, / in both
and L2(Rnl). (0.B.5) Then 31 in L2 and
by Proposition 5.1.2. Since = it follows that 1=Fl.

To complete the proof, it suffices to see that F is surjective,
and since it is an isometry, it suffices to see the image is dense
(Lemma 4.1.5). But if h E ri L2(R') (by
5.1.4) and F/i = h by Theorem 5.1.9. Thus, the range of contains

which is dense in

The map F: is called the L2-Fourier trans-
form.

As above, let p(t) E denote the regular represen-
tation of Then {p(t) I t E R") is a commuting family of uni-
tary operators. By the spectral theorem (4.3.11) the operators
are simultaneously unitary equivalent to multiplication operators
on some L2-space. In fact, the Plancherel theorem gives us an
explicit realization of this.
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PROPOSITION 5.1.12. Let F be the V-Fourier transform. Then
for any i R'1, = where the latter is multipli-
cation by the L°° -function on

PROOF: We have F(p(t)f) = for all I L1 fl L2 by
5.1.5. By continuity, this holds for all I E L2(R").

5.2 Sobolev Embedding Theorems

In this section we use the Fourier transform to show how the
existence of sufficiently many weak derivatives in L2 implies the
existence of some derivatives in the classical sense.

We recal) the notation 8, for j-th partial derivative, 87 for
weak j-th partial derivative, for a-tb derivative and for
weak a-th derivative. We shall also use the notation / for F(f)
where / E V.

In Proposition 5.1.4 we saw the basic fact that if f E
and Ial < k, then = We now establish
this for weak derivatives.

PROPOSITION 5.2.1. 1ff E W2ik(Rtl), then for < k we have

=

In particular, ri for all Ia! S k.

PROOF: By induction (and using 1.1.22(a)), it suffices to see this
for = 1, i.e., = 8,. Let Cr(R"). Then

= (87/, (by Plancherel)

=

= —(I, (by Plancherel)

=

=

Since E is dense in the result follows.

Proposition 5.2.1 shows that for / E the existence of
weak derivatives implies integrability properties of /.

We now consider the differentiability properties of I.
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5.2.2. Suppose f L'(R'9 and for all tori � k,
L1(R'9. Then / BCk(Rn) and

=

By an induction argument, it suffices to see this for tori =
1, i.e., = z3. We have

= j dm(z).

Differentiating the integrand with respect to we obtain the ex-
pression

J f(z)(—.izjIN

By Lemma B.1, if this integral exists and is continuous in the
integral must be However, the integral is Simply
which is continuous since zjf E L1(R").

If we apply 5.2.2 to the inverse Fourier transform, we obtain:

COROLLARY 5.2.3. Suppose f L2(R"). If for all
tori < k, then / BCk(Rn), and DGJ =

Paoor: By 5.2.2 we have that h and
E BCk(Rt%) and (D'4)(z) = Now

let h = J.

We can now prove the main theorem of this section

THEOREM 5.2.4. (Sobolev embedding Theorem) 1ff E W2k(Rf%)
and k > r + then / E Furthermore, the inclusion
map —. is bounded.

PROOF: (1): We first illustrate the argument by giving the proof
for k � r + n. This avoids one technicality making the main point
of the argument clearer. We then return to the case r +
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Since f E for all � k we have E (by
5.2.1). To see that I E BC'(RI, it suffices by Corollary 5.2.3 to
see that for Ia( � r. We do this by showing that
Jol � r implies that is a product of two functions in
Namely, for any a we write = h1h2 where

= [11' +

and

h2 — fl(i +

We claim h1,h2 E as long as lal r, where k r + n. To
see h1 E we observe that IhiI is dominated by a finite sum
of terms of the form where

� n+r<k.

Hence h1 L2(ft'). To see h2 is simply an integra-
tion exercise. Namely, by Fubini's theorem it suffices to see that

Q(R) for any vs 0. Since this is continuous, it suffices
to see it is in L2({IxI � 1)). However,

" I
1 + —

which is square integrable on any closed set not containing 0.
To see that the embedding —' BC'(R') is bounded,

we have, via the expression = h1h2 that

�
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Since 11h2 112 is independent of f, we have

� c•

for some constant C, where r. By Corollary 5.2.3 (cf) =
and hence by 5.1.2 (applied to the inverse Fourier trans-

form) we have

�
� c

IPl�k

= C

(by 5.2.1 and the Plancherel theorem)

= C11f1121k

H): The only change in the argument above needed to improve
the result to k > r + is to change the decomposition 6"f = h1h2

so that we have h E for La$ < r where k> r + and h2
is independent of f. We let

h1 = (1 + and

h2=

To see h1 L2, it suffices to see that E L2, i.e., E
However IIeII2k is a sum of terms of the form

where < k. Since ePj E L2, we have E L1, showing
that h1 E L2. Furthermore, this shows that

� E
k
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and hence (as in the proof of (I)), that

s E
Thus, as in (I), to complete the proof we need only show that

/*3 We have W'I � for IaI < r, so we need only
show that k > r + implies

We can write in "spherical coordinates" as = cR"'dRdS
where R = and dS = standard measure on S"'. Thus it
suffices to show

/ (l+Rk)2Rdu!?<00.

It suffices to show

t
R

This is the case if 2r + n — 1 — 2k < —1, i.e., r + <k.

We now wish to extend the inclusion '-' BC'(R")
to general open sets U C

COROLLARY 5.2.5. Let 11 C R" be open and / E If
k> r+ then fE C'(cl).

PROOF: Let z E 11 and choose ho C Il open with z E ho C ri0 c
(1, and rio compact. Let Cr(fl) such that = 1 on Then
cpf by Proposition 1.1.21, so we can apply 5.2.4 to
deduce E C'(cl). This implies f 1(2° is in C'(Qo), and since
z (1 is arbitrary, f E CT(h).

The question of continuity properties of the inclusion W2k(h)
is more delicate for general (2 than it is for Satisfac-

tory general theorems depend upon the nature of the boundary 8(2,
and we shall not discuss this here. However, we can easily deduce
one such result for arbitrary (2. Recall that C W2.k(h).
We let Hk(c�) denote the closure of Cr(h2).
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COROLLARY 5.2.6. If k > r + we have a bounded inclusion

PROOF: The inclusion Cr(1z) '-+ Cr(R") extends to a continu-
ous embedding Hk(1l) and hence by Theorem 5.2.4
gives a bounded inclusion i: The inclusion
Hk(12) BC'(f�) is simply the composition of i with the restric-
tion map -+ BCr(IZ).

REMARK 5.2.7: While we have stated and proved the Sobolev em-
bedding theorem for W2,k, there are also results for Namely,
one can show that there is an inclusion —+ Ct(R") for
k> r+ (and 1 � p < oo).

We now discuss conditions under which one has compactness
of embeddings.

THEOREM 5.2.8. (Rellich) Let C K' be an open bounded set.
a) For any k � 1, the inclusion Hk(Q) is a com-
pact operator.
b) If k> r+ + 1, then the inclusion Hk(IZ) isa
compact operator.

PRooF: (b) follows from (a) and Corollary 5.2.6. Therefore, we
need only prove (a). Since Cr(cl) is dense in Hk(ffl, it suffices to
see that if fj Cr(Q) is a sequence which is bounded in If k(Q),
then fj has a Cauchy subsequence in In fact, it suffices
to prove this for k = 1. Namely, if fj is bounded in Hk(f�) then
D"fj is bounded in H'(fl) for all � k — 1, and if the result
is established for k = I we would have that JY'fj has a Cauchy
subsequence in for each such a. This easily implies that fj
has a Cauchy subsequence in We thus assume k = 1.

By the Plancherel theorem we have

Il/i = Il/i — = / Ill — J IJJ — 1k12

MEU�R

for any R> 0. Since {fj) is bounded in H'(tI) C W3"(R'), we
have for each i that (8,1,) is bounded in L3(R'), and hence by the
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Plancherel theorem that is bounded in Hence }
is bounded in say � C for all j. Then

I/i — <j <

Thus, given any e > 0, we may choose R so that

J t!J—1k12<e/2
IM�R

for all j,k.
We now turn to the integral over R}. Since bounded

sets in L2(tl) are compact (1.1.31), by passing to a sub-
sequence we may assume is convergent. Since fl is
bounded, for any we have E and hence =
(fj, e'('O) is convergent, and in particular Cauchy. That is,
1k 0 pointwise as j, k —+ co. Once again using the fact that Cl
is bounded, we have a continuous inclusion L2(fl) —+ L1(Cl). Thus

is bounded in L'(fl), and hence is uniformly bounded in
(5.1.2). Thus, by the dominated convergence theorem

/
Therefore, for j, k sufficiently large, we have fl/j <e, proving
the theorem.

The Sobolev embedding theorem is a fundamental tool for
proving the "regularity" properties of the solutions to differential
equations. We consider this in chapter 6.
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PROBLEMS FOR CHAPTER 5

5.1 a) If ii let A0 E be given by A0(f) =
u*f. Show usf=uJ.
b) Show FA0F' = MQ where M denotes a multiplication
operator.

