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1

Why we need well-designed monitoring
programs

1.1 human pressures on flowing waters

How serious are the current and future problems created by human

activities on flowing waters? Impacts on ecological processes from alter-

ed flows, salinization, organic pollution, exotic species and the like can

be very difficult to assess. These pressures being placed on global water

sources can be seen convincingly in some statistics on the proportions of

stream and river flow used by human beings.

First, fresh water comprises about only 2.5% of the Earth’s total

volume of water. After subtracting the volumes of fresh water locked up

in ice caps and glaciers, only 0.77% (� 10665 000 km3) is left as free fresh

water (i.e. in aquifers, soil pores, wetlands, streams etc.; Postel et al.

1996). Flowing waters are only a very small fraction of the world’s fresh

water, with global annual runoff being about 40 700km3 (Postel et al.

1996) or � 0.003% of the Earth’s total volume of water. However, like

atmospheric water, the surface movement of fresh water into and out of

rivers and streams is high and the residence time is low (c. 8–14 days).

Human beings use or affect a high proportion of this water.

Human-made impoundments now have a major influence on the flow

and ecology of many rivers, storing about 14% (5500 km3) of total annual

runoff. Human use of fresh waters is rapidly rising as populations

increase and standards of living rise (e.g. daily consumption of rural

peasants may be 50 L per person compared with 400 L per head for an

affluent householder; Newson 1994). Worldwide total use of fresh water,

including irrigation and industrial demands, is about 1800 L per person

per day (Pimentel et al. 1997). Levels of consumption are rapidly rising

because both industry and irrigation require large amounts of fresh

water (e.g. 2100 L of water to produce 1 kg of steel (Newson 1994); 2000 L

to produce 1 kg of soybeans, and 100 000 L to produce 1kg of beef
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(Pimentel et al. 1997)). These needs, even if constrained by sensible

planning aimed at achieving some level of ecological sustainability, are

already placing, and will increasingly place, immense pressures on the

fresh waters of the world, especially flowing waters (Pimentel et al. 1997;

Postel 1997; Postel et al. 1996). By the end of the year 2000, human water

use in Europe was expected to have risen to 673 km3 (Shiklomanov 1989)

or 63% of riverine base flow. Human beings now directly consume

� 18% of available runoff. Withdrawals from water bodies combined

with water for in-stream flow purposes (e.g. pollution dilution and

treatment) account for a further 6780 km3 or 36% of available runoff

(Postel et al. 1996). Thus 54% of available runoff or 30% of the total

accessible renewable fresh water supply of the world is now used by

humans (Postel et al. 1996). The problem of increasing human demands

for water is particularly stark in the world’s driest regions. With current

rates of population growth, arid and semi-arid regions of Africa and Asia

are likely to host � 75% of the world’s population by 2025, but per

capita water supplies are inadequate now to secure food self-sufficiency

(Falkenmark 1997).

To meet these increasing human needs, more dams and more

diversion schemes will be built. Postel et al. (1996) estimated that for the

next 30 years about 350 new dams (� 15mhigh) per year will be built. In

addition, there will have to be an emphasis on the conservative use of

water and on the recycling of polluted water to meet new demands.

Many rivers, as a result of dam construction and water abstraction, are

now only a trickle of their original flow. Stark examples of this demise of

once-impressive rivers include the Colorado River in USA and theMurray

River in Australia. Currently, 10 684 GL per year or 78% of mean annual

flow is withdrawn from the Murray River, with more than 95% of the

divertedwater being used in irrigation (Australian Department of Indus-

try, Science and Tourism 1996). Clearly, the capacity of rivers and their

biota to maintain any substantial degree of ecological integrity and to

perform ecosystem services, such as pollution dilution and water quality

protection (Postel & Carpenter 1997), are going to be under immense

pressure from large diversions and regulation.

Along with the pressures from direct consumption and use of

water by humans, flowing waters face myriad other stressors, many of

which will increase in spatial scale and strength with increasing human

populations. Increasing development and activity on stream catchments

will increase such degrading forces as salinization, sedimentation, eu-

trophication and pollution from point and non-point sources. Habitat

loss and fragmentation due to activities such as drainage, channeliz-
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ation, river regulation and the removal of in-stream and riparian vegeta-

tion and woody debris will lead to loss of biodiversity. In streams native

biota may have to face pressure from the proliferation of exotic biota, be

they pathogens (new viruses, bacteria and fungi) or competitors and

predators. Finally, at a large scale, both temporally and spatially, there

are the deleterious changes exerted on streams and their catchments by

climatic warming that include trends such as increasing water tempera-

tures, increases and decreases in stream discharge and an increase in the

intensity and frequency of floods and droughts (Houghton et al. 1996;

Karl et al. 1997). The number of streams already in a damaged state is

large. For example, of the 5 200000 km of streams in the contiguous

states of USA, only 2%were considered to be of high quality (Benke 1990).

Of the 139 large rivers (i.e. virgin mean annual discharge � 350m3s�1)

in North America north of Mexico, Europe and Russia, 61% were affected

by flow regulation and fragmentation (Dynesius & Nilsson 1994).

Faced with these rapidly expanding human-generated pressures,

not only will it become increasingly difficult to protect andmaintain the

diverse biota of flowing waters, it will become much more difficult to

protect and conserve the water resources of rivers for human use. Ongo-

ing, rigorous environmental monitoring that allows us to detect, assess

and manage human impacts properly is vitally important.

1.2 the need for this book

This book is about rigorous impact assessment. It is about the logic and

ways we may make strong inferences that lie behind the design of

effectivemonitoring programs – those that allow us to detect and assess,

with some confidence, whether specified human activities are causing

unacceptable changes to the environment (Box 1.1). We consider impact

assessment primarily from an ecological perspective – that is, we are

interested ultimately in effects upon biota, but we do consider some

physicochemical variables as well. The book does not deal with methods

for carrying out compliance monitoring (i.e. comparing end-of-pipe pol-

lutant levels with establishedwater quality standards) nor withmonitor-

ing the general state or ‘health’ of environments, although some of the

principles we discuss can cross over into these sorts of monitoring

programs as well. These other two types of monitoring are carried out

for different purposes and are described in detail in other publications

(see chapter 3).

Good impact assessment studies are complicated to design proper-

ly – that is, in such a way as to minimize decision errors. Monitoring

The need for this book 5



Box 1.1What are ‘unacceptable environmental changes’?

Impacts can be manifest as changes in a variable of interest in

either direction, either increase or decrease in value. It is then a

social decision whether that detected change is deemed to be

desired and/or acceptable, or their converse.

Not all impacts need be deemed unacceptable (e.g. increased

nutrients may increase biomass of macrophytes that in turn

provide more shelter for a wider range of biota). What is

acceptable or unacceptable is a value judgement that ought to be

decided by the wider public, not just scientists. Within this,

scientists have a duty to identify the changes going on and to

judge how unusual they are (subjects that are covered by this

book). Obviously society may choose to put more resources into

detecting changes that are deemed unacceptable, an issue we

return to in chapter 11.

For these reasons, when we use the word ‘impact’ in this

book, we don’t limit our meaning to a negative connotation. Nor

do we presume that an impact is present, even when we omit the

adjective ‘putative’. All sorts of impacts should be detected to

understand the full range of consequences of human actions.

needs to detect significant human impacts when they are present, but it

also needs to guard against imputing impacts when they, in fact, do not

exist. Such essential studiesmay range fromdealingwith a single impact

at a specific point to large-scale, catchment-wide studies that address

multiple human impacts. In all such studies, monitoring of environ-

mental variables (like water or sediment quality), biota or ecological

processes is carried out. Monitoring to achieve the necessary sensitivity

maybeboth time-consumingandexpensive. Thus, theremust always bea

trade-off between the resources available to be invested in monitoring

and the reliability required of any data upon which management deci-

sions are based. It should also be borne in mind that ecological monitor-

ing at both the spatial scale and sensitivity required for effective

management may require the establishment and maintenance of large

collaborative and interdisciplinary teams. This would be a new step for

manymanagement agencies andacademic institutions (Carpenter 1998).

The above paragraphs describe the sorts of human impacts we see

on streams and rivers and why detecting and measuring such impacts

are difficult exercises. The variety and incidence of human impacts are
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likely to increase, and it is becoming increasingly imperative that

monitoring studies be well designed. Poorly designed monitoring pro-

grams are costly, both in unacceptable impacts that go initially undetec-

ted as well as in the great costs of eventual restoration and

rehabilitation of sites, which can be prohibitively high. Money may

actually be wasted in particularly poor monitoring. Moreover, as we

shall discuss, well-designed monitoring programs incorporate the rela-

tive financial costs of different designs. Trade-offs need to be understood

by all involved parties – representatives of industry, government depart-

ments and conservation groups, and interested members of the public –

but especially by those doing the monitoring. Although most monitor-

ing programs will require compromises in terms of numbers of samples

or levels of replication (usually driven by financial considerations), some

compromises are far more sensible, relative to the information that can

be gained, than are others. Some compromises are completely unaccept-

able in that the resulting design cannot produce data that can result in

any definitive or objective decisions about impacts. Clearly, it is import-

ant that those involved in conducting monitoring programs have a

sound grasp of the conceptual bases of monitoring design and that

considerations of design precede the sorts of decisions that would affect

data collection.

Obtaining an adequate grasp of all of the issues relating to good

design is difficult. The literature is spread over a great variety of jour-

nals, and some of the discussion has become so technical as to be beyond

the immediate grasp of many professionals. Opinions have also become

entrenched within some sub-disciplines and effective interchange of

new ideas seldom occurs. Some important topics have had little dis-

cussion or debate. Thus, the objectives of this book are threefold:

1. To provide a logical framework for making decisions about the

existence, sizes and effects of human impacts on flowing waters

2. To provide designs that are well-grounded theoretically but also

offer practical solutions to real problems

3. To initiate discussion and offer some solutions to problems that

have traditionally been neglected.

1.3 the scope, approach and intended audiences of

this book

Philosophically we believe that it is our duty to monitor impacts that

humans have on the environment, but then the onus is also upon us
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to do this in an efficient manner. Mindless monitoring, which uses

practices just because they ‘are the way it’s always been done’, is an

ineffective use of resources unless designs are evaluated and carefully

considered for the return of information versus the costs of their doing.

Indeed some monitoring is merely a waste of scarce resources rather

than anything worth doing for itself.

This book is written by a larger number of authors than many

earlier works in this area. We consciously did this to pool our resources

and experience with a range of monitoring schemes in, of course, fresh

waters but also other sorts of habitats. We also were mindful that many

of the topics we sought to tackle (e.g. effect sizes to detect) did not come

from a large body of work with any clear consensus. Hence we had to

push such ideas along further than before. Each author took responsibil-

ity for beginning one or more chapters but each has been scrutinized

and altered by all eight of us, during a series of workshops and rewriting

sessions, by the time you see this in print.

This book is aimed at several audiences:

• Ecologists, especially those working in freshwater ecosystems but

also those working in other habitats who are interested in the

principles of good monitoring design

• Other scientists, social scientists or academics in the humanities

with an interest in human impacts on the environment (e.g. envi-

ronmental chemists, hydrologists and geomorphologists, engin-

eers, economists, human geographers)

• Professionals in the water industry and government, including

those in managerial decision-making positions

• Postgraduate or upper undergraduate students.

As such, we will usually assume readers have at least some familiarity

with basic lotic ecology (and its associated jargon) as well as basic

statistics. Given the often highly technical nature of the material, this

book is not intended to be particularly accessible to lay persons with an

interest in human impacts. This is not because we think that goal is not

worthwhile – to the contrary. However, our aim is to produce a practical

manual that can be used by those with the responsibility to design and

manage monitoring programs. It is not possible to meet this goal (with

its attendant requirements of precision of language and scholarly cita-

tion) without becoming highly technical and fairly detailed.We believe a

book that is fully accessible to lay persons with an interest and desire to

get involved in monitoring and managing human impacts is very much

needed, but it needs to be a separate publication.
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1.4 the structure of the book and the purpose of

each of the chapters

Designing an effective monitoring program requires that we make deci-

sions about many things: the characteristics of the particular human

activity at hand; its likely effects; what goals we are trying to achieve;

howwewill decide an impact has occurred; and so forth. These decisions

need to be addressed in a sensible order, however, if we are to design an

effective monitoring program that answers the questions we want it to

answer. Some aspects of designing a monitoring program cannot be

addressed before others have been dealt with satisfactorily. An ineffec-

tive, or inefficient, monitoring program is a likely outcome when design

decisions are made in the wrong order. For example, in our experience it

is common for people to want to discuss what variables to monitor well

ahead of deciding what questions the monitoring program is actually

supposed to answer. That sort of a sequence can lead to inappropriate

choices of variables and result in a monitoring program that doesn’t

answer any of the questions management considered important.

So, the crux of designing an effective, efficient monitoring pro-

gram is not only to understand what decisions about design must be

made, but to address them in the right order. Figure 1.1 sets out the order

we suggest for these design decisions, together with the relevant chap-

ters where the relevant issues are discussed.

The chapters of this book are divided into three parts. The first

part, ‘Introduction to the nature of monitoring problems and to rivers’

(chapters 1–3), sets out the nature of the problems we face and the need

for a better understanding of principles of good monitoring design

(chapter 1), as well as the background and philosophy for the whole

tome. Chapter 2 describes some of the main features of flowing water

ecosystems as a refresher, a source of further reading and to highlight

how characteristics of rivers and streams affect our monitoring designs.

Chapter 3 describes the different classes of perturbations wrought by

humans on the environment, and the different aims and approaches of

monitoring programs designed to meet different sorts of management

needs and questions. In particular, we describe the type of monitoring –

impact assessment – that is the topic of this book. In our second part,

‘Principles of inference and design’ (chapters 4–7), we first set out the

necessity for a formal, logical framework for making statistical deci-

sions, explaining the basics of hypothesis-testing, including some novel

additions to the framework for assessing human impact studies (chapter

4). Chapter 5 describes what is logically required for ideal monitoring

Structure of the book 9
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Fig. 1.1 (opposite) A flow diagram that indicates a logical and efficient order

in which to make decisions about the design and implementation of

monitoring programs to detect human impacts. In each case, dotted lines

point to the main chapters where issues regarding that decision are dis-

cussed.Wheremultiple chapters are given, they collectively cover theoreti-

cal issues regarding that decision, past experiences, and suggested,

practical ways of making that decision. Note that the flow diagram applies

also to monitoring programs designed to examine restoration efforts, with

issues specific to those programs addressed in chapter 14.

designs, and is perhaps themost important chapter in the whole book. It

sets out a theoretical ideal (in language as precise as we can make it)

without considering any of the compromises we are always forced to

make for real monitoring programs. Chapter 5 should be read with this

aim in mind, because the rest of the book is about how we deal with the

compromises we are forced to make that usually prevent us from ever

reaching this ideal. Chapter 6 then delineates the reasons why, in the

past, we have rarely achieved ideal monitoring designs for rivers and

streams and the consequences of the compromises we have made. Chap-

ter 6 may be fairly safely skipped by those wishing to move immediately

to analytical and practical solutions, but it does illustrate further why

good designs are essential, and how and why rivers and streams pose

particular problems. Chapter 7 then tackles directly the specific choices

for designing monitoring programs and the analytical models available

to analyse the data, together with the decisions required, and conse-

quences of, applying those models. In our third part, ‘Applying prin-

ciples of inference and design’ (chapters 8–15), we consider all of the

practical constraints that limit monitoring programs, with examples

from rivers and streams. In chapter 8, we discuss how to apply the

designs discussed in chapter 7 for both small- and large-scale impacts.

Chapter 9 describes how, using a levels of evidence approach, we can

improve the inferential strength of our monitoring programs, particu-

larly for situations where whole elements of good design (such as con-

trols or data from before human activities started) are missing. Chapter

10 examines briefly the criteria that drive choices of variables used to

detect effects of, and responses to, impacts and provides an overview of

the sorts of ecological variables that can be used. Chapter 11 focuses on

the little-examined but critically important issue of deciding what con-

stitutes an ‘important’ change – statistically speaking, an important

effect size – and makes some suggestions for ways in which effect sizes
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could be rationally decided. Chapters 12 and 13 consider another ne-

glected issue: the ways in which designs can be sensibly modified to

optimize information content relative to financial cost. This is done by

firstly examining how decisions require us to trade-off risks (chapter 12),

and then by giving a guide to optimization procedures relative to finan-

cial costs (chapter 13). While our major concern is with detecting and

understanding deleterious impacts, restoration of streams and their

catchments is rapidly gaining momentum. Thus, monitoring exercises,

similar to those used to assess impacts, can and should be used to follow

and evaluate the success, or otherwise, of restoration efforts. The disci-

pline of restoration ecology is a young one and does not have a back-

ground of accumulated knowledge or tested principles. Thus, its

development will depend upon the accumulation of well-documented

cases, cases that we wish to see done with properly executed monitoring

and assessment (Hobbs & Norton 1996; Palmer et al. 1997). The principles

we discuss throughout this book apply to restoration projects as well,

something we emphasize in chapter 14. Finally, chapter 15 considers

what happens after a monitoring design is in place; it describes the

criteria by which monitoring programs might be evaluated and con-

siders further research that could complement monitoring programs.

We recommend that each of the chapters is read in sequence, but

those who wish to can skip some of them. For example, experienced

freshwater ecologists could omit chapter 2 but, on the other hand,

should be interested in how we apply the monitoring models to streams

(chapter 8). In contrast, their students or ecologists working in other

ecosystems may profit more from our summary of how rivers work

(chapter 2). Managers may not be interested in rivers as ecosystems but

should benefit from the gentle introductions to complex inferential

issues provided in chapters 3–6. Statisticians may also be interested in

how their inferential models are applied to this real-world situation, but

probably will not need to read chapter 4.

As an aid to readers, we end each chapter with a selection of key

points as fundamental considerations for good monitoring design. The

most significant of these Important issues, as we term them, are

gathered together into Box 15.1, and are repeated in the end papers of

the book. Here is the first important issue:
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1.5 important issue

• Current levels of human use and abuse of water resources mean

we need to implement good monitoring design as an essential –

not luxury – requirement for their further use and management.
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2

The ecological nature of flowing waters

In this chapter we provide a very brief introduction to some major

concepts in stream or lotic ecology. This chapter is not meant to be

comprehensive, but serves to explain some ideas and terms referred to

later in this book. Those readers unfamiliar with the basic nature and

coverage of stream ecology are recommended to consult the general

textbooks of Allan (1995), Giller &Malmqvist (1998) and Boulton & Brock

(1999). Readers wanting to gain an understanding of stream hydrology

are recommended to consult Gordon et al. (1992).

2.1 rivers and their catchments

Flowing waters or lotic systems comprise a large array of intergrading

types of water channels, be they springs, rills, runnels, becks, burns,

brooks, creeks, streams, drains, tributaries, distributaries or floodplain

rivers. Even though streams and rivers only make up a small fraction of

the surface area in most landscapes, flowing waters are a vital environ-

mental component, even in deserts. Running waters have shaped and

continue to shape many landscapes, as they transport water, sediments,

chemicals, detritus and biota from headwaters to floodplains and estua-

ries, and finally to the seas. Rivers supply water to both terrestrial

organisms (from trees to humans) and the fully aquatic biota, as well as

the biota that inhabits terrestrial systems that are intermittently

flooded. Streams in the natural state serve as corridors for themovement

of the aquatic biota, and their riparian fringes serve as valuable habitat

for, and as potential corridors for movements of, the terrestrial biota.

Streams are surrounded by their drainage or catchment area,

which covers the area fromwhich the stream derives its water. Adjacent

catchments are separated from each other by the drainage divide, which

usually follows the highest points between the catchments (Fig. 2.1a).
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Fig. 2.1 (a) Plan of an upland stream catchment showing the drainage

divide (- - -) and the dendritic form of the drainage pattern; (b) pathways of

movement of water in an upland stream catchment.

The amount of water entering the catchment as precipitation that ends

up in the stream depends greatly on characteristics of the catchment,

such as catchment geomorphology, geology, soil type and development
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and vegetation types and extent of cover. A large part of the precipita-

tion entering a catchment is returned to the atmosphere by transpira-

tion and interception by plants, and by evaporation (Fig. 2.1b). Water

falling on the ground may infiltrate the soil or run overland. Overland

runoff may be considerable in catchments with impervious surfaces,

such as natural rock, or roads and carparks. In catchments with

permeable surfaces, water infiltrating the soil percolates down to the

water table. Streams arise where the land surface intersects the water

table and groundwater from the water table usually comprises a major

part of the stream discharge. Perennial streams are maintained by the

groundwater flow during times of little or no rainfall.

A major issue to consider in monitoring and measuring human

impacts is that streams and rivers are inextricably linked with their

catchments. Hydrologists and geomorphologists have realized the close

links between flowing waters and their catchments for some time, while

ecologists have come to appreciate the strong links only relatively re-

cently (Hynes 1975). Similarly, up until quite recently, planning and

management of rivers were largely concentrated on the channels them-

selves, and it is only now that we see the advent of concepts such as

integrated catchment management. However, there are still many as-

pects of channel – catchment linkages, such as the ecological function-

ing of riparian zones, that we understand only poorly.

Streams receive water and materials (both dissolved and particu-

late) and are provided with physical substrata (from silts to boulders)

from their catchments. Gases, such as oxygen, enter the streams directly

from the atmosphere. Many chemicals are found in very small amounts

in rainfall and then enter streams in larger amounts, usually via catch-

ment processes, such as solution and erosion. Major cations of biological

importance are sodium, potassium, calcium and magnesium, and im-

portant anions include chloride, sulphate and bicarbonate. Other el-

ements in very small amounts may be critical for the metabolism of

particular biota. For example, silica derived from the erosion of rocks is

essential for the growth of diatoms. The various forms of nitrogen and

phosphorus are vital nutrients that move from the catchment into

flowing waters. Because of the unidirectional flow, nutrients are dis-

placed downstream while moving between various biotic and abiotic

compartments. The nutrient pathways of streams are open rather than

cyclic (as they are viewed in standing waters) and the nutrients are seen

as ‘spiralling’ downstream (Elwood et al. 1983). Thus, the movement of

nutrients is a function of the rate of downstreamwater movement, both

surface and subsurface (hyporheic) water, and the rates of uptake, reten-
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tion and release of nutrients by the biotic and abiotic components of the

stream environment.

Ecological processes within catchments exert a strong control on

the inputs of organic and inorganic chemicals, both particulate and

dissolved, into the downslope stream (e.g. Fisher et al. 1998; Likens et al.

1977). The riparian zone with its vegetation may exert a strong role in

regulating inputs of materials from the catchment into streams (Greg-

ory et al. 1991; Naiman & Décamps 1997). The disruption of inputs from

the catchment is a reliable signal of disturbance. Natural disturbing

forces on catchments include fire, cyclones, defoliation by insects etc.,

while human-generated disturbances consist of forces such as acid rain,

timber harvesting, livestock grazing and land clearance. Logging catch-

ments with associated roading may increase the inputs of nutrients,

such as nitrogen and phosphorus, and of sediments into streams (Waters

1995), and alter the inputs of organic matter (Webster et al. 1992).

Salinization of rivers in Australia, especiallyWestern Australia, is a stark

example of the effects of catchment disturbance (Williams 1987). Dry-

land salinity arises because land clearance greatly reduces native vegeta-

tion cover, reducing transpiration and allowing saline groundwater to

rise to the surface and salinize surface waters, including headwater

streams.

Streams interact with and shape their catchments by moving

sediments through three major and interrelated processes: erosion,

transportation and deposition (Leopold et al. 1964). Geomorphologically,

streams and rivers can be divided into three intergrading longitudinal

zones. The upland headwater streams are dominated by erosion (produc-

tion zone of Schumm (1977)), followed by the zone where sediment

transportation is dominant (transfer zone of Schumm) and finally on the

floodplain sediment deposition dominates (storage zone of Schumm). In

the erosional or production zone, the water is generally clear, well

oxygenated and turbulent. Habitats encountered here consist of riffles

(sections of relatively shallow, rapid and turbulent flow over coarse

substrate), pools (sections of relatively deep, slowflow oftenwith eddies),

along with cascades, rapids, chutes, runs or glides, and debris dams. The

major habitat division is between riffles and pools. In the transport or

transfer zone, the riffle–pool sequence is maintained at a larger scale,

and lateral and mid-channel bars are evident. The channel may be

braided and large log-jamsmay have an important influence on channel

morphology. In the depositional or storage zone, the river is large,

deep and turbid with a distinct floodplain. Due to aggradation by

sediment deposition, the river now meanders across the floodplain. The
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meandering course steadily changes with time to produce cutoffs that

become oxbow lakes or billabongs and these may give rise to a complex

array of floodplain wetlands. The channel bed is made up of fairly

homogeneous fine sediments and theremay be a range of different types

of bars. Large log-jams and persistent snags may produce valuable habi-

tat for the biota.

2.2 the biota of rivers and streams

The biota of flowing waters is both taxonomically diverse and species

rich. This is somewhat surprising given the small surface area of the land

occupied by flowing waters, but not surprising given the high spatial

and temporal heterogeneity both within, and between, streams (Giller &

Malmqvist 1998). Important groups within the biota include bacteria,

fungi, micro- and macroalgae, bryophytes (liverworts, mosses), macro-

phytes, microinvertebrates (e.g. Protozoa, Rotifera, Nematoda), macroin-

vertebrates (Mollusca, Crustacea, Insecta, Acarina, oligochaete annelids)

and vertebrates, notably fish. Taxonomic knowledge is very unevenly

spread with only scanty knowledge being available on microscopic com-

ponents of the biota, such as bacteria, fungi and themicroinvertebrates.

Relatively few organisms live in the water column; most of the

biota is benthic – dwelling on the bottom. On solid surfaces of the

bottom, bacteria and algae may be abundant and they produce biofilms

over the bottom substrata. Detritus particles, from fine to coarse, on the

stream bed are colonized by fungi, predominantly hyphomycetes, and

by bacteria. Both the biofilms, with their algae and bacteria, and the

detritus particles are utilized by consumers. Most of the lotic macroben-

thos, on and in the bottom sediments, are insects andmost of these have

an aquatic larval or nymphal stage and a terrestrial adult stage. Excep-

tions are adults of aquatic Hemiptera and some Coleoptera (e.g. Elmidae,

Gyrinidae). Within the bottom substrata, such as sand and gravel, there

is the hyporheic zone. This habitat is linked with the surface water by

upwelling and downwelling zones, and is also linked with the ground-

water of the water table. In this zone, there is usually an abundant

microbial and microfaunal biota, collectively called the hyporheos. The

hyporheos depends upon detritus as its collective food source.

Nekton is the collective term for that part of the biota that spend a

major part of their lives in the water column. This is a demanding mode

of life, especially in turbulent upland streams, and requires streamlin-

ing of the body and well-developedmusculature. Most river-dwelling fish

are nektonic but there are very few nektonic invertebrates. There is a
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specialized component of the biota called the pleuston associated with

the air–water film of the water surface. These comprise microscopic

organisms, such as bacteria, algae and protozoans, and macroinverte-

brates – invariably scavenging hemipterans.

In the past 25 years, there have been considerable advances in

understanding the metabolism and trophic structure of streams, with

catchment processes being shown to exert a major influence on the

structure and processes of stream ecosystems. Some streams have sparse

riparian vegetation and/or plenty of sunlight and nutrients, which give

rise to foodwebs in which in-stream algal growth is an important energy

source. However, many perennial upland or headwater streams are

heavily shaded by the surrounding catchment and riparian vegetation,

and often by the steep terrain itself. Such streams are strongly hetero-

trophic, with the metabolic functioning of the biota dependent on the

allochthonous inputs from the catchment of both dissolved and particu-

late detritus (Cummins 1973, 1974; Hynes 1975). The dissolved compo-

nent (e.g. humic acids) may be at considerable levels (Mulholland 1997),

but overall the particulate input is metabolically more important. The

particulate input may range from small leaf fragments, to leaves, sticks

and logs. Particles, such as leaves, are broken down fairly rapidly and

metabolized, whereas large pieces, such as branches and logs, break

down slowly and may form debris dams and snags along the river, and

thus generate important habitat.

With the discovery of the importance of allochthonous detritus as

the major source of metabolic energy for the biota of upland shaded

streams, came the grouping together of macroinvertebrates into func-

tional feeding groups (FFGs; Cummins 1973, 1974). The groups are de-

fined by the size and type of food particle consumed, and by mode of

feeding. The major FFGs consist of shredders that feed on large detritus

particles (� 1mm), collectors feeding on small detritus particles

(� 1mm), scrapers that scrape microbial–algal layers off solid surfaces,

piercers that attack living macrophytes, and predators. While the delin-

eation of FFGs has had considerable heuristic value in the development

of stream ecology, it has also generated difficulties by masking interest-

ing patterns of trophic variability in many biotas and across different

stream ecosystems. The value of assigning FFG roles to consumers to

elucidate the trophic functioning of flowingwaters has been questioned

(e.g. Lake 1995; Mihuc 1997). Riverine fish have been classified into

trophic guilds (e.g. Horwitz 1978; Poff & Allan 1995) ranging from omniv-

ores to specialized piscivores. In contrast with invertebrate FFG, fish

guilds currently appear to be rather flexibly defined (Austen et al. 1994).
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2.3 concepts of river structure and functioning

As mentioned previously, rivers have been divided into different zones

using geomorphological criteria (e.g. Leopold et al. 1964; Schumm 1977).

Linked with the physical zonation of rivers, many biologically based

schemes of longitudinal zonation have been proposed (Cummins 1972;

Hawkes 1975; Hynes 1970). For example, in northern Europe, Huet (1949)

recognized four major fish-defined zones along the upland–floodplain

transition. Illies (1962), mindful of invertebrate distribution, delineated

three zones in rivers: the crenon or source-spring zone; the rhithron, the

upland stream zone; and the potamon, the lowland river zone. However,

the evidence for such distinct faunal zonation is poor and the concept of

distinct zonation has been viewed as being ‘a naı̈ve stage’ in the develop-

ment of stream ecology (Townsend 1996).

In 1980with the publication of a paper by Vannote and colleagues,

the idea of a continuum rather than strict zonation was proposed – the

River Continuum Concept or RCC (Vannote et al. 1980). Basically, this

idea proposes that geomorphological–hydrological attributes of flowing

waters form a fundamental template that determines key attributes of

community structure and ecosystem function. Key attributes that

change longitudinally along rivers include the types and levels of or-

ganic matter inputs and transport (levels and proportions of alloch-

thonous versus autochthonous organic matter), the structure of the

invertebrate communities, the representation of functional feeding

groups and patterns of resource partitioning. Despite many criticisms

being levelled at the RCC (e.g. Statzner & Higler 1985; Winterbourn et al.

1981), the concept still remains influential in stream ecology (Cummins

et al. 1995).

The RCC was proposed to explain patterns of river attributes in a

longitudinal direction – it did not address lateral movements of water in

rivers, especially those of floodplain rivers. When in flood, rivers may

move out of their channels onto the surrounding land, the riparian zone

or the floodplain. This inundation may be of considerable duration and

is now regarded as a key event structuring and maintaining the biota

of both the river and its floodplain, whichmay contain a great variety of

wetlands. Such flooding may be very important for the maintenance of

river fisheries (Welcomme 1979). The inundation is called the flood pulse

and the idea linking the river dynamically with its floodplain is known

as the Flood Pulse Concept (Junk et al. 1989). The floods may be regular

and seasonal, for example the annual inundation of floodplains in the

Wet Tropics (Dudgeon 1999; Lewis et al. 1990; Payne 1986), or irregular
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and somewhat unpredictable as in the case of rivers in arid regions

(Puckridge et al. 1998; Walker et al. 1995). Floodplain rivers are ‘flood-

dependent ecological systems’ (Lewis et al. 1990) and human activities

that alter the flood regime, such as damming and water diversion,

impair the ecological functioning and integrity of the river, the flood-

plain and their collective biota (Poff et al. 1997; Rosenberg et al. 1997). The

combination of the River Continuum Concept, which emphasizes catch-

ment–stream channel links and upstream–downstream links, with the

Flood Pulse Concept, which emphasizes the two-way linkages between

the river channel and the floodplain, gives rise to the important concept

that rivers are dynamic systems strongly dependent for their function-

ing on the maintenance of hydrological connectivity with upstream–

downstream and channel–floodplain linkages (Townsend 1996).

Furthermore, an attempt has been made to weld together these

concepts into one grand concept, that of the Fluvial Hydrosystem (Petts

& Amoros 1996). Rivers are viewed as ‘three-dimensional systems . . .

dependent on longitudinal, lateral and vertical transfers of energy,

material and biota’. Longitudinal fluxes, lateral movements and vertical

exchanges with groundwater are major dynamic pathways for river

ecosystem functioning. The concept differs from previous ones in that

an explicit attempt ismade to set levels of spatial scale, ranging from the

drainage basin to the ‘mesohabitat’ (Petts & Amoros 1996).

The advent of the Flood Pulse Concept, apart from its explanatory

value for floodplain ecology, has also served to highlight the fact that at

present there is an incomplete understanding of what floods and their

inverse, droughts, do ecologically to fluvial biota and their functioning

(Giller 1996; Lake 2000). Floods as rapid pulse disturbances in con-

strained streams can alter habitat availability and deplete both food

resources and biota. Surprisingly, after most floods the recovery of the

biota can be fairly rapid. In floodplain rivers, floods may constitute a

major means of wetland replenishment (Sparks et al. 1990). Similarly, in

intermittent streams floods may constitute a major means of supplying

the water for habitat inundation and replenishment (Fisher & Grimm

1988; Gasith & Resh 1999). Far less is known about the slowly developing

disturbance of droughts (Lake 2000).

Rivers differ greatly in their annual flow regimes (Haines et al.

1988) and in their levels of flow variability (Poff & Ward 1990a; Fig. 2.2).

While rivers differ greatly in their flow regimes, there is a poor under-

standing of the ecological effects of flow variability per se. However, it has

become increasingly obvious that the reduction in flow variability, due

to river regulation, has been accompanied by the loss of important biota
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Fig. 2.2 Two extremes of river flow regimes. (a) An annual flow regime for a

groundwater-fed stream where monthly runoff is fairly uniform year

round (Group 1: Uniform of Haines et al. 1988), in this case the Hanapepe

River, Hawai’i (Source: US Geological Survey) and (b) an annual flow regime

of an intermittent stream in a Mediterranean-type climate region where

monthly runoff is clearly concentrated into the winter period (Group 13:

Extreme Winter of Haines et al. 1988), here the Buckland River, Victoria,

Australia (Source: Department of Natural Resources & Environment, Mel-

bourne, Australia). In each case, data from the year 1955 have been plotted.

Discharge data have not been corrected for differing catchment areas (46.6

and 303 km2, respectively).

and by major changes in the structure of the biotic communities (Poff et

al. 1997). Additionally, it should be realized that most of the rivers of

interest to humans, be they consumers or ecologists, are perennial.

However, in many parts of the world, especially Africa and Australia,
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intermittent rivers are common (Gasith & Resh 1999; Lake 1995;

McMahon et al. 1992; Puckridge et al. 1998). These riversmay flow regular-

ly but only in some seasons (Fig. 2.2b), or may flow entirely unpredic-

tably. Again, we understand little of the effects of flow duration or

timing on these systems.

2.4 issues of scale and patchiness in flowing waters

Consideration of scales – both spatial and temporal – is a major issue for

monitoring studies. Scale can be examined frommany viewpoints, from

the viewpoint of particular populations, organisms, groups of species,

ecological processes or particular habitats, as well as different human

impacts. However, a concern for scale has been only a recent advent in

stream ecology andmore attention has been paid to spatial scaling than

temporal. Indeed, investigators seem to prefer doing large spatial-scale

studies in a short time frame rather than small spatial-scale studies over

a long time.

For any ecological investigation, the detection of spatial or tem-

poral patterns is a function of the study’s extent and grain. Extent or

range is the area over which the investigation occurs, whereas grain or

resolution is the size of the individual samples (Mac Nally & Quinn 1998;

Wiens 1989). Thus, in a population survey of a mayfly nymph, the extent

may be a 1 km section of river 10mwide (10 000m2), while the grainmay

be that of a 0.1m2 quadrat sampler. The spatial scope of a survey is the

ratio of the extent to grain, 1� 105 in this case, and the sampling

fraction is the ratio of the number of samples taken to the scope or

potential number (Schneider 1994). The number of unsampled units

relative to the sampled units is the magnification factor or the level of

scaling-up required to make an estimate for the population in the

selected extent.

Like other systems, the grain size used in sampling stream benthos

can have a strong bearing on the levels of accuracy and precision of the

monitoring exercise (e.g. Andrew & Mapstone 1987). Stream beds, be-

cause of the small-scale spatial heterogeneity of flow conditions and of

substrates, can have a high level of small-scale patchiness in any variable

(e.g. Palmer et al. 1997). Many benthic samplers (e.g. standard Sürber and

Hess samplers) enclose quite arbitrarily sized segments of the stream

bottom (e.g. 0.1m2 ) that may comprise a variety of flow conditions and

of substrates. As many biota respond in density to particular flow and

substrate conditions (e.g. simuliids, chironomids), and because large-

sized samples may encompass a range (usually unquantified) of
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Fig. 2.3 Imaginary scope diagrams for (A) adult crayfish (e.g. Euastacus) and

(B) fish (e.g. carp) in lowland rivers.

conditions, such large samples may have high variances and low preci-

sion and therefore provide poor predictability. It is clear that grain size

and grain (habitat) specificity should receive specific attention in design-

ing a monitoring exercise.

Natural phenomena, be they organisms or debris dams or floods,

have their distinctive scope both temporally and spatially. In this situ-

ation, the scope of a natural phenomenon is defined as the ratio of the

upper to the lower limit of the space in which the phenomenon may

occur, or the extent to the grain of the phenomenon (Schneider 1994).

Scopes of natural phenomena may also be defined in temporal terms.

The two scale axes of space and timemay be combined in scope diagrams

(Schneider 1994). For example, for adult fish the scope diagram (Fig. 2.3)

may depict the range of movements from short-term localized foraging

movements to long-termmigratorymovements. It should be pointed out

that at this stage of our understanding ofmost riverine biota, knowledge

of their scopes is rudimentary at best. For many stream invertebrates,

notably insects, determination of appropriate spatial scales for any

length of time may be particularly difficult, because the life history

consists of both an aquatic and a terrestrial stage each with different

scopes (Downes & Keough 1998).

In environmental investigations, there should be an awareness of

the need to consider explicitly the scopes of the various components of

the study (Mac Nally & Quinn 1998). For example, if an environmental

impact on a river is to be assessed by monitoring, there must be some

preliminary quantification of the scope of the impending disturbance

matched with the scopes of organisms to be monitored. In turn, these
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two types of scope need to be compared with the feasible or affordable

scopes of the survey. The latter will be substantially set by the con-

straints of economic and political concerns on logistics, scientific re-

sources and desired levels of prediction. ‘Scope diagrams can be used to

make explicit the competing factors that determine the scope of applied

studies’ (Schneider 1994).

For studies of important ecological phenomena onemust be aware

of Wiens’s (1989) important point about predictability and space–time

scaling. With increasing spatial scale, the time-scales of many phenom-

ena also increase. Thus, as the range of spatial scales of observation

increases so does the time required to understand that system. Situ-

ations in which the dynamics of a large-scale system are studied without

an increase in the temporal scope are likely to result in poor predictions.

This is a common fault ofmost environmental surveys and environment-

al impact assessments, and arises because of a great mismatch between

the spatio-temporal scopes of the objects or phenomena under study and

those used to collect the data.

Similarly, studies at a small spatial scale over a long period of time

may also be flawed, in this case by the problem of scaling-up. Scaling-up

is an immense problem in both basic and applied ecology (Turner et al.

1989). As Schneider (1994) points out, scaling-up is a very common yet

unrecognized problem as ecologists ‘so routinely gather data and fit

them to models with unstated scopes’. This is a pressing problem be-

cause predicting or determining the environmental effects of human

activities invariably requires estimates to be made at much larger scales

than the scale of sampling or measurement. There are a number of

scaling-up strategies, ranging from simple multiplication to the use of

hierarchy theory. There is no consensus on ecologically applicable stra-

tegies and understandably this has been identified as a crucial research

area. In stream ecology, in spite of the high and variable levels of

heterogeneity of streams (Giller et al. 1994), scaling-up has been and is

very common. It usually takes the form whereby from a limited scale of

measurements, projections are made for whole stream sections, if not

entire stream systems. To remedy this difficulty, if possible, multi-scale

sampling of a pattern or process may provide indications of how scaling-

up may be applied (Cooper et al. 1998).

Scaling-down is also a common occurrence in ecology. In stream

ecology a form of scaling-down comes in the application of hydrological

equations for large-scale aggregates to small-scale patches. The mis-

match can be instructive; for an example see the study of Downes et al.

(1997), in which it was shown that commonly used hydraulic equations
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for predicting stream substrate movement with high water events that

operate at the reach scale provided very poor predictions of actual

substrate movements at small scales. In flowing waters, as in all other

types of ecosystems, large-scale aggregates are made up of different

types of patches. The heterogeneity of patches at one spatial scale can

make it very difficult to scale up or scale down with any degree of

certainty. In stream ecology, as in many other areas of ecology, there is a

great need to develop feasible methods to detect patterns of spatial

heterogeneity (Cooper et al. 1997, 1998) and to elucidate whether there

are discernible trends in spatial aggregation. The use of the patch dy-

namics concept in stream ecologymay be premature given our very poor

empirical knowledge of patterns of spatial heterogeneity and of how

patches are created and maintained in streams.

However, in spite of the dangers of scaling-up or scaling-down, in

stream ecology a number of hierarchical spatio-temporal scale schemes

have been devised. Some of these have been proposed to conceptualize

the operations of environmental variables and ecological processes

across scales (e.g. Minshall 1988; Petts & Amoros 1996). Such schemes

have served to illustrate the key point that processes at the small spatial

scalemay operatemuchmore rapidly than processes at the larger spatial

scale. Other schemes appear to have been largely devised to provide a

hierarchy of spatial units for management (e.g. Frissell et al. 1986; Lot-

speich 1980). From the practical point of view such hierarchical schemes

are useful, but from an ecological process point of view, such schemes

may prove to be a poor depiction of the actual situation.

2.5 important issues

• Flowing waters are intrinsically linked with their catchments,

both structurally and functionally.

• The functioning of flowing water ecosystems is strongly depend-

ent on the operation of longitudinal and predominantly unidirec-

tional linkages (upstream–downstream), and on lateral linkages

(channel–floodplain).

• Flowing waters harbour a rich, diverse and unique biota specializ-

ed to dwell in this very dynamic environment.

• Flowing waters comprise a very distinctive type of ecosystem with

their unidirectionality, their integration with the catchment,

their highly dynamic nature and their unique biota.

• The unidirectionality and the high level of spatial and temporal
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heterogeneity of streams and rivers make the assessment of eco-

logical impacts a challenging task.

• An informed awareness of issues of spatial and temporal scale is

essential for effective sampling andmonitoring of flowing waters.
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3

Assessment of perturbation

Rivers are usually perturbed by natural disturbances. Human activities,

either in the catchments of streams or in their channels or in both, can

generate disturbances that change streams and their biota. To under-

stand the impacts to streams of disturbance, regardless of origin, it is

necessary tomonitor. It is also crucial that there is a clear understanding

both of the type of disturbance and of the purpose(s) of monitoring.

3.1 types of disturbance

The major reason for monitoring flowing-water ecosystems is to detect

the effects of perturbation. A perturbation to a population, community

or ecosystem occurs when there is a distinct and abnormal change to

properties of the system due to disturbance (Bender et al. 1984). A

perturbation consists of two events: the disturbance, which is the appli-

cation of the disturbing force (e.g. flow reduction) or agent (e.g. pollu-

tion) to the biota of the system; and the response of the affected biota to
the disturbance (Glasby & Underwood 1996). It is important to separate

the application of a disturbance from the consequential biotic responses

(Glasby & Underwood 1996; Lake 1990, 2000). This allows comparisons to

be made of the differential responses of individuals, populations and

communities of organisms to similar disturbances and to different types

of disturbances. It is also important to note that there may be a consider-

able time lag between the disturbance and the consequential response

by the biota.

Disturbances may damage rivers over a range of temporal and

spatial scales and they can be characterized by their size, intensity and

frequency (Petraitis et al. 1989), as well as by their predictability, dur-

ation, mode of application and the extent of physicochemical alteration
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Fig. 3.1 (a) The three types of disturbance: (A) pulse, (B) press and (C) ramp.

(b) A perturbation comprising the application of a disturbance, in this

instance a pulse disturbance, that gives rise to a ramp response. In each

figure, the arrow indicates that still further change of some kind is poss-

ible.

to the affected ecosystem. In terms of duration and levels of intensity,

disturbance appears to have three forms: pulse, press and ramp. Pulses

are short-term events that have a sharp peak in intensity, presses are

long-term events that are constant in strength (Bender et al. 1984), and

ramps are long-term events that with time change in intensity (Lake

2000; Fig. 3.1a). The response of the biota may vary from being a pulse to

an extended ramp (Glasby & Underwood 1996; Lake 2000; Fig. 3.1b).
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Thus, in terms of monitoring there is a partition between monitoring to

detect long-term trends and changes that are not linked with an obvious

and discrete disturbance event, and monitoring to assess the actual or

potential impact of spatially and/or temporally distinct disturbances.

Disturbances affecting flowing waters can either be due to natural

or to human activities. The latter can be either human-caused amplifica-

tions of natural processes, for example a sharp increase in sedimenta-

tion, or novel forms of disturbance, such as the release of human-created

chemicals (e.g. chlorinated hydrocarbons). It is also important to distin-

guish between directly and indirectly applied disturbances. In rivers,

disturbances may either be applied directly to the river channel or

indirectly via the catchment and the riparian zone. In flowing waters,

floods, droughts and human activities, such as damming or channel

dredging, may be direct, while disturbances such as high nutrient or

sediment inputs due to catchment land-use changes may be deemed to

be indirect. The division is somewhat arbitrary but has important man-

agement implications in determining the ultimate source(s) of disturb-

ance to river systems, especially if management authorities are not only

seeking to identify sources of disturbance, but also aim to curtail the

effects of disturbance. The latter particularly applies to river restoration

efforts that in particular instancesmay be largely concernedwith restor-

ing the catchment rather than the river channel itself.

In aquatic ecology, disturbance has most commonly been conceiv-

ed as being due to physicochemical factors. It has also been recognized,

especially in marine systems, that the activities of animals, such as

foraging within soft bottom substrata, constitute a source of disturb-

ance. The introduction of new organisms and the unpredictable irrup-

tion of pathogens are other sources of disturbance. Such invasions or

irruptions can have a devastating effect on native biota (Lodge et al.

1998). One example is the devastating effects on local native fish popula-

tions of the introduction of Nile perch into Lake Victoria (Achieng 1990).

Another example is the unplanned arrival of the zebra mussel, Dreissena

polymorpha, into the American Great Lakes and Hudson River and its

subsequent effects on phytoplankton, zooplankton and benthos (Strayer

et al. 1999). The effects of introduced biota may not be as severe as the

above examples; indeed the effects may be indirectly mediated. Intro-

duced trout in New Zealand streams suppress the foraging activities of

grazing insects and this indirectly augments algal growth (Flecker &

Townsend 1994). Examples of the damaging effects of pathogen out-

breaks come from the devastating effects that amicrosporidian parasite,

Cougourdella sp., had on populations of the caddisfly Glossosoma nigrior in
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Michigan (Kohler & Wiley 1992), and the depletion of native crayfish

populations in Europe by the introduced crayfish plague, the fungus

Aphanomyces astaci (Alderman 1993; Cerenius et al. 1988).

Natural pulse disturbances in flowing waters include events such

as floods, substratum and habitat disruption, landslides, cyclones,

deoxygenation events, earthquakes and volcanic eruptions. Examples of

large-scale natural pulse disturbances on streams include the effects of

the Mount St Helens volcanic eruption (Hawkins & Sedell 1990), and the

effects of the 1988 Yellowstone fires (Minshall et al. 1989). Human-gener-

ated pulse disturbances include such events as spills of rapidly degrada-

ble or dilutable chemicals, rapid thermal pollution, rapid changes in

flowwith river regulation or diversion, short-term substrate movements

including removal of substrates from their channel altogether, and the

input in spring of acid water from polluted snowpacks. It should also be

noted that the failure of a predictable event, such as a seasonal flood, is

also a disturbance. The failure of a seasonal flood to occur in a river can

have damaging consequences for biota, not only of the channel, but also

of the riparian zones and of flood-dependent wetlands (Poff et al. 1997).

The inputs of pollutants, nutrients and sediments into rivers as a

result of human activities may be either from point or non-point sources
(British Ecological Society 1990; Carpenter et al. 1998a,b). Point inputs

include discharges from sewage treatment works, industrial plants,

mining operations and fish farms, and the study of their effects has

traditionally constituted the major concern of pollution ecology (e.g.

Hynes 1960; Warren 1971). In terms of pollution abatement, point

sources have understandably received a lot of attention, especially those

point discharges that are continuous. More difficult to control are those

point sources that discharge intermittently, such as the pulsed dis-

charges of urban runoff into rivers through culverts after rain. Non-

point inputs from terrestrial sources are transported overland, under-

ground or via the atmosphere to rivers. Non-point inputs may be con-

tinuous, but in most cases they are intermittent, being closely linked

with precipitation and runoff events. Non-point pollution, such as

acidification and nutrient inputs, impairs the ecological health of many

rivers and may affect considerable lengths of rivers. In the USA, non-

point inputs of nitrogen and phosphorus are the dominant source of

such nutrients for most reaches of the rivers (Newman 1995) and non-

point inputs constitute the major source of pollution of water bodies

(Carpenter et al. 1998b). Unfortunately non-point pollution is both diffi-

cult to assess and to regulate. Remediation is also difficult because it

usually requires measures to be implemented over a large spatial scale
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and recovery from such damaging processes as eutrophication may be

slow (Carpenter et al. 1998b).

Natural press disturbances in streams include situations such as

stream-damming (by animals, such as beavers, or by bank slumping and

landslides), changes in sediment and nutrient inputs due to natural

catchment disturbance (e.g. fire, destruction of vegetation by pathogens)

and changes in light and temperature due to changes in riparian vegeta-

tion, for example after forest defoliation by cyclones (Vogt et al. 1996).

Human-induced press disturbances are many and include channeliz-

ation, dredging, removal of woody debris, removal or reduction of ripar-

ian vegetation, persistent point and non-point pollution, persistent

fishing pressure, increased sedimentation, detritus and nutrient inputs

due to catchment alterations, and the planned introduction of biota

ranging from fish to riparian plants.

Ramp disturbances, in which the intensity of a disturbance is

steadily rising (or declining), invariably occur over large spatial scales

because they act over long time frames. Natural examples include such

phenomena as the strength of droughts as they build in duration. As

they occur for the most part at large spatial–temporal scales, ramp

disturbances may include small-scale pulse and press disturbances. For

example, the steady deterioration of a stream by sedimentation due to

poor catchment management and land-use changes is a ramp disturb-

ance. Nested within this long-term disturbance there may be pulses,

such as floods. The intensity of these floods on the stream biota is then

exacerbated by the shifting, imported sediment from the catchment

(O’Connor & Lake 1994).

Many human activities result in ramp disturbances, which, if

unchecked, involve a steady increase in the intensity or size of disturb-

ance. Examples include phenomena such as:

• The increased diversion of water from rivers

• The increasing imposition of barriers along rivers

• The increased frequency of fires in catchments

• The processes of land clearing, tillage and settlement that give rise

to effects such as increased sedimentation, salinization, nutrients,

toxic chemicals, and invasion of exotic biota

• The manifold processes of urbanization that result in, for

example, increased flow variability, increased stream channeliz-

ation and decreasing stream vegetation cover.

On a larger scale, there are the potential impacts of global climate

change, which, for flowing waters, may result directly in increasing
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temperatures and marked changes in regional flows (e.g. Firth & Fisher

1992). Associated with the projected climate change are potential in-

direct effects such as increased sedimentation, nutrient inputs, saliniz-

ation and the spread of exotic biota.

The biotic responses to disturbance can be divided into resistance,
the capacity to withstand a disturbance, and resilience, the capacity to
recover from disturbance (Kelly & Harwell 1990; Lake & Barmuta 1986).

These two properties can be specified for the various aggregates of

ecological organization, from populations to ecosystem processes.

It is difficult to compare resistance between different species,

populations or communities because the strengths of the disturbances

themselves are rarely quantified. For most forms of natural and human

disturbance in flowing waters, it appears that the resistance of the biota

is moderate to low. Resistance is influenced by the life histories, life

forms and behaviour of the biota, their physiological capabilities, their

level of past exposure to the disturbing force and by the availability of

refugia (Lake 2000). Different biota, even closely related species, may

respond quite differently to the same disturbance. For example, in a

Sonoran desert stream, invertebrates were greatly depleted by severe

floodingwhile fish populations were unaffected (Meffe &Minckley 1987).

Resistance varies greatly with the form of disturbance; for example,

heavy-metal contamination may eliminate crustaceans and molluscs

from contaminated sections of river but not insects (Norris et al. 1982).

Resistance to the same formof disturbance also varies with stream type –

the invertebrate fauna of an intermittent prairie stream was more

resistant to floods than the fauna of a nearby perennial stream (Miller &

Golladay 1996).

In general, the capacity to recover from disturbances is relatively

high (i.e. the resilience of flowing-water biota and communities is high;

Giller 1996; Yount & Niemi 1990). From a survey of 129 cases of disturb-

ance to lotic systems, Yount & Niemi (1990) concluded that the rapid

recovery rates were mainly due to four attributes:

(1) Life history characteristics that allowed rapid recolonization and re-

population of the affected areas, (2) the availability and accessibility of

unaffected upstream and downstream areas and internal refugia to serve

as sources of organisms for repopulation, (3) the high flushing rates of lotic

systems that allowed them to quickly dilute or replace polluted waters,

and (4) the fact that lotic systems are naturally subjected to a variety of

disturbances and the biota have evolved life history characteristics that

favour flexibility or adaptability.

They further noted that slow recovery rates were found in disturbances
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that had resulted from major alterations in physical conditions.

Examples of the latter include channelization (e.g. Arner et al. 1976;

Hortle & Lake 1982, 1983) and sedimentation of the channel (Metzeling

et al. 1995; O’Connor & Lake 1994; Waters 1995). Analysing similar

instances of natural and human-generated disturbance, Niemi et al.

(1990) found that in most cases the recovery time was less than three

years. A similar trend in recovery time was found by Milner (1994) with

an important difference being that recovery after watershed disturban-

ces, in the form of logging and mining, usually took from five to more

than 20 years. Such long recovery times usually occur when the disturb-

ance leads to persistent changes in habitat structure, when pollutants

persist in the affected system, or when the affected system is cut off from

sources of colonizing biota. A major avenue of recolonization of disturb-

ed sections is by stream drift (Williams 1981). Persistent changes in

physical structure include the construction and maintenance of bar-

riers, such as dams (Petts 1984; Poff et al. 1997). Such barriers may

eliminate normal stream drift and thus hamper recolonization of dis-

turbed areas downstream. Examples of the persistence of contaminants

preventing recovery include the slow recovery (� 10 years) of inverte-

brates in a Montana stream after cessation of the input of pollutants

(Chadwick et al. 1986), and the case of the Molonglo River near Canberra,

Australia, where in spite of cessation ofmining and expensive rehabilita-

tion works, the invertebrate fauna was still impoverished some 20 years

later (Norris 1986).

While disturbances in terms of theirmajor forcesmay be classified

into pulses, presses or ramps, it should be realized that it is uncommon

for a single agent or force to be the source of a disturbance. For example,

under natural conditions, a disturbance such as drought with lowwater

levels and greatly reduced flows is accompanied by disturbances such as

deteriorating water quality (e.g. deoxygenation), elevated stream tem-

peratures, decreased food supplies and decreased habitat availability

(Lake 2000). Similarly, many human-generated disturbances are also

multifactorial. The numerous effects of river regulation by dam con-

struction and operation are stark examples of this (Petts 1984; Poff et al.

1997).

Global change is predicted to create large-scale disturbances to the

biota of the Earth (Sala et al. 2000; Vitousek et al. 1997b). Major forces for

global change in biodiversity and ecosystem structure include land-use

change, climate change, changes in biogeochemical processes, and bi-

otic exchange.
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Land-use change in the case of freshwater systems covers changes

both in catchment land use and in use of river channels. Both changes to

catchments and to the rivers themselves disrupt biogeochemical pro-

cesses. For example, in creating impoundments, dams greatly alter flow

regimes and quantities (Poff et al. 1997; Rosenberg et al. 2000) and

catchment land use changes may generate non-point pollution by nutri-

ents (Carpenter et al. 1998b). Global climate change is due to the effects

of both the ozone hole and the Greenhouse phenomenon. The ozone

hole is giving rise to increased levels of UV radiation in high latitudes

that could deleteriously affect algae and benthos in shallow streams

(Kiffney et al. 1997), especially those at high altitude. Greenhouse effects

include increased temperatures (more in temperate than tropical lati-

tudes), altered flow volumes andwater availability (Arnell et al. 1996) and

increased frequency of extreme hydrological events (both floods and

droughts; Arnell et al. 1996; Fowler & Hennessy 1995). Biotic exchange

refers to the deliberate or accidental introduction of biota to river

systems. With increasing international trade and with the increasing

speed of trade transactions, biotic exchange is an increasing but under-

rated threat to freshwater biodiversity. The detection of such large-scale

effects over long periods of time is a great challenge for ecologists, for

funding agencies and for river and catchment managers (Stow et al.

1998).

The biodiversity of freshwater ecosystems, due to the impacts of

the forces of global change, appears to be decreasing at greater rates

than those recorded for terrestrial ecosystems (Ricciardi & Rasmussen

1999). For streams and rivers, depletions in biodiversity by 2100 are

projected to be largely driven by land-use changes, climate change and

biotic exchange (Sala et al. 2000).

3.2 the purposes of monitoring

In assessing the effects of human-induced perturbation on the ecological

state of rivers, there are basically four major aims serving different

circumstances. These aims address different ecological questions and

serve to meet different management needs. However in a substantial

and thorough investigation of any river, all four aims may be addressed

at various times and localities during the investigation.

In listing these four aims it should be borne in mind that address-

ing the third aim, assessment of human-induced disturbances on flow-

ing-water systems, is the major task of this book.
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3.2.1 To assess the ecological state of ecosystems

Investigations with this general aim may range from studies at the

population level through to those concerned with ecosystem properties.

At the population level, the questions may involve projects such as the

assessment of the population viability of a species of high conservation

value, the stock density of a species of recreational or commercial

importance, the status of a pest species, or the distribution of a species

and whether its range is expanding or contracting. Similar types of

projects may be undertaken for groups of co-occurring species or com-

munities. All projects of this type may gain considerably in value and

accuracy if reliable data are available from past assessments. In many

cases, past data are available but unfortunately inmost cases the quality

of such data is relatively low and not amenable to even reasonable levels

of statistical analysis. The reasons for carrying out such assessment tasks

may range from the conservation of a species, community or particular

type of habitat to tasks such as environmental audits and ‘state of

environment’ reports. Carrying out such assessments may also serve the

important aims of identifying threatening processes, and of detecting

and providing warning of impending disturbances. Such survey exer-

cises are decidedly not suitable for assessing the impact of future dis-

turbances, even though such exercises have in the past been, and

continue to be, regarded as ‘environment impact statements’.

In flowing-water systems an important aim of management

authorities can be to have an assessment of the ecological integrity or

ecological health (see Box 3.1) of the rivers under their responsibility

(Karr 1991). This aim may be partly met by assessment of water quality

data (e.g. detection of acidification and eutrophication), especially if the

data have been collected frequently for a long time. However, it is widely

accepted that to gain an adequate appraisal of ecological health, it is

imperative to monitor the biota.

In terms of ecological health assessment, biological monitoring

has concentrated on biota such as invertebrates and fish along with, on

some occasions, biota such as microbes, algae and riparian vegetation.

Very rarely have ecosystem processes, such as decomposition, been

monitored. Both habitat attributes and the biota may be monitored. In

the case of biota, a great emphasis has traditionally been placed on

indicator species and indices based on knowledge on the distribution of

the biota and their physiological tolerances. The well-known Saprobien-

system (vide Sladecek 1973) is an example of such an approach. With

time, and often for particular regions, a plethora of biotic indices has
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Box 3.1 Ecological integrity and ecosystem health

Ecological integrity as defined by the major proponent of the concept

‘refers to the capacity to support andmaintain a balanced, integrated,

adaptive biologic system having the full range of elements and processes

expected in the natural habitat of a region’ (Karr 1995). For a river in a

region this would mean that ecological processes such as production,

decomposition, nutrient dynamics and movement of biota would be

identical with those of natural rivers in the same region. The river would

be exposed to natural disturbances and have capacity for effective recovery

or resilience. Systems of high ecological integrity are those formed by

natural evolutionary and biogeographical forces and maintained as

ecologically sustainable systems by natural ecological forces largely devoid

of human intervention. However this concept has a limited application in

these times whenmost rivers are affected to some extent by damaging

human forces, be it toxic pollution, catchment land-use change or global

climate change.

Thus, as ecological integrity does not readily encompass

human uses of, and pressures on ecosystems, some ecologists (e.g.

Karr 1995; Meyer 1997; Rapport 1989) have proposed the notion of

ecological health to incorporate human activities into ecosystem

properties and dynamics. Ecological health, as opposed to

integrity, is not a scientific concept as it also incorporates human

uses and values. Thus, as good health medically refers to the fully

functional, unstressed condition, the good ecological health of a

river refers to a fully functional, unstressed river ecosystem. The

river may also be providing important goods (e.g. biota) and

ecosystem services for humans but it does not show, as judged

from monitoring key indicators, significant signs of stress. A

healthy river has the capacity to recover from stress induced by

disturbance. Stress may be revealed from the monitoring of

indicators, and in healthy rivers recovery subsequently occurs

while in unhealthy rivers resilience may be low and indeed the

river may be approaching or at the point of no return (Loehle

1991).
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Box 3.2 The distinction between ‘rapid’ assessment techniques and

the techniques described in this book

There are several schemes for rapid biological assessment that

would seem, initially, to provide conceptually easier and cheaper

alternatives to the methods we advocate in this book. However,

these rapid methods address different issues from those addressed

in this book and their application to monitoring and assessment

must be appreciated as implying a sacrifice in inferential power in

order to gain rapid applicability.

The philosophy behind rapid bioassessment techniques is to

measure the deviation of the composition of the biota of a location

(e.g. a reach of a river) from some notional ideal – often called the

reference condition (see Box 5.1). This information is then used to

assess the status of the location (section 3.2.1) rather than assess a

specific disturbance (section 3.2.3) or restoration activity (section

3.2.4). That philosophy of assessment does have some fundamental

similarities to the philosophical approach highlighted in this book.

Some observational evidence for disturbance is obtained, and this

evidence then is judged ‘impressive’ only if it is improbable that it

arose as a chance observation under normal conditions. The

methods advocated in this book pin down those important notions

of ‘improbability’, ‘chance’ and ‘normal’ through aspects of design

that critically include replication (to get a handle on

improbability) and controls (to get a handle on what is ‘normal’).

For rapid bioassessment techniques, the reference condition is to

provide this information.

Advocates have proposed that such rapid bioassessment

methods could be useful for:

• ‘Status reporting’ such as those exercises required by

legislation or treaty obligations (e.g. State of the Environment

Reporting)

• A source of information for planning, where broad-scale,

coarse-resolution information is required to identify rivers or

streams that are either in potentially very good or very poor

condition

• Prosecution where a severe disturbance has likely resulted in

an impact that is sufficiently large to be detected by a

rapid-assessment method.
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Basically, such status reports from rapid bioassessment techniques

may alert us to whether something has gone wrong, but may not be

able to distinguish or diagnose exactly what has gone wrong.

Moreover, because these methods are rapid they are analogous to

rapid techniques of measuring the status or health of humans:

measuring temperature and blood pressure of a patient could alert

us to a serious illness, but by themselves would not diagnose the

precise nature of the illness; nor would these methods detect more

subtle conditions by themselves.

The place of rapid assessment methods in the broader

context of environmental monitoring and assessment is, we feel,

still open for debate. In general these rapid bioassessment

methods suffer from the following drawbacks when used for the

types of monitoring that we concentrate on in this book (sections

3.2.3 and 3.2.4):

• The reference condition may not be well defined

• Temporal replication may be limited, with the potential to

confound natural changes through time with perceived

impacts

• The flora or fauna is treated as a multivariate syndrome which

may be difficult to interpret ecologically and complex to

explain to a lay audience

• Subtle impacts may not be detected because of the ‘rapid’

nature of the method employed (e.g. coarse taxonomic

resolution, limited spatial or temporal scales of sampling).

Of course the methods advocated in this book do not totally escape

these kinds of problems. We note that the problem of definition

may apply to putative controls, temporal replication may be

limited, multivariate interpretation may be a problem, and coarse

taxonomic resolution or limited sampling may reduce power.

We would like to emphasize that we do not view rapid

assessment methods as a cheap alternative to the methods

advocated in this book. Differences in inferential power must be

considered as well. At least one jurisdiction where rapid

assessment methods have been included (ANZECC & ARMCANZ

2001) adopts a similar stance where the uses of rapid assessment

methods are clearly prescribed and they are not viewed as

interchangeable with methods based on formal controls in space

and time.
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been developed. These indices invariably attempt to reduce or summar-

ize a collection of data into a single index or set of indices. Some indices

(e.g. Index of Biological Integrity (IBI); Karr 1999) are based on the biota,

whereas others are based on combination of habitat and biotic at-

tributes (e.g. Index of Stream Condition (ISC); Ladson et al. 1999).

In recent times, the use of multivariate statistical descriptions of

river biota has increased greatly (e.g. Barbour et al. 1995; Norris 1995;

Reynoldson et al. 1997; Zampella & Bunnell 1998). Such approaches are

based on the idea that at sites affected by human disturbance, the biota

is different from that found at unimpacted sites that are broadly similar

to the impacted sites. This approach has given rise to surveillance pro-

grams such as RIVPACS (Wright 1995) and AusRivAS (Simpson et al. 1997)

to assess ecological health in rivers.

We do not view programs devised to assess ecological health, such

as RIVPACS or the IBI, as an alternative to impact assessment (detailed in

section 3.2.3 below), but such schemes may certainly complement some

impact assessments (Box 3.2).

3.2.2 To assess whether regulated performance criteria have been
exceeded

In many instances regulated standards are set for the levels of con-

taminants (abiotic and biotic) in flowing-water ecosystems. The assess-

ment of adherence to the standards is carried out by regulatory or

compliance monitoring. There are many standards set, such as concen-

trations of bacteria in water and levels of persistent toxic chemicals in

water, sediments and biota. Chemicals of concern may include heavy

metals, radioactive isotopes and organochlorine compounds (e.g. pesti-

cides, dioxin, poly-chlorinated biphenyls (PCBs)). Thus monitoring may

involve measuring variables, such as density of biota in the water col-

umn, or measuring concentrations of chemicals in biota.

Compliance monitoring may be focused on a particular activity

being carried out at a particular site, such as a point discharge, ormay be

morewidespread, such as themonitoring of pesticide levels in biota over

a large region. Whatever the spatial focus and extent of monitoring, the

basic question remains: Is the chosen variable being measured within

the limits of the regulatory criteria? If values exceed limits, then this

may trigger further investigation, especially in regional studies, to

identify the source(s) of the higher than acceptable levels.
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3.2.3 To detect and assess the impacts of human-generated

disturbance(s)

The rigorous assessment of the potential impacts of a new, or pre-

existing source of disturbance to flowing waters is the crux of this book.

When a new development is planned to be sited in a river (e.g. a dam) or

on the catchment of a river, there is always the risk that disturbances

may be generated by the new development and damage the river. Thus

the basic question for monitoring becomes:Will the potential disturbance(s)

generated by the new development significantly damage the biota and ecological

processes of the receiving river? The new developments may range from

being particular point sources, such as a factory with a single discharge

pipe for its treated waste, to a large-scale occurrence such as urbaniz-

ation. The new development may range from only producing a single

type of disturbance, such as hot water from a thermal power station, to

projects such as a mining operation that may produce various types of

chemical pollution from different parts of the operation.

The aim of the monitoring project is to assess the scale and

magnitude of the disturbance and the responses of the variables (biotic

and abiotic) selected for monitoring to such a disturbance. If detectable

damage does occur then this could trigger management action to ameli-

orate the disturbance or even serve as the basis for compensation.

Successful monitoring projects require several elements: the avail-

ability of controls, the collection of data before any potential impacts

have occurred from both the control and impact locations, and proper

replication. The before-impact data collection must be carried out for

sufficient time and at an appropriate spatial scale; we discuss each of

these elements explicitly in chapter 5. The success of such projects in

allowing adequate protection of the targeted river depends on mainte-

nance of the monitoring effort after the implementation of the putative

disturbance. Ideally environmental impact assessments should follow

this protocol, but in many cases the gathering of the before-impact data

is perfunctory and the gathering of after-impact data is either a once-off

exercise or is done very infrequently.

Unfortunately in many cases the river in question has already

been damaged by disturbance and/or is continuing to be damaged. The

value of the data, as evidence, may be limited by the lack, or the poor

quality, of before-impact data or control localities and hence have

only weak inferential strength (issues that we consider specifically in

chapter 9).
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3.2.4 To assess the responses to restoration efforts

Increasingly efforts are being made to attempt to restore streams and

their catchments. Inmany such projects evaluation of success is assessed

by monitoring (e.g. Kondolf & Micheli 1995; Lockwood & Pimm 1999;

Westman 1991). Successful monitoring in restoration projects needs the

requisites outlined in section 3.2.3 of controls, before data and suitable

replication. Further, in restoration there is the setting of goals as achiev-

able endpoints. Thus, monitoring must be designed to evaluate whether

the project is approaching the set targets. Monitoring in restoration

efforts is addressed again in chapter 14, especially regarding the particu-

lar problems of design and interpretation.

3.3 important issues

• Perturbation of a freshwater system consists of two sequential

events: the disturbance to the system and the response of the system

to the disturbance.

• Disturbances consist of three types: pulse, press and ramp.

• Human activitiesmay disturb streams by acting on catchments, or

in the channels, or on both areas simultaneously.

• Human-generated disturbances may vary from the application of

physicochemical forces, such as building dams and changing river

flows, to the introduction of exotic biota.

• The responses of the biota to disturbances vary in relation to the

strength of resistance – the capacity to withstand the disturbance –

and the level of resilience – the capacity of the biota to recover.

• Monitoring abiotic and biotic components of streams serves four

main aims:

1. To assess the ecological state of ecosystems

2. To assess whether regulated performance criteria have been ex-

ceeded

3. To detect and assess the impacts of human-generated disturb-

ance(s)

4. To assess the responses to restoration efforts.
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Inferential issues for monitoring

This book will recommend a variety of statistical designs and analyses

for detecting human impacts in rivers and streams. The aim of this

chapter is to provide the basic principles of statistical inference for

understanding these designs. We assume some prior statistical back-

ground, and suggest you read the first few chapters of a good introduc-

tory applied statistics text, such as Sokal and Rohlf (1995). We will take a

classical, frequentist approach in this chapter that covers confidence

intervals and P (probability) values from statistical tests of hypotheses.

We also consider the alternative Bayesian approach for interpreting

probabilities and making decisions. The logic of designing a rigorous

monitoring program to detect the effects of specific human activities in

fresh water is, however, relatively independent of the debate between

frequentists and Bayesians and our preference is for the classical

methods.We emphasize the importance of developing statistical models

that match the design chosen for monitoring flowing waters. The statis-

tical model acts as a guide for analysis. With it, we can construct an

analysis of variance (ANOVA) table and try to determine howmuch of the

variation in a response variable (such as nutrient concentration, species

diversity etc.) is accounted for by the influence of predictor variables

(such as current velocity, human activity, time etc.). These statistical

models also allow us to test specific hypotheses of interest; for example,

is there a difference in mean species richness between locations up-

stream and downstream of a sewage discharge? The analyses we will use

are very dependent on underlying assumptions and we stress the im-

portance of checking those assumptions before drawing conclusions

from the analyses. We also distinguish between univariate and multi-

variate analyses, pointing out that bothmay be relevant for anymonitor-

ing program but will require different tools and have different

limitations.
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Box 4.1Mining in Kakadu National Park, Northern Territory,

Australia

The Alligator Rivers Region (ARR) lies in tropical northern

Australia, � 200 km west of the city of Darwin. It is an area that

incorporates Kakadu National Park, a World Heritage ecosystem,

has a rich cultural heritage, and contains mineral reserves of

uranium, palladium, gold and platinum. Organized mining and

milling operations in the area began in 1979, with the opening of

the Ranger Uranium Mine near Jabiru. However, community

concern about the environmental impacts of mining meant that

the Federal Government passed legislation specific to the region in

1978 establishing the Alligator Rivers Region Research Institute

(ARRRI), to be managed by the Office of the Supervising Scientist

for the ARR. The role of the ARRRI, under the direction of the

Supervising Scientist, was, and is, to carry out monitoring

programs that test the adequacy of regulatory controls placed

upon mining operations to ensure that there are no ‘observable

effects’ upon the natural environment. The region lies about 13° S

of the Equator and has a tropical climate with seasonal,

monsoonal rains. Excess water can accumulate in mine sites and

lead to either deliberate or inadvertent releases of water

containing harmful chemicals, such as metals and hydrocarbons,

into downstream locations. It is this potential damage from

wastewaters that has formed the main focus of regulatory and

monitoring programs, which have focused primarily on two

streams. Much of Magela Creek and its floodplain lies downstream

of the Ranger Uranium Mine, and the South Alligator River flows
past mining activities at Coronation Hill. In both these cases,

locations upstream of mining activities have been compared to

putatively affected locations downstream, using a BACIP design

(see chapter 7). The ARRRI adopted BACIP designs in the first

instance, in part because the mines produce specific changes not

otherwise observed naturally and in part because of concerns

about whether neighbouring streams could act as controls. See

Humphrey et al. (1995) and Faith et al. (1995) and references therein

for more information.
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Consider the monitoring program to assess the effects of the

proposed gold–platinum–palladiummine at Coronation Hill within the

Kakadu National Park in northern Australia on aquatic biota in the

South Alligator River (see Box 4.1). The program used eight locations on

the river, two upstream of Coronation Hill and six downstream. Within

each location, a Sürber sampler was used to collect four 25 cm2 sampling

units and the abundance of all species of macroinvertebrates was re-

corded. Note that it is difficult to separate the effects of an impact (the

mine) from longitudinal changes in the biota of a river using a simple

upstream–downstream design such as this and we will propose better

designs later (chapter 7). This design is, however, suitable for our pur-

poses of illustrating basic statistical principles and ideas.

4.1 sampling

Suppose we wish to know the average species richness of macroinverte-

brates from 25 cm2 sampling units from one location on the South

Alligator River. We could measure the species richness from all possible

25 cm2 sampling units at the site but there are so many possible samp-

ling units that it is impractical, and unnecessary, to measure them all.

Sometimes, sampling units may be natural habitat units, such as stones

in a riffle of an upland stream or pieces of woody debris in a lowland

river. In sampling terminology, the species richness of each sampling

unit is an observation and the species richness on all the possible

sampling units is known as our statistical population and comprises all

the observations about which we are interested in making inferences.

This can also be termed the ‘sampling universe’ or the ‘universe of

inference or application’ (Walters & Green 1997). Note that we must

define precisely the spatial and temporal boundaries of our statistical

population at the start of any study. For example, our population might

be the possible sampling units at a location that extends 50 m along a

river on 25 December 1998 and our formal statistical inferences are

restricted to that population, although we may speculate across spatial

and temporal scales.

Because the statistical population is too large to record all observa-

tions, we must estimate the average species richness per sampling unit

in the population from the average species richness per sampling unit

from a sample. A sample is a subset of sampling units and observations

from the population. There are a number of methods for choosingwhich

observations will be included in a sample, although random sampling,

where each sampling unit has an equal chance of being selected, is
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commonly used and has many statistical advantages. Primarily, random

sampling allows us to make reliable, generalized inferences about the

population from our sample. If a population is spatially heterogeneous,

then stratified random sampling is often used where the population is

separated into spatially more-homogeneous strata, and one or more

random samples are taken fromwithin each stratum. Sampling can also

be adaptive, whereby the method for selecting sampling units is modi-

fied depending on early results (Thompson 1992).

True random sampling is often difficult in practice; one method is

to allocate all possible sampling units a number and sampling units are

then chosen using a set of randomly generated numbers. In practice, we

often sample haphazardly, whereby each sampling unit in a sample is

chosen in a simple manner that attempts to avoid systematic bias. For

example, to choose which possible 25 cm2 sampling units would be

incorporated in a sample, an ecologist might stand in a section of river

with their eyes closed, throw an object and place the sampling device

closest to where the object lands. This process would be repeated for the

number of sampling units required for the sample. Note also that the

term ‘sample’ can be used in two different contexts in aquatic ecology.

Strictly, a sample is a collection of observations from the population of

interest, such as a collection of sampling units. However, the material

from a single sampling unit (such as a Sürber sampler) is also sometimes

called a ‘sample’. This latter use is misleading and we will try to restrict

our use of the word sample in this book to the first meaning.

4.2 uncertainty and probability

Later chapters in this book will describe monitoring designs for detect-

ing impacts of human activities under conditions of uncertainty, and

examine how we make decisions about those impacts. This usually

involves attaching probability statements to particular outcomes, such

as the probability that the observed species richness of macroinverte-

brates in a river or stream is a product of natural variation. Because our

decision-making process relies heavily on probability statements asso-

ciatedwith particular outcomes, it is very important that we understand

the interpretation of probability in a statistical sense, and the role of

such probabilities in inference.

Probability can be viewed simply as a quantification of uncertain-

ty. Say we take two samples, each consisting of the same number of

sampling units, from a section of river and calculate the average number

of species of macroinvertebrates per sampling unit. These two averages
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will almost certainly be different, despite the samples coming from the

same section of river. There are two general causes of this uncertainty in

measurements we might take (Hilborn & Mangel 1997); that is, two

reasonswhy twomeasures of species richnessmight be different. Process

uncertainty results from the actual number of species being different

when the second sample is taken comparedwith the first; such temporal

changes in biotic variables, even over very short time-scales, are common

in ecological systems. Observation uncertainty results from sampling

error; the average value in a sample is simply an imperfect estimate of

the average value in the population (all the possible sampling units) and,

because of natural variability between sampling units, different samples

will nearly always produce different averages. Observation uncertainty

can also result from measurement error, where the machine or human

measuring device is imperfect, such as humans making mistakes in

identifications or a pH meter malfunctioning.

The implication of sampling variability is that we can never be

certain about the value of a variable in a population unless we census

the whole population by recording all the possible sampling units. This

means that any conclusions we draw from our analyses of monitoring

designs, and any decisions resulting from those conclusions, have to be

probabilistic. It is important that we understand the interpretation of

probabilities associated with our statistical conclusions.

How do statistical probabilities play a role in deciding whether a

human activity has caused an impact? Uncertainty leads naturally to the

use of probabilities, suggesting that we might assess an impact as prob-

able or not. But probabilities will play a quite different role. Rather than

seeking a high probability as support for an hypothesis of impact, it is a

low probability, an improbability, that is the key to inferring an impact.

To understand this, it is useful to acknowledge that uncertainty in

monitoring extends beyond that related to sampling variability to in-

clude inferential uncertainty. Strictly speaking, the detection of an

impact of a specific human activity does not mean that we observe it to

be true, but only strongly infer its presence. This recalls the idea in

philosophy of science (Popper 1963) that we cannot prove an hypothesis.

Any supposed evidence for impact can always be explained away to some

degree by conceivable no-impact scenarios. How does inference of im-

pact then proceed?

Let us first consider one tempting strategy. It is well known that

Popper and other philosophers offer ‘falsification’ as a tactic, and this

has been linked to monitoring (e.g. Underwood 1990, and discussed

below). Certainly, we might be able to falsify an hypothesis of impact –
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for example, if we know that the impact implies that something else

must be true (say, that a pipe must be open) and that condition is

blatantly false (the pipe is not open). But that neat, negative inference

may not be typical in monitoring. Most of our real-world efforts in

monitoring must involve learning as much as we can under conditions

where we cannot falsify the impact hypothesis and cannot verify it

either. Fortunately, outright falsification is not the only inferential

pathway.

Clearly, failure to falsify does not, on its own, provide strong

inference. Just because our evidence (e.g. the observed data from our

monitoring program) is not a counter-instance, it cannot be interpreted

automatically as good support for our hypothesis (Popper 1983). This is

themotivation for a desire for an improbability. According to Popper, we

should not be very impressed with some purported evidence e (e.g. the

observations from our monitoring program) for hypothesis h (e.g. the

hypothesis that there is an impact), if in fact we don’t really need h at all

to have had a good chance of observing e. There is strong support

(Popper’s ‘corroboration’) for h only if it is improbable to obtain e in the

absence of h, given only our background knowledge, b, about other ways

in which evidence like e can arise. This will be the key strategy for

inference of impacts – finding some evidence for impact that cannot

easily be explained away by various other processes, such as natural

variation in the system. Summarizing all those other factors as back-

ground knowledge means that we want evidence, e, to be improbable

given only that knowledge, b – or a low P(e,b), the probability of e, given b.

