
Pro .NET 5
Custom
Libraries

Implementing Custom .NET Data Types
—
Roger Villela

Pro .NET 5 Custom
Libraries

Implementing Custom
.NET Data Types

Roger Villela

Pro .NET 5 Custom Libraries: Implementing Custom .NET Data Types

ISBN-13 (pbk): 978-1-4842-6390-7			 ISBN-13 (electronic): 978-1-4842-6391-4
https://doi.org/10.1007/978-1-4842-6391-4

Copyright © 2020 by Roger Villela

This work is subject to copyright. All rights are reserved by the publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Matthew Moodie
Coordinating Editor: Shrikant Vishwakarma

Cover designed by eStudioCalamar

Cover image designed by Pexels

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, email orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC, and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6390-7. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Roger Villela
Sao Paulo, São Paulo, Brazil

https://doi.org/10.1007/978-1-4842-6391-4

This book is dedicated to my mother, Marina Roel de Oliveira.

January 14, 1952 to March 17, 2017 (†)

v

Chapter 1: ��.NET Platform��� 1

Acronyms��� 1

ECMA-335 and .NET��� 2

ECMA-335��� 2

�.NET Platform��� 8

About the Common Type System��� 13

Fundamental Types and Hardware Platform��� 13

The Organization of Fundamental Data Types�� 14

CTS for Fundamental Types�� 16

Virtual Execution System��� 18

�.NET Module��� 19

�.NET Assemblies��� 20

Chapter 2: ��Custom .NET Data Type�� 29

Management of Data Types�� 29

Working with System.Object, the Root of .NET Reference Types��� 29

System.ValueType, the Root of .NET Value Types�� 35

Methods�� 38

Table of Contents

About the Author��� vii

About the Technical Reviewer�� ix

Acknowledgments�� xi

Introduction�� xiii

vi

Chapter 3: ��.NET Methods: Implementation Details�� 51

Methods��� 51

About the Use of Operators�� 51

Operator Overloading: Programming Language Semantics and Syntaxes����������������������������� 54

Working with System.Object.GetType()�� 57

Constructors in a .NET Data Type��� 59

Chapter 4: ��.NET Special Members: Constructors in a Managed Environment��������� 63

Acronyms��� 63

Special Members��� 63

About Constructors in a Managed Execution Environment�� 64

Default Constructor�� 64

Summary��� 73

Chapter 5: ��Finalizer Method: The .NET Special Member�� 75

Special Members��� 75

Special Member Destructor�� 75

Special Member Finalizer Method (Destructor)�� 82

Chapter 6: ��.NET Manifest and Versioning for Managed Libraries���������������������������� 89

Assemblies, Modules, Manifest, Versioning��� 89

Assembly�� 90

Manifest�� 90

Module�� 93

Versioning��� 95

Chapter 7: ��.NET Assemblies in a Managed Execution Environment������������������������ 97

Managed Libraries��� 97

Data Types, Components, and Functionalities�� 98

Native Code and Managed Code�� 102

�Index�� 113

Table of Contents

vii

About the Author

Roger Villela is a software engineer and entrepreneur

with almost 30 years of experience in the industry and

works as an independent professional. Currently, he is

focused on his work as a book author and technical

educator and specializes in the inner workings of

orthogonal features of the following Microsoft

development platforms and specialized application

programming interfaces (APIs):

•	 Microsoft Windows operating system base services

•	 Microsoft Windows APIs architecture and engineering

•	 Microsoft Universal Windows Platform (UWP)

•	 Microsoft WinRT platform

•	 Microsoft .NET Framework implementation of the runtime

environment (Common Language Runtime [CLR])

His work is based on Microsoft Windows software development kit (SDK) tools and

libraries, Microsoft Visual Studio, and platform foundational APIs, architectures, and

engineering. He works with the Microsoft Windows operating system, incorporating the

following programming languages, extensions, and projections:

•	 C/C++

•	 Assembly (Intel IA-32/Intel 64 [x64/amd64])

•	 Component extensions/projections for runtimes

•	 C++/CLI

•	 C++/CX

•	 C++/WinRT

•	 C#

•	 Common Intermediate Language (Microsoft Intermediate Language

[MSIL]) implementation for CLR platforms

ix

About the Technical Reviewer

Carsten Thomsen is a back-end developer primarily,

but he works with smaller front-end bits as well. He has

authored and reviewed a number of books, and created

numerous Microsoft Learning courses, all to do with

software development. He works as a freelancer/contractor

in various countries in Europe, using Azure, Visual Studio,

Azure DevOps, and GitHub as some of his tools. He is an

exceptional troubleshooter, asking the right questions,

including the less-logical ones (in a most-logical to least-

logical fashion). He also enjoys working with architecture,

research, analysis, development, testing, and bug fixing.

Carsten is a very good communicator with great mentoring and team-lead skills, and he

also excels at researching and presenting new material.  

xi

Acknowledgments

I want to thank to the Apress team who worked with me on this book: Smriti Srivastava

(Acquisitions Editor), Shrikant Vishwakarma (Coordinating Editor), Matthew Moodie

(Development Editor), Welmoed Spahr (Managing Director), and Carsten Thomsen

(Technical Reviewer). It was a pleasure and an honor to work with such a highly

professional team.

I also want to thank my parents, with a special nod to my dad (Gilberto), my two

brothers (Eder and Marlos and his wife Janaína), my nephew Gabriel, my nieces Lívia

and Rafaela, and my cousin Ariadne Villela.

I must also express special thanks to my friends Paula Carolina Damasio, Alessandro

Augusto de Jesus, and Neide Pimenta. I also want to acknowledge and thank all the

people who work really hard on team Praxio Tecnologia developing one of the greatest

specialized enterprise resource planning (ERP) products on the market; congratulations

to all of you for your efforts.

I also want to thank my professional colleagues and friends who have worked with

me throughout the years.

xiii

Introduction

This book covers programming with .NET 5 to develop custom data types and custom

libraries for use on Microsoft Windows, Linux, and Apple macOS. These custom libraries

can be used in different operating system platforms because they are written using .NET

5 (a cross-platform implementation of the ECMA-335 specification) and because all

source code is written in the C# programming language and uses only cross-platform

Base Class Library (BCL) types.

This book focuses on how to best exploit the .NET 5 custom data types for software

libraries so that companies and software engineers can design and implement internal/

commercial tools for various scenarios on myriad target platforms. Contextual modeling

and planning is difficult without a fundamental understanding of the .NET 5 platform,

which this book seeks to provide. The book also covers internal aspects of the BCL .NET

types and APIs, with walkthroughs covering the implementation process of custom .NET

data types and .NET custom libraries.

You will also learn about .NET assembly and .NET module structures, the inner

workings of the BCL implementation on the .NET platform, custom data types available

through the .NET platform, and how to write a custom library that incorporates .NET

APIs available through the .NET BCL.

1
© Roger Villela 2020
R. Villela, Pro .NET 5 Custom Libraries, https://doi.org/10.1007/978-1-4842-6391-4_1

CHAPTER 1

.NET Platform
This chapter provides an overview of .NET 5 (previously .NET Core) and describes

the fundamental architectural and the engineering features that you should expect

in any implementation of .NET 5 (regardless of hardware, operating system, or

execution system).

�Acronyms
The following acronyms are introduced in this chapter:

•	 Base Class Library (BCL)

•	 Common Intermediate Language (CIL)

•	 Common Language Infrastructure (CLI)

•	 Common Language Runtime (CLR)

•	 Common Type System (CTS)

•	 Framework Class Library (FCL) (Although not specific to the .NET

Framework implementation, the term is used for the full range of

.NET types available in an official distribution of .NET.)

•	 Intermediate Language (IL)

•	 Microsoft Intermediate Language (MSIL)

•	 Virtual Execution System (VES)

•	 Windows Presentation Foundation (WPF) (a.k.a. execution engine)

https://doi.org/10.1007/978-1-4842-6391-4_1#DOI

2

�ECMA-335 and .NET
�ECMA-335
The ECMA-335 standard specification defines the Common Language Infrastructure

(CLI), which includes a set of conceptual definitions and rules to be followed and

engineering mechanisms to be implemented, independent of the target operating

system and hardware platforms. The CLI ensures that applications, components, and

libraries can be written in multiple high-level languages and can be executed in different

target system environments without needing to be rewritten.

We can access the ECMA-335 specification at www.ecma-international.org/

publications/standards/Ecma-335.htm. Figure 1-1 shows an excerpt. The download

link is www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf,

and the XML specification download link is www.ecma-international.org/

publications/files/ECMA-ST/ECMA-335.zip.

Figure 1-1.  Excerpt of web page with information about the ECMA-335 standard
specification

Chapter 1 .NET Platform

https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://www.ecma-international.org/publications/standards/Ecma-335.htm
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.zip
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-335.zip

3

More objectively, the CLI is an open specification that describes executable code

and an execution environment that enables multiple high-level languages to be used on

different architectural platforms without being rewritten.

This execution environment must follow the architectural infrastructure described

by the following:

•	 Base Class Library (BCL): Foundational library defined by and

part of the CLI standard specification. It is implemented by .NET

Framework, .NET Core, .NET 5, and .NET 6 (early stages, available

on Github.com), and is the main reason for the existence of the .NET

standard.

•	 Common Language Specification (CLS): Rules (restrictions and

models) required for language interoperability. The detailed

information on the CLS group is a subset of what is in the CTS, but

the content is primarily for language designers and class library

designers (frameworks). So, learning about CTS will offer a great base

of knowledge for you and your team for when we start working with

the rules in the CLS.

•	 Common Type System (CTS): The CTS is a set of data types and

operations that are shared by all languages that support the CTS, and

learning about the CTS will offer a great base of knowledge to you

and your team when we start working with the rules in the CLS.

•	 Metadata: The metadata describes the program structure, enabling

languages and tools to work together. Detailed understanding of

the metadata group is not a requisite for a component developer or

application developer. Instead, detailed information about such is

primarily for tool builders and compiler writers.

•	 Virtual Execution Engine (VES): How code is executed (and how

types are instantiated), interacts, and dies. More abstractly, it is

also known as an execution engine or execution environment. This

execution system is responsible for loading, instantiating, executing,

and ensuring the cohesiveness of the interactions between the

instances. In brief, it offers entire lifecycle support for the instance of

Chapter 1 .NET Platform

4

the types. The execution engine understands concepts, architecture,

and implementation details of two fundamental areas of the

platform: the CTS and the VES.

•	 Semantics:

•	 Capability to recognize contextuality (semantics), meaning

mechanisms to constantly observe your own environment

and ways to guarantee advanced security rules, data integrity

(acting based on more flexible or disciplined rules), dynamic

extensibility and expandability. In addition, we have the

capability to interact with highly specialized environments

(advanced data management systems, for example),

development software environment systems (for instance,

Microsoft Visual Studio), different target operating systems

and hardware platforms (for example, the Microsoft Windows

operating system implementations and UNIX-based operating

system implementations, including Linux distributions, Apple

MacOS, Apple iOS, Google Android, FreeBSD, IBM AIX, Red

Hat Linux, Intel x86/Intel x64, ARM 32-bit, ARM 64-bit, IoT

high-specialized environment for embedded systems, web

development, desktop development, mobile development, game

development, artificial intelligence development, machine-

learning development, quantum computing environments,

supercomputing highly specialized environments, scientific

highly specialized research and development environments,

research and development for enterprise and government at any

level of complexity [local to global], and many more).

•	 Capable of hosting, and be hosted by, other environments (such

as Microsoft SQL Server advanced data management system,

Microsoft Visual Studio 2017, Microsoft Visual Studio 2019, and

the Microsoft Azure set of advanced cloud products and services).

The CLI standard specification also includes an intermediate assembly language, and

it is the Common Intermediate Language (CIL). Here is a necessary distinction:

•	 Intermediate Language: An IL is an abstract language used by a

compiler as a step between program code and assembly code.

Chapter 1 .NET Platform

5

•	 CIL: The CIL is a formal instruction set to the CIL described in the

CLI standard specification.

•	 Microsoft Intermediate Language (MSIL): MSIL is Microsoft’s

implementation of the formal instruction set based on the ECMA-335

CIL described in the CLI standard specification.

When writing code using a programming language that adheres to the CLI standard

specification, the result of the compiled code is a sequence of instructions of the CIL

instruction set, as examples show in Listing 1-1 and Listing 1-2.

Open the sample solution RVJ.Core.sln at <install_dir_on_your_local_

computer>\Sources\APIs\DotNET\5.0\ProCustomLibs\Ch01\RVJ.Core\.

In the first sample project (Buffers_Console_Client), we have in the Program.cs C#

file a .NET custom data type named Program derived from System.Object, the .NET root

data type for every kind of .NET concrete or abstract class or struct data type, directly or

indirectly, as shown in Figure 1-2, Figure 1-3, and Figure 1-4, respectively.

In the C# programming language, because C# treats System.Object as the base class,

we do not need to use the System.Object root data type explicitly when we do not have

another class as the base data type.

Figure 1-2.  Every .NET data type inherits, directly or indirectly, from the System.
Object root data type. In .NET, we have a reference type and a value type

Chapter 1 .NET Platform

6

Figure 1-3.  Some .NET types (for example, System.Array) are abstract data types
and are implemented partially by code generation of the compiler (for example, a
C# compiler)

Figure 1-4.  System.ValueType is a reference type, and System.Int32 is a value
type derived from System.ValueType, which inherits from the System.Object
reference type

Chapter 1 .NET Platform

7

In fact, the execution environment of the CLR (the VES) assumes this; therefore,

most programming languages do not require that System.Object be informed explicitly

in this scenario. However, it is good programming practice to explicitly use the base data

type in such cases. Otherwise, this can become error prone when using more than one

programming language in a project, potentially resulting in erroneous perceptions about

the inheritance model supported by the .NET execution environment and the transfer

of the desired feature to the programming language and the adoption of different

programming languages (all because of basic resources of syntax).

Listing 1-1.  Typical Source Code in the C# Programming Language for a Console

Application with an Entry-Point Member Method Called Program.Main()

#region Namespaces

using System;

#endregion

namespace ConsoleClient {

 public static class Program : System.Object {

 public static void Main() {

 return;

 }

 };

};

Listing 1-2.  Source Code in MSIL Generated in the Binary File, .EXE, or .DLL

.class public abstract auto ansi sealed beforefieldinit ConsoleClient.

Program

 extends [System.Runtime]System.Object {

.method public hidebysig static void Main() cil managed {

 .entrypoint

 // Code size 1 (0x1)

 .maxstack 8

 ret

} // end of method Program::Main

} // end of class ConsoleClient.Program

Chapter 1 .NET Platform

8

These instructions are not for real hardware or processors. Instead, the CLI standard

specification describes a virtual environment that includes some characteristics and

functionalities of the elements available in a real computer.

�.NET Platform
Microsoft .NET is the official commercial name for the group of technologies and tools

designed and implemented based on what is in the ECMA-335 standard specification.

Common Language Runtime, as the name suggests, is an implementation based

on the CLI standard specification, and an implementation of the CLR has a set of

elements for a fundamental architectural model. Each element has a fundamental set

of conceptual definitions and rules to be followed, and engineering mechanisms to be

implemented, independently of the target operating system and hardware platforms.

When we are implementing a CLR environment and technologies of a .NET platform,

we are creating software elements for a platform that is a nonspecific hardware-based

computer (more specifically, a software-only computer, and more commonly known as

a virtual computer). This description includes when planning and implementing custom

data types, custom components, custom controls, custom libraries, and specialized tools

and frameworks.

For this text, we are using a .NET 5 implementation of the CLR for the sample

projects and respective source code.

You can check for the most up-to-date versions of .NET 5 at the official Microsoft

website:

https://dotnet.microsoft.com/download/dotnet/5.0.

You can also use GitHub to access the source code of the runtime, libraries, and

frameworks made using the CLR components and technologies and BCL fundamental

library, as we have with Windows Forms (Microsoft Windows only), Windows

Presentation Foundation (Microsoft Windows only), ASP.NET Core (Windows, Apple

MacOS, Linux), and the .NET SDK Installer:

•	 https://github.com/dotnet/runtime

•	 https://github.com/dotnet/aspnetcore

•	 https://github.com/dotnet/winforms

•	 https://github.com/dotnet/wpf

•	 https://github.com/dotnet/installer

Chapter 1 .NET Platform

https://dotnet.microsoft.com/download/dotnet/5.0
https://github.com/dotnet/runtime
https://github.com/dotnet/aspnetcore
https://github.com/dotnet/winforms
https://github.com/dotnet/wpf
https://github.com/dotnet/installer

9

Independently or together, these abstract aspects focus on management of data

types. So, reasonably, that form of environment and its components is known as a

managed environment.

As mentioned previously, in this book we use a .NET 5 implementation of the

CLR for the sample projects and respective source code. So, whenever you see CLR

mentioned, this means the .NET 5 running on Microsoft Windows 10 2004 and Microsoft

Visual Studio 2019 16.7.3 or more recent (Community, Professional, Enterprise). The

following programming languages are used in this book:

•	 C#

•	 MSIL

For example, when we are developing some application and choose the System.String

reference type, we are using one of the fundamental types available through the BCL.

However, the string reference type exists only because the CTS has the string

fundamental built-in type defined on it, which is one of the platform-specific

fundamental built-in types upon which string operations are built. In fact, the string

content (value of) in any instance is made up of a sequence of values of the CTS char

platform fundamental built-in type, which is System.Char fundamental data type in the

BCL. These platform fundamental built-in types, BCL fundamental types, and any other

types derived or based on them follow the rules described by the unified type system.

In the CLI specification, this unified type system is the CTS, which describes rules

about conceptual, structural, and behavioral elements that must be followed by the CLI

itself and specialized tools (such as compilers and runtime environments).

