
Hyperparameter
Optimization in
Machine Learning

Make Your Machine Learning and
Deep Learning Models More Efficient
—
Tanay Agrawal

Hyperparameter
Optimization in

Machine Learning
Make Your Machine Learning
and Deep Learning Models

More Efficient

Tanay Agrawal

Hyperparameter Optimization in Machine Learning

ISBN-13 (pbk): 978-1-4842-6578-9 ISBN-13 (electronic): 978-1-4842-6579-6
https://doi.org/10.1007/978-1-4842-6579-6

Copyright © 2021 by Tanay Agrawal

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit https://www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at https://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at https://www.apress.com/
978-1-4842-6578-9. For more detailed information, please visit https://www.apress.com/
source-code.

Printed on acid-free paper

Tanay Agrawal
Bangalore, Karnataka, India

https://doi.org/10.1007/978-1-4842-6579-6

This book is dedicated to my parents
and my grandparents.

v

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Foreword 1 ���xv

Foreword 2 ���xvii

Introduction ���xix

Table of Contents

Chapter 1: Introduction to Hyperparameters ��1

Introduction to Machine Learning ���2

Understanding Hyperparameters ��4

The Need for Hyperparameter Optimization ���8

Algorithms and Their Hyperparameters ��11

K-Nearest Neighbor ���11

Support Vector Machine ��13

Decision Tree ���16

Neural Networks ��19

Distribution of Possible Hyperparameter Values ���21

Discrete Variables ��22

Continuous Variables ���24

Probabilistic Distributions ���24

vi

Chapter 2: Hyperparameter Optimization Using Scikit-Learn ������������31

Changing Hyperparameters ��31

Grid Search ���33

Random Search ���38

Parallel Hyperparameter Optimization ��42

Chapter 3: Solving Time and Memory Constraints �����������������������������53

Dask ��54

Dask Distributed ��55

Parallel Collections ��57

Dynamic Task Scheduling ��60

Hyperparameter Optimization with Dask ���63

Distributing Deep Learning Models ���71

PyTorch Distributed ���72

Horovod ���77

Chapter 4: Bayesian Optimization ��81

Sequential Model-Based Global Optimization ���82

Tree-Structured Parzen Estimator ���86

Hyperopt��89

Search Space ��92

Parallelizing Trials in TPE ���100

Hyperopt-Sklearn ��102

Hyperas ���104

Chapter 5: Optuna and AutoML ���109

Optuna���109

Search Space ��112

Underlying Algorithms ���113

Table of ConTenTs

vii

Visualization ��114

Distributed Optimization ��114

Automated Machine Learning ���119

Building Your Own AutoML Module ��119

TPOT ��126

 Appendix I ���131

 Data Cleaning and Preprocessing ���131

Dealing with Nonnumerical Columns ��131

Missing Values ���133

Outlier Detection ��136

Feature Selection ��138

Applying the Techniques��140

 Applying Machine Learning Algorithms ��145

 Model Evaluation Methods ��146

 Appendix II: Neural Networks: A Brief Introduction to
PyTorch and Keras API ���153

 Index ���163

Table of ConTenTs

ix

About the Author

Tanay Agrawal is a deep learning engineer

and researcher who graduated in 2019 with

a bachelor of technology from SMVDU,

J&K. He is currently working at Curl Hg on

SARA, an OCR platform. He is also advisor to

Witooth Dental Services and Technologies. He

started his career at MateLabs working on an

AutoML Platform, Mateverse. He has worked

extensively on hyperparameter optimization.

He has also delivered talks on hyperparameter

optimization at conferences including PyData,

Delhi and PyCon, India.

xi

About the Technical Reviewer

Manohar Swamynathan is a data science

practitioner and an avid programmer, with

over 14 years of experience in various data

science–related areas that include data

warehousing, business intelligence (BI),

analytical tool development, ad hoc analysis,

predictive modeling, data science product

development, consulting, formulating

strategy, and executing analytics program.

He’s had a career covering the life cycle of

data across different domains such as US

mortgage banking, retail/e-commerce, insurance, and industrial IoT. He

has a bachelor’s degree with a specialization in physics, mathematics, and

computers and a master’s degree in project management. He’s currently

living in Bengaluru, the Silicon Valley of India.

xiii

Acknowledgments

I would like to thank Kailash Ahirwar (CTO, MateLabs) for being a great

mentor. A big thanks to teams from both MateLabs and Curl HG for their

constant support. I am grateful to Akruti Acharya and Jakub Czakon for their

insightful inputs while writing this book. I would also like to thank Paankhi

Agrawal, Sahil Sharma, Dr. H.-Y. Amanieu, Anubhav Kesari, Abhishek

Kumar, Amog Chandrashekar, and others. This book wouldn’t have been

possible without all the love and encouragement from my family.

xv

Foreword 1

I have to admit that tweaking parameters by hand was something that

I really enjoyed when I trained my first ML models. I would change a

parameter, run my training script, and wait to see if the evaluation score

improved. One of those guilty pleasures.

But as I spent more time in the ML world, I understood that there are

other, more impactful areas where I could spend my time. I realized that I

could (and should) outsource parameter tweaking somewhere.

I learned about random search and started using it in my projects. At

some point, I felt I could do better than random search and started reading

about more advanced hyperparameter optimization algorithms and

libraries.

A lot of articles I found where pretty shallow and basic, but I remember

reading this deep, hands-on yet easy-to-follow article about Hyperopt, one

of the most popular HPO libraries. It was written by Tanay Agrawal. That

article probably still is one of the more valuable articles I’ve ever read on

the subject. I mentioned it in one of my blog posts and this is how we met.

When Tanay told me that he was writing a book about hyperparameter

optimization, without hesitation, I proposed to review it. I am not going

to lie, I really wanted to read it before anyone else! To my surprise, Tanay

agreed and I was able to give a few notes here and there.

This book truly is a deep dive into the theory and practice of

hyperparameter optimization. I really like how it explains theory deeply

but not in an overly complex way. The practical examples are centered on

the libraries and frameworks that are heavily used today, which makes this

book current and, most importantly, useful.

xvi

I recommend this book to any ML practitioner who wants to go

beyond the basics and learn the why, how, and what of hyperparameter

optimization.

Jakub Czakon

Senior Data Scientist

Neptune.ai

foreword 1

xvii

Foreword 2

In this book, Tanay takes you on an interactive journey—in the most literal

sense, as each line of code can be run in a notebook—of the depths of

hyperparameters. It helps anyone to quickly get started on tuning and

improving their deep learning project with any library they choose to use.

The author mindfully covers the inner workings of hyperparameters in

ML models in a thorough but accessible fashion, which will allow you to

understand and build upon them using different libraries. The book also

demystifies the blackest of the black box: hyperparameter optimization in

automated machine learning.

It’s a friendly guide to a complicated subject, and yet it’s full of

cutting- edge gems that even advanced practitioners will love.

Akruti Acharya

Data Scientist

Curl HG

xix

Introduction

Choosing the right hyperparameters when building a machine learning

model is one of the biggest problems faced by data science practitioners.

This book is a guide to hyperparameter optimization (HPO). It starts from

the very basic definition of hyperparameter and takes you all the way to

building your own AutoML script using advance HPO techniques. This

book is intended for both students and data science professionals.

The book consists of five chapters. Chapter 1 helps you to build an

understanding of how hyperparameters affect the overall process of

model building. It teaches the importance of HPO. Chapter 2 introduces

basic and easy-to-implement HPO methods. Chapter 3 takes you through

various techniques to tackle time and memory constraints. Chapters 4

and 5 discuss Bayesian optimization, related libraries, and AutoML.

The intent of this book is for readers to gain an understanding of

the HPO concepts in an intuitive as well as practical manner, with code

implementation provided for each section. I hope you enjoy it.

1© Tanay Agrawal 2021
T. Agrawal, Hyperparameter Optimization in Machine Learning,
https://doi.org/10.1007/978-1-4842-6579-6_1

CHAPTER 1

Introduction to
Hyperparameters
Artificial intelligence (AI) is suddenly everywhere, transforming everything

from business analytics, the healthcare sector, and the automobile

industry to various platforms that you may enjoy in your day-to-day life,

such as social media, gaming, and the wide spectrum of the entertainment

industry. Planning to watch a movie on a video-streaming app but can’t

decide which movie to watch? With the assistance of AI, you might end up

watching one of the recommendations that are based on your past movie

selections.

Machine learning is a subset of AI that involves algorithms learning

from previous experiences. In some cases, machine learning has achieved

human-level accuracy. For example, state-of-the-art deep neural networks

(DNNs) perform as well as humans in certain tasks, such as image

classification, object detection, and so forth, although this is not the same

as simulating human intelligence (but it’s a step).

In machine learning algorithms, tuning hyperparameters is one

of the important aspects in building efficient models. In this chapter

you’ll discover the meaning of the term hyperparameter and learn how

hyperparameters affect the overall process of building machine learning

models.

https://doi.org/10.1007/978-1-4842-6579-6_1#DOI

2

 Introduction to Machine Learning
Machine learning is the study of algorithms which perform a task without

explicitly defining the code to perform it, instead using data to learn.

Machine learning enables algorithms to learn on their own without human

intervention.

Tom M. Mitchell, a computer scientist and, at the time of writing,

a professor at Carnegie Mellon University, defines machine learning

as follows: “A computer program is said to learn from experience E

with respect to some class of tasks T and performance measure P if its

performance at tasks in T, as measured by P, improves with experience E.”

Machine learning algorithms have several subdivisions based on the

type of problem that needs to be solved. Here I will introduce you to three

main types:

• Supervised machine learning algorithms: Labeled

data is provided, we build a model over it to predict

such labels given variables. As an example, suppose

you want to purchase a spaceship. Several factors

would help you to decide which spaceship to buy:

cost, size of spaceship, build quality, whether it has

hyperdrive, its weaponry system, and so on. Now we

have data of hundreds of spaceships with such feature

information and their price, so we build a model and

predict the price. This comes under the regression

problem. Regression problems have continuous target

values, and if the target values are discrete, we call

them classification problems. A third type of problem

features time-stamps, time series forecasting, where

the next data point is somewhat dependent on the

previous information, so your algorithm needs to keep

in memory information from the previous data points.

Chapter 1 IntroduCtIon to hyperparameters

3

The image on the left in Figure 1-1-1 is an example of a

classification problem. We need labeled data in order

to learn to draw a seperation between them.

• Unsupervised machine learning algorithms: These

kinds of problems do not have a target value. Suppose

you have to group the hypothetical spaceships in

clusters according to their features; you would use a

clustering algorithm to do so. Unsupervised machine

learning is used to detect patterns among the dataset.

You don’t know which cluster is which, but you do

know that all the spaceships in one cluster are similar

to each other; the right image in Figure 1-1-1 shows an

example.

• Reinforcement machine learning algorithms: A

reinforcement machine learning algorithm learns from

the environment; if it performs well, it gets a reward,

and the goal is to maximize the reward. For example,

consider the Chrome “running dinosaur” game (go to

chrome://dino/ and press the spacebar). The dinosaur

Figure 1-1-1. Examples of supervised machine learning (left) and
unsupervised machine learning (right)

Chapter 1 IntroduCtIon to hyperparameters

4

continuously runs toward obstacles. To increase your

score, you have to press the spacebar at the precise

time to make the dinosaur jump over the obstacles.

Here those points are the reward and jumping is the

variable that needs to be decided at the right time.

In problems like this, we use reinforcement machine

learning algorithms. The Q-learning algorithm is

one example of a reinforcement machine learning

algorithm. One of the most brilliant applications of

reinforcement machine learning is a robot learning to

walk through trial and error.

There’s a lot more to machine learning. You need to be familiar with the

basics of machine learning before jumping into hyperparameters and their

optimization methodologies. If you are new to machine learning or if you

want to brush up on the basic concepts, refer to Appendix I and Appendix

II. Appendix I covers practical application of machine learning and some of

its basic aspects. Appendix II gives you a brief introduction to fully connected

neural networks and the PyTorch and Keras frameworks for implementation.

 Understanding Hyperparameters
There are two kinds of variables when dealing with machine learning

algorithms, depicted in Figure 1-2-1:

• Parameters: These are the parameters that the

algorithm tunes according to dataset that is provided

(you don’t have a say in that tuning)

• Hyperparameters: These are the higher-level

parameters that you set manually before starting the

training, which are based on properties such as the

characteristics of the data and the capacity of the

algorithm to learn

Chapter 1 IntroduCtIon to hyperparameters

5

I’ll present a machine learning algorithm as an example to show you

the difference between a parameter and a hyperparameter. Let’s take a

very basic algorithm, linear regression.

The hypothesis function in linear regression is as follows:

 f xc cQ Q Q Q,() = +. (Equation 1.2.1)

Here, x and Θ are vectors, x being a vector of features and Θ being the

weights assigned to each feature, and Θc is a constant bias.

Let’s consider as an example the classic problem of house price

prediction. The price of a house is dependent on certain factors, including

square footage of the house, number of bedrooms, number of washrooms,

crime rate in the locality, distance from public transportation (bus station,

airport, railway station), school district, distance to the nearest hospital, and

so forth. All of these can be considered as features; that is, the x vector in

our hypothesis function in Equation 1.2.1. The price of a house increases,

for example, as the number of bedrooms increases and the square footage

increases; these features would have positive weightage (Θ). The price of

Figure 1-2-1. The box inside represents model parameters, where
the machine learning algorithm is at work. The outer box represents
the hyperparameters, which we have to set before algorithm starts
training

Chapter 1 IntroduCtIon to hyperparameters

6

a house decreases, for example, the greater the distance to schools and

hospitals and the higher the crime rate in the neighborhood; they would

have negative Θ. In Equation 1.2.1, f(Θ, Θc) gives the price of the house.

We can use an optimization algorithm to find the best value of Θ

for each feature based on the previous observations. So, the Θ vector

is controlled and adjusted by the optimization algorithm (for instance,

gradient descent). These weights are parameters.

Let’s discuss the optimization function gradient descent, which will

help you to understand hyperparameters.

We’ll start by assigning some random numbers (i.e., weights) to our

parameters. For one observation, if we have vector x (with numerical

values for each feature) and vector Θ (random numerical values for each

weight), by using Equation 1.2.1, we get the value of f(Θ, Θc). This will be

our prediction, which will be some random value (p1′) because weights are

random. And we have a true value of the house price (p1).

We can calculate the difference, C1 (for first observation), |p1-p1′|. This

is a loss which we have to reduce. Similarly, if we calculate the average of

summation of loss (C) for all the observation:

C c n p pi i(,) (/)Q Q = -å1 ¢

 (Equation 1.2.2)

Equation 1.2.2 is termed as loss function, the goal of optimization

function is to reduce the value of C, so we can give more accurate

predictions. The loss function is dependent on weights and bias, as

depicted in Figure 1-2-2.

Chapter 1 IntroduCtIon to hyperparameters

7

Three-dimensional curves in Figure 1-2-2 can be possible

representations of a loss function. Remember we started our weights and

biases with random values; now we need to change those values such that

loss moves to its minima. As per calculus, C changes as follows:

 D Q DQC C i i@ å()*d d/ (Equation 1.2.3)

i = {0, n}, Θ0 being Θc

We’ll represent [(δC/δΘ0), (δC/δΘ1)...] as vector ÑC and [ΔΘ0, ΔΘ1...]

as vector ΔΘ; hence:

 D DQC C@Ñ * (Equation 1.2.4)

But suppose the following:

 DQ = - Ña C (Equation 1.2.5)

Figure 1-2-2. Loss curves in three dimensions, with x and y axes
being weights and z axis the loss

Chapter 1 IntroduCtIon to hyperparameters

8

Substituting it in Equation 1.2.4, we get this result:

DC C@ - * Ñ()a 2

Here, α being a positive number, change in loss will always be negative,

and we want our loss to be negative always. So Equation 1.2.5 stands true.

Therefore by Equation 1.2.5, we get

 Q Q Qi i iC´-() = - *a d d/

 \ = - *Q Q Qi i iC´ a d d/ (Equation 1.2.6)

Where Θi′ is the new updated value for weight Θi. In Equation 1.2.6,

the updated value of weight Θi′ is dependent on the previous value of

weight (Θi), the gradient (δC/δΘi), and a positive number 𝛼; 𝛼 here is one

of the hyperparameters for gradient descent. It controls the performance

of the algorithm. For each observation, we run this updating equation and

decrease the loss while changing values of weights, eventually reaching the

minima for the loss function.

 The Need for Hyperparameter Optimization
In the previous section, we used a positive number 𝛼 in Equation 1.2.6

to control the algorithm. This 𝛼 is called the learning rate in the gradient

descent algorithm. It controls the rate by which loss reaches its minima.

Figures 1-3-1, 1-3-2, and 1-3-3 demonstrate how, as described in following

figures.

Chapter 1 IntroduCtIon to hyperparameters

9

Figure 1-3-1. Small value of 𝛼

Figure 1-3-2. Large value of 𝛼

Chapter 1 IntroduCtIon to hyperparameters

10

In Figure 1-3-1 the value of 𝛼 is small; it will reach the convergence

point, but the ΔΘ (that is, the change in weights) will be so small that a

huge number of steps would be required, hence increasing time. A large

value of learning rate (𝛼) will change loss drastically, hence overshooting

and leading to divergence, as shown in Figure 1-3-2. However, if we find

an optimal value of 𝛼, we’ll be able to reach the convergence in less time

and without overshooting, as represented in Figure 1-3-3. And that is the

reason we need to tune 𝛼 to its most efficient value, and this process of

optimization is called hyperparameter tuning.

In more advanced variants of the gradient descent algorithm, we

start with bigger steps (that is, a greater value of learning rate) to save

time, and as we reach the convergence point, we decrease the value to

avoid overshooting. But the factor by which we decrease 𝛼 is now another

hyperparameter. So, now you understand the importance of tuning these

hyperparameters.

To tune such hyperparameters, you must have a good understanding

of the algorithm and how these hyperparameters are affecting the

performance. Even if you plan to use hyperparameter tuning algorithms

Figure 1-3-3. Optimal value of 𝛼

Chapter 1 IntroduCtIon to hyperparameters

11

(introduced in later chapters), it’s very important to set a good starting

point and ending point. This will save you a lot of time and boost the

performance of your algorithm.

 Algorithms and Their Hyperparameters
In this section I’ll discuss some basic machine learning algorithms to

help you understand how their hyperparameters work. I’ll discuss these

hyperparameters with scikit-learn conventions, but since they are generic,

you can use them for other implementations or even self-implemented

algorithms. I won’t go deep into mathematics but will give you enough to

get an intuition of how they affect the algorithm. In Chapter 2, we’ll look

at how a bad set of hyperparameters can result in a poor model, whereas a

good set creates an excellent machine learning model.

 K-Nearest Neighbor
The K-nearest neighbor (KNN) algorithm can be used as a supervised

or unsupervised machine learning algorithm and can be applied to

classification, regression, clustering, and outlier detection problems. KNN

assumes similar points are in closer proximity, as depicted in Figure 1-4-1.

Figure 1-4-1. A classification dataset with two dimensions when
used with KNN shows the decision boundaries

Chapter 1 IntroduCtIon to hyperparameters

12

K-nearest neighbor finds the K (number of nearest points) labeled

samples in the closest proximity to the point that is to be predicted.

This K can be defined by the user. And the closest proximity, hence

the distance, can be calculated by different metrics, such as Euclidean

distance, Manhattan distance, and so on. To find these nearest points,

indexing algorithms like kd-tree and ball tree are used. Let’s discuss these

hyperparameters.

• K number of nearest neighbor: We set the value of K,

which is a positive integer that decides the number

of labeled samples from the training dataset that

are to be considered to predict the new data point.

Figure 1- 4- 2 shows how increasing the K can result in

smoother boundaries. And when k=3, boundaries are

more constrained.

• Weights: We can either give our nearest neighbors equal

priority or decide their weights on the basis of distance

from the query point; the further the point, the lesser

the weightage.

Figure 1-4-2. Top image with k=3 and bottom image with k=15

Chapter 1 IntroduCtIon to hyperparameters

13

• Indexing algorithm: Indexing algorithms are used to

map the nearest points. Since brute force would result

in distance computation of all the pairs of data points

in a dataset, we use tree-based indexing algorithms

like kd-tree and ball tree. kd-tree partitions data in

cartesian axes and ball tree in nested hyper-sphere.

When the number of dimensions is higher, ball tree is

more efficient than kd-tree.

• Distance metric: A metric is to be used to calculate

the distance between points. It can be Euclidean or

Manhattan or higher orders of the Minkowski metric.

 Support Vector Machine
Support vector machine (SVM) is a powerful algorithm that finds a

hyperdimensional plane that separates distinct classes. An example

is shown in Figure 1-4-3, in which we have two classes denoted by red

and blue colors. The black line dividing them is our hyperplane (a line

in this case since we are visualizing in two dimensions). SVM finds the

hyperplane such that the margin (the distance between the two dotted

lines) is maximum.

The data points lying near dotted lines are called support vectors. They

are highly responsible for the formation of the hyperplane. We use the

optimization method of Lagrange multipliers to find this hyperplane.

Chapter 1 IntroduCtIon to hyperparameters

14

But this was a linearly separable problem. In real life, datasets are not

linearly separable. So let’s take another example and see how SVM would

work on the example shown in Figure 1-4-4.

Figure 1-4-4 is not linearly separable. So we project it into a higher

dimension (three dimensions in this case) as shown in Figure 1-4-5 and

now we can apply SVM and find the plane separating it.

Figure 1-4-3. Classes separated by hyperplane

Figure 1-4-4. Dataset with two classes, blue and red

Chapter 1 IntroduCtIon to hyperparameters

15

We need to find the correct mapping function to project data to higher

dimensions. That’s where different kernels come into play. Right mapping

functions can be achieved from using the right kernel functions, which is

one of the most crucial hyperparameters in SVMs.

Let’s now discuss different hyperparameters:

• Kernel: As previously described, a kernel helps achieve

the right mapping function, which is essential for SVM

to perform efficiently. Finding just the kernel reduces

the complexity of finding the mapping function; there’s

a direct mathematical relation between the mapping

function and kernel function. Figure 1-4-4 is an

example problem that can be solved using the radial

basis function (RBF) kernel. Some of the widely used

kernels are the polynomial kernel, Gaussian kernel,

sigmoid kernel, and of course RBF kernel, most of them

defined in the scikit-learn implementation of SVM

(sklearn also allows you to define your own kernel).

• C: C is a regularization parameter. It trades off between

training accuracy and the width of margin. A decrease

in C results in larger margins and lower training

accuracy, and vice versa.