We will link P(e,b) with the examination of tail probabilities in

statistics (e.g. in testing null hypotheses). For Popper, background knowl-

edge was quite general, consisting of any knowledge accepted provi-

sionally while testing the hypothesis. But the special case of substituting

a null or other statistical model (e.g. the null hypothesis) as a specific

instance of background knowledge, b, and as the basis for calculating

P(e,b), is well established (for discussion see Faith 1999). This frame-

work for arguing for support for an hypothesis is further developed

through the linking of corroboration or ‘severe tests’ to basic statistical

tests (Mayo 1996). Low P(e,b) is given by a small tail probability in the

conventional test of a null hypothesis. Mayo (1996, p. 193) says, ‘by

rejecting the null hypothesis H0 only when the significance level is low,

we automatically ensure that any such rejection constitutes a case

where the non-chance hypothesis H passes a severe test.’ If support for

the hypothesis h is gained by rejecting a null hypothesis, we might ask

why corroboration/severity is needed – this would appear to be just
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standard Popperian falsification of a (null) hypothesis (as argued by

Underwood 1990). However, we are not falsifying the null but arguing

that it is merely improbable as a way to account for this evidence.We are

not dealing strictly with falsification, but rather with an hypothesis that

has resisted falsification and may or may not have gained some support

(corroboration) as a consequence.

We have now made a philosophical link between the inevitable

use of probabilities of particular outcomes and the evaluation of hy-

potheses of impact. The outcome of interest is one that is interpreted as

possible evidence for impact. Support for that impact hypothesis is only

found if the probability of that outcome is small under normal circum-

stances, in the absence of impact. In the next chapter, this pursuit of

improbability provides the rationale for specific aspects of monitoring

design including controls.

Interpretation of probabilities also goes to the heart of one of the

long-standing debates in statistical science. The classical interpretation

of probability is the relative frequency of an event that we would expect

in the long run, or in a long sequence of trials. For example, let us

hypothesize that the species richness of macroinvertebrates in a section

of river affected by goldmining is 100 species per sampling unit, because

that is the approximate number of species found in similar types of river

affected by this type of mining, as reported in the literature. We then

take a number of sampling units (a sample) from this section of river and

find that the average species richness per sampling unit is 50. A sensible

question might then be: What is the probability of a sample from this

section of river having an average of 50 species per sampling unit if the

real average number of species per sampling unit is actually 100? If that

probability is low, then we might conclude that the true average species

richness is not 100. This probability (i.e. the probability of getting a

sample with an average of 50 species when the real species richness is

100 species per sampling unit) has a frequentist interpretation. It is a

measure of the frequency of occurrences of samples with an average of

50 species if we repeatedly sample from a river with 100 species per

sampling unit. In practice, of course, we don’t actually do repeated

sampling so we have to determine the probability of getting a sample

with an average of 50 species from a population with 100 species per

sampling unit in other ways. Note that this frequentist probability is the

probability of the data (or sample) given a particular hypothesis (i.e. the

probability of a sample with an average of 50 if the population has an

average of 100). This is often written P(data�hypothesis) and can clearly

be interpreted as a frequency because we can, in theory, take lots of
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samples and calculate the number that have an average of 50 species. If

the population really does have 100 species, then this frequency is the

probability of getting a sample with an average of 50 species from a

population with an average of 100 species. This long-run frequency

interpretation is the classical statistical interpretation of probabilities

and is how we usually interpret confidence intervals and P-values from

statistical tests.

An alternative to the frequentist approach to statistical analysis is

Bayesian methodology. Bayesian analyses differ from classical analyses

in a number of ways and we can only briefly summarize them here – see

Ellison (1996), Hilborn andMangel (1997) and Lee (1997) formore details.

The first difference is allowing a more subjective, non-frequentist inter-

pretation of probability. For Bayesians, probability represents some

quantification of our opinion about whether something is true or an

event will happen. Our opinion may be derived from previous observa-

tions, theoretical considerations, knowledge of the particular event

under consideration etc. For example, we might want to know the

probability that the species richness in a section of river is 100 species

per sampling unit. This probability has no frequentist interpretation

because the species richness does not depend on any long-run frequency

of sampling outcomes. Our opinion of the probability that the species

richness of the river is 100 ismore subjective, based on previous informa-

tion, our knowledge of this stream etc. Using probabilities in this way

has been criticized as being too subjective, although we use such non-

frequentist probabilities commonly in real life, such as the probability of

it raining tomorrow or the probability of a particular horse winning a

race. A second difference is that Bayesians want tomeasure the probabil-

ity of a particular hypothesis, given the data (P(hypothesis�data)). For
example, what is the probability that the average species richness per

sampling unit is 100, given that we have a sample with an average of 50

species per sampling unit. This is the converse of the frequentist prob-

ability, whichwould be the probability of a sample with an average of 50

species per sampling unit if we assume that the real species richness is

100 species per sampling unit. A third difference between the frequen-

tist and the Bayesian approaches is that Bayesians would usually try to

incorporate prior information or opinions about how likely an outcome

is into their analysis, whereas classically we base our statistical con-

clusions only on the sample data (this is not strictly correct because we

use tail probabilities; more about this in section 4.7). So a Bayesian

analyst who had strong prior belief that the species richness in a river

affected by mining would be much less than 100 could incorporate this
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belief (prior probability) into their analysis and this would modify the

final (posterior) probability. In simple terms, this means a frequentist

and a Bayesian might draw different conclusions, even with identical

sample data, because the Bayesian might have strong prior opinions

about whether the species richness is likely to be 100 or not. This

comparison is a little contrived, however, because the questions being

asked are different. The frequentist is asking what is the long-run prob-

ability of getting a particular value in a sample if the population value is

fixed and specified. In contrast, the Bayesian is asking what is the

probability of any population value, given that we have a sample value,

and also given that we have incorporated our prior opinions into the

calculation of the probability.

Inmonitoring impacts, both approaches can be brought to bear on

the same hypothesis – that there was an anthropogenic impact at this

particular site. The frequentist, of course, is not arguing that there will

‘in the long run’ be an impact, but is using those long-run probabilities

to examinewhether the evidence for impact can be judged quite improb-

able in the absence of impact. The Bayesian too is interested in impact at

just this site, but will introduce prior probabilities from previous experi-

ence (say experience with potential mining impacts of this sort). The two

approaches to evaluating the same hypothesis can give quite different

answers. In fact, the mode of frequentist inference to be explored in this

book has been criticized by Bayesians, and it is useful to translate one of

their proposed counter-examples (Howson 1997) into the monitoring

context (Box 4.2).

Suppose a large change in abundance of a pollution-sensitive

species has been observed at the site where there is mining activity and

(based on an appropriate ideal experimental design) the null hypothesis

of no change is rejected at the 0.05 level. Impact would be inferred. But

now suppose also that the probability of an impact at such a mine site is

0.001 (as estimated say from many previous mines of this type). Then a

standard application of Bayes’ theorem (Box 4.2) indicates that the

chance of there actually being an impact whenwe observe this change in

our sensitive species is less than one time in 50! The observed changewas

somewhat improbable based on background knowledge, but, far from

indicating that there is an impact, the results of the ideal monitoring

scheme mean that the chance of there actually being an impact is very

small. Clearly the mining company whose activities might be stopped as

a consequence of inferred impact would see a big difference in the two

results. Why stop mining when there is an actual impact less than one

time in 50 when an impact is supposedly ‘detected’?
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Box 4.2 Howson’s ‘dilemma’ and the inference of impacts

Suppose the null hypothesis of no change is rejected at the 0.05

level and impact is inferred at a mine site. Suppose also that the

probability of an impact at such a mine site is 0.001 (as estimated

say from many previous mines of this type). We can apply Bayes’

theorem (see also equation 4.6), stated below in the symbols of

section 4.2, to this problem.

P(h,eb)�
P(e,hb)P(h,b)

P(e,b)

In comparing this formula to equation 4.6, e is equivalent to the

‘data’ and each term now includes background knowledge, b, as

given. For example, P(h,eb) is the probability of the hypothesis given

both e and b.

The probability of the hypothesis given the data and P(e,hb) is

approximately equal to 1, P(h,b) is equal to 0.001, and P(e,b) is equal

to 0.05. Thus, P(h,eb) is approximately equal to 0.001/0.05� 1/50.

This result indicates that the chance of there actually being

an impact when we find such evidence is less than one time in 50!

One response to this conundrum is to reconcile the two results as

not all that incompatible. If impacts occur only 1 in 1000 times, then

even a finding that our evidence (the change in that sensitive species)

could occur as often as 49 out of 50 times without impact could call for

follow-up investigation (but perhaps not a halt to mining). The observed

evidence, after all, means that what once had a probability of only 1 in

1000, now has a probability of 1 in 50. The Bayesian priors therefore may

have a place in a frequentist, adaptive monitoring program.

4.3 variables

In our mining example, based on Faith et al. (1995; Box 4.1), species

richness is called a variable (the characteristic of the population in

whichwe are interested) and is considered a random variable because its

value is not known until we sample. In monitoring programs in fresh-

water systems, random variables can be physical (current flow, depth

etc.), chemical (pH, phosphorus concentration etc.), biological (species

richness, abundance, etc.) or a more complex index (such as Shannon–
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Weiner diversity). Many variables recorded in monitoring programs are

continuous random variables and can take any value above a detection

limit imposed by the measuring device. We can also measure discrete

random variables, which can take only certain, usually integer, values,

such as counts of organisms, presence/absence of a compound, alive or

dead after a toxicological experiment. Abundances, although count

variables and therefore strictly discrete, behave more like continuous

variables because they can take such a wide range of integer values from

zero upwards when the sampling unit is larger than the size of the

objects being counted. Note that counts of organisms andmostmeasure-

ment variables in freshwatermonitoring cannot include negative values

(i.e. we cannot have a negative number of organisms nor a negative pH or

phosphorus concentration).

Another useful dichotomy is to distinguish response (‘dependent’)

variables from predictor (‘independent’) variables. The former are out-

come variables frommonitoring programs or from experiments and are

nearly always random variables. Predictor variables can be random or

might be fixed in advance by the investigator. They are used to explain

variability in one or more response variables, usually in a statistical

modelling context (see section 4.5). In the mining example where the

sampling units were 25 cm2 and taken using a Sürber sampler, species

richnessmight be one response variable, and randompredictor variables

might be depth, current velocity, sediment grain size etc. If we designed

our sampling program so that we took sampling units from predefined

depths or distances from the bank, then depth and distance would be

fixedpredictor variables. Fixed predictor variables are commonly used in

field and laboratory experiments, where they are termed factors (or

effects).

Any random variable has a probability distribution that is the

distribution of relative frequencies or probabilities of all possible values

of the variable (Fig. 4.1). These probability distributions are important

when using samples to estimate population parameters. In most

monitoring situations, there are a number of response variables that

might be of interest (e.g. species richness, abundance of a particular

species, some physical or chemicalmeasurement such as pH or dissolved

oxygen; see chapter 10). Ideally, we would estimate each variable inde-

pendently of each other (i.e. using different samples). In practice, how-

ever, that is unrealistic. For example, if we knew there were p species in a

section of river, we would never contemplate taking p separate samples

(each with n sampling units) to independently estimate the abundance

of each species. Rather, we would estimate the abundance of each

Variables 55



Fig. 4.1 Two commonprobability distributions for continuous variables: (a)

a normal distribution that is symmetrical; (b) a log-normal distribution

that is positively skewed. P(Y) is the probability of Y and f(Y) is the frequency

of Y.

species from a single sample (with n sampling units). There will, how-

ever, be a degree of biological and statistical dependence between our

estimates of abundance of each species and our interpretation must be

conditional on this lack of independence. Some types of statistical ana-

lyses make use of this dependence (correlations) between variables re-

corded from the same sampling units (multivariate analyses, such as

principal components analysis, discriminant function analysis etc.; see

for example James & McCulloch (1990), Manly (1994) and section 4.10).

56 Inferential issues for monitoring



4.4 est imation

Whenwe take a sample froma population of possible sampling units, we

do so to estimate some characteristic of our variable of interest for that

population; characteristics of statistical populations are termed par-

ameters. What characteristic of the variable should we be interested in?

For example, do we wish to estimate the average species richness per

sampling unit in a river or the variability in species richness between

sampling units? For most monitoring programs, the two population

characteristics of most interest are some measure of the middle of the

distribution (central tendency) of a variable, such as the mean or aver-

age, and some measure of its spread or variability between sampling

units, such as the variance or standard deviation (Box 4.3). As we will see

in later chapters, both can be used to measure the effect of human

impacts on biota; for example, the difference between the means of

species richness in polluted and unpolluted sites, or the percentage of

variance in algal biomass explained by the nutrient concentration. Char-

acteristics of samples are termed statistics and the appropriate statistic

provides an estimate of the population parameter. For example, what

sample statistic provides the best estimator of the population mean or

average? The answer to this question depends on how we define a good

estimate. The best estimator of a parameter should be the most precise;

that is, repeated sampling (note the frequentist connotations) should

produce values of the statistic closer to each other compared to any

other statistic we might use. The precision of a statistic is measured by

its standard error (Box 4.3). There are other requirements for estimators

of population parameters (see for example Hays 1994) but these do not

concern us for this discussion. There are a number of possible statistics

we could use to estimate the population mean. It turns out that the best

estimator of the population mean is the sample mean (or average). A

single value of a sample statistic which estimates a population par-

ameter is a point estimate, so the sample mean is a point estimate of a

population mean.

Point estimates are limited in value unless we have some idea of

how good they are, especially how close they are likely to be to the

population parameter. What we need is an interval estimate of a par-

ameter, which is a range of values that will include the parameter with

some level of confidence. We can use the sample variance and standard

error to determine the confidence we have in our estimate of the mean

(i.e. how confident we are that our sample mean is close to the true,

but unknown, population mean; Box 4.4). Confidence intervals for
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Box 4.4 Illustration and interpretation of confidence intervals for a

population mean

If we sample repeatedly from a population, we can determine

numerous sample means, one for each sample we take. If those

sample means are very different, then it suggests that any one of

them may not be close to the true population mean; if they are

very similar, it suggests that they are all close to the true

population mean. If we have many sample means from a single

population, a measure of the variability of those sample means is

their standard deviation. The standard deviation of a statistic, like

the sample mean, is called the standard error; so the standard

deviation of the sample means is called the standard error of the

mean. If the standard error of the mean is small, it indicates that

any sample mean is likely to be close to the true population mean;

if the standard error of the mean is large, it indicates that any

single sample mean may not be close to the true population mean.

In reality, we do not take lots of samples, but a single sample

of size n. It turns out that we can estimate the standard error of

the mean from a single sample:

sȳ�
s

�n
(4.4.1)

where s is the standard deviation of our response variable in our

single sample and n is the size of the sample. So the standard error

of the mean is a measure of how confident we are that our single

sample mean is close to the true population mean. Can we

improve on this measure of confidence?

An additional step is to convert the standard error, which

relates to the sample mean, to a confidence interval, which relates

to the population mean. Although we won’t go into the relatively

simple arithmetic behind the development of a confidence interval

for � (see Sokal & Rohlf 1995), it is important to understand its

interpretation. The confidence interval for the true, but unknown,

population mean is based on the mean and standard error from

our single sample and the t distribution. For example, the 95%

confidence interval for � is:

ȳ� t0.05(n�1)
s

�n
� � � ȳ� t0.05(n�1)

s

�n
(4.4.2)
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where ȳ is the sample mean, s/�n is the sample standard error of

the mean and t0.05(n�1) is the value from the t distribution (with

n� 1 degrees of freedom) between which 95% of all t values occur.

Note that all the components of this equation are available from

our single sample and from the t distribution. How do we interpret

this interval? It is telling us that there is a 95% probability that any

single confidence interval (from any single sample) will include

the population mean. It is not a 95% probability that the specific

confidence interval determined from our sample will contain the

population mean; the population mean is a fixed value so a

specific confidence interval either contains it or it doesn’t. The 95%

probability here must be interpreted in the long-run frequency

context. However, we shouldn’t worry too much about statistical

pedantics; this interval gives us an idea of the range within which

the true population mean lies. We can determine intervals for

other levels of confidence by simply using different t values; a 99%

confidence interval would be wider than a 95% interval.

parameters are often misinterpreted. A confidence interval is a range of

values that we are confident (conventionally 95% confident) includes the

unknown population parameter. The probability associated with confi-

dence intervals has an interpretation via long-run frequencies. For 95%

confidence intervals, repeated samples from the population would re-

sult in 95% of the intervals containing the unknown parameter and 5%

not.

We have focused on standard errors and confidence intervals for

means but we can determine standard errors for other statistics and

confidence intervals for the relevant parameters using similar logic, as

long as the sampling distribution of the statistic is approximately nor-

mal and we know the formula for its standard error. In most cases, the

confidence interval is based on the t distribution. If these two conditions

don’t hold, resampling methods (e.g. bootstrap) permit us to generate a

sampling distribution for a statistic specific to the sample data at hand

and thus determine a standard error for that statistic (see Crowley 1992;

Dixon 1993; Manly 1997).

4.5 statist ical models

While we nearly always use a sample mean or variance to estimate a

populationmean or variance, we usually do so as part of amore sophisti-
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cated process of fitting a statistical model to our monitoring data. This

statistical model, the structure of which should be determined at the

design stage, is an attempt to represent biological relationships between

a response variable (Y) and one or more predictor or explanatory vari-

ables (Xs) in a mathematical form. We will focus on linear models,

although non-linear models are also possible (Box 4.5, Fig. 4.2).

4.5.1 Regression models

As a simple example, we might wish to model species richness (our

response variable Y) from sampling units against two continuous pre-

dictor variables, depth (X1) and current velocity (X2), for a single location

along the river. Note that the response and predictor variables should be

measured at commensurate scales, in this case the scale of a sampling

unit. Our biological model might look like:

species richness� effect of depth� effect of current velocity

�unexplained error (4.1)

The left-hand side of the model always represents our response variable.

The right-hand side of the model represents our predictor variables and

a measure of uncertainty (Hilborn &Mangel 1997) or error – this error is

measured by how much our observed values of species richness differ

from those predicted by our model.

Our formal statistical model representing this biological model is:

yi� �0�1xi1��2xi2� 	i (4.2)

where

yi is the value for the response variable (species richness) on the ith

sampling unit

xi1 is the value for the first predictor variable (depth) on the ith

sampling unit

xi2 is the value for the second predictor variable (current velocity) on

the ith sampling unit

�0 represents the value of species richness when both depth and

current velocity are zero. This is commonly called the Y-intercept

�1 measures the strength of the relationship between species richness

and depth independent of current velocity. Formally, �1 is the slope of
a linear regression line between Y and X1, the change in Y for a unit

change in X1, holding X2 constant and is termed a partial regression

slope

�2 measures the strength of the relationship between species richness
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and current velocity independent of depth. Formally, �2 is the slope of
a linear regression line between Y and X2, the change in Y for a unit

change inX2, holdingX1 constant and is also a partial regression slope.

	i is an error term representing the difference between the observed

values of the response variable and the values predicted by the true

regression model (i.e. it measures the variation in the response vari-

able not explained by our chosen predictor variables).

This is a population model because it represents the relationship be-

tween the response and the predictor variables in the population of

possible sampling units. As such, �0, �1 and �2 are parameters we must

estimate from our sample data. Note that the predictor variables do not

have to be independent of each other, indeed current velocity may well

be greater in shallow water than deep water, although high correlations

between predictors (collinearity) cause difficulties in estimation and

hypothesis-testing.

When all predictor variables are continuous, as in this example,

the model is usually referred to as a regression model. The effect of each

predictor variable on the response variable is measured by the slope of a

linear regression line. When all predictor variables are categorical, the

models are sometimes referred to as analysis of variance (ANOVA)

models and are fundamental to the monitoring designs we will recom-

mend in this book. In practice, the distinction between regression and

ANOVA models is artificial; linear models can include both continuous

and categorical predictors, and the procedure for fitting the linear

statistical model is the same. However, the terminology distinguishing

regression and ANOVA models is entrenched in the literature and

usually unavoidable. The monitoring programs we will recommend in

this book are based primarily around categorical predictor variables

such as polluted vs. unpolluted or before activity vs. after activity.

4.5.2 Analysis of variance (ANOVA) models

The statistical literature on the theory and application of ANOVAmodels

is extensive and Sokal & Rohlf (1995) and Underwood (1997) provide

thorough introductions from a biological perspective. One problemwith

reading this literature is that a range of terminology and symbols is used

and this can be confusing for the novice.We have tried to summarize the

main points in general statistical terms in Box 4.6 and Tables 4.1–4.3,

and we will illustrate these different models based on the mining

example in Kakadu National Park from Faith et al. (1995; Box 4.1),
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Box 4.5 Linear versus non-linear models

The term ‘linear’ has two meanings when applied to statistical

models, particularly regression models. If the shape of the

relationship between a predictor variable and a response variable

approximates a straight line (with either a positive or negative

slope), then this relationship is often termed linear. This use of the

term linear applies specifically to regression analyses in which the

predictor variables are usually continuous. More generally,

however, a linear model is one in which the parameters appear

simply because none is an exponent, multiplied or divided by

another parameter (Neter et al. 1996). Linear models do not have to

represent linear (straight-line) relationships, although they usually

do. For example:

yi� �0��1xi1� 	i (4.5.1)

is a linear model that represents a straight-line relationship (Fig.

4.2a) where �0 is the intercept and �1 the slope of the straight-line
relationship. The following is also a linear model:

yi� �0��1xi1��2xi1� 	i (4.5.2)

but the relationship is now a curvilinear one (Fig. 4.2b). These

models, where a single predictor variable is also raised to the

second or higher power, are sometimes called polynomial models.

A non-linear model is one in which the parameters

themselves are no longer simple and represents a relationship that

cannot be depicted by a straight line. For example:

yi� �0e
�1xi 	i (4.5.3)

is an exponential growth model where one parameter (�1) appears
as an exponent. The relationship is not a straight line (Fig. 4.2c) but

this model can be made linear by a transformation of Y to logs:

log(yi)� log(�0)��1xi� log(	i) (4.5.4)

Note that Y, the intercept (�0) and the error terms (	i) are now
in log units but the relationship is now a straight line and the

model is linear.
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Y

Y

Y

Fig. 4.2 (a) Straight-line relationship from linear model; (b) curvilinear

relationship from linear polynomial model; (c) curvilinear relationship

from non-linear exponential growth model (e.g. X is time, Y is size).
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modified slightly to expand the focus of this book beyond macroinverte-

brates.

Consider a design where we wished to examine the effects of a

mining operation on algal biomass on submerged pieces of wood (coarse

woody debris or ‘snags’) in the South Alligator River. If we choose a

number of (control) locations upstream of the mine and a number of

(impacted) locations downstream of the mine and recorded the average

algal biomass on snags within each location, our biological modelmight

be:

algal biomass�upstream vs. downstream�unexplained error

(4.3)

Here, our basic sampling unit is a location, although we may have a

number of subsampling units (individual snags) within each location.

Note also that such a design does not necessarily allow us to infer effects

of the mine, just whether upstream locations are different from down-

stream locations. This issue of inferring impacts from upstream versus

downstream comparisons will be considered in detail in chapter 5.

When our predictor variables are categorical, we generally measure the

effects of the predictor variable as deviations of the mean of each

category (i.e. level) from the overall mean for the response variable. Our

statistical model is represented by equation 4.6.1 in Box 4.6. This model

is sometimes called a single-factor (one-way) ANOVA model. There are

only two categories of the predictor variable (factor) in this example,

upstream and downstream, although there are commonly more than

two categories for factors, such as multiple sampling times. Note that

the terminology used for thesemodels in the literature, especially differ-

ent subscripting etc., can be confusing (Box 4.6). For the remainder of

this chapter, wewill just discuss the statisticalmodel but remember that

these statistical models are simply representations of biological models

that indicate the predictor variables that we think influence the re-

sponse variable.

In many cases, we record our response variable on subsampling

units within each main sampling unit. For example, we might record

algal biomass on a number of snags within each location. Our model is

now represented by equation 4.6.2 in Box 4.6. Notice that we have two

spatial scales in this design (between locations and between snags with-

in locations) and this model is termed a two-factor nestedmodel. The �i(j)

term is called a nested factor, where locations are nested within up-

stream vs. downstream groups. Nested spatial and temporal scales of

subsampling are common in the designs we will describe in chapters 5
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Box 4.6 Analysis of variance models and notation

Consider a linear model relating a response variable Y (e.g. average

algal biomass per snag) to a single categorical predictor variable, A

(e.g. upstream vs. downstream of mine), with a categories (i� 1 to

a). There are n replicate observations (e.g. locations along river) of Y

within each category, any observation denoted as k.

yik� � �Ai� 	ik (4.6.1)

where

yik denotes a single observation (number k in that category)

belonging to category i of factor A (e.g. the average algal

biomass for the jth location upstream or downstream)

� denotes the overall population mean of all possible

observations of interest (e.g. the overall mean of algal

biomass)

Ai is the effect of being in category i of factor A, expressed as

a deviation from � (e.g. the effect of the ith level (or

category) of the upstream–downstream factor (i.e. being

upstream or downstream) on algal biomass)

	ik is an error term that represents the influence of other

variables not recorded and therefore unexplained causes

of variation that result in the values of Y not being

identical in each category of A (e.g. the variation in

average algal biomass per snag between upstream

locations and between downstream locations). These

error terms are estimated from the differences between

the observed values of algal biomass and those predicted

by the model.

Fitting this model to the data using (ordinary) least squares only

requires that the observations within each category be sampled

randomly from the population of all possible observations.

Obtaining reliable confidence intervals and tests of hypotheses

about model parameters also requires that the residuals from the

model are normally distributed, have equal variance within each

category and are independent of each other, both within a

category and between categories. If the residuals meet these

assumptions, then so must the observations, yik.

We can also have models that include additional, nested

factors that usually represent levels of subsampling. Imagine a

model relating Y (e.g. algal biomass per snag) to factor A (e.g.
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upstream vs. downstream of mine), with a categories (i� 1 to a),

factor B (e.g. locations upstream and downstream) with b

categories (j� 1 to b) nested within each category of factor A. The

actual categories of B are different within each category of A (e.g.

locations upstream are different from locations downstream).

There are n replicate observations (subsampling units; e.g. snags

within locations) within each combination (cell) of A and B, and

any observation is denoted as k:

yijk�� �Ai� Bi(j)� 	ijk (4.6.2)

where

yijk denotes a single observation (number k in that cell)

belonging to category i of factor A and category j of factor

B nested within factor A (e.g. the algal biomass for the kth

snag in the jth location upstream or downstream)

� denotes the overall population mean of all possible

observations of interest (e.g. the overall mean of algal

biomass)

Ai is the main effect of being in category i of factor A,

averaged across the categories of B within category i and

expressed as a deviation from �. This main effect is

measured as the difference between the mean of the ith

category of A and the overall mean, averaging the levels

of B within each level of A. In our example, this is the

effect of the ith level (or category) of the

upstream–downstream factor (i.e. being upstream vs.

downstream) on algal biomass

Bi(j) is the nested effect of being in category j of factor B,

nested within category i of factor A, expressed as a

deviation from �i (the mean of category i of factor A). This

effect is measured as the difference in means between

levels of B within each level of A. In our example, this is

the effect of the jth location within the ith category of

upstream vs. downstream on algal biomass

	ijk is an error term that represents the influence of other

variables not recorded and therefore unexplained causes

of variation that result in the values of Y not being

identical in each category of A (e.g. the variation in algal

biomass between upstream snags in each location). These

error terms are estimated from the differences between
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the observed values of algal biomass and those predicted

by the model.

Now let’s include an additional predictor variable B (time:

before vs. after mining) that is crossed with factor A (upstream vs.

downstream of mine). This means that all categories of A occur for

each category of B and vice versa; all combinations of A and B are

used. There are a categories of factor A (i� 1 to a) and b categories

of factor B (j� 1 to b) and n replicate observations within each

combination (cell) of A and B, any observation denoted as k:

yijk�� �Ai� Bj�ABij� 	ijk (4.6.3)

where

yijk denotes a single observation (number k in that cell)

belonging to category i of factor A and category j of factor

B (e.g. the algal biomass for the kth location in the ith

upstream vs. downstream category and the jth

before–after category)

� denotes the overall population mean of all possible

observations of interest (e.g. the overall mean of algal

biomass per snag)

Ai is the main effect of being in category i of factor A,

averaged across the categories of B and expressed as a

deviation from �. This is termed a main effect because it

is measured as the difference between the mean of the ith

level of A and the overall mean, pooling across levels of B.

In our example, it is the main effect of the ith level (or

category) of the upstream–downstream factor on algal

biomass, pooling times

Bj is the main effect of being in category j of factor B,

averaged across the categories of A and expressed as a

deviation from �. This is also termed a main effect

because it is measured as the difference between the

mean of the jth level of B and the overall mean, pooling

across levels of A. In our example, it is the effect of the jth

level (or category) of the time factor on algal biomass,

pooling upstream and downstream

ABij is the combined (synergistic) effects of factors A and B

acting together (interaction between A and B). The

presence of an interaction effect indicates the effects of A

are not independent of the level of B and vice versa. In
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our example, it is the interactive effect of the ith level (or

category) of upstream vs. downstream and the jth level of

time on algal biomass. This interaction measures how

much the differences between the means of each

upstream vs. downstream category vary between times

and vice versa, how much the differences between the

mean of each time vary between each upstream vs.

downstream category. This is the fundamental measure

of impact in this model: is the difference between

upstream and downstream locations the same after

mining as before?

	ijk is an error term that represents the influence of other

variables not recorded and therefore unexplained causes

of variation that result in the values of Y not being

identical in each cell (combination of A and B; e.g. the

variation in algal biomass between snags in each

combination of before–after and upstream–downstream).

These error terms are estimated from the differences

between the observed values of algal biomass and those

predicted by the model.

In multifactor models, such as the crossed model above, the

main effects of A and B are averaged across the levels of the other

factor, and it is often more convenient to represent the effects of A

in the model above as Ai.., with the notation i.. indicating category

i of factor A summed (or averaged) across the levels of B, with the

individual observations also summed. With this notation, the

linear model for the two factor crossed design becomes:

yijk�� �Ai..� B.j.�ABij.� 	ijk (4.6.4)

The analysis of variance partitions the total observed

variation in our response variable (Y) into its components due to

the different terms in our model. We initially partition the

variation as sum-of-squares, but it is statistically more convenient

to use mean squares (i.e. variances) because these take into

account the number of items (measured as degrees of freedom)

that comprise each source of variation. The mean squares

associated with each term in the model are sample variances and

they estimate components of the variance in the populations (one

population of Y in each category or cell in our design) from which

we have sampled. The components of the population variation
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estimated by these sample variances are termed expected mean

squares or mean square estimates and are provided for common

linear models in Tables 4.1, 4.2 and 4.3. By examining ANOVA

tables that include expected mean squares, we can see that when

we estimate the variance in Y associated with a particular term in

our linear model, our estimates are composed of different variance

components. For example, the expected value of the mean square

associated with factor A in a nested model (Table 4.2) consists of

three components. One represents the variation between replicate

observations within each category of B nested within each

category of A, another represents the variation between the means

for each category of B within each category of A and a third

represents the variation between the means for each category of A.

Clearly, only the last component is a measure of the variation due

to factor A by itself.

The expected mean squares depend on whether each factor

in our design, and therefore whether each term in our model, is

fixed or random. This can influence our hypothesis tests for

specific terms. In particular, the inclusion of one or more random

factors in our design can alter the nature of the hypothesis tests

for terms involving fixed factors and interactions in our model

(Table 4.3). The ‘variance component’ associated with a fixed factor

(e.g. factor A) is measured as the squared effects of individual

categories of factor A and is usually designated as:


2a�
a

�
i�1

(�i� �)2
a� 1 (4.6.5)

This is a variance between the population means for the

specific categories of factor A used in our design and our

conclusions are restricted to those levels. If factor A is random, it

has a true variance component measured as a variance between

the means of all the possible categories of factor A we could have

used in our design, �2A. Although both 
2A and �2A represent
variances, the former is about fixed category effects and the latter

about all possible category effects of which we only have a random

sample. Sometimes �2A is used for both A fixed or A random and it

is important to remember that when A is fixed, this quantity is

actually measuring the fixed treatment effects in 4.5.5, not a

random variance component.
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Box 4.7 Ordinary least squares (OLS) and maximum likelihood (ML)

methods for estimation of parameters

Consider a random sample of n observations (y1, y2, . . ., yi, . . ., yn)

from a clearly defined population. The value of a sample statistic

that provides the (ordinary) least squares (OLS) estimate of a

population parameter is the one that minimizes:

n

�
i�1

[yi� �]2 (4.7.1)

where � is the estimated value of the parameter (i.e. the sample

statistic). For example, the OLS estimate of the population mean is

the value of ȳ that minimizes:

n

�
i�1

[yi� ȳ]2 (4.7.2)

It turns out that this value is the sample mean from Box 4.3. OLS

estimation can be applied to a variety of estimation problems,

including estimating parameters for linear models, although

derivation of confidence intervals and tests of hypotheses require

specific assumptions (e.g. normality) to be met.

The value of a sample statistic that provides the maximum

likelihood (ML) estimate of a population parameter is the one that

maximizes the likelihood of observing our sample data. ML

estimation assumes an underlying distribution (e.g. normal) for

the data and the ML estimate maximizes the likelihood function:

L(yi;�)�
n

�
i�1

f(yi; �) (4.7.3)

where L(yi;�) is the likelihood of observing our sample data (yi) for

possible estimated values (�) of the parameter, f(yi;�) is the
probability distribution of yi for possible values (�) of the
parameter and �� indicates multiplication. So we can try

different values of � and see which one maximizes the product of

the densities from the probability distributions of yi for each value

of �. For example, to estimate the population mean via ML, we

might calculate the probability density of yi for different values of

� (our estimate of �) in a normal probability distribution (for a

given �). The product of these densities is the likelihood function
and the ML estimate of � is the value of � that maximizes this

likelihood function.
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In practice, the calculations are easier if we use the

log-likelihood function:

LL(yi;�)�
n

�
i�1

ln[f(yi; �)] (4.7.4)

For many linear models, ML provides the same exact estimators as

OLS when the specific assumptions of OLS hold. ML estimation is

more reliable in situations when those assumptions are not met

(e.g. for GLMs or non-linear models) or for more complex

estimation problems. In these circumstances, ML estimators are

usually found by iterative procedures that basically try different

values of the parameter(s).

and 7. The single-factor model can be derived from the nested model if

we simply average the data for snags within each location in the second

design and use those average values as the observations for the single-

factor model.

One way to be more confident that any upstream–downstream

difference we observe is actually due to the mining effect would be to

includemeasurements before and after mining has occurred. This is the

logic behind the range of Before–After–Control–Impact (BACI) designs

that will be discussed extensively in chapters 5 and 7. We still have the

mine on a river in Kakadu National Park, but now we record algal

biomass on snags before and after mining, as well as having putative

impact locations downstream of mining and control locations up-

stream. We now have two predictor variables: upstream vs. downstream

(two categories: upstream and downstream of the mine) and time (two

categories: before mining commences and after mining commences).

Within each of the four combinations of upstream vs. downstream and

time, we will choose n locations where n � 1. The average algal biomass

per snag per location is our response variable. Our linear model is now

equation 4.6.3 in Box 4.6. This model is termed a two-factor crossed (or

factorial)model. Interactions are particularly important formodels with

categorical predictor variables. In most of the monitoring designs we

will recommend in chapters 5 and 7, as in this simple example, the effect

of a particular human disturbance is measured by the interaction be-

tween ‘control’ (e.g. upstream) and ‘impact’ (e.g. downstream) locations

and before and after the impact.

If the number of replicate observations in each cell (factor combi-
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nation) of thesemultifactor designs is equal (balanced designs), then the

effects of the factors on the response variable are independent of each

other. With unbalanced designs (unequal numbers of observations per

cell), then the effects of the factors are not independent and the analyses

are more complex.

4.5.3 Fitting models

There are twomain statistical methods for estimating the parameters of

a linear model from our sample data. The simplest approach that is

described in most linear models textbooks is termed (ordinary) least

squares (OLS) estimation. An OLS estimator is one that minimizes the

sum of squared deviations (sum-of-squares) between the observed

sample values of the response variable and the values predicted by the

model (Box 4.7). This sum-of-squares (SS) is termed the residual or error

SS and the smaller the residual SS, the better the model fits (i.e. explains

Y). Using OLS to fit a model to sample data provides a number of useful

outputs:

• Point estimates of the parameters of the model, so the model can

then be used for predictive purposes

• Interval estimates of the parameters, so we can determine our

confidence in the parameter estimates and also test specific hy-

potheses about those parameters

• Measures (sum-of-squares and variances) of the variation in the

response variable, how much is explained by the model and how

much is unexplained (uncertainty or error).

OLS point estimators are simple to calculate, can be used for a range of

linear models, and are easily interpreted because the sums-of-squares

can be converted to variances that have known probability distributions.

The only assumption for OLS estimation is that the sample was taken

randomly from the population. However, if we wish an interval estimate

of a parameter in our model, or we wish to test an hypothesis about that

parameter (see section 4.7), then we have to assume that our response

variable has a normal (symmetric) distribution for OLS estimation. We

will consider this assumption in more detail in section 4.9, although it

turns out that for many regression and ANOVA models, OLS interval

estimation and hypothesis-testing is still reliable even if the underlying

probability distribution of our response variable is not strictly normal.

An alternative method of estimation for linear (and non-linear)

models is termed maximum likelihood (ML) where we find an estimate
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of the population parameter that maximizes the likelihood of observing

our sample data (Box 4.7). ML estimation is computationally more diffi-

cult than OLS and we must use an iterative algorithm to derive the

estimator; these algorithms are becoming more commonly available in

statistical analysis software. ML estimation also allows us to specify the

nature of the distribution of the error terms of the model, and therefore

the response variable. If it is normal, then we will get identical par-

ameter estimates to OLS; if the distribution is not normal, but we can

specify the type of distribution (such as a Poisson distribution for count

data), then ML estimation comes into its own. We can also model dis-

crete (categorical) response variables that will rarely be distributed nor-

mally. So ML allows us the flexibility of specifying distributions of the

response variable other than normal when deriving interval estimates

of, or testing hypotheses about, parameters in our model. Fitting linear

models using ML when the probability distribution of the response

variable is specified is termed generalized linear modelling (GLM; see

section 4.9), in contrast to general linear modelling (ANOVA and re-

gression modelling using OLS).

4.5.4 Comparing models

Inmany cases in environmentalmonitoring, wemight have a number of

competing models, particularly when we are modelling a single system

or process. Usually, we compare a series of nested (hierarchical) models

(Hilborn & Mangel 1997) where models represent subsets of other

models. For example, we might compare three models to explain algal

biomass on snags at river locations upstream and downstream of min-

ing, and before and after mining starts:

Model 1: yijk�� �Ai�Bj�ABij� 	ijk
Model 2: yijk�� �Ai�Bj� 	ijk
Model 3: yijk�� �Ai� 	ijk

Models 2 and 3 are reduced model subsets of Model 1, which is termed

the full model because it contains all the predictor variables we have

measured in our study. There are two reasons why a comparison of the

fit of these models to our sample data is useful. First, parsimony de-

mands we use the simplest model in any situation if it is as good a

predictor of our response variable as more complex models. So if the fit

of Models 2 or 3 is as good as Model 1, then we should use one of the

simpler models for future prediction. Second, a comparison of each of

Models 2 and 3 with Model 1 indicates the importance of each predictor
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variable separately. For example, comparing the fit of Model 1 with

Model 2 tells us the importance of the interaction between upstream vs.

downstream and before vs. after on algal biomass on snags in rivers. If

Model 2 fits as well as Model 1, then this interaction is clearly not an

important predictor and we might conclude there is little impact of

mining. Comparisons of the fit of a set of nested linear models, whether

by OLS orML, are a fundamental tool for data analysts and form the basis

for regression analyses and analyses of variance. Comparing linear (or

non-linear) models is more difficult in practice than this simple intro-

ductionmight suggest. In particular, we need some criteria for deciding

whether the reduction in fit by removing a term from a model is large

enough for us to conclude that the term is important.

Sometimes we are in the position where we are very unsure of the

underlying distribution of our response variable and/or we have not

been able to sample our population randomly. For example, we may be

modellingwith data based on replicate locations determined by political

or aesthetic importance, rather than chosen randomly (or haphazardly)

from a population of sites. Under these circumstances, neither OLS nor

ML estimation may be reliable and we might have to resort to a third

method of estimation: computer-intensive, resampling methods such as

the jackknife or bootstrap (Crowley 1992; Dixon 1993). These approaches

generate a probability distribution of the estimator by resampling, with

replacement, from the original data.

4.6 analyses of variance (anova)

4.6.1 Type of factors

We have already distinguished between continuous and categorical

predictor variables. The ANOVAdesignswe described in section 4.5.2 also

include nested and crossed factors. To reiterate, nested factors are those

whose levels are different, and usually randomly chosen, within each

level of the higher factor (e.g. locations nested within areas upstream

and downstream of the mine). We can have multiple levels of nesting.

For example, Downes et al. (1993) examined scales of spatial variability in

the distribution of stream invertebrates and sampled stream stones at a

number of spatial scales along a river: three randomly chosen sites, two

randomly chosen riffles nested within each site, five randomly chosen

groups of stones nested within each riffle and three stones randomly

chosen from each group. Nested factors generally represent levels of

spatial or temporal subsampling in designs to detect human impacts on
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the environment. Crossed factors are those whose levels are the same

within each level of the other factor(s) (e.g. before and after impact for

both upstream and downstream of the impact). Crossed designs allow us

to measure the interaction between factors, which is not possible for

nested designs. Crossed designs can include three or more factors, which

means we can measure both two- and three-way interactions between

factors. Our recommended monitoring designs will actually combine

nested and crossed (factorial) factors (partly nested models) and can also

include additional continuous predictor variables (covariates) to try and

reduce the unexplained variation in Y. This can result in linear models

with many terms.

Predictor variables can also be classified as fixed or random and

this distinction has important implications for the way we test hypothe-

ses in linearmodels and the interpretations we place on our conclusions.

We will focus on classical ANOVA models where the predictors are

categorical, although the arguments apply equally to regression models

and models with combinations of continuous and categorical pre-

dictors. A fixed predictor variable, termed a fixed factor, is one where all

the possible categories or groups about which we wish to make inferen-

ces have been used. If we redid the study, we would use the same groups

or levels of that factor. For example, upstream and downstream of a

mining operation is a fixed factor because there are only two possible

groups (upstream ‘control’ and downstream ‘impacted’). Our con-

clusions are restricted to those specific groups that we used in our study.

A random factor is one where we only used a sample of the possible

groups or levels in our study and we wish to use the results from that

sample to extrapolate to all the possible groups we could have used. If we

redid the study, we would choose another random sample of groups. For

example, streams might be a random factor if we chose a number of

streams from all the possible streams in a catchment that we could have

used. Streams would be fixed if we chose specific streams and did not

want them to represent all possible streams. In the nested model above

(equation 4.6.2, Box 4.6), locations upstream and downstream is a ran-

dom factor because we have chosen a number of locations upstream and

a number downstream from all the possible upstream and downstream

locations. Random factors commonly represent random samples at a

particular spatial or temporal scale, and are used to permit extrapola-

tion to sampling units at that scale more generally. Nested factors are

nearly always random; crossed factors can be either fixed or random.
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4.6.2 Partitioning the variance

We have distinguished between regression models, where the predictor

variables are continuous, and ANOVA models, where the predictor vari-

ables are categorical, although we pointed out that this distinction is

artificial as the basic model fitting and testing procedures are identical.

Using OLS to estimatemodel parameters also allows a partitioning of the

variation in the response variable into that explained by the different

terms in the model and that unexplained (the error or residual vari-

ation). To illustrate this process, consider the general, single-factor lin-

ear model described in Box 4.6.

We can measure the total variability in Y across all observations

with a sum-of-squares (SS). This SSTotal can be partitioned into two

additive components (Table 4.1):

• SSA measures the variability between the means of the categories

of factor A

• SSResidual measures the variability between the individual observa-

tions within A categories, pooled across categories.

The larger the variation in the means of Y between categories

relative to the variation between observations within each category, the

larger will be SSA relative to SSResidual. Unfortunately, SS are of limited

usefulness because they are a measure of variation that is dependent on

the number of components contributing to each SS (e.g. the SSResidual is

dependent on the number of observations within each category).We can

convert each SS to a variance, also called a mean square, by dividing by

the degrees of freedom (df; equals the number of observations contribu-

ting to the variability minus one). The dfA is the number of categories (a)

minus one and the dfResidual is the number of observations within each

category (n) minus one, summed for the categories.We usually represent

this partitioning of the variance in an ANOVA table (Table 4.1). This

ANOVA table shows us that there are two variances, that between cat-

egory means and that between observations within each category, aver-

aged over the categories. These are sample variances and they estimate

components of the variance in the populations (one population of Y in

each category) from which we have sampled. The components of the

population variation estimated by these sample variances are termed

expected mean squares or mean square estimates and are provided in

Table 4.1. These mean square estimates are based on a number of

assumptions that we will consider below. Themost important of these is

the homogeneity of variance assumption that the population variance of
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the error terms from the linear model, and therefore the population

variance of the yik is the same for each group:

�2	1��2	2� . . . � �2	i� . . . ��2	 (4.4)

MSResidual estimates this common variance of the error terms. The es-

timated value of MSA depends on whether the factors are fixed or

random.

Say our factor is upstream vs. downstream and Y is algal biomass

per snag per location. There are only two categories we are interested in,

upstream and downstream, so this factor is clearly fixed. When factor A

is fixed, MSA estimates the common variance plus an additional compo-

nent that represents the effect of the categories (such as upstream and

downstream) in the populations from which we have sampled. This

additional component is the variance between the true means of the

specific categories we have used in our monitoring or experimental

design. Clearly, if there was an effect of the groups on Y, such as an effect

of upstream vs. downstream on algal biomass, then wewould expect the

MSA to be larger than the MSResidual because the latter estimates an

additional component due to the difference between category means. If

there was no effect of the groups, then we would expect these two MS to

be approximately equal because both estimate the common variance of

the error terms.

Now say our factor is stream where we chose a number of streams

from all the possible streams within a catchment. We wish to make

inferences about the population of possible streams based on our sample

of streams, so this factor is clearly random. When factor A is random,

MSA estimates the common error variance plus any additional variance

between all the possible categories of factor A. Clearly, if there was an

effect of factor A on Y, such as variation between all possible streams in

algal biomass, then we would expect the MSA to be larger than the

MSResidual because the latter estimates an additional component due to

the variance between streams. If there was no effect of factor A, then we

would expect these two MS to be approximately equal because both

estimate the common variance of the error terms.

Now consider the nested model 4.6.2 in Box 4.6. In nested models,

the nested factor B within A is nearly always random, such as randomly

chosen locations upstream and randomly chosen locations down-

stream. Factor A can be fixed or random, but is commonly fixed, like

upstream vs. downstream. The SSTotal can now be partitioned into

SSA� SSB(A)� SSResidual. The MS estimates are given in Table 4.2. Note

that MSB(A) estimates the common variance of the error terms plus the
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Table 4.2. ANOVA table showing the partitioning of the df, and the mean

square estimates for a balanced, two-factor nested linear model

Source of variation df

MS estimates

(A fixed, B random)

A a� 1 �2	 � n�2B(A)� bn
2A
B(A) a(b� 1) �2	 � n�2B(A)
Residual ab(n� 1) �2	
Total abn� 1

Note: Factor A has a categories (i� 1 to a), factor B has b categories (j�1 to b)

nested within each category of A and there are n (k� 1 to n) replicate

observations within each AB combination.


2A represents the variance between the means of the fixed levels of factor A

whereas �2B(A) represents the variance between the means of all possible levels of

the random factor B within each level of A that could have been used.

variance between all possible categories of B within each category of A.

MSA estimates these components plus an additional effect of the specific

categories representing factor A.

Finally, consider the two-factor crossed model 4.6.3 in Box 4.6. The

SSTotal can now be partitioned into SSA� SSB� SSAB� SSResidual. If both

factors are fixed, such as A being upstream vs. downstream and B being

before and after mining starts, their interaction is also fixed. Then MSA,

MSB and MSAB estimate the common variance of the error terms plus an

effect due to interaction, factor B or factor A, respectively (Table 4.3). This

is a simple extension of the single-factor fixed model. However, if we

chose a sample of times from a population of possible times, such as

randomly chosen times over two years after mining starts, then factor B

is random, and the mean square estimates change (Table 4.3). These are

termedmixedmodels (a mixture of fixed and random factors in amodel)

and the interaction between a fixed and a random factor is considered

random.More importantly, however,when factor B is randomand factor

A is fixed, the estimate for MSA now includes the variance due to the

interaction term. This type of change in mean square estimates when

random factors are included in models has a major effect on the way we

test hypotheses about parameters in these linear models. There is an

alternative derivation (see Ayres & Thomas 1990; Voss 1999) that changes

the estimated mean square (EMS) for the random factor but the version

we have presented is more common.

The formulae in Tables 4.1, 4.2 and 4.3 are for balanced designs,
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Table 4.3. ANOVA table showing the partitioning of the df and the mean square

estimates for a balanced, two-factor crossed linear model

MS estimates

Source of variation df A, B fixed A fixed, B random

Factor A a� 1 �2	 � nb
2A �2	 � n�2AB�nb
2A
Factor B b�1 �2	 � na
2B �2	 � na�2B
Interaction AB (a�1)(b�1) �2	 � n
2AB �2	 � n�2AB
Residual ab(n� 1) �2	 �2	
Total abn� 1

Note: Factor A has a categories (i� 1 to a), factor B has b categories (j�1 to b)

and there are n (k� 1 to n) replicate observations within each AB combination.


2A, 

2
B and 
2AB represent the variance between the means of the fixed levels of

factor A, factor B and the AB interaction, respectively, whereas �2B and �2AB
represent the variance between the means of all possible levels of the random

factor B and the variance among all possible interactions between the fixed

factor A and the random factor B.

with equal sample sizes in each group or cell. Unequal sample sizes are

common (e.g. Faith et al. 1995 had two upstream and six downstream

locations) and these formulae can be modified, or SS and hypothesis

tests constructed by comparing the fit of full and reduced models (sec-

tion 4.5.4). Unequal sample sizes can cause some complications (see

Underwood 1997) – linear model analyses are more sensitive to viol-

ations of assumptions (section 4.9), there is more than one way of

calculating SS in factorial designs (Winer et al. 1991), and estimation of

some parameters, especially variance components, is more difficult.

4.7 hypothesis -testing: classical approach

Hypothesis-testing has a long history in statistics and has been closely

linked to a hypothetico-deductive (falsificationist) approach to scientific

method based in part on the work by Karl Popper (Popper 1968; see also

James & McCulloch 1985, Scheiner 1993 and Underwood 1990, for eco-

logical perspectives). In our discussion above, we noted that the compan-

ion to falsification, the possible degree of corroboration or support for

an hypothesis provided by outcomes that do not falsify the hypothesis of

interest, is also very relevant to monitoring impacts. We will now ex-

plore such hypothesis-testing further in a monitoring context. Continu-
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ing the mining example from Faith et al. (1995), say we observe (or read)

that there is spatial variation in algal biomass on snags between loca-

tions along the river. One explanation might be that this pattern is a

result of a mining operation, resulting in sites upstream and sites

downstream of the mine that differ in algal biomass per snag. Our

hypothesis that an impact has occurred and our evidence for the hypoth-

esis will be based on an expectation that, if there is an impact, locations

along this river below the mine will have a different algal biomass than

locations above the mine. Because it is logically impossible to prove any

non-trivial hypothesis (Popper 1968; Underwood 1990), the key evalu-

ation of evidence will address the null hypothesis – as discussed earlier,

rejection of the null hypothesis means that the evidence (our data) is

very unlikely in the absence of impact. The null hypothesis therefore is

an hypothesis of no difference from ‘normal’ or ‘background’ expecta-

tions or no effect of impact – in this case that there is no difference in

algal biomass between locations upstream and downstream of themine.

Note that no difference is a shorthand way of saying that the variation

actually observed can be accounted for by our null model, the model

that generated the null hypothesis of no effect. The final step is to test

this null hypothesis. Ideally, this test would comprise a manipulative

field experiment, although for hypotheses involving large-scale an-

thropogenic activities like mining, such experiments are rarely possible.

An alternative, weaker, but more practical test would be a sampling

program that simply compared algal biomass at locations upstream of

the mine with locations downstream of the mine. Note that such a

design cannot easily attribute any differences to themine activity, it can

only test whether upstream locations are different from downstream

locations, and so possibly demonstrate that the observed difference is

improbable under normal circumstances. Our model for what consti-

tutes evidence, and therefore our null hypothesis, may bemore complex

than this, often involving temporal processes (such as seasonal and

annual patterns, before and after activity starts) and multiple spatial

scales (such as multiple unimpacted rivers, locations within rivers).

Nearly all the designs we will describe in later chapters for detect-

ing the effects of human activity in freshwater systems are based around

linear models. We will, therefore, introduce hypothesis-testing in the

framework of comparing fits of linear models to sample data. Tests of

statistical hypotheses are based on four important components:

• Specifying a null hypothesis (H0), which is traditionally an hypoth-

esis of no effect or no relationship (e.g. no relationship between
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nutrients and fish community structure, no difference in algal

biomass upstream and downstream of a mine).

• Comparing a test statistic calculated from our sample data, which

provides a measure of the strength of the effect we are testing, to

the central theoretical probability distribution for that statistic,

which is usually the probability distribution (sometimes called the

‘sampling distribution’) of the statistic under the null hypothesis

(i.e. when the H0 is true).

• Determining the probability of getting our sample test statistic or

a valuemore extreme, and therefore our sample data or datamore

extreme, if the null hypothesis is true (P(data�H0)). The comparison

of our sample statistic to its theoretical probability distribution

under the null hypothesis provides this probability. Note that this

comparison will often only be valid if the data meet certain as-

sumptions that we will consider in section 4.9.

• Using an a priori decision criterion to decide whether to reject the

null hypothesis or not. This criterion is a probability value, often

called a significance level; if P(data�H0) is less than this value, we

reject the null hypothesis, otherwise we do not. This significance

level is often set, by convention and therefore arbitrarily, at 0.05 or

5%.

The theoretical probability distributions of the common test statistics

that we will use in this book are founded on reliable statistical theory.

These distributions are mathematically defined and represent sampling

distributions: probability distributions of the test statistic under repeat-

ed sampling from one or more populations. The distributions vary

slightly depending on the sample size, represented statistically by the

degrees of freedom. The simplest of these sampling distributions for

each statistic is the central distribution and is the probability distribu-

tion of a test statistic under the null hypothesis when there is no ‘effect’.

Central probability distributions for common test statistics are tabled in

the back of most statistics books and programmed into the code of most

statistical software. Non-central distributions are those for particular

effects or differences when the null hypothesis is not true; there are an

infinite number of possible non-central distributions for each test statis-

tic, depending on the size of the effect. Algorithms for these non-central

distributions are also available in most statistical software.

There are three test statistics with well-defined probability dis-

tributions that are used for analysing monitoring designs in this book:

• The t statistic is used to test hypotheses about single parameters
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(does the slope of the regressionmodel relating species richness to

current velocity equal zero?) and about the difference between the

equivalent parameter from two populations (is the mean species

richness upstream of the mine different from the mean species

richness downstream of the mine?).

• The F-ratio statistic is the ratio of two sample variances and is used

to test hypotheses about the equality of two sources of variation.

For example, we can use it to test the null hypothesis that two

linear models (full and reduced) explain the variance in our re-

sponse variable equally well. The F-ratio is the basic test statistic

we will use for analysing themonitoring designs recommended in

later chapters.

• If we are fitting generalized linear models based on ML estimation

(see section 4.9), the fit of each model is measured with a log-

likelihood statistic. As an analogue to the F-ratio, comparing two

models under this scenario results in a ratio of two log-likelihoods

called the likelihood ratio statistic. If the null hypothesis is true,

this statistic can be slightly modified and compared to a theoreti-

cal 2 distribution to determine probabilities for tests of null

hypotheses.

Once we have specified our null hypothesis and chosen our test statistic,

the procedure for statistically testing a null hypothesis uses a combina-

tion of the approaches of Fisher (1935), termed significance testing, and

Neyman & Pearson (1928), termed null hypothesis-testing. Neyman &

Pearson (1928) included a specific alternate hypothesis HA in their

scheme, which is the hypothesis that must be true if the H0 is rejected. If

our H0 is that there is no difference in algal biomass between locations

upstream of the mine and locations downstream of the mine, then the

HA is that there is a difference in algal biomass.

Consider our previous simple example of a monitoring design,

modified from Faith et al. (1995), to determine whether there is an effect

of amine (and implied pollution of a river) on algal biomass on snags in a

lowland river. We measure the average algal biomass per snag from a

number of control locations upstream and supposedly impacted loca-

tions downstream of themine. The logical null hypothesis is that there is

no difference in mean algal biomass between locations upstream and

downstream of the mine. Although simple in appearance, even this type

of design can be difficult in practice and careful thought must be given

to the spatial scale of replication within locations (snags within loca-

tions?), whether the only difference between locations upstream and
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downstream of the mine is due to the mine (are there confounding

variables?) and whether there will be a temporal component to monitor-

ing (see chapters 5 and 7).

We might fit two competing models to our sample data:

Model 1: algal biomass�overall mean�upstream

vs. downstream�unexplained error

Model 2: algal biomass�overall mean�unexplained error

To test the H0 that there is no difference between locations upstream

and downstream,we compare the fit of these twomodels to our observed

data. We can compare the variance explained by the twomodels with an

F-ratio statistic, which is the explained variance of the full model divided

by the explained variance of the reduced model. If the null hypothesis is

true (and the effect on the explained variance of omitting upstream vs.

downstream from our model is zero), we would expect an F-ratio around

1. If the null hypothesis is false, the full model will have a larger

explained variance than the reduced model and we would expect an

F-ratio greater than 1. Equivalently, our F-ratio could be the residual

variance of the reduced model divided by the residual variance of the

full model.

The comparison of full and reduced models is tedious and the

same result can be achieved by making use of our ANOVA table and

mean square estimates. Referring to Table 4.1, we can see that if the H0 is

true, we would expect that MSA (i.e. the variance due to the upstream vs.

downstream effect) and MSResidual estimate the same variance and there-

fore their F-ratio should be 1. So the F-ratio test that is standard output

from a single-factor ANOVA is identical to that from comparing full and

reduced models.

Note that the F-ratio statistic we calculate for tests of null hypothe-

ses in more complex, multifactor linear models depends on whether

predictors are fixed or random factors. The general approach is to

calculate the F-ratio from the two mean squares that have the same

expected value under the H0. When all factors are fixed, we usually test

each term against the MSResidual. If we are testing the H0 that there is no

effect of factor A in a nested model where the nested factor B(A) is

random, then the F-ratio will be MSA divided by MSB(A) because these two

mean squares have the same estimated value when the H0 is true (Table

4.2). This makes sense because the replicates at the appropriate scale for

testing A are the levels of B (e.g. the replicates for testing upstream vs.

downstream of the mine are the locations, not the individual snags).

For two-factor crossed models with one factor fixed and the other
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random, the test of the H0 of no effect of the fixed factor A uses an F-ratio

of MSA divided by MSAB, not MSResidual (Table 4.3). Tests become even

more complicated in models that include combinations of crossed and

nested and fixed and random factors. Indeed, sometimes there are no

appropriate F-ratios for some null hypotheses if two or more factors are

random in three-factor models.

So, the formal steps for a statistical test of a null hypothesis using

the F-ratio statistic are:

1. Specify H0 that there is no difference in algal biomass between

locations upstream and downstream of the mine. This is identical

to stating that the two models described above fit the observed

data equally well. This implies the HA that there is a difference in

algal biomass between upstream and downstream locations.

2. Choose appropriate test statistic, in this case an F-ratio statistic.

3. Specify a priori a significance level (termed – and often set at 0.05),

which is our decision criterion used in steps 6 and 7.

4. Calculate the test statistic, in this case the F-ratio statistic, from

fitting the two models to our sample data. This F-ratio statistic is

the standard output from a one-factor ANOVA.

5. Compare that value of the statistic to its sampling probability

distribution, assuming H0 is true. We would use the central F

distribution, which is the probability distribution of F when there

is no difference in fit of the two models and therefore no differ-

ence betweenmeans for locations upstream compared with down-

stream.

6. If the probability of obtaining our sample value of the test statistic

or one more extreme is less than our pre-defined significance level

(usually �� 0.05), then conclude that the H0 is false and reject it (a

statistically ‘significant’ result).

7. If the probability of obtaining our sample value of the test statistic

or one more extreme is greater than or equal to this pre-defined

significance level, then conclude there is not enough evidence that

H0 is false and do not reject it (a statistically ‘non-significant’

result).

The probability of obtaining our sample value of the test statistic or one

more extreme if the H0 is true is termed the P-value (see Fig. 4.3). So the

P-value is the P(data�H0). The P-value is termed a tail probability because

we are calculating the probability from the tail of the probability dis-

tribution of our test statistic. Thismeans that we are using our data plus

data that we did not actually observe to decide whether or not to reject
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0 A 0

Fig. 4.3 Probability density functions (pdf) of a test statistic under some H0

(left-hand distribution, shaded) and under some alternative HA (right-hand

distribution). The test statistic would usually be an F-ratio, although the

pdf for the non-central F-ratio is complex and changes shape markedly

depending on the degrees of freedom and the non-centrality parameter (a

measure of effect size). For illustration, we have used the simpler t distribu-

tion. The vertical line represents the critical value of the test statistic for a

specified �. If the H0 is true, our test statistic should follow the left-hand

distribution. The area under the curve to the right of the critical value is

the probability of making a Type I error (rejecting H0 because we obtained

a value of our test statistic greater than the critical value even though H0 is

actually true). We set this probability with our a priori significance level (�).
If the HA is true, our test statistic should follow the right hand distribution.

The area under the curve to the left of the critical value is the probability of

making a Type II error (not rejecting H0 because we obtained a value of our

test statistic less than the critical value even though H0 is actually false).

We can only determine this probability (�) for specific alternative hypoth-
eses (i.e. effect sizes).

the H0. This is in contrast to the Bayesian approach that doesn’t consider

tail probabilities when assessing evidence against H0. One aspect of the

Fisherian component of significance testing is the common practice in

many disciplines of presenting the P-value as a measure of the strength

of evidence against the H0 (Fisher 1935). How useful the P-value is for this

purpose will be considered briefly in section 4.8. Bayesian statisticians

would argue that the P-value is not usually comparable to P(H0̀data).

However, presenting P-values does allow a reader to use their own

significance levels for making decisions following the steps described

above.
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The Neyman–Pearson approach closely linked statistical hypoth-

esis-testing to decisionmaking by introducing the a priori chosen signifi-

cance level, which is our decision criterion for decidingwhether to reject

the H0 or not. Neyman & Pearson (1928) argued that this significance

level must be fixed in advance, although the conventional level of 5% or

0.05 actually has its origins with Fisher (1935). Neyman & Pearson also

introduced the concept of errors in decision-making when testing null

hypotheses. These errors occur because we are making decisions under

uncertainty. This uncertainty results from spatial and temporal vari-

ation between sampling or experimental units and also because we are

making inferences about unknown population parameters from imper-

fect samples drawn from the population(s). When we test a null hypoth-

esis from a monitoring program, there are two possible states and two

possible outcomes (Table 4.4): four combinations in total. Let’s return to

our mining example. Our H0 is that there is no difference in algal

biomass per snag between locations upstream and downstream of the

mine. When we test this H0, the two possible outcomes of our statistical

decision-making process are to reject or not reject the H0. If the H0 is

actually false (i.e. there really are differences in algal biomass between

the populations of possible locations upstream and downstream of the

mine) andwe reject it, thenwe havemade a correct decision. Similarly, if

the H0 is true (i.e. there really are no differences in algal biomass) and we

do not reject it, then we also make a correct decision. In contrast, we can

also make two sorts of decision errors following this scheme. If the H0 is

true but we reject it based on our sample data, thenwe havemade a Type

I error because we have incorrectly rejected a true H0. If the H0 is false

but we do not reject it based on our sample data, then we have made a

Type II error because we have incorrectly retained a false H0.

Classical hypothesis-testing emphasizes the costs or errors asso-

ciated with decisions about rejecting null hypotheses. Traditionally,

scientists have been most concerned with Type I errors. Type I errors

have a direct link to our desire for improbabilities. Mayo (1996) presents

a simple example, using her terminology of ‘severity’ to describe tests

yielding improbabilities. In her test of hypothesis H, a null hypothesis

(H0) is rejected with an observed P-value of 0.03. Mayo emphasizes that

this value is the probability that the test would pass H when in fact H0,

the null hypothesis, was true – the familiar Type I error equal to the

probability of wrongly rejecting the null hypothesis. Severity is then

calculated as one minus this probability, or 0.97 – the probability of not

passing H when H is false (H0 is true). Mayo (1996, p. 193) notes: ‘by

rejecting the null hypothesis H0 only when the significance level is low,

we automatically ensure that any such rejection constitutes a case
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where the non-chance hypothesis H passes a severe test’. Scientists set

the probability of a Type I error with our a priori significance level or

decision criterion, which is designated �. For example, rejecting a H0 at a

significance level of 0.05 sets the probability of a Type I error at 5% if the

H0 is actually true. Note that this error probability is a long-run fre-

quency from repeated sampling (i.e. if we repeatedly sample from our

populations whenH0 is true, we will falsely reject the H0 5% of the time).

It is not strictly the probability of a Type I error in any individual case. In

practice, we only need to know the central probability distribution of

the relevant test statistic to determine the probability of Type I errors

and these central distributions are readily available for test statistics

such as t, F and 2.
The other error, incorrectly retaining a false H0, has until recently

received less attention in applied statistics, although its importance was

appreciated by Neyman & Pearson (1928) when they first developed the

ideas of errors in statistical decision-making. The probability of Type II

errors (designated �) is more difficult to determine because we need to

specify the HA that we believe to be true (or at least that we would like to

be able to detect; see discussion of statistical power following) and then

use the non-central probability distribution of the test statistic appropri-

ate for that HA (Fig. 4.3). These non-central distributions have only been

easily accessible to practitioners with the advent of powerful desktop

computers. The converse of the probability of Type II errors is the power

of a test (1��): the probability of correctly rejecting a false H0.

We can calculate the power of a statistical test to detect a specific

alternative hypothesis (HA). In monitoring programs, this alternative

hypothesis usually represents an effect of a particular human activity.

To determine power, wemust specify the size of this effect; the power of

a statistical test depends on the size of the effect we wish to be able to

detect. For example, consider the example we described above to

measure the effect of a mine on algal biomass in a lowland river. Given

the sample size (the number of locations) we used and the variation

between sampling units (locations) we observed in our sample data, we

can determine the power of a statistical test (such as an F-ratio test) to

detect a difference in algal biomass of a given magnitude between

locations upstream and downstream. The power of a statistical test can

be represented by:

Power (1��)�
ES ��n

s
(4.5)

where:
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ES is the effect size as specified in the HA. For example, we might

express the ES as a difference inmean algal biomass between locations

upstream and downstream

� is the a priori significance level (i.e. the probability of a Type I error
we are willing to accept if we reject the H0)

n is the sample size used in the monitoring program, such as the

number of locations

s is the standard deviation between sampling units (e.g. locations)

used in the monitoring program (and an estimate of �) and indicates

the degree of variability in the variable of interest.

This relationship is not an equation to be used in practice. The

actual equation will depend on the specific analysis and test statistic

being used, which will define how the ES is measured. This relationship

implies, however, a number of general principles about the power of a

statistical test, particularly F-ratio tests based on comparing variances.

First, larger effects are easier to detect for a given sample size and level of

variation. This means that the probability of detecting a large effect of a

particular human activity will be greater than the probability of detect-

ing a smaller effect for a specific sample size and level of variability

between sampling units. Note that we may reach a situation where we

have nearly 100% power to detect a certain effect size and then, by

definition, power cannot increase for even larger effects. Second, effects

of a given size for a given level of variation are easier to detect with a

larger sample size. This simply means that, for a given level of variabil-

ity, we can generally increase the probability of detecting, say, a 50%

change in some variable, by increasing the number of sampling units.

This will be an asymptotic relationship and above a certain sample size,

there will be little gain in power as it will be close to 100%. Finally, more

variation between sampling units makes effects of a given size harder to

detect. We have little control over the unexplained variability between

sampling units, although by including additional predictor variables in

our models, we may be able to reduce this variability and improve the

power of our tests.

Power analysis is most useful for determining an appropriate

sample size during the design of a monitoring program. For our

monitoring design to compare algal biomass upstream and downstream

of a mine, we might ask how many locations upstream and how many

locations downstream do we need. First, wemust specify the smallest ES

(difference in mean algal biomass between upstream and downstream)

we wish to be able to detect if it occurs. This may come from previous
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studies (e.g. a published study elsewhere in Australia might have shown

a 35% increase in algal biomass at locations below this type ofmine), or a

legislative requirement (e.g. a condition of a discharge licence might

specify there be no greater than a 20% increase in algal biomass as a

result of the discharge), or convention (we might use arbitrary effect

sizes of, say, 50% and 100% change). Second, we must specify the power

we want to have to detect this particular ES (i.e. the probability of

detecting this effect if it exists).Wewill consider this issue in some detail

in chapters 12 and 13 in the context of balancing decision errors and

costs. For themoment, let’s use 80% power, an arbitrary convention that

seems to be developing in the ecological literature. Finally, we need

some estimate of � (the variation between sampling units). This is best

gained from a pilot study or other data from our system or one similar.

Once we have these three components, we can solve the power equation

for the appropriate statistical analysis for n to determine the sample size

required for a particular monitoring program. For example, if we have

an estimate of variation in algal biomass between locations from a quick

and dirty pilot study, we can determine the sample size (how many

locations) required to be 80% confident (power� 0.80) of detecting a 50%

change in algal biomass between locations upstream and downstream of

the mine.

Power analyses can also be used after we have analysed our

monitoring data, particularly if we find no statistically significant effect.

In these circumstances, we obviously have n (the sample size we actually

used) and s (the variability between our sampling units, such as loca-

tions) from ourmonitoring data, andwe can solve the power equation to

determine what the minimum detectable effect size (MDES) was for a

given power. Again, back to our simplemonitoring program. If we found

no significant difference in algal biomass between upstream and down-

stream locations, we might ask a question of the form: what was the

smallest difference (MDES) in mean algal biomass between upstream

and downstream locations that we could have detected with 80% power,

given the sample size we used and the level of variabilitywe had between

locations? Ideally, we would want that MDES to be of a magnitude that

would allow us to detect ecologically relevant effects with 80% probabil-

ity (see chapter 12).

It is important to realize that using power analysis to determine

design characteristics (especially sample size) of a monitoring program

is the priority here. Post-hoc power analyses after a non-significant result

may simply indicate that the monitoring program was not sensitive

enough to detect effects of biological or management importance.
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4.8 hypothesis -testing: the bayesian approach

How would a Bayesian approach hypothesis-testing in a statistical con-

text? Remember that the Bayesian approach involves a more flexible

definition of probability, allowing subjective opinion (degrees of belief)

to influence the conclusions from an analysis. In particular, prior belief

as to whether an hypothesis is likely to be true or not is quantified as a

prior probability distribution and incorporated into the analysis. This

emphasizes one of the main differences between the two approaches.

Conclusions from classical hypothesis-testing are based on comparing

our observed sample data, and the test statistic derived from those data,

with a theoretical probability distribution for that statistic. No other

information except the sample data influence the outcome of the analy-

sis. In contrast, conclusions from the Bayesian approach are influenced

not only by the sample data but also by our prior opinion as to whether

one or more competing hypotheses are likely to be true; so the sample

data are only part of the information used to draw a conclusion.

The aimof a Bayesian analysis is to calculate a probability distribu-

tion for a parameter specified in an hypothesis and use this probability

distribution to make a probabilistic decision as to whether the hypoth-

esis is true or not. This final (or ‘posterior’ in Bayesian terminology)

probability distribution is interpreted just like probability distributions

in classical statistical analyses with one exception – the parameters

specified in the hypothesis are treated as random variables, not fixed

population values (Ellison 1996). The posterior probability distribution is

determined from two other components that are unique to Bayesian

analyses. The first is the likelihood that the parameter specified in the

relevant hypothesis takes a particular value, given the observed sample

data. This is the opposite of the P-value in classical hypothesis-testing,

which is the probability of observing the sample data or data more

extreme, given the parameter value specified in the H0. Just like in ML

estimation (see Box 4.7), we can calculate a likelihood function, which

indicates the likelihood of different possible values of the parameter.

Although likelihood functions don’t have to be symmetrical (Hilborn &

Mangel 1997), analyses of linear models usually constrain likelihood

functions to standard symmetrical distributions such as a normal or a t

distribution. So the Bayesian approach has the same distributional as-

sumptions as the classical approach for analysing linear models. Much

statistical software now includes algorithms for calculating likelihood

functions.

The second unique component of a Bayesian analysis is the prior
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probability distribution of the parameter/hypothesis, which summar-

izes our a priori information, both objective and subjective, about the

probability that the parameter(s) will take different values or that a

particular hypothesis is true. If we have a lot of previous information, or

strong subjective opinions, about whether a particular hypothesis is true

or not, then this prior distribution may be symmetrical (such as normal

or t) or may be skewed. If we have no prior information, we consider all

values of the parameter equally likely and have a non-informative,

rectangular prior distribution. Quantifying our prior opinions and

incorporating them into the analysis as prior probabilities is the

most controversial aspect of Bayesian analyses. Edwards (1996) showed

that, under some circumstances, different prior probability distribu-

tions can greatly influence posterior probabilities and therefore our

conclusions from the analysis. So two scientists, with exactly the same

sample data, may reach very different conclusions about the same

hypotheses depending on the strength of their prior opinions about

those hypotheses.

The Bayesian approach to hypothesis-testing uses amodification of

Bayes’ original theorem for conditional probabilities:

P(Hi�data)�
P(data�Hi)P(Hi)

P(data)
(4.6)

where

P(Hi) is the prior probability of hypothesis Hi

P(data�Hi)/P(data) is the standardized likelihood function for hypoth-

esis Hi

P(Hi�data) is the posterior probability of hypothesis Hi.

The determination of the posterior probability distribution may also be

summarized as:

posterior probability � likelihood * prior probability (4.7)

This equation emphasizes that the Bayesian analysis modifies prior

information via a likelihood function to produce a final, posterior prob-

ability distribution for a parameter or hypothesis (Berry & Stangl 1996;

Ellison 1996). Note that the actual sample data enter the process via the

likelihood function and only the actual data are relevant. Sample data

more extreme than ours are not considered.

The mean or expected value of the posterior distribution for a

parameter is our Bayesian estimate of that parameter. We can also use

the variance of each posterior distribution to determine the equivalent
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of confidence intervals (sometimes termed a ‘credible’ or probability

interval in Bayesian literature). If we have used a non-informative prior,

then this Bayesian credible interval (such as 95%) will be the same as a

classical 95% confidence interval. Note that because Bayesians consider

the parameter to be a random variable, not a fixed, unknown quantity,

the interpretation of these intervals is different. The Bayesian interval is

the range that covers 95% of all possible values of the parameter. The

95% confidence interval is a range that will include the unknown par-

ameter in 95% of repeated samples.

The Bayesian analogue of classical hypothesis-testing would be to

establish two hypotheses, one representing the null and the other the

alternative. Each hypothesis might be that one or more parameters

equal certain values. For example, the null hypothesis might be that the

ratio of explained variance for two models (full and reduced) is 1,

whereas the alternative hypothesis might be that the ratio is greater

than 1. We determine the posterior probability distributions of the two

hypotheses and use those distributions to determine the final probabili-

ties of the two competing hypotheses. The hypothesis with the greater

posterior probability is the one we would accept. A more sophisticated

decision system is to calculate a ratio of the posterior probabilities of

two competing hypotheses that is usually expressed as a Bayes factor.

Ellison (1996) summarized published guidelines for interpreting Bayes

factors as evidence for or against a particular hypothesis compared with

an alternative hypothesis. These guidelines can be used as decision

criteria for deciding whether to accept or reject a particular (e.g. null)

hypothesis. Note that, in contrast to classical hypothesis-testing, the

Bayesian approach explicitly compares two or more competing hypothe-

ses or models.

We recommend Berry & Stangl (1996), Gelman et al. (1995) and Lee

(1997) as good introductions to Bayesian statistics, with Hilborn &

Mangel (1997) and Ellison (1996) providing an ecological perspective (but

see also Edwards (1996) and Dennis (1996) for cautionary articles in

response to Ellison (1996)). Box & Tiao (1972) is the classic source for

computational formulae and discussion of assumptions. Bayesian ana-

lyses have been used recently by freshwater scientists, particularly to

determine conditional probabilities in a modelling framework. For

example, Carpenter et al. (1998a) have used the Bayesian approach to

calculate the probability of an algal bloom given a land-use policy by

linking the probabilities of algal blooms in lakes given a lake P concen-

tration and of lake phosphorus concentrations given a land-use policy.

Bayesian analyses of time series and forecasting models are also

common (e.g. Lamon et al. 1998). In contrast, formal Bayesian analyses
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and decision-making for the types of monitoring programs we recom-

mend with spatial (i.e. control vs. impact) and temporal (i.e. before vs.

after) components have rarely been adopted in freshwater systems. This

is probably due to scientists still being uncomfortable with considering

probability subjectively and therefore being reluctant to incorporate

prior subjective probabilities (opinions) into the process for drawing

statistical conclusions. In particular, incorporation of prior beliefs into

decision-making has the potential to be abused, especially in environ-

mental monitoring when vested interests dominate (Dennis 1996;

Stewart-Oaten et al. 1992). Also, the complex linear models we use to

analyse monitoring programs with both temporal and spatial predictor

variables, and our preference for designing such programs based on

careful consideration of effect sizes and power to determine sample size,

would be difficult for all but experienced statisticians to put into a

Bayesian framework. Finally, the Bayesian approach is much more

suited to estimation rather than hypothesis-testing (Dennis 1996); some

well-knownBayesian texts (see Gelman et al. 1995) imply that hypothesis-

testing has little relevance in the Bayesianworld. In contrast, we support

the role of statistical hypothesis-testing in science, and in environmental

monitoring. It allows clearly defined questions to be addressed with

explicit considerations of the costs involved in decision errors (chapter

12).

In the end, however, the designs we recommend have a strong

logical and statistical basis, and good experimental and sampling design

is really independent of whether a frequentist or Bayesian approach is

adopted. The models we discuss for detecting human impacts in flowing

waters can be evaluated from either viewpoint. For example, Crome et al.

(1996) used a BACI (Before–After–Control–Impact; see chapter 5) design

to assess the effects of logging on rainforest birds and small mammals

and applied both a classical and a Bayesian analysis.

4.9 assumptions of statistical analyses of

monitoring programs

The reliability of any decisions based on statistical analyses depends on

whether the assumptions behind those analyses are met. All analyses

based on linear models, both estimation and hypothesis-testing, have

assumptions about the probability distribution of the error terms from

the model. Generally, this also means that the assumptions apply to the

response variable being analysed. These assumptions are dealt with in

detail in many texts (for a biostatistical perspective, see Sokal & Rohlf

1995; Underwood 1997) and we will provide only a brief overview here,
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with a discussion of alternatives. An important concept is robustness,

the ability of the estimator or hypothesis test to produce reliable results

even when assumptions are not met. There has been extensive statistical

research developing methods that are more robust to underlying as-

sumptions. In general, however, the cost of this robustness is that these

methods are only applicable to linear models with few parameters or

else are complex to apply. An overriding assumption for the analyses we

will describe in later chapters is that of random sampling. We assume

that our sample data represent random samples from clearly defined

statistical populations. This assumption applies to analyses of linear

models, whether using OLS or ML; the only exception is when we use

randomization procedures (see below).

Most aspects of the analyses of linear models rely on the underly-

ing distribution of the variable, or the distribution of the error terms

from the model, being of a specific form. These analyses are termed

parametric. While point estimation of parameters in general linear

models, which include regression and analyses of variance, based on OLS

has no distributional assumptions, interval estimation (i.e. confidence

intervals) and hypothesis tests assume that the variable(s) being analysed

is/are normally distributed. The normal, or Gaussian, distribution is a

symmetrical, continuous probability distribution defined by the mean

and the standard deviation, which are independent of each other. Nor-

mality is often not met because we know from theoretical consider-

ations and empirical evidence that many continuous variables,

especially measurement variables, tend to have positively skewed dis-

tributions (i.e. the distributions are not symmetrical but have a long

right-hand tail; Fig. 4.1). In such distributions, the variance is positively

related to the mean.

Another important assumption when analysing linear models is

that the population variance of the response variable (and error terms) is

equal across the range of values of the independent variable(s). This is

termed the homogeneity of variance assumption. For example, an

ANOVA comparing the mean species richness at a number of locations

must assume that the true variance in species richness is the same at all

locations; a linear regression of chlorophyll concentration against nutri-

ent load in wetlands must assume that the variance in chlorophyll

concentration between wetlands is the same for all nutrient loads.

The assumption of homogeneity of variance in linear models can

be untenable if the underlying probability distribution of the variable

(and the error terms) is positively skewed so that the variance is related

to the mean. Sampling from such distributions will result in samples
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with largermeans having larger variances. Also, outliers (extreme values

for the response variable very different from the rest of a sample) may

result in a much larger variance at one level of the predictor variable.

Such outliers may represent errors (malfunctioning equipment, mis-

takes in data transcription etc.) which can be corrected or deleted, or

may suggest that the population being sampled is very heterogeneous.

For example, an unusually small animal in a sample may indicate the

presence of a cohort of recently recruited animals that might be better

analysed as a separate population. Outliers can result in serious prob-

lems. They will often produce large differences in variances and can also

have considerable influence on the fit of linear models, resulting in

models that don’t fit the majority of data very well because the fit is

influenced by one or two very unusual values.

OLS interval estimation and hypothesis-testing is robust to the

assumption of normality unless the distribution is very skewed ormulti-

modal. In contrast, the assumption of equal variances ismore important

and differing variances can have severe effects on the reliability of the

analyses. Hypothesis tests are muchmore sensitive to these assumptions

if sample sizes vary; this appliesmainly to situations where the predictor

variable is categorical (i.e. classical ANOVA). For this reason (and others;

see Underwood 1997), similar sample sizes should be a priority of

monitoring designs, although small differences in sample sizes produce

few problems.