You’ll learn more information about these types in Chapter 2 and in discussions

about the CLR throughout this book. For now, though, Table 1-1 shows the types defined

by the CTS and described by the metadata.

Chapter 1 .NET Platform

10

Table 1-1.  Fundamental Types Defined Through CTS

BCL Types CTS Types

C# CIL/MSIL

System.Boolean bool

System.Char char

System.Object object

System.String string

System.Single float32

System.Double float64

System.SByte int8

System.Int16 int16

System.Int32 int32

System.Int64 int64

System.IntPtr native int

System.UIntPtr native unsigned int

System.TypedReference typedref

System.Byte unsigned uint8

System.UInt16 unsigned uint16

System.UInt32 unsigned uint32

System.UInt64 unsigned uint64

Remember that this is not a one-to-one mapping between reserved words, data

structures, specialized resources, or anything else in the programming languages.

That is, what is formalized through the instructions in CIL, what is defined in the

CLI specification, and what is implemented by the mechanisms on the platform is

what prevails.

Chapter 1 .NET Platform

11

As a reminder, unmanaged code means executable and nonexecutable code that

is not in CIL and is not under management and the rules of the CLR environment.

Erroneously, the unmanaged code is often considered synonymous with native code;

this is incorrect. For example, the CIL instruction set includes the following attributes:

•	 cil is a code implementation attribute that specifies that the method

declaration and implementation consist only of CIL code (that is,

managed code).

•	 native is a code implementation attribute that specifies that

the method declaration and implementation consist only of

native code (that is, native instructions of a specific hardware/

processor platform). Currently, this functionality of the managed

environment CLR implementation is used specifically as one of the

base technologies of Platform Invoke (P/Invoke). P/Invoke is one

of the mechanisms of the platform, and it is described in the CLI

specification.

•	 runtime is a code implementation attribute that specifies that the

implementation of the method be provided automatically by the

runtime.

Two more of these attributes are available and can be combined with them:

•	 managed is a code implementation attribute that is used with methods

for which implementation is written using only CIL code.

•	 unmanaged is a code implementation attribute that is used to

describes that the implementation is not external. Currently, this

code implementation attribute is used by P/Invoke technology, but it

is not restricted to just that use.

The following implementation attributes are properly categorized as code

implementation attributes:

•	 cil

•	 native

•	 runtime

•	 managed

•	 unmanaged

Chapter 1 .NET Platform

12

When unmanaged code needs to be used from the managed code, the unmanaged

code implementation attribute must be applied on the method implementation. In the

specific case of the P/Invoke mechanism, the use of the unmanaged code implementation

attribute is required.

The pinvokeimpl method attribute is used to indicate that the runtime will switch

from a managed state to an unmanaged state when executing the unmanaged code.

Listing 1-3 shows an example of a managed code implementation that uses an

unmanaged code implementation of a well-known Windows application programming

interface (API) HeapAlloc() function. The method has been applied the unmanaged and

native code implementation attributes.

A switch from a managed state to an unmanaged state, and vice-versa, is performed

automatically by the P/Invoke.

Listing 1-3.  Excerpt in MSIL of Unmanaged Code (Using P/Invoke to Call the

HeapAlloc() Function of Windows Memory Management, the Windows API)

.method assembly static pinvokeimpl(lasterr stdcall)

 �void* modopt([mscorlib]System.Runtime.CompilerServices.

CallConvStdcall)

 HeapAlloc(void* A_0,

 �uint32 modopt([mscorlib]System.Runtime.CompilerServices.

IsLong) A_1,

 �uint32 modopt([mscorlib]System.Runtime.CompilerServices.

IsLong) A_2) native unmanaged preservesig

{

 �.custom instance void [mscorlib]System.Security.SuppressUnmanaged

CodeSecurityAttribute::.ctor() = (01 00 00 00)

 // Embedded native code

}

At this point, we have the following sequence of elements: the CLI standard

specification that is composed by and describes the CTS group, the metadata group, the

CLS and VES group, and the CLI itself.

Chapter 1 .NET Platform

13

�About the Common Type System
When working with a sequence of bits, it is necessary to define the organization of these

bits to do something useful. So, the data signified by the bit pattern should identify the

data type (or a contextualized type based on the data).

The data type must have a purpose and contextually well-defined characteristics. For

example, with regard to structural terms, the data type must have the required number of

bits as defined and the fundamental operations that the type supports.

A type’s conceptual, structural, and behavioral fundamental characteristics create

a model as to what can be done and what cannot be done with any particular type: a

type system model. Because the number of types is constantly increasing, a type system

model is necessary to enforce rules to ensure that the environment works as designed

and expected.

A type system model describes the necessary rules related to each type’s
conceptual, structural, and behavioral characteristics.

�Fundamental Types and Hardware Platform
For this discussion, we use Intel IA-32/x64 and Intel 64 fundamental built-in data

types (or fundamental built-in types), and we use some defined assembly instructions

(implemented and supported) that derive the hardware architecture and the contextual

interpretation of the bits on the data type.

The fundamental built-in data types are those defined as integral elements of the

platform (in this case, the Intel IA-32/x64 and Intel 64 processor hardware architecture).

Therefore, these types are integral elements of the hardware architecture and are not

defined by an external library or execution environment.

These are the fundamental types:

•	 Byte (8 bits) (1 byte)

•	 Word (16 bits) (2 bytes)

•	 Doubleword (32-bits) (4 bytes)

•	 Quadword (64 bits) (8 bytes)

•	 Double quadword (128 bits) (16 bytes)

Chapter 1 .NET Platform

14

Although these fundamental built-in data types are supported by a common set of

assembly instructions (such as MOV) that perform a common set of operations such

move data from one place to another, some assembly instructions support additional

interpretation of fundamental built-in data types.

The purpose of this additional interpretation is to allow numeric operations to be

performed, and within this context these fundamental built-in data types are viewed and

manipulated as numeric data types.

The Intel IA-32/x64 and Intel 64 processors recognize two integer types: signed and

unsigned.

Assembly instructions such as ADD and SUB can perform operations on both signed

integers and unsigned integers, but some assembly instructions can perform operations

only with one type.

�The Organization of Fundamental Data Types
Here are the bits as a single pattern, without additional rules or interpretation, except for

the fundamental requirements of the hardware platform:

•	 Byte (8 bits)

•	 Bits 7…0

•	 Word (16 bits)

•	 Bits 15…0

•	 Bits 15…8 (high byte)

•	 Bits 7…0 (low byte)

•	 Doubleword (32 bits)

•	 Bits 31…0

•	 Bits 31…16 (high word)

•	 Bits 15…0 (low word)

•	 Quadword (64 bits)

•	 Bits 63…0

•	 Bits 63…32 (high doubleword)

•	 Bits 31…0 (low doubleword)

Chapter 1 .NET Platform

15

•	 Double quadword (128 bits)

•	 Bits 127…0

•	 Bits 127…64 (high quadword)

•	 Bits 63…0 (low quadword)

Table 1-2 describes the bits in more detail, including information about fundamental

hardware requirements and integer types (signed and unsigned).

Table 1-2.  Fundamental Data Types

Numeric Data Type Description

Byte unsigned integer All bits used to represent the value.

Values range from 0 to 255.

(2^8-1)

Word unsigned integer All bits used to represent the value.

Values range from 0 to 65,535.

(2^16-1)

Doubleword unsigned integer All bits used to represent the value.

Values range from 0 to 4,294,967,295.

(2^32-1)

Quadword unsigned integer All bits used to represent the value.

Values range from 0 to 18,446,744,073,709,551,615.

(2^64-1)

Byte signed integer The first 7 bits (6…0) used to represent the value, the most

significant bit (MSB) used as the signed bit.

When the MSB has value 0, the number is positive. When

the MSB has value 1, the number is negative.

Values range from -128 to +127.

(continued)

Chapter 1 .NET Platform

16

Numeric Data Type Description

Word signed integer The first 15 bits (14…0) used to represent the value,

he MSB used as the signed bit .

When the MSB has value 0, the number is positive.

When the MSB has value 1, the number is negative.

Values range from -32,768 to +32,767.

Doubleword signed integer The first 31 bits (30…0) used to represent the value,

the MSB used as the signed bit.

When the MSB has value 0, the number is positive.

When the MSB has value 1, the number is negative.

Values range from -2^31 to +2^31-1.

Quadword signed integer The first 63 bits (62…0) used to represent the value,

the MSB used as the signed bit

When the MSB has value 0, the number is positive.

When the MSB has value 1, the number is negative.

Values range from -2^63 to +2^63-1.

Table 1-2.  (continued)

�CTS for Fundamental Types
The CTS supports types that describe values and types that specify contracts (behaviors

that the type supports), and the support for these types must be present in an

implementation of a CLR. These two types are supported because one of the principles

of the CTS is to support object-oriented programming (OOP), procedural, and functional

programming languages.

A value is a bit pattern used to represent types such as numbers (for example,
integer numbers and float-pointing numbers).

Listing 1-4 shows examples in C# for two variables for instances of the System.

UInt32 BCL value type (and not a simple value).

Chapter 1 .NET Platform

17

Listing 1-4.  C# Examples Declaring Variables Using uint and System.UInt32, the

Same Kind of Object (An Instance of the Value Type of System.UInt32 Data Type

of BCL)

const uint LimitOne = 72; // C# code.

const System.UInt32 LimitTwo = 144; // C# code.

Console.WriteLine("{0}", LimitTwo.ToString());

A value type is not an object type, but it is defined using a class definition
(declaration and implementation).

Remember that this way of work is defined by CTS and supported by VES in the

CLR. From the perspective of the type system and execution environment, it is necessary

that an object be declared, defined, and implemented to work within the CLR.

Table 1-3 describes the fundamental built-in types defined by CTS. As the table

shows, the root object type is accessible through the object keyword of the CIL. So that

programming languages such as C#, C++/CLI projection, F#, VB.NET, and others can

access this root object type of the platform, there is a library of fundamental types that is

part of the CLI specification. This foundational library is the BCL.

This root object type is the System.Object reference type. When declaring a

variable of the object type (CTS model definition) or System.Object (BCL) reference

type using any high-level programming language such as C#, C++/CLI projection, F#,

VB.NET, and so on, the compiler generates an intermediate code using the object

keyword of the CIL. Table 1-4 summarizes and helps you understand and memorize

this sequence in a straightforward way.

Table 1-3.  CTS System.Object (Root Managed Object Type)

BCL Types CTS Types

C++/CLI projection C# programming language CIL

System::Object^

(same root managed

object type)

C# object is the keyword used for

CTS/BCL System.Object (same root

managed object type)

object (same root

managed object type)

Chapter 1 .NET Platform

18

�Virtual Execution System
The VES provides an environment for running managed code, security boundaries, and

memory management.

Two fundamental built-in types (string and array) are used as a starting point in this

discussion to explain various aspects of CTS and VES.

These platform built-in fundamental types are present in any kind of software, so

they stand as orthogonal elements.

However, the .NET platform also has a special foundational library, also part of the

CLI specification, that supplies specialized types necessary to design and implement any

kind of software: the BCL.

As we explore the the organization of the BCL, we’ll use the System.Object, System.

String, and System.Array reference types as starting points and deconstruct many

aspects of their implementation. This discussion will then enable us to explore the

interface types implemented by these types in various specialized frameworks (such as

Windows Forms, Windows Presentation Foundation [WPF], Universal Windows Platform

[UWP] applications, and ASP.NET).

Table 1-4.  Contextual Resources and Their Fundamental Purposes

Your .NET specialized
applications

Applications, services, components, libraries, and frameworks.

.NET Software development kit (SDK, a specialized tools for software

development, analysis, deployment, and some types of management)

Specialized components, libraries, and frameworks

CLR Implementation of a specialized managed environment based of CLI

specification

Uses the resources of the underlying hardware and operating system

platform (for example, Microsoft Windows operating system)

Adaptable and capable of using the specialized resources of the

underlying hardware and operating system (for example, Microsoft

Windows 10, Microsoft Windows Server 2016, Linux distributions, Apple

iOS, and Apple MacOS.

Chapter 1 .NET Platform

19

The VES provides direct support for a set of platform-specific built-in fundamental

types, defines a hypothetical machine with an associated machine model and state, and

provides a set of control flow constructs and an exception-handling model.

To a considerable extent, the purpose of the VES is to provide the support required to

execute the MSIL instruction set.

The VES is the system that implements and enforces the CTS model. For example,

the VES is responsible for loading and running programs written to CLI.

The VES provides the services needed to execute managed code and data using the

metadata to connect separately generated modules together at runtime. The VES is also

known as the execution engine.

�.NET Module
When we use C++ to write code, the result of the compiled and linked code is a

binary file in a specific format. In this case, we are working with PE/COFF (Portable

Executable / Common Object File Format), which is used by the Microsoft Windows

operating system. When we use C# to write code, or when we use any other

programming language or group of extensions that adhere to the CLI specification, the

resulting binary file is in the same PE/COFF format. However, that resulting binary file

has some data structures changed/included to support the requirements described

by CLI specification and aspects of the Microsoft Windows operating system. This is

called the CLI PE/COFF module.

Currently, on Microsoft Windows, the CLI PE/COFF module can have .EXE, .DLL,

.netmodule, .WinMD, and .UWP extensions created and recognized by the operation

system or development tools. In addition, it can have any other extension that can be

registered and recognized by the operating system or specialized tools (for software

development or not).

In fact, the use of an extension is not required, but it is a good practice and the

accepted standard.

If we are using .NET 5 or .NET Core (not the old Windows-only .NET Framework) in

a different operating system and on a different hardware platform, the extensions and

file formats used are specific to such software and hardware environments. However, the

fundamental structural resources defined in CLI as a starting point are the same.

Chapter 1 .NET Platform

20

One VES responsibility is to load the CLI PE/COFF modules. Doing so includes

verifying some structural rules about the file format and guaranteeing that all

information is as expected. The VES uses the metadata information in the CLI PE/COFF

modules to verify that the structural aspects are recognized by the rules that it knows as

valid, required, or optional. If the structural elements exist and are valid, the next step is

to apply the rules based on the nature of the elements and the context of use.

For example, if the element is a managed type, the execution system needs to verify

whether it is a value type or a reference type.

If the element is an assembly reference type, one responsibility of this type is to

describe various characteristics of the managed module (structural and behavioral),

such as the relationships it has with other managed modules and what managed types

are in it (and in any other managed module).

�.NET Assemblies
People often wonder what a .NET assembly is exactly. Put simply, and as defined and

described by the CLI, an assembly is a logical unit for management and deployment of

resources designed to work together. In an implementation of CLR, assemblies can be

static or dynamic.

�Static Assemblies

Static assemblies are those stored in a storage device, such as a typical hard disk.

In Microsoft Windows, the file format of each module is the CLI PE/COFF. These

assemblies have typical .NET 5 types and other specialized resources (audio/video

files, localization support files, images, and custom files created specifically for the

application), depending on the purpose of each application. .NET 5 and .NET Core

include the following assemblies and modules, for example:

•	 Assembly mscorlib

•	 Module mscorlib.dll

•	 Module System.Runtime.dll

•	 Module netstandard.dll

•	 Assembly System.Activities (part of Microsoft Windows Workflow

Foundation)

•	 Module System.Activities.dll

Chapter 1 .NET Platform

21

•	 Assembly System.Diagnostics.Debug

•	 Module System.Diagnostics.Debug.dll

•	 Module System.dll

•	 Module netstandard.dll

�Dynamic Assemblies

Dynamic assemblies are created dynamically at runtime and are created via specialized

API calls of .NET 5/Core. These dynamic assemblies are created and executed directly in

memory. However, the dynamic assembly can be saved in a storage device, but only after

being executed.

In a typical project, though, we have many files—binary files with executable code

or binary files with other types of data (for example, images)—that are part of the

software. Therefore, the description, verification, and reinforcement of the relations and

dependencies among them are made in part by the metadata.

Metadata is partly responsible for making resources available to perform these tasks.

�Working with Assemblies and Modules

For a static assembly or a dynamic assembly, the principles prevails, a way of keep

the cohesiveness of the types and resources designed to work together. Deployment,

Execution and Management. The information stored in the modules and created

through assemblies is what helps the runtime environment understand and apply the

rules to the relations among the elements.

Let’s use a typical static assembly.

There are four elements:

•	 CIL that implements all the types and required logic to the module

•	 Metadata

•	 The resources (audio/video files, localization support files, images

and custom files created specifically for the application)

•	 The assembly manifest

Chapter 1 .NET Platform

22

From the perspective of the runtime environment and basic structural rules

described in the CLI, of these four elements, only the assembly manifest is a required

item. However, considering even the simplest application or component, if we do

not have the other elements, the application or component does not have a practical

use (except for learning about the assemblies and modules, which I consider a quite

practical use).

�Organization of Elements in a Module (Physical File)

We start with a basic example here and continue with more details in Chapter 2.

Follow these steps:

	 1.	 Using the code editor of your preference, create a simple file

and save it with the name RVJ.ProDotNETCustomLibs.il in the

directory of your choice that can be used to build source code.

	 2.	 Open (as administrator) one of the developer command prompts

installed and configured by Microsoft Visual Studio 2019.

	 3.	 Copy the following sequence of MSIL code into the file RVJ.

ProDotNETCustomLibs.il and save the file:

.assembly extern System.Runtime {

 .ver 5:0:0:0

}

.assembly RVJ.ProDotNETCustomLibs.Buffers {

.ver 1:0:0:0

}

	 4.	 In the developer command prompt, write the following

command:

ilasm /DLL /Output=RVJ.ProDotNETCustomLibs.dll

RVJ.ProDotNETCustomLibs.il

If the code compiles without error, the output will be a binary file

with the name RVJ.ProDotNETCustomLibs.dll.

Chapter 1 .NET Platform

23

By following these steps, we have created a single-file static assembly, with only the

assembly manifest.

