

GlassFish Security

Secure your GlassFish installation, Web applications,
EJB applications, application client module, and
Web Services using Java EE and GlassFish
security measures

Masoud Kalali

 BIRMINGHAM - MUMBAI

GlassFish Security
Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2010

Production Reference: 1030510

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847199-38-6

www.packtpub.com

Cover Image by Karl Swedberg (karl@englishrules.com)

Credits

Author
Masoud Kalali

Reviewers
Arun Gupta

Gaston C. Hillar

Kumar Jayanti

Ludovic Poitou

Antonio Gomes Rodrigues

Emmanuel Venisse

Deepak Vohra

Acquisition Editor
Rashmi Phadnis

Development Editor
Reshma Sundaresan

Technical Editor
Vinodhan Nair

Copy Editor
Sanchari Mukherjee

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Lynda Sliwoski

Indexer
Monica Ajmera Mehta Ajmera Mehta

Graphics
Geetanjali Sawant

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Masoud Kalali has a software engineering degree and has been working on
software development projects since 1998. He has experience with a variety of
technologies (.NET, J2EE, CORBA, and COM+) on diverse platforms (Solaris, Linux,
and Windows). His experience is in software architecture, design, and server-side
development.

Masoud has several articles published in Java.net and DZone, and has authored
multiple refcards published by DZone, including Java EE security and GlassFish
v3 refcards. He is one of founder members of the NetBeans Dream Team and a
GlassFish community spotlighted developer.

Masoud's main areas of research and interest include Service Oriented Architecture
and large-scale systems' development and deployment. In his leisure time he enjoys
photography, mountaineering and camping.

Masoud blogs on Java EE, Software Architecture and Security at
http://weblogs.java.net/blog/kalali/ and you can follow him at
his Twitter account at http://twitter.com/MasoudKalali.

Masoud can be reached via Kalali@gmail.com in case you had some queries about
the book or if you just felt like talking to him about software engineering.

About the Reviewers

Gastón C. Hillar has been working with computers since he was eight. He
began programming with the legendary Texas TI-99/4A and Commodore 64 home
computers in the early 80s.

He has a Bachelor's degree in Computer Science, graduated with honors, and an
MBA (Master in Business Administration), graduated with an outstanding thesis.

He has worked as developer, architect, and project manager for many companies
in Buenos Aires, Argentina. He was project manager in one of the most important
mortgage loan banks in Latin America for several years. Now, he is an independent
IT consultant working for several American, European, and Latin American
companies, and a freelance author. He is always looking for new adventures
around the world.

He also works with electronics (he is an electronics technician). He is always
researching and writing about new technologies. He owns an IT and electronics
laboratory with many servers, monitors, and measuring instruments.

He has written two books for Packt Publishing, C# 2008 and 2005 Threaded
Programming: Beginner's Guide and 3D Game Development with Microsoft Silverlight 3:
Beginner's Guide.

He contributes to Dr. Dobb's Go Parallel programming portal at
http://www.ddj.com/go-parallel/ and is a guest blogger at Intel
Software Network (http://software.intel.com).

In 2009, he was awarded as an Intel® Black Belt Software Developer.

Besides all this, he is the author of more than 40 books in Spanish about computer
science, modern hardware, programming, systems development, software
architecture, business applications, balanced scorecard applications, IT project
management, the Internet, and electronics, published by Editorial HASA and Grupo
Noriega Editores.

He usually writes articles for leading Spanish magazines Mundo Linux, Solo
Programadores, and Resistor.

He lives with his wife, Vanesa, and his son, Kevin. When not tinkering with
computers, he enjoys developing and playing with wireless virtual reality
devices and electronics toys with his father, his son, and his nephew Nico.

You can reach him at: gastonhillar@hotmail.com.

You can follow him on Twitter at: http://twitter.com/gastonhillar.

Gastón's blog is at: http://csharpmulticore.blogspot.com.

Kumar Jayanti is a staff engineer at Sun Microsystems and works on the Web
Technologies and Standards team. In his current role, Kumar is the implementation
lead for GlassFish v3 Security, Metro Web Services Security, and also the
specification and implementation lead for the SAAJ (JSR 67). Kumar holds an
M.Tech degree in Computer Science from IIT Mumbai, India. His areas of interest
include distributed computing, CORBA, XML, Web Services, and Security.

Ludovic Poitou is a directory services architect at Sun Microsystems and the
community manager for the OpenDS project. For the past 15 years, he's been
designing and developing numerous aspects of Sun's directory products, from
management tools to protocols, security and multi-master replication.

Ludovic blogs about LDAP, directory services, OpenDS, and life at
http://blogs.sun.com/Ludo.

Ludovic Poitou has been a technical reviewer for the following books:

• Solaris and LDAP Naming Services: Deploying LDAP in the Enterprise,
by Tom Bialaski and Michael Haines, 2001, Sun Microsystems Press, a
Prentice Hall Title.

•	 LDAP in the Solaris Operating Environment: Deploying Secure Directory
Services, by Michael Haines and Tom Bialaski, 2004, Sun Microsystems
Press, a Prentice Hall Title.

Antonio Gomes Rodrigues earned his Masters degree from the University of
Paris VII in France. Since then, he has worked in various companies with Java EE
technologies in the roles of developers, technical leader, and technical manager
of offshore projects.

He currently works on performance problems in Java EE applications in a
specialized company.

I would like to thank my friend Nadère for his motivation and
support, my girlfriend Aurélie for her patience, and my family.

Emmanuel Venisse has been developing, architecturing, and integrating J2EE
applications for twelve years for banks, government, holiday company projects,
and so on. He's been working on several J2EE application servers such as JBoss,
WebLogic, WebSphere, and more recently with GlassFish. For the last five years, he
has worked as a freelancer. For the last seven years, he's been working, in his spare
time, on Apache Maven, Continuum, and Archiva projects as a core developer and
he's also the Continuum project leader. He has contributed to the majority of books
written about Apache Maven.

Deepak Vohra is a consultant and a principal member of the software company
NuBean.com. Deepak is a Sun Certified Java Programmer and Web Component
Developer, and has worked in the fields of XML and Java programming and J2EE for
over five years. Deepak is the co-author of the Apress book, Pro XML Development
with Java Technology and was the technical reviewer for the O'Reilly book
WebLogic: The Definitive Guide. Deepak was also the technical reviewer for the
Course Technology PTR book Ruby Programming for the Absolute Beginner, and
the technical editor for the Manning Publications book Prototype and Scriptaculous
in Action. Deepak is also the author of the Packt Publishing books JDBC 4.0 and
Oracle JDeveloper for J2EE Development, and Processing XML documents with Oracle
JDeveloper 11g.

To My Parents

Table of Contents
Preface 1
Chapter 1: Java EE Security Model 7

Overview of Java EE architecture 8
Understanding a typical Java EE application 8
Accessing protected resource inside a Web module 11

Deployment descriptors 13
Understanding Java EE security terms 13
Defining constraints on resources 15
Authenticating and authorizing users 16

Adding authentication to a web application 17
Authorizing using deployment descriptor 19

Managing session information 19
Adding transport security 21
Using programmatic security in web applications 23
Using security annotations 25

Understanding the EJB modules 26
Securing EJB modules using annotations 30
Mapping roles to principals and groups 33
Accessing the security context programmatically 33
Using EJB interceptors for auditing and security purposes 34
Enforcing authentication in EJB modules 35

Understanding the application client module 37
Declaring security roles in Application level 39
Summary 40

Chapter 2: GlassFish Security Realms 41
Security realms 42

Authenticating using security realms 42
Reusing security assets 43

Table of Contents

[ii]

GlassFish security realms 43
Administrating security realms 44
Creating a file realm 45
Creating the JDBC realm 50
Using the LDAP realm to secure web applications 55

Downloading and installing OpenDS 2.2 56
Creating the LDAP realm 58

Creating the certificate realm 61
Public key cryptography 62
Digital signature 63
Key stores and trust stores 63
Managing certificates 64

Creating the Solaris realm 71
Developing custom realms 71

Developing the custom realm 71
Installing and configuring 74

Adding a custom authentication method to GlassFish 75
Summary 76

Chapter 3: Designing and Developing Secure
Java EE Applications 77

Understanding the sample application 78
Analyzing sample application business logic 78
Implementing the Business and Persistence layers 79

Implementing the Persistence layer 80
Developing the Presentation layer 83

Implementing the Conversion GUI 84
Implementing the Converter servlet 85
Implementing the authentication frontend 87
Configuring deployment descriptors 89
Specifying the security realm 91

Deploying the application client module in the Application Client
Container 92

Configuring Application Client Container security 97
Summary 100

Chapter 4: Securing GlassFish Environment 101
Securing a host operating system 102

Defining security at the OS level 102
Creating the installation directory 105
Creating the GlassFish user 105
Logging in as a GlassFish user 106
Restricting access to the filesystem 106
Restricting access to network interfaces 106
Restricting access to ports 107

Table of Contents

[iii]

Enforcing storage usage limitation 107
Implementing restrictions in the application server level 112

Securing the Java Runtime environment from unprivileged access 112
Implementing the policy manager 113
Securing the GlassFish using security manager 116
Alternative container policy providers 120

Estimating security risks: Auditing 121
Enabling the default auditing module 122
Developing custom auditing modules 123

Summary 124
Chapter 5: Securing GlassFish 125

Administrating GlassFish 125
Using CLI for administration tasks 126

Implementing security in CLI 128
Securing different network listeners 135

Securing HTTP listeners 136
Securing ORB listeners 139
Securing JMX listeners 140

Hosting multiple domains using one IP 141
Sharing security context between different applications using SSO 144

Enabling SSO in virtual server 145
Summary 146

Chapter 6: Introducing OpenDS:
Open Source Directory Service 147

Storing hierarchical information: Directory services 148
Connecting directory services to software systems 149

Introducing OpenDS 150
Understanding OpenDS backend and services 153

Installing and administrating OpenDS 154
Installing OpenDS and DSML gateway 154

Understanding the system requirements 154
Downloading and installing OpenDS server 154
Studying the OpenDS directory structure 158
Installing and configuring the DSML gateway 158

Administrating and managing OpenDS 160
Importing and exporting data 161

Importing LDIF files 162
Exporting database content into LDIF file 163

Backing up and restoring data 163
Creating a backup of OpenDS data 164
Restoring server state using backups 166

Enabling JMX Connection Handler 167
Embedding OpenDS 170

Table of Contents

[iv]

Benefits of embedded mode capability of OpenDS 170
Preparing the environment 171

Replicating Directory Information Tree (DIT) 173
OpenDS replication mechanism 174
Setting up an Asynchronous replication infrastructure 175

Summary 177
Chapter 7: OpenSSO, the Single sign-on Solution 179

What is SSO 180
What is OpenSSO 181

OpenSSO functionalities 183
Controlling user access 183
Federation Management 185
Identity Web Services 186
OpenSSO architecture 188
OpenSSO realms 190

Installing OpenSSO in GlassFish 190
Configuring OpenSSO for authentication and authorization 194

Authentication chaining 196
Realm Authentication 198
User Authentication 199

Securing our applications using OpenSSO 199
Authenticating users by the RESTful interface 200
Authorizing using REST 202
SSO using REST 204

Summary 210
Chapter 8: Securing Java EE Applications using OpenSSO 211

Understanding Policy Agents 212
Specifying access privileges by defining policies 213
Protecting diverse types of containers using Policy Agents 214
Working of OpenSSO agents 215

Protecting different types of resources 216
Exploring outstanding features of Policy Agents 217

Managing Centralized Agent Configuration 217
Managing agents in groups 218
Applying agents configuration on-the-fly 218
Having more control over the installation process 218

Installing J2EE Agent 3.0 for GlassFish 218
Placing the sample application under OpenSSO protection 224

Changing sample application descriptor files 225
Configuring the agent to protect the sample application 226
Defining access rules 229

Summary 233

Table of Contents

[v]

Chapter 9: Securing Web Services by OpenSSO 235
Java EE and Web Services security 236

Securing Web Services in a Web module 236
Web Services security in EJB modules 236
EJB-based Web Services authentication in GlassFish 237

Understanding Web Services security 239
Understanding SOAP message structure 244

Developing secure Web Services 245
Downloading and installing Web Services security agents 248

Creating a Web Service Client profile 250
Creating a Web Service Provider profile 251

Securing the Echo Web Service 253
Developing an Echo Service Consumer 253
Authenticating a service call using WSP 255

Configuring WSP for enforcing authentication 256
Configuring WSC to support authentication 258

Summary 259
Index 261

Preface
We are living in a world full of dazzling wonders, and I for one always enjoy
encountering them. Software development is one of the wonders that dazzles me
because of its enormously vast domain, including many concerns and subjects
of interest. Looking at this domain from any distance, we will see one big and
sometimes blurry-edged spot named security.

Security, an orthogonal and inseparable part of software systems, is not for
preventing others from accessing some information and system resources but for
allowing them access in an appropriate way, by implementing necessary means to
precisely check any attempt to access a resource and either allow it to go further or
not and record all information related to examining this attempt for further review.

Java EE is the platform of choice for developing enormously large-scale
applications, and provides plethora of features for implementing security plans for
applications, starting from dealing with identity storages and identity solutions up
to providing GUI-level support for security concerns and integration with other
security providers.

Nowadays, integration is something that we hear in every software development
meeting and session independent from what the session is about. Security
integration, however, is a delicate matter compared to all other issues as it deals
directly with the organization's assets. Java EE design allows it to delegate its
security requirements to another entity in the enterprise, like a single sign-on
solution, which on the other hand can integrate with other products and
platforms in use in the organization.

The GlassFish Security book is an attempt to explain this domain considering Java
EE, GlassFish, and OpenSSO capabilities and features.

Preface

[2]

What this book covers
Chapter 1, Java EE Security Model, discusses how we can secure different Java
applications by using the declarative security model or by using the API exposed
by Java EE containers to access the security enforcement layers programmatically.
It also briefly introduces Web modules, EJB modules, and application client
module's security in different levels, including authentication, authorization,
and transport security.

Chapter 2, GlassFish Security Realms, discusses JAAS and GlassFish security realm,
including File realm, JDBC realm, LDAP realm, and Certificate realm in detail as
that will be required to develop a secure enterprise application. It also discusses
GlassFish application server interaction with identity storages such as relational
databases, Lightweight Directory Access Protocol (LDAP) servers, flat file storage,
and so on.

Chapter 3, Designing and Developing Secure Java EE Applications, covers developing and
deploying a secure Java EE application with all standard modules including Web,
EJB, and application client modules. It also teaches us how we can secure EJBs using
annotation and then use a web frontend to use the secured EJBs after a user provides
correct identification information.

Chapter 4, Securing GlassFish Environment, helps you secure your operating system
and environment from unprivileged access by applications deployed in GlassFish
using the OS features and Java policy management. It also covers network
communication security, GlassFish password security, and finally security
auditing, which is a complementary function in software security.

Chapter 5, Securing GlassFish, covers GlassFish administration security tasks such
as password security and listener security. This chapter will teach you to secure
GlassFish by examining the administration security, password protection, and
network listener security. It also discusses the benefits of virtual servers for isolating
different applications deployed in a single machine with a single IP address.

Chapter 6, Introducing OpenDS: Open Source Directory Service, teaches you
about directory service and the set of features OpenDS provides—installing,
administrating, and monitoring OpenDS and using OpenDS in embedded mode.
This chapter teaches you to set up a replication topology to ensure service and data
availability in case of unpredicted disasters.

Chapter 7, OpenSSO, the Single sign-on Solution, covers projects security from an
integration point of view. In this chapter you will install and configure OpenSSO
and understand different methods of using OpenSSO. It also teaches you how to
use OpenSSO RESTful Web Services for authentication, authorization, and acquiring
SSO tokens.

Preface

[3]

Chapter 8, Securing Java EE Applications using OpenSSO, covers OpenSSO Policy
Agents that let us as architects, system designers, and developers secure a Java EE
application using OpenSSO without changing the application source code. It also
discusses about Policy Agents, Policy Agent's installation, and administration, along
with changing our sample application to place it under agent protection instead of
using plain Java EE protection.

Chapter 9, Securing Web Services by OpenSSO, covers Web Services security and how
we can use OpenSSO and OpenSSO agents to secure our Web Services deployed in
GlassFish. It also teaches you to install OpenSSO Web Services Security Provider
Agent and develop a simple, secure pair of WSP and WSC.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "For the authentication method and a
built-in realm named file as the security realm."

A block of code is set as follows:

<auth-constraint>
 <role-name>hr_management_role</role-name>
 <role-name>top_level_manager_role</role-name>
</auth-constraint>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<user-data-constraint>
 <description/>highest supported transport security level
 </description>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

Any command-line input or output is written as follows:

./start-ds

import-ldif --clearBackend --backendID userRoot --ldifFile
path/to/import.ldif

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit https://www.packtpub.com//sites/default/files/
downloads/9386_Code.zip to directly download the example code.
The downloadable files contain instructions on how to use them.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Java EE Security Model
Java EE is the mainstream platform for implementing applications in a broad range
of use cases starting from high transaction backend for rich clients to a complex
integration and mixture of web, transaction processing, and EIS integration layers.

Security is one of the main concerns of software developers whether in small and
mid-scale range or in large-scale, distributed software. Starting from the smallest
application to the largest one, all may need a similar set of security measures such
as authentication, authorization, non-reputability, and transport security.

Java EE as a modular platform for developing enterprise-scale applications provides
a great deal of functionalities and features to address security requirements in a
declarative way instead of an intrusive code-changing way.

In this chapter we will discuss how we can secure different Java applications either
by describing the security model using the declarative security or by manually
enforcing the security needs using the API exposed by Java EE containers to access
the security enforcement layers programmatically. In Chapter 3 we will put into
practice all that we will discuss in this and the next chapter to build a secure
Java EE application.

A detailed list of what you will learn in this chapter is as follows:

Java EE architecture
Authentication and authorization
Transport security
Web module security
EJB module security
Programmatic and declarative security

•

•

•

•

•

•

Java EE Security Model

[8]

We will discuss security annotations and programmatic security in addition
to looking at security description elements, which we can include in the
deployment descriptors.

Overview of Java EE architecture
 Java EE platform is the dominant platform for developing enterprise-scale
applications and in the past three years developers have started looking at Java EE
for developing small and mid-scale applications.

We can define Java EE as a set of libraries and tools, developed on top of what Java
SE provides as a language and platform. A Java EE application usually consists of
three different modules, which include Web module and EJB module residing in
the server, and the Application Client Module which is designated for the client
applications. Each module is assembled from different components and deployed
in a designated container or server. These containers are well integrated with each
other and form the Java EE application server.

We have another type of module called connector module; we will not
include it in our discussion as it is not widely used compared to three
other module types. The connector module allows developers connect
different application servers together or connect application servers to
EIS systems.

Each of these containers provides a unique set of functionalities in the overall
application server architecture. We may use one or two types of containers to
form our application without involving the other containers.

Understanding a typical Java EE
application
We briefly discussed the Java EE architecture and we said it consists of three main
modules which are deployed in different application server containers. The Web
module running inside the Web container sits in front of an EJB module deployed
in the EJB (Enterprise Java Beans) container. The EJB module drives the system's
business logic and provides transaction processing capabilities. This middle layer,
which is formed by EJBs, may interact with a database or any other EIS (Enterprise
Information System) through a connector module.

Chapter 1

[9]

The last module is an application client module, which is a Java-based client
application that directly interacts with middle layer through a specific container
named Application Client Container (ACC). Following diagram shows a Java EE
application which uses Web, EJB, and Application Client Container.

Web module

JSPs

Servlets

Web Services

EJBs

Entity beans

Session beans

EJB module

Browser

Web container

EJB container

Other
EISs

Java EE
application

server

Application
client

module

Application
Client

Container (ACC)

Java runtime

Swing
cmd

Web Services

The previous figure assumes that no security measure is applied on user interaction
with application or the interactions between different application modules. Each
of these modules can be deployed independently or one or more of them can
be included in a larger logical bundle named Enterprise Application Archive
(EAR) and deployed together into the application server. Application server will
decompose the archive and deploy each module into its designated container.

Java EE Security Model

[10]

Each Java EE application, depending on which set of modules it uses, can have as
few as one deployment descriptor or half a dozen. The deployment descriptors
basically instruct the application server on how to deal with the application
components. The following figure illustrates location and names of the
deployment descriptors for a typical Java EE application designated for
GlassFish application server.

EJB Module
(.jar file)

META-INF Folder

ejb-jar.xml

sun-ejb-jar.xml

Web Module
(.war file)

WEB-INF Folder

web.xml

sun-web.xml

Application client module
(.jar file)

application-client.xml

sun-application-client.xml

application.xml

sun-application.xml

META-INF Folder

META-INF Folder

Enterprise Application (.ear file)

As you can see we have files with similar names, one without the sun- prefix and
one with the prefix.

Chapter 1

[11]

Files without the prefix are standard to Java EE and use the same schema across
all Java EE application servers. These standard files deal with the configuration
elements of a Java EE application and have nothing to do with the container the
application is going to be deployed into. For example, definition of a Servlet,
a Servlet filter, an EJB, and an EJB security constraint, among others can be
configuration elements of the standard deployment descriptors.

The files prefixed with sun- specify the application server-specific configurations
related to the application components. For example, mapping the Java EE security
to application server-specific capabilities is one of functions of these files.

Web browsers are the prominent clients for Java EE application
and a fair deal of effort is devoted to secure and facilitate
accessing Java EE applications through the browser without
involving application client modules.

Accessing protected resource inside a
Web module
A Web module represents resources inside the application server accessible
using HTTP protocol. Each Web module is a deployable archive that contains
JSP, Servlet, EJBs, and static contents like HTML page and graphical resources. A
Web module is a ZIP file with WAR extension, a specific structure as shown in the
previous figure, and one or more deployment descriptors.

The Web container responds to each HTTP request by executing doPost or other
request processing methods of Servlet, processing a JSP or sending back a piece of
static content like an HTML page. The following figure shows how users can access a
protected resource in a Java EE application server.

Client
Browser

Request access to protected resources

Container asks for user credentials

User provides correct credentials

Server sends response to the original
request

JSPs

Servlets

Web container

Check
credentials

against

.

.

.

. User
Information
Repository

1

2

3

Java EE Security Model

[12]

The previous figure illustrates steps the clients need to go through when they try
to access some restricted resources. The Web container protects the Web module
content by checking the requested URLs and decides whether it should send back the
corresponding response or prevent the request going through the normal procedure
until it ensures that the entity which requested the resource is permitted to access
that specific resource.

Requests can be placed in one of the six different HTTP methods. Deciding on
whether a specific method is acceptable for a resource or not is another factor
which we can use to restrict access to a resource.

Web applications are complex and multi-purpose applications, which tons of
different users may need to access. Each one of these users may need to have their
own set of permissions and restrictions to specify which resources they can access
and which resources they cannot.

To decide whether a request can get its corresponding response or not we should
check who is requesting that specific resource and whether the requester is permitted
to access the resource they are trying to reach.

An example can be a human resource manager, a role in the organization. We
should validate his identity before we let him access the resources which are only
available to a human resource department manager, such as an employee's contract
record. At the same time we should prevent an accounting department employee,
who in reality should only be able to issue the payrolls, from editing an employee's
contract record.

To accomplish the identity validation and access authorization we should have
a system to define users, assign one or more roles to each user, and later on
define which roles and users are permitted to access different sets of our system
functionalities. When it comes to users of our application, the users may already
be defined in the organization where we want to deploy our application, thus we
should be able to use already established identity storages when required.

We develop enterprise applications to ease the overall procedure of day-to-day
tasks which an organization's employee needs to perform. We do not know whether
the employee is going to access the application from an internal network or the
communication between the employee and the application will go through an
open network like the Internet.

We might be operating over an unknown open network where our requests and
responses travel through many different nodes until they reach their destinations.
So we need to think about our transport security as well as protecting our
resources from unauthorized access. Transport security protects our content
from unauthorized eyes that may be sitting between our clients trying to extract
information from the transmitted packets.

Chapter 1

[13]

To protect our information when we are operating in an unsecured network, we
should apply some transport-level protection to ensure that our data travels in
the unknown zone safely and no one can either monitor the content or tamper the
requests or responses to manipulate our system in his or her favor.

Deployment descriptors
A Web module, which is an assembly of several different components, needs to have
a deployment descriptor instructing the Web container the structure of the module,
what its relation to external resources is, and what security measures the Web
container must apply to protect the application resources. The deployment descriptor
for a Web application is composed of two XML files and zero or more annotations
directly placed in the components source codes. Two deployment descriptor files
named web.xml and sun-web.xml are placed inside the WEB-INF directory of the
Web application archive.

The web.xml file contains all standard deployment instructions shared
between all application servers. This file contains all instructions which an
application server should apply internally.
The sun-web.xml file contains GlassFish vendor-specific instructions, which
can differ between different application servers. The instructions included
in this file usually configures application server interaction with external
resources in regard to the deployed application.

In the following sections we will see what features of the Java EE platform
we can use to define access restriction on resources that need protection from
unauthorized access.

Understanding Java EE security terms
Before we dig deep into Java EE application security we need to define some basic
terms and the relation between these terms. They are:

User: A user is an individual identity, which is defined in the identity
storage. The individual can either be a program or a software operator.
A user may be member of zero or more groups.
Group: A group is a set of users classified with a set of common
characteristics that usually leads to a set of common permissions and
access levels. Individual users can be members of zero or more groups.

•

•

•

•

Java EE Security Model

[14]

Security realm: A security realm is the access channel for the application
server to an identity storage system like a database or a flat file which contains
user's authentication and grouping information. A sample of a security realm
and authentication information storage can be the combination of a relation
database as the users and groups information storage and GlassFish JDBC
realm as the connector of Application server to this storage.
Role: A role is an application-level concept that we have in almost every
business application that we use. A role maps the access level defined in the
Java EE application to users and groups defined in the security realm. Java
EE platform provides the required functionalities to define roles and forms
the access-level structure based on the defined roles.
Principal: A principal is an identity that can be authenticated using an
authentication protocol. The principal needs to have credentials to provide
when it is going to the authentication process.
Credential: A credential contains or references information used to
authenticate a principal A password is a simple credential used for
authentication.

The following figure shows an illustration of roles, users, groups and realms which
we use to define the security view of our applications.

User1

Group1

Role 2

A realm like an
LDAP Realm

Roles as defined in application security
view and deployment descriptors

Roles map the access levels to users and groups of a security realm

User2

User3

Group2

Group3 Group4

User 12

Role1

User5

User3

User9

User2

User5

User7

User4

User6

User7

Group1

Group4

User7

User4

User6

User12

Group3

•

•

•

•

Chapter 1

[15]

Defining constraints on resources
Java EE platform allows us to define constraints on a URL or a set of URLs specified
using wildcard characters. To define the constraints we determine which roles and
users have the permission to access the URLs. An example of defining constraints on
a set of JSP files is shown as follows:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>HR Management</web-resource-name>
 <url-pattern>/jsp/hr/*</url-pattern>
 <http-method>PUT</http-method>
 <http-method>DELETE</http-method>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>hr_management_role</role-name>
 <role-name>top_level_manager_role</role-name>
 </auth-constraint>
</security-constraint>
<security-role>
 <role-name>hr_management_role</role-name>
</security-role>
<security-role>
 <role-name>top_level_manager_role</role-name>
</security-role>

This code snippet instructs the application server to check every incoming request to
any URL matching /jsp/hr/* and only allows the request to go through when the
user has one of the hr_management_role or top_level_manager_role roles.

We include the above listing in a deployment descriptor, deploy the application
and try to hit a matching URL. The application server will forward us to the default
HTTP 403 error page which you can see in the following figure:

Java EE Security Model

[16]

Why did the application server forward us to an access denied page? The reason is
that the application server is not configured to authenticate the user and therefore
it cannot determine what roles have been assigned to our user, so we need a way
to instruct the application server to check our user identification information and
decide whether the request should go through or not.

Authenticating and authorizing users
To make it simple, authentication is ensuring the users are who they claim they are
by checking the credentials provided by them. Authorization is checking whether an
authenticated user has the right to access the resource they requested to access. We
perform authorization after we validate the user's identity.

The Java EE platform provides a broad range of options for enforcing the
authentication procedure. Three different authentication methods are already
provided in application servers and can be extended to cover the new requirements
when they emerge.

In previous sections we discussed how access to some resources can be restricted to
specific roles and users and we came to the conclusion that we should authenticate
our users to check their permissions on accessing different system resources.

To address this requirement, authentication comes into play. Using authentication
we can check whether a user is known to our system or not and if they are known,
whether the requester is really who they claim to be or an imposter trying to get
illegal access into our system.

The authentication process kick-starts when a user tries to access a restricted
resource. If the user is not authenticated, the system will ask for his authentication
information, including the username and password and commence with checking
the username and password against the determined security realm. If the user fails to
provide correct authentication information, the system will forward him to a HTTP
403 status page.

After the user is successfully authenticated, the system will continue the
authorization process by checking whether the user has any of the roles permitted to
access the requested resource. If user has one of the roles the request will go through.
Otherwise, the user will be forwarded to a HTTP 401 status page.

Chapter 1

[17]

The good news about Java EE authentication and authorization system is the login
once feature, which ensures that when a user is authenticated he will not need to go
through the authentication process again unless we discard the authentication token
which the system assigned to the user after a successful authentication.

We can configure our applications to use username-password pair,
biometric tokens, X.509 digital certificates, Kerberos token, or any
other form of authentication mechanism supported by the application
server. Here we will discuss username and password as it is the most
widely used authentication method.

Adding authentication to a Web application
To add authentication to a Web application we only need to include the required
elements in the deployment descriptor. In the deployment descriptor we can
determine which type of authentication we want the system to perform and
which security realm we want the user to be authenticated against. The following
code snippet shows the required elements that we can add to web.xml to enforce
authentication where required.

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>JDBC_REALM</realm-name>
</login-config>

The code snippet simply provides instructions for the application server to conduct a
HTTP Basic Authentication when an unauthenticated user tries to access a restricted
resource. The application server will check the provided credentials against a realm
named JDBC_REALM. If we do not define which realm we want to use, the application
server will use the default security realm. In GlassFish this realm is named file
and its content are stored in a plain text file.

We will discuss application server realms in more detail in Chapter 2. For now
consider the JDBC_REALM as a set of two tables that contains users, groups,
and user to group association information.

Java EE Security Model

[18]

The auth-method element specifies which authentication method we want to use.
Different authentication methods provide different levels of security and protection.
Four different authentication methods are provided in Java EE specification which
vendors must implement. These four different authentication methods provided by
application servers are listed in the following table.

Authentication method Description Pros and cons
HTTP BASIC
Authentication (BASIC)

Server requests a
username and password
from the web client. The
authentication dialog is
standard.

Easiest to implement.
Credentials transmitted
in plain text if SSL or
other network-level
encryptions are not
in place.

•
•

Form-Based
Authentication (FORM)

We should provide a
login form to ask
username and
password along with an
authentication failed
page in case
authentication fails.

Very flexible in look
and feel.
Need extra work to
develop required pages.
Password transmitted
in plain text if SSL or
other network-level
encryptions are not
in place.

•

•

•

HTTPS Client
Authentication (CLIENT-
CERT)

Both server and client or
client alone will need to
possess digital certificates
to identify themselves.

Very secure.
More expensive than
other methods.
More complex in
implementation and
administration.

•
•

•

Digest Authentication
(DIGEST)

Similar to HTTP BASIC
Authentication with
security enabled for
transmitting credentials.

Easy to implement but
not widespread.
Credentials are
encrypted prior
to transmission.

•

•

If we do not specify an authentication method and therefore a security realm,
GlassFish will automatically use HTTP BASIC Authentication (BASIC) for the
authentication method and a built-in realm named file as the security realm.
We will discuss file realm in more detail in Chapter 2.

We will discuss these authentication methods along with how we can configure the
application server to support them in more detail in Chapter 2.

Chapter 1

[19]

Authorizing using deployment descriptor
In the previous two sections we talked about roles and how we can configure
the deployment descriptor to only let some of our web application resources be
accessible to specific roles. But do these roles map to real world users and groups
that security realms contain?

In the figure included in the Understanding security terms of Java EE section we saw
a representation of the users and groups mapping to Java EE roles. To instruct the
application server to perform these mappings we should use deployment
descriptors to map a role to specific users or to groups (or both).

We define the mapping in the vendor-specific deployment descriptor (sun-web.xml)
as it is where we should include the vendor-dependent deployment plan details. The
following snippet assigns the hr_management_role role to HR_ADMIN user and all
members of the HR_MANAGER group. The HR_MANAGER group and all of its possible
members are stored in the security realm represented
by the JDBC_REALM.

<security-role-mapping>
 <role-name>hr_management_role</role-name>
 <principal-name>HR_ADMIN</principal-name>
 <group-name>HR_MANAGER</group-name>
</security-role-mapping>

So far we have provided instructions for the application server to protect some of our
resources and only allow specific roles to access those resources. But we still need
to safeguard our application data on the open network from unauthorized eyes that
may intercept our communication channels.

Managing session information
We discussed how when a user is authenticated they will stay authenticated unless
we discard the authentication information or the validity period of the authentication
information expires.

Java EE Security Model

[20]

Here we can define a new term named session that can hold all kind of information
either required by the programmer or by the application server during the time a
visitor or a user is interacting with our system. Some examples for using session are
holding the authentication information, the shopping cart content, the visited URLs,
and so on. This information can be stored in different ways, including:

Cookies: We can use cookies to store the session information on the client
side. We usually encrypt sensitive information before setting it as a
client-side cookie.
URL Rewriting or server side: In this method we store the session
information on the server side and assign each visitor a unique identifier to
extract the session information when required. We usually append a field at
the end of URLs which includes the session ID of that particular client.
Hidden form fields: We can use hidden HTML fields like <INPUT
TYPE="HIDDEN" NAME="session" VALUE="..."> to transmit the
session information.

The hidden form fields method's disadvantage is that all pages we use
should be dynamically generated in order for us to include the session
information as a hidden field along with other information. Unless we
always know how many required fields are placed in the session, we
create a placeholder field for them.

Java EE Servlet API provides a profound API for session management. We can
access the session information using the HttpSession interface. An example of
using HttpSession interface is as follows:

HttpSession session = request.getSession(true);
session. setAttribute("refPage",request.getHeader("Referrer"));
ShoppingCart sc = (ShoppingCart)session.getAttribute("sc");
sc.addItem(anItem);

We can put any serializable object into session and expect the application server
to keep our session alive until we discard the session or the session times out and
expires. But there are some pitfalls and best practices associated with using session
to store our required properties. A short list of these precautions is as follows:

Use session-config element of the web.xml to tune the session
management capabilities of the application server
Use HttpSessionListener to perform the necessary tasks after a session is
created or invalidated

•

•

•

•

•

Chapter 1

[21]

Do not use long-term values like user IDs as a session identifier; instead use
randomly generated short-lived tokens
Do not store anything in the session unless it is encrypted with a proven
encryption method.
Invalidate all session variables after an absolute time like 10 hours or after a
period of inactivity like 30 minutes
Provide logout functionality to allow the users to logout when they want to,
which is provided in Servlet 3 specification as a part of Java EE 6
Do not store unnecessary information in the session and remove any variable
which is no longer required from the session

The list can go on but the basics instruct us to use the server memory efficiently and
make sure that our users' data will not get compromised if our session information is
turned into the wrong hands.

Different application servers may provide additional session management
capabilities like specifying session maintaining method, cookies domain,
cookies length, and so on. GlassFish application server stays with the
standard to ensure that your application can be ported to any
Java EE-compliant server if required.

Adding transport security
In many enterprise applications, transmitting information over open networks is
inevitable. An open network like the Internet has its drawbacks alongside the many
benefits that it brings to organizations. A drawback which can affect our applications
is the unsecure nature of the data pathway between the client and the server. To
address this drawback we should use some sort of encryption mechanism like
secure VPNs, IPSec, manual encryptions, and so on.

•

•

•

•

•

Java EE Security Model

[22]

Java EE application servers implement the required functionalities specified by the
Java EE specification in providing SSL-based encryption for transferring sensitive
data between the application server and its clients. The specification and the
implementations make it as simple as adding required elements to the deployment
descriptor for instructing the application server to use HTTPS for communication
with clients. Here is a example snippet to add encryption support for a set
of resources:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>HR Management</web-resource-name>
 <url-pattern>/jsp/hr/*</url-pattern>
 <http-method>PUT</http-method>
 <http-method>DELETE</http-method>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <description/>highest supported transport security level
 </description>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>
</security-constraint>

Java EE specification followed by application servers provides different levels of
transport guarantee on the communication between clients and the application
server. The three levels follow:

Data Confidentiality (CONFIDENTIAL): We use this level to guarantee that all
communication between client and server goes through the SSL layer and
connections won't be accepted over a non-secure channel.
Data integrity (INTEGRAL): We can use this level when a full encryption is
not required but we want our data to be transmitted to and from the client in
a way that if anyone changed the data we could detect the change.
Any type of connection (NONE): We can use this level to enforce the container
to accept connections on HTTP and HTTPs.

•

•

•

Chapter 1

[23]

Applying transport security measures brings additional overhead to perform the
encryption and decryption. The amount of overhead greatly depends on the cipher
suite we use in our HTTPS communication. If we use ciphers with longer key
length our encryptions are harder to break compared to when using cipher suites
with shorter keys. But we pay a price for better security and this price is more
overhead on the server for encryption and decryption of data. We should always
use cryptography with care not to introduce additional load on our systems. For
example, where it is absolutely required to have data confidentiality, like when we
are transmitting credit card numbers, we should use CONFIDENTIAL level, but when
we are transmitting a set of numbers for calculation we can use INTEGRAL to ensure
that our data is tamper-proof.

In production environment, we usually front the application server with
a Web server or a dedicated hardware appliance to accelerate the SSL
access among other tasks, such as hosting static content, load distribution,
decorating HTP headers, and so on.
For security purpose, the frontend Web server or appliance (like a Cisco
PIX 535, F5 Big IP, and so on) can be used to accelerate SSL certificate
processing, unify the access port to both HTTP and HTTPS, act as a
firewall, and so on.

Using programmatic security in
web applications
Sometimes the declarative security in not enough to cope with a complex security
requirement and we need to take control and program some security procedures
instead of declaring them. There are seven methods of HTTPServletRequest class
that we can use to extract security-related attributes of the request and decide
manually about how to process the request. These methods are included in the
following table.

Method Description
String getRemoteUser() If the user is authenticated returns the

username, otherwise returns null.
boolean isUserInRole(String role) Returns whether the user has the specified

roles or not.
Principal getUserPrincipal() Returns a java.security.Principal

object containing the name of the current
authenticated user.

String getAuthType() Returns a String containing the
authentication method used to
protect this Servlet.

Java EE Security Model

[24]

Method Description
void login(String username,
String password)

This method authenticates the provided
username and password against the security
realm which the application is configured to
use. We can say this method does anything
that the BASIC or FORM authentication does
but it also gives the developer total control
over how it is going to happen.

Void logout() Establishes null as the value
returned when getUserPrincipal,
getRemoteUser, and getAuthType is
called on the request.

String getScheme() Returns the schema portion of the URL, for
example HTTP or HTTPS.

We can use these methods when we are processing a request to decide what kind
of response we should send back to our user. The programmatic login and logout is
included in Java EE 6 and did not exist in Java EE 5 and previous versions.

We can use more descriptive names when we call the isUserInRole method to
increase the readability of our source code. But we will need to include linking
description for the role name we used in our source code to real names defined
in the Web application descriptor, the web.xml file. The following sample snippet
shows how we check the user role and decide where to redirect them:

protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 if (request.isUserInRole("human_resource_manager"))
 response.sendRedirect("/hr/index.jsp");
 else response.sendRedirect("/guests/index.jsp");
 }

We can use different aliases for a role name to make our code easier to read and
maintain. For example, imagine we are using human_resource_manager in our
source code to alias the hr_management_role role name. In case we use this sort
of aliasing we should include security-role-ref elements in our deployment
descriptor to describe the link between the aliases and names. For example, to
describe the above aliasing we can use:

<security-role-ref>
 <role-name>human_resource_manager</role-name>
 <role-link>hr_management_role</role-link>
</security-role-ref>

Chapter 1

[25]

If we do not include the security-role-ref element, the application server will
assume that any role name we used in our source code is a role defined using
security-role element and will look for its mapping in the sun-web.xml file.

We must include this referencing inside the Servlet element of the Servlet, where we
used the alias in its implementation.

Using security annotations
Annotations included in Java EE starting from version 5 allows developers to use
metadata to affect the way that a program is treated and interpreted by application
servers, tools, and libraries. There are several annotations which we can use in
configuring a Web application security.

@DeclareRoles({"ROLE_1", "ROLE_2", "ROLE_N"}): We can use this annotation on
a Servlet class to define the roles that we are referring to them from that Servlet. To
make it simple, this annotation is a replacement for security-role element of the
web.xml file. We can declare one or more roles using this annotation.

@RunAs(value="ROLE_NAME"): Using this annotation we ask the container to only
assign the given role to the current security identity for any outgoing invocation. For
example, if placed on a Servlet, independent of what the current principal role is, the
container will assign this role to the current security identity to access any resource.
This annotation is the metadata twin of the run-as element, which we can use in
deployment descriptor.

We use the run-as element or its counterpart annotation to assign an
specific role to all outgoing calls of a Servlet or an EJB. We use this
element to ensure that an internal role which is required to access some
secured internal EJBs is never assigned to a client and rather stays fully in
control of the developers. Note that the role of the current principal does
not change the current identity as seen by the getCallerPrincipal()
method of the EJBContext, or getUserPrincipal() of the
HTTPServletRequest will return the actual roles.

@ServletSecurity: Using this annotation we can define the security and access
control of a Servlet right inside the source code instead of using the deployment
descriptor security-constraint element. The @ServletSecurity can optionally
get a @HttpMethodConstraint and @HttpConstraint as its parameters. The
@HttpMethodConstraint is an array specifying the HTTP method-specific constraint
while @HttpConstraint specifies the protection for all HTTP methods which are not
specified in the @HttpMethodConstraint.

Java EE Security Model

[26]

For example we can use the following annotation:

@ServletSecurity(@HttpConstraint(rolesAllowed = {"employee",
"manager"}))

This allows only users with a manager or employee role to access this Servlet. This
one single line of code is equal to the following deployment descriptor elements.

<security-constraint>
 <web-resource-collection>
 <url-pattern>/ourServlet</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <security-role-name>manager</security-role-name>
 <security-role-name>employee</security-role-name>
 </auth-constraint>
</security-constraint>

In the next section we will discuss EJB annotations, learn more about these
annotations, different types of target (class and method), and what kind of
components (EJB or Servlet) can be annotated using security annotations.

With this we've finished with the basics of Web module security; we will discuss the
Web module security in further detail in Chapter 3 when we will develop a secure
application using Java EE. Now it is time to take a look at EJB module security.

Understanding the EJB modules
We saw that a Web module is mostly responsible for interactive with users,
including receiving the requests as HTTP methods, processing the requests, calling
business logic when required to generate the response, and finally sending the
generated response back to clients.

The EJB modules are simple ZIP files with JAR extension, with a predefined
structure, formed by several Enterprise JavaBeans implementations, which are called
enterprise beans. Three types of EJBs defined by the specification and supported by
different application servers are Session Beans, Entity Beans, and Message-Driven
Beans (MDB).

Message-Driven Beans are provided to process the JMS messages in the context of
enterprise application to support complex transaction schemas. There is no security
constraint which we may need to define for an MDB.

Chapter 1

[27]

Java EE specification followed by application servers provides a complete security
model for Entity Beans and Session Beans as they are in direct contact with the
clients either through the Application Client Container, through a web application,
or from another container developed by third-party companies to integrate a new
container in a Java EE application server.

We can define constraints on Entity Beans and Session Beans in two ways—by
adding required elements to deployment descriptor or adding necessary annotations
to the EJB's source code.

These annotations or deployment descriptor elements instruct the application
server about which roles are allowed to access the EJB as a whole or one or more
methods of the business interface, home interface, component interface, and/or
web service endpoints.

If you are thinking about the authentication, I should say that authentication process
usually happens in the first layer of user's interaction with application. In our case this
is the Web module or the application client module. Thus we are not involved with
authentication in the EJB layer and instead we rely on the authentication information
we receive from the Web layer and we only go through the authorization process in
the EJB layer. Following figure illustrates how EJB container relies on Web container or
Application Client Container for authentication process.

Browser

Authentication

Authenticated user’s

principals

Web Container

JSPs

Servlets

Web Services

EJBs

Commencing

authorization

before letting

a URL go

through

Invocation

Pass current

principals

EJB container

Entity Beans

Session Beans

Web Services

Authorization

before

invoking the requested

method

Security

realm Security

realm

Whenever the Web container needs to invoke some methods from an EJB module
in the EJB container it sends the authenticated user's principal to the EJB container,
which goes through authorization to see whether the current user has the permission
to invoke the method or not.

Java EE Security Model

[28]

Similar to Web modules where we could use annotation and deployment descriptor
elements to instruct the container to apply constraints on our resources, we can use
annotation and deployment descriptor to define constraints on EJBs. Through this
section we will use Entity Beans to demonstrate how we can define constraints either
by using annotation or through the deployment descriptor. The listing below shows
the Employee Entity Bean.

@Entity
public class Employee implements Serializable {
 public String getName() {
 return "name";
 }
 public void promote(String toPosition) {
 //promote the employee
 }
 public List<EvaluationRecords> getEvaluationRecords() {
 List<EvaluationRecords> evalRecord;
 //return a list containing all
 // EvaluationRecords of
 //this employee
 return evalRecord;
 }
 public List<EvaluationRecords> getEvaluationRecords(Date from,
 Date to) {
 List<EvaluationRecords> evalRecord;
 //return a list containing all
 //productivity evaluation of
 //this employee
 return evalRecord;
 }
 @Id
 private Integer id;
 public Employee() {
 }
}

The Employee Entity Bean has several methods and we should only allow certain
roles to invoke them. The getName method can be accessed by any caller that has
the employee_role role. The promote and getEvaluationRecords method can
be called by any employee with the hr_management_role role assigned to them.
Finally, we should allow all top-level managers to invoke different overloads of the
getEvaluationRecords method. For instructing the application server to protect
our entity bean with the security view we have just defined, we should provide the
corresponding declaration in the ejb-jar.xml file. The following listing shows how
we should add the security view we defined to our ejb-jar.xml file.

Chapter 1

[29]

<security-role>
 <description>human_resource_manager
 </description>
 <role-name>hr_management_role</role-name>
</security-role>
<security-role>
 <description> top level managers
 </description>
 <role-name>top_level_manager_role</role-name>
</security-role>
<method-permission>
 <role-name>hr_management_role</role-name>
 <method>
 <ejb-name>Employee</ejb-name>
 <method-name>getName</method-name>
 </method>
</method-permission>

<method-permission>
 <role-name>hr_management_role</role-name>
 <method>
 <ejb-name>Employee</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

<method-permission>
 <role-name>top_level_manager_role</role-name>
 <method>
 <ejb-name>employee</ejb-name>
 <method-name>getEvaluationRecords</method-name>
 <method-params>
 <method-param>from</method-param>
 <method-param>to</method-param>
 </method-params>
 </method>
</method-permission>

This snippet shows some basic instructions for application servers to restrict access
to different methods of Employee bean for certain roles.

Java EE Security Model

[30]

Using security-role we can define roles which we want to use in the EJB module.
By using the method-permission element we can define which roles can access one
or all methods in our entity bean. The role-name is the name of the rule which we
want to define its permissions in the current security-role element. The value can
either be a role name or it can be unchecked to permit all roles to invoke methods we
determine by using the method-name element. In the method-name element we can
use a method name or we can use * to grant permission for invoking all of our EJB
methods to the roles we set in method-name element.

In our entity bean we have two overloads of the getEvaluationRecords method
and sometimes we just need to let different roles invoke different overloads. In such
a condition we distinguish different overloads by providing the list of parameters for
the method for which we want to define permission.

