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PREFACE

 
What is relativity? The word evokes thoughts of Einstein, E = mc2, the twin
paradox. Behind these commonplaces lies one of the most marvelous
adventures of science and the mind. It marks a shift in worldview which can
be traced back to Galileo, and crowns two thousand years of human
endeavor to remove the veil of illusion. Four centuries ago, Galileo
discovered that ‘motion is like nothing.’ In other words, motion or rest have
no proper existence; only the motion of one body relative to another can
have meaning. What ultimately matters is the relationship between two
objects, not their absolute properties, which are emptied of physical
significance.

This book first follows the idea of relativity through history, going from
Copernicus to Einstein, encountering along the way such great names as
Galileo, Descartes, Huygens, Mach, and Poincaré. One discovers that
relativity, a philosophical and scientific postulate, is a unifying principle as
well, a method of constructing the laws of physics, a mode of diagnosing its
crises, even a way of thought.

In 1916, Einstein defined the principle of relativity in this way: “The
laws of nature should be valid in all systems of reference, under all
conditions.” This founding principle of physics, bearing upon even the
existence of fundamental laws, must play a leading role in the quest for
meaning and the search for a true understanding of natural phenomena.

With the triumph of Einstein’s theory of general relativity, which
encompasses all of classical mechanics and makes gravitation the most
precise theory in today’s physics, has the theory of relativity said its last
word? The development of physics over the last century might lead us to
believe so.

In fact, we will recall how the domain of the minuscule, the scale of
atoms, their nuclei, and elementary particles, has only been able to be
described in terms of a completely new framework, that of quantum
mechanics. Yet it would seem impossible to deduce its postulates, its
methods, even its way of reasoning from the concepts of classical theory,
that is to say, from the principle of relativity of motion.



Quantum mechanics remains essentially axiomatic in theory, and cannot
be, even today, considered fully understood; its numerous postulates seem
arbitrary in nature, when one would prefer to see them brought to a first
principle.

The idea developed in the second half of this book suggests that there
does indeed exist a fundamental principle on which to base quantum
mechanics: the principle of relativity itself. But this is only possible by
generalizing further, by applying relativity not only to displacement and
motion, but also to changes of scale: that is to say, to the transformations
which lead us from the scale of the very small to the very large, or the
inverse. Examples of such transformations can be found in microphysics in
the use of a loupe, a microscope, or a particle accelerator, and in
macroscopic physics, in the use of glasses or a telescope.

What can we expect from such an extension of our frame of mind? It is
not a matter of putting into question the discoveries of physics. On the
contrary: it is only by basing ourselves upon them that we are able to go
further. In such a way, relativity of motion has passed from the flat and
absolute space of Newton to the relativistic, curved spacetime of Einstein.
Similarly, I will demonstrate how the concept of “scale relativity” leads to a
new spatiotemporal geometry: spacetime becomes fractal, which is to say
that it possesses structures at every scale.

The book will conclude with some of the numerous consequences which
follow from this new approach, going from the possibility of a renewed
understanding of quantum mechanics and of its generalization toward very
high energies, to the proposition of original physical effects, in particular in
the domain of astrophysics. Indeed, one of the fundamental implications of
scale relativity posits that certain aspects of quantum theory could be
equally applied to macroscopic scales, but with a different interpretation.

We will thus see how this theory, considered as a description of the
tendency for a system to form structures, from planetary systems up to the
great formations of the Universe, predicts many hidden effects, some of
which have now been revealed by astronomic observations.
 
I would like to warmly thank Pierre Grou, Jean Chaline, Gérard
Schumacher, and Georges Alecian, my friends and colleagues, who kindly
read early (French) versions of the present work and offered their critiques
and suggestions. The exposition has been greatly improved as a result.



Neither this nor my first book (L’Univers et la lumière [Light and the
Universe], Flammarion, 1995) would have been possible without the
enthusiasm that Louis Audibert brought to them, without his patient
reading, his advice, and his stimulating observations. I am very grateful to
him.

Regarding the new English version of this book, I am immensely
grateful to the Editor-in-Chief of Persistent Press, Grant Maxwell, for his
kind involvement in its publication, to Mia Chen for her excellent
translation, and to Charles Alunni, for his unfailing friendship, his
continuous interest in the scale relativity theory and his deep philosophical
analyses, and for having accepted to write an afterword to this new edition.

This book is dedicated to all those to whom I am connected.
 





 
PART ONE:THEORIES OF RELATIVITY OF MOTION

 





 
CHAPTER 1: THE PRECURSOR: COPERNICUS AND

HELIOCENTRISM
 
In some regard, relativity begins with Copernicus. To be sure, there is no
explicit statement of relativity in his work: relativity’s discovery without a
doubt belongs to Galileo. But it is no accident that the trial of Galileo
focused on his defense of Copernican heliocentrism: what was important
for Galileo was the question of the Earth’s motion. (“And yet it moves!”)

If Copernicus is indeed a precursor to relativity, it is because decentering
the Earth is the first step necessary for comprehending the relativity of
coordinate systems.

Before Copernicus, the world had a center. According to one of the
dominant ideas of pre-Copernican physics (physics termed, perhaps unfairly
and over-simplistically, Aristotelian), the natural state of terrestrial bodies,
the state toward which they all tend, is rest. All bodies have a tendency to
approach the center of the universe and to cease all motion. Such a theory
was already, in its time, unifying: it explained why the Earth’s center
coincided with the center of the universe, which was the center of all
celestial motion (the latter being imperishable, not subject to terrestrial
“corruption”). It thus brought together into a single description the various
phenomena which we currently attribute either to gravitation (the falling of
bodies) or to dissipation (the friction which masks the laws of inertia).

Copernicus, in decentering the Earth, began the process which would
shatter this entire construction. He put the Sun at the center of the universe.
A few decades later, Kepler discovered that the planets moved not in
circles, but ellipses, and that the Sun was not at the center of their orbits,
but at one of their focal points. Galileo discovered the laws of inertia;
Descartes stated them formally, and applied them to celestial bodies,
affirming the law of conservation of momentum. The Sun itself,
accordingly, could not remain immobile at the focal point, but must also
move in a small ellipse. Little by little, it became apparent that the Earth
was not the center of the universe, then that the Sun was not either, and
finally, that the center of the universe, in reality, did not exist. In post-
Copernican physics, there is no longer any particular point of origin to
which to compare the position of other objects. Every point can equally



serve as the origin of a coordinate system. The choice of this origin is
completely arbitrary, and any choice is possible and equivalent from the
point of view of the fundamental laws of physics.

It is in this sense that relativity starts with Copernicus, even if in an
implicit fashion, and only if later developments would make it manifest: the
Copernican revolution implies the relativity of position. No position is
absolute; the same laws are applicable no matter what the origin of the
coordinate system is. There is thus an invariance of the laws when shifting
this system of coordinates, what in mathematical terms are called
translations.

But the Copernican revolution goes even further, toppling the entire
edifice of received wisdom. The Earth is brought down to the level of a
planet like any other, which implies that it moves, opening the way toward
Galilean relativity. The Aristotelian division of terrestrial and celestial laws
was no longer valid. Before Copernicus, the heavens existed only as
“object.” They took the shape of concentric spheres, composed of a special
substance, crystalline, indestructible, perfectly hard and transparent. Even if
Copernicus himself did not explicitly cast doubt upon this belief, the
consequences of his new system on the nature of the heavens quickly
became apparent. Tycho Brahe, in 1588, declared that “the apparatus of the
heavens is not a hard and impenetrable substance filled with real spheres, as
has been the belief of most people until now,” but that it was something
“fluid and simple” through which the planets could freely move. The two
novae of 1604 and 1672 brought fresh evidence of the heavens being
themselves subject to corruption and change.