Figure 1-4-5. Data projected into higher dimension and separated
by a plane

Chapter 1 IntroduCtIon to hyperparameters

16

• Gamma: Gamma (𝛾) defines the influence of training

points. Higher value of 𝛾 means lesser influence of

training point; a very high value will result in influence

on training point itself. A lower value will influence

more; the training points (which are support vectors)

will influence more of the training set, hence extremely

lower values will be ineffective in catching the

complexity of dataset and the resulting hyperplane will

be equivalent to a linear hyperplane separating two

classes (by their density regions).

This establishes an interesting relation between

hyperparameters C and Gamma. Generally, we

search values of Gamma and C on a logarithmic grid

of 10-3 to 103.

• Degree: This hyperparameter is used only in

polynomial kernels; a higher degree means a more

flexible decision boundary. Degree 1 would result in a

linear kernel.

 Decision Tree
Decision tree is similar to a bunch of if-else statements, a simple yet elegant

algorithm with a very intuitive visualization. It’s really easy to understand

what’s going inside, unlike neural networks. Moreover, little or no data

preprocessing is required.

As the name suggests, it’s a tree, so it starts with a root node, which is

one of the features. Based on the value of that feature for our data point,

we select the next node of the tree. This goes on until we reach the leaf and

thus the prediction value.

Chapter 1 IntroduCtIon to hyperparameters

17

Creating this tree is a little bit complicated; various different algorithms

are used to select which feature goes on the top, which goes second, and so

on. Some of the algorithms which calculate the importance of features are

Gini index, information gain, and chi-square. Selecting this algorithm can

be considered as one of the important hyperparameters in the decision

tree algorithm.

Let’s take the example of a classical Iris dataset. Here the goal is to

classify the three species of Iris flowers, Setosa, Versicolor, and Virginica,

based on four features, sepal length, sepal width, petal length, and petal

width.

As I said earlier, visualization of a decision tree is very easy; sklearn

provides a function, tree.plot_tree(), where you just have to input your

trained classifier and it will plot the tree (Figure 1-4-6).

Figure 1-4-6. A decision tree classifier trained on the Iris dataset

Chapter 1 IntroduCtIon to hyperparameters

18

As you can see in Figure 1-4-6, there are gini indexes for all the nodes,

based on which features are placed in the tree. As we move down the

tree, the value of gini index decreases. On top of nodes, a condition is

specified; if it’s true, the data point goes to the right child, and if it’s false,

the data point goes to left child. The value of samples tells us the number

of samples lying in the true and false condition of the parent node.

One of the problems we face with decision trees is that when the tree

grows complex, there is a huge chance the model will overfit over training

data. Some of the hyperparameters can help in reducing this complexity.

To solve this problem, we can prune the tree, using hyperparameters such

as maximum depth of tree and minimum number of samples at the leaf

node to help in pruning.

Here are the hyperparameters:

• Algorithm: As previously mentioned, this algorithm

decides the priority of features and hence their order in

the tree structure.

• Depth of Tree: This defines the layer of depth. This can

certainly affect both structural and time complexity

of the tree. We can remove unimportant nodes and

reduce depth.

• Minimum Sample Split: This is an integer value that

defines the minimum number of samples required

to split an internal node. In Figure 1-4-6, if we would

have chosen 101, the tree would have stopped after the

second layer.

• Minimum Sample Leaf: This defines the minimum

number of samples at the leaf. This hyperparameter

can help reduce overfitting by reducing the depth of the

tree.

Chapter 1 IntroduCtIon to hyperparameters

19

 Neural Networks
A basic neural network is made of nodes and layers of nodes, and these

nodes are nothing but the output of the previous layer multiplying with

weights (see Appendix II for more details). We call weights and biases in

this context parameters (since they are decided by a modeling algorithm

based on the dataset) and we call the number of nodes, number of layers,

and so on hyperparameters (since we intervene to decide them).

Defining the architecture of a neural network is one of the most

challenging tasks faced by deep learning practitioners today. The

architecture can’t be discovered by brute force because the time

complexity of neural networks is very high and trying out all the

combinations of hyperparameters is not possible. So, creating a neural

network architecture is more of an art, relying on logic and more advanced

hyperparameter tuning algorithms.

A vast number of different hyperparameters are possible in neural

networks, so we’ll discuss a few of them here:

• Number of Layers: Adding layers increases the depth of

the neural network, and also the ability to learn more

complex features.

• Number of Nodes: The number of nodes varies as

per the layers, but the number of nodes in the first

hidden layer and the last hidden layer must be equal

to the number of input features and classes to predict,

respectively. For the hidden layer, by convention we

use the number of nodes in exponents of 2, meaning

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, and so on. This

is because hardware performs more efficiently when

numbers are stored in powers of two, though there is

no proof that this is the most optimal way of selecting

these kind of hyperparameters.

Chapter 1 IntroduCtIon to hyperparameters

20

• Batch Size: If we take out a subsample of the dataset, it

should represent the properties of the whole dataset.

This batch can be used to calculate the gradient

and update the weights. And we iterate over all the

subsamples until we cover the whole dataset. The

idea is to save memory space. But you need to choose

the optimal value of the size of the subset, because a

lesser batch size would cause more fluctuations while

reaching the minima, and a greater value can cause

memory errors.

• Activation Function: Activation functions are used to

introduce a nonlinearity on each node. Few things

we need to make sure while deciding activation

functions are, they are to be used on thousands and

millions of nodes, and back propagation uses their

derivatives, so both the function and its derivative

should be less computationally complex. Some of the

widely used activations are ReLU, Sigmoid, and Leaky

ReLU.

• Loss Function: Loss function is chosen on the basis

of output, whether it’s a binary classification, multi-

class classification, regression, and so forth. There

are also other factors. For example, using sigmoid

activation on the last layer and quadratic loss function

can result in learning slow down. So things like these

are need to be taken care of. And there are internal

hyperparameters for loss function as well which can

be tuned.

Chapter 1 IntroduCtIon to hyperparameters

21

• Optimizer: In the “Understanding Hyperparameters”

section we discussed an optimization method,

gradient descent. There are other, more advanced

optimization methods, like Adagrad, Adam Optimizer,

and so on, and these optimizers also contain various

hyperparameters that affect the overall optimization.

There are many more hyperparameters in neural networks, such

as batch normalization, dropout, and so on. And every few days these

variables are increasing with the advance in technology.

This section was intended to give you an idea of what hyperparameters

are and how they work. As we proceed we’ll be discussing more of these

algorithms and their hyperparameters while finding their optimal values.

 Distribution of Possible Hyperparameter
Values
The value of a hyperparameter can vary based on its functioning. For

algorithms of the likes of grid search (discussed in Chapter 2), we

iterate over certain permutations of hyperparameters. But most of the

hyperparameter optimization algorithms pick variables at random. These

random values can belong to a certain type of distribution. For example,

we saw in the “Neural Networks” section that we choose the value for the

number of nodes in a layer to be an exponent of 2. So, we consider the set

{2, 4, 8, 16, 32, 64, 128, 256, 512...} to be a distribution.

Tip seeing theory (https://seeing- theory.brown.edu/)
is a great website with interactive visualizations of probability and
statistics. Check out Chapter 3 of this website for visualizations of
probability distributions.

Chapter 1 IntroduCtIon to hyperparameters

https://seeing-theory.brown.edu/

22

The likelihood of a value that a random variable can assume is defined

by probabilistic distribution. Suppose we have to pick a single random

value for a hyperparameter; the underlying distribution can be either of

the following:

• Discrete probabilistic distribution

• Continuous probabilistic distribution

There are different types of probabilistic distributions for both discrete

and continuous variables. But before we delve into those types, let’s look at

what discrete and continuous variables are.

 Discrete Variables
A set of values where each value has some positive finite distance to the

next value is discrete distribution. Discrete variables can be either finite

values or infinite values depending upon range. Figure 1-5-1 shows both

finite discrete and infinite discrete distributions.

A finite discrete value lies between two finite real numbers, as shown

in Figure 1-5-1(a), where the value lies in the range [−0.4, 1.0] with a

difference of 0.2. However, an infinite discrete value can go up to infinity,

Figure 1-5-1. Two distributions, (a) finite discrete and (b) infinite
discrete

Chapter 1 IntroduCtIon to hyperparameters

23

each value still maintaining a finite positive distance to the next value and

the previous value. In Figure 1-5-1(b), the value lies between [−0.4, +∞)

while the difference is still 0.2.

Note that the difference does not necessarily have to be same. It can be

exponential, incremental, and so forth. The example in Figure 1-5-2 shows

a uniform distribution.

Recall from the “Support Vector Machine” section that possible values

for the hyperparameter kernel can be rbf, sigmoid, linear, polynomial,

and so on. There would be a finite set of values for ‘kernel’. This can

be considered an example of a finite discrete value. We can write these

hyperparameters as follows:

• rbf «1

• sigmoid« 2

• linear « 3

• and so on

In the same algorithm we have another hyperparameter, ‘degree’,

whose value can be any possible integer. This is an example of an infinite

discrete value. However, this does not mean that we are going to search this

Figure 1-5-2. An example of finite distribution, f(x) = x + 2 such that
x ∈ [0, 5] with a difference of 1 between each value of x

Chapter 1 IntroduCtIon to hyperparameters

24

value from −∞ to +∞. The results would saturate on extreme value and it

is also not practically possible to search in an infinite space. So we’ll use a

huge range (huge is relative; 10 can be huge in some cases, while 10100 can

be huge in others) to contain the distribution.

 Continuous Variables
Continuous distribution is a set of infinite possible values lying between

two real numbers, as depicted in Figure 1-5-3.

Again taking an example from the “Support Vector Machine” section,

we have hyperparameters like ‘C’ and ‘gamma’ in SVM, the values of which

lie on a continuous distribution; that is, we can have infinite possible

values between a range.

 Probabilistic Distributions
There are infinite possible continuous and discrete probabilistic

distribution functions to sample random values, so we’ll narrow the scope

by discussing a few commonly used in practice. Probability is always

calculated between a range, such as in the example Gaussian distribution

shown in Figure 1-5-4.

Figure 1-5-3. Infinite numbers lie between 1.0 and 2.0

Chapter 1 IntroduCtIon to hyperparameters

25

In Figure 1-5-4, if we want to sample a value for variable x, there are

infinite values that x can assume. The probability for p(x) to be a specific

value would be 0. So we talk in terms of probability density function, which

are probabilities in a range. For example p(x < 0) = 0.5. Since it’s half of the

area from the whole distribution. Similarly, probability density in the

range -1 to 0 can be calculated by using the area, which can be calculated

using integration along the continuous curve.

This explains why we need to get the probability density of a range

instead of a value. Next we’ll use a module named scipy. stats to sample

values for variable x for purposes of discussing some commonly used

distributions.

 Uniform Distribution

In uniform distribution, probability density remains the same across

ranges if the width is the same. Figure 1-5-5 shows an example.

Figure 1-5-4. A Gaussian distribution with mean 0 and standard
deviation 1

Chapter 1 IntroduCtIon to hyperparameters

26

The area under the curve is 1. So we can calculate the height as 1/

(b − a), where b is the upper limit and a is the lower limit. Let’s use scipy.

stats to sample values from the uniform distribution:

from scipy.stats import uniform

import seaborn as sns

n = 10000

start = 10

width = 10

data = uniform.rvs(size=n, loc = start, scale=width)

ax = sns.distplot(data,

 bins=100,

 hist_kws={'alpha':0.8})

ax.set(xlabel='Uniform Distribution ', ylabel="Frequency")

Figure 1-5-6 shows the histogram for the uniform distribution, where

a=10 and b=20. I have sampled 10,000 random values between two

numbers.

Figure 1-5-5. A uniform distribution between a and b

Chapter 1 IntroduCtIon to hyperparameters

27

 Gaussian Distribution

A Gaussian distribution (or normal distribution) is one of the most

commonly observed distributions in nature. Most of the machine learning

algorithms assume the dataset to be Gaussian; that is, less number of

outliers and most data concentrated in clusters. Lesser frequency on

extremities and higher frequency on the mean.

For a mean (μ) of 0 and standard deviation (σ) of 1, you can see a

Gaussian distribution in Figure 1-5-4. Note that on the x axis, if you mark

μ − σ and μ + σ, as in Figure 1-5-7, you’ll find that it covers approximately

68% of the area. Similarly, μ − 2σ and μ + 2σ covers around 95% of the area

and μ − 3σ and μ + 3σ covers 99.7 % of the area.

Figure 1-5-6. Histogram for uniform distribution

Chapter 1 IntroduCtIon to hyperparameters

28

Here’s the code to sample random values from Gaussian data:

from scipy.stats import norm

import seaborn as sns

mean = 0

std_dev = 1

data = norm.rvs(size=10000,loc=0,scale=1)

ax = sns.distplot(data,

 bins=100,

 hist_kws={'alpha':0.8})

ax.set(xlabel='Gaussian Distribution ', ylabel="Frequency")

Figure 1-5-8 shows a histogram plotted from random values sampled

from a Gaussian distribution.

Figure 1-5-7. A Gaussian distribution with mean 0 and standard
deviation 1

Chapter 1 IntroduCtIon to hyperparameters

29

 Exponential Distribution

Another important distribution is exponential distribution. As the name

suggests, values increase exponentially. There’s a parameter rate (λ) which

controls the slope of distribution.

from scipy.stats import expon

import seaborn as sns

loc = 10

lambda_inverse = 1

data = expon.rvs(size=10000,loc=loc,scale=lambda_inverse)

ax = sns.distplot(data,

 bins=100,

 hist_kws={'alpha':0.8})

ax.set(xlabel='Exponential Distribution', ylabel="Frequency")

Figure 1-5-9 shows a histogram for when a random value is selected

from a lognormal distribution which can be plotted using the above code.

Figure 1-5-8. Histogram for Gaussian distribution

Chapter 1 IntroduCtIon to hyperparameters

30

We’ll encounter a lot more distributions in subsequent chapters

as we use them. We’ll see which hyperparameters are suited for

which distributions and why. Now that you have an understanding of

hyperparameters, in Chapter 2 we’ll explore some basic hyperparameter

tuning methods.

Figure 1-5-9. Histogram for an exponential distribution

Chapter 1 IntroduCtIon to hyperparameters

31© Tanay Agrawal 2021
T. Agrawal, Hyperparameter Optimization in Machine Learning,
https://doi.org/10.1007/978-1-4842-6579-6_2

CHAPTER 2

Hyperparameter
Optimization Using
Scikit-Learn
In the previous chapter, you learned what hyperparameters are and how

they affect the performance of an algorithm. Now that you know how

important it is to tune hyperparameters, this chapter introduces you to

some simple yet powerful uses of algorithms implemented in the scikit-

learn library for hyperparameter optimization. Scikit-learn is one of the

most widely used open source libraries for machine learning practices. It’s

simple to use and really effective in predictive analysis.

 Changing Hyperparameters
You know from Chapter 1 how support vector machine (SVM) works. You’ll

now see how changing two of the hyperparameters—C, the regularization

factor, and gamma, the kernel coefficient—affects the results while the kernel

is fixed (RBF) on the Titanic dataset (Dataset explained in Appendix I).

Figure 2-1(a) shows the comparison between gamma and C; the lighter

color in the heat map represents higher accuracy. We see that with higher

values of C (10^11) and lower values of gamma (10^-8), we get more test

accuracy, and with lower values of C (10^4) and relatively higher values of

https://doi.org/10.1007/978-1-4842-6579-6_2#DOI
https://doi.org/10.1007/978-1-4842-6579-6

32

gamma (10^-3), we get comparative accuracy. The graph in Figure 2-1(b)

shows that as the value of gamma increases, keeping the C constant at 1,

the difference between train accuracy (blue line) and test accuracy (orange

line) after a certain point keeps on increasing, resulting in overfitting of the

model, which proves that we need to regularize the model by decreasing C.

Figure 2-1. (a) Heatmap on different values of gamma and C.
(b) Changing accuracy as gamma increases

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

33

 Grid Search
Perhaps the most brute-force approach for finding the most optimized

set of hyperparameters is to train the dataset on each possible set. This

approach, called grid search, is the most certain way of finding the best set

of hyperparameters, but it also has its disadvantages. Figure 2-1-1 depicts a

grid going through all possible combinations of parameters 1 and 2.

Suppose you have ten algorithms with five hyperparameters each, with

four possible values for each hyperparameter, and a huge dataset that takes

1 minute to train on one algorithm on one set of hyperparameters. This

scenario would take around a week to discover your best hyperparameter.

But for less number of hyperparameters and smaller training time we can

go with grid search. Now we’ll build this simple algorithm in Python and

test it on the example shown in Figure 2-1-1.

The value of a hyperparameter can vary on either a continuous

distribution or a discrete distribution. If the value is discrete, there is a

finite number of possible values in a range. However, in a continuous

distribution, there are infinite possible values, as we saw in Chapter 1.

Next we’ll be tuning C and gamma, both of which have a continuous

Figure 2-1-1. A grid search going through each possible combination
of two hyperparameters

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

34

distribution between a range. But to make a grid, we’ll make an even

distribution on a log scale. Grid search does not take random variables; to

make a grid, it needs specific values.

Let’s make a grid of hyperparameters C and gamma:

c = 0.001

gamma = 1e-10

param_grid = {

 "C": [c*(10**i) for i in range(1,14)],

 "gamma": [gamma*(10**i) for i in range(1,14)]

 }

Note i have used a preprocessed dataset (X_train, y_train, X_test,
y_test), the titanic dataset. refer to appendix i to view all the
preprocessing methods.

We’ll first make a function to break this grid into a list of all possible

sets of hyperparameters, make_sets():

from itertools import product

def make_sets(grid):

 sets = list()

 all_hps_vals = [lst for lst in param_grid.values()]

 hp_keys = [hp for hp in param_grid.keys()]

 val_sets = product(*all_hps_vals)

 for val in val_sets:

 hp_set = dict()

 for idx, hp_key in enumerate(hp_keys):

 hp_set[hp_key] = val[idx]

 sets.append(hp_set)

 return sets

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

35

>>> make_sets(param_grid)

[{'C':0.01, 'gamma':1e-09},

 {'C':0.01, 'gamma':1e-08},

 {'C':0.01, 'gamma':1e-07},

 ...

 ...

 {'C':10000000000.0, 'gamma':1000.0}

]

Now we’ll make another function, grid_search(), to fit all the sets on

the machine learning algorithm:

def grid_search(clf, grid, X_train, y_train, X_test, y_test):

 all_sets = make_sets(grid)

 logs = list()

 best_hp_set = {

 "best_test_score": 0.0

 }

 for hp_set in all_sets:

 log = dict()

 model = clf(**hp_set)

 model.fit(X_train, y_train)

 train_score = model.score(X_train, y_train)

 test_score = model.score(X_test, y_test)

 log["hp"] = hp_set

 log["train_score"] = train_score

 log["test_score"] = test_score

 if best_hp_set["best_test_score"]<test_score:

 best_hp_set["best_test_score"] = test_score

 best_hp_set["hp_set"] = hp_set

 logs.append(log)

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

36

 return logs, best_hp_set

>>> from sklearn.model_selection import train_test_split

>>> from sklearn.svm import SVC

train test split dataset.

X and y are the pre-processed features and labels respectively.

>>> X_train, y_train, X_test, y_test = train_test_split(X, y)

>>> logs, best = grid_search(SVC, param_grid, X_train, y_train,

X_test, y_test)

The grid_search() function that we just defined takes the following

inputs: classifier, parameter_grid, and dataset. From the make_sets()

function, grid_search() creates all combinations of hyperparameters and

trains the model on all of them. Then we save the train and test scores in a

dictionary and search for best results.

Note that for the sake of simplicity of code, I did not cross-validate

while training. To actually evaluate each set of hyperparameters, we must

use a validation set and save the test set for later, so that we can evaluate

the model on an independent set. However, instead of splitting the training

set into training and validation sets (since in datasets like Titanic, we

have only around 700 datapoints), we cross-validate, saving the precious

training data unaltered. Cross-validation also prevents overfitting on the

validation set.

We’ll now see how to use the GridSearchCV() function provided by

scikit-learn to split the training set in a K-fold cross-validation:

>>> from sklearn.model_selection import GridSearchCV

>>> clf = GridSearchCV(SVC(), param_grid, cv=3)

>>> # X_train and y_train being datapoints from titanic dataset.

>>> # titanic dataset is used for sake of presenting this example.

>>> clf.fit(X_train, y_train)

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

37

>>> clf.best_estimator_

SVC(C=100000.0, break_ties=False, cache_size=200, class_

weight=None, coef0=0.0,

 decision_function_shape='ovr', degree=3, gamma=0.0001,

kernel="rbf",

 max_iter=-1, probability=False, random_state=None,

shrinking=True,

 tol=0.001, verbose=False)

In Figure 2-1-2, we can see that the accuracy score varies with

iterations (for 169 combinations).

Figure 2-1-2 exhibits no clear pattern since it’s an exhaustive search

method; we are trying all possible combinations. You can define the

GridSearchCV() function and pass the algorithm, parameter grid, and

number of folds for cross-validation. All the other methods like ‘fit()’,

‘score()’ and so forth are same. You can use the method best_estimator_

to get the best value of hyperparameters. I tuned for ‘gamma’ and

‘C’ the same as our scratch implementation, keeping the rest of the

hyperparameters constant.

Figure 2-1-2. Plot of iteration vs. accuracy score

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

38

 Random Search
Grid search eventually finds the near optimal set of hyperparameters,

but its time and resource consumption is high. Another method,

random search, consumes less time and resources. It randomly picks

hyperparameters, makes a set, and trains the model on it. This method

may not find the best set, but there are higher chances of finding a near

best set saving a huge amount of time.

Unlike grid search, instead of spending a large amount of time

on unpromising candidates, random search jumps to random

hyperparameters, and even though it does not learn from its past results, it

usually delivers satisfactory results. In random search, we define the number

of trials, which is the number of sets of hyperparameters to be tried.

Let’s see how random search can be better than grid search by

exploring the example shown in Figure 2-2-1.

In both images in Figure 2-2-1, ‘x’ and ‘y’ axis represents two

hyperparameters and the background represents increasing accuracy as

the color gets lighter. In the case of grid search, shown on the left, if we

start searching from the top-left corner, along the grid, our search will take

Figure 2-2-1. Comparing grid search (left) to random search (right)

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

39

a considerable amount of time to reach the higher-accuracy region. In

the case of random search, shown on the right, because we are randomly

searching for hyperparameters, we have better chances of reaching higher

accuracy earlier than with grid search. And as soon as the defined number

of trials are over, we’ll select the best set of hyperparameters available,

hoping it’s at least near the best set.

The following are two main benefits of using random search over grid

search:

• The number of trials is defined and is independent of

the total number of combinations.

• Since the number of trials is defined, even if the

number of noncontributing parameters is increased,

the time efficiency of the algorithm isn’t affected.

