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Foreword 1

I have to admit that tweaking parameters by hand was something that 

I really enjoyed when I trained my first ML models. I would change a 

parameter, run my training script, and wait to see if the evaluation score 

improved. One of those guilty pleasures.

But as I spent more time in the ML world, I understood that there are 

other, more impactful areas where I could spend my time. I realized that I 

could (and should) outsource parameter tweaking somewhere.

I learned about random search and started using it in my projects. At 

some point, I felt I could do better than random search and started reading 

about more advanced hyperparameter optimization algorithms and 

libraries.

A lot of articles I found where pretty shallow and basic, but I remember 

reading this deep, hands-on yet easy-to-follow article about Hyperopt, one 

of the most popular HPO libraries. It was written by Tanay Agrawal. That 

article probably still is one of the more valuable articles I’ve ever read on 

the subject. I mentioned it in one of my blog posts and this is how we met.

When Tanay told me that he was writing a book about hyperparameter 

optimization, without hesitation, I proposed to review it. I am not going 

to lie, I really wanted to read it before anyone else! To my surprise, Tanay 

agreed and I was able to give a few notes here and there.

This book truly is a deep dive into the theory and practice of 

hyperparameter optimization. I really like how it explains theory deeply 

but not in an overly complex way. The practical examples are centered on 

the libraries and frameworks that are heavily used today, which makes this 

book current and, most importantly, useful.
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I recommend this book to any ML practitioner who wants to go 

beyond the basics and learn the why, how, and what of hyperparameter 

optimization.

Jakub Czakon

Senior Data Scientist

Neptune.ai

foreword 1
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Foreword 2

In this book, Tanay takes you on an interactive journey—in the most literal 

sense, as each line of code can be run in a notebook—of the depths of 

hyperparameters. It helps anyone to quickly get started on tuning and 

improving their deep learning project with any library they choose to use.

The author mindfully covers the inner workings of hyperparameters in 

ML models in a thorough but accessible fashion, which will allow you to 

understand and build upon them using different libraries. The book also 

demystifies the blackest of the black box: hyperparameter optimization in 

automated machine learning.

It’s a friendly guide to a complicated subject, and yet it’s full of 

cutting- edge gems that even advanced practitioners will love.

Akruti Acharya

Data Scientist

Curl HG
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Introduction

Choosing the right hyperparameters when building a machine learning 

model is one of the biggest problems faced by data science practitioners. 

This book is a guide to hyperparameter optimization (HPO). It starts from 

the very basic definition of hyperparameter and takes you all the way to 

building your own AutoML script using advance HPO techniques. This 

book is intended for both students and data science professionals.

The book consists of five chapters. Chapter 1 helps you to build an 

understanding of how hyperparameters affect the overall process of 

model building. It teaches the importance of HPO. Chapter 2 introduces 

basic and easy-to-implement HPO methods. Chapter 3 takes you through 

various techniques to tackle time and memory constraints. Chapters 4  

and 5 discuss Bayesian optimization, related libraries, and AutoML.

The intent of this book is for readers to gain an understanding of 

the HPO concepts in an intuitive as well as practical manner, with code 

implementation provided for each section. I hope you enjoy it.



1© Tanay Agrawal 2021 
T. Agrawal, Hyperparameter Optimization in Machine Learning,  
https://doi.org/10.1007/978-1-4842-6579-6_1

CHAPTER 1

Introduction to 
Hyperparameters
Artificial intelligence (AI) is suddenly everywhere, transforming everything 

from business analytics, the healthcare sector, and the automobile 

industry to various platforms that you may enjoy in your day-to-day life, 

such as social media, gaming, and the wide spectrum of the entertainment 

industry. Planning to watch a movie on a video-streaming app but can’t 

decide which movie to watch? With the assistance of AI, you might end up 

watching one of the recommendations that are based on your past movie 

selections.

Machine learning is a subset of AI that involves algorithms learning 

from previous experiences. In some cases, machine learning has achieved 

human-level accuracy. For example, state-of-the-art deep neural networks 

(DNNs) perform as well as humans in certain tasks, such as image 

classification, object detection, and so forth, although this is not the same 

as simulating human intelligence (but it’s a step).

In machine learning algorithms, tuning hyperparameters is one 

of the important aspects in building efficient models. In this chapter 

you’ll discover the meaning of the term hyperparameter and learn how 

hyperparameters affect the overall process of building machine learning 

models.

https://doi.org/10.1007/978-1-4842-6579-6_1#DOI
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 Introduction to Machine Learning
Machine learning is the study of algorithms which perform a task without 

explicitly defining the code to perform it, instead using data to learn. 

Machine learning enables algorithms to learn on their own without human 

intervention.

Tom M. Mitchell, a computer scientist and, at the time of writing, 

a professor at Carnegie Mellon University, defines machine learning 

as follows: “A computer program is said to learn from experience E 

with respect to some class of tasks T and performance measure P if its 

performance at tasks in T, as measured by P, improves with experience E.”

Machine learning algorithms have several subdivisions based on the 

type of problem that needs to be solved. Here I will introduce you to three 

main types:

• Supervised machine learning algorithms: Labeled 

data is provided, we build a model over it to predict 

such labels given variables. As an example, suppose 

you want to purchase a spaceship. Several factors 

would help you to decide which spaceship to buy: 

cost, size of spaceship, build quality, whether it has 

hyperdrive, its weaponry system, and so on. Now we 

have data of hundreds of spaceships with such feature 

information and their price, so we build a model and 

predict the price. This comes under the regression 

problem. Regression problems have continuous target 

values, and if the target values are discrete, we call 

them classification problems. A third type of problem 

features time-stamps, time series forecasting, where 

the next data point is somewhat dependent on the 

previous information, so your algorithm needs to keep 

in memory information from the previous data points. 

Chapter 1  IntroduCtIon to hyperparameters
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The image on the left in Figure 1-1-1 is an example of a 

classification problem. We need labeled data in order 

to learn to draw a seperation between them.

• Unsupervised machine learning algorithms: These 

kinds of problems do not have a target value. Suppose 

you have to group the hypothetical spaceships in 

clusters according to their features; you would use a 

clustering algorithm to do so. Unsupervised machine 

learning is used to detect patterns among the dataset. 

You don’t know which cluster is which, but you do 

know that all the spaceships in one cluster are similar 

to each other; the right image in Figure 1-1-1 shows an 

example.

• Reinforcement machine learning algorithms: A 

reinforcement machine learning algorithm learns from 

the environment; if it performs well, it gets a reward, 

and the goal is to maximize the reward. For example, 

consider the Chrome “running dinosaur” game (go to 

chrome://dino/ and press the spacebar). The dinosaur 

Figure 1-1-1. Examples of supervised machine learning (left) and 
unsupervised machine learning (right)

Chapter 1  IntroduCtIon to hyperparameters
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continuously runs toward obstacles. To increase your 

score, you have to press the spacebar at the precise 

time to make the dinosaur jump over the obstacles. 

Here those points are the reward and jumping is the 

variable that needs to be decided at the right time. 

In problems like this, we use reinforcement machine 

learning algorithms. The Q-learning algorithm is 

one example of a reinforcement machine learning 

algorithm. One of the most brilliant applications of 

reinforcement machine learning is a robot learning to 

walk through trial and error.

There’s a lot more to machine learning. You need to be familiar with the 

basics of machine learning before jumping into hyperparameters and their 

optimization methodologies. If you are new to machine learning or if you 

want to brush up on the basic concepts, refer to Appendix I and Appendix 

II. Appendix I covers practical application of machine learning and some of 

its basic aspects. Appendix II gives you a brief introduction to fully connected 

neural networks and the PyTorch and Keras frameworks for implementation.

 Understanding Hyperparameters
There are two kinds of variables when dealing with machine learning 

algorithms, depicted in Figure 1-2-1:

• Parameters: These are the parameters that the 

algorithm tunes according to dataset that is provided 

(you don’t have a say in that tuning)

• Hyperparameters: These are the higher-level 

parameters that you set manually before starting the 

training, which are based on properties such as the 

characteristics of the data and the capacity of the 

algorithm to learn

Chapter 1  IntroduCtIon to hyperparameters



5

I’ll present a machine learning algorithm as an example to show you 

the difference between a parameter and a hyperparameter. Let’s take a 

very basic algorithm, linear regression.

The hypothesis function in linear regression is as follows:

 f xc cQ Q Q Q,( ) = +.  (Equation 1.2.1)

Here, x and Θ are vectors, x being a vector of features and Θ being the 

weights assigned to each feature, and Θc is a constant bias.

Let’s consider as an example the classic problem of house price 

prediction. The price of a house is dependent on certain factors, including 

square footage of the house, number of bedrooms, number of washrooms, 

crime rate in the locality, distance from public transportation (bus station, 

airport, railway station), school district, distance to the nearest hospital, and 

so forth. All of these can be considered as features; that is, the x vector in 

our hypothesis function in Equation 1.2.1. The price of a house increases, 

for example, as the number of bedrooms increases and the square footage 

increases; these features would have positive weightage (Θ). The price of 

Figure 1-2-1. The box inside represents model parameters, where 
the machine learning algorithm is at work. The outer box represents 
the hyperparameters, which we have to set before algorithm starts 
training

Chapter 1  IntroduCtIon to hyperparameters
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a house decreases, for example, the greater the distance to schools and 

hospitals and the higher the crime rate in the neighborhood; they would 

have negative Θ. In Equation 1.2.1, f(Θ, Θc) gives the price of the house.

We can use an optimization algorithm to find the best value of Θ 

for each feature based on the previous observations. So, the Θ vector 

is controlled and adjusted by the optimization algorithm (for instance, 

gradient descent). These weights are parameters.

Let’s discuss the optimization function gradient descent, which will 

help you to understand hyperparameters.

We’ll start by assigning some random numbers (i.e., weights) to our 

parameters. For one observation, if we have vector x (with numerical 

values for each feature) and vector Θ (random numerical values for each 

weight), by using Equation 1.2.1, we get the value of f(Θ, Θc). This will be 

our prediction, which will be some random value (p1′) because weights are 

random. And we have a true value of the house price (p1).

We can calculate the difference, C1 (for first observation), |p1-p1′|. This 

is a loss which we have to reduce. Similarly, if we calculate the average of 

summation of loss (C) for all the observation:

 
C c n p pi i( , ) ( / )Q Q = -å1 ¢

 (Equation 1.2.2)

Equation 1.2.2 is termed as loss function, the goal of optimization 

function is to reduce the value of C, so we can give more accurate 

predictions. The loss function is dependent on weights and bias, as 

depicted in Figure 1-2-2.

Chapter 1  IntroduCtIon to hyperparameters
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Three-dimensional curves in Figure 1-2-2 can be possible 

representations of a loss function. Remember we started our weights and 

biases with random values; now we need to change those values such that 

loss moves to its minima. As per calculus, C changes as follows:

 D Q DQC C i i@ å( )*d d/  (Equation 1.2.3)

i = {0, n}, Θ0 being Θc

We’ll represent [(δC/δΘ0), (δC/δΘ1)...] as vector ÑC  and [ΔΘ0, ΔΘ1...] 

as vector ΔΘ; hence:

 D DQC C@Ñ *  (Equation 1.2.4)

But suppose the following:

 DQ = - Ña C  (Equation 1.2.5)

Figure 1-2-2. Loss curves in three dimensions, with x and y axes 
being weights and z axis the loss

Chapter 1  IntroduCtIon to hyperparameters
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Substituting it in Equation 1.2.4, we get this result:

 
DC C@ - * Ñ( )a  2

 

Here, α being a positive number, change in loss will always be negative, 

and we want our loss to be negative always. So Equation 1.2.5 stands true.

Therefore by Equation 1.2.5, we get

 Q Q Qi i iC´-( ) = - *a d d/  

 \ = - *Q Q Qi i iC´ a d d/  (Equation 1.2.6)

Where Θi′ is the new updated value for weight Θi. In Equation 1.2.6, 

the updated value of weight Θi′ is dependent on the previous value of 

weight (Θi), the gradient (δC/δΘi), and a positive number 𝛼; 𝛼 here is one 

of the hyperparameters for gradient descent. It controls the performance 

of the algorithm. For each observation, we run this updating equation and 

decrease the loss while changing values of weights, eventually reaching the 

minima for the loss function.

 The Need for Hyperparameter Optimization
In the previous section, we used a positive number 𝛼 in Equation 1.2.6 

to control the algorithm. This 𝛼 is called the learning rate in the gradient 

descent algorithm. It controls the rate by which loss reaches its minima. 

Figures 1-3-1, 1-3-2, and 1-3-3 demonstrate how, as described in following 

figures.
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Figure 1-3-1. Small value of 𝛼

Figure 1-3-2. Large value of 𝛼
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In Figure 1-3-1 the value of 𝛼 is small; it will reach the convergence 

point, but the ΔΘ (that is, the change in weights) will be so small that a 

huge number of steps would be required, hence increasing time. A large 

value of learning rate (𝛼) will change loss drastically, hence overshooting 

and leading to divergence, as shown in Figure 1-3-2. However, if we find 

an optimal value of 𝛼, we’ll be able to reach the convergence in less time 

and without overshooting, as represented in Figure 1-3-3. And that is the 

reason we need to tune 𝛼 to its most efficient value, and this process of 

optimization is called hyperparameter tuning.

In more advanced variants of the gradient descent algorithm, we 

start with bigger steps (that is, a greater value of learning rate) to save 

time, and as we reach the convergence point, we decrease the value to 

avoid overshooting. But the factor by which we decrease 𝛼 is now another 

hyperparameter. So, now you understand the importance of tuning these 

hyperparameters.

To tune such hyperparameters, you must have a good understanding 

of the algorithm and how these hyperparameters are affecting the 

performance. Even if you plan to use hyperparameter tuning algorithms 

Figure 1-3-3. Optimal value of 𝛼
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(introduced in later chapters), it’s very important to set a good starting 

point and ending point. This will save you a lot of time and boost the 

performance of your algorithm.

 Algorithms and Their Hyperparameters
In this section I’ll discuss some basic machine learning algorithms to 

help you understand how their hyperparameters work. I’ll discuss these 

hyperparameters with scikit-learn conventions, but since they are generic, 

you can use them for other implementations or even self-implemented 

algorithms. I won’t go deep into mathematics but will give you enough to 

get an intuition of how they affect the algorithm. In Chapter 2, we’ll look 

at how a bad set of hyperparameters can result in a poor model, whereas a 

good set creates an excellent machine learning model.

 K-Nearest Neighbor
The K-nearest neighbor (KNN) algorithm can be used as a supervised 

or unsupervised machine learning algorithm and can be applied to 

classification, regression, clustering, and outlier detection problems. KNN 

assumes similar points are in closer proximity, as depicted in Figure 1-4-1.

Figure 1-4-1. A classification dataset with two dimensions when 
used with KNN shows the decision boundaries
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K-nearest neighbor finds the K (number of nearest points) labeled 

samples in the closest proximity to the point that is to be predicted. 

This K can be defined by the user. And the closest proximity, hence 

the distance, can be calculated by different metrics, such as Euclidean 

distance, Manhattan distance, and so on. To find these nearest points, 

indexing algorithms like kd-tree and ball tree are used. Let’s discuss these 

hyperparameters.

• K number of nearest neighbor: We set the value of K, 

which is a positive integer that decides the number 

of labeled samples from the training dataset that 

are to be considered to predict the new data point. 

Figure 1- 4- 2 shows how increasing the K can result in 

smoother boundaries. And when k=3, boundaries are 

more constrained.

• Weights: We can either give our nearest neighbors equal 

priority or decide their weights on the basis of distance 

from the query point; the further the point, the lesser 

the weightage.

Figure 1-4-2. Top image with k=3 and bottom image with k=15
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• Indexing algorithm: Indexing algorithms are used to 

map the nearest points. Since brute force would result 

in distance computation of all the pairs of data points 

in a dataset, we use tree-based indexing algorithms 

like kd-tree and ball tree. kd-tree partitions data in 

cartesian axes and ball tree in nested hyper-sphere. 

When the number of dimensions is higher, ball tree is 

more efficient than kd-tree.

• Distance metric: A metric is to be used to calculate 

the distance between points. It can be Euclidean or 

Manhattan or higher orders of the Minkowski metric.

 Support Vector Machine
Support vector machine (SVM) is a powerful algorithm that finds a 

hyperdimensional plane that separates distinct classes. An example 

is shown in Figure 1-4-3, in which we have two classes denoted by red 

and blue colors. The black line dividing them is our hyperplane (a line 

in this case since we are visualizing in two dimensions). SVM finds the 

hyperplane such that the margin (the distance between the two dotted 

lines) is maximum.

The data points lying near dotted lines are called support vectors. They 

are highly responsible for the formation of the hyperplane. We use the 

optimization method of Lagrange multipliers to find this hyperplane.
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But this was a linearly separable problem. In real life, datasets are not 

linearly separable. So let’s take another example and see how SVM would 

work on the example shown in Figure 1-4-4.

Figure 1-4-4 is not linearly separable. So we project it into a higher 

dimension (three dimensions in this case) as shown in Figure 1-4-5 and 

now we can apply SVM and find the plane separating it.

Figure 1-4-3. Classes separated by hyperplane

Figure 1-4-4. Dataset with two classes, blue and red
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We need to find the correct mapping function to project data to higher 

dimensions. That’s where different kernels come into play. Right mapping 

functions can be achieved from using the right kernel functions, which is 

one of the most crucial hyperparameters in SVMs.

Let’s now discuss different hyperparameters:

• Kernel: As previously described, a kernel helps achieve 

the right mapping function, which is essential for SVM 

to perform efficiently. Finding just the kernel reduces 

the complexity of finding the mapping function; there’s 

a direct mathematical relation between the mapping 

function and kernel function. Figure 1-4-4 is an 

example problem that can be solved using the radial 

basis function (RBF) kernel. Some of the widely used 

kernels are the polynomial kernel, Gaussian kernel, 

sigmoid kernel, and of course RBF kernel, most of them 

defined in the scikit-learn implementation of SVM 

(sklearn also allows you to define your own kernel).

• C: C is a regularization parameter. It trades off between 

training accuracy and the width of margin. A decrease 

in C results in larger margins and lower training 

accuracy, and vice versa.

Figure 1-4-5. Data projected into higher dimension and separated 
by a plane
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• Gamma: Gamma (𝛾) defines the influence of training 

points. Higher value of 𝛾 means lesser influence of 

training point; a very high value will result in influence 

on training point itself. A lower value will influence 

more; the training points (which are support vectors) 

will influence more of the training set, hence extremely 

lower values will be ineffective in catching the 

complexity of dataset and the resulting hyperplane will 

be equivalent to a linear hyperplane separating two 

classes (by their density regions).

This establishes an interesting relation between 

hyperparameters C and Gamma. Generally, we 

search values of Gamma and C on a logarithmic grid 

of 10-3 to 103.

• Degree: This hyperparameter is used only in 

polynomial kernels; a higher degree means a more 

flexible decision boundary. Degree 1 would result in a 

linear kernel.

 Decision Tree
Decision tree is similar to a bunch of if-else statements, a simple yet elegant 

algorithm with a very intuitive visualization. It’s really easy to understand 

what’s going inside, unlike neural networks. Moreover, little or no data 

preprocessing is required.

As the name suggests, it’s a tree, so it starts with a root node, which is 

one of the features. Based on the value of that feature for our data point, 

we select the next node of the tree. This goes on until we reach the leaf and 

thus the prediction value.
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Creating this tree is a little bit complicated; various different algorithms 

are used to select which feature goes on the top, which goes second, and so 

on. Some of the algorithms which calculate the importance of features are 

Gini index, information gain, and chi-square. Selecting this algorithm can 

be considered as one of the important hyperparameters in the decision 

tree algorithm.

Let’s take the example of a classical Iris dataset. Here the goal is to 

classify the three species of Iris flowers, Setosa, Versicolor, and Virginica, 

based on four features, sepal length, sepal width, petal length, and petal 

width.

As I said earlier, visualization of a decision tree is very easy; sklearn 

provides a function, tree.plot_tree(), where you just have to input your 

trained classifier and it will plot the tree (Figure 1-4-6).

Figure 1-4-6. A decision tree classifier trained on the Iris dataset
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As you can see in Figure 1-4-6, there are gini indexes for all the nodes, 

based on which features are placed in the tree. As we move down the 

tree, the value of gini index decreases. On top of nodes, a condition is 

specified; if it’s true, the data point goes to the right child, and if it’s false, 

the data point goes to left child. The value of samples tells us the number 

of samples lying in the true and false condition of the parent node.

One of the problems we face with decision trees is that when the tree 

grows complex, there is a huge chance the model will overfit over training 

data. Some of the hyperparameters can help in reducing this complexity. 

To solve this problem, we can prune the tree, using hyperparameters such 

as maximum depth of tree and minimum number of samples at the leaf 

node to help in pruning.