There are two (non-exclusive) approaches for determiningwhether

the distributional assumptions of parametric analyses are met:

• We can do formal hypothesis tests for specific underlying distribu-

tions (H0: sample came from a population with a particular prob-

ability distribution) and homogeneity of variances (H0: samples

came from populations with identical variances). Unfortunately,

such tests are often more sensitive to non-normality than the

linear model analyses themselves and, depending on sample size

and power, these tests might not detect violations of assumptions

that are serious enough to affect the subsequent linear model

analysis. So such tests should only be part of the approach for

checking assumptions.

• We can use methods of exploratory data analysis (EDA) to check

the assumptions of statistical analyses. EDA uses mainly graphical

techniques such as boxplots, probability plots etc. to check for

normality and homogeneity of variances. Because the assump-

tions behind analyses of linear models strictly relate to the error
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terms of the model, examinations of residuals (the differences

between observed values and those predicted by the estimated

model) are very important. Along with statistics measuring the

influence of particular observations on the outcome of the analy-

sis (such as leverage and Cook’s D and the size of standardized

residuals), plots of residuals provide diagnostic information about

the adequacy of the model as a fit to the observed data. Hoaglin et

al. (1993) is an excellent overview, Neter et al. (1996) provide de-

tailed statistical background and Ellison (1993) illustrates the

methods for ecological data.

There are a number of alternative methods for analysing linear models

based on OLS if the assumptions of normality and homogeneity of

variance are not met. One approach is to transform the data to a

different scale of measurement, which is an important tool for dealing

with skeweddistributions andwill often correct both non-normality and

heterogeneous variances. Many variables have right-skewed (heavy-

tailed) distributions: measurement variables often have a log-normal

distribution, where the mean is proportional to the standard deviation;

and counts often have a Poisson distribution, where the mean is propor-

tional to the variance. Transformations that may be suitable for differ-

ent types of data are presented in Table 4.5. Transforming a response

variable to better match the distributional assumptions of a statistical

procedure is common practice but the choices of whether to transform,

and which transformation to use, are not always straightforward. The

appropriateness of transformations depends on the nature of the eco-

logical process we assume is operating. For example, reconsider our

monitoring design from above to examine the possible impact of a mine

on the biomass of algae on snags in a floodplain river. To keep this

example simple, we will use control (upstream) vs. impact (downstream)

as one factor and two times (beforemining and after mining) as a second

factor. Say wemeasure the biomass of algae at replicate locations in each

combination of the two factors and the mean abundances are those

presented in Table 4.6. A sensible question might be whether the differ-

ence between upstream and downstream locations changes after min-

ing commences comparedwith beforemining. If we use the raw data, we

might conclude that the control vs. impact difference is greater after

than before because the difference between locations upstream and

downstream is 90 before and 900 after. However, if we think of this

change in percentage terms, the change is the same for both times (a

10-fold increase in algal biomass downstream). A log-transformation of
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Table 4.6.Mean biomass of algae at locations upstream and downstream of a

mine before and after mining commenced (log transformed values in

parentheses)

Before mining After mining

Upstream 10 (1) 100 (2)

Downstream 100 (2) 1000 (3)

the data reflects this identical percentage change. Clearly, the choice of

whether to log-transform the data in this case would depend on whether

we are happy that equal percentage change represents the ecological

process we are interested in. If so, the raw data would be best fit by a

non-additive model:

algal biomass� constant�upstream vs. downstream

� time�upstream vs. downstream * time (4.8)

where the upstream vs. downstream * time interaction measures how

much the upstream vs. downstream difference changes between times.

The log-transformed data would be best fit by an additive model:

algal biomass� constant�upstream vs. downstream� time (4.9)

where the effect of upstream vs. downstream is consistent between

times (i.e. an interaction is not anticipated).

The issue of additivity and transformations in environmental

monitoring programs has attracted the attention of statisticians (Samp-

son & Guttorp 1991) and ecologists (Stewart-Oaten et al. 1986). It is clear

other considerations besides simplymeeting distributional assumptions

are relevant for any decision on whether to transform data. Whatever

our rationale for choosing a transformation, the assumptions and ad-

equacy of the proposed statistical model should always be re-checked

post-transformation; it is possible that the transformation has not im-

proved the distributional properties of the data or has even made them

worse. In these cases, there is no advantage to using transformations

over the raw data. If the transformation has improved the degree to

which the data and the model fit the assumptions, the usual parametric

analyses can be used. Note, however, that the hypothesis being tested

now refers to the transformed scale of measurement, so we might be

testing hypotheses about log algal biomass or square root of abundance

(of organisms).
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A second approach, if we know the underlying distribution of the

error terms from our linear model is one of the exponential family, is to

use generalized linear model (GLM) fitting procedures (e.g. Dobson 1990;

Neter et al. 1996). GLMs allow us to specify an exponential-type distribu-

tion, including both discrete (such as binomial for binary data, Poisson

for count data) and continuous (such as normal, log-normal, exponen-

tial, gamma) distributions. Our choice of distribution should be based on

our knowledge of the variable being analysed. Estimation of model

parameters uses ML, and hypothesis tests are based on comparing the

fits of full and reduced models with a log-likelihood ratio statistic (also

termed deviance). These analyses are still parametric in that a distribu-

tion of the error terms from the model must be specified and this will

usually imply a particular pattern for the variances. The common prob-

lem is over-dispersion, where the variance is greater than we would

expect based on our chosen distribution.

A third approach to dealing with distributional assumptions is to

use procedures that do not require any. An extreme transformation is

the rank-transformation, where each observation is converted to its rank

value, usually across the whole data set being analysed. A group of

statistical tests has been developed based on this transformation, some-

times called non-parametric tests because they make no distributional

assumptions about the response variable being analysed (Potvin & Roff

1993). Originally, these tests were randomization tests based on the

ranks of the data. As such, they test more general hypotheses about

distributions, usually in relation to a location parameter (themedian, or

the mean if the distributions are symmetrical), or about relationships,

such as testing for monotonic relationships between variables rather

than relationships of a specific structural form, like linear. These tests

include the Mann–Whitney–Wilcoxon tests and the Kruskal–Wallis test

for comparing groups, and the rank-based correlation and regression

procedures (see Sokal & Rohlf 1995; Sprent 1989). The sampling distribu-

tions of the test statistics are generated by randomization procedures,

which were easier to do in the days before computers if the data were

ranked. An extension of these tests is the rank-transform procedures,

which simply transform the data to ranks and then use OLS procedures

on the rank-transformed data, sometimes called rank-transform (RT)

tests.

These rank-based tests do assume equal distributions of the vari-

able (except for the median) when comparing groups (i.e. when the

predictor variables are categorical). This implies that the group vari-

ances should be equal, the same assumption as for OLS analysis of a
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linearmodel with categorical predictors (ANOVA). These rank-based tests

are inappropriate solutions to unequal variances. Also, they do not

provide any straightforward measure of the fit of a linear model so they

are unsuitable for comparing model fits. Finally, the simple rank-trans-

form approach is ineffective at detecting interactions between predictor

variables (McKean & Vidmar 1994; Seaman et al. 1994), such as before vs.

after by control vs. impact interactions, the basic test of a BACI design

(see chapter 5).

Finally, we can use randomization (or permutation) procedures

(Crowley 1992; Manly 1997). These methods randomly rearrange the

sample data many times to generate the sampling distribution of a test

statistic based on the assumption that if the H0 is true then any random

arrangement of the data is equally likely (Crowley 1992). We can com-

pare the value of the test statistic fromour sample data to this randomiz-

ation distribution to determine the P-value. These tests are best

illustrated with a simple comparison of two means, such as mean

species richness at locations upstream and downstream of a human

activity. Say we have data consisting of 20 observations: 10 locations

upstream and 10 locations downstream. We calculate our test statistic,

such as the difference between the two means. We then use a computer

algorithm to randomly rearrange the data many times (say 1000) and

calculate the probability distribution of the difference between means

under the H0. Finally, we compare our sample difference betweenmeans

to the probability distribution of differences generated by randomiz-

ation to determine a P-value and interpret this as usual. These randomiz-

ation procedures have been used in the literature in circumstances

when the underlying distribution of the response variable is unknown

or when the assumption of random sampling cannot be justified. Their

main limitation is the availability of computer algorithms for perform-

ing the randomizations for complex sampling designs and linear model

analyses. If these analyses are used because the assumption of random

sampling cannot be justified, then we also cannot easily extrapolate our

conclusions to a population of, for example, control and impact loca-

tions (i.e. it is more difficult to generalize our conclusions in a spatial or

temporal context). Note that, like rank-based non-parametric tests, ran-

domization tests are not a panacea for problems with underlying as-

sumptions. Only normality is no longer necessary; other assumptions,

like homogeneity of variance, can still be relevant for these tests (Manly

1997; Stewart-Oaten et al. 1992).
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4.10 univariate and multivariate analysis

The models we have been describing are sometimes termed univariate

because they only consider single response variables at a time. For

example, we may have hypotheses about the effects of human activities

on single response variables, such as pH, phosphorus concentration, or

the abundance of a particular species of fish. In practice, however, we

recordmany variables from each sampling or experimental unit and our

interest may be in the collection of variables, rather than (or in addition

to) individual variables. For example, a freshwater ecologist may be

interested in how the assemblage (or ‘community’) of fish in a river

responds to the discharge of a gold mine. While the response of individ-

ual fish species may also be important, an analysis that compares all the

variables as a group is more appropriate to the question about fish

assemblages. Similar arguments can apply to a collection of physical

and/or chemical variables, where patterns in all the variables together

might be more important than patterns in any individual variable.

Analyses that examine a collection of variables together are termed

multivariate analyses.

The terms univariate and multivariate are actually used in a

slightly confusing manner in the literature. For example, a two-factor

ANOVA model is considered univariate even though there are multiple

predictor variables. Generally, univariate refers to a single response

variable being analysed, irrespective of the number of predictor vari-

ables. Multivariate is used when we are modelling more than one re-

sponse variable or when we are looking for patterns in a collection of

variables that might be considered response or predictor variables in

subsequent analyses. There are two broad types of multivariate analyses

used in environmental monitoring (Fig. 4.4). Both start with a rectangu-

lar data matrix of sampling units (termed objects in the statistical

literature) by variables (e.g. species abundances). All these analyses were

originally developed as descriptive techniques for representing complex

patterns graphically in as few dimensions as possible, but they can also

be used for testing relevant (such as control vs. impact, before vs. after)

hypotheses.

The first type of multivariate analysis is based on correlations (or

covariances) between the variables (e.g. physico-chemical measure-

ments, species abundances). These analyses basically create new vari-

ables (sometimes called components) by rearranging the original

variables (Table 4.7). Each new variable is a linear (additive) combination

of all of the original variables and the number of possible new variables
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Fig. 4.4 Diagrammatic representation of the two major forms of multivari-

ate analysis resulting in ordinationplots. Both startwitha rectangular data

matrix of variables by sampling units (SUs) as illustrated in (a). The left-

hand side shows methods like principal components analysis which pro-

duce a matrix of correlations (or covariances) between variables (b), then

decompose that matrix using eigenanalysis into new variables called com-

ponents (c); a score for each SU for each component is then calculated and

the scores plotted in two or higher dimensional space (d). The right-hand
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Fig 4.4 (cont.)

side showsmethods likemultidimensional scalingwhich produce amatrix

of dissimilarities between sampling units (e) and then represent these

dissimilarities in two or higher dimensional space (g) so that the distances

between SUs on the plot (
) most closely match the actual dissimilarities

(i.e. the relationship in (f) is as good as possible).

equals the number of original variables. These new variables are extrac-

ted from the original data so that they explain successively less of the

total variability that was present in the original variables and are also

independent of each other. The statistical technique of decomposing a

matrix into these components is termed eigenanalysis. If the original

variables were correlated with each other, the first few of the new

variables (often the first three of four) will explain most of the variance

that was present among all of the original variables. Hence, these ana-

lyses reduce the number of variables without losingmuch of the original

information (variance).

Twomethods, discriminant function analysis (DFA) and multivari-

ate analysis of variance (MANOVA) are designed for situations where we

have a priori groupings of sampling units (e.g. upstream vs. downstream

or before vs. after). The new variables (each a combination of the original

variables) are extracted so that they maximize the difference between

these groups. MANOVA then allows testing of hypotheses about these

new variables in a similar framework to ANOVA models. DFA works in

reverse, finding the new variables that are the best discriminators be-

tween groups (Manly 1997; Tabachnick & Fidell 1996).

Some ordination or scaling methods take these new variables a

step further. Component scores for each new variable for each sampling

unit can be plotted to show the relationship between the sampling units

in fewer dimensions than if all the original variables were plotted. Such

plots, showing the relationship between sampling units based on a small

number of new variables created from a large number of original vari-

ables, are termed ‘ordination plots’ by ecologists, although statisticians

use the more general term ‘scaling’. The interpretation of these plots is

that sampling units further apart on the plot are also more different in

their values for all the variables together.

The two most common ordination techniques based on

eigenanalysis are principal components analysis (PCA), as described in

Fig. 4.4, and correspondence analysis (CA). PCA can be based on covarian-

ces or correlations between variables, both of whichmean that variables
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are standardized to zero mean or zero mean and unit variance, respect-

ively. CA is like a simultaneous eigenanalysis of correlations between

variables and correlations between sampling units. The same results can

be achieved using a related method called reciprocal averaging. CA

inherently standardizes both variables and sampling units, and the final

component scores for sampling units are averages of the variable scores

and vice versa. This latter feature is probably what has made CA popular

among ecologists, producing simultaneous ordination plots of sampling

units and variables. There are some extensions of CA, often named after

the software designed to implement them. Detrended correspondence

analysis (DECORANA) tries to correct an ‘arch’ effect that sometimes

appears in the final ordination plot, where sampling units that are very

different in their variables can end up close on the ordination plot.

Canonical correspondence analysis (CANOCO) tries to improve the ordi-

nation through constraining component scores of, say, sampling units

by their correlations with a range of environmental variables.

The second broad type of multivariate analysis is where similari-

ties or dissimilarities are calculated between each pair of sampling units

based on all the variables (Fig. 4.4, Table 4.7). This type of analysis

overlaps with the first type in that some dissimilarity-basedmethods can

mimic eigenanalysis methods. Similarities measure how similar two

sampling units are based on the measured variables; dissimilarities

measure how dissimilar they are. There is a very large range of dissimil-

arity indices. A strong recommendation for Bray Curtis (or related

Kulczinski) dissimilarities can be made for multivariate analyses of

community data (e.g. macroinvertebrate species found in fresh waters).

These dissimilarities have a robust relationship to underlying distances

in environmental/gradient space, even under the expected unimodal

relationship between species variables and the environmental gradients

that may be revealed by the multivariate analysis (Faith et al. 1987). The

dissimilarities can be graphically represented in a small number of

dimensions (Fig. 4.4) so that the distances between sampling units

in the ordination plot (
; which represent underlying distances in

environmental/gradient space) closely match their dissimilarities (d).

Commonly, this is done by a technique known as multidimensional

scaling (MDS) that uses a complex algorithm to iteratively move the

positions of the sampling units on the ordination plot until their distan-

ces apart most closely match their dissimilarities. Metric MDS achieves

this match based on a parametric (linear) correlation between distances

and dissimilarities (Fig. 4.4) whereas non-metric MDS (NMDS) uses a

non-parametric correlation, requiring only a monotonic relationship
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between distances and dissimilarities. The latter is more robust because

the relationship between distance and dissimilarity is often non-linear,

particularly for large dissimilarities (Clarke & Warwick 1994; Minchin

1987). A third approach is hybrid multidimensional scaling (HMDS),

which takes greater advantage of the expected form of the relationship

between dissimilarities and expected gradient distances by using a lin-

ear relationship for small dissimilarities and then allows a non-linear

relationship for larger dissimilarities (Faith et al. 1987; Minchin 1987). As

a final representation strategy, we should also mention that cluster

analysis is another method for graphically representing, in a tree-like

dendrogram, relationships between objects (e.g. sampling units) in

terms of their dissimilarities.

These representations of the robust dissimilarities, or sometimes

the dissimilarities themselves, can be used with varying degrees of

success in testing hypotheses of impact. Relatively simple hypotheses

about a priori group differences in dissimilarities can be tested using the

analysis of similarities (ANOSIM) procedure (Clarke 1993) although this

procedure does not allow tests of interactions, the most crucial tests in

monitoring designs based on the BACI framework. In the multivariate

BACIP strategy (Faith et al. 1995), robust dissimilarities between putative

impact and control sites form before impact vs. after impact groups. An

hypothesis of impact is tested through a t test. Related multivariate

approaches may allow hypothesis-testing for a full range of designs and

models, including interactions. The redundancy analysis method of

Legendre & Anderson (1999) is described by the authors as closely related

to application of MANOVA to an ordination based on principal coordi-

nate analysis (PCO; which combines a dissimilarity matrix with

eigenanalysis methods) of Bray Curtis dissimilarities. The latter ap-

proach is one example of the application of MANOVA to robust ordina-

tions of Bray Curtis dissimilarities described by Faith (1990). An

important difference between the original suggestion and the Legendre

& Anderson implementation is that Faith (1990) recommends HMDS

(Faith et al. 1987) as the ordination method of choice because of its

robustness. The advantage of Bray Curtis dissimilarities established by

Faith et al. (1987) and acknowledged by Legendre & Anderson (1999) is

negated somewhat by an ordination approach like PCO that fails to take

into account the non-linear relationship of Bray Curtis dissimilarities to

underlying gradient space. Faith et al. (1995) also cautioned that a re-

quirement for applyingMANOVA to robust ordinations is that the points

in the ordination space truly represent independent replicates. The

redundancy analysis approach provides an additional way to test for
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interactions (preferably using an HMDS ordination rather than PCO) on

those occasions when independent replicates are available. Anderson

(2001) has also recently described a method for analysing dissimilarities

within and between groups in an ANOVA framework using randomiz-

ation tests.

We need to make a few comments about these multivariate

analyses. First, different transformations (log, power) and standardiz-

ations (zero means and/or unit variance) can greatly influence the pat-

tern in an ordination plot and the interpretation of these analyses. Some

analyses have implicit standardizations. For example, PCA is usually

based on correlations between variables standardized to zero mean and

unit variance; CA (and CANOCO) standardizes both variables and samp-

ling units. We prefer methods that leave the decision about transform-

ations and standardizations up to the user. Second, we must be careful

about automatically attaching biological significance to measures of

dissimilarity between sampling or experimental units. Whether a Bray

Curtis dissimilarity really measures a relevant difference in ecological

community structure depends on the aspects of community structure

we are interested in; a simple univariate measure like species richness

may be just as suitable. A rationale for the multivariate approaches may

be that, when we have no specific aspect of interest (perhaps because the

nature of the impact is unknown), these approaches may increase the

chance of picking up any change in community composition. Finally,

many of these analyses require very specific software. While most gen-

eral statistical software will do PCA, MANOVA, MDS etc., the range of

dissimilarities available is often very limited and hypothesis-testing

capabilities (such as ANOSIM) are only available in a few programs.

Excellent introductions to these multivariate techniques include Clarke

& Warwick (1994), James & McCulloch (1990), Kent & Coker (1992),

Legendre & Legendre (1998), Ludwig & Reynolds (1988), Manly (1994), and

Tabachnick & Fidell (1996).

Our preferred multivariate analyses are those where the user can

choose a dissimilarity measure between sampling or experimental units

that can cope with non-linear, often noisy, ecological data. The suitable

analyses include non-metric or hybrid multidimensional scaling for

graphical representation of the relationship between sampling units,

and techniques like ANOSIM for testing simple hypotheses about group

differences. Testing of more complex hypotheses about interactions

between factors in a multivariate setting is also possible, applying

MANOVA tests to robust ordinations like NMDS and HMDS, although

their wider use will rely on the availability of suitable software.
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4.11 important issues

• True random sampling is the most reliable method of sampling

from populations, but not necessarily practical or cost-effective.

Sampling is often stratified to account for environmental hetero-

geneity and haphazard techniques are used where random selec-

tion of sampling units is not possible.

• The key strategy for inference of impacts is to find some evidence

for impact that cannot easily be explained away by various other

processes, such as natural variation in the system. Summarizing

all those other factors as background knowledge means that we

want evidence to be improbable given only that knowledge. Sup-

port for an impact hypothesis is only found if the probability of

that outcome is small under normal circumstances, in the absence

of impact. This pursuit of improbability provides the rationale for

specific aspects of monitoring design including controls.

• The statistical analysis of most monitoring programs relies on

assessing the fit of linear models to the data. Regression models

are those where both the response and the predictor variables are

continuous. Analysis of variance (ANOVA) models are those where

the predictor variables are categorical. Combinations of both are

common in general linear models and categorical response vari-

ables can be modelled with generalized linear models.

• The decision of whether a predictor variable (factor) is fixed or

random is crucial and can fundamentally change the nature and

interpretation of statistical tests of hypotheses about all factors in

our model.

• In classical statistical hypothesis-testing, we can make Type I er-

rors (falsely rejecting a true null hypothesis) or Type II errors

(falsely retaining a false null hypothesis). An important compo-

nent of designing a monitoring program is ensuring adequate

power to correctly detect an impact (correctly reject a false null

hypothesis), usually by modifying sample sizes.

• All statistical procedures have underlying assumptions, especially

concerning normality, homogeneity of variance and indepen-

dence of error terms from the fitted linear model. These assump-

tions should be carefully checked before analysis and using

graphical procedures (exploratory data analysis) and diagnostic

tools from the fit of the model are strongly recommended.

• Rank-based statistical procedures are not a panacea for dealing

with badly behaved data when assumptions are violated. Trans-
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formations, keeping in mind their effects on interaction terms,

and generalized linear models, which allow alternative distribu-

tions of the response variable besides normal, are preferred ap-

proaches.

• Multivariate ordination procedures are important tools for descri-

bing the relationship among sampling or experimental units

based onmany variables. Procedures that are robust and allow the

user to choose data standardizations and measures of dissimilar-

ity, such as non-metric multidimensional scaling, are recommen-

ded. Statistical tests of hypotheses about group differences and

relationships with covariates (environmental variables) are also

possible and should be used.

• The logical principles of designing amonitoring program to detect

the effects of human activities apply irrespective of whether a

frequentist or a Bayesian approach is adopted.
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5

The logical bases of monitoring design

In this chapter we discuss the basics of goodmonitoring design. ‘Design’

here means the stipulation of where, when and how many observations

or sampling units are taken to provide the data fromwhichwewillmake

inferences against some specified objectives. We discuss here the under-

lying principles that we consider central to good design, and present an

ideal case. In the interests of establishing an understanding of why

elaborate designs are often presented, we ignore for the moment the

ubiquitous compromises that are necessary for logistic, social or econ-

omic reasons. We do not focus here on particular variables (chapter 10),

what sorts of changes are considered important (chapter 11) or the

specifics of natural systems in the interests of presenting the general

principles that underlie good monitoring for most variables in almost

any system. Nor do we discuss here the analytical tools used to refine or

optimize designs or analyse the resultant data (chapters 7–13). This

chapter should be read, therefore, as a conceptual overview of the design

principles that motivate us and which will be expanded in operational

detail throughout later chapters.

We recognize that ‘ideal’ designs will rarely, if ever, be feasible (for

a variety of reasons) and discuss in later chapters what compromises are

most likely to be precipitated by the characteristics of streams (chapter

8) or because of accidents of history, money etc. In beginning here with

an outline of the concepts behind an ‘ideal’ case, we seek to establish the

principle that all these inevitable compromises are just that – compro-

mises. They are not equally powerful alternatives to good design, and

they bring with them inevitable limitations of inference about the

presence and properties of environmental impacts. It is our contention

that beginning with an ‘ideal target’ in each case makes explicit the

inferential costs of compromises and where the inevitable compromises

impact on our ability to make conclusions about impacts. Establishing a
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‘best case’ also provides a framework from which to explain to stake-

holders the genesis of a proposed design and an aid to making decisions

about which of the alternative compromises are least costly.

5.1 classes of monitoring

The concept of ‘good’ design entails implicitly the notions of efficiency

and rigour, meaning that sufficient resources are used and samples

taken to answer the questions of interest without being profligate. Thus,

what constitutes good design will depend to a large degree on the

objectives of monitoring. Our first point here, then, is that it is essential

to be very clear about the objectives of a monitoring program before

seeking to specify its design.

‘Environmentalmonitoring’ can takemany forms, formany objec-

tives. For example, monitoring the ‘state’ or ‘health’ of the environment

(section 3.2.1) basically comprises periodic (usually infrequent) ‘status

reports’ on a range of variables in the interests of establishing a timed

reference point on the environment. Such monitoring is not usually

targeted at assessing the impacts of specific human activities. Although

not always the case, the broad objective of State of the Environment

monitoring might be more to do with gaining an approximate indica-

tion of state, rather than precisely describing variables in particular

places or pinpointing sources and consequences of human impacts on

the environment.

Long-term monitoring (LTM) and reference site monitoring (RSM;

e.g. AusRivAS and RIVPACS) are other monitoring activities that fall into

‘environmental state’ monitoring (see section 3.2.1). These are perhaps

considered to be most useful for providing a background of the long-

term dynamics of natural systems that might be used to indicate appar-

ently systematic, monotonic or cyclical changes in the environment at

large scales over long times. Such changes might be ‘natural’ or an-

thropogenic, but in general these types of monitoring will not provide

the necessary data to distinguish between natural processes or human

impacts on the environment (Box 3.2). Both LTM and RSM can provide,

however, a background or context against which shorter term or localiz-

ed changes, possibly arising from anthropogenic impacts, can be inter-

preted and instances of localized ‘degradation’ inferred.

Compliance monitoring (section 3.2.2) typically involves taking

samples from a specific site (e.g. point of discharge of treated effluent) or

prescribed situation (e.g. water supply reservoir) from which to assess

whether some mandated standard is being satisfied. The objectives and

scope of such monitoring usually are clearly stipulated by regulation or
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‘health’ standards derived without reference to the time or place for

which monitoring is required. Accordingly, compliance monitoring re-

sembles a quality-control process. The status of sites outside of those of

specific interest is not of interest and the benchmark that would indi-

cate that a violation, or impact, had occurred is not dependent on the

contemporary state of notionally undisturbed systems.

Impact monitoring (section 3.2.3) is targeted at assessing human

impacts on the ‘natural’ (non-human) environment. Typically, impact

monitoring is underpinned by an expectation that at some level an-

thropogenic impacts become unacceptable and action will be taken to

either prevent further impacts or remediate affected systems (we con-

sider what might be considered ‘unacceptable’ changes in chapter 11).

We are concerned here with impact monitoring, and will not discuss in

detail the requirements of ‘state’ or other generalized monitoring

schemes.

5.2 monitoring to detect human impacts on the

environment

Impact monitoring might be considered usefully in two general catego-

ries: compliance monitoring and impact assessment monitoring. Com-

pliance monitoring is generally related to specific regulatory standards

against which the level of contaminants or pollutants in natural systems

are judged. The standards are typically driven by criteria related to

human health or points at which substantial impacts on other biota are

considered likely. The objective in compliance monitoring is usually to

assess whether the levels of particular compounds are below the critical

levels stipulated under some regulatory framework. The origins of the

contaminants (whether from natural processes or through discharges

from human activities) are often either known (in the case of con-

taminants from point-source discharges) or of secondary importance,

and not necessarily the focus of monitoring, at least in regard to detect-

ing their existence at unacceptable levels. For example, in monitoring

the suitability of water for drinking, the exact source of potentially

harmful pollutants is not of primary concern, although it may become

so once the statutory limits for safe consumption have been exceeded.

There is an abundant literature on compliance monitoring and the

methods for analysing compliance data are well developed in a variety of

forums, including environmentalmonitoring, industrial quality-control

procedures, and monitoring of controlled systems. We will not discuss

compliance monitoring in detail in this book.

Impact assessment monitoring has as its focus the discrimination
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of effects of human activities from patterns or changes arising from

entirely non-human environmental processes. Impact assessment

monitoring, therefore, usually relies on comparisons within the col-

lected data to assess whether an impact has occurred, and how large it

was. That is, there often is no preconceived, externally mandated, abso-

lute threshold that defines an important impact, and so an impact is

implicitly defined as an unusual or extreme change compared to the

usual status of themeasured variable. This is the focus of our discussions

in this book. We stress later in this book, however, that the absence of a

regulatory threshold or trigger for response to impacts does not absolve

those involved in impact monitoring of the responsibility to tackle the

question of ‘when is an impact unacceptable?’ Indeed, we argue (chapter

11) that the stipulation of a (probably case-specific) set of triggers for

response to impacts is a crucial ‘up-front’ step in using impact monitor-

ing data in decision making (Keough & Mapstone 1995; Mapstone 1995,

1996). In chapter 12, we extend this argument to the formal integration

of such triggers (or ‘critical effect sizes’) into the statistical analyses of

monitoring data and the inferences arising from those analyses.

5.2.1 Detecting change

Both compliance and impact assessment monitoring have a key objec-

tive of detecting change in selected variables. Further, in most cases

variables are measured at a specific location or locations where impacts

aremost likely (hereafter ‘the impact location(s)’). The change of particu-

lar interest is from a variable’s status prior to the commencement of an

activity of concern (the baseline condition) to a different status consist-

ent with the hypothesis that the activity has affected that variable (i.e.

had an impact). For a change to be attributed to the impact of an activity,

it is a necessary (although not sufficient) condition that the change

occurred coincident with the start-up of the activity, or afterwards

(Green 1979). It is also important that there is a feasible mechanism by

which the change might have been caused by the activity (Green 1979;

Keough & Mapstone 1995; Underwood & Peterson 1988). Thus, it is

necessary to have samples or observations from the impact locations

from before the commencement of an activity (baseline samples) and for

some period of routine operations (operations samples), at least until it

can be concluded confidently that the activity is environmentally benign

(Stewart-Oaten et al. 1986). It might be desirable also to take samples or

observations during the commencement of the activity (start-up

samples), although the interval over which start-up occurs will usually
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be very short. This, then, is the first requirement for good design for

impact monitoring: sampling from baseline, through start-up and dur-

ing operational conditions. Leaving aside the start-up period, the base-

line period is usually referred to as the Before (start-up) period and the

operational period is referred to as the After (start-up) period. A Before–

After change in variable status would normally be expected if an impact

occurred, although this need not always be the case if natural changes in

the variable are suppressed by the impact of the development.

For compliance monitoring, such as monitoring the concentra-

tions of a chemical in the discharge waters of an industry, there may be

little concern about concentrations under natural circumstances, but

great concern that the concentrations at the end of the discharge pipe,

or in receiving waters, remain below the level stipulated by regulations.

Thus, the Before–After sequence of monitoring might be restricted to

the impact location (end of the discharge pipe, receiving waters within 1

km etc.) alone, and the trigger for action is stipulated independently of

the data (i.e. by regulation).

5.2.2 Discriminating impacts from natural changes

For impact assessment monitoring, there usually is no independent

standard or threshold level of ‘contamination’ by which an impact is

judged. Thus, in impact assessment monitoring impacts tend to be

defined relative to natural conditions, rather than with reference to

external criteria. Comparisons between the status of the impact location

Before and After start-up indicates whether a change in state has occur-

red (Green 1979; Keough & Mapstone 1995). It does not allow us to

distinguish, however, a change caused by an impact from a change that

would have occurred even if the activity had not begun, but which just

happened to occur coincident with start-up of the activity (Green 1979;

Keough &Mapstone 1995; Underwood 1991a). Comparisons between the

impact location Before and After start-up indicates whether a change in

state has occurred (Stewart-Oaten 1996b). This implies, however, that we

would need to have data for the impact location both in the presence

and absence of the activity, but over the same time. Clearly this is

impossible.

In order to estimate whether a change coincident with start-up

would have occurred in the absence of the activity, we collect and

analyse data from locations that are considered beyond the influence of

the activity and therefore not subject to its impacts. These non-impact

locations usually are termed control locations (see Box 5.1 for an expla-
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nation of themeaning of the word ‘control’ in this context). The underly-

ing assumption in this approach is that the impact location would have

behaved approximately the same as the control locations in the absence

of the impact (Keough &Mapstone 1995; Underwood 1991a). That is, data

from the control locations provide a surrogate or proxy for (the impossi-

ble) measurements at the impact location during the After period but in

the absence of the activity. If similar changes occurred at both the

control locations and at the impact locations, then it would be logically

inconsistent to infer that the activity had caused such changes, given

that the control locations had been selected to be outside the influence

of the activity whose impacts were being monitored. If, however,

changes at the impact locations differed from those at the control

locations, then it would be appropriate to infer that an impact had

occurred that had caused the impact locations to depart from ‘normal’

behaviour.

5.3 baci designs

From the above argument, then, it is clear that impact assessment

monitoring requires that samples or observations are taken from both

Impact and Control locations during both the Before and After periods.

Onlywhen all these data are in hand canwe logically distinguish natural

changes at the impact location from those caused by specific human

activities. Even so, there will always remain the possibility that the

changes at the impact location(s) were natural phenomena thatwere not

present at the control locations, but the likelihood of such an event

leading to an incorrect inference of impact is vastly less than the likeli-

hood of an incorrect inference if no control locations are sampled or if

there are no data from the Before period.

Thus, to this point we have developed an argument that in order to

assess whether an activity has caused an environmental impact at par-

ticular locations we need to have:

• Data from the Impact location(s) over some period Before the

activity commences

• Data from the Impact location(s) for some period After the activity

commences

• Data from Control location(s) over the same period Before the

activity commences

• Data from Control location(s) over the same period After the

activity commences.
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These requirements were summarized by the terminology Before–After,

Control–Impact, or BACI designs by Green (1979) and are the key under-

lying elements of rigorous impact assessment monitoring designs.

5.3.1 Natural dynamics and the duration of monitoring

In most natural systems there is considerable change at any given

location because of natural processes (Andrew&Mapstone 1987; Sokal &

Rohlf 1995; Underwood 1981, 1992). Some of the dynamics of flowing

waters (see chapter 2) clearly indicate that streams and rivers are typi-

cally highly variable over most time-scales. If such variation is not

accounted for in monitoring, there is great risk that either a natural

change coincident with start-up of an activity might be incorrectly

interpreted as an impact or, conversely, that a real impact might be

masked by underlying natural variation (Keough & Mapstone 1995;

Underwood 1991a). Where there already is extensive human activity

affecting streams, these natural dynamics might be exaggerated or

dampened by the overlay of human impacts (Underwood 1992). Indeed,

it has been argued that impacts on the frequency and/or magnitude of

naturally occurring events (that result in the observed variation in

natural systems) may be as important as impacts that simply change the

state of a system. That is, impacts that change the underlying regime of

natural variability of a system might be particularly important (Under-

wood 1992, 1994a).

To assess whether natural variation has changed because of im-

pacts and to be able to separate impacts on the average status from the

effects of natural variations requires that we know the characteristics of

natural variation in both the Before (un-impacted baseline) and After

(operational) periods (Stewart-Oaten et al. 1986; Stewart-Oaten 1996b).

This means repeatedly sampling over some period both Before and After

start-up. Ideally, the duration of sampling within each of the Before and

After periods should span several occurrences of the major sources of

natural variation that might be expected within the life of an activity

(Keough & Mapstone 1995). Thus, for streams with strong seasonality in

flow or biota, sampling should cover the full range of seasons and more

than one instance of each season should be sampled. In this case,

sampling would need to span at least two, and preferably more than

three years. The scale at which sampling should be repeated within

Before and After periods should be related to the dynamics of both the

variables being measured and the environmental processes expected to

drive those dynamics. Thus, the need for seasonal sampling might be
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Box 5.1 The difference between control and reference locations

In the environmental monitoring literature, two terms are used to

describe locations to which a putative impact location is to be

compared: reference and control. ‘Reference’ locations are used in

two different contexts – in some recent literature, they denote

undisturbed ‘standards’ against which impact areas are compared,

while in the second context, ‘reference’ is used by people unhappy

with the term control and its associations with laboratory

experimental situations. Below we discuss our interpretation of

this conundrum and our use of the terms ‘control’ and ‘reference’

in this volume.

Reference locations are chosen to be as close as possible to

the state of an environment undisturbed by human activity. These

locations are often not chosen with a particular impact in mind,

but to represent what a water body could be, or probably would be,

in the absence of human disturbance. They are often located at

some distance from a putative impact area and remote from

centres of population or human activity. Reference locations play a

major role in ‘status’ reporting, and often a large number of

variables will be measured to provide as complete a description as

feasible of a suite of locations, capturing the overall biological

status, biodiversity etc. of a region or habitat type.

Control locations are chosen to be as similar as possible in all

respects to the impact location, except for the presence of the

putative impact. The intention is to use the control locations to

isolate the effect of the particular human activity from a range of other

processes. Under some circumstances, when a human activity is to

occur in an otherwise undisturbed area, control and reference

locations may have the same attributes. However, when a new

activity is contemplated for an area that has already been highly

modified, the controls should be locations that are themselves

highly modified. That is, control locations should be chosen for

their similarity to the putative impact area, and we will often

measure a smaller suite of variables that we expect to clearly

respond to the impact and distinguish the effects of the particular

activity of interest from other processes, natural or human, that

affect the suite of control and impact locations.

In some of the stream literature, there is the misconception

that control areas resemble controls in laboratory situations, in
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which attempts are made to tightly regulate environmental

variables. This is incorrect, and the extensive literature on

experimental design, especially in agriculture, emphasizes that

controls do not require that other, extraneous variables be

controlled, only that they be matched between impact (or

experimental) and control locations. Our aim is not to produce

constant conditions, but to set up a sampling scheme under which

any observed differences can be attributed to the human activity

in question, and not to other processes operating at the impact

(and control) locations.

related to climatic events, but it might be necessary also to sample at

quite short time intervals within seasons if the variable being measured

is the abundance of an organism with a very short life cycle and high

population turnover. We will discuss later (chapter 7) the importance of

the relationship between sampling frequency and variable dynamics for

the analysis of resulting data.

5.3.2 Spatial variation and multiple locations

Just as it is to be expected that the impact location might change even

without the presence of impacts, it is also to be expected that control

locations will have their own natural dynamics. Any two locations that

appear very similar at one time will very likely differ in some ways and

their similarity will likely change through time. That is, whatever natu-

ral changes occur, it is likely that they will be different at different

locations, or at least not synchronous. This means that if a single impact

location is compared with a single control location, even with multiple

sampling during both the Before and After periods, there is a real,

non-trivial possibility that their relative status will change near to or

after start-up of the activity of interest. If the change in the comparison

between the two locations was simply because of natural location-to-

location variation, then an impact would be inferred erroneously. If

there is only a single impact and single control location, any inferences

about impacts are particularly susceptible to ‘unusual’ events not re-

lated to the activity being monitored influencing just one of the loca-

tions.

What is needed here is an estimate of the range of dynamics that

might be experienced by the impacted location and the control condi-

tions with which it is being compared. Such an estimate can be obtained
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by sampling several impact and/or control locations concurrently. From

such multiple locations it is possible to describe the ‘envelope’ within

which un-impacted locations might be expected to exist at any particu-

lar time, the envelope within which such locations might change

through time, and the envelope within which the impacted locations

actually behave, both before and after start-up of the activity. For the

above ‘envelopes of normality’ to be reliably described, the variables

beingmeasured should be behaving effectively independently at each of

the locations. That is, the dynamics of a variable at one location should

not determine its dynamics at any other locations being sampled. This

requirement often is achievable in the selection of control locations, but

often is difficult to realize in the selection of impact locations (as we

discuss in chapter 8).

Thus, because of the inherent variation in most natural systems,

the basic BACI design has to be extended to include sampling atmultiple

Control and (ideally) Impact locations on multiple occasions during the

Before and After period. Keough & Mapstone (1995) referred to this

design as MBACI, although they did not expect that multiple impact

locations would be available in most cases. Analytical models for MBACI

designs are presented in chapter 7 and we discuss the location of suit-

able controls in chapter 8.

5.3.3 Asymmetry in impact assessment monitoring

If the same number of Impact and Control locations were sampled at the

same times Before and After start-up, then the designwould be said to be

completely balanced and symmetrical (Sokal & Rohlf 1995; Underwood

1996; Winer et al. 1991). Balance is highly desirable for analytical and

inferential convenience, but is rarely achievable in impact monitoring.

In the absence of impacts, it is often straightforward to select

several sampling locations that function essentially independently with

respect to many local processes. Thus, it is often possible to identify

multiple control locations for an impact assessment monitoring pro-

gram. In stream situations, however, multiple locations on the one

stream are unlikely to be independent because of unidirectional flow

and multiple controls usually will mean multiple streams. This will

present serious obstacles in some cases, especially where large lowland

rivers are being monitored (chapter 8).

For many (perhaps most) impacts, however, there is only one

source of impact beginning operations at a time, even though there may

be other instances of the same activity starting up at other times and in
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other places. In such cases, there is often only one functional ‘location’

of impact (Keough & Mapstone 1995). Even though multiple ‘sampling

locations’ might be identified at which an impact is possible, they are all

subject to the same cause of impact – the operation of a particular

instance of an activity. Data from these multiple sampling locations will

be influenced by a common source of disturbance and so cannot be

considered to represent separate or independent instances of such dis-

turbances, even though they might be independent with respect to the

un-impacted dynamics of certain variables (Hurlbert 1984; Keough &

Mapstone 1995). Thus, the multiple (sampling) locations will in fact be

subsets of a larger area that is impacted, and cannot be considered to

provide independent measures of the impact. In other situations, where

the source of impact is diffuse, the same set of circumstances may affect

large areas more or less simultaneously. Here too, a series of sampling

locations is unlikely to be independent with respect to the cause of

impact and no one location is likely to adequately represent the scale of

the impact of interest. This means, in practice, that in most impact

assessment monitoring designs there can only be a single legitimate

impact location for a given instance of an activity (see also Box 5.2).

Hence, most impact monitoring designs become unbalanced, and

asymmetrical, with several control locations being compared with a

single impact location (Keough & Mapstone 1995; Underwood 1991a).

This means that the control locations, and their replication, take on

added importance because they are the only source of data from which

to estimate the envelope of normal location behaviour with which to

compare the dynamics of the (single) impact location.

5.4 scales of impact and monitoring

So far we have discussed the basic logical necessities of impact assess-

mentmonitoring. The definition of what ismeant by an impact location,

and the choice of locations (whether impact or control locations), how-

ever, involves a raft of logistic and functional considerations related to

the spatial and temporal scales of impact and the dynamics of measured

variables. Perhaps first among these is consideration of the extent – or

scale – over which an impact is expected, or over which concern about

impacts extends. This issue will essentially define the scale of an impact

location, and in turn dictate the appropriate scale of control locations

with which the impact location is to be compared (Keough & Mapstone

1995). For example, it may be expected that a sediment plume for a

development will extend along a 1 km stretch of stream and that if
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Box 5.2 Gradients and inference of impact

We have noted the design problem arising whenever multiple

sampling locations are wrongly considered to be independent

measures of impact. One special case of this general problem

occurs when the multiple sample sites are found to indicate an

apparent gradient of response to impact (say, over sample sites

moving downstream from a putative source of impact). A

significant, non-random gradient may be taken to imply impact.

However, such a design provides only weak inference. The gradient

defined by the multiple sample sites provides a valid form of

evidence for impact, but there is no form of control to assess

whether that apparent ‘evidence’ could have arisen even without

impact (as discussed in chapter 4). Observing such gradients in

streams may not be at all improbable even in the absence of

impact. We therefore need other control streams, in order to

determine the envelope of normal location behaviour (in this case,

behaviour with respect to the kinds of gradients that might

normally be expected).

That caveat does not mean that gradient analyses are not

valuable. Not only may a gradient validly form the evidence as part

of an ideal design, but also examination of gradients may help

evaluate the utility of more conventional forms of evidence, such

as changes in species abundance. Gradient analysis provides ways

of learning about the nature and extent of impacts (see section 7.6)

and the best variables for detecting those impacts. In chapter 9, we

also discuss how gradient analysis may be linked to causality

arguments, when an increase in the magnitude of an effect

corresponds to increasing intensity or frequency of human impact.

Lastly, we note that ordination methods provide a special

form of gradient analysis for multivariate data (see chapter 4), and,

when the impact and control sites in such a gradient space are

independent, MANOVA and other methods can provide powerful

inference of impact.

impacts within this area are monitored, and minimized, then impacts

beyond that area are unlikely to be important. The impact location then,

would be a 1 km stretch of stream, and control locations of similar scale

would also be sought.

It is important also to consider the physical and ecological charac-
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teristics of the impact location when selecting control locations and

designing the details of sampling. If, for example, the 1km stretch of

stream that constitutes the impact location contains a combination of

pools and riffles, with a narrow riparian margin, then it would be

important to look for control locations with similar characteristics. It

would be important also to stratify sampling within the impact and

control locations to take account of the different habitats present.

In some cases the likely scale of impact will be very uncertain and

one objective of the monitoring program might be to identify the scale

over which an impact occurs. In such cases a range of scales needs to be

considered explicitly and systematically in sampling, possibly both tem-

porally and spatially. Two approaches might be considered here, both

beginning with an impact ‘location’ being defined by the largest dis-

tance over which an impact might conceivably occur. If it is expected

that there might be discrete, stepwise differences in the scale(s) at which

an impact might occur, a number of smaller scale locations might be

definedwithin the impact location. These smaller locations would repre-

sent impacts over smaller areas. This would result in a spatial hierarchy

of ‘locations’, with each location nested within all those of larger scale.

At its simplest this might be viewed as a set of concentric polygons or

nested stream sections defining the different distances from a point

source of impact over which impacts might be expected. Boundaries

between the polygons or stream sections would be defined by the break-

points in scales of impact that seem most likely. Because many ecologi-

cal processes may be scale-related, it would be inappropriate to compare

the impact data from one scale with data from a different scale at

control locations. Thus, the hierarchy of scales should be repeated at the

control locations. In designs such as these, sampling would entail the

Before–After sampling at multiple Control (and perhaps) Impact loca-

tions, as described above, but there would be additional levels of samp-

ling nested within each of the Impact and multiple Control locations

from which the scale of impact would be estimated.

If, in addition to uncertainty about the spatial scale of impact,

there was uncertainty about the time frame(s) over which impactsmight

manifest (and disappear, thereby possibly being missed), then a similar

hierarchy of sampling might be necessary within the Before and After

periods. This might entail, for example, sampling weekly within seasons

over several years. Such additions to the basic sampling design rapidly

increase the number of times and places sampled. Clearly, then, the

greater the uncertainty about the spatial or temporal scales of impact,

the greater will be the sampling effort (and cost) needed to resolve that
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uncertainty, and the greater will be the logistic obstacles to rigorous

monitoring.

A second approach to resolving the scale of impact is to establish a

regular series of sampling over the gradient of potential impact. The

most likely gradient of impact would be related to distance from a point

source of impact. For point sources we expect a gradient of disturbance

corresponding to, for example, diffusion or transport of waste from the

point of discharge. In some cases a formal mixing zone is defined within

which a substantial impact is expected, and tolerated, and so monitor-

ing is focused on detecting unacceptable impacts beyond that area. In

other cases, however, sampling over a (potential) gradient would be

appropriate. Such cases would include those where there was no defined

mixing zone, there was no a priori reason to expect stepwise changes in

the likelihood of impact and it was considered important to document

the way in which a variable changed with distance from a source. In this

case, it is possible that the gradient sampling would occur only at the

impact location if there was no expectation of non-impact sources of

scale-related behaviour or gradients in variables at the control locations.

In streams, more thanmany systems, however, there may be compelling

reasons for monitoring longitudinal gradients for variables at both

impact and control locations.

5.4.1 Sampling within locations – impacts on status

So far we have discussed only the factors influencing the choice of

locations to be sampled, but have not considered how each location

might be sampled at each time. For most variables, it is not possible or

efficient to enumerate or take a census of their status (e.g. the average

value of the variable across a whole location) over the entire area of a

location, unless it is a very small location and there are relatively few,

easily counted cases of the variable (e.g. large fish in a small pond). This

necessitates the estimation of variable status from smaller, manageable

samples or observations, taken within each location and time, and

assumed to be representative of the location’s status in general. Such

samples are termed representative subsamples (Sokal & Rohlf 1995).

Perhaps the key issue to be considered with respect to subsampling is

how best to ensure that they do adequately represent the larger area or

time that they are expected to represent (Hurlbert 1984).

Most ecological or environmental variables demonstrate consider-

able variation in space and time at many scales. Moreover, most samples

that are logistically feasible are smaller in size and taken over a shorter
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duration than most of the scales at which such variation is conspicuous.

This means that single samples taken on different occasions or in differ-

ent places within a location may vary greatly simply because of variabil-

ity in themeasured variable at scales between the size of the sample and

the size of the location (Sokal & Rohlf 1995). The result of taking only

single subsamples would be absolute uncertainty about whether

changes through time or differences between control and impact loca-

tions represent real impacts or are simply expressions of smaller-scale

variation manifest in the small-scale subsample from each location. If

the latter were true, then a number of samples taken within a single

location might have showed as much variation as single samples taken

from different locations. Thus, taking a single sample that is small

relative to the location it is expected to represent will be insufficient.

Taking several samples scattered over a location on each occasion

will reduce these uncertainties. Indeed, to adequately ‘represent’ a loca-

tion with an estimate based on subsampling, it will almost always be

essential to take several (perhaps many) samples from within each

location at each sampling time (Hurlbert 1984; Underwood 1981). Be-

cause it is the entire location that we seek to represent with the collec-

tion of subsamples, it is important that the latter are dispersed

throughout the location (or those parts of it that are relevant, such as

specific habitats), and not all taken from, say, one corner of the location

(Hurlbert 1984). It is important to recognize here that if samples were

taken from a small part of the proposed location because of strictly

random sampling, the result would be effectively a redefinition of the

location to that area over which samples were actually taken. Hence, any

inferences would fail to relate properly to the location originally defined

in the design phase.

Adequate dispersion of observations can be achieved by either

collecting subsamples in a very regular pattern over the location or at

random from within the location. There are advantages (and disadvan-

tages) to each strategy. Regular sampling will ensure maximum disper-

sion. Randomization, by definition, might result in clumped sampling

or missing large sections of the location simply by chance. This argu-

ment would tend to favour regular sampling. However, if the regular

sampling happens to coincide with some regular feature of the location

(such as undulations in a stream bed), then the samples may be biased

because they were mostly taken from, for example, the swales of the bed

ripples. Moreover, the coincidence of regular samples with important

natural features might vary among locations and/or times (swales in one

place, ridges in another), resulting in completely erroneous inferences
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about location-scale patterns or impacts. Randomization will usually

minimize the risk of such coincidence confounding interpretation of the

data. This argument, then, would favour strict randomization. Perhaps

the safest strategy for subsample allocation is a two-stage process in

which each location is first ‘gridded’ at some fairly coarse scale and then

(an equal number of) samples are taken at randomwithin each grid. This

will ensure adequate dispersion but avoid systematic relationships

among samples over the location.

5.4.2 Sampling within locations – impacts on variation

Asmentioned earlier, itmay be as important to consider the effects of an

environmental impact on the variation(s) in a variable as on the overall

average status of that variable. Here too, there may be uncertainty about

the scale-related nature of effects (on variation) and a desire to resolve

whether an impact simply results in a ‘blanket’ effect over the impact

location, or a patchy effect with specific scales of patchiness. In order to

assess the latter, Underwood (1991a, 1992, 1994a) has recommended a

design framework that he termed ‘Beyond BACI’. Beyond BACI designs

share many of the features of MBACI designs, such as multiple control

(and if possible) impact locations, and multiple sampling occasions

before and after start-up of an activity, but in addition include one or

more hierarchically arranged scales of sampling within each location

(see chapter 7 for more information). These nested scales (which we will

term sites) within locations are allocated essentially at random within

the locations. Thus, they do not equate to the nested concentric loca-

tions, discussed previously, that might be used to define the scale at

which an impact occurred. The concentric arrangement of locations of

different sizes represents a strictly systematic allocation of smaller

scales within larger ones, not a random allocation of smaller-scaled

sampling spaces across a larger, conceptually homogeneous location.

Although Keough &Mapstone (1995) and Underwood (1991a, 1992)

indicated that the Beyond BACI designs were appropriate for estimating

the scale of an impact on the status of a variable, this is not automati-

cally the case. Only if the nested sites are specifically arranged within

specified distances from the impact will they systematically address the

question of scale of impact. If this is the case, however, they then are

unlikely to satisfactorily estimate the scales of variation or patchiness in

impact within the impact location, for which a randomized allocation

would be required. Again, the specific questions being addressed, and

the assumptions underlying decisions about the likely features of an
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impact need to be clarified before useful choices can be made between

these alternatives. Ultimately, if there remains considerable uncertainty

about both the scale(s) of impact and the scale(s) of patchiness in the

impact, a combined sampling strategy may be required. In this case,

sampling spaces (sites), possibly of more than one size, might be allo-

cated at random within each concentric location, thus enabling estima-

tion of whether the impact was defined better at some scales than others

and also the characteristics of impact on spatial patchiness within

scales. Such a scheme would be extremely expensive.

5.4.3 Sampling within periods – duration and fluctuations in
impact

Again, similar issues arise with respect to sampling in time as well as

space. If a principal interest is to determine the period over which an

impact occurred, then regular sampling throughout the potential (lar-

gest) period of impact would be preferable. If, however, the major focus

is on the effects of an activity on the temporal variation(s) in a variable,

then sampling at randomly allocated times when impacts are likely

would be required. As before, combinations of both approachesmight be

considered in some cases, but will dramatically escalate the costs of

monitoring. As with the spatial analogue, these options reflect clear

uncertainties about the characteristics of an impact. In many cases,

references to impacts of similar activities that have been monitored

before may clarify the likely properties of an impact such that monitor-

ing designs can be simplified and focused more powerfully on the

discrimination of impacts rather than the exploration of their character-

istics.

5.4.4 Collecting the samples

Underlying much of the preceding argument is the proposition that the

putative impact and the control locations are being monitored in paral-

lel. It is particularly important to sample all locations within a small

window at each sampling occasion (but see Stewart-Oaten 1996b;

Stewart-Oaten et al. 1986), although usually it will be impossible to

sample at all locations exactly concurrently. The greater the difference

in timing of sampling among locations the greater the potential for

confounding changes at one or more locations with differences in the

timing of sampling at those locations. For example, if an impact location

is sampled on one day and the control locations are sampled on subse-
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quent days, but there is substantial rainfall overnight, there is substan-

tial potential for the data from the impact and control locations to be

seriously flawed because of differences in stream flow among them.

It may be important also to avoid sampling the locations in the

same order on all sampling occasions. Sampling locations in the same

order on all occasions increases the possibility that unknown or unex-

pected biases related to the logistics of sampling might taint inferences

of impact. For example, if sampling is condensed into a short period and

is arduous, fatigue may result in biases in the collection or treatment of

samples. Changing the order in which locations are visited is perhaps

the easiest way to insure against the influence of such biases. It is better

to have such (usually unknown) biases spread among all locations over

the life of a monitoring program than to have them consistently arrayed

across locations. Strict randomization of the order in which locations

are sampled on each occasion is perhaps most desirable, but often will

not be feasible. An acceptable alternative would be to sample the loca-

tions in the same sequence, but with a different starting position on

each occasion. The starting position might be chosen either at random

or sequentially across sampling occasions.

The logistics of sampling may be complicated also when multiple

variables are being sampled, as will usually be the case. Although the

overall logical structure of a monitoring program usually will be the

same for multiple variables (e.g. the need for Before–After and Control–

Impact sampling), the details of sampling strategies (e.g. numbers and

scale of sites sampled, numbers of observations at each site) optimized

for different variables may vary among variables. Clearly this is less of an

issuewhen the data are expected to be analysed together bymultivariate

methods (e.g. Faith et al. 1995; Humphrey et al. 1995) andmust, therefore,

be collected from the same sampling units. Even in these cases, however,

it is unlikely that all variables will be treated in a single analysis and so

there exists the potential for different sampling requirements for differ-

ent sets of variables.

Usually it will be desirable logistically to collect all the observa-

tions (for all variables) from each location on a single visit to that

location at each sampling occasion. Often it will be easier to standardize

the sampling design across most or all variables, irrespective of the

sampling details appropriate for each, rather than trying to implement

separate, different sampling regimes for each of the variables. In such

cases it is preferable to ‘design-up’ to the greatest level of detail required

by any variable rather than to ‘design-down’ to the lowest common

factor. We recommend this strategy because it is easy to subsample or
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aggregate data that has been gathered already to fit a desired analytical

method, but it is very difficult, and ill advised, to ‘fill-in’ data that has not

been collected for some variables because sampling was geared to the

least demanding design. Further, the aggregation of observations often

improves the properties of data for statistical analyses (discussed in

chapters 4 and 13). Of course, this approach will have to be balanced

against the costs of sampling all variables with the greatest intensity,

even though some of them may not require such effort for acceptable

inferences about impacts.

5.4.5 Other considerations

The design of an impact assessment monitoring program should not be

considered in isolation each time a new activity is considered in need of

assessment. Data from previous studies of similar activities and their

impacts may provide valuable insights to the likely scale, duration,

manifestations of impact and the variables most sensitive to impact.

Clearly, this implies that there is a place for the collective consideration

of data from monitoring programs for similar activities at different

times. Such synthesis of data from different programs will be enhanced

greatly if there is consistency of sampling design, variable selection,

sample collection and processing among those programs. Accordingly,

there is a place in the design of new programs for considering their

consistency with prior work. Where possible, consistency should be

maximized – but not at the expense of improvement in basic design and

implementation. It is of little consolation that a current monitoring

program is the same as previous ones if it is (as they were) inadequate to

distinguish the impacts of the driving activity from disturbances caused

by other events. We recommend, therefore, that prior experience be

considered in the design of newmonitoring programs, but that the prior

experience is subject to critical review and improvements in design are

favoured over adherence to tradition or dogma.

A related issue here is the proper care of data arising from

monitoring programs. The existence of prior information is only useful

if it is accessible for review and the data are available for (re)analysis.

Similarly, the synthesis of information from multiple studies is greatly

enhanced if the underlying data are available for analysis. Availability of

data across multiple studies will be improved substantially if the data

from each are carefully processed, stored on well-constructed databases,

and archived for future use. Although more a facet of implementation

than of design, we consider it essential that themanagement of the data
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from the chosen monitoring program be planned and rigorous. This is

perhaps best begun at the early stages of the program, when other

aspects of the work are also being designed.

5.5 careful design is the most important step

We have endeavoured here to explain the issues in monitoring design

that we consider most important. We consider these principles to be

important because of the logical foundations that they provide for

making conclusive and legitimate inferences about the existence or

absence of environmental impacts of specific human activities. Inevi-

tably, compromises will be necessary in monitoring programs and we

discuss throughout the remainder of this book where, and how, such

compromises might be made – and what their consequences are for

inferences about impacts. It is critical in each step that choices about

compromise are explicit and documented with reference to their im-

pacts on the potential to meet the objectives of themonitoring program.

Careful attention to the design of the study will aid in making choices

about compromises, and clarify their implications.

It is important to recognize that although data arising from these

designs are more easily analysed by some methods than by others, the

choice of analytical tool should not dictate the basic design choices.

Once the data are in hand, any number of analytical methods can be

applied to them. They can be analysed and re-analysed, either as a whole

set or in subsets, according to the preferences and skills available. If the

sampling design under which the data were collected was deficient,

however, no amount of different statistical treatments will fix those

deficiencies. We contend, therefore, that thorough attention to the

design of monitoring is perhaps the most important step in setting

the scene for robust, defensible inferences later in the monitoring–

decision–management process.

5.6 important issues

• Good monitoring design means having sufficient resources and

samples to answer our questions both efficiently and rigorously

but without being wasteful.

• The first requirement for good design for impact monitoring is

sampling from baseline, through start-up and during operational

conditions.
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• For impact assessment monitoring, impacts tend to be defined

relative to natural conditions, rather than with reference to exter-

nal criteria. Hence, a second requirement for good design is to

collect and analyse data from locations that are considered beyond

the influence of the activity and therefore not subject to its im-

pacts. These non-impact locations usually are termed control loca-

tions.

• These two requirements are summarized by the terminology of

Before–After, Control–Impact, or BACI, designs and are the key

underlying elements of rigorous impact assessment monitoring

designs.

• To assess whether natural variation has changed because of im-

pacts, and to be able to separate any effects of impacts from

natural changes, we need to sample repeatedly during both Before

and After periods. Additionally, we need to estimate the range of

dynamics that might be experienced by the impacted location and

the control conditions with which it is being compared. Such an

estimate can be obtained by sampling several impact and control

locations concurrently.

• Together, the above samples help describe an envelope of variation

among control locations over time, and the envelopewithinwhich

impact locations actually behave. Replication of controls and

samples through time are important because they are the only

data from which to estimate the envelope of ‘normal’ location

behaviour, as, in most impact assessment monitoring designs,

there will only be a single legitimate impact location for a given

instance of an activity.

• One of the most common deficiencies in impact monitoring de-

signs is insufficient data gathered Before a putative impact occurs.

Hence, it is critical that monitoring designs are evaluated early in

the development process. Formal monitoring of control and fu-

ture impact locations should commence as far as possible in ad-

vance of start-up of the impacting activity.

• The definition of what is meant by an impact location, and choice

of control locations, involves many considerations related to the

spatial and temporal scales of impact and the dynamics of meas-

ured variables. These considerations will affect the spatial and

temporal extent of control and impact locations and periods,

spatial and temporal placement of subsamples, and the resulting

analytical model.

• We will usually use more than one variable to examine any puta-
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tive impacts. It is often logistically efficient to collect data for

multiple variables simultaneously but the optimum design might

not be the same for each variable. Hence it is important to consider

explicitly the trade-offs between using one sampling design plan-

ned around the more logistically demanding variables (e.g. those

requiring most frequent sampling) or using independent designs

for different variables or groups of variables that have different

sampling requirements. In all cases, impact and control locations

should be sampled as closely together in time as possible on each

sampling occasion.

• We can learn much from previous examples of human impacts, so

it is important that monitoring data be archived properly and be

accessible by others.
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6

Problems in applying designs

Chapter 5 dealt with the ideal design criteria appropriate for the logical

detection of impacts. In this chapter, we illustrate why these design

criteria are important by outlining the problems that have been faced by

ecologists seeking to apply at least some of the principles that were

discussed in chapter 5. Many studies were conducted before much was

known about good design, but problems in applyingmonitoring designs

have arisen partly from the nature of rivers themselves (chapter 2),

partly from the nature of the variables that river ecologists deal with

(chapter 10), and partly from institutional and political arrangements

that affect the timing and scope of such studies.

Before describing these problems in detail, we first present an

historical sketch of the previous attempts at implementing programs for

impact assessment and monitoring using biological data in rivers and

streams. This brief history lesson illustrates the apparent simplicity and

hidden complexities of assessing and monitoring in rivers and streams.

We will then elaborate on how each of the three problem areas makes

it difficult to implement ideal experimental designs in rivers and

streams.

6.1 a brief historical sketch

The vast majority of published field studies of impacts in streams have

been directed at investigating pre-existing impacts (see reviews by: Hel-

lawell 1986; Hynes 1960). Many of the earlier studies were aimed at least

at corroborating conclusions drawn from observations of large, obvious

human impacts and from physicochemical investigations (Fjerdingstad

1964; Forbes & Richardson 1919; Kolkwitz &Marsson 1908; Patrick 1949),

and sometimes at establishing that biological variables were detecting

changes that had been missed by using physicochemical data alone
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(reviewed by Wilhm 1975). Much of this research was conducted in

Europe and North America, and often concentrated on rivers with con-

spicuous point sources of pollution, such as untreated sewage outfalls,

and untreated effluent fromheavy industry andmines. By the late 1940s,

the common patterns due to organic pollution were felt to be well

known (Bartsch 1948). Hynes (1960) summarized much of this descrip-

tive research on both organic and inorganic pollution and formulated

some simplified and frequently cited qualitative models, which we re-

produce here in Fig. 6.1.

It would be fair to say that the relationships presented in Fig. 6.1

have strongly influenced many subsequent studies, either directly or

indirectly. Three features of these models recur in the design of many

survey-based studies. First, there is a reach upstream of the discharge

that can act as a ‘control’ for locations downstream of the potential

problem; second, the biota differs dramatically downstream of the dis-

charge, oftenwith a succession of different groups of taxa replacing each

other as the dominant organism as onemoves further downstream; and,

third, eventually the biota returns to a composition similar to that of the

‘control’ location upstream of the input.

There are surprisingly few empirical studies that conform to this

simple scheme, and several reasons for this (besides its obvious oversim-

plifications) are commonly proffered. Often, it is felt that the biota rarely

‘recovers’ before another impact is wrought on the river. Either addi-

tional outfalls discharge into the river, or land use changes with con-

comitant alterations in runoff and, hence, the potential for diffuse

pollution (e.g. Hawkes & Davies 1971). In a similar vein, the river itself

may change downstream, so that the effects of the impact are con-

founded with natural changes in the underlying habitats in the river; as

a result the upstream ‘control’ no longer provides an appropriate stan-

dard with which to compare impacted locations (e.g. Stewart & Loar

1994). Less frequently, unexpected droughts or floods have coincided

with the survey so that it is difficult to distinguish ‘control’ from ‘im-

pact’ locations because the biota has been severely reduced by the

drought or flood. Finally, much is sometimes made of the taxonomic

differences between a particular survey and whichever version of Hy-

nes’s models is current; at times an obsession with regional faunal

differences has obscured other problems with drawing inferences from

the data. Similar problems arise when assessing diffuse sources: impac-

ted locations are often downstream of control locations and differences

in the biota are confounded with background spatial changes that may

be unrelated to the impact concerned.
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Fig. 6.1 Hynes’s (1960) qualitative, graphical models of the expected

changes in rivers downstream of (a) a point-source discharge of an

organic effluent (e.g. untreated sewage), showing expected downstream

changes in (A) oxygen, salt and suspended solids concentrations and

biological oxygen demand (BOD), (B) concentrations of common forms of

nitrogen and phosphorus, (C) densities of algal, microbial and protozoan

taxa and (D) densities of particular invertebrate taxa; and (b) (overleaf) a

point-source discharge of a toxic substance (e.g. effluent containing heavy

metals) showing downstream changes in algal and animal abundance.

(The figures are redrawn from Hynes (1960), Figs. 15 and 16.)
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Fig 6.1 (cont.)

The notion of upstream control locations was sometimes ex-

panded to include unaffected controls on tributaries and, more rarely,

similar rivers in nearby catchments. The major problem with this strat-

egy is with the representativeness or comparability of the tributary

locations, because often there are no historical data for comparing the

tributaries with themain stem prior to the impact. Arguments about the

advantages and disadvantages of this procedure have generated a large

literature about ‘bioregions’ and ‘ecoregions’, especially in North Amer-

ica (Barbour et al. 1992; Hughes et al. 1994; Rohm et al. 1987). This

problem becomes especially pronounced in large rivers, where the tribu-

taries may be very dissimilar from the main river. There may also be

natural, location-to-location differences in the biota that are rarely

either measured intentionally or discussed.

Although it is often not couched in the terms of formal statistical

inference, the issue of confounding natural, longitudinal changes in the

river with the effects of impacts (Underwood 1994b) has clearly worried

many investigators. Several have noted that collecting baseline data for

more than one annual cycle before the impact strengthens conclusions

considerably (Humphrey & Dostine 1994; Humphrey et al. 1995; Tubbing

et al. 1994), but there is still a dearth of published studieswhere adequate

pre-impact data have been collected for a sufficiently long time (Rosen-

berg et al. 1981; Warnken & Buckley 1998). The overwhelming impres-

sion that we get from the major reviews and texts is that the vast

majority of published studies of impact assessment or monitoring of

rivers using in situ biological variables under field conditions has only

been undertaken after a putative impact has started.

Inadequate funding, a lack of appreciation of the importance of

pre-impact data, insufficient lead times and a continuing emphasis on
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assessing existing impacts have probably combined to hamper progress

in applying good statistical designs with strong inferential bases (Fair-

weather 1994; Green 1979). In the absence of temporal controls, a cock-

tail of ad hoc strategies has been employed by researchers in an attempt

to assemble multiple lines of evidence about the nature and size of an

impact (Abel 1989; Chapman 1996; Wilhm 1975). These strategies might

be summarized as follows:

1. Collection of supporting physical and chemical data. If these data

are consistent with the observed biological patterns (or vice versa)

then more confidence is expressed in the conclusion.

2. Use of a system of zonation or bioregionalization to corroborate

expectations of the comparability of the biota in the impact and

control locations in the absence of the impact. If impact and

control locations are within the same zone of a river, or the same

biological region, then there is an expectation that the biota

should have been similar before the impact occurred.

3. Use of indicator species, where such species are held to be specific

to a particular type of impact. Some species are thought to be well

adapted to or tolerant of particular environmental conditions and

are hence regarded as characteristic of a particular formof impact.

4. Characterizing the tolerances of the constituent species using

some form of scoring system. This can be an extension of the

indicator species approach, where an attempt is made to summar-

ize the composition of the community in terms of its tolerance to

the impact. If the assemblage is dominated by tolerant taxa with

few sensitive individuals, then this is deemed to indicate that the

biota is, in some way, impacted.

5. Analysis of individuals for deformities, biomarkers or chemicals

thought to be specific to the impact. Often these attributes are the

principal variables measured in an investigation, but sometimes

they are used as additional evidence to back up conclusions drawn

from physicochemical, population and community-level data.

All of these strategies have been criticised, and it is probably fair to say

that, for biological variables, a disproportionate effort has been devoted

to critiques of strategies 3 and 4 above. This has resulted in a large

literature on different ways of summarizing and analysing data result-

ing from field surveys, and a substantial cottage industry in reviewing

this literature. From the debate about these issues, some felt that the

relatively informal, often qualitative approaches to quantifying biologi-

cal responses to human disturbance were inadequate, leading to the

A brief historical sketch 141



increased use of statistical methods and multivariate displays of the

data (e.g. Green 1979).

Three themes emerge from this historical sketch. The first involves

the difficulties of defining a control or set of controls on a linearly

connected system such as a river. The nature of rivers seems to offer

some advantages (e.g. upstream locations or tributaries to act as con-

trols) but, in practice, have posed some difficulties in implementing

reliable experimental designs. The second theme involves the practical

difficulties of using river biota in implementing impact and monitoring

studies. The third theme concerns political and institutional issues that

prevent researchers from implementing good designs. We will now

discuss each of these themes in turn, bearing in mind that there is some

overlap between these sets of problems.

6.2 problems inherent in the nature of rivers

6.2.1 Interdependence between locations

Sampling locations on the same river or stream presents both an oppor-

tunity and some problems in applying conventional statistical models

(described in chapters 4 and 7) for making strong inferences about

impacts and changes over time. The opportunity exploited by the vast

majority of published field studies is that rivers usually flow in only one

direction so that onemight expect that locations immediately upstream

of the impact would represent the biota that should have existed at the

impacted locations before the impact started. There are two main prob-

lems with this approach. First, the river biota changes in species compo-

sition naturally as one proceeds downstream, so that impacts ‘detected’

by changes in species composition or population densities may be con-

founded with natural, downstream changes in the biota. Second, inter-

correlations between locations closely located to each other may violate

the assumptions of independence between locations required of classi-

cal statistical designs (section 5.3.2). Upstream controls or those on

tributaries may be a net source of colonists for downstream impacted

locations leading to underestimates of effects (see also Underwood

1994b).

In formal terms, the lack of independence between sampling

locations is termed serial correlation in space (sometimes referred to as

autocorrelation). The problems this presents to conventional analytical

techniques such as ANOVA have been raised by marine and lentic fresh-

water scientists (Millard et al. 1985; Reckhow & Stow 1990), but remain
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largely uninvestigated for biotic variables in rivers and streams when

considered in the context of environmental monitoring and impact

assessment. Locations that are close together, relative to the mobility of

the target organism, are unlikely to be independent, as has been appreci-

ated by some of those appraising the use of fish populations and commu-

nity structure, even if they do not conduct their discussion in the jargon

of formal statistical design (Schlosser 1990). The problem remains that,

for some variables, sequential locations along a stream will be spatially

correlated, whereas others may not be.

Clearly, using only spatial controls in lieu of temporal controls as

a basis formaking inferences about impacts in rivers has some problems.

Stewart & Loar (1994), for example, noted that the upstream controls

used in studies around US Department of Energy facilities near Oak

Ridge, Tennessee, were likely to be depauperate in both fish and benthic

invertebrate groups because of the lesser habitat diversity in these

locations comparedwith the putatively impacted locations downstream.

Similarly, replicating ‘impact’ locations is also problematic. Many stu-

dies include several locations downstream of the impact to determine

whether ‘recovery’ is taking place (e.g. Gaufin & Tarzwell 1952, 1956;

Hawkes 1964; Hawkes&Davies 1971; Norris 1986; Norris et al. 1982), or to

try to quantify the effects of additional impacts further downstream (e.g.

Arthington et al. 1982; Campbell 1978). As has been noted before, the lack

of any data prior to the onset of the impacts makes it difficult to judge

either the degree of impact or the extent of recovery.

For slow-moving or sessile benthos, investigators often implicitly

assume that locations � 1 km apart on a river are independent. Resh &

McElravy (1993) examined 48 quantitative studies from rivers and

streams compiled by Voshell et al. (1989) and found that more than half

the lotic studies (63%) used controls solely in the same water body as the

impact locations. They also noted, but did not quantify, a large degree of

inappropriate replication, where only a single sampling location was

used to represent control or impact conditions. Similar patterns are

cited by the major reviews of field studies of populations or communi-

ties (e.g. Hellawell 1977, 1978, 1986; Hynes 1960; Metcalfe 1989; Rosen-

berg & Resh 1993). A recent review (J. R. Thomson & B. Downes

unpublished data; see Box 6.1) of 140 studies looking at a variety of

human impacts on lotic systems found that � 59% used controls. Of

these, 57% used locations upstream of impact points to provide controls,

and thus have potential difficulties with confounding. Encouragingly,

though, 35% had multiple controls located on separate non-impacted

rivers; most of these studies were published in the 1990s suggesting that

sampling designs in rivers are improving.
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Larger, vagile organisms such as fish present more obvious prob-

lems. First, control locations may not be truly independent because of

movements between them by the animals; spatial autocorrelation and

its effects on the width of confidence intervals may therefore be substan-

tial, although if sufficient data are collected to model these autocorrela-

tions, then this problem may be solvable (Conquest 1993). The second

potential problem with vagile organisms is difficult to overcome: if

organisms can move freely between control and impact locations, these

locations become confounded. Fish may, for example, disperse from a

control location into the impacted location leading to underestimates of

the change, or they may disperse from the impact location into the

control location, which would double the effect size (see Smith et al.

(1993) for a salutary example and also chapter 11 for discussion about

effect sizes). Furthermore, the degree to which component species are

resident in a location affects researchers’ perceptions of stability in

terms of population size or community composition, and there have

been vigorous exchanges about how sampling locations might be de-

fined unambiguously for vagile fish (e.g. Grossman et al. 1982; Herbold

1984; Ross et al. 1985). Defining the spatial extent for sampling fish

populations or assemblages is, therefore, difficult but the debate and

awareness of the issue is more developed than it is amongst benthic

biologists (Grossman et al. 1990; Meffe & Sheldon 1990).

More attention has been paid to pre-existing differences in habi-

tats between control locations in benthic sampling programs. Re-

searchers recognize that the benthos is strongly influenced by substrate

type, water velocity and the presence of vascular aquatic vegetation (e.g.

Allen 1959; Hynes 1960, 1970; Winterbourn 1981). Comparing like habi-

tats is essential, therefore, and the merits of stratifying sampling pro-

grams have been promoted heavily (Elliott 1977; Green 1979; Hellawell

1978; Resh 1979), with the practice now being widespread (Resh &

McElravy 1993). Confusion still remains, however, about the appropriate

level at which sample units should be replicated, with subsampling

within a location being mistaken for replication of ‘treatment’ condi-

tions (Resh & McElravy 1993; and see section 6.3.1 below).

Overall, research in rivers and streams has been hampered by a

poor understanding of spatial scales of variation of the variables under

examination. Part of this can be attributed to early expositions of the

prohibitive sampling efforts required for modestly precise estimates of

population means, which did not address the connections between

variance and scale (see section 6.3.1 below). However, spatially nested

sampling designs seem very uncommon in riverine benthic studies
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Box 6.1 A recent review of human impact studies

J. R. Thomson & B. Downes (unpublished data) examined the

methods used to detect and measure the impacts of a variety of

human activities on lotic ecosystems in 140 recently published

studies. The review focused on papers published from 1994

through 1999 in the following journals: Freshwater Biology, Journal of

Freshwater Ecology, Hydrobiologia, Australian Journal of Ecology,

Canadian Journal of Fisheries and Aquatic Sciences, (Australian Journal of)

Marine and Freshwater Research, Journal of the North American

Benthological Society and Regulated Rivers. However relevant papers

from other journals (see full list below), and some published prior

to 1994, were also included to increase sample size and to ensure a

large geographic coverage of studies.

Papers that reported the results of studies designed to

examine the impacts of human activities on lotic ecosystems were

included in the review. Studies examining both point and

non-point source impacts were sampled. Comparative studies with

the primary aim of comparing different monitoring methods (e.g.

invertebrates vs. diatoms, multivariate vs. multimetric statistics)

were included as long as they involved an assessment of an actual

human impact on a lotic system. Only studies that included at

least some field-based assessment of impacts were included. Thus

studies reporting only laboratory-based toxicity tests, for example,

were not included; however studies that incorporated laboratory

tests with field surveys/experiments aimed at measuring an actual

impact were included. Data collected for each paper included: type

of impact (e.g. regulation, urban/industrial effluent, agriculture,

forestry, power generation, mining etc.), effect variables (e.g.

temperature, pH, siltation), response variables (e.g.

macroinvertebrate community composition), sampling design,

degree of spatial and temporal replication (number of sites,

samples per site etc.), spatial and temporal scales of impact, type of

statistical analysis, and justifications (or lack thereof) for site

selection, sampling designs, response variables etc. Information

about sampling designs included whether a full BACI-type design

was used or not, whether controls were located on one or multiple

rivers, and where they were sited within catchments.
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Full list of journals from which papers were sourced:

Acta Hydrobiologica

Archives Hydrobiologica

Australian Journal of Ecology

Canadian Journal of Fisheries and Aquatic Science

Ecological Applications

Ecological Monographs

Ecology

Environmental Management

Environmental Monitoring and Assessment

Freshwater Biology

Hydrobiologia

Internationale Revue der Gesamten Hydrobiologie

Journal of Environmental Management

Journal of Fish Biology

Journal of Freshwater Ecology

Journal of the North American Benthological Society

(Australian Journal of) Marine and Freshwater Research

New Zealand Journal of Marine and Freshwater Research

Regulated Rivers

Transactions of the American Fisheries Society

(Downes et al. 1993). River ecologists have been fixated with ‘sites’ or

locations at the expense of articulating how these correspond with the

spatial scales that the target organisms move over during the course of

their life history (Downes & Keough 1998). The spatial scale of the

sampling program, therefore, needs to take account of serial correla-

tions among sampling locations. If such correlations are evident, then

sampling locations either need to be selected so that independence is

ensured, or the sampling design needs to bemodified so that the correla-

tion structure can be modelled appropriately (Conquest 1993).

6.2.2 Variation in time

In addition to any seasonal changes in flow, rivers are also subject to

stochastic floods and droughts that can have substantial and persistent

effects on the biota (e.g. Boulton & Lake 1992a,b). The pattern of high and
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low flows can vary considerably even within fairly small geographic

regions (e.g. Hughes 1987; Hughes & James 1989), and flow events inter-

act with the type of substrate, the thermal and nutrient regimes, and the

heterogeneity of the habitat to influence the sequence of subsequent

recolonization events (Biggs 1995; Poff & Ward 1990b; Yount & Niemi

1990). Antecedent flow events can and do affect the populations and the

community composition of biotic variables in monitoring and assess-

ment studies (e.g. Gibbs & Penny 1973;McElravy et al. 1989; Pearson 1984;

Toshach 1977; Winterbourn & Stark 1978). However, obtaining sampling

sequences that are both sufficiently long and frequent to be able to

account for such natural variation is problematic.

In fresh waters, monitoring and assessment studies using biotic

variables have tended to be shorter in running waters than in standing

waters (Resh & McElravy 1993; Resh & Rosenberg 1989), although McEl-

ravy (summarized by Resh &McElravy 1993) noted that the proportion of

published lotic studies lasting longer than one year increased from 20%

for the period 1980–84 to 56% over the period 1985–87. Nevertheless, of

the 48 quantitative studies from rivers and streams compiled by Voshell

et al. (1989) one-third of the lotic studies involved a single sampling event

and only 11% spanned two years or more. Resh &McElravy (1993) did not

comment on the number of studies with pre-impact baseline data.

Thomson & Downes (see Box 6.1) found only 17 out of 140 studies

(or � 12%) had any data collected before impacts occurred. This almost

certainly reflects the preoccupation of many managers and researchers

with existing impacts, but may indicate also that the necessity of collect-

ing such data for strong inferences is not broadly understood (we con-

sider this problem specifically in chapter 9).Where there have been some

attempts to collect pre-impact data, the length of time before the impact

is usually limited. In major studies of two large dams in Victoria, Austra-

lia, for example, the pre-impact sampling coincided with dam construc-

tion (Blyth et al. 1984; Davey et al. 1987; Marchant 1988; West et al. 1984).

In the case of the Mitta Mitta River, subsequent investigation of the

impacts of cold, hypolimnetic irrigation releases of water had to rely on

spatial controls in a tributary and interpretation of the nature of the

fauna that was found downstream prior to the sediment inputs from

construction (Doeg 1984). There are some recent examples of high-

profile, large projects where some pre-impact data have been collected,

but often physicochemical data have been collected for longer periods of

time and more frequently than biological data. For example, Smith &

Morris (1992) noted that only one ‘expeditionary fish sampling’ was

undertaken prior to the development of the Ok Tedi gold and copper
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deposit at Mount Fuliban, Papua New Guinea, whereas the documenta-

tion of ‘pre-operational chemistry of waters, soils and sediments in the

region’ was ‘comprehensive’.