In random search, since we select hyperparameters randomly out

of the search range, we can use the random library in Python, random.

randint(a, b) (which gives a random integer between integers a and b)

for discrete hyperparameters and random.random() (which gives a random

float number between 0 and 1, where 1 is exclusive) for continuous

or functions from numpy or scipy.stats which gives different types of

distributions like uniform, lognormal, exponential, and so forth.

Alternatively, as shown next, we can create a bigger grid for

hyperparameters with continuous distribution—like really large, since

it won’t increase the number of trials (which we are going to define)—

enabling the algorithm to choose hyperparameters from a bigger sample.

import random

import numpy as np

def loguniform(low=0, high=1, size=100, base=10):

 # function creates a log uniform distribution with

 # random values.

 return np.power(base, np.random.uniform(low, high, size))

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

40

param_grid = {

 "gamma": loguniform(low=-10, high=4, base=10),

 "C": loguniform(low=-3, high=11, base=10)

 }

def get_random_hp_set(grid):

 # function chooses a random value for each from grid

 hp_set = dict()

 for key, param in grid.items():

 hp_set[key] = np.random.choice(param)

 return hp_set

def random_search(clf, grid, n_iterations, X_train, y_train,

X_test, y_test):

 # defining function for random search

 logs = list()

 best_hp_set = {

 "best_test_score": 0.0

 }

 for iteration in range(n_iterations):

 log = dict()

 # selecting the set of hyperparameters from

function defined

 # for random search.

 hp_set = get_random_hp_set(grid)

 # print(hp_set)

 model = clf(**hp_set)

 model.fit(X_train, y_train)

 train_score = model.score(X_train, y_train)

 test_score = model.score(X_test, y_test)

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

41

 log["hp"] = hp_set

 log["train_score"] = train_score

 log["test_score"] = test_score

 if best_hp_set["best_test_score"]<test_score:

 best_hp_set["best_test_score"] = test_score

 best_hp_set["hp_set"] = hp_set

 logs.append(log)

 return logs, best_hp_set

>>> X_train, y_train, X_test, y_test = train_test_split(X, y)

>>> logs, best = random_search(SVC, param_grid, 20, X_train,

y_train, X_test, y_test)

And hence we would get at least the near best set of hyperparameters

from random search in lesser iterations.

Again scikit-learn provides us with a cross-validating function,

RandomizedSearchCV(). Let’s see how it works:

>>> from sklearn.model_selection import RandomizedSearchCV

>>> # just like our function RandomizedSearchCV also has

argument 'n_itern'

>>> clf = RandomizedSearchCV(SVC(), param_grid, n_iter=20, cv=3)

>>> clf.fit(X_train, y_train)

>>> clf.best_estimator_

SVC(C=1000000000.0, break_ties=False, cache_size=200, class_

weight=None,

 coef0=0.0, decision_function_shape="ovr", degree=3,

gamma=1e-05,

 kernel='rbf', max_iter=-1, probability=False, random_

state=None,

 shrinking=True, tol=0.001, verbose=False)

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

42

As shown in Figure 2-2-2, random search reached comparable

accuracy in just 20 iterations.

Both GridSearchCV and RandomizedSearchCV have another useful

argument, scoring; if set to its default value, the machine learning

algorithm’s scoring method is used, which is usually 'accuracy'. However,

we can provide it with any of the scoring methods we find fit for our work,

like 'roc_auc', 'f1', 'precision', 'recall', and so forth.

 Parallel Hyperparameter Optimization
Both grid search and random search are brute-force methods; they do not

depend on the previous results to select the next set of hyperparameters.

And we can use this to our advantage by processing the trials in parallel.

The scikit-learn implementation of these algorithms provides a parameter,

‘n_job’, that can be set to ‘-1’ to specify that all cores of the local machine

should be used.

In this section we’ll see how we can distribute algorithms like

grid search on a high-performance computing (HPC) cluster. An HPC

cluster is simply a bunch of high-end computers (called nodes) that are

Figure 2-2-2. Iteration vs. accuracy plot for random search

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

43

configured so that they can be in constant communication with the help

of a fast interconnect, providing computing power similar to that of a

supercomputer. An HPC cluster consists of the following components,

depicted in Figure 2-3-1:

• Login node: From here we can remotely access the

cluster using our machine, through secure protocols

such as Secure Shell (SSH). It is used to upload and

execute the code.

• Data transfer node: Again, secure protocols such as SSH

are used with commands like scp and rsync to transfer

large amounts of data from our machine to the HCP

cluster. The transfer is secured by an encryption tunnel.

• Computer nodes: There are different types of computer

nodes, including regular ones with hardware

specifications similar to those of our personal

machines, “fat” computer nodes with huge amounts

of data storage (in terabytes), and high-end nodes

consisting of GPUs and CPUs. These nodes together

help in computation.

• Infinite Band (IB) switch: This switch enables fast

communication between nodes, with high throughput

and very low latency.

• Storage: Here large files can be stored and can be

transferred via the data transfer node.

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

44

However, working with high-performance computing clusters is not

as simple as setting ‘n_job = -1’, and using clusters to their maximum

potential is even difficult. We’ll be using the Slurm workload manager,

an open source job scheduler for computer clusters for queuing, and

ipyparallel for parallel computations over multiple threads.

You can use the following code for HPC and Amazon EC2 clusters with

minor modifications based on the respective requirements.

Now we’ll again optimize SVM’s hyperparameters C and gamma on the

MNIST dataset (refer to Appendix II to know more about MNIST).

The following code is inspired by the work1 of Dr. Hugues-Yanis

Amanieu, a data scientist in production engineering at Leclanché.

First we’ll log in to the login node, using SSH:

$ ssh username@ip

1 http://www.hyamani.eu/2018/05/20/parallel-super-computing-with-
scikit-learn/

Figure 2-3-1. HPC cluster

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

https://doi.org/10.1007/978-1-4842-6579-6
http://www.hyamani.eu/2018/05/20/parallel-super-computing-with-scikit-learn/
http://www.hyamani.eu/2018/05/20/parallel-super-computing-with-scikit-learn/

45

Now that we are logged in to the HPC cluster, we’ll create a virtual

environment:

$ virtualenv hpc_tuning

$ source hpc_tuning/bin/activate

And install all the dependencies, slurm, slurm-client, ipyparallel,

joblib, ipython, and of course scikit-learn in your virtual environment

‘tuning’. We can alternatively download and install them through

Anaconda as well (in a conda virtual environment).

Next we’ll write a shell script (‘launch.sh’) in which we’ll use Slurm to

schedule the jobs:

#this will activate the virtualenv

source hpc_tuning/bin/activate

#creating a new job profile name for ipython which slurm will use

profile=job_${JOB_NAME}

#creates an config file for ipython

ipython profile create ${profile}

#starts ip controller

ipcontroller --ip="*" --profile=${profile} &

sleep 10

#srun runs ipengine on all the cores

srun ipengine --profile=${profile} --location=$(hostname) &

sleep 25

#execute the python file, where we'll define the grid search to

#distribute on cluster

python $1 -p ${profile}

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

46

Let’s explore this code in detail.

• First we activate a virtual environment where

everything is installed from scratch, so that we don’t

face any dependencies issues.

• After that, we assign a variable profile, where we

define a string that will be the name/identity of our job.

• Once the ID is created, we use the ipython command

to create a profile, which initializes a folder containing

configuration information.

• Now we have a controller and engines. The controller

schedules and queues the jobs, and engines compute

the data and store the results. We are using ipython

for communication between the controller and the

engines.

• The ipcontroller command starts the controller

and the ipengine command starts the engines. While

starting ‘ipcontroller’, we need the controller to listen to

all the engines, and the argument --ip="*" allows the

controller to listen on all interfaces.

• For engines to connect with the controller, we use

ipengine with the argument --location=="ip", where

we provide the IP address of the controller.

• ipcontroller creates a file named ‘ipcontroller-

engine.json’ that needs to be copied to all the engines;

however, in our case we assume the engines and the

controller share the same file system, in which case

engines will automatically find the location of the ‘json’

file.

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

47

Note in the preceding code that we are using srun to run ipengine;

srun is a Slurm command that runs ipengine on all the available cores.

Finally, we run the Python script containing the scikit-learn code, and an

argument profile name is passed.

Let’s write the Python script (‘python_script.py’):

import argparse

import os

import sys

import time

import pandas as pd

from sklearn.externals.joblib import parallel_backend

from sklearn.externals.joblib import register_parallel_backend

from sklearn.externals.joblib import cpu_count

from sklearn.datasets import load_digits

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from ipyparallel import Client

from ipyparallel.joblib import IPythonParallelBackend

append file dir path to sys path, so imports from custom

function would # work

FILE_DIR = os.path.dirname(os.path.abspath(__file__))

sys.path.append(FILE_DIR)

argparser to take profile name as argument from our shell

script

parser = argparse.ArgumentParser()

parser.add_argument("-p", "--profile", default="job_hp_test",

 help="Name of IPython profile to use")

args = parser.parse_args()

profile = args.profile

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

48

counts total number of available cores

print(cpu_count())

Create a Client instance providing the name of profile

created on shell script

c = Client(profile=profile)

Ensure all engines(c) are running in the working directory

c[:].map(os.chdir, [FILE_DIR]*len(c))

print list of engine ids

print(c.ids)

restrict all the engines

bview = c.load_balanced_view()

register_parallel_backend('threading',

 lambda : IPythonParallelBackend(view=

bview))

loading the data

digits = load_digits()

splitting the data to train and test

X_train, X_test, y_train, y_test = train_test_split(digits.data,

 digits.target,

 test_size=0.3)

prepare the hyperparameter grid

param_grid = {

 "C": [c*(10**i) for i in range(1,14)],

 "gamma": [gamma*(10**i) for i in range(1,14)]

 }

defining classifier with default hyperparameters

svc = SVC()

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

49

defining GridSearchCV

search = GridSearchCV(svc,

 param_grid,

 return_train_score=True,

 n_jobs=len(c))

start timer

since = time.time()

using parallel backend to start the parallel processing

with parallel_backend('threading'):

 search.fit(X_train, y_train)

end the timer

time_taken = time.time() - since

converting and saving the results to .csv file

print(f"Saving results to {FILE_DIR}")

results = search.cv_results_

results = pd.DataFrame(results)

results.to_csv(os.path.join(FILE_DIR,'scores.csv'))

print(f"Results Saved!")

Display the time taken

print(f"Tuning Time: {time_taken}")

Let’s examine step by step what’s going on in the preceding Python

script:

• Import all the libraries that were installed previously in

our virtual environment.

• Since we need to use the profile name by which the

ipython profile was created, we use argparser and take

the name from the shell script as an argument.

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

50

• Initialize the client, giving it the profile name of the

cluster to prepare all the engines. c.ids is used to get a

list of all the engine IDs.

• Restrict load balancing across all the engines.

• Before running the algorithm parallelly, we define the

back-end name as a string ('threading'), for which we

use the function register_parallel_backend; later

we’ll use 'threading' while running the training of the

model.

• Load the dataset, split it to train and test, and define the

grid for C and gamma.

• Initialize SVC() and define GridSearchCV(), with

n_jobs set to either -1 (use all available cores) or

len(total_engines) (use a defined number of cores).

• We previously defined the name of the back end

for parallel computation of jobs using register_

parallel_backend with 'threading'. We now use that

name to run parallel_backend and Grid Search for ‘C’

and ‘gamma’ for SVM.

• Save the results.

• Execute the command sbatch launch.sh python_

script.py; sbatch is a Slurm command that submits

the written script to Slurm.

• Transfer the result files using the scp command.

And that is how we can optimize a huge number of hyperparameters

on a cluster of computers while using it to its maximum potential. You can

use random search in place of grid search as well. Using HPC will decrease

your time consumption by a huge amount.

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

51

We reviewed some exhaustive and brute-force methods for

hyperparameter optimization that would take a really long time if applied

to problems like Neural Network Architecture Search and are not feasible.

In later chapters we’ll see some more algorithms and libraries that would

be able to handle these complex tasks. However, in problems with fewer

hyperparameters and a narrower search range, or where as a data scientist

you can decide the approximate values or reduce the search space by

looking at the dataset, these algorithms can be fruitful, and using them

with machines such as those in HPC clusters can even increase their

efficiency.

Chapter 2 hyperparameter OptimizatiOn Using sCikit-Learn

53© Tanay Agrawal 2021
T. Agrawal, Hyperparameter Optimization in Machine Learning,
https://doi.org/10.1007/978-1-4842-6579-6_3

CHAPTER 3

Solving Time and
Memory Constraints
We face two major problems while tuning hyperparameters:

• Memory constraint: Sometimes we have to deal with

hundreds of gigabytes of data. We cannot store such a

huge amount of data in RAM. While training a neural

network, we send data in batches. One of the possible

solutions is larger memory, which is not feasible always.

• Time/computation constraint: Let’s say our data

fits into memory, but we are training a deep neural

network (DNN) or there is a huge search space for

hyperparameter optimization. This can consume a

great amount of time.

One solution to both of these problems is to use better hardware.

For example, in the case of a deep neural network, graphics processing

units (GPUs), tensor processing units (TPUs), and so forth can be used

to accelerate the training. Although better hardware will solve the

problem up to some extent, it’s not always possible to work on such high-

end machines. In Chapter 2, we distributed grid search over an HPC

cluster, which solved the time constraint, but an HPC cluster is a costly

resource. There are ways much easier, using different types of clusters.

https://doi.org/10.1007/978-1-4842-6579-6_3#DOI

54

In this chapter, we’ll discuss easier alternatives to HPC that deal with

both memory and time constraints. We’ll mainly focus on distribution of

training to efficiently use available resources.

We’ll start with Dask, which is great for distributing machine learning

processes and works best with scikit-learn. We’ll then see easy ways to

distribute neural networks using packages like PyTorch Distributed and

Horovod.

 Dask
Dask (https://dask.org/) is a library in Python for parallel computation. It

uses dynamic task scheduling, similar to what we did using ipyparallel on the

HPC cluster in Chapter 2, which addresses the problem of computational

constraint. However, Dask is much more flexible than ipyparallel for

distribution. Using dynamic task scheduling, we can distribute training over

different machines (not just over multiple cores on the same machine).

But suppose we have a memory constraint because our data is so huge

that it can’t be loaded into memory at once. Dask solves this by offering

parallel collections like Dask Dataframe, Dask array, and so forth, which

distributes dataset into chunks that can either be used on a distributed

environment or solve larger-than-memory problems. A process executed

using Dask typically contains the following aspects:

Collection → Task Graph → Multi-Threading/

Processing or Distribution

First, a Dask collection is passed to a task graph, which is the complete

pipeline of all the operations like preprocessing, hyperparameter

optimization, evaluation, and so on. Here tasks can be parallelized or

arranged in a serial manner. Finally, the scheduler can execute task

graphs using dynamic task scheduling. If a single machine is used,

multithreading/multiprocessing can be used to parallelize it over cores,

and on a cluster, a task graph can be distributed over nodes. In the

example of a task graph shown in Figure 3-1-1, operations (a) and (b) are

Chapter 3 Solving time and memory ConStraintS

https://dask.org/

55

independent, so both of them can be executed parallelly. Task 1, 2, and 3

inside (a) will be executed serially. If (a) is completed before (b), task 7 will

wait for (b) to get completed.

 Dask Distributed
dask. distributed is a small library that extends to dask for dynamic

task scheduling. While using dask we primarily use Client() from dask.

distributed:

>>> from dask.distributed import Client

>>> client = Client()

Client() helps you connect to the distributed cluster. A Dask cluster is

passed to Client(), depending upon the cluster type. Dask support several

different cluster types, such as the following:

• SSH: If you have an unmanaged cluster, you need to

connect to each machine using the SSH protocol. In

that case, use the following:

>>> from dask.distributed import Client, SSHCluster

>>> cluster = SSHCluster(

 ["localhost", "localhost", "localhost"],

 connect_options={"known_hosts": None},

Figure 3-1-1. An example of a task graph

Chapter 3 Solving time and memory ConStraintS

56

 worker_options={"nthreads": 2},

 scheduler_options={"port": 0,

 "dashboard_address":

":8797"},

)

>>> client = Client(cluster)

Here we define IPs for all the worker, connect_

options can contain information like passwords for

SSH connections.

• Kubernetes: Using a Kubernetes cluster is a quick and

easy way to deploy distributed applications using Dask:

>>> from dask_kubernetes import KubeCluster

>>> cluster = KubeCluster.from_yaml('worker-template.yaml')

>>> cluster.scale(40) #add 40 worker nodes

>>> from dask.distributed import Client

>>> client = Client(cluster)

You can define worker machines as per your need, or even scale them

as per workload using cluster. adapt() instead of cluster. scale().

Along with these cluster types, Dask also facilitates distribution

over HPC, YARN (an Apache Hadoop cluster), and cloud-based clusters

provided by Amazon, Google, and so forth.

By passing 'processes=False' to Client(), a local cluster will be created

and trials will be parallelized over cores:

>>> from dask.distributed import Client

>>> client = Client(processes=False)

>>> print(client)

Client

Scheduler: tcp://127.0.0.1:35053

Dashboard: http://127.0.0.1:8787/status

Chapter 3 Solving time and memory ConStraintS

57

Cluster

Workers: 1

Cores: 4

Memory: 16.73 GB

This shows the client and cluster details. In this case, I have used a

single machine as both scheduler and worker. On an actual cluster, you

can utilize many more cores and workers, and much more memory.

A brilliant feature provided by Dask is the visualization of the distributed

computing on the Dashboard (note the Dashboard address under the client

info). Here you can visualize in real time the utilization of the cores once the

search is executed. Later we’ll take a look at some examples.

 Parallel Collections
As you can see in Figure 3-1-2, chunks of a Dask dataframe consist of several

small Pandas dataframes. Similarly, a Dask array consists of smaller NumPy

arrays. You can decide the size of chunks such that they fit in memory.

Figure 3-1-2. Dask dataframe (left) and Dask array (right)

Chapter 3 Solving time and memory ConStraintS

58

Moreover, operations over Dask dataframe mimics API of pandas

dataframe, and the same goes for arrays. For example:

#pandas

import pandas as pd

df = pd.read_csv("./dataset/train.csv")

print(df.Age.mean())

#dask

import dask.dataframe as dd

df = dd.read_csv("./dataset/train.csv")

print(df.Age.mean().compute())

The only difference is that you need to use .compute() to execute the

operations in Dask. Not all NumPy and Pandas interfaces are supported

though.

Since Daks parallel collections can help to solve memory constraints,

let’s model a large dataset that wouldn’t otherwise fit in the memory, let

alone train.

First initialize the client:

>>> from dask.distributed import Client

>>> client = Client(processes=False)

Now make the Dask collection:

>>> from dask_ml import datasets

>>> from dask_ml.model_selection import train_test_split

>>> import dask.array as da

>>> X, y = datasets.make_classification(n_samples=100000000,

 n_features=7,

 random_state=0,

 chunks=100000)

>>> classes = da.unique(y_train).compute()

>>> X_train, X_test, y_train, y_test = train_test_split(X, y)

Chapter 3 Solving time and memory ConStraintS

59

Now we have a huge dataset, which has 100 million rows with seven

features each and two classes. Figure 3-1-3 shows a data 5.6 GB large

divided into 1000 chunks of 100,000 rows and 5.6 MB each.

The point of creating chunks is to not have to load the entire dataset in

memory; only algorithms with 'partial_fit' in scikit-learn support this. I’ll

be using SGD Classifier to model the dataset:

>>> from sklearn.linear_model import SGDClassifier

>>> clf = SGDClassifier(loss='log', penalty="l2", tol=0.01)

Executing clf.fit(X_train, y_train) will iterate over the dataset

a single time. To train the classifier further for multiple iterations, we can

use a simple for loop. We’ll have to wrap scikit-learn’s SGD classifier into

Dask’s Incremental function, which manages the data so that the model

will be trained in chunks.

>>> from dask_ml.wrappers import Incremental

>>> clf = Incremental(clf, scoring="accuracy")

>>> clf.fit(X_train, y_train, classes=classes)

Once you execute this, check out the Dask dashboard, where you can

visualize various processes going on, as shown in Figure 3-1-4.

Figure 3-1-3. (a) is a representation of variable X and (b) is a
representation of variable y

Chapter 3 Solving time and memory ConStraintS

60

 Dynamic Task Scheduling
Most of the algorithms implemented in scikit-learn are capable of using

'joblib', which provides thread/process-based distribution over the cores

of a single machine. Using Dask, we can distribute these algorithms over

a cluster, just like we did in the HPC cluster example in Chapter 2 using

ipyparallel.

Dask, being much more flexible, provides support for parallelism on all

different kinds of distributed systems, as depicted in 3-1-5.

Figure 3-1-4. The Dask dashboard Task Stream pane shows the four
bars representing four cores.

Chapter 3 Solving time and memory ConStraintS

61

Let’s take an example of optimizing hyperparameters of support vector

machine using both serial optimization using scikit-learn and distributing

trails using Dask and compare the time:

from sklearn.datasets import load_digits

from sklearn.model_selection import GridSearchCV, train_test_

split

from sklearn.svm import SVC

X, y = load_digits().data, load_digits().target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size = 0.3, shuffle=True)

c = 0.001

gamma = 1e-10

param_grid = {

 "C": [c*(10**i) for i in range(1,14)],

 "gamma": [gamma*(10**i) for i in range(1,14)]

 }

clf = SVC(kernel='rbf')

search = GridSearchCV(clf, param_grid, cv=3)

Figure 3-1-5. (a) scikit-learn with the help of JobLib can distribute
training over cores of a single machine. (b) With Dask, the same
process can be distributed over cores of a single machine or even a
cluster of machines

Chapter 3 Solving time and memory ConStraintS

62

In the preceding code, we have loaded the ‘digits’ dataset, and we’ll

be optimizing ‘C’ and ‘gamma’ using GridSearchCV(). First, let’s use just

ScikitLearn example without Joblib.

>>> import time

>>> since = time.time()

>>> model = search.fit(X_train, y_train)

>>> print(time.time()-since)

The total number of trials would be 169 across the grid of

hyperparameters, taking 75.01 seconds. Note that we are running Grid

Search serially.

Now let’s use Dask to parallelize our trials over the cores:

>>> import joblib

>>> import time

>>> from dask.distributed import Client

>>> client = Client(processes=False)

>>> since = time.time()

>>> with joblib.parallel_backend('dask', scatter=[X_train, y_train]):

 model = search.fit(X_train, y_train)

>>> print(time.time()-since)

Now JobLib will use Dask’s client, which is, in this case, a local cluster

for distribution of 169 possible combinations over the cores. The time

taken for the same task was 34.73 seconds. This is a huge improvement

with just four cores, and hence there’s a huge scope of improvement on an

actual cluster of machines. Check the Dask dashboard to visualize the core

usage, as shown in Figure 3-1-6.