5.2 Let H 112,k be the usual Sobolev norm L2k(RTh). Show that

Il/Il = 11(1 + also defines a norm on and
that it is equivalent to (f 1i2,k.

5.3 If f E let V1 C be the closed linear subspace
generated by {s(1)f I I E R) where is the regular represen-
tation of R" on L1(R'9. Suppose that = 0 for some
eo fr. Show h(e0) = 0 for all h E V1. Deduce that if
V1 = then / never vanishes. (The converse is also
true, being a theorem of N. Wiener.)

5.4 If / E Coo(R19, / is called rapidly decreasing if for every
polynomial p and every a, 1i(z)D°f(x)I 0 as z oo.
Let S be the space of rapidly decreasing functions (sometimes
called the Schwartz space).
a) If / E 5, show E S for all
b) Show S C for all q, 1 � q � 00.
c) Show F(S) = (where is the Schwartz space in the
variable e).
d) Show that S is a Frechet space in such a way that f, / if
and only if for every polynomial p and all a, pDaf
uniformly.
e) Show that f, —. f for the topology in (d) if and only if for
every polynomial p and every a we have pD"f in
L2(R'9.

5.5 1ff show

= urn / f(z)e'("1) dm(z)R-oo

where the limit is in
5.6 a) Show is dense in L2k(W). Hint: Let 6 E

6 � 0, 6(x) = 1 if lixil 1. If f E L2.k(RYI), let f,(z) =
6(z/n)f(z). Now use Proposition 1.1.22 (and its proof) to
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show f,1 —p I in
b) If C is bounded, show C°(cl) is not dense in
if k is sufficiently large. Hint: Use 5.2.6 to show 1

5.7 Let be the Laplace operator on H", i.e., A =
Show that the differential operator : Cr(R") Cr(R")
extends to an isomorphism of Hilbert spaces :

for any k � 2.
5.8 Show f E L2k(Rh1) if and only ifeGfE for all < k.



6

DISTRIBUTIONS AND ELLIPTIC OPERATORS

6.1. Basic properties of distributions
We have seen in section 1.1 that one can sometimes define a

notion of derivative (i.e., the weak derivative) for certain locally in-
tegrable functions that are not differentiable (or even continuous)
in the usual sense. There are, however, many locally integrable
functions that do not have weak derivatives in the sense of Defini-
tion 1.1.17. For example, if f R R is the characteristic function
of [0, oo), then / is locally integrable, but if its weak derivative (say

existed, it would clearly have to be 0 on R— (0) and hence
o a.e. However, if E Cr(R) with çp(O) 0, then

0 = = =
— / = w(O) 0.

Therefore, / does not have a weak derivative. For many purposes
it is useful to establish a context in which all locally integrable
functions have derivatives, and it is to this theory that we now
turn.

Let (1 C be open and let Cr(cl)' be the space of all linear
functions Cr(fl) —' R. (For simplicity, we shall for the moment
consider only R-valued functions, and ignore considerations of the
topology on Cr(cZ).) We then have a natural inclusion

/ 2'j, where Tj(co) = (f, ço). 1ff E C
then the integration by parts formula implies that D°f is uniquely
determined by the relation

= =

We have observed that if / E LL(fl), it is possible that there is
some h E satisfying = even if / is

112
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not differentiable. If so, h is uniquely determined and we defined
h to be the weak a-th derivative of I. In other words, if for any
T we let IY'T E be given by (DaT)(9,) =

then : —, agrees with the
usual on C°°(fl) (under the identification C°°((l) C LL(cl) (._4

above) and, under the same identification agrees with
on those f E possessing a weak a-th derivative. If

I E does not possess a weak a-th derivative, we can still
speak of as an element of Cr(fI)'. Hence Cr(fl)' gives us a
natual framework for extending differentiation to all (and
beyond). With a suitable topology on the elements of

are called generalized functions or distributions on Cl. Be-
fore turning to consideration of the relevant topology, we discuss
one formal point that arises in considering complex valued func-
tions instead of just real valued functions.

For studying complex valued functions, the pairing (f, g) =
f is basic. This, of course, is not linear as a function of g, but
is "conjugate—linear" or "anti—linear". That is, the map T1 (g) =
(f, g) is R-linear, but satisfies Tj(cg) = fl';(g). For any TVS E
over C defined by a family of seminorms, we have defined the dual
space B. We can now define the "anti—dual" space E' to be the
set of continuous R-llnear maps A : E —+ C such that A(cz) =
for all c C. Virtually everything that one says about E can be
carried over to E'. Perhaps the simplest way to do this is to define
the conjugate of E. Namely, we define a TVS to be the same
underlying real vector space but with scalar multiplication given by
(c, z) — where is scalar multiplication in E. The seminorms
on E are seminorms on and is therefore naturally a TVS
such that the identity map id : B —.. A is an isomorphism of real
topological vector spaces. We then clearly have B' = (Here
= actually means "equals", without any identifications.) Thus, B'
is itself a dual space. We also remark that the map A —p I defines
a map B' —, E which is an isomorphism of real topological vector
spaces. If T: B —. F is linear, the adjoint 7' can be defined as a
linear map F' B' as well as F —+ E and it clearly satisfies all
the same properties.

For the remainder of this chapter we will take (f, g) = f
whenever this is defined. We will sometimes also denote this by
(f,g)o. For each f, we set Tj(g) = (f,g), so that T1 is an anti-
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linear map. We now turn to the topology on that we will
need.

We have defined the C°°-topology on C°°(fl) in Example 1.1.10
for which v.p,, if and only if for each a, uni-
formly on compact subsets of CI. We may of course consider this
as defining a topology on Cr(CI) C C°°(CI). However, it is easy to
see that if I E LL(CI), then T1 : Cr(tl) C is not necessarily
continuous with respect to this topology. In fact, if we simply take
Cl = R" and 1(z) = 1 for all z, then continuity of T1 in this topol-
ogy would assert that E Cr(R') and —+ 0 uniformly on
compact sets (for each a) implies f 0. It is quite easy to
construct counterexainples to this assertion by allowing vp,, to be
supported increasingly far away from the origin as n —+ oo. On
the other hand, if we have a topology on Cr(Cl) in which conver-
gence .-+ implies not only convergence in the C°°-topology
but in addition that for n sufficiently large the support of all vp,,
is contained in a given compact set, then for each f we
would have implies We now construct
the required topology.

DEFINITION 6.1.1. Let Cl CR" be open. Foreacha let be the
seminorm on Cr(Q) given = tl}. For
each compact K C CI, let Vg(C2) = C°(CI) C K),
and give the topology defined by the family of seminorms
{II (restricted toDg(CI).) (Thus, VK(tl) has the C°° -topology
restricted to V,c(1l) C C°°(CZ).) Call a seminorm fi on

C U fi: DK(fl) —+ R is
continuous. Give Cr(fZ) the topology defined by the family of all
admissible seminorms. Following common practice, when endowed
with this topology we shall denote C°((z) by D(fZ).

We remark that since each admissible seminorm is continuous
on the topology on DK(1I) as a subspace of D(C�) is the
same as the C°°-topology on

Clearly each fi is itself admissible. To see some other
natural examples, suppose h : CI —' R is a locally bounded Borel
function, i.e., hi K is bounded for each compact K C ti. Then

= I x E ti) is an admissible seminorm
since h is bounded on for any There are many other
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admissible seminorms. Some basic properties of D(fZ) are summa-
rized in:

PROPOSITION 6.1.2. Let E be any TVS whose topology is given
by a sufficient family of seminorms. Then:
a) For any sequence D(fl) we have if and only if:

i) There is a compact set K C (� such that for all n sufficiently
large, C K; and
ii) For each a, —i uniformly.

b) If T : V(fl) E is linear, then T is continuous if and only if
TjDK(1Z) is continuous for each compact K C (�.

c) If T : D(1Z) —, E is linear, then T is continuous if and only if it
is sequentially continuous, i.e., —. implies T(p1) T(p).

PROOF: a) Clearly any sequence satisfying (1) and (ii) is conver-
gent in D((1). Conversely, suppose 'pj Since fl 1k is admis-
sible (ii) is clearly satisfied. To see (i), replacing 'pj by çaj — it
suffices to assume 0. If (1) is not satisfied then we can find a
sequence of distinct points E fI such that {z1} fl K is finite for
any compact K C and 0 for some We can choose a
locally bounded Borel function h : CI —+ R such that h(xj) =
for each i. Then = sup � 1. However, fi IIo,h
admissible, so .— 0, which is a contradiction.
b) Suppose T IVK(t)) is continuous for all compact K C CI. Let

fi be any continuous seminorm on B. Define f to be the
seminorm on V(Cl) given by = Since is con-
tinuous, f is admissible. In particular, if E D(Q) is a net with

—. 0, then T is continuous. The converse
assertion is obvious.
c) This follows immediately from (a) and (b) and the fact that the
topology on DK(CI) is given by a countable family of seminorms.