Like in web applications, we sometimes need to assign a specific role to all
outgoing calls of an EJB. To do this, we can use the run-as element of the standard
deployment descriptor as shown in the following snippet:

<enterprise-beans>
<entity>
 <ejb-name>employee</ejb-name>
 <ejb-class>book.glassfish.security.chapter01.Employee
 </ejb-class>
 <security-identity>
 <run-as>
 <role-name>payroll_dept</role-name>
 </run-as>
 </security-identity>
</entity>
</enterprise-beans>

This sample code instructs the application server to assign the payroll_dept to all
outgoing calls from Employee bean using the payroll_dept role. Using the run-as
element does not change the current authenticated user or their role, but it's just in
case the method invocation uses the given role.

Securing EJB modules using annotations
Annotations play an important role in Java EE 5 and later releases, especially in
the EJB layer. We can almost forget about the standard deployment descriptor,
ejb-jar.xml, and define every runtime aspect of EJBs using annotations. Although
using annotations lifts the necessity of the ejb-jar.xml presence, we still need to
have vendor-specific descriptor sun-ejb-jar.xml in place to define dependency of
our EJB module to external resources like security realms.

Chapter 1

[31]

The following table below shows important security-related annotations in Java EE 6
that we can use to secure different components of enterprise applications.

Annotation Class
Level

Method
Level

EJB Servlet Description

@PermitAll X X X Permitting everyone to access
the annotated method. In case
of class-level annotation, all
methods of annotated EJB are
accessible to all roles unless
the method is annotated with a
@RolesAllowed annotation.

@DenyAll X X If placed on a method, no one
can access that method. In case
of class-level annotation, all
methods of annotated EJB are
inaccessible to all roles unless
a method is annotated with a
@RolesAllowed annotation.

@RolesAllowed X X X In case of method-level
annotation, it permits the
included roles to invoke the
method. In case of class-level
annotation, all methods of the
annotated EJB are accessible
to included roles unless the
method is annotated with a
different set of roles using
@RolesAllowed annotation.

@DeclareRoles X X X Defines roles used by the
application. It is similar to
using the security-role
element of the deployment
descriptor.

@RunAs X X X Specifies the run-as role for
the given components. We
discussed how this annotation
works in the Using security
annotations section.

Java EE Security Model

[32]

Some of the security annotations cannot target a method like @DeclareRoles while
some others can target both methods and classes like @PermitAll. Annotation
applied on a method will override the class-level annotations. For example,
if we apply @RolesAllowed("employee") on an EJB class, and we apply
@RolesAllowed("manager") on one specific method of that EJB, only *admin* role
will be able to invoke the marked method while all other methods will be available
to the employee role.

You should remember two of these annotations from the Web module section and
now you are going to learn four other security-related annotations. Let's rewrite the
Employee entity bean using annotations. A revision of the Employee entity bean
enriched by annotation is in the following listing:

@Entity
@DeclareRoles({"employee_role","hr_management_role"top_level_manager_
role})
@RolesAllowed(" hr_management_role")
public class Employee implements Serializable {
 @RolesAllowed("employee_role")
 public String getName() {
 return "name";
 }
 public void promote(String toPosition) {
 //promote the employee
 }

@RolesAllowed("top_level_manager_role ")
 public List<EvaluationRecords> getEvaluationRecords() {
 List<EvaluationRecords> evalRecord = null;
 //return a list containing all
 // EvaluationRecords of
 //this employee
 return evalRecord;
 }
@RolesAllowed("top_level_manager_role ")
 public List<EvaluationRecords> getEvaluationRecords(Date from,
 Date to) {
 List<EvaluationRecords> evalRecord = null;
 //return a list containing all
 // EvaluationRecords of
 //this employee
 return evalRecord;
 }

 @Id
 private Integer id;
 public Employee() {
 }
}

Chapter 1

[33]

We simply used @DeclareRoles({"employee_role","hr_management_
role","top_level_manager_role}) to define all roles that we are going to use in
our EJB and then we used @RolesAllowed("top_level_manager_role") to permit
the top_level_manager_role role to invoke all methods in the Employee EJB.
Finally, we defined which roles can invoke individual methods by marking them
with different @RolesAllowed annotations.

To instruct the application server to execute the EJB methods using a specified role
instead of the caller role, we can place @RunAs(value="payroll_dept") on the EJB
class level.

Mapping roles to principals and groups
In the Web applications we saw that we should define the mapping between roles,
principals, and groups in the sun-web.xml, which is the vendor-specific deployment
descriptor for web applications. In the same way, we need to define the role mapping
in the EJB applications to ensure that application server can determine whether
a user has a required role assigned to it or not. The following snippet of the
sun-ejb-jar.xml shows how we can map the hr_management_role role to
an individual user and a group of the realm.

<security-role-mapping>
 <role-name>hr_management_role</role-name>
 <principal-name>HR_ADMIN</principal-name>
 <group-name>HR_Manager</group-name>
</security-role-mapping>

This role mapping declaration, hr_management_role is assigned to HR_Manager
group as well as for an individual user, identified by HR_ADMIN username.

Accessing the security context
programmatically
Similar to web applications for which we had some level of programmatic access to
the context security information, we have some methods which allow us to access the
security context and extract the required information when the declarative security
and annotations are not enough.

Java EE Security Model

[34]

The javax.ejb.EJBContext interface provides two methods for accessing
the security information. First, getCallerPrincipal method which lets us
access the caller principal and second, the already introduced isCallerInRole
method to check a specific role against the roles assigned to the caller. It is highly
recommended that we only use the annotations and deployment descriptor
and turn to programmatic security only when we have no other way to address
our requirement. Imagine that our Employee bean has a new method named
raisePaygrade(int amount, String raisedBy), this method needs the username
of the manager who will raise the pay grade of the employee. When we are calling
this method of Employee bean we can extract the caller principal and use it when we
are invoking this method.

@Stateless
public class EmployeeServiceBean
 {
 @Resource
 SessionContext ctx;
 public void raiseEmployeePaygrade(int amount, long empID){
 Employee employee = null;
 //find the employee
 String raisedBy =ctx.getCallerPrincipal().getName();

 employee.raisePayGrade(850000, raisedBy);
 //persist the employee
 }
}

We simply extract the principal of the caller and store who raised the pay grade for
our employee. Our sample method only accepts two parameters; while it may be
way more complex than this, the concept and the procedure is the same.

We should follow the same rules when we are using the isCallerInRole method,
meaning that we need to either use the role name as defined in the deployment
descriptor, or we should define the link between the role name we used in the source
code and real name of the role which is defined in the security-role element.

Using EJB interceptors for auditing and
security purposes
We can use AroundInvoke interceptor to intercept EJB business method calls.
Intercepting the call lets us access the method name, its parameters, and EJB context
(and therefore isCallerInRole and getCallerPrincipal methods). We can
perform tasks such as security check, logging and auditing, or even changing the
values of method parameters using interceptors.

Chapter 1

[35]

public class SampleInterceptor {
 @Resource
 private EJBContext context;
 @AroundInvoke
 protected Object audit(InvocationContext ctx) throws Exception {

 Principal p = context.getCallerPrincipal();
 if (userIsValid(p)) {
 //do some logging...
 }else{
 //logging and raising exception..
 }
 return ctx.proceed();
 }
}

To use this interceptor we only need to place an annotation on the designated
EJB. For example to intercept any method call on EmployeeServiceBean we can
do the following:

@Interceptors(SampleInterceptor.class)
@Stateless
public class EmployeeServiceBean {EmployeeServiceBean { {
// Source code omitted.
}

The @Interceptors can target classes, methods, or both. To exclude a method from
a class-level interceptor we can use @ExcludeClassInterceptors annotation for
that method.

We can use interceptor element of ejb-jar.xml deployment descriptor to specify
interceptors if preferred.

Enforcing authentication in EJB modules
So far we have assumed that the EJB module itself does not require conducting
an authentication and relies on authentication information it receives from the
caller container. But we may need to instruct the EJB container to commence with
authentication process when necessary by including required configuration
elements to sun-ejb-jar.xml file.

Java EE Security Model

[36]

We usually require enforcing authentication in the EJB layer when we know that
client applications, which may access our EJBs, are deployed into other containers
like ACC or another application server's different containers.

The EJB container uses Inter-ORB security standards to declare constraints over
EJBs which have some level of constraints applied on them. A simple configuration
to ensure that any call to a constraint method of the Employee entity bean will go
through authentication is similar to the following listing.

<sun-ejb-jar>
 <enterprise-beans>
 <unique-id>1</unique-id>
 <ejb>
 <ejb-name>employee</ejb-name>
 <jndi-name>employee</jndi-name>
 <ior-security-config>
 <transport-config>
 <integrity>NONE</integrity>
 <confidentiality>NONE</confidentiality>
 <establish-trust-in-target>
 NONE
 </establish-trust-in-target>
 <establish-trust-in-client>
 NONE
 </establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method>USERNAME_PASSWORD</auth-method>
 <realm>default</realm>
 <required>true</required>
 </as-context>
 </ior-security-config>
 </ejb>
 </enterprise-beans>
</sun-ejb-jar>

The snippet simply means that we want to have authentication of HTTP Basic type
in place when a user tries to access a constrained part of our EJB. Using IOR we can
declare transport security in addition to authentication, but I leave it to you to study
the sun-ejb-jar.xml to see what else we can do using IOR declarations. In Chapter 3
we will discuss sun-ejb-jar.xml in more detail.

Chapter 1

[37]

Understanding the application client
module
Application client modules are regular Java programs that directly interact with
the EJB modules. These modules depend on another type of container named
Application Client Container for the services that are required for operation.
Each application client module is assembled in a JAR file that contains a
deployment descriptor named application-client.xml.

The application-client.xml descriptor file determines how the application accesses
enterprise beans and web resources. When the resources which the application client
requires to access are secure the client will be authenticated accordingly.

Assume that we have a Swing application interacting with an EJB module with
several constrained EJBs that we need to use during our application runtime. As
we want to access a secure resource, we should go through the authentication and
authorization phases. In order to go through these two phases we should provide
our authentication information to the container so it can validate our identity and
check whether we have a role permitted to invoke the EJB method we want
to invoke.

When we want to access a constraint EJB resource from an application client
module, the ACC will perform the authentication and send the authenticated
subject along with the context when it accesses the EJB. Then the EJB module
performs the authorization to check whether we have the required access
permission (we have the required role) to further proceed with the invocation.

There is no standard authentication API for plain (not application clients)
Java SE applications to access the EJB module. So, if we have a plain Java
SE application and we need to access a secured EJB, we should either use
the vendor-specific solutions or we should change the Java SE application
into a application client module.

Java EE Security Model

[38]

Forget about how we can develop the client application which runs on the ACC;
we can talk about deployment descriptors which we should make it possible for
our client application to send the authentication information to the server, so an
authorized user can access what it is authorized to access. These configurations
are provided through different deployment descriptor files. The first file is
the standard Java EE deployment descriptor for the application client named
application-client.xml and a companion vendor-specific deployment
descriptor named sun-application-client.xml. We use these two files to
configure a callback handler which asks the user to provide specific credentials like
username and password or a digital certificate, or it can use the credential which the
user used to log into his operation environment.

Two files are bundled with our application client module and deal with internals of
our application client such as which resources our application wants to use and how
it responds to an authentication request coming from the server.

We need another descriptor file to define where our server is located, how secure
our communication channel should be, and which security realm our user should be
checked against. This deployment descriptor which provides us with a fair deal of
security-related configuration is named sun-acc.xml but we can change the name
to something more meaningful.

This file is not bundled with the application client module but rather we pass this
file as an argument of the Application Client Container launcher when we want to
launch our client application. If we do not pass this file address as an argument,
the ACC launcher will try to use a default one. We discuss more about this file in
Chapter 3.

By default the Application Client Container uses a simple Swing dialog to collect
the username and password when we try to access a restricted EJB from our client
application. But we can override the configuration and instruct the Application
Client Container to use our own callback handler to collect the authentication
information. We may show a very polished Swing frame to collect the username and
password or collect any other necessary credentials. The following snippet is a part
of the application-client.xml file that instructs the Application Client Container
to use our callback handler instead of showing the default dialog box.

<callback-handler>
 book.glassfish.security.chapter1.SwingCallbackHandler
</callback-handler>

Chapter 1

[39]

We simply let the ACC know what the callback handler is and the ACC takes
care of initiating and calling its methods when necessary. In addition to a lazy
authentication that kick-starts the authentication when we try to access a resource,
we can specify a default username and a password for each one of the resources
that our client application can access in the sun-application-client.xml file.
For example:

<resource-ref>
 <res-ref-name>TaskQueueFactory</res-ref-name>
 <jndi-name>jms/TaskQueueFactory</jndi-name>
 <default-resource-principal>
 <name>user</name>
 <password>password</password>
 </default-resource-principal>
</resource-ref>

The GlassFish application server or any other application server has a default realm
which Web Container, EJB container, or ACC will authenticate the users against
when an authentication is defined, but for all of them we can override this
default realm name with the realm name we require using different types of
deployment descriptors.

We can use the sun-acc.xml file for declaring several types of security measures,
starting from the authentication down to transport-level security. You may study
which options are available in this file to increase you understanding of available
ACC security measures.

Declaring security roles in Application
level
So far we discussed several types of deployment descriptors for Web, EJB, and
application client modules. But we know that we usually deploy an archive
including all three types of modules known as an enterprise application module.
This module is again a ZIP file with EAR extension.

The enterprise application module has its own deployment descriptors named
application.xml and sun-application.xml for the vendor-specific deployment
descriptor, which in addition to the application structure we can include declarations
common between different modules inside them.

In our case, one of the common declarations are security role declarations which are
defined using the security-role element inside the application.xml, which is the
standard deployment descriptor.

Java EE Security Model

[40]

The other common declarations are role-to-group and individual mapping
using security-role-mapping element. We put this declaration, which is a
vendor-specific declaration, inside the application vendor-specific deployment
descriptor, the sun-application.xml file.

We can use sun-application.xml to specify the default authentication realm for the
entire application. The default realm specified in the sun-application.xml will be
used if an included module does not specify which authentication realm it wants
to use. Following snippet shows how we can specify the authentication realm in
sun-application.xml.

<sun-application>
 <realm>JDBC_REALM</realm>
</sun-application>

Summary
Java EE security is a very broad topic which can address small and day-to-day
security requirements to large, complex, and unique issues which only can rise for
large-scale complex applications.

In this chapter we briefly introduced Web modules, EJB modules, and application
client module's security in different levels including authentication, authorization,
and transport security. We discussed users, groups, and role mapping down to a
good level of detail, along with small topics like HTTP session and performance
issues of using cryptography.

In next chapter, we will discuss JAAS and GlassFish security realm in more detail to
complete the basic information we need to develop a secure enterprise application in
Chapter 3.

GlassFish Security Realms
Java EE application servers require interaction with many external systems to
address the requirements of the organization they are hosting applications for.
Two of these external systems are Identity management systems (IDM) and
identity storages. Identity management systems are end-to-end products
covering all functionalities related to provisioning, authentication, and
authorization. IDM products can interact with tons of external sources and support
major security-related standards to facilitate security integration and interaction of
separate enterprise applications. Identity storage is any type of storage containing
user identification information, including identity and credentials. We will discuss
the OpenSSO IDM system in chapters 7 to 9. In this chapter, we discuss GlassFish
application server interaction with identity storages like relational databases,
Lightweight Directory Access Protocol (LDAP) servers, flat files storage, and so
on. This chapter follows Chapter 1 to complete the Java EE applications' security
configuration and prepare us for completing a sample application in the next
chapter. This chapter covers the following topics:

Security realms
GlassFish security realms
File realm
JDBC realm
LDAP realm
Certificate realm
Developing custom realm

There are sample codes to see how each of the above topics can be used to secure the
sample application.

•

•

•

•

•

•

•

GlassFish Security Realms

[42]

Security realms
Security realms, like many other standards, functionalities, and capabilities, are
provided to address the requirement of enterprise application developments
when it comes to reusing security assets.

Authenticating using security realms
Security realms provide a standard way for application servers to authenticate the
identity provided by a user, or an entity like another software or hardware against
a set of already defined identity stored in identity storages. Some of the common
identity storages are as follows:

Flat files for development time or for small applications
Relational databases for applications of all sizes
LDAP servers for mid or enterprise-scale applications
Microsoft Active Directory, which is an LDAP implementation
Operating system realms like Solaris realm for integrating the applications
security with operating system security and using the same login for it
Biometric databases like thumbprint identifications for applications with
sensitive applications
Smart card identification for sensitive roles applications and roles like
administration sections

Several security realms are available in GlassFish to support authentication
against different identity storage types. We create security realms using available
realm types to authenticate users against an identity storage known to that realm
type. For example, a JDBC realm knows how to interact with a database to
authenticate user credentials.

Sometimes we need to authenticate our users against a custom identity storage that
is not supported by GlassFish; for these occasions we can develop new realms by
extending some GlassFish-specific classes that let an application server authenticate
a user against our custom identity storage. GlassFish uses Java Authentication
and Authorization Service (JAAS) under the hood of its security realms
implementations.

•

•

•

•

•

•

•

Chapter 2

[43]

Reusing security assets
The reason that security realms are included in Java EE specification and the
application server is the need in the enterprise to reuse some already established IT
assets like identity storage in new software systems, to reduce the overall costs and
prevent duplication in the enterprise.

The realm in Java EE under login-config element just says "the realm name that
should be used for this application". The Java EE specification does not really expand
more on what a realm is. Each application server implements the concept of realm
separately and includes as many security realms in the application server as they
see required.

The specification ties the security realm to authentication method, which are
mandatory parts of the specification with a statement like:

HTTP Basic Authentication is the authentication mechanism supported by the
HTTP protocol. This mechanism is based on a username and password. A web
server requests a web client to authenticate the user. As part of the request, the
web server passes the realm in which the user is to be authenticated. The web
client obtains the username and the password from the user and transmits them to
the web server. The web server then authenticates the user in the specified realm
(referred to as HTTP realm in this document).

The presence of security realms ensures that all of the software systems driving a
business are using the same set of identities stored centrally. By using security realms
and central identity storage we guarantee that identity management does not need to
be scattered between several application and application server administrators.

GlassFish security realms
GlassFish provides a fair set of security realms out of the box by supporting all major
identity storages like file-based storages, databases, LDAP servers, digital certificates,
and so on. In addition to providing a wide set of supported realms, GlassFish left the
door open for developing new security realms and plugging the realm to the set of
application server's security realms.

GlassFish Security Realms

[44]

Administrating security realms
GlassFish provides us with multiple administration channels, including
command-line interface (CLI), Web Administration Console (Web Console),
and Java Management Extensions (JMX). Through this book we will use CLI and
Web Console to change the configuration of objects we need to administrate.

CLI is available through asadmin utility, which is located at
glassfish_home/bin directory. The Web Console is available at
http://{host}:{port} in which "host" is where the application server
administration console is listening and "port" is administration listener
port number. Default values for host and port are localhost and 4848.
Default username and password for using CLI and Web Console are
admin and adminadmin.

Before digging deep into different security realms in GlassFish application server,
let's see how we can create a security realm using Web Console and CLI.

To create a new realm based on any of the available realm types we can use Web
Console and navigate to Tree | Configuration | Security | Realms. The Realms
page will open, then click on the New button to start our journey for creating a
realm. We will discuss all of the following realms in the subsequent sections of
the book.

File realm
JDBC realm
LDAP realm
Certificate realm

GlassFish CLI provides a set of commands to administrate security realms. These
commands are briefly listed in the following table.

Command Description
create-auth-realm Creating a new realm based on one of the available

realm types.
delete-auth-realm Deleting a realm from list of the available realms.
list-auth-realms Listing all security realms defined in the system.

We will discuss some of these commands later in this chapter.

•

•

•

•

Chapter 2

[45]

Creating a file realm
A file realm is the most basic security realm available in GlassFish. This realm is
useful for test and development cycles and not for a production environment where
we have tons of users and groups. Any security realm defined using this type uses a
flat file to store the users, passwords, and users' group assignments.

To create a file realm we can navigate to Tree | Configuration | Security | Realms
and after the Realms page opens, click on the New button. Now we can select which
realm type we want to use for our new realm. Each realm has some properties for
which we should provide values to configure the realm. Some of these properties are
mandatory while some others are optional. The following table lists all properties we
can specify for file realm. Optional properties are marked with "*" sign.

Attribute Description
Name This is the realm name which we will use in our web or enterprise

applications.
Class Name Specifies which type of realm we want to create.

JAAS
Context

This is the JAAS Context for our realm which defines the login
module. Each realm type has at least one JAAS Context.

Key File Specifies location of the file where we want to store our users
information. The file does not need to exist because GlassFish will
create the file. It is important that GlassFish has write access in the
specified location.

Assign
Groups*

A list of comma-separated groups we want to assign to any
authenticated user.

Let's see the values we want to provide for our security realm. The following figure
shows values for all of the mandatory and optional properties:

GlassFish Security Realms

[46]

Two properties need some more description, which are as follows:

The JAAS Context property should specify a name that points to a specific
configuration element in domain_dir/config/login.conf. The element
specifies which JAAS login module we can use for this realm. We will
discuss JAAS in more details in last section of this chapter.
The Key File uses a relative path for it. The relative path indicates that our
key file is located at domain's configuration directory.

Now we can press the OK button to finish creating the new realm.

In the figure you can see that I specified key file path relatively to the
domain directory using the ${com.sun.aas.instanceRoot}. The
path can be anything like C:/FRealm-keyfile or /home/user/
FRealm-keyfile.

File realm is native to GlassFish application server and usually we use it for
development purposes, therefore GlassFish developers tried to ease the application
development by providing us with a user provisioning interface for this realm.

To use the provisioning interface:

1. Navigate to Tree | Configuration | Security | Realms | FRealm and click
on Manage Users button. It will open an interface to add new users.

2. Click on New and use the following information for each attribute.
User ID: jack
Group List: manager, hr_manager
Password: jack

Now press the OK button to store the information in the file we specified in
previous section.

Let's examine how this information will be stored in the key file, whose location we
specified when we were creating the new realm. The following listing shows content
of FRealm-keyfile which contains user information for FRealm.

jack;{SSHA}r1Inju5avfgMCQ3DRl+vuWsfJevTuD+80xFcxQ==;
 managers,hr_managers

Looking at the file content we can understand that user attributes are separated
using semicolons. While usernames in the first column and group names in the third
one are stored in plain text, only a hashed representation of passwords are stored in
the second column.

•

•

°

°

°

Chapter 2

[47]

File realm stores passwords in hashed mode to prevent any unauthorized
access to the list of passwords if the realm file is compromised.

Let's develop a simple web application to test our new realm. We will use this
application throughout the chapter to study how different realms work.

Complete source code and build scripts for this application is available
at https://www.packtpub.com//sites/default/files/
downloads/9386_Code.zip.

Application build and deployment system is based on Maven (http://maven.
apache.org). You may need an active Internet connection in order for the build
script to get its required libraries.

Our sample application has three JSP files located in three different directories. We
define constraint over URLs opening these directories using URL patterns and allow
specific roles to access these URL patterns. The following figure illustrates the web
application file and folders layout:

The application is assembled using some JSP files and folders along with the
web.xml file and the sun-web.xml file to declare the security constraints and
role to group mappings. The following listings shows the web.xml file content.

The following part of the web.xml file shows how we can use the
security-constraint element of the web.xml to limit access to any
resource inside the managers folder to top_level_manager_role.

<security-constraint>
 <display-name>Managers Constraint</display-name>
 <web-resource-collection>
 <web-resource-name>Managers Content</web-resource-name>
 <description/>
 <url-pattern>/managers/*</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>

GlassFish Security Realms

[48]

 <auth-constraint>
 <description/>
 <role-name>top_level_manager_role</role-name>
 </auth-constraint>
</security-constraint>

The following portion demonstrates how we can permit multiple roles to access a set
of resources. In this part of web.xml we are permitting hr_management_role and
top_level_manager_role to access any resources inside the hrmanagers directory.

<security-constraint>
<display-name>HR Managers Constraint</display-name>
 <web-resource-collection>
 <web-resource-name>HR Management Section</web-resource-name>
 <description/>
 <url-pattern>/hrmanagers/*</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description/>
 <role-name>hr_management_role </role-name>
 <role-name>top_level_manager_role</role-name>
 </auth-constraint>
</security-constraint>

The following portion defines how we can specify the authentication mechanism,
which is BASIC in this case, and the security realm which we want the application
server to authenticate our users against. In this case we are using FRealm which we
created previously.

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>FRealm</realm-name>
</login-config>

Finally, we should define the roles that we used in the application and in the
descriptor file.

<security-role>
 <description/><role-name>hr_management_role </role-name>
</security-role>
<security-role>
 <description/>
 <role-name>top_level_manager_role</role-name>
</security-role>

Chapter 2

[49]

We discussed the necessity of a vendor-specific deployment descriptor for defining
roles to group mappings for authorization purposes. This code shows how we can
use the GlassFish-specific deployment descriptor sun-web.xml file to define the roles
to principal and group mappings.

<sun-web-app error-url="/errors/error.jsp">
 <context-root>/SecurityRealms</context-root>
 <security-role-mapping>
 <role-name>top_level_manager_role</role-name>

 <group-name>manager</group-name>

 <group-name>hr_manager</group-name>

 </security-role-mapping>
 <security-role-mapping>
 <role-name>hr_management_role</role-name>

 <group-name>hr_manager</group-name>

 </security-role-mapping>
</sun-web-app>

We simply assigned different groups to roles we declared in the web.xml file.
Reviewing the first chapter is recommended if you cannot understand these
elements. After deploying the application any attempt to access a restricted
resource fires Basic HTTP authentication, which shows a dialog similar to the
following figure:

We just need to enter the username and password to pass the authentication barrier
and continue working with the application.

GlassFish Security Realms

[50]

Creating the JDBC realm the JDBC realm
The JDBC realm is one of the most common realms in the production environment
after the LDAP realm. Basically, the JDBC realm allows us to use a set of tables
containing usernames, passwords, and user's group membership as
an authentication source.

Assuming a simple database schema for defining users, passwords, and user's group
membership, we should have two tables—one for users and another one for groups
with a foreign key to assign multiple groups to a user. The following figure shows a
simple schema for a database useable for the JDBC realm:

A sample SQL to create the required tables and populate them with some sample
data is shown in the following code. I am using MySQL to create the database and
related tables, which we need to configure a JDBC realm. You may use any other
databases that you are more comfortable with.

Create database jdbc_realm_db;
Use jdbc_realm_db;
CREATE TABLE users
(username VARCHAR(255) NOT NULL
, password VARCHAR(255) NULL
, CONSTRAINT PRIMARY KEY(username));
CREATE TABLE groups
(username VARCHAR(255) NULL
, groupname VARCHAR(255) NULL);
CREATE INDEX groups_users_FK1 ON groups(username ASC);
insert into users values('jack','jack');
insert into groups values('jack',manager);
insert into groups values('jack','hr_manager');

Chapter 2

[51]

We should now create the database and execute the script to load sample data before
we continue to the next steps. The SQL script performs the following tasks:

Creating the users and groups tables
Inserting a user into the users table. The username and password are
jack/jack

Assigning MANAGER and HR_MANAGER groups to the previously inserted user

For MySQL, the procedure of creating the database and executing the script is
as follows:

Make sure that MySQL server is up and running. You can check the Services
section in Windows or you can use the following command on a Debian-
based Linux:

 sudo /etc/init.d/mysql status

If MySQL is not running, right-click on the service name and select Start in
Services section of Windows or the following command in Linux:

 sudo /etc/init.d/mysql start

You can find the script file named jdbc_realm.sql in the chapter02/
scripts directory of the source code bundle that is available at
https://www.packtpub.com//sites/default/files/
downloads/9386_Code.zip.

After starting the database, use the following to execute the script file:

mysql –uUSER_ –pPASSWORD_

mysql>source /path/to/jdbc_realm.sql

In the above command, you should replace the USER_ and the PASSWORD_ with your
database administration user and password.

•

•

•

•

•

GlassFish Security Realms

[52]

Now that we have the database created we can continue with creating the JDBC
realm. Navigate to Tree | Configuration | Security | Realms and click on
New button. Enter a Name like DBRealm and for Class Name select com.sun.
enterprise.security.auth.realm.jdbc.JDBCRealm. Selecting the class name
shows all optional and required properties for which we can specify values directly
without involving the Additional Properties table.

Chapter 2

[53]

The following table shows a list of these properties along with their descriptions for
the previous screenshot.

Attribute Description
JAAS context JAAS context for this realm, it's jdbcRealm or

jdbcDigestRealm.
JNDI JNDI address for JDBC data source connecting application server

to users identity database.
User Table Table containing users.
User Name Column Username column in the table.
Password Column Password column in the table.
Group Table Group table name.
Group Name
Column

Group name column.

Assign Group A comma-separated list of group names which all authenticated
users are assigned to.

Database User,
Database Password

We can specify database username and password here instead of
the connection pool.

Digest Algorithm Usually we store a hashed copy of password to prevent password
recovery. This property specifies the hash algorithm used to hash
the password before storing it. We should use jdbcDigestRealm
for JAAS context if we choose to go with a digest algorithm
instead of none which specifies no digesting is required.

Encoding We can either use Hex or Base64 if we want to use a digest
algorithm. If digest algorithm is specified, the default is Hex unless
we specify otherwise. Selecting the algorithm is just matter of
choice and overall system requirement.

Charset The character set for the digest algorithm.

The JdbcDigestRealm is not to be used unless the authentication method is DIGEST.
In other words we should not configure the JAAS context of jdbcDigestRealm when
we are using the BASIC authentication method. You can find more information at
http://blogs.sun.com/swchan/entry/jdbcrealm_in_glassfish.

GlassFish Security Realms

[54]

Looking at the set of mandatory properties, we know we need to create a JDBC
connection pool and data source to allow the JDBC realm to retrieve information
from database tables. Before we dig into creating the connection pool we should
add the required JDBC driver to the GlassFish classpath. Copy the database driver
library to the domain_dir/lib directory. I am using MySQL, so my driver library
is mysql-connector-java-5.0.4-bin.jar. Now we can continue with creating
the connection pool and the data source. To create a connection pool named
security_pool we can use the following CLI command:

asadmin create-jdbc-connection-pool --datasourceclassname
com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource --restype
javax.sql.DataSource --property
User=root:Password=root:URL="jdbc:mysql://127.0.0.1/sample"
security_pool

If you are not into using CLI, you can use administration console to create the
connection pool. Just navigate to Resources | JDBC | Connection Pools and press
the New button and follow the onscreen tips to create the connection pool.

To see our newly-created connection pool and further examine it we can
use the web-based administration console and navigate to Resources |
JDBC | Connection Pools | security_pool. We can use the Ping button
to check whether the connection pool is operational or not.

The following command creates a data source named jdbc/security on top of our
connection pool.

asadmin create-jdbc-resource --connectionpoolid security_pool jdbc/
security

We can use the administration console to create the JDBC resource. To do so navigate
to Resources | JDBC | JDBC Resources and press the New button.

Here we are ready to commence with the final step and create the JDBC realm for
which we are prepared with prerequisites.

Now that we have all prerequisites we can go back to the JDBC realm creating
page and specify required values for different properties. The previous screenshot
shows values we specify for each property of JDBC realm. Properties which are
not shown in the figure are required, having value in our case.

Chapter 2

[55]

To test our application with the JDBC realm, we can simply change the
authentication realm we created in web.xml when we test our application with the
file realm. We should change the realm name from FRealm to DBRealm and redeploy
the application. It is the beauty of using realm and container security. Just change
the realm name in the production environment and we are done with setting up the
authentication and authorization for our application.

We usually store passwords in a one-way hashed format in the database and when
required we should hash the user-provided password using the same algorithm
and compare it with the stored value in the database. Java supports several hashing
algorithms, including MD2, MD5, SHA-1, SHA-256, SHA-384, and SHA-512. We
should ensure that the algorithm we use for the Digest Algorithm property is
the same as the algorithm used to hash the passwords prior to storing them in
the database.

Selecting a digest algorithm is highly dependent on the required security assurance.
For example, the MD5 algorithm produces a 128-bit digest while the SHA-1 produces
a 160-bit digest. The pros associated with MD5 is its speed while the pros associated
with the SHA-1 is the smaller possibility to reverse the generated digest because of
its longer length.

MD5 algorithm is considered broken as it is possible to create two
documents which result in the same digest. So, it is basically better to
use SHA-1, as it is widely used and almost supported by any platform.

Using the LDAP realm to secure web
applications
Lightweight Directory Access Protocol (LDAP) was developed to allow the
IT world easily access the directory servers in an effective and reliable way.
Organizations store their users' identity information in a tree structure which
represents the structure of the enterprise itself. We can store identification
information like username, passwords, groups, organizations, organization unit,
home address, and so on into the directory server and when required, retrieve it
using LDAP API.

A well-known LDAP is Microsoft Active Directory, which contains information
about any network object in addition to users, groups, and user group assignments.
In this section we discuss how the LDAP realm works and how we can configure it
to use OpenDS as an authentication source.

GlassFish Security Realms

[56]

When we specify a LDAP realm in our web or enterprise application, the application
server sends the username and password it received from users to the specified
LDAP realm. Then the LDAP realm conducts a search in the directory server and
after finding the given username it tries to bind to the LDAP server using the given
password. After a successful bind operation, the authentication is done and the
LDAP realm returns back to the application server with a list of group names for
which our user has membership.

To fully understand the LDAP and LDAP realm we will install an LDAP server and
use it as an identity storage which our LDAP realm will connect to.

Downloading and installing OpenDS 2.2
We will discuss OpenDS installation in detail in Chapter 6, but here we are going to
look at the installation briefly to get the ball rolling for our test application. If you
have any difficulties with OpenDS installation, you can take a look at Chapter 6 under
the Installing and administrating OpenDS section.

Download OpenDS version 2.2 from https://www.opends.org/promoted-
builds/2.2.0/OpenDS-2.2.0.zip and install it according the following instructions.

1. Unzip the archive in an appropriate directory; we call this directory
opends_home.

2. Execute the setup script. It is either a BAT or a Shell script.
3. Continue with the wizard like any application setup. Make sure you

remember the password you specified for Root User DN in Server Settings
step. I used 123456 as a password to ensure I won't forget it.

4. Accept default values for remaining steps and finish the installation process.

Now we have a LDAP server installed and we need to import some users and
groups to test our LDAP realm in the next step. The following code shows content of
import.ldif file available inside the sample source code provided for this book.

The import.ldif format is LDAP Data Interchange Format (LDIF) which is a
standard plain text format used for LDAP information exchange. Content of an
LDIF file describes changes which should be applied on the LDAP data tree.

Chapter 2

[57]

We need to import the content of this file into our LDAP server to ensure that we can
use our sample application to test our LDAP realm without any extra modification.
The following snippet shows what an LDIF file content looks like. We discuss more
about LDIF format in Chapter 6 under the Storing hierarchical information: Directory
services and Importing and exporting data sections.

dn: dc=example,dc=com
objectClass: domain
objectClass: top
dc:: Z2xhc3NmaXNoIA==
entryUUID: c016ceef-5811-3b23-886b-3fd366b062b5

dn: cn=jack,dc=example,dc=com
objectClass: person
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: top
givenName: Jack
uid: jack
cn: jack
sn: Thomas
userPassword: {SSHA}mzQ6QYMrR946gRALVj4swqxHNGhx7lVbSEzmhg==
entryUUID: ee765366-e23a-4ddf-9ca2-5cbb9c530d48
createTimestamp: 20100113232013Z
creatorsName: cn=Directory Manager,cn=Root DNs,cn=config
pwdChangedTime: 20100113232013.678Z

dn: cn=manager,dc=example,dc=com
objectClass: groupOfUniqueNames
objectClass: top
cn: manager
uniqueMember: cn=jack,dc=example,dc=com
entryUUID: c274266b-d352-4fbc-9286-8987a5f529a3
createTimestamp: 20100113232032Z
creatorsName: cn=Directory Manager,cn=Root DNs,cn=config

dn: cn=hr_manager,dc=example,dc=com
objectClass: groupOfUniqueNames
objectClass: top
cn: hr_manager
uniqueMember: cn=jack,dc=example,dc=com
entryUUID: f4b0f882-17b1-45ae-a7a2-92bc3c8f8f95
createTimestamp: 20100113232049Z
creatorsName: cn=Directory Manager,cn=Root DNs,cn=config

GlassFish Security Realms

[58]

The content is human-readable except for the passwords which are stored
as hashed values instead of plain text. To import the file into the installed
LDAP server, navigate to opends_home/bin and execute following
commands sequentially.

./start-ds

import-ldif --clearBackend --backendID userRoot --ldifFile
path/to/import.ldif

We simply start the server and import the content into LDAP server storage. Now
we are ready to create the LDAP realm in the LDAP creation page.

We can use plain text to specify the password in the LDIF file, but when
we export the content of LDAP, the server will export the password in
hashed value to protect the passwords. The above snippet is an exported
file and therefore passwords are shown in hashed instead of plain text.

Creating the LDAP realm
To create the LDAP realm navigate to Tree | Configuration | Security | Realms
and click on the New button to create a new realm. The following table shows a list
of LDAP realm properties along with their description.

Property Description
JAAS context JAAS context for this realm, it's ldapRealm.
Directory LDAP Server connection URL, for example:

ldap://127.0.0.1:1389.
Base DN Location in the tree where search for the provided identity should

begin. We usually narrow the search to the smallest possible part of
the LDAP hierarchy.

Assign Group A comma-separated list of group names, where all authenticated users
are assigned to these groups.

Chapter 2

[59]

We can use additional properties which we should insert in Additional Properties
table to further fine-tune and customize the LDAP realm. These properties are listed
in the following table.

Property Description
search-filter Search filter used to find the user. The default value is uid=%s (%s

expands to the subject name). We can use a custom search filter if the
userid attribute is different than the default one.

group-base-dn Base DN for the location of group data. If group data is stored under
a separate Base DN we can use this property to further fine-tune
the performance.

group-search-
filter

Search filter to find group memberships for the user. Defaults to
uniquemember=%d (%d expands to the user element DN). We can
use a custom search filter if the uniquemember attribute is different
than default one.

group-target The LDAP attribute name that contains group name entries. The
default is CN. We can use a custom name for the attribute containing
group name entries when required.

search-bind-dn We can specify a DN so LDAP realm uses it to perform the search-
filter lookups. It is only required for directories that do not allow
anonymous search.

search-bind-
password

The LDAP password for the DN specified in search-bind-dn.

After we understand all properties of the GlassFish LDAP realm we can create a new
LDAP realm. Navigate to the realm creating page and create a new realm using the
values shown in the following figure:

GlassFish Security Realms

[60]

This realm uses the OpenDS server we installed and configured in the previous
section. To test the LDAP realm we can use our sample application. The only
required modification is changing the value of the realm-name element in
web.xml from FRealm to LDRealm.

Configuring the GlassFish LDAP realm for Microsoft Active
Directory
Microsoft Active Directory is a common LDAP server in the enterprise. The
following screenshot shows how we can configure LDAP realm to use Microsoft
Active Directory.

We should change the Directory and Base DN fields to address different Active
Directory instances while other properties do not need to be modified to tailor the
realm for different instances.

Chapter 2

[61]

We also need to specify a runtime parameter for application server JVM for cases
where we have multiple Active Directory servers in the enterprise completing the
hierarchy together. In such cases one Active Directory can refer to another Active
Directory for a searched object. Our policy should be following the referrals unless
we are just interested for the results coming from our specified server.

-Djava.naming.referral=follow

We can add this parameter to GlassFish JVM by navigating to Tree | Configuration
| JVM Settings and switching to the JVM Options tab.

Creating the certificate realm
We discussed three different types of security realms which were based on username
and password for authentication. We configured our web application and GlassFish
to use those realms to authenticate and check the authorization of users. In this
section we are going to discuss a custom realm which works on a different type of
credential for authenticating the users.

We use the certificate realm with the CLIENT-CERT authentication type. In this
type, clients need to prove their identity using a digital certificate. You may have
noticed that in many cases when you visit an e-commerce website the URL changes
to https and a notification icon is shown in browser URL indicating that the server
is identified using a digital certificate and assures you that you are communicating
with the genuine site and not a phishing website. In such cases the server identifies
itself using a digital certificate. In CLIENT-CERT authentication type not only must
the server identify itself to the clients but also clients must provide a valid certificate
in order for the communication to continue.

Before digging deep into the certificate realm we should have some basic
understanding about what a digital certificate is and how it can be used to
authenticate an entity.

Assume a digital certificate is like a passport which one can use to travel around. A
passport contains several identification attributes such as name, age, picture, birth
date, and signature. A passport is trusted to be valid because a passport-issuing
office sealed it either electronically or using classic seals. Passports have expiration
dates and they are considered invalid after the expiration date.

Digital certificates follow the same rules but instead of representing the owner in a
physical way, they represent their owners digitally and let them be recognized and
authenticated in the digital world. Passports are issued by passport offices that we
trust. In the same way certificates are issued by certificate authorities like VeriSign,
which we trust. When a certificate authority issues a certificate it digitally signs the
certificate to validate the certificate.

GlassFish Security Realms

[62]

Digital certificates can be used to identify individuals, web servers, governments,
and so on. Digital certificates are hard to forge and more reliable than hand-written
signatures.

The certificates are signed by certificate authorities and we should have a way to
validate whether the signature belongs to a trusted certificate authority before we
commence on validating the certificate itself. To understand how we can validate the
certificate authority's signature we should review some related concepts like public
key cryptography and certificates stores.

Public key cryptography
When we talk about cryptography and encryption the first thing that comes to
our mind is a secret phrase which is used to encrypt data and decrypt it. This type
of cryptography is called symmetric cryptography in which the encryption and
decryption keys are the same.

In contrast with symmetric cryptography we have asymmetric cryptography
in which the encryption and decryption keys are not the same. In asymmetric
cryptography we have a set of two keys named public key and private key. We
can use the public key to encrypt information and the private key to decrypt it. It is
practically impossible to decrypt some information without having the private key
corresponding to the public key used to encrypt the information.

We let everyone we want to communicate with have our public key so they can
encrypt the data packet prior to sending it to us. When we receive the data we can
decrypt it using our private key which is paired with our public key. Benefits of this
method are as follows:

The risk for the secret key to be discovered by a third party is minimal
because we do not have a common secret key
Encrypted data can only be decrypted with the private key of the same
public key used to encrypt the information
Communicating parties' identity can be verified
Using public key methods, communicating parties cannot deny that they
participated in the communication

Explanation of how public key algorithms work is beyond the scope of
this chapter as there is some complex mathematical computation in play
to make asymmetric cryptography a reality.

So far we understood that there are a set of two keys which can be used to encrypt
and decrypt information; now it is time to see how these keys are used by certificates
authorities to issue and sign a digital certificate.

•

•

•
•

Chapter 2

[63]

Digital signature
When we transmit a document encrypted using the receiver's public key we can sign
that document to assure the receiver that the document is genuine and no one else
tampered with it during transmission.

To sign the document we create a hash representing the document named Message
Digest. Then we encrypt it using our private key and send the encrypted digest
along with the document to receiver. Receiver decrypts the document using his
private key, computes a hash for document, decrypts our digest, and compares his
hash with our computed hash. If both values are the same the document is genuine
and has not been tampered with during transmission.

The digital signature can be used to sign any type of digital content to let any
qualified party verify the document origin.

Key stores and trust stores
Now we come to an important part of the story. How can we trust a signature or
an entity which issued a digital certificate? The answer to this question relies on the
fact that any software which uses a public key for security purposes has at least one
database containing a public key for any entity it wants to verify their signatures.
When we add a certificate to this storage we are telling the software that we trust
any digital certificate signed by the owner of the imported certificate.

Another type of certificate store which public key-based software may have is a
key store in which they store their own private key(s) and certificates they want to
identify themselves using.

So we have this trust store that can store any CA's certificate to instruct our
application to trust digital certificates signed by them. But are we able to store all
certificate authorities' certificates in our trust store? The answer is no, we do not need
to store any single certificate authorities' certificate. We can instead store the root
certificate authorities' certificate and use certificate authorities chain to verify a new
CA's certificate.

If a certificate is signed by a CA whose certificate is signed by a root CA we can
verify the certificate as a valid certificate. This process is called certificate chain.
The chain can have as many nodes as required.

A root certificate is a certificate signed by the issuer itself, such as VeriSign
root certificate that is signed by VeriSign. We trust root certificates because
they represent the companies we can trust. We trust any other party with
a digital certificate signed by VeriSign or similar companies because we
trust they will not cross the law by issuing invalid certificates.

GlassFish Security Realms

[64]

Large corporations that use digital certificates as an identification token for their
employees and software systems set up their own certificate authority and
include their certificate in their servers and clients trust store files.

Now we have acquired enough basic knowledge about digital certificates to dig into
GlassFish certificate and the certificate realm.

Managing certificates
We discussed the necessity of a trust store for applications that just need to verify
other parties' messages and certificates, and of a key store for applications that need
to present a certificate to the other party, in addition to validating the other parties'
certificate and messages.

By default GlassFish v3 uses Java keystore (jks) format for trust and key stores.
By default these files are placed inside the domain_dir/config directory. The file
names are keystore.jks that contains GlassFish private key and certificate and
cacerts.jks that contains all mainstream CA's certifications.

We can use other types of certificate stores such as PKCS11, PKCS12, and
so on with GlassFish v3. For more information on using other types of
certificate stores take a look at the following article:
http://weblogs.java.net/blog/kumarjayanti/
archive/2009/08/26/configuring-non-jks-keystore-
glassfish-v3.

Listing the content of keystore.jks and cacert.jks
Java Development Kit provides an efficient tool for working with keystore files. The
utility name is keytool and is located inside the java_home/bin directory. To list
keys stored in the keystore.jks file we can use following command; we need to be
in the domain_dir/config directory to use the command.

keytool -list -v -keystore keystore.jks -storepass changeit

Chapter 2

[65]

The output value for the command should be similar to the following screenshot,
with some extra information about extensions and number of keys and so on.

The output tells us that there is one private key stored in the keystore under s1as
alias. The certificate chain length is 1 therefore this entry is self-signed and no
certificate authority signed it.

This keystore works fine as long as we do not use SSL or mutual authentication
in a production environment where visitors and users need to verify the server
validity using the server's provided certificate. For a better understanding of the
certificate verification concept, start GlassFish and visit https://127.0.0.1:8181/
in your web browser. The browser will warn you about an invalid certificate and
when you check the details you can see that the certificate is issued for "Your
computer name" and not for 127.0.0.1. To skip this warning, try visiting
https://compute_name:8181/. This time you will get a warning which complains
about a self-signed certificate, or a certificate signed by an unknown certificate
authority. We can approve the certificate manually and continue using SSL for our
development purposes but in a production environment users want assurance and
certificates that their browser can validate automatically.

Now let's view the content of the cacerts.jks file to see how certificate authority's
certificates are stored in the cacerts.jks file. We can execute the following
command to view this list:

keytool -list -v -keystore cacerts.jks -storepass changeit

GlassFish Security Realms

[66]

You should see a long list of certificates rolling in the terminal window. The entries
are similar to the following figure and represent different certificate authorities.

This snippet shows the VeriSign certificate. It is self-signed and is treated as a root
CA certificate.

Now that we understand the contents of these files we should see how we can obtain
and install a valid certificate signed by a certificate authority. In the next section we
will obtain and install a test certificate from Thawte Inc.

Obtaining and installing a valid certificate
A server should have a valid certificate representing the server authenticity to
the clients. To obtain and install the valid certificate for GlassFish we can use the
following steps:

Generate a self-signed certificate using keytool and store it in a separate keystore:

keytool -genkey -alias glassfishcert -keyalg RSA -keysize 2048 -dname
"CN=HAL10000.md.com,OU=Learning,O=A Publishin,L=London,S=London,C=GB" -
keypass changeit-keystore glassfishKS.jks -storepass changeit

This command will generate a keystore along with a key stored under
glassfishcert alias inside the keystore. The most important factors are:

CN should be the exact name that browser will use to access our server. It
also needs to be a fully-qualified name like a domain name. The most simple
name can be www.domain_name.com.
We are using the same password that GlassFish keystore uses, for sake of
simplicity. Otherwise we should change GlassFish master password before
we point GlassFish to use our new certificate store.