�Using the ILDASM Tool

With the code compiled and the binary generated, we now can use the Intermediate

Language Disassembler (ILDASM) tool. (ISLASM, in contrast, stands for Intermediate

Language Assembler.) On the same command prompt that we used to compile the code,

write the following command:

ildasm RVJ.ProDotNETCustomLibs.dll

With the module RVJ.ProDotNETCustomLibs.dll loaded by the ILDasm.exe tool, we

see the screen shown in Figure 1-5.

Now double-click in the manifest. A new window will open with information about

the assembly manifest, as shown in Figure 1-6.

Figure 1-5.  ILDASM showing a single-file static assembly

Chapter 1 .NET Platform

24

�Implementing the entrypoint Method

We have created a single-file static assembly, with only the assembly manifest. If

we want to create an .EXE, we need to change the source code. Using the same RVJ.

ProDotNETCustomLibs.il, update the source code to include a managed method that is

the entry point:

.assembly extern System.Runtime {

 .ver 5:0:0:0

}

.assembly RVJ.ProDotNETCustomLibs.Buffers {

.ver 1:0:0:0

}

.method static public void MyEntryPointMethod() cil managed {

.entrypoint

 ret

}

Figure 1-6.  ILDASM showing the assembly manifest of a single-file static assembly

Chapter 1 .NET Platform

25

As you can see, the name of the .entrypoint method does not need to be main.

To build this code, use the following command:

ilasm /Output=RVJ.ProDotNETCustomLibs.exe RVJ.ProDotNETCustomLibs.il

After the code compiles without error and with the binary generated, we can use the

ILDasm.exe tool to load the module RVJ.ProDotNETCustomLibs.exe, and then we have

more than just the assembly manifest, as shown in Figure 1-7.

As shown in Figure 1-8, we have created a single-file static assembly, with the

assembly manifest and one method (in this case, the entry-point method). When RVJ.

DotNETProCustomLibs.exe runs, it runs like any other .NET managed executable.

Figure 1-7.  ILDASM showing a single-file static assembly

Figure 1-8.  ILDASM showing a single-file static assembly, with the assembly
manifest and one managed method

Chapter 1 .NET Platform

26

Listing 1-5 shows an example of managed instructions from one of the sample

projects that comes with the companion content of this book. The .module directive

indicates the name of the binary module (in this case, RVJ.ProDotNETCustomLibs.

exe). The .assembly directive describes which assemblies make this a logical unit of

management and deployment of resources designed to work together. The .assembly RVJ.

ProDotNETCustomLibs.Buffers (without the extern keyword) describes that this assembly

is in the current module. The use of .assembly extern directive describes to the

assembly the types that your .assembly or .module are referencing. For example, .assembly

extern System.Runtime indicates that the assembly RVJ.ProDotNETCustomLibs.

Buffers is using one or more types of the assembly mscorlib. The highlighted CIL

instructions are the same that you can read in the RVJ.ProDotNETCustomLibs.dll or RVJ.

ProDotNETCustomLibs.exe modules. Chapter 2 discusses these and other instructions in

more detail (with even fuller detail following in subsequent chapters).

Listing 1-5.  Fundamental Keywords Used by Static Assemblies or Dynamic

Assemblies

.assembly extern System.Runtime {

 .ver 5:0:0:0

}

.assembly RVJ.ProDotNETCustomLibs.Buffers

{

 .ver 1:0:0:0

}

.module RVJ.ProDotNETCustomLibs.exe

.imagebase 0x00400000

.file alignment 0x00000200

.stackreserve 0x00100000

.subsystem 0x0003 // WINDOWS_CUI

.corflags 0x00000001 // ILONLY

.method public static void MyEntryPointMethod() cil managed {

 .entrypoint

 // Code size 1 (0x1)

 .maxstack 8

 IL_0000: ret

} // end of method 'Global Functions'::MyEntryPointMethod

Chapter 1 .NET Platform

27

As you can see, the VES handles a lot of work. Even still, though, there are more

interesting functionalities within this mechanism.

Chapter 2 discusses these resources and goes into more detail about the CTS and

VES. Specifically, you’ll read more about fundamental built-in types and about how the

execution environment deals with these types and structural elements of the platform.

Initially, we use code written directly in CIL to provide more information about the

use of the types and so that you better understand how to work with modules and

assemblies. We then use some code in C++ to highlight some internal aspects of the

execution environment and some special types. From that point, we embark on our

journey through foundational BCL using the MSIL and C# programming languages.

Chapter 1 .NET Platform

29
© Roger Villela 2020
R. Villela, Pro .NET 5 Custom Libraries, https://doi.org/10.1007/978-1-4842-6391-4_2

CHAPTER 2

Custom .NET Data Type
This chapter covers implementation methods that a .NET custom data type inherits from

the System.Object root .NET data type.

�Management of Data Types
A Common Language Runtime (CLR) implementation involves a set of elements for a

fundamental architectural model. Each element has an essential conceptual definitions

and rules to follow and engineering mechanisms to implement (regardless of the target

operating system and hardware platforms).

In fact, when we are planning and implementing data types, components, and

libraries for an implementation of a CLR environment and technologies of a .NET

platform, we are creating software elements for a nonspecific hardware-based computer,

a software-only computer more specifically, or a virtual computer as it is more

commonly called (as you learned in Chapter 1).

The CLR, as its name suggests, is an implementation based on the official ECMA-335

Common Language Infrastructure (CLI) specification. In this book, we use a .NET 5

implementation of the CLR for the sample projects and respective source code.

�Working with System.Object, the Root of
.NET Reference Types
System.Object is the .NET full name of the managed root type from which all managed

and unmanaged .NET data types derive (directly, indirectly, implicitly, or explicitly).

As shown in Figure 2-1, in a .NET platform we have two fundamental conceptual

data types: reference types and value types.

https://doi.org/10.1007/978-1-4842-6391-4_2#DOI

30

The reference type is the root for every kind of .NET data type. For example, the value

and interface types are a specialization of the reference type. All kinds of .NET data types

inherit, implicitly or explicitly, fundamental characteristics of a reference type.

The fundamental difference for the implementation of each kind of .NET data type is

the contextual comprehension of the execution environment of the CLR about the .NET

data type in use and the applied standards of the ECMA-335 specification.

Another typical characteristic of a .NET data type is the support for the

implementation of multiple .NET interfaces for the same data type. That is, the same

.NET data type can implement multiple contracts.

As of this writing, we cannot have a .NET data type with support for multiple

inheritance as defined in object-oriented programming (OOP). That is, the same .NET

data type inherits from more than one .NET class type at the same level in the hierarchy.

A reference type is always a class/object or interface type. An interface type is a

kind of type derived from a conceptual reference type. A value type is always a structure

data type. Both inherit from the System.Object root .NET reference type, as shown in

Figure 2-2.

Figure 2-1.  Reference type is the root for every kind of .NET data type

Chapter 2 Custom .NET Data Type

31

For example, System.Array (and all arrays) derives from the System.Array abstract

reference type that is part of the Common Type System (CTS), directly supported by the

Virtual Execution System (VES), described and supported in the metadata, and part of

the Common Language Specification (CLS), as discussed in Chapter 1.

In the CLR execution environment implementation, the reference type is always

allocated space in heap memory. Because of this, it is called a heap-based data type

and is recommended for more complex data types with long-lived instances, which are

not necessarily deallocated when out of scope, including a nested block scope, when

supported by a programming language in use.

In a .NET Base Class Library (BCL) implementation, every .NET reference type has

a root data type, which for .NET is the System.Object reference type, also part of every

.NET BCL implementation for any target environment.

At the time of this writing, the .NET System.Object reference type is a piece of the

following .NET assemblies/modules:

•	 .NET 5 (System.Runtime.dll)

•	 .NET Core (System.Runtime.dll)

•	 .NET Framework (mscorlib.dll)

•	 .NET Standard (netstandard.dll)

•	 UWP (System.Runtime.dll)

•	 Xamarin.Android (mscorlib.dll)

Figure 2-2.  System.Object is the root .NET type for all value and reference types

Chapter 2 Custom .NET Data Type

32

•	 Xamarin.iOS (mscorlib.dll)

•	 Xamarin.Mac (mscorlib.dll)

As shown in Listing 2-1, Listing 2-2, and Figure 2-3, the System.Object .NET

reference type is a concrete class and the root of all .NET reference and .NET value types:

Listing 2-1.  For the .NET Framework (Microsoft Windows Only), Xamarin.

Android, Xamarin.iOS, and Xamarin.Mac, We Have Specialized .NET Attributes

Explicitly Applied for Implementation

[System.Runtime.InteropServices.ClassInterface(System.Runtime.

InteropServices.ClassInterfaceType.AutoDual)]

[System.Runtime.InteropServices.ComVisible(true)]

[System.Serializable]

public class System.Object{}

Listing 2-2.  For .NET 5, .NET Core, .NET Standard, and UWP, We Have No .NET

Attributes Explicitly Applied for Implementation

public class System.Object{}

Figure 2-3.  Concrete classes: The System.Object is the root of all .NET reference
types and, the System.ValueType is the root of all .NET value types

Chapter 2 Custom .NET Data Type

33

Listing 2-3, Listing 2-4, and Figure 2-4 show the following examples implemented in

the .NET BCL:

•	 System.Array

•	 System.Attribute

•	 System.Buffer

•	 System.Console

•	 System.Delegate

•	 System.Environment

•	 System.Exception

•	 System.FormattableString

•	 System.MulticastDelegate

•	 System.Nullable

•	 System.String

Also, we have more specialized derivations of a System.Object as part of the .NET

BCL and .NET Framework Class Library (FCL), including the following:

•	 System.Memory<T>

•	 System.OperatingSystem

•	 System.Predicate<in T>

•	 System.Uri

•	 System.ValueType (the root abstract class for all value types)

Chapter 2 Custom .NET Data Type

34

Listing 2-3.  For the .NET Framework (Microsoft Windows only), Xamarin.

Android, Xamarin.iOS, and Xamarin.Mac, we have Specialized .NET Attributes

Explicitly Applied for Implementation

[System.Runtime.InteropServices.ComVisible(true)]

[System.Serializable]

public abstract class System.Array : System.ICloneable, System.Collections.

IList, System.Collections.IStructuralComparable, System.Collections.

IStructuralEquatable

[System.Runtime.InteropServices.ComVisible(true)]

[System.Serializable]

public sealed class System.String : System.ICloneable, System.IComparable,

System.IComparable <System.String>, System.IConvertible, System.

IEquatable<System.String>, System.Collections.Generic.IEnumerable<System.Char>

Figure 2-4.  .NET BCL has implemented as a derivation of System.Object common
types such as System.Array and System.String

Chapter 2 Custom .NET Data Type

35

Listing 2-4.  For .NET 5, .NET Core, .NET Standard, and UWP, We Have No .NET

Attributes Explicitly Applied for Implementation

public abstract class System.Array : System.ICloneable, System.Collections.

IList, System.Collections.IStructuralComparable, System.Collections.

IStructuralEquatable

public sealed class System.String : System.ICloneable, System.IComparable,

System.IComparable <System.String>, System.IConvertible, System.

IEquatable<System.String>, System.Collections.Generic.IEnumerable<System.Char>

�System.ValueType, the Root of .NET Value Types
In a CLR execution environment implementation, a value type is always allocated in

stack memory. Because of this characteristic, it is also called a stack-based data type,

and it is recommended (when supported by the programming language in use) for

noncomplex custom data types with short-lived instances that are deallocated when out

of scope, including when used in a nested block scope.

In the .NET BCL implementation, every .NET value type has the root data type

System.ValueType reference type, which is also part of every .NET BCL implementation

for any target environment.

System.ValueType is a .NET reference type declared as an abstract class and derives

directly from the System.Object .NET reference type, as shown in Listing 2-5, Listing 2-6,

and Figure 2-5.

Listing 2-5.  For .NET Framework (Microsoft Windows Only), Xamarin.Android,

Xamarin.iOS, and Xamarin.Mac, We Have Specialized .NET Attributes Explicitly

Applied for Implementation

[System.Runtime.InteropServices.ComVisible(true)]

[System.Serializable]

public abstract class System.ValueType: System.Object {}

Listing 2-6.  For .NET 5, .NET Core, .NET Standard, and UWP, We Have No .NET

Attributes Explicitly Applied for Implementation

public abstract class System.ValueType: System.Object {}

Chapter 2 Custom .NET Data Type

36

As shown in Listing 2-7, Listing 2-8, and Figure 2-6, in .NET BCL we have

fundamental types implemented as a derivation of System.ValueType, including the

following few example:

•	 System.Byte

•	 System.SByte

•	 System.UInt32

•	 System.Int32

•	 System.UInt16

•	 System.Int16

•	 System.UInt64

•	 System.Int64

•	 System.Single

•	 System.Double

•	 System.Decimal

Figure 2-5.  The System.ValueType .NET reference type is declared as an abstract
class and derives directly from the System.Object .NET reference type

Chapter 2 Custom .NET Data Type

37

Also, we have more specialized derivations of a System.ValueType as part of the

.NET BCL and .NET FCL, including the following:

•	 System.Boolean

•	 System.Char

•	 System.Enum

•	 System.DateTime

•	 System.Text.Rune (introduced in .NET Core 3.0)

Figure 2-6.  Inheritance model for the .NET System.Int32 value type and base
classes

Chapter 2 Custom .NET Data Type

38

Listing 2-7.  For .NET Framework (Microsoft Windows), Xamarin.Android,

Xamarin.iOS, and Xamarin.Mac, We Have Specialized .NET Attributes Explicitly

Applied for Implementation

[System.Runtime.InteropServices.ComVisible(true)]

[System.Serializable]

public struct System.Int32: System.IComparable, System.IComparable<System.

Int32>, System.IConvertible, System.IEquatable<System.Int32>, System.

IFormattable

Listing 2-8.  For .NET 5, .NET Core, .NET Standard, and UWP, We Have No .NET

Attributes Explicitly Applied for Implementation

public struct System.Int32 : System.IComparable, System.IComparable<System.

Int32>, System.IConvertible, System.IEquatable<System.Int32>, System.

IFormattable

�Methods
We should override/overload certain inherited methods of the System.Object for our

.NET custom data types, and not work with default inherited implementations of the

base types.

�Working with System.Object.Equals()

The System.Object.Equals() method has two implementations that we can access for

our .NET custom data type. One is an instance method, and the other is a static method.

We access the instance method because, firstly, we have our .NET custom data type

derived from System.Object, directly or indirectly, and secondly because the instance

method is defined with the public keyword, which is an access modifier.

As shown by Listing 2-9 and Listing 2-10, we should use the override access

modifier keyword on the instance method in our .NET custom-derived data type

because the System.Object.Equals() instance method is also defined with the virtual

access modifier keyword.

Chapter 2 Custom .NET Data Type

39

If the instance method were defined with only the public access modifier keyword

but not with the virtual access modifier keyword, our .NET custom-derived data type

could access the instance method, but it could not override it using the implementation

model provided by CLR for virtual methods.

Listing 2-9.  The Instance Method Is Also Defined with the Virtual Access

Modifier Keyword

public virtual System.Boolean Equals(System.Object);

We should use the override access modifier keyword because our specialization of

System.Object (or another .NET data type) is creating a contextual logic and requires

specialized verifications too, as shown in Listing 2-10.

Listing 2-10.  Using the override Access Modifier Keyword for Our Specialization

namespace RVJ.Core.Business {

 public class Person : System.Object {

 #region Private fields

 private System.Guid _internal_ID;

 private UInt32 _age;

 private String _firstName;

 private String _lastName;

 #endregion

 #region Constructor(s)

 public Person() : base() {

 this._internal_ID = System.Guid.NewGuid();

 this._age = new UInt32();

 this._firstName = String.Empty;

 this._lastName = String.Empty;

 return;

 }

 #endregion

 #region Override System.Object.Equals()

Chapter 2 Custom .NET Data Type

40

 public override Boolean Equals(System.Object instance) {

 // An instance of Person or derivation of it
 Person _another = (instance as Person);
 �Boolean _equals = ((_another != null) &&

(this._internal_ID == _another._internal_ID)
&& System.Object.ReferenceEquals(this, _another));

 return _equals;
 }

 #endregion
 �#region New implementation for System.Object.

ReferenceEquals()

 �public new static System.Boolean ReferenceEquals

(System.Object first, System.Object second) {

 // An instance of Person or derivation

 Person _first = (first as Person);

 Person _second = (second as Person);

 �Boolean _equals = (((_first !=

null) && (_second != null)) &&

(_first._internal_ID.Equals

(_second._internal_ID) && System.

Object.ReferenceEquals

(_first, _second)));

 return _equals;

 }

 #endregion

 #region Overrides System.Object.GetHashCode()

 public override Int32 GetHashCode() {

 return System.HashCode.Combine<Int32>(base.GetHashCode());

 //return base.GetHashCode();

 }

 #endregion

 };

};

Chapter 2 Custom .NET Data Type

41

Our RVJ.Core.Business.Person.Equals() instance method is a mix of fundamental

and required rules of the CLR execution environment and specialized contextual rules

that are specific to our .NET custom data type.

To be considered equals, two instances of a .NET reference type should be of the

same lineage at some point in the planned hierarchy. For example, an instance of RVJ.

Core.Business.Person or of a derivation of it can be compared only with another

instance of RVJ.Core.Business.Person or a derivation of it (directly or indirectly).

The System.Object.ReferenceEquals() public static method is used because it

verifies whether we are pointing to the same instance. That is, it verifies whether we are

trying to compare _instanceOfPerson.Equals(this) or RVJ.Core.Business.Person.

Equals(this, this) when using the static method, because both expressions should

always return true.