DEFINITION 6.1.3. Let 'D'(fl) be the anti-dual space of D(fl), i.e.,
(T : V(fl) C T is anti-linear and —. T(co) whenever

is a convergent sequence in V(fl)}. The elements of D'(fl)
are called generalized functions or distributions on CI.

EXAMPLE 6.1.4: a) Every / LL(fI) defines an element T1 E
D'(C�) by = (/, We thus have a natural inclusion
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D'(Q) and in particular an inclusion (We
remark that this map is is injective by the proof of Lemma 1.1.18.)
b) Every Radon measure p on (1 (i.e., p is finite on compact sets)
defines a distribution by =

We now define differentiation of distributions. We recall (Ex-
ercise 1.14) that any differential operator Don (� has a unique for-
mal adjoint. differential operator IY which is characterized by the
condition (Dr, = (i', for all C00(t�) and iii' E
For D = DG, (Do) = and for an operator of or-
der 0, i.e., D = = multiplication by a E C°°(fl), we have
M = Hence if D = a0Da, then we have explicitly

that D = o ML, i.e.,

DiJ' = >
lal�m

DEFINITION 6.1.5. If D is a differential operator and T D'(CI),
define D(T) by D(T) follows
easily from 6.1.2.)

The map D V'(Q) —. V'(fi) is thus an extension of the
ordinary D on C°°(C1) C (under the inclusion of 6.1.4).
Furthermore, if f and / has a weak a-th derivative,
Df = h LL(cZ), then = Tb, i.e., IY'f = h when we
identify LL(fl) C D'(tZ). In particular, by Definition 6.1.5 we may
now apply a differential operator to any locally integrable function
or any Radon measure and obtain a distribution.
EXAMPLE 6.1.8: a) Let fI = R and let / be the characteristic
function of (0, co). Let df/dt E D'(R) be the distributional deriva-
tive. As we saw at the beginning of this section1 for any E Cr(R)
we have (df/dt, çp) = —(f, = That is, df/dt = the
Dirac measure at 0 E R.
b) We can of course take d"oo/dt" as a distribution. This is
simply the distribtution T(fp) i.e., =
(—

Just as we can define the support of a function, we can define
the support of a distribution. We first observe that by restriction
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we have a natural map D'(tZ) —' D'(V) for any open V C (�. We
say that TED'(CI)isOon V, and write TfV = 0, if its image isO
under this map; that is, if = 0 for all ço D(V) C D((2).

LEMMA 6.1.7. If {V1) is a family of open subsets of (2 and T E
=0 for all i, thenTisoonUV1.

PROoF: Let E Then is contained in a finite
union of say Vi,... , Via a partition of unity, we can write
40 = where each E D(V1). Thus T(ço) = =0.

As a consequence, we see that for each T E D'(C�) there is a
unique open subset VT C on which T is 0 and which is maximal
with respect to this property.

DEFINITION 6.1.8. If T E D'(Ifl, the support of T (denoted by
supp(T)) is the closed subset of (2 given by (2— VT where VT is as
above. Thus, supp(T) is the unique smallest closed set with the
property that T(40) = 0 for all E D(1Z — supp(T)).

EXAMPLE 6.1.9: a) if x E (1, let 6a be the Dirac measure at
z. Then = {z). Similarly, = {z), and in
fact = (xJ for any non-zero differential operator with
constant coefficients. One can show, although we shall not do so,
that any distribution with support {z} is of this form.
b) If f E C°°((2), then supp(f) = supp(Tj); i.e., the support of f
as a distribution is the same as the usual notion of support.
c) For any T E D'((2) and any differential operator D, supp(D(T))
C aupp(T).
d) if D is a differential operator and all coefficients have support
contained in a closed set A, then supp(D(T)) C A for any T. In
particular, if E C°°(Q), then C
e) supp(T + S) C supp(T) U supp(S).

DEFiNITION 6.1.10. Let be the subset of D'(12) consisting
of distributions whose support is a compact subset of(2.

We clearly have Cr(1Z) c under the standard inclusion
C°°((7) c D'(Q).
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PRoPosiTioN 6.1.11. ForT E 7Y(Ifl, the map T: Cr(1Z) — C is
continuous in the C°° -topology if and only if T In fact,

is exactly the anti-dual space of where the latter hss
the C°° -topology.

PROOF: If T E let i,b E Cr(12) with = 1 on a neigh-
borhood of supp(T). If E then = because

— ço has support in (2 — supp(T), and hence — = 0.
Now suppose ço, E Cr(12) and con —' in the C°°-topology.
Then in D(1l), so

T in the To see the converse
assertion, suppose supp(T) is not compact. Choose supp(T)
such that z,, has no subsequence convergent in (2. We can choose
disjoint open sets V, C 12 with V,1 and such that each compact
K C Cl intersects only finitely many V,1. Since E supp(T), we
can choose E such that 0. For any compact
K C (2, we have for sufficiently large n that ip,, 1K = 0, and in
particular, for any constants en, we have —. 0 in the C°°-
topology. However, letting 1.. = we have IT(cncon)I = 1

for all n, showing that T is not continuous. Finally, to see the last
assertion of the proposition, we observe that any A E Cr(Q)' is a
distribution, since the identity map D(12) —' Cr(fl) is continuous.

Proposition 6.1.11 identifies a natural class of distributions
by identifying them with those distributions that are continuous
with respect to a topology smaller than that on D(12) given by
Definition 6.1.1. There are a number of other such natural classes
of distributions, some of which will be discussed in section 6.2.
Another such class, the "tempered" distributions, is discussed in
exercise 6.10.

The distributions with compact support can be nicely de-
scribed in terms of derivatives of measures.

PROPOSITION 6.1.12. Suppose T Then there is an in-
teger k and a family of (finite) complex measures one for each
la! < k, such that

T=
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PROOF: The on Cr(1l) is given by the family of
seminorms II where K C 12 is compact. By 6.1.11,
T'({IzI < 1}) is open in this topology, so there is a finite collection
ai,... ,ar, compact sets K1... ,Kr C (2, and positive
such that

< 1}) D 15fr I

Let k = max K = UK1, and for each IaI < k, let = C(K).
Define

I al k

by = where = 1K. Then 0 is linear and
continuous, and T factors to a map (which we still denote by T)
on 9(D(12)) (cf. the proof of 1.1.30). Furthermore, by the choice
of K, if O(soj) —.0 then --+0. Thus, T: O(V(12)) —+ C is
continuous. By the Hahn-Banach theorem, T extends to an anti-
linear map T' : E —. C, and by the Riesz representation theorem
(A.20) there are complex measures Pa on K, IaI < k, such that

= f
IaI�k

Therefore, for E D(fl)

T = EIOrI<k Da(pa) as required.

REMARK: We note that the proposition implies that for any T E
there is some k such that T : Cr(12) —+ C is continuous

with respect to the on

here is another useful remark about
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PROPOSITION 6.1.13. Suppose T E Then T can be ex-
tended in a unique way to an element 7" with supp(T') =
supp(T). If D is any differential operator, then D(T') = D(T)'.
(As is customary, in the sequel we shall usually denote this ext en-
sion simply by T.)

PRoOF: Let E Cr(Q) C Cr(R") with %b = ion a neighborhood
of supp(T). As in the proof of 6.1.11, we have = for
all E V(fl). For any define = Then
one easily verifies all the stated properties.

6.2. Distributions and Sobolev spaces

We now consider those distributions that are continuous with
respect to the Sobolev norms on Cr(1l). We shall only be consid-
ering Sobolev spaces of the form for p = 2. We let Hk(fl)
(k � 0) be the closure of Cr(fl) in and let fi denote
the norm on Hk(fl). Although we shall not be using these facts,
we recall that = L2k(R1%), but if fl is bounded this is no
longer necessarily true (cf. exercise 5.6).

DEFLNITION 6.2.1. For k > 0, let = (T D'(12) T is
continuous with respect to fi Ilk on

Each element T thus extends uniquely to an cl-
ement T That is, we have a natural map —.

Hk(1Z)1. Since Cr(Q) is dense in this is injective by defini-
tion, and since D(1�) —+ II lii) is continuous, the map is a
bijection. We then give the norm defined by this identifica-
tion with the Hubert space and denote this norm by
Thus, if T E 11Th_k = sup{IT(f)hIf Hk((l), 11111k � 1).
We have observed (cf. Remark 1.1.9) that one may choose a vari-
ety of equivalent norms on Hk(Cl) for k � 0. The space
is independent of the choice but of course the particular norm on

depends upon that on

LEMMA 6.2.2. a) H°(fI) C for any k � 0.
b) Cr(cl) is dense in

(in both (a) and (b), we make the standard identification



Distributions and Elliptic Operators 121

PROOF: (a) is clear. To see (b), since it suffices
to see that if / E Hk(fl) and = 0 for all so E then
/ = 0. But = (f, çp) and since I E L2, this follows from
Corollary B.6.