•

•

Chapter 2

[67]

Now list the content of the keystore and see what we have inside it using the
following command:

keytool -list -v -keystore glassfishKS.jks -storepass changeit

The next step is generating the Certificate Signing Request (CSR). We will submit
this CSR to our certificate authority to put their signature on it. A certificate signed
by a known CA is trusted by major web browsers. We can use the following
command to generate the CSR file:

keytool -certreq -v -alias glassfishcert -file glassfish-cert-csr.pem -
keypass changeit-storepass changeit-keystore glassfishKS.jks

The above command will generate a file named glassfish-cert-csr.pem which is
text file containing encrypted information. Navigate to https://www.thawte.com/
cgi/server/try.exe and select SSL Web Server Certificate (All servers) and paste
the content of glassfish-cert-csr.pem into the input area provided on the Web
page. The following figure shows the certificate signing request:

GlassFish Security Realms

[68]

Now click Next which takes you to the page with the generated certificate. Copy the
encrypted content and save it to a file named glassfish-signed-cert.pem.
To see content of the signed certificate we can use the following command:

keytool -printcert -v -file glassfish-signed-cert.pem

We have one more step to complete importing the certificate before we instruct
GlassFish to use the new keystore containing the obtained certificate.

1. First we need to download the thawte test CA certificate from
https://www.thawte.com/roots/.

2. The download archive contains several directories, open the Thawte Test
Root directory and extract Thawte Test CA Root.pem.

3. We are going to import this file into our trust store to let GlassFish trust any
client with the certificate signed by the Thawte test certificate. To do so use
the following command:
keytool -import -v -noprompt -trustcacerts -alias thawtetestcert -
file "Thawte Test CA Root.pem" -keypass changeit-keystore cacerts.
jks -storepass changeit

4. We need to import the CA certificate into our keystore in order to create
a trust chain to let our certificate issued by the CA get imported into the
keystore. To do so use the following command:
keytool -import -v -noprompt -trustcacerts -alias thawtetestcert
-file "Thawte Test CA Root.pem" -keypass changeit -keystore
glassfishKS.jks -storepass changeit

5. Now that we have CA's certificate in the trust store, along with the private
key we generated in the earlier steps, we should import the server certificate
into the keystore to complete the certificate chain from our server certificate
up to the CA certificate. The following command does the magic:
keytool -import -v -alias glassfishcert -file glassfish-signed-
cert.pem -keypass changeit-keystore glassfishKS.jks -storepass
changeit

6. After completing the previous command we can change GlassFish settings
so it uses the new certificate. For configuring GlassFish to use our new
keystore we can use Web Console and navigate to Tree | Configuration |
JVM Settings and select JVM Options. We should look for an entry like
-Djavax.net.ssl.keyStore=${com.sun.aas.instanceRoot}/config/
glassfishKS.jks and change the path to our own keystore file.

Chapter 2

[69]

Now we are done with server certificate installation. However we will need to
configure listeners to use our new key alias instead of old s1as alias. To change each
listener's alias for HTTP listeners we need to navigate to Tree | Configuration |
Network Config | Protocols and change the Certificate NickName to our selected
name, glassfishcert. The simplest way to change the nickname is by replacing
s1as with the new alias name in the domain.xml file located inside the domain.dir/
config/ directory. Before starting the replace make sure that the domain is stopped.

Remember that if you changed the GlassFish master password you will
need to manually change the key pass, as the related command cannot
change our key password because its alias is different than s1as. To
change the password we can use the following command:
keytool -keypasswd -alias glassfishcert -keystore
glassfishKS.jks -storepass <new master password>

To learn more about GlassFish support for digital certificates and
different types of certificate stores refer, to GlassFish documentation.

Using keytool: http://docs.sun.com/app/docs/doc/821-
0185/ablqz?a=view
Using NSS: http://docs.sun.com/app/docs/doc/821-
0185/ablrf?a=view

•

•

To see how we can install GoDaddy certificate in GlassFish, take a look at
my weblog at:
http://weblogs.java.net/blog/kalali/
archive/2010/02/27/how-install-godaddy-certificate-
your-glassfish-v3

Now that all GlassFish-related configuration is finished we can go back and create
a certificate realm and use it in our web application. To create the certificate realm
navigate to Tree | Configuration | Security | Realms and create a new realm
named gcertificate. Make sure to assign a default role like authorized to Assign
Group attribute to ensure that any user who provides a valid certification is assigned
to this group. For the digital certificate realm we do not have any out of the box
authorization mechanism. Although we can tweak the sun-web.xml to get some
level of authorization, that is not enough for a large-scale application.

GlassFish Security Realms

[70]

We need to change the login-config element of the web.xml as follows to make it
use client-cert authentication.

<login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>gcertificate</realm-name>
</login-config>

Now we have two choices for the authorization roles we defined in the web.
xml file and we used them in previous section. First, we remove all authorization
declaration and only define one role which we will map to the authorized group we
defined when we created gcertificate realm. We can rely on the fact that anyone
authenticated using the CLIENT-CERT method is authorized to access all resources.

The second way is to keep our old roles and define the corresponding groups
by assigning individual principals to each group in the sun-web.xml file.
Mapping groups to a set of individuals works if we know all of our clients'
distinguished names (DN). The DN includes Common Name, Organization Unit,
and Organization attributes. For example, we can have a web.xml file with the
following declaration to let specific accepted digital certificates fall under manager
and hr_manager groups.

<security-role-mapping>
 <role-name> top_level_manager_role </role-name>
 <principal-name>CN=Jack Thomas, OU=Management,
 C=Coopers</principal-name>
 <principal-name>CN=Sin Lava, OU=Management, C=Coopers
 </principal-name>
</security-role-mapping>
<security-role-mapping>
 <role-name> hr_management_role </role-name>
 <principal-name>CN=Jack Thomas, OU=Management,
 C=Coopers</principal-name>
</security-role-mapping>

Starting with GlassFish 3.1, the GlassFish team is making enhancements to GlassFish
authentication realms, whereby developers can write custom certificate realms to
address issues like integration of username and password authentication, along with
digital certificate authentication.

Chapter 2

[71]

Creating the Solaris realm
GlassFish integration with Solaris is far beyond its integration with other operating
systems when it comes to large-scale management and administration. In the same
way, GlassFish has some out of the box features that provide us with required
functionalities to configure GlassFish to authenticate users against Solaris users.

The Solaris realm is provided for us to allow our web applications to authenticate the
users through this realm against the operating system users.

We can create a Solaris realm in the same way that we created other realms. The only
difference is the value of JAAS context property, which in this case is solarisRealm.
We can use Solaris Realm with Basic HTTP and Form-based authentications.

Developing custom realms
Developing custom realms comes handy when we need to authenticate our
users against a custom security realm or a standard authentication mechanism
not supported in GlassFish, like OpenID. Developing a new realm requires some
basic JAAS experience, so we start this section with an introduction to JAAS.

Developing the custom realm
Under the hood, GlassFish security realms are developed on top of JAAS but we do
not need to have experience with JAAS to develop a custom security realm due to the
fact that GlassFish security realm development is further simplified by its additional
layer of abstraction. There are three steps which we should follow for developing a
custom realm:

1. Implementing a Java Authentication and Authorization Service (JAAS)
LoginModule.

2. Implementing a realm class.
3. Installing and configuring the realm and LoginModule into the server.

Now let's get down to business and see what we should do about each step.

Implementing a JAAS LoginModule
To extend the number of GlassFish security realms we do not
directly extend the JAAS LoginModule. Instead we should extend
com.sun.appserv.security.AppservPasswordLoginModule. This class
extends the JAAS LoginModule and adds GlassFish-specific methods
and properties.

GlassFish Security Realms

[72]

The following code shows our SimpleLoginModule, which extends
AppservPasswordLoginModule class.

public class CustomLoginModule extends AppservPasswordLoginModule {

 @Override
 protected void authenticateUser() throws LoginException {

 if (!authenticate(_username, _password)) {
 //Login fails
 throw new LoginException((new
 StringBuilder()).append("Login Failed for:
 ").append(_username).toString());
 }
 String[] groups = getGroupNames(_username);
 commitUserAuthentication(groups);
 }

 private boolean authenticate(String username, String password) {
 /*
 Check the credentials against the authentication source,
 return true if authenticated, return false otherwise
 */
 return true;
 }

 private String[] getGroupNames(String username){

 // Return the list of groups this user belongs to.
 }
}

The above code reveals a lot of information about GlassFish security
realms, including that we only need to override one single method named
authenticateUser and in this method we have access to the username and
password provided by the user whom we want to authenticate. Two inherited
String variables named _username and _password represent the information
provided by us and we should authenticate the user based on them.

Chapter 2

[73]

The authenticateUser method should perform the authentication and it should
either throw a LoginException indicating that login has failed or should commit the
list of groups the user belongs by invoking the commitUserAuthentication method
and passing a String array containing a list of groups to it. Returning from this
method without a LoginException means that authentication was successful.

The next step in developing a new security realm is implementing the realm class,
which is as simple as implementing the LoginModule class.

Implementing a realm class
To implement the realm class we should extend the com.sun.appserv.security.
AppservRealm class. Our implementation must provide a set of basic information
about the realm. Although we can include more functionalities in this class we
are not required to. The following code shows CustomRealm class extending
AppservRealm.

public class CustomRealm extends AppservRealm {

 @Override
 public void init(Properties properties)
 throws BadRealmException, NoSuchRealmException {
 //initialize the realm
 }
 @Override
 public String getAuthType() {
 return "Custom Realm";
 }

}

The class simply requires implementing two methods. The init method is called
during GlassFish startup to initialize the realm. If init does not throw any exception
GlassFish assumes this realm is ready for later use, otherwise GlassFish disables
the realm to prevent further security problems. We can access all properties that
are provided during the realm creation using the properties parameter of the
init method. The next required method is getAuthType, which should return a
descriptive name about this security realm.

GlassFish Security Realms

[74]

Installing and configuring
The first step in installing a custom realm is providing GlassFish with the realm
implementation classes and all dependent libraries. We can copy all JAR files to the
domain_dir/lib directory to let the application server add them to its classpath.
Next is configuring application server to know which LoginModule it should use
when we specify a custom security realm. To do so, open domain_dir/config/
login.conf file and add the jaas-context and login module description to it.
For our custom realm it is like:

gfCustomRealm{
 org.glassfish.book.CustomLoginModule required;
};

In previous sections we were specifying authentication context for our new realms.
That authentication context is mapped to description provided in login.conf file to
choose which LoginModule implementation should be used.

The next step is creating an authentication realm based on our new realm. We will
not be able to use administration console for this step and thus we should either
use CLI commands or should manually edit the domain.xml file. The following CLI
command can create the new authentication realm based on our custom realm.

asadmin create-auth-realm --classname .org.glassfish.book.CustomRealm
--property "jaas-context=gfCustomRealm:auth-type=simplecustomrealm"
gfcustom_realm

Now that we have created the realm we can configure our web application's
authentication to use this realm for a basic authentication method.

For more information about GlassFish v3 custom realm development you
can take a look at the following articles:

http://blogs.sun.com/nithya/entry/modularized_
osgi_custom_realms_in

http://blogs.sun.com/nithya/entry/groups_in_
custom_realms

•

•

Chapter 2

[75]

Adding a custom authentication method
to GlassFish
In Chapter 1 we discussed HTTP BASIC Authentication and Form-Based
Authentication among other authentication methods supported by the GlassFish
application server. We learned that they are quite capable of addressing
authentication requirements of all normal enterprise applications. GlassFish supports
JSR 196 (Java Authentication Service Provider Interface for Containers), which let us
plug any Server Authentication Module (SAM) implemented according to JSR 196
into the GlassFish Servlet container.

The JSR 196 specification makes it possible for the Servlet container to use the
plugged SAM without requiring to change the application security declaration
included in the web.xml file or added as annotations into the source code.

Basically JSR 196 allows us to plug a new message processing module into the
Servlet container and let this module take care of the preprocessing of HTML
messages. The SPI defined by the JSR 196 provides the third-party developers with
some pluggable interaction points with Servlet container request processing. The
integration with Servlet message processing is made possible by introducing some
contracts, by using which module developers can intercept a requests, analyze them,
and decide whether the request has a valid authentication token to go through or if it
is not authenticated and cannot be further proceed.

The contract interface that SAM modules need to implement is named
ServerAuthModule and it is located inside the javax.security.auth.message.
module package. The interface has five methods that we should implement. These
methods, along with their basic Javadoc, are listed in the following table.

Method Description
validateRequest Authenticate a received service request.
secureResponse Secure a service response before sending it to

the client.
cleanSubject Remove method-specific principals and credentials

from the subject.
getSupportedMessageTypes Get one or more Class objects representing the

message types supported by the module.
initialize Initialize this module with request and response

message policies to enforce, a CallbackHandler,
and any module-specific configuration properties.

GlassFish Security Realms

[76]

For more information about the JSR 196 support and how to develop and
install a SAM, take a look at the article available at http://blogs.sun.
com/enterprisetechtips/entry/adding_authentication_
mechanisms_to_the.

To study a more complete sample of using JSR 196 to implement support of well-
known authentication standards, take a look at the Spnego project, which uses JSR
196 to implement SPNEGO and Kerberos plugin for Glassfish. The Spnego project is
located at https://spnego.dev.java.net/.

SPNEGO is a standard for negotiating and selecting a shared Generic
Security Services Application Program Interface (GSSAPI)
mechanism and establishing a security context based on the selected
mechanism. Kerberos allows peers communicating over an unsecure
network to prove their identity to one another in a secure manner. The
GSSAPI provides a generic API for performing client-server.

Summary
We covered in detail all of the GlassFish security realms including file realm,
JDBC realm, LDAP realm, and certificate realms to see how easily we can integrate
GlassFish with external sources to reuse identity storages already established in the
enterprise. We covered all basics of how we can create and install new certificates for
the GlassFish application server.

We reviewed how we can install and use OpenDS as identity storage and how
we can import directory server entries into OpenDS backend and use them for
authentication and authorization purposes.

So far we learned about the Java EE security model and its related annotations
and configuration elements, in addition to mastering GlassFish security realms.
In the next chapter, we will put all of the knowledge we gathered into practice to
develop and deploy a secure Java EE application with web, EJB, and application
client module.

Designing and Developing
Secure Java EE Applications

In previous chapters we discussed how we can utilize Java EE capabilities to secure
our Java EE applications. In this chapter, we are going to put what we learned
into practice and develop a secure Java EE application with all standard modules
including Web, EJB, and application client modules.

Security is an orthogonal concern for an application and we should assess it right
from the start by reviewing the analysis we receive from business and functional
analysts. Assessing the security requirements results in understanding the
functionalities we need to include in our architecture to deliver a secure
application covering the necessary requirements.

Security necessities can include a wide area of requirements, which may vary from
a simple authentication to several sub-systems. A list of these sub-systems includes
identity and access management system and transport security, which can include
encrypting data as well.

In this chapter we will develop a secure Java EE application based on Java EE and
GlassFish capabilities. In course of the chapter we will cover following topics:

Analyzing Java EE application security requirements
Including security requirements in Java EE application design
Developing secure Business layer using EJBs
Developing secure Presentation layer using JSP and Servlets
Configuring deployment descriptors of Java EE applications
Specifying security realm for enterprise applications
Developing secure application client module
Configuring Application Client Container

•

•

•

•

•

•

•

•

Designing and Developing Secure Java EE Applications

[78]

Understanding the sample application
The sample application that we are going to develop, converts different length
measurement units into each other. Our application converts meter to centimeter,
millimeter, and inch. The application also stores usage statistics for later use cases.

Guest users who prefer not to log in can only use meter to centimeter conversion,
while any company employee can use meter to centimeter and meter to millimeter
conversion, and finally any of company's managers can access meter to inch in
addition to two other conversion functionalities. We should show a custom login
page to comply with site-wide look and feel.

No encryption is required for communication between clients and our application
but we need to make sure that no one can intercept and steal the username and
passwords provided by members. All members' identification information is
stored in the company's wide directory server.

The following diagram shows the high-level functionality of the sample application:

login

manager, employee

manager

to milli

to inch

to centi

Directory
server

Users

everyone

Users
Groups

We have login action and three conversion actions. Users can access some of them
after logging in and some of them can be accessed without logging in.

Analyzing sample application business
logic
Before looking at security requirements and factors affecting the software security
let's see what we need to provide in our business layer. Our business logic consists of
conversion operations and persistence of the conversion operations usage statistics.
We can use a stateless Session Bean with three methods, one for each type of
conversion. And for statistics persistence we can use EJB 3 entity beans.

Chapter 3

[79]

After studying the application description we can extract the following
security-related requirements which we need to address to comply with
the application description:

Authentication is required
Authentication should happen over a secure channel
Authorization is required
We need to use LDAP security realm

So far we translated the business analysis to technical requirements and
now we are going to check each requirement in further detail to extract the
implementation details. For implementing the sample application we can
use a simple bottom-up procedure.

The following diagram shows the application blocks down to JSP files, Servlet,
and EJBs.

As you can see we have Web module, EJB module, and an application client module.
The Web module and the application client module presents a frontend for the EJB
layer that performs both business logic, which is the conversion operations, and
storing the conversion operation invocation statistics using Entity Beans. GlassFish
uses the LDAP realm to authenticate the users against the specified directory server.

Implementing the Business and
Persistence layers
The Persistence layer consists of an Entity Bean named Visit; we use this entity bean
to store information about each visit. We will use a session bean with three business
methods to convert a given length in meter to centimeter, millimeter, and inch.

•
•
•
•

Designing and Developing Secure Java EE Applications

[80]

Implementing the Persistence layer
We are using EJB 3 to develop the Persistence layer so we will only need to
implement the entity bean and define the persistence unit. The following listing
shows the Visit class.

Complete code for this class is available in the book's source code:
https://www.packtpub.com//sites/default/files/
downloads/9386_Code.zip.

@Entity
public class Visit implements Serializable {

 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 @Temporal(javax.persistence.TemporalType.DATE)
 private Date visitDate;
 private String username;
 private String operationName;
 private int conversionValue;
 public Visit() {
 }

 public Visit(Date visitDate, String username, String Operation,
 int conversionValue) {
 this.visitDate = visitDate;
 this.username = username;
 this.operationName = Operation;
 this.conversionValue = conversionValue;
 }
}

Now that our entity bean is ready we can start looking at our session bean
that drives the application business logic and also stores information about each
invocation using the Visit entity bean. The following listing shows Conversion
session bean local interface.

@Local
public interface ConversionLocal {
 float toInch(int meter);
 int toCentimeter(int meter);
 int toMillimeter(int meter);
}

Chapter 3

[81]

All of these methods are implemented in Conversion bean implementation which is
as follows:

@Stateless
public class ConversionBean implements ConversionLocal {
 @PersistenceContext(unitName = "chapter3")
 private EntityManager em;
 @Resource
 private SessionContext ctx;

 @RolesAllowed({"manager_role"})

 public float toInch(int meter) {
 persist(meter, "toInch");
 return Math.round(meter * 39.37);
 }

 @PermitAll
 public int toCentimeter(int meter) {
 persist(meter, "toCentimeter");
 return meter * 100;
 }

 @RolesAllowed("employee_role")

 public int toMillimeter(int meter) {
 persist(meter, "toInch");
 return meter * 1000;
 }

 private void persist(int value, String operationName) {
 String userName = ctx.getCallerPrincipal().getName();

 Visit v = new Visit(new Date(), userName, operationName,
 value);
 em.persist(v);
 }
}

Designing and Developing Secure Java EE Applications

[82]

Starting from the first line we are using @Stateless to mark this class as a stateless
Session Bean. Later on we are using @PersistenceContext to inject an entity
manager into the instance. We will use this entity manager to store Visit entities.
Then we are using @Resource to inject the current SessionContext into the session
bean. Later on we will use it to extract the current principal and username of the
invoker. The first security-related annotation is @RolesAllowed({"manager"}),
which instructs the application server to only permit an authenticated user with
manager role to invoke this method. After this we have @PermitAll which instructs
the application server to allow anyone, either authenticated or not, to invoke this
method. And finally we are using @RolesAllowed("employee") to instruct the
application server that any authenticated user with employee role can invoke
this method.

The persist method stores the invocation information. This information includes
the current invoker username, which we extract from SessionContext using the
getCallerPrincipal().getName() method.

Finally we have a persistence unit that uses sample data source and sample
database which is bundled with GlassFish. The listing shown below contains a
snippet of persistence.xml file, which configures a persistence unit for chapter3.

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="1.0"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">
 <persistence-unit name="chapter3" transaction-type="JTA">
 <provider>oracle.toplink.essentials.PersistenceProvider
 </provider>
 <jta-data-source>jdbc/sample</jta-data-source>
 <class>book.glassfish.security.chapter3.Visit</class>
 <exclude-unlisted-classes>true</exclude-unlisted-classes>
 <properties>
 <property name="toplink.ddl-generation"
 value="drop-and-create-tables"/>
 </properties>
 </persistence-unit>
</persistence>

Now that we have our Persistence and Business layers ready we can start looking
at the Web layer and how the Web layer can complement the inner layer in securing
the system.

Chapter 3

[83]

Developing the Presentation layer
The Presentation layer is the closest layer to end users when we are developing
applications that are meant to be used by humans instead of other applications. In
our application, the Presentation layer is a Java EE web application consisting of the
elements listed in the following table. In the table you can see that different JSP files
are categorized into different directories to make the security description easier.

Element Name Element Description
Index.jsp Application entry point. It has some links to functional

JSP pages like toMilli.jsp and so on.
auth/login.html This file presents a custom login page to a user when

they try to access a restricted resource. This file is placed
inside auth directory of the Web application.

auth/logout.jsp Logs users out of the system after their work is finished.
auth/loginError.html Unsuccessful login attempt redirect users to this page.

This file is placed inside the auth directory of the
Web application.

jsp/toInch.jsp Converts given length to inch, it is only available
for managers.

jsp/toMilli.jsp Converts given length to millimeter, this page is available
to any employee.

jsp/toCenti.jsp Converts given length to centimeter, this functionality is
available for everyone.

Converter Servlet Receives the request and invokes the session bean to
perform the conversion and returns back the value to
the user.

auth/accessRestricted.
html

An error page for error 401 which happens when
authorization fails.

Deployment Descriptors The deployment descriptors which we describe the
security constraints over resources we want to protect.

Designing and Developing Secure Java EE Applications

[84]

Now that our application building blocks are identified we can start implementing
them to complete the application. Before anything else let's implement JSP files that
provides the conversion GUI. The directory layout and content of the Web module is
shown in the following figure:

Implementing the Conversion GUI
In our application we have an index.jsp file that acts as a gateway to the entire
system and is shown in the following listing:

<html>
 <head><title>Select A conversion</title></head>
 <body><h1>Select A conversion</h1>
 Login

 Convert Meter to Centimeter

 Convert Meter to Inch

Chapter 3

[85]

 Convert to Millimeter

 Logout
 </body>
</html>

Implementing the Converter servlet
The Converter servlet receives the conversion value and method from JSP files and
calls the corresponding method of a session bean to perform the actual conversion.
The following listing shows the Converter servlet content:

@WebServlet(name="Converter", urlPatterns={"/Converter"})
public class Converter extends HttpServlet {
 @EJB
 private ConversionLocal conversionBean;

 protected void processRequest(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 }
 @Override
 protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 System.out.println("POST");
 response.setContentType("text/html;charset=UTF-8");
 PrintWriter out = response.getWriter();
 try{
 int valueToconvert =
 Integer.parseInt(request.getParameter("meterValue"));
 String method = request.getParameter("method");
 out.print("<hr/> <center><h2>Conversion Result is: ");
 if (method.equalsIgnoreCase("toMilli")) {

 out.print(conversionBean.toMillimeter(valueToconvert));
 } else if (method.equalsIgnoreCase("toCenti")) {

 out.print(conversionBean.toCentimeter(valueToconvert));
 } else if (method.equalsIgnoreCase("toInch")) {
 out.print(conversionBean.toInch(valueToconvert));
 }
 out.print("</h2></center>");

 }catch (AccessLocalException ale) {
 response.sendError(401);
 }finally {
 out.close();
 }
 }
}

Designing and Developing Secure Java EE Applications

[86]

Starting from the beginning we are using annotation to configure the servlet
mapping and servlet name instead of using the deployment descriptor for it. Then
we use dependency injection to inject an instance of Conversion session bean into
the servlet and decide which one of its methods we should invoke based on
the conversion type that the caller JSP sends as a parameter. Finally, we catch
javax.ejb.AccessLocalException and send an HTTP 401 error back to inform
the client that it does not have the required privileges to perform the requested
action. The following figure shows what the result of invocation could look like:

Each servlet needs some description elements in the deployment descriptor or
included as deployment descriptor elements.

Implementing the conversion JSP files is the last step in implementing the functional
pieces. In the following listing you can see content of the toMilli.jsp file.

<html>
 <head><title>Convert To Millimeter</title></head>
 <body><h1>Convert To Millimeter</h1>
 <form method=POST action="../Converter">Enter Value to
 Convert: <input name=meterValue>
 <input type="hidden" name="method" value="toMilli">
 <input type="submit" value="Submit" />
 </form>
 </body>
</html>

The toCenti.jsp and toInch.jsp files look the same except for the descriptive
content and the value of the hidden parameter which will be toCenti and toInch
respectively for toCenti.jsp and toInch.jsp.

Now we are finished with the functional parts of the Web layer; we just need to
implement the required GUI for security measures.

Chapter 3

[87]

Implementing the authentication frontend
For the authentication, we should use a custom login page to have a unified look
and feel in the entire web frontend of our application. We can use a custom login
page with the FORM authentication method. To implement the FORM authentication
method we need to implement a login page and an error page to redirect the users to
that page in case authentication fails. Implementing authentication requires us to go
through the following steps:

Implementing login.html and loginError.html
Including security description in the web.xml and sun-web.xml or
sun-application.xml

Implementing a login page
In FORM authentication we implement our own login form to collect username
and password and we then pass them to the container for authentication. We
should let the container know which field is username and which field is password
by using standard names for these fields. The username field is j_username and the
password field is j_password. To pass these fields to container for authentication
we should use j_security_check as the form action. When we are posting to
j_security_check the servlet container takes action and authenticates the included
j_username and j_password against the configured realm. The listing below shows
login.html content.

<form method="POST" action="j_security_check">
 Username: <input type="text" name="j_username">

 Password: <input type="password" name="j_password">

 <input type="submit" value="Login">
 <input type="reset" value="Reset">
</form>

The following figure shows the login page which is shown when an unauthenticated
user tries to access a restricted resource:

•

•

Designing and Developing Secure Java EE Applications

[88]

Implementing a logout pagelogout page page
A user may need to log out of our system after they're finished using it. So we need
to implement a logout page. The following listing shows the logout.jsp file:

<%
session.invalidate();
%>
<body>
 <center>
 <h1>Logout</h1>
 You have successfully logged out.
 </center>
</body>

Implementing a login error page
And now we should implement LoginError.html, an authentication error page to
inform user about its authentication failure.

<html>
 <body>
 <h2>A Login Error Occurred</h2>
 Please click here for another try.
 </body>
</html>

Implementing an access restricted page
When an authenticated user with no required privileges tries to invoke a session
bean method, the EJB container throws a javax.ejb.AccessLocalException. To
show a meaningful error page to our users we should either map this exception to
an error page or we should catch the exception, log the event for audition purposes,
and then use the sendError() method of the HttpServletResponse object to send
out an error code. We will map the HTTP error code to our custom web pages with
meaningful descriptions using the web.xml deployment descriptor. You will see
which configuration elements we will use to do the mapping. The following snippet
shows AccessRestricted.html file:

<body>
 <center> <p>You need to login to access the requested
 resource. To login go to Login
 Page</p></center>
</body>

Chapter 3

[89]

Configuring deployment descriptors
So far we have implemented required files for the FORM-based authentication and
we only need to include required descriptions in the web.xml file. Looking back
at the application requirement definitions, we see that anyone can use meter to
centimeter conversion functionality and any other functionality that requires the user
to login. We use three different HTML pages for different types of conversion. We do
not need any constraint on toCentimeter.html therefore we do not need to include
any definition for it. Per application description, any employee can access the
toMilli.jsp page. Defining security constraint for this page is shown in the
following listing:

<security-constraint>
 <display-name>You should be an employee</display-name>
 <web-resource-collection>
 <web-resource-name>all</web-resource-name>
 <description/>
 <url-pattern>/jsp/toMillimeter.html</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 <http-method>DELETE</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description/>
 <role-name>employee_role</role-name>
 </auth-constraint>
</security-constraint>

We should put enough constraints on the toInch.jsp page so that only managers
can access the page. The listing included below shows the security constraint
definition for this page.

<security-constraint>
 <display-name>You should be a manager</display-name>
 <web-resource-collection>
 <web-resource-name>Inch</web-resource-name>
 <description/>
 <url-pattern>/jsp/toInch.html</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description/>
 <role-name>manager_role</role-name>
 </auth-constraint>
</security-constraint>

Designing and Developing Secure Java EE Applications

[90]

Finally we need to define any role we used in the deployment descriptor. The
following snippet shows how we define these roles in the web.xml page.

<security-role>
 <description/>
 <role-name>manager_role</role-name>
</security-role>
<security-role>
 <description/>
 <role-name>employee_role</role-name>
</security-role>

Looking back at the application requirements, we need to define data constraint
and ensure that username and passwords provided by our users are safe during
transmission. The following listing shows how we can define the data constraint
on the login.html page.

<security-constraint>
 <display-name>Login page Protection</display-name>
 <web-resource-collection>
 <web-resource-name>Authentication</web-resource-name>
 <description/>
 <url-pattern>/auth/login.html</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <user-data-constraint>
 <description/>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

One more step and our web.xml file will be complete. In this step we define an
error page for HTML 401 error code. This error code means that application server
is unable to perform the requested action due to negative authorization result. The
following snippet shows the required elements to define this error page.

<error-page>
 <error-code>401</error-code>
 <location>AccessRestricted.html</location>
</error-page>

Now that we are finished with declaring the security we can create the conversion
pages and after creating these pages we can start with Business layer and its
security requirements.

Chapter 3

[91]

Specifying the security realm
Up to this point we have defined all the constraints that our application requires
but we still need to follow one more step to complete the application's security
configuration. The last step is specifying the security realm and authentication.
We should specify the FORM authentication and per-application description;
authentication must happen against the company-wide LDAP server.

Here we are going to use the LDAP security realm LDAPRealm which we created in
Chapter 2. We need to import a new LDIF file into our LDAP server, which contains
groups and users definition required for this chapter. To import the file we can use
the following command, assuming that you downloaded the source code bundle
from https://www.packtpub.com//sites/default/files/downloads/9386_
Code.zip and you have it extracted.

import-ldif --ldifFile path/to/chapter03/users.ldif

 --backendID userRoot --clearBackend --hostname 127.0.0.1 --port 4444 --
bindDN cn=gf\ cn=admin --bindPassword admin --trustAll --noPropertiesFile

The following table show users and groups that are defined inside the
users.ldif file.

Username and password Group membership
james/james manager, employee
meera/meera employee

We used OpenDS for the realm data storage and it had two users, one in the
employee group and the other one in the manager group. To configure the
authentication realm we need to include the following snippet in the
web.xml file.

<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>LDAPRealm</realm-name>
 <form-login-config>
 <form-login-page>/auth/login.html</form-login-page>
 <form-error-page>/auth/loginError.html</form-error-page>
 </form-login-config>
</login-config>

Designing and Developing Secure Java EE Applications

[92]

If we look at our Web and EJB modules as separate modules we must specify the role
mappings for each module separately using the GlassFish deployment descriptors,
which are sun-web.xml and sun-ejb.xml. But we are going to bundle our modules
as an Enterprise Application Archive (EAR) file so we can use the GlassFish
deployment descriptor for enterprise applications to define the role mapping
in one place and let all modules use that definitions. The following listing shows
roles and groups mapping in the sun-application.xml file.

<sun-application>
 <security-role-mapping>
 <role-name>manager_role</role-name>
 <group-name>manager</group-name>
 </security-role-mapping>
 <security-role-mapping>
 <role-name>employee_role</role-name>
 <group-name>employee</group-name>
 </security-role-mapping>
 <realm>LDAPRealm</realm>
</sun-application>

The security-role-mapping element we used in sun-application.xml has the
same schema as the security-role-mapping element of the sun-web.xml and
sun-ejb-jar.xml files.

You should have noticed that we have a realm element in addition to role mapping
elements. We can use the realm element of the sun-application.xml to specify
the default authentication realm for the entire application instead of specifying it
for each module separately.

Deploying the application client module
in the Application Client Container
The application client module can be a first layer Java SE application which directly
communicates with the EJB container and uses services like transaction and security
management of EJB container through the Application Client Container.

Chapter 3

[93]

When it comes to software structure an application client is not different from
a simple Java SE application. It has a main method, which is the software entry
point and we can access different Java EE services simply with annotation or using
deployment descriptors.

The following listing shows the main method for our application client, which
invokes the Conversion Session Bean and prints the result.

public class Main {

 @EJB
 private static ConversionRemote conversionBean;
 public static void main(String[] args) {
 System.out.println(conversionBean.toInch(10));
 }
}

You may ask how this application can use injection and access an EJB instance.
The secret is, as we saw in Chapter 1, hiding in another type of container called the
Application Client Container. We deploy an application client module in the ACC
and later execute it in the machine either as Java Web Start application or simply
using GlassFish-provided scripts. When we run this application the following
procedure takes place:

1. Application client (launched using Web Start or directly) results in the ACC
trying to inject the secured EJB.

2. The EJB method requires authentication, so GlassFish calls the default
CallbackHandler to get user login.

3. The default CallbackHandler, which is a simple username and password
collecting dialog, appears on the client's screen.

4. The collected username and password are sent back to application server for
authentication and authorization.

5. After a successful authentication, the method invocation goes through.

Designing and Developing Secure Java EE Applications

[94]

This procedure happens even if we do not add any single line of configuration to our
EJB module deployment descriptor or Application Client deployment descriptor. The
following figure shows more detail about the interaction between different modules
when a secure EJB is called from an application client.

The default configuration for application client authentication is summarized in the
following table:

Security Measure Description
Security Realm If no realm specified in sun-application.xml EJB container will

use GlassFish default security realm. Default realm is file realm if
not configured otherwise.

Authentication
CallbackHandler

Default CallbackHandler is a simple swing dialog, which
collects username and password.

Transport security No encryption is applied on data transportation.

Chapter 3

[95]

All of these measures are configurable either through the Application Client
deployment descriptor or the EJB deployment descriptor or the ACC deployment
descriptor. The following table shows which attributes are configurable through each
one of these deployment descriptors.

Attribute Deployment descriptor
Authentication mechanism sun-ejb-jar.xml

Security Realm sun-acc.xml and sun-ejb-jar.xml
SSL and transport security sun-acc.xml and sun-ejb-jar.xml
CallbackHandler to collect username
and password

application-client.xml

Two of the deployment descriptors included in the above table are specific to each
vendor and may differ between different application servers. The only standard
descriptor is application-client.xml, which is a part of the application client
standard. This descriptor is placed inside the META-INF directory of the client
application and contains information like which resources our application is using,
how the application is accessing these resources, and finally definitions of the
callback handler we want to use to collect user credentials.

The following figure shows default the CallbackHandler, which is fired to collect
username and password before the container lets the application invoke a method
with security constraint.

We can change the default CallbackHandler in application-client.xml by
specifying a new Callbackhandler. The new callback should implement the
javax.security.auth.callback.CallbackHandler. The following snippet
shows the callback-handler element in application-client.xml.

<callback-handler>
 book.glassfish.security.chapter3.SwingCallbackHandler
</callback-handler>

Designing and Developing Secure Java EE Applications

[96]

We can use a programmatic way to provide the ACC with username and
password instead of using the callback mechanism to have more control over
the authentication procedures. To conduct programmatic login we can use
com.sun.appserv.security.ProgrammaticLogin class to login before we access
any EJB method which has security constraints, defining security measures for
communication over IIOP.

We can use the GlassFish-specific deployment descriptor for EJB modules to define
several types of configuration elements. We can use one set of these elements to
define security measures for communication between the EJB container and the
clients over IIOP (Internet Inter-Orb Protocol).

The super element for the IOR security is ior-security-config, which includes the
following sub elements:

The transport-config for specifying transport security
The sas-context for specifying the caller propagation options
The as-context for specifying the authentication method, the security realm
we want to use for authentication.

Following snippet shows what we should include in the EJB deployment
descriptor to get SSL transport security along with username and password-based
authentication using the LDAPRealm we defined in Chapter 2.

<ior-security-config>
 <transport-config>
 <integrity>required</integrity>
 <confidentiality>required</confidentiality>
 <establish-trust-in-target>Required
 </establish-trust-in-target>
 <establish-trust-in-client>none</establish-trust-in-client>
 </transport-config>
 <as-context>
 <auth-method>username_password</auth-method>
 <realm>LDAPRealm</realm>
 <required>true</required>
 </as-context>
 <sas-context>
 <caller-propagation>supported</caller-propagation>
 </sas-context>
</ior-security-config>

•

•

•

Chapter 3

[97]

Starting from the top, this snippet instructs the EJB container's IIOP listener to use
SSL for data transmission to ensure the integrity and confidentiality of data which
is transferred between client and server. Other possible values for integrity and
confidentiality elements are Supported and None, which means server supports
SSL if requested by clients or it does not provide them even if the client asks for data
integrity and confidentiality.

We can have SSL mutual authentication by changing the value of establish-trust-
in-target and establish-trust-in-client to required. This way the client will
authenticate itself to the server using its digital certificate and in the same way the
server will authenticate itself to the client using the digital certificate we specified for
IIOP listeners.

When using mutual authentication, we should ensure that the trust store of the client
trusts the certificate of the server and the trust store of the server trusts the certificate
of the client. To achieve this we should:

1. Add the digital certificate of the client's certificate issuer to the server
trust store.

2. Include the digital certificate of the server's certificate issuer to the client's
trust store.

Later in the code snippet we have the as-context element that we can use to specify
which authentication method and security realm we want to use for authenticating
clients that need to invoke a secure method of an EJB. The only supported
authentication method is USERNAME_PASSWORD.

The last element is sas-context. We can use it to specify whether EJB container
accepts propagated caller identities or not. Possible values are Supported, Required,
and None.

Configuring Application Client Container
security
The Application Client Container hosts a Java SE layer application that interacts with
the EJB container of the application server using IIOP. Each instance of the container
can only host one instance of the client application and can be configured for that
client application instance.

Designing and Developing Secure Java EE Applications

[98]

When we want to run a client application deployed in GlassFish
we can either use Java Web Start or the script file provided in the
GlassFish bin directory. Command format for using the script file is
as follow:
./appclient -client /opt/dev/Conversion-app-client.
jar -xml /opt/dev/sun-acc.xml

It means that we want to launch the Conversion-app-client.jar
using a configuration file named sun-acc.xml.

The sun-acc.xml structure follows the schema defined in the http://www.sun.
com/software/appserver/dtds/sun-application-client-container_1_2.dtd
and allows us to configure every aspect of the ACC. The following shows the content
of sun-acc.xml, which has both authentication and transport security configured.

<client-container>
 <target-server name="localhost" address="127.0.0.1" port="3700">
 <security>
 <ssl cert-nickname="s1as"
 ssl2-enabled="false"
 ssl2-ciphers="-rc4,-rc4export,-rc2,-rc2export,-des,
 -desede3"
 ssl3-enabled="true"
 ssl3-tls-ciphers="+rsa_rc4_128_md5,
 -rsa_rc4_40_md5,+rsa3_des_sha,+rsa_des_sha,
 -rsa_rc2_40 _md5,-rsa_null_md5,-rsa_des_56_sha,
 -rsa_rc4_56_sha"
 tls-enabled="true"
 tls-rollback-enabled="true"/>
 <cert-db path="ignored" password="ignored"/>
 <!-- not used -->
 </security>
 <auth-realm name="LDAPRealm"
 classname="com.sun.enterprise.security.auth.realm.ldap.LDAPRealm">
 <property name="directory"
 value="ldap://127.0.0.1:1389"/>
 <property name="base-dn" value=" dc=example,dc=com "/>
 <property name="search-bind-password" value="123456"/>
 <property name="jaas-context" value="ldapRealm"/>
 </auth-realm>
 </target-server>
 <client-credential user-name="james" password="james"/>
</client-container>

Starting from the top, we are instructing the container to use a certificate identified
by client nickname. Later on we will see how we can specify which keystore and
trust store we want our client container to use when we launch our application.

Chapter 3

[99]

All other properties of the ssl element specify which SSL version and cipher suites
are available to the ACC to choose from. During the negotiation between server and
client to establish an SSL session, the strongest cipher suite supported by both server
and client is selected.

In addition to configuring the transport security we can configure the authentication
mechanism for ACC in order to let ACC collect the identification information and
send them back to server when required. Following the security element we have the
auth-realm element which specifies the authentication realm that ACC must use to
conduct the authentication.

You should know all of these properties as we discussed them in great detail
in Chapter 2. The only thing that you should remember is the fact that this
configuration has nothing to do with the LDAP realm we configured in the server.
This configuration affects only the client container instance running in the client
machine and using this particular sun-acc.xml file.

The Application Client Container process exists in the clients machine
and anything we configure using the sun-acc.xml affects the client
machines and has nothing to do with the server or other clients, which
run another instance of the application client.

Next we have the client-credential element which we can use to specify the
default client credential that ACC sends to server instead of collecting the username
and password. This element ensures that a single principal is used for all invocation
without end users knowing about it.

Using SSL always bring out the issue of keystore and trust store which the
application requires using during the SSL handshake and SSL session. There is no
vendor-specific way to pass the trust and key store information to Java runtime and
rather we can use the JVM environment variables to set these values.

When JVM starts and needs to use SSL, it looks for some environment variables to
initiate the SSL session. These variables are included in the following table.

Variable Description
javax.net.ssl.keyStore Path to keystore containing the client

certificate.
javax.net.ssl.trustStore Path to trust store containing certificate issuer's

certificates.
javax.net.ssl.keyStorePassword The keystore password.
javax.net.ssl.
trustStorePassword

The trust store password.

Designing and Developing Secure Java EE Applications

[100]

In Linux, we can use the following command to export these variables before
launching the application client using the appclient script.

export VMARGS="-Djavax.net.ssl.keyStore=key-store-path -Djavax.net.ssl.
trustStore= trust-store-path -Djavax.net.ssl.keyStorePassword=key-store-
password -Djavax.net.ssl.trustStorePassword=trust-store-password"

For Microsoft Windows we can use the set command to set VMARGS value
as follows:

set VMARGS="-Djavax.net.ssl.keyStore=key-store-path -Djavax.net.ssl.
trustStore=trust-store-path -Djavax.net.ssl.keyStorePassword=key-store-
password -Djavax.net.ssl.trustStorePassword=trust-store-password"

To create a working pair of certification stores we can follow the same steps we
followed to create keystore and trust store for GlassFish application server. Using
the same certificate issuer will guarantee that GlassFish will accept the certificate
provided by the client and the client will accept the certificate provided by GlassFish.

Now that we have set the required runtime arguments for JVM we can run the client
application and be assured about data confidentiality and integrity. The sample
application for this chapter is included in the source code archive of the book.

Summary
In this chapter we studied Java EE security in action and developed a secure Java EE
application with all of standard modules including EJB, Web, and application clients.

We studied how we can secure EJBs using annotation and then use a web frontend
to use the secure EJBs after the user provides correct identification information. We
developed a client application to access the secure EJB and later on we studied how
we can use SSL and mutual authentication between the application client module
and EJB container.

In the next two chapters we will look at GlassFish security independent of
the Java EE security and what measures we should consider to have a safe
GlassFish installation.

Securing GlassFish
Environment

Any interaction between us and the environment in which we live can affect
both sides of the interaction in a reversible or irreversible way. Software systems
are just like us and are in constant interaction with the environment that host
them and provides them with basic requirements, such as I/O resource and
resource management.

Just like we are protected from environmental conditions like extreme heat in
summers and extreme cold in winters or similar to the way we put precaution in
place for earthquake and floods, we should implement precautions to protect the
software system from disasters happening to the OS that could affect them.

In the same way that we are trying to protect the environment from pollution and
unnecessary consumption we should protect the operating system of a software
system from unnecessary access and consumption by the software itself.

In this chapter we are going to discuss how we can secure our operating system
and environment from unprivileged access by an application deployed in GlassFish.
For example, an application may delete a file or open a records file, which it is not
permitted to do.

We will also look at protecting the GlassFish application server and its deployed
applications from unprivileged access by operating system users and other
software which are running in the same operating system.

Securing GlassFish Environment

[102]

We will look at following topics in this chapter:

Operating system-level resource control
Preparing the operating system for GlassFish installation
Restricting GlassFish user's access to resources like network interfaces and
file system
Installing and securing GlassFish
Using policy manager to restrict GlassFish access to OS resources at
JVM level
Enabling and using auditing to audit the security-related activities
Developing custom auditing module

Securing a host operating system
Installing and using any server-side system introduces some concerns about the
security of the server-side application itself and the effects that the installed server
can have on the hosting operating systems. When we decide to install GlassFish on a
server, we should be prepared to address several security aspects of the installation.

Defining security at the OS level
The operating system either in a virtualized or a non-virtualized model is where we
are installing the application server, which can be running alone or in conjunction
with some other software.

The operating system provides application server with the resources it requires
to serve the clients requests in a proper way. The resource can include filesystem,
network access, CPU cycles, memory, and so on. The operating system that hosts
the application server may host multiple other systems like batch processors, legacy
integrators, databases, and so on. We may need to prevent the application server
from accessing all data available in the host operating system or we may need to
ensure that the application server can only access particular network interfaces
and not all of them. The following figure further illustrates the concept of shared
resources. All operating systems can contain applications or users using only a
specific set of resources, which we will demonstrate throughout this chapter.

•

•

•

•

•

•

•

Chapter 4

[103]

OpenSolaris is an open source distribution of the Oracle Solaris
operating system with advanced features like resource control and
management, and integrated virtualization which can be used to
contain process or users to a specific amount of CPU cycles. specified
amount of memory, or network traffic.

There are two different ways to accomplish securing the operating system from
unwanted access by GlassFish as follows:

Using the operating system level access control
Using Java SE policy enforcement

•

•

Securing GlassFish Environment

[104]

In real-life scenarios, we use both of these techniques together to double the measure
and keep our sweet sleeping time for ourselves, instead of digging into logs to see
what has happened that lead to leakage of some EXCEL files containing financial
information or customer records which were waiting to be imported into the
database at midnight.

First let's look at how operating systems help us restrict the GlassFish application
server from accessing anything that is not required for it. The following table shows
operating system features and how we can use them to secure the operating
system from GlassFish.

Feature Functionality
Defining new user We can define a new user and limit the user access levels to

other resources and then run GlassFish under this user.
File system access control We only allow a GlassFish user to have access to a set of

required files and not the entire filesystem.
File system quota
implementation

It is a good idea to specify disk space quota for a GlassFish
user. But it is not a hard requirement.

Network interfaces access
control

We should specify which network interfaces GlassFish
users have access to, prevent unwanted access to other
interfaces.

Now that we know which functionality is the answer for which one of our
requirements we can start looking at how we can use these functionalities. All
commands and steps provided in this section assume that the host operating system
is Ubuntu or any Debian-based distribution of Linux operating system.

The kernel version can be anything starting from 2.x. We can detect the
kernel version using a simple command like:
 uname -r

Here is our task list for installing GlassFish in a secure way:

1. Create a directory like /opt/app-server; it is where we will install
GlassFish.

2. Create a user like glassfish and give full permission over
/opt/app-server.

3. Login as glassfish user to commence with the installation.
4. Install GlassFish in/opt/app-server and revoke all access permissions

to this directory from groups who we do not want to allow to access
the resource.

Chapter 4

[105]

5. Prevent glassfish user from accessing network interfaces it does not
require to access.

6. Define a quota for glassfish user to double the safety.

Now, let's get our hands dirty with some shell commands to realize each item of the
tasks list.

Creating the installation directory
To create the installation directory we can simply invoke a command like the
following in the shell. I am using Ubuntu so I use sudo to get root privileges. You
may need to log in as root in some other distributions instead of using sudo.

sudo mkdir /opt/app-server

If you are using a non-Debian-based distribution then you can use su
command to fake the root permission and continue with rest of this
chapter's commands without prefixing any command with sudo. The
following command will give your terminal root permission:
 su root

When it asks for the password, enter your root password to continue
working in the terminal as root user. Make sure you use logout
command when you want to use the terminal with your current user.