When the idea of a center of the universe disappeared, questions about
its outer limits quickly arose as well. Thomas Digges, in 1576, disseminated
Copernican theory to a wide audience in England, while drawing his own
conclusions and abandoning the idea of the sphere of fixed objects: for him,
already, the Universe was infinite, and the stars distant suns. Then,
Giordano Bruno would make the same arguments, and added his own,
claiming that life existed everywhere throughout the Universe. These ideas,
along with his denial of the divinity of Christ, earned him the stake.

We know today that there exists a profound connection between
relativity of positions (and of instants when applied to time) and the
existence of conservation laws. This connection could even be said to
constitute the essence of modern physics, which can be traced back to the



Copernican revolution, principally through the work of Descartes. His
physico-mathematical system clearly upheld Copernican theory with a
coherence that would contribute greatly to its definitive acceptance in
Europe. In his system, it would be impossible to set a limit to the extent of
the Universe, making it infinite. Similarly, it would be impossible to set a
limit to the division into the infinitely small (but Descartes applied this to
matter and not space, which led him to reject the notion of atoms as well as
of a vacuum). We will return to these questions when discussing the
antinomies of Kant and then the foundations of scale relativity. What is
important for us here is that Descartes, still motivated to give his vision of
the universe coherence, was led to state: “God always preserves the same
amount of mass and momentum.”

The concepts of energy and momentum thus took their modern form in
terms of magnitudes keeping constant over the course of time. It was an
essential development for the construction of the completely new science
that Newton would synthesize forty years later. With this “new world
system,” one would seemingly be forced to abandon the idea of eternity and
imperishability within celestial laws, even those governing the heavens, in
favor of the variability, instability, and “corruption” characteristic of
terrestrial laws. What Descartes demonstrated, with his discovery of the
conservation of matter and of motion (he was also the first to state the
principle of inertia in its present form of conservation of the speed and
direction of motion for a free body, Galileo only allowing for circular
motion to continue perpetually), was that, beyond the appearance of change,
the deeper structures stayed the same. Temporal evolution, of which the
essence was change, nevertheless allowed for and indeed necessarily
accompanied the inalterability of some quantities, magnitudes which would
stay invariant despite seeming to change.

We now know that these invariants, the most fundamental being energy,
linear momentum, and angular momentum, are a direct consequence of the
relativity of instants, positions, and orientations. Because any instant
whatsoever can be taken for the temporal origin of a physical experiment,
and the experiment produces the same result now, a year ago, or an hour
from now, there must be conservation of energy. Energy is born from the
uniformity of time, that is to say, from the relativity of the temporal origin
of coordinate systems.



Similarly, the spatial origin of a coordinate system according to which
an experiment is measured can take place here, ten meters to the right, a
kilometer in front, or five centimeters below, and nothing will change in its
results. In this case, it is not motion along a single axis, and thus a single
quantity conserved (as is the case for time and energy), but translations
along three possible spatial axes. There must then be three magnitudes, the
three components of linear momentum (the product of mass and speed),
which arise from the uniformity of space, that is, the relativity of positions.
Each one in itself is not invariant, for its numerical value depends on the
choice of orientation of the coordinate system; only when taken together,
forming a vector quantity, do they become an invariant.

Finally, all orientations of the axes of a frame of reference are
equivalent, which implies the appearance of three new magnitudes, the
components of angular momentum. The conservation of angular momentum
(well known from the example of a figure skater lowering his or her arms in
order to spin faster) is thus tied to the isotropy of space, that is to say, to the
relativity of orientation.

At the beginning of the twentieth century, Emmy Noether formalized
this connection between symmetries and conservation laws in what
constitutes one of the most fundamental theorems of theoretical physics. It
can in fact be generalized to symmetries other than those of time and space,
and thus represents one of the key principles in the search for invariants in
physics.
 





 
CHAPTER 2: THE DISCOVERER: GALILEO AND THE LAWS OF

INERTIA
 
Even though the word “relativity” has become indissociable from Einstein’s
name, and in the other direction, Copernicus can be considered the theory’s
precursor, its history truly begins with Galileo. Relativity of position may
be a consequence of Copernicus’s discovery, but he neither observed nor
described it directly. Relativity of motion, however, was explicitly
discovered, described, and studied by Galileo, and he well understood its
significance.

It is not by chance that relativity of motion, as we currently understand
it, was discovered by Galileo, the most steadfast proponent of Copernican
theory. Relativistic thinking can simply not occur if there is universal belief
(often implicit) in an absolute frame of reference. Galileo explicitly makes
this connection, starting his Dialogue by directly stating the Earth’s
movement:
 

Copernicus places the earth among the movable heavenly bodies,
making it a globe like a planet.[1]

 
Of course, the relativity of motion had its precursors, going from

Copernicus all the way back to Aristotle, who observed that a ship on a
river is “as if in a vase,” caught up in the motion of the river. But Aristotle
only wanted to emphasize the difficulty involved in discovering true
motion, whose existence he did not doubt. William of Conches, in the
twelfth century, already observed that if we move without having a
motionless object with which to compare our position, we do not feel
ourselves moving. Here again, there is no doubt of the meaning of
“motionlessness,” only an insistence on the fact that motion must be seen,
as it seems to elude all the other senses. It would be the same for Nicolas
Oresme, who pointed out that the Earth could be moving without our
realizing it: we can distinguish its motion by sight, but without knowing
which is moving, the one who observes (the Earth) or the objects observed
(the stars). For him, though, the goal is to highlight the difficulty involved



in demonstrating the immobility of the Earth rather than to prove its
movement.

Finally, for Copernicus, who returned to the argument of the boat, this
relativism allowed him to construct his new cosmology without objectors
being able to consider the posited motion of the Earth as a reason to
contradict it (due to its apparent stasis in the old cosmology and everyday
experience):
 

Why therefore do we still hesitate to concede movement to [it]? . . .
And why should we not admit that the daily revolution itself is
apparent in the heaven [sic], but real in the Earth; and the case is just as
if Virgil’s Aeneas were saying ‘We sail out from the harbour, and the
land and cities recede’? For when a ship is floating along in calm
weather, everything which is outside her is perceived by those who are
sailing as moving by a reflection of that motion, and on the other hand
they think that they are at rest along with everything that is with them.
[2]

 
But Galileo goes much further than his predecessors in posing a thesis so

revolutionary that even today it can seem shocking to those who come
across it for the first time. In this demonstration of the relativity of motion,
it is not a matter of showing the difficulty of detecting “true motion” or
“true rest,” but of something much more essential. What Galileo affirms is
that “true motion” does not exist; the nature of motion can only be relative.
No local experiment can determine the motion or stasis of a body, so that
only the inertial movement of a body in relation to another has meaning:
 

Motion, in so far as it is and acts as motion, to that extent exists
relatively to things that lack it; and among things which all share
equally in any motion, it does not act, and is as if it did not exist.[3]

 
Galileo, particularly in the Dialogue, provides a multitude of examples

and thought experiments to convince his readers of this astonishing fact. No
longer is it a case of a simple undetectability of motion to our senses, but a
veritable impossibility, physically speaking, to detect it, whatever the type
of experiment devised. On this matter, the example of a ship’s hold is
striking:



 
Shut yourself up with some friend in the main cabin below decks on
some large ship, and have with you there some flies, butterflies, and
other small flying animals. Have a large bowl of water with some fish
in it; hang up a bottle that empties drop by drop into a wide vessel
beneath it. With the ship standing still, observe carefully how the little
animals fly with equal speed to all sides of the cabin. The fish swim
indifferently in all directions; the drops fall into the vessel beneath;
and, in throwing something to your friend, you need throw it no more
strongly in one direction than another, the distances being equal;
jumping with your feet together, you pass equal spaces in every
direction. When you have observed all these things carefully (though
there is no doubt that when the ship is standing still everything must
happen in this way), have the ship proceed with any speed you like, so
long as the motion is uniform and not fluctuating this way and that.
You will discover not the least change in all the effects named, nor
could you tell from any of them whether the ship was moving or
standing still . . . The cause of all these correspondences of effects is
the fact that the ship’s motion is common to all the things contained in
it, and to the air also.[4]