Here are the hyperparameters:

• Algorithm: As previously mentioned, this algorithm 

decides the priority of features and hence their order in 

the tree structure.

• Depth of Tree: This defines the layer of depth. This can 

certainly affect both structural and time complexity 

of the tree. We can remove unimportant nodes and 

reduce depth.

• Minimum Sample Split: This is an integer value that 

defines the minimum number of samples required 

to split an internal node. In Figure 1-4-6, if we would 

have chosen 101, the tree would have stopped after the 

second layer.

• Minimum Sample Leaf: This defines the minimum 

number of samples at the leaf. This hyperparameter 

can help reduce overfitting by reducing the depth of the 

tree.
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 Neural Networks
A basic neural network is made of nodes and layers of nodes, and these 

nodes are nothing but the output of the previous layer multiplying with 

weights (see Appendix II for more details). We call weights and biases in 

this context parameters (since they are decided by a modeling algorithm 

based on the dataset) and we call the number of nodes, number of layers, 

and so on hyperparameters (since we intervene to decide them).

Defining the architecture of a neural network is one of the most 

challenging tasks faced by deep learning practitioners today. The 

architecture can’t be discovered by brute force because the time 

complexity of neural networks is very high and trying out all the 

combinations of hyperparameters is not possible. So, creating a neural 

network architecture is more of an art, relying on logic and more advanced 

hyperparameter tuning algorithms.

A vast number of different hyperparameters are possible in neural 

networks, so we’ll discuss a few of them here:

• Number of Layers: Adding layers increases the depth of 

the neural network, and also the ability to learn more 

complex features.

• Number of Nodes: The number of nodes varies as 

per the layers, but the number of nodes in the first 

hidden layer and the last hidden layer must be equal 

to the number of input features and classes to predict, 

respectively. For the hidden layer, by convention we 

use the number of nodes in exponents of 2, meaning 

2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, and so on. This 

is because hardware performs more efficiently when 

numbers are stored in powers of two, though there is 

no proof that this is the most optimal way of selecting 

these kind of hyperparameters.
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• Batch Size: If we take out a subsample of the dataset, it 

should represent the properties of the whole dataset. 

This batch can be used to calculate the gradient 

and update the weights. And we iterate over all the 

subsamples until we cover the whole dataset. The 

idea is to save memory space. But you need to choose 

the optimal value of the size of the subset, because a 

lesser batch size would cause more fluctuations while 

reaching the minima, and a greater value can cause 

memory errors.

• Activation Function: Activation functions are used to 

introduce a nonlinearity on each node. Few things 

we need to make sure while deciding activation 

functions are, they are to be used on thousands and 

millions of nodes, and back propagation uses their 

derivatives, so both the function and its derivative 

should be less computationally complex. Some of the 

widely used activations are ReLU, Sigmoid, and Leaky 

ReLU.

• Loss Function: Loss function is chosen on the basis 

of output, whether it’s a binary classification, multi-

class classification, regression, and so forth. There 

are also other factors. For example, using sigmoid 

activation on the last layer and quadratic loss function 

can result in learning slow down. So things like these 

are need to be taken care of. And there are internal 

hyperparameters for loss function as well which can 

be tuned.
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• Optimizer: In the “Understanding Hyperparameters” 

section we discussed an optimization method, 

gradient descent. There are other, more advanced 

optimization methods, like Adagrad, Adam Optimizer, 

and so on, and these optimizers also contain various 

hyperparameters that affect the overall optimization.

There are many more hyperparameters in neural networks, such 

as batch normalization, dropout, and so on. And every few days these 

variables are increasing with the advance in technology.

This section was intended to give you an idea of what hyperparameters 

are and how they work. As we proceed we’ll be discussing more of these 

algorithms and their hyperparameters while finding their optimal values.

 Distribution of Possible Hyperparameter 
Values
The value of a hyperparameter can vary based on its functioning. For 

algorithms of the likes of grid search (discussed in Chapter 2), we 

iterate over certain permutations of hyperparameters. But most of the 

hyperparameter optimization algorithms pick variables at random. These 

random values can belong to a certain type of distribution. For example, 

we saw in the “Neural Networks” section that we choose the value for the 

number of nodes in a layer to be an exponent of 2. So, we consider the set 

{2, 4, 8, 16, 32, 64, 128, 256, 512...} to be a distribution.

Tip seeing theory (https://seeing- theory.brown.edu/) 
is a great website with interactive visualizations of probability and 
statistics. Check out Chapter 3 of this website for visualizations of 
probability distributions.
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The likelihood of a value that a random variable can assume is defined 

by probabilistic distribution. Suppose we have to pick a single random 

value for a hyperparameter; the underlying distribution can be either of 

the following:

• Discrete probabilistic distribution

• Continuous probabilistic distribution

There are different types of probabilistic distributions for both discrete 

and continuous variables. But before we delve into those types, let’s look at 

what discrete and continuous variables are.

 Discrete Variables
A set of values where each value has some positive finite distance to the 

next value is discrete distribution. Discrete variables can be either finite 

values or infinite values depending upon range. Figure 1-5-1 shows both 

finite discrete and infinite discrete distributions.

A finite discrete value lies between two finite real numbers, as shown 

in Figure 1-5-1(a), where the value lies in the range [−0.4, 1.0] with a 

difference of 0.2. However, an infinite discrete value can go up to infinity, 

Figure 1-5-1. Two distributions, (a) finite discrete and (b) infinite 
discrete
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each value still maintaining a finite positive distance to the next value and 

the previous value. In Figure 1-5-1(b), the value lies between [−0.4, +∞) 

while the difference is still 0.2.

Note that the difference does not necessarily have to be same. It can be 

exponential, incremental, and so forth. The example in Figure 1-5-2 shows 

a uniform distribution.

Recall from the “Support Vector Machine” section that possible values 

for the hyperparameter kernel can be rbf, sigmoid, linear, polynomial, 

and so on. There would be a finite set of values for ‘kernel’. This can 

be considered an example of a finite discrete value. We can write these 

hyperparameters as follows:

•  rbf «1  

•  sigmoid« 2  

•  linear « 3  

• and so on

In the same algorithm we have another hyperparameter, ‘degree’, 

whose value can be any possible integer. This is an example of an infinite 

discrete value. However, this does not mean that we are going to search this 

Figure 1-5-2. An example of finite distribution, f(x) = x + 2 such that 
x ∈ [0, 5] with a difference of 1 between each value of x
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value from −∞ to +∞. The results would saturate on extreme value and it 

is also not practically possible to search in an infinite space. So we’ll use a 

huge range (huge is relative; 10 can be huge in some cases, while 10100 can 

be huge in others) to contain the distribution.

 Continuous Variables
Continuous distribution is a set of infinite possible values lying between 

two real numbers, as depicted in Figure 1-5-3.

Again taking an example from the “Support Vector Machine” section, 

we have hyperparameters like ‘C’ and ‘gamma’ in SVM, the values of which 

lie on a continuous distribution; that is, we can have infinite possible 

values between a range.

 Probabilistic Distributions
There are infinite possible continuous and discrete probabilistic 

distribution functions to sample random values, so we’ll narrow the scope 

by discussing a few commonly used in practice. Probability is always 

calculated between a range, such as in the example Gaussian distribution 

shown in Figure 1-5-4.

Figure 1-5-3. Infinite numbers lie between 1.0 and 2.0
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In Figure 1-5-4, if we want to sample a value for variable x, there are 

infinite values that x can assume. The probability for p(x) to be a specific 

value would be 0. So we talk in terms of probability density function, which 

are probabilities in a range. For example p(x < 0) = 0.5. Since it’s half of the 

area from the whole distribution. Similarly, probability density in the  

range -1 to 0 can be calculated by using the area, which can be calculated 

using integration along the continuous curve.

This explains why we need to get the probability density of a range 

instead of a value. Next we’ll use a module named scipy. stats to sample 

values for variable x for purposes of discussing some commonly used 

distributions.

 Uniform Distribution

In uniform distribution, probability density remains the same across 

ranges if the width is the same. Figure 1-5-5 shows an example.

Figure 1-5-4. A Gaussian distribution with mean 0 and standard 
deviation 1
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The area under the curve is 1. So we can calculate the height as 1/

(b − a), where b is the upper limit and a is the lower limit. Let’s use scipy. 

stats to sample values from the uniform distribution:

from scipy.stats import uniform

import seaborn as sns

n = 10000

start = 10

width = 10

data = uniform.rvs(size=n, loc = start, scale=width)

ax = sns.distplot(data,

                 bins=100,

                 hist_kws={'alpha':0.8})

ax.set(xlabel='Uniform Distribution ', ylabel="Frequency")

Figure 1-5-6 shows the histogram for the uniform distribution, where 

a=10 and b=20. I have sampled 10,000 random values between two 

numbers.

Figure 1-5-5. A uniform distribution between a and b
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 Gaussian Distribution

A Gaussian distribution (or normal distribution) is one of the most 

commonly observed distributions in nature. Most of the machine learning 

algorithms assume the dataset to be Gaussian; that is, less number of 

outliers and most data concentrated in clusters. Lesser frequency on 

extremities and higher frequency on the mean.

For a mean (μ) of 0 and standard deviation (σ) of 1, you can see a 

Gaussian distribution in Figure 1-5-4. Note that on the x axis, if you mark 

μ − σ and μ + σ, as in Figure 1-5-7, you’ll find that it covers approximately 

68% of the area. Similarly, μ − 2σ and μ + 2σ covers around 95% of the area 

and μ − 3σ and μ + 3σ covers 99.7 % of the area.

Figure 1-5-6. Histogram for uniform distribution
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Here’s the code to sample random values from Gaussian data:

from scipy.stats import norm

import seaborn as sns

mean = 0

std_dev = 1

data = norm.rvs(size=10000,loc=0,scale=1)

ax = sns.distplot(data,

                 bins=100,

                 hist_kws={'alpha':0.8})

ax.set(xlabel='Gaussian Distribution ', ylabel="Frequency")

Figure 1-5-8 shows a histogram plotted from random values sampled 

from a Gaussian distribution.

Figure 1-5-7. A Gaussian distribution with mean 0 and standard 
deviation 1
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 Exponential Distribution

Another important distribution is exponential distribution. As the name 

suggests, values increase exponentially. There’s a parameter rate (λ) which 

controls the slope of distribution.

from scipy.stats import expon

import seaborn as sns

loc = 10

lambda_inverse = 1

data = expon.rvs(size=10000,loc=loc,scale=lambda_inverse)

ax = sns.distplot(data,

                 bins=100,

                 hist_kws={'alpha':0.8})

ax.set(xlabel='Exponential Distribution', ylabel="Frequency")

Figure 1-5-9 shows a histogram for when a random value is selected 

from a lognormal distribution which can be plotted using the above code.

Figure 1-5-8. Histogram for Gaussian distribution
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We’ll encounter a lot more distributions in subsequent chapters 

as we use them. We’ll see which hyperparameters are suited for 

which distributions and why. Now that you have an understanding of 

hyperparameters, in Chapter 2 we’ll explore some basic hyperparameter 

tuning methods.

Figure 1-5-9. Histogram for an exponential distribution
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CHAPTER 2

Hyperparameter 
Optimization Using 
Scikit-Learn
In the previous chapter, you learned what hyperparameters are and how 

they affect the performance of an algorithm. Now that you know how 

important it is to tune hyperparameters, this chapter introduces you to 

some simple yet powerful uses of algorithms implemented in the scikit- 

learn library for hyperparameter optimization. Scikit-learn is one of the 

most widely used open source libraries for machine learning practices. It’s 

simple to use and really effective in predictive analysis.

 Changing Hyperparameters
You know from Chapter 1 how support vector machine (SVM) works. You’ll 

now see how changing two of the hyperparameters—C, the regularization 

factor, and gamma, the kernel coefficient—affects the results while the kernel 

is fixed (RBF) on the Titanic dataset (Dataset explained in Appendix I).

Figure 2-1(a) shows the comparison between gamma and C; the lighter 

color in the heat map represents higher accuracy. We see that with higher 

values of C (10^11) and lower values of gamma (10^-8), we get more test 

accuracy, and with lower values of C (10^4) and relatively higher values of 

https://doi.org/10.1007/978-1-4842-6579-6_2#DOI
https://doi.org/10.1007/978-1-4842-6579-6
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gamma (10^-3), we get comparative accuracy. The graph in Figure 2-1(b) 

shows that as the value of gamma increases, keeping the C constant at 1, 

the difference between train accuracy (blue line) and test accuracy (orange 

line) after a certain point keeps on increasing, resulting in overfitting of the 

model, which proves that we need to regularize the model by decreasing C.

Figure 2-1. (a) Heatmap on different values of gamma and C.  
(b) Changing accuracy as gamma increases
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 Grid Search
Perhaps the most brute-force approach for finding the most optimized 

set of hyperparameters is to train the dataset on each possible set. This 

approach, called grid search, is the most certain way of finding the best set 

of hyperparameters, but it also has its disadvantages. Figure 2-1-1 depicts a 

grid going through all possible combinations of parameters 1 and 2.

Suppose you have ten algorithms with five hyperparameters each, with 

four possible values for each hyperparameter, and a huge dataset that takes 

1 minute to train on one algorithm on one set of hyperparameters. This 

scenario would take around a week to discover your best hyperparameter. 

But for less number of hyperparameters and smaller training time we can 

go with grid search. Now we’ll build this simple algorithm in Python and 

test it on the example shown in Figure 2-1-1.

The value of a hyperparameter can vary on either a continuous 

distribution or a discrete distribution. If the value is discrete, there is a 

finite number of possible values in a range. However, in a continuous 

distribution, there are infinite possible values, as we saw in Chapter 1. 

Next we’ll be tuning C and gamma, both of which have a continuous 

Figure 2-1-1. A grid search going through each possible combination 
of two hyperparameters
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distribution between a range. But to make a grid, we’ll make an even 

distribution on a log scale. Grid search does not take random variables; to 

make a grid, it needs specific values.

Let’s make a grid of hyperparameters C and gamma:

c = 0.001

gamma = 1e-10

param_grid = {

              "C": [c*(10**i) for i in range(1,14)],

              "gamma": [gamma*(10**i) for i in range(1,14)]

             }

Note i have used a preprocessed dataset (X_train, y_train, X_test, 
y_test), the titanic dataset. refer to appendix i to view all the 
preprocessing methods.

We’ll first make a function to break this grid into a list of all possible 

sets of hyperparameters, make_sets():

from itertools import product

def make_sets(grid):

   sets = list()

   all_hps_vals = [lst for lst in param_grid.values()]

   hp_keys = [hp for hp in param_grid.keys()]

   val_sets = product(*all_hps_vals)

   for val in val_sets:

       hp_set = dict()

       for idx, hp_key in enumerate(hp_keys):

           hp_set[hp_key] = val[idx]

       sets.append(hp_set)

   return sets
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>>> make_sets(param_grid)

[{'C':0.01, 'gamma':1e-09},

 {'C':0.01, 'gamma':1e-08},

 {'C':0.01, 'gamma':1e-07},

 ...

 ...

 {'C':10000000000.0, 'gamma':1000.0}

]

Now we’ll make another function, grid_search(), to fit all the sets on 

the machine learning algorithm:

def grid_search(clf, grid, X_train, y_train, X_test, y_test):

   all_sets = make_sets(grid)

   logs = list()

   best_hp_set = {

      "best_test_score": 0.0

   }

   for hp_set in all_sets:

       log = dict()

       model = clf(**hp_set)

       model.fit(X_train, y_train)

       train_score = model.score(X_train, y_train)

       test_score = model.score(X_test, y_test)

       log["hp"] = hp_set

       log["train_score"] = train_score

       log["test_score"] = test_score

       if best_hp_set["best_test_score"]<test_score:

           best_hp_set["best_test_score"] = test_score

           best_hp_set["hp_set"] = hp_set

       logs.append(log)
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   return logs, best_hp_set

>>> from sklearn.model_selection import train_test_split

>>> from sklearn.svm import SVC

# train test split dataset.

# X and y are the pre-processed features and labels respectively.

>>> X_train, y_train, X_test, y_test = train_test_split(X, y)

>>> logs, best = grid_search(SVC, param_grid, X_train, y_train, 

X_test, y_test)

The grid_search() function that we just defined takes the following 

inputs: classifier, parameter_grid, and dataset. From the make_sets() 

function, grid_search() creates all combinations of hyperparameters and 

trains the model on all of them. Then we save the train and test scores in a 

dictionary and search for best results.

Note that for the sake of simplicity of code, I did not cross-validate 

while training. To actually evaluate each set of hyperparameters, we must 

use a validation set and save the test set for later, so that we can evaluate 

the model on an independent set. However, instead of splitting the training 

set into training and validation sets (since in datasets like Titanic, we 

have only around 700 datapoints), we cross-validate, saving the precious 

training data unaltered. Cross-validation also prevents overfitting on the 

validation set.

We’ll now see how to use the GridSearchCV() function provided by 

scikit-learn to split the training set in a K-fold cross-validation:

>>> from sklearn.model_selection import GridSearchCV

>>> clf = GridSearchCV(SVC(), param_grid, cv=3)

>>> # X_train and y_train being datapoints from titanic dataset.

>>> # titanic dataset is used for sake of presenting this example.

>>> clf.fit(X_train, y_train)
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>>> clf.best_estimator_

SVC(C=100000.0, break_ties=False, cache_size=200, class_

weight=None, coef0=0.0,

     decision_function_shape='ovr', degree=3, gamma=0.0001, 

kernel="rbf",

     max_iter=-1, probability=False, random_state=None, 

shrinking=True,

    tol=0.001, verbose=False)

In Figure 2-1-2, we can see that the accuracy score varies with 

iterations (for 169 combinations).

Figure 2-1-2 exhibits no clear pattern since it’s an exhaustive search 

method; we are trying all possible combinations. You can define the 

GridSearchCV() function and pass the algorithm, parameter grid, and 

number of folds for cross-validation. All the other methods like ‘fit()’, 

‘score()’ and so forth are same. You can use the method best_estimator_ 

to get the best value of hyperparameters. I tuned for ‘gamma’ and 

‘C’ the same as our scratch implementation, keeping the rest of the 

hyperparameters constant.

Figure 2-1-2. Plot of iteration vs. accuracy score
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 Random Search
Grid search eventually finds the near optimal set of hyperparameters, 

but its time and resource consumption is high. Another method, 

random search, consumes less time and resources. It randomly picks 

hyperparameters, makes a set, and trains the model on it. This method 

may not find the best set, but there are higher chances of finding a near 

best set saving a huge amount of time.

Unlike grid search, instead of spending a large amount of time 

on unpromising candidates, random search jumps to random 

hyperparameters, and even though it does not learn from its past results, it 

usually delivers satisfactory results. In random search, we define the number 

of trials, which is the number of sets of hyperparameters to be tried.

Let’s see how random search can be better than grid search by 

exploring the example shown in Figure 2-2-1.

In both images in Figure 2-2-1, ‘x’ and ‘y’ axis represents two 

hyperparameters and the background represents increasing accuracy as 

the color gets lighter. In the case of grid search, shown on the left, if we 

start searching from the top-left corner, along the grid, our search will take 

Figure 2-2-1. Comparing grid search (left) to random search (right) 
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a considerable amount of time to reach the higher-accuracy region. In 

the case of random search, shown on the right, because we are randomly 

searching for hyperparameters, we have better chances of reaching higher 

accuracy earlier than with grid search. And as soon as the defined number 

of trials are over, we’ll select the best set of hyperparameters available, 

hoping it’s at least near the best set.

The following are two main benefits of using random search over grid 

search:

• The number of trials is defined and is independent of 

the total number of combinations.

• Since the number of trials is defined, even if the 

number of noncontributing parameters is increased, 

the time efficiency of the algorithm isn’t affected.

In random search, since we select hyperparameters randomly out 

of the search range, we can use the random library in Python, random.

randint(a, b) (which gives a random integer between integers a and b) 

for discrete hyperparameters and random.random() (which gives a random 

float number between 0 and 1, where 1 is exclusive) for continuous 

or functions from numpy or scipy.stats which gives different types of 

distributions like uniform, lognormal, exponential, and so forth.