This sounds unnecessary, but it should be considered part of the rules because of

security. If part of the metadata of an instance were to be corrupted by an attack of some

kind, the expressions _instanceOfPerson.Equals(this) and RVJ.Core.Business.

Person.Equals(this, this) will not work when using the static method (as explained

here and as defined by ECMA-335 specification rules for CLR implementations).

With these fundamental verifications, we are also introducing rules specific to

our .NET custom data type. Up to this point, only the concept of internal ID has been

introduced, but our specialization can introduce others, as required.

As shown in Listing 2-11 and Listing 2-12, System.Object.Equals() has another

implementation that we can access because it is public and static.

Listing 2-11.  System.Object.Equals() Also Has an Implementation Defined as

public and static

public static System.Boolean Equals(System.Object, System.Object);

Because it is a static member, we don’t need an instance to access the member.

Because we are working with the relationship and inheritance, however, this is

considered by .NET rules an inherited member, and we can hide this specific System.

Object.Equals() implementation by using the new access modifier keyword.

As shown in Listing 2-12, we should create for our .NET custom data types a

specialized implementation using the new access modifier keyword that hides the

inherited behavior.

Chapter 2 Custom .NET Data Type

42

Listing 2-12.  Specialized Implementation Using the new Access Modifier

Keyword for Our Custom .NET Data Type

#region Namespaces/Assemblies

using System;

#endregion

namespace RVJ.Core.Business {

 public class Person : System.Object {

 #region Private fields

 private System.Guid _internal_ID;

 private UInt32 _age;

 private String _firstName;

 private String _lastName;

 #endregion

 #region Constructor(s)

 public Person() : base() {

 this._internal_ID = System.Guid.NewGuid();

 this._age = new UInt32();

 this._firstName = String.Empty;

 this._lastName = String.Empty;

 return;

 }

 #endregion

 #region Override System.Object.Equals()

 public override Boolean Equals(System.Object instance) {

 // An instance of Person or derivation

 Person _another = (instance as Person);

 �Boolean _equals = ((_another != null) && (this._internal_ID

== _another._internal_ID) && System.Object.ReferenceEquals(

this, _another));

Chapter 2 Custom .NET Data Type

43

 return _equals;

 }

 �public new static Boolean Equals(System.Object first, System.

Object second) {

 // An instance of Person or derivation

 Person _first = (first as Person);

 Person _second = (second as Person);

 �/* Boolean _equals = ((_first != null) && (_second != null)

&& ((_first._internal_ID == _second._internal_ID)) &&

System.Object.ReferenceEquals(_first, _second)); */

 �// This expression implements

the expression above.

 �return ((_first != null) ? _first.Equals(_second) : _

second.Equals(_first)) ;

 }

 #endregion

 #region Overrides System.Object.GetHashCode()

 public override Int32 GetHashCode() {

 return System.HashCode.Combine<Int32>(base.GetHashCode());

 //return base.GetHashCode();

 }

 #endregion

 };

};

Listing 2-13 shows examples of expressions that check the RVJ.Core.Business.

Person.Equals() instance and static operation implementations.

Chapter 2 Custom .NET Data Type

44

Listing 2-13.  Expressions for RVJ.Core.Business.Person.Equals() Instance and

Static Operation Implementations

Person _personA = new Person();

Person _personB = new Person();

#region RVJ.Core.Business.Person.Equals() operation

// Must be false

Boolean _areEquals = _personA.Equals(_personB);

// Must be false

_areEquals = _personB.Equals(_personA);

// Must be false

_areEquals = _personA.Equals(null);

// Must be false

_areEquals = _personB.Equals(null);

// Must be false

_areEquals = _personA.Equals(new Object());

// Must be false

_areEquals = _personB.Equals(new Object() ;

// Must be false

_areEquals = _personA.Equals(_ = new Object());

// Must be false

_areEquals = _personB.Equals(_ = new Object());

// Must be false

_areEquals = _personA.Equals(_ = new Person());

// Must be false

_areEquals = _personB.Equals(_ = new Person());

// Must be false

_areEquals = _personA.Equals(_ = new Int32());

Chapter 2 Custom .NET Data Type

45

// Must be false

_areEquals = _personB.Equals(_ = new Int32());

// Must be false

_areEquals = _personA.Equals(_ = _personB);

// Must be false

_areEquals = _personB.Equals(_ = _personA);

// Must be false

_areEquals = (_ = _personA).Equals(_personB);

// Must be false

_areEquals = (_ = _personB).Equals(_personA);

// Must be true

_areEquals = _personA.Equals(_personA);

// Must be true

_areEquals = _personB.Equals(_personB);

// Must be true

_areEquals = _personA.Equals(_ = _personA);

// Must be true

_areEquals = _personB.Equals(_ = _personB);

// Must be true

_areEquals = (_ = _personA).Equals(_personA);

// Must be true

_areEquals = (_ = _personB).Equals(_personB);

#endregion

Operators == and != for Equality and Inequality Behaviors

An equality operation is implemented through the == operator, and an inequality

operation is implemented through the != operator, as shown in Listing 2-14.

Chapter 2 Custom .NET Data Type

46

When implementing a .NET custom data type that overrides System.Object.

Equals(), as we have with RVJ.Core.Business.Person, we should also implement the

== and != operators.

Listing 2-14.  Implementing == and != Operators

#region Operators Equality == and Inequality !=

 public static Boolean operator ==(Person first, Person second) {

 return Person.ReferenceEquals(first, second);

 }

 public static Boolean operator !=(Person first, Person second) {

 return !Person.ReferenceEquals(first, second);

 }

#endregion

Because we have a good implementation for the RVJ.Core.Business.Person.

Equals() instance and static methods, our implementations for the == and != operators

are very objective. Because we are working with static methods for == and != operators

as required by .NET, we are using our implementation of the RVJ.Core.Business.

Person.ReferenceEquals() static method for the work.

�Working with System.Object.GetHashCode()

System.Object.GetHashCode() is an inheritable instance method for a default hash

function, and it is defined with public and virtual access modifier keywords.

When we have our .NET custom data type, it is important to have our specialized

implementation for System.Object.GetHashCode() with the default method

implementation.

According to the official Microsoft guidelines for this method, when we override

System.Object.Equals(System.Object) we must also override System.Object.

GetHashCode(). Doing so helps guarantee that hash tables will work correctly, for

example.

Listing 2-15.  Default Signature for Implementation for Hash Code of the System.

Object Root Class

public virtual System.Int32 GetHashCode();

Chapter 2 Custom .NET Data Type

47

As shown in Listings 2.15 and 2.16, a rule that applies to the System.Object.

GetHashCode() method is that when we have a specialized implementation for

System.Object.Equals() methods, as we have with the RVJ.Core.Business.Person

.NET custom data type, we must have an implementation for the System.Object.

GetHashCode() default method implementation.

Listing 2-16 shows our custom implementation for the RVJ.Core.Business.Person.

GetHashCode() instance method.

Listing 2-16.  Custom Implementation for Hash Code Using the System.

HashCode Reference Type

#region Namespaces/Assemblies

using System;

#endregion

namespace RVJ.Core.Business {

 public class Person : System.Object {

 #region Private fields

 private Guid _internal_ID;

 private UInt32 _age;

 private String _firstName;

 private String _lastName;

 #endregion

 #region Constructor(s)

 public Person() : base() {

 this._internal_ID = Guid.NewGuid();

 this._age = new UInt32();

 this._firstName = String.Empty;

 this._lastName = String.Empty;

 return;

 }

 #endregion

 #region Override System.Object.Equals()

Chapter 2 Custom .NET Data Type

48

 public override Boolean Equals(System.Object instance) {

 // An instance of Person or derivation

 Person _another = (instance as Person);

 �Boolean _equals = ((_another != null) && (this._internal_ID

== _another._internal_ID) && System.Object.ReferenceEquals

(this, _another));

 return _equals;

 }

 #endregion

 #region Overrides System.Object.GetHashCode()

 public override Int32 GetHashCode() {

 return System.HashCode.Combine<Int32>(base.GetHashCode());

 //return base.GetHashCode();

 }

 #endregion

 };

};

.NET BCL has the System.HashCode .NET value type as part of the System.Runtime.

dll .NET module/assembly that we can use for generating a hash code not based on the

System.Object.GetHashCode() instance method.

In official documentation about .NET, Microsoft warns against certain

unrecommended practices for the use of a value returned for hash codes, as shown in

Figure 2-7. You will understand the importance of this warning better when we discuss

implementing cloning operations later in this book.

Chapter 2 Custom .NET Data Type

49

For additional information, see the official Microsoft documentation at

https://docs.microsoft.com/en-us/dotnet/api/system.hashcode?view=net-5.0.

You can also find additional information in the GitHub official source code for

runtime fundamental libraries at

https://github.com/dotnet/runtime/blob/master/src/libraries/System.Private.

CoreLib/src/System/HashCode.cs.

Figure 2-7.  Best practices orientation about custom implementation of hash codes

Chapter 2 Custom .NET Data Type

https://docs.microsoft.com/en-us/dotnet/api/system.hashcode?view=net-5.0
https://github.com/dotnet/runtime/blob/master/src/libraries/System.Private.CoreLib/src/System/HashCode.cs
https://github.com/dotnet/runtime/blob/master/src/libraries/System.Private.CoreLib/src/System/HashCode.cs

51
© Roger Villela 2020
R. Villela, Pro .NET 5 Custom Libraries, https://doi.org/10.1007/978-1-4842-6391-4_3

CHAPTER 3

.NET Methods:
Implementation Details
This chapter covers methods that a .NET custom data type inherits from the System.

Object root .NET data type and aspects of the execution environment.

�Methods
Previously in this book, you read about methods that we should override for .NET

custom data types. This section covers some internal aspects of inherited methods and

related issues with regard to the execution environment.

�About the Use of Operators
Operators are implemented as methods for implementing specific operations, and they

are also implemented using the static keyword for modifier and the public keyword

for access modifier (for example, when implementing the operators == and !=).

Listing 3-1 shows an example of C# source code implementation, and Listing 3-2 and

Listing 3-3 show the Microsoft Intermediate Language (MSIL) source code generated

from a C# source code implementation, respectively:

https://doi.org/10.1007/978-1-4842-6391-4_3#DOI

52

Listing 3-1.  C# Source Code Implementation for RVJ.Core.Person == and !=

Operators

 �public static Boolean operator ==(Person

first, Person second) {

 return Person.ReferenceEquals(first, second);

 }

 �public static Boolean operator !=(Person

first, Person second) {

 return !Person.ReferenceEquals(first, second);

 }

Listing 3-2.  MSIL Implementation of the RVJ.Core.Business.Person.op_Equality(

RVJ.Core.Business.Person, RVJ.Core.Business.Person) Method

.method public hidebysig specialname static

 bool op_Equality(class RVJ.Core.Business.Person first,

 �class RVJ.Core.Business.Person second) cil

managed

{

 // Code size 8 (0x8)

 .maxstack 8

 IL_0000: ldarg.0

 IL_0001: ldarg.1

 IL_0002: call �bool RVJ.Core.Business.Person::ReferenceEquals

(object,

 object)

 IL_0007: ret

} // end of method Person::op_Equality

Chapter 3 .NET Methods: Implementation Details

53

Listing 3-3.  MSIL Implementation of the RVJ.Core.Business.Person.op_

Inequality(RVJ.Core.Business.Person, RVJ.Core.Business.Person) Method

.method public hidebysig specialname static

 bool op_Inequality(class RVJ.Core.Business.Person first,

 �class RVJ.Core.Business.Person second) cil

managed

{

 // Code size 11 (0xb)

 .maxstack 8

ldarg.0

ldarg.1

call bool RVJ.Core.Business.Person::ReferenceEquals(object, object)

ldc.i4.0

ceq

ret

} // end of method Person::op_Inequality

In MSIL implementations of equality (==) and inequality (!=) operators and

operations, we have the hidebysig and specialname MSIL keywords as part of the

metadata.

The keyword hidebysig means “hide by signature” and is ignored by the

implementation of the Virtual Execution System (VES). In ECMA-335, however, this

is defined as supplied only for the use of tools such as compilers, syntax analyzers in

programming languages, and code generators.

In programming language syntaxes and semantics, hidebysig defines that all

declared/defined methods in a .NET custom data type must hide all inherited .NET

methods that have a matching method signature, and this is valid for any point in the

hierarchy of base class types.

When hidebysig is omitted in the metadata of the MSIL for the method, the rules

in programming languages must hide all methods with the same name, and do not

consider the signature for this scenario as a differential.

Typically, the C++ programming language follows “hide by name” as the semantics

for this context, and C# and Java use both “hide by name” and “hide by signature” for

semantics.

Chapter 3 .NET Methods: Implementation Details

54

When present or not in MSIL metadata, the interpretation of this scenario for

keyword hidebysig is part of programming language semantics, syntax, and specialized

tools. At the time of this writing, the execution environment provided by VES ignores this

keyword.

For the MSIL specialname keyword, as indicated by its name, the method needs a

different and specialized treatment by specialized tools, such as compilers, metadata-

validation tools, and reflection-based libraries.

This differs for the MSIL keyword rtspecialname (which means “runtime

special name”) that is applied for a metadata item when the VES-provided execution

environment needs to provide a different and specialized treatment for the MSIL

metadata item. This is the case with, for example, MSIL keywords .ctor and .cctor

(constructor and class constructor, respectively).

Operator overloading is described through method names and setting the MSIL

specialname bit in the metadata. This combination helps to avoid name collision

between items generated by tools and the execution environment spaces versus items

defined/informed through the developer’s spaces.

�Operator Overloading: Programming Language Semantics
and Syntaxes
When operator overloading is supported by a programming language’s semantics and

syntaxes, and the described semantics above are also supported, the ECMA-335 specifies

precise semantics for the work of operators, including the name for operator methods.

The required prefix op_ is used as part of the name of the methods for the operators

(for example, op_Equality() and op_Inequality()).

The full names of operator methods are also special and defined in ECMA-335.

The ECMA-335 specification includes an “intermediate assembly language”: the

MSIL. Here is a necessary distinction. When we write code using a programming

language that adheres to the ECMA-335 specification, the result of the compiled code is

a sequence of instructions of an MSIL instruction set. These instructions are not for real

hardware or processors. Instead, they are for a virtual environment that includes some

characteristics and functionalities of the elements in a real computer (exactly what the

resources in the ECMA-335 specification describe).

Chapter 3 .NET Methods: Implementation Details

55

The virtual environment specializations are based on what an advanced operating

system has (for example, advanced security rules, mechanisms to constantly observe

your own environment, ways to guarantee data integrity based on more flexible or

disciplined rules, capacity to recognize contextuality and to be dynamically extensible

and expandable, interact with different and specialized environments like data

management systems, development system, other platforms and capable of host, and be

hosted by other environments.

Remember that this is not a one-to-one mapping between reserved words, data

structures, specialized resources, or anything else in programming languages that

support the .NET platform. That is, what is formalized through the instructions in

MSIL, what is defined by the ECMA-335 specification, and what is implemented by the

mechanisms on the platform is what prevails.

Remember that the .NET platform is programming language, operating system, and

hardware platform agnostic. So, not every operator is supported by every programming

language for the platform. Consult the programming language documentation for details

about supported operators.

The following list shows examples of required names for binary operators. When a

compiler tool chain generates the MSIL code, the following names should be used:

•	 op_Addition for + symbol

•	 op_Subtraction for - symbol

•	 op_Multiply for * symbol

•	 op_Division for / symbol

•	 op_Modulus for % symbol

•	 op_ExclusiveOr for ^ symbol

•	 op_BitwiseAnd for & symbol

•	 op_BitwiseOr for | symbol

•	 op_LogicalAnd for && symbols

•	 op_LogicalOr for || symbols

•	 op_Assign for = symbol

•	 op_LeftShift for << symbols

•	 op_RightShift for >> symbols

Chapter 3 .NET Methods: Implementation Details

56

•	 op_Equality for == symbols

•	 op_GreaterThan for > symbol

•	 op_LessThan for < symbol

•	 op_Inequality for != symbols

•	 op_GreaterThanOrEqual for >= symbols

•	 op_LessThanOrEqual for <= symbols

•	 op_MemberSelection for -> symbols

•	 op_RightShiftAssignment for >>= symbols

•	 op_MultiplicationAssignment for *= symbols

•	 op_PointerToMemberSelection for ->* symbols

•	 op_SubtractionAssignment for -= for symbols

•	 op_ExclusiveOrAssignment for ^= symbols

•	 op_LeftShiftAssignment for <<= symbols

•	 op_ModulusAssignment for %= symbols

•	 op_AdditionAssignment for += symbols

•	 op_BitwiseAndAssignment for &= symbols

•	 op_BitwiseOrAssignment for |= symbols

•	 op_Comma for , symbol

•	 op_DivisionAssignment for /= symbols

For unary operators, the names must be as follows:

•	 op_Decrement

•	 op_Increment

•	 op_UnaryNegation

•	 op_UnaryPlus

•	 op_LogicalNot

•	 op_True

Chapter 3 .NET Methods: Implementation Details

57

•	 op_False

•	 op_AddressOf

•	 op_OnesComplement

•	 op_PointerDereference

Be aware that the .NET environment uses the full sequence for the name of a .NET

type. For example, the .NET execution environment does not have the concept of

namespaces. That is an element of productivity made available by tools of programming

languages and with support of professional integrated development environments

(IDEs), analyzers, and source code editors.

In our example, this means that the name of our sample custom .NET data type is

RVJ.Core.Business.Person() and not Person() only. In fact, the set of data information

used to distinguish a .NET class type has more than a sequence of names.

In the intermediate language generated, the source code is based on the elements

defined in the ECMA-335 and some extensions, depending on the provider of the .NET

environment implementation and features supported.

For our examples, we are using the Microsoft implementation of Common

Intermediate Language (CIL), known as MSIL, but with all the features available in all

supported platforms, such as Microsoft Windows, Linux distributions, and the Apple

macOS.