 
Galileo gives another remarkable and particularly impressive example,

one which still merits a place today in the instruction of physics:
 

SAGREDO : There has just occurred to me a certain fantasy which
passed through my imagination one day . . . Perhaps it may be of some
help in explaining how this motion in common is nonoperative and
remains as if nonexistent to everything that participates in it . . . If the
point of a pen had been on the ship during my whole voyage from
Venice to Alexandretta and had had the property of leaving visible
marks of its whole trip, what trace—what mark—what line would it
have left?
SIMPLICIO: It would have left a line extending from Venice to there .
. . Without an error of any moment it could be called part of a perfect
arc.
SAGREDO: . . . Now if I had had that same pen continually in my
hand, and had moved it only a little sometimes this way or that, what



alteration should I have brought into the main extent of this line?
SIMPLICIO: Less than that which would be given to a straight line a
thousand yards long which deviated from absolute straightness here
and there by a flea’s eye.
SAGREDO: Then if an artist had begun drawing with that pen on a
sheet of paper when we left the port and had continued doing so all the
way to Alexandretta, he would have been able to derive from the pen’s
motion a whole narrative of many figures, completely traced and
sketched in thousands of directions, with landscapes, buildings,
animals, and other things. Yet the actual, real, essential movement
marked by the pen point would have been only a line; long, indeed, but
very simple. But as to the artist’s own actions, these would have been
conducted exactly the same as if the ship had been standing still. The
reason that of the pen’s long motion no trace would remain except the
marks drawn upon the paper is that the gross motion from Venice to
Alexandretta was common to the paper, the pen, and everything else in
the ship. But the small motions back and forth, to right and left,
communicated by the artist’s fingers to the pen but not to the paper,
and belonging to the former alone, could thereby leave a trace on the
paper which remained stationary to those motions.[5]

 
The conclusion is clear. Neither of the two points of view can be

considered more “true” than the other. Had a great sheet of paper been laid
between Venice and Alexandretta, and had the painter drawn on carbon
paper so as to be able to mark at the same time the sheet attached to him
and the ship, and the great immobile sheet with respect to the shores, the
final result would have been two traces of movement, the long straight line
running over thousands of kilometers and the picture with all its figures.
Neither of the two reference points could be considered to be moving by
themselves; only with respect to the other can each be considered to be
moving.

Why, then, did this illusion persist? Why did humanity remain so long in
error on a subject so fundamental? The response is without a doubt the
unique and limited character of the frames of reference within which we
ordinarily live. The existence of the terrestrial ground, and the simple fact
that it is much larger than us, makes us grant this reference point a special
role. Now, as before, common language can bypass the subtleties of



relativity: most of the time, it is possible to state that one is moving or that
one is immobile without having to say with respect to what simply because
it is obvious that it is with respect to the Earth.
 





 
CHAPTER 3: NEWTON: UNIVERSAL GRAVITATION AND

ABSOLUTE SPACE
 
The theory of universal gravitation without a doubt constitutes one of the
most impressive unifications in the history of physics. It is not at all
intuitive to understand that phenomena as apparently contradictory as the
systematic falling down of bodies on our Earth and the permanence of the
Moon in the sky could be deduced from a single theory, and brought
together in a single cause.

Even if the existence of a force of attraction between the Sun and the
planets had been envisioned before Newton, it could well have been a new
force, operating only on celestial bodies, or the force of magnetism, as
Kepler proposed. It was hardly obvious that this force was precisely the
same as that which makes all bodies on Earth fall down.
 





 
Universal Gravitation

 
Newton’s logic can be summed up as follows. The apple appears to fall, but
the Moon does not. How could the same universal law govern two opposite
behaviors? Newton’s answer is that in actuality the Moon falls as well! To
be convinced of this, one must recall Galileo’s laws of inertia (as they were
reformulated by Descartes). If the Moon were to follow a free trajectory, its
motion would be linear and uniform. It would then get further and further
away from the Earth, instead of maintaining a constant distance. Thus, over
any period of time, no matter how small, the Moon “falls” by the amount
which separates a circle from its tangent. This logic allows the motion of
the Moon to be brought together with that of the apple, and vice versa.
From the point of view of relativistic theory, one can say that the difference
observed between different phenomena (in this case, they even appear to be
opposite) is not the manifestation of different laws, but, on the contrary, of a
single law which is applied in different conditions (meaning within
coordinate systems of which the “state” is different).

Regarding this law, Newton postulated that between any two bodies
there existed a force of attraction which varies directly with their masses
and with the inverse square of the distance between them. The constant of
proportionality governing this relation is the universal constant of
gravitation G. This hypothesis enables the proof of Kepler’s three laws
governing the motion of planets, as well as developing novel predictions
concerning celestial mechanics.

In his work, Newton was guided by the great physical principles
established by Galileo and Descartes, for which he gave a more definitive
mathematical formulation.[6] These principles were the law of inertia, the
addition of superimposed velocities, the idea that force is not motion, but
the change of motion, and finally the law of action and reaction.

Newton’s work, under the form which Laplace gave to it, has become an
archetype of field theory, which served as the model in the nineteenth
century for the development of theories of electricity and magnetism.

Nevertheless, despite its success, Newton’s formulation of gravitational
theory was not without serious conceptual problems. The most obvious of
these was the supposed instantaneity of gravity’s action at a distance.
Einstein’s theory of special relativity would firmly establish the physical



impossibility of such a transmission of force at an infinite speed, and with
his theory of general relativity, he would solve the problem by showing that
gravity propagates at the speed of light (although Poincaré had also
obtained this result as early as 1900). Furthermore, the foundations of
Newton’s theory lacked clarity. Why would the force depend on the inverse
square of the distance and not some other relation? Why would it depend on
the masses involved, and not other physical characteristics (chemical
composition, shape, etc.)? Here again, general relativity would answer these
questions of “why,” while Newtonian gravitational theory seemed only to
address the question of “how.”

“I do not pretend to hypothesize,” Newton admitted, to show how well
aware he was of the problems and the incompleteness of his theory, while
refusing to speculate on the origin of this action at a distance. He wanted an
authentic explanation or nothing.

The problems of why and how are often, in fact, akin to an unending
sequence of Russian dolls, each one containing a smaller one (we will
return to this image later). What only seems to address the question of
“how” (that is, a description closer in nature to a model than to a theory
which rests on a first principle) can be addressed within a larger framework.
In this way, Kepler’s laws were first discovered in empirical fashion.
However, once they were recognized, one could ask why the planets follow
elliptical and not other trajectories, why the law of areas applies, why the
square of a planet’s orbital period is proportional to the cube of its
semimajor axis. Newton’s theory successfully answered these questions of
why, for it justified these postulates using mathematical proof. But then, his
explanation was based on deeper postulates, one of which was action of a
force at a distance. Further questions emerged: why is the force proportional
to the inverse square of the distance, and why does it depend upon mass
alone and not other physical properties? Einstein’s theory would respond to
these questions, providing a mathematical proof of these laws. Yet general
relativity itself contains its own lacunae, for example at the level of the
source of gravity. The theory describes how masses bend spacetime, but
does not explain why they do, which remains an unresolved problem.[7]

 





 
Differential Calculus

 
We have now arrived at one of the key moments in the history of science,
and an essential development for the present work: the invention by Leibniz
and Newton of differential calculus, which marks the birth of modern
mathematical physics. What differential calculus brings to the description of
the physical world is underpinned by an implicit hypothesis: that physical
quantities, the most fundamental being positions and instants (in other
words, spacetime), are differentiable. This means that the trajectory of a
physical object in space possesses a tangent (or “slope”)—in other words,
that one can define a speed (the derivative of its position with respect to
time). It is this hypothesis which the theory of scale relativity seeks to leave
behind. However, before explaining what this abandonment entails, we
must understand its deep physical significance and its fundamental role in
the invention of mathematical physics.