Alternatively, as shown next, we can create a bigger grid for 

hyperparameters with continuous distribution—like really large, since 

it won’t increase the number of trials (which we are going to define)—

enabling the algorithm to choose hyperparameters from a bigger sample.

import random

import numpy as np

def loguniform(low=0, high=1, size=100, base=10):

      # function creates a log uniform distribution with

      # random values.

      return np.power(base, np.random.uniform(low, high, size))
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param_grid = {

              "gamma": loguniform(low=-10, high=4, base=10),

              "C": loguniform(low=-3, high=11, base=10)

             }

def get_random_hp_set(grid):

      # function chooses a random value for each from grid

      hp_set = dict()

      for key, param in grid.items():

            hp_set[key] = np.random.choice(param)

      return hp_set

def random_search(clf, grid, n_iterations, X_train, y_train, 

X_test, y_test):

      # defining function for random search

      logs = list()

      best_hp_set = {

       "best_test_score": 0.0

      }

      for iteration in range(n_iterations):

            log = dict()

             # selecting the set of hyperparameters from 

function defined

            # for random search.

            hp_set = get_random_hp_set(grid)

            # print(hp_set)

            model = clf(**hp_set)

            model.fit(X_train, y_train)

            train_score = model.score(X_train, y_train)

            test_score = model.score(X_test, y_test)
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            log["hp"] = hp_set

            log["train_score"] = train_score

            log["test_score"] = test_score

            if best_hp_set["best_test_score"]<test_score:

                  best_hp_set["best_test_score"] = test_score

                  best_hp_set["hp_set"] = hp_set

            logs.append(log)

      return logs, best_hp_set

>>> X_train, y_train, X_test, y_test = train_test_split(X, y)

>>> logs, best = random_search(SVC, param_grid, 20, X_train, 

y_train, X_test, y_test)

And hence we would get at least the near best set of hyperparameters 

from random search in lesser iterations.

Again scikit-learn provides us with a cross-validating function, 

RandomizedSearchCV(). Let’s see how it works:

>>> from sklearn.model_selection import RandomizedSearchCV

>>> # just like our function RandomizedSearchCV also has 

argument 'n_itern'

>>> clf = RandomizedSearchCV(SVC(), param_grid, n_iter=20, cv=3)

>>> clf.fit(X_train, y_train)

>>> clf.best_estimator_

SVC(C=1000000000.0, break_ties=False, cache_size=200, class_

weight=None,

     coef0=0.0, decision_function_shape="ovr", degree=3, 

gamma=1e-05,

     kernel='rbf', max_iter=-1, probability=False, random_

state=None,

    shrinking=True, tol=0.001, verbose=False)
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As shown in Figure 2-2-2, random search reached comparable 

accuracy in just 20 iterations.

Both GridSearchCV and RandomizedSearchCV have another useful 

argument, scoring; if set to its default value, the machine learning 

algorithm’s scoring method is used, which is usually 'accuracy'. However, 

we can provide it with any of the scoring methods we find fit for our work, 

like 'roc_auc', 'f1', 'precision', 'recall', and so forth.

 Parallel Hyperparameter Optimization
Both grid search and random search are brute-force methods; they do not 

depend on the previous results to select the next set of hyperparameters. 

And we can use this to our advantage by processing the trials in parallel. 

The scikit-learn implementation of these algorithms provides a parameter, 

‘n_job’, that can be set to ‘-1’ to specify that all cores of the local machine 

should be used.

In this section we’ll see how we can distribute algorithms like 

grid search on a high-performance computing (HPC) cluster. An HPC 

cluster is simply a bunch of high-end computers (called nodes) that are 

Figure 2-2-2. Iteration vs. accuracy plot for random search
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configured so that they can be in constant communication with the help 

of a fast interconnect, providing computing power similar to that of a 

supercomputer. An HPC cluster consists of the following components, 

depicted in Figure 2-3-1:

• Login node: From here we can remotely access the 

cluster using our machine, through secure protocols 

such as Secure Shell (SSH). It is used to upload and 

execute the code.

• Data transfer node: Again, secure protocols such as SSH 

are used with commands like scp and rsync to transfer 

large amounts of data from our machine to the HCP 

cluster. The transfer is secured by an encryption tunnel.

• Computer nodes: There are different types of computer 

nodes, including regular ones with hardware 

specifications similar to those of our personal 

machines, “fat” computer nodes with huge amounts 

of data storage (in terabytes), and high-end nodes 

consisting of GPUs and CPUs. These nodes together 

help in computation.

• Infinite Band (IB) switch: This switch enables fast 

communication between nodes, with high throughput 

and very low latency.

• Storage: Here large files can be stored and can be 

transferred via the data transfer node.

Chapter 2  hyperparameter OptimizatiOn Using sCikit-Learn



44

However, working with high-performance computing clusters is not 

as simple as setting ‘n_job = -1’, and using clusters to their maximum 

potential is even difficult. We’ll be using the Slurm workload manager, 

an open source job scheduler for computer clusters for queuing, and 

ipyparallel for parallel computations over multiple threads.

You can use the following code for HPC and Amazon EC2 clusters with 

minor modifications based on the respective requirements.

Now we’ll again optimize SVM’s hyperparameters C and gamma on the 

MNIST dataset (refer to Appendix II to know more about MNIST).

The following code is inspired by the work1 of Dr. Hugues-Yanis 

Amanieu, a data scientist in production engineering at Leclanché.

First we’ll log in to the login node, using SSH:

$ ssh username@ip

1 http://www.hyamani.eu/2018/05/20/parallel-super-computing-with- 
scikit-learn/

Figure 2-3-1. HPC cluster

Chapter 2  hyperparameter OptimizatiOn Using sCikit-Learn

https://doi.org/10.1007/978-1-4842-6579-6
http://www.hyamani.eu/2018/05/20/parallel-super-computing-with-scikit-learn/
http://www.hyamani.eu/2018/05/20/parallel-super-computing-with-scikit-learn/


45

Now that we are logged in to the HPC cluster, we’ll create a virtual 

environment:

$ virtualenv hpc_tuning

$ source hpc_tuning/bin/activate

And install all the dependencies, slurm, slurm-client, ipyparallel, 

joblib, ipython, and of course scikit-learn in your virtual environment 

‘tuning’. We can alternatively download and install them through 

Anaconda as well (in a conda virtual environment).

Next we’ll write a shell script (‘launch.sh’) in which we’ll use Slurm to 

schedule the jobs:

#this will activate the virtualenv

source hpc_tuning/bin/activate

#creating a new job profile name for ipython which slurm will use

profile=job_${JOB_NAME}

#creates an config file for ipython

ipython profile create ${profile}

#starts ip controller

ipcontroller --ip="*" --profile=${profile} &

sleep 10

#srun runs ipengine on all the cores

srun ipengine --profile=${profile} --location=$(hostname) &

sleep 25

#execute the python file, where we'll define the grid search to 

#distribute on cluster

python $1 -p ${profile}
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Let’s explore this code in detail.

• First we activate a virtual environment where 

everything is installed from scratch, so that we don’t 

face any dependencies issues.

• After that, we assign a variable profile, where we 

define a string that will be the name/identity of our job.

• Once the ID is created, we use the ipython command 

to create a profile, which initializes a folder containing 

configuration information.

• Now we have a controller and engines. The controller 

schedules and queues the jobs, and engines compute 

the data and store the results. We are using ipython 

for communication between the controller and the 

engines.

• The ipcontroller command starts the controller 

and the ipengine command starts the engines. While 

starting ‘ipcontroller’, we need the controller to listen to 

all the engines, and the argument --ip="*" allows the 

controller to listen on all interfaces.

• For engines to connect with the controller, we use 

ipengine with the argument --location=="ip", where 

we provide the IP address of the controller.

• ipcontroller creates a file named ‘ipcontroller-

engine.json’ that needs to be copied to all the engines; 

however, in our case we assume the engines and the 

controller share the same file system, in which case 

engines will automatically find the location of the ‘json’ 

file.
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Note in the preceding code that we are using srun to run ipengine; 

srun is a Slurm command that runs ipengine on all the available cores. 

Finally, we run the Python script containing the scikit-learn code, and an 

argument profile name is passed.

Let’s write the Python script (‘python_script.py’):

import argparse

import os

import sys

import time

import pandas as pd

from sklearn.externals.joblib import parallel_backend

from sklearn.externals.joblib import register_parallel_backend

from sklearn.externals.joblib import cpu_count

from sklearn.datasets import load_digits

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from ipyparallel import Client

from ipyparallel.joblib import IPythonParallelBackend

# append file dir path to sys path, so imports from custom 

function would # work

FILE_DIR = os.path.dirname(os.path.abspath(__file__))

sys.path.append(FILE_DIR)

# argparser to take profile name as argument from our shell 

script

parser = argparse.ArgumentParser()

parser.add_argument("-p", "--profile", default="job_hp_test",

                   help="Name of IPython profile to use")

args = parser.parse_args()

profile = args.profile

Chapter 2  hyperparameter OptimizatiOn Using sCikit-Learn



48

# counts total number of available cores

print(cpu_count())

# Create a Client instance providing the name of profile 

created on shell script

c = Client(profile=profile)

# Ensure all engines(c) are running in the working directory

c[:].map(os.chdir, [FILE_DIR]*len(c))

# print list of engine ids

print(c.ids)

# restrict all the engines

bview = c.load_balanced_view()

register_parallel_backend('threading',

                         lambda : IPythonParallelBackend(view= 

bview))

# loading the data

digits = load_digits()

# splitting the data to train and test

X_train, X_test, y_train, y_test = train_test_split(digits.data,

                                                  digits.target,

                                                  test_size=0.3)

# prepare the hyperparameter grid

param_grid = {

            "C": [c*(10**i) for i in range(1,14)],

            "gamma": [gamma*(10**i) for i in range(1,14)]

           }

# defining classifier with default hyperparameters

svc = SVC()
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# defining GridSearchCV

search = GridSearchCV(svc,

                     param_grid,

                    return_train_score=True,

                    n_jobs=len(c))

# start timer

since = time.time()

# using parallel backend to start the parallel processing

with parallel_backend('threading'):

      search.fit(X_train, y_train)

# end the timer

time_taken = time.time() - since

# converting and saving the results to .csv file

print(f"Saving results to {FILE_DIR}")

results = search.cv_results_

results = pd.DataFrame(results)

results.to_csv(os.path.join(FILE_DIR,'scores.csv'))

print(f"Results Saved!")

# Display the time taken

print(f"Tuning Time: {time_taken}")

Let’s examine step by step what’s going on in the preceding Python 

script:

• Import all the libraries that were installed previously in 

our virtual environment.

• Since we need to use the profile name by which the 

ipython profile was created, we use argparser and take 

the name from the shell script as an argument.
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• Initialize the client, giving it the profile name of the 

cluster to prepare all the engines. c.ids is used to get a 

list of all the engine IDs.

• Restrict load balancing across all the engines.

• Before running the algorithm parallelly, we define the 

back-end name as a string ('threading'), for which we 

use the function register_parallel_backend; later 

we’ll use 'threading' while running the training of the 

model.

• Load the dataset, split it to train and test, and define the 

grid for C and gamma.

• Initialize SVC() and define GridSearchCV(), with 

n_jobs set to either -1 (use all available cores) or 

len(total_engines) (use a defined number of cores).

• We previously defined the name of the back end 

for parallel computation of jobs using register_

parallel_backend with 'threading'. We now use that 

name to run parallel_backend and Grid Search for ‘C’ 

and ‘gamma’ for SVM.

• Save the results.

• Execute the command sbatch launch.sh python_

script.py; sbatch is a Slurm command that submits 

the written script to Slurm.

• Transfer the result files using the scp command.

And that is how we can optimize a huge number of hyperparameters 

on a cluster of computers while using it to its maximum potential. You can 

use random search in place of grid search as well. Using HPC will decrease 

your time consumption by a huge amount.
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We reviewed some exhaustive and brute-force methods for 

hyperparameter optimization that would take a really long time if applied 

to problems like Neural Network Architecture Search and are not feasible. 

In later chapters we’ll see some more algorithms and libraries that would 

be able to handle these complex tasks. However, in problems with fewer 

hyperparameters and a narrower search range, or where as a data scientist 

you can decide the approximate values or reduce the search space by 

looking at the dataset, these algorithms can be fruitful, and using them 

with machines such as those in HPC clusters can even increase their 

efficiency.
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CHAPTER 3

Solving Time and 
Memory Constraints
We face two major problems while tuning hyperparameters:

• Memory constraint: Sometimes we have to deal with 

hundreds of gigabytes of data. We cannot store such a 

huge amount of data in RAM. While training a neural 

network, we send data in batches. One of the possible 

solutions is larger memory, which is not feasible always.

• Time/computation constraint: Let’s say our data 

fits into memory, but we are training a deep neural 

network (DNN) or there is a huge search space for 

hyperparameter optimization. This can consume a 

great amount of time.

One solution to both of these problems is to use better hardware. 

For example, in the case of a deep neural network, graphics processing 

units (GPUs), tensor processing units (TPUs), and so forth can be used 

to accelerate the training. Although better hardware will solve the 

problem up to some extent, it’s not always possible to work on such high- 

end machines. In Chapter 2, we distributed grid search over an HPC 

cluster, which solved the time constraint, but an HPC cluster is a costly 

resource. There are ways much easier, using different types of clusters. 

https://doi.org/10.1007/978-1-4842-6579-6_3#DOI
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In this chapter, we’ll discuss easier alternatives to HPC that deal with 

both memory and time constraints. We’ll mainly focus on distribution of 

training to efficiently use available resources.

We’ll start with Dask, which is great for distributing machine learning 

processes and works best with scikit-learn. We’ll then see easy ways to 

distribute neural networks using packages like PyTorch Distributed and 

Horovod.

 Dask
Dask (https://dask.org/) is a library in Python for parallel computation. It 

uses dynamic task scheduling, similar to what we did using ipyparallel on the 

HPC cluster in Chapter 2, which addresses the problem of computational 

constraint. However, Dask is much more flexible than ipyparallel for 

distribution. Using dynamic task scheduling, we can distribute training over 

different machines (not just over multiple cores on the same machine).

But suppose we have a memory constraint because our data is so huge 

that it can’t be loaded into memory at once. Dask solves this by offering 

parallel collections like Dask Dataframe, Dask array, and so forth, which 

distributes dataset into chunks that can either be used on a distributed 

environment or solve larger-than-memory problems. A process executed 

using Dask typically contains the following aspects:

Collection → Task Graph → Multi-Threading/

Processing or Distribution

First, a Dask collection is passed to a task graph, which is the complete 

pipeline of all the operations like preprocessing, hyperparameter 

optimization, evaluation, and so on. Here tasks can be parallelized or 

arranged in a serial manner. Finally, the scheduler can execute task 

graphs using dynamic task scheduling. If a single machine is used, 

multithreading/multiprocessing can be used to parallelize it over cores, 

and on a cluster, a task graph can be distributed over nodes. In the 

example of a task graph shown in Figure 3-1-1, operations (a) and (b) are 
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independent, so both of them can be executed parallelly. Task 1, 2, and 3 

inside (a) will be executed serially. If (a) is completed before (b), task 7 will 

wait for (b) to get completed.

 Dask Distributed
dask. distributed is a small library that extends to dask for dynamic 

task scheduling. While using dask we primarily use Client() from dask.

distributed:

>>> from dask.distributed import Client

>>> client = Client()

Client() helps you connect to the distributed cluster. A Dask cluster is 

passed to Client(), depending upon the cluster type. Dask support several 

different cluster types, such as the following:

• SSH: If you have an unmanaged cluster, you need to 

connect to each machine using the SSH protocol. In 

that case, use the following:

>>> from dask.distributed import Client, SSHCluster

>>> cluster = SSHCluster(

                 ["localhost", "localhost", "localhost"],

                 connect_options={"known_hosts": None},

Figure 3-1-1. An example of a task graph
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                 worker_options={"nthreads": 2},

                 scheduler_options={"port": 0,

                                   "dashboard_address": 

":8797"},

                 )

>>> client = Client(cluster)

Here we define IPs for all the worker, connect_

options can contain information like passwords for 

SSH connections.

• Kubernetes: Using a Kubernetes cluster is a quick and 

easy way to deploy distributed applications using Dask:

>>> from dask_kubernetes import KubeCluster

>>> cluster = KubeCluster.from_yaml('worker-template.yaml')

>>> cluster.scale(40) #add 40 worker nodes

>>> from dask.distributed import Client

>>> client = Client(cluster)

You can define worker machines as per your need, or even scale them 

as per workload using cluster. adapt() instead of cluster. scale().

Along with these cluster types, Dask also facilitates distribution 

over HPC, YARN (an Apache Hadoop cluster), and cloud-based clusters 

provided by Amazon, Google, and so forth.

By passing 'processes=False' to Client(), a local cluster will be created 

and trials will be parallelized over cores:

>>> from dask.distributed import Client

>>> client = Client(processes=False)

>>> print(client)

Client

Scheduler: tcp://127.0.0.1:35053

Dashboard: http://127.0.0.1:8787/status
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Cluster

Workers: 1

Cores: 4

Memory: 16.73 GB

This shows the client and cluster details. In this case, I have used a 

single machine as both scheduler and worker. On an actual cluster, you 

can utilize many more cores and workers, and much more memory.

A brilliant feature provided by Dask is the visualization of the distributed 

computing on the Dashboard (note the Dashboard address under the client 

info). Here you can visualize in real time the utilization of the cores once the 

search is executed. Later we’ll take a look at some examples.

 Parallel Collections
As you can see in Figure 3-1-2, chunks of a Dask dataframe consist of several 

small Pandas dataframes. Similarly, a Dask array consists of smaller NumPy 

arrays. You can decide the size of chunks such that they fit in memory.

Figure 3-1-2. Dask dataframe (left) and Dask array (right)
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Moreover, operations over Dask dataframe mimics API of pandas 

dataframe, and the same goes for arrays. For example:

#pandas

import pandas as pd

df = pd.read_csv("./dataset/train.csv")

print(df.Age.mean())

#dask

import dask.dataframe as dd

df = dd.read_csv("./dataset/train.csv")

print(df.Age.mean().compute())

The only difference is that you need to use .compute() to execute the 

operations in Dask. Not all NumPy and Pandas interfaces are supported 

though.

Since Daks parallel collections can help to solve memory constraints, 

let’s model a large dataset that wouldn’t otherwise fit in the memory, let 

alone train.

First initialize the client:

>>> from dask.distributed import Client

>>> client = Client(processes=False)

Now make the Dask collection:

>>> from dask_ml import datasets

>>> from dask_ml.model_selection import train_test_split

>>> import dask.array as da

>>> X, y = datasets.make_classification(n_samples=100000000,

                                      n_features=7,

                                      random_state=0,

                                      chunks=100000)

>>> classes = da.unique(y_train).compute()

>>> X_train, X_test, y_train, y_test = train_test_split(X, y)
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Now we have a huge dataset, which has 100 million rows with seven 

features each and two classes. Figure 3-1-3 shows a data 5.6 GB large 

divided into 1000 chunks of 100,000 rows and 5.6 MB each.

The point of creating chunks is to not have to load the entire dataset in 

memory; only algorithms with 'partial_fit' in scikit-learn support this. I’ll 

be using SGD Classifier to model the dataset:

>>> from sklearn.linear_model import SGDClassifier

>>> clf = SGDClassifier(loss='log', penalty="l2", tol=0.01)

Executing clf.fit(X_train, y_train) will iterate over the dataset 

a single time. To train the classifier further for multiple iterations, we can 

use a simple for loop. We’ll have to wrap scikit-learn’s SGD classifier into 

Dask’s Incremental function, which manages the data so that the model 

will be trained in chunks.

>>> from dask_ml.wrappers import Incremental

>>> clf = Incremental(clf, scoring="accuracy")

>>> clf.fit(X_train, y_train, classes=classes)

Once you execute this, check out the Dask dashboard, where you can 

visualize various processes going on, as shown in Figure 3-1-4.

Figure 3-1-3. (a) is a representation of variable X and (b) is a 
representation of variable y
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 Dynamic Task Scheduling
Most of the algorithms implemented in scikit-learn are capable of using 

'joblib', which provides thread/process-based distribution over the cores 

of a single machine. Using Dask, we can distribute these algorithms over 

a cluster, just like we did in the HPC cluster example in Chapter 2 using 

ipyparallel.

Dask, being much more flexible, provides support for parallelism on all 

different kinds of distributed systems, as depicted in 3-1-5.

Figure 3-1-4. The Dask dashboard Task Stream pane shows the four 
bars representing four cores.

Chapter 3  Solving time and memory ConStraintS



61

Let’s take an example of optimizing hyperparameters of support vector 

machine using both serial optimization using scikit-learn and distributing 

trails using Dask and compare the time:

from sklearn.datasets import load_digits

from sklearn.model_selection import GridSearchCV, train_test_

split

from sklearn.svm import SVC

X, y = load_digits().data, load_digits().target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size = 0.3, shuffle=True)

c = 0.001

gamma = 1e-10

param_grid = {

           "C": [c*(10**i) for i in range(1,14)],

           "gamma": [gamma*(10**i) for i in range(1,14)]

          }

clf = SVC(kernel='rbf')

search = GridSearchCV(clf, param_grid, cv=3)

Figure 3-1-5. (a) scikit-learn with the help of JobLib can distribute 
training over cores of a single machine. (b) With Dask, the same 
process can be distributed over cores of a single machine or even a 
cluster of machines
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In the preceding code, we have loaded the ‘digits’ dataset, and we’ll 

be optimizing ‘C’ and ‘gamma’ using GridSearchCV(). First, let’s use just 

ScikitLearn example without Joblib.