Chapter 3 Solving time and memory ConStraintS

63

Note all of the previous experiments are performed on a local
machine, where both the scheduler and cluster are the same. in the
example presented in the “dynamic task Scheduling” section, we
could use scikit-learn alone to distribute over the cores of a single
machine instead of using dask.

 Hyperparameter Optimization with Dask
As we saw in last few examples, we can use Dask for hyperparameter

optimization to solve both time and memory constraints. Let’s review

the algorithms for hyperparameter optimization in scikit-learn and their

distribution:

• We can use plain and simple scikit-learn’s Random

Search and Grid Search and pass the argument

'n_jobs'=-1 to use all cores on a single machine.

This solves the compute/time constraint.

Figure 3-1-6. Task Stream pane showing four horizontal bars
denoting four cores

Chapter 3 Solving time and memory ConStraintS

64

• We can use scikit-learn and wrap its code in with

parallel_backend('dask'): as we did in the example

in the “Dynamic Task Scheduling” section, be it

Random Search or Grid Search or any other algorithm

implemented with ‘joblib’. We can either use all cores

on a single machine or distribute them over a cluster,

depending on how dask.distributed’s client() is

defined. This reduces time even more if a cluster is used.

Now let’s see what else Dask offers us for hyperparameter

optimization.

 Dask Random Search and Grid Search

We cannot use Random Search or Grid Search provided by scikit-learn

to train a large dataset because they do not support ‘partial_fit’. However,

Dask gives us drop-in replacements for both of these algorithms, dask_

ml.model_selection.GridSearchCV and dask_ml.model_selection.

RandomizedSearchCV. Interface for respective algorithms in both Dask

and Scikit-Learn is similar, but the one from Dask implements ‘partial_fit’,

so that we can wrap a machine learning algorithm from scikit-learn in

Incremental and pass it to these hyperparameter optimization algorithms.

The setting can not only train the model in chunks of data but also

distribute it on a cluster, solving both time and memory issues. The steps

are pretty much a straightforward script, the same as what we did before:

 1. Define a client.

 2. Define a search space.

 3. Make a huge dataset to test our distributed model.

 4. Train Test Split.

 5. Define the ML algorithm which uses partial fit, like

SGD classifier.

Chapter 3 Solving time and memory ConStraintS

65

 6. Wrap the ML algorithm in Incremental so that

data can be managed and trained in chunks while

distributing it to cores/cluster.

 7. Use Grid Search on top of that which is imported

from Dask since it implements ‘partial_fit’.

 8. Train the model under joblib.parallel_backend

so that it can be further distributed.

However, there’s an interesting problem I faced while following these

steps. When I executed the code I checked the Dask dashboard. The

memory started to fill up. The problem was due to the accuracy score. After

I used accuracy metrics from ‘dask_ml’, the problem was solved.

Let’s check out an example:

from dask_ml import datasets

from dask_ml.wrappers import Incremental

from dask_ml.model_selection import train_test_split,

GridSearchCV

from dask_ml.metrics import accuracy_score

from sklearn.metrics import make_scorer

from sklearn.linear_model import SGDClassifier

import joblib

import dask.array as da

from dask.distributed import Client

client = Client(processes=False)

print(client.dashboard_link)

param_grid = {

 "penalty": ['l1', 'l2'],

 "tol": [1e-2, 1e-3, 1e-4]

 }

Chapter 3 Solving time and memory ConStraintS

66

X, y = datasets.make_classification(n_samples=100000000,

 n_features=7,

 random_state=0,

 chunks=100000)

providing an accuracy metrics from 'dask_ml'

scorer = make_scorer(accuracy_score)

X_train, X_test, y_train, y_test = train_test_split(X, y)

clf = SGDClassifier(loss='log')

clf_wrap = Incremental(clf, scoring=scorer)

searh_clf = GridSearchCV(clf_wrap, param_grid, cv=3)

with joblib.parallel_backend('dask'):

 model = searh_clf.fit(X_train, y_train)

Note after some poking around, i found out that while score calculation
by default ‘SgdClassifier.score’ was being used which was converting
chunks of ‘dask arrays’ to ‘ndarray’, which was resulting in high memory
usage. When i used a scorer from ‘dask_ml’, it solved the issue.

So, you need to take care that the chunks of your data are not converted
to ‘numpy array’; otherwise it would end up filling memory. the idea of
using a dask dataframe and dask array here is to not fill memory.

 Incremental Search

This is another really good approach to search hyperparameters. As we

know, Dask can divide the data into chunks and the algorithms using

‘partial_fit’ can train small data at once. Incremental Search Algorithm

uses this concept to its benefit. It trains several models on smaller chunks

of datasets on a variety of sets of hyperparameters. It continues with

Chapter 3 Solving time and memory ConStraintS

67

further training on only the best-performing set of hyperparameters.

However, there’s a drawback to this method: what if the hyperparameter

starts to perform better at a later stage? For example, in Figure 3-1-7 we

have two hyperparameters, h1 and h2, and we train our model up to the

ninth chunk of data. Initially h1 was performing better, but later h2 started

performing better. But if we would have stopped the training at the second

chuck, we wouldn’t know this and would have discarded h2.

Using incremental search is quite simple, as shown next. The interface

is similar to that of GridSearchCV or RandomSearchCV.

from dask_ml.model_selection import IncrementalSearchCV

from sklearn.linear_model import SGDClassifier

param_grid = {

 "penalty": ['l1', 'l2'],

 "tol": [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6]

 }

clf = IncrementalSearchCV(SGDClassifier(), param_grid)

#fit the data to train

Figure 3-1-7. Loss decreasing as more chunks of data are passed for
training

Chapter 3 Solving time and memory ConStraintS

68

Figure 3-1-8 shows a trial vs accuracy plot comparing Random Search

and Incremental Search.

 Successive Halving Search

Success halving search is somewhat similar to incremental search. A time

budget (B) is uniformly assigned to all sets of hyperparameters. We start

training the model on a limited amount of data, and we start by using all

sets of hyperparameters. Once all the models are trained, half of the worst-

performing sets are discarded. In the next iteration, the remaining half

are now trained on more data than before, evaluated and again half of the

previous half is discarded.

This process goes on until one best set remains, thereby allocating more

resources to better-performing hyperparameters. Use Dask implementation

of Successive Halving as follows:

from dask_ml.model_selection import SuccessiveHalvingSearchCV

from sklearn.linear_model import SGDClassifier

Figure 3-1-8. A comparison between Random Search and
Incremental Search. Digits dataset is used from sklearn, trained on
SGD classifier. Results are compared on the first five trials

Chapter 3 Solving time and memory ConStraintS

69

clf = SuccessiveHalvingSearchCV(SGDClassifier(), param_grid,

n_initial_iter=2)

#call fit to train data

Here, we have to pass n_initial_iter to our search function, which

defines the number of times ‘partial_fit’ is called initially.

The same problem can persist as in incremental search, though, where

we might pick a wrong set of hyperparameters if we stop early.

 Hyperband Search

Hyperband1 is a bandit-based approach for solving the problem of

hyperparameter optimization. The bandit-based approach addresses our

problem perfectly here: we have a limited amount of resources but we

need to allocate them to all our trials efficiently. Again we spend more time

on better-performing models instead of wasting our resources and time on

poor configuration of hyperparameters.

Hyperband is an extended version of successive halving.

In successive halving, we have a fixed budget (B) for our sets of

hyperparameters (n), and ‘B/n’ resources are allocated uniformly to all

the sets in ‘n’. But how we should choose ‘n’ remains a problem. There

are two possibilities:

• We should consider a lesser value of ‘n’ so that the

resources provided to each configuration are more and

the training time is longer. But then less search space

would be covered. This case can be favorable when the

accuracy score is more dependent on the training data

than on hyperparameters.

1 “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization,”
L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, Journal of
Machine Learning Research 18 (2018) 1-52.

Chapter 3 Solving time and memory ConStraintS

70

• We should consider a higher value of ‘n’ so that more

search space is covered with less amount of training.

A high value of ‘n’ would be better if a change in

hyperparameters results in a huge change in accuracy/

loss scores, unlike the case in Figure 3-1-7, where at a

later stage we needed to train longer for the loss score

to get saturated.

Hyperband addresses this problem of “n v/s B/n” by keeping the

value of B a constant and changing the value of ‘n’. A larger value of ‘n’

thus results in aggressive early stopping, because the budget per set of

hyperparameters is reduced. In Hyperband we change the value of ‘n’

each time we iterate for successive halving. There’s a nested loop; while

the inner loop performs successive search, the outer loop iterates over

different values of ‘n’. There are lots of possibilities for parallelization,

which is exploited in the Dask implementation of Hyperband:

from dask_ml.model_selection import HyperbandSearchCV

from sklearn.linear_model import SGDClassifier

clf = HyperbandSearchCV(SGDClassifier(), param_grid)

#call fit to train data

Two important arguments given to Hyperband are max_iter, which

defines the number of times ‘partial_fit’ is called, and the chunk size of

‘partial_fit’. Both of these arguments are determined by rule of thumb,

where max_iter is equal to the number of hyperparameter combinations

(n_param) and chuck size is n_param/n_examples, where n_examples is

the number of samples the model is trained on; for example, if X_train is

trained in five iterations, n_examples = 5*len(X_train).

Chapter 3 Solving time and memory ConStraintS

71

Note When using these optimization algorithms (incremental
search, Successive halving, incremental Search) you can only use
modeling algorithms that use ‘partial_fit’, because the whole idea
is to stop training early, which we cannot do with other algorithms.
although you can use randomSearchCv and gridSearchCv to
distribute trials over a cluster, you can’t use them when data is
trained in chunks (larger than memory case); in that case you need
‘partial_fit’ again. these methods can be really helpful while working
with neural networks, since they are trained on batches.

dask serializes several objects in order to distribute. scikit-learn
and pytorch would work better with these algorithms, since they
work on the pickle protocol, unlike tensorFlow and Keras. But when
using Keras and tensorFlow, you can apply other algorithms like
gridSearchCv, randomSearchCv, and more. this we are going to
discuss in the next section.

 Distributing Deep Learning Models
Deep learning models are quite costly to train. Distributing neural network

training over a cluster and later applying hyperparameter optimization on

top of that can help us save a lot of time. Deep learning frameworks have

modules for distribution; for example, TensorFlow Distributed (which

extends to TensorFlow and Keras), PyTorch Distributed (which extends to

PyTorch), Horovod, and so forth. Distributing with TensorFlow Distributed

is a pain. You have to create parameter servers and change a lot of code. In

this section we’ll discuss PyTorch Distributed and Horovod to distribute

deep neural networks while training the MNIST dataset. If you want a

quick refresher on using the PyTorch API, refer to Appendix II.

Chapter 3 Solving time and memory ConStraintS

72

 PyTorch Distributed
The main difference between distributing on a machine and a cluster

is that in a cluster we need to have a back-end communication API to

communicate between nodes. This is one of the strong aspects of PyTorch.

PyTorch supports all three major back-end communication APIs: NCCL

(NVIDIA Collective Communications Library, pronounced “Nickel”), Gloo,

and MPI (Message Passing Interface). The following example is strongly

based on a GitHub repo (https://github.com/seba- 1511/dist_tuto.pth):

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import torch.distributed as dist

from torch.autograd import Variable

from torch.multiprocessing import Process

import os

from math import ceil

from random import Random

from torchvision import datasets, transforms

def init_processes(rank, size, fn, backend="gloo"):

 os.environ['MASTER_ADDR'] = '127.0.0.1'

 os.environ['MASTER_PORT'] = '29500'

 dist.init_process_group(backend, rank=rank,

world_size=size)

 fn(rank, size)

We start by defining the communication back end; we’ll be using 'gloo'.

Next we define the master address and master port so that all nodes report

to one central master node. Each time that function init_processes is

Chapter 3 Solving time and memory ConStraintS

https://github.com/seba-1511/dist_tuto.pth

73

executed, a new process group is created and function fn() is executed. In

our case fn would be a function to train the neural network, so we would

later write a function that would train the model on subsamples and later

average the gradients.

Note pytorch documentation suggests as a rule of thumb to use
‘gloo’ when using CpUs and ‘nccl’ while training on gpUs.

class Net(nn.Module):

 def __init__(self):

 super(Net, self).__init__()

 self.conv1 = nn.Conv2d(1, 10, kernel_size=5)

 self.conv2 = nn.Conv2d(10, 20, kernel_size=5)

 self.conv2_drop = nn.Dropout2d()

 self.fc1 = nn.Linear(320, 50)

 self.fc2 = nn.Linear(50, 10)

 def forward(self, x):

 x = F.relu(F.max_pool2d(self.conv1(x), 2))

 x = F.relu(F.max_pool2d(self.conv2_drop(self.

conv2(x)), 2))

 x = x.view(-1, 320)

 x = F.relu(self.fc1(x))

 x = F.dropout(x, training=self.training)

 x = self.fc2(x)

 return F.log_softmax(x)

Chapter 3 Solving time and memory ConStraintS

74

We need to create a neural network to build the model, so here we

define a simple convolutional network:

class Partition(object):

 def __init__(self, data, index):

 self.data = data

 self.index = index

 def __len__(self):

 return len(self.index)

 def __getitem__(self, index):

 data_idx = self.index[index]

 return self.data[data_idx]

class DataPartitioner(object):

 def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234):

 self.data = data

 self.partitions = []

 rng = Random()

 rng.seed(seed)

 data_len = len(data)

 indexes = [x for x in range(0, data_len)]

 rng.shuffle(indexes)

 for frac in sizes:

 part_len = int(frac * data_len)

 self.partitions.append(indexes[0:part_len])

 indexes = indexes[part_len:]

 def use(self, partition):

 return Partition(self.data, self.

partitions[partition])

Chapter 3 Solving time and memory ConStraintS

75

Our model is being trained parallelly, so we need to update all of the

gradients once it’s trained on a batch of data. So once training on a batch is

done, we collect all gradients and take their average. Data is sent to all nodes in

equal fractions so that the convergence by each model remains uniform. The

partitioning is done on the basis of the number of processes running. We can

use the classes identified in the previous listing to get a certain fraction of data.

def partition_dataset():

 transformations = [transforms.ToTensor(),

 transforms.Normalize((0.1307,),

(0.3081,))

]

 dataset = datasets.MNIST('./data',

 train=True,

 download=True,

 transform=transforms.

Compose(transformations)

)

 size = dist.get_world_size()

 bsz = int(8 / float(size))

 partition_sizes = [1.0 / size for _ in range(size)]

 partition = DataPartitioner(dataset, partition_sizes)

 partition = partition.use(dist.get_rank())

 train_set = torch.utils.data.DataLoader(

 partition, batch_size=bsz,

shuffle=True)

 return train_set, bsz

This function loads the MNIST dataset and uses DataPartitioner()

to partition the data. dist.get_world_size() returns the number of

processes in the current process group. So if three processes are running,

we would have three partition sizes of fraction 0.33 each. Similarly for

batch size, we divide the required batch size by the number of processes:

Chapter 3 Solving time and memory ConStraintS

76

def average_gradients(model):

 size = float(dist.get_world_size())

 for param in model.parameters():

 dist.all_reduce(param.grad.data, op=dist.reduce_

op.SUM)

 param.grad.data /= size

Here we average the gradients. all_reduce updates parameters in

all the distributed models. And Now we define the function which will

optimize the model, and we’ll pass to init_processes().

def run(rank, size):

 torch.manual_seed(1234)

 train_set, bsz = partition_dataset()

 model = Net()

 model = model

 optimizer = optim.SGD(model.parameters(), lr=0.01,

momentum=0.5)

 num_batches = ceil(len(train_set.dataset) / float(bsz))

 for epoch in range(10):

 epoch_loss = 0.0

 for data, target in train_set:

 data, target = Variable(data),

Variable(target)

 optimizer.zero_grad()

 output = model(data)

 loss = F.nll_loss(output, target)

 epoch_loss += loss.item()

 loss.backward()

 average_gradients(model)

 optimizer.step()

Chapter 3 Solving time and memory ConStraintS

77

 print(f'Rank: {dist.get_rank()}, \

 Epoch: {epoch}, \

 Loss: {epoch_loss / num_batches}')

Each rank signifies the models that are being trained parallelly. We call

partition_dataset() to get the train set. While iterating, we are using the

function average_gradients() to average the gradients. Now, finally, we

can start the distributed training by passing the function run() to init_

processes():

size = 3

processes = []

for rank in range(size):

 p = Process(target=init_processes, args=(rank, size, run))

 p.start()

 processes.append(p)

for p in processes:

 p.join()

This will start your distributed training. Using this, with a few edits

according to networks and use cases, we can train deep learning models

on a computer cluster.

 Horovod
Horovod is an open source distributed deep learning training library that

works with both PyTorch and TensorFlow/Keras. If you have code for

undistributed training, you can use Horovod simply by adding only a few

lines of code to make it distributed. (Refer to the documentation on how to

distribute on different clusters.) Similar to PyTorch Distributed, Horovod is

capable of using both Gloo and MPI and other back-end communications.

In this section we’ll examine what changes we need to make and how they

are similar to the PyTorch implementation in the previous section.

Chapter 3 Solving time and memory ConStraintS

78

Write a simple code for training a neural network in a simple machine

in PyTorch. For this you can refer to the PyTorch section of Appendix

II. Create the following functions:

• Network(): A class extended from torch.nn.Module to

create a neural network architecture

• train_epoch(): A function that can train the neural

network for a single machine

Also define these global variables: batch_size, learning_rate,

momentum, and epochs. The following piece of code shows how we can

distribute model training using horovod:

import horovod.torch as hvd

from sparkdl import HorovodRunner

from torch.utils.data.distributed import DistributedSampler

def train_hvd():

 hvd.init()

 device = torch.device('cuda' if torch.cuda.is_available()

else 'cpu')

 if device.type == 'cuda':

 torch.cuda.set_device(hvd.local_rank())

 transformation = [transforms.ToTensor(),

 transforms.Normalize((0.1307,),

(0.3081,))]

 train_dataset = datasets.MNIST(

 root=f'data-{hvd.rank()}',

 train=True,

 download=True,

 transform=transforms.

Compose(transformation)

)

Chapter 3 Solving time and memory ConStraintS

79

 train_sampler = DistributedSampler(train_dataset,

 num_replicas=hvd.size(),

 rank=hvd.rank())

 train_loader = torch.utils.data.DataLoader(train_dataset,

 batch_size=int(batch_size/hvd.

size()),

 sampler=train_sampler)

 model = Network().to(device)

 optimizer = optim.SGD(model.parameters(),

 lr=learning_rate,

 momentum=momentum)

 optimizer = hvd.DistributedOptimizer(optimizer,

 named_parameters=model.named_

parameters())

 hvd.broadcast_parameters(model.state_dict(), root_rank=0)

 for epoch in range(1, epochs + 1):

 train_epoch(train_loader)

The function train_hvd() is pretty much similar to what we did while

using PyTorch Distributed. hvd.rank() gives the worker ID, so we create a

separate root folder for every worker (rank) in our cluster.

Similar to the previous section in which we used partition_

dataset() to create and divide data among workers, here we use

DistributedSampler() to create partitions of the dataset as per the

number of workers and give the object to Dataloader() to generate the

dataset. Again, effective batch size is scaled based on number of workers.

After defining optimizer, we wrap it in hvd.DistributedOptimizer(),

which is similar to all_reduce() that we used earlier. The gradients are

averaged across models running on different nodes. hvc.broadcast_

parameters() updates all the gradients with new gradients. It makes sure

models on all ranks start with the same parameters.

Chapter 3 Solving time and memory ConStraintS

80

Now to distribute this training across clusters, we’ll use a simple

interface provided by HorovodRunner:

hr = HorovodRunner(np=2)

hr.run(train_hvd)

Here, np defines the number of workers and hr.run() starts the

distributed training.

These distribution methodologies can come in handy when you are

working on optimizing hyperparameters in hundreds to thousands of

dimensions. Time efficiency and resource utilization are both important

aspects while optimizing hyperparameters.

In the next chapter, you’ll see more advanced Bayesian-based

optimization methods, which actually learn from their previous trials.

Chapter 3 Solving time and memory ConStraintS

81© Tanay Agrawal 2021
T. Agrawal, Hyperparameter Optimization in Machine Learning,
https://doi.org/10.1007/978-1-4842-6579-6_4

CHAPTER 4

Bayesian Optimization
In Chapters 2 and 3 we explored several hyperparameter tuning methods.

Grid search and random search were quite straightforward, and we

discussed how to distribute them to save memory and time. We also

delved into some more-complex algorithms, such as HyperBand. But none

of the algorithms that we reviewed learned from their previous history.

Suppose an algorithm could keep a log of all the previous observations and

learn from them. For example, suppose it could observe that our model is

being optimized near certain values of hyperparameters and could exploit

this valuable information and proceed to the hyperparameters nearest to

those good-performing ones, hence learning from its history. By doing so,

the algorithm would not waste time on bad-performing hyperparameters

while reaching the best-performing hyperparameters. In this chapter we’ll

explore algorithms that have that capability.

Let’s start with an example. Figure 4-1-1 shows a plot between two

hyperparameters. Compare that to Figure 2-2-1 in Chapter 2, which

represents a grid search in which we were going through a grid of

selected parameters and, in a random search, randomly hitting a set of

hyperparameters.

https://doi.org/10.1007/978-1-4842-6579-6_4#DOI

82

In Figure 4-1-1, the circles with number 1 are the hyperparameters

chosen at random. Some of the 1s lying in the middle region between the

darkest and lightest regions were observed to generate better models.

So, instead of wasting our time on the rest of the 1 trials, we look at

surrounding regions of better-performing 1 trials and train the model

with 2s, and so on. In the end, we reach 4, where one of the 4s lies in the

middle region and one lies almost at the center of the lightest region.

Hence, we select the 4 trial lying in the lightest region as our best set of

hyperparameters. Intuitively, this process seems better than the exhaustive

methods you learned before.

 Sequential Model-Based Global
Optimization
It is notable that in machine learning, functions are expensive and slow

to train and evaluate. In this section we’ll look at sequential model-based

global optimization (SMBO) to solve the problem of hyperparameter

Figure 4-1-1. Plot between two hyperparameters, where darker area
represents lesser accuracy and lighter area represents greater accuracy

Chapter 4 Bayesian OptimizatiOn

83

optimization. SMBO uses the approach of Bayesian optimization, which is

used to keep track of previous evaluations and select the subsequent set of

hyperparameters based on a probabilistic model.

 p y x|()

Our objective function (machine learning algorithm) being f, y is

the score calculated by evaluating f on the set of hyperparameters x.

In Bayesian optimization, essentially there are four important aspects

(defined after the following step list): search space, objective function,

probabilistic regression model, and acquisition function.