Now we can go to the next step and create the glassfish user and commence with
the installation.

Creating the GlassFish user
To create the user we can use useradd command as follows:

sudo useradd glassfish -p glasspass --system --shell /bin/bash

We have just created a user named glassfish with glasspass as its password. The
user is a system user and uses bash as its default shell.

Now it's time to get full privileges over /opt/app-server to this newly-created user.
We can do it using the chmod and chown commands as follow:

sudo chown –R glassfish /opt/app-server

sudo chmod –R 700 /opt/app-server

Securing GlassFish Environment

[106]

Logging in as a GlassFish user
Now it's time to install GlassFish, so login as glassfish user and install GlassFish
into /opt/app-server/glassfish-v3. We can do it using the following command:

sudo su glassfish

./path-to-glassfish-installer.sh

After executing the first command we are logged in as glassfish user and
can install GlassFish application server either in the headless mode or using the
GUI installer.

Restricting access to the filesystem
In this step we are preventing glassfish user from accessing any other directories
which it is not supposed to access. For example if we need to prevent it from
accessing a directory named /opt/docs we can use the following command:

sudo chmod -R glassfish -rwx /opt/doc/

Restricting access to network interfaces
Now it is time to continue with restricting glassfish user from accessing the
network interfaces that it should not have access to. Basically we can use any firewall
operating in layer 2 and layer 3 of TCP/IP stack to prevent different applications
from accessing network interfaces or using different ports. In Linux distributions, we
have a firewall named iptables. We can configure iptables by adding or removing
its rules using the iptables command. The following snippet shows two command
lines which we can use to add new rules to iptables.

sudo iptables -A INPUT -i eth2 -m glassfish --uid-owner 1001 -j DROP

sudo iptables -A OUTPUT -o eth2 -m glassfish --uid-owner 1001 -j DROP

In the above command we assumed that glassfish user does not have the right
to access a network interface named eth2. So we are simply asking the iptables to
prevent glassfish user from acting as client or server on this interface. Our policy
is to drop any packet without notifying the sender that we dropped the packet.
The value we used for --uid-owner parameter is the id of glassfish user. We can
obtain this value using the id command when we are logged in as glassfish user.

Chapter 4

[107]

The id command simply shows identification information like group ID, user ID,
and groups' membership of a given user, assuming that we have the right to see
that information. When we use it without any parameters it shows the mentioned
information about the current user. It shows something like the following details if
we use it when we are logged in as glassfish user.

Restricting access to ports
Sometimes we only need to prevent the application server from accessing a specific
port in a network interface. In these cases, we can again use iptables command to
add rules for preventing the user from accessing the port as follows:

sudo iptables -A INPUT -i eth1 -p tcp --dport 3300 -m owner --uid-owner
glassfish -j DROP

sudo iptables -A INPUT -i eth1 -p udp --dport 3300 -m owner --uid-owner
glassfish -j DROP

sudo iptables -A OUTPUT -o eth1 -p tcp --dport 3300 -m owner --uid-owner
glassfish -j DROP

sudo iptables -A OUTPUT -o eth1 -p udp --dport 3300 -m owner --uid-owner
glassfish -j DROP

Each line of the above listing represents one command that we can execute on the
terminal window.

You may wonder what all of these parameters we provided for the iptables
command are. We are simply configuring the firewall to prevent glassfish user
from acting either a client or server socket for port 3300 of the eth1 interface. To
do so, we are dropping any packet, either TCP or UDP, which glassfish user tries
to establish.

Enforcing storage usage limitation
And at last, in some cases we may need to implement hard disk usage quota for
glassfish user to prevent extra hard disk usage in case of a security breach.

The disk usage limitation in Linux can be enforced for a single user or a group of
users over different filesystems like /home, /opt and so on. We can enforce the
limitation over a number of consumed blocks and inodes.

Securing GlassFish Environment

[108]

Each block, depending on its size, can contain 4 KB, 16 KB, or any value
specified during the filesystem creation. So, limiting the number of blocks
limits the amount of data that can be stored in the file system.
Each inode contains a reference to a file or a directory in the file system.
So limiting the number of inodes limits the number of files and directories
that can be created.

Before we get down to the business, we should understand basics that the disk quota
operates on. The following three terms explains these basics.

Soft limit: Maximum amount of disk space that a user or a group of users
can use. The disk usage by the user or the group can be exceeded for a
certain amount of time. This amount of time is called grace period.
Grace period: A period of time that the soft limit may stay exceeded by
a user or a group of users. The grace period can be specified in seconds,
minutes, hours, days, weeks, or months. This period of time lets the user
get below the soft limit.
Hard limit: Specifies a hard limit for the user or group disk usage. This
limitation cannot be exceeded in the grace period.

The following instructions show how we can implement quota for glassfish user:

1. First we need to install the quota package that provides the required utilities
and mounting options for defining quota. Package installation can be done
using the following command:

 sudo apt-get install quota

The above command will install the quota-related binaries
in a Debian-based distribution like Ubuntu. For RPM-based
distributions like Fedora and SUSE we can use the following
command to install the package.
 yast –i quota

2. Next, we need to enable the file system quota for filesystems. To enable
quota on /dev/sda2 we can change or add the following line to the
/etc/fstab file.

 /dev/sda1 /opt ext3 defaults,usrquota,errors=remount 0 1

•

•

•

Chapter 4

[109]

You may ask what these parameters are that we are using in the fstab. The
following table describes each parameter.

Parameter Description
/dev/sda1 Identifies the device we want to mount.
/opt Specifies the mount point or the directory we want to access the

filesystem through.
ext3 The file system we want to mount and access the partition using.
defaults Using default mount options.
usrquota Enabling the quota for this file system.
errors=remount If any error occurs regarding the file system, we issue a remount.
0 Specifies whether the dump utility should create backup of this

file system or not. Any value other than 0 means it should create
the backup.

1 The fsck will check this parameter to decide whether it should
perform an integrity check for the file system on boot or not. Any
value other than 0 means it can check the file system for error
if required.

3. We should either restart the system or remount the partitions to make
the new options effective. To remount the file systems we can use the
following command:

 sudo mount -o defaults,remount -t ext3 /dev/sda1 /opt

This command simply mounts the /dev/sda1 partition to /opt directory
using the defaults options. Specifying the remount options asks the mount
command to remount the partition if it is already mounted.

4. Next, we define the quota for glassfish user. To do so we should
enable the quota using the quotaon command. We can use -av to
enable it for all associated filesystems and also to see a verbose output
of the command execution.

 sudo quotaon –av

Securing GlassFish Environment

[110]

5. We should assign quota on each filesystem for each user we want to limit
usage space. To do so we can use the edquota command as follows:

 sudo edquota -u glassfish

The above command will open an editor which lets us specify the hard and
soft limits for glassfish user on any filesystem we want. The default values
shown by the command is similar to the following figure:

In the figure, the first column shows the filesystem the quota is defined for and the
second shows the number of used blocks. The third and the fourth columns identify
the soft and hard limit for block usage, the fifth column shows the number of used
inodes and the sixth and seventh columns specify the soft and hard limit on inodes
usage. Specifying 0 for any numeric column means no quota value for that column.

To find the block size on a device we can use dump2fs or tune2fs.
For example, to find the disk block size on /dev/sda1 we can use the
following command:
 sudo dumpe2fs /dev/sda1 | grep 'Block size'

Assuming that we want to enforce a soft limit of 2 GB with 4 GB as the hard limit for
the glassfish user, we can change the values as shown in the following figure. Next
we should save the content. To save the changes, press Ctrl+X, accept the default
name, and type Yes to store the changes.

Chapter 4

[111]

In my case the editor which edquota command uses is GNU nano. You
can change the editor by exporting EDITOR environment variable to
whatever editor you are familiar with. For example, if you want to use
gedit simply execute the following command in the terminal, then invoke
the edquota command:
 Export EDITOR= /usr/bin/gedit

We can manually edit quota definition files with any text editor. The files are located
in the root of each file system and are named as follows:

The quota.user which contains user quotas for the filesystems
The quota.group which contains group quotas for the filesystems

To specify the grace period we can use edquota -t, which allows us to specify the
grace period of the blocks and inodes quota per filesystem. The following figure
shows a sample output of edquota -t. As you can see, the grace period for both
inodes and blocks is 7days.

We can change the grace period for both inodes and blocks by changing their values
in the editor and then saving it as explained above.

•

•

Securing GlassFish Environment

[112]

Here we are finished with implementing all required security measures from the
operating system side to ensure that if a security breach happens in the application
server, our operating system will be at no risk. Using these measures we guarantee
that the only endangered resources, in case of a security breach caused by an
application hosted in our application server, will be the resources our application
server can access. The corporate network interfaces or other files and resources
located on the server machine will not be affected. In the next section we will study
how we can use Java Security Policy to implement security on the JVM running our
GlassFish server instance to prevent the JVM from accessing unnecessary resources.
We will also study how we can define security policies in the Application level
to implement different levels of restrictions on each application deployed in the
GlassFish application server.

Implementing restrictions in the application
server level
In the previous section we discussed what we can do to protect operating system
from malicious applications which we may host. In this section we will discuss what
is provided by GlassFish to protect the operating system from the applications
it hosts.

Securing the Java Runtime environment from
unprivileged access
Java platform provides a set of infrastructural security measures starting from
authentication and authorization standards down to cryptography and bytecode
access control. In this section we will review what policy management in Java
platform is and how it can be used to secure the Java Runtime environment from
unwanted access by the application running inside the runtime.

The whole point of Java policy management is defining which classes or set of classes
can or cannot access a specific resource like a directory, a socket, and so on.

For Java Runtime to check application's actions permissibility it needs the
Platform Security Manager to be enabled.

Java Runtime does not enable a security manager by default. We can either enable
the security manager when we are initializing the JRE or in our software source code.

Chapter 4

[113]

The following command line sample shows which parameters are required to enable
the security manager from the command line when initializing the JRE:

java -Djava.security.manager
 -Djava.security.policy==path/to/policy_definition_file
 -jar path/to/a/jar/file

Enabling the security manager from the source code is as easy as calling the
System.setSecurityManager() method and passing an instance of a security
manager implementation to it.

In the command line sample you saw that we passed a policy definition file to the
Java command. The policy definition file contains the rules which policy manager
will check each invocation against to determine whether the invocation should go
through or it should be prevented.

Using a policy definition file lets us use the standard implementation of
SecurityManager, which reads the policy rules from a plain text file.

Implementing the policy manager
We said that the policy file contains a set of rules that security manager checks
against before letting any of our applications actions go through. Syntax of these
rules is as follows:

grant [signedBy "signer" [,codeBase "code_base_URL"] [, principal
principalClassName "principal Name"] {
 permission "class name" ["name" [, <action list>]] [,signedBy
"signer names"];
};

Following snippet shows a simple rule to let you have a better understanding of the
policy syntax.

grant codebase "file:${app.home}/lib/-",

 signedBy "kalali",

 principal javax.security.auth.x500.X500Principal
"cn=glassfish" {

 permission java.io.FilePermission "/opt/export", "read, write";

 };

The above rule allows any code inside the ${app.home}/lib/ directory that is
signed by a digital certificate nicknamed kalali and currently executed by a user
named glassfish to have read and write access to a directory named /opt/export.

Securing GlassFish Environment

[114]

Another sample for a rule that allows everyone and any part of the application code
base to have read access to a directory is as follows:

grant {
 permission java.io.FilePermission "/opt/configs.properties",
 "read";
 };

The following table shows these keywords and their description.

Keyword Sample and description
grant Granting a set of permissions to a codebase.
keystore Digital certificates keystore to check public keys of the singers. A keystore

entry must appear in the policy file if any grant entries specify signer
aliases, or if any grant entries specify principal aliases. Only one
keystore element can appear in a policy file. The syntax is as follows:

keystore "some_keystore_url", "keystore_type",
"keystore_provider";
keystorePasswordURL "some_password_url";

permission Specifies the actions that can be executed on a resource or set of resources.
signedBy When used with a codebase, it will only allow codes singed by a digital

certificate with this alias to pass through the rule and get the chance of
being executed.

principal Specifies the current operating system user. When we use this element we
instruct the policy manager to only allow the codebase to pass the rule if it
is executed by specified user.

codeBase A URL to a file or set of files, a website as the source for downloading the
files, and so on. This element specifies the set of bytecodes which this rules
is applied on.

A sample for a policy file is as follows:

grant codeBase "file:${app.home}/lib/main.jar" {
 permission java.security.AllPermission;
};
grant codeBase "file:${app.home}/lib/server.jar" {
 permission java.net.SocketPermission "192.168.1.101:6404",
 "connect,accept,listen,resolve";
 permission java.util.PropertyPermission "*","read";
};

Chapter 4

[115]

This policy definition gives all permissions to the main.jar file. Then it defines a rule
that permits the server.jar to listen on port 6404 and have the permission to read
any of the system properties like user.home, java.version, and so on.

The 192.168.1.101 address can be the IP address of one of our server network
interfaces, which we want to allow GlassFish to listen on one of its specific ports. To
obtain the server IP addresses we can use ifconfig in Linux and UNIX or ipconfig
in Windows. These commands show a list of network interfaces along with their
associated IP addresses. We can use SocketPermission policies along with
iptables rules to ensure our network interfaces security.

We studied a small set of permissions in previous examples; there are many of
different permission types which we can use to define policies we need. Some of
these permissions are included in the following table.

Permission Description
java.security.
SecurityPermission

Controls access to security methods.

java.io.FilePermission Controls read/write/execute access to files and
directories.

java.io.SerializablePermission Controls serialization operations.
java.lang.RuntimePermission Controls use of some system/runtime functions

like exit() and exec(). Also controls the
package access/definition.

java.lang.reflect.
ReflectPermission

Controls use of reflection to do class
introspection.

java.net.SocketPermission Controls use of network sockets.
java.net.NetPermission Controls use of multicast network connections.
java.util.PropertyPermission Controls read/write access to JVM properties,

such as java.home.

All of these classes extend java.security.Permission or one of its subclasses.
Each one of these classes acts differently based on its purpose. To see what set
of parameters they accept consult with the Javadoc at http://java.sun.com/
javase/6/docs/api/java/security/Permission.html.

Securing GlassFish Environment

[116]

Enforcing security always has its overhead and enabling the security
manager in the platform level is not an exception. When we enable the
security manager we are imposing an average overhead of 3%. The
overhead varies between different rules definitions. The exact match rules
impose the highest overhead while full wildcard matches imposes the
smallest amount of overhead.
In addition to rule definition, the amounts of overhead each policy
enforcement type impose differs between different permissions. For
example the SocketPermission imposes the highest overhead.
Some permission overheads, like FilePermission, do not affect the
performance as their overheads are negligible compare to the methods
execution themselves.

Securing the GlassFish using security manager
So far we discussed how a policy file can be used to restrict the Java Runtime access
to different type of resources like the network sockets and filesystem. Now let's see
how this security definition fits in GlassFish architecture and affects its runtime. The
Java platform benefits from two policy definition files as follows:

Global policy file: It's located at java.home/jre/lib/security/java.
policy. Any policy rule defined here applies to all applications running on
top of this JRE.
User policy file: It's located at user.home/.java.policy which we can use
to apply more rules for Java application running under this account.

The GlassFish application server itself has two level of policy definition as follows:

GlassFish policy file: Located at domain.home/config/server.policy; we
can use this file to define domain-wide policy rules.
Per application policy file: The GlassFish application server let us define rules
for each application separately. We can grant all permissions to GlassFish
user and then define restrictive rules based on each application requirement
or we can add more rules on top of previous rules for each deployed
application. The application's policy files can be found at: domain.home/
generated/policy/<app.name>/<module.name>/granted.policy.

Now, let's see how we can use this hierarchy of policy files to define a complete
security policy for our server system.

•

•

•

•

Chapter 4

[117]

Defining security policy in platform policy file
The global security policy file comes bundled with JRE and we should change its
rules when we know that all applications that use this JRE will not get affected by
our new rules. So, we leave the global policy file in the same state that it is in and
define our new policy rules in the GlassFish policy file.

It is good practice to define less restrictive rules in the more widely
applied policy file and define more restrictive rules in policy files that
cover smaller scopes.

Introducing the GlassFish policy file
Any rules we define in the server.policy file will affect its owner domain and
all applications hosted in that domain. Let's analyze one of the rules defined in the
default server.policy file and see how we can customize it to serve our needs.

grant codeBase "file:${com.sun.aas.installRoot}/lib/-" {
 permission java.security.AllPermission;
};

As you can see in this rule all permissions are granted to all JAR files located inside
the lib directory of the domain. We need to restrict these JAR files to only have
access to glassfish user home and only the network interfaces installed in our
system. Applying our customization changes the grant permission to:

grant codeBase "file:${com.sun.aas.installRoot}/lib/-" {
 permission java.net.SocketPermission "192.168.1.101",
 "connect,accept,listen,resolve";

 permission java.util.PropertyPermission "user.*";
 permission java.io.FilePermission "/home/glassfish", "read,write";

permission java.io.FilePermission "file:${com.sun.aas.instanceRoot}",
"read,write";
permission java.io.SerializablePermission "*";
permission java.lang.RuntimePermission "*";
};

First, we only let GlassFish libraries use the 192.168.1.101 network interface and
not any other interface in the system. Then we provide them with a read-only access
over any system property starting with user.

Securing GlassFish Environment

[118]

The ${com.sun.aas.installRoot} expression points to the GlassFish
installation directory. Inside this directory we have the lib directory,
which contains different GlassFish libraries.

Coming down to file access permissions, we provide GlassFish with enough access
permissions to read and write from the glassfish user home directory and from the
domain installation directory.

The ${com.sun.aas.instanceRoot} expression points to the current
domain directory.

Finally we gave GlassFish all kinds of runtime permissions and serialization
permissions because it needs those permissions to serve users requests.

Applying policies on deployed applications separately
So far we have defined rules to restrict the whole Java process running GlassFish
from accessing specific resources, but what if we need to further restrict an
application by applying new rules to prevent the application from opening any
network socket? To do this we can edit the policy file generated for our application
during the application deployment in GlassFish.

In the previous chapters we developed a secure enterprise application and deployed
it into our GlassFish instance. Now let's study the policy file generated for its EJB
module and further tune this file to serve our needs. The following snippet shows
some part of the granted.policy file, which is located at domain_root/generated/
policy/Conversion/Conversion-ejb_jar/.

As you remember we did not enforce any authentication or access restrictions
on toCentimeter method of ConversionBean when we were developing the
sample application and therefore, as we can see in the snippet, anyone can access
toCentimeter method either in its local or remote interfaces.

grant {

 permission javax.security.jacc.EJBMethodPermission
 "ConversionBean", "toCentimeter,Local,int";

 permission javax.security.jacc.EJBMethodPermission
 "ConversionBean", "toCentimeter,Remote,int";

};

Chapter 4

[119]

In contrast with toCentimeter we defined some restriction on the toInch method,
which only allowed the manager group to access it. The reflection of that restriction
is shown in the following snippet of the policy definition file.

grant principal com.sun.enterprise.deployment.Group "manager" {

 permission javax.security.jacc.EJBMethodPermission
 "ConversionBean", "toInch,Local,int";

 permission javax.security.jacc.EJBMethodPermission
 "ConversionBean", "toInch,Remote,int";

};

Finally, in the last grant statement we can see that employee group receives the
permission to invoke the toMillimeter method.

grant principal com.sun.enterprise.deployment.Group "manager" {

 permission javax.security.jacc.EJBMethodPermission
 "ConversionBean", "toMilimeter,Local,int";

 permission javax.security.jacc.EJBMethodPermission
 "ConversionBean", "toMilimeter,Remote,int";

};

The above grant statement permits the invocation of the toMilimeter method to
the manager group.

grant principal com.sun.enterprise.deployment.Group "employee" {

 permission javax.security.jacc.EJBMethodPermission
 "ConversionBean", "toMilimeter,Local,int";

 permission javax.security.jacc.EJBMethodPermission
 "ConversionBean", "toMilimeter,Remote,int";

};

If you look more carefully into this file you can see that the security constraint that
we defined in the ejb-jar.xml and sun-ejb-jar.xml is translated to standard
policy rules which are included in this file.

Securing GlassFish Environment

[120]

GlassFish performs its container access decisions according to the Java Authorization
Contract for Containers (JACC or JSR 115) and JACC mandates using policy
decision interfaces of the Standard Edition JRE to determine access rights. Adding
the following rule to the granted.policy will permit the conversion application
access to only user.home system properties when the server.policy did not allow
any propertypermission to the running JVM.

grant {
 permission java.util.PropertyPermission "user.home";
}

Every time we deploy the application, GlassFish will generate a new version of
this file, so any change we make to this file will not survive a redeployment of
the application.

Only permissions defined by JSR-115 are effective in the application-
specific policy file. These policies are enforced by the container
irrespective of whether the SecurityManager is ON or OFF, whereas
all the other permissions defined by Java are enforced only when the
SecurityManager is ON.

Alternative container policy providers
GlassFish v3 supports two alternative container policy providers. By default,
GlassFish is configured to use a file-based provider compatible with PolicyFile
implementation of the JDK. GlassFish can be configured to use another provider by
specifying the provider name in the jacc attribute of the security-service element
in domain.xml. The following snippet shows how we can use jacc attribute for this.

<security-service jacc="simple">

The value of this attribute must be the same as the name attribute of a jacc-
provider element. The security-service can have one or more jacc-provider
child elements to define the available providers. The default value of the jacc
attribute is default, which matches the name attribute of the file-based jacc-
provider element. Setting the value of this attribute to simple will cause the
in-memory provider to be used. The in-memory provider will not generate the
per-application policy file and therefore we cannot fine-tune the generated file.

Chapter 4

[121]

The following snippet shows the definition of bundled policy providers in the
domain.xml:

<jacc-provider policy-provider="com.sun.enterprise.security.
provider.PolicyWrapper" name="default" policy-configuration-
factory-provider="com.sun.enterprise.security.provider.
PolicyConfigurationFactoryImpl">
<property name="repository" value="${com.sun.aas.instanceRoot}/
generated/policy" />
</jacc-provider>
<jacc-provider policy-provider="com.sun.enterprise.security.jacc.
provider.SimplePolicyProvider" name="simple" policy-configuration-
factory-provider="com.sun.enterprise.security.jacc.provider.
SimplePolicyConfigurationFactory" >
</jacc-provider>

The admin console may be used to define additional jacc-provider configurations
in domain.xml, and then any such provider can be configured for use by the
Glassfish security-service, by setting its name as the value of the jacc attribute.

Estimating security risks: Auditing
Auditing is an integral part of security measures to track back the events and check
the overall health of the system security. Using auditing we can estimate security
risks and get a thorough understanding of possible points of intrusions and attacks
in the system.

The GlassFish auditing system let administrators audit seven important security
events which are included in the following table:

Action Description
Authentication* Any authentication attempt can be audited.
Web resource invocation* Any attempt to access a web resource can

be audited.
EJB method invocation* Any attempt to invoke an EJB method can

be audited.
Web service invocation Any attempt to invoke a web service can

be audited.
EJB method as Web service invocation Any attempt to invoke an EJB method as a

web service can be audited.
Server startup A successful startup can be audited.
Server shutdown A successful shutdown can be audited.

Securing GlassFish Environment

[122]

GlassFish kernel produces the auditing information listed in the above table and
channels them to any enabled auditing module by invoking representative methods
in the auditing module implementation class.

The auditing information produced by GlassFish kernel carries different levels of
details about the event. For example, in the first three events that are marked by a "*"
sign the auditing module will receive the username used for the invocation attempt
while no username is propagated for other events.

Enabling the default auditing module
If we choose to configure GlassFish auditing, any security-related event will pass
through the auditing layer. This layer consists of one or more auditing modules
that can react to security events based on their design and purpose. For example,
the default auditing module of GlassFish, when enabled, stores all security
events listed in the previous table in the server.log file, which is located in the
domain.dir/logs/ directory.

To enable the default auditing module we can navigate to Tree | Configuration |
Security | Audit Modules | default and then enable the module by changing
the auditon property value to true. Now we can check the sever logfile to see
auditing information. An example entry for a failed authentication is like the
following snippet.

[#|2009-10-04T21:43:40.905+0330|INFO|sun-appserver9.1|javax.
enterprise.system.core.security|_ThreadID=15;_ThreadName=httpWork
erThread-4848-1;admin;|SEC5046: Audit: Authentication refused for
[admin].|#]

The log message says that the authentication for admin user has been refused. But the
whole log record contains other information that can help the administrator to track
the possible breach by looking at the event time and date, the package which fired
the event, and the thread that faced this security event.

One of the main advantages of GlassFish is its modularity and extensibility,
which lets administrators and developers add new features or extend its current
features to cover their requirements. The GlassFish auditing layer benefits from the
same architecture and lets administrators to plug in new auditing modules to treat
the security events in different and more suitable ways. In the next section we go
through developing a new auditing module.

Chapter 4

[123]

Developing custom auditing modules
Developing a new auditing module is as easy as extending com.sun.appserv.
security.AuditModule, which is an abstract class, and overriding methods that
handle different security events in a way that suits our needs. The following snippet
shows methods that we can override to treat security events the way we need.

public abstract class AuditModule {
 Properties props = null;
 public void init(Properties props) {
 this.props = props;
 }

 public void authentication(String user, String realm,
 boolean success) { }
 public void webInvocation(String user, HttpServletRequest req,
 String type, boolean success) { }
 public void ejbInvocation(String user, String ejb, String method,
 boolean success) { }
 public void webServiceInvocation(String uri, String endpoint,
 boolean success) { }
 public void ejbAsWebServiceInvocation(String endpoint,
 boolean success) { }
 public void serverStarted() { }
 public void serverShutdown() { }
}

Imagine that we need to get notified when container-managed authentication fails
three times in a row. We can override the authentication method and send a
notification e-mail in the case that we have three failed authentications in matter of
five minutes or so.

After we develop the auditing module, which can be as small as a single class or as
large as a complete library involving data access, JDBC, JavaMail, and so on, we
should put related JAR files in the application server, such as inside the domain_dir/
lib directory or by extending the classpath variable from Administration Console at
Application Server | JVM Settings | Path Settings

After that we can add the module to the set of application server auditing modules.
The process is straightforward using the asadmin utility of the Administration
Console. For example:

asadmin create-audit-module --classname

glassfish.book.security.chapter4.SampleAuditModule --property

datasourceName=auditSource SampleAuditor

Securing GlassFish Environment

[124]

The above command will add an auditing module named SampleAuditor based
on an auditing module implementation named book.glassfish.security.
chapter4.SampleAuditModule. We can pass as many initialization properties as
required using the standard asadmin format. These properties form the props
object that we can access inside the init method.

After we create the new auditing module we should add it to the set of registered
auditing modules which receive the security notifications using the asadmin or
Administration Console. Registering the auditing module using the asadmin is as
simple as executing the following command:

asadmin set server-config.security-service.audit_modules=default,SampleAu
ditor

Now we have our auditing installed and activated. We only need to restart the server
to make the changes effective.

Summary
In this chapter we covered environment security and security auditing, which are
basic parts of application server security. We saw what we need to do at operating
system level to ensure that GlassFish installation is isolated from the whole operating
system. We later on discussed how we can use the security policy to ensure that
GlassFish process and deployed application can only access the resources intended
for them. Finally, we learned the importance of auditing and how we can create new
auditing modules to customize the security events treatment.

In next chapter we will cover GlassFish administration security tasks like password
security and listener security.

Securing GlassFish
In the previous chapter we discussed how we should protect the environment
from malicious applications, which a user may deploy into our server. We
discussed the security of GlassFish installation at the operating system level by
using GlassFish exclusive user, filesystem, and network interfaces. In this chapter
we will discuss GlassFish security from another perspective—the administration
and applications security.

Overviewing of GlassFish administration
Learning GlassFish administration security
Protecting passwords used in GlassFish
Securing different network listeners
Using Virtual Server for isolating applications
Using cross context SSO available in GlassFish

Administrating GlassFish
GlassFish benefits from several different administration channels and each of them
provides a unique set of features that ease a set of specific tasks. The following table
shows the GlassFish administration channels.

Administration Channel Description
Java Management Extensions
(JMX)

Allows us to interact with the GlassFish administration
layer through Java code or using any JMX-capable
administration console, like JConsole and VisualVM,
which are bundled with JRE.

Command-Line Interface (CLI) Command-line administration tools to ease
terminal-based administration and scripting.

•

•

•

•

•

•

Securing GlassFish

[126]

Administration Channel Description
Web Administration Console Using a modern GUI to administrate the servers and

deployed artefacts.
RESTful Administration
interface

A RESTful interface to allow almost any programming
language to interact with the GlassFish administration
layer.

Using CLI is the preferred approach for experienced administrators who prefer to
quickly type a command and see a brief result without waiting for web pages to
load. Except for the tasks like creating, removing, backing up and restoring,
and starting a domain, all other administration tasks are possible through
all administration channels. So there are no steep differences between these
administration interfaces in term of provided capabilities.

Using CLI for administration tasks
GlassFish uses a utility named asadmin to provide the command-line interface for
the administrator. The asadmin utility is located at the $GF_HOME/bin directory. It is
either a batch file named asadmin.bat for Windows or a shell script named asadmin
for Linux and UNIX.

We can use asadmin script by two different methods. The command execution
schema for the first method is as follows:
./asadmin [program options] command_name *[[--param] values]

This method is more suitable for creating custom scripts or for executing only
one command at a time. The following table shows the asadmin options and what
their usage is.

Option Description
--host The application server administration listener's IP address or host

name.
--port The administration listener port number.
--user A username in admin realm.
--passwordfile The password file containing the administrator's password.
--terse Produces output intended for automated parsing.
--interactive If specified, the CLI utility will ask for required parameter in an

interactive way.
--secure If specified, the CLI utility will use HTTPS to communicate with

the administration application to prevent possible security breach.

Chapter 5

[127]

The second method of using asadmin involves entering the asadmin shell and
running commands inside it. This is a bit faster than first method because in the first
method we need to run the asadmin utility each time a command is invoked, which
involves some CPU time. To enter the shell and invoke commands, execute the
asadmin script without any trailing command or parameter.

The asadmin utility can execute both local and remote commands. Local commands
are commands that should take place locally and in the operating system level like
starting and stopping a domain or restoring a domain backup. Remote commands
mostly deal with managed objects inside the application server like applications,
Java EE resources, application server services like listeners, and so on.

The following figure illustrates how asadmin utility can execute remote commands.
Local commands mostly deal with filesystem and operating system level commands.

When we issue a command in the CLI, asadmin script invokes a Java application
and passes all received parameters to it. If all parameters are correct, the Java
application sends an HTTP or HTTPS request to the asadmin application deployed
in the application server. The application server executes the command and either
sends back the result or an error message in the case of an incorrect command.

Securing GlassFish

[128]

The following figure illustrates some part of an HTTP packet, which is carrying the
list authentication realm's command to the server:

If you look closely at the highlighted section you can see that the username and
password are passed in clean text, which poses a great risk if someone listens in
middle of asadmin utility and the application server. We will discuss more about
securing asadmin in the latter sections.

Implementing security in CLI
The CLI is our means to administrate the application server. It can be very useful
for performing daily tasks but it can be catastrophic if we fail to protect it well from
unauthorized access. In this section we will discuss CLI security in detail to see how
we should keep the CLI secure and what security-related commands it provides.

The asadmin and administration credentials
When administration comes to mind we also think about administrator credentials.
The administration credentials are a set of a username and a password. By default,
we only have one administrator with admin/adminadmin as the credentials. We can
add more users when necessary.

When we want to perform administrative tasks we should provide administration
credentials and these credentials are sent to the server to perform authentication
before the server-side application, which is responsible for executing our commands.

Chapter 5

[129]

When we execute an asadmin command we should either provide the username
and password as command options or the asadmin utility will ask for username and
password interactively. For example, the following command will cause the asadmin
utility to ask for a username and a password before it continues with execution:

./asadmin list-auth-realms --host 127.0.0.1 --port 4848

In this method of invoking asadmin command, the password is not provided in clean
text and later on the asadmin utility asks for the password in a secure way, which
means entered characters are not shown as we type them. If you are wondering
what the above command does, it lists all authentication realms on a server which
its administration listener is listening on 127.0.0.1:4848, provided that we enter a
correct administration password.

Sometimes we should not even type the administration password for sake of
security. In such conditions we can use a file or any other media containing the
required password. The asadmin utility provides us with an intuitive way of
providing the administration password using a password file containing password.
The password file, along with the username, can be passed to the asadmin utility
using the options showed in the previous table.

For example:

./asadmin list-auth-realms --host 127.0.0.1 --port 4848 --user admin --
passwordfile /path/to/passwordfile

The password file is a standard property value file with some predefined properties.
The following snippet shows a sample password file:

AS_ADMIN_PASSWORD=adminadmin
AS_ADMIN_MASTERPASSWORD=changeit

As you can see we have more than one property; the first property specifies the
administration password for the user that we passed as an option along with the
password file to the asadmin utility. The second entry specifies the master
password, which we are going to discuss shortly.

You may ask why you have never before been asked to provide a password when
you were performing administration tasks using the asadmin. For example, you
may have invoked the following command without the asadmin utility asking you
for any password:

./asadmin list-http-listeners

Securing GlassFish

[130]

The answer is in the way that you have created the domain or the way that
the domain is created for you by the GlassFish installer. It has used the
--savelogin=true option to save the administration username and password
in a default password files, which the asadmin utility tries to use when no
credentials are provided during the command invocation.

The --savelogin=true asks the domain creation command to save the
administration password of the domain into a file named .asadminpass that is
located inside the $USER.HOME directory, which we refer to it as $USER_HOME. The
content of this file is similar to the following snippet:

asadmin://admin@localhost:4848 YWRtaW5hZG1pbg==

The syntax simply specifies what is the administration username and password for a
domain with its administrator listener running on localhost:4848. The password is
encrypted to prevent anyone learning it without being authorized.

Using localhost and 127.0.0.1 for IPv4 and ::1 for IPv6 refers to
the loopback network interface of the current computer. Sometimes we
use loopback address to name the 127.0.0.1 or localhost.

There is an asadmin command that performs a similar task to what --savelogin
does for domains that are already created. We can use this command to save
the credentials to prevent the asadmin utility from asking for them either in an
interactive mode or as --passwordfile parameter. The following snippet shows
how we can use login command:

./asadmin login --host localhost --port 9138

This command will interactively ask for administration username and password
and after a successful authentication it will save the provided credentials into the
.asadminpass file. After we execute this command the content of .asadminpass
will be similar to the following snippet:

asadmin://admin@localhost:4848 YWRtaW5hZG1pbg==
asadmin://admin@localhost:9138 YWRtaW5hZG1pbg==

The .asadminpass contains the SHA hashed copy of passwords, therefore it is not
possible for anyone to recover the original passwords if he can grasp the file. Using
the saved passwords means that anyone with access to the asadmin command
can execute any command they like. So, protect the operating system password to
prevent it from falling into the hands of unauthorized personnel.

Chapter 5

[131]

The login command is very useful when we need to administrate several domains
from our administration workstation. We can simply login into each remote or
local domain that we need to administrate and then asadmin will pick the correct
credential from the .asadminpass file based on the --host and --port parameters.

As there is no way to recover the administration password because of one-way
hashing mechanism, the only way to administrate a domain with a forgotten
password is to create a new domain with --savelogin=true option and then
copy the content of the domains/new.domain.dir/config/admin-keyfile to the
domains/old.domain.dir/config/admin-keyfile. We can delete the temporary
domain after we copy the file. Using this way we can log into our administration
console with the password we associated with the new domain. The file we just
copied is the credential store for a security realm named admin-realm, which
GlassFish uses to store the usernames, passwords, and groups of any admin-realm
member. The admin-realm is a file realm.

Protecting GlassFish domain using master password
The master password is designated to protect the domain-encrypted files like digital
certificate store from unauthorized access.

When we start a GlassFish domain, the startup process needs to read these
certificates and therefore it needs to open the certificates' store files. GlassFish needs
the master password to open the store files and therefore we should either provide
the master password during the start-domain command execution in an interactive
way or we should use the --passwordfile parameter to provide the process with
the master password.

The most common situation for using a previously-saved master password is when
we need our application server to start in an unattended environment, like when we
make a Windows service or Linux daemon for it.

Again, you may ask how you were starting your default domain without the asadmin
utility asking for the master password. It is because --savemasterpassword=true
was used as an option for the domain creation command. When we use this option, the
asadmin utility saves the master password into a file named master-password, which
resides inside the $DOMAIN.DIR/config directory.

If we forget to save the master password during the domain creation
time, we can use the change-master-password command to save it as
explained in the next section.

Securing GlassFish

[132]

Changing passwords
As an administrator we usually like to change our passwords from time to time
to ensure keeping a higher level of security precautions. GlassFish lets us simply
change the master or administration password using some provided commands.

To change the master password we must be sure that the application server is not
running, then we can run change-master-password as follows:

Change-master-password --domaindir=/opt/dev/apps/domains/ --
savemasterpassword=true GiADomain

After executing this command, the asadmin utility will interactively ask us
for the new master password, which must be at least eight characters. We
use the --savemasterpassword to ensure that the master password is saved and
during the domain startup we do not need to provide the asadmin with it. We need
to change the password file if we are using it to feed the asadmin utility with the
master password.

If we use the change-master-password without the
--savemasterpassword=true the current password
file will be deleted if it exists.

To change the administration password we can use change-admin-password,
which is a remote command, and needs the application server to be running. The
following snippet shows how we can change the administration password for
a given username:

change-admin-password --host 127.0.0.1 --port 4747 --user admin

After executing this command in which we should replace the port and host
parameter to reflect our administration listener, asadmin will ask for the
administration password and then change the password of the given user. If we
change the password for a user, we will need to log into that domain again if we
need to use automatic login. Also, we need to change the password file if we are
using it to feed the asadmin utility with its required passwords.

Protecting passwords with encryption
We have many places in any application server that need some username and
passwords which the application server will use to communicate with external
systems like JMS brokers and databases. Usually each part of the overall
infrastructure has its own level of policy and permission set, which leads us to the
fact that we should protect these passwords and avoid leaving them in plain text
format in any place, even in the application server configuration files, which can be
opened using any text editor.

Chapter 5

[133]

GlassFish provides a very elegant way for protecting these passwords, by
providing us with the required commands and infrastructure to encrypt the
passwords and use an encrypted password's assigned alias in the application server
configuration files. The encrypted passwords are stored inside an encrypted file
named domain-passwords, which resides inside the domain's config directory. The
domain-passwords file is encrypted using the master password and if the master
password is compromised then these file can be decrypted.

The command for creating password aliases is a remote command named
create-password-alias and a sample usage is shown in the following snippet:

create-password-alias --user admin --host localhost --port 4747
GiA_Derby_Pool_Alias

After we execute this command asadmin utility will ask for the password that we
want this alias to hold, although asadmin may ask for administration credentials if
we are not logged in.

Now that we created the alias we can access it by using the alias accessing syntax
which follows the ${ALIAS=password-alias-password} format. For example, if
we want to create the JDBC connection pool using the newly-created alias as the
connection password we can do it as follows:

create-jdbc-connection-pool --user admin --host localhost --port 4747
--datasourceclassname org.apache.derby.jdbc.ClientDataSource --restype
javax.sql.XADataSource --property portNumber=1527:password=${ALIAS= GiA_
Derby_Pool_Alias}:user=APP:serverName=localhost:databaseName=GiADatabase:
create=true GiA_Derby_Pool

Password aliasing is not present just for external resources, but it can be used to
protect the content of the password file, which contains the administration and
master passwords to be used, instead of typing the password when the asadmin
interactively asks for it. We can simply create a password alias for the administration
password and for the master password and use them in password file. Sample
content for a password file with aliased password is like this.

AS_ADMIN_PASSWORD=${ALIAS=admin-alias}
AS_ADMIN_MAPPEDPASSWORD=${ALIAS=master-alias}

Securing GlassFish

[134]

Like all other administration commands, the alias administration commands set has
some other commands which help with commands administration. Other commands
in this set are shown in the following table.

Command Description
delete-password-alias We can delete an alias when we are sure we

are no longer using it.
list-password-aliases We can get a list of all aliases that we have in

our domain-password file.
update-password-alias We can update an alias by changing the

password that it holds.

Password aliasing is very helpful when we do not want to give our passwords to the
personal in charge of application server management or administration tasks. Instead
we can provide them with an aliased password, which they can use.

Securing the CLI communication channel
So far we have discussed how we can protect the CLI passwords locally, but a more
important aspect of security is guaranteeing the transmission security. In the second
figure of this chapter we saw how administration credentials are transmitted over
the wire in plain text, which will create a golden opportunity for a malicious person
to sniff the data and extract the administration credentials. To prevent a big risk like
this we can enable the security of admin-listener, which is fully explained in the
next section.

The asadmin utility can verify the certificate provided by the server by validating
it against a trust store dedicated for the asadmin utility. The trust store file that the
asadmin utility uses is named .asadmintruststore and is located inside the $USER.
HOME directory. We can manage the certificates in the .asadmintruststore using
the well-known keytool that we used in Chapter 2 of this book to import digital
certificates into the application server's keystore and trust store.

The asadmin utility does not support mutual authentication using
digital certificates. So if we enable the Client Authentication in the
administration listener, we won't be able to use the asadmin utility. To
disable the mutual authentication we need to use the web administration
console and disable the mutual authentication. Mutual authentications is
explained in the following section.

Chapter 5

[135]

Securing different network listeners
Everything an application server offers to the users is accessible by a listener.
Basically each listener is assigned a server socket that handles requests placed on
the socket it listens on. For example, by default the admin-listener listens on
0.0.0.0:4848, which means it listens on all available network addresses on
port 4848.

Because of the diversity of Java EE platform and application servers, different
application servers have multiple types of listeners which administrators can use to
configure the application server to listen on different port and addresses for handling
different set of protocols.

In GlassFish we have three types of listeners and for each type we have one or more
instance configured by default. The following table shows these listeners.

Listener type Description
HTTP listener Serves HTTP requests for admin, user, and asadmin requests. There are

three different instances configured by default.
JMX listener Serves JMX requests. Usually for administration purposes.
IIOP Listener Server requests for accessing managed objects like EJBs, JMS connection

factories, and so on.

When we have all of these listeners exposed, a user may access an accounting
application or he may try to interact with the application server's core using JMX
interface, which normal users are not usually permitted to do. So listeners should be
protected in different levels using different set of protection layers, which starts by
proper configuration of firewalls and network router to only allow certain traffic for
each listener.

Each listener in the application server can listen on as many network addresses
as required. By default all listeners listen on 0.0.0.0 and their dedicated ports. It
means that clients can connect to the application server using any of the network
addresses assigned to the server machine. Although it is useful when we are
developing applications, it can pose security risks in the production environment
when we only need a certain set of inbound traffic to hit each listener. For example,
we should configure the admin listener to listen on the network interface accessible
through our LAN and not through the WAN to prevent any security breach over the
administration console.

Securing GlassFish

[136]

Securing HTTP listeners
Using HTTP is the most common way of communication between an application
server and its clients. Securing HTTP listeners is the first step in configuring a secure
installation of an application server. In GlassFish we can secure HTTP listeners using
the asadmin utility or using the administration console as the easiest ways.

To configure the HTTP listeners' security we will use the administration console.
To get started, log into the administration console by navigating to your GlassFish
administration console, which by default is accessible at http://127.0.0.1:4848
if you are on the server machine, and then from the right-side tree navigate to
Configuration | Network Config | Network Listeners. A list of default listeners
similar to following figure will appear in the browser:

These are default HTTP listeners which serve administration requests—HTTPS and
HTTP requests hitting the application server. After clicking on http-listener-2, which
by default serves all HTTPS requests, a page with all information and settings related
to http-listener-2 will open. The page is similar to the following figure:

Chapter 5

[137]

First thing that we need to change is the Address. The default 0.0.0.0 means that
this listener will listen on any interface available to the Java runtime, which we
usually do not need, so we should change it to the IP address of network interface
that our clients have access to.

We can assign multiple network interfaces to a listener if needed. We have multiple
network interfaces on our server machine to serve requests coming from internal
and external networks by entering their IP addresses separated by a comma, such as
192.168.1.121, 74.34.21.12. In this sample, the first IP can be the address of
the internal network interface and the second one can be the external network
interface address.

As mentioned earlier, this listener is the default HTTPS listener and for that to work
the Security checkbox is checked to enable HTTPS support. To view and change the
SSL configuration click on the SSL tab, which opens a page similar to the following
figure in the browser.

Securing GlassFish

[138]

The options, along with the descriptions are included in the following table.

Option Description
SSL3 Enabling it means that we want the listener to support legacy

client's which uses SSL3 protocol instead of TLS.
TLS It must be enabled if the listener is meant to interact with

modern browsers or clients. Nowadays all major web browsers
and network frameworks support TLS.

Client Authentication Enabling this option will enforce a mutual authentication in
which the client needs to provide a verifiable digital certificate
to the server, in addition to the server providing its digital
certificate to the client.

Certificate Nickname The value of this option must be a valid certificate name in the
keystore we provide in the next option. The default self-signed
digital certificate nickname is s1as and we should replace it
with a legally-signed digital certificate for production use.

Key Store Its value should either be empty (meaning the default key
store file) or path to a valid keystore file (jks) containing the
certificate with the given nickname.

Trust Algorithm It should be left empty or filed with SRP, PKIX, or any other
supported algorithm for checking the certificate chain for
certificates provided by client.

Max Certificate Length It specifies the maximum number of intermediate certificate
issuers between the client's provided certificate and a root
certificate in the trust store. Imagine that we want to only trust
certificates issued directly by a root certificate authority. In that
case the number should be 0. Usually we accept certificates
issued by certificate authorities five levels deep in the chain
from a root certificate. This option affects the way that
listeners verify client's certificates when we use PKIX
as the verification algorithm.

Trust Store It should be empty to use the default trust store or it should
point to a valid trust store file. Any certificate included in the
trust store will result in the listener's confirmation of client's
certificate signed by them.

We can specify the cipher suites in the same page. Using the Cipher Suites sections
we can specify which cryptography algorithms with what level of strength we want
our listener to use when negotiating the secure communication configuration. By
default all cipher suites are supported for different algorithms. We should only
enable the cipher suites that are legally allowed in the host and client countries
because different countries have different policies in permitting the use of cipher
suites and key lengths for inbound and outbound communications.

Chapter 5

[139]

We can create as many listeners as we need to support different clients connecting to
our application server in order to serve each set of clients with the level of demanded
security based on the sensitivity of their work.

Digital certificates and using them for security purpose has become
very common in recent years as the processing power of servers has
increased and handling the related load is much easier than compared
to the past. There is open source certificate authority software named
EJBCA (http://ejbca.sourceforge.net/) which we can use to
create a small CA. We can use it for SSL mutual authentication without
need to pay for digital certificates for our controlled client and server
applications. The following article fully discusses using EJBCA with
GlassFish to have a fully-controlled setup of mutual authentication
between clients and GlassFish: http://weblogs.java.net/blog/
kalali/archive/2010/02/06/glassfish-v3-and-ejbca-394-
fair-couple-mutual-ssl-authentication.

Securing ORB listeners
ORB listeners serve remote clients who want to use Java EE managed objects such
as JMS connection factories, EJB methods, and so on. The ORB listeners handle these
types of requests and if necessary, authenticating, conducting an SSL session, and
performing a mutual authentication via digital certificates is also done.

We can view and configure ORB listeners by navigating to Configuration |
ORB | IIOP Listeners, which will show a list of current IIOP listeners similar
to following figure:

As you can see, there are three preconfigured listeners present in the list of IIOP
listeners. All of them are listening on all available network addresses, so we should
change the network address according to our needs.

Securing GlassFish

[140]

Clicking on any of these listeners will open a listener configuration page similar
to the HTTP listeners' configuration page. All elements are similar and security
considerations for them are the same as HTTP listeners.

The only difference between configuring IIOP listeners and HTTP
listeners is the SSL3 requirement in the IIOP listeners because of
legacy systems that interact with EJB layer over IIOP.

Securing JMX listeners
The JMX communication channel is another means of interaction with GlassFish
administration and management. Using JMX we can virtually do anything we do
with CLI and administration console.