>>> import time

>>> since = time.time()

>>> model = search.fit(X_train, y_train)

>>> print(time.time()-since)

The total number of trials would be 169 across the grid of 

hyperparameters, taking 75.01 seconds. Note that we are running Grid 

Search serially.

Now let’s use Dask to parallelize our trials over the cores:

>>> import joblib

>>> import time

>>> from dask.distributed import Client

>>> client = Client(processes=False)

>>> since = time.time()

>>> with joblib.parallel_backend('dask', scatter=[X_train, y_train]):

            model = search.fit(X_train, y_train)

>>> print(time.time()-since)

Now JobLib will use Dask’s client, which is, in this case, a local cluster 

for distribution of 169 possible combinations over the cores. The time 

taken for the same task was 34.73 seconds. This is a huge improvement 

with just four cores, and hence there’s a huge scope of improvement on an 

actual cluster of machines. Check the Dask dashboard to visualize the core 

usage, as shown in Figure 3-1-6.
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Note all of the previous experiments are performed on a local 
machine, where both the scheduler and cluster are the same. in the 
example presented in the “dynamic task Scheduling” section, we 
could use scikit-learn alone to distribute over the cores of a single 
machine instead of using dask.

 Hyperparameter Optimization with Dask
As we saw in last few examples, we can use Dask for hyperparameter 

optimization to solve both time and memory constraints. Let’s review 

the algorithms for hyperparameter optimization in scikit-learn and their 

distribution:

• We can use plain and simple scikit-learn’s Random 

Search and Grid Search and pass the argument  

'n_jobs'=-1 to use all cores on a single machine. 

This solves the compute/time constraint.

Figure 3-1-6. Task Stream pane showing four horizontal bars 
denoting four cores
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• We can use scikit-learn and wrap its code in with 

parallel_backend('dask'): as we did in the example 

in the “Dynamic Task Scheduling” section, be it 

Random Search or Grid Search or any other algorithm 

implemented with ‘joblib’. We can either use all cores 

on a single machine or distribute them over a cluster, 

depending on how dask.distributed’s client() is 

defined. This reduces time even more if a cluster is used.

Now let’s see what else Dask offers us for hyperparameter 

optimization.

 Dask Random Search and Grid Search

We cannot use Random Search or Grid Search provided by scikit-learn 

to train a large dataset because they do not support ‘partial_fit’. However, 

Dask gives us drop-in replacements for both of these algorithms, dask_

ml.model_selection.GridSearchCV and dask_ml.model_selection.

RandomizedSearchCV. Interface for respective algorithms in both Dask 

and Scikit-Learn is similar, but the one from Dask implements ‘partial_fit’, 

so that we can wrap a machine learning algorithm from scikit-learn in 

Incremental and pass it to these hyperparameter optimization algorithms.

The setting can not only train the model in chunks of data but also 

distribute it on a cluster, solving both time and memory issues. The steps 

are pretty much a straightforward script, the same as what we did before:

 1. Define a client.

 2. Define a search space.

 3. Make a huge dataset to test our distributed model.

 4. Train Test Split.

 5. Define the ML algorithm which uses partial fit, like 

SGD classifier.
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 6. Wrap the ML algorithm in Incremental so that 

data can be managed and trained in chunks while 

distributing it to cores/cluster.

 7. Use Grid Search on top of that which is imported 

from Dask since it implements ‘partial_fit’.

 8. Train the model under joblib.parallel_backend 

so that it can be further distributed.

However, there’s an interesting problem I faced while following these 

steps. When I executed the code I checked the Dask dashboard. The 

memory started to fill up. The problem was due to the accuracy score. After 

I used accuracy metrics from ‘dask_ml’, the problem was solved.

Let’s check out an example:

from dask_ml import datasets

from dask_ml.wrappers import Incremental

from dask_ml.model_selection import train_test_split, 

GridSearchCV

from dask_ml.metrics import accuracy_score

from sklearn.metrics import make_scorer

from sklearn.linear_model import SGDClassifier

import joblib

import dask.array as da

from dask.distributed import Client

client = Client(processes=False)

print(client.dashboard_link)

param_grid = {

            "penalty": ['l1', 'l2'],

            "tol": [1e-2, 1e-3, 1e-4]

            }
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X, y = datasets.make_classification(n_samples=100000000,

                                  n_features=7,

                                  random_state=0,

                                  chunks=100000)

# providing an accuracy metrics from 'dask_ml'

scorer = make_scorer(accuracy_score)

X_train, X_test, y_train, y_test = train_test_split(X, y)

clf = SGDClassifier(loss='log')

clf_wrap = Incremental(clf, scoring=scorer)

searh_clf = GridSearchCV(clf_wrap, param_grid, cv=3)

with joblib.parallel_backend('dask'):

      model = searh_clf.fit(X_train, y_train)

Note after some poking around, i found out that while score calculation 
by default ‘SgdClassifier.score’ was being used which was converting 
chunks of ‘dask arrays’ to ‘ndarray’, which was resulting in high memory 
usage. When i used a scorer from ‘dask_ml’, it solved the issue.

So, you need to take care that the chunks of your data are not converted 
to ‘numpy array’; otherwise it would end up filling memory. the idea of 
using a dask dataframe and dask array here is to not fill memory.

 Incremental Search

This is another really good approach to search hyperparameters. As we 

know, Dask can divide the data into chunks and the algorithms using 

‘partial_fit’ can train small data at once. Incremental Search Algorithm 

uses this concept to its benefit. It trains several models on smaller chunks 

of datasets on a variety of sets of hyperparameters. It continues with 

Chapter 3  Solving time and memory ConStraintS



67

further training on only the best-performing set of hyperparameters. 

However, there’s a drawback to this method: what if the hyperparameter 

starts to perform better at a later stage? For example, in Figure 3-1-7 we 

have two hyperparameters, h1 and h2, and we train our model up to the 

ninth chunk of data. Initially h1 was performing better, but later h2 started 

performing better. But if we would have stopped the training at the second 

chuck, we wouldn’t know this and would have discarded h2.

Using incremental search is quite simple, as shown next. The interface 

is similar to that of GridSearchCV or RandomSearchCV.

from dask_ml.model_selection import IncrementalSearchCV

from sklearn.linear_model import SGDClassifier

param_grid = {

            "penalty": ['l1', 'l2'],

            "tol": [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6]

            }

clf = IncrementalSearchCV(SGDClassifier(), param_grid)

#fit the data to train

Figure 3-1-7. Loss decreasing as more chunks of data are passed for 
training
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Figure 3-1-8 shows a trial vs accuracy plot comparing Random Search 

and Incremental Search.

 Successive Halving Search

Success halving search is somewhat similar to incremental search. A time 

budget (B) is uniformly assigned to all sets of hyperparameters. We start 

training the model on a limited amount of data, and we start by using all 

sets of hyperparameters. Once all the models are trained, half of the worst- 

performing sets are discarded. In the next iteration, the remaining half 

are now trained on more data than before, evaluated and again half of the 

previous half is discarded.

This process goes on until one best set remains, thereby allocating more 

resources to better-performing hyperparameters. Use Dask implementation 

of Successive Halving as follows:

from dask_ml.model_selection import SuccessiveHalvingSearchCV

from sklearn.linear_model import SGDClassifier

Figure 3-1-8. A comparison between Random Search and 
Incremental Search. Digits dataset is used from sklearn, trained on 
SGD classifier. Results are compared on the first five trials

Chapter 3  Solving time and memory ConStraintS



69

clf = SuccessiveHalvingSearchCV(SGDClassifier(), param_grid, 

n_initial_iter=2)

#call fit to train data

Here, we have to pass n_initial_iter to our search function, which 

defines the number of times ‘partial_fit’ is called initially.

The same problem can persist as in incremental search, though, where 

we might pick a wrong set of hyperparameters if we stop early.

 Hyperband Search

Hyperband1 is a bandit-based approach for solving the problem of 

hyperparameter optimization. The bandit-based approach addresses our 

problem perfectly here: we have a limited amount of resources but we 

need to allocate them to all our trials efficiently. Again we spend more time 

on better-performing models instead of wasting our resources and time on 

poor configuration of hyperparameters.

Hyperband is an extended version of successive halving. 

In successive halving, we have a fixed budget (B) for our sets of 

hyperparameters (n), and ‘B/n’ resources are allocated uniformly to all 

the sets in ‘n’. But how we should choose ‘n’ remains a problem. There 

are two possibilities:

• We should consider a lesser value of ‘n’ so that the 

resources provided to each configuration are more and 

the training time is longer. But then less search space 

would be covered. This case can be favorable when the 

accuracy score is more dependent on the training data 

than on hyperparameters.

1 “Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization,” 
L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, Journal of 
Machine Learning Research 18 (2018) 1-52.
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• We should consider a higher value of ‘n’ so that more 

search space is covered with less amount of training. 

A high value of ‘n’ would be better if a change in 

hyperparameters results in a huge change in accuracy/

loss scores, unlike the case in Figure 3-1-7, where at a 

later stage we needed to train longer for the loss score 

to get saturated.

Hyperband addresses this problem of “n v/s B/n” by keeping the 

value of B a constant and changing the value of ‘n’. A larger value of ‘n’ 

thus results in aggressive early stopping, because the budget per set of 

hyperparameters is reduced. In Hyperband we change the value of ‘n’ 

each time we iterate for successive halving. There’s a nested loop; while 

the inner loop performs successive search, the outer loop iterates over 

different values of ‘n’. There are lots of possibilities for parallelization, 

which is exploited in the Dask implementation of Hyperband:

from dask_ml.model_selection import HyperbandSearchCV

from sklearn.linear_model import SGDClassifier

clf = HyperbandSearchCV(SGDClassifier(), param_grid)

#call fit to train data

Two important arguments given to Hyperband are max_iter, which 

defines the number of times ‘partial_fit’ is called, and the chunk size of 

‘partial_fit’. Both of these arguments are determined by rule of thumb, 

where max_iter is equal to the number of hyperparameter combinations 

(n_param) and chuck size is n_param/n_examples, where n_examples is 

the number of samples the model is trained on; for example, if X_train is 

trained in five iterations, n_examples = 5*len(X_train).
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Note When using these optimization algorithms (incremental 
search, Successive halving, incremental Search) you can only use 
modeling algorithms that use ‘partial_fit’, because the whole idea 
is to stop training early, which we cannot do with other algorithms. 
although you can use randomSearchCv and gridSearchCv to 
distribute trials over a cluster, you can’t use them when data is 
trained in chunks (larger than memory case); in that case you need 
‘partial_fit’ again. these methods can be really helpful while working 
with neural networks, since they are trained on batches.

dask serializes several objects in order to distribute. scikit-learn 
and pytorch would work better with these algorithms, since they 
work on the pickle protocol, unlike tensorFlow and Keras. But when 
using Keras and tensorFlow, you can apply other algorithms like 
gridSearchCv, randomSearchCv, and more. this we are going to 
discuss in the next section.

 Distributing Deep Learning Models
Deep learning models are quite costly to train. Distributing neural network 

training over a cluster and later applying hyperparameter optimization on 

top of that can help us save a lot of time. Deep learning frameworks have 

modules for distribution; for example, TensorFlow Distributed (which 

extends to TensorFlow and Keras), PyTorch Distributed (which extends to 

PyTorch), Horovod, and so forth. Distributing with TensorFlow Distributed 

is a pain. You have to create parameter servers and change a lot of code. In 

this section we’ll discuss PyTorch Distributed and Horovod to distribute 

deep neural networks while training the MNIST dataset. If you want a 

quick refresher on using the PyTorch API, refer to Appendix II.
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 PyTorch Distributed
The main difference between distributing on a machine and a cluster 

is that in a cluster we need to have a back-end communication API to 

communicate between nodes. This is one of the strong aspects of PyTorch. 

PyTorch supports all three major back-end communication APIs: NCCL 

(NVIDIA Collective Communications Library, pronounced “Nickel”), Gloo, 

and MPI (Message Passing Interface). The following example is strongly 

based on a GitHub repo (https://github.com/seba- 1511/dist_tuto.pth):

import torch

import torch.nn as nn

import torch.nn.functional as F

import torch.optim as optim

import torch.distributed as dist

from torch.autograd import Variable

from torch.multiprocessing import Process

import os

from math import ceil

from random import Random

from torchvision import datasets, transforms

def init_processes(rank, size, fn, backend="gloo"):

      os.environ['MASTER_ADDR'] = '127.0.0.1'

      os.environ['MASTER_PORT'] = '29500'

       dist.init_process_group(backend, rank=rank,  

world_size=size)

      fn(rank, size)

We start by defining the communication back end; we’ll be using 'gloo'. 

Next we define the master address and master port so that all nodes report 

to one central master node. Each time that function init_processes is 
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executed, a new process group is created and function fn() is executed. In 

our case fn would be a function to train the neural network, so we would 

later write a function that would train the model on subsamples and later 

average the gradients.

Note pytorch documentation suggests as a rule of thumb to use 
‘gloo’ when using CpUs and ‘nccl’ while training on gpUs.

class Net(nn.Module):

      def __init__(self):

            super(Net, self).__init__()

            self.conv1 = nn.Conv2d(1, 10, kernel_size=5)

            self.conv2 = nn.Conv2d(10, 20, kernel_size=5)

            self.conv2_drop = nn.Dropout2d()

            self.fc1 = nn.Linear(320, 50)

            self.fc2 = nn.Linear(50, 10)

      def forward(self, x):

            x = F.relu(F.max_pool2d(self.conv1(x), 2))

             x = F.relu(F.max_pool2d(self.conv2_drop(self.

conv2(x)), 2))

            x = x.view(-1, 320)

            x = F.relu(self.fc1(x))

            x = F.dropout(x, training=self.training)

            x = self.fc2(x)

            return F.log_softmax(x)

Chapter 3  Solving time and memory ConStraintS



74

We need to create a neural network to build the model, so here we 

define a simple convolutional network:

class Partition(object):

      def __init__(self, data, index):

            self.data = data

            self.index = index

      def __len__(self):

            return len(self.index)

      def __getitem__(self, index):

            data_idx = self.index[index]

            return self.data[data_idx]

class DataPartitioner(object):

      def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234):

            self.data = data

            self.partitions = []

            rng = Random()

            rng.seed(seed)

            data_len = len(data)

            indexes = [x for x in range(0, data_len)]

            rng.shuffle(indexes)

            for frac in sizes:

                  part_len = int(frac * data_len)

                   self.partitions.append(indexes[0:part_len])

                  indexes = indexes[part_len:]

      def use(self, partition):

             return Partition(self.data, self.

partitions[partition])
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Our model is being trained parallelly, so we need to update all of the 

gradients once it’s trained on a batch of data. So once training on a batch is 

done, we collect all gradients and take their average. Data is sent to all nodes in 

equal fractions so that the convergence by each model remains uniform. The 

partitioning is done on the basis of the number of processes running. We can 

use the classes identified in the previous listing to get a certain fraction of data.

def partition_dataset():

      transformations = [transforms.ToTensor(),

                          transforms.Normalize((0.1307, ), 

(0.3081, ))

                        ]

      dataset = datasets.MNIST('./data',

                               train=True,

                               download=True,

                                transform=transforms.

Compose(transformations)

                              )

      size = dist.get_world_size()

      bsz = int(8 / float(size))

      partition_sizes = [1.0 / size for _ in range(size)]

      partition = DataPartitioner(dataset, partition_sizes)

      partition = partition.use(dist.get_rank())

      train_set = torch.utils.data.DataLoader(

                                   partition, batch_size=bsz, 

shuffle=True)

      return train_set, bsz

This function loads the MNIST dataset and uses DataPartitioner() 

to partition the data. dist.get_world_size() returns the number of 

processes in the current process group. So if three processes are running, 

we would have three partition sizes of fraction 0.33 each. Similarly for 

batch size, we divide the required batch size by the number of processes:
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def average_gradients(model):

      size = float(dist.get_world_size())

      for param in model.parameters():

             dist.all_reduce(param.grad.data, op=dist.reduce_

op.SUM)

            param.grad.data /= size

Here we average the gradients. all_reduce updates parameters in 

all the distributed models. And Now we define the function which will 

optimize the model, and we’ll pass to init_processes().

def run(rank, size):

      torch.manual_seed(1234)

      train_set, bsz = partition_dataset()

      model = Net()

      model = model

       optimizer = optim.SGD(model.parameters(), lr=0.01, 

momentum=0.5)

      num_batches = ceil(len(train_set.dataset) / float(bsz))

      for epoch in range(10):

            epoch_loss = 0.0

            for data, target in train_set:

                   data, target = Variable(data), 

Variable(target)

                  optimizer.zero_grad()

                  output = model(data)

                  loss = F.nll_loss(output, target)

                  epoch_loss += loss.item()

                  loss.backward()

                  average_gradients(model)

                  optimizer.step()
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            print(f'Rank: {dist.get_rank()}, \

                    Epoch: {epoch}, \

                    Loss: {epoch_loss / num_batches}')

Each rank signifies the models that are being trained parallelly. We call 

partition_dataset() to get the train set. While iterating, we are using the 

function average_gradients() to average the gradients. Now, finally, we 

can start the distributed training by passing the function run() to init_

processes():

size = 3

processes = []

for rank in range(size):

      p = Process(target=init_processes, args=(rank, size, run))

      p.start()

      processes.append(p)

for p in processes:

      p.join()

This will start your distributed training. Using this, with a few edits 

according to networks and use cases, we can train deep learning models 

on a computer cluster.

 Horovod
Horovod is an open source distributed deep learning training library that 

works with both PyTorch and TensorFlow/Keras. If you have code for 

undistributed training, you can use Horovod simply by adding only a few 

lines of code to make it distributed. (Refer to the documentation on how to 

distribute on different clusters.) Similar to PyTorch Distributed, Horovod is 

capable of using both Gloo and MPI and other back-end communications. 

In this section we’ll examine what changes we need to make and how they 

are similar to the PyTorch implementation in the previous section.
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Write a simple code for training a neural network in a simple machine 

in PyTorch. For this you can refer to the PyTorch section of Appendix 

II. Create the following functions:

• Network(): A class extended from torch.nn.Module to 

create a neural network architecture

• train_epoch(): A function that can train the neural 

network for a single machine

Also define these global variables: batch_size, learning_rate, 

momentum, and epochs. The following piece of code shows how we can 

distribute model training using horovod:

import horovod.torch as hvd

from sparkdl import HorovodRunner

from torch.utils.data.distributed import DistributedSampler

def train_hvd():

      hvd.init()

      device = torch.device( 'cuda' if torch.cuda.is_available() 

else 'cpu')

      if device.type == 'cuda':

           torch.cuda.set_device(hvd.local_rank())

      transformation = [transforms.ToTensor(),

                         transforms.Normalize((0.1307,), 

(0.3081,))]

      train_dataset = datasets.MNIST(

                                root=f'data-{hvd.rank()}',

                                train=True,

                                download=True,

                                  transform=transforms.

Compose(transformation)

                                )
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      train_sampler = DistributedSampler(train_dataset,

                                          num_replicas=hvd.size(),

                                         rank=hvd.rank())

      train_loader = torch.utils.data.DataLoader(train_dataset,

                                  batch_size=int(batch_size/hvd.

size()),

                                 sampler=train_sampler)

      model = Network().to(device)

      optimizer = optim.SGD(model.parameters(),

                            lr=learning_rate,

                            momentum=momentum)

      optimizer = hvd.DistributedOptimizer(optimizer,

                           named_parameters=model.named_

parameters())

      hvd.broadcast_parameters(model.state_dict(), root_rank=0)

      for epoch in range(1, epochs + 1):

            train_epoch(train_loader)

The function train_hvd() is pretty much similar to what we did while 

using PyTorch Distributed. hvd.rank() gives the worker ID, so we create a 

separate root folder for every worker (rank) in our cluster.

Similar to the previous section in which we used partition_

dataset() to create and divide data among workers, here we use 

DistributedSampler() to create partitions of the dataset as per the 

number of workers and give the object to Dataloader() to generate the 

dataset. Again, effective batch size is scaled based on number of workers.

After defining optimizer, we wrap it in hvd.DistributedOptimizer(), 

which is similar to all_reduce() that we used earlier. The gradients are 

averaged across models running on different nodes. hvc.broadcast_

parameters() updates all the gradients with new gradients. It makes sure 

models on all ranks start with the same parameters.
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Now to distribute this training across clusters, we’ll use a simple 

interface provided by HorovodRunner:

hr = HorovodRunner(np=2)

hr.run(train_hvd)

Here, np defines the number of workers and hr.run() starts the 

distributed training.

These distribution methodologies can come in handy when you are 

working on optimizing hyperparameters in hundreds to thousands of 

dimensions. Time efficiency and resource utilization are both important 

aspects while optimizing hyperparameters.

In the next chapter, you’ll see more advanced Bayesian-based 

optimization methods, which actually learn from their previous trials.
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CHAPTER 4

Bayesian Optimization
In Chapters 2 and 3 we explored several hyperparameter tuning methods. 