The remarkable character of Newtonian theory can be found in the title
of his magnum opus: Philosophiae Naturalis Principia Mathematica
(Mathematical Principles of Natural Philosophy). The possibility of there
being a science of physics in the sense which we understand it today was by
no means self-evident at the time. It is true that Galileo had already stated in
The Assayer:
 

The book of Nature is . . . written in the language of mathematics.
 
But between simply describing and actually predicting, there is an
enormous step to be made, which Leibniz and Newton’s invention of
differential calculus enabled. Newtonian theory did more than explain
observations already made. Through calculation, it allowed the prediction
of phenomena which only future observations would be able to verify, such
as the return of Halley’s comet and the discovery of Neptune by Le Verrier
and Adams. Newton showed in his work that what seemed to fall solely
under philosophical discourse (even when applied to the description of
Nature) could be written in mathematical language. He did better yet when
not limiting himself to already known mathematics, but instead constructing
his own analytical tools when the existing ones were not enough.



The example of Newton shows that the question that Einstein and so
many other physicists asked themselves—how is it that mathematics can be
used to describe the world—is perhaps the wrong question. Only the
existence of fundamental laws poses a problem (we will discuss, in the
second part of this book, the difficulty of defining what a world without
laws would be like). Once that is admitted, their expression naturally takes
a form “compacted” into mathematical language.

One might consider it remarkable that, at times, the tools which a
physicist needs to put his or her theory to work should already have been
developed by mathematicians. A typical example is the concept of curved
space, already developed in mathematics almost a century before Einstein
used it to construct his theory of general relativity. This is to forget,
however, that its inventor was Gauss himself, as great a physicist as
mathematician, and that Riemann, who developed this theory, had
envisioned that the curvature of space could bring about a new model of
gravitation (but he lacked the necessary concept of spacetime, without
which every attempt of this kind was destined for failure).

However, for every example of this kind, how many examples are there
to the contrary—of Newton inventing differential calculus to unify celestial
motion and terrestrial attraction, of Heisenberg (re-) inventing matrix
calculus and thus founding quantum mechanics (it was only afterward that
Born and Jordan informed him that this type of calculus already existed), of
Einstein using the Wiener process to describe Brownian motion and
demonstrate the limits of thermodynamics. In physics, mathematics is, for
the most part, a tool which is used to put into place concepts and ideas
which are not mathematical in their essence (although there certainly does
exist an independent mathematical science which cannot be reduced to what
the physicist can make use of).

Let us return to differential calculus. The first known attempt at
infinitesimal calculus was Eudoxus of Cnidus’s “method of exhaustion.”
Eudoxus, born around 408 B.C.E., was perhaps the greatest man of science
in antiquity. We owe to him the theory of homocentric spheres which
dominated astronomy for almost two thousand years by its ability to explain
various celestial motions; the formalization of “Euclidean” geometry into
“axioms” (posited) and “theorems” (deduced from axioms); the proof that
irrational numbers cannot be expressed in the form of simple proportions.
With the goal of calculating the volumes of complex solid bodies, such as a



cone or sphere, Eudoxus divided them into infinitesimal sections, and then
came up with a method of adding them back together, thus anticipating
modern integral calculus. Kepler invented a similar method to calculate the
volume of casks in his wine cellar and published a short treatise on the
subject. Throughout the seventeenth century, mathematical research
pursued the same subject. Descartes discovered that one could define curves
in the form of an algebraic equation with the help of a grid on a plane.
Fermat yet more closely approached infinitesimal calculus, and in particular
solved the problems of minima and maxima.

Newton (using what he called the “calculus of fluxions”) and Leibniz
took very different approaches, which suffices in itself to dispel their
mutual accusations of plagiarism. Newton sought to solve the problem of
the “fall” of the Moon. For this, it was necessary to prove that gravity on
Earth would remain unchanged if its entire mass were concentrated into its
center, which required being able to integrate the individual forces of each
tiny element of terrestrial volume upon a body situated on its surface. For
Leibniz, it was more a case of the theoretical problem of defining infinitely
small or infinitely large numbers. Ironically, the modern version of
differentiation, which involves the concept of the limit, was developed in
mathematics starting from the Newtonian conception, while Leibniz’s
notation triumphed among physicists (as it was more descriptive and
practical).[8]

What, then, does differential and integral calculus signify for the
physicist, and why has its success been so great that we end up identifying
this method, and the differential equations we can formulate using it, with
physics itself? The answer is perhaps that differential calculus is the
practical translation of Descartes’ method.

Descartes based his method of scientific analysis on the idea that, in
order to solve a complex problem, one needs to separate it into simpler
parts, to describe these simpler parts, and then to reintegrate them to obtain
an explanation of the whole. This is precisely what differential calculus
brings about: instead of attempting to understand all at once how a physical
quantity varies from one point to another in space, or from one moment to
another, one describes a variation between a point and a point infinitely
close to it (or between an instant and one infinitely closely following it).
When considered this way, each variation becomes simple. One can then
obtain the desired total variation over finite distances and times (that is, no



longer infinitesimal) by computing the sum of all these tiny variations (this
is integral calculus).

More generally, equations in physics describe simple relations between
physical quantities, defined locally by the tendency of their differentiation.
Most often, these take the form of differential equations.

The Cartesian method has sometimes been charged with reductionism.
This is, in my opinion, a false charge which stems precisely from a
reduction of Cartesian thought. Sure enough, a restricted application of this
method to a particular problem can be reductive. But it is remarkable that
when a blockage of theory arises (as periodically happens in physics),
Cartesian reasoning so often leads to a solution to the problem, simply
because it is a general method of analyzing the laws of nature. For example,
the idea that the whole must be the simple and direct sum of its parts (an
example of a “reductionist” idea) is not explicitly part of the Cartesian
perspective. One must analyze the system in question to find parts that are
easier to describe, but the identification of these parts may well be more
complicated than a simple “cutting apart,” and the reconstruction of the
whole more elaborate than a simple “gluing together.”

We will see an example of the power of the Cartesian mode of analysis
with the theory of scale relativity, where we will relinquish the hypothesis
of differentiability. The motivation for this relinquishment is the
observation that, in actual experiments, the separation into finer and finer
sections of space and time does not necessarily yield parts simpler than the
initial system (for example, an electron is simple at a large scale, but at a
small scale its internal structure becomes enormously complex, involving
the whole spectrum of different elementary particles). At first glance, this
point of view would seem to be in disagreement with Descartes: the parts
are not more simple than the whole. Nevertheless, a solution can be found
to this problem by applying Cartesian analysis at a deeper level. Spacetime
itself possesses an internal sub-structure (in the “space” of scales) to which
differential calculus can be applied, even in the case where it is not
differentiable.
 





 
The Absolute Space of Newton

 
If Newton’s work founded modern physics in many respects, in particular
with the theory of gravitation and its predictive power, it nevertheless
blocked the evolution of ideas on another essential point, that of relativity
of motion. Newton upheld the existence of an absolute space. This idea, in
contradiction with the conceptions of Galileo, Descartes, and Huygens, held
sway for over two centuries. If Newton ended up taking such a position,
while having explicitly used relativist logic in his construction of the theory
of universal gravitation, it was due to an extremely difficult problem, the
solution to which is perhaps not complete even today. The problem
concerns the apparently absolute character of the forces of inertia which
appear in the course of accelerated motion.