Whole Bayesian optimization can be summarized in the following

steps:

 1. Build a regression model.

 2. Initialize some random sets of hyperparameters (in

the case of the first trial, because we need to feed

initial hyperparameters from somewhere).

 3. Evaluate the model on the set of hyperparameters

suggested by the acquisition function (if the first

trial, choose hyperparameters from step 2) and

calculate the score on the objective function.

 4. Update the surrogate model as per the new

suggested hyperparameters and scores.

 5. Repeat steps 3 and 4, for a defined number of

iterations.

A search space (X), as you learned in Chapter 1, is a defined range

where we provide hyperparameter optimization algorithms a range to

choose. Depending on the hyperparameter, ranges can be continuous

or discrete. For example, choosing a kernel function in SVM is a discrete

Chapter 4 Bayesian OptimizatiOn

84

hyperparameter, but gamma is chosen from a continuous distribution.

Search spaces can be really complicated. For example, choosing the

number of nodes in each hidden layer in a neural network depends on the

number of hidden layers.

An objective function (f) is a function that trains a machine learning

model on a given set of hyperparameters and the output is either an accuracy

score or a loss score depending on the acquisition function. In the following

example, we are calculating the accuracy score, if the returned value is

minimized, we'll maximize the accuracy score by minimizing its negative.

X, y = load_data() # X and y are some preprocessed data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size = 0.3)

def objective_function(hyperparameters):

 C = hyperparameters["C"]

 gamma = hyperparameters["gamma"]

 model = SVC(C=C, gamma=gamma)

 model.fit(X_train, y_train)

 score = model.score(X_test, y_test)

 # since we want to maximize score, taking it's negative

 return -score

Probabilistic Regression Model (p(y| x) or M) also called Surrogate

function is built using previous evaluations and is a probabilistic modeling

of the objective function, so each iteration updates the surrogate by

evaluating hyperparameters on the objective function. A surrogate

function is less costly to evaluate in comparison with an objective function,

and a surrogate function decides the next set of hyperparameters to be

evaluated by the objective function, thus reducing the cost of optimization.

A surrogate can be formulated by different methods, such as Gaussian

process (GP), Random forest, or tree-structured Parzen estimator (TPE).

Here’s a brief overview of how these surrogates are formed:

Chapter 4 Bayesian OptimizatiOn

85

• In Gaussian process, function f is assumed to be a

realization of Gaussian distribution, where predictions

follow a normal distribution. GP models p(y| x) directly.

• In TPE, p(y| x) is modeled on both p(x| y) and p(y). We’ll

discuss TPE in more detail later in this chapter.

An acquisition function (S) selects the next set of hyperparameters

using the surrogate model and the predicted loss score on the previous

set of hyperparameters. There are several acquisition functions, such as

probability of improvement, expected improvement, conditional entropy

of minimizer, and bandit-based criteria. The most commonly used is

expected improvement:

EI x y y p y x dyy

y

*
*

-¥

*
() = -() ()ò: . .max , |0

Here, EI is being modeled by surrogate and the loss score. y* is some

threshold value, while y = f (x) is the score obtained from the objective

function on the proposed set of hyperparameters x. p(y| x) is the surrogate

model. A positive value of the preceding integral means that chances

are good that the proposed hyperparameters would yield better results.

On the proposed set x, if y increases negatively, EI will be positive, hence

indicating a better choice of hyperparameters.

Here is a generalized pseudo-code template of how the SMBO method

works:

Chapter 4 Bayesian OptimizatiOn

86

In this pseudo-code, f is the objective function, X is the search space

for hyperparameters, S is the acquisition function, and M is the regression

model (surrogate).

First we initialize D with some random samples from the search space;

D store history of evaluations in the form of (xi, yi), where xi represents the

subsequent sets of hyperparameters and yi represents the loss scores.

We now run the loop for defined number of trials T. First the surrogate

is updated using history D. Now S suggests a set of hyperparameters xi. xi

is sent to f and a loss score is calculated. History is now saved in D, which

would be used again to update the surrogate.

After T trials, we would have the best set of hyperparameters.

You don’t have to implement these methods, because all the

probabilistic regression models can be found implemented in different

libraries. For example, Hyperopt1 implements a TPE, Spearmint2 and MOE3

implement a Gaussian process, and SMAC4 implements a random forest-

based surrogate.

Next we’ll discuss in detail the working of the tree-structured Parzen

estimator along with the expected improvement acquisition function.

 Tree-Structured Parzen Estimator
Tree-structured Parzen estimator is a popular Bayesian optimization

approach that uses the expected improvement acquisition function5.

In TPE, p(y| x) is modeled over p(x| y) and p(y) following Bayes’ theorem,

unlike GP where p(y| x) is directly modeled

1 https://github.com/hyperopt/hyperopt
2 https://github.com/JasperSnoek/spearmint
3 https://github.com/Yelp/MOE
4 https://github.com/automl/SMAC3
5 https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-
optimization.pdf

Chapter 4 Bayesian OptimizatiOn

https://github.com/hyperopt/hyperopt
https://github.com/JasperSnoek/spearmint
https://github.com/Yelp/MOE
https://github.com/automl/SMAC3
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf

87

p y x

p x y p y
p x

|
|

() = ()* ()()
()

(Equation 4.2.1)

p(x| y) is represented as

 p(x| y) = l(x) if y < y* (Equation 4.2.2)

and

 p(x| y) = g(x) if y > = y* (Equation 4.2.3)

Here, y* is a quantile that is called threshold loss score. l(x) and g(x) are

hyperparameter distributions. Hence, on certain sets of hyperparameters

(xi), if predicted loss score (y) is less than y*, it means those sets lie in

distribution l(x), and if y is greater than y* then they lie in distribution

g(x). We can understand this clearly by Figure 4-2-1.

The value of y* is chosen such that it is larger than the best

observed value of f (x), y < y*, and therefore we have to find sets of

hyperparameters that lie in the l(x) distribution so that the predicted

loss score is less than y*.

Figure 4-2-1. On hyperparameter xi0 points below y* are from
distribution l(x) and points above y* are from distribution g(x)

Chapter 4 Bayesian OptimizatiOn

88

Let

 p(y < y∗) = γ (Equation 4.2.4)

and continuous marginal probability be

p x p x y p y dy
R

() = () ()ò | . .

(Equation 4.2.5)

Now we optimize EI:

EI x y y p y x dyy

y

*
*

-¥
() = -() ()

*

ò . .| = y y
p x y p y

p x
dy

y *

-¥
-() () ()

()
*

ò
| .

.

 (Equation 4.2.6)

Equation 4.2.5 can be written as follows by using Equations 4.2.2, 4.2.3,

and 4.2.4:

 p x p x y p y dy l x g x
R

() = () () = () + -() ()ò |g g1 (Equation 4.2.7)

Now that denominator term in Eq. 4.2.6 is simplified to Equation 4.2.7,

which doesn’t depend on y. Let’s simplify the numerator:

y y p x y p y dy l x y y

p y dy y l x

y y*

-¥

*

-¥

*

-() () () = () -()
() =

* *

ò ò. . . .

. . .

|

g (() - () ()
-¥

*

òl x p y dy
y

.
(Equation 4.2.8)

Putting together Equations 4.2.7 and 4.2.8, we get the value of expected

improvement:

EI x

y l x l x p y dy

l x g xy

y

*

*

-¥() =
() - () ()
() + -() ()

*

òg

g g

. . .

. .1

Chapter 4 Bayesian OptimizatiOn

89

Simplify it further and we get:

EI x

l x y p y dy

l x g xy

y

*

*

-¥
() =

() - ()é
ëê

ù
ûú

() + -() ()

*

òg

g g

. .

. .1

Therefore:

EI x
g x
l xy*

-

() µ +
()
()

-()
é

ë
ê
ê

ù

û
ú
ú

g g. 1

1

(Equation 4.2.9)

Equation 4.2.9 significantly tells us that expected improvement is

inversely proportional to the ration g(x)/l(x). This means we would prefer

our hyperparameters (x) to lie in distribution l(x) instead of g(x) to increase

the EI.

And thus on each iteration, candidates are drawn from l(x) and return

the one with least loss score, hence selecting best hyperparameters.

Now that you have a basic idea of how in the Bayesian method we

model surrogate functions and acquisition functions, we’ll next look at an

open source library that implements TPE, Hyperopt.

 Hyperopt
Hyperopt is a brilliant open source library for distributed asynchronous

hyperparameter optimization that implements algorithms like random

search, TPE, and adaptive TPE. In this section we’ll focus on how we can

use the Hyperopt library to optimize hyperparameters.

Hyperopt handles awkward search spaces, which includes searching

over both discrete and continuous values. We can use the library to search

between algorithms and find the best set of hyperparameters for those

algorithms. When working on problems in deep learning, we deal in

Chapter 4 Bayesian OptimizatiOn

90

hundreds of dimensions, and to exploit the full potential of deep networks,

we need the hyperparameter setting to be optimal. Using grid search

or random search would not be an option, because each training of the

network is quite costly. In such cases, using Bayesian optimization can be

the best option.

To use Hyperopt we need a search space and an objective function.

Let’s take a simple example:

 f a b a b,() = -2 2

Here, we minimize f (a, b) such that a ∈ [−2, 3] and b ∈ [−1, 2].

Let’s use Hyperopt to optimize this problem:

from hyperopt import tpe, fmin, hp

def objective_func(args):

 a = args['a']

 b = args['b']

 f = a**2 - b**2

 return f

range_a = hp.uniform('a', -2, 3)

range_b = hp.uniform('b', -1, 2)

space = {'a': range_a,

 'b': range_b}

best = fmin(objective_func, space, algo=tpe.suggest,

max_evals=100)

The preceding piece of code uses TPE to find the best values of a and b

such that f (a, b) is minimum. We can see that function would be minimum

at a = 0 and b = 2, and the minimum value would be fmin = − 4. Let’s see

how Hyperopt in 1000 trials approached the problem.

Chapter 4 Bayesian OptimizatiOn

91

Figure 4-3-1 shows that the values of a and b are saturating over 0 and

2 respectively, and the value of f is saturating over −4 in the early trials.

This was an easy function where optimal values were integers. For more

complicated functions where values must be picked from a continuous

distribution, TPE proves to be efficient.

As mentioned earlier, to use Hyperopt we must define an objective

function and search space. In the previous code, our objective function takes

hyperparameters as inputs and outputs a score that we want to minimize. To

create the search space, for each hyperparameter we must use distribution

in the form of a Hyperopt object. We have a wide variety of options, uniform,

Figure 4-3-1. Plotting value of f, a and b over 1000 iterations
using TPE

Chapter 4 Bayesian OptimizatiOn

92

normal, loguniform, lognormal, and so on, which we’ll discuss in more detail

in the next section. Finally, we pass both the objective function and search

space to the fmin() function while using the algorithm TPE for optimization.

We also decide the number of trials, just as we did when using random search.

A dictionary is returned that give the best trials out of all the iterations.

 Search Space
fmin() passes only one parameter to the objective function, so we need to

stuff all the hyperparameter ranges in either one of the dictionaries, list or

tuples. Unlike scikit-learn’s Grid Search and Random Search, fmin() does

not support just any iterable distribution; all the hyperparameters should

be objects of Hyperopt’s hp module. Follow Figure 4-3-2 for visualization

of different distributions.

Following are some of the functions that give a certain value from

different types of distributions, for our hyperparameter searches:

• hp.choice(): chooses one of the options from

the given list

• hp.randint(): Chooses a random integer out of a

range of integers

• hp.uniform(): Returns a value between a range, the

distribution is uniform between two given numbers

• hp.loguniform(): Returns a value such that its

logarithm is uniformly distributed between two given

numbers

• hp.normal(): Returns a value from a Gaussian

distribution as per mean and standard deviation

• hp.lognormal(): logarithm of the returned value

is normally distributed as per mean and standard

deviation

Chapter 4 Bayesian OptimizatiOn

93

Tip loguniform(label, a, b) can be written as exp(uniform(label,
a, b)), where a and b are the lower and upper limit, respectively.
Distribution is between ea and eb, but if you want it between 10a
and 10b, you can easily manipulate it by doing something like this:
loguniform(label, a ∗ loge(10), b ∗ loge(10)).

We can use these functions to create really complex search spaces.

Let's look at an example of creating a search space:

from hyperopt import tpe, fmin, hp

space = hp.choice('classifier',[

 {'model': 'KNeighborsClassifier',

 'param': {'n_neighbors':

 hp.choice('n_neighbors',range(3,11)),

 'algorithm':hp.choice('algorithm', ['ball_tree',

'kd_tree']),

Figure 4-3-2. These graphs are plotted using Hyperopt distributions.
Graph (a) shows a uniform distribution between -1, 1. Graph (b)
shows a loguniform distribution between -3, 4. Graph (c) shows
a normal distribution with mean 1 and standard deviation 0.5.
Graph (d) shows a lognormal distribution with mean and standard
deviation both 1

Chapter 4 Bayesian OptimizatiOn

94

 'leaf_size':hp.choice('leaf_size', range(1,50)),

 'metric':hp.choice('metric', ["euclidean", "manhattan",

 "chebyshev", "minkowski"

])}

 },

 {'model': 'SVC',

 'param':{'C':hp.loguniform('C', -2*m.log(10),

11*m.log(10)),

 'kernel':hp.choice('kernel',['rbf', 'poly', 'sigmoid']),

 'degree':hp.choice('degree', range(1,15)),

 'gamma':hp.loguniform('gamma', -9*m.log(10),

3*m.log(10))}

 }

])

We start by choosing a classifier for our model using hp.choice(), one

of KNN or SVM would be chosen. Once we choose the classifier, we can

create distributions. In the preceding example, I chose to use hp. choice()

for discrete distributions and hp. lognormal() for C and gamma in SVM. As

mentioned earlier, we can manipulate function hp.loguniform() to use

10x instead of ex.

Note We need to provide labels to these hp functions. in the
preceding code, i used the name of the hyperparameter itself to label
the distribution.

Now that we have a search space, we’ll work on the objective function:

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

Chapter 4 Bayesian OptimizatiOn

95

from hyperopt import tpe, fmin, hp

import math as m

digits = load_digits()

X_train, X_test, y_train, y_test = train_test_split(digits.data,

 digits.target,

 test_size=0.3)

logs = {'args':list(),

 'train_score': list(),

 'val_score': list()}

def objective_func(args):

 clf_func = args["model"]

 params = args["param"]

 clf = eval(clf_func)(**params)

 clf.fit(X_train, y_train)

 val_score = clf.score(X_test, y_test)

 train_score = clf.score(X_train, y_train)

 logs['args'].append(args)

 logs['train_score'].append(train_score)

 logs['val_score'].append(val_score)

 return -val_score

best = fmin(objective_func, space, algo=tpe.suggest,

max_evals=100)

Creating the objective function is easy. We extract the hyperparameters

and pass them to the classifier. However, in this case, since our classifier is

also a variable, we extract that as well. I have also created a log dictionary

to save history. Run fmin() and the algorithm will start tuning. Refer to

Figure 4-3-3, scatter plot of accuracy v/s trials.

Chapter 4 Bayesian OptimizatiOn

96

Defining a neural network architecture using a Hyperopt search space

can be a bit tricky where change in certain hyperparameters like the

‘number of layers’ change the total number of hyperparameters, because

then we’ll have to decide the number of nodes in each layer or whether or

not layers use methods like batch normalization/dropout. So let’s look at

another interesting example that shows how we can define these kinds of

awkward search spaces:

from hyperopt import hp, tpe, fmin

from keras.datasets import mnist

from keras.layers.core import Dense, Dropout, Activation

from keras.models import Sequential

from keras.utils import np_utils

import numpy as np

load and preprocess the data

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000, 784)

Figure 4-3-3. Figure 4-3-3 shows the result of optimizing a support
vector classifier for hyperparameters C, kernel, degree, and gamma
on the digits dataset. We can see the score saturating at 0.99 after
some 30 trials. Hence, the model is more certain about where to look
to get the best hyperparameters

Chapter 4 Bayesian OptimizatiOn

97

x_test = x_test.reshape(10000, 784)

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

classes = 10

input_shape = 784

y_train = np_utils.to_categorical(y_train, classes)

y_test = np_utils.to_categorical(y_test, classes)

#logs

logs = {'model_summary':list(),

 'val_acc': list()}

def obj_func(args):

 #initializing the keras model

 model = Sequential()

 #defining first hidden layer

 model.add(Dense(units=args['units']['layer_units_1'],

 input_shape=(input_shape,),

 name='layer_units_1'))

 #defining number of remaining hidden layer

 number_of_layers = len(args['units'])

 for layer in range(2, number_of_layers):

 model.add(Dense(units=args['units'][f'layer_units_

{layer}'],

 name=f'layer_units_{layer}'))

 model.add(Dropout(args['dropout'][f'dropout_p_

{layer}'],

 name=f'dropout_p_{layer}'))

Chapter 4 Bayesian OptimizatiOn

98

 model.add(Activation(

 activation=args['activation'][f'activation_

{layer}'],

 name=f'activation_{layer}'))

 # adding last layer

 model.add(Dense(classes, name=f'layer_unit_{layer+1}'))

 model.add(Activation(activation='softmax',

 name=f'activation_{layer+1}'))

 model.compile(loss='categorical_crossentropy',

metrics=['accuracy'], optimizer='adam')

 result = model.fit(x_train, y_train,

 batch_size=2,

 epochs=1,

 verbose=3,

 validation_split=0.2)

 validation_acc = np.amax(result.history['val_accuracy'])

 print(validation_acc)

 logs['model_summary'].append(model.summary())

 logs['val_acc'].append(validation_acc)

 return -validation_acc

def each_layer(number_of_layers):

 params = {'units': dict(),

 'dropout': dict(),

 'activation': dict()}

 number_of_nodes = [16,36,64,128,256,512]

 for layer in range(number_of_layers):

Chapter 4 Bayesian OptimizatiOn

99

 params['units'][f'layer_units_{layer}'] = hp.choice(

 f'layer_{number_of_

layers}_{layer}',

 number_of_nodes)

 params['dropout'][f'dropout_p_{layer}'] = hp.uniform(

 f'dropout_{number_of_

layers}_{layer}',

 0, 0.8)

 params['activation'][f'activation_{layer}'] =

hp.choice(

 f'activation_{number_of_

layers}_{layer}',

 ['relu', 'elu'])

 return params

choice for number of layers

number_of_layers = [3, 5, 7, 9]

space = hp.choice('layers', [each_layer(n) for n in number_of_

layers])

best = fmin(obj_func, space, algo=tpe.suggest, max_evals=10)

In this particular case, first I decided the number of layers, and then

I used a function, each layer_ ,() so that I can now iterate over

the layers, deciding the number of nodes in each layer, the amount of

dropout, and the choice of activation function. Note that I am using

labels with number_of_layers and layer because I want the labels to be

unique, similar to Dropout and Activation Functions. Now that the search

space is created, we have to create the neural network in the objective

function, which is pretty much straightforward. And now we can optimize

hyperparameters for awkward searches.

Chapter 4 Bayesian OptimizatiOn

100

 Parallelizing Trials in TPE
We can exploit TPE even more by parallelizing the trials. Multiple

candidates can be drawn at once from distribution l(x), and these can

be evaluated in parallel. By default, fmin is executed serially and uses

the argument trials = Trials(), which uses a list. However, we can use

MongoTrials() instead to evaluate these trials parallelly.

The first requirement, obviously, is to install MongoDB. After that,

there are four simple steps to start the asynchronous optimization:

• When using fmin, pass trials as MongoTrials().

• Start a visible MongoDB server.

• Execute the Python file.

• Run hyperopt − mongo − worker, which is a worker

script placed in bin of your Python environment while

installing Hyperopt.

Let’s use MongoTrials() for the previous toy example of f (a, b) = a2 − b2:

from hyperopt import tpe, fmin, hp

from hyperopt.mongoexp import MongoTrials

def objective_func(args):

 a = args['a']

 b = args['b']

 f = a**2 - b**2

 return f

range_a = hp.uniform('a', -2, 3)

range_b = hp.uniform('b', -1, 2)

space = {'a': range_a,

 'b': range_b}

Chapter 4 Bayesian OptimizatiOn

101

m_trials = MongoTrials("mongo://localhost:27017/foo_db/jobs",

exp_key="exp2")

best = fmin(objective_func, space, algo=tpe.suggest, trials=m_

trials, max_evals=1000)

In the preceding code we used MongoTrials(). The first step is to start a

MongoDB server:

$ mongod --dbpath . --port 27017

By default, the port is 27017, but you can change it according to your

need.

Now execute the previous Python script. In MongoTrials() we need to

define the port and an exp_key, which you’ll need to change in different

runs if you are using the same database.

When you execute the script, it’ll wait for mongo workers to start,

which you can start with this command:

$ hyperopt-mongo-worker --mongo=localhost:1234/foo_db --poll-

interval=0.1

As previously mentioned, hyperopt − mongo − worker is a file stored

in your $PATH (i.e., bin of the Python environment you are using). Here

you need to give the <host > < port > / < db − name> and the poll interval

checks work between every defined interval; if a job is found it’ll start the

computation.

As soon as you start the mongo workers, the sets of hyperparameters

suggested by previous EI will be passed to the objective function and the

process will start.

Note that worker is being executed in $PATH, and worker needs an

objective function, so the Python script where the objective function is

defined must be exported to $PATH.

Chapter 4 Bayesian OptimizatiOn

102

And now you will get the asynchronous updates instead of serial ones.

Alternatively, you can use Apache Spark for parallelization.

Hyperopt is designed to accommodate other surrogate functions

like Gaussian process and random forest regression, but they are not

implemented yet. But since Hyperopt is an open source library, I believe

authors would certainly welcome these implementations. So go ahead and

contribute to this amazing library for the greater good of the community.

 Hyperopt-Sklearn
Hyperopt-sklearn6 is a library7 based on Hyperopt that uses Hyperopt for

algorithm selection and hyperparameter tuning on scikit-learn algorithms.

The library can be a real time-saver because it creates its own search

spaces for algorithms provided in scikit-learn. You can do end-to-end

modeling, since it also provides algorithm selection and tuning options

for data preprocessing (although not all scikit-learn algorithms are

implemented yet).