Grid search and random search were quite straightforward, and we 

discussed how to distribute them to save memory and time. We also 

delved into some more-complex algorithms, such as HyperBand. But none 

of the algorithms that we reviewed learned from their previous history. 

Suppose an algorithm could keep a log of all the previous observations and 

learn from them. For example, suppose it could observe that our model is 

being optimized near certain values of hyperparameters and could exploit 

this valuable information and proceed to the hyperparameters nearest to 

those good-performing ones, hence learning from its history. By doing so, 

the algorithm would not waste time on bad-performing hyperparameters 

while reaching the best-performing hyperparameters. In this chapter we’ll 

explore algorithms that have that capability.

Let’s start with an example. Figure 4-1-1 shows a plot between two 

hyperparameters. Compare that to Figure 2-2-1 in Chapter 2, which 

represents a grid search in which we were going through a grid of 

selected parameters and, in a random search, randomly hitting a set of 

hyperparameters.

https://doi.org/10.1007/978-1-4842-6579-6_4#DOI
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In Figure 4-1-1, the circles with number 1 are the hyperparameters 

chosen at random. Some of the 1s lying in the middle region between the 

darkest and lightest regions were observed to generate better models. 

So, instead of wasting our time on the rest of the 1 trials, we look at 

surrounding regions of better-performing 1 trials and train the model 

with 2s, and so on. In the end, we reach 4, where one of the 4s lies in the 

middle region and one lies almost at the center of the lightest region. 

Hence, we select the 4 trial lying in the lightest region as our best set of 

hyperparameters. Intuitively, this process seems better than the exhaustive 

methods you learned before.

 Sequential Model-Based Global 
Optimization
It is notable that in machine learning, functions are expensive and slow 

to train and evaluate. In this section we’ll look at sequential model-based 

global optimization (SMBO) to solve the problem of hyperparameter 

Figure 4-1-1. Plot between two hyperparameters, where darker area 
represents lesser accuracy and lighter area represents greater accuracy
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optimization. SMBO uses the approach of Bayesian optimization, which is 

used to keep track of previous evaluations and select the subsequent set of 

hyperparameters based on a probabilistic model.

 p y x|( )  

Our objective function (machine learning algorithm) being f, y is 

the score calculated by evaluating f on the set of hyperparameters x. 

In Bayesian optimization, essentially there are four important aspects 

(defined after the following step list): search space, objective function, 

probabilistic regression model, and acquisition function.

Whole Bayesian optimization can be summarized in the following 

steps:

 1. Build a regression model.

 2. Initialize some random sets of hyperparameters (in 

the case of the first trial, because we need to feed 

initial hyperparameters from somewhere).

 3. Evaluate the model on the set of hyperparameters 

suggested by the acquisition function (if the first 

trial, choose hyperparameters from step 2) and 

calculate the score on the objective function.

 4. Update the surrogate model as per the new 

suggested hyperparameters and scores.

 5. Repeat steps 3 and 4, for a defined number of 

iterations.

A search space (X), as you learned in Chapter 1, is a defined range 

where we provide hyperparameter optimization algorithms a range to 

choose. Depending on the hyperparameter, ranges can be continuous 

or discrete. For example, choosing a kernel function in SVM is a discrete 
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hyperparameter, but gamma is chosen from a continuous distribution. 

Search spaces can be really complicated. For example, choosing the 

number of nodes in each hidden layer in a neural network depends on the 

number of hidden layers.

An objective function (f) is a function that trains a machine learning 

model on a given set of hyperparameters and the output is either an accuracy 

score or a loss score depending on the acquisition function. In the following 

example, we are calculating the accuracy score, if the returned value is 

minimized, we'll maximize the accuracy score by minimizing its negative.

X, y = load_data()  # X and y are some preprocessed data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_

size = 0.3)

def objective_function(hyperparameters):

      C = hyperparameters["C"]

      gamma = hyperparameters["gamma"]

      model = SVC(C=C, gamma=gamma)

      model.fit(X_train, y_train)

      score = model.score(X_test, y_test)

      # since we want to maximize score, taking it's negative

      return -score

Probabilistic Regression Model (p(y| x) or M) also called Surrogate 

function is built using previous evaluations and is a probabilistic modeling 

of the objective function, so each iteration updates the surrogate by 

evaluating hyperparameters on the objective function. A surrogate 

function is less costly to evaluate in comparison with an objective function, 

and a surrogate function decides the next set of hyperparameters to be 

evaluated by the objective function, thus reducing the cost of optimization. 

A surrogate can be formulated by different methods, such as Gaussian 

process (GP), Random forest, or tree-structured Parzen estimator (TPE). 

Here’s a brief overview of how these surrogates are formed:
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• In Gaussian process, function f is assumed to be a 

realization of Gaussian distribution, where predictions 

follow a normal distribution. GP models p(y| x) directly.

• In TPE, p(y| x) is modeled on both p(x| y) and p(y). We’ll 

discuss TPE in more detail later in this chapter.

An acquisition function (S) selects the next set of hyperparameters 

using the surrogate model and the predicted loss score on the previous 

set of hyperparameters. There are several acquisition functions, such as 

probability of improvement, expected improvement, conditional entropy 

of minimizer, and bandit-based criteria. The most commonly used is 

expected improvement:

 
EI x y y p y x dyy

y

*
*

-¥

*
( ) = -( ) ( )ò: . .max , |0  

Here, EI is being modeled by surrogate and the loss score. y* is some 

threshold value, while y = f (x) is the score obtained from the objective 

function on the proposed set of hyperparameters x. p(y| x) is the surrogate 

model. A positive value of the preceding integral means that chances 

are good that the proposed hyperparameters would yield better results. 

On the proposed set x, if y increases negatively, EI will be positive, hence 

indicating a better choice of hyperparameters.

Here is a generalized pseudo-code template of how the SMBO method 

works:
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In this pseudo-code, f is the objective function, X is the search space 

for hyperparameters, S is the acquisition function, and M is the regression 

model (surrogate).

First we initialize D with some random samples from the search space; 

D store history of evaluations in the form of (xi, yi), where xi represents the 

subsequent sets of hyperparameters and yi represents the loss scores.

We now run the loop for defined number of trials T. First the surrogate 

is updated using history D. Now S suggests a set of hyperparameters xi. xi 

is sent to f and a loss score is calculated. History is now saved in D, which 

would be used again to update the surrogate.

After T trials, we would have the best set of hyperparameters.

You don’t have to implement these methods, because all the 

probabilistic regression models can be found implemented in different 

libraries. For example, Hyperopt1 implements a TPE, Spearmint2 and MOE3 

implement a Gaussian process, and SMAC4 implements a random forest- 

based surrogate.

Next we’ll discuss in detail the working of the tree-structured Parzen 

estimator along with the expected improvement acquisition function.

 Tree-Structured Parzen Estimator
Tree-structured Parzen estimator is a popular Bayesian optimization 

approach that uses the expected improvement acquisition function5.  

In TPE, p(y| x) is modeled over p(x| y) and p(y) following Bayes’ theorem, 

unlike GP where p(y| x) is directly modeled

1 https://github.com/hyperopt/hyperopt
2 https://github.com/JasperSnoek/spearmint
3 https://github.com/Yelp/MOE
4 https://github.com/automl/SMAC3
5 https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-
optimization.pdf
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p y x

p x y p y
p x

|
|

( ) = ( )* ( )( )
( )  

(Equation 4.2.1)

p(x| y) is represented as 

 p(x| y) = l(x) if y < y* (Equation 4.2.2)

and

 p(x| y) = g(x) if y >  = y* (Equation 4.2.3)

Here, y* is a quantile that is called threshold loss score. l(x) and g(x) are 

hyperparameter distributions. Hence, on certain sets of hyperparameters 

(xi), if predicted loss score (y) is less than y*, it means those sets lie in 

distribution l(x), and if y is greater than y* then they lie in distribution 

g(x). We can understand this clearly by Figure 4-2-1.

The value of y* is chosen such that it is larger than the best 

observed value of f (x), y < y*, and therefore we have to find sets of 

hyperparameters that lie in the l(x) distribution so that the predicted 

loss score is less than y*.

Figure 4-2-1. On hyperparameter xi0 points below y* are from 
distribution l(x) and points above y* are from distribution g(x)

Chapter 4  Bayesian OptimizatiOn



88

Let

 p(y < y∗) = γ  (Equation 4.2.4)

and continuous marginal probability be

 

p x p x y p y dy
R

( ) = ( ) ( )ò | . .
 

(Equation 4.2.5)

Now we optimize EI:

EI x y y p y x dyy

y

*
*

-¥
( ) = -( ) ( )

*

ò . .|  = y y
p x y p y

p x
dy

y *

-¥
-( ) ( ) ( )

( )
*

ò
| .

.  

           (Equation 4.2.6)

Equation 4.2.5 can be written as follows by using Equations 4.2.2, 4.2.3, 

and 4.2.4:

 p x p x y p y dy l x g x
R

( ) = ( ) ( ) = ( ) + -( ) ( )ò | . . . .g g1  (Equation 4.2.7)

Now that denominator term in Eq. 4.2.6 is simplified to Equation 4.2.7, 

which doesn’t depend on y. Let’s simplify the numerator:

  

y y p x y p y dy l x y y

p y dy y l x

y y*

-¥

*

-¥

*

-( ) ( ) ( ) = ( ) -( )
( ) =

* *

ò ò. . . .

. . .

|

g (( ) - ( ) ( )
-¥

*

òl x p y dy
y

.  
(Equation 4.2.8)

Putting together Equations 4.2.7 and 4.2.8, we get the value of expected 

improvement:

 
EI x

y l x l x p y dy

l x g xy

y

*

*

-¥( ) =
( ) - ( ) ( )
( ) + -( ) ( )

*
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g g
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Simplify it further and we get:

 
EI x

l x y p y dy
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Therefore:
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1

 
(Equation 4.2.9)

Equation 4.2.9 significantly tells us that expected improvement is 

inversely proportional to the ration g(x)/l(x). This means we would prefer 

our hyperparameters (x) to lie in distribution l(x) instead of g(x) to increase 

the EI.

And thus on each iteration, candidates are drawn from l(x) and return 

the one with least loss score, hence selecting best hyperparameters.

Now that you have a basic idea of how in the Bayesian method we 

model surrogate functions and acquisition functions, we’ll next look at an 

open source library that implements TPE, Hyperopt.

 Hyperopt
Hyperopt is a brilliant open source library for distributed asynchronous 

hyperparameter optimization that implements algorithms like random 

search, TPE, and adaptive TPE. In this section we’ll focus on how we can 

use the Hyperopt library to optimize hyperparameters.

Hyperopt handles awkward search spaces, which includes searching 

over both discrete and continuous values. We can use the library to search 

between algorithms and find the best set of hyperparameters for those 

algorithms. When working on problems in deep learning, we deal in 
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hundreds of dimensions, and to exploit the full potential of deep networks, 

we need the hyperparameter setting to be optimal. Using grid search 

or random search would not be an option, because each training of the 

network is quite costly. In such cases, using Bayesian optimization can be 

the best option.

To use Hyperopt we need a search space and an objective function. 

Let’s take a simple example:

 f a b a b,( ) = -2 2  

Here, we minimize f (a, b) such that a ∈ [−2, 3] and b ∈ [−1, 2].

Let’s use Hyperopt to optimize this problem:

from hyperopt import tpe, fmin, hp

def objective_func(args):

      a = args['a']

      b = args['b']

      f = a**2 - b**2

      return f

range_a = hp.uniform('a', -2, 3)

range_b = hp.uniform('b', -1, 2)

space = {'a': range_a,

         'b': range_b}

best = fmin(objective_func, space, algo=tpe.suggest,  

max_evals=100)

The preceding piece of code uses TPE to find the best values of a and b 

such that f (a, b) is minimum. We can see that function would be minimum 

at a = 0 and b = 2, and the minimum value would be fmin =  − 4. Let’s see 

how Hyperopt in 1000 trials approached the problem.
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Figure 4-3-1 shows that the values of a and b are saturating over 0 and 

2 respectively, and the value of f is saturating over −4 in the early trials. 

This was an easy function where optimal values were integers. For more 

complicated functions where values must be picked from a continuous 

distribution, TPE proves to be efficient.

As mentioned earlier, to use Hyperopt we must define an objective 

function and search space. In the previous code, our objective function takes 

hyperparameters as inputs and outputs a score that we want to minimize. To 

create the search space, for each hyperparameter we must use distribution 

in the form of a Hyperopt object. We have a wide variety of options, uniform, 

Figure 4-3-1. Plotting value of f, a and b over 1000 iterations  
using TPE
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normal, loguniform, lognormal, and so on, which we’ll discuss in more detail 

in the next section. Finally, we pass both the objective function and search 

space to the fmin() function while using the algorithm TPE for optimization. 

We also decide the number of trials, just as we did when using random search. 

A dictionary is returned that give the best trials out of all the iterations.

 Search Space
fmin() passes only one parameter to the objective function, so we need to 

stuff all the hyperparameter ranges in either one of the dictionaries, list or 

tuples. Unlike scikit-learn’s Grid Search and Random Search, fmin() does 

not support just any iterable distribution; all the hyperparameters should 

be objects of Hyperopt’s hp module. Follow Figure 4-3-2 for visualization 

of different distributions.

Following are some of the functions that give a certain value from 

different types of distributions, for our hyperparameter searches:

• hp.choice(): chooses one of the options from 

the given list

• hp.randint(): Chooses a random integer out of a 

range of integers

• hp.uniform(): Returns a value between a range, the 

distribution is uniform between two given numbers

• hp.loguniform(): Returns a value such that its 

logarithm is uniformly distributed between two given 

numbers

• hp.normal(): Returns a value from a Gaussian 

distribution as per mean and standard deviation

• hp.lognormal(): logarithm of the returned value 

is normally distributed as per mean and standard 

deviation
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Tip loguniform(label, a, b) can be written as exp(uniform(label, 
a, b)), where a and b are the lower and upper limit, respectively. 
Distribution is between ea and eb, but if you want it between 10a 
and 10b, you can easily manipulate it by doing something like this: 
loguniform(label, a ∗ loge(10), b ∗ loge(10)).

We can use these functions to create really complex search spaces. 

Let's look at an example of creating a search space:

from hyperopt import tpe, fmin, hp

space = hp.choice('classifier',[

      {'model': 'KNeighborsClassifier',

      'param': {'n_neighbors':

                hp.choice('n_neighbors',range(3,11)),

       'algorithm':hp.choice('algorithm', ['ball_tree',  

'kd_tree']),

Figure 4-3-2. These graphs are plotted using Hyperopt distributions. 
Graph (a) shows a uniform distribution between -1, 1. Graph (b) 
shows a loguniform distribution between -3, 4. Graph (c) shows 
a normal distribution with mean 1 and standard deviation 0.5. 
Graph (d) shows a lognormal distribution with mean and standard 
deviation both 1
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      'leaf_size':hp.choice('leaf_size', range(1,50)),

      'metric':hp.choice('metric', ["euclidean", "manhattan",

                                      "chebyshev", "minkowski"

                       ])}

      },

      {'model': 'SVC',

        'param':{'C':hp.loguniform('C', -2*m.log(10),  

11*m.log(10)),

       'kernel':hp.choice('kernel',['rbf', 'poly', 'sigmoid']),

       'degree':hp.choice('degree', range(1,15)),

        'gamma':hp.loguniform('gamma', -9*m.log(10),  

3*m.log(10))}

      }

      ])

We start by choosing a classifier for our model using hp.choice(), one 

of KNN or SVM would be chosen. Once we choose the classifier, we can 

create distributions. In the preceding example, I chose to use hp. choice() 

for discrete distributions and hp. lognormal() for C and gamma in SVM. As 

mentioned earlier, we can manipulate function hp.loguniform() to use 

10x instead of ex.

Note We need to provide labels to these hp functions. in the 
preceding code, i used the name of the hyperparameter itself to label 
the distribution.

Now that we have a search space, we’ll work on the objective function:

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC
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from hyperopt import tpe, fmin, hp

import math as m

digits = load_digits()

X_train, X_test, y_train, y_test = train_test_split(digits.data,

                                                  digits.target,

                                                  test_size=0.3)

logs = {'args':list(),

      'train_score': list(),

      'val_score': list()}

def objective_func(args):

      clf_func = args["model"]

      params = args["param"]

      clf = eval(clf_func)(**params)

      clf.fit(X_train, y_train)

      val_score = clf.score(X_test, y_test)

      train_score = clf.score(X_train, y_train)

      logs['args'].append(args)

      logs['train_score'].append(train_score)

      logs['val_score'].append(val_score)

      return -val_score

best = fmin(objective_func, space, algo=tpe.suggest,  

max_evals=100)

Creating the objective function is easy. We extract the hyperparameters 

and pass them to the classifier. However, in this case, since our classifier is 

also a variable, we extract that as well. I have also created a log dictionary 

to save history. Run fmin() and the algorithm will start tuning. Refer to 

Figure 4-3-3, scatter plot of accuracy v/s trials.
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Defining a neural network architecture using a Hyperopt search space 

can be a bit tricky where change in certain hyperparameters like the 

‘number of layers’ change the total number of hyperparameters, because 

then we’ll have to decide the number of nodes in each layer or whether or 

not layers use methods like batch normalization/dropout. So let’s look at 

another interesting example that shows how we can define these kinds of 

awkward search spaces:

from hyperopt import hp, tpe, fmin

from keras.datasets import mnist

from keras.layers.core import Dense, Dropout, Activation

from keras.models import Sequential

from keras.utils import np_utils

import numpy as np

# load and preprocess the data

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000, 784)

Figure 4-3-3. Figure 4-3-3 shows the result of optimizing a support 
vector classifier for hyperparameters C, kernel, degree, and gamma 
on the digits dataset. We can see the score saturating at 0.99 after 
some 30 trials. Hence, the model is more certain about where to look 
to get the best hyperparameters
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x_test = x_test.reshape(10000, 784)

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

classes = 10

input_shape = 784

y_train = np_utils.to_categorical(y_train, classes)

y_test = np_utils.to_categorical(y_test, classes)

#logs

logs = {'model_summary':list(),

      'val_acc': list()}

def obj_func(args):

      #initializing the keras model

      model = Sequential()

      #defining first hidden layer

      model.add(Dense(units=args['units']['layer_units_1'],

                     input_shape=(input_shape, ),

                     name='layer_units_1'))

      #defining number of remaining hidden layer

      number_of_layers = len(args['units'])

      for layer in range(2, number_of_layers):

             model.add(Dense(units=args['units'][f'layer_units_

{layer}'],

                         name=f'layer_units_{layer}'))

             model.add(Dropout(args['dropout'][f'dropout_p_

{layer}'],

                      name=f'dropout_p_{layer}'))
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             model.add(Activation(

                     activation=args['activation'][f'activation_

{layer}'],

                    name=f'activation_{layer}'))

       # adding last layer

       model.add(Dense(classes, name=f'layer_unit_{layer+1}'))

       model.add(Activation(activation='softmax',

                           name=f'activation_{layer+1}'))

       model.compile( loss='categorical_crossentropy', 

metrics=['accuracy'], optimizer='adam')

      result = model.fit(x_train, y_train,

                        batch_size=2,

                        epochs=1,

                        verbose=3,

                        validation_split=0.2)

      validation_acc = np.amax(result.history['val_accuracy'])

      print(validation_acc)

      logs['model_summary'].append(model.summary())

      logs['val_acc'].append(validation_acc)

      return -validation_acc

def each_layer(number_of_layers):

      params = {'units': dict(),

                'dropout': dict(),

                'activation': dict()}

      number_of_nodes = [16,36,64,128,256,512]

      for layer in range(number_of_layers):
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            params['units'][f'layer_units_{layer}'] = hp.choice(

                                            f'layer_{number_of_

layers}_{layer}',

                                            number_of_nodes)

            params['dropout'][f'dropout_p_{layer}'] = hp.uniform(

                                           f'dropout_{number_of_

layers}_{layer}',

                                          0, 0.8)

             params['activation'][f'activation_{layer}'] = 

hp.choice(

                                        f'activation_{number_of_

layers}_{layer}',

                                       ['relu', 'elu'])

      return params

# choice for number of layers

number_of_layers = [3, 5, 7, 9]

space = hp.choice('layers', [each_layer(n) for n in number_of_

layers])

best = fmin(obj_func, space, algo=tpe.suggest, max_evals=10)

In this particular case, first I decided the number of layers, and then 

I used a function, each layer_ ,( )  so that I can now iterate over 

the layers, deciding the number of nodes in each layer, the amount of 

dropout, and the choice of activation function. Note that I am using 

labels with number_of_layers and layer because I want the labels to be 

unique, similar to Dropout and Activation Functions. Now that the search 

space is created, we have to create the neural network in the objective 

function, which is pretty much straightforward. And now we can optimize 

hyperparameters for awkward searches.
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 Parallelizing Trials in TPE
We can exploit TPE even more by parallelizing the trials. Multiple 

candidates can be drawn at once from distribution l(x), and these can 

be evaluated in parallel. By default, fmin is executed serially and uses 

the argument trials = Trials(), which uses a list. However, we can use 

MongoTrials() instead to evaluate these trials parallelly.