To understand what led to a crisis of such duration in physics, one can
return to the ship’s cabin imagined by Galileo. Galileo had argued that no
purely local experiment (inside the cabin and without any reference to the
outside) could allow one to determine whether the boat was in motion or at
rest, as long as this motion occurred at a uniform and constant speed with
respect to the shore. But what about the case of the boat rotating around its
own axis? In this case, the appearance of a centrifugal force in the cabin’s
interior, which the experimenter could detect without looking outside,
would seem to imply that rotational movement, contrary to translational
movement, can be defined in an absolute manner. Newton used the example
of a bucket full of water. When at rest, the surface of water in the bucket is
flat; however, as soon as one turns it, the surface becomes curved. One can
then, apparently, determine the rest or motion of the bucket “in itself,” in a
purely “local” fashion, without reference to another object. There would
then exist an absolute space: bodies that would be at rest with respect to this
space would not be influenced by any force of inertia.

Celebrated contemporaries of Newton were opposed to this vision of the
world. For Huygens, well before Poincaré, Mach, or Einstein, there must
have been relativity of all motion.[9] For Leibniz, to define a space
independently of the objects which it contained could not make any sense.
But these few objectors could not prevent the idea of relative space from
practically disappearing for two centuries, and the search for ether, also
introduced as the medium needed for light waves to propagate, from



becoming one of the dominant problems. It would have to wait until the end
of the nineteenth century and the beginning of the twentieth, when Poincaré
re-examined in detail the relative character of all motion, when Mach
proposed a solution to the problem of inertial forces and, finally, when
Einstein constructed the theory of general relativity. However, one must not
put the cart before the horse: general relativity could not be constructed
before special relativity, that is to say before the discovery that space and
time are not separate entities, but are in fact subspaces (of three dimensions
and one dimension, respectively) or a four-dimensional spacetime.

 





 
CHAPTER 4: SPECIAL RELATIVITY

 
With special relativity, discovered independently by Poincaré and Einstein
around the same time, the concept of relativity would strengthen and take
on a more profound meaning. Its discovery was necessary: several serious
problems affecting the very foundations of physics, even those which had
appeared most solid, surfaced at the end of the nineteenth century. These
difficulties concerned in particular the relationship between light and
motion.

One of these problems was experimental in nature. The work of Fresnel
and Young at the beginning of the century, and then the success of
Maxwell’s theory of electromagnetism firmly established, by the 1880s, the
wave-like nature of light. If light was an electromagnetic wave, it seemed
inevitable that it needed a medium through which to propagate, which was
called “ether.” The American physicist Albert Michelson intended to verify
the existence of ether by measuring the Earth’s movement. However, this
measurement proved to be impossible. When Michelson and Morley used
interferometry in order to determine the combined speed of light and the
Earth moving in its orbit around the Sun, they obtained a strange result.
When light was emitted in the opposite direction of the Earth’s motion, they
expected to find the difference of their speed; in the case where Earth and
light travelled in the same direction, they should have found their sum. Yet
in both cases they obtained the same result: the speed of light, c,
unchanged!

The most solid laws of classical mechanics were thus revealed to be
faulty by the experiment. It should seem obvious that, if we walk at the
speed of 5 km/h toward the bow of a boat moving at 15 km/h with respect
to the Earth, our speed would be 20 km/h with respect to the riverbank.
Michelson’s experiment yielded a different result: one could add to the
speed of light any speed whatsoever, and that speed would stay invariant. It
seemed that the laws of addition themselves were put into doubt: 2 + 2 no
longer equaled 4! Here was a property which seemed reserved for an
infinite speed: only infinity plus another number always equals infinity.

To this enormous experimental problem would quickly be added a
theoretical one just as colossal. Oersted, Ampère, and Faraday had



understood, since the beginning of the nineteenth century, that electricity
and magnetism were seemingly the manifestations of a single field. Oersted
called attention to the magnetic field associated with the electric current
which runs through a wire. Then Ampère established relations between
currents and magnets, which led him to propose a theory of magnetization
very close to present-day theory. Faraday went further yet in discovering
induction. Currents and magnets have an effect on each other: not only does
a current produce a magnetic field (one can create an “artificial” magnet
with electric current), but the converse is true: magnets can induce a
current. One can thus observe the “direct conversion of magnetism into
electricity.”[10] Faraday started to develop a theory of an electromagnetic
field by using lines of force: such an approach allowed a resolution to the
problem of action at a distance, which remained unresolved in the
Newtonian theory of gravitation.

But it was Maxwell who succeeded, in the mid-nineteenth century, in
constructing a complete theory of the electromagnetic field. It is one of the
most beautiful unifications in physics. Not only are electricity and
magnetism found to both be manifestations of a single field, but this field
can itself propagate in the form of a wave, and the equations of this wave
are exactly similar to those which describe the behavior of light waves.
Light, then, is identified as one form of electromagnetic wave among
others. Inversely, electromagnetic waves with a greater or lesser wavelength
than visible light would be able to be manipulated in the same way,
meaning they could be emitted, reflected, diffracted, focalized, as
demonstrated by the discovery of radio waves by Hertz.

These discoveries would change the world: they led to the invention of
the electric motor, the telegraph, the telephone, radio transmissions, and
they support all of our modern technology. They also provide a striking
example of the connections, often hidden but deep, which tie together basic
science and technological innovation. The inventions of a Bell or an Edison
would not have been possible without the framework constructed by a
Faraday and a Maxwell. The latter and their predecessors themselves could
not have constructed electromagnetic theory without the inspiration of the
theory of gravitation. The concept of a gravitational field served as model
for an electromagnetic field. Previously, Coulomb had directly based his
law of electric attraction proportional to 1/r2 on Newtonian force. Newton
himself constructed his theory on the principles of inertia and additivity of



motions put forth by Galileo and Descartes: as he put it, he had “stood on
the shoulders of giants.” Truly innovative technological progress is not
possible without great paradigm shifts within basic science. While it may
seem, at first glance, that there is no link between, for example, the
television and Newton’s theory of universal gravitation, one does exist, and
it is indeed a significant one. Fundamental progress, in outlining new ways
of thinking, serves as the bedrock without which the edifice of knowledge
could not be raised.

Let us return to electromagnetism and its link to the theory of relativity.
We may begin by noting that the effects of induction are directly tied to the
relativity of motion and show it in a new light, which would be fully
explained by Einstein. Indeed, these effects depend solely on relative
motion. But if we can understand, or at least admit easily enough, that in
moving a body with respect to itself one creates a magnetic field that was
not there before this action (after all, one acts on the body by making it go
from rest to motion), how is one to understand, on the other hand, that such
a field can also appear without one touching the body in any way, simply by
deciding to move with respect to it. It is only our state of relative motion
with respect to the body that determines the “existence” of the field. Let us
anticipate the Einsteinian explanation to recall at present the wonderful
relativist explanation of this “miracle” of induction. If the magnetic field
seems to appear or disappear according to the relative movement between
the system and observer, it is in the same way that one can make the face of
a cube “disappear” by turning it by 90°. Our experience of rotations of
space allows us to know that the face has not truly disappeared, that it is
still there, but that, because of the effect of projection, one of its
components on the “plane of the sky,” to which our eyes only have access,
has vanished. It is the same with the magnetic field: this field is only a
subset of the electromagnetic field which stays globally unaffected by
motion. A motion is nothing else but a rotation in spacetime,[11] a rotation
which allows the nullification of some of its components on certain axes
and the appearance of other components which had been null in certain
frames of reference.

We have come, at last, to the primary reason for which Maxwell’s theory
played a crucial role in the construction of Einstein’s theory of relativity.
One of the questions which rapidly becomes evident, once the equations of
Maxwell are written in their definitive form, is that of their invariance under



the laws of transformation of coordinate systems. It was at the time well
established that the laws of mechanics, including gravitation, were invariant
under a Galilean transformation (which is the change of coordinates at a
constant uniform speed). It was easy to verify that Maxwell’s equations
were not invariant under this transformation. The task of discovering the
new transformation laws which would leave them invariant proved to be
more difficult. These laws, in their exact form, were not discovered until
1905, by Henri Poincaré, who named them “Lorentz transformations” in
honor of the great Dutch physicist (who had obtained approximating
versions). The history of this discovery is worth being told, if only because
it is surprising to observe how it is universally attributed to Lorentz, when it
is clear, according to his writings, that he never obtained the correct
transformation, although he did play an essential role in its discovery.
 