The lack of sufficiently long sequences of pre-impact data for

biological variables probably has several causes. Political and institu-

tional issues obviously have a prominent role, especially if the project

has a high profile and is being ‘fast-tracked’. These issues are not entirely

limited to political expediency, and are discussedmore fully later in this

chapter. We have already noted, from the history sketched earlier in this

chapter, that many published studies concern impacts that already

exist. We note, however, that there are some recent examples of studies

directed at detecting recovery of severely impacted rivers and streams,

but still the frequency of sampling is often limited to that permissible

within the ambit of a PhD project (Likens 1984).

Some data have been collected just to establish baselines (e.g.

Bennison et al. 1989; McCarthy et al. 1997; Tubbing et al. 1994), but few of

these investigations find their way into the refereed literature. The aims

of such investigations include detection of trends and documentation of

‘background variation’ so that unspecified future impacts might be

detected. Sometimes, where such data have been collected, the design of

a sensible monitoring program has been feasible. For example, Resh and

co-workers collected seven years of baseline data on benthic inverte-

brates from Big Sulphur Creek, Sonoma County, California (Resh et al.

1988), a stream likely to be affected by future geothermal development.

Sampling was restricted to the end of the wet season, and the chosen

variables regressed against antecedent rainfall to account for variations

due to flow events. This information was then used in a sequential

sampling design (Resh & Price 1984) to provide a cost-effective sample

processing strategy that required processing many fewer sample units

than suggested by conventional analyses of sampling precision (cf. Chut-

ter 1972; Chutter & Noble 1966).

Nevertheless, some data have been collected over multiple time

intervals, but have often been analysed inappropriately. In an extensive

review of studies of aquatic insects, Resh & Rosenberg (1989) found that

many authors ignored variation amongst times or locations by averag-

ing data across quite different events or combinations of location types

and events. They entered a plea for both sampling at multiple scales and

the use of appropriate analyses.

However, we still have a poor understanding of temporal scales of

variation for many biological variables. Apart from the logistic con-

straints of maintaining long-term programs with sufficient flexibility to
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take advantage of high and low flow events, ecologists have lacked a

coherent framework for designing such sampling programs in the first

place (Poff 1992; Poff &Ward 1990a,b). As for serial correlations in space,

serial correlations in time (temporal autocorrelation) also present prob-

lems in applying conventional statistical analyses relying on indepen-

dence between times (Millard et al. 1985). Those dealing with

physicochemical and hydraulic variables, however, have better appreci-

ated these problems than riverine biologists, albeit relatively recently

(Loftis et al. 1991). However, as Loftis et al. (1991) emphasize, serial

correlation depends on the scale of the observations and the questions

being asked, and pre-existing ‘routine’ water-quality data sets are often

poorly designed relative to the questionsmanagers and the public ask of

them.

Finally, a conceptual problem arises even when we do have long-

term data that encompass large natural perturbations such as droughts

and floods. The effects of such natural (but infrequent) events can result

in massive changes to the variables being measured (Boulton & Lake

1992a,b; Boulton et al. 1991, 1992; Hall et al. 1978). If an anthropogenic

agent produced changes that were inside the envelope of such natural

changes, should it still be regarded as an impact? The answer to this

question is not straightforward and will depend on the relative fre-

quency of the anthropogenic perturbation and the value judgements

inherent in how the monitoring and assessment questions are framed.

6.2.3 Logistic and technical issues

The majority of the space allocated in general manuals about sampling

procedures is for smaller, ‘wadeable’ rivers (e.g. Hellawell 1978, 1986;

Rosenberg & Resh 1996). Even within this class of river type, there has

been further concentration on tractable habitats consisting of riffles,

runs and pools for both benthic plants and animals, and fish. Alterna-

tively, large rivers and a number of other habitats, such as logs and

macrophyte beds, can pose substantial difficulties in reliable sampling.

Large rivers present a variety of logistic and technical problems for

sampling the biota. In deep, swiftly flowing rivers, it is difficult or

impossible to set nets to catch fish in the mainstream (e.g. Smith &

Morris 1992), and dangerous to operate benthic equipment by scuba.

Such rivers may even flow too strongly to deploy surface-operated equip-

ment such as benthic grabs and air-lift samplers. Slow-moving large

rivers seem, initially, to be safer. Many, however, are highly turbid,

making scuba operations difficult. In tropical areas, the added risks from
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large, semi-aquatic vertebrates such as hippopotamus and crocodiles

provide an additional frisson when operating nets, diving or using small

boats. Under such circumstances the majority of the habitats in the

reach, in areal terms, may not be available for sampling. Only some of

these problems are likely to be overcome by ingenious new sampling

methods.

The fine substratum of some large rivers is often all but devoid of

attached benthic algae andmacroinvertebrates, with the flora and fauna

being concentrated in accumulations of woody debris and littoral beds

of macrophytes. Woody debris has long been known to be an important

habitat for fish, providing shelter, food and, for some species, a spawn-

ing location. However, it can be difficult to sample fish in such intricate

habitats: nets and traps can become snagged, the fish are hard to see

while electrofishing, and even the use of poisons is problematic if the

debris is dense enough to trap and hide the fish from observers. Macroin-

vertebrates and algae also make extensive use of woody debris, but

consistent non-destructive sampling of this habitat is problematic (De-

long et al. 1993). Artificial substrates have often been promoted as alter-

native samplingmethods when habitats are either too difficult to access

or too complex to quantify using active techniques (Biggs 1988; Flanna-

gan & Rosenberg 1982; Hall 1982). Most of this literature has focused on

the representativeness or relative cost-effectiveness of artificial substra-

tes in collecting either benthic algae or macroinvertebrates (Cattaneo &

Amireault 1992; Goldsborough & Hickman 1991; Mason et al. 1973;

Reynolds & Hunter 1985).

Although methods for mapping vascular macrophytes are now

well developed, there is less consensus on methods suitable for the flora

and fauna that live on or amongst them (Aloi 1990; Morin & Cattaneo

1992). Although ingenious methods have been employed to quantify the

surface area of plants of different shapes, it is unclear whether all of the

species that might use the surface of a plant respond to this area in the

same way (Downing 1986; Lillie & Budd 1992). Moreover, the abundance

of some of the rapidly moving nektonic species is likely to be under-

estimated by most of the techniques currently used.

Finally, some major projects, such as mines and large hydroelec-

tric dams, are located in remote areas, which results in limited oppor-

tunities for the collection of baseline data prior to the construction

phase of the project. Recent examples are the Ok Tedi gold and copper

mine in Papua New Guinea and hydroelectric proposals for southwest

Tasmania.
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6.3 problems arising from the types of

variables used

6.3.1 Variation and imprecision

The necessity for statistical comparisons in benthic studies was tem-

pered by early investigations that emphasized the variability inherent in

sampling stream fauna and flora. Needham & Usinger (1956) and Chut-

ter (Chutter 1972; Chutter & Noble 1966) for example noted that a

prohibitively large number of square-foot Sürber sample units was

necessary to bring estimates of benthic invertebrate abundance to with-

in � 20% of the mean, and this observation was reiterated by Elliott’s

(1977) frequently cited handbook on statistics for freshwater benthic

biologists. Hellawell (1977, 1978, 1986) further emphasized the prohibi-

tive sample sizes necessary to achieve population estimates of � 10% of

the mean. On these grounds he opined that ‘[f]ully quantitative surveys

are very demanding in terms of time and resources, but they are nor-

mally neither necessary nor practicable for the conventional routine

methods used for assessing environmental quality’ (Hellawell 1986,

pp. 421–2). These influential authors focused on the precision of sampling

(e.g. Winterbourn 1985) rather than addressing issues about the power of

an analysis to detect a given difference (Allan 1984). This undoubtedly

led to some confusion, and few studies that have involved statistical

comparisons seem to have considered the issue of power explicitly.

All else being equal, a variable that can be measured with high

precision is likely to be more useful than one requiring very high sample

sizes to gain similar levels of precision. High precision results from low

standard errors about means, which yield smaller confidence intervals;

thus a given difference between control and impact locations is more

likely to be detected. Commonly, highly variable data are attributed to

streams being ‘complex’ or ‘heterogeneous’, but there is no reason why

streams and rivers should be inherently more variable than other sorts

of environments. It is more likely that the reason for highly variable

samples is that the size of common invertebrate samplers (usually close

to 0.1m2 or 1 square foot) is often badly mismatched with the grain over

whichmany invertebrate species are dispersed (Downes& Keough 1998).

Mismatches between equipment and organisms are common sour-

ces of measurement error (see section 2.3 and Schneider (1994) for a

general discussion). Organisms are often aggregated spatially and if sizes

of aggregations are of the same order as that of sampling quadrats, or if

few quadrats are collected relative to the number of aggregations
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through the sampling location (Andrew & Mapstone 1987; Morin 1985),

then problems arise. In this situation, most values will be either zeros or

high numbers, resulting in mean abundance estimates with high vari-

ance and very low precision; that is, we will have very low confidence

that the sample mean is close to the actual population mean (see

Andrew & Mapstone 1987 for a comprehensive discussion). The same

problem can occur temporally. If organisms are muchmore abundant at

some times than at others, and if the time over which samples are

collected is of the same order of magnitude as these fluctuations, or if

samples are collected relatively infrequently, then some sampling times

will produce zeros and others high abundances, resulting, again, in high

variance and very low precision.

High variance of variables can also result when sampling pro-

grams are mismatched with the spatial and temporal scales over which

the impacts themselves occur (e.g. Underwood 1994a). For example,

Mackay & Mackay (1996) found that the distribution of acid-volatile

sulphides varied enormously over small spatial scales, with these spatial

patterns shifting seasonally. Sampling at the wrong scales would pro-

duce imprecise and possibly misleading estimates of the degree of im-

pact. The same difficulties occur with temporal variability as

exemplified by Brewin et al. (1996), who found that water samples from

acid-sensitive streams with intermediate values of pH had the highest

variance. Sampling had to be more frequent at those times of the year

when impacts were least and pH values were less extreme. Unfortunate-

ly, obtaining good representation across multiple spatial and temporal

scales is costly and rarely achieved (Wiley et al. 1997).

6.3.2 Physicochemical variables as surrogates for biological

variables

Physicochemical variables have a long history of use in monitoring and

assessment of rivers and streams. As with biological variables, there has

been some confusion about subsampling, sample precision and power to

detect an effect. Physicochemical variables are often perceived as being

cheaper than biological variables to collect, which has resulted in larger

and longer runs of data frommany rivers. However, the value ofmany of

these data sets is questionable because, often, they have still not been

collected sufficiently frequently to answer the questions ofmost interest

to water managers or the public.

Many chemicals exist in a number of different states, not all of

which are biologically active. In addition, there may be considerable
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interchange between labile and inactive forms resulting in a prohibitive-

ly large list of compounds that need to be measured (Chapman 1996). As

a result, some chemical variables can become very expensive and time-

consuming to measure (e.g. pesticide residues). This can lead to too few

true replicates being collected. Alternatively, less expensive, surrogate

or summary variables (discussed in chapter 10) are measured instead,

with attendant risks of either over- or underestimating the concentra-

tion of the chemical of concern.

For long-run data sets, additional problems include changes in

analytical procedures and poorly defined monitoring questions that

lead to data being collected at inappropriate frequencies. As for biologi-

cal variables, the fluctuations in flow (including floods and droughts)

result in large changes in concentration of most chemical components.

Although the invention of automatic water samplers has enabled the

use of event-related sampling protocols, the intensity of sampling re-

quired to characterize, for example, water quality during a single flood

event can be prohibitively expensive. Additionally, because some

physicochemical variables can be collected at high frequencies, serial

correlation in the data may be problematic, depending on the question

being addressed (Loftis et al. 1991). A further problem is that biological

responses may occur over quite different temporal scales to the fluctu-

ations detected in physicochemical variables so that the two are not

statistically correlated – for example, chemicals (e.g. heavy metals) that

accumulate only slowly in tissues before causing effects.

6.3.3 Univariate biological variables

Variability in variables measured on individuals (e.g. enzyme concentra-

tions) or on populations have always posed well-recognized problems for

biologists, although as we have seen they have sometimes focused on

sampling precision at the expense of other important aspects of the

design of their experiments or surveys.

For variables measured on individuals, one of the chief difficulties

is in interpreting how important sub-lethal changes inside an animal or

plant are to the population dynamics or community structure of the

river in which the organism lives. In addition, innate variability both

between individuals and in changes in exposure pathways in different

ecosystems means that sometimes species respond differently in differ-

ent habitats or locations; consequently, it is possible for there to be

poor correlations between concentration of the pollutant and effects

on indicator or sentinel species (e.g. Bervoets et al. 1997; Buikema &
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Voshell 1993; Johnson et al. 1993; Plénet 1995; Weatherley et al. 1997).

Of population variables, large vertebrates such as fish have often

been targeted because of their obvious appeal to the public. Although

the disappearance of an abundant fish species from a reach or the

occurrence of fish kills can indicate serious impacts on a river, the use of

less dramatic changes in the population densities of fish or assemblage

structure to detect more subtle impacts can be difficult. The high

amount of year-to-year variation in fish population sizes is often unre-

lated even to obvious variables, and it is difficult, therefore, to detect

anthropogenic disturbances by population or assemblage structure data

alone (Grossman et al. 1990). In addition, there may be spatial variation

within a catchment. Schlosser (1990), for example, noted that upstream

fish assemblages in mid-western USA were more variable in their struc-

ture than those in downstream reaches; he also felt that the upstream

assemblages recovered from perturbations more quickly than those

downstream.

Another difficulty with using populations, which can be exempli-

fied by the studies of fish, occurs when assumptions are made about

what limits the distribution of organisms in nature. In some studies, it is

assumed not only that the physical environment per se determines

distribution and abundance, but that the mechanism behind this is

‘preferences’ by the organisms for ‘optimal’ conditions. Use of the term

‘preference’ means that, given an equal choice of locations, organisms

will choose to inhabit particular sorts of places (Johnson 1980). Such

results can be established only through the use of manipulative experi-

ments. Preferences for particular habitats cannot be inferred from samp-

ling data, which reflect the synchronous effects of multiple variables.

Nevertheless, sampling data are sometimes used to infer ‘preferences’ of

organisms like fish for particular habitats, as quantified by variables like

water velocities and depths. These supposed ‘preferences’ are then used

to predict the amount of ‘optimal’ habitat available under changed

conditions, such as altered discharge regimes caused bywater extraction

(Petts & Maddock 1994). If such modelling exercises work (i.e. they

successfully predict the abundance and/or location of fish in new situ-

ations) then use of the term ‘preference’ is mainly a semantic problem.

Another term could be used without affecting the model. However,

belief that sampling data really indicate something about preferences

can be misleading because it suggests that organisms will inevitably be

found in similar sorts of locations under different environmental condi-

tions or at other times, neither of which is likely to be true. Belief that

distributional limits reflect ‘preferences’ by organisms for ‘optimal’
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environments often results from a rather naı̈ve understanding of natu-

ral selection, and is one of a group of popular myths about nature

(Fairweather 1993).

Benthic invertebrates and plants are, like fish, highly variable in

abundance in time and space. However, long-term quantitative studies

of these organisms are surprisingly few, and where studies have been

carried on for long enough and addressed clear questions (e.g. Resh et al.

1988), the outcomes have been much more tractable than suggested by

the gloomy predictions of some reviewers (Hellawell 1986).

There are, however, some disadvantages to using the smaller ben-

thic species. Apart from northern Europe, western Russia and the

eastern part of North America, the taxonomy of benthic invertebrates

and algae is much poorer and has been an impediment to the use of

these organisms (Arthington et al. 1982). As a result, the background

natural history of benthic species is less well known, as are the presumed

tolerances of these taxa to various environmental insults. An added

difficulty is that often these organisms are being pressed into service as

environmental monitors in rivers already subject to a variety of impacts

where there are no appropriate spatial controls. The poor stratigraphy of

river sediments also militates against routine use of palaeolimnological

information from subfossil remains to infer historical changes.

Importantly, however, the relationships between the densities of

benthic organisms and public perceptions of environmental quality

(however that is defined) are unclear, at least in the public mind. Al-

though recent appeals to conserve biodiversity for its own sake are

laudable, it is doubtful that managers and the public will be as worried

about a change from one species of diatom to another congener as they

would be about a similar change in the species composition of fish

assemblages. Thus far, ecologists have been focused on documenting

changes in patterns of species density and assemblage structure without

expendingmuch effort in documenting how these changes affect ecosys-

tem functioning (Hynes 1994). Conversely, many of the summary vari-

ables of ecosystem function or community metabolism may not change

substantially while masking quite large alterations to the densities and

structure of the constituent populations (Schindler 1990).

At higher levels of organization, alterations to the community in

species richness, species diversity or biotic composition are used to

detect a variety of impacts. The earliest forms of these were measures

(sometimes called ‘indices’ or ‘metrics’) where scores were assigned to

taxa so as to represent their respective tolerances to organic pollution

(Wilhm 1975). There are now many varieties of such indices or metrics,
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some of which are ratios of one or more taxonomic groups to others as a

measure of pollution (Cairns & Pratt 1993; Metcalfe 1989; Metcalfe-

Smith 1994). Many indices or metrics are only useful in the regions in

which they were developed, do not provide useful information on other

sorts of pollution (such as heavy metals) or other sorts of human im-

pacts, and are problematic in that scores are often assigned rather

subjectively (Metcalfe-Smith 1994). Indices and metrics have also been

criticized because they provide conflicting or erroneous results and lack

sensitivity (e.g. Abel 1989). Nevertheless, because of the rapidity with

which locations can be assessed, metrics remain an actively researched

approach (Chessman 1995; Growns et al. 1995; Karr 1981, 1991; Kerans &

Karr 1994). Other measures of community structure include species

richness and the many varieties of diversity indices (Magurran 1988;

Washington 1984). Species richness is simplistic in that it takes no

account of relative abundances of different species, and diversity indi-

ces, while able to capture some shifts in relative abundances, present

some problems for statistical tests (e.g. Green 1979; Norris & Georges

1993).

6.3.4 Multivariate response variables

To circumvent the loss of information inherent in univariate summaries

of community structure, it has become more common to use measures

of community or assemblage similarity to measure the resemblance of

locations. The advantage is that huge location-by-species matrices,

which provide the abundances of all species at all locations, can be

simplified into triangular matrices of pairwise similarities, which can

then be subjected to ordination or clustering techniques to summarize

these data into low-dimensional displays. The researcher then searches

for patterns in these displays that are consistent with hypothesized

human impacts at some locations. This development has been concur-

rent with several reviewers’ recent attempts to draw attention to im-

provements in conventional statistical designs (Allan 1984; Green 1979;

Resh 1994; Resh & McElravy 1993). There has been much activity in

applyingmultivariate pattern analyses for displaying biotic changes (see

discussion in section 4.10). The use of clustering and ordination pro-

cedures was partly a reaction to the uncritical application of biotic and

diversity indices, partly due to a perception about the high variability of

stream biota (and hence, implicit low power of conventional analyses),

and partly due to the promotion of these techniques as a means of

displaying complex, multi-species data (Green 1979).
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There have been several drawbacks to the use of these techniques.

The first was the plethora of similarity measures and transformations

that could potentially be applied. Little real guidance was given by

handbooks (Hellawell 1978, 1986; Southwood 1978), and the necessary

research to establish which measures yield realistic responses has only

been completed relatively recently (Faith et al. 1987; Legendre & Leg-

endre 1998). However, the use of inappropriate similarity measures

persists because of the popularity of packages based on correspondence

analysis and reciprocal averaging, where the similarity measure em-

ployed is hidden from the user by virtue of the implicit nature of the way

these techniqueswork. Much has beenwritten about the distortions that

result from using these popular procedures (Minchin 1987; Tausch et al.

1995; Wartenberg et al. 1987).

The second drawback is that many of these techniques do not

usually provide a formal hypothesis-test, although some authors opine

that inspecting such displays is inherently a more conservative pro-

cedure than formal hypothesis-testing (e.g. Green 1979). Some re-

searchers have compared the relative use of different sorts of

community-level variables (e.g. Cao et al. 1996; Coimbra et al. 1996), but

this has also sometimes been carried out without the use of objective

tests. To be fair, many have used these techniques in ‘post-impact impact

analyses’, not to test hypotheses formally butmore to display data and to

generate hypotheses about which species might be included in a future

sampling program based on either univariate ormultivariate analyses of

variance.

Nevertheless, hypothesis-tests have been proposed for comparing

similaritymatrices (e.g. Mantel’s tests; Manly 1985), clustering (e.g. Sand-

land & Young 1979) and ordination techniques (e.g. Pielou 1984). There

has also been a recent trend to employ randomization tests that have

similarities to familiar univariate techniques such as ANOVA (Clarke

1993). However, these techniques have rarely been used. Partly this may

be due to their absence from the popular multivariate analytical pack-

ages, and partly because these techniques rarely extend to the more

complex survey designs necessary for many studies, although this is

slowly improving (e.g. Anderson & Gribble 1998). More importantly, it is

difficult to specify what an effect size means in terms of a change in the

value of a measure of community similarity, although Faith et al. (1991)

have made an attempt in one experimental study.

The final drawback to the use of these multivariate techniques

concerns our lack of knowledge about the appropriate models of species’

responses to environmental gradients and consequently what a change
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in amultivariatemeasure means ecologically. Even the so-called ‘robust’

techniques assume unimodal, approximately normal responses (Min-

chin 1987), but there is little empirical evidence for or against this

assumption for riverine flora and fauna, or even for terrestrial vegeta-

tion, which has been used as the paradigm for developingmany of these

techniques (Austin 1980, 1987). In addition even ‘robust’ ordination

techniques have difficulty in recovering patterns produced by two gradi-

ents where the strength of influence of one of the gradients is not

uniform over the entire range of values of the other gradient (Minchin

1987). This seems to be a multivariate equivalent of an interaction effect

in ANOVA, and would, we presume, be likely for some combinations of

environmental variables in rivers and streams. It appears, therefore, that

there is some distance to cover before explicit formulations of hypoth-

esis-tests can be framed unambiguously for some forms of multivariate

analyses, although some progress is being made (Anderson & Gribble

1998; Legendre & Anderson 1999; see section 4.10).

6.4 social , institutional and political issues

A key problem underlying many monitoring and impact assessment

studies is the vagueness of the questions posed. Rosenberg et al. (1981)

noted this flaw nearly 20 years ago, and the problem persists (Cairns &

Pratt 1993; Cairns & Smith 1994; Cullen 1990a; Phillips & Rainbow 1993).

Public ignorance about the nature of ecological (and hence freshwater

variables) is one of these causes, and Fairweather (1993) provides a useful

introduction to the mismatch between public expectations, legal frame-

works and scientific issues. Rather than pretend to be anything other

than armchair ecosociologists, we seek here to examine those domains

of public discussion where scientists have had a role in setting the

research,monitoring or assessment agenda, and ask why themanagerial

and administrative structures have continued to exclude clear, quantifi-

able and unambiguous questions.

6.4.1 Difficulties caused by different backgrounds

Inappropriate views about how ecosystems operate have lead to unrealis-

tic expectations about notions such as ‘a balance of nature’ and ‘optimal-

ity’, and ecologists themselves have contributed to public confusion on

these issues (Peters 1991; Rapport 1991, 1993). At worst this confusion

results in untestable hypotheses being foisted upon managers and the

public (Fairweather 1993). In the last two decades, ecologists have tended

158 Problems in applying designs



Table 6.1. Parodies of the interests of professionals involved in managing

freshwater resources

Engineers don’t care why it works as long as they think it does

Scientists don’t care if it works or not as long as they understand why

Economists don’t care either way if the internal rate of return is OK

Managers don’t know unless someone bothers to tell them

Planners know how it should have turned out

Source: Cullen (1990b).

to move away from using ideas about equilibria or balance to describe

ecosystems, and have emphasized the importance of natural perturba-

tions and the consideration of scale in measuring and manipulating

ecological phenomena (see chapter 2). Unfortunately, ecologists are

divided about how to translate these measures into operational criteria

that might be useful to applied environmental scientists.

In the meantime, the public has demanded better environmental

management, and legislators and managers have had to respond, often

by using outdated notions about how ecosystemsmight work to provide

the framework for laws and regulations. This has culminated in legislat-

ive frameworks and government directives that are often vague (Gilpin

1995; Glasson et al. 1994). As a result, the interplay between science and

management has proved a fertile ground for mutual misunderstanding

of each others’ disciplines in terms of objectives, roles and outputs,

which Cullen (1990b) summarizes and comments on. He parodied the

different cultures amongst professionals involved in fresh waters (Table

6.1), and made the serious point that scientists need to understand

managerial and public agendas if appropriate questions are to be

framed (see also chapter 3). Sometimes this will mean forsaking detailed

mechanistic understanding of processes in favour of purely empirical

approaches. As an example of this, he cited the success of the OECD–

Vollenweider models as a tool for managing eutrophication in lakes in

Europe and North America (an argument further developed by Peters

(1991), who also used this example). However, Cullen (1990b) does em-

phasize that management-oriented questions can be addressed in a

Popperian scientific framework, and argues that ignorance of the appro-

priate spatial and temporal scales has limited the utility of scientific

studies to water management so far.

Other commentators on the frequently poor relationship between

water managers and scientists have blamed the overemphasis on physi-
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cal, chemical and microbiological measurements at the expense of bio-

logical variables (e.g. Hynes 1960). That these physicochemical and

microbiological variables receive so much attention is understandable

given the public and political pressure for inexpensive, potable water.

However, ensuring that water meets a guideline or standard for human

use does not guarantee that the river itself meets with public and

scientific conceptions of a ‘healthy’ ecosystem, and regulatory policies

often distinguish between a variety of human uses for water as distinct

from some form of ‘ecosystem protection’ (e.g. ANZECC & ARMCANZ

2001). Herein lies a central cause of the vagueness of the questions posed

by so many assessment or monitoring studies: how do we define, oper-

ationally, a ‘healthy’ or ‘intact’ or ‘high quality’ riverine ecosystem

(Suter 1993a; and see Box 3.1 on ecosystem health)? As we have seen,

attempts have been made to measure whether the locations of interest

have deviated from some reference or control condition. However, this

still does not circumvent the vexed issue of defining the magnitude of

the change that needs to be detected (see chapter 11). The conceptual

basis of defining and measuring environmental ‘condition’ using cri-

teria that take into account values other than mere potability is a

confusing area in which value judgements inherent in the scientific

concepts being used also play a role (Cullen 1990b; and chapter 11).

The limitations of the ecological knowledge of politicians, activ-

ists, managers and engineers aside, aquatic ecologists and chemists need

to accept some responsibility for the poorly focused questions that

continue to be asked. Water scientists have tended to focus on ways of

measuring things rather than asking what is being measured and for

what purpose. As in any human endeavour, fashion plays a dubious role.

For example, the preoccupation by ecologists with fairly flimsy analogies

between diversity, stability and systems theory during the 1960s and

early 1970s resulted in a plethora of diversity indices and measures of

community similarity. Little regard was paid to what, if anything, these

indices actually measured; instead these measures were treated as

‘magic bullets’ by scientists and managers alike (Washington 1984).

These practices did little to inform lay readers about how, exactly, a

location or system had changed relative to some notional control condi-

tion. The mania for documenting patterns and generating indices con-

tinues, albeit in a multivariate guise, and led Hynes (1994) to observe

that biological monitoring has not really advanced our knowledge or

understanding of the ecological processes involved much beyond that

apparent by the 1950s.

The way that biological water scientists have been educated about
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their craft has also contributed to the institutional resistance to imple-

menting good, statistically defensible designs. Concomitant with the

elaboration of ingenious indices and multivariate techniques was a

curious imbalance in the way ecologists were instructed to collect data

on multi-species assemblages or communities. Examination of many of

the influential handbooks and reviews for aquatic studies reveals much

detail about sample precision and the problems with contagious dis-

tributions for estimates of univariate variables, but little guidance about

adequate sampling designs for measures of diversity, evenness or com-

munity similarity (Cassie 1971; Elliott 1977). Furthermore several promi-

nent texts devoted more space to reviews of indices and sampling

devices than to all of the aspects of the logic of survey design combined

(e.g. Hellawell 1978, 1986). Indeed, some respected authorities seem to

actively discourage the use of formal statistical methods (e.g. Hynes

1994). There have been some notable attempts to inform freshwater

ecologists about methods and approaches that are available for dealing

with some of the problems inherent in using biological variables in

running waters (Allan 1984; Hall et al. 1978; Resh 1979; Resh et al. 1988),

but researchers or their funding agencies have been slow to adopt their

recommendations.

This inertia against adopting more modern approaches to study

design is not unique to biologists. Physicochemical monitoring shares

similar problems, where the frequency and timing of water sampling

tends to follow precedents rather than be geared to the temporal or

spatial scales of interest to managers (Loftis et al. 1991). Improvements in

the value of both physicochemical and biological variables to monitor-

ing and assessment will rely as much on asking better questions, which

take the relevant scales of variation in time and space into account, as it

will on novel chemical analyses or analytical techniques.

6.4.2 Insufficient lead time for pre-impact monitoring

Monitoring for extended periods of time prior to the commencement of

a putative impact is rare. This is often exacerbated by the fact that many

impacts are ongoing press disturbances that began decades before any-

one bothered to start anymonitoring or assessment. Even for new, large,

discrete developments, few countries legally require comprehensive

monitoring prior to construction (Gilpin 1995; Glasson et al. 1994). The

situation is probably worse for less obvious, dispersed perturbations

such as changes in land use. Those data collected under environmental

impact assessment (EIA)-type legislation are often of such short duration
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and of such hopelessly poor quality that the possibility of either detect-

ing or quantifying impacts if they occur is precluded (e.g. Fairweather

1989; Rosenberg et al. 1981; Warnken & Buckley 1998). Consequently, we

are often likely to lack the data needed to manage evenmodern impacts

on the environment properly.

6.5 important issues

• There have been several issues that have prevented river biologists

from implementing designs with the strongest possible inferen-

tial base, as identified in chapter 5. Some of these issues have been

within the control of biologists, and some are external constraints

imposed either by the geographical peculiarities of the river under

study, or by socioeconomic factors.

• Of those issues within the control of biologists, themost prevalent

have been:
� inadequate spatial and temporal controls
� poor definition of the spatial extent of sampling locations

� confusion between sampling precision and the power of a

design
� confusion about the choice of variables to be used.

• These can be addressed, in part, by recalling the goals of strong

designs (chapter 5), choosing suites of variables carefully (chapters

9 and 10), and applying analytical models (chapter 7) appropriately

(chapter 8). Nevertheless, there are still some issues, of which

spatial and temporal autocorrelations are examples, that remain

poorly investigated for variables commonly used in riverine stu-

dies.

• Of the external geographical constraints, large rivers pose the

most intractable problems because of the limited opportunities

for appropriate controls. Such rivers usually also have the longest

history of human activity and are subject to multiple perturba-

tions, making it difficult to identify impacts unambiguously. In

remote areas, there are additional logistic problems with often

little or no baseline information to aid in study design.

• The socioeconomic factors which have hampered good study de-

sign include:

� a mismatch between public expectations, legal frameworks and

scientific issues
� poor definition of assessment and monitoring questions
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� insufficient lead times before the disturbance takes place.

• Scientists themselves have contributed to the vagueness of the

questions posed by assessment studies, and there is often con-

fusion between the types of monitoring and assessment questions

(clarified in chapter 3). While funding constraints are always likely

to hamper good design and implementation, we hope that the

advice proffered in chapters 7–13 provides a framework for more

effective assessment and monitoring studies.
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7

Alternative models for impact assessment

In chapter 5, we developed a logical framework for assessing impacts,

including the necessity for control or reference areas, and for sampling

to occur before and after the putative impact. In this chapter, we con-

sider practical details of the monitoring, focusing on the formal design

and statistical analysis appropriate to the detection of impacts, and on

the practical details associated with executing these designs in running

waters. It is important to realize that we can only translate general

design principles into a specific plan to collect data if we specify the

statistical model that is to be fitted to the data. Perhaps the most

importantmessage of this chapter is that apparently similar monitoring

‘questions’ can have quite different statistical models behind them.

These different models, in turn, can lead to quite different advice about

how to optimize a particular data collection program.

If we consider the twomajor tasks outlined earlier, the formal test

for the existence of an unacceptable impact and the characterization of

the spatial extent of any impact, the latter procedure is relatively

straightforward in terms of the design and underlying statistical

models. The detailed design is modified by practical considerations

associated with stream environments, and the characteristics of the

activity suspected of having an impact.

In contrast, there is a range of design options for detecting an

impact. These designs appear to be broadly similar to each other, but

have been the subject of considerable dispute (see for example, Schmitt

& Osenberg 1996, in particular the chapters by Stewart-Oaten 1996a,b,

Underwood 1996 and Stewart-Oaten & Bence 2001). These different

approaches reflect important and substantial underlying logical dif-

ferences in the view of ecological impacts and, more importantly from a

practical perspective, improving the power of each of these designs

requires different measures. A change in resources that improves the

power of one design will not necessarily help with an alternative design.
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These conceptual models are all justifiable approaches to the detection

of impacts under particular circumstances, but it is essential that anyone

implementing one of these designs be aware of the differences between

them, and of the important characteristics of each of them.

Below, we describe the background of each approach, the formal

question (or conceptual model) being used in each case, the statistical

models that are fitted to the data, and the steps that should be taken to

increase power in each case. One of the models was derived and recom-

mended by two of the authors of this book (Keough & Mapstone 1995,

1997), so our final recommendation should be considered with that in

mind, and we encourage readers to consult the references listed earlier

in this chapter, for alternatives.We also describe only the most common

formulations of each approach. Environmental data are often messy,

and testing for impacts requires flexibility in approaches, to deal with

data that may show unusual natural fluctuations and with impacts that

may take on forms other than a discrete change through time. The need

for flexibility has been emphasized by many authors who have written

on the subject, including each of the major approaches described below

(Keough & Mapstone 1995; Stewart-Oaten & Bence 2001; Underwood

1996), and a more detailed advocacy of such flexibility is provided by

Hilborn & Mangel (1997).

In the formal discussion of models, we use some conventions for

terminology, because descriptions of components of space and time are

used quite variably in the existing literature. We assume that the time is

divided into two major Periods, Before and After. Within these periods

are Times, which can themselves be decomposed into intervals at differ-

ent temporal scales, such as years, seasons etc. Larger spatial areas are

divided into two major groups, to indicate impacts, Control and Impact.

Within each of these groups are Locations, which are larger spatial units
that may be different areas in which the same kind of human activity

occurs (i.e. true replicates of the impact), or independent areas that serve

as comparison to impacted areas (i.e. replicate Controls). These areas are

presumed to vary independently of each other. Within each Location,

there may be subsampling. We refer only to Sites, to encompass a range

of spatial units within Locations, and, as for time, Locations may be

subdivided in a wide range of ways. The scales on which Times and

Locations occur will be determined by a combination of the kind of

human activity and its expected area of influence (e.g. a mixing zone for

discharge of effluents), the scale on which management decisions are to

be made, and the characteristics of the biota (their mobility, dispersal

etc.).
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7.1 background of approaches

We have identified four major approaches to the design of impact

sampling programs (see Table 7.1). They arose out of vigorous debate

about appropriate sampling programs, largely in marine environments.

In describing these designs, we follow a sequence of increasing complex-

ity, with the result that they are not presented in any chronological

order.

7.1.1 BACI

In early discussions of impact monitoring (see Green 1979), samples

were taken at single Impact and Control locations, and once Before and

After a particular human activity started. The relative states of Impact

and Control were compared between these two time periods (i.e. the

interaction between Before and After, and Control and Impact, hence

BACI). There was no replication in time or space at the appropriate scale;

any apparent replicates served only to estimate the variation within a

location or time, rather than as measures of the variation among repeat-

ed Control or Impact locations, or at other times. As discussed in chapter

5, these sampling programs provided only very weak inference about

impacts, and we do not describe these designs in detail.

BACIP

A number of authors recognized the necessity for at least more detailed

sampling through time, in order to demonstrate that any change occur-

ring at the impact location was not simply a random temporal fluctu-

ation, but was associated with the particular human activity. The

solution was to provide estimates of background temporal fluctuations

both before and after the activity started.

The simplest sampling design used for this purpose was the BACIP,

incorporating sampling Before and After, at Control and Impact loca-

tions, with samples Paired in time. This design was suggested simulta-

neously by a range of authors (Bernstein & Zalinski 1983; Green 1979;

Stewart-Oaten et al. 1986). AlthoughGreen’s book preceded the other two

publications, the BACIP design was developed for the San Onofre

Nuclear Generating Station in the early 1970s, and appears in early

reports from that project (see Murdoch et al. 1989 for a complete chrono-

logy). The philosophy behind this design is that the putative impacted

area is compared to a single reference, or control location, chosen for its
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similarity to the impacted location. The design was used also because its

advocates considered that the control and impact areas were rarely

chosen at random from any larger set of locations; instead, the impact

location was often chosen for its special properties, with the control

then being selected as one that matched the impact area most closely.

The two locations were not representative of any wider group of loca-

tions. Because the variable(s) of interest could have different average

values at these two locations, a BACIP program focuses on any changes at

the Impact location, relative to the Control (see Box 5.1), and the variable

that is analysed is the difference between Control and Impact values.

Sampling through time is used to estimate the temporal variation

in these differences, and this variation is used to assess the average

difference Before and After the activity commences. Times are separated

enough to prevent autocorrelation in these differences, and are viewed

as a random sample of possible values in each time period, and a part of

the formal analysis is a preliminary test for temporal autocorrelation.

Intervention Analysis

In his most recent discussion of BACIP designs, Stewart-Oaten (Stewart-

Oaten & Bence 2001) regards the BACIP design as a special version of

Intervention Analysis (Box & Tiao 1975), in which there is no Control,

and a long time-series of data from the Impact location Before and After.

In this analysis, the Before data are considered sufficient to characterize

the Impact location. Stewart-Oaten & Bence (2001) argue that a

Control (or the mean of a set of Control locations) is useful when such

time-series are short. They also argue that the Control is more appro-

priately seen as a covariate, used to eliminate signals from more wide-

spread (natural) environmental fluctuations, rather than a standard

against which to assess the impact. This is a very different interpretation

of the BACI and BACIP designs from that used in the past, and inwide use

today.

Amodification of the BACI analysis, termed Randomized Interven-

tion Analysis (RIA), was proposed by Carpenter et al. (1989). They deter-

mined the distribution of their test statistic, in this case the difference

Before and After the impact of themeans of the Control–Impact differen-

ces, by randomly rearranging the Control–Impact differences along the

time sequence. If the null hypothesis is true, then any of these possible

arrangements should be equally likely and the value of the test statistic

obtained from the actual data can be compared to its randomized

distribution just as in a usual statistical hypothesis-test. This is the
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randomization test procedure described in chapter 4 (see also Manly

1997). Carpenter et al. (1989) argued that by using the randomization

approach, they overcame the assumptions of normality, variance homo-

geneity and uncorrelated error terms through time. However, Stewart-

Oaten et al. (1992) disagreed that the randomization test avoids these

assumptions, presenting evidence that the test proposed by Carpenter et

al. (1989) is sensitive to variance heterogeneity and correlated errors. RIA

actually has its origins in interrupted time-series analysis, which tests

whether a trend through time before some intervention or interruption

is the same as the trend after the intervention (Box & Tiao 1975; Rasmus-

sen et al. 1993). These techniques are primarily designed for unreplicated

time-series (e.g. no control) and allow more complex temporal trends

that could not easily be summarized by mean values before and after an

intervention.

7.1.2 MBACI

A central issue that arose in the marine literature concerned the necess-

ity for multiple control or reference areas. This represents a fundamen-

tal shift in the way that impacts are defined, as well as a fundamental

shift in practical considerations, and is common to the MBACI and

Beyond-BACI designs. The difference is whether an impact should be

defined as a set of changes that occur when a particular human activity

occurs, compared to natural events occurring at similar sites within a

region, or whether each case study occurs in a specially chosen location

that is not drawn from any population of broader locations, and can only

be assessed against a reference standard.

As we have argued in chapter 5, we believe that stronger inferen-

ces are possible when multiple locations are used. The question in this

design is whether the population of impact locations differs from the

population of control locations, specifically whether the two popula-

tions changed in the same way before and after the particular human

activity commenced.

In the formulation of this design by Keough&Mapstone (1995), the

sampling program covers a specific period. In most sampling programs,

there is a fixed period before the activity starts, and (ideally, at least) a

comparable period following the commencement of the activity. The

question is whether the control and impact locations differ over these

two periods.Within each period, it is likely that sampling will be annual

(if the length of the period permits) and may be seasonal, with possibly

more subsampling within these times. The larger time scale (e.g. years) is
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sampled exhaustively (i.e. all years available are used) so the formal

question is whether the control and impact groups changed over those

two periods, with the periods assessed by sampling all possible times.

There are some variants of this design that pose slightly different

questions – the most common variant is if the control and impact

locations consist of a series of matched pairs. Such a design might be

used when there are multiple impact locations that are physically well

separated, and nearby controls are thought to be better bases for com-

parison. In this case, the question is whether control and impact pairs

converge or diverge following the start of the activity.

In this design, we have some idea of the likely spatial extent of any

important impact, and/or the spatial scale on which management re-

sponses can or will occur. These considerations dictate the location of

samples taken at the impact location(s) and the scale at which controls

are placed.

7.1.3 Beyond-BACI

There are situations in whichwe have, a priori, no accurate prediction of

the scale of impact in space or the rate at which the impact will become

apparent, and more extensive sampling may be required. The Beyond-

BACI design was developed to deal with this difficulty, as well as two

other problems. First, the designs above deal best with a discrete change

in the average condition of Impact and Control areas following the

activity (i.e. a step change). Underwood (1991a, 1992, 1993, 1994a, 1996)

has argued that human activitiesmay alsomodify variances, rather than

means, of variables of interest, and that such changes are not detected

well by existing designs. Transient (pulse) responses may also require

additional designs (Glasby & Underwood 1996). Additionally, our predic-

tions of the extent of impact may be very imprecise, and Underwood has

argued that spatially and temporally hierarchical sampling will allow

the detection of impacts at a range of scales.

The Beyond-BACI design shares with the MBACI its view that im-

pacts are detected between Impact and Control populations, with

samples of those populations providing the actual locations to be fol-

lowed through time. It differs, however, from the MBACI, in viewing

times (at all scales) as samples from a larger population of times. This

difference is most apparent at the scale of years – in the MBACI, those

years represent the entire Before and After periods, but in the Beyond-

BACI, they are only a sample from all the years in much longer periods.

In assessing the impact, changes at a particular spatial and tem-
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poral scale are assessed against the background variation seen at the

next level down in the hierarchy of time and space.

7.2 these approaches are different!

A reader who has read the above descriptions, and consulted the original

papers, may be puzzled that apparently subtle differences in the ques-

tions posed by each design are associated with such vigorous debate, and

may think that the sampling can proceed, with the appropriate model

chosen at the time of analysis. This view is incorrect, and these different

questions are associated with fundamentally different statistical

models. As a consequence, the steps taken to generate the most reliable

decisions, most often via power analysis, are quite different for each of

these designs.

As shown in section 7.8, the BACIP design differs fundamentally

from MBACI and Beyond-BACI in its insistence that there are no popula-

tions from which Control and Impact areas can be selected, just loca-

tions chosen for specific reasons. There is less generality to be gained

from a study using this design, because, by definition, it is a special case.

We do not agree with this view, but do urge interested readers to consult

Stewart-Oaten’s papers, particularly his two 1996 papers (Stewart-Oaten

1996a,b) and, most importantly, Stewart-Oaten & Bence (2001). An

important consequence of this decision is that the reliability of the

sampling program depends primarily on the number of times in each

period.

MBACI and Beyond-BACI differ primarily in their treatment of

time. While the Beyond-BACI design incorporates a range of spatial and

temporal scales, at the highest level of the sampling program (i.e. at the

largest resolution of time) the two designs involve sampling at longer

intervals, from multiple Control and (preferably) Impact locations, and

havemultiple times Before and After the particular activity commenced.

In most biological sampling programs, the largest time-scale will be

years, asmany biological phenomena are driven by annual events (repro-

duction, migration etc.). In the case of MBACI, it is assumed that, in

practice, sampling will encompass all possible years prior to the activity

commencing, and also at least a series of consecutive years following the

activity. In this sampling program, those years represent the entire

period of interest – we are trying to make a decision about what hap-

pened around the time that the activity commenced, based on what

happened in the periods immediately before and after that time. The few

years before are not intended to represent a longer time period before
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the activity started. In contrast, in the Beyond-BACI design, the times

that are sampled are presumed to be (random) samples from the Before

and After periods, and therefore to be representative of longer time

periods. This is an ideal that is rarely reached. Note that if the MBACI

design were to be expanded to consider multiple temporal scales, we

agree with Underwood that smaller time-scales could involve random

samples of available times, in which cases the two approaches could

converge.

7.2.1 Why it matters

The distinction between these different models is not pedantry – these

models represent different conceptual views of the sampling program.

They may produce different answers if applied to a particular data set,

and it would be easy to dismiss variable answers as another case of

scientists providing vague or conflicting advice. We emphasize that this

is not the case – each design deals with a precise view of how an impact is

assessed, and has associated with it an equally precise statistical model,

designed to answer that question. It should not be surprising that

changing the question changes the answer. Each of these designs tests

for impacts in a different way, with different power characteristics.

Our choice of a particular model will depend on how we regard

time and the nature of control and impact locations. A decision about

times is a difficult one. Our view in this book is that when sampling is

done for all possible times (for a given scale, like years), then that

temporal factor should be regarded as fixed (see section 4.6.1) in any

subsequent analysis. We are convinced by two arguments. First, statisti-

cal inferences are made from random samples from populations, and a

series of consecutive years, for example, or an exhaustive sampling of

any time period is not a random sample, but a systematic sample.

Because we cannot identify a ‘population’ of times from which we have

sampled, our data represent only themselves. Second, in more formal

linear model treatments, the formal definition of whether a factor is

fixed or random depends on the ratio of the number of levels (p) of that

factor that were used to the number of possible levels (P). For a fixed

factor, p/P� 1, whereas for a random factor, p/P� 0, reflecting an infi-

nite number of levels. When this definition is applied, time should

clearly be fixed.

There are two counter-arguments, neither of which we accept.

Underwood (1997) has argued that the distinction between a fixed and

random factor should be governed by whether the same levels would be
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used were the study to be done again. Our view is that an impact study

concerns only a particular point in time, so that question is moot. We

also believe that we would sample all years again in any new study (if

years was the appropriate larger time scale). Stewart-Oaten (1996a) has

argued that in a monitoring situation, we see particular trajectories

through time at Control and Impact locations. While these may repre-

sent all observation times, he argues that there is a range of alternative

trajectories that might be observed were the events to be repeated.

Because we have seen one of a large range of possible trajectories, he

treats times as a random sample. We find this argument hard to follow,

and, if anything, his argument provides more support for multiple

Control locations (at which we could observe alternative trajectories

through time), than for a reconsideration of time.

7.3 formal sampling and analytical framework

The multifactorial (treatments, locations, sites, times etc.) nature of

measurements likely to be taken in monitoring programs, and the

likelihood that dichotomous decisions will be expected from such

monitoring programs, suggests the use of one or more linear models

(often analysis of variance; ANOVA) procedures for the statistical analy-

sis of data. As a statistical decision-making framework, ANOVA perhaps

provides the most flexible, robust and powerful set of hypothesis-testing

procedures available. Inevitably also, this recommendation is affected by

our experience and biases. Using this framework for illustrative pur-

poses requires that a reader be familiar with linear models and with

variance components. These ideas were introduced in chapter 4, where

you can also find the descriptions of the symbols and conventions used

to describe these statistical models (Box 4.5).

ANOVA is a widely used and well-described, but relatively restrict-

ive statistical method. It is particularly useful when the arrangement of

sampling units and the distribution of samples through time are under

human control – designed experiments – and in its most common

implementation requires data that are distributed approximately nor-

mally, with consistent variances etc. In practice, monitoring data often

follow different statistical distributions, requiring either data trans-

formation or fitting of equivalent statistical models with non-normal

distributions. While monitoring may correspond to a designed experi-

ment, a major theme of this book is the constraints and unexpected

events that often occur in practice. We emphasize, therefore, that
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ANOVA is used here as an illustration. There is a wide range of

alternative statistical approaches – GLMs (see section 4.9), Generalized

AdditiveModels (GAMs), log-linear models for frequency data, randomiz-

ation tests (section 4.9), tests for multivariate data (section 4.10) etc. –

thatmay bemore appropriate for particular situations. It is important to

use the most appropriate statistical tool for the particular purpose,

rather than forcing a data set into one particular statistical framework.

In this chapter, we use the statistical details as a way of illustrating

the consequences of differences in logic, and we emphasize that all

statistical analysis requires fitting a statistical model to data, and that

this step involves taking a relatively informal monitoring question and

translating it into formal statistical terms.

7.3.1 The sampling program

BACIP

Sampling in a BACIP design is relatively simple. There are only two

locations, each of which is sampled through time, with the samples

being paired (i.e. each location is sampled at the same time intervals).

The analytical models described below require that the times be a

random sample of the possible times in the Before and After periods.

Logically, this means that sampling at regular time intervals should not

occur.

Although there is a formal requirement for randomly spaced

times, in practice sampling is often done at regular intervals, with these

samples then being treated as a random set (e.g. Murdoch et al. 1989, for

the San Onofre Nuclear Generating Station study, when most variables

were sampled quarterly).

It is also important that the samples through time be spaced far

enough for there to be no autocorrelation, so there will be some

minimal interval between sampling times, determined by the dynamics

of the particular biological variables under measurement. For example,

microbial assemblages may change rapidly on a scale of hours, whereas

samples of riparian vegetation may require long time periods for some

mortality and recruitment to have occurred.

The sampling program may involve multiple samples taken at

each location and used to provide a better estimate of the mean or

variance at each location than would be provided by a single small

sample. These samples could be combined at the processing stage (i.e. a
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composite sample), prior to analysis (by numerically averaging values),

or as a part of the analysis (again, by averaging or summing values for

individual samples). The decision on when to combine the samples will

depend on the cost of the different stages.

We do note that an alternative approach to BACIP designs treats

times not as a random sample, which, strictly, they are not, but as a

time-series (e.g. Stewart-Oaten & Bence 2001). For illustration in this

chapter, we use the former approach.

MBACI

Sampling in the MBACI case consists of replicate Control and Impact

locations, sampled at a series of times. We assume that all locations are

sampled at the same times. The times can be separated into years, then

possibly seasons, or other, shorter time periods, within years. If they are

used in the analysis, the same cautions about autocorrelation as for the

BACIP case should be considered.

The sampling program, as for BACIP, may involve subsamples.

Beyond-BACI

The sampling program for Beyond-BACI has been described in consider-

able detail by Underwood (1991a, 1992, 1993, 1994a, 1996) and we will

not repeat it here. Its essence is the sampling of multiple locations, for

extended periods before and after the activity commences. There are

various levels of subsampling (i.e. at smaller spatial and temporal scales),

the levels of which will be set by the characteristics of the particular

environment, the degree of certainty withwhich predictions of extent of

impact can bemade, and the scales on whichmanagement activities will

occur. All of these should be clearly specified in any particular sampling

program, but there is no overall prescription.

7.3.2 The analytical models and formal hypotheses

BACIP

The BACIP design is most easily analysed by treating the variable of

interest as dpj, which is the difference between the observations at the

Control and Impact locations at a particular time j, within either the

Before or After period (p).
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The model is then:

dpj� ��Bp. � 	pj

where

dpj is the jth observation of the difference between Control and

Impact in the period p Before or After the activity

Bp. is the average difference between Control and Impact, Before or

After the activity starts

	pj is the residual value after accounting for the above effects (see

chapter 4).

The same design could be formalized without computing the

differences between Control and Impact, and using data from Control

and Impact locations at each time as the variable to be analysed. In this

case, the formal statistical model must take into account the paired

nature of the data, by explicitly including sampling times in the model,

which will be:

yijpm�� �Ci...�B..p.� T(B).jp.�CBi.p.� CT(B)ijp. (� 	ijpm)

where

yijpm is themth observation at Control or Impact sites i at Time j in

the Before or After period p

� is the population grand mean for the measured variable

Ci... is the time-averaged effect of being in the Control or Impact

treatment

B..p. is the spatially averaged effect of the period Before or After

the activity starts

T(B).jp. is the spatially averaged effect of Time jwithin Before or After
period p

CBi.p. is the effect of being in either the Control or Impact treat-

ment either Before or After the commencement of the activ-

ity (i.e. an interaction effect)

CT(B)ijp. is the effect of being in either the Control or Impact treat-

ment at Time j within either the Before or After periods
	ijpm is the residual value after accounting for the above effects

(and estimable only when multiple subsamples are taken

within each location at each time).

In practice, this latter formulation would rarely be used, as it is unnec-

essarily complex. If replicate samples were taken at each site–time
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combination, they could be averaged, and then the difference between

Control and Impact calculated. The two formulations are computation-

ally identical, but the simpler equation above can be analysed with a t

test, rather than requiring a partly nested ANOVA. The full expression of

the model makes it explicit, however, that the data can not just be

analysed with a replicated two-factor ANOVA (Control–Impact�Before–

After).

MBACI

For the MBACI design shown above, the model used for the ANOVA is

(following Keough & Mapstone 1995):

yinmpj� ��Ci....� l(C)in...�B...p.� T(B)...pj�CBi..p.�CT(B)i..pj

� l(C)Bin.p.� l(C)T(B)in.pj (� 	inmpj)

where

yinmpj is themth observation at location n in Control or Impact

treatment i at Time j in the Before or After period p

� is the population grandmean for themeasured variable

Ci.... is the average value for Control or Impact, averaged

across times and locations

l(C)in... is the time-averaged effect of being at the nth location

within treatment i

B..p. is the spatially-averaged effect of the period Before or

After the activity starts

T(B)...pj is the spatially-averaged effect of Time jwithin Before or
After period p

CBi..p. is the effect of being in either the Control or Impact

treatment either Before or After the commencement of

the activity

CT(B)i..pj is the effect of being in either the Control or Impact

treatment at Time j within either the Before or After

periods

l(C)Bin.p. is the effect of being at the nth location in either the

Control or Impact treatment in either the Before or

After period

l(C)T(B)in.pj is the effect of being at the nth location in either the

Control or Impact treatment at Time j within either the

Before or After periods
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	inmpj is the residual value after accounting for the above

effects (and estimable only when multiple subsamples

are taken within each location at each time).

A special case: MBACI with a single Before and single After sample

If there is no repeated sampling of locations within the main periods,

the statistical model can be simplified considerably. The greatest simpli-

fication is obtained by calculating the change at each location,

din � l(C)BinB.� l(C)BinA.

where B and A denote samples before and after the activity started.

The model is then:

din ���Ci.� 	in

where

din is the observed change at location n in Control or Impact

treatment i

� is the population grand mean for the measured variable

Ci. is the spatially averaged effect of being in the Control or Impact

treatment

	in is the residual value after accounting for the above effects, and

estimable only when there are multiple locations.

In theory, this model can be tested with a t-test, but only when there are

multiple Control and Impact locations. In the common case in which

there are only single Impact locations, there is no estimate of the

variance in d values among Impact locations, and any test of impact can

be made only if it is assumed that the variance of d values at Control

locations is a good estimate of the overall variance (i.e. it is assumed that

variances are homogeneous between Control and Impact locations).

This model for this special case is conceptually very similar to the

BACIP design, with in one case replication coming from samples

through time (at two locations) and in the other from samples through

space (at two times).

Beyond-BACI

Underwood’s Beyond-BACI designs are extremely complex, and the exact
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form of the model depends on the number of scales of time and space

that are incorporated into the design. The model will also vary consider-

ably if all locations are sampled simultaneously, compared to the situ-

ation in which sampling times are distributed randomly among

locations. Underwood (1991a, 1992, 1993, 1994a, 1996, 1997) has de-

scribed the analysis of these designs in considerable detail, and here we

present only a very simplified model, to illustrate the differences in his

approach. Anyone considering one of these designs must consult those

papers or a professional statistician, because they are complex, with

great potential for mistakes to be made.

We consider the simplest case, with multiple locations, and

multiple times (at a single scale) within the Before and After periods. We

consider only a single level of subsampling, that of replicate samples

within each location–time combination. The model for this situation is

the same for the MBACI:

yinmpj� ��Ci....� l(C)in...�B...p.� T(B)...pj�CBi..p.�CT(B)i..pj

� l(C)Bin.p.� l(C)T(B)in.pj (� 	inmpj)

where

yinmpj is the mth observation at location n in Control or

Impact treatment i at Time j in the Before or After

period p

� is the population grand mean for the measured

variable

Ci.... is the time-averaged effect of being in the Control
or Impact treatment

l(C)in... is the time-averaged effect of being at the nth

location within treatment i

B..p. is the spatially averaged effect of the period Be-
fore or After the activity starts

T(B)...pj is the spatially averaged effect of Time j within

Before or After period p

CBi..p. is the effect of being in either the Control or
Impact treatment either Before or After the com-

mencement of the activity

CT(B)i..pj is the effect of being in either the Control or

Impact treatment at Time j within either the Be-
fore or After periods

l(C)Bin.p. is the effect of being at the nth location in either

the Control or Impact treatment in either the
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Box 7.1
ANOVA models
To illustrate the appropriate tests for impacts, we show the tables

of Estimated Mean Squares (chapter 4), labelled ‘MS estimates’, and

the denominator used to construct an F-ratio to test a particular

effect. We indicate the appropriate source of variation

(Denominator MS) and its degrees of freedom (Denominator df).

Before or After period

l(C)T(B)in.pj is the effect of being at the nth location in either

the Control or Impact treatment at Time j within

either the Before or After periods

	inmpj is the residual value after accounting for the

above effects (estimable only when multiple sub-

samples are taken within each location at each

time).

7.3.3 Tests for Impact

BACI and BACIP

The BACI test is simple, as the design only includes one time Before and

After. The test of impact uses variation within locations as an estimate of

background variation against which to contrast the two locations before

and after the activity. Formally, a replicated two-factor ANOVA would be

used, with the test of interest the Before–After�Control–Impact inter-

action, tested with an F-ratio having 1, 4 (n� 1) degrees of freedom,

where n represents the number of samples per location (assuming equal

sampling effort for each location; Box 7.1). There are no design options.

In the case of BACIP sampling, the simplest test comes from

assuming that the data in the analysis are differences between Control

and Impact locations at each time, and themodel described above can be

described as a one-factor ANOVA (Before–After), with the replicates being

times within each period. Because there are only two locations, the

analysis can, and probably should be, done using a t test (remembering

that F1,n� t2n), which is simpler, and understood by a broader audience.

The test is simply whether the difference between Control and Impact

locations was the same in both periods, and the degrees of freedom for

the t test depend on the number of sampling times.

If the more complex formulation is used, the model can be depic-
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Table 7.2. Components of variation for a three-factor ANOVA (Control–Impact,

Before–After and Times), with no replication, in BACI/BACIP designs

Source of variation Designation Number of levelsa

Spatial variation

Impact–Control – (C) Fixed 2

Temporal variation

Before–After development – (B) Fixed 2

Times within Before–After – T(B) Random t�
Impact–Control�Before–After – CB Fixed 4

Impact–Control�Times(B) – CT(B) Fixed 2t�

a The number of levels is shown for each of the factors. t�� tB� tA, where tB and

tA are the numbers of times sampled Before and After start-up, respectively.

ted as a three-factor ANOVA (Control–Impact, Before–After, and Times),

with no replication (Table 7.2). Note that there are some replicates (viz.

samples within each location) and it is possible to include them in the

model. They do not affect the test of impact, and the test for impact

using the means of those subsamples is identical to that whichwewould

get by adding replicates into themodel. Converting data tomeans before

analysis is far simpler. The general form of the ANOVAappropriate to the

model, as depicted above, is given in Table 7.3.

MBACI

The model for this particular design presumes that each location was

sampled at the same time (although there is an equivalent model for

when they were not). The simplest way to do the analysis is to use as the

input data the averages of data collected from each location at each

time. Then, the model described above can be depicted as a three-factor

ANOVA (Treatment�Before–After development�Times), with repeat-

ed measurements of replicate locations within each treatment. (Note

that the term 	inmpj could not be estimated in such an analysis, but, as we

discuss later, it is not necessary for analyses of the terms of most interest

for monitoring impacts.) In practice, however, the model usually be-

comes unbalanced because there will be only a single impact location.

The only available estimate of within-treatment variation at each time,

therefore, is the observed variation among control locations. According-

ly, the a posteriori comparisons of interest are derived from the repeated
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Table 7.3. The general form of ANOVA appropriate to a BACI/BACIP model,

when analysed using ANOVA, rather than t test

F-ratio

Source of Denominator Denominator

variation df MS estimates MS df

Spatial variation

C 1 �2	 � 2�2CT� 2t�
2C CT(B) t�� 2

Temporal variation

B 1 �2	 � 2�2T� 2t�
2B T(B) t�� 2

T(B) t�� 2 �2	 � 2�2T CT(B) t�� 2

CB 1 �2	 � 2�2CT� t�
2CB CT(B) t�� 2

CT(B) t�� 2 �2	 � 2�2CT — —

Note: For the purposes of testing for variation among times within the Before

and After periods (which is not of much interest), the �2CT must be assumed to be

0. If we had taken replicate samples within each location, at each time, we could

have included a residual term, �2	 , in the model and analysis, enabling us to test

the hypothesis that �2CT� 0.

The test for impact is the CB term, which is tested using the CT(B) term, which

has 1, t’� 2 (or tB� tA� 2) degrees of freedom.

As an F-ratio with one degree of freedom in the numerator, this test is also

equivalent to a t-test, as described in chapter 4.

measurements at a single impact location and averages of repeated

measurements at several control locations.

This approach allows the separation of variation into a number of

independent components (Table 7.4). The general form of the ANOVA

appropriate to the model, as depicted above, is shown in Table 7.5.

In Table 7.5, h� l and h� t are the harmonic mean numbers of locations

within Control and Impact treatments, and times within the Before and

After periods, respectively. We use the harmonic mean to allow for the

situation in which there are different numbers of times or locations

within each group. With equal numbers, arithmetic means can be used.

Tests for differences among locations or the interaction between

locations and times would be possible if all data from within locations

were not averaged to produce one datum (mean) per location per time.

For clarity, we have not presented subsampling terms here, but they

would simply appear as additional nested terms under Locations(C) and

in interaction with the temporal terms (e.g. see Underwood 1991a, 1993,

1994a).
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Table 7.4. The components of variation in an MBACI model

Source of variation Designation Number of levelsa

Spatial variation

Impact–Control – (C) Fixed 2

Locations within Impact–Control – L(C) Random l�

Temporal variation

Before–After development – B Fixed 2

Times within Before–After – T(B) Fixed t�
Impact–Control�Before–After – CB Fixed 4

Impact–Control�Times(B) – CT(B) Fixed 2t�
Locations(C)�Before–After – L(C)B Random 2 l�
Locations(C)�Times(B) – L(C)T(B) Random t� l�

a t�� tB� tA, where tB and tA are the numbers of times sampled Before and After

start-up, respectively. l�� lC� lI, where lC and lI are the numbers of Control and

Impact locations sampled, respectively.

The principal effects of interest for impact assessment are:

1. The interaction between Impact and Control treatments and per-

iods Before and After development (Green 1979, 1993)

2. The interaction between the Impact and Control treatments and

Times within the Before and After periods (the terms CB and CT(B),

respectively, in the ANOVA table in Table 7.5).

The sources of variation within these interactions against which

departures from the null hypothesis would be tested (the error vari-

ances) are (1) the interactions between Locations(C) and Before–After;

and (2) the interaction between Locations(C) and Years(B), respectively.

Hence, the key F-ratios of interest in an ANOVA of this form are the ratios

MSCB/MSL(C)B and MSCT(B)/MSLT(B). Possible longer-term impacts of the

impact in question would be indicated by significant CB interactions.

Shorter-term impacts from which the measured variables quickly re-

covered would be expected to cause a significant CT(B) effect, and be

manifest as changes in the Time profile of the Impact location between

the Before and After periods that were not evident in the Control

treatment. As discussed previously, we consider the basic element of

temporal sampling most likely to be annual sampling, in which case

‘Time’ effects in the above model would represent ‘years’.
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Table 7.6. The components of variation for a Beyond-BACI design

Source of variation Designation Number of levelsa

Spatial variation

Impact–Control – C Fixed 2

Locations within Impact–Control – L(C) Random l�

Temporal variation

Before–After development – B Fixed 2

Times within Before–After – T(B) Random t�
Impact–Control�Before–After – CB Fixed 4

Impact–Control�Times(B) – CT(B) Fixed 2t�
Locations(C)�Before–After – L(C)B Random 2 l�
Locations(C)�Times(B) – L(C)T(B) Random t� l�

a t�� tB� tA, where tB and tA are the numbers of times sampled Before and After

start-up, respectively. l�� lC� lI, where lC and lI are the numbers of Control and

Impact locations sampled, respectively.

Beyond-BACI

This approach allows the separation of variation into the following

independent components, and there is a wide range of possible tests,

each designed to assess a particular kind of impact. Here, we present

only the test of impact at the largest temporal and spatial scales, to

illustrate the major differences between the MBACI and Beyond-BACI

(Table 7.6). The general form of the ANOVA appropriate to the model, as

depicted above, is shown in Table 7.7. In Table 7.7, h� l and h� t are the

harmonic mean numbers of locations within Control and Impact treat-

ments, and times within the Before and After periods, respectively.

Tests for differences among locations or the interaction between

locations and times would be possible if all data from within locations

were not averaged to produce one datum (mean) per location per time.

For clarity, we have not presented subsampling terms here, but they

would simply appear as additional nested terms under Locations(C) and

in interaction with the temporal terms (e.g. see Underwood 1991a, 1993,

1994a).

It is important to note how the MS estimates are altered by the

designation of time as a random factor, with the main tests of interest,

particularly the CB term, tested against the residual term in the model.

In the absence of subsampling within time–location combinations, the
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L(C)T(B) termmust be used as the denominator for the test of impact, and

in doing so, it must be assumed that �2LT� 0.

The designation of times as a random factor also has implications

for any power calculations.

As for the MBACI, the principal effects of interest for impact

assessment are the interaction between Impact and Control treatments

and periods Before and After development (Green 1979, 1993), and the

interaction between the Impact and Control treatments and Times with-

in the Before and After periods (the terms CB and CT(B), respectively, in

the ANOVA table in Table 7.7). The sources of variation within these

interactions against which departures from the null hypothesis would

be tested (the error variances) are not so simple. From the table, there is

no simple test for the CB interaction, and wewould need to use a Quasi-F

test (Winer et al. 1991). The CT(B) term can be tested using the interaction

between Locations(C) and Years(B). Possible longer-term impacts of the

activity in question would be indicated by significant CB interactions.

Shorter-term impacts from which the measured variables quickly re-

covered would be expected to cause a significant CT(B) effect, and be

manifest as changes in the Time profile of the Impact location between

the Before and After periods that were not evident in the Control

treatment. As discussed previously, we consider the basic element of

temporal sampling most likely to be annual sampling, in which case

‘Time’ effects in the above model would represent ‘years’.

Underwood has suggested that this design can be used to detect a

number of other kinds of impacts, particularly effects on the variance,

rather than the mean of variables. He has described appropriate ways to

construct the F-ratios for these kinds of impacts (Underwood 1991a,

1992, 1993, 1994a, 1996). We wish only to draw attention to these

important alternatives, and to emphasize that the principles remain the

same – understand (and specify precisely) the conceptual model, specify

the linear model, generate the analysis table and use it to identify

appropriate tests.

7.4 power considerations

7.4.1 BACI and BACIP

The impact in a classical BACI design is tested against variation among

subsamples within each of the four location–time combinations, and

can be modelled as a fixed-factor, two-way ANOVA. The power is then

determined solely by the number of subsamples.

With the BACIP design, the ‘replicates’ are the Control–Impact
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pairs, so the power depends on the variation in those differences, and on

the number of time periods. The latter is often under direct control of

the researchers, and can be increased. However, the constraints of many

monitoring situationsmeans that the number of Before times is likely to

be fixed (and often small), and only the number of After times can be

increased. The returns on this increased sampling are less than when

both times can be increased. There is the added problem that many

statistical tests are most reliable when samples sizes are equal between

groups, so longer time-series after an impactmay involve some trade-off.

The other component of power of a BACIP design is the variance of

the Control–Impact differences. The observed variation has two compo-

nents – the variation in those differences through time, and variation

due to using subsamples to estimate the state of the locations at a

particular time. If there is considerable spatial variation within each

location, and we take only a few samples, the variation in Control–

Impact differences may reflect this small-scale spatial variation, rather

than the temporal variance that is of interest. Increasing the number of

subsamples increases the precision with which we estimate the state of

each location, and the variance of the ds begins to reflect primarily

temporal variation. Increasing the number of subsamples has an effect

on power primarily when thewithin-location variance is high, compared

to the between-times variance and the initial number of subsamples is

small. When there is little within-location variation, additional samples

are a waste of resources.

7.4.2 MBACI

The primary test of impact in the MBACI situation uses variation among

locations through time as the background variation. Consequently, the

power depends on the observed variation and the number of locations

within Control and Impact groups. Because this number is most often

small, increasing the number of locations is usually the most efficient

way to improve power.

The observed L(C)B variation is composed of a number of compo-

nents; in estimating this variation, we have averaged the times within

each period. In theory, we can not change this component – because we

regard times as a fixed factor, we are assuming that those times repre-

sent all possible states within the Before and After periods, so we can not

include more times. In practice, we will, of course, feel more confident

about a result based on more years of sampling. In calculating the L(C)B

variance, we have also used (in most cases) subsamples of each location

to characterize its state at each time T. How accurately we have done so
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will depend on the within-location variance and the number of sub-

samples that have been taken. As for the BACIP design, more subsamples

can indirectly increase power by removing small-scale spatial variation

as a contributor to the apparent L(C)B variance, and the improvements

will be greatest when this variation is large, and we have only a few

subsamples. Increasing the number of subsamples (e.g. from two or

three to 10) should rapidly and largely remove this effect.

If the monitoring program is financially constrained, any increase

in sampling effort may be difficult to justify, and require trade-offs. A

good rule of thumb in such a circumstance is that, when necessary, one

shouldmaximize the number of locations, and minimize the number of

subsamples. The number of subsamples does not affect the degrees of

freedomof the crucial test, so time spent processing subsamplesmust be

minimized. Because there are two levels of sampling (locations, and

within locations) that are replicated, there will usually be a trade-off

between the two, as we rarely have enough resources to increase all

replication at will. In these trade-offs, it is almost always preferable to

increase the sampling at the higher level, and to take only enough

small-scale samples to get a good estimate of the mean. The exceptional

situations are likely to be those in which there is massive small-scale

variation, with little additional variation among locations. Understand-

ing the pattern of variation in the variables under examination is an

important part of the planning of any sampling program, and a part of

the initial power analysis should include an examination of the various

subsampling options.

We do, however, recommend taking some subsamples, to provide

good spatial coverage, and hence a representative sample of the loca-

tion–time combination. In our experience, almost all systems have

small-scale spatial variation, the removal of which would help the samp-

ling program.

In a practical sense, it may not be necessary to process all of the

subsamples for a given level individually, but options such as composi-

ting can, and probably should, be investigated in many situations. In

marine environments, compositing, followed by sample splitting, is

used on benthic infaunal samples, which are often characterized by high

diversity, great spatial variation and, most importantly, very long sort-

ing time. Similar procedures are routinely used in environmental chem-

istry. Pooling all subsamples from a location, and then processing the

entire sample or a proportion of it, should still yield a good estimate of

the location value at a particular time. The proportion of the sample that

is processed will depend on the number of individuals, and the target
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organisms. If the abundance of a common species is to be estimated,

only a small subsample of the well-mixed composite may need to be

examined. If a rare species is the target, most of the sample may need to

be examined, and if the target is a standard estimate of species richness,

wemay end up counting the first n individuals in the sample, where n is

constant across all locations and times (i.e. using a rarefaction estimate

of species richness). This procedure works because the test of impact in

the MBACI uses locations as the units of replication, so our aim is to get

good estimates of those locations.

One final important aspect of the power is the situation when the

number of potential control locations is limited. Our aim is to pick

control sites that fluctuate through time in the same way as the impact

site(s) in the absence of the particular activity, and this will generally

mean close matching of the physical and biological environments. If we

seek to add additional locations, we may be forced to begin considering

areas that are less similar to the original set. If this is the case, we may

find that there is more variation among locations among the expanded

set, so that increases in power from greater replication are offset at least

partly by an increased background variation. If the initial analyses

suggest a big increase in the number of locations, it is critical that we not

just add the new locations, and proceed with the sampling program. The

variation in the expanded set should be examined, and the power

calculations redone.

7.4.3 Beyond-BACI

The Beyond-BACI design is amore complex version of the above analyses,

and is used to test a wide range of effects. Each of those tests has an

associated power function, which will depend on the level of replication

at the level under consideration. With so many hierarchical levels, the

power of a given test will usually depend directly on the number of

spatial replicates at the next level down, and on the variation among

those replicates. As with the other designs, the observed variation will

reflect not only variation at that particular level, but also the variation at

all of the lower levels, with each level lower having a smaller influence

on the observed variation.

For a given test in Beyond-BACI, the power considerations follow

the principles for the MBACI above. The complication is that the power

analysis and computation of the number of replicates must be done

separately for each hypothesis to be tested. Further, the power calcula-

tions are not independent of each other because, in the simplest case, a
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given variance may be used as the numerator in one test, the denomina-

tor in another F-ratio, and appear indirectly in other tests.

Formal procedures for power calculations have not been pub-

lished, because they are very complicated. We believe that the final

design will be derived by an iterative procedure, in which a range of

different allocations of sampling effort is tried, and the power values for

all tests tabulated. The final decision will depend on an overall assess-

ment of the set of power values, most likely with some weighting of the

most important tests. For example, a subtle impact over a large spatial

scale may be considered more important to detect than a localized, but

possibly more severe impact, so we may wish to ensure higher power for

the test at the larger scale, even at the possible expense of the small-scale

test.

We know of no formal way of integrating all of the power values,

and the final decision will no doubt reflect management priorities, as

well as scientific criteria.

7.5 detecting more subtle effects

All of the tests described above for BACI, BACIP and MBACI designs focus

on the detection of ‘step’ changes – a consistent change to the receiving

environment, relative to its control(s). Underwood’s Beyond-BACI de-

signs were targeted at detecting impacts at different scales, and at

impacts that may act by altering variances, rather than means.

In most of these cases, it is possible that the actual impact may

take a different form. A short-term monitoring program will detect

essentially acute changes in the receiving environment, but it is also

possible that with longer time-series, more subtle effects can be exam-

ined.Many of the authors who have written on the subject ofmonitoring

have recommended that these tests for step changes be used as the basis

for designing the sampling program, but that flexibility be used in

looking for these other kinds of impacts. Our aim, in essence is to

describe the changes that occur in response to the particular human

intervention, not just to test for one kind of change.

For example, most or all of the common designs treat times within

the Before and After periods as a random sample, rather than an ordered

set. Treating the samples as a time series allows detection of gradual

trends, or contrasting trends between Before and After. Keough & Map-

stone (1995) also pointed out that, as the number of sampling times in

the Before and After become disparate, such as occurs when monitoring

continues for a substantial period, then tests of hypothesis become
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unreliable. They suggested that for long time-series, tests for trends

through time in the After period would allow for detection of less acute

impacts, tests of transient effects etc.

Themonitoring designs detailed above serve as the ideal situation

– the design, statistical model and test of hypothesis that are the focus

for the sampling program –when confronted by realities such as limited

Before sampling periods, bizarre behaviour of particular locations etc. A

mixture of common sense and flexibility must be used in considering

alternative ways of assessing impacts.

7.6 extent of impacts

In contrast to the controversy about appropriate models for detecting

impacts, estimating their extent presents fewer analytical options. The

general problem is one of estimating the rate at which a variable

changes with ‘distance’ from the source of the impact, sometimes called

gradient analysis. ‘Distance’ could be measured as the physical distance

from the centre of the human activity in question (e.g. a discharge point)

or as the intensity of the activity. For example, if a toxicant is discharged,

we may wish to understand the relationship between toxicant concen-

tration and some biological variable, and we could do that bymeasuring

the concentration directly, or by modelling the dispersion, and then

using physical distance as a simple proxy for toxicant levels.

In either case, our aim is to describe the relationship between two

variables, and there are two basic approaches to this problem (see chap-

ter 4) – simple linear (usually least squares) regression, and non-linear

approaches. Most practitioners are familiar with linear regression,

which has the advantage of being simple to compute, and simple to

explain. However, many underlying relationships are likely to be non-

linear – the concentration of a toxicant, for example, does not decrease

linearly with distance from a source. When faced with a non-linear

relationship, we can either transform the variables to make the relation-

ship more linear, or use a non-linear regression approach. The first

option is the most often used, for its simplicity.

The modelling approach is uniform – the characterization of the

relationship is the aim, and linear and non-linear methods differ only in

the complexity of the underlying relationship and the methods used to

fit the models to the data (often least squares vs. maximum likelihood).

The principles for maximizing power will be the same and, practically,

the final approach used in a particularmonitoring situation will depend

on the characteristics of the data.
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7.7 flexible analysis / inflexible hypothesis

In this chapter, we have described the formal structures associated with

three common approaches to detecting impacts (see summary in Table

7.1). We emphasize that these approaches differ fundamentally in the

way that impacts are viewed. Each of the approaches has its advocates,

and although we have argued for a view of impacts being distinguished

from a population of control locations, but over a fixed period of time,

the other views have merits. Any one could be chosen for a particular

monitoring situation, depending on the regulatory and socioeconomic

frameworks involved. It is, however, crucial that those involved with

monitoring programs frame the objectives of the monitoring very pre-

cisely, so the appropriate model is identified at the start of monitoring.

Each of these approaches leads to different ways of maximizing power,

so to design a program under one of the three logical frameworks, and to

apply the analytical model for another one, will almost always lead to a

weak monitoring framework.

While we do argue for a precise, inflexible philosophical approach

and initial hypotheses, we do acknowledge that the actual analysis of

monitoring data must retain a degree of flexibility. Most monitoring

situations change as data are acquired – things go wrong, our estimates

of variation change, data may be non-normal, mistakes occur etc. These

changes require us to be creative at the data analysis stage, and to be

prepared to alter parts of the statistical models that we use, but we

should not forget the underlying logic of the particular program. In

chapter 9, we discuss how these constraints will affect our inferences of

impact.

7.8 important issues

• Different BACI designs lie along a gradient of inferential certainty

from relatively strong to relatively weak, rather than providing

either perfect or zero inference about human impacts.

• There are different types of BACI designs, which result in distinctly

different analytical models that address different questions. Con-

sult Table 7.1 for a summary of the important characteristics of

each approach. These conceptual models are all justifiable ap-

proaches to the detection of impacts under particular circumstan-

ces, but it is essential that anyone implementing one of these

designs be aware of the differences between them, and of the

important characteristics of each of them.
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Applying principles of inference and
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8

Applying monitoring designs to flowing
waters

In the last chapter, we introduced the different sorts of analytical

models we can use to detect impacts. There are distinct and important

differences between thesemodels, and yet understanding these differen-

ces is only the first step. The next step is to be able to apply these designs

sensibly and usefully in real situations. In many cases as we will see, the

ecology of streams and rivers (and, indeed, many other environments) is

not sufficiently well understood to make perfect or even very good

decisions about design in every instance. As we shall argue below,

however, the critical issue is to understand how to make good design

decisions, and, because monitoring designs always involve compro-

mises, to be very clear and explicit about the reasoning upon which such

decisions were based. The remaining part of the process, then, is to

understand what monitoring designs can tell you definitively and what

they cannot – what can be legitimately and logically interpreted from

the data versus what will remain unclear.

Belowwe describe a hierarchy of decisions that will help define the

nature of the problems faced in monitoring impacts in flowing waters

properly. There are several problems we have to solve to apply good

design principles. These problems are the location and character of

control locations, and the frequency of sampling through time. In many

places, we will suggest that a systematic and well-structured review of

the literature will be necessary to solve these problems.

In some cases, it will prove impossible to gain any control loca-

tions. In others, sampling before the start of potential human impact

will be impossible because that event may have occurred decades or

centuries before. In the most difficult case, neither controls nor Before

data are available. We consider all of these cases more explicitly in the

next chapter, because they require a ‘levels of evidence’ approach,

whereby conclusions are based on several weak, but independent, lines
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of evidence. This approach also makes great use of the literature, and

may be well worth undertaking even when an MBACI design is possible,

because it will help with the selection of controls, the selection of

monitoring variables (a topic we cover specifically in chapters 10 and 11)

and in improving the inferential strength of designs through indirect

means.

8.1 spatial variation and the location of controls

8.1.1 The nature of controls

Before we begin discussing how we might locate controls, it is worth

reviewing what controls actually are, because there are a number of

common misconceptions about them. First, control locations and refer-

ence locations are not the same thing (Box 5.1), andwe suggest that these

terms not be used interchangeably. Reference locations are typically

used to provide an indication of what environments might look like

when free of any human activities. They are generally located in pristine

or as close to pristine places as possible and can be quite remote from

particular impact locations. Comparison between a collection of refer-

ence locations and impact locations then has potential to detect changes

caused by human activities but relatively poor ability to draw inferences

about specific causes of differences at individual locations. This is be-

cause any particular impact location is likely to differ in many ways

from the collection of reference locations aside from the incidence of

the human impact of interest. Additionally, any particular location

might be changed by more than one human activity; a comparison

between such a location and a collection of reference locations will not

tell you which, if any, human impact might be responsible for the

differences. Control locations on the other hand are designed to be as

similar to the impact location(s) as possible, so that the major source of

difference between them will be that of the human impact of interest.