The first requirement, obviously, is to install MongoDB. After that, 

there are four simple steps to start the asynchronous optimization:

• When using fmin, pass trials as MongoTrials().

• Start a visible MongoDB server.

• Execute the Python file.

• Run hyperopt − mongo − worker, which is a worker 

script placed in bin of your Python environment while 

installing Hyperopt.

Let’s use MongoTrials() for the previous toy example of f (a, b) = a2 − b2:

from hyperopt import tpe, fmin, hp

from hyperopt.mongoexp import MongoTrials

def objective_func(args):

      a = args['a']

      b = args['b']

      f = a**2 - b**2

      return f

range_a = hp.uniform('a', -2, 3)

range_b = hp.uniform('b', -1, 2)

space = {'a': range_a,

           'b': range_b}
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m_trials = MongoTrials("mongo://localhost:27017/foo_db/jobs", 

exp_key="exp2")

best = fmin(objective_func, space, algo=tpe.suggest, trials=m_

trials, max_evals=1000)

In the preceding code we used MongoTrials(). The first step is to start a 

MongoDB server:

$ mongod --dbpath . --port 27017

By default, the port is 27017, but you can change it according to your 

need.

Now execute the previous Python script. In MongoTrials() we need to 

define the port and an exp_key, which you’ll need to change in different 

runs if you are using the same database.

When you execute the script, it’ll wait for mongo workers to start, 

which you can start with this command:

$ hyperopt-mongo-worker --mongo=localhost:1234/foo_db --poll- 

interval=0.1

As previously mentioned, hyperopt − mongo − worker is a file stored 

in your $PATH (i.e., bin of the Python environment you are using). Here 

you need to give the <host >  < port > / < db − name> and the poll interval 

checks work between every defined interval; if a job is found it’ll start the 

computation.

As soon as you start the mongo workers, the sets of hyperparameters 

suggested by previous EI will be passed to the objective function and the 

process will start.

Note that worker is being executed in $PATH, and worker needs an 

objective function, so the Python script where the objective function is 

defined must be exported to $PATH.
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And now you will get the asynchronous updates instead of serial ones. 

Alternatively, you can use Apache Spark for parallelization.

Hyperopt is designed to accommodate other surrogate functions 

like Gaussian process and random forest regression, but they are not 

implemented yet. But since Hyperopt is an open source library, I believe 

authors would certainly welcome these implementations. So go ahead and 

contribute to this amazing library for the greater good of the community.

 Hyperopt-Sklearn
Hyperopt-sklearn6 is a library7 based on Hyperopt that uses Hyperopt for 

algorithm selection and hyperparameter tuning on scikit-learn algorithms.

The library can be a real time-saver because it creates its own search 

spaces for algorithms provided in scikit-learn. You can do end-to-end 

modeling, since it also provides algorithm selection and tuning options 

for data preprocessing (although not all scikit-learn algorithms are 

implemented yet).

The usage of hpsklearn is in sklearn style, implementing methods like 

fit(), .score(), and .predict() just like scikit-learn’s Grid/Random 

Search. Providing a search space is optional though. Let's check out a few 

examples to understand it better.

from sklearn.datasets import load_boston

from sklearn.model_selection import train_test_split

from hpsklearn import HyperoptEstimator, any_regressor,

                                              any_preprocessing, svr

from hyperopt import tpe, hp

import math as m

6 http://conference.scipy.org/proceedings/scipy2014/pdfs/komer.pdf
7 https://github.com/hyperopt/hyperopt-sklearn
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X, y = load_boston().data, load_boston().target

X_train, X_test, y_train, y_test = train_test_split(X,y, test_

size=0.2)

model = HyperoptEstimator(regressor=any_regressor('test1_reg'),

                   preprocessing=any_preprocessing('test1_

preprocessing'),

                  algo=tpe.suggest,

                  verbose=True,

                  max_evals=100)

model.fit(X_train, y_train, n_folds=3, cv_shuffle=True)

print(model.score(X_test, y_test))

print(mdoel.best_model())

Just like any other classifier/regressor in scikit-learn, we can use 

HyperoptEstimator, which means that even in your existing code, you 

need to change a single line to include this hyperparameter-tuning 

library. In the preceding code, we gave hpsklearn the freedom to choose 

any algorithm and set of hyperparameters and any preprocessing 

(normalization/standardization, etc.). However, we can restrict the tuning 

as well as preprocessing selection for certain algorithms. For example:

model = HyperoptEstimator(regressor=svr('test_svr'),

                        preprocessing=[],

                        algo=tpe.suggest,

                        verbose=True,

                        max_evals=100)

You can replace the initialization of the model in the previous 

code with this line to tune only on support vector regressor and use no 

preprocessing. Alternatively, you can change spaces for one or more 

hyperparameters like this:
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space = {'C':hp.loguniform('C',-2*m.log(10),11*m.log(10)),

        'gamma':hp.loguniform('gamma',-9*m.log(10),3*m.log(10))

        }

model = HyperoptEstimator(regressor=svr('test_svr', 

**space['param']),

                      preprocessing=[],

                      algo=tpe.suggest,

                      verbose=True,

                      max_evals=100)

Here, default search spaces for defined hyperparameters (C and 

gamma) will be overwritten by the custom search space. You can do the 

same with preprocessing.

Since the library supports algorithms like SVM, decision trees, KNN, 

and so on, you can use hpsklearn to get a baseline accuracy and use 

custom search spaces and try out different models to tune models further.

 Hyperas
Yet another extremely useful open source hyperparameter optimization 

library, Hyperas8 is a wrapper around Hyperopt for optimizing architecture 

of neural networks with Keras. This library is written in such a way that 

it saves you from creating complex search spaces for neural networks; 

instead, you can use simple Keras code with a little addition of ranges. 

Here’s an example to help you understand the concept of Hyperas:

from hyperopt import Trials, STATUS_OK, tpe

from keras.datasets import mnist

from keras.layers.core import Dense, Dropout, Activation

8 https://github.com/maxpumperla/hyperas
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from keras.models import Sequential

from keras.utils import np_utils

import numpy as np

from hyperas import optim

from hyperas.distributions import choice, uniform

def data():

      # MNIST

      (x_train, y_train), (x_test, y_test) = mnist.load_data()

      x_train = x_train.reshape(60000, 784)

      x_test = x_test.reshape(10000, 784)

      x_train = x_train.astype('float32')

      x_test = x_test.astype('float32')

      x_train /= 255

      x_test /= 255

      classes = 10

      input_shape = 784

      y_train = np_utils.to_categorical(y_train, classes)

      y_test = np_utils.to_categorical(y_test, classes)

       return x_train, y_train, x_test, y_test, input_shape, 

classes

def create_model(x_train, y_train, x_test, y_test, input_shape, 

classes):

      model = Sequential()

      model.add(Dense(units={{choice([8, 16])}},

                               input_shape=(input_shape,), 

name='dense1'))

      layers = {{choice([2, 3, 4, 5, 6, 7, 8, 9, 10])}}
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      for i in range(layers):

             model.add(Dense(units={{choice([32, 64, 256, 512, 

1024])}}))

            model.add(Dropout({{choice([0, 0.33])}}))

             model.add(Activation(activation={{choice(['relu', 

'elu'])}}))

      model.add(Dense(classes))

      model.add(Activation(activation='softmax'))

      model.compile(loss='categorical_crossentropy',

                   metrics=['accuracy'],

                    optimizer={{choice(['rmsprop', 'adam', 

'sgd'])}})

      result = model.fit(x_train, y_train,

                   batch_size={{choice([4, 8, 16])}},

                   epochs=10,

                   verbose=3,

                   validation_split=0.2)

      validation_acc = np.amax(result.history['val_accuracy'])

      print('Test accuracy:', validation_acc)

      return {'loss': -validation_acc, 'status': STATUS_OK, 'model':

                                                         model}

best_run, best_model = optim.minimize(model=create_model,

                                      data=data,

                                      algo=tpe.suggest,

                                      max_evals=10,

                                      trials=Trials())
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X_train, Y_train, X_test, Y_test, _, _ = data()

print("Test Score on Best Model:")

print(best_model.evaluate(X_test, Y_test))

print("Hyperparameter Set for best Model:")

print(best_run)

While using Hyperas, we need to create two functions. One function 

is for data loading. The other function is like an objective function that 

consists of a neural network and returns a loss score, the only difference 

being that the search space is not a parameter but instead data is passed as 

a parameter. The search space is defined as we write each hyperparameter 

in the network. And the optim. minimize () function from Hyperas starts 

the optimization.

In the first function, data(), we load the dataset (here MNIST); since 

the objective function will be iterating, we don’t want to load data over and 

over. Everything you return from data() will be passed to create─model().

Next we define the objective function, where we define the neural 

network using Keras. After initializing Sequential(), we add layers 

one by one. In place of hyperparameters, we can give a range using this 

format: {{′range′}}. ′range′ is the distribution functions from Hyperas, which 

follow the same nomenclature as Hyperopt’s. In Hyperas, we don’t need 

to give labels, because it’ll take the variables that are assigned to them 

as labels. However, if we are iterating over some hyperparameter range 

like in succeeding code,

for i in range(layers):

       model.add(Dense(units={{choice([32, 64, 256, 512, 1024])}}))

For instance, if there are three layers, the same hyperparameter will 

be chosen for all three because Hyperas makes a template of the Python 

code and sends the distributions to Hyperopt, which will consider it to be 

one hyperparameter, since it’s written once. You have two alternatives to 
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work around this problem: either you can go back and use Hyperopt as we 

did in last example in the “Search Space” section, or you can use if…else 

statement to add layers:

model.add(Dense({{choice([32, 64, 256, 512, 1024])}}))

model.add(Dropout({{uniform(0, 0.8)}}))

model.add(Activation({{choice(['relu', 'elu'])}}))

if {{choice(['one', 'two'])}} == 'two':

      model.add(Dense({{choice([32, 64, 256, 512, 1024])}}))

      model.add(Dropout({{uniform(0, 0.8)}}))

      model.add(Activation({{choice(['relu', 'elu'])}}))

If the number of chosen layers is two, only then will it create another 

layer.

Hyperas is a very simple and easy-to-use wrapper around Hyperopt, 

and you can use it to quickly tune your models, but if you want more 

flexibility, use Hyperopt, which works wonders even with the most 

complex search spaces.

In this chapter you learned how Bayesian hyperparameter 

optimization works and how you can use Hyperopt in your problems. 

These techniques can easily increase your time efficiency and optimize 

your resource utilization.
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CHAPTER 5

Optuna and AutoML
We can now create an efficient model using the techniques that were 

discussed in the previous chapters. Bayesian optimization goes a long way 

in finding optimal hyperparameters. This chapter provides an overview of 

the Optuna framework and discusses further the role of hyperparameter 

optimization in automated machine learning. We’ll use Optuna to create 

our own little AutoML script. And then we’ll explore the Tree-based 

Pipeline Optimization Tool (TPOT), an AutoML tool that uses genetic 

programming to optimize machine learning pipelines.

 Optuna
Like Hyperopt discussed in Chapter 4, Optuna1 is open source library that 

uses Bayesian optimization. The underlying algorithms Optuna uses are 

the same as in Hyperopt, but the Optuna framework is much more flexible. 

Optuna can be easily used with PyTorch, Keras, scikit-learn, Apache 

MXNet, and other libraries. The API is very similar to Hyperopt’s API, with 

a few changes. Let’s dive into an example:

1 “Optuna: A Next-Generation Hyperparameter Optimization Framework,” 
T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, KDD ‘19: Proceedings of the 
25th ACM SIGKDD International Conference on Knowledge Discovery & Data 
Mining (July 2019) 2623–2631.

https://doi.org/10.1007/978-1-4842-6579-6_5#DOI
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from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split,  

cross_val_score

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC

import optuna

from optuna.samplers import TPESampler

digits = load_digits()

X_train, X_test, y_train, y_test = train_test_split(digits.data,

                                                  digits.target,

                                                  test_size=0.3)

def objective_func(trial):

      classifier_name = trial.suggest_categorical("classifier", 

                                      ["SVC", "RandomForest"])

      if classifier_name == "SVC":

            c = trial.suggest_loguniform("svc_c", 1e-2, 1e+11)

             gamma = trial.suggest_loguniform("svc_gamma", 1e-9, 

1e+3)

            kernel = trial.suggest_categorical("svc_kernel",

                                           ['rbf','poly','rbf', 

'sigmoid'])

             degree = trial.suggest_categorical("svc_degree", 

range(1,15))

             clf = SVC(C=c, gamma=gamma, kernel=kernel, 

degree=degree)

      else:

            algorithm = trial.suggest_categorical("algorithm",

                                       ['ball_tree', "kd_tree"])

            leaf_size = trial.suggest_categorical("leaf_size",

                                                   range(1,50))
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            metric = trial.suggest_categorical("metric",

                                     ["euclidean","manhattan",

                                      "chebyshev","minkowski"])

            clf = KNeighborsClassifier(algorithm=algorithm,

                                       leaf_size=leaf_size,

                                       metric=metric)

      clf.fit(X_train, y_train)

      val_acc = clf.score(X_test, y_test)

      return val_acc

study = optuna.create_study(direction='maximize', 

sampler=TPESampler())

study.optimize(objective_func, n_trials=100)

best_trial = study.best_trial.value

print(f"Best trial  accuracy: {best_trial}")

print("parameters for best trail are :")

for key, value in study.best_trial.params.items():

      print(f"{key}: {value}")

In Figure 5-1-1, we can see the graph saturated around 1. Note that 

here the objective value is the validation accuracy.

Figure 5-1-1. Plot showing the accuracy vs. trial on the first 50 trials 
of preceding code example
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If this example looks familiar, the reason is that we worked on the same 

problem in Chapter 4. The user interface of Optuna is quite similar to that 

of Hyperopt. We have to define an objective function that should return a 

score (loss/accuracy) which would be minimized/maximized.

In place of the fmin() function, we instantiate the create_study() 

function and optimize it. But one of the best features provided by Optuna 

is the capability to define the hyperparameter search range on the fly. 

Unlike Hyperopt, where we have to predefine the search space, in Optuna 

we define the search space in the objective function itself (something like 

what we did in Hyperas). Let’s discuss some key aspects of Optuna.

 Search Space
In Hyperopt and many other algorithms, we define search space using a 

dictionary. As mentioned, in Optuna, we define the search space on the 

fly. As you saw in Chapter 4, creating search spaces in neural networks is 

difficult with Hyperopt and Hyperas. In hyperparameters such as number 

of nodes that are dependent on the number of layers, Hyperas would use 

if…else. If a loop was used, Hyperas would choose the same number of 

nodes for all the layers. In Optuna we can provide the unique labels to 

each hyperparameter in a loop. For example:

n_layers = trial.suggest_int('n_layers', 1, 3)

layers = []

in_features = 28 * 28

for i in range(n_layers):

       out_features = trial.suggest_int('n_units_{}'.format(i),  

4, 128)

      layers.append(Linear(in_features, out_features))

      layers.append(ReLU())

      in_features = out_features
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Optuna makes it so much easier to deal with this problem. And Optuna 

provides the same distributions as Hyperopt. The following are some of the 

commonly used distributions:

• Categorical distribution: trial.suggest_

categorical() is used for selecting discrete values 

from a list, which is the same as hp.choice() in 

Hyperopt.

• Uniform distribution: trial.suggest_uniform() is 

used for a random distribution on a uniform scale, 

which is similar to hp.uniform().

• LogUniform Distribution: trial.suggest_loguniform(label, 

low, high) is used for a loguniform scale. However, in 

Hyperopt hp.loguniform(label, low, high) returns a 

distribution between exp(low) and exp(high). In Optuna, a 

loguniform distribution between low and high is returned.

And there are more distributions we can use as per our need.

 Underlying Algorithms
In addition to tree-structured Parzen estimator and random search, 

Optuna provides successive halving and HyperBand, which is an 

advantage over Hyperopt. We have already discussed HyperBand in 

Chapter 3. Here’s how we can use it:

import optuna

# define the objective function

study = optuna.create_study(pruner=optuna.pruners.

HyperbandPruner())

study.optimize(objective, n_trials=20)
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 Visualization
Optuna provides elegant visualization. Figure 5-1-1 is generated by Optuna 

using optuna. visualization. plot _ optimization _ history(study). You can 

pass the study object and it’ll create a graph. You can point on each scatter 

point and observe different hyperparameters used. There are even more 

visualization options.

Callbacks, an argument in study.optimize() which invokes callback 

after each trial. Using this you can visualize progress on dashboards like 

tensorboardX in real time.

Callbacks work something like this:

import optuna

from optuna.samplers import TPESampler

def log(study, trial):

      print(f"Trial No.={trial.number}, HP_Set={trial.params}, \

      Score={trial.value}")

      print(f"Best Value ={study.best_value}")

# def objective_func()

study = optuna.create_study(sampler=TPESampler())

study.optimize(objective_func, n_trials=100, callbacks=[log])

It’s really easy to work with. You can write these results in 

the dashboard and they’ll get updated after each trial.

 Distributed Optimization
Just like Hyperopt, Optuna supports distributed optimization, but working 

with Optuna’s implementation is easier than working with Hyperopt’s 

implementation. Let’s how we can configure it:
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study = optuna.create_study(study_name='distributed_test',

                           storage='database_url',

                           load_if_exists=True)

Define database url while instantiating ‘create _ study()’. And set 

‘load_if_exits=True’ this instead of creating a new study would look for a 

previous study named “distributed_test”. That way, every time a worker 

starts, it won’t create a new study but instead look for the existing one, and 

thus won’t start training from scratch.

For a comprehensive comparison of Hyperopt and Optuna, refer to 

the following article by Jakub Czakon, Senior Data Scientist at Neptune.

ai: “Optuna vs Hyperopt: Which Hyperparameter Optimization Library 

Should You Choose?”2.

Now, let’s explore an example of how we can optimize the 

hyperparameters of a neural network using Optuna. We’ll be working with 

the MNIST dataset and Keras. We start by importing libraries and split the 

data to train and test set.

from keras.datasets import mnist

from keras.layers.core import Dense, Dropout, Activation

from keras.models import Sequential

from keras.utils import np_utils

import numpy as np

import optuna

from optuna.samplers import TPESampler

(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000, 784)

x_test = x_test.reshape(10000, 784)

x_train = x_train.astype('float32')

2 https://neptune.ai/blog/optuna-vs-hyperopt
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x_test = x_test.astype('float32')

x_train /= 255

x_test /= 255

classes = 10

input_shape = 784

y_train = np_utils.to_categorical(y_train, classes)

y_test = np_utils.to_categorical(y_test, classes)

x_train, y_train, x_test, y_test, input_shape, classes

def log(study, trial):

      print(f"Trial No.={trial.number}, HP_Set={trial.params}, \

            Score={trial.value}")

      print(f"Best Value ={study.best_value}")

def objective_func(trial):

      model = Sequential()

      hidden_layer_unit_choice = [32, 64, 256, 512, 1024]

      hidden_layers = trial.suggest_int('hidden_layers', 1, 6)

       model.add(Dense(units=trial.suggest_categorical('layer1', 

[8, 16]),

                 input_shape=(input_shape, ),

                 name='dense1'))

      model.add(Activation(activation=trial.suggest_categorical(

                                                f'activation1',

                                                        ['relu',

                                                      'elu'])))
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      for i in range(1, hidden_layers):

            model.add(Dense(units=trial.suggest_categorical(

                                              f'layer{i+1}',

                                               hidden_layer_

unit_choice)))

            model.add(Dropout(trial.suggest_uniform(

                                                f'dropout{i+1}', 

0, 0.8)))

            model.add(Activation(

                                activation=trial.suggest_

categorical(

                                            f'activation{i+1}',

                                                       ['relu',

                                                      'elu'])))

      model.add(Dense(classes))

      model.add(Activation(activation='softmax'))

      model.compile(loss='categorical_crossentropy',

                  metrics=['accuracy'],

                  optimizer=trial.suggest_categorical('optimizer',

                  ['rmsprop', 'adam', 'sgd']))

      result = model.fit(x_train, y_train,

                    batch_size=4,

                    epochs=1,

                    verbose=3,

                    validation_split=0.2)

      validation_acc = np.amax(result.history['val_accuracy'])

      print('Validation accuracy:', validation_acc)

      return validation_acc

Chapter 5  Optuna and autOML



118

Define the objective function. In the preceding code, we see 

hyperparameters beign selected for each layer on the fly, just by giving 

unique names to labels.