�Working with System.Object.GetType()
This section covers methods that we do not need to override in our .NET custom data

types, using the System.Object.GetType() instance method as an example.

System.Object.GetType() is a noninheritable instance method defined with the

public access modifier keyword, and it is nonvirtual. In that way, any instance of a .NET

reference type or .NET value type can access this instance method.

Listing 3-4 shows that we have the public API for System.GetType() that is available

in .NET Base Class Library (BCL).

Listing 3-4.  Public API for Accessing the System.GetType() Instance Method

public System.Type GetType();

Chapter 3 .NET Methods: Implementation Details

58

For System.Object, we have the declaration shown in Listing 3-5 for the System.

Object.GetType() instance method (as-is in BCL managed source code at the time of

this writing).

Listing 3-5.  System.Object.GetType() Instance Method (As-Is in BCL Managed

Source Code for .NET)

[Intrinsic]

[MethodImpl(MethodImplOptions.InternalCall]

public extern Type GetType();

This means that the implementation of System.Object.GetType() is provided in

the C++ programming language portion of a CLR implementation, and the method

is specialized, requiring an implementation provided directly by the VES in runtime,

and not as ordinary C# programming language source code using a public interface of

foundational BCL.

In the implementation of native portions of foundational BCL, this method does not

call System.Reflection (or similar) APIs. For example, a call to the System.Object.

GetType() instance method, internally calls a C++ function (method) member called

ObjectNative::GetClass() that calls ObjectNative::GetClassHelper().

C++ function (method) member ObjectNative::GetClass() checks whether the

type of object exists in a managed environment, as checked by the macros shown in

Listing 3-6.

Listing 3-6.  Verifies Whether the Type of Object Exists in the Managed

Environment and Is Valid for the VES

#define ObjectToOBJECTREF(obj) ((PTR_Object) (obj))

#define OBJECTREFToObject(objref) ((PTR_Object) (objref))

Be aware and do not confuse an unmanaged .NET type with a native .NET type,

because the VES has support for both.

System.Object is a class type (and thus a reference type), a managed type, and a key

piece of the foundational BCL library, framework class libraries such as the Framework

Class Library (FCL), and extended/specialized libraries.

For example, we have the System.IntPtr and System.UIntPtr, which are

unmanaged .NET types (and not native .NET types).

Chapter 3 .NET Methods: Implementation Details

59

Resuming, our .NET custom data type does not need to create a new implementation

for System.Object.GetType().

�Constructors in a .NET Data Type
A reference type always has a default constructor, which is automatically generated by

the compiler of the programming language that we are using; the CLR implementation

model requires this.

Listing 3-7, Listing 3-8, and Listing 3-9 show three different definitions that have the

same MSIL results and semantics.

Listing 3-7.  Default Constructor Generated Automatically by the Compiler, and

type Implicitly Derives from the System.Object Root Type

namespace RVJ.Core.Business {

 public class Person {}

}

Listing 3-8.  Default Constructor Generated Automatically by the Compiler, and

type Explicitly Derives from the System.Object Root Type

namespace RVJ.Core.Business {

 public class Person : System.Object {}

}

Listing 3-9.  Default Constructor Implemented by the Developer, Calls Directly

the base Type in the Hierarchy, and type Explicitly Derives from the System.

Object Root Type

namespace RVJ.Core.Business {

 public class Person : System.Object {

 public Person() : base() {} // default instance constructor.

 }

}

Chapter 3 .NET Methods: Implementation Details

60

A specific MSIL keyword rtspecialname is applied for a metadata item when the

execution environment provided by VES needs to provide a different and specialized

treatment for the MSIL metadata item and respective data structures and data types.

Listing 3-10 and Listing 3-11 show cases when we have MSIL keywords .ctor / .cctor

(for instance, constructor and class constructor, respectively).

Listing 3-10 shows excerpts of MSIL for the RVJ.Core.Business.Person instance

constructor of C# as shown in Listing 3-7, Listing 3-8, and Listing 3-9.

We can see that the name of the method for the instance constructor is .ctor and

not the name of the .NET type, (RVJ.Core.Business.Person() in our example).

Through the MSIL source code body of an instance constructor, the default

constructor of the direct .NET base type is called, also using the name .ctor.

The MSIL .ctor method means “instance constructor.”

Listing 3-10.  Instance Default Constructor, Uses .ctor for Identification and Uses

Flag rtspecialname for Special Runtime Treatment by VES

.class public auto ansi beforefieldinit RVJ.Core.Business.Person

 extends [System.Runtime]System.Object {

.method public hidebysig specialname rtspecialname

 instance void .ctor() cil managed {

 // Code size 7 (0x7)

 .maxstack 8

 ldarg.0

 call instance void [System.Runtime]System.Object::.ctor()

 ret

} // end of method Person::.ctor

} // end of class RVJ.Core.Business.Person

Being a static method, the class constructor, as you can see in Listing 3-11, is using

a similar pattern of instance constructors. The method for the class constructor is using

.cctor and not the name of the .NET type (RVJ.Core.Business.Person() in our example).

Chapter 3 .NET Methods: Implementation Details

61

The MSIL .cctor method means “class constructor.”

Listing 3-11.  The Class Constructor Is Called Before the Instance Fields Are

Initialized and Instance Methods Can Be Called

.class public auto ansi beforefieldinit RVJ.Core.Business.Person

 extends [System.Runtime]System.Object {

.method private hidebysig specialname rtspecialname static

 void .cctor() cil managed {

 // Code size 1 (0x1)

 .maxstack 8

ret

} // end of method Person::.cctor

}

Constructors are important kinds of methods that we should always keep in mind for

use in our .NET custom data types.

Class constructors are used by MSIL instructions for what is described in CLR jargon

as “before field init” semantics.

We should override for a class that uses unmanaged resources, such as file handles

or database connections that must be released when the managed object that uses them

is discarded during garbage-collection automatic memory-management mechanisms.

Because the garbage collector releases managed resources automatically, we should

not implement a System.Object.Finalize() method for managed objects.

In fact, the System.Object.Finalize() method does nothing by default, but we

should override System.Object.Finalize() only if necessary, and only to release

unmanaged resources. Reclaiming memory tends to take much longer if a finalization

operation runs because such reclamation requires at least two garbage collections.

In addition, we should override the System.Object.Finalize() method for

reference types only. The CLR finalizes reference types only. It ignores finalizers on value

types, at least at the time of this writing.

Chapter 3 .NET Methods: Implementation Details

https://docs.microsoft.com/en-us/dotnet/api/system.object.finalize?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.object.finalize?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.object.finalize?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.object.finalize?view=net-5.0

62

The scope of the System.Object.Finalize() method is protected. We should

maintain this limited scope when overriding the method in our .NET custom class type.

By keeping a System.Object.Finalize() instance protected method, we prevent

users of our application from calling an System.Object.Finalize() method directly.

Every implementation of System.Object.Finalize() in a derived type must call its

base type implementation of System.Object.Finalize(), and this is the only case in

which application code is allowed to call System.Object.Finalize() directly.

An object’s Finalize method should not call a method on any objects other than

that of its base class. This is because the other objects being called could be collected at

the same time as the calling object, such as in the case of a CLR shutdown.

You will learn more about constructors, VES details, and finalizers in the upcoming

chapters.

Chapter 3 .NET Methods: Implementation Details

https://docs.microsoft.com/en-us/dotnet/api/system.object.finalize?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.object.finalize?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.object.finalize?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.object.finalize?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.object.finalize?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.object.finalize?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.object.finalize?view=net-5.0

63
© Roger Villela 2020
R. Villela, Pro .NET 5 Custom Libraries, https://doi.org/10.1007/978-1-4842-6391-4_4

CHAPTER 4

.NET Special Members:
Constructors in a
Managed Environment
This chapter covers special members that a .NET custom data type should implement.

�Acronyms
The following acronyms are introduced in this chapter:

•	 Application programming interface (API)

•	 Code Document Object Model (CodeDOM)

•	 Object-oriented programming (OOP)

�Special Members
Throughout these chapters, we are examining members that we should override (or

not) for our .NET custom data types. At this point, we focus on internal aspects of

special members (constructors and destructors, for example). This chapter focuses on

constructors.

https://doi.org/10.1007/978-1-4842-6391-4_4#DOI

64

�About Constructors in a Managed Execution Environment
For the Common Language Runtime (CLR) platform and Virtual Execution System (VES)

execution environment, constructors are part of the execution model. As part of this

model, they are special members of any .NET data type (reference type and value type),

are implemented as methods (member functions in C++ programming language syntax,

and behavior in conceptually related object-oriented programming [OOP] terminology)

for the special purpose of implementing specific tasks related to initialization of the

state of the data type itself and instances of the data type, via their data type member

behaviors.

Being methods, constructors always have void data type as the return, and they can

be implemented using the static keyword for the modifier. For the access modifier, they

can use public, private, protected, or internal keywords, for example. Because of

these possibilities, constructor implementation can be of two natures:

•	 For the .NET data type itself, in that the constructor is called in

relevant literature static constructor, class constructor, or type

constructor

•	 For an instance of the .NET data type, in that the constructor is

called in relevant literature an instance constructor or a nonstatic

constructor

�Default Constructor
In a nonstatic definition of a .NET custom data type and on creation of an instance of

such .NET data type (custom or platform provided), the “default instance constructor” is

a required element for any managed data type in an instance of the CLR VES execution

environment. Because of this requirement, when we use the C# programming language,

for example, if we do not provide a default instance constructor explicitly, a C#/

MSIL (Microsoft Intermediate Language) tool will emit a default instance constructor

automatically.

Other compilers of specific programming languages or projections that support CLR

(for example, F#, C++/CLI [Common Language Infrastructure] projection, and VB.NET)

also support emitting a default instance constructor implicitly. However, we always must

check constructor syntax features for the specific programming languages that we are

using in our projects.

Chapter 4 .NET Special Members: Constructors in a Managed Environment

65

Figure 4-1, Figure 4-2, Figure 4-3, and Figure 4-4 show excerpts from source code.

The code is introduced in this chapter, but you will learn even more about it in Chapter 5.

These excerpts derive from sample projects available for this chapter in the folder

<install_dir>\Sources\APIs\DotNET\5.0\ProCustomLibs\Ch04\RVJ.Coresolution

RVJ.Core.sln, in the client console sample project and in the Buffers_Console_Client.

Program.CreateType() static method in the Program.cs C# source code file.

�Reflection APIs

The full source code (discussed in the next chapter and part of the sample projects)

uses features and data types of .NET Base Class Library (BCL) Reflection application

programming interfaces (APIs) for emitting at runtime. It uses source code in MSIL to

define two new .NET custom data types: RVJ.Core.Business.Person, which derives

directly from the System.Object root .NET data type from foundational BCL; and RVJ.

Core.Business.Employee, which derives indirectly from System.Object of foundational

BCL and directly from RVJ.Core.Business.Person.

Both .NET custom data types are emitted using .NET Reflection APIs, and each data

type has a default instance constructor emitted automatically by these Reflection APIs.

These same tasks are realized with the C# programming language when compiling

source code, as shown in Listing 4-1.

Listing 4-1.  Implementation for RVJ.Core.Business.Employee::.ctor() RVJ.Core.

Business.Person::.ctor() Default Instance Constructors Generated Implicitly by

C# Programming Language / MSIL Tools for Both .NET Custom Data Types

#region Namespaces / Assemblies

using System;

#endregion

namespace RVJ.Core.Business {

 public class Employee : RVJ.Core.Business.Person {

 // Default instance constructor emitted implicitly by C# / MSIL tools

 };

 public class Person: System.Object {

Chapter 4 .NET Special Members: Constructors in a Managed Environment

66

 // �RVJ.Core.Business.Person derived directly from System.Object root

data type of foundational BCL

 // Default instance constructor emitted implicitly by C# / MSIL tools

 };

}; // End of RVJ.Core.Business namespace(s)

Figure 4-1 shows the source code for a specialized instance method for definition

of a default constructor, which can be a default static constructor or a default instance

constructor.

We can have one parameterless constructor, which is based on the features of the

Reflection APIs, also emit the sequence of MSIL instructions for the source code body

of the constructor that includes the calls for the default instance constructor of the

immediate base type.

In the source code excerpt shown in Figure 4-2, we are calling the System.

Reflection.Emit.TypeBuilder.DefineDefaultConstructor() instance method for

defining a default instance constructor, and the only argument value is a combination of

flags as values of the System.Reflection.MethodAttributes enum class.

Figure 4-1.  The specialized System.Reflection.Emit.TypeBuilder.
DefineDefaultConstructor() instance method in Reflection APIs that returns an
instance of the System.Reflection.Emit.ConstructorBuilder .NET data type for
definition of a default instance or static constructor in a data type

Chapter 4 .NET Special Members: Constructors in a Managed Environment

67

Figure 4-2.  A combination of flags for the metadata characteristics of the
generated instance constructor or static constructor

Figure 4-3.  Another specialized instance method in the Reflection APIs of
the System.Reflection.Emit.TypeBuilder .NET data type for definition of a
nondefault constructor in a type, and the System.Reflection.Emit.TypeBuilder.
DefineConstructor() instance method with two signatures

Figure 4-4.  System.Reflection.Emit.TypeBuilder.DefineConstructor(), a specialized
instance method of Reflection APIs for definition of a nondefault constructor in an
emitted type, and more parameters available for the metadata of the method

Chapter 4 .NET Special Members: Constructors in a Managed Environment

68

�Rules, Requirements, and MSIL

Rules and requirements for the default instance constructor or the default static

constructor existence in the managed data type are active even for APIs of source

code and metadata inspection and generation in MSIL. Examples include Reflection

and CodeDOM, to cite a couple of common examples of specialized technologies in

foundational libraries of BCL APIs and Framework Class Library (FCL) APIs.

Listing 4-2 shows typical C# source code for a .NET custom data type RVJ.Core.

Business.Employee defined with the default instance constructor emitted implicitly by

C#/MSIL tools.

Listing 4-2.  Implementation for RVJ.Core.Business.Employee::.ctor() RVJ.Core.

Business.Person::.ctor() Default Instance Constructors Generated Implicitly by

C#/MSIL Tools for Both .NET Custom Data Types

#region Namespaces / Assemblies

using System;

#endregion

namespace RVJ.Core.Business {

 public class Employee : Person {

 // Default instance constructor emitted implicitly by C#/MSIL tools

 };

 public class Person: System.Object {

 // Default instance constructor emitted implicitly by C#/MSIL tools

 };

};

In Figure 4-5, an ILDasm.exe .NET SDK tool screen shows the content of the RVJ.

Core.Business.dll assembly/module, with both RVJ.Core.Business.Employee and RVJ.

Core.Business.Person .NET custom data types.

RVJ.Core.Business.Person is our .NET custom data type explicitly and is

directly derived from the System.Object .NET root data type from the .NET platform

fundamental BCL.

Chapter 4 .NET Special Members: Constructors in a Managed Environment

69

RVJ.Core.Business.Employee is our .NET custom data type that explicitly and

directly derives from RVJ.Core.Business.Person, which is used here as an example for

the root of our sample hierarchy of .NET custom data types.

In Figure 4-6 and Figure 4-7, an ILDasm.exe .NET SDK tool screen shows pieces of

RVJ.Core.Business.Employee and RVJ.Core.Business.Person (our two .NET custom

data types).

Listing 4-3 shows the MSIL automatically generated by C#/MSIL tools for RVJ.Core.

Business.Employee::.ctor().

This generated MSIL, which also automatically calls the base default instance

constructor for RVJ.Core.Business.Employee::.ctor(), is in this case the default

instance constructor RVJ.Core.Business.Person::.ctor(), as expressed in the MSIL

shown in Listing 4-3.

Listing 4-3.  MSIL Implementation of the RVJ.Core.Business.Employee::.ctor()

Default Instance Constructor, Also Calling the RVJ.Core.Business.Person::.ctor()

Base Default Instance Constructor

.method public hidebysig specialname rtspecialname

 instance void .ctor() cil managed {

 // Code size 7 (0x7)

 .maxstack 8

ldarg.0

// calling default instance constructor of base type RVJ.Core.Business.Person

call instance void RVJ.Core.Business.Person::.ctor()

 ret

} // end of method Employee::.ctor

Listing 4-4 shows an excerpt with the sequence of MSIL metadata that defines the

RVJ.Core.Business.Employee as an extension based on (inherited from) RVJ.Core.

Business.Person. Both are .NET custom data types.

Chapter 4 .NET Special Members: Constructors in a Managed Environment

70

Listing 4-4.  MSIL Sequence for Definition of .NET Custom Data Type RVJ.Core.

Business.Employee, Which Extends the RVJ.Core.Business.Person .NET Custom

Data Type

.class public auto ansi beforefieldinit RVJ.Core.Business.Employee extends

RVJ.Core.Business.Person {

} // end of class RVJ.Core.Business.Employee

Listing 4-5 and Figure 4-7 show a definition of our .NET custom data type RVJ.Core.

Business.Employee with a default instance constructor implicitly emitted by C#/MSIL

tools and with a static constructor of business model defined explicitly.

Note that even with the static constructor defined explicitly by a developer and the

default instance constructor not defined explicitly, the C#/MSIL tools emit the sequence

for a minimal .NET special method to be generated to act as the default constructor.

Tasks include calls for the base default instance constructor of the base type in the

hierarchy.