The usage of hpsklearn is in sklearn style, implementing methods like

fit(), .score(), and .predict() just like scikit-learn’s Grid/Random

Search. Providing a search space is optional though. Let's check out a few

examples to understand it better.

from sklearn.datasets import load_boston

from sklearn.model_selection import train_test_split

from hpsklearn import HyperoptEstimator, any_regressor,

 any_preprocessing, svr

from hyperopt import tpe, hp

import math as m

6 http://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf
7 https://github.com/hyperopt/hyperopt-sklearn

Chapter 4 Bayesian OptimizatiOn

http://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf
https://github.com/hyperopt/hyperopt-sklearn

103

X, y = load_boston().data, load_boston().target

X_train, X_test, y_train, y_test = train_test_split(X,y, test_

size=0.2)

model = HyperoptEstimator(regressor=any_regressor('test1_reg'),

 preprocessing=any_preprocessing('test1_

preprocessing'),

 algo=tpe.suggest,

 verbose=True,

 max_evals=100)

model.fit(X_train, y_train, n_folds=3, cv_shuffle=True)

print(model.score(X_test, y_test))

print(mdoel.best_model())

Just like any other classifier/regressor in scikit-learn, we can use

HyperoptEstimator, which means that even in your existing code, you

need to change a single line to include this hyperparameter-tuning

library. In the preceding code, we gave hpsklearn the freedom to choose

any algorithm and set of hyperparameters and any preprocessing

(normalization/standardization, etc.). However, we can restrict the tuning

as well as preprocessing selection for certain algorithms. For example:

model = HyperoptEstimator(regressor=svr('test_svr'),

 preprocessing=[],

 algo=tpe.suggest,

 verbose=True,

 max_evals=100)

You can replace the initialization of the model in the previous

code with this line to tune only on support vector regressor and use no

preprocessing. Alternatively, you can change spaces for one or more

hyperparameters like this:

Chapter 4 Bayesian OptimizatiOn

104

space = {'C':hp.loguniform('C',-2*m.log(10),11*m.log(10)),

 'gamma':hp.loguniform('gamma',-9*m.log(10),3*m.log(10))

 }

model = HyperoptEstimator(regressor=svr('test_svr',

**space['param']),

 preprocessing=[],

 algo=tpe.suggest,

 verbose=True,

 max_evals=100)

Here, default search spaces for defined hyperparameters (C and

gamma) will be overwritten by the custom search space. You can do the

same with preprocessing.

Since the library supports algorithms like SVM, decision trees, KNN,

and so on, you can use hpsklearn to get a baseline accuracy and use

custom search spaces and try out different models to tune models further.

 Hyperas
Yet another extremely useful open source hyperparameter optimization

library, Hyperas8 is a wrapper around Hyperopt for optimizing architecture

of neural networks with Keras. This library is written in such a way that

it saves you from creating complex search spaces for neural networks;

instead, you can use simple Keras code with a little addition of ranges.

Here’s an example to help you understand the concept of Hyperas:

from hyperopt import Trials, STATUS_OK, tpe

from keras.datasets import mnist

from keras.layers.core import Dense, Dropout, Activation

8 https://github.com/maxpumperla/hyperas

Chapter 4 Bayesian OptimizatiOn

https://github.com/maxpumperla/hyperas

105

from keras.models import Sequential

from keras.utils import np_utils

import numpy as np

from hyperas import optim

from hyperas.distributions import choice, uniform

def data():

 # MNIST

 (x_train, y_train), (x_test, y_test) = mnist.load_data()

 x_train = x_train.reshape(60000, 784)

 x_test = x_test.reshape(10000, 784)

 x_train = x_train.astype('float32')

 x_test = x_test.astype('float32')

 x_train /= 255

 x_test /= 255

 classes = 10

 input_shape = 784

 y_train = np_utils.to_categorical(y_train, classes)

 y_test = np_utils.to_categorical(y_test, classes)

 return x_train, y_train, x_test, y_test, input_shape,

classes

def create_model(x_train, y_train, x_test, y_test, input_shape,

classes):

 model = Sequential()

 model.add(Dense(units={{choice([8, 16])}},

 input_shape=(input_shape,),

name='dense1'))

 layers = {{choice([2, 3, 4, 5, 6, 7, 8, 9, 10])}}

Chapter 4 Bayesian OptimizatiOn

106

 for i in range(layers):

 model.add(Dense(units={{choice([32, 64, 256, 512,

1024])}}))

 model.add(Dropout({{choice([0, 0.33])}}))

 model.add(Activation(activation={{choice(['relu',

'elu'])}}))

 model.add(Dense(classes))

 model.add(Activation(activation='softmax'))

 model.compile(loss='categorical_crossentropy',

 metrics=['accuracy'],

 optimizer={{choice(['rmsprop', 'adam',

'sgd'])}})

 result = model.fit(x_train, y_train,

 batch_size={{choice([4, 8, 16])}},

 epochs=10,

 verbose=3,

 validation_split=0.2)

 validation_acc = np.amax(result.history['val_accuracy'])

 print('Test accuracy:', validation_acc)

 return {'loss': -validation_acc, 'status': STATUS_OK, 'model':

 model}

best_run, best_model = optim.minimize(model=create_model,

 data=data,

 algo=tpe.suggest,

 max_evals=10,

 trials=Trials())

Chapter 4 Bayesian OptimizatiOn

107

X_train, Y_train, X_test, Y_test, _, _ = data()

print("Test Score on Best Model:")

print(best_model.evaluate(X_test, Y_test))

print("Hyperparameter Set for best Model:")

print(best_run)

While using Hyperas, we need to create two functions. One function

is for data loading. The other function is like an objective function that

consists of a neural network and returns a loss score, the only difference

being that the search space is not a parameter but instead data is passed as

a parameter. The search space is defined as we write each hyperparameter

in the network. And the optim. minimize () function from Hyperas starts

the optimization.

In the first function, data(), we load the dataset (here MNIST); since

the objective function will be iterating, we don’t want to load data over and

over. Everything you return from data() will be passed to create─model().

Next we define the objective function, where we define the neural

network using Keras. After initializing Sequential(), we add layers

one by one. In place of hyperparameters, we can give a range using this

format: {{′range′}}. ′range′ is the distribution functions from Hyperas, which

follow the same nomenclature as Hyperopt’s. In Hyperas, we don’t need

to give labels, because it’ll take the variables that are assigned to them

as labels. However, if we are iterating over some hyperparameter range

like in succeeding code,

for i in range(layers):

 model.add(Dense(units={{choice([32, 64, 256, 512, 1024])}}))

For instance, if there are three layers, the same hyperparameter will

be chosen for all three because Hyperas makes a template of the Python

code and sends the distributions to Hyperopt, which will consider it to be

one hyperparameter, since it’s written once. You have two alternatives to

Chapter 4 Bayesian OptimizatiOn

108

work around this problem: either you can go back and use Hyperopt as we

did in last example in the “Search Space” section, or you can use if…else

statement to add layers:

model.add(Dense({{choice([32, 64, 256, 512, 1024])}}))

model.add(Dropout({{uniform(0, 0.8)}}))

model.add(Activation({{choice(['relu', 'elu'])}}))

if {{choice(['one', 'two'])}} == 'two':

 model.add(Dense({{choice([32, 64, 256, 512, 1024])}}))

 model.add(Dropout({{uniform(0, 0.8)}}))

 model.add(Activation({{choice(['relu', 'elu'])}}))

If the number of chosen layers is two, only then will it create another

layer.

Hyperas is a very simple and easy-to-use wrapper around Hyperopt,

and you can use it to quickly tune your models, but if you want more

flexibility, use Hyperopt, which works wonders even with the most

complex search spaces.

In this chapter you learned how Bayesian hyperparameter

optimization works and how you can use Hyperopt in your problems.

These techniques can easily increase your time efficiency and optimize

your resource utilization.

Chapter 4 Bayesian OptimizatiOn

109© Tanay Agrawal 2021
T. Agrawal, Hyperparameter Optimization in Machine Learning,
https://doi.org/10.1007/978-1-4842-6579-6_5

CHAPTER 5

Optuna and AutoML
We can now create an efficient model using the techniques that were

discussed in the previous chapters. Bayesian optimization goes a long way

in finding optimal hyperparameters. This chapter provides an overview of

the Optuna framework and discusses further the role of hyperparameter

optimization in automated machine learning. We’ll use Optuna to create

our own little AutoML script. And then we’ll explore the Tree-based

Pipeline Optimization Tool (TPOT), an AutoML tool that uses genetic

programming to optimize machine learning pipelines.

 Optuna
Like Hyperopt discussed in Chapter 4, Optuna1 is open source library that

uses Bayesian optimization. The underlying algorithms Optuna uses are

the same as in Hyperopt, but the Optuna framework is much more flexible.

Optuna can be easily used with PyTorch, Keras, scikit-learn, Apache

MXNet, and other libraries. The API is very similar to Hyperopt’s API, with

a few changes. Let’s dive into an example:

1 “Optuna: A Next-Generation Hyperparameter Optimization Framework,”
T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, KDD ‘19: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (July 2019) 2623–2631.

https://doi.org/10.1007/978-1-4842-6579-6_5#DOI

110

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split,

cross_val_score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

import optuna

from optuna.samplers import TPESampler

digits = load_digits()

X_train, X_test, y_train, y_test = train_test_split(digits.data,

 digits.target,

 test_size=0.3)

def objective_func(trial):

 classifier_name = trial.suggest_categorical("classifier",

 ["SVC", "RandomForest"])

 if classifier_name == "SVC":

 c = trial.suggest_loguniform("svc_c", 1e-2, 1e+11)

 gamma = trial.suggest_loguniform("svc_gamma", 1e-9,

1e+3)

 kernel = trial.suggest_categorical("svc_kernel",

 ['rbf','poly','rbf',

'sigmoid'])

 degree = trial.suggest_categorical("svc_degree",

range(1,15))

 clf = SVC(C=c, gamma=gamma, kernel=kernel,

degree=degree)

 else:

 algorithm = trial.suggest_categorical("algorithm",

 ['ball_tree', "kd_tree"])

 leaf_size = trial.suggest_categorical("leaf_size",

 range(1,50))

Chapter 5 Optuna and autOML

111

 metric = trial.suggest_categorical("metric",

 ["euclidean","manhattan",

 "chebyshev","minkowski"])

 clf = KNeighborsClassifier(algorithm=algorithm,

 leaf_size=leaf_size,

 metric=metric)

 clf.fit(X_train, y_train)

 val_acc = clf.score(X_test, y_test)

 return val_acc

study = optuna.create_study(direction='maximize',

sampler=TPESampler())

study.optimize(objective_func, n_trials=100)

best_trial = study.best_trial.value

print(f"Best trial accuracy: {best_trial}")

print("parameters for best trail are :")

for key, value in study.best_trial.params.items():

 print(f"{key}: {value}")

In Figure 5-1-1, we can see the graph saturated around 1. Note that

here the objective value is the validation accuracy.

Figure 5-1-1. Plot showing the accuracy vs. trial on the first 50 trials
of preceding code example

Chapter 5 Optuna and autOML

112

If this example looks familiar, the reason is that we worked on the same

problem in Chapter 4. The user interface of Optuna is quite similar to that

of Hyperopt. We have to define an objective function that should return a

score (loss/accuracy) which would be minimized/maximized.

In place of the fmin() function, we instantiate the create_study()

function and optimize it. But one of the best features provided by Optuna

is the capability to define the hyperparameter search range on the fly.

Unlike Hyperopt, where we have to predefine the search space, in Optuna

we define the search space in the objective function itself (something like

what we did in Hyperas). Let’s discuss some key aspects of Optuna.

 Search Space
In Hyperopt and many other algorithms, we define search space using a

dictionary. As mentioned, in Optuna, we define the search space on the

fly. As you saw in Chapter 4, creating search spaces in neural networks is

difficult with Hyperopt and Hyperas. In hyperparameters such as number

of nodes that are dependent on the number of layers, Hyperas would use

if…else. If a loop was used, Hyperas would choose the same number of

nodes for all the layers. In Optuna we can provide the unique labels to

each hyperparameter in a loop. For example:

n_layers = trial.suggest_int('n_layers', 1, 3)

layers = []

in_features = 28 * 28

for i in range(n_layers):

 out_features = trial.suggest_int('n_units_{}'.format(i),

4, 128)

 layers.append(Linear(in_features, out_features))

 layers.append(ReLU())

 in_features = out_features

Chapter 5 Optuna and autOML

113

Optuna makes it so much easier to deal with this problem. And Optuna

provides the same distributions as Hyperopt. The following are some of the

commonly used distributions:

• Categorical distribution: trial.suggest_

categorical() is used for selecting discrete values

from a list, which is the same as hp.choice() in

Hyperopt.

• Uniform distribution: trial.suggest_uniform() is

used for a random distribution on a uniform scale,

which is similar to hp.uniform().

• LogUniform Distribution: trial.suggest_loguniform(label,

low, high) is used for a loguniform scale. However, in

Hyperopt hp.loguniform(label, low, high) returns a

distribution between exp(low) and exp(high). In Optuna, a

loguniform distribution between low and high is returned.

And there are more distributions we can use as per our need.

 Underlying Algorithms
In addition to tree-structured Parzen estimator and random search,

Optuna provides successive halving and HyperBand, which is an

advantage over Hyperopt. We have already discussed HyperBand in

Chapter 3. Here’s how we can use it:

import optuna

define the objective function

study = optuna.create_study(pruner=optuna.pruners.

HyperbandPruner())

study.optimize(objective, n_trials=20)

Chapter 5 Optuna and autOML

114

 Visualization
Optuna provides elegant visualization. Figure 5-1-1 is generated by Optuna

using optuna. visualization. plot _ optimization _ history(study). You can

pass the study object and it’ll create a graph. You can point on each scatter

point and observe different hyperparameters used. There are even more

visualization options.

Callbacks, an argument in study.optimize() which invokes callback

after each trial. Using this you can visualize progress on dashboards like

tensorboardX in real time.

Callbacks work something like this:

import optuna

from optuna.samplers import TPESampler

def log(study, trial):

 print(f"Trial No.={trial.number}, HP_Set={trial.params}, \

 Score={trial.value}")

 print(f"Best Value ={study.best_value}")

def objective_func()

study = optuna.create_study(sampler=TPESampler())

study.optimize(objective_func, n_trials=100, callbacks=[log])

It’s really easy to work with. You can write these results in

the dashboard and they’ll get updated after each trial.

 Distributed Optimization
Just like Hyperopt, Optuna supports distributed optimization, but working

with Optuna’s implementation is easier than working with Hyperopt’s

implementation. Let’s how we can configure it:

Chapter 5 Optuna and autOML

115

study = optuna.create_study(study_name='distributed_test',

 storage='database_url',

 load_if_exists=True)

Define database url while instantiating ‘create _ study()’. And set

‘load_if_exits=True’ this instead of creating a new study would look for a

previous study named “distributed_test”. That way, every time a worker

starts, it won’t create a new study but instead look for the existing one, and

thus won’t start training from scratch.

For a comprehensive comparison of Hyperopt and Optuna, refer to

the following article by Jakub Czakon, Senior Data Scientist at Neptune.

ai: “Optuna vs Hyperopt: Which Hyperparameter Optimization Library

Should You Choose?”2.

Now, let’s explore an example of how we can optimize the

hyperparameters of a neural network using Optuna. We’ll be working with

the MNIST dataset and Keras. We start by importing libraries and split the

data to train and test set.

from keras.datasets import mnist

from keras.layers.core import Dense, Dropout, Activation

from keras.models import Sequential

from keras.utils import np_utils

import numpy as np

import optuna

from optuna.samplers import TPESampler

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000, 784)

x_test = x_test.reshape(10000, 784)

x_train = x_train.astype('float32')

2 https://neptune.ai/blog/optuna-vs-hyperopt

Chapter 5 Optuna and autOML

https://neptune.ai/blog/optuna-vs-hyperopt

116

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

classes = 10

input_shape = 784

y_train = np_utils.to_categorical(y_train, classes)

y_test = np_utils.to_categorical(y_test, classes)

x_train, y_train, x_test, y_test, input_shape, classes

def log(study, trial):

 print(f"Trial No.={trial.number}, HP_Set={trial.params}, \

 Score={trial.value}")

 print(f"Best Value ={study.best_value}")

def objective_func(trial):

 model = Sequential()

 hidden_layer_unit_choice = [32, 64, 256, 512, 1024]

 hidden_layers = trial.suggest_int('hidden_layers', 1, 6)

 model.add(Dense(units=trial.suggest_categorical('layer1',

[8, 16]),

 input_shape=(input_shape,),

 name='dense1'))

 model.add(Activation(activation=trial.suggest_categorical(

 f'activation1',

 ['relu',

 'elu'])))

Chapter 5 Optuna and autOML

117

 for i in range(1, hidden_layers):

 model.add(Dense(units=trial.suggest_categorical(

 f'layer{i+1}',

 hidden_layer_

unit_choice)))

 model.add(Dropout(trial.suggest_uniform(

 f'dropout{i+1}',

0, 0.8)))

 model.add(Activation(

 activation=trial.suggest_

categorical(

 f'activation{i+1}',

 ['relu',

 'elu'])))

 model.add(Dense(classes))

 model.add(Activation(activation='softmax'))

 model.compile(loss='categorical_crossentropy',

 metrics=['accuracy'],

 optimizer=trial.suggest_categorical('optimizer',

 ['rmsprop', 'adam', 'sgd']))

 result = model.fit(x_train, y_train,

 batch_size=4,

 epochs=1,

 verbose=3,

 validation_split=0.2)

 validation_acc = np.amax(result.history['val_accuracy'])

 print('Validation accuracy:', validation_acc)

 return validation_acc

Chapter 5 Optuna and autOML

118

Define the objective function. In the preceding code, we see

hyperparameters beign selected for each layer on the fly, just by giving

unique names to labels.

And lastly, we start the optimization:

study = optuna.create_study(direction='maximize',

sampler=TPESampler())

study.optimize(objective_func, n_trials=50, callbacks=[log])

best_trial = study.best_trial.value

print(f"Best trial accuracy: {best_trial}")

print("parameters for best trail are :")

for key, value in study.best_trial.params.items():

 print(f"{key}: {value}")

This example optimizes for 50 trials only, and Figure 5-1-2 shows the

accuracy graph.

In such a huge search space 50 trials are less (increase the number

of trials for better results), but we can see the training score increasing.

Note that the test score is independent, and the objective function is using

validation accuracy to optimize hyperparameters.

Figure 5-1-2. Accuracy vs. trials for the previous code example

Chapter 5 Optuna and autOML

119

Optuna is a young library, with a lot of work still in progress, but it’s

promising.

 Automated Machine Learning
The high complexity of machine learning demands that only machine

learning experts build models. Machine learning models are task-specific,

where each model requires a lot of work. To provide machine learning to

the masses, machine learning experts need a method to create off-the- shelf

models. This is where automated machine learning (AutoML) steps in.

Machine learning is automated when it creates the complete pipeline

and gives us a deployable model on its own. To create a complete

pipeline, we need to use several algorithms, from preprocessing to

creating a machine learning model. All these algorithms have their

own hyperparameters that need to be optimized. Here hyperparameter

optimization plays a huge role. The steps and algorithms for preprocessing

are described in Appendix I.

Now we’ll quickly build our own AutoML modules in subsequent

sections using Optuna and TPOT, which would be able to handle almost

any kind of dataset for classification.

 Building Your Own AutoML Module
This example provides instructions for building a basic module that you

can subsequently experiment with and add more algorithms. For use in

real-world problems, there are many optimized AutoML libraries, which

we’ll discuss later. We’ll work on the Titanic dataset, which is messy, but

our code will handle all the cleaning and preprocessing.

Chapter 5 Optuna and autOML

120

Let’s start by importing everything and loading the dataset3:

import pandas as pd

import numpy as np

import impyute as impy

import optuna

from optuna.samplers import TPESampler

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, MinMaxScaler, \

 StandardScaler

from sklearn.impute import SimpleImputer

from sklearn.feature_selection import SelectKBest, \

 chi2, f_classif, mutual_info_classif

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

data = pd.read_csv("./titanic/train.csv")

y = data['Survived']

X = data.drop('Survived', axis=1)

Now we’ll address the part where we are not optimizing the

hyperparameters. We’ll define the outside objective function because it

does not make sense to iterate the same process that is not to be optimized.

def label_encode_column(col):

 nans = col.isnull()

 nan_lst = []

 nan_idx_lst = []

 label_lst = []

 label_idx_lst = []

3 https://www.kaggle.com/c/titanic

Chapter 5 Optuna and autOML

https://www.kaggle.com/c/titanic

121

 for idx, nan in enumerate(nans):

 if nan:

 nan_lst.append(col[idx])

 nan_idx_lst.append(idx)

 else:

 label_lst.append(col[idx])

 label_idx_lst.append(idx)

 nan_df = pd.DataFrame(nan_lst, index=nan_idx_lst)

 label_df = pd.DataFrame(label_lst, index=label_idx_lst)

 label_encoder = LabelEncoder()

 label_df = label_encoder.fit_transform(label_

df.astype(str))

 label_df = pd.DataFrame(label_df, index=label_idx_lst)

 final_col = pd.concat([label_df, nan_df])

 return final_col.sort_index()

for column_name in X.columns:

 if str(X[column_name].dtype) == 'object':

 X[column_name] = label_encode_column(X[column_name])

 if len(X[column_name].unique()) > len(X)/3:

 X = X.drop(column_name, axis=1)

We are using the function label_encode_column(), but what’s

wrong with just LabelEncoding()? LabelEncoding() also labels the NaN

values, but we want to impute those later. So function takes each column,

separates the NaN and other values, and labels them while saving their

index position. It returns a sorted dataframe, an example of which is

shown in Figure 5-2-1.