Consequently, control locations need not be pristine – and, in fact,

shouldn’t be, if the impact location suffers a number of human insults

but our interest is in one of those in particular.

Control locations thus act to isolate an effect of interest – namely,

any changes due to a particular human impact. Using controls does not

mean that all variables are ‘under the control’ of the researcher – the

term control is used in the context of field experiments (Box 5.1). Finally,

control locations do not have to be ‘identical’. As a literal requirement,

that is certainly impossible, even in laboratory experiments, because all
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locations differ in some ways from others. Instead, control locations

need to be sufficiently similar to each other and to the impact location

that an important change at the latter will have a high likelihood of

being detected. Indeed, the degree of similarity among control locations

required to detect a change of a particular size with particular probabili-

ties can be quantified, as we will discuss further below and in subse-

quent chapters.

8.1.2 Spatial extent and nature of impact

The first step is to determine the potential or likely extent of the impact

in space. The spatial extent of impact is important because it will

determine where we can begin looking for control locations. It will also

influence where we are able to locate subsamples within the putatively

impacted area, as will be discussed further below. Control locations

must be free of the impact of concern (section 5.4), and the only way to be

certain of this is to know the expected spatial extent of the putative

impact. One advantage of river systems is that they are organized hier-

archically as branching networks, with each river system or tributary

within a river system occupying a defined catchment (Fig. 8.1). Catch-

ments (large or small) form natural boundaries to the movement of

water (excepting groundwater), chemicals, sediment and pollutants,

and they often form boundaries to biota and human activities as well

(see chapter 2). Consequently, catchments provide natural spatial units,

and this is one advantage that lotic systems have over other habitats

where the boundaries and sources of spatial variance can be far less clear

(e.g. soft-sediment, marine benthos; Thrush 1991). However, analogies

exist in some marine systems, where embayments or headlands may

represent natural barriers to water movement. In deciding the spatial

extent of impact, we are really deciding over what size of catchment

impacts occur. The use of catchments as spatial units applies both to

stressors that occur predominantly on the land of the catchment itself

(e.g. land-use changes) as well as to those occurring directly on individ-

ual stream channels (e.g. on water quality or quantity) because the latter

are still associated with catchments of particular sizes. In either case,

catchments form appropriate units of replication for the term Locations

in the design.

Obviously, human activities may affect a continuous range of

catchment sizes, but we will distinguish twomajor kinds as the ends of a

continuum. The first type of activity is where impacts are restricted to

individual tributaries that drain relatively small spatial areas (catch-
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Fig. 8.1 A schematic diagram of a dendritic river system, illustrating small

sub-catchments nested within larger catchments. Catchment boundaries

are marked by dotted lines. The arrow marks the site of a localized point

impact. Note that the branching structure of rivers is dependent upon

local topography, gradients etc. and may not always form such a clear

branching structure.

ments of perhaps 10s to 100s of km2). In this situation, there may be

tributaries on the same river system and hence in the same major

catchment that are unaffected and could act as controls (Fig. 8.1). Many

of these impacts are likely to be direct, point impacts (chapter 3) on

water quality or quantity (e.g. dams, manymining operations, pollutant

outlets from factories or sewage treatment works). In these activities, the

spatial extent of the impact is usually clear and includes the area

surrounding the point of impact together with most downstream loca-

tions. Tributaries of other rivers within the same major catchment may

be demonstrably unaffected and hence offer potential control locations

(subject to further conditions of independence, as discussed below).

The second kind of human activity is where impacts are wide-

spread and affect multiple river systems over catchments of perhaps

thousands of square kilometres; that is, tributaries in sub-catchments

will not offer suitable controls. These are likely to be non-point and

indirect impacts, which are diffuse and spread throughout whole catch-

ments rather than being restricted to defined points along channels. In
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these situations, it is often difficult to find any areas within the catch-

ment that are demonstrably free of impact. For example, nutrient runoff

from multiple septic tanks or agricultural fields can mean that most

tributaries within a major catchment are probably affected. Large areas

will almost certainly be subject to numerous and various non-point

impacts (e.g. urban development in conjunction with agricultural im-

pacts). A burgeoning problem of this type is the spread of exotic species.

In these situations, the impacts are generally occurring at the scale of

major catchments, and it will be necessary to look to other, equally large

catchments for controls.

Potentially then, studies of non-point impacts are likely to be

carried out over much larger spatial scales, involving multiple major

catchments, than point-source impacts restricted to individual tribu-

taries. What absolute sizes of catchments should be considered ‘large’

and what sizes ‘small’, however, are likely to vary between regions

depending upon local topography, types of drainage networks etc. The

distinction is somewhat arbitrary, but the two sizes encompass the

majority of examples because each represents a commonly considered

endpoint on a continuum. The principles we discuss below will apply to

impacts intermediate between these sizes. A second reason we distin-

guish these two sizes is that, over very large spatial scales, impacts may

encompass whole biogeographical, geological or climatic regions,

whereas impacts at smaller scales may fall wholly within such regional

zones. Consequently, the likelihood of finding multiple control loca-

tions decreases as the spatial scale of impact increases (as discussed

further below). Thismeans that researchers trying tomeasure the effects

of large-scale impacts face many more design problems than do those

examining small-scale impacts. Indeed, for impacts occurring over very

large river systems, it is likely there will be no other river systems

available that can be considered truly comparable and able to act as

controls. Researchers may have to proceed using a reference system

approach (Box 5.1) where possible and proceed using a weaker ‘levels of

evidence’ approach (see chapter 9).

Finally, we note that sorting out whether impacts are point or

non-point is not always straightforward. Some human activities may

appear to be non-point but actually contain a variety of point impacts.

For example, forestry operations can be widespread through an area and

may appear to be a non-point impact. A more specific examination may

show that forestry can create a series of point impacts. Clearing of

vegetation along stream banks can cause bank slumping, erosion and

high sediment loads. However, if trees are cut within defined coupes it is
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Table 8.1. Types of sampling design for point and non-point impacts; examples

of point and non-point impacts are given in chapter 3

Point impacts

Multiple or single impact location(s) all within the same major catchment – Fig.

8.3a

Multiple impact locations, with some in spatially separated, major catchments –

Fig. 8.5

Non-point impacts

Non-point impacts spread over one or more whole major catchments – Fig. 8.7

a The figures are used later to illustrate possible hierarchies of decisions

regarding selection of controls.

possible that areas of forest are left such that some stream locations can

provide suitable controls, and vegetation removal is effectively a point-

source impact on individual tributaries. Another common impact of

forestry is sediment runoff caused by the construction of roads. Again,

this impact may appear to be non-point, but if such runoff is localized to

specific points along streams, it may be possible to find comparable

locations without such impacts in neighbouring sub-catchments (see

Welsh & Ollivier 1998 for a nice example). Determining whether impacts

are point or non-point and the spatial extent of impacts is sometimes

difficult, but it has important implications for the selection and defini-

tion of control locations (Table 8.1), and is an important and very

necessary first step. The forestry example also illustrates a point we have

made throughout this book: it is important to set out each of the

perturbations associated with any human activity so that we can pose

clear hypotheses about their putative effects.

8.1.3 Finding control locations

Criteria for controls

To locate spatial controls, the first issue is to decide what criteria loca-

tions must meet in order to qualify as controls. These criteria ensure

that, in the absence of that human impact, the impact and control

locations are expected to be similar to each other. If we do not have

reasonably well-defined criteria, we risk choosing control locations that

are substantially different from the impact location(s) in various ways

besides the incidence of impact (for an example and discussion see
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Fig. 8.2 Stylized graphical illustrations of Location� Time variability

among control locations. In each graph, C1 and C2 represent the trajecto-

ries of two control locations over time in some dependent variable aver-

aged across any within-location replication. (a) The two locations have a

large absolute difference in mean value of the variable, but the difference

between the two locations is consistent over time (the two control loca-

tions fluctuate in synchrony) so that Location� Time variance is small.

(b) There is little absolute difference between the control locations but

because they fluctuate completely out of phase, Location�Time variance

is high – this will reduce power to detect differences between control and

impact locations. (c) There is a large absolute difference between control

locations plus they also fluctuate out of phase so that, again, Loca-

tion� Time variance will be high.

Humphrey et al. 1995). Such differences between control and impact

locations mean that there will be greater baseline variance among

locations, and if the temporal dynamics of these locations are different,

then this can lead to survey designs with low power to detect impacts

(section 7.4 and Fig. 8.2).

To establish criteria for controls, we need a good understanding of

what makes different locations similar, at particular spatial scales, in

the absence of human impact. Although there has been substantial

research into the relations between catchment characters and type of

biota (see chapter 2), the answers we can offer are still very limited

because few researchers have explicitly factored spatial scale into their
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sampling designs. The explicit examination of scale is critical because

different factors are liable to be important at different scales. At large

spatial scales, factors such as climate or major shifts in bedrock geology

might drive lots of biotic differences, whereas these factors may be

irrelevant for studies at smaller scales that fall wholly into particular

climates or bedrock lithologies. Some studies of the connection between

physical environment and biota have incorporated scale, such as hier-

archical classification schemes (e.g. Frissell et al. 1986; Hawkins et al.

1993). While promising, the ability of these schemes to make good

predictions and the validity of some critical, internal assumptions still

remain largely untested (Cooper et al. 1998; Downes et al. 1995, 1997).

Other schemes that have looked at similarity among relatively ‘pristine’,

reference locations (see Box 5.1), such as RIVPACS-type or IBI studies

(section 3.2.1) provide some information about the factors that make

locations similar. However, these schemes, again, apply over large spa-

tial areas that may encompass different climatic or other sorts of zones.

Their applicability to studies conducted over smaller scales (or targeted

to particular species) is unclear (see Marchant et al. 1999 for a recent

discussion). Additionally, those factors found to create similarity be-

tween locations typically vary greatly from region to region and conti-

nent to continent, so there are few generalities.

Another likely source of information about suitable controls is

studies that have looked specifically at the effects of human impacts.

Unfortunately, only a few have recognized the need for controls. In a

recent survey of papers examining human impacts on rivers over the last

10 years or so (J. R. Thomson & B. Downes, unpublished data – refer to

Box 6.1), relatively few papers recognized the formal need for control

locations. Of those that did, only 14 provided any explicit criteria for

choice of control locations. These criteria were spatial proximity (es-

pecially the need to stay within the samemajor catchment), similarity in

stream size (or stream order or discharge), substrate and local habitat

(e.g. riffles and pools were distinguished). Interestingly, however, few of

these studies provided any specific justification for using these criteria

and most couched selection criteria in relatively vague language. Out of

interest, we contacted some freshwater ecologists and asked them to

nominate the criteria they woulduse to select controls for different sorts

of rivers (Table 8.2). Although there is some similarity with the criteria

identified above, the diversity of replies shows that this is an area in

great need of dedicated research and debate.

In the absence of a good body of research with definitive answers

204 Applying monitoring designs to flowing waters



Table 8.2. Criteria for control locations named by 18 freshwater ecologists in

different countries

Criterion Number %

Comparisons among tributaries in the same catchment

substrate/geology/suspended load 12 67

discharge regime/stream size/catchment size 11 61

riparian vegetation/zone 10 56

catchment land use/vegetation/soils 8 44

gradient 8 44

altitude/stream order/temperature/distance from source 7 39

current speed/water level/riffle and pool structure 7 39

spatial proximity/external variables (e.g. climate) 5 28

water quality including detritus levels 4 22

channel form/geometry 4 22

algal cover 1 6

where I’m prepared to drink the water! 1 6

logistical practicality 1 6

chance 1 6

presence of fish 1 6

aspect 1 6

Comparisons among catchments

substrate 8 44

discharge regime/stream size 7 39

catchment land use/vegetation 7 39

riparian vegetation 6 33

gradient 5 28

geographic proximity 5 28

geomorphic forms/hydraulic habitat 5 28

altitude and aspect/temperature 4 22

water quality/geology 4 22

can’t be guessed/not solvable/no answer 8 44

Note: These data are not from a representative sample of freshwater ecologists, and so

should not be viewed as providing definitive information. The ecologists were asked

to provide the top five characteristics or features that sites would need to be matched

to make them likely to be similar biotically (e.g. faunal or floral composition, species

absence/presence, species densities) at two spatial scales of comparison: among sites

on different tributaries in the same catchment, and among sites located in different

catchments. Reported is the total number of times out of 18 a feature was chosen.

Some similarities in selection are present, but replies were often quite idiosyncratic,

depending upon taxa and degree of human disturbances in the region. Many

individuals found the among-catchment comparison difficult to do and expressed less

confidence (in some cases, no confidence) in their answers or refused to answer.
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to questions about what, in general, makes locations similar biotically,

what suggestions can we offer about developing criteria for controls? It

is our belief that we should not provide dogmatic advice here. We

suggest that a literature review targeted at studies of the specific im-

pacts, the variables of interest, and the types of rivers and their natural

variability in the region will provide more specific and useful criteria

than any we can offer here, for several reasons. First, large-scale studies

suggest that regional and continental differences can be important.

Although we have provided some suggestions above, the variety of

impacts, stream and river types, and variables chosen for monitoring

means that any criteria we could provide here are too general to be of

much use. Second, we must realize that criteria for controls are contin-

gent upon the variables chosen for measurement. The factors that deter-

mine fish abundance and diversity, for example, are likely to be quite

different and operate over different spatial and temporal scales from

those that influence macroinvertebrate or macrophyte diversity and

abundance. Consequently, the criteria for choosing control locations are

also likely to be different. Third, we should keep in mind that many of

our assumptions about the importance of physical habitat types in

streams and rivers are untested. Recent work is suggesting that we know

a lot less about these things than wemay currently realize. For example,

Bunn & Hughes (1997) have shown that sites connected by only a few

kilometres of stream channel can have populations of the same macro-

invertebrate species that are distinct genetically. If such genetic differen-

tiation proves to be generally true, it suggests that locations along rivers

may contain individuals that are not part of a larger population of

broadly interdispersing organisms, as is commonly assumed (Bunn &

Hughes 1997; Downes & Keough 1998). Instead, individuals at separate

locations may be members of separate populations (see also Sweeney et

al. 1992). If so, then such populations may be responding to much more

local features of their environment than we have thought up until now,

and there may be all sorts of habitat boundaries of which we are un-

aware.

The lesson for studies of human impacts, then, is that we should

not be dogmatic about appropriate criteria for controls. Instead, we

should consider each attribute systematically in light of what is known

about the type of impact(s), the rivers of interest and the variables to be

monitored. We present a step-by-step method for developing criteria for

controls in section 9.3.2. Such careful considerationmay provide us with

better comparisons than we can achieve by clinging to assumptions

about rivers. For example, a common assumption is that control loca-

206 Applying monitoring designs to flowing waters



tions should remain within the same major catchment to qualify. Loca-

tions within the same catchment are often presumed to be similar

because of spatial proximity, but some factors can cross catchments. An

example is underlying geological rock type, because this can determine

substrate type, sediment load and water chemistry (see Huryn et al. 1995

for an example). If the latter characteristics are important to the vari-

ables of interest, then it may be much more important to keep the

bedrock geology of control locations consistent than it is to keep them

all in the same major catchment. Setting up this sort of hierarchy of

importance for control criteriameans each catchment attribute receives

careful and measured consideration for the impact at hand.

The dilemma of the trade-off in similarity and number of controls

A dilemma that greets anyone who embarks on the above process is that

choice of control locations becomes a trade-off between generality and

comparability. If we use criteria that define control locations very nar-

rowly and specifically, then we are likely to improve their similarity to

each other, but we also reduce the pool of potential locations and the

generality of our results. If we define controls much more broadly, then

we improve the numbers of potential locations, but we also increase the

chance that we are comparing among things that are significantly un-

like in important ways. It can be difficult extracting the signal caused by

human impacts if the variability among control locations is itself very

great (Fig. 8.2). This is particularly important for the MBACI design,

which relies on having closely matched control and impact locations.

Thus, both the number of locations and their similarity to each other are

important, but we cannot usually maximize both of these things at the

same time.

We suggest that the criteria for control locations and their selec-

tion should proceed by several steps (Table 8.3). First, criteria for con-

trols should be developed based on what is known about the rivers of

interest and the variables to be monitored, as discussed above. Next,

site visits can determine the number of potential locations available. If

the number of locations is too few (or many are unacceptable for rea-

sons discussed below) then the criteria should be revisited to see if they

can be broadened to include a greater number of potential locations

without compromising the likely power of the sampling design. Finally,

a priori decision rules can be set down regarding an agreed level of

similarity among locations. A pilot phase, in which some preliminary

biological data are collected from potential control locations, allows us
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Table 8.3. Suggested steps in developing criteria for controls and selecting

control locations. Note that the process is better if some pilot data can be

collected that will assess the degree of similarity among control locations

Step 1: Conduct a literature review

This should be a structured examination of the literature examining natural

sources of variability in the variables that will be monitored for relevant river

types. The review should suggest the biggest sources of variability that therefore

ought to be considered for matching control locations. Note that the review can

be carried out as part of a larger exercise designed to help determine also the

most appropriate variables to monitor (see chapter 9).

Step 2: Draw up a list of criteria ordered from most important to least

The review should identify important sources of natural variability. These

sources can then be regarded as factors that ought to be matched among

control locations as much as possible. For example, if discharge is identified as

an important source of variability in the monitoring variables, then it will be

important to match locations for discharge regime.

Step 3: Carry out location visits

It will then be necessary to visit potential control locations. Initially, possible

controls may be identified from maps, but it will be necessary to visit all

locations to ensure that they are not different in ways deemed important (such

as suffering some other human impact).

Step 4: Are there sufficient control locations?

Decisions about what is sufficient need to be made in the context of power

analysis, but it may be quickly clear that there are very few potential locations.

This is because, of those locations that meet the criteria, some will be rejected

because they are likely to be affected by the human impact under consideration

or are not statistically independent from other locations (as discussed in section

8.1.3). It is also possible that few or no locations meet the required criteria at all.

Step 5: Revisit the criteria

Have the criteria possibly been drawn up too rigidly? Can the necessity for

controls to meet one or more of the less important criteria be relaxed?

Step 6: Does this improve the number of control locations?

If it seems reasonable to relax one or more criteria, further visits will be

necessary to visit other locations that might be suitable as controls. If there are

still insufficient numbers of control locations, the criteria can be revisited

again, or investigators may have to accept that there are no locations that can

act as controls (considered in chapter 9).

to examine specifically whether locations meet our criteria for similar-

ity. We can calculate the potential loss of statistical power caused by

increased variance among locations versus the potential increased

power expected from using higher numbers of locations (Fig. 8.2 and

discussed in chapter 12). Hence, decisions to remove particularly vari-
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able control locations need not be made in an arbitrary or ad hoc way.

The advantage of using such a sequence is that we gather a collec-

tion of control locations that either form a well-defined population from

which we can sample, or at least meet an agreed-upon and rationally

argued set of criteria. That is, we are clear about whywe chose particular

locations and our choices are not arbitrary. Additionally, such a se-

quence helps us avoid later, capricious removal of control locations once

monitoring has begun. Because we can examine the variance among

locations over time, we can decide ahead of data collection what are the

grounds for removing a control location from the data set. We can

justify removing control locations, for example, if they are changed by

other sorts of human impacts or if there are major natural changes (e.g.

landslide causing complete rerouting of the river channel). However, if

grounds for removal are not agreed upon prior tomonitoring, theremay

be a high risk that substantial pressure will be brought to bear to remove

supposedly ‘aberrant’ control locations once monitoring has started

because their removal increases the probability of reaching a particular

decision about impacts. This situation is very unfortunate and must be

avoided because it has the potential to undermine completely the deci-

sion-making process (we discuss a way of preventing such outcomes

in chapter 12). It may be particularly likely where insufficient thought

was given to the process of selecting controls ahead of time because

it is then more likely that some controls will perform differently to

others.

As discussed in previous chapters (sections 5.4 and 6.3), locations

must meet other conditions to qualify as controls. Control locations

must provide statistically independent estimates of the variables, they

must be unaffected by the impact in question, and they should not be

grouped together in locations that are spatially separated from impact

locations or differ systematically from impact locations. Each of these

requirements poses further problems for applying BACI-type designs.

Statistical independence and location of controls

Statistical independence means that replicate locations must not be

highly correlated, an effect often observed when two or more places are

in close spatial proximity (section 6.2.1). In rivers, an obvious source of

such correlation between locations is water flow. Flow delivers organ-

isms, nutrients, pollutants and sediment as well as extreme hydrologic

characteristics like floods. Hence, there is some reason to expect that

locations along the same channel may be more similar to each other

than they are to locations along different channels (i.e. are spatially
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autocorrelated). Similarity between locations along the same channel

means that the likelihood of detecting impacts is not the same as when

independent locations on different channels are used (section 6.2.1; see

also Underwood 1994b). This problem is particularly apparent in rivers

but is not peculiar to them. Connections through ocean currents or wind

are liable to have the same effects in marine and terrestrial environ-

ments, respectively, but have received equally little direct attention (e.g.

Keough & Black 1996). Overall, we may consider river flow both a boon

and a curse. Although it makes locations on the same tributary connec-

ted biologically for unknown distances, at least we know the directions

of some important and consistent gradients (i.e. upstream and down-

stream). Many other habitats have fluctuating gradients (e.g. marine

intertidal) or substantial gradients not obviously linked to physical

features (e.g. marine soft-sediment benthos; Thrush 1991).

Althoughwe can see that flow is likely to make locations along the

same channel potentially very similar, we know little about the actual

physical distances involved. How far upstream or downstream can we go

from any point before other sites on the same river are not connected in

an ecologically important way? How far apart do we have to keepmeasure-

ments to ensure they are statistically independent estimates? Again,

ecological research into this question is in its infancy (Koenig 1999), and

there are few definitive answers. There is some information about the

distances nutrients travel downstream before being removed from the

water column (‘nutrient spiralling’; e.g. Elwood et al. 1983; Newbold

1992), although these values seem specific to stream types. When con-

sidering invertebrate dispersal, many stream researchers have been

overwhelmed by the high densities of organisms drifting in stream

currents, and there has been a presumption that individuals are prob-

ably travelling long distances. However, very few dispersal studies in

streams have actually attempted to quantify the distances invertebrates

travel in the drift, walk over the stream bed or fly along streams as adults

(Downes & Keough 1998), so it is possible that many individuals are not

travelling very far. For example, Elliott (1971a,b) found many drifting or

crawling individuals did not travel more than a few metres in a small

(3.5m wide) stream. The real difficulty, however, is that there is simply

not enough information from a variety of rivers for us to know what are

typical dispersal distances given particular environmental conditions of

discharge and so forth. There is some information about the transport of

coarse particulate organic matter (e.g. Raikow et al. 1995) and reasonably

numerous studies on fish dispersal (e.g. Gowan & Fausch 1996). Many

physical characteristics of streams, such as discharge peaks, sediment
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transport, temperature and pH are correlated at locations along stream

channels as well as between streams in the same catchment (e.g.Walling

& Webb 1992; Webb & Walling 1992). In some cases, researchers may

have a good grasp of the temporal and spatial scales of autocorrelation

among such physical parameters, but, again, the biotic significance of

these correlations is not always clear.

In our opinion, the best option, in the absence of any data, is to

keep control locations on separate channels as much as possible while

keeping parameters thought to be important (e.g. discharge, substrate

type) similar. Keeping control locations on separate tributaries is likely

to be an acceptable way of ensuring independence for some biota (e.g.

macroinvertebrates) that are thought unlikely to travel between them,

or are sessile, such as plants. It is much less reasonable for organisms

such as some fish, however, that might routinely traverse different

tributaries in the same catchment. Additionally, separate tributaries can

be connected via movement of groundwater, which can transport water

and solutes in a variety of directions (e.g. Jones & Holmes 1996), or

floodwaters. Consequently, use of separate tributaries is not a guarantee

of statistical independence. Again, we advocate researchers examine any

available data for the variables concerned, rather than simply assuming

that locations on different channels must be independent.

Usingmore than one location per tributarymight be very useful in

at least one situation. In point impacts, it may be possible to have a

location upstream and one downstream of the point of impact, and

similarly separated locations on tributaries free of impact altogether.

This design may be especially useful in upland systems where we are

confident that other human activities have not caused impacts. If we

calculate the differences between pairs of upstream and downstream

locations, we remove the problem of autocorrelation, and these differen-

ces could be compared over time among impacted and unimpacted

tributaries using BACIP or MBACI(P)-type designs. The big advantage is

that fewer tributaries overall are required in this design than one where

only one location (control or impact) can occur on each channel. How-

ever, a potential disadvantage with this approach is that we generally do

not yet understandmuch about longitudinal variation. That is, although

we know biotic composition changes along channels, we do not know

how biological difference equates with physical distances, nor how

biological change versus distance along channel relations varies among

rivers. Consequently, we may choose pairs of locations on tributaries

that represent quite different levels of difference, resulting in unlike

comparisons among control streams. If these differences fluctuate
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greatly with time, then we have the same problem described above of

trying to detect a signal of human impact against a lot of background

variability. Additionally, we can only have pairs of impact and control

locations on the same tributary if we are confident that impacts are not

transferred to upstream locations. An impact zone can represent a

barrier to dispersal in both upstream and downstream directions, how-

ever, and this may mean that upstream locations are either starved of

colonists or accumulate them. In either case, we would not have truly

independent estimates of a control state.

Ensuring control locations are free of the human impact

Our second characteristic of controls is that they be unaffected by the

human impact of interest. Locations on the same channel or channels

where the impact occurs are obvious places to seek controls, but flow

causes us difficulties here as well. Water flow will often transport the

effects of stressors downstream. In many cases, locations downstream in

a catchment will be automatically ruled out as possibilities for controls

because human impacts such as pollutants, alterations to discharge

regimes etc. are transported probably to many, if not all, comparable

downstream locations. For the same reasons discussed above, wewill not

have, in many cases, good estimates of how far downstream one can go

and expect rivers to be free of effects from impacts upstream. Conse-

quently, in most cases we expect that we can never site control locations

at points downstream of impacts. Usually then, we will be restricted to

using locations at upstream points or on tributaries in either the same

or other catchments that are free of impact. Again, unidirectional water

flow provides both disadvantages and advantages. Although we cannot

generally use any downstream locations, we can at least be confident, in

some cases, that upstream locations or separate channels are demon-

strably free of the impact.

Even when we are confident of an impact’s boundaries, we still

need to ensure that monitored biota are not travelling routinely be-

tween impacted and control locations. Frequent dispersal of organisms

between impact and controlsmeans these locations are not independent

(section 6.2.1), and that means that comparisons between them will not

provide unbiased estimates of the true effect of the impact. Fish, or other

highly dispersive animals such as some birds or mammals, are examples

of species that may travel upstream or to other tributaries to escape

effects of impacts and may end up colonizing, and hence altering, our

controls.
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Finally even in rivers having neatly defined catchments, there are

some impacts whose extents are very difficult to establish and which can

be unrelated to catchment boundaries or water flow. Acid rain and other

aerial pollutants (e.g. Vitousek et al. 1997a) and impacts associated with

climate changes are good examples. Such impacts often occur across

large areas. The difficulties we may have in establishing the ranges of

these impacts add to the problemsmentioned above of locating suitable

controls over large spatial scales. We expect that these sorts of impacts

will often require us to fall back on relatively weaker lines of evidence

(discussed in the next chapter) than thosewe can use whenwe are able to

locate comparable controls.

Spatial confounding, environmental differences and location of controls

The final point about controls concerns the need to avoid spatial con-

founding and/or systematic differences in habitat between control and

impact locations. Spatial confounding occurs when all control locations

are in one place and all impact locations (or the impact location) are in

another (section 6.2.1). In this situation, it is possible for one area

containing all the controls to experience a natural change that, by

chance, coincides with the onset of human activity at the impact loca-

tion(s). Likewise, if there are systematic differences in habitat between

control and impact locations, it is possible for one habitat type also to

experience a natural change coincident with human activity. With

either of these designs, we are unable, prima facie, to discount the

possibility that differences between control and impact locations are

due to natural changes coincident with particular areas or particular

habitat types.

Systematic differences in habitats and spatial confounding of con-

trol and impact locations often occur together. For example, a common

form of spatial confounding occurs where all control locations are in

upstream areas and all impact locations are downstream from them

(section 6.2). This is a common design because human impacts frequent-

ly occur on midland or lowland stretches of rivers, while rocky and hilly

upstream areas are often unsuitable for development and remain the

only locations free from impact within the catchment. In this case, there

are obvious habitat differences related to spatial position, which are

systematic changes in channel size, substrate particle size and other

physical changes that occur along stream channels. Spatial confounding

can occur, however, even when we have carefully matched the habitats

of impacts and controls – for example, when we locate controls in a
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catchment entirely separate from that of the impact catchment. It is

possible for there to be natural changes among the upper, rocky loca-

tions that do not occur at locations lower down, or for a change to occur

in our control catchment that does not occur in the impact catchment.

We might be unlucky in that these changes coincide with the onset of

human activities, but the real difficulty will be that we simply will not

know whether we have been ‘unlucky’ or not.

To avoid this problem, it is preferable to match the habitat of

control and impact locations as much as possible and to seek control

locations that are spatially interspersed with, or around, the impact

location(s). We then reduce the possibility that systematic differences

between impacts and controls will lower or remove our ability to infer

differences between them as due to the human activity of interest.

The relative significance of problems with controls

In the ideal situation, then, we would have many comparable control

locations, well separated from each other on different tributaries or in

different catchments, but with multiple controls interspersed among

one to several impact locations. In reality, control locations are likely to

be few in numbers, and little choice may be available. Our control

locations may have some of the problems discussed above. However,

these problems are not of equal significance (Table 8.4). Some problems

with controlsmightmean that wewould need to collect complementary

data (as described in the next chapter), whereas others may mean that

the sampling design is compromised from the outset. Accordingly, re-

searchers and managers should be aware of the relative significance of

violating the principles discussed above. As indicated at the start of this

chapter, the priority is recognizing, ahead of time, the sorts of problems

that may occur because in many cases we can plan for them.

Perhaps the worse problem is if controls become affected by the

impact. In this situation, differences between control and impact loca-

tions no longer estimate a treatment effect due to impacts. The funda-

mental question has changed. Instead of a BACI-type design, at best we

have weakly and strongly impacted locations and a design that is analog-

ous to a dose-response experiment in ecotoxicology. Hence, we are no

longer testing an hypothesis about the absolute differences between

impacts and controls. Instead, we are testing an hypothesis about the

effects of different degrees or levels of impact.

When controls become affected, we have a number of possible

strategies. First, as discussed above, we can remove impacted control

214 Applying monitoring designs to flowing waters



Table 8.4. Problems with control locations, in order from worst to least

Possible problems with control

locations Remedy

1. Control locations are affected by

impact

May require the removal of the

impacted controls or the recasting of

the hypothesis as a weakly vs. strongly

impacted comparison. Situation can be

fatal if the controls are affected but to

an unknown degree

2. Control locations are not

independent of each other (e.g. as

can happen if they are on the same

tributary)

Can change the tabled probabilities of

test statistics (as degrees of freedom are

fewer than expected from sample size)

and hence increase or decrease the

likelihood of detecting impacts but in

unpredictable ways. Requires an

independent and reliable estimate of

the degree of autocorrelation among

locations to allow correction, but this is

not often available

3. Systematic differences between

control and impact locations in,

for example, physical features of

habitat, and/or control and impact

locations are spatially confounded

Extra data needed that support the

conclusion that control and impact

locations do not differ in features

known to influence the variables being

used to detect human impacts. Any

pre-existing differences need to be

factored into the design. Case is

particularly strengthened if we have

predictions that are unique to the

human impact explanation (see

chapter 9)

locations from the survey design if we have sufficient numbers of con-

trols that loss of one or more does not destroy our ability to draw strong

inferences. Second, if we havemeasured the degree to which controls are

impacted and if they are only slightly affected, we can recast our ques-

tion as the aforementioned weakly versus strongly impacted compari-

son. Indeed, such questions are often of great interest. If considerable

data have already been collected then stopping monitoring or removing

locationsmaymean a waste of information and resources. Recasting our

question does notmean the statistical analysis of the datamust change –
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rather, it alters the interpretation we draw from the results because our

hypothesis and analysis framework have changed.

The worst case is where control locations are known or thought to

have been affected but to an unknown degree because nomeasurements

were taken to assess an impact’s intensity, extent or duration. In this

case, we do not know whether we have a group of weakly affected

locations because some or all of the controls may have been strongly

affected and consequently be equivalent to the ‘impact’ locations. This

situation is difficult – probably impossible – to rescue because we have

no logical way of recasting a sensible comparison of control and impact

locations.

The latter outcome dictates that where uncertainty exists regard-

ing the spatial extent of impact and its likely effects on control locations,

prudence should rule. First, we should site control locations as far away

from the impact location(s) as is possible without compromising their

comparability to the impact location(s). Second, if we have the luxury of

having many control locations (and enough money!), we can monitor

more controls than are required, so that if we have to later remove some

from the data set we can do so without reducing statistical power. Third,

we can set up sampling stations at increasing distances from the point(s)

of impact, which can provide information about how impacts dissipate

over distance (Ellis & Schneider 1997). These strategies reduce the chance

that we end up with data with no value for inferring impact.

Our second difficulty is where locations prove to be spatially

autocorrelated. It is possible that for some physical variables, such as

discharge, sufficient pre-impact data exist that the degree of spatial

autocorrelation can be measured or modelled. In this case, a correction

can be applied to reduce the possibility that incorrect decisions are

reached (see Legendre 1993). For biological variables, it is unlikely that

such data will exist. The possibility of estimating independently the

degree to which spatial autocorrelation is a problem and applying a

correction is thus unlikely. In the future, we should be able to incorpor-

ate spatial coordinates of data points routinely into our analyses to

estimate and factor out pure spatial variance (e.g. Anderson & Gribble

1998; Borcard et al. 1992; Legendre 1993). Until then, however, conserva-

tive solutions that make spatial autocorrelation either unlikely or triv-

ial, such as placing locations on well-separated tributaries, seem the

most prudent.

Instances where we know that control locations differ systemati-

cally from impact locations in some environmental feature are not fatal

in that the estimates of differences between them are, at least, unbiased.
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The issue, here, is what may be logically deduced from any differences.

Systematic environmental differences between controls and impacts are

viable explanations for differences, and it does not suffice for us simply

to try to wave these explanations away. Similar efforts are needed when

controls and impacts are spatially confounded. Again, some thought

ahead of time can help build amuchmore convincing case, using several

lines of weak, but independent, evidence that differences are due to

human impacts.We discuss how these lines of evidencemay be construc-

ted in the next chapter, when we discuss situations where controls

and/or before data are not available. Ultimately however, we should

realize that on strictly logical grounds, such a design cannot provide

evidence for human impacts as well as a properly applied MBACI design.

However, designs to detect human impacts provide relative degrees of

inference. A design in which control and impact locations differ in some

feature or are spatially confounded but where researchers have system-

atically tackled the problem ahead of time is likely to provide much

better inference than one where the problem was ignored and no com-

plementary evidence gathered.

How many control locations are necessary?

As emphasized in section 5.2, the more locations there are within the

sampling design, the stronger is the inference (especially where we have

more than one) and the greater is likely to be our statistical power to

detect changes (section 7.4). Nevertheless, there is no ‘magic’ minimum

number of locations that we advocate, because number of locations (and

their variation through time) should be examined in the context of the

direct effects on statistical power. In some circumstances, locating any

controls will prove impossible. We discuss this situation in the next

chapter.

8.1.4 Subsampling of locations

As explained above, the term Locations can represent anything from a

short stretch of a single stream and its surrounding sub-catchment to

whole catchments covering thousands of square kilometres. The physi-

cal size of locations is driven by the extent of the impact, as described

above, but each location, regardless of size, provides one replicate in our

survey design, and that equates with, effectively, one value per sampling

time for Control vs. Impact hypothesis-tests. Subsamples, which are

replicate samples collected from within an individual location, do not
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add replicates to tests of hypotheses about impacts. They serve to im-

prove the precision with which the state of locations are known (or to

provide improved estimates of the extent of impact in space where this is

not well understood ahead of time as in the Beyond-BACI design). Conse-

quently, it is important that researchers be very clear about what size of

area equates with a location to avoid the possibility of confusing true

replicates of impacts or controls with subsamples. Consider, for

example, when we can use equipment that allows us to quantify vari-

ables over large areas, such as satellite imagery that provides a good

estimate of the percentage of the whole catchment that is covered by

trees (e.g. Wear et al. 1998). Our sampling process generates a single

number for each location, and there is no subsampling. However, for

most variables we will be using sampling equipment that works over

scales far smaller than the likely size of most locations. Macroinverte-

brates, plankton, algae, aquatic angiosperms and many fish are all

examples of taxa where sampling is likely to use a piece of equipment

that examines no more (and in some cases, far less) than a few square

metres. We would not be confident that visiting one point in a stretch of

stream or a whole catchment and collecting a single sample from that

point would provide information that is representative of the rest of the

location. One sample is unlikely to represent a whole site well, nor one

site to represent a whole sub-catchment, because there is plenty of

evidence that site-to-site variation can be considerable in a variety of

ecosystems (e.g. Corkum 1991; Morrisey et al. 1992; and many others). As

a consequence, wewill almost certainly need subsamples inmany cases.

A need to subsample immediately poses some problems. First, how

do we distribute our subsamples effectively across an entire location? If

locations are very large, theremay be multiple units within them – river

systems, sub-catchments within those systems andmultiple sites within

those – from which we could take samples. If a Beyond-BACI design is

planned, then these nested, spatial units can form natural units for the

nested sampling levels of the design (e.g. Corkum 1991). If we wish to

take subsamples from only one level below that of locations (i.e. we do

not want multiple, nested levels), the important issue is to ensure that

subsamples are spatially representative of locations (section 5.4.1). We

could locate subsamples entirely at random, but a probably better ap-

proach is to ensure a minimum are taken from each major subunit

within the location. For example, if our catchment contained three

major river systems, we could ensure that one-third of subsamples

occurred in each of them, but with allocation within each of the river

systems decided entirely at random. This approach ensures that we do
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not by chance end up with most subsamples from only one river system.

Note that there is an acute shortage of information about the spatial

scales over which fauna and flora respond to their environment. If we

had detailed knowledge about such scaling, it would be much clearer

which spatial scales to sample in order to represent well the state of, say,

a whole catchment. As it is, we often have to choose scales at random –

sizes of individual sites, for example, are often chosen quite arbitrarily,

but can have profound effects on diversity and abundance (Downes et al.

2000).

The second problem is how we cope with the enormous numbers

of subsamples that may be required to represent adequately each loca-

tion at each time. If each subsample requires a lot of work or time to

generate values, then the total effort and cost of the monitoring pro-

gram could be prohibitive. If the nested subsamples are not being used

to look at spatial variation per se (as would be the case in a Beyond-BACI

or gradients design – section 5.4), then one solution, mentioned in

chapter 7, is to composite samples (i.e. take multiple subsamples and

combine them) rather than individually enumerate them. The combined

sample is then subsampled to generate a single set of values that are

likely to be representative of the whole location. Macroinvertebrates are

a good example of species that are time-consuming to count and ident-

ify. However, techniques are available for combining multiple samples

in the laboratory and then subsampling to create a representative

sample (e.g.Marchant 1989;Walsh 1997). Compositing is a technique not

often used by freshwater ecologists but is a valid way to proceed in these

circumstances (see Barbour & Gerritsen 1996; Courtemanch 1996;

Growns et al. 1997; Somers et al. 1998; Vinson & Hawkins 1996, for

considerable discussion and examples). We will discuss these issues

more in the following chapter on variable selection. The final issue with

subsampling is: how many subsamples are needed? As emphasized in

chapter 7, we can make that decision only as part of calculations of the

statistical power of the design. In this respect, a few pilot data go a very

long way. Discussion about how to carry out these sorts of calculations

will be addressed in chapters 11 and 12.

8.1.5 Examples of decision trees for finding and choosing controls

In Figs. 8.3–8.7 and the accompanying tables (Tables 8.5–8.7), we have

provided examples of the sorts of questions and decisions that can

improve the selection of control locations. Figures 8.4 and 8.6 also

illustrate how differences in the spatial location of controls can result in
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(a)

(b)

X

X

Fig. 8.4 Idealized illustrations of sampling designs suggested from Fig. 8.3.

In each case, the cross marks the impact location and filled dots potential

control locations; catchment boundaries are marked by the dotted lines.

(a) An ideal MBACI design,where all controls and the impact location occur

within the same overall catchment (design 1, Table 8.5). There are nomajor

gradients within the catchment likely to cause high Location�Time vari-

ance, and controls are spatially dispersed around the impact location and

are not all at upland locales, likely to be very different from the impact

location. (b) Designs where large-scale gradients may cause problems. The

thick dark line marks a boundary that, unbeknownst to the investigator,

causes controls in the catchment on the left to perform differently from

those in the two catchments on the right. The light shading marks a

further physical gradient that spans parts of the two right-hand catch-

ments and that, also unbeknownst to the investigator, causes these parts

of the catchments to perform differently from the rest. Design 1 (see Table

8.5) (which uses only the central catchment) might have higher Loca-

tion� Time variability than the catchment illustrated in (a). Design 2

(which uses locations in all three catchments) has good replication but

may suffer high Location�Time variance among controls caused by the

various physical differences both between and within catchments. Design

3, in which only one other catchment can offer controls (beside the impact

catchment), may also suffer high Location� Time variance, particularly if

the left-hand catchment is the only one available to provide controls. These

problemswith large-scale physical gradients are likely to be exacerbated in

situations where no controls can be gained within the impact catchment

(designs 4 and 5).
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Fig. 8.5 Some possible design outcomes when there are multiple impact

locations, each a point source where potential effects are confined to a

tributary. Consult Table 8.6 for notes on each numbered outcome.

different BACI-type designs or raise different potential problems with

detecting any signal caused by human impacts.

We have used spatial proximity of suitable control locations to

impact locations as the main way of making selections. However, we do

not consider that spatial proximity should be used as a fixed rule. Spatial

proximity is simply a surrogate for suites of environmental variables

whose conditions we hope to keep similar by keeping the distances

between locations as small as we can. However, there may be instances

where we understand what these suites of environmental variables

comprise and how they operate. In that case, spatial proximity could

give way to a more reasoned use of these other variables.

The charts assume that the spatial extent (in terms of catchment

size) of the impact and whether it is a point or non-point impact have

been identified. They also assume that criteria for controls have been

developed, the potential pool of locations identified, and the locations

likely to have problems with independence (e.g. on same tributary) or

with a high chance of being affected by the impact eliminated from the
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(a)

X

(b)

XX

X

X

X

X

Fig. 8.6 Idealized illustrations of sampling designs suggested from Fig. 8.5.

In each case, dotted lines represent catchment boundaries, crosses mark

impact locations and filled dots are potential control locations. (a) An ideal

MBACI design, where multiple impact locations are accompanied by repli-

cate control locations within each impact catchment (design 1, see Table

8.6). The catchments do not necessarily have to be in a row or close

together. In this example, there are no major gradients within each catch-

ment that are likely to cause high Location�Time variance. Replication of

locations within catchments means the latter can be incorporated as a

factor in the design, in which case any large variation among catchments

will be removed from estimates of variance among Locations. (b) A more

likely outcome for multiple point-source impacts, where some catchments

have no nearby controls at all, some can gain only one in a nearby

catchment, and some can gain both within-catchment controls and con-

trols in neighbouring catchments. In some situations, we can anticipate

that all three scenarios will occur within the same design. The degree to

which this will create problems is dependent upon whether variation

between locations within the same catchment vs. between locations in

different catchments causes large Location�Time variance. Such vari-

ance can be caused by the sorts of physical gradients and scenarios de-

scribed in Fig. 8.4.
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Fig. 8.7 The possible design outcomes when there are multiple or single

impact locations, each non-point and spread over a whole catchment – that

is, effects are not restricted to individual tributaries. Consult Table 8.7 for

notes on each numbered outcome.

pool. We separate point and non-point impacts because the former can

be restricted to individual tributaries, which raises the prospect that

controls can be sought within the same major catchment. If so, the unit

of replication (i.e. the term ‘Location’ in our designs) may be small

sub-catchments associated with individual tributaries. In the case of

non-point impacts, the unit of replication for the design will usually be

larger catchments (perhaps even whole major catchments) and will not

usually be associated with individual tributaries.

8.2 temporal variation, and before and after

sampling

Natural variation through time and the need to sample both Before and

After putative impacts raise problems analogous to all those discussed

above for spatial variability and the need for Control locations. We need

to know the likely temporal extent of impacts because this will define

the length of Before and After sampling periods. We need to consider

how we replicate times within these periods and, therefore how we will

deal with the issues of subsampling over time. This section will be far

shorter than that given to spatial replication. This is because wewill not,

in virtually all cases, have any control over the selection of Before or

After periods, in the way that we can select locations to act as Controls.

We will be forced to use whatever years (or other units of time) that we

can sample prior to start-up and those years following.
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8.2.1 Temporal extent and nature of impact

In chapter 3, we discussed the different temporal scales over which

perturbations can occur. Perturbations may be relatively short-lived

pulses, longer-term press disturbances or many other sorts of things. The

response of the systemmay be an abrupt ‘step’ change, perhaps followed

by a recovery, or a shift detectable only as a long-term trend. These

different sorts of perturbations pose different problems for detection.

Most of our statistical models are designed to detect step changes (sec-

tion 7.5) but have some capacity to detect more subtle changes depend-

ing on how long monitoring continues.

Like the spatial extents of impacts described above (section 8.1.2),

temporal extents also have profound implications for monitoring de-

signs. First, we need to know over what time period stressors will be

applied.Will stressors be applied only once over a relatively short period

of time (say a fewmonths) or will there be a series of pulse disturbances?

Will any of the likely stressors act over a much longer period, more akin

to a press disturbance? Such information should be part of any develop-

ment proposal, but may have to be gleaned by looking at published

studies of similar developments. Second, we need to know whether

ecosystem responses to putative impacts are likely to occur overmonths,

years or decades, because the length of monitoring before and after the

onset of human activity needs to be tailored specifically to the appropri-

ate temporal scale. Thus, if we have an impact that causes changes after

two to three years, then three years should be the absolute minimum

length of monitoring periods.

We should search systematically through the literature for as

much information as we can about the likely duration and frequency of

perturbations and about what we know of the temporal scales of any

ecosystem responses. Review papers do provide such information (e.g.

Niemi et al. 1990; Yount & Niemi 1990). For example, Niemi et al. (1990)

surveyed 139 publications, each reporting responses and recovery times

of freshwater ecosystems after press or pulse disturbances from stressors

like DDT application, logging, dredging, flooding etc. They examined

minimum and maximum recovery periods of different sorts of taxa

(e.g. densities or species richness of macrophytes, micro-organisms,

periphyton, macroinvertebrates, fish) and separated small streams from

larger rivers (they also examined lakes). Recovery times varied greatly

among taxa and stressors, with minimum times being one to two

months and maximum times in excess of several decades. We do not

provide more specific details here, because we believe researchers will
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need to conduct their own review, targeted at particular taxa, stressors,

and types of river. Niemi et al.’s (1990) study provides a nice example of

how such a review could be approached.

The more information we have about the duration of perturba-

tions and the likely response of the system, the better informed we will

be about the length of time needed for monitoring both before and after

the human activity has started. For example, if we know that perturba-

tions will be short-lived and that the system response is likely to be a step

change, then we may be confident of detecting such changes within a

few years. If changes are likely to be over the long term, then we should

plan asmuch as possible for sufficiently lengthy Before and After periods

(see Hershey et al. 1998).

In the ideal case, our information about the temporal extents of

perturbations would set the overall time frame and inform funding

decisions for the monitoring program. More realistically, both of these

things are usually set by the time frames over which management gets

notice of impending human activities, has funding and must make

decisions, even when these are all seriously mismatched with those of

any putative impacts. Consequently, we will usually have to be prag-

matic about the length of monitoring periods. For example, if the total

time frame available is too short to detect important, long-term trends,

then it may be wise to plan detection around other, short-term effects,

even if these are considered less environmentally important (see chapter

11). The design can still incorporate measures for detecting longer-term

changes, should further funds be made available.

8.2.2 Frequency of sampling within Periods

The next issue regarding time is the frequency with which we sample

within Periods, or what the term ‘Times’ will represent. In chapter 7, we

suggested that Times will often be represented by each year before and

after start-up of possible human impact. Certainly some impacts (and

the responses of the biota) may occur over periods of a year or more,

which makes Times as years appropriate. However, you may wonder

whether or not a year may be too long for some circumstances. For

example, it is possible for some invertebrates to respond quickly to

disturbance and return to pre-disturbance densities within one to two

months (e.g. Niemi et al. 1990). However, we must keep in mind that

typically there is a lot of temporal variability in rivers, much of

it associated with seasonal changes. For example, seasonal changes

in water temperature and light can mean these factors fluctuate
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throughout the year. Seasonal changes in rainfall can result in large

changes in discharge and hence frequency of flooding or drying. Many

lotic species show seasonally related changes in the densities of individ-

uals, what life-cycle stages that are present, when reproduction occurs,

and so forth. As a result, whenwehave a short-term change in something

like invertebrate density that might be caused by human impacts, it is

likely to be confounded with changes that are related to the time of year

when human activities happen to start (see Linke et al. 1999 for an

example). The only way we will have confidence that we can disentangle

any human impacts from natural variability is if we have monitored

natural fluctuation through multiple samples of that time of the year

prior to start-up. This latter information will give us a good representa-

tion of the ‘envelope’ of natural variability, at different times of the year,

among Control locations in the absence of human impact. Hence, even

when impacts and responses to impacts are fairly short term, it makes

sense to conceive of Times as years, and to expect (or hope!) to monitor

for multiple years prior to human activity.

8.2.3 Subsamples within Times

Even when we have settled upon the temporal scale that will represent

Times, we will probably need to subsample, for the same reasons dis-

cussed for subsampling of Locations (section 8.1.4). One sample per year

(or whatever period we settle upon for Times) is unlikely to represent

one Time particularly well for many variables.

The frequency of any temporal subsampling should be set by the

temporal scales over which the variables of interest are likely to change.

Densities of macroinvertebrates and algae, for example, might fluctuate

markedly over a period of two to three weeks or less, suggesting that

subsampling would be needed at that frequency to capture average

population densities over the Time period adequately. However, den-

sities of other organisms might be fairly consistent over a few weeks,

which would suggest that sampling over that time frame would simply

be wasted effort. If we are monitoring reproductive output or recruit-

ment of juveniles into the population, these events may occur only

during a particular time of year, in which case temporal subsampling

might be concentrated at that time rather than spread throughout the

year. There is no fixed regimen of subsampling that we can recommend,

because it depends greatly upon the variables selected for monitoring.

Again, the literature is the best source of information about likely

temporal scales of variability.

By subsampling, we try to make sure that our estimates are pre-
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cise; that is, that the average of those numbers will represent well the

state of a Location during a particular Time. What we do with the

subsamples then depends upon the design we have settled upon. If we

have planned a Beyond-BACI design, then different sampling frequen-

cies are nested within Times. If we use an MBACI design, then the

subsamples serve simply to estimate precisely the state of each location

at each Time. In the latter case, we might choose to composite these

subsamples (as described above) and create good representative samples

from them to keep down costs.

8.2.4 Statistical independence and sampling through time

In section 8.1.2 we described the problems created when data from

different Locations are not independent because the Locations are close

together in space. The same problem occurs with samples through time.

Samples that are close together in time may be more similar (or dissimi-

lar, although this is less likely) to each other than they are to data

collected much later or much earlier. This is called temporal autocor-

relation, and it can have the same effect on statistical tests we described

above (Table 8.4). Temporal autocorrelation can occur where the fre-

quency of sampling is high enough that the same individuals are sam-

pled repeatedly because they are relatively long-lived. However,

temporal autocorrelation can also occur if populations get a sudden

influx of juveniles that greatly increase densities for a time. Samples

within this timemight bemuchmore similar to each other than to other

samples collected at other times.

As for spatial autocorrelation, there are few studies of how ecologi-

cal variables can be temporally autocorrelated, and therefore few guide-

lines about how one can reduce its size or incidence. Autocorrelation

between temporal subsamples is not an issue if the latter are to be

composited or otherwise averaged to generate a single value for each

Time period. However, this sort of autocorrelation can be a problem for

Beyond-BACI designs, because those nested subsamples are retained as

factors within the design. Autocorrelation among Times, especially

when Times are represented by years, is much less likely but can occur

with particular long-lived taxa. For example, many trees and even some

fish can live for many years, and frequent, non-destructive sampling

might collect the same individuals repeatedly at the same locations. The

best strategy is to use the life cycle of species and the longevity of

individuals as a guide towhether temporal autocorrelation is likely to be

a problem.
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8.3 doing the sampling

There are just a couple of things to re-emphasize here from issues raised

in chapter 5. First, we are very likely to be monitoring more than one

variable to examine any putative impacts. Different variables may pose

different requirements for the sampling design, such as different samp-

ling frequencies through time. It is important that the final monitoring

design not be geared to the sampling requirements of variables requir-

ing the least sampling effort (in either space or time). Second, different

variables may create different logistical problems in sampling (i.e. types

and numbers of people required to carry out sampling, types and areal

extents of sampling gear). Nevertheless, it is logistically efficient to

collect all data simultaneously, or as much as possible. Additionally, we

must keep inmind that Impact and Control locations should be sampled

at the same time or as close in time as is practically possible. If it is not

possible to obtain all samples in a short window of time, then it is

important to consider ways of randomizing or stratifying the order of

sampling of locations to avoid any potential biases (section 5.4.4).

Finally, we re-emphasize that it is important that the outcomes of

and data collected from monitoring programs be published in places

with wide accessibility to others. We can learn much from previous

examples of human impacts, so it is important that monitoring data be

archived properly and made accessible to others. Additionally, the re-

sults of the monitoring program should be published in journals or

other publications with wide distribution. Some examples of published

BACI-type studies are given in Table 8.8. The designs are used in both

experimental manipulations of stressors in mesocosm-type studies, as

well as for assessing human impacts in real settings, at small or large

spatial and temporal scales and in a variety of environments. Such

studies provide very useful information about human impacts.

8.4 a worked example – effects of liming to decrease

acidity

In this section we provide a worked example using some real data from a

long-term experiment that is examining the effects of acidification of

streams and whether such effects can be reversed by adding lime to

streamwaters. The design is anMBACI, andwe examine here each step of

the process: the background to the problem and preliminary data collec-

tion, the selection of control (and in this case, impact) locations, predic-

tions that are based upon preliminary data, data collection, analysis and

interpretation.
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8.4.1 Background to the problem and preliminary data

Acid deposition into fresh waters – often from acid rain – is a world-wide

problem. In Wales, researchers have been studying multiple streams

draining into the catchment of the upper River Tywi, a river having a

catchment area of 1108 km2 inmidWales. In 1969 a regulating reservoir

(Llyn Brianne) was constructed in the upper reaches of the catchment.

After a few years, it became apparent that salmonid fish populations

were declining, despite efforts to help fish reach upper areas of the

catchment by trapping and transporting them there by truck. It was

suspected that juvenile fish were not surviving in streams above the

reservoir, and a broad study was begun into the water chemistry of

streams draining into the catchment (Stoner et al. 1984). Although some

streams were approximately circumneutral in pH, others were quite

acidic. Acidity was generated by occasional bouts of acid rain, together

with acids generated from soils within the catchment. The effects of this

acidity differed between streams however because of variability in buf-

fering capacity and land use. Some streams had relatively high concen-

trations (� 10mg L�1) of CaCO3, which buffers acids; these streams had

an average pH of � 6.0. Other streams had lower concentrations of

CaCO3, lower mean pH and relatively high concentrations of soluble

aluminium, which is toxic under acid conditions. Additionally, stream

acidity was higher in catchments where the vegetation had been con-

verted to spruce and lodgepole pine forests, probably because of in-

creased evapo-transpiration from these catchments relative to those

covered by moorland vegetation. Acidic streams contained no fish (and

fish died when transplanted into them) and had a depauperate inverte-

brate fauna. Further studies (Rutt et al. 1989) established that macroin-

vertebrates showed shifts in community structure associated with

stream acidity, and the researchers were able to identify species that

were either sensitive to acidity or were relatively unresponsive to alter-

ations in acidity. They also established that invertebrate densities varied

among microhabitats within streams, suggesting that samples from

both riffles and marginal areas were necessary to provide a reliable

picture of species density or diversity at a location.

Having established that the likely cause of fishless streams was

stream acidity, researchers proposed adding lime to these streams to

create a circumneutral pH and improved conditions for acid-sensitive

biota. To their credit, they set up liming additions as an experiment in

which they alsomonitored streams that did not have lime added to them

(details in Rundle et al. 1995). The experiment is important, because

liming is a technique used widely in Europe to counter increasing
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acidity, even though the ecological benefits are unclear. By monitoring

limed and unmanipulated streams both before and after liming, re-

searchers could be reasonably confident of distinguishing any benefits of

liming from background variation in space and time. As we shall see, the

ability to do this turned out to be very important. The study is thus one

of a restoration technique rather than of a human impact, per se. How-

ever, the underlying logic of the design, which is anMBACI, is the same (a

theme we return to in chapter 14). We note though that their experi-

ment has some added advantages not usually present in human impact

studies, which increases confidence in the conclusions: replicate impact

locations, plus control over the timing and placement of ‘impacts’ (i.e.

liming). In the following discussion, ‘impact’ will refer to the addition of

lime. To illustrate how MBACI designs and their analysis work, we will

discuss the effects of liming as if this were a human impact being

compared to otherwise undisturbed streams.

8.4.2 Selection of control and impact locations

Six locations were chosen, three of which were selected to be limed, and

hence are termed ‘impact’ locations, and three of which were left un-

changed (controls; Table 8.9). From the preliminary work, it was clear

that control and impact locations could be on separate tributaries with-

in the upper catchment of the River Tywi. It was also clear that control

and impact locations should be matched closely for water quality and

for catchment vegetation – these characteristics thus formed the selec-

tion criteria. Prior to liming, impact and control locations had similar

mean pH, and CaCO3 and filterable aluminium concentrations. Impact

and control locations were also matched overall for catchment vegeta-

tion, with the inclusion of one coniferous catchment in both the impact

and control groups (Table 8.9; see Rutt et al. 1989 and Rundle et al. 1995

for further details).

8.4.3 Predictions and data collection

From the preliminary data, it was possible to make reasonably detailed

predictions about the effects of liming. Limed streams were predicted to

show increased numbers of acid-sensitive macroinvertebrate taxa and

increased overall diversity of such taxa relative to control streams,

which themselves should remain relatively constant through time. Taxa

not sensitive to changes in acidity should showno systematic differences

between impact and control locations.
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Macroinvertebrates were sampled at all locations once a year, each

year, during spring using a kick sample technique applied to both riffles

and marginal habitats. Water quality was measured from spot samples

collected at one to two week intervals. These sampling techniques and

temporal scales had all been established as appropriate from initial data

collection, which had established that April was the best time to detect

acidification effect following wet weather flows. Impact locations were

limed in late 1987 (C5, L4) or mid-1988 (C2).

8.4.4 Results and analysis

We should examine first whether liming the streams produced changes

in water chemistry. The liming of the impact locations caused a clear

increase in mean pH relative to control locations (Fig. 8.8a). This change

in pH was accompanied by increases in calcium concentration at all

three impact locations and decreases in aluminium concentration at

two of them. The third impact location (C2) did not show a significant

drop in aluminium concentrations, but its pH was sufficiently high that

the aluminiumwas thought unlikely to be toxic. Hence, we can conclude

that the liming treatment was effective in bringing about the desired

changes in water chemistry.

We present the data and details of the analysis for just one of the

dependent variables considered by Rundle et al. (1995), which is the total

number of individuals of acid-sensitive taxa present at locations. The

data are provided in Table 8.10, and their analysis by the MBACI model

that was described in chapter 7 appears in Table 8.11, with effects of

liming illustrated in Fig. 8.8. We have also graphed the responses of

individual taxa to consider the overall responses of the fauna to liming

(Fig. 8.9).

The two tests for impact are the two interaction terms: Impact vs.

Control�Before vs. After term and the Impact vs. Control� Timeswithin B vs. A
term. The former tells us whether any differences between impact and

control locations change when we compare the Before period to the

After period. The second term tells us whether any differences between

impact and control locations alter when we compare among times,

within periods. In the analysis (Table 8.11), both of these terms have

F-ratios with probabilities of less than 0.05, which in traditional hypoth-

esis-testing (section 4.7) allows us to reject the H0 of no changes. Examin-

ation of the means of control and impact locations through time (Fig.

8.8b) shows the source of the interactions. Numbers of acid-sensitive taxa

increased the first year after liming at impact, but not control, locations,
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Table 8.10. Data from the River Tywi catchment liming experiment

Year

Before or

After liming

Control or Impact

location Location

Number of individuals of

all acid-sensitive taxa

1985 Before Control C1 18

1985 Before Control C4 5

1985 Before Control L1 6

1985 Before Impact C2 1

1985 Before Impact C5 7

1985 Before Impact L4 14

1986 Before Control C1 72

1986 Before Control C4 2

1986 Before Control L1 3

1986 Before Impact C2 0

1986 Before Impact C5 1

1986 Before Impact L4 5

1987 Before Control C1 40

1987 Before Control C4 26

1987 Before Control L1 4

1987 Before Impact C2 3

1987 Before Impact C5 21

1987 Before Impact L4 3

1989 After Control C1 134

1989 After Control C4 54

1989 After Control L1 0

1989 After Impact C2 265

1989 After Impact C5 167

1989 After Impact L4 340

1990 After Control C1 72

1990 After Control C4 26

1990 After Control L1 0

1990 After Impact C2 47

1990 After Impact C5 8

1990 After Impact L4 2

1992 After Control C1 8

1992 After Control C4 6

1992 After Control L1 1

1992 After Impact C2 27

1992 After Impact C5 20

1992 After Impact L4 15

Note: There are six locations: three controls (C1, C4, L1) and three impact streams (C2,

C5, L4). Macroinvertebrates were sampled over 3 years (1985–1987) prior to liming of

the impact streams, which occurred in late 1987 and in 1988. Shown here as a

dependent variable are the total numbers of individuals collected per sample of 18

species of taxa known from previous work to be sensitive to acidity. Note that we

have omitted data collected during 1988, as this represents a Before time for one

impact catchment and an After time for the others.

Source: Rundle et al. (1995).
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but then dropped back to pre-liming levels in subsequent years. Our

confidence that we are examining a real response to changes in water

chemistry is also increased by examining the responses of individual

taxa of differing acid-sensitivity (Fig. 8.9). Four acid sensitive species all

showed peaks in abundance the year following liming, whereas four

species not sensitive to acidity show no systematic changes from pre- to

post-liming periods, as expected.

It is worth noting that had the liming resulted in a sustained

increase in acid-sensitive taxa, with numbers remaining high at impact

locations during 1990 and 1992, then the significance of terms in the

model may have changed. The Impact vs. Control�Before vs. After term

would remain significant, but if numbers were relatively similar among

times within periods, then the Impact vs. Control� Timeswithin B vs. A test

may not have been associated with a significantly large F value.

The other term of interest in the analysis is that of Locations

within I vs. C� Before vs. After, which shows whether locations within catego-

ries (i.e. either impact or control) performed similarly between the

periods. The relatively small value for the F-test suggests this was the

case. Recall that the similarity of control locations to each other over

time (assuming that most impacts will not have replicate locations) is

particularly important for the MBACI model presented in chapter 7 (see

also Fig. 8.2). The MS for Locationswithin I vs. C�Before vs. After (or L(C)B)

provides the denominator for the F-test for Impact vs. Control�Before vs.

After. Consequently a large MS for L(C)B results in a small value for this

F-test and a likely conclusion of no change, unless the effect caused

by the impact is particularly large. Likewise, if control locations differ

from each other from time to time within periods, the Locations

within I vs. C� Timeswithin B vs. AMSwill also be high.We cannot estimate this

term directly for the data shown in Table 8.10 (becausewe have noway of

separating it from the residual error – see chapter 7), but if it is large

then the MS error is also large, again resulting in relatively small values

for the F-test for Impact vs. Control� Timeswithin B vs. A.

Were this a test of a human impact, our conclusion would be that

the impact caused a short-term increase in invertebrate numbers, which

then returned to pre-disturbance levels in a classic pulse response (chap-

ter 3). We would conclude that the design was successful at detecting a

change caused by the impact, and that the impact caused no sustained

alterations. As this was actually an experiment in restoration, the inter-

pretation is that liming caused only a brief and unsustained improve-

ment in invertebrate densities, which did not reach those seen in

circumneutral streams in the area (see Fig. 14.2 for further information).
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The conclusion was that restoring acid-affected streams is not a simple

matter of restoring circumneutral water chemistry.

Finally, we can use the data illustrated in Figs. 8.8 and 8.9 to show

how we may be misled when elements of BACI designs are missing.

Consider the response of Isoperla grammatica, for example. This acid-

sensitive species showed an increase in numbers in limed streams in the

year immediately following liming – but it also showed a very similar

increase in control streams, and this increase was also sustained for

longer (Fig. 8.9). Were we monitoring just impact locations with this

taxon, we might think we had good evidence of an impact. The control

locations however suggest that another explanation – perhaps relating

to environmental changes independently of or together with water

chemistry – might be just as likely. Our confidence that the responses of

the other three acid-sensitive taxa are due to liming is comparatively

high because their numbers are otherwise relatively consistent over

time for the controls. We can also see why BACI-type designs are useful

by examining the changes in numbers of acid-insensitive taxa. Acid-

insensitive taxa sometimes showed increases, but different taxa in-

creased in different years. Some increased in control locations and

others at impact locations. Such shifts in densities in time or space are

not unusual; they are why we cannot use change per se at a location as

evidence of an impact with much confidence. We examine ways of

increasing our confidence in our conclusions further in chapter 9.

8.5 important issues

• Overall, to be able to apply monitoring designs well requires a

good understanding of the nature of the particular ecosystems

that will provide control and impact locations.

• Applying BACI-type designs requires us to have a good understand-

ing of the spatial extent of the putative impact because this allows

us to know where we may locate controls. Additionally, impacts

that are spread over large spatial scales present manymore design

problems than those restricted to small scales.

• The need to find controls requires us to develop criteria that help

ensure the comparability of control locations to each other and to

the impact location(s). There is a dilemma in that the more nar-

rowly we define characteristics of control locations the more simi-

lar they are likely to be to each other but the fewer will be the

number of places likely to meet our criteria.

• Weneed to ensure that control locations will be free of the human
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impact under consideration, that they are relatively independent

of each other, and that they are not located in spatially separated

or different types of environments from the impact location(s).

These requirements are not equally important however. Some

breaches may require us to collect complementary data, whereas

others will mean the design can only ever produce ambiguous

answers about changes caused by human impacts.

• There are no fixed recommendations for a minimum number of

controls, because numbers can only be decided in the context of

the final design and effects on statistical power.

• Subsampling of controls will often be requiredwhere locations are

large spatial areas and/or where sampling equipment works over

small areas. Subsamples may be incorporated as factors into the

design, but it is important to realize that subsamples do not add

replicates to the hypothesis-tests of interest.

• It will be important to know or estimate well the likely temporal

extent of any putative impact because this will determine the

minimum length of Before and After monitoring periods.

• Likewise, it is useful to know the temporal scale of response by the

biota, if any, to determine what the factor Times should represent.

In many cases we expect that monitoring will continue for

multiple years before and after start-up of human activities even

when biota respond quickly, as we will need to disentangle any

human-caused changes from seasonally related effects.

• Samples over time should be independent of each other unless

autocorrelation can be accounted for in the analysis. Independent

sampling can be problematic with long-lived taxa.

• Subsamples within Times can be collected and either composited

or incorporated as factors within the design, in the same way that

subsamples can be taken within Locations.
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9

Inferential uncertainty and multiple lines
of evidence

Chapter 5 described the logic behind the BACI approach and chapter 7

described the four basic BACI-type analytical models and the relative

strengths of inference each provides (Table 7.1). We can make strong

inferences (those with least uncertainty) about the effects of human

impacts by examining differences between control and impact locations

before and after the onset of human activity, most especially when we

have replication of these design elements. However, what happens when

one or more BACI elements are entirely missing or when we have no

replication? Perhaps the most common problem facing environmental

managers is where putative impacts have already occurred, tens or even

hundreds of years before, and there is no scope for planning a Before

period. There may be no control locations because all suitable locations

have suffered the same human activity in question. The latter problem is

particularly common when modern human activities are spread over

large spatial scales because, as indicated earlier, it reduces the potential

numbers of places we can search for controls. How should we proceed in

these circumstances?

We must recognize first that the difficulties created here are ones

of increased inferential uncertainty, not which analytical model to ap-

ply. When one or more of the four elements are missing, we lack the

information that would otherwise allow us to distinguish, with some

confidence, those changes caused by human impacts from those caused

by alternative (natural) phenomena (Table 9.1; and see chapter 5). We

cannot rectify these situations by simply employing fancier or more

complicated statistical models because the latter, no matter how sophis-

ticated, cannot replace informationmissing from the foundations of the

logic we are using.

What can we do in these cases? As we have emphasized earlier, the

first step is always the recognition of such difficulties, because this opens
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Table 9.1. Alternative explanations, besides the effects of human impact, for

differences seen when using different monitoring designs

Design Alternative explanations for differences

MBACI or Beyond-BACI Differences are caused by another changea

that was coincident with the start of human

activity and occurred only at the impact

location(s) but not at most of the n control

locations. (We have argued that as n increases,

our confidence that changes are due to human

impacts also increases.)

BACIP Differences are caused by another change that

was coincident with the start of human

activity and occurred at the impact location

but not at the control location. (As the number

of time periods before the impact increases,

our confidence that changes are due to human

impacts also increases.)

Control vs. Impact locations –

no before data

Differences are caused by important

differences unrelated to impact between

control and impact locations

Differences are caused by another change that

was coincident with the start of human

activity at the impact location

Before vs. After at impact

location – no controls

Differences are caused by another change that

was coincident with the start of human

activity at the impact location

Impact location, after impact

only

No change has actually occurred at the impact

location since human activity started

a The words ‘another change’ refer to a change, either natural or

human-caused, that is unrelated to the human impact under consideration.

ourminds to consideringwhat other sorts of data could be collected that

will bear on our problem. In general, these data will provide weaker

evidence, but if there are several sets, then collectively we can build a

stronger case than we would have otherwise. We detail this ‘levels of

evidence’ approach below (section 9.2).

This chapter largely uses arguments developed over the past 35

years in epidemiology, a use of reasoning that mirrors early discussion

in epistemology and logic by Mill (1884). Epidemiology is a discipline

where the dire subject matter precludes experiments on people for

ethical reasons. Impact monitoring is probably not quite so constrained
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because human development will continue and we can plan our studies

by anticipating them. Also, we have the advantage that experiments are

often possible and, with an altered focus about their importance, large-

scale experiments are becoming more common.

9.1 a brief revisit of inferential uncertainty and

probability

Before discussing how we might proceed, we should revisit briefly some

ideas developed in chapter 4 about uncertainty and probability (section

4.2), and in chapter 5 about design (section 5.3). Recall that we use

probabilities – particularly improbabilities – to help us make a decision

about whether we have ‘detected’ a human impact. We regard the

human impacts hypothesis (h) as being supported (corroborated) if it is

improbable that we will observe certain sorts of data (evidence, e) in our

monitoring program in the absence of human impact. That is, we ob-

serve evidence for impact that cannot be explained away by other pro-

cesses, such as natural variation (or ‘background knowledge’, b). We can

express this as low P(e,b) – a low probability of observing e given only the

knowledge b. Low P(e,b) is given by a small tail probability in the conven-

tional test of a null hypothesis (section 4.7), in which case the hypothesis

h has passed a severe test.

The BACI-type designs described in chapter 5 (and developed ana-

lytically in chapter 7) allow us to find evidence for impact (if it occurs)

that is improbable under natural conditions (section 5.3). Each of the

design elements (Controls, Before data, replication) contributes to this

ability to detect variation that is not part of normal variation – each

contributes to reducing inferential uncertainty. Hence, designs lie on a

gradient of inferential uncertainty. Replicated BACI designs provide the

least uncertainty. If we lack proper replication then this increases our

uncertainty (Table 7.1). If our design has no control locations and/or no

before data, then this also increases our uncertainty. Specifically, we

lack information that will help us distinguish changes at the impact

location(s) caused by human impacts from those caused by some natural

change coincident with the start of human activity. We want to be able

to find a low P(e,b).

We need a process that will help us better distinguish between the

hypothesis and background knowledge as explanations, and therefore

reduce the level of uncertainty wewill have in detecting human impacts

with these designs.We advocate, therefore, a levels-of-evidence approach

as appropriate to our philosophy of monitoring. We have highlighted
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the problem of weak designs and inferential uncertainty, but there are

three other reasons why multiple lines of evidence are desirable. The

first, and we argue most compelling, argument is that our best designs

(anMBACI or Beyond-BACI design) would seem to be capable of providing

us with definitive evidence, but we have good reason not to trust them

completely. Even MBACI and Beyond-BACI designs will not have, as a

rule, random allocation of locations to treatments (i.e., as either an

impact or a control), a process that in experiments helps us decouple

treatment effects from other, background variation. So, for all monitor-

ing designs, there are alternative explanations for any differences that

are detected besides that of the hypothesis of human impacts (Table 9.1).

We can argue that these alternative explanations are less probable when

we have MBACI or Beyond-BACI designs (especially as the number of

locations goes up), but we cannot discard them out of hand. These

lessons about ‘errors’ associated with different designs are akin to

Mayo’s (1996) error ‘repertoires’ – the general reasons we have found for

how evidence can turn out to be not so improbable. In Popper’s terms

(Popper 1983), they reflect awareness of weaknesses in background

knowledge.

The other side of the coin, providing the second reason for using

multiple lines of evidence, is one where the initial improbability is not

low, but we suspect we have been misled. This is a different kind of

design failure from that shown in Table 9.1 – the intent may have been

there, but the good design was not ultimately realized. Perhaps the

replication was not as great as we had planned, so the improbability is

merely suggestive rather than leading to rejection of the null hypoth-

esis. In this case, it may be possible for other (independent) lines of

evidence to produce improbabilities that, when multiplied together

with the first, might be able to give a multiple-tests assessment (see, for

example, ‘Combining probabilities from independent tests of signifi-

cance’ in Box 18.1 in Sokal & Rohlf 1995). Popper (1983, p. 247) argued for

multiple lines of evidence in order to obtain more severe tests overall: ‘a

statement describing many tests (especially if they are independent of

one another) will be less probable than a statement describing only some

of these tests.’

The third reason for multiple lines of evidence is simply that any

good design should have several different lines of evidence. Our import-

ant ‘logical elements’ include the need to consider different kinds of

evidence. The philosophical basis for testing for impacts makes this

clear. The hypothesis is that an impact has occurred at some location.

Corroboration for that hypothesis is achieved when the observed evi-

252 Inferential uncertainty



dence is judged improbable given only our ‘background knowledge’

about what is normal. Nevertheless, even when corroboration is

achieved, the hypothesis of impact is not proven, and other lines of

evidence are expected to provide other tests and potentially further

corroboration. Further, absence of corroboration from one kind of evi-

dence naturally does not imply absence of impact (a false hypothesis)

and may encourage examination of other lines of evidence.

There is a strong contrast with verificationist approaches. Even
‘multiple lines of evidence’ approaches may take a verificationist stance

– that is, accumulating bits of evidence that have some known associ-

ation with impact (more akin to a ‘weight-of-evidence’ approach; see

section 9.2 below).We caution that the key is that the evidence, even if it

looks favourable, must be improbable without h, the human impact

hypothesis. Further, we look for evidence that supports alternative hy-

potheses, which ultimately might be corroborated.

Before continuing, we emphasize several things. First, this chapter

is not about the sorts of analytical methods available (such as meta-

analysis) that allow us to combine data from different studies. This

chapter is about the reasoning we can use to assemble such data in a

logical manner in the first place, a process that, in our experience, has

had far less attention than statistical analysis yet is equally (if not more)

difficult to navigate. Second, we do not see a levels-of-evidence approach

as an alternative to carrying out good monitoring designs but as a

complement to them. The approach can supply a way forward when

survey data will be ambiguous from the outset, but can also aid in

developing criteria for control locations and in the selection of variables

to use.

Finally, a levels-of-evidence approach can be used to answer ques-

tions about whether, overall, a particular human activity results in

particular changes to the environment. Although reviews of the litera-

ture are carried out all the time, they are rarely done in ways allowing a

balanced assessment of the evidence for and against particular hypothe-

ses. We suspect that a series of such reviews could be very useful to

managers trying to assess current levels of degradation caused by hu-

man activities, independently of any specific monitoring program or

locale.

9.2 a levels-of -evidence approach

In order to develop this process, we should turn to other disciplines that

have analogous problems with inferential uncertainty. In epidemiology,
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for example, a common goal is to determine how exposure to something

(e.g. a toxic chemical) increases the risk of people eventually developing

a particular disease. Typically the relationship between exposure and

onset of disease is a complicated one. There are often long time lags and

there are usually many other factors that may affect whether a person

will develop the disease (such as diet, genetic background etc.). Surveys

of people who have had an increased chance of exposure to the toxic

chemical (say, through their workplace) versus those who probably do

not may show a higher frequency of the disease in the former group.

Nevertheless, we will find often that there are other, systematic differen-

ces between our two groups (such as genetic differences, diet, a higher

frequency of drinking alcohol etc.) that may also explain the higher

frequency of the disease. We cannot isolate, clearly, the effect of one

potential cause of disease (such as exposure to a toxic chemical) and

separate its effects from any other. Moreover, we cannot (and ethically

should not!) carry out the definitive experiment that would allow strong

inference about whether exposure to the risk factor does indeed cause

the disease. Such an experiment would involve selecting a group of

people from the population at random and then randomly allocating

half of them to be exposed to the risk factor while ensuring that the

other half are not. The random selection of people and random alloca-

tion of individuals to treatments means we could then disentangle the

effects of exposure from all other complicating or associated factors (see

chapter 4). The ethical problems here are obvious, and these and logisti-

cal problems are the main reasons why disciplines like epidemiology

must continually rely upon alternative methods for drawing inferences

about cause and effect.

These methods use large amounts of correlative data and try to

make a case for causal inference using causal criteria. Use of these

criteria can be traced back to postulates first made by Jakob Henle and

Robert Koch some 150 years ago (Weed & Hursting 1998). Systematic use

of the criteria was cemented in 1964, when the US Surgeon General

proclaimed that smoking does cause lung cancer by accepting that

various sorts of correlative evidence can collectively build a sufficiently

strong case to infer causality. Hill (1965) formalized these types of

evidence into nine criteria (Table 9.2) and these have since formed the

basis for building inferential cases in epidemiology (Joellenbeck et al.

1998; Potischman & Weed 1999; Weed 1997) as well as in the social

sciences (e.g. Reynolds 1998). These criteria are considered particularly

important for decisions regarding public health announcements – that

is, when it is considered there is sufficient evidence to advise the general

254 Inferential uncertainty



public about factors that increase or decrease the likelihood of getting a

particular disease.

It is important to note that although Hill (1965) accorded the

criteria different levels of importance, he argued strongly against de-

manding that any particular criterion be fulfilled or that any hard-and-

fast rules be developed that must be obeyed in any epidemiological

study to infer causality. Because none of the criteria by themselves can

establish definite causality, he argued there was no strong argument to

weigh some criteria more heavily than others in a formal way.

Before we go on to consider how these criteria might be used in

human impact studies, it is worth examining opinions about how their

use has fared since 1965. Reviews of the literature suggest that only six

or seven of Hill’s criteria have played a role in establishing causality

(Joellenbeck et al. 1998; Potischman & Weed 1999; Reynolds 1998):

strength, consistency, specificity, temporality, biological gradient, bio-

logical plausibility and coherence. Another has been added: that inci-

dence of the disease decreases when exposure is eliminated (Joellenbeck

et al. 1998) but this actually falls within Hill’s description of experimen-

tal evidence. Other sorts of experimental evidence have tended to be

rare, and analogy difficult to apply. Coherence, it has been argued, is a

‘meta’ criterion that is applicable to not only the evidence but also to the

criteria themselves (Potischman & Weed 1999). Overall, criteria have

been accorded different degrees of importance in different studies, and

there is often only approximate consensus on how individual criteria

should be interpreted (Potischman & Weed 1999). For example, since

1965 ‘biological plausibility’ has been interpreted in three increasingly

rigorous ways, with each subsequent interpretation demanding greater

amounts of evidence (Box 9.1). People reviewing an entire literature

almost always set down some minimum criteria for individual study

designs – those studies deemed ‘too flawed’ (such that the conclusions

within them were likely to be incorrect) were removed from consider-

ation. However, for remaining studies, reviewers rarely if ever specified

in advance what specific rules they used overall in judging causality, nor

how much evidence was enough, nor how to count it (Weed & Hursting

1998).

Another issue with the use of causal criteria has been ‘wish bias’,

the tendency for investigators to draw conclusions primarily on the

basis of their own published results (Wynder 1996). ‘Wish bias’ wasmuch

less likely if inferences about causality were left to those reviewing the

entire literature on a topic, especially if the reviewer had not published

in the specific area (Weed 1997; see also Loehle (1987) for a general
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Table 9.2. The causal criteria of Hill (1965) in the decreasing order of

importance he gave them. The criteria can be used when a correlation is

observed between exposure to certain risk factors (such as toxins) and developing

a particular disease, to help decide whether there is a case for inferring that

exposure causes the disease

Causal criterion Description

Howmeasured and

example, where relevant

Strength of association Relative to other

diseases, there is a

particularly large

increase in disease

incidence associated

with exposure to the risk

factor

Relative increase in risk

of developing the disease

when exposed to the risk

factor (e.g. chimney

sweeps were 200�
more likely to develop

scrotal cancer than men

not exposed to soot)

Consistency of

association

Whether the association

has been observed

repeatedly in different

places, circumstances

and times

Proportion of studies

showing the effect (e.g.

by 1965, 36 separate

studies had all shown an

association between

smoking and lung

cancer – although Hill

did not reveal howmany

had failed to find such

an association)

Specificity of association Whether or not the

association is commonly

limited to a very

particular group of

workers, people

undertaking particular

activities, or a particular

locale

N/Aa

Temporality Whether or not onset of

disease always follows

exposure to the risk

factor

N/A

Biological gradient

(dose–response relation)

Whether there is higher

incidence of or death

rate from the disease

when there is exposure

to increasing amounts

or levels of the risk

factor

A dose–response curve

shows a strong positive

relation (e.g. death rate

from lung cancer

increases linearly with

number of cigarettes

smoked daily)
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Table 9.2. (cont.)