 
Poincaré and Relativity

 
Indeed, one often encounters, at some point in a book or article, a statement
to this effect: “Why didn’t Poincaré discover relativity? Surely it is because
he was too much of a mathematician and not enough of a physicist.” Such a
judgement is profoundly unjust to Poincaré, for two reasons.

The first is that Poincaré actually did discover relativity, a bit before
Einstein. The Lorentz transformation was never established by Lorentz;
Poincaré was the first to do so. It is interesting, incidentally, to observe that
Poincaré, while having been “banished” from the official history of special
relativity, is nevertheless given a permanent place in the everyday practice
and vocabulary of today’s physicists. It is thus that the complete group of
special relativity, that which contains the (so-called) Lorentz
transformations (rotations in spacetime) as well as translations, is called the
“Poincaré group.”

The second is that one needs only to reread him to realize that Poincaré
was as extraordinary a physicist as a mathematician (in the tradition of
Newton, Euler, and Gauss), intuitive and rigorous at the same time, and
that, quite simply, he founded modern physics. While Einstein’s and
Lorentz’s articles on (what would become) special relativity seem (from a
mathematical point of view) to still belong to the nineteenth century, those
of Poincaré are the first to use the methods of twentieth-century physics:
group theory and reasoning tied to the properties of symmetry.

Neither is it a question of arguing that the discovery of special relativity
belongs to Poincaré, and not Einstein. There is no doubt that Albert Einstein
established the laws of special relativity independently of Poincaré. It seems
that Einstein formed his thoughts on relativity in large part by reading the
work of Poincaré in 1902, then developed them by himself afterward. He
immediately understood its full implications, those which were physically
most profound. Thus, Einstein writes in his 1905 article:
 

The speed of light in our theory plays the role, physically, of an
infinitely high speed.

 
Finally, special relativity was for him just a step in the gigantic

construction that he would undertake toward general relativity (as we will



see in the following chapter, Einstein posed the principle of equivalence as
early as 1907), while Poincaré seems to have underestimated the problem of
constructing a relativistic theory of gravitation.

Both discovered special relativity, practically at the same time, and both
deeply understood its significance to physics, even if their statements vary
in form. Here are some examples bearing on the bases of relativistic
analysis, which show that Poincaré had effectively taken the step toward the
new physics of spacetime (relativity of inertial motion, non-existence of
ether, absence of absolute time, relativity of simultaneity). As early as 1899,
Poincaré affirmed:
 

I consider it very likely that optical phenomena depend solely on the
relative movements of the material bodies present.[12]

 
In Science and Hypothesis, published in 1902, he writes:

 
There is no absolute space, and we only conceive of relative motion. . .
.
There is no absolute time. . . .
We have not . . . direct intuition of the simultaneity of two events
occurring in two different places. . . .
That does not prevent absolute space—that is to say, the point to which
we must refer the earth to know if it really does turn round—from
having no objective existence.
Whether the ether exists or not matters little . . . [This] hypothesis
plays but a secondary rôle. [It] may be sacrificed.[13]

 
On the 24th of September, 1904, in a speech given to the Congress of

Arts and Science in Saint Louis for the Universal Exposition, Poincaré took
stock of the state of mathematical physics at the time and reflected upon its
future. The text is a marvel. In it, Poincaré summarizes in a dazzling
fashion the nature of the laws of physics, identifies the essential problems
that it then faced, makes a diagnosis of the crisis, and recalls the great
fundamental principles, identifying those which should survive the
transformation in process and those which should disappear or evolve.
Finally, he proposes solutions that fulfill an incredible prophecy of what



would effectively be twentieth-century physics (even though he had denied
doing so at the outset). Below are some extracts:
 

There are symptoms of a serious crisis, which would seem to indicate
that we may expect presently a transformation. . . .
This crisis will be salutary . . . [It] is not the first, and in order to
understand it, it is well to recall those which have gone before. . . .
Mathematical physics, as we are well aware, is an offspring of celestial
mechanics. . . . Many of us . . . know that the ultimate element of
things will not be attained, except by disentangling with patience the
complex skein furnished us by our senses. . . . They believe that when
we once arrive at these ultimate elements, we shall meet again the
majestic simplicity of celestial mechanics.
[For the ancients, the law] was an internal harmony, statical as it were,
and unchangeable. . . . To us a law is no longer that at all; it is a
constant relation between the phenomena of today and that of
tomorrow; in a word, it is a differential equation.[14]

 
After powerfully summing up the passage from the ancient to the

modern version of science (in which one no longer seeks a pre-existing
harmony but certain relations, no longer seeks to establish at once what the
real structures are, but to construct equations which can be solved, thus
extending the domain of the possible), Poincaré pursues an analysis of what
is precisely one of the principal themes of the present work: the scale
invariance of many of the empirical laws found in physics, which take the
form of power laws.
 

Like the stars themselves, [atoms] attract each other or repel, and this
attraction or repulsion . . . depends only on the distance. The law
according to which this force varies with the distance is perhaps not the
law of Newton, but it is analogous thereto: instead of the exponent -2
we probably have another exponent, and from this diversity in the
exponents proceeds all the diversity of the physical phenomena. . . . We
have the exponent -6 or -5 . . . but it is always an exponent. . . . Such is
the primitive conception in its utmost purity.[15]

 



But this purity is only an arbitrary simplification. The evolution of
physics which Poincaré wished to reinforce consists precisely in going
beyond this empirical approach, and privileging a deeper understanding
based on first principles, even if that would imply giving up the hope of
“knowing all”:
 

Nevertheless there came a day when the conception of central forces
appeared no longer to suffice . . . What was done? Abandoned was the
thought of exploring the details of the universe . . . and one was content
to take as guides certain general principles.[16]

 
Next, Poincaré lists the great principles of physics: the principle of the
conservation of energy, the principle of the conservation of mass
(Lavoisier), Carnot’s principle of the dissipation of energy, Newton’s
principle of the equality of action and reaction, the principle of least action,
and finally,
 

The principle of relativity, according to which the laws of physical
phenomena must be the same for a stationary observer as for one
carried along in a uniform motion of translation, so that we have no
means, and can have none, of determining whether or not we are being
carried along in such a motion.[17]

 
And he concludes:
 

The application of these five or six general principles to the various
physical phenomena suffices to teach us what we may reasonably hope
to know about them.[18]

 
With this text, Poincaré founds modern physics. Furthermore, the principle
of special relativity is stated there for the first time in its constructive form
of invariance of laws under changes of frames of reference, which goes
beyond the “passive” Galilean form (“movement is like nothing”), for it
allows not only the verification of the relativity of already existing laws (for
example the laws of motion and the Galilean and Newtonian dynamics), but
also the establishment of new laws. Given the statements made by Poincaré
in the rest of this non-specialist text, it is very likely that he had already



obtained, in its essential form, the concept of special relativity. He writes in
particular:
 

From all these results, if they were to be confirmed, would issue a
wholly new mechanics which would be characterized above all by this
fact, that there could be no velocity greater than that of light.[19]

 
This work would in fact be published six months later, some time before
Einstein’s. It is especially remarkable that he speaks here of mechanics and
not only electrodynamics: it is thus not for him a case only of finding the
invariant group of Maxwell’s equations but, as in the work of Einstein, of
finding a unique transformation law which could be applied to mechanics in
general (not only to the electron) rather than electromagnetism alone.
One must nevertheless temper this success to some degree. Poincaré always
considered that the principle of relativity by itself was insufficient in
establishing the Lorentz transformation, and that one needed a
“complementary hypothesis” (that he chose to be the Lorentz contraction).
It is on this point that Abraham Pais makes his case for not completely
attributing special relativity to Poincaré in his book Subtle is the Lord: The
Science and the Life of Albert Einstein. We will see in more detail what this
means by analyzing the proofs of Einstein and those more recent. In fact,
Einstein had from the outset a larger vision than Poincaré of the principle of
relativity, which allowed him to pose certain essential axioms starting from
this principle, and then to extend it to general relativity, which Poincaré did
not do. He also added a supplementary hypothesis to the principle of
Galileo (that of the invariance of the speed of light) and this choice, while
equivalent from the mathematical point of view (both use the same number
of axioms), would turn out to be much more striking and convincing than
that of Poincaré.