Figure 4-5.  RVJ.Core.Business.Employee default instance constructor generated
by C#/MSIL tools, and the RVJ.Core.Business.Person default constructor explicitly
implemented by the developer

Figure 4-6.  The RVJ.Core.Business.Employee::.ctor() is declared/defined with this
special name in MSIL for a default instance constructor

Chapter 4 .NET Special Members: Constructors in a Managed Environment

71

Listing 4-5.  Implementation for the RVJ.Core.Business.Employee::.ctor()

Default Instance Constructor Generated by C#/MSIL Tools, Even with the Static

Constructor (Class Constructor) Defined Explicitly

#region Namespaces/Assemblies

using System;

#endregion

namespace RVJ.Core.Business {

 public class Employee : RVJ.Core.Business.Person {

 static Employee() { return; }

 };

};

�Metadata: MSIL Attributes in a Special Member

In MSIL implementations for a typical constructor (instance or otherwise, default or

not), the following MSIL keywords comprise part of the metadata of the method for the

constructor:

•	 hidebysig

•	 rtspecialname

•	 specialname

Figure 4-7.  Even with an explicitly defined static constructor RVJ.Core.Business.
Employee::.cctor() in the provided source code programming language, the RVJ.
Core.Business.Employee::.ctor() default instance constructor is implicitly defined in
MSIL for the method acting as the default instance constructor

Chapter 4 .NET Special Members: Constructors in a Managed Environment

72

MSIL “Hide by Signature” Keyword (hidebysig)

The hidebysig MSIL keyword is ignored by the implementation of the CLR VES. In

ECMA-335, however, this is defined as supplied only for the use of the specialized tools

such as compilers, syntax analyzers in programming languages, and code generators.

In programming language syntax and semantics, the hidebysig keyword defines that

all declared/defined methods in a .NET data type (custom or not) must hide all inherited

.NET methods that have a matching method signature. This requirement is valid for any

point in the hierarchy of base class types.

When the hidebysig keyword is omitted in the metadata of the MSIL for the method,

however, programming language rules require hiding all methods with the same name

(and to not consider the signature for this scenario as a differential).

Typically, the C++ programming language follows “hide by name” as the semantics

in this context, and C# and Java use both “hide by name” and “hide by signature” for

semantics.

When present or not in MSIL metadata, the interpretation of this scenario for

the hidebysig keyword is part of the programming language semantics, syntax, and

specialized tools. The execution environment provided by VES ignores this keyword.

MSIL “Special Name” Keyword (specialname)

For MSIL, the specialname keyword means that the name of method needs a different

and specialized treatment by some specialized tool (for example, compilers, metadata

validation tools, and Reflection-based libraries).

MSIL “Runtime Special Name” Keyword (rtspecialname)

In contrast, the MSIL rtspecialname keyword is applied for some metadata items when

the execution environment provided by VES needs to provide a different and specialized

treatment for the MSIL metadata item. This is the case when we have MSIL keywords

.ctor and .cctor (for instance, constructor and class constructor [static constructor],

respectively).

Chapter 4 .NET Special Members: Constructors in a Managed Environment

73

�Summary
The next chapter discusses metadata and constructors in more detail and covers

destructors and the CLR VES.

The sample project using Reflection APIs is used as the base from which to explore

the inner workings of these elements of a .NET data type, .NET custom data type, and the

management execution environment.

Chapter 4 .NET Special Members: Constructors in a Managed Environment

75
© Roger Villela 2020
R. Villela, Pro .NET 5 Custom Libraries, https://doi.org/10.1007/978-1-4842-6391-4_5

CHAPTER 5

Finalizer Method: The
.NET Special Member
This chapter covers special members that a .NET custom data type should implement.

�Special Members
Previous chapters discussed methods that we should override (or not) for our .NET

custom data types. This section examines internal aspects of members that are not

so “special” from a Control Language Runtime (CLR) Virtual Execution System

(VES) perspective, as we have with a constructor. This chapter focuses specifically on

destructors.

�Special Member Destructor
Like constructors, destructors are also special members for the CLR VES and managed

platform as a whole, and they are also implemented as methods in the Microsoft

Intermediate Language (MSIL). However, with destructors, certain restrictions apply

based on the syntax of the programming language in use (as with the C# programming

language and MSIL as the intermediate language) and the semantics required by the

execution environment (as with the CLR VES).

Formally, in a managed environment and CLR VES execution environment, we do

not have the concept of a destructor as it exists in typical object-oriented programming

(OOP) implementations. In addition, we have the direct influence of other components

of the .NET platform architecture and implementation engineering (such as managed

environment rules, programming language organizations and tools, and related or

dependent elements).

https://doi.org/10.1007/978-1-4842-6391-4_5#DOI

76

When a class type or a value type is implemented, the concept of a default destructor

does not apply, and no method is automatically and implicitly generated for this kind

of member, as we have for constructors. Listing 5-1 and Listing 5-2 show that we can

confirm this in the RVJ.Core.Business.Person and RVJ.Core.Business.Employee .NET

custom data types and respective MSILs.

Listing 5-1.  (Excerpt of Definition) The RVJ.Core.Business.Person Class Type

Does Not Have Automatically Generated Source Code for a Destructor as We

Have with a Default Constructor

#region Namespaces/Assemblies

using System;

#if DEBUG

using System.Diagnostics;

#endif

#endregion

namespace RVJ.Core.Business {

 public class Person : System.Object {

 #region Private fields

 private readonly Guid _internal_ID;

 private UInt32 _age;

 private String _firstName;

 private String _lastName;

 #endregion

 #region Constructor(s)

 public Person() : base() {

 this._internal_ID = Guid.NewGuid();

 this._age = new UInt32();

 this._firstName = String.Empty;

 this._lastName = String.Empty;

Chapter 5 Finalizer Method: The .NET Special Member

77

 return;

 }

 static Person() {

#if DEBUG

 �Debug.WriteLine("Class (static) constructor called.", "RVJ.Core.

Business.Person");

#endif

 return;

 }

 #endregion

 #region Destructor

 //~Person() {

 // return;

 //}

 #endregion

};

};

Listing 5-2.  (Excerpt of Definition) The RVJ.Core.Business.Employee Class Type

Does Not Have Automatically Generated Source Code for a Destructor as We

Have with a Default Constructor

#region Namespaces/Assemblies

using System;

#if DEBUG

using System.Diagnostics;

#endif

#endregion

namespace RVJ.Core.Business {

Chapter 5 Finalizer Method: The .NET Special Member

78

 public class Employee : Person {

 /*

 * Static constructor provided explicitly by the data type.

 */

 static Employee() {

 return;

 }

 // Default constructor provided explicitly by the data type

 public Employee() : base() { return; }

 #region Destructor

 //~Person() {

 // return;

 //}

 #endregion

 };

};

We cannot have more than one destructor, and it must be parameterless, as shown in

Listing 5-1 and Listing 5-2.

Again, as shown in Listing 5-3, in MSIL we have special keywords (such as extends,

public, auto and ansi) that are data type attributes that directly inform the CLR VES

execution environment about what is necessary for the data types to be valid at runtime.

Listing 5-3.  (Excerpt of Definition) The RVJ.Core.Business.Employee and RVJ.

Core.Business.Person Class Types Have Special Keywords That Are Data Type

Attributes That Are Required Metadata by CLR VES to Work Correctly with the

Data Type

.class public auto ansi RVJ.Core.Business.Employee

 extends RVJ.Core.Business.Person {

} // end of class RVJ.Core.Business.Employee

Chapter 5 Finalizer Method: The .NET Special Member

79

.class public auto ansi RVJ.Core.Business.Person

 extends [System.Runtime]System.Object

{

} // end of class RVJ.Core.Business.Person

As shown in Listing 5-4 and Listing 5-5, for definition of methods that have the

constructor role, we have MSIL special keywords, as mentioned earlier, such as public,

hidebysig, special, rtspecialname, instance, cil, managed, and .ctor. These are

recognized by the CLR VES execution environment for creating the total contextual

representation model of the .method at runtime.

Listing 5-4.  (Excerpt of Definition) The RVJ.Core.Business.Person Constructor

Class Types That Made Use of Special Keywords That Are Recognized by the CLR

VES for Creating the Total Contextual Representation Model at Runtime

.method public hidebysig specialname rtspecialname instance void .ctor()

cil managed {

 // Code size 47 (0x2f)

 .maxstack 8

 ldarg.0

 call instance void [System.Runtime]System.Object::.ctor()

 ldarg.0

 call �valuetype [System.Runtime]System.Guid [System.Runtime]System.

Guid::NewGuid()

 stfld �valuetype [System.Runtime]System.Guid RVJ.Core.Business.

Person::_internal_ID

 ldarg.0

 ldc.i4.0

 stfld uint32 RVJ.Core.Business.Person::_age

 ldarg.0

 ldsfld string [System.Runtime]System.String::Empty

stfld string RVJ.Core.Business.Person::_firstName

 ldarg.0

 ldsfld string [System.Runtime]System.String::Empty

 stfld string RVJ.Core.Business.Person::_lastName

 ret

} // end of method Person::.ctor

Chapter 5 Finalizer Method: The .NET Special Member

80

Listing 5-5.  (Excerpt of Definition) The RVJ.Core.Business.Employee

Constructor Class Types That Made Use of Special Keywords That Are

Recognized by the CLR VES for Creating the Total Contextual Representation

Model at Runtime

.method public hidebysig specialname rtspecialname instance void .ctor()

cil managed {

 // Code size 7 (0x7)

 .maxstack 8

ldarg.0

call instance void RVJ.Core.Business.Person::.ctor()

ret

} // end of method Employee::.ctor

As shown in Figure 5-1, a destructor is an optional structural element of a managed

data type, class type (reference type), and of a struct type (value type). In the MSIL, we

can see that if not explicitly informed by the developer, by a feature of programming

language tools for generation of source code, we have as default practice not having

a method implicitly generated for acting as a destructor. That is, we have the finalizer

member, which exhibits the opposite behavior of default practice for a default

parameterless constructor.

Chapter 5 Finalizer Method: The .NET Special Member

81

For the CLR platform and VES execution environment, the destructor or finalizer

method is a recognized piece of a managed representation and execution model. The

destructor or finalizer method is a special member of any .NET data type (reference

type and value type), implemented as a typical method (member functions in C++

programming language syntax and related object-oriented programming [OOP]

terminology) for the special purpose of implementing specific tasks focused on resource

management of the state of the data type itself and instances of the data type (but

especially focused on memory management).

When we significantly rely on OOP techniques to port a base of source code, we

should review our forms to see these data types. In addition, note that in a managed

environment, as with the .NET platform and related components, the managed

execution context of the CLR VES includes, at least, automatic memory management.

Figure 5-1.  A destructor is an optional structural element of a class type (reference
type) and of a struct type (value type)

Chapter 5 Finalizer Method: The .NET Special Member

82

Examples of such include garbage-collector mechanisms and just-in-time compilation

ways of operation at runtime. In these cases, we are at least one level above in terms of

relevance and embedded intelligence as part of the whole platform.

�Special Member Finalizer Method (Destructor)
A .NET managed and execution environment does not have deterministic techniques

as a principle implementation model. For release of memory allocated for data types

(public, internal, statically generated, dynamically generated, and so on), defined as

reference types, deterministic release of memory is partially in action only for portions of

data types defined as value types.

�System.Object.Finalize() Method

In the definition of the System.Object root .NET data type, we have an implementation

of a finalizer method declared in the C# programming language, as shown in Listing 5-6

for a .NET Framework 4.8 implementation and as shown in Listing 5-7 for a .NET 5

implementation.

Listing 5-6.  (Excerpt of Definition) System.Object.Finalize()Is the Method

Assuming a Similar Role of Destructor in Traditional Data Types When Working

with OOP Techiques (For the .NET Framework 4.8, We Have This Source as the

Implementation in C# Available in the object.cs Source Code File of mscorlib.

csproj at https://referencesource.microsoft.com/#mscorlib/system/

object.cs,d9262ceecc1719ab.)

// Allow an object to free resources before the object is reclaimed by the GC

 //

 [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]

 [System.Runtime.Versioning.NonVersionable]

 ~Object()

 {

 }

Chapter 5 Finalizer Method: The .NET Special Member

https://referencesource.microsoft.com/#mscorlib/system/object.cs,d9262ceecc1719ab
https://referencesource.microsoft.com/#mscorlib/system/object.cs,d9262ceecc1719ab

83

Listing 5-7.  (Excerpt of Definition) System.Object.Finalize() Is the Method

Assuming a Similar Role of Destructor in Traditional Data Types When Working

with OOP Techiques (For .NET 5, We Have This Source as the Implementation in

C# Available in the object.cs Source Code File at https://github.com/dotnet/

runtime/blob/master/src/libraries/System.Private.CoreLib/src/System/

Object.cs.)

// Licensed to the .NET Foundation under one or more agreements.

// The .NET Foundation licenses this file to you under the MIT license.

using System.Diagnostics.CodeAnalysis;

using System.Runtime.CompilerServices;

using System.Runtime.InteropServices;

using System.Runtime.Versioning;

namespace System

{

 // The Object is the root class for all object in the CLR System. Object

 // �is the super class for all other CLR objects and provide a set of

methods and low-level

 // �services to subclasses. These services include object

synchronization and support for clone

 // operations.

 //

 [Serializable]

 [ClassInterface(ClassInterfaceType.AutoDispatch)]

 [ComVisible(true)]

 �[TypeForwardedFrom("mscorlib, Version=4.0.0.0, Culture=neutral,

PublicKeyToken=b77a5c561934e089")]

 public partial class Object

 {

 // Creates a new instance of an Object

 [NonVersionable]

 public Object()

 {

 }

Chapter 5 Finalizer Method: The .NET Special Member

84

 // �Allow an object to free resources before the object is reclaimed

by the GC

 // �This method's virtual slot number is hardcoded in runtimes. Do

not add any virtual methods ahead of this.

 [NonVersionable]

 �[SuppressMessage("Microsoft.Performance", "CA1821:RemoveEmpty

Finalizers", Justification = "Base finalizer method on Object")]

 ~Object()

 {

 }

}

}

Microsoft official documentation defines the role of a finalizer method, the

destructor, as follows:

Allows an object to try to free resources and perform other cleanup
operations before it is reclaimed by garbage collection

Every time a .NET data type (custom or not, reference type or value type) has the

optional destructor member, in MSIL source code generates the finalizer member (a

conceptual element and a data type member), as shown in Figure 5-2 and Figure 5-3.

This is as described in the ECMA-335 specification since the inception of managed and

execution environments, and has been adopted by CLR VES execution environment

implementation as a part of the representation model of data types for runtime

operations, and as a part of the .NET platform as a whole, valid, and recognized formal

element of a managed data type, as shown in Listing 5-8 and Listing 5-9.

Listing 5-8.  (Excerpt of the Definition) The RVJ.Core.Business.Employee.

Finalize() Method Assuming a Similar Role of a Typical Destructor

#region Namespaces/Assemblies

using System;

#if DEBUG

using System.Diagnostics;

#endif

Chapter 5 Finalizer Method: The .NET Special Member

85

#endregion

namespace RVJ.Core.Business {

 public class Employee : Person {

 /*

 * Static constructor provided explicitly by the data type.

 */

 static Employee() {

 return;

 }

 // Default constructor provided explicitly by the data type

 public Employee() : base() { return; }

// At least as of the time of this writing, we cannot have another

destructor; only one per data type is valid.

 ~Employee() {

 return;

 }

 };

};

Chapter 5 Finalizer Method: The .NET Special Member

86

Figure 5-2.  The finalizer method in MSIL. Unlike with constructors (default or
not), we have a different name, but not a special name

Chapter 5 Finalizer Method: The .NET Special Member

87

Listing 5-9.  (Excerpt of Definition) The RVJ.Core.Business.Employee.Finalize()

Method Assuming a Similar Role to a Destructor

.method family hidebysig virtual instance void

 Finalize() cil managed {

 .override [System.Runtime]System.Object::Finalize

 // Code size 10 (0xa)

 .maxstack 1

 .try

 {

 IL_0000: leave.s IL_0009

 } // end .try

 finally

 {

 IL_0002: ldarg.0

Figure 5-3.  In MSIL, we have no specialname or rtspecialname MSIL keywords
applied because Finalize is a common method. However, when and if used, rules
apply for it to be considered valid and secure

Chapter 5 Finalizer Method: The .NET Special Member

88

 IL_0003: call instance void RVJ.Core.Business.Person::Finalize()

 IL_0008: endfinally

 } // end handler

 IL_0009: ret

} // end of method Employee::Finalize

Being methods, destructors or finalizer methods always have the void data type as

the return, but they cannot be implemented using the static keyword for the modifier or

the public, private, protected, internal keywords (for example) for the access modifier

directly. Because of these restrictions, the following rules apply to finalizer methods:

•	 Have no specialname MSIL keyword applied because it is a common

method

•	 Have a specific name defined to be recognized by the CLR VES as the

method in the role, or similar, of a typical destructor

•	 Have the hidebysig MSIL keyword applied because it is a

common method

•	 Have no rtspecialname MSIL keyword applied because it is a

common method

•	 Are an instance member

•	 Are a virtual member

•	 Are a managed method, because we have the cil MSIL keyword

applied in its definition

•	 Must override the base finalizer method of the base data type

•	 Are part of a chain of finalizer methods that is called based on the

defined/available inheritance hierarchy of the data type family

•	 Have the try/catch/finally structural element, which can

compromise code efficiency because of wrong use by a developer

and typical code generators

The following chapter further explores the behavior of elements of special members,

includes a more detailed look at constructors and the finalizer method and the .NET CLR

VES, and discusses resource management (including garbage collection via interface

implementations).

Chapter 5 Finalizer Method: The .NET Special Member

89
© Roger Villela 2020
R. Villela, Pro .NET 5 Custom Libraries, https://doi.org/10.1007/978-1-4842-6391-4_6

CHAPTER 6

.NET Manifest and
Versioning for Managed
Libraries
This chapter covers managed library implementation. It also discusses execution

environment concepts and features that you learned about in Chapter 1 (such as

assembly, module, manifest, and versioning for a managed environment).