Chapter 5 Optuna and autOML

122

So after we label encode all the columns, we drop those with a high

number of unique values. You can alternatively include label encoding in

the objective function if you want one-hot encoding as an option. Next, we

are going to define some functions to be used in the objective function:

def mice_imputer(data):

 data = data.to_numpy()

 imputed_data = impy.mice(data)

 imputed_data = pd.DataFrame(imputed_data)

 return imputed_data

def mean_imputer(data):

 imputer = SimpleImputer(strategy='mean')

 imputed_data = imputer.fit_transform(data)

 imputed_data = pd.DataFrame(imputed_data)

 return imputed_data

The preceding code parameterizes two imputers, Mean Imputation

and MICE Imputation. Refer to Appendix I for instructions on including

more options.

def feature_selector(X, y, k, algo="f_classif"):

 kbest = SelectKBest(eval(algo), k)

 X = kbest.fit_transform(X, y)

 X = pd.DataFrame(X)

 return X

Figure 5-2-1. Label Encoder encodes all values except NaNs

Chapter 5 Optuna and autOML

123

We are going to select 'k' number of best features, which is also going to

be a hyperparameter. Another hyperparameter is selecting the feature

selection algorithm. We have 'f_classif', 'chi2', and 'mutual_info_

classif'. The last of the preprocessing steps is scaling. We select between

normalization and standardization.

def scaling(data, scaler="min_max"):

 if scaler=='min_max':

 scaled_data = MinMaxScaler().fit_transform(data)

 else:

 scaled_data = StandardScaler().fit_transform(data)

 scaled_data = pd.DataFrame(scaled_data)

 return scaled_data

And now we define the objective function:

def objective_func(trial):

 try:

 # imputation

 imputer = trial.suggest_categorical('impyter',

['mice', 'mean'])

 if imputer=='mice':

 imputed_X = mice_imputer(X)

 else:

 imputed_X = mean_imputer(X)

 # feature selection

 fea_slct = trial.suggest_categorical('fea_slct',

 ['chi2',

'f_classif',

 'mutual_info_

classif'])

 no_feature_cols = trial.suggest_int('k',

3, len(X.columns))

Chapter 5 Optuna and autOML

124

 selected_features = feature_selector(imputed_X, y,

 no_feature_cols,

fea_slct)

 # scaling

 scaler = trial.suggest_categorical('scaler',

 ['min_max', 'standard'])

 scaled_X = scaling(selected_features)

 except:

 return 0.0

 # instantiating machine learning algorithm

 classifier_name = trial.suggest_categorical("classifier",

 ["SVC",

"RandomForest"])

 if classifier_name == "SVC":

 c = trial.suggest_loguniform("svc_c", 1e-2, 1e+11)

 gamma = trial.suggest_loguniform("svc_gamma",

1e-9, 1e+3)

 kernel = trial.suggest_categorical("svc_kernel",

 ['rbf','poly','rbf',

'sigmoid'])

 degree = trial.suggest_categorical("svc_degree",

range(1,15))

 clf = SVC(C=c, gamma=gamma, kernel=kernel,

degree=degree)

 else:

 algorithm = trial.suggest_categorical("algorithm",

 ['ball_tree',

"kd_tree"])

 leaf_size = trial.suggest_categorical("leaf_size",

range(1,50))

Chapter 5 Optuna and autOML

125

 metric = trial.suggest_categorical("metic",

 ["euclidean",

"manhattan",

 "chebyshev",

"minkowski"])

 clf = KNeighborsClassifier(algorithm=algorithm,

 leaf_size=leaf_size,

metric=metric)

 # fit the model

 clf.fit(scaled_X, y)

 val_acc = clf.score(scaled_X, y)

 return val_acc

study = optuna.create_study(direction='maximize',

sampler=TPESampler())

study.optimize(objective_func, n_trials=100)

best_trial = study.best_trial.value

print(f"Best trial accuracy: {best_trial}")

print("parameters for best trial are :")

for key, value in study.best_trial.params.items():

 print(f"{key}: {value}")

The first part of the objective function consists of all the preprocessing

steps, where we are using try...except. We are using the functions

defined before. In some cases, when there is a mismatch in algorithm

and hyperparameter, or if the data processed by the previous step is not

acceptable by the next step, you might encounter an error. For instance,

some of the feature selection algorithms don’t work on negative values, but

even if you are careful with the dataset, the imputer might impute a NaN

with some negative value. In that case, just return zero, the least possible

accuracy value.

Chapter 5 Optuna and autOML

126

We then define the choice for classifiers as we did before (you can add

more classifiers). The idea of AutoML is to create a generic code that gives

you the best possible pipeline for the dataset. You can train any tabular

dataset for classification to get the best possible pipeline for the previous

set of steps and choices of algorithm without writing another line of code.

As the complexity of the search space is increased, we need to perform

more trials over the dataset. The more trials, the better the results we’ll

achieve. To reduce the time, you can distribute the optimization process,

as described next.

 TPOT
The Tree-based Pipeline Optimization Tool (TPOT) is an AutoML

framework that uses genetic programming to optimize the machine

learning pipeline.

As we have discussed, data preprocessing typically consists of

data cleaning (label encoding, dropping unimportant columns, and

scaling), which is something we must take care of beforehand. The more

complex tasks, such as feature selection, feature reduction, and feature

construction, are handled by TPOT. It further selects the best model with

the best set of hyperparameters. Figure 5-2-2 shows the features that are

automated by TPOT.

Genetic algorithms are slow but excel at finding the best route for a

given dataset. We would need to train for a long time before reaching the

best set of hyperparameters.

Understanding TPOT first requires understanding what genetic

algorithms are. As the name suggests, the concept of genetic algorithms

is derived from Darwin’s theory of natural selection. A genetic algorithm

continuously evolves, by selecting the best algorithm. For the best

algorithm it goes to its children doing some random modifications in

hyperparameters and evaluating models to find the best fit.

Chapter 5 Optuna and autOML

127

Now we’ll look at an example of how TPOP works, using TPOT for the

Iris dataset, since it’s already a clean dataset:

from tpot import TPOTClassifier

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

import numpy as np

iris = load_iris()

X_train, X_test, y_train, y_test = train_test_split(

 iris.data.astype

(np.float64),

 iris.target.astype

(np.float64),

 test_size=0.25

)

Loading the dataset and splitting it to train and test.

tpot = TPOTClassifier(generations=5, population_size=50,

verbosity=2)

tpot.fit(X_train, y_train)

Figure 5-2-2. TPOT covers around 80% of the job

Chapter 5 Optuna and autOML

128

We train TPOT for five generations; the default is 100 generations. The

interface of this framework is quite similar to scikit-learn.

And voila! I achieved 100% accuracy on the test set on the trained

model.

To make things even easier, we have an option to export the selected

pipeline to a Python script, which can then easily be deployed.

tpot.export('tpot_iris_pipeline.py')

The preceding line of code auto-generates the following tpot_iris_

pipeline.py file:

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.neural_network import MLPClassifier

NOTE: Make sure that the outcome column is labeled 'target'

in the data # file

tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep="COLUMN_

SEPARATOR",

 dtype=np.float64)

features = tpot_data.drop('target', axis=1)

training_features, testing_features, training_target, testing_

target = \

 train_test_split(features, tpot_data['target'],

 random_state=None)

Average CV score on the training set was: 0.9913043478260869

exported_pipeline = MLPClassifier(alpha=0.1, learning_rate_

init=0.1)

exported_pipeline.fit(training_features, training_target)

results = exported_pipeline.predict(testing_features)

Chapter 5 Optuna and autOML

129

For more time we optimize, the better the results we’ll get.

There are many more libraries for AutoML, such as auto-sklearn, H2O

AutoML, and AutoKeras. AutoML not only is beneficial to data scientists to

accelerate the process but also has enabled people with no knowledge of

coding to use machine learning. AutoML certainly holds a great position in

the future of artificial intelligence.

As you’ve witnessed in this chapter, hyperparameter optimization

plays a huge role in AutoML, enabling us to generate the best machine

learning models in the least amount of time.

To conclude this book, I wish you success as you optimize your

hyperparameters using more advanced methods like Bayesian

optimization and pruning algorithms instead of manually tuning or grid

search. Happy optimization!

Chapter 5 Optuna and autOML

131© Tanay Agrawal 2021
T. Agrawal, Hyperparameter Optimization in Machine Learning,
https://doi.org/10.1007/978-1-4842-6579-6

 Appendix I
The purpose of this appendix is to help you brush up on basic machine

learning concepts and look at ways to evaluate models.

 Data Cleaning and Preprocessing
Clearly, data cleaning and preprocessing is the most important task when

making a machine learning model. When dealing with real-life data,

you will find nonnumerical columns, missing values, outlier data points,

unwanted features, and so forth.

Before you start preprocessing data, you must carefully look and

understand the dataset, and understand the meaning of each column if

possible.

The following sections address all the data cleaning and preprocessing

problems that you may encounter and discuss algorithms that can be used to

solve them. After that, we’ll explore how to apply them to a real-world dataset.

 Dealing with Nonnumerical Columns
Algorithms understand numbers but not strings. If a column consists of

strings, we must change them to a numbers. But what if each point in

the column is a unique string (for example, a dataset containing unique

names)? In that case, the column must be dropped, so it’s important to

look at the dataset carefully.

In this section we’ll look at some methods to convert strings to numbers.

https://doi.org/10.1007/978-1-4842-6579-6#DOI

132

 Label Encoding

We have few unique strings in a column, when we convert them to labels,

for example, we have these unique string, “a”, “b”, “c” in repetition we

convert them to 0, 1, 2 respectively. Now every occurrence of string “a”

will be replaced by number 0. In Table A1-1, Col 1 represents a feature

column and Col 1’ represents its replacement label encoding that is

understandable to algorithms. This process of converting string to

numbers (labels) is called Label Encoding.

Label encoding introduces one problem, though: in certain

contexts, such as categorical data, representing strings with numbers

suggests a prioritization, ranking, or order of the strings where no such

correspondence exists. That is, assigning 0, 1, and 2 to a, b, and c doesn’t

mean, for example, that a precedes b in order and b precedes c. To

overcome this problem, we can use one hot encoding.

 One-Hot Encoding

One-hot encoding is another method to convert categorical data to

numeric. Here we split one column into multiple columns, where

the number of new columns equals the number of unique strings in

Table A1-1. Col 1 Replaceable by

Col 1’ Through Label Encoding

Col 1 Col 1’

a 0

b 1

b 1

c 2

a 0

 Appendix i

133

the categorical data. If we have three categories, “a”, “b”, and “c”, each

occurrence of “a” will be assigned as [1, 0, 0], “b” as [0, 1, 0], and c as [0, 0, 1].

1 being value exist in newly created column and 0 means it doesn’t. From

Col 1 in Table A1-1, if we one-hot encode the categorical data, the result is

as shown in Table A1-2.

Theoretically, one-hot encoding is superior to label encoding, but the

number of columns will increase as the number of categories increases.

When we actually compute the machine learning algorithms, the

complexity increases exponentially with increase in features. So there’s our

trade-off.

 Missing Values
Now that we have handled the categorical string columns, let’s handle the

missing values.

Real-life datasets can contain missing values, for various reasons.

Often these missing values are identified as NaN, as shown in Table A1-3,

or blank cells or even empty strings (""). There are many ways you can deal

with missing values, as described next.

Table A1-2. One-Hot Encoding of

Col 1 of Table A1-1

Col 1’ a Col 1’ b Col 1’ c

1 0 0

0 1 0

0 1 0

0 0 1

1 0 0

 Appendix i

134

 Drop the Rows

Drop the rows containing missing values. Before doing that, you must

check though, if you have enough data points left (to train a machine

learning model) even after dropping those rows with missing values. Or if

points in a particular feature are mostly missing, you can drop that too.

 Mean/Median or Most Frequent/Constant

You can fill the missing values with the mean or median over values in same

column. Although this is the easiest method to deal with missing values, it

is quite inaccurate. Also, it can be used only on continuous features and not

on categorical ones. For instance, if you use mean imputation for C2 in Table

A1-3, 0.5 is the mean value, but C2 might consist of only 1s and 0s.

Filling with most frequent or constant values from the same column

would work with categorical features, but it can introduce a bias to the data.

Neither of these methods addresses the correlation between features.

 Imputation Using Regression or Classification

You can use an algorithm like support vector machine (SVM) or K-nearest

neighbor (KNN) to predict the missing values, using the features that don’t

have missing values. For example, in Table A1-3, likes of C4 can be used as

features and C1 or C2 can be termed target columns. Predictive algorithms

can learn the relation between C1 and C4 or C2 and C4 and predict NaNs

using regression and classification, respectively.

Table A1-3. Variables with Missing Values (NaN)

C1 C2 C3 C4

21.1 1 4562 198.0

nan nan 2433 183.6

24.3 0 nan 211.7

 Appendix i

135

 Multivariate Imputation by Chained Equations1

The previous methods wouldn’t work if you have missing values in all the

columns.

In this process of MICE imputation, missing values are filled multiple

times to complete the dataset. Let’s go step by step through how it works:

 1. It calculates and imputes using the mean

imputation for each missing position, which can be

termed as “placeholders.”

 2. Placeholders for one of the features [F] is set to

missing; that is, all the values we imputed using

mean in feature F are set to missing.

 3. F is set as a target column and rest are set as feature

columns, and F is regressed on all the other features.

 4. We impute the missing values in F, and F is now

used as a feature for other features to be imputed.

 5. This cycle repeats until all the features are imputed.

 6. The whole cycle, steps 1 to 5, is repeated for

imputing all the features again and again. The

number of cycles is a factor that we decide and is

based on experimentation.

1 “Multiple Imputation by Chained Equations: What Is It and How Does It Work?”
M. Azur, E. Stuart, C. Frangakis, and P Leaf. Int J Methods Psychiatr Res. 20(1)
(2011) 40–49. doi:10.1002/mpr.329

 Appendix i

136

 Outlier Detection
In any given dataset, sometimes a few observations deviate from most

other observations, creating a biased weightage in their favor; known

as outliers, they must be removed in order to eliminate unwanted bias.

For example, the top image in Figure A1-1 shows a normal (Gaussian)

distribution, which has an approximate mean of 5 on both the x axis and

y axis. The bottom image in Figure A1-1 shows a threshold ellipse drawn

to define points under the distribution and outliers. Point (-0.8,4.2) is an

obvious outlier, and some of the other points that lie outside the threshold

circle can be assumed to be outliers since they don’t follow the general

pattern of distribution.

This distribution could be visualized because it is two dimensional;

however, we would usually witness datasets with a large number of

features, which means a greater number of dimensions that we won’t

be able to visualize. So we rely on algorithms to detect these outliers. I’ll

discuss a few of them further.

Figure A1-1. A Gaussian distribution with mean 5 and standard
deviation 2.5 (top) and identification of outliers by drawing an ellipse
(bottom)

 Appendix i

137

 Z-score

Let’s assume the data is Gaussian, hence making a bell curve. Intuitionally,

z-score tells us how far the data point is from the mean position (where

most of the data points lie). The formula for calculating z-score is

 z x= -()¸m s

where x is the data point, μ is the mean of the sample data, and σ is the

standard deviation of the sample. Now we set a certain threshold of z, and

accordingly eliminate the data points that are outliers.

But what if the data is not Gaussian? We can normalize the data or we

can use log transformation or Bob Cox transformation in case of skewed

columns.

A few limitations with outlier detection based on z-score are that it

can’t be used on nonparametric data and the number of dimensions

should be less.

 Density-Based Spatial Clustering of Applications
with Noise

Density-based spatial clustering of applications with noise (DBSCAN) is a

clustering algorithm that clusters on the basis of density of points. Points

lying in low-density areas can be marked as outliers. See Figure A1-2.

The forming of clusters depends on two factors: ε and min_samples.

ε is the minimum distance between two points that can be considered

as neighbor. If ε is too low, the result will be few neighbors and too many

clusters, and no dense region will be formed; however, if ε is too high, the

result will be one of the clusters consisting of most of the points. min_

samples is the minimum number of points required to make a cluster.

 Appendix i

138

 Feature Selection
Features are the key to map a relationship between data points and the

target value. If some of those features are corrupt and are independent of

the target values, they are no help in mapping that relationship. Therefore,

we hunt them out and remove them from the dataset. There are two

different types of algorithms, univariate and multivariate, that help us to

hunt for these features.

• Univariate algorithms try to find the relationship

between each feature (independently of other features)

and the target columns. If the relationship is strong, we

keep the feature; otherwise, we discard it.

• Multivariate algorithms find the dependency across the

features. We get the score for all the features and select

the best ones.

Figure A1-2. An example of DBSCAN forming clusters to find which
data points lie in low-density area2

2 https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html

 Appendix i

https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html

139

Next we’ll look at some statistical methods and algorithms that help

us do so.

 F-Test

F-test creates a comparison between two models, each of which is first

created by a constant and another by a constant and a feature. Then

the F-test finds out whether the relationship between feature and target

actually means something. An F-test is only able to capture the linear

dependency between feature and target. This problem is solved by the next

method we’ll discuss.

 Mutual Information Test

As the name suggests, this score finds out the mutual dependency between

two variables (here a feature and a target column). Mutual information

calculates the amount of information we get about one variable (feature)

given another (target). Mutual information between two variables X and Y

can be stated as follows:

Mutual Info(X, Y) = H(X) – H(X | Y)

where H(X) is the entropy of X, and H(X | Y) is the conditional entropy

of X given Y.

This captures even the nonlinear relation between X and Y. As you can

see in Figure A1-3, the F-score captures the linear relationship but ignores

the randomness in the feature, while the mutual information (MI) score

considers the nonlinear relationship very well.

 Appendix i

140

 Recursive Feature Selection

Whereas the previous two methods are univariate, recursive feature

selection can be classified as multivariate. Here we train a complete model

and the model gives the weightage to each variable, called coefficients.

Features are then sorted according to these values of coefficients, and the

features with low coefficients are removed.

This pretty much sums up the cleaning and preprocessing, there’s so

much more that can be done according to the problem and dataset.

 Applying the Techniques
This section demonstrates step by step how to apply some of the data

cleaning and preprocessing methods discussed thus far to a very generic

dataset, the Titanic dataset.

Figure A1-3. From left to right, three data distributions and their
respective F-test score and mutual information score written on the
top3

3 https://scikit-learn.org/stable/auto_examples/feature_selection/
plot_f_test_vs_mi.html

 Appendix i

https://scikit-learn.org/stable/auto_examples/feature_selection/plot_f_test_vs_mi.html
https://scikit-learn.org/stable/auto_examples/feature_selection/plot_f_test_vs_mi.html

141

First, import the following libraries:

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder

import impyute as impy

from scipy import stats

We’ll use these libraries as follows:

• Pandas to load the Titanic dataset

• Numpy to deal with array (operating on vectors) and

perform some calculations

• Scikit-learn to help in the label encoding

• Impyute is a library which implements different

implementation algorithm and is really easy to use

• Scipy to help with some more calculations

Read the data

data = pd.read_csv("./titanic/train.csv")

print(data.head())

Our data looks something like Table A1-4.

 Appendix i

142

Ta
bl

e
A

1-
4.

 O
u

tp
u

t o
f d

at
a

.h
ea

d(
),

 D
is

pl
ay

in
g

Fi
ve

 R
ow

s
by

 D
ef

au
lt

Pa
ss

en
ge

rId
Su

rv
iv

ed
Pc

la
ss

Na
m

e
Se

x
Ag

e
Si

bS
p

Pa
rc

h
Ti

ck
et

Fa
re

Ca
bi

n
Em

ba
rk

ed

1
0

3
Br

au
nd

, M
r.

Ow
en

 H
ar

ris

m
al

e
22

.0
1

0
A/

5
21

17
1

7.
25

00
na

n
S

2
1

1
Cu

m
in

gs
, M

rs
.

Jo
hn

 B
ra

dl
ey

(F
lo

re
nc

e
Br

ig
gs

Th
...

fe
m

al
e

38
.0

1
0

pC
 1

75
99

71
.2

83
3

C8
5

C

3
1

3
He

ik
ki

ne
n,

 M
is

s.

La
in

a

fe
m

al
e

26
.0

0
0

ST
On

/O
2.

31
01

28
2

7.
92

50
na

n
S

4
1

1
Fu

tre
lle

, M
rs

.

Ja
cq

ue
s

He
at

h

(L
ily

 M
ay

 p
ee

l)

fe
m

al
e

35
.0

1
0

11
38

03
53

.1
00

0
C1

23
S

5
0

3
Al

le
n,

 M
r.

W
ill

ia
m

 H
en

ry

m
al

e
35

.0
0

0
37

34
50

8.
05

00
na

n
S

 Appendix i

143

RMS Titanic was a ship that sank after hitting an iceberg in 1912, taking

with her over 1500 passengers. However, a few hundred survived as well.

Many factors contributed to whether or not any particular passenger survived

or died. For instance, women and children were given preference for boarding

lifeboats. And if a woman was traveling first class, she would have been among

the first to board a lifeboat, increasing her chance of survival.

Now we have a dataset to analyze, given different variables like Age,

Sex, Passenger Class, Fare, etc. we have to train a model to predict whether

a passenger survived or not. We have data for 891 passengers.

One of the most important things you can do is look and understand

the data. We don’t need a feature selection algorithm to decide if features

like Name or Passenger ID are important or not. All the names are unique

and thus won’t map any relationship with the target; the same is true with

passenger IDs. So, based on mere observation of the dataset, you can

decide which features to keep and which to discard. For example:

data.drop(["Name", "Cabin", "Ticket", "PassengerId"], axis=1,

inplace=True)

data.drop() discards the list of features, and axis=1 implies to drop

columns of these names.

Let’s now check which columns contain missing values. The following

command shows us the column-wise number of missing points:

>>> data.isna().sum()

Survived 0

Pclass 0

Sex 0

Age 177

SibSp 0

Parch 0

Fare 0

Embarked 2

dtype: int64

 Appendix i

144

We see that Embarked and Age are two columns with missing values.

Whereas Age has too many data points missing, Embarked has only two,

and it would be fine if we drop those two data points completely:

data = data.dropna(subset=["Embarked"])

Before starting the imputation, we’ll label encode the categorical

columns represented by the strings "Sex" and "Embarked":

L = LabelEncoder()

data["Sex"] = L.fit_transform(data["Sex"])

data["Embarked"] = L.fit_transform(data["Embarked"])

Now, our dataset will look something like Table A1-5.

We’ll use impyute’s MICE algorithm to get the missing values in the

Age variable:

imputed_data = impy.mice(data)

And that imputes the data. Moving on to outlier detection, we’ll use

z-score to calculate how much each data point deviates:

z = np.abs(stats.zscore(data))

Table A1-5. Table A1-4 After Removing Unwanted Columns and

Label Encoding Categorical String Data

Survived Pclass Sex Age SibSp Parch Fare Embarked

0 0 3 1 22.0 1 0 7.2500 2

1 1 1 0 38.0 1 0 71.2833 0

2 1 3 0 26.0 0 0 7.9250 2

3 1 1 0 35.0 1 0 53.1000 2

4 0 3 1 35.0 0 0 8.0500 2

 Appendix i

145

This gives us a z-score for all 889 data points since we have dropped

two rows. We’ll drop any row with a z-score greater than 3.5:

threshold = 3.5

outlier_rows = set(np.where(z > 3.5)[0]) #getting the outlier

rows

outlier_free_data = imputed_data.copy()

for outlier in outlier_rows: #dropping the outlier data points

 outlier_free_data.drop(outlier, axis=0, inplace=True)

We are almost there. You can try experimenting with different

algorithms for each step. We’ll now divide the data to X and y, X being the

features and y being the target column (Survived):

X, y = outlier_free_data.drop(0, axis=1), outlier_free_data[0]

Voila! We now have the clean data and separated columns to work

with. All we have to do is apply machine learning algorithms to make a

predictive model.

 Applying Machine Learning Algorithms
As discussed in Chapter 1, we can classify ML problems into three major

categories: supervised, unsupervised, and reinforcement learning. These

problems can be further classified and dealt with by using the right

predictive algorithms.

After data cleaning and preprocessing, further tasks are relatively

simple. In this section, we’ll explore the use of predictive algorithms by

applying them on a classification problem.