Causal criterion Description

Howmeasured and

example, where relevant

Biological plausibility There is a biologically

plausible explanation

for causality, even if

there is no current

evidence for the

mechanism

Hypothetical, new

mechanisms of

causation should not be

dismissed out of hand

simply because they

seem odd

Coherence A cause-and-effect

interpretation should

not seriously conflict

with known history or

biology of the disease

All or most of the

evidence should support

the same explanation

(e.g. the evidence that

smoking causes lung

cancer came from

population surveys,

histopathological

evidence, isolation of

carcinogens in cigarette

smoke etc.)

Experimental evidence An experiment where

exposure to the risk

factor is manipulated

shows evidence of

changed rates of disease

For example, if action is

taken to reduce

exposure to the risk

factor (e.g. number of

cigarettes smoked

declines) is a drop in

disease incidence seen?

Analogy In some cases, effects of

risk factors may be

argued by analogy

because their actions

could be similar

Birth defects that are

associated with exposure

to a drug during

pregnancy – we could

use well-documented

examples of same (e.g.

thalidomide) for

argument by analogy

a N/A means Hill did not provide a specific example.

discussion of this problem, also called ‘confirmation bias’, in ecology).

Moral stances and political positions also played roles in influencing

judgements about which criteria should be considered most important,

suggesting that an ethical framework was needed because of the public-
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Box 9.1 Interpretations of biological plausibility in epidemiology

Weed & Hursting (1998) traced how the criterion of biological

plausibility has been interpreted in epidemiology. Up until about

1994, a biologically plausible association was one where a

reasonable mechanism for how the risk factor caused the disease

could be hypothesized, including those mechanisms for which no

biological evidence existed, as Hill (1965) had originally suggested.

Subsequently, it was considered that this was insufficient, and that

evidence supporting the proposed mechanism was also necessary.

More recently, an association has been considered biologically

plausible only if there was also sufficient evidence to show how the

risk factor itself influences a known disease mechanism.

health implications (Weed 1997). Additionally, it was not possible to

define a single set of rules for public-health decision-making from the

criteria alone (Potischman &Weed 1999).

From this brief overview, we might draw several lessons for devel-

oping the use of causal criteria in human impact studies.

First, causal criteria in human impact studies must be explicitly

defined. We anticipate that an ongoing debate among those conducting

human impact studies is needed to decide what those definitions should

be, how criteria should be measured, and what is ‘reasonably’ required

to infer human impact. At present, use of causal criteria and multiple

lines of evidence have only been adopted in a few areas, mainly in the

assessment of risks of contamination of fresh water by toxicants (e.g.

Beyers 1998; Cook et al. 1999; Humphrey et al. 1995; Menzie et al. 1996;

Suter 1993b). Causal criteria need to be applied rigorously, but we may

expect that interpretations of what is ‘good enough’ to fulfil criteria will

change as we gain more experience in applying them. This sort of

evolution is also inevitable because our state of knowledge will

improve.

Second, it seems unlikely that there is any way to formalize, across

all possible human impacts, how criteria should be weighted in terms of

importance and how inference should be collectively drawn. Inevitably

the research base for any particular type of human impact will vary such

that one criterionmight be weightedmore heavily in one review than in

another. It is important to remember that no criterion (with some rare

exceptions discussed below) can provide information that is definitive.
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No criterion will always be absolutely essential to our argument nor any

absolutely irrelevant. Instead, the key is to be clear and explicit a priori

about how inference for a particular human impact study will be

reached. Other researchers may eventually disagree with the conclusion,

but at least it will be quite clear how and why an inference of human

impact was or was not reached.

We may also wish to differentiate, as epidemiologists do, between

inferences that are of interest primarily to researchers and those that

might serve the public interest. In epidemiology, early warnings about a

risk factor may save lives even if the balance of evidence is not yet

sufficient to convince the medical community that exposure to the risk

factor increases incidence of the disease. In human impact studies, we

face similar decisions. A body of evidence might be insufficient to con-

vince the scientific community that human impact has occurred, but the

evidence may be deemed sufficient to warrant modification of human

activities associated with those impacts.

Finally, we should keep inmind that the key to inference is to try to

rule out alternative hypotheses (Reynolds 1998; and chapter 4). Remember

that even whenwe carry out well-designed experiments, we do not prove

an hypothesis, because it is logically impossible to do so. Instead, wemay

be able to show that an alternative hypothesis is unlikely, according to

an a priori decided criterion of probability. Consequently, we should not

view a process that uses causal criteria as one of trying to ‘prove’ an

hypothesis. Instead, we should proceed by collecting evidence that bears

directly on the hypothesis of interest (here, that human impacts have

caused some change) and also evidence that bears upon other plausible,

alternative explanations. We make our case as much (if not more) by

disproving plausible alternatives as we do by showing that the data are

consistent with an hypothesis. It is for this reason that, following

McArdle (1996), we have called this a ‘levels-of-evidence’ approach,

rather than a ‘weight-of-evidence’ approach, because the latter usually

means simply the number of pieces of evidence supporting the hypoth-

esis of interest (‘verificationism’).

In sum, it is important to define criteria and spell out how they

will be examined or measured very explicitly. It is also important to

decide ahead of time how criteria will be used to make inferences about

human impact. Experiences in other disciplines suggest against develop-

ing fixed rules, for all human impact studies, about how many and

which causal criteria must be fulfilled to infer that human impact has

occurred. As we shall emphasize in later chapters (chapters 12 and 13),

the key is to be clear about how decisions will be made and why, rather
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Table 9.3. Suggested steps in the levels of evidence approach in human impact

studies. The bracketed numbers refer to the section where that step is discussed

1. Define each causal criterion and decide how each will be examined and

measured (9.3.1)

2. Use the literature to review all the effects of the human activity and to

extract information required to evaluate each effect on response variables,

using each of the causal criteria (9.3.2)

3. For each response variable identified in step 2, conduct a separate literature

review examining the main natural sources of variability in the absence of

the human activity (9.3.3)

4. Put together a list of effects associated with the human activity and evaluate

the amount and kind of evidence supporting each (9.3.4)

5. Consider whether the monitoring design could be improved by factoring in

natural influences on monitoring variables into the design and removing

these as potential explanations (9.3.5)

6. Decide how evidence will be used to draw inferences about human impacts

(9.3.6)

than using fixed recipes that ‘must’ be obeyed. The bottom line is still

best expressed by Hill (1965, p. 299):

What [the criteria] can do, with greater or less strength, is to help us to

make up our minds on the fundamental question – is there any other way

of explaining the set of facts before us, is there any other answer equally, or

more, likely than cause and effect?

9.3 a suggested step-by -step guide to using a

levels -of -evidence approach

We can use causal criteria in studies of human impacts by collecting

evidence from the literature about the putative effects of the human

impact to hand and setting these effects down as a priori hypotheses

that can then be subject to test by our monitoring program. We collect

information also on natural sources of variability in these same response

variables in the absence of human impacts, setting these down also as a

priori hypotheses. When a given effect is probable given the impact, and

improbable otherwise, we can attain a degree of corroboration of an

hypothesis of impact at the location of interest if the effect is actually

observed. Our overall case for inference comes not only from the number

of predictions consistent with the human impacts explanation, but also

the number of predictions that negate alternative hypotheses.
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Use of causal criteria should proceed through a number of steps

(Table 9.3). These steps allow us to examine critically the possible effects

of human impacts and the possible alternative explanations and to look

at the overall balance of evidence. It is important that a systematic

approach such as this be taken for using causal criteria, because lack of

rigour can seriously weaken confidence in the conclusions (Cook et al.

1999).

It is also important, before we start, to ensure that we have

clarified the human activity as specifically as possible. For example,

querying the effects of agriculture upon rivers and streams is not suffi-

ciently specific. Agriculture can include stressors as diverse as toxic

pollution (caused by pesticides), eutrophication (nutrient runoff), in-

creased sediment transport or load (erosion), and changed flooding or

discharge regimes (water extraction for irrigation). We should be clear

whether some or all of these are relevant to the human activity at hand

because each sort of impact will require a separately targeted review.We

will illustrate the levels-of-evidence approach, where relevant, with the

example first mentioned earlier (see introduction to chapter 4 and Box

4.1), of mining in the Alligator Rivers Region.

9.3.1 Defining and quantifying causal criteria

To use causal criteria, the first step is to define each of the causal criteria

and to decide how each should be measured. We suggest some defini-

tions and methods for measuring them below, but all of this should be

viewed as very much open to debate. There are few studies that have

specifically attempted this kind of approach (Beyers 1998; Cook et al.

1999) and therefore only a small amount of experience at applying them.

There is at least one obvious difference between the task of epi-

demiologists and those of researchers examining effects of human activ-

ities that will affect our use of causal criteria. In epidemiology, the

outcome that is to be avoided or reduced in incidence or magnitude is

clear – it is the frequency or occurrence of a particular disease. When we

examine the effects of human activities on the environment, however,

the outcomes we wish to reduce or avoid are not always clear. Some-

times we may wish to reduce specific problems like algal blooms, but in

other cases we may be uncertain what the outcomes of any human

activity might be. This means we might use the literature and a levels-of-

evidence approach to answer different sorts of questions. Where little is

known about a particular human activity, we can explore what is known

about the changes caused by a particular human activity, as well as the
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specificmechanisms linking that activity to the changes. We can use the

causal criteria described below to help decide which variables to moni-

tor, and this process may ultimately influence decisions about what

environmental changes are considered to be ‘important’ changes (chap-

ter 11). On the other hand, where there is some understanding already of

changes related to human activities, we might be able to nominate, a

priori, an environmental change considered to be ‘important’. For

example, an unacceptable algal bloommay be deemed to have occurred

when densities of algal cells reach a level at which sheep die if they drink

the water or there are large fish kills. In this case, we can look directly at

evidence of association between human activities and incidences of this

unacceptable change – analogous to the way epidemiologists can look at

associations between a risk factor and incidence of disease.

We consider each of the causal criteria in approximately the same

order given by Hill (1965), but we are not according them, therefore, the

same order of importance. We expect criteria will have different degrees

of importance in different studies (as has occurred in epidemiology).

Additionally, experimental evidencemay bemore available in ecological

than human studies, which means we might consider it a rather more

important criterion than do epidemiologists. Also, considering the prob-

lems encountered by epidemiologists with applying ‘coherence’ as a

criterion (section 9.2), we do not consider it in the discussion below.

We relate each criterion to the two sorts of arguments described

above in section 9.1 (Table 9.4). One type of argument is that there is a

low probability of observing some data in the absence of human impact,

i.e. low P(e,b). The other type of argument is where the evidence is

something that usually (in some cases, inevitably) follows from impact,

i.e. high P(e,hb).

Strength of association

Strength of association measures the size of the change associated with

incidence of human impact. Where human impacts are associated with

particularly large changes in a variable, then we may have higher confi-

dence of some causality than when changes are small, particularly when

such a large change is almost never otherwise observed. We are thus

making an argument that such a large change is improbable unless a

human impact has occurred.

What does a ‘particularly large’ change mean? We can compare

the percentage difference in average value of response variables at

locations having the human impact to those that do not (although
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unfortunately this information is not always available for individual

studies). This gives us ameasure of effect size (see section 4.7 and chapter

11). Comparing average effect sizes among different variables may pro-

vide some clues about those that are causally related to the impact –

there may be some changes that stand out as large effects (like Hill’s

example of the frequency of scrotal cancer in chimney sweeps; Table 9.2).

This approach is probablymore useful than onewhere we try to set some

fixed effect size as ‘large’ (e.g. Cohen 1988). We do need, however, to use

the literature carefully. Effect sizes are not routinely reported so will

often have to be gleaned from individual papers. We need to be sure that

means reported in any study are not unreliable estimates (i.e. estimated

with poor precision; section 4.4).

Consistency of association

Where an association between a response variable and a particular

human impact has been observed many times before by other investiga-

tors at different times and places, thenwewill have higher confidence of

inferring human impact than if no such consistency is observed. Potisch-

man & Weed (1999) suggest that, rather than demanding every study

show the observed association, we require a majority to do so for this

criterion to be considered fulfilled. This seems a reasonable suggestion.

We can also use meta-analysis to combine the results of different studies

and examine the consistency among them with a formal analytical

model (although researchers need to be aware of the stringent condi-

tions under which this is possible; see Scheiner &Gurevitch 1993). Again,

we need to be sure that any reported differences and correlations are

reliable and precise (i.e. come from well-designed studies) before we

include them in our sample. We also need to decide the minimum effect

sizes and maximum levels of � and � that we will accept to regard an

ecological significant effect as having been ‘detected’, an issue we dis-

cuss further below (section 9.3.2, step 4).

Specificity of association

In some cases, variables can be considered virtually diagnostic for hu-

man impact – this is another low P(e,b) argument. Human-made toxins

and other substances (like some heavy metals) that are otherwise ex-

tremely rare in nature mean that their presence at a location can be a

strong signal of potential human impact. Some of these substances

cause strange morphological deformities or behavioural abnormalities
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that are also otherwise rarely seen in nature (e.g. Janssens de Bisthoven et

al. 1998; Nimmo&McEwen 1994). High numbers of such deformities can

provide very strong inference of human impact. Note that monitoring

studies of the effects of toxicants using this causal criterion may also

require that stressors should be foundwithin exposed organisms for this

criterion to be considered fulfilled (Beyers 1998; Suter 1993b).

Temporality

If a human activity has caused some change, then the change must

follow the onset of human activity. If we can show that changes occurred

before the onset of human activity, then we have excluded the latter as

an explanation. Temporality is thus a particularly useful criterion, be-

cause it has the potential to discard explanations – either the human

impacts explanation or alternative ones. In studies where we can moni-

tor before the onset of human activity, this will be an important cri-

terion. In others where any human impacts have happened in the past, it

may be possible to reconstruct past environments, so that we can still

test whether environmental changes occurred before or after the start of

human activities (e.g. Davis & Finlayson 1999; Korhola & Blom 1997; Reid

et al. 1995; Walker 1993).

Biological or ecological gradient

If we can observe a distinct increase in the magnitude of effect with

increasing intensity or frequency of human impact, then we have fur-

ther evidence of causality. The relation need not be linear but should

show an increase in magnitude of effect with increasing intensity of

exposure over some of the latter’s range. Such gradients of exposure can

be generated in laboratory experiments (especially with toxins) but also

from field studies. For example, Janssens de Bisthoven et al. (1998)

showed that increasing proportions of chironomids had deformed man-

dibles along a gradient of increasing concentrations of metals (copper

and lead) in river sediments. Field studies of this kind are relatively rare

but can provide fairly compelling evidence (Ellis & Schneider 1997).

Biological or ecological plausibility

Sometimes we may have a good understanding of how human impacts

can cause change, and there may even be evidence that the mechanism

is correct in particular studies. In other cases, we may lack this sort of

understanding – we may have evidence that certain changes are asso-
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ciated with a human impact, but no data that explain how or why they

occur. If we do not have any data that can explain themechanismbehind

causality, should we then say the study has failed to meet this criterion?

This is a difficult area, because if the rest of the criteria provide strong

signals, we would be loath to then use the lack of data on a mechanism

as a reason to dismiss causality – absence of evidence, after all, is not

evidence of absence.We suggest that researchers may wish to begin with

a definition that requires themechanism be at least plausible (admitted-

ly a subjective measure), even if no current data are available.

Experimental evidence

Experiments where the human impact has been manipulated in a con-

trolled fashion can provide extremely strong evidence, especially if done

in the field and at spatial and temporal scales that relate well to those of

the human impact. Such evidence is probably still relatively rare but

may become more common in the future. The liming experiment de-

scribed in section 8.4 is a good example. Mesocosm experiments – con-

ducted in small enclosures – have been roundly criticized as ‘unrealistic’

because they are often conducted over scales far smaller than that of

human activity or may lack the natural complexity (e.g. diversity) of the

ecosystem (e.g. Carpenter 1996). They can, however, sometimes provide

detailed pictures of possible mechanisms otherwise not discernible in

large field surveys (e.g. Barmuta et al. 1990). Experimental evidence can

include instances where human activities have ceased and effects

monitored (e.g. removal of excessive nutrient loads from sewage outlets).

Analogy

We expect that arguing by analogy will be difficult for many potential

stressors. It may be most useful for toxins from particular chemical

groups that are known to all have the same mechanism of action within

particular taxa. For other sorts of stressors, we suspect that variability

between ecosystems, regions and hemispheres will tend to make argu-

ing by analogy difficult.

9.3.2 Building a ‘levels-of-evidence’ case for changes associated
with the human impact

Armed with our criteria, the next step is to conduct a systematic review

of all literature pertaining to the putative human impact at hand and to

extract information required by the causal criteria. Our approach to the
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literature review needs to be systematic – that is, we need to be clear

about what sorts of studies we seek and the specific information we will

extract from each. We are looking for information on changes wrought

by the human impact and we wish to collect specific effect sizes, instan-

ces of association between the supposed impact and the change as well

as non-association, and so forth. The review will provide us with a list of

changes in response variables – effects – that are putatively caused by the

human impact. For each effect, we can evaluate the evidence of associ-

ation against any of the criteria for which we have sufficient informa-

tion. This should allow us to order the effects from those with the

strongest to those with the weakest evidence of association. We can do

this by proceeding through a set of six steps. In the followingwe assume

that a review is being carried out to inform a monitoring program for a

specific development.

1. Set down the characteristics of the human activity

Our first step is tomake sure we thoroughly understand the exact nature

of the potential impact – its timing, size, spatial area, and so forth – so

that we understand the types and likely magnitudes of any impacts.

There is little point including studies where impacts are likely to be

qualitatively different to the one at hand. For example, a consideration

for assessing the effects of water release from dams is that reasonably

large dams have a number of impacts of different kinds, depending

upon how they were constructed. Large, older dams typically produce

cold and anoxic conditions immediately downstream because stored

water is released through bottom-release valves, which remove water

from the cold and anoxic layer that typically develops at the base of

stratified water bodies. Smaller dams, where stratification in the reser-

voir behind the dam is not as marked, or modern dams able to release

water from a variety of positions within the water column, do not

produce such impacts (McMahon & Finlayson 1995). Hence if we were

collating the effects of small ormodern dams, there would be little point

in using studies of large or bottom-release dams. Making distinctions

between the effects of different sorts of damsmight be fairly straightfor-

ward, because their physicochemical effects seem relatively well

studied. We suspect that it may be much more difficult for less well-

studied human activities. In the latter case, it is probably better to not

make such distinctions and to include all studies initially, with the

option of ruling some out when it becomes apparent that they are not

relevant to the situation at hand.
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In the uranium mine example (Box 4.1), a main focus is impacts

caused by waste waters from the mine. Researchers would need to be

clear about the likely volume, timing and frequency of any wastewater

discharges into creeks, as well as having information about the nature,

concentrations and form of chemicals present, which include uranium,

magnesium, radionuclides, suspended solids, hydrocarbons and process

chemicals such as manganese and sulphate (Humphrey et al. 1995).

2. Set down the characteristics of the impact location

As we have done for the impact itself, we need also to decide whether its

location will mean we will restrict our literature review only to particu-

lar sorts of rivers. Should we restrict our sampling of the literature to

papers discussing rivers in similar climatic regimes or having a similar

geomorphology etc.? As discussed in chapter 8 (section 8.1.3), there are

no simple answers to such questions. In some cases of human impact,

the processes are probably sufficiently understood to know the sorts of

rivers that will be relevant for the review. In others, our knowledge may

be too poor to allow anything but rough guesses aboutmajor differences

among river types. In the latter case, it is better to include all rivers and

to record sufficient information from each study so that a distinction

between different sorts of rivers can bemade later, if necessary. It makes

the review process more tedious, but it reduces the probability that we

end up with too small a sample of studies and have to return to the

literature to repeat the whole exercise again.

For example, in our mining study, the mine is located in a wet-

lands area in tropical, northern Australia, which has a six-month wet

season when most rain falls and the wetlands flood, and a 6-month dry

season, when a lot of creeks dry down to stagnant pools in some loca-

tions. The concentration and speciation of pollutants can be greatly

affected by such large changes in water column depth, especially as

other variables, like oxygen concentration or pH, also change. Hence,

mining-affected rivers having comparable seasonal changes in discharge

ought to be particularly relevant, but wewould probably still be interest-

ed in ones where discharge is far more consistent throughout the year.

3. Clarify the question(s)

Aswe described above (section 9.3.1), our questionsmay be very different

in different studies. In some situations we may know something about

the kinds of impact expected and be trying to answer specific questions.
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For example, there may be interest in knowing whether the impact

might cause, or has caused, a loss of macrophyte beds downstream or

reduced the size of fish populations. In other situations, we may be

interested in any change in any part of the ecological system, with

different effects to be sorted secondarily in terms of their ecological

and/or social significance (see chapter 11). Clearly, in the latter case we

will be cataloguing all changes recorded within studies, whereas in the

former case we will be collecting quite specific information about par-

ticular taxa.

In the mining example, the directive was to ensure ‘no observable

effects’ on the natural ecosystems. Additionally, an environmental re-

quirement for mining in Australia was to ‘maintain biodiversity and

ecological systems’. Consequently, there was interest in monitoring all

sorts of organisms that would provide information about the state of the

ecosystem. However, gill-breathing aquatic organisms and soft-bodied

species were thought to be most at risk from water-borne pollutants, so

benthic macroinvertebrates and fish communities, or representatives

thereof, were selected as the most practical taxa to monitor. Both short-

term effects caused by exposure to high concentrations of pollutants

and chronic effects caused by small releases over longer time periods

were considered important (Humphrey et al. 1995). Consequently, a

literature review would be targeted toward macroinvertebrate and fish

species and both short- and long-term effects collated.

4. Decide how an effect will be considered to have been ‘detected’

We want to produce a list of effects associated with the impact and an

estimate of the proportion of studies that detected each effect. However,

we will need to think about effect sizes and the maximum values of �
and �wewill accept for statistical tests. The traditional value of � is 0.05,
and 0.20 is becoming an unfortunate standard for � (or a statistical

power of 80% or 0.80; see section 4.7). However these values are simply

arbitrary conventions – we may wish to accept a higher probability of

Type I errors than 0.05 for example. Moreover, the traditional preoccupa-

tion of researchers with Type I errors has meant that Type II errors and

the estimation of them gets little attention. Few studies calculate � or

consider the possibility that a lack of statistical significance was caused

by low power rather than a real lack of effect. This means that, during

our review, we cannot simply produce a list of changes that were ‘detec-

ted’ because studies may have had low power to detect a given change

(caused by low sample size, for example) or conversely (on very rare
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occasions!) had high statistical power and detected changes that we

might, ultimately, consider to be biologically or ecologically trivial.

Moreover, there is a bias in the literature anyway because non-signifi-

cant results are often accorded little importance and hence sometimes

do not get published (Loehle 1987). An unknown proportion of these are

real outcomes (i.e. are not caused by low statistical power).

We need to decide then upon maximum values for both � and �
that we will use to assess different studies. However, we are comparing

among effects. As long as we keep conventions of � and � the same for

every study, then we are generating comparable relative error rates for

each effect. Arguably, real changes are still likely to stand out as produc-

ing consistent effects, and at lower values of � and �, than effects that are
more weakly associated with the human impact. Standards for � are

relatively high at 0.05 for most studies, but as we suggested above this

convention need not be followed blindly and a higher value for � could

be accepted (we discuss implications of fixing Type I error rates in

chapter 12). For studies that record a non-significant test, we need to

decide upon a value for � at which we would rule out a non-significant

result as simply being too unreliable. � should be less than 0.5 (i.e. there

should be a higher probability of correct than false outcomes), so a

maximum could be 0.4 (power of 60%) and, clearly, a lower value would

be better. Regardless, we certainly should record effect size, probability

of test statistics, � and an estimate of � for every test.

5. Decide upon the qualities of studies to be included in the review

Quality of studies includes a variety of attributes. First, it means includ-

ing only those that allow some assessment of whether any patterns

detected were indeed caused by the human activity in question. Such

studies would include information from not only the impact river but

also comparable rivers (ideally, controls that have been matched to the

impact location) and/or data that were collected both before and after

start of human activities. We can place studies on a gradient of inferen-

tial uncertainty, as discussed above. Field experiments carried out at

realistic scales of space and time, or Beyond-BACI or MBACI-designed

surveys will provide information of least uncertainty. Surveys missing

one or more BACI elements or experiments carried out in the laboratory

or fieldmesocosms provide less certain information – the surveys for the

reasons discussed above and the experiments because they may lack

realism. Studies where no attempt has beenmade to assess the degree to

which changes were caused by the human impact are not likely to

Guide to using a levels-of-evidence approach 271



provide useful information for all the reasons we have emphasized

previously (see chapter 5, and the introduction to this chapter). The

exception is where the changes are quite specific to the human impact,

such as morphological deformities caused by release of heavy metals or

other sorts of pollutants. In these cases, we may feel confident that the

number of individuals with deformities is caused primarily by the pollu-

tant because background levels of such deformities are often low.

A second quality of studies is the type and amount of information

that is reported. We are interested in cataloguing the specific ecological

changes detected and each effect size. Effect sizes will be of two kinds.

Where the study design contains discrete comparisons (e.g. control vs.

impact and/or before vs. after), then effect sizes will generally be the

percentage difference between means. If the study has examined the

effects of impacts along some gradient (e.g. distance from impact vs.

effect, or magnitude of impact vs. effect; i.e. the impact is measured as a

continuous variable), then effect sizes will be measures of association,

such as correlation coefficients. In either case, we require associated

probabilities of test statistics and the information needed to estimate �,
if it is not provided. Unfortunately, some studies do not provide all of the

information (e.g. variance, sample sizes) necessary to estimate �, and
some do not provide the values of test statistics or even actual values of

means (Box 9.2). Although we could rule out all such studies, we may

exclude a large proportion of the available information. It may be best to

categorize studies into those with good quality of information and those

with poorer quality of information. However, we should choose a mini-

mum level of data required for inclusion – studies where no quantitative

data were collected should probably be ruled out. There are also difficul-

ties in calculating the value of � in some circumstances, such as whenwe

need to examine interaction terms in a complex model (see worked

example in chapter 13) or if papers are using multivariate tests (section

4.10).

6. Carry out a broad-ranging review, extracting relevant data

We now have the criteria we need to conduct our review. Our criteria

must be set down clearly so that they allow us to make definitive

decisions about whether each study will qualify for inclusion in our

sample and, if it qualifies, where it falls along our gradient of inferential

uncertainty, and whether we regard its data as reliable or having only

moderate or poor reliability. Having an unambiguous approach like this

is howwe ensure we conduct our review in a rigorous, objectivemanner,
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Box 9.2 A request to editors and authors publishing human impact

studies

A review where we hope to generate new data by systematically

collating results across studies can only be as good as the quality

of reports available in the literature. Unfortunately, current

reporting standards are extraordinarily heterogeneous among

both individual studies and journals. Very few studies supply all of

the data that reviewers require. Many studies do not report even

basic levels of information needed to calculate effect sizes and �. It
would be very handy indeed if most journals had editorial policies

requiring authors to report at least minimum levels of biological,

geographical and statistical data. For example, biological data

should include the higher taxonomic groups to which individual

taxa belong–currently some studies report species names without

ever clarifying what kinds of organisms are under discussion.

Geographical information could include a variety of data about

locations: latitude and longitude, climatic data, altitude, geology.

Information about the impact location should also include

estimates of spatial and temporal extents of impact, magnitude of

effects etc. Statistical reporting is often very poor; it should

include, for each variable, the means together with estimates of

variance of samples (either standard errors or standard deviations)

and sample sizes. The value of � used for tests should be stated
explicitly. Effect sizes (either the absolute difference between

means or the difference divided by a common standard

deviation–see Cohen 1988) should also be reported. Most

importantly, an estimate of the power of each test (or its inverse, �)
should be provided. Not only will this allow reviewers to catalogue

the probability of Type II errors, it should encourage authors

themselves to consider Type II errors when they fail to reject null

hypotheses. It is also important that authors and editors do not

fail to report instances where a null hypothesis was not rejected

with relatively high statistical power; these studies are equally

valuable to those that detect a significant association, and should

be published.
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not a vague and subjective one. Our sampling of the literature needs to

be as rigorous as any other sampling protocol (chapter 4).

Almost certainly we will use electronically based indices to search

the literature – these require experience to avoid narrowing the range of

studies found. A very wide range of journals should be consulted, and we

need to be confident that we will find human impact studies, if any, that

report a lack of change as well as those that report changes (Box 9.2).

Once we have included and categorized a study for its reliability, we

record the effect sizes of each ecological change and associatedmeasures

of statistical significance of the change (e.g. �, �). We record also whether

the effect is thought to be specific to the human impact and whether it

contributes information to any of the other causal criteria (i.e. temporal-

ity, gradient, experimental evidence etc.). We thus should end up with a

list of ecological effects and the levels of evidence associated with each,

an imaginary example of which is given in Table 9.5.

A lot of patience and attention to detail is required to do this

properly, because there is enormous variability in standards of reporting

in different studies (Box 9.2). The same ecological change may be re-

ported using different jargon in different places. Authors sometimes do

not provide enough information about the taxonomic identity of spe-

cies, important aspects of biology that explain why species responded as

they did, the exact nature of the impact or of the impact location.

Results can be reported in ways that appear ambiguous. The first studies

examinedmay have to be re-examined in light of information uncovered

later, and initial progress may be very slow. Nevertheless, if the prelimi-

nary groundwork is done properly then the review will gradually be-

come much more routine, and we will have confidence in the reliability

of the data we are collating.

9.3.3 Collating common sources of natural variance in the

response variables

In section 9.3.2 above, we have identified a series of effects – changes in

response variables – that we might predict to occur, with more or less

confidence, in the instance of the human impact of interest. Our next

step is to look at the possible alternative explanations for such changes.

We want to find out if the changes are commonly observed in situations other

than the human impact at hand. We do this systematically by taking each of

the changes identified in the step above, and conducting a second review

of the literature, this time seeking sources of the same changes in the

absence of the human impact we are examining. We repeat the same

274 Inferential uncertainty



steps above of collating specific information about putative causes of

changes in each variable and assessing each of them against the causal

criteria. We aim to end up with a list of influences on each variable

ordered in terms of the evidence evaluating their strength of inference

of causality. These influences will provide us with a list of plausible,

possible alternative explanations for differences wemight observe in the

monitoring study. Because we use studies of comparable ecosystems not

influenced by human activities, we should be accessing a different set of

studies than the ones observed above (although there may be some

overlap if we use control or reference sites from human impact studies).

Because our predictions were drawn from two separate reviews, we can

argue that they constitute independent lines of evidence for making

inferences.

To continue our example, take the effect of decreased egg output

by snails. We would seek any studies examining changes in egg outputs

of snails not exposed to uranium waste waters. We collate the evidence

of the causes of these changes, along with the levels of evidence that

establishes them, in the same way we documented above.

9.3.4 Cataloguing effects

Our next step is to return to our first review and to distinguish effects

that have a high strength of association with the human activity from

those where evidence of association is poor. An effect associated with a

human impact that fulfils many of the criteria will inspire more confi-

dence than one that fails on many or most criteria. Collectively then, we

can put together, for each effect, a summary of the criteria that were

fulfilled and examine how many criteria were met. Our second review

helps by showing whether any effects are otherwise rarely seen in

nature, i.e., do have low P(e,b). An imaginary example of the kind of

information we can gather is provided in Table 9.5.

Effects on our list will be of different value. Of particular interest

are effects where we can argue both high P(e,hb) and low P(e,b) – that is,

effects rarely seen in circumstances other than when human impact has

occurred but which also have a high probability of occurring if the

human impact is present. These are the most valuable because the

changes, if observed, provide strong inference of human impact.

We may find that other effects are established with low P(e,b)

criteria alone. These are effects that are specific to the human impact but

are not necessarily commonly observed – an example would be unusual

deformities that result from a toxin, but with such deformities only
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noted from a very few instances of exposure. Such effects can be useful –

they can provide evidence of impact – but they are less valuable because

no inference can be drawn from observing a lack of the effect. That result

does not rule out the human impact.

Other effects may be established only with high P(e,hb) criteria

alone. These are effects that are associated with the impact but could

also be explained by other factors. The degree to which the latter is the

case should have been revealed by our second review,where wewill have

determined whether changes of the same magnitude and direction are

common. If they are common and we observe these effects during

monitoring, we may end up with ambiguous results (i.e. data consistent

with both the human impacts hypothesis and one or more alternative

explanations). Use of effects established only with high P(e,hb) criteria is

also problematic if our second review simply provides no information on

other factors that can cause those changes because they have rarely been

studied. Another difficulty occurs if the effect is not very strongly asso-

ciated with the human activity, because failure to observe the effect

cannot rule out the human impacts hypothesis. Hence, effects estab-

lished with high P(e,hb) criteria alone are also less valuable than those

established with both sorts of argument.

Finally, wemay have some effects for which the evidence of associ-

ation with the human activity is too weak for us to have much confi-

dence that they form useful predictions. Additionally, where evidence

comes from studies with low powers of inference and relatively high

values of � or �, then we will have less confidence than those where

inferential certainty and/or reliability of data were high.

Should we distinguish more formally between well-designed and

poorly designed studies, and should we try to weight criteria? For eco-

logical risk assessments, Menzie et al. (1996) suggested 11 different sorts

of attributes of ‘measurement endpoints’. Measurement endpoints are

outcomes that might carry a significant risk to the environment, and

there are multiples of these for any particular human impact. For

example, a measurement endpoint could be the concentration of a

chemical of concern in sediments relative to levels reported to be harm-

ful. Eachmeasurement endpoint gets a score between 1 and 5 for each of

the 11 attributes, according to tabled descriptions of how such scores

might be gained. Each attribute is assigned a scaled weight reflecting its

importance – from a weight of 1.0 for degree of biological linkage

demonstrated (this would integrate across several of our causal criteria)

to 0.2 for attributes like whether standard methods exist to evaluate the

line of evidence (this will reflect some measure of the usefulness of the

evidence). The overall evidence can then be assessed by multiplying
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scores by scaling values and summing for each line of evidence, which

then produces a weighted average for each. A process such as this allows

some formal method of assessing the overall quality and applicability of

the evidence behind any putative effect. However, we suspect that a fixed

scoring system for evaluating effects across different criteria, as well as

weights for evaluating the quality or usefulness of the evidence, might

be very hard to do across all sorts of stressors. The approach seems to

have been developed mainly with toxicants in mind, and that literature

has some standardized methodologies. For other sorts of stressors, we

think the evidence in the literature might be heterogeneous in quality

and difficult to group into common standards, beyond what we have

suggested above.

9.3.5 Predictions and ways of ruling out alternative explanations

We have now a series of predictions we can make concerning the effects

of the human impact. However, as we described above, some of these

predictions may not be unique to the human impacts explanation – our

second review may have revealed major natural influences on monitor-

ing variables that produce changes of the same magnitude and direc-

tion. How can we rule out the latter as explanations if these predictions

are found to be correct? Ruling out alternative explanations is import-

ant for all designs, but is particularly critical when we lack one or more

of the logical elements (e.g. controls, before data, replication), because

we cannot make a prima facie case that alternative explanations are less

likely.

For the latter effects, there are ways we can potentially disprove

any alternative explanations. First, an examination of our control versus

impact locations (or our before vs. after periods) may show that these

alternative factors do not vary between them and hence cannot be a

potential explanation for differences. For example, suppose our human

impact causes increased sediment movement into streams, and that our

review of natural causes revealed that the geology of catchments is the

most important natural influence on sediment supply into streams. If

the geology of control and impact catchments is all the same, then

geology per se cannot be an explanation for differences between them.

We have ruled out a major, alternative explanation.

Second, it may be possible to structure alternative factors into the

monitoring design to reduce their influence. Suppose the monitoring

design is one where no before data are possible but there are potentially

multiple control locations. Recall in the previous chapter (section 8.1.2),

we discussed ways of developing criteria for the selection of controls in
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which we seek to maximize their comparability to each other and to the

impact location. The process we have just been through in 9.3.4 above is

a formalized, rigorous way of developing control criteria, as we have

identified the major natural influences on the variables of interest. If we

are able to match control and impact locations, so that these natural

factors do not vary among them, it will increase our confidence that high

P(e,hb) effects are due primarily to human impacts, not to those alterna-

tive factors. To continue the example above, we may be able to match

control and impact locations for catchment geology, again removing

geology as an explanation for variability in sediment supply. We can

pursue an analogous procedure if we have before vs. after comparison

but no controls (i.e. if we can choose our before and after periods, we

may be able to rule out other alternative factors that vary in time).

Suppose we have identified floods as a major natural influence on some

of our high P(e,hb) effects, so that the instance of floods in one period and

not the other can be an explanation for differences. If we have a choice of

sampling times, we might be able to choose those having similar prob-

abilities of floods in both the before and after periods. Ultimately we

have no control over whether and when floods occur – we may be

unlucky – but we will have increased the chance that floods are less

likely to be an explanation for before vs. after differences.

However, we may have the situation where an important natural

influence on monitoring variables is exactly confounded with our con-

trol vs. impact (or before vs. after) comparison and we cannot use either

of the above strategies to remove it. That is, we have no choice about

control locations or sampling times. In this case, we can use another

strategy to strengthen the argument that human impacts cause any

changes rather than alternative factors. For a particular effect we can

choose specific taxa that are predicted to respond to the human impact

as well as a suite that is predicted collectively to not respond. If some taxa

are known to be sensitive to the impact and other, related species are

known to be insensitive, then we strengthen our argument by predic-

ting, ahead of time, which taxa ought to show the effect and which

should not. The key to this strategy is that taxa ought to be sufficiently

similar to each other that we can argue that any alternative explanation

is unlikely to explain any systematic differences between our sensitive

and insensitive species. For example, in the previous chapter, we dis-

cussed the effects of liming streams to reduce acidity (section 8.4).

Because researchers had preliminary data on the acid-sensitivity of indi-

vidual taxa, they were able to make predictions regarding specific taxa

that ought to show increases under liming as well as those that ought to
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show no systematic differences among limed and unlimed streams. All

taxa were otherwise fairly similar in use of habitat, taxonomy, and so

forth. Unless acid-sensitivity is exactly correlated with the effects of

some alternative factor at the species level, this approach strengthens

the argument that it is the liming, not some other explanation, that

causes shifts in densities of some macroinvertebrate taxa. We are mak-

ing use of the argument that it is unlikely that something as specific as

acid-sensitivity is correlated exactly with sensitivity to some unrelated,

natural influence. Our confidence in this finding increases with the

number of taxa that we predict, successfully, to show the expected

change and those that should not. Examples of this approach are rela-

tively rare because few researchers have perhaps realized that systemati-

cally collecting data that will help negate alternative explanations is as

important as marshalling evidence in support of the human impacts

explanation. However to provide at least one non-pollution example,

Keough and colleagues (Keough et al. 1993; Keough & Quinn 2000)

adopted this approach to look at the effects of human harvesting on

intertidal mollusc populations. No before data were available, but mol-

lusc densities and body sizes could be compared between several beaches

accessible to the public and a section of shoreline protected for decades

by a rifle range. Initial studies of human collecting behaviour (and use of

studies from the literature) showed large molluscs were more likely to

be collected than small, and certain mollusc species more likely to be

collected than others. Keough et al. (1993) showed that average body sizes

of collected species were much smaller on accessible beaches than on

protected shores. Species that were not collected – either because they

were too small overall or were cryptic and hence harder to find – showed

no systematic differences in body sizes between accessible and protected

shores. This lack of shift provides further evidence of human impacts

because it is unlikely that all uncollected species are systematically

different from all collected species in ways important to molluscan

growth rates. This result provides a second line of indirect evidence that

body size shifts were due to human collection over the last century and

not due to some historical or current physical difference between im-

pact and control locations.

Finally, we can also look for other predictions that the alternative

hypothesis makes that are different from those made under the human

impacts explanation. Suppose that for the alternative hypothesis to be

the correct explanation, several other prediction(s) (i.e. other than the

one(s) overlapping with the human impacts explanation) must be found

to be correct as well. If these latter predictions are incorrect, then overall
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corroboration of the alternative hypothesis is low. In essence, we would

apply the whole procedure described above in section 9.3.2 to the alter-

native explanation – that is, rather than simply looking at one set of

predictions it makes (those that coincide with the human impacts expla-

nation), we would catalogue whole suites of other predictions as well. If

these latter predictions are then not supported by the data that we

collect in the monitoring program, then the alternative hypothesis has

not been well corroborated. This may strengthen an argument that a

human impact has occurred, providing that predictions of the latter

explanation are better fulfilled.

After impact with data from the impact location only

To this point, we have discussed situations where some comparable data

are available – either from control locations or from the impact location

prior to the start of human activities. The most difficult (and unfortu-

nately, common) situation is where no such data exist. These are often

large ecosystems with a long history of possible human impacts of

different kinds. Arguably there are either no controls or possible con-

trols are likely to be similarly affected by human activities. Impacts, if

any, were started decades (if not centuries) before, and no data from

before that are available. Hence we are left with collecting data after

impacts have occurred from the impact location alone. Nevertheless,

given that these systems have certainly been affected by human activ-

ities, we need to address questions such as: To what degree has this

ecosystem been shifted, from what would otherwise be its ‘normal’ level

of variation, by human activities? We will probably have to accept that

some of these questions are unanswerable, and that any case we can

build will certainly be a weak one because of the poorer degree of

inference we can draw, but there are some strategies we can pursue.

We should ensure that we have been through a structured process

for identifying any potential controls (or reference) locations, such as

described in section 8.2.3. We should distinguish between questions

about impacts that do affect the entire ecosystem versus those that

affect only parts of it. In the latter case (e.g. localized pollution), it is

possible that control locations for those parts of the system can be found

elsewhere within the same ecosystem. In the former case (e.g. reduced

flows caused by dams, acid rain), the whole ecosystem is likely to be

affected and we do need to search outside it for controls, where possible.

In many cases, the result may seem a foregone conclusion, but it is

important not to make hasty and subjective decisions. Given the im-

provement in inferential strength whenwe have any comparable data, it
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is worth investing time and effort into the possibility of finding compar-

able locations. Additionally, going through a structured process forces

individuals to reveal their biases. There is some evidence (e.g. Table 8.2)

that many ecologists implicitly believe that large ecosystems are, by

definition, idiosyncratic and hence not comparable to each other. How-

ever, in most instances an objective and structured review of the litera-

ture (as described above) has never been attempted, hence such beliefs

are not always based upon reliable information. Assuming, however,

that we lack control or reference locations, we are faced with making

absolute predictions about the state of the system, rather than relative

ones based on comparative situations (see Table 9.1).

Our first step will still be to carry out the reviews described in

sections 9.4.2 and 9.4.3 and to ask whether we can construct a strong

case that particular impacts do cause particular changes. The most

difficult step here will be step 2: deciding whether and how other rivers

are comparable to the system at hand. For large ecosystems, we may be

forced to use a lot of information from ecosystems in other continents

and other hemispheres. The question is whether markedly different

regional histories (e.g. glaciation events, climatic changes, continental

drift) create such variability as to swamp any possible similarities among

ecosystems on different continents. That question is probably yet to be

answered formost systems.We should certainly expect that any similari-

ties work only at taxonomic levels above that of species or for taxa

playingwell-understood ecological roles. In any case, reviewers will need

to pay strict attention to peculiarities of both ecosystems and the taxa

within them, because the need to pick up on idiosyncrasies is particular-

ly important. This will mean recording a lot of information about both

ecosystems and taxa during the review.

When we have finished the reviews, one possibility is that we may

have established some changes with enough evidence and a sufficiently

strong case that we might argue, from these data alone, that the effects

are very likely to have occurred in the system at hand. It may even be

possible to make absolute predictions (mentioned above), in which case

data can be collected to test their validity. For example, some entire

taxonomic groups are predicted to be absent under some situations

because of intrinsic biological characters. Mayflies and stoneflies are

thought to be usually absent from systems where sediment deposition is

high, for example, because they possess delicate, external gills that are

easily smothered. However, many such beliefs are not necessarily based

upon well-structured, systematic reviews of the literature (see section

10.1.2) or the literature used may not be relevant to the ecosystem

under consideration. We will have more confidence in such absolute
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predictions if we uncover any we canmake with some confidence during

our own review. Nevertheless, it is likely that we will end the review

phase withmany effects only weakly established because of the difficulty

of getting reliable data on large ecosystems or because of persistent

differences among systems.

There are at least three sources of inference that we can draw

upon. First, any historical data on our ecosystem is extraordinarily

valuable. There are some taxa where we can get information about past

abundances or diversity (through fossils, tree rings, pollen, diatom sub-

fossils etc.). Any ability we have to test predictions resulting from our

review with historical data are valuable, simply because those tests help

establish any validity of the review’s predictions. If we have a couple of

predictions that can be tested with historical data and are warranted,

then it increases confidence in other predictions.

A second way we can proceed is to use any gradients in the

strength or magnitude of impacts within our ecosystem to examine

gradients of ecological response. We argued previously that weakly

affected versus strongly affected comparisons can provide much infor-

mation, and analyses of gradients of impacts are useful ways of building

a compelling case (Ellis & Schneider 1997). Certainly extrapolation be-

yond measured levels – here to zero, or the no-impact situation – is

uncertain. However, if our review has suggested that a particular effect

is likely to occur and we are able to show that we get the expected

ecological response along a gradient of impact, then we have

strengthened our case that the impact has had an effect within the

ecosystem. The key will be whether we can find ways of disentangling

the effects of one impact from another, as human impacts often co-

occur. Mesocosm-style experiments may be particularly useful in this

situation as well.

We can use the argument above (section 9.3.5) about predicting

taxa that should not change as well as those that should to make

predictions about the relative performance of species within our ecosys-

tem. Such reasoning underpins, of course, the use of indicator species

and ratios of taxonomic groups to each other as measures of human

impact (see sections 6.1 and 6.3.3). Our use of these variables can be

somewhat different from previous studies in at least two ways. First, we

will have established the worth of predictions in a systematic review,

rather than relying on predictions that may have been based on weak

evidence or river systems not relevant to the one at hand (section 10.1.2).

Second, we need not obtain estimates of level of impact by dividing

abundances of one taxon or set of taxa by another to create an index or
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ratio, which has had various attendant problems (section 6.3.3). Instead,

we could set down hypotheses where we express and test predictions

about the relative abundances of a taxon (or set of taxa) to another (or

others). We can also, where possible, examine rivers nearby that suffer

the same impact. Possibly we would argue that these rivers are not

strictly comparable to our impact location, but they may provide infor-

mation about effects upon specific taxa present in that larger ecosystem.

If they also show the same relative differences between sensitive and

insensitive taxa, then we have strengthened our case.

9.3.6 Assessing the predictions

At this point, we will need to make a decision about how the evidence

will be used collectively to infer that changes were or were not caused by

human impact. In the best possible scenario, we would have a series of

predictions associated with the human impacts explanation that are

likely to be seen and that are improbable outcomes under alternative

explanations, i.e. have both low P(e,b) and high P(e,hb). This seems most

likely when we have a good knowledge base and/or if we are able to

design our study so that we reduce the chance that major natural

sources of variability are confounded with the human impacts explana-

tion. Nevertheless, we will still need to decide which of our predictions

ought be fulfilled and howmany. Wemight rank each of our hypotheses

by the strength of evidence associating a changewith the human activity

at hand. Those hypotheses concerning variables that fulfilled the most

causal criteria, especially where both low P(e,b) and high P(e,hb) criteria

are included, might be considered more important to fulfil as predic-

tions than those where the evidence of association was weaker. Other

than this however, we prefer not to make any specific suggestions about

how many or what kinds of predictions ought to be fulfilled. There are

simply not enough examples of a levels-of-evidence approach to make

such advice useful at this point.

The most difficult situations are where we have only very weak

predictions or many of our predictions are consistent with both the

human impacts explanation and plausible, alternative explanations,

and we can discover no way of separating those explanations. If we have

few predictions that can provide evidence that will either corroborate

the hypothesis of human impacts or provide us with the evidence that

would lead us to reject that as an explanation, then we should probably

return to the literature to see if anything has been missed or to search

for other predictions of the alternative explanation that we could test.
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9.4 some final comments on the process

A levels-of-evidence process must be carried out in a rigorous fashion. If

there is a lack of structure in approaching the reviews, then we have the

possibility that results can be unconsciously manipulated to generate

some desired result. This may be a genuine problem, in particular, if the

review is not done prior to monitoring and analysis, as there then may

be a real incentive to generate specific findings from the literature.

Stating the predictions a priori and then testing them is preferable. The

outcome is then less likely to be tainted by bias. One way to achieve this

is to have different people conduct each of the reviews and, considering

the problem with ‘confirmation’ or ‘wish’ bias, to get competent re-

viewers who have published little in the specific literature under con-

sideration. If the reviewing process is done separately from data

collection and analysis, this will also increase the independence of these

two parts of the process.

Second, we have made some suggestions concerning how to

measure the criteria and how to generate a levels-of-evidence case. These

are only suggestions.What is needed aremultiple attempts at this whole

process to expose the problems with it, especially for human impacts

that are little studied. Methods for quantifying criteria and what consti-

tutes adequate evidence to establish causality needs lots of rigorous –

and informed – debate.

Finally, we do need to keep in mind that we are still dealing with

fairly weak evidence. An unreplicated designwhere there are no controls

and/or no before data will have higher levels of uncertainty associated

with it than a replicated BACI-type design. The causal criteria cannot

(usually) definitively exclude particular explanations; it is important to

keep inmind that many of them constitute weak evidence. It should also

be apparent that conducting a levels-of-evidence approach is not simpler

(nor necessarily less expensive, in some cases) than doing a replicated

BACI-type design given the exhaustive, systematic examination of a

potentially very large literature that will be required (see Box 9.3 for an

example). We imagine that where MBACI or Beyond-BACI designs are

possible, these will provide the primary basis for inference, with other

lines of evidence providing further corroboration.

9.5 important issues

• Manymonitoring programs have designs in which there is inferen-

tial uncertainty (i.e. there are alternative hypotheses, besides that

of the human impacts hypothesis, that can potentially explain our
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Box 9.3 An example from the ecotoxicology literature

An example of the way in which evidence from published studies

can be reviewed is provided by Calabrese & Baldwin’s (1997) review

of the evidence for hormesis (see section 11.2). After clarifying the

definition of what constituted hormesis (described in section 11.2

and Figure 11.3), they surveyed nearly 4000 potentially relevant

articles of dose–response relationships, of which approximately

350 showed some qualitative evidence of the effect. They then

examined these articles and scored each study against a number of

quantitative criteria that were established a priori. These criteria

included aspects critical to the experimental design (in this case

the number of concentrations measured below the No Observable

Effect Level (NOEL), and how well the NOEL was estimated), and

aspects of the strength of the effect (e.g. statistical significance of

the test, magnitude of the response relative to the control and

reproducibility of the data by other studies).

Details of the scoring system and how the scores were

combined are given in Calabrese & Baldwin (1997); the important

point for our discussion here, though, is that this exemplifies how

published evidence from a disparate literature can be combined

and scored in an objective fashion to evaluate the evidence for a

particular response or phenomenon. In this particular example,

the authors were looking for evidence of a generalized

phenomenon rather than say the response of a single variable (e.g.

snail fecundity) to a particular disturbance (e.g. concentration of

radionuclides), so the basis for their literature survey was very

much larger than we would expect for many examples of

disturbances in rivers. Nevertheless this example does

demonstrate that data can be evaluated systematically in

situations where formal meta-analyses are impossible. It also

demonstrates that systematic, quantitative reviews of published

evidence can be very time-consuming and require careful

definition and quantification of the criteria used to make the

evaluation.

data equally well). This issue is particularly the case where we

cannot carry out replicated and complete BACI designs.

• A levels-of-evidence approach, using causal criteria (effectively, a

set of circumstantial arguments), which have been developed par-
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ticularly well in the field of epidemiology, can collectively improve

inferential strength. The causal criteria are strength of associ-

ation, consistency of association, specificity of association, tem-

porality, biological or ecological gradient, biological or ecological

plausibility, experimental evidence and analogy.

• Causal criteria form two types of arguments: those where there is a

low probability of observing some data in the absence of human

impact, and those where the evidence is something that follows

from impact. Strongest inference is gained when we can marshal

evidence that uses both forms of arguments.

• Evidence is gained by reviewing the literature with an objective

and carefully designed sampling process to gather information

about changes associated with the putative human impact. For

each change, we collate evidence under each of the causal criteria.

• A second, and independent, review of the literature will then

reveal whether changes associated with the human activity are

commonly observed in other situations and, if so, under what

circumstances.

• From our reviews, we can construct a list of changes associated

with the human impact, which can be posed as predictive hypothe-

ses. These hypotheses can be ranked from those that will provide

the strongest inference (e.g. should allow definite exclusion of the

human impacts hypothesis if no impact occurs), to those that

provide some inference but which cannot necessarily definitely

exclude one explanation over another (e.g. where changes may be

equally explained by both the human impacts hypothesis and an

alternative explanation). For some of the effects on our initial list,

wemay ultimately decide that the evidence of associationwith the

human activity is too weak to provide useful predictions.

• Where we have identified factors (other than the human activity)

that may affect our response variables, we can improve our

monitoring design by factoring in these factors so that their ef-

fects will not be confounded with any changes resulting from the

human activity of interest.

• Overall, we should decide, before collecting any data, how many

andwhich predictionsmust be fulfilled for us to draw an inference

that a human impact has occurred.

• It is extremely important that every effort is made to avoid the

potential for bias, by having reviewers who are independent of

each other and by having the review process separate from data

collection and analysis.
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10

Variables that are used for monitoring in
flowing waters

From the previous chapter, it should be apparent that choice of variables

to use in amonitoring program is a critical decision and not one tomake

arbitrarily or hastily. However, many biomonitoring texts (e.g. Davis &

Simon 1995; Karr & Chu 1999; Rosenberg & Resh 1993) focus upon only

particular taxonomic groups or particular kinds of variables. Specific

biomonitoring studies are spread over many different journals, from

those specializing in particular taxa to ones on whole communities, and

from those publishing mainly in areas of basic ecology to those directed

specifically at applied ecology or environmental management. It is diffi-

cult for any individual to keep track of all of this literature, and re-

searchers can often be unaware of developments outside their

immediate field of expertise.

Here, we summarize briefly the characteristics of useful variables.

Although much of this material is discussed in other chapters (chapters

6, 9 and 11), we summarize it here simply to emphasize that useful

monitoring variables are not necessarily associated with particular tax-

onomic groups and that researchers are advised to look widely across the

taxonomic and ecological range. From chapter 9, it should be clear that

dogmatic advice about which taxa should bemonitored should be avoid-

ed. Although this may disappoint those who prefer simple recipes,

choice of response variables requires measured consideration of a num-

ber of attributes. We provide tables that summarize the sorts of taxa and

variable types that have been used in flowing water studies to illustrate

the sheer variety available for consideration (see Tables 10.1 and 10.2).

There is an enormous literature on biological and ecological responses

of different taxa (Tables 10.1 and 10.2) to different sorts of stressors. Such

a wealth of potentially useful information underscores the need to

approach the choice of response variables with an open mind.
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Table 10.1. An overviewa of some of the general advantages and disadvantages

of using each of the main taxonomic groups in human impacts assessments in

flowing waters

Bacteria and fungi

Overviews: Finlay et al. (1997), Leff & Lemke (1998)

Example papers: Issa & Ismail (1995), Lemly (1998)

Potential advantages Potential disadvantages

Can provide direct measures of very

important ecological processes (e.g.

decomposition rates)

Known importance in detrital food

web loops

May provide good signal of nutrient

status of water

No ethical problems associated with

experimental exposure to stressors

Extracellular enzymes are detectable

as indicators of bacterial activity

Usually need high level of expertise

Highly technical and sometimes

complicated laboratory work

required to collect information

Serious lack of knowledge about the

activities, responses and significance

of most taxa

Negative social image might hinder

their use

Protozoans

Overview: Jack & Gilbert (1997)

Example paper: McCormick et al. (1997)

Potential advantages Potential disadvantages

Small size means mesocosm-style

experiments are very feasible

No ethical problems associated with

experimental exposure to stressors

Usually need high level of expertise

Highly technical and sometimes

complicated laboratory work

sometimes required to collect

information

Very little information available

about their biology, distribution, or

responses to stressors
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Table 10.1. (cont.)

Plankton

Overviews: Havens & Hanazato (1993), Boon et al. (1994), Gehrke & Harris (1994),

Basu & Pick (1996), Kobayashi et al. (1996), Reynolds & Descy (1996)

Example papers: Locke et al. (1993), Havens (1994), Anderson-Carnahan et al.

(1995), Bonecker et al. (1996), Ruse & Hutchings (1996), Thorp et al. (1996), Bass et

al. (1997), Vranovsky (1997)

Potential advantages Potential disadvantages

Common component of food web of

larger, lowland rivers

Large amount of information

available on some species’ responses

to toxins and other stressors

Small size means realistic

mesocosm-type and/or field-enclosure

experiments are possible

No ethical problems associated with

experimental exposure to stressors

May not occur much in upland

streams or middle-order rivers

Considerable laboratory work

required for identification and

enumeration

Relatively high level of expertise

required

High between-sample variability

requires compositing or

sub-sampling techniques to be

developed

Benthic microalgae

Overviews: Hart et al. (1990), Lewis (1995), Reid et al. (1995), Whitton & Kelly

(1995), Lowe et al. (1996), Pan et al. (1996), Stevenson (1997)

Example papers: Kutka & Richards (1996), Lobo et al. (1996), Deegan et al. (1997),

Korhola & Blom (1997), Reavie & Smol (1997), Medley & Clements (1998)

Potential advantages Potential disadvantages

Common and diverse

Many cosmopolitan genera and

species

Can provide univariate or

multivariate data

Some species (e.g. diatoms) occur as

fossils or subfossils so some

information about past

environments may be retrievable

Sessile, so can provide information

about localized impacts

Some well-established relationships

with certain stressors e.g. diatom

density or diversity, and measures of

water quality (e.g. nutrients, salinity)

Not observable in field – requires

laboratory work to process samples

Often very high variability among

samples over small scales – requires

compositing or sub-sampling

techniques to be developed

Often high temporal variability

Laboratory work to identify and

count species can be reasonably

complicated

Usually high level of technical

expertise required

Possibly somewhat negative social

image associated (often wrongly)

with algal blooms
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Table 10.1. (cont.)

Benthic microalgae (cont.)

Potential advantages Potential disadvantages

Reasonably well-established

taxonomy

Reasonably good information about

the use of artificial substrata to

collect samples simply

No ethical problems associated with

experimental exposure to stressors

Aquatic macroinvertebrates

Overviews: Hart et al. (1990), Rosenberg & Resh (1993, 1996), Resh et al. (1995)

Example papers: Mersch & Pihan (1993), Chessman (1995), Growns et al. (1995),

Plénet (1995), Rundle et al. (1995), Wright (1995), Coimbra et al. (1996), Barton &

Farmer (1997), Bervoets et al. (1997)

Potential advantages Potential disadvantages

Often numerous and diverse

Can provide both univariate and

multivariate data

Widespread – occur in most rivers

and streams

Collectively form a very significant

part of many lotic food webs

Some established relationships with

certain impacts (e.g. organic

pollutants)

Currently expanding knowledge base

regarding relations between habitat

types and presence/absence of species

Many species relatively immobile and

show impacts occurring over small

spatial scales

Many species respond rapidly to

impacts

Equipment to collect larvae relatively

inexpensive and simple to use

Identification to taxonomic levels

above species may be sufficient to

detect effects

Sampling equipment works over

small spatial scales and can produce

large between-sample variance

requiring compositing with

sub-sampling

Taxonomy may be quite poorly

developed in some regions or for

some taxa

May require relatively highly trained

staff to process samples (depending

on taxonomic level required)

Can be high rate of errors in

identification and enumeration for

species-level identifications

If population data required,

relatively little known of the

requirements of the (mostly)

terrestrial adults

Most species require significant

amount of laboratory work to

generate reliable numbers from

samples
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Table 10.1. (cont.)

Aquatic macroinvertebraes (cont.)

Potential advantages Potential disadvantages

Depending on identification levels,

concerned public groups could be

involved in data collection

At present, no ethical problems

associated with experimental

exposure to stressors, except for

some crustaceans under some

jurisdictions

Macroalgae and bryophytes

Overviews: Lewis (1995), Whitton & Kelly (1995), Lowe & Pan (1996), Carr et al.

(1997)

Example papers: Mersch & Johansson (1993), Engleman & McDiffett (1996), Klein

et al. (1997)

Potential advantages Potential disadvantages

Commonly occurring with many

cosmopolitan species

Ability to provide both univariate

and multivariate data

Some understanding of the relations

between species abundances or

occurrences and water quality (e.g.

nutrients)

Sessile on hard surfaces, therefore

provide reliable signal for small-scale

impacts

Can be enumerated (as % cover) and

often identified in field, therefore no

or little laboratory work required

and non-destructive or repeated

sampling possible

Equipment to collect samples usually

inexpensive and simple to use

Useful in toxicity tests

No ethical problems associated with

experimental exposure to stressors

Abundance may be naturally very

low in some systems, hence power to

detect changes may potentially be

low

Some species (e.g. filamentous green

algae) may not be readily identifiable

in field

Initial identifications may take

considerable taxonomic expertise

Some species (e.g. bryophytes) may be

very slow growing and hence slow to

respond to perturbations

If population data required,

relatively little may be known of

other stages of life cycle (e.g.

sporelings, spores)
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Table 10.1. (cont.)

Macrophytes

Overviews: Hart et al. (1990), Carbiener et al. (1995), Lewis (1995), Whitton & Kelly

(1995), Carr et al. (1997)

Example papers: James & Hart (1993), Van Den Brink & Van Der Velde (1993),

Schmieder (1995), Aguiar et al. (1996), Klein et al. (1997), Malthus & George (1997)

Potential advantages Potential disadvantages

Can be enumerated (as % cover) and

often identified in field, therefore no

or little laboratory work required

and non-destructive or repeated

sampling may be possible

Some remote sensing of abundances

may be possible

Sessile, therefore should provide

reliable signal for local impacts

Some known relations between

macrophyte presence or density and

environmental conditions

Free-floating plants may provide a

good signal of nutrient status of

water

Useful in toxicity tests and other

laboratory or mesocosm experiments

No ethical problems associated with

experimental exposure to stressors

Absent or highly patchy in

distribution in some rivers and

streams and there may be many

reasons for their absence

Taxonomy may not be well developed

in some areas

Effects of specific environmental

stressors may be known for only a

few species

Rooted species may signal sediment

characteristics rather than water

quality

Negative social image (as ‘water

weeds’) in some places

Identification, if related to

reproduction, may be only possible in

some seasons

Riparian invertebrates (e.g. Insects, spiders)

Potential advantages Potential disadvantages

Organisms like spiders may provide

signals about abundances of

in-stream invertebrates

Very little relevant work on these

groups – many unknowns regarding

patchiness, sampling protocols,

reliability of information and

connection to specific perturbations
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Table 10.1. (cont.)

Riparian vegetation

Overview: Hart et al. (1990)

Example paper: Bren (1992)

Potential advantages Potential disadvantages

Can supply both univariate and

multivariate data

Information on reproductive success

(seed set, seedling density) may be

relatively easy to obtain

Many species relatively long-lived and

can integrate signals over long time

periods

Tree rings provide information about

past environments that may be

relevant

Could provide signals about bank

condition

Some remote sensing of abundances

may be possible

Often well-developed taxonomy and

many species relatively easy to

identify

Involvement of concerned public

groups possible

May not provide any reliable signals

about within-channel conditions or

aquatic populations

Population densities may show only

slow responses

May not respond to some acute

impacts

In the absence of remote sensing, can

be very labour-intensive to collect

reliable, quantitative data

Initially, taxonomic identifications

may require considerable expertise

Fish

Overviews: Moyle (1993), Boon et al. (1994), Gehrke & Harris (1994), Gray (1995),

Harris (1995), Harris & Gehrke (1997), Bain et al. (1999)

Example papers: Lemly (1993, 1996), Bishop et al. (1995), Weatherley et al. (1997)

Potential advantages Potential disadvantages

Commonly present and often

widespread

Can provide univariate data and, in

some areas, multivariate data as well

Some species at top of food chains

and hence potentially integrate

signals from species at lower trophic

levels

Mobility means they may flee from

point impacts or travel routinely

between impacted and non-impacted

areas, i.e. at larger scales than the

study

Some species occur in low densities

or are highly aggregated (e.g.

schooling fish) so that distribution is

highly patchy
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Table 10.1. (cont.)

Fish (cont.)

Potential advantages Potential disadvantages

Mobility means some species can

integrate effects of non-point impacts

occurring over relatively large areas

High longevity of some species means

they integrate impacts over time

Many species with high social and

economic significance

Taxonomy usually well established

and species often relatively easy to

identify

Possibility of involving community

groups (e.g. angling clubs) in data

collection

Some sampling methods (e.g.

non-fatal electrofishing, direct

observation) mean areas can be

sampled repeatedly

Relatively good information about

the relations between environmental

variability and species’ abundances

or occurrences in many regions

Relatively good information about

responses to a variety of

perturbations

May be very labour-intensive to

sample in some rivers or for some

species

Some sampling equipment (e.g.

electrofisher) requires expertise,

specific training and possibly

licencing

If population data required, little

may be known of larval stages, which

often inhabit different environments

to adults

Possibly some ethical problems in

exposing individuals to stressors in

experiments

Not very diverse in some water bodies

Aquatic or riparian vertebrates (e.g. amphibians, reptiles, mammals)

Overviews: Croonquist & Brooks (1991), Scott & Grant (1997)

Example papers: Sinitsyn (1992), Lemly (1993), Thurmond & Miller (1994), Welsh

& Ollivier (1998)

Potential advantages Potential disadvantages

Mobility of many species means they

can provide information that

integrates effects of non-point

impacts occurring over relatively

large areas

Those that are highly mobile may flee

from areas of impacts or travel

routinely between impacted and

non-impacted areas (i.e. at larger

scale than the study)
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Table 10.1. (cont.)

Aquatic or riparian vertebrates (cont.)

Potential advantages Potential disadvantages

Many species are at the top of food

chains and hence signal

perturbations like accumulating

toxins

Usually of high social and/or

economic significance

Many species are relatively easy to

identify, with well-established

taxonomy

May be possible to involve local

community groups (e.g. bird

watching groups, Frog Watch groups)

in data collection

Usually very labour intensive to

obtain reliable, quantitative data

Many species have unknown

responses to perturbationsb

Territorial species may have large

ranges and low densities and hence

offer potentially low power to detect

effects

Relatively long life cycles for some

species may mean populations

respond only slowly to impacts

Population responses of riparian

species may be only weakly related to

condition of stream or river channels

per se

Ethical issues with handling and

experimentation

Waterbirds

Overviews: Weller (1995), Kingsford (1999)

Example papers: Baxter (1994), Kingsford & Johnson (1998), Weller & Weller

(2000)

Potential advantages Potential disadvantages

Mobility of many species means they

can provide information that

integrates effects of non-point

impacts occurring over relatively

large areas

Many species are at the top of food

chains and hence signal

perturbations like accumulating

toxins

Usually of high social and/or

economic significance

Many species are relatively easy to

identify, with well-established

taxonomy

May be possible to involve local

birdwatching groups in studies

Those that are highly mobile may flee

from areas of impacts or travel

routinely between impacted and

non-impacted areas (i.e. at larger

scale than the study)

May respond to variation outside of

scientists’ experience (e.g. water

availability in semi-arid regions

causes absence closer to coast and no

birds to assess)

Many species have unknown

responses to perturbationsb

Relatively long life cycles for some

species may mean populations

respond only slowly to impacts
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Table 10.1. (cont.)

Waterbirds (cont.)

Potential advantages Potential disadvantages

Reproductive (i.e. sub-lethal)

responses to water quantity and

quality may occur each year

Requirements for feeding and

breeding may be separated

geographically and so hard to

integrate in a site-based assessment

Ethical issues with handling and

experimentation

a The table is adapted from a similar summary for marine taxa given in Keough

& Mapstone (1995). Also given for each taxonomic group are references that

provide an overview of the ecology of those species re monitoring uses as well as

papers that provide examples of recent applications of that group to examine

responses to a specific impact. The disadvantages and advantages are meant as

fairly general indications, and what is a disadvantage for some monitoring

programs can be an advantage for others, depending on the exact question (e.g.

slow responses to a stressor would be disadvantageous for detecting short-term,

pulse disturbances but would be an advantage for long-term, press

disturbances). Some taxa have only a few advantages or disadvantages listed;

these have been relatively little studied, so it is unknown whether the

advantages or disadvantages listed for other taxa apply or not.
b Because of expense and ethical considerations, most freshwater vertebrates

(with the exception of fish) are used only rarely in laboratory experiments (e.g.

toxicology experiments) that examine direct responses to environmental

stressors. Coupled with the difficulty of gaining field data on these groups, this

results in far fewer data, relative to other taxa, that provide direct evidence of

responses to specific environmental perturbations.

10.1 considerations for choosing variables

10.1.1 Questions addressed by the monitoring program

Choice of variables hinges upon the questions posed, and such questions

will vary widely depending upon the reason monitoring is to be carried

out (see chapter 3). For example, a program concernedwithmonitoring a

population of an endangered species may pose questions regarding the

latter’s habitat use and food resources in natural and modified environ-

ments. In contrast, a surveillance program designed to detect changes in

an ecosystemmight bemore concerned with overall shifts in diversity or
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Table 10.2. Some examples of the types of ecological variables used in human

impacts assessments in flowing waters

Examples of types of variablea

Single species attributes

Mating success/fecundity (e.g. egg output)

Larval recruitment rates

Mortality rates

Sub-lethal effects (e.g. biomarkers, deformities, fluctuating asymmetry)

Measures of abundance

Attributes of multiple species

Taxa richness

Diversity indices

Ratios of one or more taxa to other taxa

Biotic indices using scores related to stressor tolerance

Functional group ratios, e.g. feeding types

Matrices of (dis)similarity indices

Ecosystem processes

Detrital processing

Oxygen production

Nutrient fluxes

Respiration or photosynthetic rates

Assessment of habitat features

Scores for substrate characteristics

Scores for sediment deposition or transportation

Scores for condition of banks

Scores for type and density of riparian vegetation

Specific requirements for focal species (e.g. snags for fishes)

a See chapter 6 for more information about past use of variables and their

associated problems and some examples.

biotic composition than with the abundances of single species. Clearly,

the ultimate aims of the monitoring program impinge directly on the

type of variables that are appropriate.

In either case, the language of questions should be as clear and

precise as possible, and the environmental stressor(s) should be specifi-

cally named. Nebulously worded questions make variable selection un-

clear and increase the probability that, ultimately, the information

gathered will not address the question. For example, a relatively clear

questionmight be: How will stressor A change the density of species X in
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locations 1 and 2 over the next n years? Here, the variable of choice will

be the density of species X, or any variable that can act as a good

surrogate of its density (as discussed below). An example of a poorly

defined question might be: What is the effect of impact A upon river

health? ‘Ecosystem health’ is an example of a term that does not have a

universally accepted definition (see Box 3.1). Those definitions that have

been suggested often use characteristics of ecosystems that are not

quantifiable. Consequently, use of the term ‘health’ (or similar sorts of

terms) in a monitoring question often results in considerable confusion

about what should actually be measured. Note that it is possible to be

more rigorous: an example of variable selectionmade against set criteria

for indicating aspects of catchment health is Cranston et al. (1996).

10.1.2 Causality, mechanisms, inference

As we stressed in the last chapter, we seek variables that are related

causally and/or are strongly associated with the impact to hand. If our

variables do not have this characteristic, then two interpretations are

possible if we detect only small changes. The first possibility is that,

given a monitoring program of adequate statistical power to detect

change, we can conclude that the stressor had little effect on the ecosys-

tem. The second and undesirable possibility is that change occurred but

went undetected because the chosen variables did not respond to the

stressor. For example, researchers often use species richness as a variable

because there is a common belief that human impact invariably causes a

decline in richness. This need not necessarily be true. Profound changes

in faunal or floral composition can occur without any concurrent alter-

ation to overall numbers of species, and these changes should be ecologi-

cally important (Keough & Quinn 1991). Zampella & Bunnell (1998)

found similar numbers of fish species in reference and disturbed rivers

but the main difference was the incidence of non-native species in rivers

subject to human modification, and they considered this to be ecologi-

cally significant. Coimbra et al. (1996) found that species richness of

macroinvertebrates was actually highest in polluted stream sites in

some seasons. Examples like these show that we need to assess the

evidence upon which a purportedly effective response variable is based,

and we have described a method for doing this prior to monitoring in

section 9.3.2. It may be that a variable provides a good signal only for

certain types of perturbations, for some taxa, or in some sorts of rivers. It

is also possible that belief in particular response variables has developed

because the evidence supporting that contention has not been properly
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critiqued. For example, diatoms are believed to be reliable signals of

water quality, but many relations between diatoms and specific environ-

mental stressors are untested or based on weak evidence because of

relatively poor survey designs (as pointed out by Medley & Clements

1998). Similar problems have dogged applications of the ‘indicator spe-

cies’ concept (section 6.3.3). When we have only poor evidence that a

variable is causally related to or associated with a stressor, then we do

not have the grounds to interpret small changes as ‘unimportant’ (chap-

ter 11); in fact, we do not know what it indicates. It is possible that

important changes occurred but that we picked insensitive variables to

monitor.

10.1.3 Ecological and socioeconomic significance of change

We will want to choose variables that can signal changes that are

‘important’, a topic we discuss in the next chapter. Because importance

includes societal wishes, choice of variables is not driven solely by

ecological knowledge and so choices should not be made just by scien-

tists.

10.1.4 Efficiency

Efficiency of variables will be dependent upon several aspects: their

sampling variance and how easy or difficult they are to measure. Samp-

ling variance is the variation seen typically between replicate observa-

tions taken at the same time and location (see Box 4.2 and section 4.4).

The greater the variance, the more replicates are required to gain a

particular level of precision, and therefore the more effort is needed to

gain reliable information. Variables differ greatly in sampling variance.

Large sampling variance is common in estimates of organism density,

for example (section 6.3.1). The causes of high sampling variance are

various: for example, large small-scale variability in space or time rela-

tive to sampling unit sizes (Schneider 1994); equipment that samples the

environment with rather low precision (such as the kick sample for

gathering invertebrate species); or where a high degree of technical

expertise is required, which may result in a higher rate of operator

errors (see Turner & Trexler 1997 for examples of the different perform-

ances of aquatic marsh samplers). Additionally, variables requiring con-

siderable laboratory processing costs (e.g. measurement of nutrient

concentrations, counting and identification of invertebrates) have more

steps where errors of measurement can occur. This is especially true
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where a high level of technical ability of staff is required but not

available. Mistakes in measurement, recording or identifications can be

considerable (see Norris & Georges 1993 for an example). Also, we can

reduce mistakes in identification by coarsening the required taxonomic

resolution (e.g. Wright et al. 1995).

Some variables are much more difficult to deal with than others.

For example, some are difficult to quantify simply because of the nature

of the environment. Extremewater depths or velocities, and hazards like

snags, typicallymake large lowland riversmuchmore difficult to sample

than shallow, upland streams. The densities of some organisms are

inherently difficult to quantify because the equipment to do so efficient-

ly has not yet been invented or is labour-intensive to use. Examples are

organisms, like some waterbirds, that routinely travel large distances

over a few days andmake getting accurate counts very difficult. Animals

or plants that are highly cryptic, secretive or that inhabit underwater

burrows or other hidden environments are also difficult to sample

precisely. In each case, the use of many field hands to gather data or the

use of advanced equipment like radio telemetry (where animals are

tracked with individual radio transmitters) can help, but these require-

ments will also drive up costs. Rare species pose at least two other

problems as well. First, repeated sampling of locations might itself

reduce population densities and, in the worse situation, cause local

extinction. Second, such organismsmay generatemany zeros in the data

set. Skewed distributions caused by large numbers of zeros pose difficul-

ties for analysis, because the data are unlikely to meet distributional

requirements for analysis and may compromise statistical power.

Finally, some variables can act as surrogates for others or as

‘piggybacks’. Useful surrogate variables are those that are highly and

reliably correlated with a variable of interest, but are much easier to

measure, whichmeans that almost the same quality of information can

be gathered for far less effort. For example, if members of a taxonomic

group all respond very similarly to the stressor, an easily collected,

abundant species could be examined rather than a rarer species that

may be of more interest but labour-intensive to collect. It is also possible

that the extent of key habitats can be used as a surrogate of biodiversity.

Piggyback variables are those that can be collected simultaneously with

others for very little extra cost or effort. For example, many water-

quality meters can routinely measure several aspects of water quality.

Once in the field to gather information on one variable, virtually no

extra cost is incurred for measuring all the other variables as well.

Piggyback variablesmay also be particularly pertinent where automated
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sampling is possible (e.g. data loggers can often sample several aspects of

water quality without much increase in costs). The same may be true of

satellite imagery.

In some cases the easiest variables to measure may not involve

direct observations of organisms. For example, ecology often uses vari-

ables based on indirect indications of presence or activity of an organism

(e.g. burrows, nests, tracks, scats, extracellular enzymes of bacteria).

These feature in many indices of relative abundance (see Krebs 1999).

Indications of activity per se of organisms (rather than their presence

alone) are particularly important where the focus is on the dynamism

and function of ecological processes (see Fairweather 1999a,b). The ex-

pected impact being monitored for will often determine the choices to

be made.

A useful pragmatic choice in dealing with multi-species assem-

blages is to use a coarser level of taxonomy than species for identifica-

tion with savings being put into processing more samples or sampling

more locations. Studies in both marine soft-sediment (see Warwick 1993

for review) and stream (e.g. Wright et al. 1995) habitats have shown little

loss of power to detect impacts, at least in cases of extreme pollution,

even when resolved to merely family or order.

Mixed strategies of measuring a suite of easy variables routinely

but supplementing these data with occasionalmeasurement of variables

that are more difficult may be particularly cost-effective.

10.2 relative weighting of attributes

The attributes described above (summarized in Table 10.3) are all useful,

but each should not be considered in piecemeal fashion. It is important

to weigh up attributes collectively. Overall, two general issues should

influence decisions about choosing variables: the strength of inference

the information will supply versus the total effort (hence cost) involved

in collecting the information. As we have reinforced throughout this

book, monitoring programs fall along a continuum of inference from

strong to weak, rather than being simply at either end. The inferential

quality of a monitoring program is improved if variable selection is

weighted toward those where there is good evidence of association with

the stressor. Costs are low if variables provide a good signal-to-noise ratio

while not demanding a lot of labour or equipment to collect informa-

tion. Ideally, all variables should do this, but it is more likely that many

variables will require us to trade off attributes. A variable that costs

more per datum than another may be warranted if it provides much
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Table 10.3. General attributes that make response variables useful in studies of

human impacts

Desirable attributes of variables

Causality, mechanisms and strength of inference

Responses to stressors are well-understood and predictable because they have

been established with a broad array of evidence (chapter 9)

Significance of changes (chapter 11)

Of socioeconomic concern

Ecologically important

Processes or functions where biological importance is well established

Efficiency

Organisms that do not move much or disperse from impact area, are not

cryptic, secretive or difficult to sample

Organisms that are reasonably numerous

Organisms that are not rare or at least will not be wiped out by repeated

sampling

Piggyback variables that can be collected at the same time as others with little

extra effort

Subsets of variables that survive scrutiny for redundancy or a lack of

hypothesized impact from the stressor under examination

Technology for measurement is readily available, methods are reliable and the

expertise needed to collect data is available

Measurement is particularly cheap or cost-effective

Can be surrogates for other variables, especially where the latter are difficult or

costly to measure or collect

Automated measurements and remote sensing are possible and cost-effective

stronger inference of impact. That sort of conclusion, however, requires

a balanced consideration of overall attributes, a topic we consider spe-

cifically in chapter 13.

Difficulties occur where social or economic requirements clash

with choices of variables that are more desirable for other reasons. For

example, in Denmark, the Saprobiensystem of metrics, biochemical

oxygen demand and biological indicators were written into law as

measures for water quality, thus obviating some choice among response

variables (Cairns & Pratt 1993). In other cases, there may be considerable

political or social pressure to monitor particular species. The current

intense fascination with biodiversity or with large mammals and birds

in many sectors of the community is a good example. Mammals and

birds, for example, may be otherwise very poor choices for some
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monitoring programs. Conventions also occur within the scientific com-

munity. In freshwater biomonitoring, there is often an expectation that

monitoring studies should use macroinvertebrates to detect human

impacts, even though the efficacy of this taxonomic group has rarely

been compared with others. There is also some pressure (e.g. Fore et al.

1996) to keep decision-making processes (and therefore choice of vari-

ables) simple so that they are interpretable by lay persons or those

without ecological or statistical training. Unfortunately, variables that

are simple to explain or are appealing to a lay audience may not possess

other useful attributes. The use of socially acceptable but otherwise poor

variables, or variables that are used purely out of convention, is to be

avoided where possible. If such variables are used, then the reasons why

they were selected should certainly be made explicit in any reporting of

the monitoring program.