�Assemblies, Modules, Manifest, Versioning
All functionalities within a .NET executable Microsoft Intermediate Language (MSIL) are

described through one or more assemblies. An assembly is a .NET entity whose purpose

is to act as a deployable unit. A module is an MSIL file referenced by a logical name

stored in the metadata rather than by its filename.

Common assemblies and modules that are part of the.NET Framework, .NET Core,

and .NET 5 implementations include the following:

•	 .NET 5 assembly System.Runtime

•	 .NET module System.Runtime.dll

•	 .NET Standard assembly netstandard

•	 .NET module netstandard.dll

•	 .NET Core assembly System.Runtime

•	 .NET module System.Runtime.dll

https://doi.org/10.1007/978-1-4842-6391-4_6#DOI

90

•	 .NET Framework assembly mscorlib

•	 .NET module mscorlib.dll

�Assembly
An assembly is a .NET entity whose purpose is to act as a deployable unit in Common

Language Runtime (CLR) managed environments and with associated mechanisms, as

with execution environments. Assemblies are capable of administration tasks that keep

the managed environment and all resources used at runtime in an efficient and safe

environment for the planned activities and related functionalities.

An assembly has different kinds of resources stored in files logically grouped for

distribution, and not only executable code is stored in files associated with an assembly.

An assembly must have only one manifest among all its files. In addition, in the main

assembly that has the entry point and will be executed rather than simply dynamically

loaded, the manifest must be stored in that module.

�Manifest
An assembly always has a manifest that specifies the assemblies and modules that we are

using for our unit of deployment.

Listing 6-1 shows an excerpt of the manifest for the RVJ.Core.Business.dll .NET

module shown in Figure 6-1.

Figure 6-1.  Manifest for the RVJ.Core.Business assembly and the RVJ.Core.
Business.dll module

Chapter 6 .NET Manifest and Versioning for Managed Libraries

91

Listing 6-1.  Excerpt of Metadata Manifest for Assembly RVJ.Core.Business,

Stored in the Module RVJ.Core.Business.dll

// Metadata version: v4.0.30319

.assembly extern System.Runtime {

 .publickeytoken = (B0 3F 5F 7F 11 D5 0A 3A) // .?_....:

 .ver 5:0:0:0

}

.assembly RVJ.Core.Business {

 �.custom instance void [System.Runtime]System.Reflection.

AssemblyFileVersionAttribute::.ctor(string) = (01 00 07 35 2E 30 2E 30

2E 30 00 00) // ...5.0.0.0..

 �.custom instance void [System.Runtime]System.Reflection.

AssemblyInformationalVersionAttribute::.ctor(string) = (01 00 07 35 2E

30 2E 30 2E 30 00 00) // ...5.0.0.0..

 .permissionset reqmin

= {[System.Runtime]System.Security.Permissions.SecurityPermissionAttribute

= {property bool 'SkipVerification' = bool(true)}}

 .hash algorithm 0x00008004

 .ver 6:0:0:0

}

.module RVJ.Core.Business.dll

// MVID: {F721CBE6-5444-4AF9-B844-9E928575E8AF}

.custom instance void [System.Runtime]System.Security.

UnverifiableCodeAttribute::.ctor() = (01 00 00 00)

.imagebase 0x10000000

.file alignment 0x00000200

.stackreserve 0x00100000

.subsystem 0x0003 // WINDOWS_CUI

.corflags 0x00000001 // ILONLY

// Image base: 0x0B6D0000

Chapter 6 .NET Manifest and Versioning for Managed Libraries

92

The directive .ver for the RVJ.Core.Business assembly has a value of 6:0:0:0, and

the System.Reflection.AssemblyFileVersionAttribute attribute for the RVJ.Core.

Business.dll .module has a value of 5:0:0:0. The .assembly is a directive that declares

the manifest and specifies to which assembly the current module belongs. Every module

must have one .assembly directive.

Listing 6-2 shows <AssemblyVersion> with a value of 6:0:0:0 assigned to the .ver

directive, and the listing shows <FileVersion> with a value of 5:0:0:0 assigned to the

System.Reflection.AssemblyFileVersionAttribute for .module directive.

Listing 6-2.  Excerpt of Project Source Code for the Definition of the

Configuration of a Project, Including .assembly and .module Versions

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <TargetFramework>net5.0</TargetFramework>

 <Authors>Roger Villela</Authors>

 <RootNamespace>RVJ.Core.Business</RootNamespace>

 <AssemblyName>RVJ.Core.Business</AssemblyName>

 <RunAnalyzersDuringBuild>false</RunAnalyzersDuringBuild>

 <FileVersion>5.0.0.0</FileVersion>

 <AssemblyVersion>6.0.0.0</AssemblyVersion>

 <Version>5.0.0.0</Version>

 </PropertyGroup>

 <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'">

 <DefineConstants>DEBUG;TRACE</DefineConstants>

 <AllowUnsafeBlocks>true</AllowUnsafeBlocks>

Figure 6-2.  Project properties with values for “Assembly version:” assigned to
the .ver directive in the manifest and the “Assembly file version” assigned to the
.assembly directive in the manifest

Chapter 6 .NET Manifest and Versioning for Managed Libraries

93

 <Optimize>true</Optimize>

 <CheckForOverflowUnderflow>true</CheckForOverflowUnderflow>

 </PropertyGroup>

</Project>

�Module
A module is an MSIL file referenced by a logical name stored in the metadata rather than

by its filename.

Listing 6-3 shows an excerpt of the syntax of the .module directive for RVJ.Core.

Business.dll.

Listing 6-3.  An Excerpt of the Syntax of the .module Directive for RVJ.Core.

Business.dll, Showing the Use of Syntax and Relation for Directives .assembly,

.ver, and .module

.assembly RVJ.Core.Business {

.ver 5:0:0:0

}

.module RVJ.Core.Business.dll

Listing 6-4 shows a client application named Buffers_Console_Client with a

.module directive value assigned with Buffers_Console_Client.dll and with a .assembly

directive named Buffers_Console_Client.

We have .assembly extern as the directive informing that our assembly Buffers_

Console_Client is referencing the assembly RVJ.Core.Business, and we are not

informing that .assembly RVJ.Core.Business has a .module RVJ.Core.Business.dll as

part of deployment unit.

This information is obtained from metadata when assemblies and modules are

loaded, and the CLR Virtual Execution System (VES) and other mechanisms of a

managed environment store them in internal data structs of the platform. Some are used

at runtime, and others only at specific points of MSIL execution (as when metadata is

checked for validation, for example).

Chapter 6 .NET Manifest and Versioning for Managed Libraries

94

Listing 6-4.  A Client Application with .assembly Extern as the Directive

Informing That Our Assembly Buffers_Console_Client Is Referencing the

Assembly RVJ.Core.Business. We Are Not Informing That .assembly RVJ.Core.

Business Has a .module RVJ.Core.Business.dll as Part of Deployment Unit

.assembly extern RVJ.Core.Business {

 .ver 6:0:0:0

}

.assembly Buffers_Console_Client {

.ver 1:0:0:0

}

.module Buffers_Console_Client.dll

Figure 6-3 shows an example of an assembly named Buffers_Console_Client

stored in a module named Buffers_Console_Client.dll, and the part of MSIL of the

manifest stored in that module is shown too.

Figure 6-3.  An example of MSIL for a manifest of the assembly Buffers_Console_
Client stored in the module Buffers_Console_Client.dll

Chapter 6 .NET Manifest and Versioning for Managed Libraries

95

�Versioning
The version number of an assembly module is specified using the .ver directive. For

RVJ.Core.Business, the .assembly directive with a value uses a sequence of four 32-

bit integers in the format Int32:Int32:Int32:Int32 (as with 6:0:0:0 for the System.

Reflection.AssemblyFileVersionAttribute attribute for the .module directive with a

value using Int32:Int32:Int32:Int32, as we have with file RVJ.Core.Business.dll with

value of 5:0:0:0).

Version numbers are captured at compile time and used as part of all references for

the assemblies within each compiled module.

Some fundamental orientations are made to avoid collisions between libraries

and updates.

Major version number: Assemblies with the same name and with

different major versions are considered not interchangeable, and

the first of these 32-bit integers is considered the major version

number. That major version number is used for a major rewrite of

a product where backward compatibility will not be guaranteed

(even by formal business contracts).

Minor version number: Assemblies with the same name and

same major version. This is the point for the use of the second of

these 32-bit integers called the minor version number. It is used

to indicate improvements and enhancements in each different

minor version.

The minor version number can also be used to indicate significant

improvements, but with the intention of being backward

compatible, where possible, or meaning a fully backward-

compatible new version of a product.

Build version number: At the time of this writing, we have the

same software available in different hardware and operating

system platforms. The third of these 32-bit integers is considered

the build number and is recommended for recompilation of

the same source code base for different target platforms—

operating system, hardware processor, or even development tool

changes or updates (for example, with integrated development

environments [IDEs]).

Chapter 6 .NET Manifest and Versioning for Managed Libraries

96

Revision version number: The revision number is used when we

have assemblies with the same name, the same major version,

and the same minor version, but that requires a revision. The idea

of a revision is to be fully interchangeable.

This is the recommendation for the fourth of these 32-bit integers. A good example is

a security hole fix (common today) or improvements in internal algorithms.

Chapter 6 .NET Manifest and Versioning for Managed Libraries

97
© Roger Villela 2020
R. Villela, Pro .NET 5 Custom Libraries, https://doi.org/10.1007/978-1-4842-6391-4_7

CHAPTER 7

.NET Assemblies in a
Managed Execution
Environment
This chapter discusses managed libraries and covers the execution environment features

that exploit publicly available managed libraries that expose a public managed view with

aggregated functionalities of the fundamental data structures, data types, and behaviors

internally written in the C++ programming language.

�Managed Libraries
When designing and implementing .NET software libraries, .NET components, and .NET

custom data types, remember that we are, in many ways, extending and aggregating

in an implementation instance of the managed execution environment Common

Language Runtime (CLR) Virtual Execution System (VES), which already has a flexible

and productive environment with tremendous possibilities for exploring design and

implementation techniques for software development.

The CLR Common Language Infrastructure (CLI) specifies a foundational library

called the Base Class Library (BCL), with components and functionalities written in C#

and C++ programming languages.

The .NET BCL foundational library has data types, components, functionalities, and

also fundamental types (some built in, others not).

https://doi.org/10.1007/978-1-4842-6391-4_7#DOI

98

�Data Types, Components, and Functionalities
.NET data types, .NET components, and .NET functionalities are all stored physically in

.NET modules. We know these as binary files with stored executable code, as we have

with .EXE and .DLL files in the Microsoft Windows operating system.

These .NET modules are versioned physically, grouped logically for distribution,

and deployed as a logical unit using the .NET entity defined as a .NET assembly,

which can also be versioned independently of the .NET module per se, as shown in

Chapter 6. Note that a .NET module, which is a typical physical file, can be logically

associated with different .NET assemblies, as we have with a .DLL with shared

functionalities created to be used independently of the target application and even

of other libraries.

As explained in Chapter 6, the following are examples of common assemblies and

modules that are part of .NET Framework, .NET Core, and .NET 5 implementations:

•	 .NET 5 assembly System.Runtime

•	 Module System.Runtime.dll

•	 .NET Standard assembly netstandard

•	 Module netstandard.dll

•	 .NET Core assembly System.Runtime

•	 Module System.Runtime.dll

•	 .NET Framework assembly mscorlib

•	 Module mscorlib.dll

Listing 7-1 shows that the Microsoft Intermediate Language (MSIL) manifest of

sample file RVJ.Core.Business.dll has a .ver attribute for RVJ.Core.Business .assembly

with a value of 1:1:1:1 and a System.Reflection.AssemblyFileVersionAttribute

attribute for RVJ.Core.Business.dll .module with a value of 2:2:2:2.

Chapter 7 .NET Assemblies in a Managed Execution Environment

99

Listing 7-1.  Assembly and Module Attributes for Versions Are Independent in

.NET Mechanisms

.assembly extern System.Runtime

{

 .publickeytoken = (B0 3F 5F 7F 11 D5 0A 3A) // .?_....:

 .ver 5:0:0:0

}

.assembly RVJ.Core.Business

{

 �.custom instance void [System.Runtime]System.Runtime.CompilerServices.

CompilationRelaxationsAttribute::.ctor(int32) = (01 00 08 00 00 00 00 00)

 �.custom instance void [System.Runtime]System.Runtime.CompilerServices.

RuntimeCompatibilityAttribute::.ctor() = (01 00 01 00 54 02 16 57 72 61

70 4E 6F 6E 45 78 //T..WrapNonEx

 63 65 70 74 69 6F 6E 54 68 72 6F 77 73 01) // ceptionThrows.

 // --- �The following custom attribute is added automatically, do not

uncomment -------

 // �custom instance void [System.Runtime]System.Diagnostics.Debuggable

Attribute::.ctor(valuetype [System.Runtime]System.Diagnostics.

DebuggableAttribute/DebuggingModes) = (01 00 02 00 00 00 00 00)

 �.custom instance void [System.Runtime]System.Runtime.Versioning.

TargetFrameworkAttribute::.ctor(string) = (01 00 18 2E 4E 45 54 43 6F 72

65 41 70 70 2C 56 //NETCoreApp,V

 65 72 73 69 6F 6E 3D 76 35 2E 30 01 00 54 0E 14 // ersion=v5.0..T..

 46 72 61 6D 65 77 6F 72 6B 44 69 73 70 6C 61 79 // FrameworkDisplay

 4E 61 6D 65 00) // Name.

 �.custom instance void [System.Runtime]System.Reflection.

AssemblyCompanyAttribute::.ctor(string) = (01 00 0D 52 6F 67 65 72 20 56

69 6C 6C 65 6C 61 // ...Roger Villela

 00 00)

 �.custom instance void [System.Runtime]System.Reflection.

AssemblyConfigurationAttribute::.ctor(string) = (01 00 05 44 65 62 75 67

00 00) // ...Debug..

Chapter 7 .NET Assemblies in a Managed Execution Environment

100

 �.custom instance void [System.Runtime]System.Reflection.

AssemblyFileVersionAttribute::.ctor(string) = (01 00 07 32 2E 32 2E 32

2E 32 00 00) // ...2.2.2.2..

 �.custom instance void [System.Runtime]System.Reflection.

AssemblyInformationalVersionAttribute::.ctor(string) = (01 00 07 31 2E

30 2E 30 2E 30 00 00) // ...1.0.0.0..

 �.custom instance void [System.Runtime]System.Reflection.

AssemblyProductAttribute::.ctor(string) = (01 00 11 52 56 4A 2E 43 6F 72

65 2E 42 75 73 69 // ...RVJ.Core.Busi

 6E 65 73 73 00 00) // ness..

 �.custom instance void [System.Runtime]System.Reflection.

AssemblyTitleAttribute::.ctor(string) = (01 00 11 52 56 4A 2E 43 6F 72

65 2E 42 75 73 69 // ...RVJ.Core.Busi

 6E 65 73 73 00 00) // ness..

 .permissionset reqmin

 = �{[System.Runtime]System.Security.Permissions.Security

PermissionAttribute = {property bool 'SkipVerification'

= bool(true)}}

 .hash algorithm 0x00008004

 .ver 1:1:1:1

}

.module RVJ.Core.Business.dll

// MVID: {16B05BC4-28BD-4BE2-844C-BF5FFF9F4C9D}

.custom instance void [System.Runtime]System.Security.

UnverifiableCodeAttribute::.ctor() = (01 00 00 00)

.imagebase 0x10000000

.file alignment 0x00000200

.stackreserve 0x00100000

.subsystem 0x0003 // WINDOWS_CUI

.corflags 0x00000001 // ILONLY

// Image base: 0x068F0000

Figures 7-1 and 7-2, respectively, show examples of setting the .ver attribute for

the .assembly directive and the System.Reflection.AssemblyFileVersionAttribute

attribute for the RVJ.Core.Business.dll .module, and the effect on operating system–

recognized properties (attributes) of objects, as we have with files.

Chapter 7 .NET Assemblies in a Managed Execution Environment

101

Figure 7-1 shows a Microsoft Visual Studio window for project properties with the

Assembly version field having a value of 1:1:1:1 and the Assembly file version field having

a value of 2:2:2:2.

Figure 7-2 shows the File Explorer Properties window of the file RVJ.Core.Business.

dll (.NET module) showing a value of 2:2:2:2.

Figure 7-1.  Project properties with the Assembly version field with a value of
1:1:1:1 and the Assembly file version field with a value of 2:2:2:2

Chapter 7 .NET Assemblies in a Managed Execution Environment

102

�Native Code and Managed Code
Most of the time, these built-in types have most of the core functionalities internally

written in the C++ programming language and not made to be publicly exposed, directly

accessed, and directly manipulated by any managed programming language such as C#,

VB.NET, F#, C++/CLI projection, or any other programming language or projection. In

addition, they are specified by the CLR Common Type System (CTS), implemented and

supported directly within the CLR VES, both part of the CLR CLI.

Listing 7-2 shows an excerpt of ArrayNative.cpp of .NET 5 available at https://

github.com/dotnet/runtime/blob/master/src/coreclr/src/classlibnative/

bcltype/arraynative.cpp.

Listing 7-2.  Excerpt of the ArrayNative.cpp Source Code, Part of the C++ of

System.Array Managed Data Type, .NET 5

// Licensed to the .NET Foundation under one or more agreements

// The .NET Foundation licenses this file to you under the MIT license.