To view and change the configuration of the JMX listener, we can navigate
to Configuration | Admin Service, which will open a page similar to the
following figure:

You can see similar attributes like Security, Address, and Port which we already
know how to use along with the SSL tab that let us change the JMX listener's SSL
support, which is similar to HTTP and IIOP listener.

You can see one additional option named Realm Name, which we can use to specify
which security realm we want to use for authenticating the JMX connections. The
presence of username and password authentication lets us authenticate users using
classic tokens and meanwhile enable SSL to ensure data integrity and confidentiality.
In special cases when we need maximum security on the JMX listener we can enable
Client Authentication in the SSL tab to enforce mutual SSL authentication before
letting a client use JMX to interact with the application server.

Chapter 5

[141]

Hosting multiple domains using one IP
Virtual hosts or virtual servers are basically the feature that made it possible for web
hosting providers to host multiple domains using one IP and one physical machine.
For example, two domains like www.domain5.com and www.domain6.com can be
hosted on one physical machine having one IP address.

In such cases, the name server translates both addresses to one IP address and later
on the web server or application server directs the requests to a correct virtual server
based on the domain name or the URL pattern.

For GlassFish, the story is a bit different because GlassFish gives more flexibility and
isolation compared to Tomcat or other application servers.

To see how virtual host configuration works on different application
server, take a look at the following references:

Virtual hosting and Tomcat: http://tomcat.apache.org/
tomcat-6.0-doc/virtual-hosting-howto.html

Configuring virtual host on Geronimo: http://cwiki.apache.
org/GMOxDOC22/configuring-virtual-host.html

JBoss and virtual hosting: http://community.jboss.org/
wiki/VirtualHostswithJBossAS

•

•

•

When we install Glassfish, the installer creates two virtual servers—one for user
applications and one for administration applications. The following figure shows
a list of virtual servers, which are created by default.

Securing GlassFish

[142]

Both virtual servers are enabled and neither of them has a default web application to
handle requests that do not match any of the deployed web applications. Creating a
new virtual server will be straightforward after we study one of the preconfigured
virtual servers and learn what the properties of each virtual server are.

Let's click on the __asadmin virtual server and see its current configuration. Clicking
on __asadmin will open a page similar to the following figure:

Chapter 5

[143]

The following table shows the options we have in the virtual host creating page
along with a description for each one of them.

Option Description
Id It is a unique ID that we specify when we create each virtual host.
Hosts This is a comma-separated set of IP addresses or domain names,

which the DNS server will resolve to the IP address this virtual
host's HTTP listeners listen on.

State It lets us specify whether the virtual host is active or inactive.
SSO This option specifies whether we want to have single sign-on

between all applications deployed in this virtual host using a
similar security realm or not. If we choose to have SSO, users will
only need to login once and stay authenticated for all applications
deployed in the same virtual host and using the same security
realm. Specifying the SSO state in the virtual server level will
override the specified value in the HTTP service level.

Network Listeners This element allows us to select one or more HTTP/S listeners to
receive requests for applications deployed in this virtual server.

Default Web
Module

The default web module will handle requests that do not match any
of the deployed applications.

Log File This element specifies where this virtual server should write the log
entries. By default all virtual servers use the server logfile.

Docroot This element specifies the document root for this virtual server.
Access Log When enabled, any access to any resource in the server will be

logged. Specifying the access log state in the virtual server level
will override the specified value in the HTTP service level.

When we deploy applications in GlassFish we can choose which virtual server
we want to use for that application. In the CLI mode, we can specify the
target virtual host using the --virtualservers and in the case where we use
Administration Console we can select the target virtual host in the first step of
application deployment wizard.

Securing GlassFish

[144]

Sharing security context between
different applications using SSO
The most basic task of single sign-on is saving users from entering their username
and passwords when there are different applications which are related. GlassFish
supports SSO between web applications deployed in the same virtual server. When
we enable SSO for a virtual server, any user authenticated in one of the applications
deployed in that server will stay authenticated for all applications deployed in the
same virtual server. There are only two conditions that our server-side applications
and the client must have to use this SSO capability:

The applications deployed in the same virtual host must use the same
security realm, same value for the realm-name of web.xml, to make it
possible for GlassFish to verify the authentication token
The client-side application must support cookies because the authentication
token acquired after client authenticates against one web application will be
carried on to other applications when user tries to access them

When a user authenticates against one web application, a cookie will be set in the
client side which contains the authentication token and when the user tries to access
a protected resource on any one of the other applications, GlassFish will verify the
cookie and then check their access rights against the requested resource. If the user
has permission to access the resource, the request will go through; if they do not
have the access rights they will get an HTTP 403 error message or equivalent as
defined in the web.xml.

•

•

Chapter 5

[145]

Enabling SSO in virtual server
To enable SSO in the virtual server we can navigate to the Edit Virtual Server section
and tick the corresponding checkbox as shown in the following figure:

We have two other options besides leaving the SSO option Disabled, which are
as follows:

Enabled: Enabling the SSO for this virtual server, all applications will share
the authentication token.
Controlled by HTTP Service: Inheriting the SSO state from the HTTP service
configuration, if it is enabled in the HTTP service level it will be enabled for
the virtual server and vice versa.

•

•

Securing GlassFish

[146]

In the Additional Properties section of the same page we can add two extra
properties as follows:

The sso-max-inactive-seconds property specifies the amount of time that
a user's single sign-on record can stay inactive before it becomes eligible for
purging. The value is specified in seconds and any request placed on any
of the applications deployed in the virtual server will renew the period.
Specifying a longer time will allows users to stay authenticated longer
at the expense of using more of the server machine's memory. The
default value for sso-max-inactive-seconds is 300 seconds.
The sso-reap-interval-seconds property specifies the interval between
expired token sweeps, with the default value as 60 seconds. Specifying a
smaller interval involves more CPU time for sweeps while specifying a
longer interval will leave expired tokens in the memory.

We should tune these two properties based on our user load, amount of memory,
and the CPU time we can devote to SSO. The best approach is to leave the tokens
valid for long as it poses no security threat. We should not let a large number of
expired tokens on the server as it will increase the CPU time for purging them.

Summary
In this chapter we discussed more about GlassFish security by examining the
administration security, password protection, network listener security, and by
discussing the benefits of virtual servers for isolating different applications deployed
in the a single machine with a single IP address. We also looked at the SSO capability
of GlassFish and discussed how we can configure it to our advantage to take away
from our clients the burden of going through authentication for each one of the
related applications deployed in the application server.

In the next three chapters we will dig into OpenAM to further facilitate the Java EE
applications and Web Services security in conjunction with providing SSO across
several domains using OpenAM.

•

•

Introducing OpenDS: Open
Source Directory Service

During the development of enterprise applications, many different requirements
arise which can be addressed with a limited set of base software, but using one
tool for all tasks will not result in an acceptable outcome in terms of performance,
availability, end user's experience, maintenance costs, security, and so on.

One area of wide misuse is placing a database system to perform a task when a
directory server can do much better. Tasks that need to share semi-static information
in the enterprise can be considered tasks that a directory server performs better than
a database server. Examples of these types of data can be an organization chart,
subscribers, services, devices, entitlements, preferences, and so on.

This chapter covers the following topics about OpenDS:

What a directory service is
What OpenDS is
Installing and administrating OpenDS
Using OpenDS in embedded mode
Setting up an OpenDS replication topology

•

•

•

•

•

Introducing OpenDS: Open Source Directory Service

[148]

Storing hierarchical information:
Directory services
A directory service is a software system for storing directory information, which
basically maps names to values. In a directory, a name can be mapped to multiple
values like a word in a dictionary, which can have multiple definitions associated
with it. Imagine a person in a company information book. The person may have
multiple attributes to be identified, such as name, business description, phone
numbers, roles, and so on. Such information is best suited to be stored in a
directory service.

Back to the person's directory; each piece of information we store for a person
represents an attribute of the person such as his job, address, organization, and so on.
Directory services can store information in a hierarchical way, something like a tree.
In this tree the person can be a leaf and the country the person is living in can be the
root of the tree, while each branch of the tree represents a city and each small branch
represents a street, and so on.

We call this tree-like structure of information stored in a directory service
a Directory Information Tree (DIT).

Directory services are developed around the requirement of storing a set of attributes
for an object in a tree system optimized for read operations. Directory services use
these attributes to associate different objects to each other, like associating a set
of people to an organization or a department of an organization.

Each record has a unique identifier called Distinguished Name (DN). The DN is
constructed from one or more of the object attributes—Relative Distinguished
Name (RDN), followed by its parent object DN. So, the distinguished name of an
object can have one or more of its own attributes and one or more of its parent
object attributes. A full path to a file represents that file's DN, while the file name
or a directory name is the RDN because it is identifying the file or the directory
related to its parent.

The following snippet shows how employee information is stored in a
directory service:

 dn: cn=John Doe,dc=example,dc=com
 cn: John Doe
 givenName: John
 sn: Doe
 mail: john.doe@example.com
 mail: john.doe2@example.com

Chapter 6

[149]

 manager: cn=Barbara Doe,dc=example,dc=com
 objectClass: inetOrgPerson
 objectClass: organizationalPerson
 objectClass: person
 objectClass: top

As you can see, in the first line we have the DN of the employee, which is composed
of some of his own attributes in addition to the domain name of the employer
company. We also have two values for the e-mail attribute.

The objectClass attribute specifies which class this object belongs to so the
directory server can effectively find the object, identify which attributes it has,
and also check whether or not the object conforms with schema it belongs to.

In directory services, each object belongs to one or more classes. These classes are
defined in schemas known to the directory server. Each class definition in the schema
specifies what attributes the object must have and what are the optional attributes of
the object.

Many different schemas have been defined for different industries over the years and
all major directory services come bundled with important schemas. Almost all major
directory services provide administration capabilities for importing new schemas
and applying them on the DIT. Some example of directory services schemas are
DNS, DHCP, NIS, white pages schema, and so on.

The role of directory services in IT has become bolder over the years and the
standard organizations decided to define a protocol to let software systems access all
directory services in a standard and unified way. So the Internet Engineering Task
Force (IETF) and OASIS defined several RFCs and standards for making directory
services compliant with each other. These standards include RFCs for Lightweight
Directory Access Protocol (LDAP, RFC 4510), Data Interchange Format (RFC 2849),
OASIS specification for Service Provisioning Markup Language (SPML), Directory
Services Markup Language (DSML), and standard schemas which represent
different types of information that can be stored in directory services.

Connecting directory services to software
systems
When it become apparent that software systems need a comprehensive and yet
simple way to access directory service information, LDAP standard introduced a
concept letting software systems access directory service information over TCP/IP.

Introducing OpenDS: Open Source Directory Service

[150]

The LDAP standard lets client applications use directory services by asking the
server to perform an operation. By default, LDAP servers accept the operation
requests on port 389. The following table shows the list of mandatory operations
that each LDAP server needs to implement in order to cover LDAP v3
standard operations.

Operation Description
StartTLS Using Transport Layer Security (TLS) extension for a

secure connection.
Bind Authenticating and specifying LDAP protocol version.
Search Searching for and/or retrieving directory entries.
Compare Checking whether an object contains a given attribute

value.
Add, Delete, Modify an object Adding, deleting, and modifying an object.
Modify Distinguished Name
(DN)

Moving an object in the tree or modifying its DN.

Abandon Aborting the previous operation.
Extended Operation A generic operation to define other possible operations.
Unbind Closing the current connection.

The operation invocation is not synchronous and clients can send multiple requests
without receiving any response to the previous requests. It is not mandatory for the
LDAP server to send back the responses in the same order it received the requests.

Introducing OpenDS
In the chapter introduction we saw that a directory server can be used to store
hierarchical information with high number of read and small number of write
or updates. Samples of these types of information can be company employees or
telecom subscribers. You know that the data models for each of the mentioned items
differ from each other and so there should be a way to imply some standardization
on these data models to introduce some level of interoperability between directory
servers. In order to provide some level of interoperability in data model level, some
standards define data models for directory servers' data, for example RFC 4512 and
RFC 4519.

Chapter 6

[151]

These standard data models are called Directory Information Tree's (DIT) schemas
and some of the popular schemas are already defined and standardized. Directory
schemas are defined as object classes which can have attributes, name bindings, and
namespaces. Attributes of an object class can be required or optional—the required
attributes must be present in each object entry in the directory server while optional
attributes can be present or not. Each object class inherits from its parent object class
(and ultimately from the root of the hierarchy) which leads to adding attributes to
the required/optional list of the descendant objects.

LDAP is the accepted communication protocol between a directory server and its
clients. LDAP can be considered a lightweight TCP/IP-based variation of Directory
Access Protocol (DAP) which was and is in use with OSI-layered networks in
telecom systems. Interaction between client and directory server over LDAP is based
on operations that the client asks the server to perform, which includes search, add,
remove, bind, and so on.

OpenDS, hosted at http://www.opends.org, is an open source project initiated
by Sun Microsystems (now sponsored by Oracle), implementing a high-end open
source directory service available under CDDL license. OpenDS is heavily under
development and implements all LDAP standard RFCs, plus numerous extensions
(standard and experimental) in addition to secure communication, information
replication, plug-ability, and DSML gateway

We will discuss OpenDS version 2.2 in this chapter, which fully supports
LDAP v3 and DSML version 2.0.

You may know that there are already some other open source directory servers
available for the community, including OpenLDAP, ApacheDS, and Port 389
(formally known as Fedora Directory Server), which can be used at no cost for both
commercial and non-commercial deployments. Although Sun Microsystems itself
has an advanced directory server product, they initiated OpenDS in August 2006
with the following goals:

Implementing a pure Java directory service to further facilitate the platform
independency and ease the maintenance
Achieving higher performance levels required by modern applications, for
both reading and writing data
Providing commercial support for the open source product
Using OpenDS as next version of Sun Directory Server Enterprise
Edition core
Simplifying the transition between open source products and its commercial
sibling for customers

•

•

•

•

•

Introducing OpenDS: Open Source Directory Service

[152]

OpenDS has well designed extensibility points which lets the developers extend
the functionality of the directory service in different points—from intercepting and
processing the LDAP operations before they are executed by the directory server and
post processing the result of an operation to adding new services in order to support
a new interaction channel between OpenDS and its clients.

OpenDS supports Simple Network Monitoring Protocol (SNMP) in order to let
system administrators monitor OpenDS in the same console that they monitor other
network infrastructure. It also supports JMX to let any JMX-capable console monitor
OpenDS in runtime with a very low overhead. Support for running in embedded
mode, in addition to standalone mode is another nameable feature.

When we deploy a directory server in standalone mode, we usually need the
directory server to be always available and disaster-proof. OpenDS Multi-Master
Replication helps us to set up a highly available directory service, which guarantees
the availability of service and integrity of data. The following table shows some other
outstanding OpenDS features and a brief explanation of each feature.

Feature Explanation
LDAP v3 support for core operations. Support for all core LDAP v3 operations,

including search, bind, modify, add,
delete, modify DN, compare, abandon,
and extended operations.

Support for a number of standards or
experimental controls. Controls can be
included in requests to ask the server for
additional processing. Each additional
processing capability is called a control.

Including proxied authorization, persistent
search, LDAP pre-read and post-read
controls, LDAP assertions, retrieving matched
values, paged results, authorization identity
request, password policy controls, and
account usability controls.

Support for some of Simple
Authentication and Security Layer
(SASL) authentication mechanism with
possibility to add other mechanisms.

Supported mechanisms include:
ANONYMOUS, CRAM-MD5, DIGEST-
MD5, EXTERNAL, GSSAPI, and PLAIN.

Server extendibility and plugability. It is possible to extend the server
capability by:

Adding new schema and
data types.
Pre- and post-processing of the
operations and their results.
Password-related operations and
functionalities.
Adding new services for new types
of communication protocols.

•

•

•

•

Chapter 6

[153]

Feature Explanation
Recurring tasks. Recurring tasks allow an administrator to

schedule repeated tasks such as backup.

OpenDS complies with password policy
implementation draft.

Some of OpenDS supported policies are:
Password complexity requirements.
Password history and age.
Account lockout conditions.

•
•
•

Already implemented and possibility to
add more Extended operations.

Implemented passwords modify, and cancel
extended operations.

Support for StartTLS and SASL
encryption.

Possibility to use X.509 certificate for client and
server authentication and SSL for a transport
security, StartTLS is an extended operation.

Access Controls using ACL. Access Control Lists (ACL) in OpenDS
allow controlling who has access to what,
from a subtree, down to specific values of
an attribute, and the kind of access—read,
search, write, and so on.

Fractional replication. Possibility to specify which attributes to
include or exclude in replication.

The binary transfer option is now
supported.

Supports binary transport option for
transporting binary data.

Understanding OpenDS backend and services
Directory services need to store their data into some kind of storage that is fast
to read, filter, and locate operations based on the hierarchical nature of directory
services' stored data. This storage usually consists of several sections which are
called backend and each backend is target storage for a specific prefix of data
hierarchy. By default OpenDS uses Berkeley DB Java Edition (http://www.oracle.
com/database/berkeley-db.html) as a data store and retrieval framework because
of its good write performance characteristics, high granularity of record locking, and
efficiency in reading, filtering, and locating data.

Introducing OpenDS: Open Source Directory Service

[154]

OpenDS is a directory service implementation and based on the vast use cases of
directory services it needs to be highly flexible in the way that it communicates with
its clients. To address this requirement OpenDS uses an extendable architecture for
handling client connections. OpenDS architecture allows adding new connection
handlers in order to support new communication protocols. So far OpenDS supports
LDAP for accessing the directory information and JMX, and SNMP for monitoring
and administration purposes. There are some SPIs available for adding new
communication protocols. For example, we can develop a connection handler for
DNS, which will access the directory tree information to perform a DNS search.

Installing and administrating OpenDS
The first step in using any server-side software is knowledge of the installation
procedure and some basic administration experience, which helps in performing
certain tasks to keep a test server up and running.

Installing OpenDS and DSML gateway
In this section we will look at OpenDS and DSML gateway system requirements and
the installation process. I have concisely described the installation process in order to
have enough space for more advanced topics.

Understanding the system requirements
The OpenDS system requirements may amaze you as they are the minimal
requirement for a Java application. The requirements are as follows:

Any operating system with at least JRE 1.5.8. The latest version of Java 6 JRE
is recommended for better performances.
For replicated topologies high speed, and low latency network can further
accelerate the operations.

Downloading and installing OpenDS server
OpenDS installation is possible using Java Web Start enabled setup program but we
manually download and install the ZIP file to lift the Internet connection requirement
for later installation. Installing OpenDS server requires some steps as follows:

1. Download OpenDS-2.2.0.zip from https://www.opends.org/promoted-
builds/2.2.0/OpenDS-2.2.0.zip, and extract it in a directory for which
you have execute permission over.

•

•

Chapter 6

[155]

2. Open a shell window (cmd in Windows or a terminal instance in Unix-based
systems) and switch to the directory that you extracted the OpenDS archive
file. Execute ./setup or setup.bat depending on your operating system.

3. Bypass the Welcome screen, the real installation process begins where
we provide basic information like hostname, LDAP communication port,
Distinguished Names (DN) for root user who administrate the directory
server, and its password. You can use following information to ensure that
all sample commands work without any change.

Root user DN: cn=gf admin
Password: admin
LDAP listener port: 1389

Using admin as the password is only for the sake of simplicity. In a
production environment it is better to use a complex password which has
at least six alphanumeric and some special characters like @#$%^&*.

LDAP well-known port is 389 (and 636 for LDAPS). However, since these
ports are under 1024 and considered privileged ports they can only be
opened and used by applications with specific privileges, for example the
Unix root user, or Windows Administrator. For developers, the use of these
ports is cumbersome and OpenDS detects the lack of privileges and offers
by default to use ports 1389 and 1636. Note that 389 is also often used on
Windows by Active Directory and installing OpenDS on this port is not
possible in default Windows Server installations.

4. Now we need to configure the LDAP to enable the secure communication
using SSL or TLS, so press the Configure button and select the following:

Enable SSL on port 1636
Enable StartTLS for LDAP
Generate Self Signed certificate

5 In the Directory Data page just make sure to use dc=glassfish,dc=book as
the Directory Base DN and also make sure to check Only Create the Base
Entry option. When installation finishes, the installer will show a report page
containing information related to the installation. Here we can click on the
Launch Control Panel button to open the OpenDS control panel. A dialog
will ask you for the Bind DN and Password, which we specified in the
installation process as cn=gf admin and admin.

°
°
°

°

°

°

Introducing OpenDS: Open Source Directory Service

[156]

Differences between X.509 certificate stores
Whenever we use SSL or TLS we need to provide a digital certificate,
which will be used during the handshake, self-identification, and
encryption of shared secret. Usually when we work in development stage
we use self-signed certificates which are stored in Java keystore (jks)
file and are not signed by any certificate authority. But in a production
environment we should not use JKS files as it is a proprietary Java
format and not a standard file format. Instead we should use PKCS
#12-compliant certification storage file or PKCS #11 hardware token to
provide the server with the required certificate.
Usually in production either we use an internal certificate authority
which can be an installation of EJBCA for all digital certificate required
functionalities of the enterprise or we can buy required digital certificates
from other CAs.

The installation can also be done from the command line. Invoke the following
command where we extracted OpenDS ZIP file to install the directory server and
start it afterward.

./setup --cli -n -b "dc=glassfish,dc=book" -a -p 1389 --
adminConnectorPort 4444 -D "cn=gf admin" -w "admin" -q -Z 1636 --
generateSelfSignedCertificate

The following figure shows the OpenDS control panel. This panel can be used for
managing OpenDS to some extent. As you can see both LDAP and LDAPS are
enabled based on our configuration in previous steps. SNMP and JMX Connection
Handlers are disabled; we will discuss enabling JMX Connection Handlers in
subsequent sections of this chapter.

Chapter 6

[157]

As you can see in the above figure, the control panel provides a rich set of
administration and management functionalities including but not limited to:

Creating backups and restoring them
Starting and stopping the server
Importing and exporting compressed and uncompressed LDIF files
Managing directory server's data
Schema management
Index management

•

•

•

•

•

•

Introducing OpenDS: Open Source Directory Service

[158]

We can use the control panel to connect to remote OpenDS servers for administrating
and managing the remote servers.

Studying the OpenDS directory structure
Inside the OpenDS installation directory there are several subdirectories that we
need to know in order to get better understanding of OpenDS. The following table
shows important directories that reside inside the installation directory of OpenDS,
along with a concise description about them.

Directory name Directory description
bin Contains scripts for performing daily tasks like starting the directory

server. It's target users are Unix-based users.
bat Contains batch files for performing daily tasks like starting the

directory server. It's target users are Windows users.
db Contains all default backend data files.

logs All logs including error, access, and so on are stored in this directory.
config All configuration-related files and folders are stored in this directory.
changelogDb If the installation acts as a replication server then this directory

contains replication-related database files.

To summon the control panel mentioned in the previous section we can
execute control panel script, from one of bin or bat directories according
to our operating system.

Installing and configuring the DSML gateway
As you already know, we can interact with OpenDS using DSML which defined an
XML schema for sending operations to directory servers and getting the operation
result back as an XML document.

To interact with OpenDS by using DSML we need to deploy and configure a
gateway which acts as an XML to LDAP converter. This converter is called DSML
gateway and is a web application available at https://www.opends.org/promoted-
builds/2.2.0/OpenDS-2.2.0-DSML.war. To deploy the application you can use the
following command when GlassFish is running:

./asadmin deploy --port 4848 --host 127.0.0.1 --user admin OpenDS-2.2.0-
DSML.war

Chapter 6

[159]

After you deploy the web application, you will need to configure it to connect to
OpenDS instance that you want to communicate with using DSML. For configuring
the DSML gateway you need to change the values of ldap.host and ldap.port in
the DSML web application's web.xml file. The designated web.xml file is located at
domain_dir/applications/OpenDS-2.2.0-DSML/WEB-INF. To change the values,
just open the file and change them with your OpenDS installation details.

Testing the DSML Gateway
To test the DSML gateway we can use any DSML-compliant console, such as
JXplorer which is available at http://www.jxplorer.org. The following figure
shows what connection attributes we should use to connect to the DSML gateway
using JXplorer:

We cannot add new entries to directory server or update any object as the connected
user (anonymous) does not have the privileges required to update the directory
server content. DSML has no restrictions over the useable operations, but JXplorer
3.2.1 does not support authentication over DSML, which leads to using anonymous
user who has no privileges.

Some other DSML tools are as follows:

The DSML Tools suite hosted at http://www.dsmltools.org/
Sun Directory Server Resource Kit (DSRK) available at: http://www.sun.
com/software/products/directory_srvr_ee/resource_kit/index.xml

The dsmlsearch and dsmlmodify utilities of OpenDS

•

•

•

Introducing OpenDS: Open Source Directory Service

[160]

Administrating and managing OpenDS
OpenDS provides many useful scripts and utilities that help us with the
administrative tasks. One set of these scripts deal with tasks related to server
lifecycle management. The following table includes this set of commands along
with their explanation.

Command script file Description
status A console that shows server status along with some useful

details. It can be executed in both interactive or script-friendly
mode which allows its inclusion inside other scripts.

start-ds Starting the directory service, provides some flexibility switches
like –N.

stop-ds Stopping the directory service, provides some flexibility
switches like –Q.

ldapsearch Searching the OpenDS tree for specific entries.

backup Creating backup from one or more backend. These backups can
be restored using the restore command.

restore Restoring a backend backup created with the backup
command.

dsconfig We can define the configuration for the directory server.

control-panel Launch the OpenDS control panel.

dsreplication Setting up, managing, and monitoring replications topologies.

To run a script in Unix and Linux use a terminal and navigate to the bin
directory inside the installation folder and use ./command_name to
execute the command. For Windows, open a command window, navigate
to the bat directory, and execute the batch files by calling them. There
are several other utilities present in the bin or bat directories, you can
try them with -h or --help to see what you can do with them, and what
parameters they take.

Chapter 6

[161]

Importing and exporting data
Usually we import information into the directory server from another source, which
can be an LDIF file exported from another directory server. In this section, we will
see how easily we can import an LDIF file into the OpenDS database and later on
export a subsequent of the directory server database into an LDIF file. In order to
be able to import an LDIF file into the directory server we should have some basic
information about LDIF file content's format. The following listing shows a sample
LDIF file content:

dn: dc=glassfish,dc=book

objectClass: top
objectClass: domain
dc: glassfish

dn: cn=Thomas Quist,dc=glassfish,dc=book

objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: top
cn: Thomas Quist
description: Seaman Quist
givenname: Thomas
mail: tquist@royalnavy.mod.uk
manager: cn=Horatio Hornblower,ou=people,dc=glassfish,dc=book
sn: Quist
uid: tquist
userpassword:: myPassWord

As you can see, the content of LDIF file is plain text attribute, value pairs. At the first
highlighted line we define root DN, then we have a blank line which indicates that
the current object is finished and another object is going to begin in the next line.
Later on at the second highlighted line we have a second-level object, which is going
to be inserted as an immediate child of the root object. Finally, at the last highlighted
line we have the userpassword attribute whose value is expressed in plain text; later
on we will see that OpenDS stores a hashed representation of this plain text value for
increased security.

Introducing OpenDS: Open Source Directory Service

[162]

Having users' password in plain text in a file (LDIF for that matter) is not
a good security practice. OpenDS can accept hashed representations with
some configuration tuning. Generally setting clear text passwords in LDIF
should only be used for demo purpose or for setting an initial passwords
to users who MUST change it as soon as possible. For more information
about using hashed password in LDIF files check http://blogs.sun.
com/Ludo/entry/opends_tips_importing_ldif_with.

The above listing includes an entry for adding new root DN. If we try to import
this listing into our OpenDS instance we will face an error indicating that the entry
dc=glassfish, dc=book cannot be added because an object with that name
already exists and duplication is not allowed in directory servers. LDIF files can
become complex when we use them to change attributes' values, add new
attributes, remove object or attributes, and so on.

Importing LDIF files
In the archive file containing sample code for this book you can find an LDIF file
located inside the chapter06 directory. The file name is import.ldif and we can
import it into our OpenDS installation by invoking the following command when we
are in the bin directory of OpenDS installation:

./import-ldif -h localhost -p 4444 -D "cn=gf admin" -w admin -b
dc=glassfish,dc=book -n userRoot --trustAll -l /path/to/import.ldif -R
/path/to/rejects.ldif

All three lines indicate one single command for importing an LDIF file into an
OpenDS instance with its administration handler listening on localhost:4444 with
cn=gf admin as its administration DN and admin as its administration password. If
any entry gets rejected, the rejected entries will be stored inside rejects.ldif file.
The import-ldif command accepts many parameters and has many features like
scheduled import, filtered import, headless import using a properties file, and so on.

Note with the import.ldif file you should not have any entry rejected. So the
rejects.ldif should remain empty.

There is an alternative way which we can use for loading a high volume of data in
offline mode. The command usage is as follows:

./import-ldif -b dc=glassfish,dc=book -n userRoot -l /path/to/import.ldif

Chapter 6

[163]

Exporting database content into LDIF file
Exporting database content is as simple as importing it. The following command
shows how we export the content of the OpenDS database:

./export-ldif -h 127.0.0.1 -p 4444 -D "cn=gf admin" -w admin -b
dc=glassfish,dc=book -n userRoot --trustAll -l export.ldif

If you open the exported file and take a closer look you can see that the
userpassword attribute is not the same as what we provided and instead they are
hashed and the hash value is stored in the directory server database. This command
has the same flexibilities that import-ldif command has, with functionalities like
scheduled export, filtered export, and so on.

Backing up and restoring data
When we are dealing with a mass of data, we should have some plans which
guarantee the availability of our system to its clients in case of any failure on the
server side. With LDAP directory servers in general, and OpenDS in particular, this
is achieved using Multi-Master Replication. The disaster recovery plans usually have
at least two sub-plans including:

1. Backup strategy that includes a schedule for creating backups, type of
backup (full, incremental, and so on), schedule for checking backup copies,
purging strategy for old backups, and so on.

2. Disaster recovery plan which includes two sub-plans, including disaster
recovery itself and a database restore plan. The former describes how to
quickly set up another data center and the later one describe how to restore
the data center's state to what it was before the disaster.

Defining these strategies is out of this chapter's scope because many factors like
redundancy of the infrastructure, replication topology, number of slaves and masters
in the topology, amount of traffic on the topology instance, storage type, and many
more affect the backup strategy and recovery plans. However, we will discuss how
we can create full and incremental backups and how we can recover the state of the
server using these backups.

Introducing OpenDS: Open Source Directory Service

[164]

Creating a backup of OpenDS data
Here we will discuss which parts of OpenDS need to be backed up, what the reason
for creating the backup is, and how we can create the backup. The following table
shows what should be backed up and why.

Data stores Backup
Backend All directory service information is stored in

backend (refer to the table on the next page).
Backend resides in db directory which is
mentioned in table (as mentioned in the table
under Studying OpenDS directory structure section).

Configurations, including server
settings that are stored in config.
ldif, which reside inside the
config directory, schemas that the
directory supports, and so on.

All OpenDS configurations including security
settings, replication, supported schemas, and so
on are stored inside the config.ldif file and
config folder.

Tasks All scheduled tasks need to be backed up, in
order to make it possible to restore the directory
server to its backup time state. Tasks are stored in
a designated backend mentioned in table (refer to
the table on the next page).

The above table describes data stores that should be backed up in order to be able
to recover a single server's state in case of a disaster. At least creating two types of
backups should be supported by any software that acts as data storage, full and
incremental. The full backup creates a backup from the entire database, which can be
resource consuming in term of the time that the operation takes and required space
that it needs to store the backups. The other type is incremental backup, which is
from all data we saved after the last backup operation.

OpenDS has an automated archival for the config.ldif files whenever
there is a change in the configuration. Take a look at the config/
archived-configs/ folder to see all previous instances of the file. This
mechanism provides an auditing log of the changes in the config, and
allows us to restore a known working configuration at any point.

To perform a full backup, with compression enabled to reduce the backup size and
encryption enabled to make backups secure, we can issue a command like:

./backup -h localhost -p 1389 -D "cn=gf admin" -w admin --backUpAll --
compress --hash --signHash --encrypt --backupID first-backup-after-data-
load-091231 --backupDirectory /path/to/backups/directory

Chapter 6

[165]

The simplest command to create a backup is:
 ./backup -a -d /path/to/backups/directory

This command creates a backup of all backend of the directory server running on
localhost, which can be replaced by the corresponding server's IP address; it
encrypts the backup information and gives the backup our designated ID. Backup
IDs can be used to simply ask the restore script to restore the system to a state
equal with the given ID's backup state.

To create an incremental backup we should let the backup script have access to latest
backup we, created to make it possible for it to determine which portions of data has
changed since the previous backup. A sample command for creating an incremental
backup can be similar to:

./backup --backUpAll --incremental --incrementalBaseID first-backup-
after-data-load-091231 --compress --backupDirectory /path/to/backups/
directory

These two commands create backups from all available backend. For creating a
backup from one backend we can replace --backUpAll switch with --backendID
backend_ID. Creating incremental backup from a single backend requires at least
one full or incremental backup from the same backend to be available in the
backups directory.

OpenDS installation creates seven different backend which are described in the
following table.

Back-end Description
userRoot User entered information.
adminRoot Administration-related information, like privileged users

and so on.
monitor Monitoring information is stored in this backend. This backend is

accessible by SNMP and JMX clients in read-only mode.
task Scheduled tasks like backup, restore, and so on are stored in this

backend.
ads-truststore X.509 certificates are stored in this backend.
backup Information about backups are stored in this backend.
schema All supported and available schema information is stored here.

Introducing OpenDS: Open Source Directory Service

[166]

The backup command is flexible enough to let us perform a variety of tasks like
listing, compressing, encrypting the backup content, scheduling the backup
operations, and many others. To see the full list of backup utility functionalities
take a look at the result of executing the ./backup --help command.

Restoring server state using backups
Restoring backup is a bit more complex because we simply cannot restore all
backend at the same time. The restore command can be used to see information
about the available backups in the backup directory. Usually we check available
backups to decide which backup we should use before we commence with a restore
operation. The following command shows how we check for available backups. The
command which can be used to view available backups for userRoot backend is
similar to:

./restore --listBackups --backupDirectory path/to/backups/directory/
userRoot

The following figure shows what can be a possible outcome of querying the list of
available backups:

You can see that we made two backups with different attributes:

The first one is a full backup and is encrypted, compressed, and carries a
hash digest for its integrity checking.
The last one is incremental and compressed, but not encrypted. The
incremental backup is based on the full backup I made earlier.

•

•

Chapter 6

[167]

For the first backup we used a manually assigned backup ID, which can help us
determine the database state when we performed the backup. In the second backup
we can see an automatically assigned backup ID, which is hard to use to deduce
anything about the backup content. The first backup ID is the result of using
--backupID when we were performing the full backup.

In the previous command we added the backend name after the backup
directory name. It means that we need to see information about the backups
available for this backend, which are stored in a directory with the same name
in the backups directory.

After looking at available backups we can select one and restore the backend
information to the state stored in that particular backup. The following command
restores userRoot backend to the state stored in before upgrade backup.

./restore --backupID first-backup-after-data-load-091231--
backupDirectory backup/path/to/backups/directory/userRoot

Best option is to restore all backend to the same states in order to prevent
any conflict between the way that data is stored and the way that OpenDS
is configured to deal with the data.

Enabling JMX Connection Handler
We saw that OpenDS is an extensible directory service implementation. One
extensibility point of OpenDS is Connection Handlers, which lets developers
develop their own channel of communication with OpenDS core. There are several
Connection Handlers already included in OpenDS. To see included Connection
Handlers, open the OpenDS control panel by executing the control-panel script
which is available in the bin directory of OpenDS installation.

We can also use the status cli to view the status information as follows:

./status -n

Introducing OpenDS: Open Source Directory Service

[168]

This command shows the same information as in main screen of the control panel.
A sample output for this command is shown in the following figure:

By looking at the above figure you can see that the only enabled Connection
Handlers are LDAP and LDAPS. Now to enable the JMX Connection Handler
we can use the following command:

./dsconfig set-connection-handler-prop -D "cn=gf admin" -w admin --
handler-name "JMX Connection Handler" --set enabled:true --set listen-
port:1689 -n

Chapter 6

[169]

This command will simply enable and configure the JMX Connection Handler,
which lets JMX-enabled applications connect to OpenDS to view monitoring
statistics. Monitoring statistics are stored in the monitor backend which is the only
backend that JMX client can access. In order to access this backend we should define
a user with required permissions. For example the following command grants the
read, write, and notify privileges to root DN such as cn=gf admin.

./dsconfig set-root-dn-prop -D "cn=gf admin" -w admin --add default-
root-privilege-name:jmx-read --add default-root-privilege-name:jmx-write
--add default-root-privilege-name:jmx-notify -n

Now we can use JConsole (included with JDK) to monitor a running OpenDS
instance. Username and password would be the same as root DN and its password.
The JMX URL is service:jmx:rmi:///jndi/rmi://127.0.0.1:1689/org.
opends.server.protocols.jmx.client-unknown

The following figure shows the JConsole connected to OpenDS server:

Introducing OpenDS: Open Source Directory Service

[170]

VisualVM can also be used to manage and monitor OpenDS using JMX; check
VisualVM at http://visualvm.dev.java.net/ or just try to execute it by finding
it inside your JDK bin directory.

VisualVM is bundled with JDK since JDK 6 update 10. If you have an
older JDK version you should either update to the new version or you can
download the VisualVM from its website.

Embedding OpenDS
A Java application can embed the OpenDS JAR files and thus run the service in the
same JVM. When doing so, the client application is also in charge of the OpenDS
directory server lifecycle. We discussed benefits and possible reasons for using
embedded software in the first section of this chapter. So let's go straight into the
details of running OpenDS in embedded mode.

Benefits of embedded mode capability of
OpenDS
Being able to run OpenDS in embedded mode means the client application and the
directory server are running within the same JVM which leads to the possibility of
having specific kinds of use cases, along with many benefits including:

1. Developing an LDAP-dependent packaged application without need to
install a directory service in the user environment.

2. Making the installation easy by removing the configuration required for the
software to interact with an external directory server.

3. Providing users with default configuration and dataset right after
installation for testing purposes or for providing default operational
configuration and dataset.

4. Using less memory by utilizing the same JVM by application and
directory server.

5. Providing LDAP directory services as a web application, allowing
deployment like the other elements of the J2EE applications.

Chapter 6

[171]

Preparing the environment
Before we can use any Java framework or application, we should let JVM have access
to that particular application's libraries (simple JAR files or classless packages) and
some required configuration files and operational directories, which will be used by
the software.

Using embedded OpenDS in any standard, web, or enterprise application, requires
two needs to be satisfied. These needs are:

We should add the JAR files included in the OpenDS lib folder to our
class path.
We should copy locks, logs, db, and config directories from the OpenDS
installation directory to our application root directory. These directories are
discussed in the second table of this chapter.

It is better that you copy these folders from a newly-installed OpenDS instance to
avoid copying inappropriate configuration and dependencies such as replication
settings. If you are installing a new OpenDS instance make sure that you import the
LDIF file mentioned in the first section of this chapter in order to be able to run the
sample embedded core successfully. The following listing shows how we can use
embedded OpenDS in our Java application.

The first step of using embedded is specifying the path to the root directory of
designated OpenDS installation, in the following snippet it is /home/masoud/
EmOpenDS. Then we need to specify the path to config.ldif file, and we want to
use to bootstrap the embedded instance using it. We should also deactivate the
Connection Handlers. The directory server can then only be used from within this
application and no connection will be accepted over network.

String projectRootDirectory = System.getProperty("/home/masoud/
EmOpenDS");
DirectoryEnvironmentConfig envConfig = new
DirectoryEnvironmentConfig();
envConfig.setServerRoot(new File(projectRootDirectory));
envConfig.setConfigFile(new File("config", "config.ldif"));
envConfig.setDisableConnectionHandlers(true);

Later on we can use some provided utility class to check the instance status and start
it if it was not already started using the same environment that we described above.

if (!EmbeddedUtils.isRunning()) {
 EmbeddedUtils.startServer(envConfig);
}

•

•

Introducing OpenDS: Open Source Directory Service

[172]

After starting the server we can either get a connection using the root DN or any
other DN which is authorized to connect to directory server. Now having an
authorized connection, we can perform any LDAP operation that we need. Our
sample code performs a search operation using the uid attribute.

InternalClientConnection IConn = InternalClientConnection.
getRootConnection();
InternalSearchOperation searchOperation = IConn.processSearch("dc=glas
sfish,dc=book", SearchScope.WHOLE_SUBTREE, "(uid=tquist)");

 for (SearchResultEntry matchingEntry :
 searchOperation.getSearchEntries()) {
 for (Attribute attr : matchingEntry.getAttributes()) {
 System.out.println(attr.getName() + ":" +
 attr.getValues().toString());
 }
 }

Finally we should stop the embedded server if we do not need it anymore.

if(EmbeddedUtils.isRunning())
EmbeddedUtils.stopServer("glassfish.book.ch06.EmbeddedOpenDS", "We are
finished with demo");

We are passing two informative parameters to the stopServer method. The first
parameter is name of the class that stopped the server and the second parameter
is a string representing the reason for stopping it.

The following figure shows what the result of executing the above listing is. As you
can see we printed all the attributes of an LDAP object.

Chapter 6

[173]

This example uses the OpenDS internal APIs. It is possible to use JNDI or
Netscape LDAP SDK to embed OpenDS. For more information look at:

http://java.sun.com/products/jndi/tutorial/

http://www.mozilla.org/directory/

•

•

Some attributes have multiple values, which is one of directory services features.
OpenDS default access control rules only allows the root DN and the user himself
to read the userPassword attribute.

In the embedded mode, we start the instance when we start the application and we
do not stop it until we are sure that we do not use it anymore. OpenDS might be
in use by multiple services in our application or it might be configured to replicate
the data tree with some other instances, which requires it to be running to keep
it synchronized with other instances. Another reason can be the amount of time
required for starting the embedded OpenDS instance, which is relatively long
and can introduce delays in our application routines.

Replicating Directory Information Tree
(DIT)
Directory servers are used to share semi-static information across the enterprise
and they should be reliable during peak times and possible disaster. OpenDS is
equipped with Multi-Master Replication capability, which lets the directory
service infrastructure have multiple read and write instances.

In directory servers' world we have both partitioning and replication concepts,
which are similar to the concepts available in the relational database world. In the
world of directory servers, partitioning concept is called distribution. The term
replication is used to indicate that the same DIT is copied to another directory server
for redundancy and throughput improvement. The term distribution is used to
indicate that multiple directory servers, that hold different subtrees of the entire DIT,
are running to form a distributed directory service. Directory instances that form
the distributed directory server can be governed by different authority. A sample
of distributed directory service is Domain Name System (DNS) itself.

OpenDS provides the possibility to form both distributed directory service
and replicated directory service infrastructure. In this section we briefly discuss
how its replication system works and how we can set up a replicated directory
service infrastructure.

Introducing OpenDS: Open Source Directory Service

[174]

OpenDS replication mechanism
A sample schema showing OpenDS replication infrastructure is shown in the
following figure. As you can see in the figure, three directory servers replicate
information between each other while a load balancer balances the incoming
requests between them. OpenDS replication's internal mechanism is a bit more
complex because OpenDS servers may act as directory servers, replication servers,
or as both. In the figure below all server instances are working both as replication
server and directory server.

A replication topology requires each replication topology member to perform certain
tasks. The important tasks each member should perform are as follows:

Forwarding changes from one directory server to all other connected
directory and replication servers
Keeping each newly-joined or failed and rejoined directory server or
replication server information up-to-date with the current state or database

The load balancer can be any layer four load balancer, which can simply distribute
the incoming requests between different server instances to ensure that all healthy
servers receive as many requests as they can handle.

Some vendors such as Oracle/Sun have directory proxy server products
that are able to provide Application level (LDAP) load balancing and
advanced LDAP routing capabilities. More information is available at
http://www.sun.com/software/products/directory_srvr_
ee/dir_proxy/index.xml.

•

•

Chapter 6

[175]

OpenDS replication operates in two different modes, which are as follows:

Asynchronous replication: Clients receive acknowledgements as soon as the
server that they are connected to persists the changes made by the client in its
backend. The server will send the change notifications to other members of
the replication topology asynchronously.
Assured replication: Assured replication guarantees that the changes
are propagated to a predefined number of servers or all servers in the
replication group before the client receives an acknowledgement confirming
the change it made. The assured replication mode mimics the synchronous
replication model to some extent. Note that assured replication is not
fully transactional.

Setting up an Asynchronous replication
infrastructure
To setup a directory server infrastructure we can use a graphical installer or the
dsreplication command, which is more flexible in term of turning a standalone
server to a replication infrastructure's member.

We have already installed one instance of OpenDS. Install another instance in the
same machine or any other machine with network access to the first machine and start
it using either control panel or start-ds script. I assume that we installed the second
instance in the same machine that we have the first instance and the second instance
administration is 2444, its root DN is cn=gf admin, and its password is admin.

Open a console (gnome-terminal, cmd) window and navigate to the bin directory of
the OpenDS instance which we installed first. For creating an infrastructure of two
directory server's, use following steps:

1. We need to set up the replication, so execute the following command in the
terminal window:
./dsreplication enable --host1 127.0.0.1 --port1 4444 --
bindDN1 "cn=gf admin" --bindPassword1 admin --replicationPort1
18989 --host2 127.0.0.1 --port2 2444 --bindDN2 "cn=gf admin" --
bindPassword2 admin --replicationPort2 28989 --adminUID admin --
adminPassword admin --baseDN "dc=glassfish,dc=book"

•

•

Introducing OpenDS: Open Source Directory Service

[176]

The command will start an interactive script which will ask for some
configuration information like whether we need cryptography over our
replication communication or not. Make sure that you can remember the
global administration password; for the sake of simplicity enter admin as
the password and continue with the script until the script execution finishes.
The global administrative account created when setting up a replication
topology is replicated and shared across all instances in that topology and
can be used to apply commands to multiple servers (or the whole set of
servers), like initialize.

When setting the replication topology on our desktop machine
we can use 127.0.0.1 to test the replication but when we
are setting up a production replication we need to replace the
127.0.0.1 or localhost with the actual IP addresses or
names of the server on which OpenDS instances are running.

2. Now we need to initialize the new member of our replication infrastructure
with all the data that the old server has; just run the following command and
initialization of new server will be done:
./dsreplication initialize --baseDN "dc=glassfish,dc=book" --
adminUID admin --adminPassword admin --hostSource 127.0.0.1 --
portSource 4444 --hostDestination 127.0.0.1 --portDestination
2444

In the above command we only initialized one instance by using the
initialize subcommand and providing the destination instance
connection information. If we set up a large replication topology we can
use the initialize-all command to initialize all of the replication
members with the information stored in the current instance's backend.

To monitor the replication infrastructure we can use the dsreplication command.
It lets us see which servers are up, and what is the status of each server. A sample
command for viewing the servers' status can be similar to:

./dsreplication status -h 127.0.0.1 -p 4444 --adminUID admin --
adminPassword admin

Testing the replication setup is very easy. In order to test your replication installation
and configuration you can connect to one of the replication members using JXplorer
and remove or update an object in that directory server instance, and then after you
connect to the other replication member you will see the change.

You can also shut down a replication member and change some entries in other
members. After you start the unavailable member of the replication you can see
that all changes will propagate to the newly-started member.

Chapter 6

[177]

There are two interactive commands in OpenDS which can help administrators in
many ways. These commands are dsreplication for helping administrators with
replication-related configuration and tasks and dsconfig for general configuration
of an OpenDS installation.

Now you are ready to start your exploration in the OpenDS world, as there are many
configuration parameters and helper scripts available in the bin directory of your
OpenDS installation. You already know how to install, administrate, manage, and
set up a replication infrastructure for OpenDS.

Summary
OpenDS is one of the most ambitious directory service projects because of its fast
development, versatile features, and full compliance with LDAPv3 directory server,
implementing all standards along with experimental RFCs and extensions. In
addition to being standard-compliant it provides lots of very useful features and a
promising roadmap towards new features which can be another reason for using it
in our infrastructure.