10.3 important issues

• Variables chosen for monitoring should be efficacious: relevant to

the questions asked; strongly associated with the putative impact;

ecologically and/or socially significant; and efficient to measure.

• There is a tremendous diversity of potential response variables, and

decisions about which are to be used should be based on a careful

examination of each variable’s efficacy. Variables should not be

chosen purely because of convention, habit or social pressure.
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11

Defining important changes

In previous chapters we have referred to the ‘effect size’ of an impact.

This refers to the size of the change in a variable that constitutes the

greatest level of acceptable change. We therefore need to define what

sort of change is important in the context of the question being asked.

We avoid the term ‘significant change’ in this context to prevent con-

fusion with ‘statistical significance’. In formal terms this is the amount

of departure of the data from the null hypothesis (i.e. that the potential

impact has resulted in no important change in the variable) that we

need to observe before we favour the alternative hypothesis (i.e. that the

potential impact has resulted in an important or unacceptable change

in the variable).

To those who are new to environmental monitoring and assess-

ment, speaking of ‘important’ or ‘acceptable’ changes in a variable

seems like a formof newspeak: a euphemism covering a failure ofwill on

behalf of the scientists ormanagers who should really be insisting on ‘no

change’ in the variable in question. In the next section we justify why

effect sizes need to be specified at all. This then leads us, in subsequent

sections, to discuss the kinds of change we may need to detect, the risks

and consequences of setting effect sizes, and then some practical guide-

lines on howwe can set ‘effect sizes’ or ‘important changes’ in rivers and

streams.

11.1 why do we need to define changes in terms of

‘effect sizes’?

At first glance it seems reasonable and environmentally cautious to

insist on a criterion of ‘no change’ in the variable being measured

relative to control conditions. For example, to determine whether the
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effluent from a pulpmill has been diluted sufficiently, it seems simple to

stipulate that hepatic function of fish (as measured by assays of EROD

(7-ethoxyresorufin 0-deethylase) activity) be the same in both control and

potentially impacted locations. Unfortunately, this criterion cannot be

implemented because it requires us to prove the null hypothesis –

something that is impossible in the framework of formal hypothesis-

testing (see discussion in sections 14.2 and 14.3.1). Remember also, that

without consideration of the effect size, the methods discussed in this

book are meaningless: we can always reject a null hypothesis, even for

the most trivial difference, with a large enough sample size.

Instead we specify some level of change (the critical effect size; see

section 4.7) in a variable within which it is not important to reject the

null hypothesis of ‘no change’. In our hypothetical example, we may

have information about how much change in hepatic function can be

tolerated by the fish before its foraging behaviour or fecundity is af-

fected. This requires us to be explicit about what level of change in the

variable is regarded as harmless or acceptable. In formal terms this

process involves specifying a critical effect size (Cohen 1988; and see

section 4.7). However, specifying an effect size is not a simple procedure.

Although science is involved in quantifying relationships, the strength

of impacts and the variables being measured, there are social and econ-

omic values that need to be made explicit when trying to decide what

constitutes harmless or acceptable change.

Sometimes the criterion of ‘no change’ is specified in terms of

there being no detectable change in the variable. For example, the objec-

tive of the aquatic biological monitoring associated with the Ranger

uraniummine in the Northern Territory of Australia (see Box 4.1) is that

there be ‘no observable effects upon (the selected indicator) organisms in

a comprehensive and sensitive biological monitoring program’ (Hump-

hrey & Dostine 1994). This approach may seem reasonable given analog-

ous criteria in toxicology (see Box 11.1). Unfortunately, it is no more

rigorous than simply specifying ‘no change’ because any change, no

matter how minute, can technically be detected provided the sampling

effort is large enough (Cohen 1988). Conversely, it is easy to not detect

change by deliberately using a design with low statistical power (i.e. a

high probability of erroneously accepting the null hypothesis; Fair-

weather 1991b; Keough & Mapstone 1997).

Setting a critical effect size, therefore, requires us to identify a

value of our chosen variable which constitutes what we and the stake-

holders in the decision regard as the limit of acceptable or unimportant

change from control conditions. The response of any biological variable
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Box 11.1 Toxicological attempts to define ‘no effect’

The release of potentially harmful substances to the environment

has prompted toxicologists to try to stipulate a concentration of

the substances at which no harmful effect will occur. One

approach that has been used is that of No Observable Effect

Concentration (NOEC), which is sometimes also called No Observed

Adverse Effect Level (NOAEL) or No Observed Effect Level (NOEL;

Rand 1995). Conceptually it is defined as the highest concentration

at which there is no observable effect in the response variable.

Trying to make this concept operational leads to definitions such

as this: ‘The highest concentration of a material in a toxicity test

that has no statistically significant adverse effect on the exposed

population of test organisms compared with the controls’ (Rand

1995, p. 944). Again, we are trying to ‘prove’ a null hypothesis,

which is logically impossible. Moreover, we can easily and trivially

retain a null hypothesis if we have a small sample size and low

power in our test. Conversely, massive sample sizes may find

biologically unimportant differences between exposed and control

populations which are, nevertheless, statistically significant.

Several methods are used to try to derive a NOAEL for a given

substance, all of which are controversial. One sophisticated route

is to derive a concentration–response curve and use mathematical

models to extrapolate the curve to low concentrations and link the

estimated values with formal risk analyses. Even this approach is

fraught with difficulties because some reviewers hold that

concentration–response curves are usually formulated on high

concentrations of substances and thus are poor measures of

responses at low concentrations (Calabrese & Baldwin 1999). As a

result, hormesis may occur at low concentrations (see section 11.2

and Fig. 11.3) with implications for how assays and tests are

designed, and how this information is translated into formal risk

assessments and regulatory criteria (Sielken & Stevenson 1998).

to an impact is likely to be a continuous function of the strength of that

impact, whereas the decision about whether an impact has occurred is a

point on that continuum (Mapstone 1995; see discussion concerning Fig.

11.1 below). Deciding at what point along a continuum that an impact is

deemed to have occurred depends on the questions being asked (Keough

& Mapstone 1995, 1997; Mapstone 1995).
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Fig. 11.1 Hypothetical relationship between the response of an indicator

variable (a measure of hepatic function) and the strength of a disturbance

(concentration of an effluent). The points A, B and C refer to different

potential decision points on the continuum. See text for explanation.

For example, an approach based on early detection of impact will

have a different emphasis from one geared towards assessing the eco-

logical importance of an impact that has already occurred. Early detec-

tion requires a decision to be taken before the level of change becomes

harmful, otherwise the change may be irreversible, especially if the

pollutant is persistent. By contrast, assessing the importance of, say, an

accidental spillage involves deciding whether the level of acceptable

change has been exceeded and by how much. In this situation the

decision rule is at the point of harmful change rather than some smaller,

ostensibly harmless value.

If we return to the hypothetical example of hepatic function in

fish and concentration of pulp mill effluent, Fig. 11.1 shows that, as the

concentration of pulp mill effluent increases, so does hepatic activity.

Suppose laboratory observations and experiments have shown the fol-

lowing: that the fish start to be more sedentary and spend less time

foraging when hepatic activity reaches point A; the fecundity of females

has been observed to decrease by 15% when hepatic activity reaches

point B; and when the activity reaches point C the fish are usually in very

poor conditionwith highmortality rates. Whether we choose A, B or C as

our criterion of ‘important change’ depends on the aim of the assess-

ment, which in turn depends on the social and economic contexts of the

decisions that need to be made. If the goal is to minimize the impact of

the pulp mill on the fish because they are an endangered species then

the criterion of ‘important change’ needs to be set at least at point A in

Fig. 11.1. However, even this value may be too high if there is a long lead

time between detecting this change in hepatic activity and the engineers

running the mill being able to alter the concentration of the effluent.

Thus for early detection, the criterion of ‘important change’may need to
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be set at much lower levels of hepatic activity than point A. If the

circumstances of the decision are different (e.g. the fish species is not at

all endangered, the public does not perceive the river as being of high

environmental value and the pulp mill is seen as crucial to the economy

by all stakeholders) then a relatively modest decrease in fecundity may

be tolerable and the decision criterion set at point B in Fig. 11.1. Finally,

setting the effect size at point C would probably only be defensible in a

punitive context, such as defining a threshold for compulsory fines after

an accidental spillage.

11.2 kinds of change, risks and consequences

There are two components of an effect size: its magnitude and its form

(Cohen 1988; Mapstone 1995). The previous section introduced some of

the problems with defining the magnitude of an effect size. The form of

an effect involves decisions about the type of parameters (e.g. means,

variances) that are expected to differ between control and impact areas,

and the pattern of differences or trends that it is necessary to detect

(Green 1989; Stewart-Oaten et al. 1986; Underwood 1991a,b).

The pattern of differences that might be expected depends on

whether the disturbance is likely to be a pulse, press or ramp (see

chapter 3). Each of these types of disturbance requires fine-tuning of the

survey design (e.g. Walters et al. 1988; and see chapter 7). Another aspect

of the pattern of change is the likely relationship between the values of

the variable we are measuring and the strength of impact. In toxicology,

this relationship is often called a concentration–response or dose–

response relationship, and conventionally it is thought to follow one of

the patterns in Fig. 11.2. The simplest is some linear or simple mono-

tonic relationship between the variable we are interested in and the dose

or concentration of the substance under consideration (Fig. 11.2a). A

qualitatively different relationship is some form of threshold or step

function (Fig. 11.2c), where below a certain concentration or dose there

is no relationship between the variable and the concentration of the

substance. A more common model used in toxicology is a sigmoid

response (Fig. 11.2b), where a fairly rapid change in the response variable

takes place over a relatively small range of concentrations.

Researchers in public health have discussed (reviewed by Cala-

brese & Baldwin 1999) the implications of choosing ‘threshold’ models

(Fig. 11.2c) over linear or monotonic dose–response relationships (Fig.

11.2a). If such a threshold exists, then the best management option

would be to ensure that the dose or concentration of the substance
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Fig. 11.2 Three generalized concentration–response or dose–response

curves: (a) is a linear, (b) a sigmoid and (c) a step function. Some

concentration–response curves are modelled as monotonic functions,

many of which can be transformed to linear scales. The sigmoid function

is often handled statistically using logistic or logit models or probit

analysis.
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always remained below the threshold. However, if the dose–response

relationship is continuous, no such threshold exists – the risk of a

deleterious change rises with increases in dose or concentration, and

there is no ‘safe’ level to manage for. Thus we need to decide where on

the continuum to set our criterion of important change. This requires us

to quantify risks and make judgements about the timing of detecting a

change, the likelihood of its reversibility, and the consquences of the

change for ensuing management actions.

Before leaving the topic of the pattern of changes, it is worth

emphasizing that not all concentration–response relationships follow

the patterns in Fig. 11.2. Calabrese & Baldwin (1999) have reviewed such

relationships extensively and found that another pattern is quite

common (Fig. 11.3). They term this non-monotonic relationship ‘horm-

esis’ (from the Greek ‘to excite’) because a reasonably common pattern is

that the value of the response variable sometimes ‘improves’ at low

concentrations of a stressor, and then deteriorates as the dose or concen-

tration increases. For metabolic or physiological variables, a potential

mechanism might be that low concentrations of a harmful substance

can stimulate immune or detoxification responses resulting in a modest

improvement in response. As the concentration increases, however, the

defence mechanisms become overwhelmed and the change becomes

deleterious. Hormesis is not confined to physiological or metabolic vari-

ables, and has been documented for population characteristics of fresh-

water organisms (Fig. 11.3a; Bodar et al. 1988). Whether or not the

stimulatory effects of mild increases in dose or concentration are to be

regarded as beneficial is, of course, a value judgement and, again, will

depend on the context of the decision that will be made as a result of

detecting the change as well as the interests of a given stakeholder in

that decision.

Clearly, science has a role in describing the pattern of changes in

the variables we are interested in and in quantifying the risks that are

related to these changes. Nevertheless, what constitutes an important

change is a societal concern as well (Fairweather 1999b). It involves value

judgements, the context of any decisions and the consequences of the

decisionsmade. We are not arguing that decisions on critical effect sizes

should be passed on to mysterious covens of power-dressed executives

operating secretively in smoke-filled rooms with a few anointed scien-

tists. We do note a tendency in the literature to gloss over the issue of

who decides what constitutes an important change; recommendations

range from ‘the agency biologist must pick the critical value’ (McDonald

& Erickson 1994, p. 194) to suggesting a conservative ‘default’ percentile
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Fig. 11.3 The U-shaped concentration–response curve shows the change in

the value of a response variable relative to control conditions as a function

of increasing dose or concentration of a substance (Calabrese & Baldwin

1999). In their review, Calabrese & Baldwin (1999) suggest that the concave

downward (upside-down U) curve (a) characterizes phenomena such as

reproductive processes and their consequences. Two freshwater examples

they cite are the fecundity of Daphnia magna in increasing concentrations

of cadmium (Bodar et al. 1988) and changes in the biomass of algae with

increasing concentrations of effluent from a fertilizer factory (Joy 1990). A

concave upward (U) curve (b), they suggest, characterizes such things as the

incidence of cancer, where, if there were already high rates of cancer under

control conditions, mild increases of the harmful agent can actually de-

crease the incidence of the cancer.
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in the range of values exhibited by the variable and revising that value in

the light of local knowledge and experience (Hart et al. 1999). We would

prefer that the interests and concerns of all stakeholders in a decision be

made explicit as part of the process of negotiating what constitutes the

minimum effect size that needs to be detected in order to allow timely

intervention by management (Mapstone 1995). The really important

aspect of this process is that the magnitude and form of an important change

is defined up front before the assessment program is implemented (McDonald &

Erickson 1994; Mapstone 1995).

To make this discussion concrete, contrast the different contexts

for the release of water from the aforementioned (in Box 4.1) tailings

dam containing radionuclides in Kakadu National Park in Australia

(Humphrey et al. 1990) and the liming trials inWales aimed at ameliorat-

ing acidification (section 8.4). In the case of the release of water from the

tailings dam, any potential impact needs to be detected early because

the consequences of releasing too high a concentration of radionuclides

is irreversible. Because Kakadu is listed as a World Heritage Area and

because of the public concern about having a uraniummine in a nation-

al park, the ‘trigger’ for management action needs to be very sensitive.

This will allow sufficient time for the mine operators to adjust the

release of tailings water well before the effects have any chance of

becoming unacceptable. For the liming trials, the aim of the manage-

ment intervention is to reduce the acidity of impacted streams so that

their community structure resembles that of reference streams. The

consequences of the failure of liming to produce the desired result are

less dire than in Kakadu. Although it would be a waste of resources if

liming wrought no important changes in the streams, the management

intervention does not preclude other strategies being pursued. However,

the pattern of change will strongly influence our perception of the

success of this intervention: what if the time-scale of the liming is too

short, a mere ‘pulse’, when what we really should be doing is managing

for a very long-term ramp or press?

11.3 practical steps, and some difficulties, in

setting an effect size

11.3.1 A caricature of how this seems to work for drinking water

Setting an effect size sounds deceptively easy, especially for

physicochemical variables when they are being used to assess river water

for a specific end-use, such as drinking water. Guidelines, standards or
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criteria are used in many countries to define acceptable levels of sub-

stances in drinking water, but how are these acceptable levels set?

Usually a variety of data from epidemiological, physiological and toxi-

cological studies are compiled. The levels at which (presumably statisti-

cally) significant effects occur are noted, and then a ‘safety factor’ is

applied so that the acceptable level is set at a value well below that at

whichdeleterious effects have been noted (Rand 1995). The aim here is to

define an effect size smaller than that deemed to have an important

effect on human health so that management action will be taken before

effects become deleterious to humans.

Although this process sounds ‘scientific’, there are a number of

imponderables. First, humans will differ in their susceptibility to the

substances in question so that the effect size specified may not be

adequate for every consumer. Second, decisions about what constitutes

‘important effects’ on human health often rely on incomplete or con-

flicting evidence. Some studies may have employed small sample sizes

resulting in tests that were later demonstrated to be too weak to detect

deleterious effects on human health (see Box 11.1). Therefore, in prac-

tice, the definition of nearly all effect sizes will involve some element of

judgement and negotiation among stakeholders. More recent ap-

proaches to setting water-quality guidelines are now seeking to include

assessments of values and risks as part of identifying appropriate ‘trig-

ger values’ for management action (see review by Hart et al. 1999).

So, the process of setting a critical effect size can be divided into

two phases. The first involves collecting scientific information that tries

to link changes in the measured variable to the strength of the human

disturbance. The second involves judgements about the social, economic

and scientific values of the consequences of decisions and management

actions that might be pursued. Although we will now describe each of

these phases in turn, we are not advocating that they be sequential,

separate steps quarantined from each other. Often the process would be

iterative and, importantly, we feel strongly that many potential indi-

cator variables should be explored simultaneously because trade-offs

will inevitably need to be made between scientific tractability of the

variables measured, the costs of the program and public perceptions

about their credibility and utility (Mapstone 1995; and see chapters 12

and 13).
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11.3.2 Quantifying the relationship between the response variable

and the potential impact

Several strategies could be pursued to describe these relationships. This

is not an exhaustive list, and other strategies may arise as researchers

and managers get more experience in planning programs with these

procedures.

Perhaps the most straightforward cases of setting critical effect

sizes for biological variables are for single species that are being

managed to prevent their extinction, in either absolute or commercial

terms. If there is sufficient information about their population dynam-

ics, then critical densities below which the population should not drop

(e.g. to ensure survival of a species or sustainable use of a commercial

species) could be established. Species that are nuisances (e.g. some cy-

anobacteria; Hart et al. 1999) can be dealt with in a similar, but converse

fashion; in these cases we are interested in setting densities that the

populations should not exceed. For both situations, setting an effect size

that is sensitive enough to allow timely intervention will, of course,

involve some subjectivity, although the social value judgements that

need to be made about effect sizes are very closely tied to the science

describing the population dynamics.

Most of the other variables used in environmental assessment can

be regarded as ‘surrogate’ or ‘umbrella’ measures, where changes in the

variable are held to be responses to changes in the environment. Quan-

tifying this relationship in some transparent way is, therefore, crucial. If

the relationship is linear, then decisions about critical effect sizes may

bemore arbitrary than if a threshold can be identified. How, then, to get

this information?

We should be able to learn from past experience. Existing impacts

elsewhere can provide information about the relationship between the

variable and the size of the potential impact, especially if the existing

impacts can be arranged on a gradient from mild to extreme. To take a

previously mentioned example, Janssens de Bisthoven et al. (1998) re-

gressed various indices of deformities in chironomids against concentra-

tions of various heavy metals found at a number of sites in lowland

rivers in Belgium and The Netherlands (section 9.3.1). Although some

responses were linear, there were two non-linear responses; two severely

polluted sites were strongly influential in these regressions and may be

mostly responsible for these patterns. A more common form for such

data to take is examination of variables at fewer sites, often at varying

distances downstream of a large impact (e.g. Gibbons et al. 1998), al-
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though some also includemultiple controls in separate rivers (Gagnon et

al. 1994). Such studies are akin to assembling concentration–response

relationships, although the number of studies that can discriminate

rigorously between the differentmodels depicted in Figs. 11.2 and 11.3 is

surprisingly small. Calabrese & Baldwin (1999) attribute this paucity to

an overemphasis on characterizing responses at high concentrations of

toxins and pollutants.

Formalmeta-analysis, where lots of separate studies are assembled

and analysed, is a further source of information that could be used to

derive relationships between indicator variables and the strength of

human disturbances. Unfortunately, different studies use different pro-

tocols and are carried out over different time spans, which hampers our

ability to make valid comparisons. However, with increasing ingenuity

and sophistication in defining ecologicallymeaningfulmeasures of criti-

cal effect sizes (Gurevitch & Hedges 1999; Osenberg et al. 1999), the

future of this approach looks promising.

Where time permits, pilot data are invaluable. It is easy to visual-

ize that a pilot manipulationwould be an excellent tool for setting effect

sizes in rehabilitation projects such as the liming study in Wales, but

would we dig a pilot mine in a national park just to provide information

to assist in deciding a critical effect size? Obviously not, but field experi-

ments using mine effluents were used in designing assessment pro-

grams for further mining proposals in the Kakadu region (Faith et al.

1991). Similarly, outdoor mesocosm experiments (reviewed by Cooper &

Barmuta 1993) offer opportunities to characterize how variables re-

spond to different intensities of the anticipated impact. Mesocosms

share some problems with conventional laboratory-based toxicological

studies as well. Extrapolation to large spatial and temporal scales is

always controversial (Cooper & Barmuta 1993; Carpenter 1996), and the

complex interactions in real-world effluents can dramatically alter the

conclusions reached from bioassays of their consitutents (Rand 1995).

However, it is pleasing to note that some recent mesocosm experiments

have used both complex ‘real effluents’ and documented patterns in

concomitant field surveys to bolster the inferences made from those

experiments (e.g. Dubé & Culp 1996; Dubé et al. 1997).

The obvious way to circumvent problems with extrapolation is to

manipulate entire systems, as has been done conspicuously for whole

lakes (e.g. Schindler 1990), and for smaller stream catchments (e.g. Hall et

al. 1978; Likens 1984; Rundle et al. 1995). Although problems of spatial

scale are solved, generalizing the results to other systems is problematic

(Cooper & Barmuta 1993). Although it is unlikely that whole-system
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manipulations will become a common tool for preliminary investiga-

tions into effect size, we would like to point to some opportunities. First,

some large-scale manipulations happen anyway (e.g. timber harvesting,

cropping) and these can (and often are) exploited by biologists to identify

the responses of indicator variables (e.g. Hall et al. 1978). With some

careful planning, many of these data-gathering exercises could be im-

proved to provide better-focused information that could allow people to

make some informed choices about effect sizes. Second, large-scale ex-

periments can provide insights into processes, and the results can be

used to synthesize and validate predictive models of system behaviour.

For example, large-scale nutrient enrichment of Canadian lakes was

important in constructing and validating process models that ultimate-

ly have been useful in defining effect sizes for nutrients and light

climate in many other, often dissimilar, aquatic ecosystems (e.g. Hart et

al. 1999). Even where such models are found to be inadequate, they

nevertheless provide the stimulus for more sophisticated, locally appli-

cable models to be developed (Hart et al. 1999).

Finally, some human-induced disturbances will happen anyway,

and these can be viewed as opportunities to conduct large-scale experi-

ments within a framework of adaptive management (Walters & Green

1997). Some prominent recent examples include the liming experiments

inWales that we have used as an example in this book (Rundle et al. 1995;

see section 8.4), environmental releases of water in the Grand Canyon to

restore riparian vegetation (Collier et al. 1997), and various wetland

restoration options in the Florida Everglades (Gunderson et al. 1995).

Although ‘management as experimentation’ can provide information to

decide critical effect sizes and can yield scientific insights into underly-

ing mechanisms, not all stakeholders will be convinced of the worth of

the additional risks and costs (Walters & Green 1997). We now turn our

attention to negotiations about values, risks and consequences.

11.3.3 Negotiating about values, risks and consequences

Once we have some idea of how the candidate variables respond to the

potential impacts, the issue of defining acceptable change needs to be

negotiated, preferably with input from interested stakeholders. It is not

always thus, and almost daily the popular press reflects public disquiet

over a wide variety of developments affecting rivers. Moreover, there are

numerous examples of supposedly scientific monitoring or assessment

systems that are ill matched to management systems (Rogers & Biggs
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1999). How, then, do we operationalize stakeholders’ expectations with

rigorous statements of effect sizes?

Where this has been attempted, a number of ingredients seem

essential. Managers need to be able to articulate clear goals in lay terms;

a full range of plausible management options needs to be identified; a

variety of potential indicator variables from which to choose should be

available; the candidate variables need to be clearly linked to the

changes or thresholds that are inherent in the management goals;

meaningful public consultation needs to occur; an explicit and transpar-

ent process deciding what constitutes important change needs to be

identified; and a clear vision of what management actions should ensue

if an important change is detected needs to be articulated (Fairweather

1999a,b; Hart et al. 1999; Maguire 1995; Maguire & Sondak 1996; Rogers

& Biggs 1999).

This list is not exhaustive, but two recent published case studies

(Grayson et al. 1994; Rogers & Biggs 1999) describe some apparently

successful attempts at trying to incorporate public perceptions of im-

portant change into assessment programs in rivers. The difficulty for

many scientists has been in bridging the gap between publicly articu-

lated goals such as ‘maintaining ecosystem health’ and rigorous, scien-

tific procedures that are meaningful (Boulton 1999; Calow 1992; Rogers

& Biggs 1999) – although this is not always the fault of the ‘non-scien-

tists’ (Fairweather 1993, 1999a,b; Rogers & Biggs 1999).

The formal tools of risk assessment (e.g. Bartell et al. 1992) and

decision analysis (Clemen 1996) can be combined with structured tech-

niques to elicit and codify values (e.g. Keeney 1992) to provide a frame-

work to identify the goals pursued by different stakeholders, define a

suite of variables that might be used to measure how well the goals are

being met, assess the relative costs and benefits of different scenarios,

and identify priorities amongst the goals (see Maguire 1995; Maguire &

Sondak 1996 for some examples). The formal procedures of Adaptive

Environmental Assessment and Management (AEAM) provide further

examples of how to clarify these issues where many different stake-

holders with often divergent views are involved (Holling 1978; Walters

1986). Such formal procedures can be codified and extended so that the

costs of particular monitoring programs and management actions can

be identified and contrasted with the benefits and values inherent in

different scenarios (Walters & Green 1997). Although these procedures

may be technically demanding, they are worth pursuing so that courses

of action that may be beneficial in the long term are not dismissed
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prematurely because of perceived high short-term costs (Walters &

Green 1997).

Consultation with stakeholders is, nevertheless, hard work. Des-

pite considerable progress in risk assessment and decision theory,

Maguire & Sondak (1996) provide a comprehensive résumé of the hic-

cups and disasters that can beset a consultative process (see Box 11.2).We

would prefer you to view this as a list of mistakes to be learned from

rather than a deterrent. Nevertheless it is worth noting that a final

assessment program may include variables that would seem to have

little to do with public aspirations. In Kakadu, a variety of variables is

employed depending on the particular facet of the assessment process

(Humphrey & Dostine 1994); measures of the community structure of

benthic invertebrates and fecundity of freshwater snails are not as

charismatic as counts of the massive seasonal migrations of fish, but

each of these variables addresses different aspects of public concern

about protecting the aquatic ecosystems of a World Heritage-listed na-

tional park. The important thing is that the reasons that particular

variables are chosen and what constitutes important changes in those

variables are made explicit.

It is worth reiterating that once the level of acceptable change has

been negotiated, the degree of change in the variable may need to be set

to a smaller value so that management actions can be implemented

before harmful and irreversible effects occur. Issues such as the fate and

persistence of the pollutant and time lags between a pollution event and

a measurable change in the biological variable need to be considered in

determining the effect size that needs to be stipulated for the monitor-

ing program. Allied to these issues are both the selection of appropriate

variable(s) and assessment of the relative costs of erroneously missing an

effect of the stipulated size (Type II error) and erroneously concluding an

impact occurred when, in fact, it did not (Type I error). Decisions about

the form and size of ‘important change’ cannot be divorced from these

other issues of designing an assessment program. It is prudent, there-

fore, that many candidate variables be considered during these negoti-

ations so that the inevitable iterations in this process are carried out as

efficiently as possible.

11.4 important issues

• It is impossible to prescribe universal effect sizes for biological

variables for two reasons. First, information about the relation-

ships between stressors and biological variables under field
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Box 11.2What can go wrong in public consultations

Eliciting information from the public about their aspirations for

the environmental qualities of a river can range from rudimentary

public meetings or questionnaires through to highly sophisticated

social research and dispute resolution techniques. Even at the

sophisticated end of the spectrum, things can go wrong. Maguire &

Sondak (1996) review a number of case studies from a variety of

environmental disputes. The potential problems that need to be

addressed in a consultative process are:

• A plethora of stakeholders: there will be many more than

just two points of view, and some stakeholders will change

their viewpoint as the negotiations unfold. On the other

hand, large sections of the public may not be accurately

represented by organizations or lobby groups, or

spokespersons for a group may be too opinionated to

represent their constituency accurately.

• Inherent inequalities among the stakeholders: poor single

parents are less able to participate or to form lobby groups

than rich, well-educated retirees, for example. This problem

extends to organizations that purport to represent the

interests of several groups of stakeholders.

• History may be important: long-running antagonisms

between an agency and a conservation group are common

barriers to effective negotiation. There may be other

divisions in the community unrelated to the immediate

issue in hand that nevertheless get expressed through these

negotiations.

• Facilitators may fail to gain the confidence of one or more of

the stakeholder groups.

• Stakeholders may hide or strategically misstate their real

goals (e.g. by grossly exaggerating expected outcomes) when

trying to identify values and try to play the negotiation

process as a zero-sum game rather than pursuing joint gains.

• Bias or cognitive limitations of a stakeholder may lead to

misrepresentation of their true views or interests. It is not

uncommon, for example, for community groups initially to

equate potability of water (for human consumption) with a

‘healthy’ ecosystem. This may often be true, but there are
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examples of streams in wilderness areas being unfit for human

consumption (because of pathogens carried by wildlife or high

mineral content from groundwater), or rivers that carry drinkable

water but whose flora or fauna is far from undisturbed.

conditions is scarce. Second, deciding the degree of change in the

variable that is important depends on the environmental values

that stakeholders are seeking to protect.

• There are two components to setting an effect size. The first is

characterizing how the indicator variables are likely to respond

to changes in the strength of the disturbance. The second

involves incorporating societal values into deciding how large a

change should be before it becomes unacceptable.

• Characterizing the response of the indicator variables is easiest if

preliminary or published data from other sources can be

synthesized into statistical or process-based models that can then

be used to inform the consultative phases of the process.

• Incorporating societal expectations into deciding how much

change is acceptable is difficult, but appears to have been

successfully achieved in a few instances in river systems. There

needs to be sufficient flexibility and choice of candidate variables

within the process to ensure that the outcomes are easily

explicable in lay terms and that any trade-offs in Type I and Type

II errors and costs are transparent and explicit.
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12

Decisions and trade-offs

Statistical decision theory has a long history and can basically be viewed

in two ways. Classical statistical hypothesis-testing in the Neyman–

Pearson form (Neyman & Pearson 1928), which we described in chapter

4, emphasizes decision errors from the test of a null hypothesis, and

these errors have a frequentist interpretation. In contrast, what is

termed modern statistical decision theory has a strong Bayesian influ-

ence (Berger 1985; Hamburg 1985; Pratt et al. 1996) and has emphasized

monetary costs and benefits from decisions in an economic andmanage-

ment context. Nonetheless, all statistical decision problems have certain

characteristics in common (Box 12.1; Hamburg 1985; Neter et al. 1993). In

this chapter, we will focus on errors associated with the components of

the decision-making process and how the choice of criteria for making

decisions interacts with the design of the monitoring program.

12.1 making statistical decisions

We need to examine the errors possible from a statistical decision-

making process in an environmental monitoring context. In chapter 4

(see Table 4.4) we defined two possible types of error. These errors arise

because we are making decisions about the truth or otherwise of hy-

potheses about unknown population parameters from imperfect

samples. If we could record an entire population, such as all the possible

locations upstream and downstream of the mine, then we could make

decisions about the truth of hypotheses about those parameters without

sampling error. Errors of inference may still arise, due to measurement

error and confounding.

The first decision error is a Type I error where we reject the H0

when it is actually true. For example, we reject the H0 and conclude that
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Box 12.1 Components of a decision-making process

Consider the simple monitoring design described in chapter 4,

based on Faith et al. (1995). They wished to assess the effects of the

proposed gold–platinum–palladiummine, at Coronation Hill

within the Kakadu National Park in northern Australia, on aquatic

biota in the South Alligator River. They used eight locations on the

river: two upstream of Coronation Hill and six downstream. If this

monitoring design was used after mine operations commenced,

our prediction would be that some aspect of the biota (say, species

richness of macroinvertebrates or algal biomass) would differ

between locations upstream and those downstream. The converse

is the null hypothesis that there is no difference in biota between

locations upstream and those downstream.

The decision-making process has specific components:

• Outcome states or events, which represent the ‘states of

nature’ outside the control of the decision-maker. In classical

analyses, these outcome states are binary because the null

hypothesis is either true or it is false (e.g. algal biomass is

different downstream of the mine or it is not). One of the

arguments in favour of the Bayesian framework is that we

are not restricted to binary outcomes – we might have

numerous alternative states; for example, a range of actual

differences (0%, 20%, 50%, 100%) in algal biomass between

upstream and downstream of the mine.

• Alternative actions, between which the decision-maker

chooses based on specified criteria. These actions may be to

reject or not reject the null hypothesis, or in a more

sophisticated Bayesian context, a choice between a range of

possible actions based on which difference in algal biomass

we consider more likely.

• Consequences that occur under the combination of a specific

action and a specific outcome state. In Bayesian decision

theory, these consequences can be in terms of costs, usually

quantified as a loss function, or pay-offs, usually quantified

as a utility function. In classical hypothesis testing, these

consequences are long-run frequencies and costs of two

types of error: rejecting the H0 when it is actually true or not

rejecting H0 when it is false (chapter 4). Conversely, there
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will be benefits from correct decisions, particularly rejecting

the H0 when it is false. For example, the consequence of a

Type I error may be a serious cost to the mine operator

because a false impact has been detected and might initiate

modification of operating procedures or even unnecessary

remediation. The consequence of a Type II error is more

serious to the environment because an impact exists but is

not detected, resulting in ongoing environmental

degradation.

• Decision criterion, which is the basis, usually in terms of

probabilities, by which the decision will be made. For

example, the convention in some scientific disciplines is that

if the probability of obtaining our sample data or data more

extreme when the null hypothesis (H0) is true (the P-value) is

less than 0.05, we reject the H0 (chapter 4). Other cut-offs

besides 0.05 can be used, especially if devised using our

recommended approach of scalable decision criteria where

the costs of the two types of error are explicitly considered.

Bayesian criteria are more complex, often involving

maximizing pay-offs or minimizing losses under a worst-case

scenario. With clearly defined alternative hypotheses, Bayes

factors are ratios of the posterior odds of one hypothesis over

another and guidelines for interpretation of these Bayes

factors are available (Ellison 1996).

The debate over the relevance of classical statistical analyses,

P-values and Type I and Type II errors to statistical decision-making

is ongoing. Many statisticians would argue that only the Bayesian

approach provides the flexibility of incorporating prior

information into an adaptive decision-making framework.

Stewart-Oaten (1996a) argued that statistical hypothesis testing

based on P-values is more suited to drawing conclusions from data

rather than making decisions. Nonetheless, the classical approach

can provide a flexible mechanism for making simple decisions

about effects of human activities once the constraints of fixed

significance levels are abandoned and careful consideration of

effect sizes and consequences of the different errors is included in

the design process.
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there is a difference in algal biomass between upstream and down

stream locations when there is really no difference (within the level of

accuracy of our measurements). We set the probability of Type I errors

in repeated sampling with our a priori significance level (�) and there is
a convention in many disciplines, including ecology, to fix � at 0.05 or

5%. This means that we are willing to accept a long-run probability of

Type I errors of 0.05 when we reject a null hypothesis. As discussed in

chapter 4, this conventional setting of � to such a low value of 0.05 re-

flects the concern of scientists about incorrectly concluding an effect of

an experimental treatment when there isn’t one. In environmental

monitoring, the H0 is usually that there is no effect (on the measured

variable) of a particular human activity. For example, no difference be-

tween control and impact locations or that the average difference be-

tween control and impact locations is the same before and after the

activity begins. Therefore, a Type I error is the conclusion that there is

an impact when, in fact, there isn’t. The other error is a Type II error,

where we do not reject the H0 when it is false. In the environmental

monitoring context, a Type II error is concluding that there is no evi-

dence for an effect of a human activity when, in fact, the activity really

is having an effect. We explained in chapter 4 that the probability of a

Type II error can only be calculated for specific alternative hypotheses

(i.e. effect sizes). For example, what is the probability of not rejecting

the H0 if there really is a 50% change in algal biomass between loca-

tions upstream and downstream of a mine? Note that in any decision

process, we can only possibly make one of these errors. The H0 is either

true or it is not; if the former, we can only ever make a Type I error, if

the latter we can only ever make a Type II error.

The issue of a fixed significance level, particularly 0.05, is a con-

troversial one in applied statistics. We acknowledge the arbitrary na-

ture of using � equal to 0.05 and our preferred approach, described

below, is to recognize the two types of error and use a decision frame-

work that balances the costs and consequences of both types of error.

We also note that some decision criterion is necessary whether a classi-

cal or Bayesian approach is adopted, proponents of the latter still hav-

ing to decide between competing posterior probabilities, often based

on Bayes factors.

12.2 balancing type i and type ii errors

The issue, then, is the balance of these two types of error when testing

the H0 that there is no effect of a human activity. There are two con-
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straints on determining this balance. The first we have already dis-

cussed: it is relatively easy to set the level of Type I error in advance with

our significance level (�) but harder to set the level of Type II error

because the probability of this error depends on the effect size (chapter

11). The second constraint is that, for given values of all other compo-

nents of a monitoring program, such as effect size, sample size and

variability between sampling units, the probabilities of the two types of

error are inversely related (refer back to Fig. 4.3). We can reduce the

probability of a Type I error when H0 is true by simply making � smaller

than 0.05 (e.g. 0.01 or 0.001). This would push the vertical line in Figure

4.3 to the right, reducing the area under the curve to the right of this line

and therefore reducing the probability of a Type I error. However, if the

H0 were actually false, we would be increasing the area to the left of this

line and thus increasing the probability of a Type II error. So reducing �,
the acceptable probability of a Type I error if we reject H0 when it is true,

must increase �, the probability of a Type II error if we do not reject H0

when it is false.

Our decision-making framework must provide a reasonable and

flexible balance between Type I and Type II errors. In monitoring pro-

grams designed to detect environmental impacts, the relative serious-

ness of making each type of error might be somewhat different from

traditional areas of science. For example, failure to detect a real environ-

mental impact (a Type II error) might be considered a more serious error

than incorrectly rejecting a null hypothesis of no effect (a Type I error),

as discussed by Peterman (1990), Fairweather (1991b), Shrader-Frechette

& McCoy (1993), Mapstone (1995) and Keough & Mapstone (1995). The

former error may well result in further environmental degradation

until the impact is finally detected, with resulting increased costs for

remediation. There may also be further costs if, once the impact is

realized, compensatory damages need to be paid. In contrast, the latter

error is more precautionary in terms of the environment, with the

likelihood of no further, or even reduced, impact occurring. In practice,

most monitoring programs that set � at 0.05 (5%) will have a high

probability of a Type II error if there really is an impact (Mapstone 1995).

The consequences of making each type of error are also different

depending on vested interests. Clearly, it is advantageous to individuals

and organizations that benefit economically and/or politically from the

human activity to minimize the probability of Type I errors. A decision

that there is an effect of a human activitymay result in a requirement to

modify or even cease that activity, with consequent economic and politi-

cal cost. For example, a Type I error would have serious consequences for
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the operators of the gold/silver mine (used as an example in chapter 4)

because a conclusion that there is an effect of the mine on the biota of

the river may require them to modify and even cease operations at an

economic cost. In contrast to Type I errors, there is an advantage for

those organizations and individuals whose concern is environmental

protection to minimize the probability of Type II errors. Not detecting a

real impact means that the human activity will continue unmitigated,

potentially exacerbating over time the unacceptable effects on the envi-

ronment. Cynics might even argue, therefore, that proponents of a

human activity would wish to minimize the probability of rejection of

the H0 even when there really is an effect (i.e. maximize Type II errors)

because they would then not need tomodify the activity.Wewill assume

for the moment, however, that both sides of the argument wish to

minimize the relevant error and be confident of making a correct deci-

sion.

Conventional practice, both for science in general and for

monitoring in particular, is to fix � at some level, say 0.05, and therefore

let � (and power) vary depending on effect size. We suspect that most

monitoring programs in fresh waters have low power to detect effects

that would be considered ecologically important, because sample sizes

are usually small and variability between sampling units for most bio-

logical variables is relatively large. Therefore, fixing � to a low level

implies that Type I errors are more important than Type II errors. This

practice favours the interests of the proponents of the human activity

rather than the environment (Keough & Mapstone 1995). The burden or

onus of proof (Constable 1991) is left to those concerned with protecting

the environment because we are unlikely to falsely declare an impact

(because we set a low Type I error rate of 0.05) but are often likely to miss

impacts because of low power and hence high Type II error rates.

There are three approaches to making this balance of Type I and

Type II errors more flexible and sharing the burden or onus of proof

more equitably between the proponents of the human activity and those

charged with protecting the environment. While we will consider these

approaches in the context of monitoring, they are also more generally

applicable to scientific practice.

12.2.1 Fixed �, adjust n

The first approach retains a fixed � but designs the monitoring program,

especially the sample size (n), so that effect sizes of environmental

relevance can be detected with reasonable power. For a fixed �, � is

minimized by using an adequate n to detect a predefined effect size (Fig.
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12.1a). This idea has been around since Neyman & Pearson first proposed

the concepts of null and alternative hypotheses, and Type I and II errors

(Neyman & Pearson 1928). The methodology became more accessible

after Cohen’s (1973, 1988) publications on power analysis and with the

recent availability of software to do the calculations. Another arbitrary

convention that seems to have developed in ecology over the past decade

is to strive for power of 0.80 and hence a Type II error rate of 0.20. This

emerging convention may reflect a compromise given the impractical

sample sizes required to achieve a power of 0.95, and hence a Type II error

rate that matches � of 0.05, given the high level of variability in most

ecological systems. With a fixed � of 0.05, a Type II error rate of 0.20 still
rates the seriousness of a Type I error at four times that of a Type II error.

The calculations for determining n a priori are usually termed

power analysis and are based on a rearrangement of equation 4.5:

n��
(1��)s
ES� �

2

(12.1)

where

(1��) is the required power of the specific hypothesis-test
� is the significance level (the probability of a Type I error we are

willing to accept if we reject the H0)

ES is the effect size we decide is environmentally important and

we wish to detect if it occurs (chapter 11)

s is our estimate of �, the standard deviation between sampling

units used in the monitoring program.

Note that equation 12.1 is not used in practice because the definitions of

ES and s depend on the nature of the H0 and the statistical test being

used.

These calculations require some estimate of the variation between

sampling units, usually from a pilot study or from previous work in a

similar freshwater system. If our estimate of � is not very good, then our

determined n may not achieve the power required because we under-

estimated the variability, or may be unnecessarily powerful, and waste-

ful of resources, because we overestimated the variability. The second

component of these calculations is the specification of an effect size that

is environmentally important enough to detect. We want to avoid using

a sample size so large that we can detect environmentally trivial im-

pacts, nor can we justify a monitoring design that cannot detect import-

ant impacts. Either case is a waste of scientific resources. The choice of

detectable effect sizes has been discussed in chapter 11.

Clearly, we can shift the burden or onus of proof by setting the
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Fig. 12.1 These graphs represent hypothetical probability density functions

for a statistic used for measuring the effects of human activities. The

precise shape of these distributions will depend on the test statistic being

used (e.g. mean difference in some variable between control and impact

sites, t statistic or F-ratio statistic). In each case, the shaded distribution on

the left is that under the H0 of no impact; and distributions to the right are

those for a particular effect size (i.e. H0 false). Vertical lines mark values of

the statistic corresponding to the critical decision criterion for deciding

whether to reject the H0 or not. (a) Distributions for which the critical

decision value is determined by a fixed � (e.g. 0.05), illustrating the trade-
off between � and sample size and/or variability between sampling units.

Top: larger variability and/or smaller sample size result in higher �. Bot-
tom: smaller variability and/or larger sample size result in lower �. (b)
Distributions for which the critical decision value is determined by a fixed

� (e.g. 0.20), illustrating the trade-off between � and sample size and/or

variability between sampling units. Top: larger variability and/or smaller

sample size result in higher �. Bottom: smaller variability and/or larger

sample size result in lower �. (c) Distributions for which the critical deci-

sion value is determined by a fixed ratio of errors (e.g. �� �), illustrating
the link between errors and variability between sampling units. Top: larger

variability and/or smaller sample size result in higher errors of both types.

Bottom: smaller variability and/or larger sample size result in lower errors

of both types.
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required power to 0.95 and therefore a Type II error rate that matches

the fixed Type I error rate of 0.05. However, our experience ofmonitoring

programs in aquatic ecosystems is that the n required to achieve power

of 0.95 with a fixed � of 0.05 is usually prohibitive. Nonetheless, we

cannot overemphasize the importance of specifying environmentally

important effect sizes a priori and then designing the monitoring pro-

gram, especially the sample sizes, so that such an effect size will have a

high probability of being detected if it occurs. Without this aspect, the

logical justification for traditional statistical hypothesis-testing with its

fixed � is much weaker and, not surprisingly, has been criticized for

entrenching arbitrary conventions. Our recommended design strategies

outlined below (sections 12.2.2 and 12.2.3) include specification of effect

sizes and sample-size determination as crucial components.

12.2.2 Fixed �, adjust n and �

The second approach employs not a fixed � but a fixed �, together with
the nominated effect size of environmental relevance. These fixed values

ensure a monitoring program design in which the effect size of environ-

mental relevance can be detected with reasonable power. The remaining

aspects of design then trade off the costs of nominated � and nominated

sample size (n) values. An appealing property of this strategy is that this

trade-off often may be left to the proponent of the human activity.

Figure 12.1b illustrates the trade-off between a higher � (which implies

greater Type I error, and so possible economic costs of unnecessary

stoppage of activity or remediation of the environment) and a larger

sample size (which implies possible economic costs to the proponent, as

when time before commencement is a basis for sample size in BACIP

designs).

12.2.3 Scalable decision criteria

The third approach differs from those previously described primarily by

not fixing a priori � or � to some conventional level (e.g. 0.05). The levels

of � and � are both negotiated in advance depending on the relative costs
of making either of the two types of decision error. This idea has been

championed by Mapstone (1995, 1996) for environmental monitoring,

although the general principle of setting � and � depending on costs

dates back to Neyman & Pearson (1928) who also argued that the balance

between probabilities of Type I and Type II errors should be set by the

decision maker. Mapstone (1995) called this approach ‘scalable decision
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criteria’ and his protocols are based on negotiation among the parties

involved in the monitoring program. For the example of monitoring

algal biomass upstream and downstream of a mine, these parties might

includemine operators, groups concernedwith the state of the river and

its floodplain (e.g. recreational users, indigenous land owners, govern-

ment environment departments, fishers) with mediation provided by a

relevant regulatory body (Keough & Mapstone 1995).

There are two major components of scalable decision criteria that

influence the design of the monitoring program. First, the effect size we

wish to detect if it occurs needs to be set (chapter 11). This effect size

should be negotiated by the parties involved in the monitoring andmay

well incorporate political and social information, as well as ecological

advice. The crucial aspect is that this choice of effect size should not be

influenced by the cost of monitoring nor by the decisions made about �
and �. Once stipulated, the effect size should not be varied at any stage of
the implementation or analysis of the monitoring program.

The second component is the designation of the critical levels of �
and � without either being fixed by convention. The level of � chosen

may or may not be the level of � we use to make a final decision about

whether we reject the H0 of no impact (see below). These chosen levels of

� and �, termed �* and �*, will then be used to design the monitoring

program, especially for determining sample sizes.

The first step is to determine the relative costs of making a Type I

and a Type II error, which Mapstone (1995, 1996) termed C� and C�, and

then the ratio of these costs, k�C� / C�. The values for �* and �* used in

the design process should be set in relation to the costs of making each

type of error. Keough & Mapstone (1995) suggested a number of issues

that might help estimate these costs. These include:

• The economic costs to the proponent of a human activity if an

impact is inferred (i.e. the costs of a Type I error). This may entail

ceasing the activity, modifying the activity or remediation of the

environment. For example, reducing the effect of amine discharge

on algal biomass in a lowland river may require more expensive

wastewater treatment. The implications of detecting an impact

rarely seem to be considered when monitoring programs are de-

signed but should be an essential component of calculating the

costs of a Type I error.

• The economic costs to the proponent of a human activity of failing

to detect a real impact (i.e. the costs of a Type II error). Again using

the mine discharge example, an undetected impact might prove
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very costly later, assuming it will be detected, because the environ-

mental damage will be severe and the cost of remediation and

compensation potentially great.

• The social, political and secondary economic costs of ceasing or

modifying the human activity. For example, if mine discharge to a

river had to be stopped, then the wastewater would need to be

diverted elsewhere, such as on to land, whichmay be very unpopu-

lar with people living nearby. Increasing the level of wastewater

treatment may divert government funds from other activities,

resulting in reduced living standards etc.

• The social, political and secondary economic costs of serious dam-

age to the environment if impacts are not detected. For example,

not detecting increased algal biomass resulting from a mine dis-

charge may mean continuing declines in stocks of recreationally

and commercially important fish, or continuing damage to habi-

tat and water quality. This may eventually affect values for

ecotourism, aesthetics or other recreational activity.

Mapstone (1995, 1996) acknowledged the difficulty of determining these

relative costs and suggested that, in the absence of better information,

the costs of the two types of error should at least be considered equal and

therefore k set to 1.

The second step is to negotiate themaximumrisks of a Type I and a

Type II error each party in themonitoring programwould be prepared to

accept. For example, the proponents of the human activity would wish

to set a maximum Type I error rate and the groups concerned with

protecting the environment would wish to set a maximum Type II error

rate. These maximum acceptable error rates, along with the value of k,

are then used as the basis for negotiated agreement on the final values of

�* and �* to be used. Note that at least one of the error probabilities will
need to be negotiated and the negotiation process is critical in the whole

strategy of scalable decision criteria. The advantage of requiring this

negotiation is that the entire design and decision process of setting

effect sizes and error rates is transparent and open to scrutiny without

non-negotiable conventions or hidden criteria. Now the monitoring

program can be designed based on the effect sizes and agreed levels of �*
and �*. Power analysis is used to ensure that the sample size is adequate

to detect the designated effect size given the agreed levels of �* and �*.
As emphasized earlier, fixing � at 0.05 nearly always favours the

proponents and the burden of proof rests on managers and those

charged with environmental protection. Mapstone (1995, 1996) and
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Keough & Mapstone (1995) have pointed out that, in contrast to any of

the fixed-� strategies for decision-making, the scalable criteria do not

favour either the proponents of the human activity nor the protectors/

managers of the environment. For example, proponents will be reluc-

tant to set very low values for � because this will also produce low values

of � (if k is close to unity) and a powerfulmonitoring program thatmight

detect even trivial changes.

Finally, wemustmake the decision about the H0 of no impact once

the monitoring program has been completed, or at least once it has

reached a stage that hypotheses about impacts can be tested. The orig-

inal values of �* and �* may not have been realized by the monitoring

program because, for example, the estimate of error variability used in

the power calculationsmay not have been close to the true variability, or

the pattern of variability may have changed between the pilot study and

the actual monitoring program. If we fix �, any such inadequacies in the

monitoring program would result in reduced power and increased �,
meaning environmentally important impacts might not be detected. If

we fix �, � is increased, meaningwe run the risk of unnecessary interven-

tion with development. Scalable decision criteria require the value of �
used in deciding about H0 to also be adjusted if the monitoring program

did not realize its desired error rates. This then shares the consequences

of an inadequate monitoring program equally between the proponents

andmanagers. It is important to realize that the agreed ratio of � and � is
not changed, just the absolute values depending on how well the

monitoring program reached its objectives (Fig. 12.1c).

Mapstone (1995, 1996) and Keough & Mapstone (1995) proposed a

mechanism by which these decision criteria might be set:

1. First, set � equal to �* determined a priori

2. Using the effect size nominated a priori and the actual estimate of

the error variability from the monitoring program, calculate the

realized �
3. Compare the ratio � / � with the ratio �* / �* nominated a priori

4. If � / � is less than �* / �*, increase �; if � / � is greater than �* / �*,
decrease �

5. Then using that new value of �, recalculate the realized � and

compare the ratios again

6. Repeat these steps until � / � equals �* / �*. The value of � that

achieves this equality is then used for the relevant hypothesis-test

from the monitoring program.

We emphasize again why this process is an improvement over the
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traditional approach of fixing �. Under the fixed-� scenario, if the realiz-
ed power of the monitoring program was less than expected, then the

probability of Type II errors must increase for the specified effect sizes.

Using scalable decision criteria, the ratio of Type I to Type II errors is

fixed so that the probabilities of Type I and Type II errors would be

affected similarly by a monitoring program that did not achieve ex-

pected power (Fig. 12.1c).

12.3 cost–benefit analysis and design

Another component of the design process is the allocation of limited

resources to multiple spatial or temporal scales of sampling. For

example, consider the nested sampling programwe discussed in chapter

4 for monitoring the effects of a mine on algal biomass at locations

upstream and downstream of the mine on a lowland river. The main

factor is upstream versus downstream, with randomly chosen locations

upstream and randomly chosen locations downstream, and randomly

chosen snags at each location. We might have additional levels of sub-

sampling, such as subsamples from each snag. The important level of

replication for detecting an impact is locations within upstream or

downstream.Other scales of sampling (e.g. snags) are included so that we

can better estimate the mean algal biomass at an individual location.

The basic sampling unit for algal biomass is a snag but we expect algal

biomass also to vary at the spatial scale of locations. Clearly the number

of levels of the upstream–downstream factor is fixed but we have a

decision tomake about allocating our sampling effort to the other levels.

Do we use more locations or more snags within each location for the

same total cost? There are two criteria we use to decide on this relative

allocation: first is the precision of the means for locations and snags

within locations or, conversely, the variance of these means; second is

the costs, in terms ofmoney and/or time, of sampling each snag and each

location.

A number of textbooks (Snedecor & Cochran 1989; Sokal & Rohlf

1995; Underwood 1997) provide equations for relating costs and vari-

ances to determine the optimum number of replicates at each level of

sampling to minimize the variance of themean at a particular sampling

level and we won’t repeat those equations here. Keough & Mapstone

(1995) made a number of sensible recommendations for deriving and

using these values for sample size at each level of subsampling. First, the

calculated sample sizes depend on the quality of the pilot data, particu-

larly the variance estimates, and how well the variances in the real
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monitoring program will match those from the pilot study. It is import-

ant, therefore, that the pilot study is done in similar locations and at a

similar time (e.g. season) to themonitoring program. It is also important

to check that these variance estimates still hold once the monitoring

program has started and to adjust the sample sizes if necessary. It is

much easier to reduce sample sizes during an ongoing monitoring

program than to increase them, so the initial sample sizes should be

generous. Second, the sample size values will usually not be integers so

they should be rounded up to the nearest integer. Finally, the calcula-

tions may recommend sample sizes of less than one, because the vari-

ance at that level is so small or costs are cheap. However, some level of

replication is necessary for sensible inference and, remembering that

pilot studies may underestimate the true variance, we recommend that

more than one replicate at any level should always be used.

We provide a worked example of using scalable decision criteria at

the end of chapter 13, which introduces the idea of optimization: the

development of a monitoring program that leads to unbiased decisions

but with, also, an effective use of available resources.

12.4 further variat ions on balanced

decision-making

The general framework for balancing errors allows for some interesting

variations. We have discussed the necessity for a nominated critical

effect size when estimating Type II errors. A low Type II error means it is

probable that an impact will be inferred whenever an impact as large

as that nominated critical effect size occurs. But a different kind of

‘critical’ effect size may be recognized by the proponent, in the context

of a modified form of Type I error. The proponent may want it to be

improbable that impact is inferred whenever the impact is as small or

smaller than this new critical effect size. If this smaller effect size is

interpreted as effectively defining a modified notion of ‘no-impact’, that

improbability can be thought of as a low Type I error. This modified Type

I error could be viewed also as resulting from a null distribution shifted

slightly to the right (Fig. 12.2a).

This consideration might dominate the decision-making process

on occasions when there is no nominated effect size associated with

Type II error. For example, in the Kakadu monitoring program (Faith et

al. 1991) Type II errors were only explored with a range of hypothetical

effect sizes, and no single critical effect size was identified. In such a

case, the design might focus only on the need for a low Type I error
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Fig. 12.2 These graphs represent hypothetical probability density func-

tions as described in Fig. 12.1. (a) The distribution just to the right of that

under the H0 is for some small effect size that can be used as an alterna-

tive to calculate Type I errors. (b) When impact is inferred because H0 is re-

jected, the impact might be some effect size A, smaller than the critical

effect size E. (c) The arrow shows a hypothetical value of our statistic from

monitoring. It is improbable by chance that this observed evidence would

be found when there was an impact with an effect size as small as B.

associated with a nominated small effect size. The developer then has

some assurance that impact will not be inferred if the impact is as small

as that effect size, and so may readily agree to face costs of activity

stoppage on any occasions when impact is detected because the effect is

larger than this critical effect size.

The consideration of other effect sizes can influence decision-

making in other ways as well. To see this, it is useful to consider the

338 Decisions and trade-offs



corroboration of an impact hypothesis arising when the null hypothesis

is rejected. Finding that our evidence for impact is improbable by chance

(so rejecting the H0 and corroborating the hypothesis of impact) does not

rule out that the impact might have some effect, A, smaller than the

critical effect size, E (Fig. 12.2b). Low Type II error may have guaranteed

that, if an impact was as large as E, an impact was inferred – but it does

not mean that any impact inferred must have been as large as E. What

then can be concluded about the size of impact? Distinctions among

different effect sizes are possible when we consider the actual observa-

tions from monitoring, shown hypothetically by the arrow in Fig. 12.2c.

It is improbable by chance that this observed evidence would be found

when there was an impact with an effect size as low as B but probable if

the effect size was E (Fig. 12.2c).

Suppose that M is the largest effect size that can be excluded in

this way. We can interpret this as providing a degree of corroboration of

an hypothesis that the impact has an effect size as large as E. This

hypothesis is better corroborated to the extent that M is nearly as large

as E. We can say that it is improbable to have observed our evidence by

chance not only under usual no-impact conditions, but also under

impacts as large as M.

Thus, attention to the actual observed outcome opens the door to

further inference (inferences compatible with Mayo’s (1996) use of ‘se-

vere tests’, discussed in chapter 4). Such inferences can feed in to deci-

sion-making. In the simple cases described above, we had a dichotomous

decision based on reject/not-reject. While non-rejection of the null hy-

pothesis may well continue to describe simply ‘no action’, rejecting the

null hypothesis can lead to a range of actions, depending upon the

conclusions about the likely magnitude of impact that are warranted

given the actual observed monitoring outcome.

12.5 important issues

• Components of any decision-making process include outcome

states or events, alternative actions we might take, consequences

that occur, outcome state probabilities and decision criteria.

• We set the probability of Type I errors in repeated sampling with

our a priori significance level (�) and there is an arbitrary conven-

tion in many disciplines, including ecology, to fix � at 0.05 or 5%.
• The probability of a Type II error can only be calculated for specific

alternative hypotheses (i.e. effect sizes).
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• Our decision-making framework must provide a reasonable and

flexible balance between Type I and Type II errors.

• It is important to specify environmentally important effects sizes a

priori and then design the monitoring program. Sample sizes are

critical considerations in ensuring that a nominated effect size

will have a high probability of being detected if it occurs.

• The advantage of requiring negotiation is that the entire design

and decision process of setting effect sizes and error rates is

transparent and open to scrutiny without non-negotiable conven-

tions or hidden criteria.

• In contrast to strategies for decision-making that fix � or �, scala-
ble criteria do not favour either the proponents of the human

activity nor the protectors/managers of the environment.

• Further evaluation based upon the actual observed outcome from

the monitoring design allows for additional inference that can

feed in to decision-making.While non-rejection of the null hypoth-

esis may well continue to describe simply ‘no action’, rejection of

the null hypothesis can lead to a range of actions, depending upon

the conclusions that are warranted concerning the likely magni-

tude of impact, based upon the actual observed monitoring out-

come.
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13

Optimization

In the previous chapters, we have outlined the logical and statistical

bases for environmental monitoring, and discussed some of the practi-

cal constraints that may be encountered along the way. While an under-

standing of these principles is a key ingredient, the ultimate aim is to

establish a monitoring program that will lead to reliable, or at least

unbiased, decisions with a known risk, and that is an effective use of the

available resources. We have termed the processes of translating these

principles into a workable sampling program optimization.

13.1 what we mean by optimization

Optimization has three important components:

• Developing an idealized sampling program, satisfying a set of

target criteria, independent of cost. This idealized program details

the number of samples that need to be taken to attain the desired

level of confidence in the decision-making process

• Comparing this program with the financial and logistic con-

straints of the particular monitoring situation

• Trading off attributes of the monitoring program to produce the

best ‘constrained’ solution.

It is useful to portray these components as a flow chart, as shown in Fig.

13.1, to emphasize the sequence of events, and the iterative nature of the

process.

13.2 by now you should have . . .

There are several steps youmust have completed before you canmove to

optimizing your monitoring program. You should have:

341



Accept
Greater

Error Rate?

Fig. 13.1 Flow chart for optimizing a sampling program (from Keough &

Mapstone 1997). The diagram shows three key stages – identifying the

parameters of the monitoring program and refining the design, in which

the desirable number of samples is calculated; determining whether this

program is achievable; and making trade-offs.

• Considered the best possible design for yourmonitoring situation,

using the principles outlined in chapter 5 and taking into account

any immutable constraints (e.g. no Before data)

• Specified the statistical model that you intend to fit to the data

(chapter 7)

• Identified a set of criteria for control locations, with a notional set

of potential locations satisfying these criteria (chapter 8)

• Identified variables that are likely to provide a clear indication of

any impact (chapters 9 and 10)

• Thought about what an important change would be for those

decision variables, and negotiated the kind of change that will be a

trigger for management action (chapter 11)

• Considered the consequences of Type I and Type II statistical

errors, and negotiated the relative rates of these errors (i.e. the �/�
ratio) (chapter 12)
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Table 13.1. Variances that must be estimated to optimize two common

monitoring designs

Design type Variance estimate required

BACIP Variation in d (i.e. difference between Control and Impact) values

through time

MBACI Space–time variance – variation among control locations through

time periods (at scale of Before and After periods). This variance is

a measure of the extent to which the group of control locations

‘track’ each other through time

• Designated a desirable overall level of risk for the decision-making

(i.e. the absolute values of �* and �*) (chapter 12).

13.3 you will need an estimate of variance

Whether you are calculating the number of samples as part of a formal

power analysis associated with a test of an hypothesis, or as part of a

procedure to obtain a confidence interval of a particular size, the calcu-

lations require some idea of how variable the data are likely to be.

Environmental monitoring covers a wide range of designs, which

often have complex statistical models. These models often include sev-

eral kinds of space, time and space–time variances. As part of the opti-

mization procedure, we need to identify the kinds of variation that are

to be used in assessing the impact. In hypothesis-testing procedures,

especially the ANOVA models used to illustrate chapter 7, this amounts

to identifying the variances that will be used as denominators in F-ratios.

Because these variances change with monitoring designs, so does the

variance that we need to estimate. Table 13.1 lists two of the common

designs, and the variances that must be estimated. It should be noted

that these variances include variance combinations of space and time.

13.3.1 Sources of variance estimates

There are two main ways we can obtain variance estimates:

1. The most common way of estimating variances is through the

collection of pilot data, in a structured way, from a few places

and/or times. Pilot studies are useful also for compiling an initial

inventory making predictions in a legally mandated assessment

stage, or proofing field methods. We note that pilot studies vary
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enormously in quality and the data from them should be scruti-

nized carefully before use. Hazards associated with the use of pilot

data will be lessened the more pilot studies are formally planned

as prototypes of the expected monitoring program.

2. Existing scientific literature also can provide a guide (see section

11.3.2) if there are data from the same biological system and same

geographic region – preferably the same catchment/watershed.

However, data simply describing variation often are not of suffi-

cient interest towarrant publication in widely circulated journals,

and the relevant information often must be obtained by calcula-

tion from published figures, or, more often, from the grey litera-

ture (see section 9.3.2). Unfortunately, this literature tends to be

poorly indexed, and the material not easy to locate. This situation

may improve as more such data are published, at little cost, on the

World Wide Web.

In getting pilot estimates of variance, an important point is that the

scales of pilot sampling should match scales to be used in the monitor-

ing program. If we are asking questions about control and impact

locations, and the variation between control locations is used to assess

the impact, we must obtain pilot variances at the spatial scale of those

locations. Similarly, if we are seeking to detect changes over time-scales

of years, then we need to understand variation on that scale.

It can be tempting, when time or resources are limited, to use

estimates of variances from other temporal or spatial scales. In particu-

lar, obtaining an estimate of spatial variance is often far easier than

estimating a temporal variance, and wemay try to use this estimate. It is

important to note that there is no scientific reason why such disparate

variance estimates should bear any relationship to each other – it is not

difficult to think of species that are consistently common over a wide

area, but which show strong temporal fluctuations, and species that

show substantial and relatively synchronous temporal changes (e.g.

annual or seasonal species), but with considerable spatial patchiness.

Some of this information is captured in scope diagrams (see section 2.3).

Matching the scales is often difficult – with pressure to commence

monitoring, it can be difficult to argue for an extended period just to

obtain pilot variances. In a similar way, sampling at the larger spatial

scales at which we might expect control locations to occur may well be

expensive, and we may struggle to convince those paying for the

monitoring to commit enough resources to collect data that are not

directly used in decision-making. In these cases, we need to be sure that
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Table 13.2. Outcome of power analysis for two common designs

Design Power analysis to get:

BACIP tB and tA; numbers of times Before and After. In practice, tA is

likely to be fixed, and tB is the target.

MBACI l; number of Control locations (or lC and lI, numbers of Control and

Impact locations). In practice lI is fixed, as we are aware of no cases

in which the number of impact locations was increased to raise

the power!

those overseeing the monitoring program understand clearly that no

power analysis or sample-size calculations are possible without variance

estimates.

13.4 developing an idealized sampling scheme . . .

With the information described in sections 13.2 and 13.3, we can use

power analysis to calculate the desired amount of replication. This

replication varies with the design in question, as shown in Table 13.2 for

BACIP and MBACI designs.

Doing a power analysis, either at the planning/optimization stage

or post hoc, requires a precise specification of the underlying statistical

model, and the link between fitting a statistical model and the decision-

making procedure. This step is not necessarily simple because, as we

mentioned earlier (section 4.7), several common monitoring designs

have very complex underlying statistical models. Calculation of the

optimal level of replication is not possible without this step, however,

and, in general, power analysis is not possible without a precise statisti-

cal model. This link is often forgotten when notions of power are intro-

duced into broad policies.

Being forced to specify the statistical model also focuses attention

on the design, units of replication etc., and we find this a useful aspect,

especially for those with limited experience in designing such programs.

Specification of the model also brings to mind the likely assumptions of

the procedure.

13.4.1 Form of output

In its simplest form the power analysis gives a simple answer: the

desirable level of replication (to detect a given effect, with a given level of
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Fig. 13.2 (a) Sample output from power analysis, relating number of

samples to power. (b) The same power curve expressed as a function of the

cost of sampling, assuming $500 per sample of invertebrates from Sürber

samples.

confidence). However, a single value such as this has limited usefulness,

because the next step of the process almost always involves consider-

ation of different intensities of sampling. A particularly useful way to

present the results from this stage is as a curve relating power and

number of samples (Fig. 13.2a), with an indication of the target level of
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power. For communicating with less technical participants in the

monitoring program, it is worth emphasizing that power is effectively

confidence in the monitoring program. The curve shows quickly how

changes in sampling will influence the outcome.

In many cases, it is relatively simple to translate the number of

samples into a cost of monitoring (Fig. 13.2b).

13.5 trading off

In determining whether the ideal program is feasible, several con-

straints come into play. As an initial step, the number of samples will be

translated into a cost of sampling, and, in the majority of cases with

whichwe are familiar, the costs of this idealized programwill far exceed

the available resources. In many cases, there will be severe time con-

straints, and, in particular, there is likely to be little flexibility in length

of sampling before the particular activity commences. There is often

additional pressure to complete the sampling and come to some deci-

sion about the future of the particular activity. These combined press-

ures frequently result in compromises having to be made, and the

process of optimization examines the way in which compromises are to

be made. Broadly, we must decide whether to spend more and maintain

the sampling, reduce the overall sampling (and raise the risk of inappro-

priate decisions), or to redesign part of the sampling program to use the

resourcesmore effectively – thusmaking trade-offs. Changing the funda-

mentals of the design generally is considered to be undesirable, given

that the logical basis of the design (and analytical models) should have

been agreed to before getting to this point.

In making trade-offs, our emphasis is on minimizing cost of samp-

ling whilst ensuring the selection of appropriate variables (see chapter

10) and sampling regimes that are likely to provide clear-cut results,

with minimum ambiguity or uncertainty in tests. The principal trade-

off, therefore, is between cost (of monitoring) and probability of errors,

bearing in mind that there are costs associated with any actions precipi-

tated by results of analyses (of data). To understand and discuss these

trade-offs, the actions that will follow from each statistical inference

must be fairly well prescribed so that players can project the likely

consequences for them of those actions. Identification of actions from

rejection/non-rejection of the null hypothesis in favour of each

nominated alternative should also clarify for all players the benefits (for

them) of better (or worse!) monitoring.

Assuming (a) there is a desire to minimize risks of erroneous
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decisions and (b) some proponents will consider that the cost of samp-

ling for the desired � is too great, we have several options, which we can

often demonstrate to non-technical people involved inmonitoring using

the kinds of curves shown above – cost (� sample size) versus � and cost

versus � curves for main variables.

13.5.1 Spend more

In some cases, the power curves can show that for a reasonable increase

in resources there could be a sharp increase in confidence. In such cases

itmay be possible to increase the resources to the sampling program and

get close to the desired level of power. For instance, in Figure 13.2,

increasing costs by 25% (e.g. from four to five replicates) would increase

power by 33% (from 0.3 to 0.4).

13.5.2 Live with increased risk

The most direct option is to keep the costs fixed, conduct the sampling

program, and accept the increased risks of an erroneous intervention or

an undetected environmental impact. Again, the power curves are use-

ful ways to explore the increase in these risks – if the resources are close

to the desirable level, the increased risk may be minor and acceptable to

everyone. However, if the desirable program far exceeds the resources,

the increase in risks may be substantial. Figure 13.3 shows several power

curves. For curve A, with a target power of 0.80, seven or eight samples

per group (e.g. control locations) would be required, while for data sets B

and C, the numbers are 11 and 19, respectively. In the event that only

seven samples are possible, the power for data set A drops to 0.6–0.7,

whichmight still be acceptable, whereas for data sets B and C, the power

values drop to 0.5 and 0.3, respectively. The latter two values would

cause substantial problems.

In this latter, probably more common situation, we recommend

very strongly against the conventional hypothesis-testing approach, in

which the value of � is held fixed. When the monitoring is scaled back,

the direct consequence is a rise in �, so the relative risks of the two

incorrect decisions are altered. The scalable approach outlined earlier

has the advantage of maintaining the relativity of the two risks (section

12.2.3). If the relative weighting of errors is to be reconsidered, we

suggest that the agreed level of � should be protectedmore strongly than

the level of �. In most instances, the economic benefits of reduced costs

of monitoring will accrue to the proponent (who is paying for monitor-
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Fig. 13.3 Power curves for three different data sets (labelled A, B and C),

yielding different recommended numbers of samples. The vertical line

indicates the number of samples that the monitoring program’s

resources can support.

ing). Accordingly, where the risks of errors are to be changed, it seems

most appropriate to allow the proponent to evaluate the relative bene-

fits of reducing costs of monitoring against the consequences of in-

creased risk most relevant to them – a Type I error. Such an approach

may mean that the level of � is increased in order to ensure a constant

level of � as the costs of monitoring are reduced (see sections 12.2.2 and

12.4). We have found that the graphical illustration shown in Fig. 13.4

conveys these arguments to a wide range of audiences.

13.5.3 Maintaining the risk, reducing the cost

Perhaps the most useful approach is to modify the mix of variables and

sampling regime to reduce overall costs so that the desired levels of

uncertainty can be realized. In particular, reducing the processing costs

of each sample can be very helpful.

Eliminating variables

Quite often, many observations on a wide range of variables are made

from each sample. The total cost of processing each sample may depend

on the number of such variables. For example, if we take samples to

estimate abundances of benthic macrofauna and to estimate levels of

toxicants, the cost per sample may depend strongly on the number of

Trading off 349



Fig. 13.4 Traditional versus scalable decision rules versus extent of

sampling. The curves show error rates (� and �) as a function of the

number of samples, showing the effects of reducing the number of

samples using (a) a traditional rule of �� 0.05, and (b) a scalable rule of

�� 0.5� �.

different toxicants to be assayed. It may be possible to take a critical look

at the list of toxicants, and identify some of lesser importance, and to

consider dropping them from the program. Similarly, when processing

biological samples in the laboratory, some taxonomic groups may re-

quire much more effort at the identification stage. Given limited re-

sources, and acknowledging that our variables represent only a small

subset of the possible measurements, we might decide to ignore some

taxa. At a broader scale, most sampling programs include a wide range

of sampling methods, targeting different components of the environ-

ment. Omitting one component might provide sufficient overall cost

savings as to raise the power for the remaining components. In cases

such as this, we must make professional judgements about the ratio of

information gained to sampling effort, and the scientific and political

desirability of each component of themonitoring program, and focus on

variables that make the decision most clear-cut.

A fallback position to consider is the use of surrogates that are

cheaper to measure than the variables originally preferred, but with

some loss of certainty.

Sampling more cheaply

There are several other ways of reducing per-sample costs, particularly of

biological variables.
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In processing species-rich samples, a large amount of time is often

spent identifying material to finer scales of taxonomic resolution. The

time required to identify material is often a function of the taxonomic

level desired, and, at least in some habitats, there is a sharp saving in

time by working at the next coarsest taxonomic level (e.g. moving from

genus to family or species to genus). Consequently, identifying material

to coarser levels can reduce costs dramatically. The trade-off in this case

is between coarser biological resolution, with high power, and fine

resolution, with low power. Whether this trade-off is beneficial may

depend on individual biological systems – if finer taxonomic groupings

(or functional groups) respond relatively uniformly to a particular dis-

turbance, the signal from these data will be strong, and there will be a

clear benefit. However, if individual taxa respond in contrasting ways,

pooling them into larger groups may result in variables that have more

desirable statistical properties, especially lower variances, but which do

not respond to the particular disturbance, and hence are inappropriate

decision variables (see section 10.1.2).

Inmost sampling programs, we have inmind a spatial scale that is

used for making a decision. For example, in an MBACI design, in its

simplest form, impacts are assessed using variation at the scale of

locations.Wewould normally take a series of subsamples of each location

for two reasons: (1) in order to ensure adequate characterization of each

location; and (2) in order to remove the potential of confounding vari-

ation between locations with variation within locations. For example,

we might take replicate samples from riffles along one of our control

streams. The data from this lower spatial scale (and any other lower-level

subsampling) are not directly used in the statistical analysis, and, when

fitting a statistical model, these data are averaged or summed. Bearing

this in mind, it may not be necessary to process all of these individual

samples, and an alternative is to pool the samples, mix them thoroughly

– a procedure labelled compositing – and then take a subsample from

this pooled sample (discussed in section 8.2.4). The aim of averaging the

smaller-scale variation would be met, and there can be considerable

savings. For example, compositingmay be done on site, reducing time to

curate each individual sample. The biggest savings, however, are likely

to come in the laboratory, when fewer samples need to be processed. The

exact cost savings will depend on how easy it is to mix and subsample

the composites, and on the proportion of the composite samples that

must be examined in order to get an accurate estimate of their composi-

tion.

We suggest that as a routine part of optimization, the sampling

Trading off 351



design be scrutinized carefully, the units of replication used to assess the

impact be identified clearly, and then consideration be given to composi-

ting material below the level of those units. Note, however, that this

procedure requires some confidence that smaller-scale effects are of

little interest.

13.5.4 Accepting larger effect sizes

For key variables that are also very variable (and too expensive to moni-

tor with the desired precision), we need to consider whether to drop

them from the program or live with the likelihood that our programwill

be sensitive only to an increased effect size. We may decide to revisit the

earlier discussions we have had about setting an effect size (section

12.2.2). To do this, plots of critical effect size against sample size or cost

can be particularly helpful. We emphasize that changing the critical

effect size should not be considered lightly (and only ever during the

planning stage) since doing so necessitates a reconsideration of what the

public, proponents and managers have agreed to be important for this

activity (see chapters 11 and 12).

13.6 uncertainty in optimization

It is important to realize that the optimization procedure is an approxi-

mate one, using the best available information, which has considerable

uncertainty associated with it.

13.6.1 Origins of uncertainty

The main source of uncertainty is in estimation of (error) variance.

Unfortunately, our initial estimates of variance are generally based on

pilot data, which, by their nature, are quite limited. They are also likely

to be from one short time period, and not reflect environmental fluctu-

ations at larger time-scales. We can improve our estimates by increasing

the size of the pilot estimates, and by using as many different estimates

of variance as possible – rather than using pilot data or published

information, use both, and combine them (see chapter 9).

It is also possible to quantify the uncertainty in our estimates, by

calculating confidence intervals about the variance estimates. It would

then be possible to calculate the required number of samples for the

upper and lower estimates of the variance. In deciding the level of

sampling, we would then need to weight these values against those
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obtained from our original (and best) estimate. This is rarely done, and

we suspect thatmost people rely on their estimates being unbiased, and,

therefore most likely to represent the true variance.

If we are to have an unbiased estimate, we must assume that the

impact does not change the relevant variances. If for example, a particu-

lar activity caused a series of impact locations to followwidely divergent

paths through time, a consequence would be an increase in the space–

time variance used to assess the impact. In an analysis of an MBACI

design, for example, using analysis of variance, the relevant denomina-

tor is the Locations(Control–Impact)�Before–After interaction, which

is an average of the L(C) and L(I)�B–A components. The optimization

would have been done using the L(C) component only, which would in

this case be an underestimate of the overall variance. Such a problem

could be dealt with in the simplest case by adjusting the � and � values

post hoc, as described in section 13.7.

13.6.2 Incorporating capacity for readjusting the sampling
program

Given uncertainties in the predicted performance of a sampling pro-

gram (and associated statistical tests), we recommend starting with the

expectation that the design may need to change as more information is

gathered during the Before period. Accordingly, we should err on the

side of caution (e.g. start with more rather than fewer sites etc.) and

acknowledge that it may be acceptable to drop sites if variances look

better than those from pilot data. Adding in sites may be more difficult

than dropping sites, in lots of ways. For example, many of the statistical

models rely on sampling the same physical locations through time, and

it is difficult to add new locations part way through the sampling

program. It is more practical to include ‘spare’ locations, rather than

trying to add new ones later; this procedure may also provide for much

easier economic planning by the proponent.

13.7 post -monitoring ‘optimization’: implications

for decision criteria

At the conclusion of the monitoring program, we may find that the

actual levels of variation are quite different from those used at the

planning stage. Theremay also have been unforeseen events, such as the

loss of some control locations. We know of cases in which control

locations disappeared as a result of El Niño events, and even of planes
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crashing into the water on or near control locations. In this case, our

data set at the end of the sampling program may have quite different

power characteristics.

As a result, the realized levels of � and � may be quite different

from those that formed part of the optimization procedure. We there-

fore recommend that the power calculations be revisited, and also

recommend that the scalable decision criteria provide a substantial

advantage over traditional fixed-� approaches.
If the data set proved to be less variable than anticipated, and the

decision is made using the critical � designated at the planning stage, a

direct consequence will be that the value of � is reduced. In contrast, if

the number of locations is reduced, or if the level of variance is greater

than expected, � will rise.

To maintain the relativities of these two errors, we would use the

revised levels of replication and the improved variance estimate to

recalculate the critical � value, as per section 12.2.3. In doing this, it is

important to use the original effect size – a commonand seriousmistake

is to use the newly observed effect to calculate power a posteriori. This

changes all calculations fundamentally, is circular, and constrains the

values that power can take before significance so that power, in this

context, becomes meaningless.

13.8 a worked example – liming to decrease acidity

of streams

We will carry on with the example introduced in section 8.4 of the

liming of some Welsh streams to increase their pH, continuing to view

the liming as a potential ‘impact’ rather than as a restorative measure.

Let us suppose some local fishing businesses wish to add lime to several

naturally acidic streams to improve the survival rates of trout in these

streams. Trout fishing is locally popular and the proponents argue that

increasing the number of streams suitable for trout fishing will greatly

increase the number of outside visitors to the area. This will bring a

variety of economic benefits to many local businesses and other stake-

holders. The acidic streams are naturally low in pH, and consequently

the proposed liming, which will increase the pH to approximately cir-

cumneutral, may have some sort of detrimental effects upon these

ecosystems. The acidic streams have lower species diversity than circum-

neutral streams, but let us suppose that the species within them occur

only in acidic waters. Hence, there is some concern that boosting pHwill

see invasion of these waters by many other taxa. The protection of
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low-diversity systems may seem odd, but this is because we typically

equate high numbers of species with ‘good’ and low numbers of species

with ‘bad’. Nevertheless, if systems naturally have low numbers of spe-

cies then we should not view the invasion of these systems by more

species (such as weedy taxa that occur in many places) with equanimity.

It is reasonable to protect the naturally low diversity of such systems.

13.8.1 Nomination of an important effect size

Our first step is to decide upon the size of change we will consider to be

important. To keep this simple, we will focus on only a single variable –

the numbers of individuals of all acid-sensitive macroinvertebrate taxa

(given as data in Table 8.9) – even though discussions about important

changes would range over a wide variety of other possibilities. In a real

situation, we would almost certainly be concerned about decreases in

numbers of taxa adapted to living in acidic waters as well as increases in

numbers of potentially unwelcome taxa.