We now have a sequence of Hubert spaces indexed
by k E Z, each of which can be viewed as the completion of
Cr(1l) with respect to a norm fl We have an inclusion

C for any k, e E Z with k � 1, and this inclu-
sion extends the identity Cr(1Z) Furthermore, by
6.2.2(b), it is clear thateven for k � 0, we may view Hk(1l) =
{T E D'(fl) T is continuous with respect to and that
with this identification of Hk(1l) C LL(fl) as distributions, we
have Hk(11)

PRoPOSITION 6.2.3. a) If T E then T H_k(cz) for k
sufficiently large.
b) If T then for Ia! < k there are f, such
that T = E101<s
c) If T E fl then T where we extend T
to an element of by 8.1.13.

PROOF: a) By the remark following Proposition 6.1.12, there is
some r> 0 such that T is continuous with respect to the BC'(ffl-
topology on Cr(t1). By the Sobolev embedding theorem (in the
form of Corollary 5.2.6), for k sufficiently large, Hk(fl)
is continuous. Thus, T is also continuous with respect to fi us,
and hence lies in
b) Since T defines and element of H5(tl)', there is some h E

such that

= = (D;h, D° so).
IaI�k

Thus, letting f, = (_1)I°lDh, we have

T(so) =
cI�k
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c) Choose E Cr(fl) with = 1 on a neighborhood of supp(T).
and in then in

as well. Thus,

=

We remark that 6.2.3 yields another type of structural feature
of elements of in a similar spirit to 6.1.12.

Now suppose D is a differential operator on of order 1,
such that all coefficients are in We have already re-
marked (Example 1.2.12) that D extends to a bounded operator

—+ for any k � I, and in particular to a bounded
operator If k(Iz) for k 1. Suppose now k ? 0. If
T E ff-k(Q), we have defined D(T) V'(t�). For E Cr(fl), we
have = so that

(D(T)'pI � <

c is the norm of D : Hk+t(C�) Hk(Q). It follows
that D(T) E H_(k+t)(Q) and that D : —.

is bounded with norm at most c. In other words, for any in-
teger k, D : Cr((2) Cr(Q) extends to a bounded operator
Hk(1l) Furthermore, it is essentially immediate from
the definitions that the adjoint of this map, which is a bounded
map —. Hk(1�)1, is, under the identification of Hk(Q)1
with simply the map I.)' : H_k(1Z) defined

by the formal adjoint differential operator (which we recall is also
of order � 1 with coefficients in BC°°(Q).) Since any differential
operator of order m with coefficients in BC°°(fz) is a finite linear
combination of compositions of at most m operators of order < 1
with BC0O(fl) coefficients, we deduce:

PRoPosiTioN 6.2.4. Let D be a differential operator of order m
on with all coefficients in BC°°(fl). Then for each k Z, D:

extends to a bounded operator D: Hlc(Q)
If k 0, this operator agrees with the action of D on
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distributions given in 6.1.5. The adjoint operator Hk_m(1J)1 _.

when identified as a map H_k(S1), is the
operator defined by the formal adjoint D.

The Laplace operator plays a special role in the context of
6.2.4, which we shall see in 6.2.9 below. We now describe this
and at the same time indicate the relation of to the Fourier
transform.

We recall that the Laplace operator is the differential operator
= 8? (where we continue to write = We recall

that the formal adjoint of is given by 0 = —8,, and hence
= — E 818j. It follows that is formally self-adjoint, i.e.,
= We recall once again that we have some choice in the

norm on Hk(fl) (which then determines the norm on H_k(fl)). We
shall now fix a choice of these norms which will be very convenient
in that they are very well behaved with respect to For each
positive integer k, we have

(I — ó1)k (I + E8*81)k =
1 lal�k

where c0 E 1 are strictly positive integers. Here is simply the
coefficient of ea in the polynomial = (1 + Thus, if
we define the inner product (, on Hk(Q) by

=

then we clearly have an inner product on Hk(fl) whose norm is
equivalent to a standard one. Henceforth, we shall always assume
U (and hence fl are taken with respect to this choice of
inner product. We then easily have the following facts, which we
shall improve upon shortly for fl = (Cf. exercise 6.15.)

PRoPosITIoN 6.2.5. a) For any positive integer m, the inner
product on Hm(ti) is given by (p, = ((I — A1)"ço, f').
b) For each m, (1— H2m(f�) —. H0((1) is an isometry.
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c) For each m, (I — : Htm ((1) —. is an isometric
isomorphism.

a) is immediate from the definition.
b) Observe that

11(1 = — (J — = ((I —

since = By a), this equals
c) From (u), '/)m = ((I — for E Cr(fl), we see that

fl(I — = sup(J(ço, ct')mI I fl'pbllm � 1) =

Thus, (I — is an isometry. To see it is an isomorphism, it
suffices to see that the adjoint

((1 — : —

is bounded below (cf. Lemma 4.1.6). However, by 6.2.4 and the
fact that = A, this can be identified with (I_A)m Hm(1z)
H—m(c�), which we have just seen is bounded below.

We have seen in Chapter 5 the utility of the Fourier transform
for understanding Sobolev spaces, and it is useful to consider the
spaces H.'k in this context. We shall now take (I = For
functions on R" we shall only be considering the L2-norm and the
usual inner product, and we shall always take (,) and fi to be
these standard ones when applied to functions defined on

We recall from Proposition 5.2.1 that 1ff E then for
any taI � k we have

=
Therefore if / E

((1 — = (1 +

By 6.2.5(a) we have, for f,g E Cr(R'9 that

= ((1 — = ((1 + 1E12)513)

via the Plancherel theorem. In particular,

Il/Ilk = 11(1 +

We can thus alternatively view (k � 0) as the completion
of with respect to the norm .— 11(1 +



Distributions and Elliptic Operators 125

DEFINTION 6.2.6. For each k R, define fl on by

= 11(1 +

and let Hk be the completion of C° (R') with respect to this norm.
This is a hubert space with the inner product on Cr(R') given
by

= ((1 +

As remarked above, for a non-negative integer k we have
Hk(Rh)) = Jib and 1111k = II

The following simple observation is useful.

LEMMA 6.2.7. Let A, � 0. Then

{(i + I L2(A"),

and for Hk(Rhs),

IIcolIk = 1K' +

PROOF: If then by Proposition 5.2.1
for < k. Therefore E and hence E
L'(R"). Therefore E L2(R"), and =

by 5.2.1 and the Plancherel theorem. Conversely if h E
let h1 = (1 + so that h1 E Let

= (the inverse Fourier transform). Then E L2(RY') and
(1 + = h. Thus Hk(Rh)), and the set in question
contains h.

Fix k to be a non-negative integer. For 'p, E we
have

= = J[(i +

II HA lid hA
—

Thus, the map u-+ (p,.) extends to a bounded linear map F
— This enables us to give the following description of

in terms of the Fourier transform.
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PROPOSITION 6.2.8. The map F : H_fr —. (H,,)' = is
an isometric isomorphism. Thus we can (and henceforth shall)
identify (H_fr, with II Il-k).

PRoOF: From � and = we deduce
that � In fact, we have

= 1)

= 8Up{I((l + (1 + I < 1).

By Lemma 6.2.7, this

= + h E lihil � 1)

=

Thus F is an isometry, and to see it is an isomorphism it suffices
to see the image is dense (4.1.6). However, it contains c

so the result follows from Lemma 6.2.2.

We now give a sharper version of 6.2.5 for c� = R".

PROPOSITION 6.2.9. For each k Z and each integer m 0, we
have:
a) : H2m+k(Rn) —, is an isometric isomorphism;
b) ((I — =

PROoF: a) Case 1: k � 0. Under the Fourier transform (J.
corresponds to multiplication by and from the definition
of the norms on it is an isometry. To see it is an isomorphism,
we argue exactly as in the proof of 6.2.7. Namely, if
then (I + E and ii = (1 +
Let f = li, so that f E and (1 +
Thus, f H2m+k(Rfl) and ((I — = (1 + =
Thus, (I — = IL'.

Case 2: 2m + k < 0. This follows from case I since the map in
question is simply the adjoint of one considered in case 1.
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Case 3: if 2m + k > 0 and k < 0, then (I — A)tm will be the
composition of powers of (I — A) from case 1 and case 2, and if k
is odd, the case of 6.2.5(c).
b) is immediate from Definition 6.2.6 and the identification given
by 6.2.8.

We remark that 6.2.9(a) is not true if is replaced by a
bounded open set. See exercise 6.15.

We have defined the local L" spaces in chapter 1. (See Exam-
ple 1.1.7.) We recall that for a measurable / : ci C, we have

f means that E LP(K) for every compact K C
Equivalently pf LP([l) for every E We now define
the local Sobolev spaces.

DEnNm0N 6.2.10. For fl C R' open, and any k E Z, define

= (T i"(ci) E Hk(fl) for every %b E Cr(1Z)}.

We clearly have C and =
Here are some basic properties.

PRoPosITIoN 6.2.11. a) If T E then T E Hk(ci).
b) Suppose D is a differential operator of order m on ci with
coefficients in BC°°(fl). Then D:
c) If D is a differentiable operator of order m on Il with coefficients
in then

D: -. Hk-m(fl).