Installing OpenDS is possible using a Java Web Start-enabled installer or by using
the provided ZIP bundle when there is no Internet connection present. OpenDS
provides lots of very useful features which can help developers and administrators
realize their infrastructure topology easier than compared to using similar products.
In this chapter we learned what a directory service is and what set of features
OpenDS provides us. We studied installing, administrating, and monitoring
OpenDS. Finally, we discussed how we can use OpenDS in embedded mode and set
up a replication topology to ensure the service and data availability in the case of
unpredicted disasters like hard disk breakdown.

OpenSSO, the Single
sign-on Solution

OpenSSO is the answer to many complexities that have emerged during recent years
because of the complexity and dynamicity of the security functionality required for
software systems. The complexity in software security increases as a result of the
increase in complexity of security requirements of the target business that the
software should drive and diversity in the integration between different partner's
software systems that collaborate to complete a client request.

An example of such system is integration between an online shopping system, the
product provider who actually produces the goods, the insurance company that
provides insurance on purchases, and finally the shipping company that delivers
the goods to the consumers' hand. All of these systems access some parts of the data,
which flows into the other software to perform its job in an efficient way. All the
employees can benefit from a single sign-on solution, which keeps them free from
having to authenticate themselves multiple times during the working day.

Another example can be a travel portal, whose clients need to communicate with
many other systems to plan their traveling. Integration between an in-house system
and external partners can happen in different levels, from communication protocol
and data format to security policies, authentication, and authorization. Because of
the variety of communication models, policies, and client types that each partner
may use, unifying the security model is almost impossible and the urge for some
kind of integration mechanism shows itself bolder and bolder.

OpenSSO, the Single sign-on Solution

[180]

SSO as a concept and OpenSSO as a product address this urge for integrating the
systems' security together. In this chapter we are going to learn the following topics:

What SSO is
What OpenSSO is
Installing and configuring OpenSSO
Understanding different methods of using OpenSSO
Using Identity Services for authentication, authorization, and SSO

Let's begin with learning more about SSO in general.

What is SSO
The urge for security integration solutions resulted in different concepts for resolving
different parts of the problem:

Single sign-on (SSO): Introduced to provide the required mechanisms for
letting users sign-on into one system and stay authenticated between circles
of different software systems, which have agreed upon accepting each others'
users identity. The SSO server just provides the authentication header which
confirms that the user is authenticated. The following figure further describes
the SSO concept.

In conjunction with SSO you may see or hear the cross
domain SSO or simply CDSSO, which refers to using
the same authentication token across multiple security
domains—for example, between www.domain2.com and
www.domain2.com.

1.1 Auth
enti

cate

Requesting a
restricted resource

Request restricted
resources while carrying

previously acquired token

Payroll
System

Office
Automation

Identity Provider (for example, OpenSSO Server)

Protected by OpenSSO agent or custom
security Implementation based on OpenSSO

1

2

•
•
•
•
•

•

Chapter 7

[181]

Identity federation: Introduced to provide the required specification,
mechanism, and enabler products for letting user's identity information
along with, or without, some additional information. It will be carried
from one security domain (enterprise) to another security domain without
the presence of the same software or same user information storage
in both enterprises.

Many standards like WS-Security and its family, WS-Federation, and Security
Assertion Markup Language (SAML) were introduced to ease the task on
integrating disparate security domains where Web Services are going to be
dominant business components and web browsers will dominate the user
interface and interaction means of users with systems.

Open Web Single Sign-On (OpenSSO) is a pioneer in the access management
solutions world by providing support for bleeding edge standards, large scale
deployment, compatibility with all major Java EE application servers, and so on.

What is OpenSSO
OpenSSO, hosted at http://opensso.dev.java.net, is a Sun
Microsystems-sponsored open source project started in 2005 for providing
core identity services such as single sign-on (SSO), federation, and Web Services
security. The project is based on the code base of Sun Java System Access Manager
7.0 and Sun Java System Federation Manager 7.0, which are previous versions of
Sun Microsystems commercial, closed source products. OpenSSO provides support
for industry-accepted standards like SAML 2.0, eXtensible Access Control Markup
Language (XACML), WS-Federation, Liberty Alliance, OpenID, Information Card,
and so on. These functionalities are either in the main code base or through
its extensions.

After Oracle took over Sun Microsystems, they decided to take back the
latest release of the OpenSSO and only provide the enterprise release
available for download. A company named ForgeRock (http://www.
forgerock.com/), decided to stand behind the project and continue
its development in the same open source mode that Sun was developing
the product. The only different is that the project and product names are
changed to OpenAM instead of OpenSSO. Latest version of nightly and
stable builds of OpenAM are available in the ForgeRock website. In this
book, both OpenAM and OpenSSO are referring to the version available
in the ForgeRock website.

•

OpenSSO, the Single sign-on Solution

[182]

Using OpenSSO you can manage securing access to resources hosted in any of its
wide range of supported containers, which includes GlassFish, Tomcat, WebLogic
Server, IIS, Apache Web server, and so on. Accessing the container can be either
within the enterprise or between the enterprise and its circles of partners. OpenSSO
can act as a single point of security enforcement including entity authentication
and access management based on the defined rules for protecting different assets
from unauthorized access. You can use OpenSSO to integrate different security
domains and web applications using its federation management capabilities. This
will ease the navigation of your customers, partners, and employees between a set
of heterogeneous environments and web applications within your enterprise or
between your enterprise and your circle of partners. OpenSSO is an umbrella
project for several components or set of components including:

OpenSSO Server which provides the core functionalities for access
management and federated identity management.
OpenSSO Policy Agents police the container where resources are hosted by
intercepting the incoming requests for valid authentication headers. Policy
agents are in direct contact with the OpenSSO server for performing the
authentication and retrieving permissions of an authenticated user. Agents
can either protect the URLs or they can integrate with the Java EE security
model to act as constraint enforcement entity. Several agents are provided for
integration with different application servers like GlassFish, IIS, WebLogic;
Servlet containers like Tomcat; and web servers like Apache HTTPD, and
so on.
OpenSSO Extensions provides support for other languages like PHP, for
direct communication with the OpenSSO core framework. Some products
that utilize OpenSSO extensions include Spring Security framework, some
OpenID implementation, and identity provider hardware like Hitachi Finger
Vein Biometric.
OpenSSO Client SDKs for directly communicating with OpenSSO from
Java, C++, and .Net. Each client SDK provides support for some of the core
functionalities. The highest level of support is devoted to Java SDK, which
lets the SDK developers perform all operations using it.

 OpenSSO can be counted as the most comprehensive open source web access
management, federation, and Web Services security provider. Some other web
security frameworks are listed below:

Java Open Single Sign-On (JOSSO) hosted at http://www.josso.org/
Central Authentication Service (CAS) located at http://www.jasig.org
JBoss SSO available at http://www.jboss.org/jbosssso
Enterprise Sign On-Engine (ESOE) hosted at http://esoeproject.org/

•

•

•

•

•
•
•
•

Chapter 7

[183]

Different frameworks and products provide a variety of functionalities and
selecting a product requires us to study all available options before proceeding
with the selection.

OpenSSO functionalities
OpenSSO is a large project with a whole lot of functionalities ranging from
integration with Java EE security model for access management, generating and
processing SAML assertions for authentication and authorization, Web Services
security enforcement, integration with diverse set of user information repository,
and so on. The following figure shows OpenSSO from 10000 feet above in
architecture, which utilizes all of its functionalities.

OpenSSO functionalities fall under three major categories including Access Control,
Federation Management, and Web Services security. Each one of these categories
covers some part of the requirement for access control management and federation
identity management.

Controlling user access
Access Control must proceed before letting a request reach its destination service
or resource. So before any client can access a resource, OpenSSO policy agents
intercept the request to determine whether the user is authenticated or not.
If not authenticated, the authentication process will start and after successful
authentication the user's permission for accessing the resource will be determined by
comparing the permitted roles against the roles assigned to the user. If user has the
right to access the resource, the request will go through, otherwise it will fail with a
403 Exception.

OpenSSO, the Single sign-on Solution

[184]

If the request does not contain the authentication token, it will be directed to
the authentication interface to provide credentials to be authenticated and after
a successful authentication the authorization process will commence. We can
use OpenSSO Identity Web Services or any of the client SDKs to conduct the
authentication and authorization process without using policy agents.

OpenSSO benefits from a standards-based, extensible authentication framework,
which supports several authentication mechanisms out of the box with the possibility
to extend it by including new modules. The provided authentication mechanisms
are LDAP, RADIUS, Certificate, SafeWord, RSA SecurID, UNIX, Windows NT,
Windows Desktop SSO (Kerberos), and so on. OpenSSO uses JAAS and provides
Service Provider Interface (SPI) for developing new authentication modules. In
OpenSSO we can configure authentication to happen using a chain of different
modules for additional security. OpenSSO lets us define a specific authentication
mechanism for each set of resources. Therefore, we can ensure that highly-sensitive
resources will be protected by multiple authentication phases and each phase can
be based on one authentication factor. For example, a chain of biometric and digital
certificate authentication in addition to username and password token can protect
the OpenSSO administration console.

Authorization in OpenSSO commences by applying policies. A policy is a set
including Rules, Subjects, Conditions, and Response Provider. Each segment
of the policy has a description as follows:

Rules: The resource to be protected, for example a URL.
Subjects: Who is allowed to access the protected resource. Subjects can be a
user, a role, or a group.
Conditions: Extra constraints that limit the accessing by environmental
restrictions, like IP address, time, date, and so on.
Response Provider: Additional response data to be sent back to resource
after the authentication is completed.

With such complex authentication and authorization we can ensure that our system
will stay safe behind the guards of OpenSSO, if we configure it appropriately.

•
•

•

•

Chapter 7

[185]

Federation Management
The whole story behind Federation Management is communication of user
information, including authorization and authentication information, which are parts
of the Access Control process between security domains. Identities which users have
in the local identity store will federate with other partners' identity store systems
and allow the user to authenticate with one of the identity providers and stay
authenticated (logged in) on any other affiliated service provider system. It simply
means that we have SSO over a federation of service providers that agreed to share
and accept identity information and the authenticated identity of each other.

OpenSSO Enterprise supports several open federation technologies including the
SAML versions 1 and 2, WS-Federation, and the Liberty Alliance Project Identity
Federation Framework (Liberty ID-FF), therefore encouraging an interoperable
infrastructure among providers.

Securing Web Services were introduced to make flexible integration and interaction
between different software easier and more accessible. This flexibility and exposing
of the functionalities through the web or between partners can lead to security
risks if these interaction interfaces are left unprotected. So, there should be some
security measure in place to ensure the integrity, confidentiality, and security of
Web Services.

Openness and flexibility caused several standards to emerge in order to keep the
flexibility and interoperability for security measures between different software
providers. These standards include:

Liberty Alliance Project Identity Web Services Framework
(Liberty ID-WSF)
WS-I Basic Security Profile
WS-Trust (from which the Security Token Service was developed)

OpenSSO fully supports these standards, which lets web service developers focus
on the business functionality and leave the security and quality of service (QoS) to
OpenSSO. We will discuss the Web Services security in more detail in Chapter 8.

•

•
•

OpenSSO, the Single sign-on Solution

[186]

Identity Web Services
To use OpenSSO in an easier way and let a broader range of developers benefit from
its capabilities, OpenSSO exposes a set of required functionalities as Web Services.
When we say Web Services we are not referring only to SOAP-based Web Services
but also to RESTful services. Provided functionalities of RESTful services include:

Authentication to validate user credentials
Authorization to permit access to protected resources
Provisioning for user attribute management and self-registration
Logging to keep track of activities for later audition

The following figure shows the IWS features along with the information on what
each group of the services requires. You can see list of all services in detail in last
table included in this chapter.

•
•
•
•

Chapter 7

[187]

There are some other functionalities embedded in OpenSSO to ease its usage,
administration, development, and deployment. These functionalities are listed
in the following table.

Feature Description
Ease of deployment OpenSSO web application can be deployed into any

Servlet container or Java EE application server in virtually
any operating system.

Configuration data store OpenSSO stores all the configuration information in an
embedded OpenDS instance. It can also use Sun Java
System Directory Server as its data store.

Ease of administration By using CLI and graphical web-based administration
console, OpenSSO administration is very easy and
accessible.

User data store
independence

OpenSSO allows you to view and retrieve user
information without making changes to the existing
database. Supported directory servers include Directory
Server 5.1, 5.2, and 6.2, IBM Tivoli Directory 6.1, and
Microsoft Active Directory 2003.

Web and non-web-based
resources

The core design of OpenSSO caters to SSO for both web
and non-web applications though the client SDK.

Performance, scalability,
and availability

OpenSSO can be scaled horizontally and vertically to
handle increased workloads.

Flexibility and
extensibility

Many OpenSSO services expose a Service Provider
Interface (SPI) allowing expansion of the framework to
provide for specific deployment needs.

Internationalization OpenSSO contains a framework for multiple language
support. Customer facing messages, API, command-
line interfaces, and user interfaces are localized in the
supported languages.

OpenSSO, the Single sign-on Solution

[188]

OpenSSO architecture
OpenSSO is a large project with a complicated architecture designed to address all
functionalities that it should provide. OpenSSO benefits from a layered architecture
with extensibility in its authentication, authorization, identity storage, and so on.
You can see a brief model of OpenSSO architecture in the following figure.

As you can see in the figure, all of the lower-level blocks are running inside an
application server or a Servlet container. You can see that multiple types of client
applications may interact with the OpenSSO server. These applications can be one
of the following types:

Web applications running inside a Servlet container or Java EE
application server, Web Services running inside a Servlet container,
or an application server
OpenSSO agents
.NET-based Web Services or web applications communicating with OpenSSO
using the IDS or .Net SDK
Standalone applications developed using different programming languages
like Java, Ruby, Perl, and C++.

•

•
•

•

Chapter 7

[189]

Several programming languages are natively supported by the provided client
SDKs, which were discussed in the OpenSSO functionalities section. In addition to
client SDKs, OpenSSO provides the possibility for applications to use SAML
assertion and Liberty tokens to communicate with OpenSSO. Using these two
methods is well suited for integration and compatibility issues. Another way of
interacting with OpenSSO core services is using the Identity Web Services, which
greatly suits scripting languages.

Under client SDKs and Identity Web Services layers we have the actual OpenSSO
services, which act as the running wheel of OpenSSO interaction with clients. These
services provide the authentication, federation, Liberty ID-WSF, and Security
Token Service (STS). All services available in these layers work on top of the
OpenSSO framework and the configuration which we provide the OpenSSO on how
different components should run to provide different services. This configuration
determines how OpenSSO should deal with tokens, how the identity federation
trust circle is configured, how the authentication process should happen, how the
policy enforcement should commence, and so on, and they are stored in OpenSSO
configuration storage. The configuration store is either an embedded version of
OpenDS or a full-blown Sun Java System Directory Server.

Under the framework layer, we have a well designed SPI, which makes it
possible for us to develop new modules for OpenSSO. Such modules are
already under development as part of the OpenSSO extensions project located
at https://opensso.dev.java.net/public/extensions/.

OpenSSO, like GlassFish, benefits from different administration channels,
including the OpenSSO CLI and web-based administration console. The web-based
administration console uses OpenSSO Java SDK to communicate with the core
OpenSSO services and OpenSSO CLI uses XML over HTTP to communicate
with the OpenSSO framework.

Each one of the OpenSSO-supported programming languages or communication
methods can interact with a selected set of OpenSSO services.

Service Simple XML request
and response Java
Client SDK

C and .Net
Client
SDK

SPI Standards

Authentication x x x
Authorization (Policy) x x x
Session (SSO) x x x
Auditing/Logging x x
Web Services Security x x
Federation x x

OpenSSO, the Single sign-on Solution

[190]

SAML, Liberty Alliance, WS-Security, WS-Trust, and WS-Federation are the
supported standards in the Web Services security layer of OpenSSO.

OpenSSO realms
OpenSSO benefits from the realms concept which lets one OpenSSO installation
handle multiple applications with a variety of different configurations. Creating
multiple realms in OpenSSO lets us provide multiple applications with security
definition without requiring us to install multiple copies of OpenSSO. For each realm
we can define Agents, authorization, authentication, identity storage, custom login
pages, and so on without affecting other realm functionalities.

Installing OpenSSO in GlassFish
OpenSSO Server is a web application, which can be deployed into any J2EE 1.4
Servlet container or application server. We will continue by downloading and
deploying OpenSSO release 9, which is available under OpenAM release 9
name on the ForgeRock website and is the same as OpenSSO Enterprise 8.

Although GlassFish is the preferred container for deploying OpenSSO,
you will find the complete list of supported platforms amazing. The
list is available at: http://wikis.sun.com/display/OpenSSO/
Support+Dashboard.

1. Download the latest version of OpenAM which is the same as OpenSSO from
http://www.forgerock.com/downloads.html and unzip it.

2. Inside the directory that you unzipped you should have a directory named
deployable-war, inside which you should see opensso.war. Deploy the
WAR file into your GlassFish application server instance either using CLI,
Web administration console, or the auto-deploy directory.

3. Before continuing with other OpenSSO related steps, we need to ensure that
our host machine has a fully-qualified domain name. If you have a single PC
then it is less likely that it has one; otherwise, if you are a domain member,
your machine should have a FQDN.

Chapter 7

[191]

4. In order to configure the host with a FQDN in Windows we should edit
win_dir\system32\drivers\etc\hosts and add a new line similar to
127.0.0.1 localhost gfbook.pcname.com at the beginning of the file, and
in Linux and UNIX we can add the same line in the beginning of the
/etc/hosts file (you will need root permission to edit the file in Linux
and Unix).

The hosts file is used to map a name to an IP address to let the system
access a remote machine using its name instead of using its IP address.
When we are installing the OpenSSO on our local machine for test
and development purposes we are not a domain member to have a
fully-qualified name and OpenSSO needs a fully-qualified name for
the installation process to commence.
To address this requirement we are mapping our loopback address,
which is 127.0.0.1, to a fully-qualified name to continue with the
OpenSSO installation.

5. Now that we are ensured the host has a FQDN, we can navigate to
http://FQDN:PORT/opensso in order to see the OpenSSO management
console. The port number is your GlassFish instance port number and
opensso is the default context name for the OpenSSO web application.

6. Upon first visit to the OpenSSO administration console we need to proceed
with the installation process. OpenSSO lets us choose one of Default
Configuration or Custom Configuration models. The first one is useful
for development and demonstration purposes and just asks for minimal
information like administrators credentials and credentials that policy
agents will use to connect to OpenSSO. We will proceed with the
custom installation.

7. Selecting the Custom Configuration opens a wizard that will guide us
through the installation process. In the first step it asks for the administration
password. Enter adminadmin as administration password and press Next.

OpenSSO, the Single sign-on Solution

[192]

8. In the Server Settings step make sure that you use a server URL with the
following pattern: http://FQDN:SERVER_PORT, and use .pcname.com as the
cookie domain. The Platform Locale and Configuration Directory can be left
as they are. The following figure shows the Server Settings step.

The domain name should represent the domain that we want
OpenSSO to secure resources on with the container running on
its member servers.

After the Server Settings step we should specify the Configuration Store. In
this step we are going to specify which storage type OpenSSO should use to
store its configuration. We use Add to Existing Deployment to let this newly
configured instance bear some load or we can set it up as the First Instance
(a standalone instance). We will go with the First Instance mode. We can
use an instance of Sun Java System Directory Server to store the OpenSSO
configuration (suitable for production environment) or we can use the
OpenSSO embedded OpenDS to store the configuration. We choose the later
one, which is suitable for development purposes. Leave all attributes as they
are and proceed to the next step which is the User Store step.

Chapter 7

[193]

Remember that if you are deploying a multi-instance OpenSSO
infrastructure all of the instances should use the same
encryption key, and use the same certificate for HTTPS.

9. In the User Store step select OpenSSO User Data Store as we are going to
use it for test and development purposes. In a production environment user
data store should be separated from the configuration store.

A step-by-step guide to use OpenDS as the data store for
OpenSSO is available at: http://wikis.sun.com/
display/OpenSSO/Using+OpenDS+as+a+User+Data+St
ore+for+OpenSSO+Enterprise+8.0+Update+1. I suggest
you review it if you want to use OpenSSO in a production
environment with OpenDS as the user data store.

10. For step 5, which is the Site Configuration step, select No and continue to
the next step.

We can use the Site Configuration step to configure a load
balancer for a set of multiple OpenSSO servers joined together.
If you want to learn more about the load balanced deployment
of OpenSSO refer to http://dlc.sun.com/pdf/820-
3320/820-3320.pdf, which is the Sun OpenSSO Enterprise
8.0 Installation and Configuration Guide

11. For Default Policy Agent User provide the password that policy agents
will use to connect to the OpenSSO server. I specified agentpass as
the password. Proceed to the Summary page and click on the Create
Configuration button to finish the installation task.

Now that the installation is finished, log into OpenSSO administration console by
navigating to http://FQDN:SERVER_PORT/opnesso/ and using your administration
username and password (amAdmin and adminadmin).

OpenSSO, the Single sign-on Solution

[194]

Configuring OpenSSO for authentication and
authorization
OpenSSO supports many protocols and services, which leads to a handful of a job
for the administrators to configure, administrate, and maintain it. In this section we
will just take a look at how we can add some configuration in order to demonstrate
authentication, authorization, and single sign-on operations.

After you log into the OpenSSO administration console, you will find yourself
in an environment partly similar to the GlassFish administration console. If you
do not grasp the meaning of each part don't get disappointed because OpenSSO
can be considered one of the most advanced open source projects in the identity
management realm. The following figure shows a screenshot of the OpenSSO
administration console homepage:

Before we do anything else we need to define what the authentication source is or
list the subjects (users) that our access control management software knows.
OpenSSO can use Active directory, Sun Java Directory Server, and IBM Tivoli as
its user information repository or it can use its own embedded OpenSSO to store
user information.

To define some users:

1. Click on the Access Control tab, then click on the opensso realm.
2. A new set of tabs will appear, go to the Subjects tab, and add two users with

the following properties:

James James Smith James Smith james Active
meera Meera Spencer Meera

Spencer
meera Active

Chapter 7

[195]

After we add these users we need to define a group and assign the group to these
two users. In the Subjects tab switch to the Groups tab and add two new groups
named employee and manager.

Go back to the User tab. Clicking on any of the created users (james, meera) will
open a new set of tabs directly related to the user attributes. In these tabs we can add
a different group membership for each user. Assign both employee and manager
groups to james and assign the employee group to meera. To assign a group
membership to a user just add the available list of groups to the selected list.

So far we added some users and groups to the OpenSSO identity storage. We
can authenticate users against these identities. We discussed that OpenSSO uses
policies and rules to perform authorization. Now we will add some policies and
rules to check authenticated user permissions against them before letting its request
goes through.

To define a new rule in the Access Control tab, select the Policies tab and click on
the New Policy button to create a new policy.

1. Give the policy a name like GlassFish Book Policy and in the Rules table
click on New to create a rule for this policy.

2. Select URL Policy Agent as the policy type and specify a name for
it—something like localhost Protector and a resource (a URL) which it
will police like http://127.0.0.1:38080/Conversion-war/. I entered the
link to our Conversion application that we created in Chapter 3. You can enter
any URL, valid or not valid.

The rules we define are evaluated by OpenSSO authentication
and authorization services when we place any request on
the URL it's configured to protect. The resource URL can be
anything expressible in the form of a URL.

3. Finally, we should select what possible actions are allowed or denied by this
policy. We select both GET and POST and mark both of them as allowed by
this policy.

4. By saving the changes we will get back to our policy definition page.

OpenSSO, the Single sign-on Solution

[196]

Now we need to add some subjects which are going to be affected by this policy, so:

1. In the Subject section click New and in the first page of the two-page wizard
select Access Manager Identity Subject.

2. Click Next to see the second page. In this page give the subject a name like
GlassFish Book User Group.

3. In the Filter section search for all groups and add employee and manager to
get the list of selected groups.

4. Click Finish and we are done with the required configuration.

In next section we will use these configurations to demonstrate how OpenSSO can
manage authentication, authorization, and SSO.

Authentication chaining
We can configure OpenSSO to authenticate the users by different authentication
types. The default level that we used in the previous section when we defined the
users is the basic authentication configuration, referred to as Realm Authentication.

Before we dig deep into the details of these authentication methods we need to know
few basic related terms like Module Instance, and Authentication Service.

Module instance: An authentication module instance collects user
credentials such as a username and password, checks the information
against entries in its related storage, and determines whether the credentials
are correct or not. There are more than 10 different authentication modules
provided out of the box with OpenSSO, some of which are listed below:

Active Directory
Authentication Configuration
Data Store
HTTP Basic
JDBC
LDAP
SAE
Windows Desktop SSO

For description of these modules take a look at http://docs.
sun.com/app/docs/doc/820-3886/ghthd?a=view.

•

°
°
°
°
°
°
°
°

Chapter 7

[197]

Authentication level: Each module in a realm has an authentication level
assigned to it. This authentication level specifies the importance of the
module in realm, meaning that when a user is authenticated with a level 5
module it is considered authenticated for any level 3 restrictions.
Authentication Service: An authentication service is a combination of
one or more authentication modules forming an authentication chain.
A user specified to authenticate against the service will need to provide
authentication information for any of the required module in that service.
Each module in the service has its own criteria specifying the role of the
module in the service with regards to the user's provided information. A
module can be OPTIONAL, REQUISITE, REQUIRED, or SUFFICIENT. A user
is considered authenticated for the service if the the relevant REQUIRED,
REQUISITE, SUFFICIENT and OPTIONAL modules succeed.

REQUIRED indicates that the success of the module is
required for the Authentication Service to succeed, failure
of a REQUIRED module will not end the authentication
immediately.
REQUISITE is like REQUIRED but if a user fails to authenticate
against this module, the authentication fails immediately.
SUFFICIENT indicates that success of this module is sufficient
to for the service to consider the user as authenticated.
However if any of the previous modules marked as REQUIRED
fails, the authentication fails, otherwise the authentication
ends with success.
OPTIONAL indicates that successful authentication
for this module is not required but it can affect the
authentication level.

The following figure shows a sample authentication service with three module
instances configured in its chain.

•

•

°

°

°

°

OpenSSO, the Single sign-on Solution

[198]

In the following sections we will study some of the authentication type available in
OpenSSO.

Realm Authentication
This is the default authentication type that authenticates the realm members with
the default authentication type specified for the realm or the su-realm. The default
authentication service for realms is ldapService, which only uses one authentication
module named Data Store. To configure a realm authentication type and service we
can use the administration console. The following steps shows the way for changing
the authentication service and module instances:

Login to administration console,
Select Access Control tab.
Select the realm from the realm list.
Select the Authentication tab.

Now we can add more module instances to the realm from the same page or we can
further customize the ldapService to use more than one module instance or we can
change the current module instance to suit our needs. The following figure shows list
of modules configured for the default realm out of the box:

•
•
•
•

Chapter 7

[199]

User Authentication
The User Authentication type allows us to have more fine-grained control over
what authentication service a user should be authenticated with. This gives us the
flexibility to specify more complex and secure authentication service for privileged
users like administrators.

We can specify the authentication service for a subject in the subject edit pages.
We just need to create the user and then specify its authentication service using the
User Authentication Configuration element in the General tab when we are editing
a subject.

To learn more about authentication types refer to Sun OpenSSO Enterprise 8.0
Administration Guide available at http://docs.sun.com/app/docs/doc/820-
3885/gimxg?a=view.

Securing our applications using
OpenSSO
We discussed that OpenSSO provides developers with several client interfaces
to interact with OpenSSO to perform authentication, authorization, session and
identity management, and audition. These interfaces include Client SDK for different
programming languages and using standards including:

Liberty Alliance Project and Security Assertion Markup Language (SAML)
for authentication and single sign-on (SSO)
XML Access Control Markup Language (XACML) for authorization
functions

•

•

OpenSSO, the Single sign-on Solution

[200]

Service Provisioning Markup Language (SPML) for identity management
functions. Using the client SDKs and standards mentioned above are suitable
when we are developing custom solutions or integrating our system with
partners, which are already using them in their security infrastructure.
For any other scenario these methods are overkill for developers. To make
it easier for the developers to interact with OpenSSO core services the
Identity Web Services are provided. We discussed IWS briefly in OpenSSO
functionalities section. The IWS are included in OpenSSO to perform the tasks
included in the following table.

Task Description
Authentication and Single sign-on Verifying the user credentials or its

authentication token.
Authorization Checking the authenticated user's permissions

for accessing a resource.
Provisioning Creating, deleting, searching, and editing users.
Logging Ability to audit and record operations.

IWS are exposed in two models—the first model is the WS-* compliant SOAP-based
Web Services and the second model is a very simple but elegant RESTful set of
services based on HTTP and REST principles.

Finally, the third way of using OpenSSO is deploying the policy agents to protect
the resources available in a container. We will discuss policy agents' installation,
configuration, and usage in the next chapter.

In the following section we will use RESTful interface to perform authentication,
authorization, and SSO.

Authenticating users by the RESTful interface
Performing authentication using the RESTful Web Services interface is very simple as
it is just like performing a pure HTTP communication with an HTTP server. For each
type of operation there is one URL, which may have some required parameters and
the output is what we can expect from that operation. The URL for authentication
operation along with its parameters is as follows:

Operation: Authentication
Operation URL: http://host:port/OpenSSOContext/identity/
authenticate

Parameters: username, password, uri
Output: subjectid

•

•
•

•
•

Chapter 7

[201]

The Operation URL specifies the address of a Servlet which will receive the required
parameters, perform the operation, and write back the result. In the template
included above we have the host, port, and OpenSSOContext which are things we
already know. After the context we have the path to the RESTful service we want to
invoke. The path includes the task type, which can be one of the tasks included in the
IWS task lists table and the operation we want to invoke.

All parameters are self-descriptive except the uri. We pass a URL to have our
users redirected to it after the authentication is performed. This URL can include
information related to the user or the original resource which the user has requested.

In the case of successful authentication we will receive a subjectid, which we can
use in any other RESTful operation like authorization, to log in, log out, and so on. If
you remember session ID from your web development experience, subjected is the
same as session ID. You can view all sessions along with related information from the
OpenSSO administration console homepage under the Sessions tab. The following
listing shows a sample JSP page which performs a RESTful call over OpenSSO to
authenticate a user and obtain a session ID for the user if they get authenticated.

<%
try {
 String operationURL =
 "http://gfbook.pcname.com:8080/opensso/identity/authenticate";
 String username = "james";
 String password = "james";
 username = java.net.URLEncoder.encode(username, "UTF-8");
 password = java.net.URLEncoder.encode(password, "UTF-8");
 String operationString = operationURL + "?username=" +
 username +"&password=" + password;
 java.net.URL Operation = new java.net.URL(operationString);
 java.net.HttpURLConnection connection =
 (java.net.HttpURLConnection)Operation.openConnection();
 int responseCode = connection.getResponseCode();
 if (responseCode == java.net.HttpURLConnection.HTTP_OK) {
 java.io.BufferedReader reader = new java.io.BufferedReader(
 new java.io.InputStreamReader(
 (java.io.InputStream) connection.getContent()));
 out.println("<h2>Subject ID</h2>");
 String line = reader.readLine();

 out.println(line);
 }
} catch (Exception e) {
 e.printStackTrace();
}
%>

OpenSSO, the Single sign-on Solution

[202]

REST made straightforward tasks easier than ever. Without using REST we would
have dealt with complexity of SOAP and WSDL and so on but with REST you can
understand the whole code with the first scan.

Beginning from the top, we define the REST operation URL, which is assembled
using the operation URL and appending the required parameters using the
parameters name and the parameters value. The URL that we will connect to it will
be something like:

http://gfbook.pcname.com:8080/opensso/identity/authenticate?userna
me=james&password=james

After assembling the URL we open a network connection to authenticate it.
After opening the connection we can check to see whether we received an
HTTP_OK response from the server or not. Receiving the HTTP_OK means that the
authentication was successful and we can read the subjectid from the socket. The
connection may result in other response codes like HTTP_UNAUTHORIZED (HTTP Error
code 401) when the credentials are not valid. A complete list of possible return
values can be found at http://java.sun.com/javase/6/docs/api/java/net/
HttpURLConnection.html.

Authorizing using REST
If you remember in Configuring OpenSSO for authentication and authorization section
we defined a rule that was set to police http://gfbook.pcname.com:8080/ URL
for us. And later on we applied the policy rule to a group of users that we created;
now we want to check and see how our policy works. In every security system,
before any authorization process, an authentication process should compete with a
positive result. In our case the result for the authentication is subjectid, which the
authorization process will use to check whether the authenticated entity is allowed
to perform the action or not. The URL for the authorization operation along with its
parameters is as follows:

Operation: Authorization
Operation URL: http://host:port/OpenSSOContext/identity/
authorize

Parameters: uri, action, subjectid
Output: True or false based on the permission of subject over the entity and
given action

The combination of uri, action, and subjectid specifies that we want to check our
client, identified by subjectid, permission for performing the specified action on
the resource identified by the uri. The output of the service invocation is either true
or false.

•
•

•
•

Chapter 7

[203]

The following listing shows how we can check whether an authenticated user
has access to a certain resource or not. In the sample code we are checking james,
identified by his subjectid we acquired by executing the previous code snippet,
against the localhost Protector rule we defined earlier.

<%
try {
 String operationURL =
 "http://gfbook.pcname.com:8080/opensso/identity/authorize";
 String protectecUrl = " http://127.0.0.1:38080/Conversion-war/";
 String subjectId =
 "AQIC5wM2LY4SfcyemVIZX6qBGdyH7b8C5KFJjuuMbw4oj24=@AAJTSQACMDE=#";
 String action = "POST";
 protectecUrl = java.net.URLEncoder.encode(protectecUrl, "UTF-8");
 subjectId = java.net.URLEncoder.encode(subjectId, "UTF-8");
 String operationString = operationURL + "?uri=" + protectecUrl +
 "&action=" + action + "&subjectid=" + subjectId;
 java.net.URL Operation = new java.net.URL(operationString);
 java.net.HttpURLConnection connection =
 (java.net.HttpURLConnection) Operation.openConnection();
 int responseCode = connection.getResponseCode();
 if (responseCode == java.net.HttpURLConnection.HTTP_OK) {
 java.io.BufferedReader reader = new java.io.BufferedReader(
 new java.io.InputStreamReader(
 (java.io.InputStream) connection.getContent()));
 out.println("<h2>authorization Result</h2>");
 String line = reader.readLine();
 out.println(line);
 }
} catch (Exception e) {
 e.printStackTrace();
}
%>

For this listing everything is the same as the authentication process in terms of
initializing objects and calling methods, except that in the beginning we define the
protected URL string, then we include the subjectid, which is result of our previous
authentication. Later on we define the action that we need to check the permission
of our authenticated user over it and finally we read the result of authorization. The
complete operation after including all parameters is similar to the following snippet:

http://gfbook.pcname.com:8080/opensso/identity/authorize?uri=http:
//127.0.0.1:38080/Conversion-war/&action=POST&subjectid=subjectId

OpenSSO, the Single sign-on Solution

[204]

Pay attention that two subjectid elements cannot be similar even for the same user on
the same machine and same OpenSSO installation. So, before running this code, make
sure that you perform the authentication process and include the subjectid resulted
from your authentication with the subjectid we specified previously.

SSO using REST
Usually in big enterprise systems there is one single server that performs all types
of authentication required in the enterprise, including a simple username-password
authentication to authenticate based on OpenID or X.509 digital certificates.

In our simple scenario we have a Servlet filter that checks all incoming requests
for valid authentication token. It will either find that the request is already
authenticated (presence of the subjectid) or it redirects the user to OpenSSO server
for authentication. The filter appends a redirection URL when it forwards the user
to OpenSSO for authentication to let OpenSSO redirect the user to that URL after a
successful authentication.

In this application, our protected resource is the restricted.jsp file on the same
context that the Servlet filter is present, and we just check for the authentication
token in our filter and no authorization process will commence. In real world
example we may define some policies in OpenSSO and check incoming request
both for authenticated token and perform authorization after the authentication is
completed to see whether we should allow the request to reach the target or should
redirect it to an informative page about the requester's access level and why
he cannot access the requested resource. The following listing shows the
restricted.jsp file.

<form name="attributes" action="logout.jsp" method="post">
 You are logged in so you can access this restricted page

 <input name="logout" value="Logout" type="submit">
</form>

The restricted page just shows a welcome message along with a button, which
invokes another JSP page for logout operation. Logout operation can be performed
using the REST interface. The operation parameters and URL are as follows:

Operation: Logout.
Operation URL: http://host:port/OpenSSOContext/identity/logout.
Parameters: subjectid.
Output: No specific output. We can check whether the operation is
performed correctly or not using HTTP response codes.

•
•
•
•

Chapter 7

[205]

The following listing shows how we can invoke the logout operation using REST.

<%
 try {
 String serviceUrl =
 "http://gfbook.pcname.com:8080/opensso/identity/logout";
 String subjectid = null;
 javax.servlet.http.Cookie[] cookies = request.getCookies();
 cookies = cookies == null ? new Cookie[0] : cookies;
 for (Cookie cookie : cookies) {
 String cookieName = cookie.getName();
 if ("iPlanetDirectoryPro".equals(cookieName)) {
 subjectid = cookie.getValue();
 }
 }
 String url = serviceUrl + "?subjectid=" +
 java.net.URLEncoder.encode(subjectid, "UTF-8");
 System.out.println("Opening the Connection");
 java.net.URL Operation = new java.net.URL(url);
 java.net.HttpURLConnection connection =
 (java.net.HttpURLConnection)Operation.openConnection();
 int responseCode = connection.getResponseCode();
 if (responseCode == java.net.HttpURLConnection.HTTP_OK) {
 out.println("<h2>Logged out</h2>");
 }
} catch (Exception ex) {
 ex.printStackTrace();
}
%>

We start by defining the SSO server URL, and then we extract all cookies from the
request in order to find the cookie associated with the SSO subjectid. This cookie's
name is iPlanetDirectoryPro and we need its value to perform the logout. Then
we encode the parameters part of logout operation URL and finally open the URL,
which is equal to calling the REST operation. We can check the HTTP response code
to ensure that our operation has performed with no error and in case that we get an
error code we can redirect the user to the appropriate pages.

OpenSSO, the Single sign-on Solution

[206]

Now we need to implement the Servlet filter. The filter should be able to check
whether the user is authenticated; if not, redirect him to the authentication server for
authentication. The following listing shows the Servlet filter's doFilter method.

public void doFilter(ServletRequest request,
 ServletResponse response, FilterChain chain)
 throws IOException, ServletException {
 if (isAuthenticated((HttpServletRequest) request)) {
 //perform the authorization if required.
 chain.doFilter(request, response);
 } else {
 ((HttpServletResponse)
 response).sendRedirect(ssoServerURL +
 "/UI/Login?goto=" +((HttpServletRequest)
 request).getRequestURL().toString());
 }

The doFilter method is implemented in a very simple manner to shows the basics.
In the beginning we check to see whether our user is authenticated or not. Later on
we redirect the user to the SSO server for authentication; the SSO server will redirect
the user to their destination page after the authentication is successfully completed.

The first unknown method in the previous listing is the isAuthenticated method.
To keep it simple this method checks to see whether the presented subjectid in
the request is valid or not. The isAuthenticated method uses a REST operation to
check the subjectid or so-called token; specification of this operation is as follow:

Operation: isAuthenticated
Operation URL: http://host:port/OpenSSOContext/identity/
isAuthenticated

Parameters: subjectid
Output: boolean

The following listing shows the isAuthenticated method implementation. We used
the method in our Servlet filter.

private boolean isAuthenticated(HttpServletRequest request)
 throws IOException {
 boolean authenticated = false;
 String operationURL = ssoServerURL +
 "/identity/isTokenValid";
 HttpURLConnection connection =
 (HttpURLConnection) (new
 URL(operationURL).openConnection());
 connection.setDoOutput(true);
 connection.setRequestMethod("POST");

•
•

•
•

Chapter 7

[207]

 forwardCookies(request, connection,
 getCookieNamesToForward());
 int responseCode = connection.getResponseCode();
 if (responseCode == HttpURLConnection.HTTP_OK) {
 InputStream in_buf = connection.getInputStream();
 StringBuffer inbuf = new StringBuffer();
 String line;
 BufferedReader reader = new BufferedReader(new
 InputStreamReader(in_buf, "UTF-8"));
 while ((line = reader.readLine()) != null) {
 inbuf.append(line).append("\n");
 }
 String data = new String(inbuf);
 if (data.toLowerCase().indexOf("boolean=true") != -1) {
 authenticated = true;
 }
 }
 return authenticated;
 }

You should be familiar with how we assemble the operationURL except that this
time we passed no parameters while the operation, as mentioned, needs subjectid
to be passed as its parameter. OpenSSO is smart enough to find its own cookie in
the incoming request if we do not provide it as an explicit query parameter. So
this time instead of extracting the subjectid value we are going to let OpenSSO
extract the cookie from our request, so we add required cookies to the request that
we are sending to OpenSSO Identity Web Services. Later on, we just change the GET
method to POST for more security. And finally we are checking to see the result of the
isTokenValid operation which as mentioned is Boolean; either the token is correct
or not. The first unfamiliar method that we may see is forwardCookies, this method
simply extracts the required request cookies and adds them to the given connection.
We use it to set cookies instead of sending them as query parameters. The following
listing shows the forwardCookies method.

private void forwardCookies(HttpServletRequest request,
 HttpURLConnection connection, Set<String> cookieNames) {
 StringBuilder sb = new StringBuilder();
 Cookie[] cookies = request.getCookies();
 cookies = cookies == null ? new Cookie[0] : cookies;
 for (Cookie cookie : cookies) {
 String cookieName = cookie.getName();
 if (cookieNames.contains(cookieName)) {
 String cookieValue = cookie.getValue();
 sb.append(cookieName);
 sb.append("=");

OpenSSO, the Single sign-on Solution

[208]

 sb.append(cookieValue);
 sb.append(";");
 }
 }
 System.out.println(sb.toString());
 if (sb.length() > 0) {
 connection.setRequestProperty("Cookie", sb.toString());
 }
 }

This method, as we can see, gets a collection of cookies as input parameter. It tries
to extract them from the given request, and include them in the given connection
request. But how does it know which cookies it should extract from the request?
Which cookies don't belong to OpenSSO so our filter should not touch them?

To get this problem solved we use another method to get the list of cookies that
belongs to OpenSSO and then we just extract those cookies from the original request
header and include them in the request that we are sending to OpenSSO Identity
Web Services. There is a REST operation to get the list of OpenSSO cookie names
with the following specification:

Operation: getCookieNamesToForward
URL: http://host:port/OpenSSOContext/identity/
getCookieNamesToForward

Parameters: Accepts no parameter
Output: List of all OpenSSO cookie names

The following snippet shows how we can use the getCookieNamesToForward
operation in our Java code:

 private Set getCookieNamesToForward() throws IOException {
 Set nameSet = new HashSet();
 String url = ssoServerURL +
 "/identity/getCookieNamesToForward";
 HttpURLConnection connection =
 (HttpURLConnection) (new URL(url).openConnection());
 BufferedReader br = new BufferedReader(
 new InputStreamReader((InputStream)
 connection.getContent()));
 if (connection.getResponseCode() ==
 HttpURLConnection.HTTP_OK) {
 String line = null;
 while ((line = br.readLine()) != null) {
 if (line.startsWith("string=")) {
 line = line.replaceFirst("string=", "");
 nameSet.add(line);

•
•

•
•

Chapter 7

[209]

 }
 }
 }
 return nameSet;
 }

You should be completely familiar with the purpose of each code line in the above
listing. The method gets a list of all OpenSSO cookie names and returns it as a
set to let forwardCookies send only the cookies belonging to OpenSSO to the
OpenSSO server.

You may ask what is the ssoServerURL variable content. I would say that we need
to either use a Servlet initializing parameter or a class-level property to provide our
filter with the SSO server URL. We also need to add the filter definition to our web.
xml file. In the sample code available at https://www.packtpub.com//sites/
default/files/downloads/9386_Code.zip which includes the complete web
application for this chapter, the sample application includes complete source code
with configure web.xml file for initialization parameter.

The following table shows a complete list of other REST operations that are provided
by OpenSSO Identity Services.

Operation URL Parameters Response content
Perform logging /identity/

log
appid, subjectid
logname, message1

No output

Search for
identities

/search flter, attributes_names1

attribute_values_
attributename1

identitydetails
Attributes

Getting subject
attributes

/attributes attributes_names1,
subjectid

userdetails
Read

Reading details
of a user

/identity/
read

name, attributes_names1,
admin

identitydetails
Creation

Creating an
identity

/identity/
create

identity_name, identity_
attribute_names

identity_attribute_values_
attributename

admin

No output

Updating
identity details

/identity/
update

identity_name, identity_
attribute_names

identity_attribute_values_
attributename

admin

No output

Removing an
Identity

/identity/
delete

identity_name,admin No output

OpenSSO, the Single sign-on Solution

[210]

All of the URLs should be prefixed with OpenSSO server URL, for example
http://localhost:8080/opensso or http://gfbook.pcname.com:8080/opensso.

Summary
In this chapter, we looked at security from an integration point of view. Security,
most of the time, is the only subject which developers leave for the later development
stages, which is a dire pitfall. Security integration is a very broad topic and
this chapter only introduces the OpenSSO server briefly to give you a broader
perspective about security integration in general and OpenSSO security in particular.
We also discussed what SSO is, what Federation is, how OpenSSO works, how it is
architected, and what communication channels it provides for us to interact with its
provided services. We saw how we can install OpenSSO, configure it, and perform
basic administration tasks like subject and policy management. We learned how we
can use OpenSSO RESTful Web Services for authentication, authorization, and SSO
token acquiring.

In the next chapters we will study the more advanced topics of securing Java EE
applications using OpenSSO policy agents, by looking at the OpenSSO policy
agents' features and installation, down to securing the sample application using
the policy agents.

More information about OpenSSO is available at the OpenSSO Resource Center
http://wikis.sun.com/display/OpenSSO/OpenSSO+Resource+Center.

Securing Java EE
Applications using OpenSSO

Securing a software system is one of the top-level concerns for software architects
and project managers. Because of its importance, many standards, frameworks, and
products are introduced to help the architects and system designers address the
security requirement effectively. Emerging out of different standards, the security
integration issue came into focus and led to big vendors jumping into the area to
provide better, easier, and more complete solutions for addressing security.

In the age of the Internet and Web 2.0 integration, methods between software
systems are rapidly evolving, and there is constant need to change a software
system to interact with a partner system. Software architects and designers tend
to use products and frameworks that provide plugability features for addressing
orthogonal concerns, like security to have the freedom of switching from one
product to another if required.

Non-intrusive integration is one of the top-level topics that software architects are
involved with and due to market demand many small and large companies are
working on the integration issues. One aspect of the software integration is security
integration, in which different software developed using diverse technologies will
share the same security infrastructure, including authentication, access management,
user provisioning, SSO, and so on.

The Java EE security model provides the basics for designing and implementing a
fully-configurable security model as we discussed in the first two chapters. Although
the Java EE security model can completely address all needs of a software system,
for systems with specific requirements, like a wide range of interactions with other
partners and software systems and a complex rule based access model, we should
look at additional features that are provided by a line of software called Identity
Management (IDM) or access management systems.

Securing Java EE Applications using OpenSSO

[212]

The identity management systems covers all security-related requirements starting
with user definition, authentication, complex access rule definition, audition, Web
Services security, and so on.

In previous chapters we discussed both the installation and configuration of OpenSSO
in order to use it with the provided REST APIs and its Java SDK. In this chapter
we will look at OpenSSO security agents, which are interceptors that can intercept
requests placed on different types of web and application servers. Agents are like a
protector filter that only allows authorized requests to pass and redirects unauthorized
requests to appropriate pages, such as a login page, defined by the administrators.

Understanding Policy Agents
As we discussed, OpenSSO Policy Agents or simply OpenSSO agents are provided
to secure different kinds of resources without an intensive change in the structure
of the resource or the resource container, which can be a Web server, Java EE server,
proxy server, and so on. In this section, we discuss Policy Agents in general before
we get down to the business of securing applications using OpenSSO agents.

In brief, as you can see in the following figure, a policy agent is an entity that sits in
front of a server like a Java EE or a Web server and intercepts any request headed
towards that server. After intercepting the request, the OpenSSO agent consults
with the OpenSSO server whether or not to allow the request to go through.