And lastly, we start the optimization:

study = optuna.create_study(direction='maximize', 

sampler=TPESampler())

study.optimize(objective_func, n_trials=50, callbacks=[log])

best_trial = study.best_trial.value

print(f"Best trial  accuracy: {best_trial}")

print("parameters for best trail are :")

for key, value in study.best_trial.params.items():

   print(f"{key}: {value}")

This example optimizes for 50 trials only, and Figure 5-1-2 shows the 

accuracy graph.

In such a huge search space 50 trials are less (increase the number 

of trials for better results), but we can see the training score increasing. 

Note that the test score is independent, and the objective function is using 

validation accuracy to optimize hyperparameters.

Figure 5-1-2. Accuracy vs. trials for the previous code example
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Optuna is a young library, with a lot of work still in progress, but it’s 

promising.

 Automated Machine Learning
The high complexity of machine learning demands that only machine 

learning experts build models. Machine learning models are task-specific, 

where each model requires a lot of work. To provide machine learning to 

the masses, machine learning experts need a method to create off-the- shelf 

models. This is where automated machine learning (AutoML) steps in.

Machine learning is automated when it creates the complete pipeline 

and gives us a deployable model on its own. To create a complete 

pipeline, we need to use several algorithms, from preprocessing to 

creating a machine learning model. All these algorithms have their 

own hyperparameters that need to be optimized. Here hyperparameter 

optimization plays a huge role. The steps and algorithms for preprocessing 

are described in Appendix I.

Now we’ll quickly build our own AutoML modules in subsequent 

sections using Optuna and TPOT, which would be able to handle almost 

any kind of dataset for classification.

 Building Your Own AutoML Module
This example provides instructions for building a basic module that you 

can subsequently experiment with and add more algorithms. For use in 

real-world problems, there are many optimized AutoML libraries, which 

we’ll discuss later. We’ll work on the Titanic dataset, which is messy, but 

our code will handle all the cleaning and preprocessing.
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Let’s start by importing everything and loading the dataset3:

import pandas as pd

import numpy as np

import impyute as impy

import optuna

from optuna.samplers import TPESampler

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, MinMaxScaler, \

         StandardScaler

from sklearn.impute import SimpleImputer

from sklearn.feature_selection import SelectKBest, \

           chi2, f_classif, mutual_info_classif

from sklearn.svm import SVC

from sklearn.neighbors import KNeighborsClassifier

data = pd.read_csv("./titanic/train.csv")

y = data['Survived']

X = data.drop('Survived', axis=1)

Now we’ll address the part where we are not optimizing the 

hyperparameters. We’ll define the outside objective function because it 

does not make sense to iterate the same process that is not to be optimized.

def label_encode_column(col):

      nans = col.isnull()

      nan_lst = []

      nan_idx_lst = []

      label_lst = []

      label_idx_lst = []

3 https://www.kaggle.com/c/titanic
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      for idx, nan in enumerate(nans):

            if nan:

                  nan_lst.append(col[idx])

                  nan_idx_lst.append(idx)

            else:

                  label_lst.append(col[idx])

                  label_idx_lst.append(idx)

      nan_df = pd.DataFrame(nan_lst, index=nan_idx_lst)

      label_df = pd.DataFrame(label_lst, index=label_idx_lst)

      label_encoder = LabelEncoder()

       label_df = label_encoder.fit_transform(label_

df.astype(str))

      label_df = pd.DataFrame(label_df, index=label_idx_lst)

      final_col = pd.concat([label_df, nan_df])

      return final_col.sort_index()

for column_name in X.columns:

      if str(X[column_name].dtype) == 'object':

            X[column_name] = label_encode_column(X[column_name])

            if len(X[column_name].unique()) > len(X)/3:

                  X = X.drop(column_name, axis=1)

We are using the function label_encode_column(), but what’s 

wrong with just LabelEncoding()? LabelEncoding() also labels the NaN 

values, but we want to impute those later. So function takes each column, 

separates the NaN and other values, and labels them while saving their 

index position. It returns a sorted dataframe, an example of which is 

shown in Figure 5-2-1.
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So after we label encode all the columns, we drop those with a high 

number of unique values. You can alternatively include label encoding in 

the objective function if you want one-hot encoding as an option. Next, we 

are going to define some functions to be used in the objective function:

def mice_imputer(data):

      data = data.to_numpy()

      imputed_data = impy.mice(data)

      imputed_data = pd.DataFrame(imputed_data)

      return imputed_data

def mean_imputer(data):

      imputer = SimpleImputer(strategy='mean')

      imputed_data = imputer.fit_transform(data)

      imputed_data = pd.DataFrame(imputed_data)

      return imputed_data

The preceding code parameterizes two imputers, Mean Imputation 

and MICE Imputation. Refer to Appendix I for instructions on including 

more options.

def feature_selector(X, y, k, algo="f_classif"):

      kbest = SelectKBest(eval(algo), k)

      X = kbest.fit_transform(X, y)

      X = pd.DataFrame(X)

      return X

Figure 5-2-1. Label Encoder encodes all values except NaNs
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We are going to select 'k' number of best features, which is also going to 

be a hyperparameter. Another hyperparameter is selecting the feature 

selection algorithm. We have 'f_classif', 'chi2', and 'mutual_info_

classif'. The last of the preprocessing steps is scaling. We select between 

normalization and standardization.

def scaling(data, scaler="min_max"):

      if scaler=='min_max':

            scaled_data = MinMaxScaler().fit_transform(data)

      else:

            scaled_data = StandardScaler().fit_transform(data)

      scaled_data = pd.DataFrame(scaled_data)

      return scaled_data

And now we define the objective function:

def objective_func(trial):

      try:

            # imputation

             imputer = trial.suggest_categorical('impyter', 

['mice', 'mean'])

            if imputer=='mice':

                  imputed_X = mice_imputer(X)

            else:

                  imputed_X = mean_imputer(X)

            # feature selection

            fea_slct = trial.suggest_categorical('fea_slct',

                                                  ['chi2',  

'f_classif',

                                                  'mutual_info_

classif'])

             no_feature_cols = trial.suggest_int('k',  

3, len(X.columns))
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            selected_features = feature_selector(imputed_X, y,

                                                no_feature_cols, 

fea_slct)

            # scaling

             scaler = trial.suggest_categorical('scaler', 

                                       ['min_max', 'standard'])

            scaled_X = scaling(selected_features)

      except:

            return 0.0

      # instantiating machine learning algorithm

      classifier_name = trial.suggest_categorical("classifier",

                                                ["SVC", 

"RandomForest"])

      if classifier_name == "SVC":

            c = trial.suggest_loguniform("svc_c", 1e-2, 1e+11)

             gamma = trial.suggest_loguniform("svc_gamma",  

1e-9, 1e+3)

            kernel = trial.suggest_categorical("svc_kernel",

                                           ['rbf','poly','rbf', 

'sigmoid'])

             degree = trial.suggest_categorical("svc_degree", 

range(1,15))

             clf = SVC(C=c, gamma=gamma, kernel=kernel, 

degree=degree)

      else:

            algorithm = trial.suggest_categorical("algorithm",

                                                   ['ball_tree', 

"kd_tree"])

             leaf_size = trial.suggest_categorical("leaf_size", 

range(1,50))
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            metric = trial.suggest_categorical("metic",

                                              [ "euclidean", 

"manhattan",

                                                "chebyshev", 

"minkowski"])

            clf = KNeighborsClassifier(algorithm=algorithm,

                                       leaf_size=leaf_size, 

metric=metric)

      # fit the model

      clf.fit(scaled_X, y)

      val_acc = clf.score(scaled_X, y)

      return val_acc

study = optuna.create_study(direction='maximize', 

sampler=TPESampler())

study.optimize(objective_func, n_trials=100)

best_trial = study.best_trial.value

print(f"Best trial  accuracy: {best_trial}")

print("parameters for best trial are :")

for key, value in study.best_trial.params.items():

      print(f"{key}: {value}")

The first part of the objective function consists of all the preprocessing 

steps, where we are using try...except. We are using the functions 

defined before. In some cases, when there is a mismatch in algorithm 

and hyperparameter, or if the data processed by the previous step is not 

acceptable by the next step, you might encounter an error. For instance, 

some of the feature selection algorithms don’t work on negative values, but 

even if you are careful with the dataset, the imputer might impute a NaN 

with some negative value. In that case, just return zero, the least possible 

accuracy value.
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We then define the choice for classifiers as we did before (you can add 

more classifiers). The idea of AutoML is to create a generic code that gives 

you the best possible pipeline for the dataset. You can train any tabular 

dataset for classification to get the best possible pipeline for the previous 

set of steps and choices of algorithm without writing another line of code.

As the complexity of the search space is increased, we need to perform 

more trials over the dataset. The more trials, the better the results we’ll 

achieve. To reduce the time, you can distribute the optimization process, 

as described next.

 TPOT
The Tree-based Pipeline Optimization Tool (TPOT) is an AutoML 

framework that uses genetic programming to optimize the machine 

learning pipeline.

As we have discussed, data preprocessing typically consists of 

data cleaning (label encoding, dropping unimportant columns, and 

scaling), which is something we must take care of beforehand. The more 

complex tasks, such as feature selection, feature reduction, and feature 

construction, are handled by TPOT. It further selects the best model with 

the best set of hyperparameters. Figure 5-2-2 shows the features that are 

automated by TPOT.

Genetic algorithms are slow but excel at finding the best route for a 

given dataset. We would need to train for a long time before reaching the 

best set of hyperparameters.

Understanding TPOT first requires understanding what genetic 

algorithms are. As the name suggests, the concept of genetic algorithms 

is derived from Darwin’s theory of natural selection. A genetic algorithm 

continuously evolves, by selecting the best algorithm. For the best 

algorithm it goes to its children doing some random modifications in 

hyperparameters and evaluating models to find the best fit.
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Now we’ll look at an example of how TPOP works, using TPOT for the 

Iris dataset, since it’s already a clean dataset:

from tpot import TPOTClassifier

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split

import numpy as np

iris = load_iris()

X_train, X_test, y_train, y_test = train_test_split(

                                         iris.data.astype 

(np.float64),

                                         iris.target.astype 

(np.float64),

                                           test_size=0.25

                                           )

# Loading the dataset and splitting it to train and test.

tpot = TPOTClassifier(generations=5, population_size=50, 

verbosity=2)

tpot.fit(X_train, y_train)

Figure 5-2-2. TPOT covers around 80% of the job
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We train TPOT for five generations; the default is 100 generations. The 

interface of this framework is quite similar to scikit-learn.

And voila! I achieved 100% accuracy on the test set on the trained 

model.

To make things even easier, we have an option to export the selected 

pipeline to a Python script, which can then easily be deployed.

tpot.export('tpot_iris_pipeline.py')

The preceding line of code auto-generates the following tpot_iris_

pipeline.py file:

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.neural_network import MLPClassifier

# NOTE: Make sure that the outcome column is labeled 'target' 

in the data # file

tpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep="COLUMN_

SEPARATOR",

                         dtype=np.float64)

features = tpot_data.drop('target', axis=1)

training_features, testing_features, training_target, testing_

target = \

           train_test_split(features, tpot_data['target'],

                             random_state=None)

# Average CV score on the training set was: 0.9913043478260869

exported_pipeline = MLPClassifier(alpha=0.1, learning_rate_

init=0.1)

exported_pipeline.fit(training_features, training_target)

results = exported_pipeline.predict(testing_features)
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For more time we optimize, the better the results we’ll get.

There are many more libraries for AutoML, such as auto-sklearn, H2O 

AutoML, and AutoKeras. AutoML not only is beneficial to data scientists to 

accelerate the process but also has enabled people with no knowledge of 

coding to use machine learning. AutoML certainly holds a great position in 

the future of artificial intelligence.

As you’ve witnessed in this chapter, hyperparameter optimization 

plays a huge role in AutoML, enabling us to generate the best machine 

learning models in the least amount of time.

To conclude this book, I wish you success as you optimize your 

hyperparameters using more advanced methods like Bayesian 

optimization and pruning algorithms instead of manually tuning or grid 

search. Happy optimization!
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 Appendix I
The purpose of this appendix is to help you brush up on basic machine 

learning concepts and look at ways to evaluate models.

 Data Cleaning and Preprocessing
Clearly, data cleaning and preprocessing is the most important task when 

making a machine learning model. When dealing with real-life data, 

you will find nonnumerical columns, missing values, outlier data points, 

unwanted features, and so forth.

Before you start preprocessing data, you must carefully look and 

understand the dataset, and understand the meaning of each column if 

possible.

The following sections address all the data cleaning and preprocessing 

problems that you may encounter and discuss algorithms that can be used to 

solve them. After that, we’ll explore how to apply them to a real-world dataset.

 Dealing with Nonnumerical Columns
Algorithms understand numbers but not strings. If a column consists of 

strings, we must change them to a numbers. But what if each point in 

the column is a unique string (for example, a dataset containing unique 

names)? In that case, the column must be dropped, so it’s important to 

look at the dataset carefully.

In this section we’ll look at some methods to convert strings to numbers.

https://doi.org/10.1007/978-1-4842-6579-6#DOI
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 Label Encoding

We have few unique strings in a column, when we convert them to labels, 

for example, we have these unique string, “a”, “b”, “c” in repetition we 

convert them to 0, 1, 2 respectively. Now every occurrence of string “a” 

will be replaced by number 0. In Table A1-1, Col 1 represents a feature 

column and Col 1’ represents its replacement label encoding that is 

understandable to algorithms. This process of converting string to 

numbers (labels) is called Label Encoding.

Label encoding introduces one problem, though: in certain 

contexts, such as categorical data, representing strings with numbers 

suggests a prioritization, ranking, or order of the strings where no such 

correspondence exists. That is, assigning 0, 1, and 2 to a, b, and c doesn’t 

mean, for example, that a precedes b in order and b precedes c. To 

overcome this problem, we can use one hot encoding.

 One-Hot Encoding

One-hot encoding is another method to convert categorical data to 

numeric. Here we split one column into multiple columns, where 

the number of new columns equals the number of unique strings in 

Table A1-1. Col 1 Replaceable by 

Col 1’ Through Label Encoding

Col 1 Col 1’

a 0

b 1

b 1

c 2

a 0
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the categorical data. If we have three categories, “a”, “b”, and “c”, each 

occurrence of “a” will be assigned as [1, 0, 0], “b” as [0, 1, 0], and c as [0, 0, 1].  

1 being value exist in newly created column and 0 means it doesn’t. From 

Col 1 in Table A1-1, if we one-hot encode the categorical data, the result is 

as shown in Table A1-2.

Theoretically, one-hot encoding is superior to label encoding, but the 

number of columns will increase as the number of categories increases. 

When we actually compute the machine learning algorithms, the 

complexity increases exponentially with increase in features. So there’s our 

trade-off.

 Missing Values
Now that we have handled the categorical string columns, let’s handle the 

missing values.

Real-life datasets can contain missing values, for various reasons. 

Often these missing values are identified as NaN, as shown in Table A1-3, 

or blank cells or even empty strings (""). There are many ways you can deal 

with missing values, as described next.

Table A1-2. One-Hot Encoding of 

Col 1 of Table A1-1

Col 1’ a Col 1’ b Col 1’ c

1 0 0

0 1 0

0 1 0

0 0 1

1 0 0
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 Drop the Rows

Drop the rows containing missing values. Before doing that, you must 

check though, if you have enough data points left (to train a machine 

learning model) even after dropping those rows with missing values. Or if 

points in a particular feature are mostly missing, you can drop that too.

 Mean/Median or Most Frequent/Constant

You can fill the missing values with the mean or median  over values in same 

column. Although this is the easiest method to deal with missing values, it 

is quite inaccurate. Also, it can be used only on continuous features and not 

on categorical ones. For instance, if you use mean imputation for C2 in Table 

A1-3, 0.5 is the mean value, but C2 might consist of only 1s and 0s.

Filling with most frequent or constant values from the same column 

would work with categorical features, but it can introduce a bias to the data.

Neither of these methods addresses the correlation between features.

 Imputation Using Regression or Classification

You can use an algorithm like support vector machine (SVM) or K-nearest 

neighbor (KNN) to predict the missing values, using the features that don’t 

have missing values. For example, in Table A1-3, likes of C4 can be used as 

features and C1 or C2 can be termed target columns. Predictive algorithms 

can learn the relation between C1 and C4 or C2 and C4 and predict NaNs 

using regression and classification, respectively.

Table A1-3. Variables with Missing Values (NaN)

C1 C2 C3 C4

21.1 1 4562 198.0

nan nan 2433 183.6

24.3 0 nan 211.7
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 Multivariate Imputation by Chained Equations1

The previous methods wouldn’t work if you have missing values in all the 

columns.

In this process of MICE imputation, missing values are filled multiple 

times to complete the dataset. Let’s go step by step through how it works:

 1. It calculates and imputes using the mean 

imputation for each missing position, which can be 

termed as “placeholders.”

 2. Placeholders for one of the features [F] is set to 

missing; that is, all the values we imputed using 

mean in feature F are set to missing.

 3. F is set as a target column and rest are set as feature 

columns, and F is regressed on all the other features.

 4. We impute the missing values in F, and F is now 

used as a feature for other features to be imputed.

 5. This cycle repeats until all the features are imputed.

 6. The whole cycle, steps 1 to 5, is repeated for 

imputing all the features again and again. The 

number of cycles is a factor that we decide and is 

based on experimentation.

1 “Multiple Imputation by Chained Equations: What Is It and How Does It Work?” 
M. Azur, E. Stuart, C. Frangakis, and P Leaf. Int J Methods Psychiatr Res. 20(1) 
(2011) 40–49. doi:10.1002/mpr.329
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 Outlier Detection
In any given dataset, sometimes a few observations deviate from most 

other observations, creating a biased weightage in their favor; known 

as outliers, they must be removed in order to eliminate unwanted bias. 

For example, the top image in Figure A1-1 shows a normal (Gaussian) 

distribution, which has an approximate mean of 5 on both the x axis and 

y axis. The bottom image in Figure A1-1 shows a threshold ellipse drawn 

to define points under the distribution and outliers. Point (-0.8,4.2) is an 

obvious outlier, and some of the other points that lie outside the threshold 

circle can be assumed to be outliers since they don’t follow the general 

pattern of distribution.

This distribution could be visualized because it is two dimensional; 

however, we would usually witness datasets with a large number of 

features, which means a greater number of dimensions that we won’t 

be able to visualize. So we rely on algorithms to detect these outliers. I’ll 

discuss a few of them further.

Figure A1-1. A Gaussian distribution with mean 5 and standard 
deviation 2.5 (top) and identification of outliers by drawing an ellipse 
(bottom)
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 Z-score

Let’s assume the data is Gaussian, hence making a bell curve. Intuitionally, 

z-score tells us how far the data point is from the mean position (where 

most of the data points lie). The formula for calculating z-score is

 z x= -( )¸m s  

where x is the data point, μ is the mean of the sample data, and σ is the 

standard deviation of the sample. Now we set a certain threshold of z, and 

accordingly eliminate the data points that are outliers.

But what if the data is not Gaussian? We can normalize the data or we 

can use log transformation or Bob Cox transformation in case of skewed 

columns.

A few limitations with outlier detection based on z-score are that it 

can’t be used on nonparametric data and the number of dimensions 

should be less. 

 Density-Based Spatial Clustering of Applications 
with Noise

Density-based spatial clustering of applications with noise (DBSCAN) is a 

clustering algorithm that clusters on the basis of density of points. Points 

lying in low-density areas can be marked as outliers. See Figure A1-2.

The forming of clusters depends on two factors: ε and min_samples. 

ε is the minimum distance between two points that can be considered 

as neighbor. If ε is too low, the result will be few neighbors and too many 

clusters, and no dense region will be formed; however, if ε is too high, the 

result will be one of the clusters consisting of most of the points. min_

samples is the minimum number of points required to make a cluster. 
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 Feature Selection
Features are the key to map a relationship between data points and the 

target value. If some of those features are corrupt and are independent of 

the target values, they are no help in mapping that relationship. Therefore, 

we hunt them out and remove them from the dataset. There are two 

different types of algorithms, univariate and multivariate, that help us to 

hunt for these features.

• Univariate algorithms try to find the relationship 

between each feature (independently of other features) 

and the target columns. If the relationship is strong, we 

keep the feature; otherwise, we discard it.

• Multivariate algorithms find the dependency across the 

features. We get the score for all the features and select 

the best ones.

Figure A1-2. An example of DBSCAN forming clusters to find which 
data points lie in low-density area2 

2 https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html
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Next we’ll look at some statistical methods and algorithms that help 

us do so.

 F-Test

F-test creates a comparison between two models, each of which is first 

created by a constant and another by a constant and a feature. Then 

the F-test finds out whether the relationship between feature and target 

actually means something. An F-test is only able to capture the linear 

dependency between feature and target. This problem is solved by the next 

method we’ll discuss.