PROOF: a) Let E Cr(fl) with 1 on a neighborhood of
supp(T). If —. in Cr(fl) with ii ti—k, then in
1111—k. Thus

= . T)(ço,) =

However, for all n 0, — p,,) = 0 since — vanishes
on a neighborhood of supp(T). Thus —e showing
T€Hk(fl).
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b) By induction, it suffices to consider the cases D = for some
or = aw where a BC°°(Q) (i.e., order D = 0). Let
—' as in (a), and let E Cr(fl). Let T E Then

= T(D.

If = acp, then

= =

= (400).

For D = and in fl II—a+i we have

=

= —

T E this converges to

—(t,bT) (oi(coo)) — (cPo) = +

=

c) Since the coefficients of D have compact support, so does D(T)
by 6.1.9(c) and hence (c) follows from (a) and (b).

The Sobolev embedding theorem (5.2.5) immediately implies:

COROLLARY 6.2.12. If T E and T for all r, then
T€ C°°(cl).
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6.3. Regularity for elliptic operators
In this section, we consider the following problem concerning

differential operators. Suppose DT = u where D is a differential
operator and T and u are distributions. If u has certain regularity
properties, the question arises as to what properties T must have.
For example, if u is a smooth function, must T be a smooth func-
tion? One of the ways (but not the only way) in which such a ques-
tion arises is in trying to solve the differential equation Df = u.
Here D and u are known and we are trying to find f. There are
many approaches which enable one (under suitable hypotheses) to
find a distribution / satisfying the equation, and hence the ques-
tion as to when one can deduce that / is a smooth function and
therefore a solution to the equation in the classical sense. We shall
not consider the question of existence of distribution solutions here,
but many of the techniques of this chapter are relevant. Instead,
we shall focus on proving a basic regularity result for a natural
class of differential operators.
EXAMPLE 6.3.1: a) On R2 consider the equation .91f = u. If
u = 0, and we let f(x, y) = h(y) for any h LL(R), then clearly

= 0. Here u is smooth but f is not necessarily continuous.
b) On R2, let D = + 82. This operator reduces to after a
linear change of coordinates. Thus, if f(z, y) = h(x — y) where
h E then D/ =0.

On the other hand, we now indicate a first regularity result
for the Laplace operator.

PRoposiTioN 6.3.2. Suppose = u where u E Hr(Rf) for all
r (and in particular is smooth). 1ff E for some k (e.g.,
I E L'(R")), then f C°°(R").

PROOF: The equation = u is an equation in Hk_2(Rv), so we
have (I — A)f = / — u in Jfk.2(Rt)). However, / — u E
so there is a unique g E such that (I — = / — u
(Proposition 6.2.9). Since this is also an equation in
we have / = g, i.e., / Continuing by induction, we
deduce that / H'(K") for all r and by the Sobolev embedding
theorem, / C°°(R").

While Proposition 6.3.2 is very suggestive, it raises (at least)
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two questions immediately. First is the question of localizing this
result. The assertion we would clearly like to have is that = u
on any open set 1�, for u E Cco(fl) and f 6 implies f E

The hypotheses of 6.3.2 are restrictive in that the domain
under consideration is all of R", and in that u and f are required
to satisfy integrability properties. The second question is to un-
derstand what the relevant properties of are for this argument,
and to see for how large a class of differential operators this type
of argument will work. We will take up the second question first,
and establish a regularity result of the type of 6.3.2 for a natu-
ral class of operators, and then return to the issue of obtaining a
satisfactory local version for these operators (and in particular for

A cursory examination of the proof of 6.3.2 shows that it is
basically an immediate consequence of 6.2.9(a) (given the Sobolev
embedding theorem). Via the Fourier transform, the operator
is converted to multiplication by the polynomial What we
shall see is that operators whose associated polynomial shares some
basic properties of the polynomial will have a property close
enough to 6.2.9(a) to prove a regularity result akin to 6.3.2.

If p: R' —÷ C is a polynomial, we let Re(p) be the real part of
p. Thus, Re(p) = so Re(p) —* C is a polynomial and if

= E Ca6', then = E Re(ca)E'. If p is homogeneous
of degree m, so is Re(p).

DEFINTION 6.3.3. Suppose p is a polynomial on U" which is ho-
mogeneous of degree m. Then p is called elliptic E K", 0,
implies p is strongly elliptic if Re(p) is
elliptic. For n 2, a strongly elliptic p will be called positive if

> 0 for all 0, and negative if < 0 for all

Clearly any strongly elliptic polynomial is elliptic.

EXAMPLE 6.3.4: a) = is strongly elliptic. More gen-
erally, = is strongly elliptic of order 2m.
b) If p is a homogeneous real polynomial of degree 2 on K2, i.e.,
p(X, Y) = aX2 + bY2 + cXY, (a, b, c U), then p is elliptic if and
only if the non-empty level sets p1(i), t 0, are ellipses.
c) If n � 2 and p is real and elliptic of degree m, then m is even.
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To see this, consider 0,... , 0). This is either identically 0
which is impossible by ellipticity, or equal to for some c1 E R,

0. Then is a polynomial of degree minE'.
If m is odd, this has a root, contradicting eliipticity.
d) On R2, let p(X,Y) = X + iY. Then p is of order I and is
elliptic. However, it is not strongly elliptic.

DEFINITION 6.3.5. Suppose

Iot�m

is a differential operator of order m on an open set fl C R'. The
symbol of D is the map p: fI —. { polynomials on z Pr,
where Pr is the polynomial

IciI=m

(Thus, Pr is homogeneous of degree m for each z E II.) D is
called a (strongly) elliptic differential operator of degree m if is
(strongly) elliptic of degree m for all x IL

We remark that Pr depends only on the highest order terms
of D, and hence so does eHipticity of D. We also remark that if (1
is connected, and D is strongly elliptic the symbol will be either
positive for all z (2, or negative for all z (2.

EXAMPLE 6.3.6: a) is strongly elliptic of degree 2. For any
in> is strongly elliptic of degree 2m. If p is any real poly-
nomial of degree m, then is strongly elliptic of degree 2m.
b) Let p, be the symbol of D. Then the symbol of D' is (—
Thus, if D is elliptic or strongly elliptic, D will have the same
property.
c) If D1, D2 have symbols p, and respectively, then the symbol
of D, o D2 is Thus if are both elliptic, then D, o D2
is also elliptic. If both are strongly elliptic, and one has real coef-
ficients then D, o D2 is strongly elliptic.
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d) If D is elliptic, then D D is strongly elliptic. This follows from
(b), (c).
e) If D = cs.riAY' is a differential operator with constant
coefficients, then p = Pr IS constant in z. Under the Fourier trans-
form, D corresponds to multiplication by a polynomial of the form
(—i)mp + q where deg(q) < m. More precisely, for ço

((—i)tmp(E) +

f) On R2, let D = + Then by 6.3.4(d), D is elliptic but
not strongly elliptic. We have D D =

Suppose now that p and q are elliptic polynomials of degree in.
Then for I E R, I & 0, = Thus, p/q can be
viewed as a continuous function on the sphere, and in particular, it
is bounded away from 0. That is, there is some c R, c > 0, with

for all (The same is true of course if p, q are just
continuous functions vanishing only at the origin and satisfying
f(tx)__tmf(z)fori>0.)

DEFINITION 6.3.7. Suppose {p,,} isa family of elliptic polynomials
of degree m on R", indexed by z E fi, where Cl is any set. We say
that {p', } is uniformly elliptic if for any fixed elliptic polynomial
of degree m, say q(e), there is a constant c R, c> 0, such that� for all and all z 12. We say that {pg) IS
uniformly strongly elliptic if is uniformly elliptic.

We remark that this is independent of the choice of q. Alter-
natively, uniform ellipticity of is equivalent to the existence
of a positive constant c with �
DEFINITION 6.3.8. If D is a differential operator of order m on
Cl, we say that D is uniformly (strongly) elliptic on flit the image
of the symbol map (i.e., (Pr I x E Cl)) is a uniformly (strongly)
elliptic family of polynomials.

EXAMPLE 6.3.9: a) If D is elliptic with constant (real) coeffi-
cients, then D is uniformly (strongly) elliptic.
b) If D is (strongly) elliptic on Cl and V C Cl is open with V C Cl
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and V compact, then D is uniformly (strongly) elliptic on V.
c) Let
x oo. Then D is strongly elliptic but not uniformly elliptic.
d) If D is uniformly elliptic, so is D. This follows from 6.3.6(b).
e) If D1, D2 are uniformly elliptic, so is D1 o 1)3 (6.3.6(c)).

Example (b) above says roughly that elliptic operators are
locally uniformly elliptic. Here is another version of this.

PROPOSITION 6.3.10. Suppose D is a strongly elliptic operator of
order m on Il C (where 11 is open and connected). Suppose
V C Il and is open with V C Il and V compact. Then there is a
uniformly strongly elliptic operator D1 on R' such that D = D1
on V. Furthermore, all coefficients of D1 can be chosen to lie in
BC°°(R').