Container

Protected
Resources

Policy Agent

Browser/
client application

OpenSSO
Authentication

Service

Session Service

Policy
Service

Logging
Sevice

application sever / Servlet container

Chapter 8

[213]

In detail, for an OpenSSO agent configuration we should at least have the
following elements:

An installed and working OpenSSO server. Our server should have some
subjects and policies defined to let the agent use them in governing the
application's security.
An agent profile, which is the agent installed in the server we want to
protect. This agent interacts with the OpenSSO server to decide whether a
request should go through or the request should be denied.
The agent should be installed in a compatible server, for example the agent
should be installed on a Java EE server like GlassFish or a Web server like
Apache HTTP server and so on. Resources deployed on this server can be
placed under the installed agent protection.

Specifying access privileges by defining
policies
A policy defines rules that specify access privileges to protected resources. The
policy uses the following items to define the access privileges:

Rules: A rule contains a service type, like a URL, which needs protection, one
or more actions that are executable on the resource like GET and POST actions
in HTTP, and permissions for those actions like Deny and Allow.
Subjects: A subject defines the user or collection of users (for instance, a
group or those who possess a specific role) that the owner policy affects.
A policy can apply on a user if and only if the user is in one of the policy
subjects. The most widely used type of subject is Authenticated Users, which
includes any known user with a valid SSO token.
Conditions: A condition lets us define constraints on the policy. For example,
we can use conditions to limit the access to a resource to subjects coming
from a specific IP range. The following list shows important condition types
we can specify for a policy:

Does the subject IP address belong to a specific range?
What is the time and date, and which time zone does the user
belong to?
What is the specific property in the subject's session?
Is session activation time less than a threshold?
Is subject authentication level more than a specific level?
Is subject authenticated through a specific
authentication chain?

•

•

•

•

•

•

°
°

°
°
°
°

Securing Java EE Applications using OpenSSO

[214]

Besides the ones mentioned you can also think up your own conditions.
Response Providers: Response providers are plugins that provide
policy-based response attributes. They can be used to send specific properties
back to the agent, and further back to the application for customized uses.
For example if a policy named policy_3 is successfully evaluated for the
request and we need the client application or the agent to know that this
particular policy has evaluated successfully, we can add a property to the
response specifying that the policy_3 has successfully evaluated.

Protecting diverse types of containers using
Policy Agents
We said that there are different types of agents to protect different kind of servers.
The following table shows a list of agent types along with a basic description about
each type.

Agent Description
J2EE Agent 3.0 for GlassFish/Sun
Application Server

We can use it to protect GlassFish and Sun
Java Application Server both in URL and
Java EE mode.

J2EE Agent 3.0 for WebLogic 10 Protecting applications deployed in WebLogic
Application Server.

Web Agent 3.0 for Webserver 7 Protecting Sun Java Web Server 7.x.
J2EE Agent 3.0 for WebSphere Protecting applications deployed in WebSphere

Application Server.
J2EE Agent 3.0 for Tomcat 6 Protecting web applications deployed in Tomcat 6.
J2EE Agent 3.0 for Jetty 6.1 Protecting resources deployed in Jetty 6.1.
Web Agent 3.0 for Apache 2.0.x, 2.2.x Protecting URLs in Apache Web server 2.0

and 2.2.x.
Web Agent 3.0 for Proxy Server 4.0 Protecting Sun Proxy Server 7 resources.
Web Agent 3.0 for Microsoft IIS 6, 7.0 Protecting applications deployed in Microsoft IIS

6.0 and 7.0.
J2EE Agent 3.0 for JBoss 4.x, 5.x Protecting Java EE applications deployed in JBoss

4 and JBoss 5.

These agents are available for different operating systems including Windows,
Linux, and Unix variants.

The above table shows an extensive list of supported servers which itself means
that OpenSSO agents should work with a broad range of modes to integrate with
different types of servers and protect different types of resources on those servers.

•

Chapter 8

[215]

The most basic task for an OpenSSO agent is enforcing the specified rules on the
web resources identified with their URLs. When the OpenSSO agent is configured
to protect resources based on their URLs, the Agent intercepts any request and only
allows certain groups of users to access the resource when certain conditions are met.
Some of these conditions are as follows:

Controlling access based on the client IP address
Controlling access based on the specific time of the day or day of the week

The users who are permitted to access each resource and the condition that should
be met before the users or group of users can access the resource are defined by the
system administrator using OpenSSO administration console.

Working of OpenSSO agents
When an agent needs to protect a Java EE application or resource deployed on a
Web server, it needs to intercept the incoming requests and determine whether
it should allow the requests to go through or should redirect the user to another
page, such as a login page. To accomplish this task, the agent must be able to see all
incoming requests and also the incoming requests the agent should integrate with
the application server or the Web server.

To further scrutinize the way that an agent works, let's see what changes are
applied on the application server during the agent installation, what kind of
configuration is required for the agent to protect the application, and finally
changes that should be applied on the applications we need to place under the
agent protection. Installing a Policy Agent into a container introduces the following
changes into the host container:

1. The Java EE agent uses Servlet filters to intercept all requests and then
interact with the OpenSSO server, so it needs some classes to be available in
the runtime. So during the agent installation, it adds all required JAR files to
the target application server instance classpath.

2. The Java EE security model is based on security realms; the OpenSSO agent
installation adds the required security realm to the set of application server
realms. This realm represents the groups and subjects we defined in the
OpenSSO server and lets the Java EE application server security integrate
with OpenSSO.

3. The installation process also adds the Agent realm and JAAS modules to the
domain_dir/config/login.conf file.

4. Deploying a web application into the server for housekeeping tasks like
cross domain SSO and notification processing. We need to install the agent
application manually.

•

•

Securing Java EE Applications using OpenSSO

[216]

The following tasks are required to protect an application using OpenSSO agent:

Adding the agent filter to the web.xml file so the agent filter can intercept
incoming requests for the protected application
Changing the roles mapping to map the Java EE application roles to
OpenSSO groups

And finally, the following configurations are required for the agent and OpenSSO
server so we can have the basic security for our application:

Defining users and putting them into appropriate groups according to the
security requirements and security schema of the application.
Defining the login and logout URLs.
Defining the URL patterns that do not need protection, for example content
of the /styles/, /images/ paths may not need protection. So we should
define them as non-protected URLs.
Defining required policies to protect the resource in our application.

As you can see we have a small to-do list to place an application under the agent
protection. In the meantime we can enforce sophisticated policies and benefit from
user provisioning, audition, and SSO without introducing dependencies in our
application source code to the OpenSSO libraries.

Protecting different types of resources
We said that OpenSSO provides different agent types and each agent can operate on
different modes to address the requirements. The GlassFish policy agent can operate
in three modes to address variety of requirements. These modes are as follows:

Operating mode Description
NONE In this mode the Policy Agent does nothing and it appears as though

no agent is active. Basically this mode deactivates the Servlet filter.
When the Agent filter is operating in this mode, any declarative J2EE
security policy or programmatic J2EE security API calls will return a
negative result regardless of the user.

SSO_ONLY This is the least restrictive mode for OpenSSO agent as the Agent
filter only ensures that users are authenticated using OpenSSO
authentication service. In this mode any declarative J2EE security
policy or programmatic J2EE security API calls evaluated for the
application will result in a negative evaluation.

URL_POLICY In the URL_POLICY mode, the Agent filter enforces the URL policies that
are defined in OpenSSO Enterprise, similar to the two previous modes.
Any declarative J2EE security policy or programmatic J2EE security API
calls evaluated for the application will result in negative evaluation.

•

•

•

•
•

•

Chapter 8

[217]

Operating mode Description
J2EE_POLICY In this mode, the Agent filter and agent realm work together with

various OpenSSO services to ensure the correct evaluation of J2EE
policies. In contrast with previous modes, using this mode guarantees
that any declarative J2EE security policy or programmatic J2EE security
API calls evaluated for the application result in the correct values
based on the security annotations and declarations in the deployment
descriptors.

ALL This is the most restrictive mode of the Agent filter. In this mode,
the filter enforces both J2EE policies and URL policies as defined
in OpenSSO Enterprise. By default OpenSSO agents operates in
ALL mode.

From the five mentioned modes of operation for the Java EE agent, the SSO_ONLY and
URL_POLICY modes are also available for the Web agents.

Exploring outstanding features of Policy
Agents
The current version of OpenSSO policy agent is version 3, which has some significant
improvement over the previous version to further ease the installation process,
manage of larger deployments of OpenSSO agents, improve the system uptime,
and so on. Some of these new features are as follows:

Managing Centralized Agent Configuration
In the previous version OpenSSO Policy Agent, all agent configurations were stored
in the agent machine and managing those configurations required the administrator
to access the agent machine to change a configuration value. In version 3 of OpenSSO
Policy Agents, most of the configuration properties are moved to the OpenSSO
central data repository instead of to a local file.

In the local mode, all of the agent configuration is stored locally in a configuration
file named OpenSSOAgentConfiguration.properties in the same machine
that the agent runs on while in the centralized mode; most of the configurations
are stored in OpenSSO storage and the agent uses a bootstrap file named
OpenSSOAgentBootstrap.properties to locate the OpenSSO server and
retrieve the configuration from it.

Securing Java EE Applications using OpenSSO

[218]

Managing agents in groups
Agent groups are introduced to let administrators group agents of the same type
together and manage them as a single entity. This feature reduces the amount of time
administrators need to spend on agent configuration. Although all agents in a group
share most of the configuration properties, they have some individual properties
which are unique for each agent, like the notification URL for the agent application,
and so on.

Applying agents configuration on-the-fly
Prior to the version 3 of Policy Agents we needed to restart the agent container
after changing the configuration by applying new configurations. In version 3 more
hot-swappable configuration properties are introduced to increase the uptime of
the agent application server. For example, all logout-related properties and user-
mapping properties are hot-swappable and we can change them and expect the
changes to be effective immediately without a container restart.

Having more control over the installation process
In version 3, we have more features included in the installation application to let
administrators have more control or an easier installation process. The default
installation method asks less configuration questions compared to previous
versions and the customer installation method provides more installation options,
like creating the agent profile on the OpenSSO server during the agent installation.

Now that we have a basic understanding about how OpenSSO agents and
especially GlassFish agent works, we can dirty our hands and install the agent.

Installing J2EE Agent 3.0 for GlassFish
Installing the J2EE agent is easy and straight forward once you understand the
information you should provide during the installation. The first step in installing
the agent is downloading the appropriate version from OpenSSO agent's page
located at: http://forgerock.com/downloads.html. Currently the latest
version, which is J2EE Agent 3.0 for GlassFish, can be downloaded from
http://www.forgerock.com/downloads.html.

Chapter 8

[219]

The downloadable package directory structure is similar to the following figure:

The following table briefly explains the directories and their contents.

Directory Description
bin Contains the administration and installation scripts.
config Templates for configuration files.
data Will contain a license agreement-related file, which indicates we

agreed to the licensing term. The file will be created after we create
the first agent profile.

etc The agent application is located inside this folder. The application
must be installed in the GlassFish agent server. The file name should
be agentapp.war.

installer-logs Logfiles related to creating and installing an agent profile. Using these
logs we can track possible installation problems.

lib Contains the JAR files required for the agent to operate. These JAR
files will be added to the agent server classpath by the agent installer.

locale Contains the localization information.
sampleapp Sample applications that can help you understand the agent and its

functionalities better.

Securing Java EE Applications using OpenSSO

[220]

Now that we understand the basics of the agent it's time to get our hands dirty and
install and configure the agent.

We should not install the agent in the same GlassFish instance that we are deploying
OpenSSO server. If we do so, the classpath collision between agent and OpenSSO
libraries will prevent them from functioning properly.

1. We can create a new domain and install the agent into this new domain. The
following command shows how we can create a new domain. We assume
that we are inside the glassfish_dir /bin folder.
./asadmin create-domain --domaindir /opt/dev/apps/glassfish-2.1.1/
domains --adminuser admin --adminport 34848
 --instanceport 38080 --domainproperties jms.port=37676:domain.
jmxPort=30001:orb.listener.port=30002:orb.ssl.port=30003:orb.
mutualauth.port=30004:http.ssl.port=38443
 --savemasterpassword=true --savelogin=true domain2

The above command will create a domain named domain2 in the default
domains directory. All port numbers for the new domains are 30000 more
than the default port numbers. For example, the administration port is 34848.

2. Now start the domain using the following command:
 ./asadmin start-domain domain2

3. Now deploy the agentapp.war file, which is located inside the
agent_dir/etc directory and which we can deploy using the
following command:

./asadmin deploy –host 127.0.0.1 –port 34848 agent_dir/etc/
agentapp.war domain2

Make sure that domain2 is down and proceed to the next step, which is
agent installation.

To stop the domain you can use the following command:
 ./asadmin stop-domain domain2

Chapter 8

[221]

During agent installation we need a password file, which includes the agent
password. The password file contains single line of text, which is the password in
clear text. Agent installation will encrypt the password during the installation. The
following snippet shows the password file named password.pwd.

adminadmin

I assume the following is our current configuration for the installation process.

Configuration item Description
OpenSSO server We assume that OpenSSO is running on

http://127.0.0.1:8080/opensso

Agent server We assume that agent server ports are as stated above
Password file We assume that we have the password file created and it is located

at /opt/password.pwd
Agent application
(agentapp)

We assume that it is deployed or will be deployed in the agent
server as follows: http://127.0.0.1:38080/agentapp

Now navigate to agent_dir/bin and get ready to install the agent into the
agent server.

If you are on a Linux or Unix platform you need to give
the execution permission to the agentadmin file. You
can do it using the following command:
 chmod +x agentadmin

Start the installation with the following command:

./agentadmin --install --saveRespose /opt/response.resp

We used two parameters for the agentadmin command. The first parameter tells the
agentadmin that we want to install a new agent and the second parameter asks the
agentadmin to save our responses to the agentadmin configuration questions in file
for later use. We will discuss all agentadmin parameters in the next table.

Securing Java EE Applications using OpenSSO

[222]

After we execute the command, it will show a license agreement that we should
accept. After accepting the license, agentadmin will ask a series of questions
included in the following table:

Question Description and our answer
Enter the application server
config directory path

We should provide a path like domains_dir/domain2/
config.

OpenSSO server URL We should provide a fully-qualified name if we need
SSO and its features (discussed in the previous chapter)
or a plain URL similar to http://127.0.0.1:8080/
opensso if we do not need SSO features.

Agent URL We should provide a fully-qualified URL if we need SSO
and its features (discussed in the previous chapter) or
a plain URL similar to http://127.0.0.1:38080/
agentapp if we do not need SSO features.

Enter the agent profile name A unique name for this agent, something like
gfbook_agent.

Enter the path to the
password file

Full path to the password file we created in the
previous step.

The configuration-related questions are over, now agent installation will ask to
confirm the configuration. After this step the agent installation is over.

We will need to add the agent profile to our OpenSSO server. To add the agent
profile to the OpenSSO server we should:

1. Log in to the OpenSSO administration console, which by default is located at
http://127.0.0.1:8080/opensso.

2. Now in the first page, select the Access Control tab and then select the Top
Level Realm or any other realm which you want the agent to be activated
in. Now select the Agent tab and then select the J2EE tab. Click on the
New button.

3. Now, we should provide the Agent Name and Password. In our
configuration, the Agent Name is gfbook_agent and the password
adminadmin which we provided during the installation using the password.
pwd file. We should provide two URLs and then we are done with creating
the agent profile in the server.

4. For the configuration item we can either use localized or centralized mode.
The local mode is kept for backward compatibility of OpenSSO server
with older versions of OpenSSO agents and using centralized mode is
recommended for OpenSSO agent's version 3 and above.

Chapter 8

[223]

In the local mode, all of the agent configuration is stored locally in a
configuration file named OpenSSOAgentConfiguration.properties in the
same machine that the agent runs on while in the centralized mode. Almost
all of the configurations are stored in OpenSSO storage and the agent uses a
bootstrap file named OpenSSOAgentBootstrap.properties to locate the
OpenSSO server and retrieve the configuration from it.

5. The next two fields are links to the OpenSSO server and the agent
application. For our configuration we should specify them as follow:

Server URL: http://127.0.0.1:8080/opensso
Agent URL: http://127.0.0.1:38080/agentapp

6. Now that we have specified all of the properties we can click on the Create
button to create the agent profile and finish the creating agent profile steps.

7. After we have created the agent profile we can select it from the agents list
and customize its configuration in areas like SSO, the application that it
protects, the OpenSSO services that the agent is using, and so on.

Let's go back and check what happened when we created the agent in the agent
machine. When we create an agent, the agentadmin utility creates a directory named
Agent_NNN in the agent directory. The NNN is a sequential number assigned to each
agent after we create it. For example, the first agent is located inside Agent_001, the
second one inside Agent_002, and so on.

Inside the agent directory we have two other directories as follows:

The config contains the configuration files for the agent instance, including
OpenSSOAgentBootstrap.properties and OpenSSOAgentConfiguration.
properties

The logs directory contains the following subdirectories:

The audit directory contains local audit trail for the
agent instance
The debug directory contains the debug files for the agent
instance when the agent runs in debug mode

°

°

•

•

°

°

Securing Java EE Applications using OpenSSO

[224]

The following table shows a list of all agentadmin commands along with a basic
description about them.

Commands Description
--install Installs a new agent instance.
--custom-install Installs a new agent instance.
--uninstall Uninstalls an existing agent instance.
--listAgents Displays details of all the configured agents.
--agentInfo Displays details of the agent corresponding

to the specified agent IDs.
--version Displays the version information.
--getEncryptKey Generates an Agent Encryption key.
--encrypt Encrypts a given string.
--uninstallAll Uninstalls all agent instances.
--migrate Migrates the agent to a newer version.
--usage Displays the usage message.
--help Displays a brief help message.

Each command has one or more options, which you can see by issuing the
following command:

agentadmin --help

Now that we installed OpenSSO agent in the system, we can take our Chapter 2
samples and configure the system so it can be protected by the agent instead of
using the built-in functionalities of Java EE security.

Placing the sample application under
OpenSSO protection
So far, we installed the agent and we created the agent profile in the OpenSSO but
this agent does nothing unless we configure it to protect an application and also
change the application to use agent protection instead of the default Java EE security
provided by GlassFish.

Chapter 8

[225]

Changing sample application descriptor files
Let's see what changes we should introduce in our conversion application to place it
under the agent protection. You can create a copy of the application and change it to
later on compare two applications and further understand the changes we made to
put it under the agent protection.

First we need to add the agent filter to the web.xml file of our conversion
application's web module. To do so, open the web.xml file and add the
following snippet immediately inside the web-app node.

<filter>
 <filter-name>Agent</filter-name>
 <filter-class> com.sun.identity.agents.filter.AmAgentFilter
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>Agent</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>ERROR</dispatcher>
</filter-mapping>

Now, we do not need to have an authentication realm in place, so find the following
line in the web.xml and delete it.

<realm-name>ConversionRealm</realm-name>

We are done with our changes to this file. Now we should change the roles to groups
mapping because starting from now on we are mapping our roles to groups we
defined in the OpenSSO server.

As you may remember we used sun-application.xml for role mapping to lift the
need to define the role mappings in both sun-web.xml and sun-ejb-jar.xml. Now
just open the sun-application.xml and replace the group names as shown in the
following table.

Old Group Name New Group Name
manager id=manager, ou=group, dc=opensso, dc=java, dc=net
employee id=employee, ou=group, dc=opensso, dc=java, dc=net

Securing Java EE Applications using OpenSSO

[226]

These are all the changes we needed to introduce to switch from plain GlassFish
security to agent protection.

Now our application is under protection of the agent but the agent does not know
anything about the application. The agent does not know which section of the
application should be protected, which sections need no protection, and so on.

Configuring the agent to protect the sample
application
In this section we should let agent know what kind of security measures we need
to be applied on our resources, which set of subjects and groups are known to the
agent, and so on.

To configure the agent, log in to the OpenSSO administration console and do
as follows:

1. Navigate to Access Control | Realm Name | Agents | J2EE as shown in the
following figure.

Chapter 8

[227]

2. Click on the gfbook_agent link; the Global tab of the agent configuration
pages shows up as demonstrated in the following figure.

3. Now click on the Login Processing link to configure the login page, and
enter /Conversion-war/auth/login.html in the New Value box and click
on the Add button.

4. Navigate to the top the page and click on the Logout Processing link
to configure the logout page. In the Application Logout URI, enter
Conversion-war in the Map Key field and enter the /Conversion-war/
auth/logout.jsp in the Corresponding Map Value.

5. Navigate to the top the page and select the Application tab and click on
the Access Denied URI Processing to configure the agent to show an
information page about user being denied access to a URL. In the Map
Key enter Conversion-war and in the Corresponding Map Value enter
/Conversion-war/auth/AccessRestricted.html.

Securing Java EE Applications using OpenSSO

[228]

6. Click on Not Enforced URI Processing and enter the following items one by
one using the New Value box and the Add button.

/Conversion-war/Converted

/Conversion-war/public/*

/Conversion-war/jsp/toCenti.jsp

/Conversion-war/index.jsp

7. Navigate to top of the page and then click on the Save button to have all
these configuration saved.

What we did so far is place the application under the agent protection and let the
agent know which page is our login page, which page is the logout page, and which
set of resources do not need any protection and can be viewed by any user, either
authenticated or not.

°

°

°

°

Chapter 8

[229]

Defining access rules
Now we need to define some rules to let the agent and OpenSSO server determine
which users can access which set of resources in the conversion application. As
you remember we have already defined our users and user groups in the previous
chapter and we should now only define security rules that governs relation between
our conversion application and those users. To do so:

1. Navigate back to the OpenSSO administration console main page and
select Access Control, click on / (Top Level Realm) and then click on the
Policies tab.

2. Click on the New Policy button and in the Name field type gfbook_P1 and
make sure that Active checkbox is ticked.

3. Now in the Rules section click on the New button, select URL Policy Agent
(with resource name) and click on Next button.

4. Now, for the Name field use gfbook_R1 and for the Resource Name field use
http://127.0.0.1:38443/Conversion-war/* or the corresponding URL
based on our server configuration and sample application context.
Make sure that both POST and GET actions are selected, then select Allow as
both actions' value. As illustrated in the following figure, click on the Finish
button and it will navigate back to the New Policy page.

Securing Java EE Applications using OpenSSO

[230]

5. In the Subjects section click on the New button. Now select the OpenSSO
Identity Subject from the tree possibilities and then click on the Next button.

6. Enter a name like gfbook_S1 as the subject name and use the
filtering capabilities and add employee and manager group to the
list of selected subjects.

7. Now click on the Finish button and then click on the Save button to save
the policy.

If required, we can define constraint on the policy by adding access conditions
that can conditionally allow or deny access to the resource by evaluating access
conditions like time of the day or the required origination network address.

Now that we have defined the effective policies we can test the application. To test
the applications navigate to http://127.0.0.1:38080/Conversion-war/index.
jsp or the corresponding URL in your configuration and try accessing different
conversion methods.

If we try to access centimeter conversion by hitting http://127.0.0.1:38080/
Conversion-war/jsp/toCenti.jsp we will be able to access it. It is possible
because we place it in the Not Enforced URI Processing list. If we try to use any
other conversion pages like http://127.0.0.1:38080/Conversion-war/jsp/
toInch.jsp or http://127.0.0.1:38080/Conversion-war/jsp/toMilli.jsp it
will trigger the authentication and authorization process because those two resources
are protected by the agent.

If we try to access any of those two restricted URLs we will be redirected to
the OpenSSO login page, which we will need to provide a valid username and
password to log in.

For using the toMilli.jsp, we should authenticate as an employee because in the
web.xml we granted anyone with employee role to have access to this URL.

You should remember that in the previous chapter, when we defined two
users in the OpenSSO administration console, we created a user named
meera, identified with meera as password, as a member of employee
group. We also created a user identified as james/james and gave him
the manager group membership. So, to access the toMilli.jsp we will
need to login with meera/meera and to access the toInch.jsp we will
need to login with james/james.

Chapter 8

[231]

When we are logged in as a user with lower permission level, for example we
are logged in as an employee, and we try to access a resource restricted to our
user, such as a resource only available to the manager, we will be redirected to
the AccessRestricted.html, which we defined in the agent's application
Configuration section.

Usually, the AccessRestricted.html page includes a link to log out from the
system and information about the resource we just tried to access, such as the
required access level to inform the user which resource they were trying to
access and what access level they must have before they can access it.

To access toInch.jsp, log out by hitting the logout page which is located at
http://127.0.0.1:38080/Conversion-war/auth/logout.jsp. After logging
out, any effort to view the toInch.jsp page will result in the kick-start of an
authentication process which shows the OpenSSO login page, which is similar
to the following figure:

You may ask, how we can customize the login page of OpenSSO to tailor
our needs, the answer lies in editing a few XML and JSP files. For more
information about customizing the login and logout pages you can check
the following pages:

http://docs.sun.com/app/docs/doc/820-3320/
ghlfa?a=view

http://blogs.sun.com/bouyges/entry/opesso_
customizing_login_page

•

•

Securing Java EE Applications using OpenSSO

[232]

Now, take a look at the following figure to further understand what happens in
the background when we place a request on a resource which is protected by the
OpenSSO agent.

As you can see, the OpenSSO agent intercepts any request made to the protected
applications, then it consults with the OpenSSO server to check whether the
requested resource is under protection or if it is in the list of Not Enforced URIs.
If the resource is protected, OpenSSO will check to see whether the user is
authenticated or not by examining the presence of OpenSSO cookie. If the user is
not authenticated he will be asked to provide authentication tokens, which can
be username/password or any other type of authentication tokens. After the user
is successfully logged in, OpenSSO sets the required security attributes in the
HTTP header. Now it is time to evaluate different policies to see whether the user
is authorized to access the required page or not. If authorized his request will go
through and if not authorized he will be redirected to the Access Denied URI,
which is defined in the Application section of the agent configuration.

Chapter 8

[233]

Log in using one of our defined users, for example meera/meera, and
then navigate to http://127.0.0.1:8080/opensso to see what
happens. Each OpenSSO user can edit his profile by logging in and
navigating to the OpenSSO home page.

Now that we have enough knowledge and experience regarding using OpenSSO
policy agents, it's time to see how we can use OpenSSO and OpenSSO agents to
secure our Web Services.

Summary
In this chapter, we discussed OpenSSO policy agents that let us as architects, system
designers, and developers secure a Java EE application using OpenSSO without
changing the application source code. We discussed the policy agents, policy agent
installation, and administration along with changing our sample application to place
it under agent protection instead of using plain Java EE protection.

In the next chapter we will discuss Web Services security and how we can use
OpenSSO and OpenSSO agents to secure our Web Services deployed in GlassFish.

Securing Web Services
by OpenSSO

The need for integration and interoperability is growing exponentially and any new
platform and standard should be introduced with these factors in mind. Not only
do we need data and process integration but we also need to be able to integrate our
security schemas and policies to make as smooth an interaction between our systems
possible. Several attempts were made in the past to address the interoperability
problem—IIOP is one of those attempts that gained enough attention and success
to let it be in use years after its introduction.

Introducing Web Services is the new attempt to tackle the same problem that IIOP
tackled years ago. We take into consideration all new innovations and changes in
the software development landscape, like the possibility for using Web Services
independent of the platform and the programming language, easier development,
using new standards and protocols in different layers, and the possibility to use it in
the old software development platform as well as the new one.

In this chapter we are going to learn about the following topics:

Learning how to apply authentication and authorization on Web Services
Learning the standards involved in Web Services security
Applying the standards in developing a secured Web service
Using OpenSSO to secure the sample Web service developed previously

•
•
•
•

Securing Web Services by OpenSSO

[236]

Java EE and Web Services security
Java EE by itself does not provide anything specific for Web Services security but
rather different vendors implement some basic security measures to protect Web
Services with basic authentication and authorization.

Securing Web Services in a Web module
In the Web module we can protect a Web service endpoint the same way we
protect any other resource. We can define a resource collection and enforce access
management and authentication on it. The most common form of protecting a Web
service is using the HTTP Basic or Client Certificate.

For example, if we use the HTTP basic authentication and our Web service client
uses the Dispatch client API to access the Web service. We can use an snippet like
the following one to include the username and password with the right access role
to invoke a Web service.

sourceDispatch.getRequestContext().put(Dispatch.USERNAME_
PROPERTY,"user");
sourceDispatch.getRequestContext().put(Dispatch.PASSWORD_
PROPERTY,"password");

The user and the password should be valid in the security realm we configured for
the Web application and should have access right to the endpoint URL.

Another way of authenticating the client to the server in HTTP level is
using the Authenticator class, which provides more functionalities
and flexibilities. For more information about the Authenticator
class check http://java.sun.com/javase/6/docs/technotes/
guides/net/http-auth.html.

Web Services security in EJB modules
We can expose a Stateless Session Bean as a Web service and therefore we can use
all security annotations like @RolesAllowed, @PermitAll and their corresponding
deployment descriptor elements to define its security plan. But enforcing
authentication for Web Services is vendor-specific and each vendor uses its
own method to define the security realm, authentication, and so on.

Chapter 9

[237]

EJB-based Web Services authentication in
GlassFish
To apply access control on a Web service developed using a Session Bean and
deployed either as an EJB module or as a part of an enterprise application we can
use the sun-ejb-jar.xml to include the role mapping, and the security realm.

Lets see how we can develop restricted EJB based Web service and enable
authentication on it.

@WebService()
@Stateless()
@RolesAllowed("manager")
public class Echo {
Method(operationName = "stringEcho")
 public String stringEcho(@WebParam(name = "val") String val) {
 return "echoing " + val;
 }
}

We are using the @RolesAllowed annotation to only allow a user with manager role
access this EJB and therefore the only users able to invoke the stringEcho business
method from a Web service client is a user because either their principal is mapped
to the role or the group they are a member is mapped to manager role.

Right to this point we applied the access control to our Echo Web service but we
are still lacking the authentication process which specifies how the users are going
to provide their principals and what is our reference for checking these principals.
This requirement is fulfilled using some sub-elements of the port-component-name
element of the sun-ejb-jar.xml file.

Following snippet shows how we specify the authentication method and the security
realm for the Echo Web Service.

<ejb>
 <ejb-name>Echo</ejb-name>
 <webservice-endpoint>
 <port-component-name>Echo</port-component-name>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm>file_realm</realm>
 </login-config>
 </webservice-endpoint>
</ejb>

Securing Web Services by OpenSSO

[238]

We are simply using the login-config element and its sub-elements to define the
authentication method and the security realm.

Sure we still need to define the roles and the mapping either in the
sun-ejb-jar.xml or in the sun-application.xml. The following snippet
shows how we can map the manager role to a principal named jack and a group
named mgrs. The snippet can be placed either in the sun-application.xml or
in the sun-ejb-jar.xml file.

 <security-role-mapping>
 <role-name>manager</role-name>
 <principal-name>jack</principal-name>
 <group-name>mgrs</group-name>
 </security-role-mapping>

So far we learned how to specify the roles permitted to invoke a Web service method
and we specified how to authenticate the identity of any invoker by checking
their identity with a security realm. But we are still lacking an important security
measure—the transport guarantee.

To enforce transport guarantee we only need to add one more sub-element to the
webservice-endpoint element. Following snippet shows the Echo service with
CONFIDENTIAL transport security guarantee.

<enterprise-beans>
 <ejb>
 <ejb-name>Echo</ejb-name>
 <webservice-endpoint>
 <port-component-name>Echo</port-component-name>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm>file</realm>
 </login-config>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </webservice-endpoint>
 </ejb>
</enterprise-beans>

We can use NONE, INTEGRAL, and CONFIDENTIAL transport security levels as we
discussed in Chapter 1.

The client code for invoking an EJB-based Web service is the same as client code for a
Servlet-based Web service as it should be because of the nature of Web Services.

Chapter 9

[239]

GlassFish provides Message Security measures which we can use to
enforce authentication in the message level (SOAP, HTTPServlet). To
learn more about using GlassFish Message Security visit http://
docs.sun.com/app/docs/doc/820-7692/ablrk?a=view.

In the following sections of this chapter we will review how we can use OpenSSO
and OpenSSO Web service security providers to secure our Web Services.

Understanding Web Services security
Security is required whenever we want to only let a small set of users use a service.
The small set can be as small as one or it can be as large as thousands of subscribers
whom we allowed to use the service. Web Services usually fall into the second
category because we do not simply expose functionality when we do not want
to let more than one user access it.

So basically, we need all sorts of security measures that we had in a web application
present in the Web Services realm. These requirements are as follows:

Authentication to identify the involved parties, which are Web Service
Producer (WSP) and Web service consumer (WSC)
Authorization to check the availability of a resource to an identity
authenticated in the previous step
Confidentiality to ensure that no one will be able to tap into the
communication
Integrity to prevent any kind of tampering during the communication
between WSP and WSC
Non-repudiation to provide confidence in the interaction and prevent any
party from repudiating its involvement in the interaction
Credential exchange to send and receive security tokens between different
parties involved in the interaction, like token issuer, service provider, and
service consumer

We may need to address one or more than one of these items in our system, based on
our software design and the business security requirements.

•

•

•

•

•

•

Securing Web Services by OpenSSO

[240]

Addressing these needs is a bit different than dealing with them when we are
developing classic web applications. This is because Web Services are introduced to
cover the interoperability needs of different systems interacting together when none
of them were designed specifically to understand how the other systems involved
in the process work. So Web security standards are introduced to make sure that all
systems meant to expose interoperable secure Web Services follow them in order to
let other standard clients interact with them.

The following figure shows a sample scenario that usually happens when a client
tries to access a secured Web service. The WSP needs authentication to process the
WSC and a mediator is sitting before the WSP to log all incoming requests.

In our scenario, the client should sign the message it is sending in addition to
encrypting one of the Web service parameters named request-ID to prevent
any unauthorized party monitoring the communication from finding the
request-ID value.

What the above figure shows about clients accessing secured Web Services can be
summarized into the following steps:

1. Client requests security metadata from the service provider and the service
indicates that the client needs a security token from a particular trust
authority (Secure Token Service (STS) from now on) along with the STS
address. This step is transparent to the application and an application
developer does not need to know about it.

2. The client requests security metadata from the STS and the STS responds
with the type of security token to be used for further communication. This
step is transparent to the application.

Chapter 9

[241]

3. The client sends its credential as requested by the STS and the STS issues a
security token after verifying that credentials are valid and has the required
access level.

4. The client invokes the service by sending a signed message, which includes
the encrypted request ID and security tokens included in the message header
according to the related standards. The service provider verifies the token by
consulting the trust authority and verifies the message integrity by checking
its signature. If successful, the WSP will send the appropriated response back
to the client.

Multiple trust authorities can be chained to ensure that multiple consumer requests
can span between different domains and different enterprises.

In the above sample scenario, the WSC can be a developed using .NET framework
while the WSP is hosted in a Java EE container and the trust authority is developed
using C++ or any other language. To make it possible for such a scenario to
take place smoothly several standards were introduced to provide the industry
with security implantation guidelines that guarantee the interoperability
between different systems. These guidelines and specifications are developed or
recommended by different organization such as W3C, WS-I, OASIS, and others. The
most important standards and specifications related to Web Services are included in
the following table along with use of the standard in the above scenario. Although
some of these specifications are not directly introduced for Web Services they are still
playing a great role in the overall Web Services security.

Standard Description
WS-Security Specifies how integrity and confidentiality should be

enforced on a message as well as specifying the standard
way to communicate using authentication tokens like
username password, X.509 certificates, and others along
with the message. Steps 2 and 3 in the previous list
involve this standard.

WS-Trust Specifies how authentication tokens are issued, renewed,
and validated in a system of multiple consumers,
providers, and token-issuer services. Steps 2, 3, and 4.1
involve this standard.

WS-Policy Not directly related to Web Services security but a WSP
may use it to publish its security requirements and
capabilities. For example, which tokens the provider
accepts and tokens issued by which issuer are accepted
by the provider. Step 1 involves this standard.

Securing Web Services by OpenSSO

[242]

Standard Description
XML Encryption Introduced by W3C, specifies how we can encrypt

content of an XML element and later on decrypt it.
Encrypting the request ID involves XML Encryption.

XML Signature Specifies the structure of a digital signature we can use
to sign XML documents to ensure their integrity. Signing
the XML message guarantees the integrity involving this
standard.

WS-SecureConversation As the name implies, the standard specifies how we
can have a security context in the course of exchanging
multiple SOAP messages. The standard specifies
something similar to TLS in classic Web.

WS-Federation Defines mechanisms to allow different security systems
with internal security realms to broker information on
identities and identity attributes. If we were going to
use multiple trust authorities we could have used
WS-Federation.

SAML The Security Assertion Markup Language tries to
solve the SSO problem in the Web Services realm. The
aim of SAML is specifying a standard to let a WSC
communicate its authentication and authorization to a
WSP. If we were going to use multiple trust authorities
we could have used SAML.

WS-I Basic Security Profile It specifies how different WS-Security elements should
be interpreted and dealt with to achieve the maximum
possible interoperability.

As you can see, we have many different standards and recommendations, which we
must adhere to achieve a certain level of interoperability. The good news is that most
of these standards are under the hood and we as developers are not dealing with
them in depth. Instead, we deal with a fine set of APIs provided in different Web
Services implementation, like Metro, to develop interoperable Web Services.
The following figure shows how these standards are related to each other:

Chapter 9

[243]

As you can see, the heaviest standard is the WS-SecureConversation, which virtually
depends on more than five other standards. There are some other specifications and
recommendations for Web Services security that are not widely in use. Some of them
are listed below:

The eXtensible Access Control Markup Language (XACML) specifies how
to describe and interpret access control policies
The XML Key Management Specification (XKMS) specifies protocols for
distributing and registering public keys, suitable for use in conjunction with
XML Signature and XML Encryption

Now that you understand the jargons and saw which standards we have in
WS-Security, let's take a brief look at the relation between WS-Trust and WS-Security
when it comes to authentication and authorization. WS-Security defines required
standards that allows us to include an authentication or authorization information
into a SOAP message. The included information is tampering- and sniffing-proof.
WS-Security defines several types of credentials that can be included into the
SOAP message to let the service provider check for authentication or authorization.
Important credential tokens are username, X.509 certificate, Kerberos ticket,
and SAML assertion. WS-Trust on the other hand defines standards for issuing,
renewing, and validating security tokens, which is referred to as STS. These tokens
are used by WS-Security to include them in the SAML assertions.

•

•

Securing Web Services by OpenSSO

[244]

We said that XML Encryption, XML Digital Signature (XML-DSig), and
WS-SecureConversation are working together to provide a functionality similar
to what we have in TLS. Let's see the differences between TLS and message
security-related specifications. The following table shows how TLS and message
level security are different.

TLS Message level security
Uses SSL. Does not use SSL.
None or all stream protection: Whole
data pipe is protected by SSL, no
selective protection increases the
processing overhead.

Selective protection: Selected XML
elements are protected.

Does not work with Intermediaries that
may monitor, or audit, or preprocess the
SOAP messages.

Any mediator sitting between WSC
and WSP can read unsecured parts
of the message for logging, audition,
preprocessing, load balancing, and so on.

Based on well-established standards. Based on newer standards.
Well-known key management. More complex key management.

Understanding SOAP message structure
The Simple Object Access Protocol (SOAP) is the base of Web Services
communication as it specifies how data should be packed to be understandable to
the Web service provider when it receives a request and to the Web service consumer
when it receives the response back from the provider.

SOAP messages are XML documents with a defined schema. Each message has
an envelope inside which we have a header and a body. The body of the message
carries the business-related information, like response to a stock quote request and
the header carries metadata, such as information like QoS, security, and others. The
following figure shows the structure of a SOAP message:

Chapter 9

[245]

Developing secure Web Services
In this section we will develop a simple Web service, which will echo an incoming
string to demonstrate how we can use OpenSSO to enforce a different level of
security on the SOAP messages level.

We can develop the sample Web service using any IDE or using the JAX-WS
development tools like wsgen and import. I leave the service development to
your capable hands and only focus on the security portion of the story.

The best IDE that I can suggest is NetBeans IDE 6.8 or a newer version.
NetBeans IDE is well integrated with GlassFish and provides us with
superb support for Java EE software development.

Securing Web Services by OpenSSO

[246]

The source code for the Echo class right after developing looks like the
following snippet:

@WebService()
public class Echo {

 /**
 * Web service operation
 */
 @WebMethod(operationName = "echoString")
 public String echoString(@WebParam(name = "stringToecho")
 String stringToecho) {
 return "Echoing " + stringToecho;
 }
}

As you can see, we have nothing but a plain method echoing the string it receives.
We will develop the service consumer code later on after we understand more
concepts of the OpenSSO Web Services security.

Enforcing security measures on the consumer and provider means that the service
container in the WSP side and the execution environment or the container in the
WSC side should have a way to communicate with the OpenSSO server. They need
this to query the OpenSSO server about the security measures, validate security
tokens, place the audition events, and so on. The JAX-WS in general, and the close
integration between the OpenSSO and GlassFish in particular, provides us a neat and
easy integration of OpenSSO Web Services security agents into GlassFish. Integrating
the OpenSSO Web service security agent with other containers like Apache Tomcat,
IBM WebSphere, and Oracle WebLogic server is possible with a manual installation
process instead of using the Web Services security agent installation application.

The security agent can be used in Java SE environment as well as to enforce security
measures on the client communication with the service providers.

Chapter 9

[247]

A simple scenario using OpenSSO Web Services security will involve a set of
OpenSSO components. These components, along with their interactions, are
shown in the following figure:

Any client who wants to access service needs to provide the WSP a security token
issued by the specified STS and also needs to sign the messages it is sending to the
Web service. The previous figure shows how OpenSSO components, WSC, and WSP
fits in the scenario.

What happens in the communication between the WSP and WSC is as follows:

1. The WSS agent in the client side will secure the outbound messages by
including the security token inside the SOAP header. The token will receive
its validity from the OpenSSO server service like the STS.

2. The WSS agent in the server side will validate inbound messages for the
security token and check the token status with the OpenSSO server.

3. The WSS agent in the server side will place a security token in the SOAP
header of any outbound response.

4. The WSS agent in the client side will validate inbound messages by checking
the security token authenticity with the OpenSSO server.

The figure illustrates the case when the client side is a Java SE client using the
programmatic method to create the security tokens. If running inside a container
with WSS agent installed, the agent can take care of inserting the security tokens
automatically.

Securing Web Services by OpenSSO

[248]

Downloading and installing Web Services
security agents
We used a Java EE security Policy Agent to secure the classic Java EE application
and now we are going to use another security Policy Agent that can enforce security
over Web Services instead of enforcing it on Java EE applications. Download the
latest nightly build of OpenSSO Web Services security providers from http://www.
forgerock.org/downloads/openam/wssagents/nightly/openssowssproviders.
zip and extract it in a directory, which we will call wss_agent_dir. Before
continuing with these steps make sure that:

The agent server is stopped and not running.
The OpenSSO server is up and running.
Create a password file containing a single line which, is the Agent
Authentication Password. For example, the file name is wsspassword.pwd
and its content is one line as follows:

adminadmin

I assume the following is our current configuration for the installation process.

Configuration Item Description
OpenSSO server We assume that OpenSSO is running on

http://127.0.0.1:8080/opensso.
Agent server We assume that agent server ports are as stated above.
Password file We assume that we have the password file created and

it is located at /opt/wsspassword.pwd.

After understanding the configuration we can use the following steps to install the
Web Services security agent.

1. Now, navigate to wss_agent_dir/bin and get ready to install the agent into
the agent server. If you are in Linux or UNIX platform you need to give the
execution permission to the wssagentadmin file. You can do it using the
following command:

 chmod +x wssagentadmin

Start the installation with the following command:
 ./wssagentadmin --install --saveResponse /opt/response.resp

•
•
•

Chapter 9

[249]

We used two parameters for the wssagentadmin command—the first
parameter tells the wssagentadmin that we want to install a new agent and
the second parameter asks the wssagentadmin to save our responses to the
wssagentadmin configuration questions in file for later use. We will discuss
all wssagentadmin parameters in the next table.

2. After we execute the command, it will shows a license agreement which we
should accept. After accepting the license, wssagentadmin will ask a series
of questions included in the following table:

Question Description and our answer
Enter the Application Server Config
Directory Path

We should provide a path like:
domains_dir/domain2/config.

OpenSSO server URL We should provide a fully-qualified name
if we need SSO and its features (discussed
in the previous chapter) or a plain URL
similar to http://127.0.0.1:8080/
opensso if we do not need SSO features.

Enter the Agent Profile name A unique name for this agent, something
like gfbook_wss_agent.

Enter the path to the password file Full path to the password file we created
in the previous step: /opt/wsspassword.
pwd.

When the agent installation successfully finishes, we can see a new
directory created inside the wss_agent_dir named WSSAgent_001. If it
is not the first agent instance installation we can expect the 001 to be
something else, showing how many agent instances we've installed using
the wss_agent_dir as an installation base. The WSSAgent_001 directory
contains the following directories:

A logs directory containing logfile and debug messages if
debug mode is enabled
A config directory that includes the AMConfig.properties
file, containing the agent instance bootstrap attributes

3. Now we should continue our work in the OpenSSO administration console.
Navigate to http://127.0.0.1:8080/opensso and log in using amadmin
and your specified password.

°

°

Securing Web Services by OpenSSO

[250]

4. Go to Access Control | Default realm | Agents, you should see a window
similar to the following figure. Most of our work will be with the Web
Service Client and Web Service Provider sections.

Now we need to create two security profiles—one for our WSP and one for our WSC
to let them use the OpenSSO Web service security agent.

Creating a Web Service Client profile
The Web Service Client agent profile specifies the configuration that is used to secure
the outbound Web service requests from a Web service client. The profile name
should be unique across all agents. To create the profile:

1. Go to the Web Service Client tab and click on the New button under the
Agent panel.

2. Specify the required attribute for creating the profile as follows and then click
on the Create button to create the profile.

Name: EchoService_Client or anything else meaningful
to you
Password: adminadmin

3. Click on the EchoService_Client profile to open the configuration page.

°

°

Chapter 9

[251]

4. Here we can specify which security mechanism is accessible to our client. We
will select STSSecurity to use the STS of OpenSSO for issuing the security
tokens. When we select STSSecurity the option for STS Configuration will
get enabled and we can select one of the available STS Client profiles, for
example the default profile which is named SecurityTokenService.

5. Make sure that Preserve Security Headers in Message is selected.
6. Go down to the Signing and Encryption section. Make sure that all of the

following items are selected because we want to sign the outgoing requests
messages and later on verify the received responses to ensure that the
message is not tampered with during transmission. We will discuss the
signing and signature verification in more detail at the end of this section.

Is Request Signed Enabled
Is Response Signature Verified

7. Now we should specify the Web service endpoint we want to
enforce these measures for. In our example the endpoint URL is
http://localhost:38080/EchoService/EchoService.

8. Save the changes by clicking on the Save button.

The WSC profile is created. Now we are going to create the provider profile.

Creating a Web Service Provider profile
The Web Service Provider profile specifies the configuration that is used to perform
the following tasks:

Validating inbound Web service requests from Web service clients
Securing outbound responses according to the configuration

To create the provider follow these steps:

1. Navigate to the Web Service Provider tab under the Agents tab and
click New.

2. Specify a name and a password for the profile and click on the Create button.
For example:

Name: EchoService_Provider or anything else meaningful
to you
Password: adminadmin

3. Click on the EchoService_Provider to edit its configuration.
4. Select all Security Mechanisms. And make sure that Preserve Security

Headers in Message is selected.

°
°

•
•

°

°

Securing Web Services by OpenSSO

[252]

5. Now we should specify Signing and Encryption configurations. Make sure
that all of the following items are selected. We are enforcing a signature
verification of any request and signing our response so that WSC can verify
the responses it receives before delivering them to the actual client code. We
will discuss the signing and signature verification in more detail at the end of
this section. The items to be kept selected are:

Is Request Signature Verified
Is Response Signed Enabled

6. In the End Points section specify the Web service end point we
want to enforce these measures for it. In our example the endpoint
is http://localhost:38080/EchoService/EchoService.

7. Save the changes by clicking on the Save button.

We are done creating a Web Service Provider profile. The next step, and last one
in OpenSSO administration console, is updating the Agent Authenticator Profile.
Updating this profile will let the agent authenticator access the read-only attributes
of allowed agent. To do so:

1. In the Agents tab click on the Agent Authenticator and then click on
agentAuth to open its editor page.

2. Add the EchoService_Provider and EchoService_Client from the list of
available agent profiles to the list of selected profiles and click on the Save
button. The following figure shows the agentAuth edit page:

°
°

Chapter 9

[253]

After finishing step 2 we are done with configuring the security provider profiles.