In the rest of his paper, Poincaré shines a light on the experimental
problems which cast the great principles into doubt. The convergence of his
diagnostic with that of Einstein’s one year later is remarkable. The four
essential problems that he raises can be put into direct correspondence with
the four celebrated articles of Einstein in 1905, on Brownian motion,
special relativity, the nature of mass, and the photoelectric effect.

Poincaré clarifies first of all the nature of Brownian motion and takes
note of its importance with respect to the central question of physics



concerning macroscopic irreversibility:
 

The biologist, armed with his microscope, has for a long time noticed
in his preparations certain irregular motions of small particles in
suspension; this is known as Brown’s motion. . . . These motions do
not cease, or, rather, they come into existence incessantly, without
borrowing from any external source of energy. . . . We see before our
eyes motion transformed into heat by friction and conversely heat
changing into motion, and all without any sort of loss, since the motion
continues forever. . . . We need no longer the infinitely keen eye of
Maxwell’s demon in order to see the world move backward; our
microscope suffices. The larger bodies are bombarded from all sides by
the moving atoms, but they do not stir, because these shocks are so
numerous that the law of probabilities requires them to compensate
each other; but the smaller particles are hit too rarely to have this
compensation take place with any degree of certainty and are thus
incessantly tossed about.[20]

 
Thus, for Poincaré, the nature of Brownian motion as due to atomic and
molecular shocks was not under any doubt, nor its importance as a crucial
experiment showing the limits of thermodynamics. To show this limit was
exactly the goal that Einstein gave himself in his article of 1905 (where he
developed the quantitative theory). He expressed it in 1915 using words
which recall those of Poincaré:
 

The great significance as a matter of principle is, however, . . . that one
sees directly under the microscope part of the heat energy in the form
of mechanical energy.[21]

 
It is equally remarkable that, for Poincaré, the question of reversibility is

already a question of scale. One sees, through Brownian motion, reversible
laws of microscopic physics leading to irreversible macroscopic laws.
Poincaré then addresses the problem of relativity:
 

All the attempts to measure the velocity of the earth relative to the
ether have led to negative results. . . . Michelson carried precision to its
utmost limits; nothing came of it.[22]



 
Poincaré then explains the method of synchronizing clocks (which is

also one of the essential reasonings of Einstein):
 

Watches [A and B] regulated in this way, therefore, will not mark the
true time; they will mark what might be called the local time, so that
one will gain on the other. It matters little, since we have no means of
perceiving it. All the phenomena which take place at A, for example,
will be behind time, but all just the same amount, and the observer will
not notice it since his watch is also behind time; thus, in accordance
with the principle of relativity he will have no means of ascertaining
whether he is at rest or in absolute motion.[23]

 
We shall have to construct an entirely new mechanics, which we can
only just get a glimpse of, where, the inertia increasing with the
velocity, the velocity of light would be a limit beyond which it would
be impossible to go.[24]

 
He continues with the problems encountered by the principles of

conservation of mass and energy, in particular the result of the radioactivity
experiments of Becquerel and of Pierre and Marie Curie:
 

The scene changed when Curie thought of placing the radium in a
calorimeter. It was then seen that the quantity of heat continuously
generated was very considerable. . . .[25]

[The principle of conservation of mass] would cease to be so for bodies
having velocities comparable with that of light. Now, such velocities
are at present believed to have been realized; the cathode rays and
those of radium would seem to be formed of very minute particles or
electrons that move with velocities that are no doubt less than that of
light, but which appear to be about one tenth or one third of it. . . .
We can no longer distinguish between the mechanical mass and the
electrodynamic mass. . . .] The mass can no longer be constant; it
increases with the velocity.[26]

 
As early as 1900, Poincaré moreover understood that one could attribute

to a radiation energy E an inertia m = E/c2:



 
If [a] device has a mass of 1kg, and if it emits three million joules in
one direction with the velocity of light, the speed of the recoil is 1
cm/sec.[27]

 
Of course, there is much more in Einstein’s work, when he identifies the

mass of a solid body with a resting energy.
One last cause of astonishment at the reading of this extraordinary

article by Poincaré concerns the final problem he raises:
 

[The] dynamics of the electrons can be approached from many sides;
but among the roads that lead there, there is one which has been
somewhat neglected, and yet it is one of those that promise us the most
surprises. It is the motion of electrons that produces the lines of the
spectrum. . . . Why are the lines of the spectrum distributed according
to a regular law? . . . I believe that here is one of the most important of
nature’s secrets. . . . Electrons do not behave like the matter with which
we are familiar.[28]

 
Thus it was clear for Poincaré that the spectral lines had an electronic

origin (when the structure of the atom was far from having been
characterized as nucleus and electron cloud), and that the problem of their
quantization (only certain discrete values appeared) would reveal itself as
one of the most crucial problems in physics, since it eventually led to
quantum mechanics. Here again Einstein made the same observation when
he raised the problem of quanta with respect to the photoelectric effect.

Poincaré’s conclusions are also prophetic:
 

We should have to rebuild from the beginning. . . . Perhaps it is the
kinetic theory of gases that will forge ahead and serve as a model for
the others. . . . A physical law would then assume an entirely new
aspect; it would no longer be merely a differential equation, it would
assume the character of a statistical law.[29]

 
A wonderful vision into the future of the probabilistic character of what
would become quantum theory! One might argue that the quantum laws are



still written in terms of differential equations, but the rest of this work
makes full sense of this intuition.

Of course it might have been that Poincaré only caught a glimpse of the
new physics in emergence. It turns out that he did more, and that he was
indeed one of the essential authors of its effective construction: he is the
first to have established the correct Lorentz transformation, both as an
invariant group in electromagnetism as well as in mechanics.

Hendrik Lorentz could have established the transformation which bears
his name in an article from 1904. Let us consider this article. Its goal is to
respond to an objection of Poincaré to his first works. Lorentz had proposed
an approximative transformation law, valid only for lower speeds. Poincaré
had noted, in 1900, that only an exact transformation law would be
convincing. Lorentz thought, in 1904, that he had finally obtained this
transformation. But that which figures in this celebrated article is not what
we now call the Lorentz transformation![30] Abraham Pais, who has greatly
contributed to restoring Poincaré to his rightful place in the history of
relativity (it is thus that Steven Weinberg, discoverer of the electroweak
unification, after reading Pais’ book, has affirmed that special relativity
ought to be attributed to Einstein and Poincaré on a level of equality),
nonetheless did not identify this error, and observed only that Lorentz had
been mistaken on the transformation law of velocities and could not
establish the covariance (now named after Lorentz). He only attributed to
Poincaré the correction of the error regarding velocities.