PROOF: Let be the symbol of D. We can assume is
positive for all x E Choose E Cr(Q), 0 � 1, with = 1

on V. Let D0 be any strongly elliptic operator of order m on
with constant coefficients. Then D1 = e&D + (1— has symbol

= + (1 —

where q is the symbol of D0. Thus, if Re(q) is positive, which we
can clearly arrange, D1 has the required properties.

The fundamental property of elliptic operators that will enable
us to generalize 6.3.2 is the following replacement for the properties
of given in 6.2.9.

THEOREM 6.3.11. (Garding's inequality) Let 1) be a uniformly
strongly elliptic operator of order 2m on R" with all coefficients in

Then there area,b ER (a � 0 andb> 0 if(—1)m Re(p)
is positive, where p is the symbol of D) such that for all 'p in

Re((aI + �
Of course 6.2.9(b) asserts that 6.3.11 holds for with a =

1,b = —1. We shall see that Garding's inequality and the simi-
lar inequality for JY will enable us to deduce an assertion similar
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to 6.2.9(a) for D. This will then imply the regularity result for
D, generalizing 6.3.2. The proof of Garding's inequality will be
in three steps. First, we shall prove the case in which the coef-
ficients are constant. This is quite easy and will follow by using
the Fourier transform and some simple inequalities for polynomi-
als. The second step is to observe that locally the coefficients of
D are close to being constant. By comparing with the constant
coefficient case we shall then see that each x E R" has a neighbor-
hood on which Garding's inequality holds for functions supported
in that neighborhood. The third step is to piece together the Vocal
results by using a partition of unity. We shall now give the proof
in the constant coefficient case. As the other steps are a bit more
technically involved, we postpone that part of the argument until
an appendix. (Section 6.4).
PROOF OF 6.3.11 FOR CONSTANT COEFFICIENT D: Let p be the
symbol of D. Taking the Fourier transform and applying the
Plancherel theorem, we see that Garding's inequality is equivalent
to

([a + b ((—1)" +
I

� 11(1 +

where is a real polynomial of degree � 2m — 1. It therefore
suffices to find a, b E R such that

a + b((-.-1)m + � (1 +

which is a simple exercise in polynomials. Namely, since Re(p)
is elliptic of order 2m (and we can assume (._1)m R.e(p) is posi-
tive), it suffices (by the remarks preceding Definition 6.3.7) to take

= (and to show we can take b> 0). But

+ +
(1 + +

r have degree at most 2m — 1, and hence as oo, this
converges to 1. Thus for some R sufficiently large,

+ � (1 + for � fl.
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Since both functions appearing in this inequality are continuous
and � R} is compact, it is clear that by choosing a > 0
sufficiently Large we will have

a + + � (1 + for all

This completes the proof.

We can now generalize 6.2.9(a).

THEoREM 6.3.12. Let D be a uniformly strongly elliptic operator
of order 2m on with all coefficients in Then for
each kEZ, there is some ak ER such that

+ D : —. Hk(Rt))

is an isomorphism of hubert spaces. In fact, if p is the symbol of
D and (_i)m Re(p) is positive, then we can choose such that
for all c

ci + D : Hk+2m(Rn)

is an isomorphism.

We may clearly assume (_1)m Re(p) is positive. We first
claim it suffices to find constants so that for all c ck, ci + D:
Hk+2m(RtI) —. is bounded below. For if this is the case we
can find 4 such that di + D Hk+2m(R) —. is bounded
below for all d � 4. (Recall that 1) is also uniformly strongly
elliptic, with symbol (—l)2"p, so that its symbol also satisfies the
positivity requirement.) Letting 0k = max(ck, we have
c implies

ci + D :

is bounded below, and so is its adjoint

ci + D .—+
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d2IjlpjIk+m � tI(cI + D)%DIIk_m.

This shows the existence Of Ck_m.
It remains to find C...k...m for k > 0. As above, we can find

d1, d2 > 0 such that c d1 implies

Re((cI + D(I A)ço, co) �

Since (I — : Hk+m(Rhl) H—k+m(Rn) is an isometric iso-
morphism, for any f' Cr(R") we can write (I — = for
a unique E We remark that such a is automati-
cally in Rr(Rtl) for all r, and in particular, it is smooth. (Namely,
since H'(R") for all s, for any r we can find 9 E H'(R'2)
with (1 — = by Proposition 8.2.9(a). Since this is also an
equation in if r k + m, we have 0 = By a conti-
nuity argument, the above consequence of Garding's inequality for
D(I — A)k also holds for E flrEl Hr(Rfl). We then have

< Re(c(çp, çp) +

�
= Re(c((1 — + (Dt,b,p))
= +
�
<II(c1 +
= II(c1 +

Hence

� II(dI +

as required. This completes the proof of 6.3.12.

As a consequence we deduce our sought-after generalization
of 6.3.2.
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THEOREM 6.3.13. Let D be a uniformly strongly elliptic operator
of order 2m on with all coefficients in BC°°(R"). Suppose
Df = u where u E for all r (and in particular is smooth).
If f E for some k E 1 (e.g., / E L2 I
Paoop: We argue exactly as in the proof of 6.3.2. Let be as in in
6.3.12. Fix c > ak, Ck_2m. Then (cI+D)f = cf+u in Hk_2m(Rn).
Since cf+u E by 6.3.12 there is a unique g E Hk+2m(Rn)
such that (ci + D)g = cf + u. However, this is also an equation in

so / = g. It follows that / E Hk+2m(Rn). Arguing
inductively, we have I E for all r, and hence by the Sobolev
embedding theorem (5.2.4), f E C00(R'2).

We now turn to the problem of giving a local version of The-
orem 6.3.13. At the same time, we can relax the hypotheses on D.
Here is the basic elliptic regularity theorem.

THEOREM 6.3.14. (Elliptic Regularity) Let D be an elliptic op-
erator of order m on an open set Il C R'. Suppose T D'(fl) and
DT = u where u Then T E

The proof will be very similar to that of 6.3.13. The basic
additional ingredient is, not surprisingly, to consider where
;i' E Cr(cz). If we had = ,/'u (which of course we will
not in general) we would be in a position to apply 6.3.13 directly.
However, while D(i,&T) — is not 0, it is a lower order differential
operator applied to T. We shall see that this lower order operator
does not essentially disturb the proof of 8.3.13. We now turn to
the details. We begin with a simple reduction.

LEMMA 6.3.15. To prove 6.3.14 it suffices to assume T E
for some k.

PROOF: Write 11 = where Vj C C 1) with open and
Vj compact. It clearly suffices to see (ci. exercise 6.2) that TIV.
is a C00-function for each i. Let V = V,. Choose E Cr(Cl)
with = 1 on V. Then e,bT and hence E Hk($1) for
some k (Proposition 6.2.3(a).) In particular V E

lonV,('bT)IV =TIV,SoTIV Buton
V we still have D(TIV) = u, so if we have established 6.3.14 for
distributions in we have T IV is verifying the lemma.
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PROOF OF 6.3.14: We first observe that D D is strongly elliptic
(by 6.3.6(d)) and of order 2m. We have (DD)T = Du C°°(fl).
Therefore, it suffices to prove the theorem for D D. Hence, we may
assume D is strongly elliptic and of order 2m. We may also assume
(_1)m Re(p) is positive, where p is the symbol of D.

By the lemma we may assume T E We shall show
that T E for all r, and hence by the Sobolev theorem
(6.2.12) this will show T is smooth. Let E Cr(fl). We then
have = Writing for multiplication by we may
write the differential operator o D = D o — D1 where
D1 is of order strictly less than 2m, and all of whose coefficients
have support contained in (Cf. exercise 1.26.) That
is, = — D1(T), so = + D3(T). We
remark that D1(T) E Let D be a uniformly strongly el-
lipitic operator on H' with all coefficients in BC°°(R') such that

= D on a neighborhood of (Proposition 6.3.10). Then
= + D1(T). We now argue as in the proof of 6.3.13.

Since T E this is an equation in (cf. Propo-
sition 6.2.11). Let ak be the constants for D given by Theorem
6.3.12. Let c ak_2m, ak_2m+1. Then

(ci + = + Dj(T) +

The right side of the equation lies in since D1 is an
operator of order at most 2m— 1. (We are implicitly using 6.2.3(c)
and 6.2.11(a),(b).) By choice of c there is a unique g E
such that

This is also an equation in and hence t,bT = g. Thus,
E Hk+l (U'), i.e., T E Continuing inductively, this

shows T E for all r, and this completes the proof.

Here is an immediate consequence of Theorem 6.3.14.

COROLLARY 6.3.16. If D is an elliptic operator on and T is
an eigendistribution of D, (i.e., DT = AT for some A C), then
TE C°°(fl).