Securing the Echo Web Service
We do not need to do anything special to secure the Echo Web service. The policies
we specified in the WSP profile will be enforced automatically. So this section of the
book is complete.

Now let's turn to developing a WSC and see what we need to do in order to get the
client-side WSS integrated into our application.

Developing an Echo Service Consumer
We will develop the client application on top of JAX-WS 2.0 and assuming that you
know how to use your IDE to develop a Java SE application I will only include the
source code for the main parts of the WSC.

The WSS client agent will integrate with our Java SE application, so we need to
include some libraries in the application classpath. The following list shows all that
we need to include in the classpath. Remember that these libraries are in addition to
JAX-WS (Metro 2.0 in our case) required libraries.

wss_agent_dir/lib/openssoclientsdk.jar

wss_agent_dir/lib/opensso-sharedlib.jar

wss_agent_dir/lib/openssowssproviders.jar

These libraries contain all the necessary classes that the WSC agent requires to
interact with the OpenSSO server and to enforce the required securities.

The WSS client agent needs to interact with the OpenSSO server, so we should have
a bootstrap file to boot the agent with required information like OpenSSO address,
shared secret, and other attributes. This file is named AMConfig.properties and is
located inside the agent instance config directory. In case you forgot, the directory
is located at wss_agent_dir/WSSAgent_001/config. We should place this file in the
application classpath, for example in the source code default package.

Now, let's see how we can use the WSS Provider to enforce the security we defined
in the OpenSSO administration console for the EchoService_Client profile.

The complete source code for the sample application is included in the code
bundle. Here we will only evaluate the portion related to WSS agents and Web
Services security.

•

•

•

Securing Web Services by OpenSSO

[254]

The overall procedure of invoking a Web service using a WSS provider involves the
following steps:

1. Creating the SOAP message as we usually do when we are invoking
unsecured Web Services.

2. Initializing an OpenSSO WSS handler for the profile we created to enforce
the security on the SOAP message.

3. Securing the message using the handler.
4. Sending the message to the service provider.

Now let's take a look at the mentioned steps in source codes that actually performs
the job. Starting with the step 1 snippet which is as follows:

String providerName = "EchoService_Client";
StringBuffer soapMessage = prepareRequestSOAPMessage("Sample
 String");
MimeHeaders mimeHeader = new MimeHeaders();
mimeHeader.addHeader("Content-Type", "text/xml");
MessageFactory msgFactory = MessageFactory.newInstance();
SOAPMessage message = msgFactory.createMessage(mimeHeader,
 new ByteArrayInputStream(soapMessage.toString().getBytes()));

Here is the detailed explanation of what is happening in the source code.

1. In the above snippet we only defined a variable containing the name of
the WSC profile we want to use and we previously created in OpenSSO.
The snippet also invokes a method, which creates a SOAP request for our
EchoService. Now it's time to move on to step 2.
SOAPRequestHandler handler = new SOAPRequestHandler();
HashMap params = new HashMap();
params.put("providername", providerName);
handler.init(params);
ProviderConfig pc = ProviderConfig.getProvider(providerName,
 ProviderConfig.WSC);

2. As you can see in the snippet, we initialized the SOAPRequestHandler
using the information we stored in the EchoService_Client profile on
the OpenSSO server.
SOAPMessage encMessage = handler.secureRequest(
 message, new Subject(), params);

3. We enforce the security requirements on the message using the created
handler. We are passing an empty subject to the method because we did
not configure our WSP to enforce authentication. In the next section we will
discuss how we can enable authentication on the WSP for inbound requests.
String response = invokeEchoService(pc.getWSPEndpoint(),request);

Chapter 9

[255]

4. Finally in the last step, as shown in the above snippet, we are sending the
message to the and receive the response back from the Echo Web service.

As you just saw we only enforced signing and encryption of SOAP messages in
the WSP and WSC profiles configuration. If you look more closely at the WSC and
WSP configuration pages you can find a section named Key Store as shown in the
following figure:

In this configuration section we can specify which keystore we want to use and
which key in the specified keystore should be used to sign the messages using the
XML Signature standard that we discussed previously.

By default, as you can see in the figure, OpenSSO uses its generated keystore with
a key pair identified with test alias. We can specify our own keystore file and then
use the alias of the private and public keys which we want to use to sign, encrypt,
verify, and decrypt the SOAP messages.

Authenticating a service call using WSP
In the previous section we learned how we can use WSC and WSP to sign and verify
the signature of the message prior to consuming it. Now we want to discuss how
to protect a Web service by placing an authentication layer in front of the service to
ensure that only the users with valid credentials can invoke our service.

Securing Web Services by OpenSSO

[256]

So far we saw that we can enforce signing and verification by changing some
configuration elements. To add authentication, we only need to adjust few settings in
the WSP configuration to enforce authentication and specify which security service
we want it to authenticate the users against. In the WSP part we need to specify the
security mechanism we want to use and configure the mechanism to comply with
our environment and requirements.

Configuring WSP for enforcing authentication
Open the EchoService_Provider configuration page by going to Authentication |
Agents | Web Service Provider, and then the EchoService_Provider link in the list
of agents. Now under the Security Mechanism subsection of the Security section we
can see a list of security mechanisms that we can select to specify types of credentials
we accept during the request authentication. For example, if we select only the
UserNameToken the provider will not accept SAML or any other type of token.
The following table describes important security mechanisms supported in
OpenSSO WSP.

Security Mechanism Description
X509Token Uses the Public Key Infrastructure (PKI) to authenticate the

client. In this method, both client and server trust the CA issued
to the other party's certificate or they trust each other's public
keys. This mechanism is similar to CLIENT-CERT authentication
method we discussed in Chapter 1. For more information take
a look at http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-x509-token-profile-1.0.pdf.

SAML-HolderOfKey A WSC should supply a SAML assertion with the holder-
of-key confirmation method to identify the requester and
to authenticate itself to the WSP. SAML-HolderOfKey
is derived of the WS-I Basic Security Profile. For more
information take a look at http://www.oasis-open.org/
committees/download.php/16768/wss-v1.1-spec-os-
SAMLTokenProfile.pdf.

LibertyX509Token Secures the Web service with the X.509 Certificate Token
Profile. Although it is similar to X509Token it complies
with the processing rules defined by the Liberty Alliance
Project. For more information take a look at http://
www.projectliberty.org/liberty/content/
download/1300/8265/file/liberty-idwsf-security-
mechanisms-v1.2.pdf.

Chapter 9

[257]

Security Mechanism Description
SAML-SenderVouches Secures the Web service with SAML and a different

confirmation method. The difference is the way that the
assertion which confirms that WSC is acting on behalf of the
SAML token's owner. For more information take a look at
http://www.oasis-open.org/committees/download.
php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf.

KerberosToken Carries basic information (username and optionally, a
password or shared secret) in a Kerberos token, for purposes
of authenticating the user identity to the WSP. For more
information take a look at http://www.oasis-open.org/
committees/download.php/16788/wss-v1.1-spec-os-
KerberosTokenProfile.pdf.

UserNameToken Secures the Web service with a username and password
and optionally, a signature of the requester. In this
method WSC identifies the requester by username and,
optionally, a password (or a shared secret or password
equivalent) to authenticate its identity to the WSP. For more
information take a look at http://docs.oasis-open.
org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0.pdf.

LibertySAMLToken Secures the Web service with the Liberty SAML Token
Profile. Although it is similar to SAML-SenderVouches, it
complies with the processing rules defined by the Liberty
Alliance Project. For more information take a look at
http://www.oasis-open.org/committees/download.
php/16768/wss-v1.1-spec-os-SAMLTokenProfile.pdf.

Now that we understand what type of tokens we can configure the WSP to accept,
let's enforce authentication using a username and a password for any invocation of
our Web service method. To do so:

1. Under the Select Mechanism section, tick the UserNameToken.
2. For the Authentication Chain, select the ldapService in the drop-down box.
3. Leave all other options as they are and click on the Save button to save the

configuration.

We are finished with configuring the WSP, now we need to configure the WSC to
use the UserNameToken mechanism to carry the client credentials to the server for
authentication.

Securing Web Services by OpenSSO

[258]

Configuring WSC to support authentication
Configuring the WSC is just few clicks away. The following instructions shows how
to configure the WSC to use the UserNameToken mechanism:

1. Open the EchoService_Client configuration page by clicking on
Authentication | Agents | Web Service Client and then EchoService_
Client link in the list of agents.

2. Under the Security Mechanism select the UserNameToken.
3. Click on Save button.

We are done with configuring both WSC and WSP to use the UserNameToken
mechanism. The last step in running our sample application with UserNameToken
mechanism support is changing the client source code to provide the WSC with the
credentials we want to use for authenticating the request.

You should remember from Chapter 7 that we added few users to our
OpenSSO user store to test our sample web application. You should have
noticed that we use the same authentication chain that uses the same
module instance where we stored our test users. So we can use the same
users and passwords to test the Web service sample.

To change the sample code we only need to change the invocation of handler.
secureRequest (to include a properly initialized Subject instance) as follows:

List userCredentials = new ArrayList();
PasswordCredential credential = new PasswordCredential("james",
 "james");

userCredentials.add(credential);
final Subject subj = new Subject();
subj.getPrivateCredentials().add(userCredentials);

SOAPMessage encMessage = handler.secureRequest(message,
 subj, params);

As you can see we are simply creating a PasswordCredential object using a valid
username and password, then we are adding this credential to the Subject instance,
and finally passing the properly initialized Subject instance to the handler.
secureRequest method.

Now if we run the sample application an authentication goes through prior to
invoking the Web service, and if the provided username and password are valid,
the invocation will go through.

Chapter 9

[259]

Web Services security is a vast and major topic of which we only scratched the
surface in this chapter. There are tons of different standards and specifications in
play to integrate and secure complex Web Services deployments. You can read
more about OpenSSO and Web Services security in the OpenSSO reference manuals
available at http://docs.sun.com/app/docs/coll/1767.1.

Summary
In this chapter we looked at Web Services security with OpenSSO capabilities in
mind. We discussed what the major standards are in Web Services security and what
the capabilities of OpenSSO are for enforcing security on Web Services. Finally, we
installed OpenSSO Web Services Security Provider Agent and developed a simple,
secure pair of WSP and WSC.

Index
Symbols
--agentInfo command 224
--custom-install command 224
--encrypt command 224
--getEncryptKey command 224
--help command 224
--host, asadmin options 126
--install command 224
--interactive, asadmin options 126
--listAgents command 224
--migrate command 224
--passwordfile, asadmin options 126
--port, asadmin options 126
--secure, asadmin options 126
--terse, asadmin options 126
--uninstallAll command 224
--uninstall command 224
--usage command 224
--user, asadmin options 126
--version command 224
./backup --help command 166
/dev/sda1 parameter 109
/opt parameter 109
@DeclareRoles 31
@DeclareRoles({"ROLE_1", "ROLE_2",

"ROLE_N"}) 25
@DenyAll 31
@HttpConstraint 25
@HttpMethodConstraint 25
@PermitAll 31, 82
@PersistenceContext 82
@Resource 82
@RolesAllowed 31
@RolesAllowed({"manager"}) 82
@RolesAllowed("employee") 82
@RunAs 31

@RunAs(value="ROLE_NAME") 25
@ServletSecurity 25
@Stateless 82
0 parameter 109
1 parameter 109

A
ACC

about 9
application client module, deploying 92, 93
configuring 98
running 93
security, configuring 97-100

Access Control Markup Language (XACML)
181

AccessRestricted.html file 88
administration chanels, GlassFish

Command-Line Interface (CLI) 125
Java Management Extensions (JMX) 125
RESTful administration interface 126
Web Administration Console 126

agentadmin commands
--agentInfo command 224
--custom-install command 224
--encrypt command 224
--getEncryptKey command 224
--help command 224
--install command 224
--listAgents command 224
--migrate command 224
--uninstallAll command 224
--uninstall command 224
--usage command 224
--version command 224
about 221

[262]

ALL, GlassFish policy agent 217
annotations, EJB modules

@DeclareRoles 31
@DenyAll 31
@PermitAll 31
@RolesAllowed 31
@RunAs 31

annotations, Java EE application
@DeclareRoles({"ROLE_1", "ROLE_2",

"ROLE_N"}) 25
@RunAs(value="ROLE_NAME") 25
@ServletSecurity 25
about 25

application, securing
OpenSSO used 199

Application Client Container. See ACC
application client module

about 37, 38
ACC 39
Application Client Container 37
application-client.xml descriptor file 37
application-client.xml file 38
authentication 94
authentication mechanism attribute 95
Callbackhandler attribute 95
constraint EJB resource, accessing 37
deploying, in ACC 92, 93
deployment descriptor files 38
IOR security 96
security realm 94
security realm attribute 95
SSL and transport security attribute 95
SSL mutual authentication 97
sun-acc.xml file 38
sun-application-client.xml file 38
transport security 94

application server level
GlassFish policy file 117, 118
GlassFish securing, security manager used

116
Java Runtime environment, securing from

unprivileged access 112, 113
policy manager, implementing 113, 114,

115
restrictions, implementing 112
security policy, defining in platform policy

file 117

asadmin command 129
asadmin options

--host 126
--interactive 126
--passwordfile 126
--port 126
--secure 126
--terse 126
--user 126

asadmin utility
--savelogin=true option 130
about 126, 127
login command 131
remote commands, executing 127

assign group property, JDBC realm 53
assign group property, LDAP realm 58
assign groups property, file realm 45
asymmetric cryptography 62
asynchronous replication infrastructure

setting up 175, 176
Auditing 121
auditing system, GlassFish

custom auditing modules, creating 123, 124
default auditing module, enabling 122
EJB method invocation 121
server shutdown 121
server startup 121
web resource invocation 121
Web service invocation 121
Web service invocation, EJB method as 121

auth-method element 18
auth/accessRestricted.html element, presen-

tation layer 83
auth/login.html element, presentation layer

83
auth/loginError.html element, presentation

layer 83
auth/logout.jsp element, presentation layer

83
authenticateUser method 73
authentication

about 16, 94
methods 18
realm authentication 198
user authentication 199

authentication, methods
Digest Authentication (DIGEST) 18

[263]

Form-Based Authentication (FORM) 18
HTTP BASIC Authentication (BASIC) 18
HTTPS Client Authentication

(CLIENT-CERT) 18
authentication, modules

Active Directory 196
Authentication Configuration 196
Data Store 196
HTTP Basic 196
JDBC 196
LDAP 196
SAE 196

Windows Desktop SSO 196
authentication frontend, implementing

about 87
Access Restricted page, implementing

88, 89
Login Error page, implementing 88
login page, implementing 87
Logout page, implementing 88

authentication level 197
authentication mechanism 95
authentication service 197

OPTIONAL module 197
REQUIRED module 197
REQUISITE module 197
SUFFICIENT module 197

authorization 16
authorization, OpenSSO

authorization, OpenSSOpolicy 184

B
backend, OpenDS

about 154
adminRoot 165
ads-truststore 165
backup 165
monitor 165
schema 165
task 165
userRoot 165

backup 160
backup, OpenDS

creating 164
server state backup, restoring 166, 167

base DN property, LDAP realm 58

blocks 108
boolean isUserInRole(String role) method

23
business layer. See persistence layer

C
cacert.jks

content, listing 64-66
CDSSO 180
Central Authentication Service (CAS) 182
certificate chain 63
certificate realm, security realm

about 61
asymmetric cryptography 62
cacert.jks content, listing 64-66
certificate chain 63
certificates, managing 64
CLIENT-CERT authentication type 61
digital certificate 61, 62
digital signature 63
keystore.jks content, listing 64-66
key stores 63, 64
private key 62
public key 62
root certificate 63
symmetric cryptography 62
trust stores 63, 64
valid certificate, installing 67
valid certificate, obtaining 66

certificates
managing 64

Certificate Signing Request. See CSR
change-master-password command 131
charset property, JDBC realm 53
chmod command 105
chown command 105
class name property, file realm 45
cleanSubject method 75
CLI

about 44, 125
asadmin and administration credentials

128-131
asadmin options 126
communication channel, securing 134
GlassFish domain protecting, master

password used 131

[264]

passwords, changing 132
passwords, protecting with encryption

132-134
security, implementing 128
using, for administration tasks 126, 127

codeBase keyword 114
com.sun.appserv.security.AuditModule

abstract class 123
Command-Line Interface. See CLI
command script file, OpenDS

backup 160
control-panel 160
dsconfig 160
dsreplication 160
ldapsearch 160
restore 160
start-ds 160
status 160
stop-ds 160

conditions 213
CONFIDENTIAL level 22
connector module 8
constraints

defining, on resources 15, 16
container policy providers, GlassFish 120,

121
contract interface

getSupportedMessageTypes method 75
initialize method 75
secureResponse method 75
validateRequest method 75

control-panel 160
Conversion GUI implementation,

presentation layer
about 84, 85
authentication frontend, implementing 87
Converter servlet, implementing 85, 86
deployment descriptors, configuring 89-91
security realm, specifying 91, 92

Conversion session bean, local interface 80
Converter Servlet element, presentation

layer 83
create-auth-realm command 44
credential 14
cryptography

using 23
CSR 67

custom realm, security realm
about 71
configuring 74
developing, steps 71
installing 74
JAAS LoginModule, implementing 71, 72
realm class, implementing 73

D
database password property, JDBC realm

53
database user property, JDBC realm 53
data confidentiality (CONFIDENTIAL) 22
data integrity (INTEGRAL) 22
Data Interchange Format (RFC 2849) 149
defaults parameter 109
delete-auth-realm command 44
delete-password-alias command 134
deployment descriptors, Web module

about 13
used, for authorizing 19

deployment descriptors element,
presentation layer 83

digest algorithm property, JDBC realm 53
Digest Authentication (DIGEST) 18
digital certificate 61
digital signature 63
Directory Access Protocol (DAP) 151
Directory Information Tree. See DIT
directory property, LDAP realm 58
directory service

about 148
connecting, to software systems 149, 150
employee information, storing 148
objectClass attribute 149

Directory Services Markup Language
(DSML) 149

directory structure, OpenDS 158
Distinguished Name. See DN
DIT

about 148
distribution 173

DN 148
doFilter method 206
dsconfig 160

[265]

DSML gateway
configuring 159
installing 158
testing 159, 160

DSML tools 159
dsreplication 160
dsreplication command 175
dump2fs 110

E
EAR 9
EAR file 92
Echo Web service

Echo Service Consumer, developing
253-255

Web service invoking, WSS provider used
254

WSS client agent 253
edquota -t 111
edquota command 110
EIS 8
EJB

about 8
entity beans 26
message-driven beans (MDB) 26
session beans 26

EJB3
persistence layer, implementing 80

EJBCA 139
EJB module

about 8
application client module 37-39
authentication, enforcing 35, 36
EJB interceptors, using for auditing purpose

34, 35
EJB interceptors, using for security purpose

34, 35
entity beans 26
message-driven beans (MDB) 26
security context accessing,

programmatically 33
session beans 26
Web Services security 236

EJB modules
@DeclareRoles 31
@DenyAll 31

@PermitAll 31
@RolesAllowed 31
@RunAs 31
about 26
annotation 28
authentication 27
constraints defining, annotations used 28
constraints defining, deployment descriptor

used 28
deployment descriptor 28
Employee entity bean, methods 28
method-name element 30
method-permission element, using 30
role-name 30
roles, mapping to groups 33
roles, mapping to principals 33
securing, annotations used 30
security-role, using 30
security view, adding 29

Employee entity bean
revising 32, 33

Employee entity bean, methods
getEvaluationRecords method 28
getName method 28
promote method 28

encoding property, JDBC realm 53
Enterprise Application Archive. See EAR
Enterprise Information System. See EIS
Enterprise Java Beans. See EJB
Enterprise Sign On-Engine (ESOE) 182
entity beans 26, 27
errors=remount parameter 109
ext3 parameter 109
eXtensible Access Control Markup

Language (XACML) 243

F
federation management, OpenSSO 185
Fedora Directory Server 151
file realm, security realm

about 45
assign groups property 45
class name property 45
creating 45
JAAS context property 45
key file property 45

[266]

name property 45
properties 45, 46
provisioning interface, using 46
sample application 47, 48
testing 47
values 45

Form-Based Authentication (FORM) 18
FORM authentication method 87
forwardCookies method 207

G
gedit 111
Generic Security Services Application

Program Interface (GSSAPI) 76
getCallerPrincipal().getName() method 82
getCallerPrincipal method 25, 34
getCookieNamesToFOrward method 208
getEvaluationRecords method 28
GET method 207
getName method 28
getSupportedMessageTypes method 75
GlassFish

administration channels 125
auditing system 121
container policy providers 120, 121
custom auditing modules, creating 123, 124
custom authentication method, adding

75, 76
default auditing module, enabling 122
Web Services authentication, EJB-based

237, 238
file system access, restricting 106
grace period 108
hard limit 108
installation directory, creating 105
installing, in secure way 104, 105
J2EE Agent 3.0, installing 218, 220
Java Runtime environment, securing from

unprivileged access 112, 113
listeners 135
network interfaces access, restricting 106
policies, applying on deployed applications

separately 118-120
policy file 117, 118
policy manager, implementing 113-115
ports access, restricting 107

securing, security manager used 116
security policy, defining in platform policy

file 117
security realms 43
soft limit 108
storage usage limitation, enforcing 107, 108
user, creating 105
user, logging in as 106
user, quota implementing for 108-110
valid certificate, installing 66-70
valid certificate, obtaining 66-70

GlassFish CLI
security realms administrating, commands

44
GlassFish policy agent, modes

ALL 217
NONE 216
SSO_ONLY 216
URL_POLICY 216, 217

GlassFish user
creating 105
logging in as 106

GlassFish v3 custom realm development
URL 74

GNU nano 111
grace period 108
grant keyword 114
group 13
group-base-dn property, LDAP realm 59
group-search-filter property, LDAP realm

59
group-target property, LDAP realm 59
group name column property, JDBC realm

53
group table property, JDBC realm 53

H
handler.secureRequest method 258
hard limit 108
HTTP BASIC Authentication (BASIC) 18
HTTP listeners

about 135, 136
Certificate Nickname option 138
Client Authentication option 138
configuring 136
HTTP request 136

[267]

HTTPS request 136
Key Store option 138
Max Certificate Length option 138
multiple network interfaces, assigning 137
securing 136
SSL3 option 138
TLS option 138
Trust Algorithm option 138
Trust Store option 138

HTTP methods 12
HTTPS Client Authentication

(CLIENT-CERT) 18
HTTPServletRequest class, methods

Principal getUserPrincipal() 23
String getAuthType() 23
String getRemoteUser() 23
String getScheme() 24
void login(String username, String

password) 24
Void logout() 24

HttpServletResponse object 88

I
id command 106
identity federation 181
Identity Management (IDM) 211
Identity management systems. See IDM
identity storage 41
IDM 41
IETF 149
IIOP 96
IIOP Listener 135
import-ldif command 163
Index.jsp element, presentation layer 83
index.jsp file 84
initialize-all command 176
initialize method 75
init method 73
inodes 108
installation, OpenDS

downloading 154
from command line 156
steps 155
system requirements 154

installation, OpenSSO
in GlassFish 190-195

Internet Engineering Task Force. See IETF
Internet Inter-Orb Protocol. See IIOP
iptables command 106, 107
isAuthenticated method 206
isCallerInRole method 34

J
j_password 87
j_security_check 87
j_username 87
J2EE_POLICY, GlassFish policy agent 217
J2EE Agent 3.0

agentadmin commands 224
Agent application (agentapp), configuration

item 221
agent profile, adding to OpenSSO server

222, 223
agent server, configuration item 221
bin directory 219
config directory 219, 223
configuration-related questions 222
data directory 219
downloadable package directory structure

219
downloading 218
etc directory 219
installer-logs directory 219
installing 220, 221
lib directory 219
locale directory 219
logs directory 223
OpenSSO server, configuration item 221
password file, configuration item 221
sampleapp directory 219

J2EE Agent 3.0 for GlassFish/Sun Applica-
tion Server 214

J2EE Agent 3.0 for JBoss 4.x, 5.x 214
J2EE Agent 3.0 for Jetty 6.1 214
J2EE Agent 3.0 for Tomcat 6 214
J2EE Agent 3.0 for WebLogic 10 214
J2EE Agent 3.0 for WebSphere 214
JAAS 42
JAAS context property, file realm 45, 46
JAAS context property, LDAP realm 58
JAAS LoginModule

implementing 71, 72

[268]

java.io.FilePermission 115
java.io.SerializablePermission 115
java.lang.reflect.ReflectPermission 115
java.lang.RuntimePermission 115
java.net.NetPermission 115
java.net.SocketPermission 115
java.security.SecurityPermission 115
java.util.PropertyPermission 115
Java Authentication and Authorization

Service. See JAAS
Java Authentication Service Provider

Interface for Containers. See JSR 196
Java EE application

about 7-11
annotations 25
application client module 8, 9
authentication, 16, 17
authentication, adding to web application

17, 18
authorization 16, 17
connector module 8
constraints, defining on resources 15, 16
deployment descriptors 10
EJB module 8
files, without prefix 11
files, with sun- prefix 11
programmatic security, using in web

application 23, 24
sample application 78
security 13, 14, 77
security, requisites 77
security annotations 25
session information, managing 19-21
transport security, adding 21
users, authenticating 16
users, authorizing 16
Web module 8
Web module, protected resource accessing

11-13
Java EE application, sample application

about 78
application client module 79
business logic, analyzing 78, 79
EJB module 79
high-level functionality 78
implementing, bottom-up procedure used

79

security-related, requisites 79
Web module 79

Java EE application, securing
OpenSSO used 211, 212

Java EE architecture
overview 8

Java EE security. See Web Services security
Java Management Extensions. See JMX
Java Open Single Sign-On (JOSSO) 182
Java Runtime environment

securing, from unprivileged access 112, 113
Java SE application

application client module 92
javax.ejb.EJBContext interface

getCallerPrincipal method 34
isCallerInRole method 34

JBoss and virtual hosting
URL 141

JBoss SSO 182
JDBC realm, security realm

about 50
application, testing 55
assign group property 53
charset property 53
connection pool, creating 54
database, creating 50, 51
database password property 53
database user property 53
data source, creating 54
digest algorithm, selecting 55
digest algorithm property 53
encoding property 53
group name column property 53
group table property 53
JAAS context property 53
JdbcDigestRealm 53
JNDI property 53
MD5 algorithm 55
password column property 53
script, executing 51
user name column property 53
user table property 53

JMX 125
JMX connection handler

enabling 167-170
JMX listeners

about 135, 140

[269]

configuration, changing 140
viewing 140

JNDI property, JDBC realm 53
jsp/toCenti.jsp, presentation layer 83
jsp/toInch.jsp element, presentation layer

83
jsp/toMilli.jsp element, presentation layer

83
JSR 196

about 75
Spnego project 76

JXplorer 159

K
Kerberos plugin 76
KerberosToken, WSP security mechanisms

257
key file property, file realm 45, 46
keystore.jks

content, listing 64-66
keystore keyword 114

L
LDAP 41
LDAP realm, security realm

about 55
assign group property 58
base DN property 58
configuring, for Microsoft Active Directory

60, 61
creating 58
directory property 58
group-base-dn property 59
group-search-filter property 59
group-target property 59
JAAS context property 58
Microsoft Active Directory 55
search-bind-dn property 59
search-bind-password property 59
search-filter property 59

ldapsearch 160
LDAP security realm 91
LDAP server, operations

abandon 150
bind 150
compare 150

extended operation 150
modify distinguished name (DN) 150
object, adding 150
object, deleting 150
object, modifying 150
search 150
start TL 150
unbind 150

LDIF files
database content, exporting 163
importing 162

Liberty Alliance 181
Liberty Alliance Project Identity Federation

Framework (Liberty ID-FF) 185
Liberty Alliance Project Identity Web Serv-

ices Framework (Liberty ID-WSF)
185

Liberty ID-WSF 189
LibertySAMLToken, WSP security

mechanisms 257
Liberty tokens 189
LibertyX509Token, WSP security

mechanisms 256
Lightweight Directory Access Protocol. See

LDAP
Lightweight Directory Access Protocol

(LDAP, RFC 4510) 149
list-auth-realms command 44
list-password-aliases command 134
listeners

HTTP listener 135
IIOP Listener 135
JMX listener 135

login.html content 87
login command 130, 131
LoginError.html 88
logout.jsp file 88
logout command 105

M
Markup Language (SAML) 181
MDB 26
Message-Driven Beans. See MDB
message digest 63
message level security

message level securityand TLS,
specifications 244

[270]

method-name element 30
method-permission element 30
Microsoft Active Directory 55
module instance 196
multiple domains

hosting, one IP used 141, 142
virtual host creating page 143

N
name property, file realm 45
NONE, GlassFish policy agent 216
NONE level 22

O
OASIS 149
OpenDS

about 147-152
administrating 160
applications securing 199, 200
asynchronous replication infrastructure,

setting up 175, 176
backend and services 153
backend services 154
backup, creating 164-166
Berkeley DB Java Edition, using as data

store 153
command script file 160
control panel 156
data, backing up 163
data, importing 161, 162
data, restoring 163
database content, exporting into LDIF file

163
Directory Access Protocol (DAP) 151
directory structure 158
DIT 151
embedding 170, 171
features 152, 153
Fedora Directory Server 151
goals 151
installing 154
JMX connection handler, enabling 167-169
LDAP 151
LDIF files, importing 162
managing 160
OpenDSapplications, securing 199

OpenDSrealms 190
realms 190
replication mechanism 174
server state restoring, backups used

166, 167
Simple Network Monitoring Protocol

(SNMP) 152
OpenDS, in embedded mode

about 170
benefits 170, 171
environment, preparing 171, 172

OpenDS 2.2
downloading 56
installing 56-58

OpenID, Information Card 181
OpenID implementation 182
open network 21
OpenSolaris 103
OpenSSO

about 179, 181
architecture 188
client SDKs 182
components 182
configuring, for authentication and

authorization 194
extensions 182
functionalities 183
identity Web Services 184
installing, in GlassFish 190-195
Policy Agents 182
server 182
services 189
standards, support for 181
user authenticating, RESTful interface used

200-202
web-based administration console 189

OpenSSO, components
OpenSSO Client SDKs 182
OpenSSO extensions 182
OpenSSO Policy Agents 182
OpenSSO server 182

OpenSSO, functionalities
administration, ease 187
data store, configuration 187
deployment, ease 187
federation management 185
flexibility and extensibility 187

[271]

identity Web Services 186, 187
internationalization 187
performance, scalability, and availability

187
user access, controlling 183, 184
user data store independence 187
web and non-web-based resources 187
Web Services, identity 187

OpenSSO Agents. See OpenSSO Policy
Agents

OpenSSO Client SDKs 182
OpenSSO Extensions 182
OpenSSO Identity Web Services 184
OpenSSO Policy Agents

about 182, 212
application, protecting 216
configurations, requisites 216
elements 213
installing, into container 215
J2EE Agent 3.0 for GlassFish/Sun

Application Server 214
J2EE Agent 3.0 for JBoss 4.x, 5.x 214
J2EE Agent 3.0 for Jetty 6.1 214
J2EE Agent 3.0 for Tomcat 6 214
J2EE Agent 3.0 for WebLogic 10 214
J2EE Agent 3.0 for WebSphere 214
Web Agent 3.0 for Apache 2.0.x, 2.2.x 214
Web Agent 3.0 for Microsoft IIS 6, 7.0 214
Web Agent 3.0 for Proxy Server 4.0 214
Web Agent 3.0 for Webserver 7 214
working 215

OpenSSO Policy Agents, features
about 217
agent groups, managing 218
agents configuration, applying 218
centralized agent configuration, managing

217
installation process, controlling 218

OpenSSO Resource Center
OpenSSO Resource CenterURL 210

OpenSSO Server
OpenSSO Serverabout 182

Open Web Single Sign-On. See OpenSSO
operating system

features 104
file system access, restricting 106
GlassFish, installing 104, 105

GlassFish user, creating 105
GlassFish user, logging in as 106
Glassfish user, quota implementing 108,

109, 110
installation directory, creating 105
network interfaces access, restricting 106
ports access, restricting 107
quota definition files, editing 111
securing 102
securing, from GlassFish 103
security, defining 102
storage usage limitation, enforcing 107, 108

ORB listeners
about 139
configuring 139
IIOP listeners 140
viewing 139

OPTIONAL module 197

P
password column property, JDBC realm 53
PasswordCredential object 258
permission keyword 114
persistence layer

@PermitAll 82
@PersistenceContext 82
@Resource 82
@RolesAllowed({"manager"}) 82
@RolesAllowed("employee") 82
@Stateless 82
Conversion bean, implementation 81
Conversion session bean, local interface 80
entity bean, implementing 80
getCallerPrincipal().getName() method 82
implementing 80
persistence unit 82
persist method 82
Visit class, listing 80

persistence unit 82
persist method 82
policy

conditions 184, 213
response provider 184
rules 184
subjects 184

[272]

response provider 214
rules 213
subjects 213

policy file 117, 118
presentation layer

about 83
auth/accessRestricted.html element 83
auth/login.html element 83
auth/loginError.html element 83
auth/logout.jsp element 83
Conversion GUI, implementing 84
Converter Servlet element 83
deployment descriptors element 83
directory layout 84
Index.jsp element 83
jsp/toCenti.jsp element 83
jsp/toInch.jsp element 83
jsp/toMilli.jsp element 83
web module, content 84

principal 14
Principal getUserPrincipal() method 23
principal keyword 114
private key 62
promote method 28
public key 62

Q
quota.group 111
quota.user 111
quotaon command 109

R
RDN 148
realam authentication 198
Relative Distinguished Name. See RDN
Replicating Directory Information Tree

(DIT)
Asynchronous replication infrastructure,

setting up 175, 176
distribution 173
OpenDS, replication mechanism 174, 175

replication, OpenDS
assured replication 175
asynchronous replication 175

request-ID parameter 240
REQUIRE module 197

REQUISITE module 197
response provider 214
RESTful Administration interface 126
REST

for SSO 204
forwardCookies method 207
isAuthenticated method 206
logout operation, invoking 205
Servlet filter, implementing, 25
used, for authorizing 202

REST operations, OpenSSO
identity, removing 209

REST operations, OpenSSO Identity
Services

identities, searching for 209
identity, creating 209
identity details, updating 209
logging, performing 209
subject attributes, getting 209
user details, reading 209

restore 160
restore command 166
role

about 14
mapping to groups 33
mapping to principals 33

role-mapping element 40
root certificate 63
rules 213
run-as element 25, 34

S
SAML 242
SAML-HolderOfKey, WSP security

mechanisms 256
SAML-SenderVouches, WSP security

mechanisms 257
SAML assertion 189
sample application

access rules, defining 229-233
agent, configuring 226-228
descriptor files, changing 225, 226
placing, under OpenSSO protection 224

sample application, Java EE
about 78
business logic, analyzing 78, 79

[273]

search-bind-dn property, LDAP realm 59
search-bind-password property, LDAP

realm 59
search-filter property, LDAP realm 59
secureResponse method 75
Secure Token Service (STS) 240
security, Java EE

credential 14
group 13
principal 14
role 14
security realm 14
user 13

security-role-mapping element 92
security-role-ref element 25
security-role element 25
Security Assertion 181
security context

sharing between different applications, SSO
used 144

security manager
used, for securing GlassFish 116

security realms
about 14, 94
HTTP Basic Authentication 43
security assets, reusing 43
used, for authenticating 42

security realms, GlassFish
about 43
administrating 44
administrating, commands 44
certificate realm 61
creating, Web Console used 44
custom realms 71
file realm 45
JDBC realm 50
LDAP realm 55
Solaris realm 71

security role
in application level 39

Security Token Service (STS) 189
sendError() method 88
Server Authentication Module (SAM) 75
Service Provider Interface. See SPI
Service Provisioning Markup Language

(SPML) 149, 200
Servlet class 25

session-config element 20
session beans 27
session information

cookies 20
hidden form fields 20
managing 20
server side 20
URL Rewriting 20

signedBy keyword 114
Simple Object Access Protocol. See SOAP
Single sign-on. See SSO
SOAP

message structure 244
soft limit 108
Solaris realm, security realm 71
SPI 184
SPNEGO 76
Spring Security framework 182
SSO

about 180
enabling, in virtual server 145, 146
identity federation 181
security context, sharing between different

applications 144
SSO_ONLY, GlassFish policy agent 216
start-domain command 131
start-ds 160
status 160
stop-ds 160
stopServer method 172
String getAuthType() method 23
String getRemoteUser() method 23
String getScheme() method 24
subjects 213
su command 105
SUFFICIENT module 197
Sun OpenSSO Enterprise 8.0

Administration Guide
URL 199

symmetric cryptography 62
System.setSecurityManager() method 113

T
TLS

and message level security, specifications
244

[274]

toCenti.jsp file 86
toCentimeter.html 89
toInch.jsp file 86
toInch.jsp page 89
toInch method 119
toMilli.jsp file 86
transport security, Java EE specification

about 22, 94
any type of connection (NONE) 22
data confidentiality (CONFIDENTIAL) 22
data integrity (INTEGRAL) 22

tune2fs 110

U
Ubuntu 104
update-password-alias command 134
URL_POLICY, GlassFish policy agent 216
user

about 13
authenticating, RESTful interface used

200-203
user authentication 199

useradd command 105
user name property, JDBC realm 53
UserNameToken, WSP security mechanisms

257
userpassword attribute 161
user table property, JDBC realm 53
usrquota parameter 109

V
validateRequest method 75
virtual host

configuring on Geronimo, URL 141
virtual hosting and Tomcat

URL 141
virtual servers

__asadmin virtual server 142
about 141
SSO, enabling 145, 146

void login(String username, String pass-
word) method 24

Void logout() method 24

W
web.xml file 89, 90
Web Administration Console 129
Web Agent 3.0 for Apache 2.0.x, 2.2.x 214
Web Agent 3.0 for Microsoft IIS 6, 7.0 214
Web Agent 3.0 for Proxy Server 4.0 214
Web Agent 3.0 for Webserver 7 214
web application

authentication, adding 17, 18
programmatic security, using 23, 24

Web Console 44
Web module

about 8
deployment descriptors 13
Java EE, security 13, 14
protected resource, accessing 11-13
Web Services, securing 236

web security frameworks
Central Authentication Service (CAS) 182
Enterprise Sign On-Engine (ESOE) 182
Java Open Single Sign-On (JOSSO) 182
JBoss SSO 182

Web Service Client profile
creating 250, 251

Web service consumer. See WSC
Web Service Producer. See WSP
Web Service Provider profile

creating 251, 252
Web Services

accessing, sample scenario 240
client agent profile, creating 250, 251
developing 245, 246
Echo class 246
Xtensible Access Control Markup Language

(XACML) 243
invoking, WSS provider used 254
requisites 239
SAML 242
security 239
security agents, configuring 248
security agents, installing 248, 249, 250
SOAP, message structure 244
standards and specifications 241

[275]

Web Service Provider profile, creating 251,
252

WS-Federation 242
WS-I Basic Security Profile 242
WS-Policy 241
WS-SecureConversation 242, 243
WS-Security 241
WS-Trust 241
WSP and WSC, communication 247
XML Encryption 242
XML Key Management Specification

(XKMS) 243
XML Signature 242

Web Services security
about 239
accessing, sample scenario 240
authentication in GlassFish, EJB-based

237-238
eXtensible Access Control Markup

Language (XACML) 243
in EJB module 236
in Web module 236
SAML 242
SOAP, message structure 244
standards and specifications 241
WS-Federation 242
WS-I Basic Security Profile 242
WS-Policy 242
WS-SecureConversation 242, 243
WS-Security 241
WS-Trust 241
XML Encryption 242
XML Key Management Specification

(XKMS) 243
XML Signature 242

WS-Federation 181, 242
WS-I Basic Security Profile 185, 242
WS-Policy 241
WS-SecureConversation 242
WS-Security

about 181, 241
and WS-Trust, relation 243

WS-Trust
about 185, 241
and WS-Security, relation 243

WSC
and WSP, communication 247

configuring, to support authentication 258,
259

WSC agent
libraries 253

WSP
and WSC, communication 247
configuring, for enforcing authentication

256, 257
service call, authenticating 255
used, for authenticating service call 255
used, for enforcing authentication 256, 257

WSP, security mechanisms
KerberosToken 257
LibertySAMLToken 257
LibertyX509Token 256
SAML-HolderOfKey 256
SAML-SenderVouches 257
UserNameToken 257
X509Token 256

wssagentadmin command 249
WSS client agent 253

X
X.509 certificate stores

differences 156
X509Token, WSP security mechanisms 256
XML Access Control Markup Language

(XACML) 199
XML Encryption 242
XML Key Management Specification

(XKMS) 243
XML Signature 242

Thank you for buying
GlassFish Security

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Java EE 5 Development using
GlassFish Application Server
ISBN: 978-1-847192-60-8 Paperback: 424 pages

The complete guide to installing and configuring the
GlassFish Application Server and developing Java EE
5 applications to be deployed to this server

1. Concise guide covering all major aspects of Java
EE 5 development

2. Uses the enterprise open-source GlassFish
application server

3. Explains GlassFish installation and
configuration

4. Covers all major Java EE 5 APIs

GlassFish Administration
ISBN: 978-1-847196-50-7 Paperback: 300 pages

Administer and configure the GlassFish v2
application server

1. Get Glassfish installed and configured
ready for use

2. Integrate GlassFish with popular Open Source
products such as Open MQ, Open DS, and
Apache Active MQ, and get them working
together in a loosely-coupled manner

3. Configure resource types like JDBC, Java
Connector Architecture (JCA), JavaMail
Sessions, and Custom JNDI supported in
GlassFish to simplify resource access and
integration

4. Secure, monitor, troubleshoot, and tune your
application server instance

Please check www.PacktPub.com for information on our titles

Java EE 5 Development with
NetBeans 6
ISBN: 978-1-847195-46-3 Paperback: 400 pages

Develop professional enterprise Java EE applications
quickly and easily with this popular IDE

1. Use features of the popular NetBeans IDE to
improve Java EE development

2. Careful instructions and screenshots lead you
through the options available

3. Covers the major Java EE APIs such as JSF,
EJB 3 and JPA, and how to work with them in
NetBeans

4. Covers the NetBeans Visual Web designer in
detail

EJB 3 Developer Guide
ISBN: 978-1-847195-60-9 Paperback: 276 pages

A Practical Guide for developers and architects to the
Enterprise Java Beans Standard

1. Gain a rapid introduction to the EJB 3 essentials
while learning about the underlying principles

2. Create Entities, Message-Driven Beans, Session
Beans and their clients

3. Look at running an EJB client from an
application client container

4. Learn how to package and deploy an EJB

5. Use JQPL (Java Persistence Query Language)

6. Explore the entity manager interface

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Java EE Security Model
	Overview of Java EE architecture
	Understanding a typical Java EE application
	Accessing protected resource inside a Web module
	Deployment descriptors
	Understanding Java EE security terms
	Defining constraints on resources
	Authenticating and authorizing users
	Adding authentication to a web application
	Authorizing using deployment descriptor

	Managing session information
	Adding transport security
	Using programmatic security in web applications
	Using security annotations

	Understanding the EJB modules
	Securing EJB modules using annotations
	Mapping roles to principals and groups
	Accessing the security context programmatically
	Using EJB interceptors for auditing and security purposes
	Enforcing authentication in EJB modules

	Understanding the application client module
	Declaring security roles in Application level
	Summary

	Chapter 2: GlassFish Security Realms
	Security realms
	Authenticating using security realms
	Reusing security assets

	GlassFish security realms
	Administrating security realms
	Creating a File realm
	Creating the JDBC realm
	Using the LDAP realm to secure web applications
	Downloading and installing OpenDS 2.2
	Creating the LDAP realm

	Creating the certificate realm
	Public key cryptography
	Digital signature
	Key stores and trust stores
	Managing certificates

	Creating the Solaris realm
	Developing custom realms
	Developing the custom realm
	Installing and configuring

	Adding a custom authentication method to GlassFish
	Summary

	Chapter 3: Designing and Developing Secure Java EE Applications
	Understanding the sample application
	Analyzing sample application business logic
	Implementing the Business and Persistence layers
	Implementing the Persistence layer

	Developing the Presentation layer
	Implementing the Conversion GUI
	Implementing the Converter servlet
	Implementing the authentication frontend
	Configuring deployment descriptors
	Specifying the security realm

	Deploying the application client module in the Application Client Container
	Configuring Application Client Container security

	Summary

	Chapter 4: Securing GlassFish Environment
	Securing a host operating system
	Defining security at the OS level
	Creating the installation directory
	Creating the GlassFish user
	Logging in as a GlassFish user
	Restricting access to the filesystem
	Restricting access to network interfaces
	Restricting access to ports
	Enforcing storage usage limitation

	Implementing restrictions in the application server level
	Securing the Java Runtime environment from unprivileged access
	Implementing the policy manager
	Securing the GlassFish using security manager
	Alternative container policy providers

	Estimating security risks: Auditing
	Enabling the default auditing module
	Developing custom auditing modules

	Summary

	Chapter 5: Securing GlassFish
	Administrating GlassFish
	Using CLI for administration tasks
	Implementing security in CLI

	Securing different network listeners
	Securing HTTP listeners
	Securing ORB listeners
	Securing JMX listeners

	Hosting multiple domains using one IP
	Sharing security context between different applications using SSO
	Enabling SSO in virtual server

	Summary

	Chapter 6: Introducing OpenDS: Open Source Directory Service
	Storing hierarchical information: Directory services
	Connecting directory services to software systems

	Introducing OpenDS
	Understanding OpenDS backend and services

	Installing and administrating OpenDS
	Installing OpenDS and DSML gateway
	Understanding the system requirements
	Downloading and installing OpenDS server
	Studying the OpenDS directory structure
	Installing and configuring the DSML gateway

	Administrating and managing OpenDS
	Importing and exporting data
	Importing LDIF files
	Exporting database content into LDIF file

	Backing up and restoring data
	Creating a backup of OpenDS data
	Restoring server state using backups

	Enabling JMX Connection Handler

	Embedding OpenDS
	Benefits of embedded mode capability of OpenDS
	Preparing the environment

	Replicating Directory Information Tree (DIT)
	OpenDS replication mechanism
	Setting up an Asynchronous replication infrastructure

	Summary

	Chapter 7: OpenSSO, the Single sign-on Solution
	What is SSO
	What is OpenSSO
	OpenSSO functionalities
	Controlling user access
	Federation Management
	Identity Web services
	OpenSSO architecture
	OpenSSO realms

	Installing OpenSSO in GlassFish
	Configuring OpenSSO for authentication and authorization

	Authentication chaining
	Realm Authentication
	User Authentication

	Securing our applications using OpenSSO
	Authenticating users by the RESTful interface
	Authorizing using REST
	SSO using REST

	Summary

	Chapter 8: Securing Java EE Applications using OpenSSO
	Understanding Policy Agents
	Specifying access privileges by defining policies
	Protecting diverse types of containers using Policy Agents
	Working of OpenSSO agents
	Protecting different types of resources

	Exploring outstanding features of Policy Agents
	Managing Centralized Agent Configuration
	Managing agents in groups
	Applying agents configuration on-the-fly
	Having more control over the installation process

	Installing J2EE Agent 3.0 for GlassFish
	Placing the sample application under OpenSSO protection
	Changing sample application descriptor files
	Configuring the agent to protect the sample application
	Defining access rules

	Summary

	Chapter 9: Securing Web Services by OpenSSO
	Java EE and Web Services security
	Securing Web Services in a Web module
	Web Services security in EJB modules
	EJB-based Web Services authentication in GlassFish

	Understanding Web Services security
	Understanding SOAP message structure

	Developing secure Web Services
	Downloading and installing Web Services security agents
	Creating a Web Service Client profile
	Creating a Web Service Provider profile

	Securing the Echo Web Service
	Developing an Echo Service Consumer
	Authenticating a service call using WSP
	Configuring WSP for enforcing authentication
	Configuring WSC to support authentication

	Summary

	Index