All relevant parties with an interest in the liming (the proponents,

environmental groups etc.) need to decide collectively what size of

increase in densities of species that are sensitive to pH (and hence occur

in low densities in the acidic streams) in limed streams would be con-

sidered an ‘important’ change. First, we need to consider how changes in

our variable are linked to the magnitude of the human disturbance (see

section 11.3.2). pH affects the concentration of filterable aluminium in

the water column, which is toxic to biota at high concentrations and

thought to be one of the main causes of mortality. There is a negative

relationship between pH and aluminium concentration that flattens out

at about pH 5.5 and 10–15 � equivalents per litre (Fig. 13.5a). Mortality of

trout within streams that have high concentrations of aluminium is

100%, falls gradually with decreasing concentrations, and then drops off

rapidly to around 20–40% mortality with aluminium concentrations of

about 15–20 � equivalents per litre (Fig. 13.5b). The responses of acid-

sensitive macroinvertebrates to filterable aluminium concentrations

show evidence of a threshold effect. Numbers are extremely low at high

aluminium concentrations down to around 15–20 � equivalents per

litre, when they increase 10-fold (Fig. 13.5c). Note that these graphs are

from field measures of streams differing naturally in aluminium – we

would also want to consider other sorts of data (such as experimental

manipulations of aluminium) to make sure we have as much informa-

tion about the relationships between our variables and themagnitude of

human impact as possible (see also chapter 9).
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Fig. 13.5 (a) The relationship between average pH and average concentra-

tion of filterable aluminium in different streams. (b) The percentage mor-

tality of caged trout, Salmo trutta, exposed in the field for 17 days to nine

streams differing in the concentration of filterable aluminium. Each point

is one stream. A log curve has been fitted to the data. (c) The total numbers

of individuals of four acid-sensitive taxa (Baetis rhodani, Brachyptera risi,

Leuctra inermis and Isoperla grammatica) found in streams differing in con-

centration of filterable aluminium. A power curve has been fitted to
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Fig. 13.5 (cont.)

the data. All data are from Stoner et al. (1984). Macroinvertebrate numbers

were pooled over three 1-minute kick samples taken on each of two dates.

Actual numbers of macroinvertebrates were not supplied, as only abun-

dance classes were given – numbers were roughly estimated by taking the

middle value of each class for each stream. Note that filterable alumin-

ium concentrations are a better correlate of biotic changes than pH

(Weatherley & Ormerod 1991).

However, given these relationships, what sort of effect size might

be reasonable? To improve fish habitat, the proponents wish to increase

the pH of acid streams to around 5.5–6.0. This would mean decreasing

aluminium concentrations of acidic streams to around 10–15 � equival-

ents per litre. From Fig. 13.5c, this would suggest that acid-sensitive

macroinvertebrate taxa could increase from a base of � 200 individuals

to anywhere from 1000–5000 individuals – that is, increase at least

1000% in numbers. However, we wish to detect increases in acid-

sensitive taxa before they reach such high numbers, so that manage-

ment can take early action and intervene before densities of these taxa

become a serious problem. The steepness of the curve relating densities

of acid-sensitive taxa to pH means we want to detect changes that are at

the very start of this curve. Consequently, it is decided that an increase of

400% in numbers of acid-sensitive macroinvertebrate taxa – or a four-

fold increase – would constitute an important change.

13.8.2 Deciding the relative costs of Type I and II errors

The next step is that all interested parties need to debate the relative

costs of making Type I errors, C�, and Type II errors, C�, and what the

ratio of these costs, k�C�/C�, should be (section 12.2.2). Those in favour

of liming will be most concerned about the costs associated with Type I

errors, which would mean liming would be stopped unnecessarily be-

cause of an incorrect detection of an increase in numbers of acid-

sensitive taxa. Those concerned more with protecting the natural envi-

ronment will be most concerned with the costs of committing a Type II

error, which would see a real change go undetected.

After considered discussion, the parties agree that the ratio of

costs, k, should be 0.5 – that is, that the costs associated with a Type I

error are felt to be twice as high as those associated with a Type II error.

The reasons for weighting the costs and hence the probability of the

errors unequally were that:
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• The proponents showed that the economic costs to themselves and

other businesses in the area would be high if liming had to be

stopped or the effects of liming had to be reversed. They showed

that initial costs to undertake liming of multiple streams would

be considerable and that it will take time to build up sufficient

angling stocks (given that trout take more than a year to grow to

sizes suitable for fishing). It also takes time to build the sort of

reputation for consistently good fishing that would see sustained

increases in the number of visitors to the area.

• There are no implications for human health, as none of the rivers

in the area is used for drinking water.

• Other activities on the rivers (e.g. sightseeing, canoeing) would be

unaffected by changes in pH.

• The streams do not occur within a state or national conservation

area.

• The fauna of the acidic streams is not unique, as there are other

acidic streams in the area.

Note that we have constructed the example this way simply to illustrate

that there may be cases where it is reasonable to weight the costs of one

type of error – in this case, Type I errors – more heavily than the other.

We are not suggesting that this should be some sort of standard out-

come. Each potential impact must be considered individually. For

example, it is easy to imagine alternative situations where the costs of

Type II errors would be deemed to be much higher than that of Type I

errors. If the development were to take place in a unique natural area of

very high social or environmental significance, then it would be reason-

able to argue that the costs to the community of degrading that environ-

ment are very high, especially if any ecological restoration had to be

attempted. Arguably, the example ofmining activities in KakaduNation-

al Park (Box 4.1) would fall into this category, given that KakaduNational

Park is in a World Heritage area, is considered unique, has high environ-

mental and cultural attributes, and that environmental degradation

caused by mining radioactive substances could be virtually irreparable.

In other cases, the relative costs of Type I and Type II errors may be quite

unclear. We often cannot put an objective and sensible monetary value

on many environmental attributes that are still valued very highly by

the community. In these situations it may be best to agree to weight the

errors equally (Mapstone 1995).
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13.8.3 Deciding the actual probability of errors

The next step is to negotiate the maximum risks of a Type I and a Type II

error each party in the monitoring program would be prepared to

accept. The ratio of these errors is set by the relationship k� �/�, where k
is determined by the negotiations in the preceding step (section 13.8.2).

The relationship k� �/�� C�/C�, sets the costs of committing a particu-

lar error in exact inverse relationship with the probability we set for its

occurrence. This ensures that as the relative cost of committing one

particular error increases relative to the other, its maximumprobability

of occurrence should decline. Thus, with k� 0.5, the maximum prob-

ability of committing a Type II error, �, will be set at twice that of

committing a Type I error, �, as the parties have already agreed that the
relative costs of Type II errors are half those of Type I errors.

In our liming example, the proponents argue that they cannot

realistically undertake this venture if � is set relatively high, and wish to
proceedwith a risk of being halted unnecessarily at no greater than 0.02.

This means that the probability of an unacceptable change going unde-

tected must be set to 0.04. After some discussion, the parties agree to

these probabilities of errors, so �* is set at 0.02 and �* at 0.04.

13.8.4 Use of pilot data and power analysis to examine the
number of locations needed in the monitoring program

The next step is to use pilot data to calculate, for the agreed effect size of

a four-fold increase in numbers of acid-sensitive taxa, the number of

locations in themonitoring program that would be needed to realize the

agreed upon values of � and �. This step depends greatly upon the

analytical model that will be used, because the estimates of variance

that are required to calculate power vary between models (Table 13.1,

and see chapter 7). Note that power analysis is not simple for complex

designs like MBACI, as the calculation of power requires the specifica-

tion of an alternative hypothesis and the solution of somewhat complex

equations whose specific forms depend on the exact analytical model

under consideration (see Keough & Mapstone 1995). We have not pro-

vided the specific equations to carry out the calculations below because

we believe that inmost cases a statisticianwill be needed to carry out the

appropriate calculations, but see Keough&Mapstone (1995) for a worked

example.

For our liming example, the parties agree to use an MBACI design

with replicate Impact locations, and so need an estimate of the variation
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among Control locations over periods of time equivalent to the expected

temporal scales of themonitoring program, where samples will be taken

once a year for multiple years before and after start-up. In this example,

some data are available from three circumneutral streams (occurring in

the same area as the streams proposed for liming), which have been

monitored for six years. An estimate of the variance among Control

versus Impact locations over time is obtained by imagining that the

three locations come from a liming experiment. Two of the circumneut-

ral locations are designated as ‘Controls’ and one as an ‘Impact’ location,

and the first set of three years designated as ‘Before’ and the second

three years as ‘After’. These designations allow anMBACI analysis, which

then provides an estimate of the relevant error variance (the mean

square from the Locations within Impact vs. Control�Before vs. After

term – see Table 8.10). The mean square from pilot data from reference

streams is then used to calculate the power of future tests of liming,

using an effect size of a four-fold increase in numbers of acid-sensitive

taxa at Impact locations compared to Control locations. (In reality,

monitoring data from circumneutral streams were collected as part of

the original monitoring program, to provide a picture of the reference

condition to which researchers hoped to return acidic streams. Never-

theless, these data serve as a good example of the kind of estimation of

variance that is required for reliable estimates of power – that is, values

of the variables proposed for monitoring collected at the appropriate

spatial and temporal scales and in the same general area as the proposed

Control and Impact locations.)

Data from the power analysis are shown in Table 13.3 and plotted

in Fig. 13.6, which is analogous to Fig. 13.2 except that � is plotted on the
y-axis rather than power (recall that power� 1�� – see section 4.7). The
value of �* that was agreed through negotiation (0.02) requires six

Impact and six Control locations to obtain an expected value for � that

meets the agreed value of slightly less than or equal to 2� �, or 0.04.
However, � drops well below 0.04 to 0.018. This is true for all the other

analyses (which use different values for �) and occurs because of the

stepwise influences of adding two whole locations (one Impact and one

Control) for each value of n, given that we cannot add ‘fractions’ of

locations. Consequently, for n� 6 Control and 6 Impact locations (12

locations altogether) then �* / �*� 0.02/0.018� 1.11 for n� 5 of each, �*
/ �*� 0.02/0.061� 0.328. Hence, neither sample size meets our require-

ment that the ratio k� �* / �* should be close to 0.5. Note that we have

not considered the possibility of reducing the number of one type of

location (i.e. of either impacts or controls) while retaining a higher value

360 Optimization



Table 13.3. Expected value of � if sampling

different numbers of locations in each of Impact

and Control treatments given an a priori

preference for a specific value of � and a desire to

have � close to a value of � 2� �. These are the
data plotted in Fig. 13.6.

� Locations �

0.01 2 0.906

3 0.626

4 0.317

5 0.129

6 0.045

7 0.014

0.02 2 0.821

3 0.453

4 0.182

5 0.061

6 0.018

0.03 2 0.745

3 0.347

4 0.120

5 0.036

0.04 2 0.677

3 0.274

4 0.085

5 0.023

0.05 2 0.615

3 0.221

4 0.063

0.06 2 0.559

3 0.181

4 0.048

0.07 2 0.509

3 0.151

4 0.038

0.08 2 0.464

3 0.127

0.09 2 0.423

3 0.108

0.10 2 0.386

3 0.092
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No. of Locations

Fig. 13.6 Values of � versus the number of locations (for each of the Control

and Impact categories) for different values of �, with the target being that

sufficient locations should be sampled to ensure � is less than or equal to

2� � (� � 2� �). This point is represented by the right-most point on each

curve. These data are presented in Table 13.3.

of n for the other (i.e. have unbalanced sample sizes for controls and

impacts). Although this strategy could be pursued, it is generally unde-

sirable to have unbalanced sample sizes within designs except under

very particular circumstances. To keep our example simple, we will

proceed under the assumption that the group desires to keep the num-

ber of impact and control locations equivalent.

The next step then is to take the number of locations that are close

to achieving the relationship k� �* / �*� 0.5, and iteratively adjust

values of � and � until a value for k of 0.5 is achieved. This calculation

means, for most nominated starting values of �, that the realized value

for � ends up less than that nominated a priori (Fig. 13.7). Thus, when

beginning with an initially desired value of � of 0.02, �* sinks below 0.02

and �* ends up below 0.04 when the errors are forced to meet a k of 0.5.

Figure 13.7 illustrates very neatly the options available. Either the par-

ties must agree to use n� 6 Control and n� 6 Impact locations and

accept lower values of � and � thanwere agreed upon (see section 13.8.3),
or they monitor fewer locations (i.e. reduce n) and settle for increased

values of both � and �. For any value of n that the parties choose from Fig.

13.7 however, the ratio of errors that was agreed upon at the start

remains the same – 0.5.

13.8.5 Trading off costs and risks

At this point, the parties are in a position to calculate the total costs of

monitoring a given number of locations for a desired number of years
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No. of Locations

Fig. 13.7 Values of � and � at which � � 2� � (i.e. k� 0.5) for different

numbers of locations sampled in each of the Impact and Control catego-

ries. Also shown are the initially desired (or expected) values of � from

which the optimized (realized) values derive. As can be seen, the same

endpoint in the optimization can result for different desired values of �,
because of the discrete effects of adding locations in whole pairs.

and to compare this sum to the resources (of money or people) available

to meet them. As we indicated above, it is common for there to be

insufficient money and other resources (say, of people) to monitor the

minimum numbers of locations required to meet the desired levels of

risks of errors. Any mismatch requires the parties to discuss whether

they are all prepared to live with increased risks and, if not, to examine

other options.

In our liming example, the pilot data provide good estimates of

the cost of carrying out sampling and processing over three locations,

which can easily be used to estimate the costs ofmonitoring 12 locations

once a year for six or more years. When the calculations are done, the

amount of money required turns out to be about twice that available to

carry out this part of themonitoring program. Consequently, the parties

have to explore various options for retaining their agreed levels of risk of

errors.

Spend more money?

The first option the parties consider is whether sufficiently more money

could be made available to allow 12 locations to be monitored at each

time. However, the projected cost would virtually double for only a

relatively small (although desirable) decrease in probability of errors.

Consequently, the parties feel that this sort of expense is not warranted,
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and that it would prove very difficult to justify such a large increase in

cost for a relatively small decrease in risk to those paying for the

monitoring program.

Live with increased risks?

The second option the parties consider is accepting increased risk, given

that both the proponents and the opponents face the same relative

increase in probabilities of erroneous decisions that respectively con-

cern them. The current budget would allow annual monitoring of six

locations (three Impact and three Control) and will produce a value of

just over 0.07 for �* and almost 0.15 for �*. However parties on both sides
of the issue agree that the risks are higher than they are prepared to

accept – the proponents are not willing to accept a 7% chance of the

development being halted unnecessarily and those concerned with pro-

tecting the environment are not prepared to accept a 15% chance that an

unacceptable change would go undetected. Hence, all parties reject this

as an option.

Reduce the cost of sampling?

The next option is to look at the sampling methodology and see if there

is any way that costs could be reduced without compromising the

quality of the data. The sampling technique at each location, at each

time, is to take one 2-minute kick sample from a riffle zone and one

1-minute kick sample from the stream margins. In the sampling proto-

col used to collect pilot data, riffle and marginal samples were sorted,

identified and enumerated separately. Some samples contained many

hundreds of individuals of acid-sensitive taxa. Savings could be made if

riffle and marginal samples were not enumerated separately and

counted completely, but instead combined and a subsampling method

developed to limit the total number of invertebrates that need to be

counted from each combined sample. It is possible to work out a mini-

mum proportion of sample or numbers of invertebrates that need to be

counted per combined sample to provide an estimate of the total num-

bers of invertebrates with a known level of precision (see Underwood

(1981) for examples of the analysis required, and Marchant (1989) for an

example of a practical way of subsampling invertebrates). As long as the

precision of subsampling is high, there is no great loss of information,

because separate values for riffle andmarginal samples are not required

for the analysis, which uses one value per location per time. Savings are
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made because the time required to composite samples, subsample them

and enumerate each subsample is much less than that required to

process all the original samples individually and completely. When the

calculations are made, the monitoring costs drop by a third, and it

becomes possible to monitor five Impact and five Control locations each

year with a slight increase in funds. This produced error rates only

slightly above those originally agreed upon – about 0.024 for �* and 0.048
for �* (Fig. 13.7). Both sets of parties agree that these risks of error are

acceptable, and agreement is reached that 10 locations will be sampled

yearly using the subsampling technique.

13.8.6 Implications from this example

The above example is contrived, but the data we used are real and the

outcomes of the power analysis are also real. If the example had also

been real, the kind of negotiation over costs and subsampling that we

have described would be a likely outcome of looking at the costs and

risks of monitoring. However, in our experience a risk of error versus

number of locations curve such as that shown in Fig. 13.7, where even

only six locations in total produced a value for � of under 0.15 (or a

power of 75%) is a relatively rare occurrence. It is more typical for power

curves to follow the more problematic trajectory depicted by line C in

Fig. 13.3, where relatively high numbers of locations are required just to

achieve 50% power or � � 0.5. For many monitoring designs then, nego-

tiations over the relative costs and risks will be difficult and some of the

other strategies (such as accepting a large effect size) may have to be

explored.

This expected difficulty is why it is important to begin the process

with:

• As many variables as possible, with the aim of weeding out those

that that are either too expensive or too variable to allow reason-

able minimum risks of error to be achieved

• Pilot data that are of sufficient quality and quantity to provide

good estimates of error variances, so that we will have confidence

in the power analyses and estimates of numbers of locations

and/or times required

• Realistic estimates of the costs of collecting data for each variable,

including ways of reducing costs (such as compositing or reducing

taxonomic resolution, or using cheaper, surrogate variables).

Finally, we should remember that we can use the first two or more
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times of monitoring our locations to recalculate power curves and

determine whether the initial estimates of sample sizes are under or

over that required for the agreed levels of risks. The point to remember is

that our pilot data and preliminary power calculations do not guarantee

particular probabilities of Type I and Type II errors – they simply guide

us concerning their likely values. We must always keep in mind that

there will be uncertainty in the optimization of our monitoring design,

and to plan ahead (section 13.6 above) for maximum flexibility for

dealing with that uncertainty.

13.9 important issues

• Optimizing designs involves explicitly evaluating the trade-offs

between what is desirable (ideally) and what is affordable and

logistically feasible, given the specific objectives for which

monitoring is being done and the risks of error that are acceptable

to stakeholders.

• Formal optimization requires good knowledge of the costs of

sampling and a priori estimates of key variances – specifically

those that represent the background against which future impacts

will be inferred. The exact source of variation for which an esti-

mate is needed will be design specific. In MBACI designs, the key

variance will be the variation among control locations through

time.

• Prior variance estimates can be obtained from dedicated pilot

studies, from previous impact monitoring studies for similar de-

velopments or from published research on relevant variables.

Dedicated pilot studies are usually preferable, but should be well

designed to provide robust estimates of variances.

• Compromises in design are inevitable. The main trade-offs involve

balancing the level of spending onmonitoring against willingness

to accept risks of making incorrect inferences about impacts

(either that ‘unacceptable’ impacts have occurred or that there has

been no ‘serious’ impact).

• Optimizations should be done for several variables that are ex-

pected to be sensitive to impact. In this way, flexibility in the

monitoring design is included from the outset. Variables that

require inordinate levels of sampling to meet desired objectives

for risk can be excluded in favour of those that aremore efficiently

measured.
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• Evaluating risks requires clarity about what are considered accept-

able and unacceptable levels of impact. These decisions should be

made up-front. Changes to these levels represent fundamental

shifts in objectives formonitoring and should not bemade lightly.

• Monitoring designs can bemademore economical by reducing the

taxonomic resolution with which biota are recorded, thereby re-

ducing the time and cost of sorting multi-species samples. The

taxonomic resolution appropriate to each monitoring program

must be considered carefully, however, in the context of the main

concerns about, and expected nature of, impacts.

• Optimizations of sampling designs are approximations and

should be used as guides to best practice rather than prescriptions.

Uncertainties inherent in the optimization process mean that

monitoring programs should be considered flexible and some

changes should be expected as additional information is gathered.

Changes in program design, however, should not undermine the

basic principles of good design (chapter 5).
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14

The special case of monitoring attempts
at restoration

Not all assessments involve decisions about detecting an impact. Given

that many substantial impacts have already occurred, there will be an

increasing number (we hope) of programs geared towards assessing the

success of restoration and rehabilitation programs. During the century

ahead, we believe that an expanding response to human impacts on

riverine ecosystems will be to attempt to restore them to some defined

condition, such as a previous, less-impacted status. Such attempts to

augment nature have considerable theoretical interest to ecologists as

well as obvious practical implications for managers. It has often been

said that the ultimate test of our understanding of an ecosystem is to

create or repair a habitat and its function.

Ecological restoration is an applied approach to fixing environ-

mental problems once they are diagnosed. It has arisen from a variety of

practical starting points (Ehrenfeld 2000) and as such is not, as yet, a

coherent and focused sub-discipline within scientific ecology. We see

considerable confusion currently about the aims and techniques appli-

cable to restoration monitoring (see also the critique by Chapman &

Underwood 2000) but also appreciate the importance of going beyond

merely detecting problems to trying to fix them.

We also do not wish to get entangled in subtle distinctions among

‘restoration’, ‘rehabilitation’, ‘regreening’ or ‘ecological landscaping’

(see Samways 2000) – if you are going to act then the outcome needs to be

monitored. Our emphasis here is on being explicit about what you are

trying to do regardless of the label you give it. Impact detection, as

outlined earlier in the book, should lead to considering possible restora-

tive actions – here we wish to mandate what makes a good design for

monitoring the effectiveness of restoration. We also see the assessment

phase as important to identify exactly why degradation has occurred,

and hence the action needed to fix the problem. Such an ecological
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restorationwas the aimof the liming case study (described in section 8.4)

but the general case is also the focus of this chapter.

14.1 issues concerning the study of ecological

restoration

One of the main actions that should follow successful impact monitor-

ing is attempting to fix the problems identified during monitoring,

especially by attacking the root cause of the impact. There are also more

general concerns with trying to redirect ecosystems to some agreed

target condition. Both removing stressors and rebuilding towards a

target require monitoring to assess the realized performance of such

restorative measures, otherwise the efficacy of restoration can be all too

easily misrepresented (as either ‘good’ or ‘poor’ by different interests).

In situations where rivers are already suspected or known to have

been impacted significantly by humans, the agenda may not be the

detection or characterization of those impacts so much as their amelior-

ation. There are programs under way to clean up water quality, remove

outdated or obsolete dams, return minimal ‘environmental flows’ to

hydrological regimes in ways that try to mimic the variability of natural

flow regimes, and so forth. Restoration relies upon ecosystem resilience

(see chapter 3) and how we can harness or direct any successional

changes. We may not yet know enough about the function of many

riverine ecosystems to apply knowledge about concepts like successional

changes to our attempts at restoration.

Nevertheless, we see that restoration studies will become more

common and widespread in the newmillennium. Economic growth will

be based on new industries such as the development of ‘clean-up’ tech-

nologies (e.g. usingmacrophytes to ‘hyperaccumulate’ tracemetals from

sediments; Bargagli 1998; Brooks 1998). We expect that restoration as-

sessment will be the growth sector within environmental monitoring

more generally. This creates some challenges because far fewer monitor-

ing programs have so far attempted to evaluate restoration than pro-

grams designed just to detect an ongoing impact. Concepts underlying

the monitoring are relevant because, in moving from detecting impacts

to assessing restoration, we must use different hypotheses; in fact, a lack

of difference between restored areas and the target is what needs to be

detected following restorative action (see below). This means that the

objective(s) of any monitoring program must be redefined in an explicit

manner.

Issues concerning ecological restoration 369



14.2 can baci designs be applied to ecological

restoration?

Restoration projects are amenable to analysis by the sorts of BACI de-

signs that we have been discussing, because we are trying to detect a

change in some locations over time. Nevertheless, in practice, there is a

serious problem in that the fundamental question is, in fact, rather

different. A common goal of these programs is to test whether restora-

tive efforts are returning ecosystems back to some prior, defined ormore

‘natural’, ‘reference’ state (see Box 5.1). Thus our criterion for success is

to find no difference between impacted locations and these states, rather

than to detect differences (see discussion on ‘bioequivalence’, Box 14.1).

This poses a serious logical problem, in that if our hypothesis is one of no

difference, then there is no single, logical null hypothesis that we can

form. This means that we have to test our hypothesis instead (Under-

wood 1990). If we then reject our hypothesis of no difference it leads to

rejection of ourmodel – here, that restoration is returning rivers back to

some prior state. This is different from the usual falsificationist pro-

cedure (see chapter 4) where rejection of the null hypothesis provides

support for the model. The real difficulty is, however, created when our

hypothesis is not rejected. We would like to interpret this as meaning

that we have gained support for our model, but unfortunately such a

conclusion could be based on a fallacy (see Underwood 1990 for dis-

cussion). The same issue occurs for testingwhether water quality departs

from established guidelines because, again, the goal is to find no differ-

ence between water samples and established minimum concentrations

of pollutants etc. (see section 11.1 and Box 11.1).

We can proceed if we hypothesize that, during the program, the

supposedly restored rivers will differ from their immediate, initial or

starting conditions (i.e. as quantified during the time when impacted).

This allows us to construct a logical null hypothesis of no difference,

which we can test, and ultimately we expect to reject this null if restora-

tive efforts are having some effect. Ultimately, the best solution is for

restorative efforts to be restricted to one or more rivers and other

comparable (i.e. equally impacted) rivers be left as unrestored ‘controls’

(i.e. run the restoration program as a controlled experiment, including

randomization, as was done for the liming experiment described in

section 8.4). This design automatically removes the above problem, as

our hypothesis will always be that of difference among the supposedly

restored rivers and those left as impacted ‘controls’. We use inverted

commas here solely because the ‘controls’ in this context do not have the
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Box 14.1 Bioequivalence

In the context of environmental assessment, bioequivalence refers

to the situation where the values of a variable in a location that is

being rehabilitated or restored are similar to those in the control

location(s). To get around the conundrum of trying to prove a null

hypothesis, the undesirable outcome (that the rehabilitated

location is still worse than the control(s)) is defined as the ‘null’

hypothesis, H0. H0 is then rejected if there is sufficient evidence

against it in favour of the alternative (that the impacted location is

now bioequivalent with the control(s)). Thus a Type I error would

result in incorrectly deciding that the locations were

bioequivalent when they still differed by an important amount,

whereas a Type II error would result in deciding that the locations

were not bioequivalent when, in fact, they were similar.

To illustrate how this works, consider a simple example

where we are comparing the mean density of fish, �t, in a treated

location that we are trying to restore, which we hope will result in

their density increasing to a level similar to the density, �c, in a

control location. Let R be the ratio of treated to control means, i.e.

R��t/�c. The ‘null’ hypothesis, H0, is that the treated site is not

bioequivalent to the control site; that is, H0: R�Rl, where Rl is the

lower limit of an equivalence region and we assume that large

positive values of R are desirable (i.e. that the density in the treated

location is close to or even larger than the density in the control

location). Thus if R becomes sufficiently large, we have to reject H0

in favour of the alternative hypothesis that the locations are

bioequivalent, i.e. HA: R�Rl. (Technically, we should avoid calling

H0 a null hypothesis, because under H0 the distributions for the

two means are not equal.)

So much for the statistical logic. The hard part is deciding on

a value for Rl (see sections 11.2 and 11.3). For this example, let’s

suppose that after some civilized negotiations, all the stakeholders

agreed that restoring fish densities in the treated location to 85%

of those in the control would constitute recovery or

bioequivalence. Thus Rl� 0.85. If, after restoration, we measured

R� 0.93 we could perform an appropriate statistical test to

determine whether this was significantly greater than Rl; if so, we

would reject H0: ‘not bioequivalent’ in favour of HA:

‘bioequivalent’.
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Note that this example illustrates a one-sided test for the

situation where large values of R are desirable. The situation is

reversed in the hypothetical pulp mill example of section 11.1.

Here hepatic activity increases relative to controls with increasing

concentrations of untreated mill effluent, and this increase is

undesirable. The treatment of the effluent is designed to reduce

hepatic activity to control levels, so we are now interested in

setting an upper limit to R, Ru, below which we will have achieved

bioequivalence. Thus H0: R�Ru and HA: R�Ru.

Finally there may be circumstances where we require a

two-sided test of bioequivalence, in which the values of R

should lie between desirable upper and lower limits. Thus

H0: R�Rl or R�Ru and HA:Rl�R�Ru.

same environmental quality (i.e. good versus poor connotations) as Con-

trols in a BACI design to detect impacts; otherwise they are conceptually

like Controls in a BACI design.

There are some ethical issues with planning to restore only a

subset of impacted locations but restoring everywhere at oncewouldnot

leave any controls available. Pragmatically, we see that in most restora-

tive efforts there will be a shortfall of the funds and other resources

available comparedwithwhat is needed – this shortfall will always allow

some control sites. Choosing these randomly from among the available

possible locations will strengthen our inferential power and is distinctly

preferable to only having Before data to use as the sole reference or

target state (cf. a statistical problem due to non-independence of data,

see chapter 5).

It is also a better design for the reasons discussed in chapters 7, 8

and 9 – if we have both controls and to-be-restored river locations before

and after restoration then we have all the logical elements needed to

detect change. It may be difficult to find such ‘control’ locations (e.g. no

places may elude some large-scale restorations). If we have no ‘controls’,

or even nomonitoring before restoration, thenwe encounter inferential

problems (section 9.3.5). For example, if we compare the supposedly

restored rivers to their starting conditions then we have the difficulty

that other events, merely coincident with restoration efforts, may have

caused any changes we detect (see Fairweather 1993 for discussion). Such

an outcome is impossible to discount entirely, even with a full MBACI

design. We therefore have to fall back upon weaker arguments to make

our case (discussed throughout chapter 9).
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14.2.1 The real way that restoration differs

However, we still need to test whether any changes we detect are toward

some reference or target state, and this leaves us with the other side of

the problem with controls described above. A sailing analogy would be

that we could now tell that our boat has left the shore but we are

uncertain if it is heading in the right direction. Thus, degraded ‘controls’

that don’t receive restoration efforts are insufficient, by themselves, to

test the full restoration model. As convincingly argued by Chapman &

Underwood (1997, 2000) and Grayson et al. (1999), we also need compara-

tive data from a target that we are aiming for – some reference condition

that our restored locations should head toward. Thus it is important to

judge the direction of change as well as the degree of change per se. For

that task, we need three distinct types of ‘treatments’: (a) those degraded

locations to be restored (possibly called ‘experimental’); (b) those start-

ing out in a similarly degraded state but that will not be restored (called

‘controls’); and (c) those representing the target state (called ‘refer-

ences’). Such ‘reference’ rivers typically will be relatively unimpacted or

at least represent some particular desired state we are aiming for

(e.g. not necessarily representative of what was before but instead

what we want in the future). This may be a more specific use of the

‘reference condition’ approach applied in RIVPACS, AusRivAS or BEAST

(see Reynoldson et al. 1997).

Thus, this need to make two simultaneous comparisons is more

complicated than BACI-type impact designs. The unrestored controls are

needed to know when you’ve left the previous degraded state (‘the

shore’; has anything changed?) and the reference targets are needed to

know where you are headed (are we heading in the right direction?).

Additionally, given that restoration ecology per se is in its infancy, the

use of such a strongly rigorous and experimental approach must be

highly laudable because comparing restored versus reference versus

unrestored ‘control’ rivers will precisely demonstrate the efficacy (if any)

of restoration.

Restoration goals should take the form of explicit targets – essen-

tially minimum performance targets that are set prior to the study

commencing. An example might be to return the species composition of

benthic infauna to 90% of that found in a riffle before a development

took place. Of course, such an explicit goal obviously requires an under-

standing of what benthos existed before development!
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14.3 analytical techniques applicable to

restoration monitoring

A traditional approach tomonitoring restorationmay not be as useful as

it might appear, even if the reference sites can be agreed upon (e.g. to

give the standard for the 90% recovery in our example in the paragraph

above). Tradition would suggest that we are then testing for no differ-

ence between the 90% figure and the test statistic (e.g. based on species

richness estimates from samples in the restored sites). Unfortunately,

poor sampling with limited replication would give us a non-significant

result (Fairweather 1991a), almost regardless of the average values if the

variances associated with themwere very large. Potentially thismight be

good inference but would lead to a bad outcome in terms of the con-

clusions drawn (see McDonald & Erickson 1994 for discussion).

Similar problems are faced by medical researchers trying to estab-

lish whether alternative treatments are equally effective, and often the

issue with testing a new drug is whether it is at least as efficacious as the

presently used drug. The commonly applied solution to this problem is

to use a test of ‘bioequivalence’ (e.g. Westlake 1988); hence, we are

testing for bioequivalence of effects compared to some reference state

(i.e. the current drug’s performance). The bioequivalence approach was

suggested by McDonald & Erickson (1994) for environmental monitoring

(see Box 14.1). In such a scenario, precise sampling would be needed to

demonstrate bioequivalence per se (see Fig. 14.1). As such, both the

inference and the outcome concluded about restoration should be good

within a bioequivalence-testing framework (see Box 14.1 and below). It

has also been suggested that this would be a more precautionary way to

approach assessments because the burden of proof is put upon those

that benefit most from restoration succeeding.

The formal hypothesis in bioequivalence testing is expressed as a

ratio of values of variables from the restored samples to the target values

(Box 14.1, Fig. 14.1). Relatively simple comparisons can be done using

confidence intervals (e.g. see McDonald & Erickson 1994) but reasonably

sophisticated software (e.g. EquivTest, see http://www.statsolusa.com)

also exists to automate the task. Such ratios could conceivably be used in

BACI-type assessments although a caveat to this technique is that it is

difficult to apply to complex statistical designs (Peterson 1993; USEPA

1989).
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Fig. 14.1 Assessing recovery using ratios between replicated data from the

site undergoing recovery and target sites (i.e. recovery ratio� value at

recovering site/target for any ecologically relevant variable). The height of

each bar gives the mean value of the ratio for that case and the error bars

give the confidence interval (CI). These hypothetical values have been

chosen to point out that both central tendency and variation in our

estimation of recovery need to be considered. Cases A–C have mean ra-

tio� 0.62, D–F� 0.82, G–I� 0.92 and J–L�0.99; each triplet varies in

terms of the calculated confidence interval around that mean ratio with

CI� 0.4, 0.14 and 0.40, respectively. The lower limit line (- - -) represents a

recovery ratio of 0.8 (perhaps a minimum threshold for acceptable recov-

ery) and the upper line ( — )� 1.0 (i.e. complete recovery). Individual values

may exceed 1.0 because it is conceivable that different ecological variables

could exceed the value for the target (e.g. numbers of species may be

maximal partway through a succession). Thus, in terms of these limits we

interpret recovery using both the mean ratio and the uncertainty (confi-

dence interval) around that estimate; we ask ‘Does the error bar overlap

our target criterion or threshold?’ On this basis, then, all cases above,

except A, would pass the lower threshold of partial but acceptable recov-

ery, but only C, F and H–L would be considered to be recovered ‘complete-

ly’. Bioequivalence procedures (see text) provide a way of testing whether

such data conform to either of the limits. It remains a challenge for

ecologists to suggest acceptable values for thresholds lower than a ratio of

1.0.
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14.3.1 The logic of specifying an effect size for recovery

Trying to specify an effect size for an assessment program aimed at

measuring recovery suffers from the problem first mentioned in section

11.1 and discussed in section 14.2: we are trying to ‘prove’ the null

hypothesis that the mean value in impacted locations equals the mean

value in control locations.

Consider this scenario from our hypothetical pulp mill example

(discussed in section 11.1). Suppose the pulp mill was established many

years ago before any strong environmental legislation. Recent public

pressure has been exerted for the mill to treat its effluent so that the

effects on fish are minimized. Hepatic activity has been chosen as a

variable that best indicates the sub-lethal effects of the effluent on fish.

The mill is about to install some very expensive treatment equipment

and is required to demonstrate that hepatic activity in the fish will

decrease to values similar to fish in an unaffected location on the river

before the effluent treatment is deemed to be adequate (not an ideal

design – see chapter 5 – but for simplicity let’s assume that this was the

best design possible under the circumstances). Using the conventional

means of framing a null hypothesis, the mill could cheat by implemen-

ting a sampling program with low power, and so easily and cheaply

demonstrate no statistical difference between control and impact loca-

tions. Attempts to get round this difficulty by stipulating large mini-

mum sample sizes are fraught with difficulties (McDonald & Erickson

1994); in fact, insistence on very large sample sizes may detect biologi-

cally unimportant or even trivial differences in the hepatic activity.

So, the bioequivalence technique recasts the ‘null’ hypothesis in

terms of the ratio of the value of the variable in the impacted location to

that in the control location (see Box 14.1). The two locations are then

judged to be bioequivalent if this ratio is outside of the bounds of values

that have been agreed as representing recovery. Under this framework

the ‘null’ hypothesis then becomes ‘that the impacted location is not

bioequivalent to the control location’which is tested against the alterna-

tive ‘that the locations are bioequivalent’. Note that this technique still

requires negotiation of an effect size. In the hypothetical example above,

the mill, the community and the management agency would need to

agree that hepatic activity in the impacted location needs to be, say,

110% or less of that in the control location before the hypothesis of

bioequivalence is accepted. This procedure has been used in toxicology

(Erickson & McDonald 1995) and has recently been applied to terrestrial

environmental restoration in the USA (McDonald & Erickson 1994). The
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proponents of this technique claim that its use encourages users to use

well replicated, high-power designs; in our hypothetical example it is in

themill’s interest to collect sufficient data to reject the ‘null’ hypothesis

of ‘no bioequivalence’.

14.4 how long should we monitor attempts at

restoration?

The chanciness of recruitment and recolonization may mean that con-

siderable time elapses before restoration can be seen to be under way.

Alternatively, there may be deficiencies in the ecosystem that are still

preventing restoration efforts having a positive effect. We need to con-

tinue sampling long enough to distinguish these alternatives.

Manymonitoring programs that continue into a putative recovery

phase are persisted with for too short a time (e.g. Gore et al. 1990;

Simenstad & Thom 1996). These programs tend to be stopped as soon as

the study location looks right (e.g. the species list might be ‘complete’

but there is no concern for the age or size distributions within popula-

tions), and then recovery declared as officially reached. There is precious

little concern then for the subsequent time course of recovery of import-

ant aspects of the ecosystem that were being monitored (Grayson et al.

1999). Many ecologists would argue that the age or size distribution has

to reflect that of natural locations and, in particular, the populations

need to be capable of self-replacement (e.g. through reproduction) before

all restoration could be abandoned. In a related debate, Connell & Sousa

(1983) suggested that a population had to turn over at least once before it

could be termed ‘stable’.We suggest that similarly pragmatic definitions

of ‘sufficient time’ need to be argued, taking into account the basic

biology of the organisms involved.

To return to the liming case study, we can see in Fig. 14.2 that

during 1989 the acid-sensitive benthic invertebrates in the restored

(‘impact’) streams increased in abundance compared with the control

streams. But these indicator values had not reached, in any year, the

target densities as seen in the reference streams. In terms of our earlier

analogy, the boat has apparently left the harbour but has definitely not

yet reached the target shore. Thus, we should continue monitoring the

recovery that seemed to be under way (at least during 1989) but is

nowhere near complete.
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Fig. 14.2 Data from a long-term field experiment in restoration (originally

described in detail in section 8.4) that was designed to test whether liming

acidified streams would produce an increase in numbers and diversities of

acid-sensitive macroinvertebrate taxa. Plotted are the mean (� SE) num-

ber of individuals of all acid-sensitive, macroinvertebrate taxa against

sampling year. Liming was done in late 1987 and early 1988. ‘Impact’

streams were limed while ‘Control’ streams were acidified streams that

were not limed – these are the same data plotted in Fig. 8.8b. Reference

streams were streams in the area that had natural buffering capacities, so

that they had not become acidified. The data demonstrate that, although

liming produced a small increase in numbers of acid-sensitivemacroinver-

tebrates in 1989, their numbers did not reach typical background den-

sities, as seen in the reference streams.

14.5 the need for clarity in declaring the goals of

restoration

All programs need to articulate the reference state in quantitative terms

to be explicit about the goals. If we do not have the luxury of ‘reference’

rivers (e.g. there are no unaffected rivers that we can use as targets), then

how do we decide what should be the reference conditions to which an

impacted river should be returned? As indicated in chapter 3 (see Box

3.1), often we do not have a good enough understanding of the behav-

iour of natural systems to allow ‘absolute’ predictions about their states.

Commonly, lay people believe that ‘naturalness’ or what they perceive as

the norm equates with constancy, balance and equilibrium, even though

ecological science has definitively disproved this idea (Fairweather 1993).
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Most ecosystems are naturally very variable in space and time (see

chapter 2) but, because we are yet to understand the causes and conse-

quences of this variability, we cannot generally use fluctuations from

some norm as a yardstick of ‘ill health’ or ‘impactedness’. Thus, in the

situation where a degraded river has no reference rivers to which it can

be compared, the public should play an important role in deciding the

condition to which it should be returned, for the same reasons that they

help decide what changes should be considered ‘important’ to detect

(section 11.3).

Getting the physical appearance right of a restored riverine loca-

tion is a first and necessary step (Harper et al. 1999) but in itself will not

represent ecological restoration. The response of different components

of the biota in terms of their abundance and activity, and the functional

expression of that activity as ecological processes (Fairweather 1999a),

need to be assessed to see whether restoration has been effective in an

ecological sense.

Habitat creation and repair (sensuGilbert & Anderson 1998)may be

an alternative to restoration as we have defined it above. This, mainly

European, concept holds that most rivers or streams exist within cul-

tural landscapes that are essentially anthropogenic. As such we should

manage disturbed sites so that vegetation flourishes in a semi-natural

state (Gilbert & Anderson 1998), and therefore their associated commu-

nities could take various forms and functions. People play a part in

designing and nurturing the resultant ecosystem in amannermore akin

to present agriculture than nature conservation. In such a scenario, we

see that the targeted reference state (see above) is simply a conscious

choice frommany possibilities, all of which are artificial to some degree

for any waterway. Such intentional and deliberate management may

well become the norm during the twenty-first century.

Finally, we should consider the possibility that ecology may never

have the capacity to make exact-state predictions in any case. The make-

up of any ecosystem often has a strong element of chance, and historical

factors may play a contingent part in determining the exact species

composition (e.g. Samuels & Drake 1997). If so, we may need to relinqu-

ish any goals of making exact predictions about the species-specific

identities of ecosystems. We may be able to predict the existence and

importance of functional groups within ecosystems but without know-

ing the exact mix of species that will carry out these functions. Such

considerations will obviously affect the sorts of goals we can realistically

set for restoration programs.

Therefore, we argue that assessing restoration must begin with
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defining its goals and determining what sites are available to use so that

we know when we’ve attained those goals. The specific goals of a pro-

gram assessing restoration need to bemade explicit during the planning

phase because they are rarely agreed upon in any specific circumstance

(e.g. see Dobson & Cariss 1999 for discussion). Any program that aims to

be clear to scientists, managers and the wider public must define its

goals and endpoints for the assessment (either in terms of the time it

might take or the targets to be reached). In scientific terms, this includes

being able to specify the criteria for knowing when the endpoint has

been attained. We argue that it is useful to specify the time frame for

assessments in terms of the rates of natural change and variability (i.e.

some background knowledge is needed). Then, we can use the design

principles outlined in this book to detect precisely when those defined

criteria are reached.

14.6 important issues

• The emerging discipline of ecological restoration requires effec-

tive monitoring to ensure that its goals are being reached.

• As well as general design considerations promoted throughout

this book (especially the ability to determine if any change has

occurred by comparing with unrestored controls), monitoring for

restoration requires an additional treatment set. In this we com-

pare putatively restored areas to the ideal that we wish the ecosys-

tem to be restored to, what we refer to as a ‘reference’ condition.

Only this more elaborate monitoring with three sorts of states

(restored, control and reference) can allow us to know when our

restorative goal is attained.
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What’s next?

Following the arguments and considering the issues presented in this

book will allow us to design an effective and flexible monitoring pro-

gram to detect and evaluate impacts in flowing waters. This includes the

negotiations of what effect size is important to detect and what el-

ements can be traded off or even sacrificed (as discussed in chapters 12

and 13). So now we’ve implemented the monitoring design and presum-

ably detected (or not) some impact with known confidence – but the job

is not yet finished. Further negotiations are in order to continue or

refine assessment. Truly effective management of impacts requires that

some action follows the well-designed studies we have so far advocated

in this book. This chapter discusses issues that are central to what needs

to be done after the main monitoring task has been completed.

15.1 links with management decisions as points of

negotiation

We have emphasized the role that input frommonitoring data (in terms

of results and their interpretation) should have in management deci-

sion-making if we are to be engaged in a task that makes any difference.

There is an imperative for environmental assessments to become more

sophisticated and responsive to societal needs. Monitoring can be reac-

tive (used only once an impact is clearly observed), proactive (seeking to

assess impacts before they manifest themselves; see Fairweather 1993;

Fairweather & Lincoln Smith 1993) or progress through adaptive learn-

ing. The latter means not just trying to benefit from mistakes but also

combining elements of learning from both the scientific and manage-

ment sides. For example, as practitioners of environmental science, we

should seek to improve monitoring in terms of what it provides for
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management purposes. So, what are the minimum steps required to

achieve an adaptive monitoring scheme?

In part, the role played bymonitoring depends on how early in the

assessment process the various likely outcomes from monitoring are

specified. Monitoring can be most effective where there are clear feed-

back loops to managerial activity (‘feedback monitoring’, sensu Gray &

Jensen 1993). These need to be agreed upon beforehand so that all parties

knowwhat actions may flow from different outcomes of the monitoring

and what the specific trigger points are for more intensive studies. We

believe that, by explicitly considering the power to detect impacts of

given magnitudes against known background variability, we are well

placed to designate desirable feedback loops. Fewer ‘surprises’ should

result from such a monitoring regime. A major step forward is to

document beforehand what actions will follow which outcomes; that is

rarely done now in our experience.

There is an important public dimension to such negotiations.

Because the lay public are important stakeholders in the environment

generally, and certainly users of most resources stemming from it,

negotiated agreements concerning the management of any impacts

should have some wider public endorsement. This may include the

formal consideration of adaptive environmental assessment and man-

agement (AEAM)models, which specifically include input frommembers

of the general public as stakeholders (e.g. Grayson et al. 1994).

15.1.1 Dangers from losing institutional memory

Comprehensive and regular review of findings is needed to adaptively

fine-tune a monitoring program so that it stays cost-effective. Otherwise,

we risk suffering by not learning from our mistakes (Fairweather 1989)

and we may miss the opportunity to incorporate the latest understand-

ing or techniques. Loss of ‘institutional memory’ in an organization

undertaking environmental assessments occurs where there is contin-

ual restructuring of management arrangements, high staff turnover,

and scant regard for work that was done before the current regime or

fad. In such cases, we routinely see each proposed developmental activ-

ity being treated as novel (over and above any peculiarities of its loca-

tion), and reference being made only to the so-called grey literature (if

any scientific references are given at all). Where data from previous

assessments of the type under consideration are not made available, we

have no opportunity to apply the novel approaches outlined in chapter

9, and our assessments are so made even more tentative.
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How do we ensure enough ‘institutional memory’ is available into

the future to understand the past context of present impacts (e.g. pres-

ent generations may not know what natural features they are missing;

see Safina 1998)? This is especially worrying when the curation of paper

records is being discarded in favour of purely electronic storage of

current data, but few funds are available for updating older forms of

storage. Future institutional records are likely to ‘begin’ at the change-

over point with the erosion of experience from before electronic storage

as staff turnover.

15.2 changing monitoring objectives with progress

in understanding

How long do we continue to monitor once an impact has been estab-

lished? Certainly examples exist where monitoring has continued too

long. By this, we mean cases where action has not been triggered even

though previous results of monitoring indicated large or widespread

impacts (i.e. the situation was put into the too-hard basket). This undesir-

able outcome results from having no agreed decision-making process

and no triggers set. Time lags do need to be considered, however, be-

cause the impacts that are detected early in a BACI-type design may not

stay the same during the operation of, say, an industrial outfall. This is

because thresholds may be reached only after considerable time, so that

alternative ecosystem states are reached once sufficient time has passed.

Likewise, sampling has to be regular enough so as to not miss any

transitory effects of genuine interest. In contrast, it is also possible that

many programs monitoring recovery do not continue for long enough

(see chapter 14).

In essence, how long to continue monitoring relates back to the

original aim of the monitoring and any a priori decisions (feedback

monitoring, sensuGray & Jensen 1993) that were agreed upon, depending

on the realized outcome(s). Eventually a shift may be needed to focus

upon any intended repair of ‘damage’ to the environment caused by the

human activity, as done through restoration works (see chapter 14).

15.3 role of experiments in verifying mechanistic

understanding of an impact

In many instances where impacts are detected by our monitoring, we

still do not have a thorough understanding of how they have come

about. What stressor has caused the change? What is the specific causal
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pathway? Are interactions involved with secondary causal factors? Such

aspects of causal mechanisms are still not known even for most well-

documented impacts – thus, experiments may be needed to demon-

strate causality per se. In essence, this book has been about shoring up

our correlational investigations of putative impacts as much as possible;

but the bottom line is that these inferences are still based on mere

correlations. In completely planned experiments, we often apply the

various treatments in a random fashion to prevent systematic but ob-

scure bias in the estimation of experimental effects. In almost no case of

impact monitoring is a stressor from human activities randomly ‘ap-

plied’ and so we cannot be sure that there isn’t some other explanation

of trends we see and ascribe to the stressor (i.e. as an ‘impact’; see section

9.1 and Table 9.1). This is due to the increased risk of confounding our

explanation based on the intended experimental design with any other,

but unknown, extraneous factors. It may also be true in randomized

experiments but their likelihood of such confounding is much reduced

because of the experimental control available.

The issue of how we conduct such experiments will need careful

and distinct consideration for the type of stress/impact and variables

(e.g. indicator organisms) under deliberation. There are some aspects

over and above such case-specific needs that are pertinent and useful to

mention here. We advocate rigorous experimental designs for testing

how impacts affect the target biota (i.e. testing specific hypotheses about

the mechanism of the putative impact). The prime ways of producing

bettermechanistic understanding of impacts are the very stuff of experi-

mental science. The design principles discussed earlier (chapter 5) all

apply, plus we would seek to randomize the application of different

treatments across experimental units.

Should the experiments be done in the laboratory or field setting?

This probably should be determined more by the size of the organisms

involved and the time course of the putative impact than the conveni-

ence of doing so in either arena. Our preference is for field experiments

to maximize the realism of the experimental test (Cooper & Barmuta

1993), but there are also acceptable compromises in the form of me-

socosms or artificial streams (e.g. see Lamberti & Steinman 1993, but see

Carpenter 1996 for a dissenting view about small-scale tests).

Incorporating more sites or regions into experiments for explicit

test should also serve to increase the generality of the conceptualmodels

of impact that we eventually build. These more general models could

provide savings by being exportable to larger portions of a country or

continent. The issue of whether it is valid to extrapolate at all to other
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places is a pertinent one for many modernmonitoring schemes because

of the implicit promise of addressing many problems by funding just a

few research programs. Without explicit comparisons across sites, we

will never know whether we have achieved that generality. We also see

large-scale, experimental tests (often called ‘whole-ecosystem experi-

ments’) as the key way to trial management actions designed to amelior-

ate impacts (see chapter 14).

15.4 how do we evaluate the effectiveness of a

monitoring program?

Often there is nomoney allocated for follow-upmonitoring (i.e. the ‘A’ in

BACI) to assess how good were our predictions of impact from assess-

ments made before the development decision. Likewise, active restora-

tion (e.g. mine site rehabilitation) often has a very limited time frame so

that companies may be able to walk away after only a portion of the

projected succession has occurred. Many ecologists suspect that

monitoring programs are typically too short to show the true dynamics

of any successional change. In such cases we do not really know when

restoration has worked.

How do we compare alternative designs or competing impact

detection technologies? How can such comparisons be incorporated into

pilot programs? For example, where development funds are largely

spent on one approach to monitoring (such as RIVPACS, IBI or AusRivAS

in Australian riverine monitoring; see section 3.2.1), how can others

compete? How do we organize a fair comparison trial (Fairweather

1999b) to see whether the favoured approach is in fact the ‘best’ way of

proceeding? These questions need a lot of attention. For example, we

should use prior experience of similar projects for the reasons given in

chapters 9 and 11.

Wemay require different detection schemes to distinguish emerg-

ing impacts from longer-standing environmental issues. For example,

Fairweather (1999b) extended the ecosystem health analogy to advocate

different environmental indicators as done in medical testing, with at

least three tiers of different tests used in general practice, follow-up tests

and specialist diagnosis. These tests increase in costs and specificity but

follow on from one to the other in an attempt to pinpoint what is

happening with the patient.
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15.5 what research could complement monitoring

programs?

As this book makes abundantly clear, the science of monitoring impacts

has evolved rapidly in recent years and our search for excellence in

design and analysis continues. We are sure that future research will

sustain this trend and that managers interested in value for money will

always encourage this search. Therefore, we expect that new innovations

will be devised to attack the problems discussed herein. Some areas need

particular attention.

Both scientists and managers could benefit from more easily ap-

plied methods of meta-analysis to demonstrate collectively (i.e. syn-

thesized from several to many studies) any subtle, slow-emerging or

diffuse impacts. This could perhaps be applied also to evolving scenarios

of wider impacts where the effect sizes (as described in chapter 11) are

likely to be, at least initially, quite small.

How can we best utilize what we already know collectively from

past monitoring? In this book, we have advocated good use of prior

knowledge in effect sizes. Research that does synthesize past results,

because it does not look at each impact in isolation, can provide a basis

for quantifying informed prior probabilities in a Bayesian approach.

The next wave of monitoring may involve further application of

Bayesian approaches, which are not well developed as yet but are worthy

of more investigation. We need to know how to best incorporate prior

probabilities and to determine how this approach will change the

method of inference in complex models of impacts.

How do we develop novel indicators for specific or unforeseen

impacts from changing human activities in the future? The choice of

variables (see chapter 10) must always be able to evolve to keep pace with

our advancing scientific understanding and shifts in societal concern.

15.6 reiterating the principles of this book

Applying the general principles outlined here (see Box 15.1) is an ever-

present challenge to ensure that the consequences of our actions are

understood and to be a basis for action in improving our rivers and

streams. We suggest that the flow chart in Figure 1.1 shows the mini-

mum required approach. As we bring this book to a close, we wish to

emphasize that good monitoring design is evolving all the time and we

look forward to the exciting developments ahead of us in the twenty-first

century.
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Box 15.1 Twenty important issues in good monitoring design

Effective monitoring programs comprise multiple elements that

collectively provide sound use of logic and result in rational

decision-making without a profligate use of resources.

Issue

Primary

chapter(s)

Current levels of human use and abuse of water

resources means we need to implement good

monitoring design as an essential – not a luxury –

requirement for their further use and management.

1

Good monitoring design requires us to understand

how ecosystems work. In flowing-water ecosystems,

structure and function are strongly dependent on

the operation of longitudinal and predominantly

unidirectional linkages (upstream–downstream),

and on lateral linkages (channel–floodplain); these

linkages affect how we can apply monitoring

designs.

2 and 8

Perturbation of a system consists of two sequential

events: the disturbance to the system and the response

of the system to that disturbance. Effective

monitoring requires understanding the nature, and

temporal and spatial scales, of both the disturbance

and the response.

3

Monitoring may be done for different purposes, and

these serve different management needs as well as

posing different questions to be answered.

3

The logical principles of designing a monitoring

program to detect the effects of human activities

apply irrespective of whether a frequentist or a

Bayesian approach to statistics is adopted. Currently,

hypothesis testing via frequentist statistics offers the

best-developed and most widely used tools for

making decisions about impacts but we expect more

development of Bayesian approaches.

4
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Issue

Primary

chapter(s)

The key strategy for inference of impacts is to find

some evidence for impact that cannot easily be

explained away by various other processes, such as

natural variation in the system. Support for an

impact hypothesis is only found if the probability of

that outcome is small, under normal circumstances,

in the absence of impact. This pursuit of

improbability provides the rationale for specific

aspects of monitoring design.

4

These design aspects include sampling control and

impact locations, both before and after putative

impact (so-called Before–After–Control–Impact

(BACI) designs) together with proper replication of

each of these four elements, where possible.

Replicated BACI-type designs allow us to separate,

with relatively high confidence, human-caused

effects from natural processes.

5

It is important to recognize, from the outset, that

deficient monitoring designs usually cannot be

rescued regardless of the quantity and

sophistication of statistical analysis applied to the

data.

5

We can illustrate the importance for good

monitoring design by looking at how river biologists

have addressed questions about human impacts in

the past. Historically, there has been a number of

issues that have prevented river biologists from

implementing designs with the strongest possible

inferential base. Some of these issues have been

within the control of biologists, and some are

external constraints imposed either by the

geographical peculiarities of the river under study,

or by socioeconomic factors.

6

There are different types of BACI designs, which

result in distinctly different analytical models that

address different questions. These conceptual

7
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Issue

Primary

chapter(s)

models are all justifiable approaches to the

detection of impacts under particular

circumstances, but it is essential that anyone

implementing one of these designs be aware of the

differences between them, and of the important

characteristics of each of them.

Different BACI designs lie along a gradient of

inferential certainty from relatively strong to

relatively weak, rather than providing either perfect

or zero inference about human impacts.

7 and 9

Applying BACI requires tailoring designs to the

specifics of the system (its size and uniqueness) and

impact to hand (point or non-point impact), and

includes developing criteria that help ensure the

comparability of control locations to each other and

to the impact location(s). There is a dilemma in that,

the more narrowly we define characteristics of

control locations, the more similar they are likely to

be to each other but the fewer will be the number of

places likely to meet our criteria.

8

We can implement a structured ‘levels-of-evidence’

approach to improve the inferential strength of

monitoring designs. This approach uses causal

criteria (effectively, a set of circumstantial

arguments), which have been developed particularly

well in the field of epidemiology. Making a

levels-of-evidence case is especially important when

elements of BACI-designs are missing.

9

Variables chosen for monitoring should be

efficacious: relevant to the questions asked; strongly

associated with the putative impact; ecologically

and/or socially significant; efficient to measure.

10

The magnitude and form of unacceptable

environmental changes (‘effect sizes’) should be

negotiated and defined ahead of beginning a

monitoring program; it is impossible to prescribe

universal effect sizes for biological variables.

11
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Issue

Primary

chapter(s)

Negotiations should involve all stakeholders, and

defining important changes should include societal

wishes as well as scientific input regarding the

implications and risks associated with those

changes.

11

Decision-making should consider the risks of

making two sorts of errors: detection of an

environmental change that is not actually real

(statistically speaking, a Type I error); and failure to

detect an important change (statistically speaking, a

Type II error). The risks of making either sort of

decision error should be balanced in the

decision-making process in inverse relation to the

respective costs of committing that error.

12

Effective monitoring programs should be optimized,

in which the number of samples required are

compared to the resources available, and trade-offs

made that reduce monetary costs without

compromising the inferential strength of the

program.

13

The emerging discipline of ecological restoration

requires effective monitoring to ensure that its goals

are being reached. As well as general design

considerations promoted throughout this book

(especially the ability to determine if any change has

occurred by comparing with unrestored controls),

monitoring for restoration requires an additional

treatment set. In this we compare putatively

restored areas to the ideal that we wish the

ecosystem to be restored to, what we refer to as a

‘reference’ condition. Only this more elaborate

monitoring with three sorts of states (restored,

control and reference) can allow us to know when

our restorative goal is attained.

14

Monitoring programs must be linked to

management decision-making, such that particular

15
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Issue

Primary

chapter(s)

triggers (e.g. an effect being detected) will result in

some action being taken. No one source of

information, including this book, has all the answers,

and a degree of flexibility of approach is required as

the best way of designing monitoring programs; such

best practice will continue to evolve and progress.
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subsequent recovery of Töölö Bay, central Helsinki, as indicated by subfossil
diatom assemblage changes. Hydrobiologia 341, 169–79.

Korman, J. & Higgins, P. S. (1997) Utility of escapement time series data for
monitoring the response of salmon populations to habitat alteration. Canadian
Journal of Fisheries and Aquatic Sciences 54, 2058–67.

Krebs, C. J. (1999) Ecological Methodology, 2nd edn. New York: Harper & Row.
Kutka, F. J. & Richards, C. (1996) Relating diatom assemblage structure to stream
habitat quality. Journal of the North American Benthological Society 15, 469–80.

Ladson, A. R., White, L. J., Doolan, J. A., Finlayson, B. L., Hart, B. T., Lake, P. S. &
Tilleard, J. W. (1999) Development and testing of an index of stream condition
for waterway management in Australia. Freshwater Biology 41, 453–68.

Lake, P. S. (1990) Disturbing hard and soft bottom communities: a comparison of
marine and freshwater environments. Australian Journal of Ecology 15, 477–88.

Lake, P. S. (1995) Of floods and droughts: river and stream ecosystems of Australia.
In Ecosystems of the World, vol. 22, River and Stream Ecosystems, eds. C. E. Cushing, K.
W. Cummins & G. W. Minshall, pp. 659–94. Amsterdam: Elsevier.

Lake, P. S. (2000) Disturbance, patchiness and diversity in streams. Journal of the
North American Benthological Society 19, 573–92.

Lake, P. S. & Barmuta, L. A. (1986) Stream benthic communities: persistent pre-
sumptions and current speculations. In Limnology in Australia, eds. P. De Deckker

406 References



&W. D. Williams, pp. 263–76. Dordrecht: W. Junk; and Melbourne, Vic.: CSIRO.
Lamberti, G. A. & Steinman, A. D. (1993) Research in artificial streams: applica-
tions, uses and abuses. Journal of the North American Benthological Society 12,
313–84.

Lamon, E. C. III, Carpenter, S. C. & Stow, C. A. (1998) Forecasting PCB concentra-
tions in Lake Michigan salmonids: a dynamic linear model approach. Ecological
Applications 8, 659–68.

Lardicci, C., Rossi, F. & Maltagliati, F. (1999) Detection of thermal pollution:
variability of benthic communities at two different spatial scales in an area
influenced by a coastal power station.Marine Pollution Bulletin 38, 296–303.

Lee, P. M. (1997) Bayesian Statistics: An Introduction. London: Edward Arnold.
Leff, L. G. & Lemke, M. J. (1998) Ecology of aquatic bacterial populations: lessons
from applied microbiology. Journal of the North American Benthological Society 17,
261–71.

Legendre, P. (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74,
1659–73.

Legendre, P. & Anderson, M. J. (1999) Distance-based redundancy analysis: testing
multispecies responses inmultifactorial ecological experiments. EcologicalMono-
graphs 69, 1–24.

Legendre, P. & Legendre, L. (1998) Numerical Ecology, 2nd edn. Amsterdam: Elsevier.
Lemly, A. D. (1993) Guidelines for evaluating selenium data from aquaticmonitor-
ing and assessment studies. Environmental Monitoring and Assessment 28, 83–100.

Lemly, A. D. (1996) Wastewater discharges may be most hazardous to fish during
winter. Environmental Pollution 93, 169–74.

Lemly, A. D. (1998) Bacterial growth on stream insects: potential for use in
bioassessment. Journal of the North American Benthological Society 17, 228–38.

Leopold, L. B., Wolman, M. G. & Miller, J. P. (1964) Fluvial Processes in Geomorphology.
San Francisco, CA: W. H. Freeman.

Lewis, M. A. (1995) Use of freshwater plants for phyotoxicity testing: a review.
Environmental Pollution 87, 319–36.

Lewis, W. M. Jr, Weibezahn, F., Saunders, J. F. & Hamilton, S. K. (1990) The Orinoco
River as an ecological system. Interciencia 15, 346–57.

Likens, G. E. (1984) Beyond the shoreline: a watershed–ecosystem approach. Ver-
handlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 22,
1–22.

Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S. & Johnson, N. M. (1977)
Biogeochemistry of a Forested Ecosystem. New York: Springer-Verlag.

Lillie, R. A. & Budd, J. (1992) Habitat architecture of Myriophyllum spicatum L. as an
index to habitat quality for fish and macroinvertebrates. Journal of Freshwater
Ecology 7, 113–25.

Linke, S., Bailey, R. C. & Schwindt, J. (1999) Temporal variability of stream bioas-
sessments using benthic macroinvertebrates. Freshwater Biology 42, 575–84.

Lobo, E. A., Callegaro, V. L. M., Oliveira, M. A., Salomoni, S. E., Schuler, S. & Asai, K.
(1996) Pollution tolerant diatoms from lotic systems in the Jacui Basin, Rio
Grande do Sul, Brazil. Iheringia Serie Botanica 0(47), 45–72.

Locke, A., Reid, D. M., Van Leeuwen, H. C., Sprules, W. G. & Carlton, J. T. (1993)
Ballast water exchange as a means of controlling dispersal of freshwater organ-
isms by ships. Canadian Journal of Fisheries and Aquatic Sciences 50, 2086–93.

Lockwood, J. L. & Pimm, S. L. (1999) When does restoration succeed? In Ecological
Assembly Rules: Perspectives, Advances, Retreats, eds. E. Weiher & P. Keddy, pp. 251–
71. Cambridge, UK: Cambridge University Press.

Lodge, D. M., Stein, R. A., Brown, K. M., Covich, A. P., Bronmark, C., Garvey, J. E. &
Klosiewski, S. P. (1998) Predicting impact of freshwater exotic species on native

References 407



biodiversity: challenges in spatial scaling. Australian Journal of Ecology 23, 53–67.
Loehle, C. (1987) Hypothesis testing in ecology: psychological aspects and the
importance of theory maturation. Quarterly Review of Biology 62, 397–409.

Loehle, C. (1991) Managing and monitoring ecosystems in the face of heterogene-
ity. In Ecological Heterogeneity, eds. J. Kolasa & S. T. A. Pickett, pp. 144–59. New
York: Springer-Verlag.

Loftis, J. C., McBride, G. B. & Ellis, J. C. (1991) Considerations of scale in water
quality monitoring and data analysis.Water Resources Bulletin 27, 255–64.

Lotspeich, F. B. (1980) Watersheds as the basic ecosystem: this conceptual frame-
work provides a basis for a natural classification system.Water Resources Bulletin
16, 581–6.

Lowe, R. L., Guckert, J. B., Belanger, S. E., Davidson, D. H. & Johnson, D.W. (1996) An
evaluation of periphyton community structure and function on tile and cobble
substrata in experimental stream mesocosms. Hydrobiologia 328, 135–46.

Lowe, R. L. & Pan, Y. (1996) Benthic algal communities as biological monitors. In
Algal Ecology: Freshwater Benthic Ecosystems, eds. R. J. Stevenson, M. L. Bothwell &
R. L. Lowe, pp. 705–39. San Diego, CA: Academic Press.

Ludwig, J. A. & Reynolds, J. F. (1988) Statistical Ecology: A Primer on Methods and
Computing. New York: John Wiley.

McArdle, B. H. (1996) Levels of evidence in studies of competition, predation and
disease. New Zealand Journal of Ecology 20, 7–15.

McCarthy, L. H., Robertson, K., Hesslein, R. H. & Williams, T. G. (1997) Baseline
studies in the Slave River, NWT, 1990–1994: Part 4. Evaluation of benthic
invertebrate populations and stable isotope analyses. The Science of the Total
Environment 197, 111–25.

McCormick, P. V., Belanger, S. E. & Cairns, J. Jr (1997) Evaluating the hazard of
dodecyl alkyl sulphate to natural ecosystems using indigenous protistan com-
munities. Ecotoxicology 6, 67–85.

McDonald, L. L. & Erickson,W. P. (1994) Testing for bioequivalence in field studies:
has a disturbed site been adequately reclaimed? In Statistics in Ecology and
Environmental Monitoring, Otago Conference Series 2, eds. D. J. Fletcher & B. F. J.
Manly, pp. 183–97. Dunedin, New Zealand: University of Otago Press.

McElravy, E. P., Lamberti, G. A. & Resh, V. H. (1989) Year-to-year variation in the
aquatic macroinvertebrate fauna of a northern California stream. Journal of the
North American Benthological Society 8, 51–63.

Mackay, A. P. & Mackay, S. (1996) Spatial distribution of acid-volatile sulphide
concentration and metal bioavailability in mangrove sediments from the Bris-
bane River, Australia. Environmental Pollution 93, 205–9.

McKean, J. W. & Vidmar, T. J. (1994) A comparison of two rank-based methods for
the analysis of linear models. American Statistician 48, 220–9.

McMahon, T. A. & Finlayson, B. L. (1995) Reservoir system management and
environmental flows. Lakes and Reservoirs: Research and Management 1, 65–76.

McMahon, T. E., Finlayson, B. L., Haines, A. T. & Srikanthan, R. (1992) Global Runoff:
Continental Comparisons of Annual Flows and Peak Discharges. Cremlingen-Destedt,
Germany: Catena Verlag.

Mac Nally, R. & Quinn, G. P. (1998) Symposium introduction: the importance of
scale in ecology. Australian Journal of Ecology 23, 1–7.

Maguire, L. A. (1995) Decision analysis: an integrated approach to ecosystem
exploitation and rehabilitation decisions. In Rehabilitating Damaged Ecosystems,
2nd edn, ed. J. Cairns Jr, pp. 13–34. Boca Raton, FL: Lewis Publishers.

Maguire, L. A. & Sondak, H. (1996) Can using decision analysis and dispute
resolution techniques to solve environmental problems help promote equity? In
Statistics in Ecology and Environmental Monitoring, vol. 2, Decision Making and Risk

408 References



Assessment in Biology, eds. D. J. Fletcher, L. Kavalieris & B. F. J. Manly, pp. 97–120.
Dunedin, New Zealand: University of Otago Press.

Magurran, A. E. (1988) Ecological Diversity and its Measurement. London, UK: Croom
Helm.

Malthus, T. J. & George, D. G. (1997) Airborne remote sensing of macrophytes in
Cefni Reservoir, Anglesey, UK. Aquatic Botany 58, 317–32.

Manly, B. F. J. (1985) The Statistics of Natural Selection. London, UK: Chapman & Hall.
Manly B. F. J. (1994) Multivariate Statistical Methods: A Primer, 2nd edn. London, UK:
Chapman & Hall.

Manly, B. F. J. (1997) Randomization, Bootstrap and Monte Carlo Methods in Biology, 2nd
edn. London, UK: Chapman & Hall.

Mapstone, B. D. (1995) Scalable decision rules for environmental impact studies:
effect size, Type I and Type II errors. Ecological Applications 5, 401–10.

Mapstone, B. D. (1996) Scalable decision criteria for environmental impact assess-
ment. In Detecting Ecological Impacts: Concepts and Applications in Coastal Habitats,
eds. R. J. Schmitt & C. W. Osenberg, pp. 67–80. San Diego, CA: Academic Press.

Marchant, R. (1988) Vertical distribution of benthic invertebrates in the bed of the
Thomson River, Victoria. Australian Journal of Marine and Freshwater Research 39,
775–84.

Marchant, R. (1989) A subsampler for samples of benthic invertebrates. Bulletin of
the Australian Society for Limnology 12, 49–52.

Marchant, R., Hirst, A., Norris, R. & Metzeling, L. (1999) Classification of macroin-
vertebrate communities across drainage basins in Victoria, Australia: conse-
quences of sampling on a broad spatial scale for predictivemodelling. Freshwater
Biology 41, 253–68.

Mason, W. T. Jr, Weber, C. I., Lewis, P. A. & Julian, E. C. (1973) Factors affecting the
performance of basket and multiplate samplers. Freshwater Biology 3, 409–36.

Mayo, D. G. (1996) Error and the Growth of Experimental Knowledge. Chicago, IL:
University of Chicago Press.

Medley, C. N. & Clements, W. H. (1998) Responses of diatom communities to heavy
metals in streams: the influence of longitudinal variation. Ecological Applications
8, 631–44.

Meffe, G. K. & Minckley, W. L. (1987) Persistence and stability of fish and inverte-
brate assemblages in a repeatedly disturbed Sonoran Desert stream. American
Midland Naturalist 117, 177–91.

Meffe, G. K. & Sheldon, A. L. (1990) Post-defaunation recovery of fish assemblages
in southeastern blackwater streams. Ecology 71, 657–67.

Menzie, C., Henning, M. H., Cura, J., Finkelstein, K., Gentile, J., Maughan, J.,
Mitchell, D., Petron, S., Potocki, B., Svirsky, S. & Tyler, P. (1996) Special report of
the Massachusetts weight-of-evidence workgroup: a weight-of-evidence ap-
proach for evaluating ecological risks. Human and Ecological Risk Assessment 2,
277–304.

Mersch, J. & Johansson, L. (1993) Transplanted aquatic mosses and freshwater
mussels to investigate the trace metal contamination in the rivers Meurthe and
Plaine, France. Environmental Technology 14, 1027–36.

Mersch, J. & Pihan, J. C. (1993) Simultaneous assessment of environmental impact
on condition and trace metal availability in zebra mussels Dreissena polymorpha
transplanted into the Wiltz River, Luxembourg: comparison with the aquatic
moss. Archives of Environmental Contamination and Toxicology 25, 353–64.

Metcalfe, J. L. (1989) Biological water quality assessment of running waters based
on macroinvertebrate communities: history and present status in Europe. Envi-
ronmental Pollution 60, 101–39.

Metcalfe-Smith, J. L. (1994) Biological water-quality assessment of rivers: use of

References 409



macroinvertebrate communities. In The Rivers Handbook: Hydrological and Ecologi-
cal Principles, vol. 2, eds. P. Calow & G. E. Petts, pp. 144–70. Oxford, UK: Blackwell
Scientific Publications.

Metzeling, L., Doeg, T. & O’Connor, W. (1995) The impact of salinization and
sedimentation on aquatic biota. In Conserving Biodiversity: Threats and Solutions,
eds. R. A. Bradstock, T. D. Auld, D. A. Keith, R. T. Kingsford, D. Lunney & D. P.
Sivertsen, pp. 126–36. Sydney, NSW: Surrey Beatty.

Meyer, J. L. (1997) Stream health: incorporating the human dimension to advance
stream ecology. Journal of the North American Benthological Society 16, 439–47.

Mihuc, T. B. (1997) The functional trophic role of lotic primary consumers:
generalist versus specialist strategies. Freshwater Biology 37, 455–62.

Mill, J. S. (1884) A System of Logic, Ratiocinative and Inductive: Being a Connected View of
the Principles of Evidence and the Methods of Scientific Investigation. London, UK:
Longman.

Millard, S. P., Yearsley, J. R. & Lettenmaier, D. P. (1985) Space–time correlation and
its effects on methods for detecting aquatic ecological change. Canadian Journal
of Fisheries and Aquatic Sciences 42, 1391–400.

Miller, A. M. & Golladay, S. W. (1996) Effects of spates and drying onmacroinverte-
brate assemblages of an intermittent and perennial prairie stream. Journal of the
North American Benthological Society 15, 670–89.

Milner, A. M. (1994) System recovery. In The Rivers Handbook: Hydrological and
Ecological Principles, vol. 2, eds. P. Calow & G. E. Petts, pp. 76–97. Oxford, UK:
Blackwell Scientific Publications.

Minchin, P. R. (1987) An evaluation of the relative robustness of techniques for
ecological ordination. Vegetatio 69, 89–107.

Minshall, G. W. (1988) Stream ecosystem theory: a global perspective. Journal of the
North American Benthological Society 7, 263–88.

Minshall, G. W., Brock, J. T. & Varley, J. D. (1989) Wildfire and Yellowstone’s
streams. BioScience 39, 707–15.

Morin, A. (1985) Variability of density estimates and the optimization of sampling
programs for stream benthos. Canadian Journal of Fisheries and Aquatic Sciences 42,
1530–4.

Morin, A. & Cattaneo, A. (1992) Factors affecting sampling variability of fresh-
water periphyton and the power of periphyton studies. Canadian Journal of
Fisheries and Aquatic Sciences 49, 1695–703.

Morrisey, D. J., Howitt, L., Underwood, A. J. & Stark, J. S. (1992) Spatial variation in
soft-sediment benthos. Marine Ecology Progress Series 81, 197–204.

Moyle, P. B. (1993) Biodiversity, biomonitoring, and the structure of stream fish
communities. In Biological Monitoring of Aquatic Systems, eds. S. L. Loeb & A. Spacie,
pp. 171–86. Boca Raton, FL: Lewis Publishers.

Mulholland, P. J. (1997) Dissolved organic matter concentration and flux in
streams. Journal of the North American Benthological Society 16, 131–41.

Murdoch, W. W., Fay, R. C. & Mechalas, B. J. (1989) Final report of the Marine Review
Committee to the California Coastal Commission. MRC Document no. 89–02. Califor-
nia: Marine Review Committee.

Naiman, R. J. & Décamps, H. (1997) The ecology of interfaces: riparian zones.
Annual Review of Ecology and Systematics 28, 621–58.

Needham, P. R. & Usinger, R. L. (1956) Variability in the macrofauna of a single
riffle in Porsser Creek, California, as indicated by the Surber sampler. Hilgardia
14, 383–409.

Neter, J., Kutner, M. H., Nachtsheim, C. J. & Wasserman, W. (1996) Applied Linear
Statistical Models, 4th edn. Chicago, IL: Irwin.

Neter, J., Wasserman, W. & Whitmore, G. A. (1993) Applied Statistics. Englewood

410 References



Cliffs, NJ: Prentice Hall.
Newbold, J. D. (1992) Cycles and spirals of nutrients. In The Rivers Handbook:
Hydrological and Ecological Principles, vol. 1. eds. P. Calow &G. E. Petts, pp. 379–408.
Oxford, UK: Blackwell Scientific Publications.

Newman, A. (1995) Water pollution point sources still significant in urban areas.
Environmental Science and Technology 29, 114.

Newson,M. (1994)Hydrology and the River Environment. Oxford,UK: Clarendon Press.
Neyman, J. & Pearson, E. (1928) On the use and interpretation of certain test
criteria for purposes of statistical inference: Part I. Biometrika 20A, 175–240.

Niemi, G. J., DeVore, P., Detenbeck, N., Taylor, D., Lima, A., Pastor, J., Yount, J. D. &
Naiman, R. J. (1990) Overview of case studies on recovery of aquatic systems from
disturbance. Environmental Management 14, 571–87.

Nimmo, D. R. & McEwen, L. C. (1994) Pesticides. In Handbook of Ecotoxicology, vol. 2,
ed. P. Calow, pp. 155–203. Oxford, UK: Blackwell Scientific Publications.

Norris, R. H. (1986) Mine waste pollution of the Molonglo River, New South Wales
and the Australian Capital Territory: effectiveness of remedial works at Cap-
tains Flat mining area. Australian Journal of Marine and Freshwater Research 37,
147–57.

Norris, R. H. (1995) Biological monitoring: the dilemma of data analysis. Journal of
the North American Benthological Society 14, 440–50.

Norris, R. H. & Georges, A. (1993) Analysis and interpretation of benthic surveys. In
Freshwater Biomonitoring and Benthic Macroinvertebrates, eds. D. M. Rosenberg &
V. H. Resh, pp. 234–86. New York: Chapman & Hall.

Norris, R. H., Lake, P. S. & Swain, R. (1982) Ecological effects of mine effluents on
the South Esk River, north-eastern Tasmania. 3. Benthic macroinvertebrates.
Australian Journal of Marine and Freshwater Research 33, 789–809.

O’Connor, N. A. & Lake, P. S. (1994) Long-term and seasonal large-scale disturban-
ces of a small lowland stream. Australian Journal of Marine and Freshwater Research
45, 243–55.

Osenberg, C.W., Sarnelle, O., Cooper, S. D. & Holt, R. D. (1999) Resolving ecological
questions through meta-analysis: goals, metrics, and models. Ecology 80, 1105–
17.

Palmer, M. A., Hakenkamp, C. C. & Nelson-Baker, K. (1997) Ecological heterogene-
ity in streams: why variance matters. Journal of the North American Benthological
Society 16, 189–202.

Pan, Y., Stevenson, R. J., Hill, B. H., Herlihy, A. T. & Collins, G. B. (1996) Using
diatoms as indicators of ecological conditions in lotic systems: a regional
assessment. Journal of the North American Benthological Society 15, 481–95.

Patrick, R. (1949) A proposed biological measure of stream conditions, based on a
survey of the Conestoga Basin, Lancaster County, Pennsylvania. Proceedings of the
Academy of Natural Sciences, Philadelphia 101, 277–341.

Payne, A. I. (1986) The Ecology of Tropical Lakes and Rivers. Chichester, UK: JohnWiley.
Pearson, R. G. (1984) Temporal changes in the composition and abundance of the
macro-invertebrate communities of the River Hull. Archiv für Hydrobiologie 100,
273–98.

Peterman, R. M. (1990) Statistical power analysis can improve fisheries research
and management. Canadian Journal of Fisheries and Aquatic Sciences 44, 1879–89.

Peters, R. H. (1991) A Critique for Ecology. Cambridge, UK: Cambridge University
Press.

Peterson, C. H. (1993) Improvement of environmental impact analysis by applica-
tion of principles derived from manipulative ecology: lessons from coastal
marine case histories. Australian Journal of Ecology 18, 21–52.

Petraitis, P. S., Latham, R. A. & Niesenbaum, R. A. (1989) The maintenance of

References 411



species diversity by disturbance. Quarterly Review of Biology 64, 393–418.
Petts, G. E. (1984). Impounded Rivers: Perspectives for Ecological Management. Chiches-
ter, UK: John Wiley.

Petts, G. E. & Amoros, C. (1996) The fluvial hydrosystem. In Fluvial Hydrosystems, eds.
G. E. Petts & C. Amoros, pp. 1–12. London, UK: Chapman & Hall.

Petts, G. E. & Maddock, I. (1994) Flow allocation for in-river needs. In The Rivers
Handbook: Hydrological and Ecological Principles, vol. 2, eds. P. Calow & G. E. Petts,
pp. 289–307. Oxford, UK: Blackwell Scientific Publications.

Phillips, D. J. H. & Rainbow, P. S. (1993) Biomonitoring of Trace Aquatic Contaminants.
London, UK: Chapman & Hall.

Pielou, E. C. (1984) Probingmultivariate data with random skewers: a preliminary
to direct gradient analysis. Oikos 42, 161–5.

Pimentel, D., Houser, J., Preiss, E., White, O., Fang, H., Mesnick, L., Barsky, T.,
Tariche, S., Schreck, J. & Alpert, S. (1997) Water resources: agriculture, the
environment, and society. BioScience 47, 97–106.
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