PROOF: (D — Al)T = 0, and D — Al is elliptic.
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6.4. Appendix to 6.3: proof of Garding's inequality
We have proven Garding's inequality (6.3.11) for constant co-

efficient operators and now present the proof fbr the general case.
The general idea of the proof is follow rng the statement
of 6.3.11. To apply the constant coefficient case in the proof of
the general case we need to examine the proof in the constant co-
efficient case to understand the dependence of the constants a, b
appearing in the statement of Garding's inequality on the prop-
erties of D. An examination of the proof for constant coefficients
easily shows:

LEMMA 6.4.1. Suppose { D a S) is a family of constant co-
efficient strongly elliptic operators of order 2m on R', indexed by
some set S. Suppose

i) {D,} is a uniformly strongly elliptic family (i.e., {Re(p4) is
uniformly elliptic where p, is the symbol of D.).

ii) The coefficients of I), are uniformly bounded over S.
iii) (_1)m Re(p.) is positive for all a.

Then there are a, 6> 0 such that

� for all E and all a E S.

We now present 4 lemmas each of which presents an inequality
of a general nature, that is, concerning Sobolev spaces or differen-
tial operators, not specifically elliptic operators.

LEMMA 6.4.2. For anym � land for anye >0, there isaconstant
cfr) E R such that

� + for all E Cr(R").

PROOF: = ((1 + so it suffices to find c(r) such
that

(1 + � + + c(e).

But for R sufficiently large, � R implies

(1+ ( c(1 +
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and therefore we can take c(c) = (1 +
In the statement of Garding's inequality we are concerned with

an expression of the form (Dp, where D is a !ifferential opera-
tor. The next three lemmas are concerned with some general facts
about this expression.

Suppose D = where a E BC°(fl) with sup norm equal
c. If we write a = + then

< �
Expressing any differential operator D as a sum of terms of the
form we obtain:

LEMMA 6.4.3. Suppose D is a differential operator of order m on
an open C R", and suppose the coefficients all in BC°(fl).
Write m = k + t where k,t � 0. Then there is a constant c such
that for all E Cr(cz),

l(Dw, � dl

where c depends only on the norms of the coe'lIcients of D in
(In particular, c does not otherwise depend on

We will need the following two special cases.

LEMMA 6.4.4. Fix n and If c > 0, then thtre is a 5 > 0 so
that for every differential operator D of order 2m on an open set
ci C with all coefficients of D having BC°(IZ).norm at most 5,
we have

for all ço E Cr(fZ).
The proof of Lemma 6.4.4 is immediate from Lemma 6.4.3.

LEMMA 6.4.5. If D is a differential operator 2m — 1 on
ci C with coefficients in BC°°(1z), then for a zy c > 0 there is
a constant B(e) such that for all E Cr(1Z) we have

� +
B(c) depends only on the norms the coefficients

of D in BC°(ci).

PROOF: By Lemma 6.4.3 there is c R dependng only on the
norms of the coefficients of D in BC°(fl) such ti, tt

l(Dp, < CIl(Pl(,nItWllm_1
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Since for any r> 0, and any a, b � 0 we have al +
it follows that for any e> 0 there is A(e) > 0 depending only on
(e and) the norms of the coefficients of D in BC°. Tl) such that for
all we have

I(Dgo, co)I +

An application of Lemma 6.4.2 then proves 6.4.5
With these general estimates in hand we now turn to the proof

of Garding's inequality.
PROOF OF 6.3.11: The next step is to use the result for constant
coefficients to obtain a suitable local version. For each s e
let D, be the differential operator with constant e.oefficients ca(s)
where D = ca(s)Da. Since {D3 8 E satisfies
the hypotheses of Lemma 6.4.1, we can find a. 6 � 1 such that
Re((aI + 6D4go, go) � for all s E Now choose 6 so that
Lemma 6.4.4 holds with e = 1/26. Since ca all the
derivatives of all Ca are uniformly continuous. It follows that there
is r> 0 such that for any s E the differential operator D — D3
has coefficients in BC° ({Ixj — sd < r for all i}) of norm at most
5. Let U3 be the open cube of side r centered at We then have:

LEMMA 6.4.6. There are c, d> 0 such that for wy 8 E R' and
any go E (U3) we have

Re((cI+dD)co,go) �

PROOF:

J((aI + bD)go,ip) — (al + 6D,)go,go)) I = — D.)go, co)I

by Lemma 6.4.4.

Hence,

Re((aI+bD,)co,co) �

so we can take c = 2a, d = 2b.
We now turn to the final step in the proof 6.3.11, namely

piecing together the local result for the various 11, via a suitable
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partition of unity. We now construct such a partition of unity with
certain uniform properties.

Let V, be the open cube of side centered at a Let S = C
Thus {UI}$ES and (V,), S are locaLLy finite covers of ft1.

Fix A0 E Cr(U0) with 0 S A0 � 1 and = 1 on V0. For each
a S, Let be the translation of A0 by a; i.e., A,(z) = Ao(z — a).
Then = Ea€s A1 is a well-defined C°°-function and > 0 for
all z E R'1. Let — Then C:°(tJ,), o � i,
and E = 1 for all z Thus, is a partition
of unity subordinate to {U,}, but it also has the property that for
each q, is uniformly bounded in the This
is immediate from the observation that = — 8).

Now choose c, d as in Lemma 6.4.6. Let C We may
then apply 6.4.6 to each Summing over a, we obtain

(1) >2 Re((cI +
a

We shalL now compare the left side of this equation to Re((cI +
dD)4,, 4,) and the right side to This wi1l then yield the
required inequality. Both of these comparisons will use the same
technique, namely, an application of Lemma 6.4.5.

We claim first that there is a constant K1 such that for all E
C°(K'1),

(2) > � —

Namely, we have

= ((jr — ci') = — Mm4,, ci').
aES

On the other hand

>2
=

=
aES aES aES

Therefore

(3) — = (Djço,ço)
aES
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where D1 is the differential operator

D1 = — — — A)' }.
.ES

Then D1 is defined on all R", all coefficients are it BC°°(R"), and
order(Di) 2m — I. Therefore by Lemma 6.4.5 there is a constant
K1 > 0 such that for all E

(4) � +

Combining equations (3) and (4), we obtain (2).
We now make a similar argument to show that we can find K2>

o such that for all

(5)

{
Re((cI + dD)(ib,p), } — Re((cI 4- dD)ço,

sES

S +

Namely, the left side is

(ci + — 1+ dD)rp,
.ES a€S

=

where D2 is the differential operator

D2 = — M,,,2(cI.:-dD)}.
,ES

As above, this operator is defined on all co-
efficients, and order(D2) < 2rn — 1. Thus, equation (5) follows
immediately from Lemma 6.4.5.

Combining equations (1), (2), (5) yields

Re((cI + + + � —
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Thus,

Re((c'I + ?
where c' = c + K1 + K2. Thus, for all E Gr(H"),

Re((2c'I + �
and this proves Garding's inequality in general.

6.5. A spectral theorem for elliptic operators
In this section we apply the spectral theoreni for compact op-

erators (Theorem 3.2.3) to deduce a spectral th€orem for elliptic
differential operators. In addition to 3.2.3, we use of Rel-
lich's theorem (5.2.8), Garding's inequality (6.3.11), and elliptic
regularity (6.3.14).

We recall that an orthonormal basis of L2([—r,irj) (with nor-
malized Lebesgue measure) is given by .= n E 1.
In section 3.3 we discussed this as a natural choice of basis for
L2([—w, w)), as they are simultaneous elgenvectors for the transla..
tion operators on the circle group under the natural identification
L2([—ir, L2(S'), and saw how to generalize this to other com-
pact groups. Here we observe that we also have that are
eigenvectors of the differential operator D = on jr). D
is of course just the one- dimensional Laplace operator, and is el-
liptic. This section is devoted to proving the following result which
implies the presence of an orthonormal basis of cigenvectors in a
much more general setting.

THEOREM 6.5.1. Suppose c� c R' is open and hounded. Let D
be a formally self-adjoint strongly elliptic differtntial operator of
order 2m defined on a neighborhood of ii. Then is a sequence

E C°°(1Z) n H such that
1) is an orthogonal basis of L2((Z); with % suitable choice
of inner product on Hm(tl), {coj} iB an ortlic)normal basis of
Hm(cz).
ii) There are E R with Dq.'1 = i\J IPJ.

iii) —' 00.
iv) exhausts the set of eigen values for D wi 'Ii eigen functions
in Hm(1Z); for each such eigen value, the eigenspace in Hm(cZ) is
finite dimensional.
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REMARK: There may be many other eigenvectors of D in
with eigenvalue not in {A5 }, but where the eigen vectors do not lie
in Hm(fl). A simple example appears in 6.5.2 iielow. This is a
reflection of the following fact (which we do not prove): If Il has a
sufficiently smooth boundary and p is a function which is smooth
on a neighborhood of f2, then E Hm(c2) if and only if D°ço = 0
on the boundary of for all IaI < rn. One can. in fact, develop
a theory of boundary values for functions in V in which
case Hm(fz) consists exactly of those functions with all derivatives
below order m vanishing of the boundary. Thus, Theorem 6.5.1
says not only can we find an orthonormal basis of L2(Q) consisting
of eigenvectors of D, but that these eigenfunctions can be chosen
to lie in a space of functions with some given boundary behavior.
This raises the question as to when one can cho,se to be an
orthonormal basis of L2(L�), eigenfuctions of D, and satisfying some
other type of boundary condition. This is one question that arises
in the study of boundary value problems for partial differential
equations.
EXAMPLE 6.5.2: i) Let Li = (0,T) C R, and D = 82/812. Then
we can take = sin(nxt/T), n > 0. Tht eigenvatues are

= —.n2x2/T2. For any A K, = sin(At) will be an eigen-
function of D in L2(Li) with elgenvalue —A2. Furthermore, for any
a, b R, = at + b will be in the kernel of D, i.e., is an eigen-
function with eigenvalue 0. However, as one ma; verify (exercise
6.13), none of these other eigenfunctions lie in H'(Li).
ii) Let D = on R2. If Li = (0, 1) x (0, 1), then the functions
'pn,k(s,t) = sinfrns)sinfrht), nh> 0, are an orthonormal basis
of L2(Ll) consisting of eigenfunctions lying in H& (Li). The eigen-
values are —ir(n2 + k2). For a general Li, it is not easy to compute
explicitly the eigenvectors and elgenvalues.