//

// File: ArrayNative.cpp

//

//

Figure 7-2.  Properties window of File Explorer showing the value 2.2.2.2, of the
binary file RVJ.Core.Business.dll (.NET module), for the File version property in
operating system view

Chapter 7 .NET Assemblies in a Managed Execution Environment

https://github.com/dotnet/runtime/blob/master/src/coreclr/src/classlibnative/bcltype/arraynative.cpp
https://github.com/dotnet/runtime/blob/master/src/coreclr/src/classlibnative/bcltype/arraynative.cpp
https://github.com/dotnet/runtime/blob/master/src/coreclr/src/classlibnative/bcltype/arraynative.cpp

103

// This file contains the native methods that support the Array class.

//

#include "common.h"

#include "arraynative.h"

#include "excep.h"

#include "field.h"

#include "invokeutil.h"

#include "arraynative.inl"

FCIMPL1(void, ArrayNative::Initialize, ArrayBase* array)

{

 FCALL_CONTRACT;

 if (array == NULL)

 {

 FCThrowVoid(kNullReferenceException);

 }

 MethodTable* pArrayMT = array->GetMethodTable();

 TypeHandle thElem = pArrayMT->GetArrayElementTypeHandle();

 if (thElem.IsTypeDesc())

 return;

 MethodTable * pElemMT = thElem.AsMethodTable();

 if (!pElemMT->HasDefaultConstructor() || !pElemMT->IsValueType())

 return;

 ARRAYBASEREF arrayRef (array);

 HELPER_METHOD_FRAME_BEGIN_1(arrayRef);

 ArrayInitializeWorker(&arrayRef, pArrayMT, pElemMT);

 HELPER_METHOD_FRAME_END();

}

FCIMPLEND

Chapter 7 .NET Assemblies in a Managed Execution Environment

104

Listing 7-3 shows an excerpt of ArrayNative.h of .NET 5 available at https://github.

com/dotnet/runtime/blob/master/src/coreclr/src/classlibnative/bcltype/

arraynative.h.

Listing 7-3.  Excerpt of ArrayNative.h Source Code, Part of a C++ System.Array

Managed Data Type, .NET 5

// Licensed to the .NET Foundation under one or more agreements

// The .NET Foundation licenses this file to you under the MIT license

//

// File: ArrayNative.h

//

//

// ArrayNative

// This file defines the native methods for the array.

//

#ifndef _ARRAYNATIVE_H_

#define _ARRAYNATIVE_H_

#include "fcall.h"

class ArrayNative {

public:

 �static FCDECL1(INT32, GetCorElementTypeOfElementType, ArrayBase*

arrayUNSAFE);

 static FCDECL1(void, Initialize, ArrayBase* pArray);

 �static FCDECL2(FC_BOOL_RET, IsSimpleCopy, ArrayBase* pSrc, ArrayBase* pDst);

 �static FCDECL5(void, CopySlow, ArrayBase* pSrc, INT32 iSrcIndex,

ArrayBase* pDst, INT32 iDstIndex, INT32 iLength);

 // This method will create a new array of type type, with zero lower

 // bounds and rank.

 �static FCDECL4(Object*, CreateInstance, void* elementTypeHandle, INT32

rank, INT32* pLengths, INT32* pBounds);

Chapter 7 .NET Assemblies in a Managed Execution Environment

https://github.com/dotnet/runtime/blob/master/src/coreclr/src/classlibnative/bcltype/arraynative.h
https://github.com/dotnet/runtime/blob/master/src/coreclr/src/classlibnative/bcltype/arraynative.h
https://github.com/dotnet/runtime/blob/master/src/coreclr/src/classlibnative/bcltype/arraynative.h

105

 // This method will return a TypedReference to the array element.

 �static FCDECL4(void, GetReference, ArrayBase* refThisUNSAFE, TypedByRef*

elemRef, INT32 rank, INT32* pIndices);

 // This set of methods will set a value in an array.

 static FCDECL2(void, SetValue, TypedByRef* target, Object* objUNSAFE);

 // This method will initialize an array from a TypeHandle

 // to a field.

 �static FCDECL2_IV(void, InitializeArray, ArrayBase* vArrayRef,

FCALLRuntimeFieldHandle structField);

private:

 // Helper for CreateInstance

 static void CheckElementType(TypeHandle elementType);

 // Return values for CanAssignArrayType

 enum AssignArrayEnum

 {

 AssignWrongType,

 AssignMustCast,

 AssignBoxValueClassOrPrimitive,

 AssignUnboxValueClass,

 AssignPrimitiveWiden,

 };

 // The following functions are all helpers for ArrayCopy.

 �static AssignArrayEnum CanAssignArrayType(const BASEARRAYREF pSrc, const

BASEARRAYREF pDest);

 �static void CastCheckEachElement(BASEARRAYREF pSrc, unsigned int srcIndex,

BASEARRAYREF pDest, unsigned int destIndex, unsigned int length);

 �static void BoxEachElement(BASEARRAYREF pSrc, unsigned int srcIndex,

BASEARRAYREF pDest, unsigned int destIndex, unsigned int length);

 �static void UnBoxEachElement(BASEARRAYREF pSrc, unsigned int srcIndex,

BASEARRAYREF pDest, unsigned int destIndex, unsigned int length);

Chapter 7 .NET Assemblies in a Managed Execution Environment

106

 �static void PrimitiveWiden(BASEARRAYREF pSrc, unsigned int srcIndex,

BASEARRAYREF pDest, unsigned int destIndex, unsigned int length);

};

#endif // _ARRAYNATIVE_H_

Figure 7-3 and Figure 7-4 show some comments related to documentation of

ArrayNative.cpp C++ source code with implementation (definition) of members of the

ArrayNative C++ class, and an ArrayNative.h C++ header file, with the declaration of

ArrayNative class members in the C++ programming language.

Be aware that these pieces of source code are specialized implementations of critical

CLR data types that run exclusively inside the execution engine environment (VES).

These same architectural components and implementation engineering are adopted

for native parts of other fundamental and critical .NET managed data types, such as

System.String and System.Object (the root of every .NET data type). As indicated, the

VES handles much of the work, and we have more interesting functionalities within this

mechanism.

Chapter 7 .NET Assemblies in a Managed Execution Environment

107

Figure 7-3.  Excerpt of ArrayNative.cpp comments in source code for
implementation documentation in the C++ programming language of
functionalities of the System.Array managed class type

Chapter 7 .NET Assemblies in a Managed Execution Environment

108

If we look at implementations of the foundational .NET BCL and more complete

.NET FCL libraries, we will find that the infrastructure of various pieces is made with

the C++ programming language, in many cases not even using advanced capabilities of

object-oriented programming (OOP), using the procedural programming capabilities

encapsulated with an OOP-based visualization for organization of the data structures

and access to them.

Figure 7-4.  Excerpt of ArrayNative.h comments in a header file for documentation
of declarations in the C++ programming language of members and functionalities
of the ArrayNative C++ class

Chapter 7 .NET Assemblies in a Managed Execution Environment

109

We should ignore technologies like Microsoft Visual C++, the C++ programming

language, C++/CLI, CIL, and the Assembly programming language available for

development and think that we should find some solution via a block of code written

only in the C# programming language; doing so would be unreasonable.

Despite this, managed programming languages such as C#, F#, VB.NET, C++/CLI

projection, and others can access these built-in types and their functionalities and can

create .NET software components and .NET software libraries using them.

Formally, in a managed environment and CLR VES execution environment, we

do not envision a physical computer. Instead, we anticipate a virtual computer that

supports through its capabilities, features as we've seen in typical OOP implementations

and we have direct influence of other components of .NET platform architecture and

implementation engineering, in managed environment rules, programming languages

organizations and tools, and related or dependent elements.

When we are porting a base of source code largely based on OOP techniques, we

should review our forms to check these data types. We also need to understand that in

a managed environment (as we have with the .NET platform and their components)

the managed execution context of the CLR VES includes, at least, automatic memory

management, as we have with garbage collector mechanisms and just-in-time

compilation operation at runtime. We are at least one level above in terms of relevance

and embedded intelligence as part of the whole platform.

When designing a library, we are envisioning software that can be used over a

reasonable commercial period and in a number of target environments (as with the

.NET platform).

Duplicating the code base is complicated and undesirable, even with simple .NET

class libraries, and trying to create code bases with many shortcuts is of dubious merit.

When .NET libraries use a managed programming language, as we have with the

C# programming language, and declare a variable of System.String, or when C++/

CLI declares a handle to the object for the type System.String, both are doing the same

thing. That is, they are syntactically describing a script for the compilers that generate

the metadata using the data structures and data types described in the CLI by the CTS,

formalized by the metadata system defined by the CLI, and consumed (executed <==>

managed) by the mechanisms that are part of the VES.

To facilitate these tasks for compilation tools, specialized code generators, integrated

development environment (IDE)-based products, and command-line tools (to name just

a few examples), a foundational and extensible library is critical.

Chapter 7 .NET Assemblies in a Managed Execution Environment

110

Based on the fundamental types specified by the CTS, formalized by metadata

systems, and implemented and managed via VES mechanisms, it is possible to create

more specialized managed libraries covering broader contexts, having .NET BCL and

Framework Class Library (FCL) as starting points. As you will remember, the .NET

platform comprises CLR, BCL, FCL, and a set of specialized components and tools.

Specialized technologies designed and implemented with a mix of managed code and

C++ programming language that target Microsoft Windows platform are not portable.

A subset of .NET Framework technologies (that is, a subset of the CLR functionalities,

a subset of BCL) was chosen to create the .NET Core, and based on .NET Core, ASP.NET

Core was created.

We now have .NET 5, .NET 6 (Long Term Support [LTS] release scheduled for

November 2021), and more included as part of this technological and also political

initiative that are porting elements of .NET technologies for other platforms (hardware

and software) such as Qualcomm ARM, Unix-based implementation such as BSD-based

operating system such as FreeBSD, Apple products, and NetBSD, and non-BSD UNIX

such as Linux implementations and RedHat Enterprise, for example.

This list is incomplete, so check the Microsoft sites and Microsoft Git repositories for

more comprehensive information about these initiatives.

As of this writing, GitHub has provided anticipated release dates at https://

github.com/dotnet/core/blob/master/roadmap.md and milestone information

at https://github.com/dotnet/runtime/milestones, respectively, as shown in

Figure 7-5 and Figure 7-6.

Figure 7-5.  Table from GitHub for upcoming ship dates of the newly announced
versions of .NET multiplatform

Chapter 7 .NET Assemblies in a Managed Execution Environment

https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/core/blob/master/roadmap.md
https://github.com/dotnet/runtime/milestones

111

Figure 7-6.  Information from the milestones page for the .NET versions 5 and 6

Chapter 7 .NET Assemblies in a Managed Execution Environment

113
© Roger Villela 2020
R. Villela, Pro .NET 5 Custom Libraries, https://doi.org/10.1007/978-1-4842-6391-4

Index

A
Application programming

interfaces (APIs)
HeapAlloc() function, 12
reflection, 65–67

B
Base Class Library (BCL)

architectural infrastructure, 3
CTS System.Object, 17
fundamental types, 9–10, 97
reflection APIs, 65
System.GetType(), 57–58
System.Object reference type, 31–33, 37

C
Common Intermediate Language (CIL), 4
Common Language Infrastructure (CLI), 2
Common Language Runtime (CLR)

assembly, 90
constructors, 64
contextual resources, 18
data types, 29
destructors,75
environment and technologies, 8, 11
execution environment, 31
managed libraries, 97
native code, 102

Common Language Specification (CLS), 3
Common Type System (CTS), 3

contextualized type, 13
contextual resources, 18
fundamental built-in data

types, 13–14
hardware platform, 14–16
supports types, 16–18
System.Object reference type, 17
variable declaration, 17

Components, 98–102
Constructors, 59–62

execution environment, 64
implementation, 64
metadata/MSIL attributes

hidebysig MSIL keyword, 72
methods, 71
rtspecialname keyword, 72
specialname keyword, 72

MSIL tools/implementation, 64, 69
projections, 64
reflection APIs

instance/static data types, 66
meaning, 65
metadata characteristics, 67
parameters, 67
source code, 65
specialized instance method, 67

rules/requirements, 68–71
RVJ.Core.Business.Employee, 70–71

https://doi.org/10.1007/978-1-4842-6391-4#DOI

114

D
Data types

execution environment, 98
inheritance model, 37
methods (see System.Object.Equals()

method)
planning/implementation, 29
reference types/value types

attributes, 34–35
concrete classes, 32
contextual comprehension, 30
FCL libraries, 33
interface type, 30–31
root type, 29
System.Array/System.String, 34
System.Object, 31

System.Object.GetHashCode(), 46–49
value type, 35–38

Destructors
class type source code, 76–79
CLR VES, 75
contextual representation model, 80
data type attributes, 78
execution environment, 75
structural element, 81

E
ECMA-335 standard specification

abstract data type, 6
architectural infrastructure, 3, 4
CLI (see Common Language

Infrastructure (CLI))
definition, 2
entry-point member method, 7
intermediate assembly language, 4

MSIL source code, 7
programming language, 5
reference type, 6
System.Object root data type, 5
web page information, 2

Execution environment, 97
data types/components/functionalities

assembly and module
attributes, 99–101

binary files, 98
implementations, 98
modules, 98
properties window, 102–103

native/manage code, 102
ArrayNative.cpp source code,

102–104
ArrayNative.h source

code, 104–106
command-line tools, 109
GitHub table, 110
header file, 108
libraries, 109
milestones page, 111
System.Array managed

class type, 107
virtual computer, 109

F, G, H
Finalizer method, see Destructors
Framework Class Library (FCL), 33, 110
Functionalities, 98

I, J, K
Intermediate Language Disassembler

(ILDASM) tool, 23–24

Index

115

L
Libraries

assemblies, 90
implementations, 89–90
manifest, 90–93
module, 93–94
versioning, 95–96

Long Term Support (LTS), 110

M
Managed libraries, 97
Manifest development

assemblies/module, 90
project properties, 92
RVJ.Core.Business.dll module, 91
source code, 92–93

Members, see Constructors
Metadata, 3
Methods

constructor, 59–62
operations, 51–54
operator overloading, 54–57
System.Object.GetType(), 57–59

Microsoft Intermediate
Language (MSIL), 5, 89, 98

Module, 93–94

N
.NET platform

attributes, 11
CLR environment/technologies, 8
ECMA-335 (see ECMA-335 standard

specification)
GitHub, 8
HeapAlloc() function, 12

implementation attributes, 11
managed environment, 9
pinvokeimpl method, 12
programming languages, 9
string reference type, 9
types defined, 9, 10
unified type system, 9
unmanaged code, 11–12
virtual computer, 8

O, P, Q, R
Object-oriented programming (OOP), 108
Operations

hidebysig keywords, 53
MSIL implementation, 52–53
rtspecialname keyword, 54
source code implementation, 51
specialname keyword, 54

Operator overloading
binary operators, 55–57
intermediate assembly language, 54
programming languages, 55
semantics/syntaxes, 54
virtual environment, 55

S, T, U
Semantics, 4, 54
System.Object.Equals() method

access modifier keyword, 39–40
equality (==) and inequality (!=)

operators, 46–47
expressions, 43–45
implementation, 41
instance method, 39
specialized implementation, 42–44

Index

116

System.Object.Finalize() method
finalizer method, 84
managed data type, 84
MSIL, 86
OOP techniques, 83
rules/restrictions, 88
RVJ.Core.Business.Employee.Finalize()

method, 87
specialname/rtspecialname, 87
traditional data types, 82

System.Object.GetHashCode()
method, 46–49

System.Object.GetType() method, 57–59
System.Reflection.Emit.TypeBuilder.

DefineDefaultConstructor()
method, 66

V, W, X, Y, Z
Virtual execution system (VES)

assemblies, 20
CLI PE/COFF module, 19
destructors, 75
dynamic assemblies, 21
element organization, 22–23
entry point method, 24–27
fundamental keywords, 26
fundamental types, 18
ISLASM tool, 23–24
modules, 19–22, 93
single-file static

assembly, 23
static assemblies, 20

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: .NET Platform
	Acronyms
	ECMA-335 and .NET
	ECMA-335
	.NET Platform

	About the Common Type System
	Fundamental Types and Hardware Platform
	The Organization of Fundamental Data Types
	CTS for Fundamental Types

	Virtual Execution System
	.NET Module
	.NET Assemblies
	Static Assemblies
	Dynamic Assemblies
	Working with Assemblies and Modules
	Organization of Elements in a Module (Physical File)
	Using the ILDASM Tool
	Implementing the entrypoint Method

	Chapter 2: Custom .NET Data Type
	Management of Data Types
	Working with System.Object, the Root of .NET Reference Types
	System.ValueType, the Root of .NET Value Types
	Methods
	Working with System.Object.Equals()
	Operators == and != for Equality and Inequality Behaviors

	Working with System.Object.GetHashCode()

	Chapter 3: .NET Methods: Implementation Details
	Methods
	About the Use of Operators
	Operator Overloading: Programming Language Semantics and Syntaxes

	Working with System.Object.GetType()
	Constructors in a .NET Data Type

	Chapter 4: .NET Special Members: Constructors in a Managed Environment
	Acronyms
	Special Members
	About Constructors in a Managed Execution Environment
	Default Constructor
	Reflection APIs
	Rules, Requirements, and MSIL
	Metadata: MSIL Attributes in a Special Member
	MSIL “Hide by Signature” Keyword (hidebysig)
	MSIL “Special Name” Keyword (specialname)
	MSIL “Runtime Special Name” Keyword (rtspecialname)

	Summary

	Chapter 5: Finalizer Method: The .NET Special Member
	Special Members
	Special Member Destructor
	Special Member Finalizer Method (Destructor)
	System.Object.Finalize() Method

	Chapter 6: .NET Manifest and Versioning for Managed Libraries
	Assemblies, Modules, Manifest, Versioning
	Assembly
	Manifest
	Module
	Versioning

	Chapter 7: .NET Assemblies in a Managed Execution Environment
	Managed Libraries
	Data Types, Components, and Functionalities
	Native Code and Managed Code

	Index