 Mutual Information Test

As the name suggests, this score finds out the mutual dependency between 

two variables (here a feature and a target column). Mutual information 

calculates the amount of information we get about one variable (feature) 

given another (target). Mutual information between two variables X and Y 

can be stated as follows:

Mutual Info(X, Y) = H(X) – H(X | Y)

where H(X) is the entropy of X, and H(X | Y) is the conditional entropy 

of X given Y.

This captures even the nonlinear relation between X and Y. As you can 

see in Figure A1-3, the F-score captures the linear relationship but ignores 

the randomness in the feature, while the mutual information (MI) score 

considers the nonlinear relationship very well.
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 Recursive Feature Selection

Whereas the previous two methods are univariate, recursive feature 

selection can be classified as multivariate. Here we train a complete model 

and the model gives the weightage to each variable, called coefficients. 

Features are then sorted according to these values of coefficients, and the 

features with low coefficients are removed.

This pretty much sums up the cleaning and preprocessing, there’s so 

much more that can be done according to the problem and dataset.

 Applying the Techniques
This section demonstrates step by step how to apply some of the data 

cleaning and preprocessing methods discussed thus far to a very generic 

dataset, the Titanic dataset.

Figure A1-3. From left to right, three data distributions and their 
respective F-test score and mutual information score written on the 
top3

3 https://scikit-learn.org/stable/auto_examples/feature_selection/
plot_f_test_vs_mi.html
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First, import the following libraries:

import pandas as pd

import numpy as np

from sklearn.preprocessing import LabelEncoder

import impyute as impy

from scipy import stats

We’ll use these libraries as follows:

• Pandas to load the Titanic dataset

• Numpy to deal with array (operating on vectors) and 

perform some calculations

• Scikit-learn to help in the label encoding

• Impyute is a library which implements different 

implementation algorithm and is really easy to use

• Scipy to help with some more calculations

# Read the data

data = pd.read_csv("./titanic/train.csv")

print(data.head())

Our data looks something like Table A1-4.
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RMS Titanic was a ship that sank after hitting an iceberg in 1912, taking 

with her over 1500 passengers. However, a few hundred survived as well. 

Many factors contributed to whether or not any particular passenger survived 

or died. For instance, women and children were given preference for boarding 

lifeboats. And if a woman was traveling first class, she would have been among 

the first to board a lifeboat, increasing her chance of survival.

Now we have a dataset to analyze, given different variables like Age, 

Sex, Passenger Class, Fare, etc. we have to train a model to predict whether 

a passenger survived or not. We have data for 891 passengers.

One of the most important things you can do is look and understand 

the data. We don’t need a feature selection algorithm to decide if features 

like Name or Passenger ID are important or not. All the names are unique 

and thus won’t map any relationship with the target; the same is true with 

passenger IDs. So, based on mere observation of the dataset, you can 

decide which features to keep and which to discard. For example:

data.drop(["Name", "Cabin", "Ticket", "PassengerId"], axis=1, 

inplace=True)

data.drop() discards the list of features, and axis=1 implies to drop 

columns of these names.

Let’s now check which columns contain missing values. The following 

command shows us the column-wise number of missing points:

>>> data.isna().sum()

Survived      0

Pclass        0

Sex           0

Age         177

SibSp         0

Parch         0

Fare          0

Embarked      2

dtype: int64
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We see that Embarked and Age are two columns with missing values. 

Whereas Age has too many data points missing, Embarked has only two, 

and it would be fine if we drop those two data points completely:

data = data.dropna(subset=["Embarked"])

Before starting the imputation, we’ll label encode the categorical 

columns represented by the strings "Sex" and "Embarked":

L = LabelEncoder()

data["Sex"] = L.fit_transform(data["Sex"])

data["Embarked"] = L.fit_transform(data["Embarked"])

Now, our dataset will look something like Table A1-5.

We’ll use impyute’s MICE algorithm to get the missing values in the 

Age variable:

imputed_data = impy.mice(data)

And that imputes the data. Moving on to outlier detection, we’ll use 

z-score to calculate how much each data point deviates:

z = np.abs(stats.zscore(data))

Table A1-5. Table A1-4 After Removing Unwanted Columns and 

Label Encoding Categorical String Data

Survived Pclass Sex Age SibSp Parch Fare Embarked

0 0 3 1 22.0 1 0 7.2500 2

1 1 1 0 38.0 1 0 71.2833 0

2 1 3 0 26.0 0 0 7.9250 2

3 1 1 0 35.0 1 0 53.1000 2

4 0 3 1 35.0 0 0 8.0500 2
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This gives us a z-score for all 889 data points since we have dropped 

two rows. We’ll drop any row with a z-score greater than 3.5:

threshold = 3.5

outlier_rows = set(np.where(z > 3.5)[0])   #getting the outlier 

rows

outlier_free_data = imputed_data.copy()

for outlier in outlier_rows:  #dropping the outlier data points

      outlier_free_data.drop(outlier, axis=0, inplace=True)

We are almost there. You can try experimenting with different 

algorithms for each step. We’ll now divide the data to X and y, X being the 

features and y being the target column (Survived):

X, y = outlier_free_data.drop(0, axis=1), outlier_free_data[0]

Voila! We now have the clean data and separated columns to work 

with. All we have to do is apply machine learning algorithms to make a 

predictive model.

 Applying Machine Learning Algorithms
As discussed in Chapter 1, we can classify ML problems into three major 

categories: supervised, unsupervised, and reinforcement learning. These 

problems can be further classified and dealt with by using the right 

predictive algorithms.

After data cleaning and preprocessing, further tasks are relatively 

simple. In this section, we’ll explore the use of predictive algorithms by 

applying them on a classification problem.

But, before applying machine learning algorithms to our data, we need 

to do one more thing: split the training data and testing data. You don’t 

want to train your algorithm on a dataset and test it on the same dataset; it 

might give good results on the data you are training on but not the data you 

are testing on in real life (i.e., it might overfit).
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Let’s start with code:

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

Train Test Split will help you to get some data for the training and 

testing some data using the untouched test set. I am keeping the test size at 

30% of the total dataset, leaving 70% for the training data size. And for now 

I am using the support vector machine algorithm to create the machine 

learning model.

X_train, X_test, y_train, y_test = train_test_split(X, y,  

test_size = 0.3)

model = SVC()

model.fit(X_train,y_train)

And now we have a trained model:

>>> print(model.score(X_train, y_train))

0.9274

>>> print(model.score(X_test, y_test))

0.7490

There is still overfitting, and the test score is much lower than the 

training score, but we can always optimize hyperparameters to improve 

this score.

 Model Evaluation Methods
We have already explored how to make machine learning models and 

use different algorithms. Now let’s see how to evaluate these models to 

determine if they are good enough.

The first thing that comes to mind when you want to evaluate a model 

is to check its accuracy, which can be done using the following method:
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Accuracy = total_number_of_true_predictions/

total_data_points

But this method for calculating the accuracy of the model can be 

deceiving at times. Suppose you have a binary classification problem, 

where a person with cancer is labeled as 1 and a person without cancer 

is labeled as 0. In all of your data points, there’s one person suffering 

from cancer. You have trained a model, and now you are testing it for 100 

patients. Your model predicts for all 100 patients and says none of them 

has cancer, (i.e., all of them are labeled as 0). In this case, 99 out of 100 

predictions are right, meaning that if you calculate the accuracy using the 

preceding method, it’ll be 99%. However, in this case, we need to be able to 

identify that one particular case where a person has cancer. And hence we 

should define accuracy in different terms as per the problem statement.

When evaluating model accuracy, you first need to understand the 

concepts of true positive, true negative, false positive, and false negative. Our 

previous example is useful for explaining these concepts. In Table A1-6, the 

leftmost column is the name of the person being evaluated for cancer, the 

middle column is the person’s actual results, and right column shows the 

results predicted from a machine learning model.

Table A1-6. A table of actual results and 

predicted results

Person Actual Predicted

A 1 1

B 0 0

C 1 0

d 0 1
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Table A1-6 shows the following results:

• Person A was actually positive for cancer and was 

predicted by the model to have cancer, resulting in a 

true positive.

• Person B was negative for cancer and the model 

predicted that correctly, resulting in a true negative.

• Person C has cancer but the model predicted a 

negative, 0, which is a false negative.

• Person D doesn’t have cancer but the model predicted 

that person D has, hence a false positive.

Now that you know what these terms mean, in certain cases we 

prioritize fewer false positives and in other cases we prioritize fewer false 

negatives. There are some scores that help us to do so:

• Precision = TruePositives / (TruePositives + 

FalsePositives)

• Recall (TPR) = TruePositives / (TruePositives + 

FalseNegatives)

Recall, also known as true positive rate, decreases 

as the false negatives increase. In the case of cancer 

diagnosis, it is important to eliminate false negatives 

because otherwise the person would go undiagnosed.

Confusion matrix: A table to visualize the number of false negatives 

(FN), false positives (FP), true negatives (TN), and true positives (TP)

positive Tp Fp

negative Fn Tn
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So, even if you go for multiclass classification, you can diagonally look 

at the true predictions.

Based on false positives and false negatives, we have other formulas 

which try to reduce both of them:

• Fβ-Score

Fβ-Score = (1+β.β)*((precision*recall)/(β.precision+recall))

Fβ-Score keeps a balance between precision and 

recall, and β can be changed to give priority to either 

precision or recall:

β = 1 for a balance between precision and recall

β = 0.5 for precision-oriented scores

β = 2 for recall-oriented scores

• Roc Curve(Receiver Operating Characteristic Curve)

One of the most effective measures to evaluate a 

classification model, it tells us the chances of our 

model predicting the right class. The curve is plotted 

between Recall/TPR (true positive rate) and FPR 

(false positive rate), where

FPR = False Positive / (True Negative - False Positive)

TPR is the y axis and FPR is the x axis (see Figure A1-4). 

The maximum possible value of FPR and TPR is 1 and 

the minimum possible value of FPR and TPR is 0.

The area under the curve (AUC) is the chance that 

the model will predict the right value.

The following are the four ROC distributions in Figure A1-4:
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 (a) Denotes AUC 0.5, which means there is a 50% 

chance that your model will predict the right value. 

Hence, the model is of no use and you can throw it 

away.

 (b) Gives you an area of 0.7, which indicates the model 

has a 70% chance of predicting the right value. 

Better.

 (c) The best-case scenario, where all the values are 

predicted correctly and there is no false negative or 

false positive, making TPR 0 and FPR 1.

Figure A1-4. Four plots between TPR and FPR in different 
scenarios
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 (d) Informs you that there’s a high possibility that 

somewhere you did something quite silly while 

writing the code because all the negatives are 

predicted as positives and vice versa.

Now this sums up almost all the evaluation techniques for 

classification. Evaluating a regression model is not difficult. Just calculate 

the R-squared score:

• R-squared Score = (variance calculated by predictions) 

/ (actual variance)

So we can conclude that to make a good model, you must evaluate 

your model properly.

There’s a lot more that can be done, but this appendix has covered 

some basic aspects of building a machine learning model.
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 APPENDIX II

Neural Networks: 
A Brief Introduction to 
PyTorch and Keras API
This appendix discusses a very basic form of neural network and how to 

implement it in PyTorch and Keras, both of which we have throughout the 

book.

If you want to dig deep into the neural networks, I suggest the free 

online book Neural Networks and Deep Learning by Michael Nielson.1

A neural network is a connection of neurons, each activating when a 

certain value hits it. It’s like a universal function that can adjust its weights 

and biases according to the nature of the dataset. The number of input 

nodes is equal to the number of features, and the number of output nodes 

is equal to the number of target classes. As explained in the first section of 

Appendix I, the output is one-hot encoded. In Figure A2-2 you can see the 

number of input features would be five and it would have three classes on 

output. I will discuss here a fully connected neural network and show you 

how to implement it in PyTorch and Keras and train the MNIST dataset.

1 http://neuralnetworksanddeeplearning.com/

https://doi.org/10.1007/978-1-4842-6579-6#DOI
http://neuralnetworksanddeeplearning.com/
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The MNIST dataset consists of images containing handwritten digits, 

each image containing a digit and its label. The task in this dataset is to 

classify the digit from the image. When dealing with images, each pixel is 

considered as one feature.

Before moving further, let’s see how neural networks work. I won’t get 

into mathematics, but rather try to give you a conceptual understanding. 

Initially, random weights and biases are assigned, so if we give the neural 

network an image of number 3, it’ll produce some random output. But as 

we feed our neural network more and more data, weights and biases (or 

we can say all the neurons) adjust themselves in order to minimize the loss 

function and try to perform more specific tasks, cumulatively classifying 

the number correctly or even performing more complex tasks. We use an 

algorithm called backpropagation, which changes the weights and biases 

such that loss is reduced.

Figure A2-1. Six random samples from the MNIST dataset
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Notice in Figure A2-2 how each node in one layer is connected to each 

node in another—that’s how the data flows.

Now let’s jump into some coding.

Here we’ll implement a fully connected neural network using PyTorch:

import torch.nn as nn

import torchvision.datasets as datasets

from torchvision import transforms

from torch.utils import data as D

import torch.optim as optim

import torch

import numpy as np

import torch.nn.functional as F

Figure A2-2. A fully connected neural network with one hidden layer
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We are using PyTorch, TorchVision, and Numpy. I’ll explain all the 

imports as we go ahead.

data_transforms = transforms.Compose([transforms.ToTensor()])

mnist_trainset = datasets.MNIST('./data', train=True, 

download=True, transform=data_transforms)

mnist_testset = datasets.MNIST("./data", train=False, 

download=True, transform=data_transforms)

First we load the dataset; torchvision provides functionality to 

automatically download the MNIST dataset using torchvision.datasets.

MNIST, and we apply the data_transforms to convert the data to tensors.

batch_size = 1

Define the batch_size.

mnist_dataloader_train = D.DataLoader(mnist_trainset, batch_

size=batch_size, shuffle=True)

mnist_dataloader_test = D.DataLoader(mnist_testset, batch_

size=batch_size, shuffle=True)

Pass training and testing data to DataLoader(), which creates a 

generator object that loads the data in batches, so that we do not have to 

load all the data at once.

mnist_dataloader = {"train": mnist_dataloader_train, "eval": 

mnist_dataloader_test}

dataset_size = {"train": len(mnist_dataloader_train), "eval": 

len(mnist_dataloader_test)}

We then nicely put them into dictionaries, to use while training and 

evaluating the model.

print(dataset_size)

{'train': 60000, 'eval': 10000}
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MNIST has 60,000 data points for training and 10,000 for testing.

class Network(nn.Module):

def __init__(self):

      super(Network, self).__init__()

      self.net = nn.Sequential(

      nn.Linear(784,512),

      nn.ReLU(inplace=True),

      nn.Linear(512,256),

      nn.ReLU(inplace=True),

      nn.Linear(256,128),

      nn.ReLU(inplace=True),

      nn.Linear(128,10)

      )

def forward(self, x):

     x = self.net(x)

     return F.log_softmax(x, dim=1)

Now we finally build a small neural network. We extend the nn.Module 

and in the constructor we define the neural network. There are 784 input 

nodes since the image size is 28×28, and we flatten it and provide the pixels 

as features. The output of our network has ten nodes since we have ten 

classes, 0 to 9; we one-hot encode the labels. Also we have three hidden 

layers, with 512, 256, and 128 number of nodes, each layer followed by 

activation function ReLU() and output layer followed by Log Softmax 

Function.

net = Network()

Initialize the network class.
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>>> print(net)

Network(

  (net): Sequential(

    (0): Linear(in_features=784, out_features=512, bias=True)

    (1): ReLU(inplace=True)

    (2): Linear(in_features=512, out_features=256, bias=True)

    (3): ReLU(inplace=True)

    (4): Linear(in_features=256, out_features=128, bias=True)

    (5): ReLU(inplace=True)

    (6): Linear(in_features=128, out_features=10, bias=True)

  )

)

You can simply print and check the network summary.

params = net.parameters()

optimizer = optim.Adadelta(params)

We now initialize the optimizer, which will help show weights and 

biases direction in order to decrease loss.

epochs=3

for epoch in range(epochs):

      print("Epoch {}".format(epoch+1))

      for phase in ["train", "eval"]:

            if phase=="train":

                  net.train()

            else:

                  net.eval()

            running_corrects = 0.0

            for data in mnist_dataloader[phase]:

                  net.zero_grad()

                  inp, out = data
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                  with torch.set_grad_enabled(phase == 'train'):

                        inp = inp.reshape(batch_size, 784)

                        pred = net(inp)

                        loss = F.nll_loss(pred, out)

                        if phase=="train":

                             loss.backward()

                             optimizer.step()

                  pred = np.argmax(pred.detach().numpy(), axis=1)

                  running_corrects += np.sum(pred == \

                                          out.data.detach().

numpy())

            epoch_acc = running_corrects / (dataset_size[phase])

            print("{} accuracy: {}".format(phase, epoch_acc))

The following are the results:

Epoch 1

train accuracy: 0.95015

eval accuracy: 0.9238

Epoch 2

train accuracy: 0.9689333333333333

eval accuracy: 0.9443

Epoch 3

train accuracy: 0.9661666666666666

eval accuracy: 0.9472

Now this code may seem a little overwhelming, but all I did was run a 

loop for epochs, and inside another loop over the data which we got from 

dataloader object. I reshaped the input size from 28×28 to 784. Passing 

the flattened image to the neural network and getting it’s prediction. After 

that, I calculated the loss and ran backpropagation. Now to calculate the 

accuracy, we have the correct observations and predicted values. After 

finding the correct prediction, we get the accuracy by dividing it by total 

data size. And you can see the train and test accuracy in each epoch.
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Now we’ll work on the same MNIST dataset using Keras.

import keras

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense

Again, Keras enables us to download the MNIST dataset from its own 

function. We’ll use Sequential to create the network, and Dense layers are 

nothing but fully connected layers.

batch_size = 1

num_classes = 10

epochs = 3

We define the batch_size, num_classes, and epochs just as we did 

while using PyTorch.

(x_train, y_train), (x_test, y_test) = mnist.load_data()

We load the MNIST dataset.

x_train = x_train.reshape(x_train.shape[0], 784)

x_test = x_test.reshape(x_test.shape[0], 784)

Again, we flatten the images to 784.

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

x_train = x_train/255

x_test = x_test/255

When we loaded data in PyTorch, it was already scaled from 0 to 1, but 

here the pixel values range from 0 to 255, so we scale them.

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)
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We convert the labels to one-hot encoding.

>>> model = Sequential()

>>> model.add(Dense(512, input_dim=784, activation='relu'))

>>> model.add(Dense(256, activation='relu'))

>>> model.add(Dense(128, activation='relu'))

>>> model.add(Dense(num_classes, activation='softmax'))

>>> print(model.summary())

Layer (type)                 Output Shape              Param #

===============================================================

dense_2 (Dense)              (None, 512)               401920

_______________________________________________________________

dense_3 (Dense)              (None, 256)               131328

_______________________________________________________________

dense_4 (Dense)              (None, 128)               32896

_______________________________________________________________

dense_5 (Dense)              (None, 10)                1290

===============================================================

Total params: 567,434

Trainable params: 567,434

Non-trainable params: 0

_______________________________________________________________

None

Here we define the data; I have chosen the same network 

architecture as I did in PyTorch.

The first time I call model.add() it is acting as two layers, the input 

layer with 784 nodes and the first hidden layer with 512 nodes. Then the 

second hidden layer with 256 nodes, third with 128 nodes and finally the 

output layer with nodes equal to the number of classes. The summary has 

None written in the Output Shape column, which signifies the batch size.
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>>> model.compile(loss=keras.losses.categorical_crossentropy,

    optimizer=keras.optimizers.Adadelta(),

    metrics=['accuracy'])

model.compile() helps us defining the loss function, which optimizer 

to use, and what score metrics to use to evaluate the model.

>>> model.fit(x_train, y_train,

    batch_size=batch_size,

    epochs=epochs,

    verbose=1,

    validation_data=(x_test, y_test))

Train on 60000 samples, validate on 10000 samples

Epoch 1/3

60000/60000 [==============================] - 837s 14ms/step - 

loss: 0.2971 - acc: 0.9374 - val_loss: 0.2558 - val_acc: 0.9527

Epoch 2/3

60000/60000 [==============================] - 894s 15ms/step - 

loss: 0.2476 - acc: 0.9636 - val_loss: 0.2576 - val_acc: 0.9650

Epoch 3/3

60000/60000 [==============================] - 875s 15ms/step - 

loss: 0.2163 - acc: 0.9708 - val_loss: 0.2335 - val_acc: 0.9722

model.fit() will start the training. We give it x_train and y_train to 

train upon and x_test and y_test as a validation set. As you can see, in 

the third epoch the accuracy reaches 97% without overfitting.

You might find that Keras implementation is far easier than PyTorch 

implementation, but personally I prefer PyTorch, because it’s really flexible 

and easy to experiment with. When you move toward more complex 

networks like a generative adversarial network (GAN), it’s really easy to 

work with PyTorch and tweak anything you want.
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