We begin the proof of Theorem 8.5.1 with the following direct
consequence of Garding's inequality. For D = E., these facts ap-
pear in Proposition 6.2.5.

PRoPosITION 6.5.3. Let D and Li satisfy the h) of The-
orem 6.5.1. Choose (using 6.3.10) a, b E R 811(1 that Garding's
inequality (6.3.11) holds for all Cr(1Z). Th..

i) al + bD: Hm(Li) -. Hm(Li) is an isomorphism.
ii) Define B : H"1(1Z) x Hm(fZ) —i C by =
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((al + bD)'p, Then B is an inner product on Hm(f�) that
defines a norm equivalent to the standard one.

PROOF: i) Since D is of order 2m, the map in qu.stion is bounded.
For ip E (12) we have by definition that

II(aI + = sup{I((aI + I = 1}.

Letting = and applying Garding's inequality (6.3.11),
we obtain II(aI + bD)colJ_m � IIWIIvn. Thus al .' bD is bounded
below. To see a! + bD is an isomorphism, by 4.1.6 it suffices
to see that (al + bD)* : H—m(12)' Hm(12)' is also bounded
below. however, since D is formally seif-adjoint., this map can be
identified with al + bD : Hm(f�) —+ Hm(12), wi ich we have just
seen is bounded below.
ii) B is sesquilinear since D = D*. Since order(Li) = 2m, we can
write aI+bD = where all D1,1 and .D112 are of order
at most m. Then if E Cr(12), =
so for some c. In particular, �

On the other hand, Garding's inequality implies �
verifying the assertion.

PROOF OF THEOREM 6.5.1: By 6.5.3, we can dfine A : H_m(12)
Hm(12) by A = (al + bD)-'. Let i : Hm(12) —+ Hm(1l) be the

inclusion. Then T = A o i : Hm(12) —+ Hm(12) is a bounded opera-
tor. Since 12 is bounded, Rellich's theorem (5.2.8) sand Proposition
3.1.14) implies that i, and hence T, is compact. \'e claim that T is
self-adjoint with respect to the inner product B f 6.5.2. Namely,
for i,b E

= ((CI + bD)(A =

Hence we also have

= = =

Therefore T is seif-adjoint and compact. We now apply the spectral
theorem (3.2.3) to obtain an orthonormal basis of Hm(12)
such that T'p1 = where f.3j E R and 0 as j oo. Since
i and A are both injective, so is T, and therefore kr each 5 we have
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/3j 0. Applying aI+bD to the equation = we deduce
'P1 = /3,(aI + and thus D'PJ = Ajçp, where Aj =
Since 13, —. 0, IA1I —. oo. Since D is elliptic, Corollary 8.3.16
implies E C°°(cl).

We know is an orthonormal basis of Hm(tl). We claim it is
also an orthogonal basis of L2(12), i.e., is an orthonormat
basis of L2(t1). Since the finite linear combination of are dense
in Hm(1l), they are also dense in L2(t)), and hcnce (Proposition
A.26) it suffices to see are mutually orthogonal in For
i k we have

O=B(cpj,wk)= ((aI+bD)cQJ,'Pk)

Thus, çoj .L 'Pk in L2.
To complete the proof of Theorem 6.5.1, it only remains to prove

assertion (iv). Suppose D'P = where 'P E HtmffZ), w 0. Then
(al + = (a + and since al + bD is on Hm(1l)
(6.5.3(a)), a+bA 0. Thus, (a+bA)1 is an eigen alue ofT, 80 (a+

= /3, for some j, and therefore A = A,. Furthermore, is an
elgenvector of T with eigenvalue and this spare of elgenvectors
is finite dimensional by 3.2.3. This completes the proof.
REMARK 6.5.4: We conclude this section with L. few incomplete
but hopefully suggestive comments regarding the extension of this
result to compact manifolds.
I) If M is a compact smooth manifold we can define Sobolev spaces
and differential operators on M. If M has nc boundary, then
L2m(M) = Hm(M), and the discussion of boundary values in
the remark following the statement of 6.5.1 is n )t relevant. One
can then deduce that if D is a formally sell-adjoint strongly ellip-
tic operator on a compact smooth manifold (with a given volume
form), then there is an orthonormal basis cf L2(M) consist-
ing of eigenvectors of D, each 'P1 is smooth, IA1I oo, and {A1)
exhausts the eigenvalues of D for any eigendistril ution. In partic-
ular, every eigenspace is finite dimensional. If M is the circle and
D = d2/d02, the eigenvectors are the standard basis
co,,(O) =
2) If M is a compact Riemannian manifold, then the Rieman-
nian metric defines in a canonical way a SeCOH1 order formally
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seif-adjoint strongly elliptic operator A on M called the Laplace-
Beltrami operator on M. The eigenvalues of A (which form a
discrete subset of R) are thus geometric invariantt of M, and there
are a number of interesting relations between and other ge-
ometric properties of M. In a similar way, if fl c. R" is open and
bounded, the eigenvalues of A appearing in Theor 6.5.1 are nat-
urally attached to IZ, and are a reflection of the 'shape" of 11.
3) In certain cases the Peter-Weyl theorem (3.3 1) and the spec-
tral theorem for elliptic operators are closely connected. Namely,
suppose C is a compact Lie group. Then there is a G-invariant
Riemannian metric on G. If we let A be the associated Laplace-
Beltrami operator on G, then every g E C acting by the regu-
lar representation on C°°(G) commutes with A, rind therefore the
eigenspaces of A (which are finite dimensional) are C-invariant.
Hence, the eigenspace decomposition of D gives a decomposition
of L2(G) into finite dimensional C-invariant subspaces. In other
words, for compact Lie groups, the Peter-Weyl theorem (as we
have stated it in 3.3.4) (and which, we recall, we deduced from the
spectral theorem for compact operators), follows, from the gener-
alization of the spectral theorem for elliptic operators (6.5.1) to
compact manifolds. Once again, if C is the circle, the C-invariant
Laplace-Beltrami operator is A = d2/d02, and the eigenfunctions
are E Z).
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EXERCISES

6.1 Suppose 12 C R" is open and 12 = UiEI V1 is a union of open sets.
If T1,T2 E1Y(c�) and T1 =

T for each i there is some f E
such that TI i' = T11, show that T = T1 where / LL(12) and

a.e.
6.3 Verify the assertion of Example 6.1.9(b).
6.4 1ff L'(R"), show f Hk(R) for some k 1.
6.5 If U C V, show that for any k e Z there is a natural inclusion

Hk(U) C Hk(V).
6.6 If 12 = and E such that for all ij, T1IVjflV1 =

T, 1V1 n there is a unique T D'(12) inch that

T E D'(12) and 81T = 0 for all i. U 12 is connected,
show T is a constant function.

6.8 Suppose p is a finite measure on R'1. Show there is some f E
LL(R") such that p = Df (as distributions) where D = o

o Hint: For E Cr(RI*) write -- Dçp, where
=

6.9 If 12 C is open and (2 (2 is a define
D'((2) V'(ti) to be the adjoint of the translation operator

defined on D(12). Find all T D'(R') which are invariant
under the action of H" on itself by translation.

6.10 A distribution on R" is called tempered if it continuous with
respect to the topology on (H") as a subspace of the Schwartz
space of rapidly decreasing functions (exercisc 5.4). Show any
T E is tempered. Show any f E LP(R") (1 <p < oo)
defines a tempered distribution. Give an example of a non-
tempered distribution.

6.11 Let T 7Y(12). Show there is a sequence T1 E such that
for every open V C (1 with V C 12 and V ccmpact, we have
T, V = V for all sufficiently large j.

6.12 Let D be an elliptic operator on (2 and F C. Show that
E L2(12) I C°°(12) and Dço = is in L2(Q).

6.13 Suppose C([a, 6]) and that is smooth on an open interval
containing [a, 6]. If y' E IP((a, 6)), show . = o.

6.14 If (2 C H" is a bounded open set and u C°'(CZ) is harmonic
(i.e., u H'(12) unless u is identically 0.
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