But, before applying machine learning algorithms to our data, we need

to do one more thing: split the training data and testing data. You don’t

want to train your algorithm on a dataset and test it on the same dataset; it

might give good results on the data you are training on but not the data you

are testing on in real life (i.e., it might overfit).

 Appendix i

146

Let’s start with code:

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

Train Test Split will help you to get some data for the training and

testing some data using the untouched test set. I am keeping the test size at

30% of the total dataset, leaving 70% for the training data size. And for now

I am using the support vector machine algorithm to create the machine

learning model.

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size = 0.3)

model = SVC()

model.fit(X_train,y_train)

And now we have a trained model:

>>> print(model.score(X_train, y_train))

0.9274

>>> print(model.score(X_test, y_test))

0.7490

There is still overfitting, and the test score is much lower than the

training score, but we can always optimize hyperparameters to improve

this score.

 Model Evaluation Methods
We have already explored how to make machine learning models and

use different algorithms. Now let’s see how to evaluate these models to

determine if they are good enough.

The first thing that comes to mind when you want to evaluate a model

is to check its accuracy, which can be done using the following method:

 Appendix i

147

Accuracy = total_number_of_true_predictions/

total_data_points

But this method for calculating the accuracy of the model can be

deceiving at times. Suppose you have a binary classification problem,

where a person with cancer is labeled as 1 and a person without cancer

is labeled as 0. In all of your data points, there’s one person suffering

from cancer. You have trained a model, and now you are testing it for 100

patients. Your model predicts for all 100 patients and says none of them

has cancer, (i.e., all of them are labeled as 0). In this case, 99 out of 100

predictions are right, meaning that if you calculate the accuracy using the

preceding method, it’ll be 99%. However, in this case, we need to be able to

identify that one particular case where a person has cancer. And hence we

should define accuracy in different terms as per the problem statement.

When evaluating model accuracy, you first need to understand the

concepts of true positive, true negative, false positive, and false negative. Our

previous example is useful for explaining these concepts. In Table A1-6, the

leftmost column is the name of the person being evaluated for cancer, the

middle column is the person’s actual results, and right column shows the

results predicted from a machine learning model.

Table A1-6. A table of actual results and

predicted results

Person Actual Predicted

A 1 1

B 0 0

C 1 0

d 0 1

 Appendix i

148

Table A1-6 shows the following results:

• Person A was actually positive for cancer and was

predicted by the model to have cancer, resulting in a

true positive.

• Person B was negative for cancer and the model

predicted that correctly, resulting in a true negative.

• Person C has cancer but the model predicted a

negative, 0, which is a false negative.

• Person D doesn’t have cancer but the model predicted

that person D has, hence a false positive.

Now that you know what these terms mean, in certain cases we

prioritize fewer false positives and in other cases we prioritize fewer false

negatives. There are some scores that help us to do so:

• Precision = TruePositives / (TruePositives +

FalsePositives)

• Recall (TPR) = TruePositives / (TruePositives +

FalseNegatives)

Recall, also known as true positive rate, decreases

as the false negatives increase. In the case of cancer

diagnosis, it is important to eliminate false negatives

because otherwise the person would go undiagnosed.

Confusion matrix: A table to visualize the number of false negatives

(FN), false positives (FP), true negatives (TN), and true positives (TP)

positive Tp Fp

negative Fn Tn

 Appendix i

149

So, even if you go for multiclass classification, you can diagonally look

at the true predictions.

Based on false positives and false negatives, we have other formulas

which try to reduce both of them:

• Fβ-Score

Fβ-Score = (1+β.β)*((precision*recall)/(β.precision+recall))

Fβ-Score keeps a balance between precision and

recall, and β can be changed to give priority to either

precision or recall:

β = 1 for a balance between precision and recall

β = 0.5 for precision-oriented scores

β = 2 for recall-oriented scores

• Roc Curve(Receiver Operating Characteristic Curve)

One of the most effective measures to evaluate a

classification model, it tells us the chances of our

model predicting the right class. The curve is plotted

between Recall/TPR (true positive rate) and FPR

(false positive rate), where

FPR = False Positive / (True Negative - False Positive)

TPR is the y axis and FPR is the x axis (see Figure A1-4).

The maximum possible value of FPR and TPR is 1 and

the minimum possible value of FPR and TPR is 0.

The area under the curve (AUC) is the chance that

the model will predict the right value.

The following are the four ROC distributions in Figure A1-4:

 Appendix i

150

 (a) Denotes AUC 0.5, which means there is a 50%

chance that your model will predict the right value.

Hence, the model is of no use and you can throw it

away.

 (b) Gives you an area of 0.7, which indicates the model

has a 70% chance of predicting the right value.

Better.

 (c) The best-case scenario, where all the values are

predicted correctly and there is no false negative or

false positive, making TPR 0 and FPR 1.

Figure A1-4. Four plots between TPR and FPR in different
scenarios

 Appendix i

151

 (d) Informs you that there’s a high possibility that

somewhere you did something quite silly while

writing the code because all the negatives are

predicted as positives and vice versa.

Now this sums up almost all the evaluation techniques for

classification. Evaluating a regression model is not difficult. Just calculate

the R-squared score:

• R-squared Score = (variance calculated by predictions)

/ (actual variance)

So we can conclude that to make a good model, you must evaluate

your model properly.

There’s a lot more that can be done, but this appendix has covered

some basic aspects of building a machine learning model.

Appendix i

153© Tanay Agrawal 2021
T. Agrawal, Hyperparameter Optimization in Machine Learning,
https://doi.org/10.1007/978-1-4842-6579-6

 APPENDIX II

Neural Networks:
A Brief Introduction to
PyTorch and Keras API
This appendix discusses a very basic form of neural network and how to

implement it in PyTorch and Keras, both of which we have throughout the

book.

If you want to dig deep into the neural networks, I suggest the free

online book Neural Networks and Deep Learning by Michael Nielson.1

A neural network is a connection of neurons, each activating when a

certain value hits it. It’s like a universal function that can adjust its weights

and biases according to the nature of the dataset. The number of input

nodes is equal to the number of features, and the number of output nodes

is equal to the number of target classes. As explained in the first section of

Appendix I, the output is one-hot encoded. In Figure A2-2 you can see the

number of input features would be five and it would have three classes on

output. I will discuss here a fully connected neural network and show you

how to implement it in PyTorch and Keras and train the MNIST dataset.

1 http://neuralnetworksanddeeplearning.com/

https://doi.org/10.1007/978-1-4842-6579-6#DOI
http://neuralnetworksanddeeplearning.com/

154

The MNIST dataset consists of images containing handwritten digits,

each image containing a digit and its label. The task in this dataset is to

classify the digit from the image. When dealing with images, each pixel is

considered as one feature.

Before moving further, let’s see how neural networks work. I won’t get

into mathematics, but rather try to give you a conceptual understanding.

Initially, random weights and biases are assigned, so if we give the neural

network an image of number 3, it’ll produce some random output. But as

we feed our neural network more and more data, weights and biases (or

we can say all the neurons) adjust themselves in order to minimize the loss

function and try to perform more specific tasks, cumulatively classifying

the number correctly or even performing more complex tasks. We use an

algorithm called backpropagation, which changes the weights and biases

such that loss is reduced.

Figure A2-1. Six random samples from the MNIST dataset

Appendix ii neurAl networks: A Brief introduction to pytorch And kerAs Api

155

Notice in Figure A2-2 how each node in one layer is connected to each

node in another—that’s how the data flows.

Now let’s jump into some coding.

Here we’ll implement a fully connected neural network using PyTorch:

import torch.nn as nn

import torchvision.datasets as datasets

from torchvision import transforms

from torch.utils import data as D

import torch.optim as optim

import torch

import numpy as np

import torch.nn.functional as F

Figure A2-2. A fully connected neural network with one hidden layer

Appendix ii neurAl networks: A Brief introduction to pytorch And kerAs Api

156

We are using PyTorch, TorchVision, and Numpy. I’ll explain all the

imports as we go ahead.

data_transforms = transforms.Compose([transforms.ToTensor()])

mnist_trainset = datasets.MNIST('./data', train=True,

download=True, transform=data_transforms)

mnist_testset = datasets.MNIST("./data", train=False,

download=True, transform=data_transforms)

First we load the dataset; torchvision provides functionality to

automatically download the MNIST dataset using torchvision.datasets.

MNIST, and we apply the data_transforms to convert the data to tensors.

batch_size = 1

Define the batch_size.

mnist_dataloader_train = D.DataLoader(mnist_trainset, batch_

size=batch_size, shuffle=True)

mnist_dataloader_test = D.DataLoader(mnist_testset, batch_

size=batch_size, shuffle=True)

Pass training and testing data to DataLoader(), which creates a

generator object that loads the data in batches, so that we do not have to

load all the data at once.

mnist_dataloader = {"train": mnist_dataloader_train, "eval":

mnist_dataloader_test}

dataset_size = {"train": len(mnist_dataloader_train), "eval":

len(mnist_dataloader_test)}

We then nicely put them into dictionaries, to use while training and

evaluating the model.

print(dataset_size)

{'train': 60000, 'eval': 10000}

Appendix ii neurAl networks: A Brief introduction to pytorch And kerAs Api

157

MNIST has 60,000 data points for training and 10,000 for testing.

class Network(nn.Module):

def __init__(self):

 super(Network, self).__init__()

 self.net = nn.Sequential(

 nn.Linear(784,512),

 nn.ReLU(inplace=True),

 nn.Linear(512,256),

 nn.ReLU(inplace=True),

 nn.Linear(256,128),

 nn.ReLU(inplace=True),

 nn.Linear(128,10)

)

def forward(self, x):

 x = self.net(x)

 return F.log_softmax(x, dim=1)

Now we finally build a small neural network. We extend the nn.Module

and in the constructor we define the neural network. There are 784 input

nodes since the image size is 28×28, and we flatten it and provide the pixels

as features. The output of our network has ten nodes since we have ten

classes, 0 to 9; we one-hot encode the labels. Also we have three hidden

layers, with 512, 256, and 128 number of nodes, each layer followed by

activation function ReLU() and output layer followed by Log Softmax

Function.

net = Network()

Initialize the network class.

Appendix ii neurAl networks: A Brief introduction to pytorch And kerAs Api

158

>>> print(net)

Network(

 (net): Sequential(

 (0): Linear(in_features=784, out_features=512, bias=True)

 (1): ReLU(inplace=True)

 (2): Linear(in_features=512, out_features=256, bias=True)

 (3): ReLU(inplace=True)

 (4): Linear(in_features=256, out_features=128, bias=True)

 (5): ReLU(inplace=True)

 (6): Linear(in_features=128, out_features=10, bias=True)

)

)

You can simply print and check the network summary.

params = net.parameters()

optimizer = optim.Adadelta(params)

We now initialize the optimizer, which will help show weights and

biases direction in order to decrease loss.

epochs=3

for epoch in range(epochs):

 print("Epoch {}".format(epoch+1))

 for phase in ["train", "eval"]:

 if phase=="train":

 net.train()

 else:

 net.eval()

 running_corrects = 0.0

 for data in mnist_dataloader[phase]:

 net.zero_grad()

 inp, out = data

Appendix ii neurAl networks: A Brief introduction to pytorch And kerAs Api

159

 with torch.set_grad_enabled(phase == 'train'):

 inp = inp.reshape(batch_size, 784)

 pred = net(inp)

 loss = F.nll_loss(pred, out)

 if phase=="train":

 loss.backward()

 optimizer.step()

 pred = np.argmax(pred.detach().numpy(), axis=1)

 running_corrects += np.sum(pred == \

 out.data.detach().

numpy())

 epoch_acc = running_corrects / (dataset_size[phase])

 print("{} accuracy: {}".format(phase, epoch_acc))

The following are the results:

Epoch 1

train accuracy: 0.95015

eval accuracy: 0.9238

Epoch 2

train accuracy: 0.9689333333333333

eval accuracy: 0.9443

Epoch 3

train accuracy: 0.9661666666666666

eval accuracy: 0.9472

Now this code may seem a little overwhelming, but all I did was run a

loop for epochs, and inside another loop over the data which we got from

dataloader object. I reshaped the input size from 28×28 to 784. Passing

the flattened image to the neural network and getting it’s prediction. After

that, I calculated the loss and ran backpropagation. Now to calculate the

accuracy, we have the correct observations and predicted values. After

finding the correct prediction, we get the accuracy by dividing it by total

data size. And you can see the train and test accuracy in each epoch.

Appendix ii neurAl networks: A Brief introduction to pytorch And kerAs Api

160

Now we’ll work on the same MNIST dataset using Keras.

import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense

Again, Keras enables us to download the MNIST dataset from its own

function. We’ll use Sequential to create the network, and Dense layers are

nothing but fully connected layers.

batch_size = 1

num_classes = 10

epochs = 3

We define the batch_size, num_classes, and epochs just as we did

while using PyTorch.

(x_train, y_train), (x_test, y_test) = mnist.load_data()

We load the MNIST dataset.

x_train = x_train.reshape(x_train.shape[0], 784)

x_test = x_test.reshape(x_test.shape[0], 784)

Again, we flatten the images to 784.

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train = x_train/255

x_test = x_test/255

When we loaded data in PyTorch, it was already scaled from 0 to 1, but

here the pixel values range from 0 to 255, so we scale them.

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

Appendix ii neurAl networks: A Brief introduction to pytorch And kerAs Api

161

We convert the labels to one-hot encoding.

>>> model = Sequential()

>>> model.add(Dense(512, input_dim=784, activation='relu'))

>>> model.add(Dense(256, activation='relu'))

>>> model.add(Dense(128, activation='relu'))

>>> model.add(Dense(num_classes, activation='softmax'))

>>> print(model.summary())

Layer (type) Output Shape Param #

===

dense_2 (Dense) (None, 512) 401920

dense_3 (Dense) (None, 256) 131328

dense_4 (Dense) (None, 128) 32896

dense_5 (Dense) (None, 10) 1290

===

Total params: 567,434

Trainable params: 567,434

Non-trainable params: 0

None

Here we define the data; I have chosen the same network

architecture as I did in PyTorch.

The first time I call model.add() it is acting as two layers, the input

layer with 784 nodes and the first hidden layer with 512 nodes. Then the

second hidden layer with 256 nodes, third with 128 nodes and finally the

output layer with nodes equal to the number of classes. The summary has

None written in the Output Shape column, which signifies the batch size.

Appendix ii neurAl networks: A Brief introduction to pytorch And kerAs Api

162

>>> model.compile(loss=keras.losses.categorical_crossentropy,

 optimizer=keras.optimizers.Adadelta(),

 metrics=['accuracy'])

model.compile() helps us defining the loss function, which optimizer

to use, and what score metrics to use to evaluate the model.

>>> model.fit(x_train, y_train,

 batch_size=batch_size,

 epochs=epochs,

 verbose=1,

 validation_data=(x_test, y_test))

Train on 60000 samples, validate on 10000 samples

Epoch 1/3

60000/60000 [==============================] - 837s 14ms/step -

loss: 0.2971 - acc: 0.9374 - val_loss: 0.2558 - val_acc: 0.9527

Epoch 2/3

60000/60000 [==============================] - 894s 15ms/step -

loss: 0.2476 - acc: 0.9636 - val_loss: 0.2576 - val_acc: 0.9650

Epoch 3/3

60000/60000 [==============================] - 875s 15ms/step -

loss: 0.2163 - acc: 0.9708 - val_loss: 0.2335 - val_acc: 0.9722

model.fit() will start the training. We give it x_train and y_train to

train upon and x_test and y_test as a validation set. As you can see, in

the third epoch the accuracy reaches 97% without overfitting.

You might find that Keras implementation is far easier than PyTorch

implementation, but personally I prefer PyTorch, because it’s really flexible

and easy to experiment with. When you move toward more complex

networks like a generative adversarial network (GAN), it’s really easy to

work with PyTorch and tweak anything you want.

Appendix ii neurAl networks: A Brief introduction to pytorch And kerAs Api

163© Tanay Agrawal 2021
T. Agrawal, Hyperparameter Optimization in Machine Learning,
https://doi.org/10.1007/978-1-4842-6579-6

Index
A
Activation functions, 20, 99, 157
Automated machine

learning (AutoML)
building module, 119, 120,

122–125
definition, 119
TPOT, 126–129

B
Backpropagation, 154
Bayesian optimization

hyperparameters, 81, 82
SMBO, 82–84, 86
Tree-structured Parzen

estimator, 86, 87

C
Continuous variables, 22, 24
create_study() function, 112
Cross-validating function, 41

D
Dask

distributed, 55–57
Grid Search, 64

hyperparameter optimization, 63
Random Search, 64

Daks parallel collections, 58, 59
Data cleaning and preprocessing

feature selection, 138
F-test, 139
mutual information

test, 139, 140
recursive, 140

missing values, 133
chained equations, 135
drop the rows, 134
mean/median, 134
regression/classification, 134

ML algorithms, 145
model evaluation methods,

147–149, 151
nonnumerical columns, 131

label encoding, 132
one-hot encoding, 132, 133

outlier detection, 136
DBSCAN, 137, 138
z-score, 137

techniques, 141, 143–145
Decision tree, 16–18, 104
Density-based spatial clustering of

applications with noise
(DBSCAN), 137

https://doi.org/10.1007/978-1-4842-6579-6#DOI

164

Discrete variables, 22–24
Distance metric, 13
Dynamic task scheduling, 54, 60–63

E
Exponential distribution, 29, 30

F
fmin() function, 92, 112
F-test, 139, 140
Fully connected neural network

hidden layer, 155
PyTorch, 155

G
Gaussian distribution, 24, 25,

27–29, 85, 92, 136
Gaussian process (GP), 84
Generative adversarial network

(GAN), 162
Genetic algorithms, 126
Graphics processing

units (GPUs), 53
grid_search() function, 35, 36
Grid search, 21, 33–35
GridSearchCV function, 36, 37

H
High-performance computing

(HPC), 42–45
Horovod, 54, 71, 77, 79, 80

Hyperas, 104, 107
Hyperopt

definition, 89
example, 90
hyperas, 104, 106–108
parallelizing trials, TPE, 100, 101
search space, 92–99
Sklearn, 102, 103
TPE, 91

Hyperopt-sklearn, 102
Hyperparameter

optimization, 51, 64
Dask dashboard, 65
halving search, 68, 69
hyperband search, 69, 70
incremental search, 66, 67

Hyperparameters, 6
continuous variables, 24
decision tree, 16–18
discrete variables, 22, 23
kd-tree, 12
KNN, 11
neural network, 19
probabilistic distribution (see

Probabilistic distribution
function)

SVM, 13–16
Hyperparameter-tuning

library, 4, 10, 103

I, J
Incremental function, 59
Indexing algorithms, 12, 13

INDEX

165

Iteration vs. accuracy plot, 42
Iteration vs. accuracy score, 37

K
K-nearest neighbor (KNN), 11, 134

L
Label encoding, 122, 126, 132,

133, 144
Learning rate, 8, 10, 78
Log Softmax Function, 157
Loss function, 6–8, 20, 154, 162

M
Machine learning (ML), 2, 27, 31,

42, 146
Memory constraint, 53
MNIST dataset, 154

keras, 160
PyTorch, 160

Mutual information (MI), 139

N
Neural network, 19, 153

activation functions, 20
batch size, 20
discrete variables, 24
loss function, 20
number of layers, 19
number of nodes, 19
optimizer, 21

O
One-hot encoding, 132, 133
Optuna

algorithms, 113
definition, 109
distributed optimization,

114, 115, 117, 118
example, 109–111
search space, 112, 113
visualization, 114

P, Q
Parameters, 4
partition_dataset(), 77, 79
Probabilistic distribution function

exponential, 29, 30
Gaussian, 27–29
uniform, 25–27

PyTorch distributed, 72, 74–77

R
Random search, 38
Random search vs. grid search, 38, 39
Recursive feature selection, 140
Reinforcement machine learning

algorithms, 3, 4

S
Scikit-learn library, 31
Sequential model-based global

optimization (SMBO), 82

INDEX

166

Slurm command, 47, 50
Supervised machine learning

algorithms, 2, 3
Support vector machine

(SVM), 31, 134

T
Three-dimensional curves, 7
Time/computation constraint, 53
Tree-based Pipeline Optimization

Tool (TPOT), 109, 126

Tree-structured Parzen
estimator (TPE), 84, 86

U, V
Uniform distribution, 25
Unsupervised machine learning

algorithms, 3

W, X, Y, Z
Weights, 6–8, 12

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Foreword 1
	Foreword 2
	Introduction
	Chapter 1: Introduction to Hyperparameters
	Introduction to Machine Learning
	Understanding Hyperparameters
	The Need for Hyperparameter Optimization
	Algorithms and Their Hyperparameters
	K-Nearest Neighbor
	Support Vector Machine
	Decision Tree
	Neural Networks

	Distribution of Possible Hyperparameter Values
	Discrete Variables
	Continuous Variables
	Probabilistic Distributions
	Uniform Distribution
	Gaussian Distribution
	Exponential Distribution

	Chapter 2: Hyperparameter Optimization Using Scikit-Learn
	Changing Hyperparameters
	Grid Search
	Random Search
	Parallel Hyperparameter Optimization

	Chapter 3: Solving Time and Memory Constraints
	Dask
	Dask Distributed
	Parallel Collections
	Dynamic Task Scheduling
	Hyperparameter Optimization with Dask
	Dask Random Search and Grid Search
	Incremental Search
	Successive Halving Search
	Hyperband Search

	Distributing Deep Learning Models
	PyTorch Distributed
	Horovod

	Chapter 4: Bayesian Optimization
	Sequential Model-Based Global Optimization
	Tree-Structured Parzen Estimator
	Hyperopt
	Search Space
	Parallelizing Trials in TPE

	Hyperopt-Sklearn
	Hyperas

	Chapter 5: Optuna and AutoML
	Optuna
	Search Space
	Underlying Algorithms
	Visualization
	Distributed Optimization

	Automated Machine Learning
	Building Your Own AutoML Module
	TPOT

	Appendix I
	Data Cleaning and Preprocessing
	Dealing with Nonnumerical Columns
	Label Encoding
	One-Hot Encoding

	Missing Values
	Drop the Rows
	Mean/Median or Most Frequent/Constant
	Imputation Using Regression or Classification
	Multivariate Imputation by Chained Equations1

	Outlier Detection
	Z-score
	Density-Based Spatial Clustering of Applications with Noise

	Feature Selection
	F-Test
	Mutual Information Test
	Recursive Feature Selection

	Applying the Techniques

	Applying Machine Learning Algorithms
	Model Evaluation Methods

	Appendix II:Neural Networks: A Brief Introduction to PyTorch and Keras API
	Index