Then who was it who discovered the Lorentz transformation? Henri
Poincaré! And why is it called the Lorentz transformation? Because
Poincaré himself named it thus in his honor! In a brief paper given to the
French Academy of Sciences on June 5, 1905 (thus one month before
Einstein’s article), he writes:
 

The results that I have obtained are in agreement on all the important
points with those of Lorentz; I have only been led to modify them and
to complete them in some points of detail. The essential point,
established by Lorentz, is that the electromagnetic field equations are
not changed by a certain transformation (that I will call using the name
of Lorentz) and which have the following form.[31] The set of all these
transformations, together with the set of all spatial rotations, must form
a group.[32]



 
After converting the units and combining the equations of Poincaré, one

can see in the transformation given by Poincaré the true “Lorentz
transformation.” Thus, it was Poincaré himself who, in a gentlemanly
manner, attributed the discovery to Lorentz. Lorentz’s error seemed to him
to be only a point of detail! And yet, this error is not a simple typo and
certainly not a point of detail. The reasons for which Lorentz was mistaken,
while Poincaré arrived at the correct transformation, lie in the different
physical meaning that each gave to this transformation. For Lorentz, it had
nothing to do with a problem of relativity, but instead concerned the
mechanical contraction of objects, from the fact of their motion with respect
to ether. It is doubtless not an accident if his initial error had to do with the
transformation of positions and had repercussions on that of time. For
Poincaré, on the contrary, the problem posed was to generalize the Galilean
transformation. The new transformation must necessarily be aligned with
Galileo’s for lower velocities, which enabled him immediately to find the
correct formula.
 





 
Einstein and Special Relativity

 
A few months after Poincaré, and independently of him, Einstein proposed
an extremely deep and thorough construction of the new theory.[33] It was
the result of reflections which began almost in his childhood. Einstein had
very early and intuitively practiced that mode of investigation (a “thought
experiment” that one can call “relativist” a posteriori), which consists of
placing oneself mentally within the system surrounding the object which
one wishes to understand. As early as the age of sixteen, Einstein
investigated what an observer propelled by an electromagnetic wave would
see. He writes in his autobiographical notes:
 

Gradually I despaired of the possibility of discovering the true laws by
means of constructive efforts based on known facts. The longer and the
more desperately I tried, the more I came to the conviction that only
the discovery of a universal formal principle could lead us to assured
results. . . . After ten years of reflection such a principle resulted from a
paradox upon which I had already hit at the age of sixteen: If I pursue a
beam of light with the velocity c (velocity of light in a vacuum), I
should observe such a beam of light as an electromagnetic field at rest
though spatially oscillating. There seems to be no such thing, however,
neither on the basis of experience nor according to Maxwell’s
equations. . . . One sees that in this paradox the germ of the special
relativity theory is already contained.[34]

 
The “relativist” state of mind is present from the outset for the young

Einstein, not only in the methods used, but in the manner of posing the
problem. It is a matter of reconciling statements or laws that are apparently
contradictory: invariance of the speed of light and the principle of relativity,
mechanics and electrodynamics. Thus, for him, the relativist mode of
thinking is already at work in constructing a theory of relativity. It is the
“philosophic” principle of relativity, requiring the unity of laws (see the
second part of the present work), which prevents the physicist from staying
in a mode of description where the laws of mechanics and those of
electrodynamics are different, if not opposed. And the solution to the



dilemma is none other than the relativity of space and time, in a sort of
feedback loop of the principle of relativity with itself.

Einstein attempted to clarify the manner in which he finally resolved the
problem, aided by a conversation with his friend Michele Besso:
 

We discussed every aspect of this problem. Then suddenly I
understood where the key to this problem lay. . . . An analysis of the
concept of time was my solution. . . . Within five weeks the special
theory of relativity was completed.[35]

 
In his 1905 article, Einstein began by stating the principle of relativity

by declaring his goal, which was to reunify electrodynamics and mechanics:
 

For all coordinate systems for which the mechanical equations hold,
the equivalent electrodynamical and optical equations hold also.[36]

 
Then he added another postulate to this principle:

 
Light is propagated in vacant space, with a velocity c which is
independent of the nature of motion of the emitting body.[37]

 
It is the combination of these two postulates which constitutes Einstein’s

principle of relativity: the first is that of supposedly universally valid
Galilean relativity[38] (for mechanics, but also for the new electrodynamics
which was, of course, unknown to Galileo); the second is that of the
invariance of the speed of light. Einstein was aware of the shocking
character of this proposition, for he immediately added that the second
postulate “is at first sight quite irreconcilable with the former one.”[39]

The physicist reader of this period could not, in fact, be prevented from
thinking that the principle of Galilean relativity should be understood as the
Galilean transformation, in which the speed of light is certainly not
invariant, and which does not at all concern electrodynamics. The solution
to this puzzle is that the Galilean transformation can be generalized, and
that the more general transformation, that of Lorentz, satisfies the second
postulate.[40]

In the end, it is in the manner of presenting relativity where Einstein
differs from Poincaré: both provide an additional axiom, but Einstein



chooses the essential physical postulate that sums up the new theory then
establishes it in principle (the invariance of c), whereas Poincaré, for whom
one axiom merited another, chose an abstract and technical hypothesis (the
form of the “Lorentz factor”).[41] For Poincaré, nature is organized so that
one is never able to observe absolute motion; for Einstein, absolute motion
does not exist, velocities higher than that of light lose all meaning, etc.

One must place oneself into the mindset of the period to fully appreciate
the upheaval brought by these new concepts. While the idea of a universal
frame of reference defining absolute rest had already been rejected by
Galileo and Leibniz, the concept of absolute space had been reintroduced
by Newton and constituted the mental framework of physicists for two
centuries. Also, the Einsteinian revolution dealt as much with space as with
time: Einstein had to reaffirm and prove physically and mathematically that
none of the known physical laws, whether they be in mechanics or in
electromagnetism, required the existence of a point of reference at rest with
respect to which the motion of all others could be determined. The notions
of rest and motion can only be relative.

The analysis of Poincaré and Einstein shows that the notion of two
event’s simultaneity can never be absolute: if two events are simultaneous
within one frame of reference, they are not necessarily so in another. In
special relativity, time loses its special status and finds itself submitted to
the same relativity as spatial positions. When the components along a
certain axis of two points coincide, we know well that that does not mean
the two points are identical: if one of their coordinates coincides, it is only
by an effect of projection. We are accustomed, from the fact of the two-
dimensional character of our vision of objects which themselves are three-
dimensional, to seeing at all times different objects along the same line of
sight. The knowledge which we always have of the fact that space is in
actuality in three dimensions and that this coincidence is an effect of
projection allows us to correct this illusion continuously. In the same way,
temporal coincidences are often nothing other than such effects of
projection of events which are not at all identical!

Many consequences of special relativity seemed highly paradoxical at
the time of its construction, but can in fact be understood in an intuitive
manner if one grasps the deep reasoning. It is thus with the contraction of
lengths and the dilation of time. The application of the Lorentz
transformation formulae shows in effect that an object moving before us



seems to shorten with respect to its length at rest, and that a temporal
phenomenon lasts longer within one frame of reference where it is in
motion than in its resting reference point. This is not a simple theoretical
curiosity: the slowing of clocks is seen all the time in particle accelerators.

The introduction of the concept of spacetime and the four-dimensional
mathematical methods which formalize it, by Poincaré in 1905, and then by
Minkowski in 1908, makes full sense of the Einsteinian revolution. In
classical mechanics, space (in three dimensions) and time (one-
dimensional) are two absolute and independent concepts. In special
relativity, a four-dimensional entity, spacetime, encapsulates them and this
absolute character, so that neither space nor time are any longer absolutes
taken individually. It is no longer the element of length dl nor the element
of time dt which are invariant within a change of coordinates, but a
combination of the two, the four-dimensional Minkowskian “distance” ds,
constructed following a generalization of the Pythagorean relation.[42]

The key to understanding special relativity is then quite simple: the
Lorentz transformation is a rotation in spacetime. Similar to how a rotation
in space leads to a change in the apparent lengths of bodies (by the effect of
projection), lengths and times are no longer independent in special
relativity, and themselves correspond to a “projection” of the generalized
invariant, causing the effects of length contraction. The dilation of intervals
of time is of the same nature, but is more difficult to grasp intuitively. In the
three-dimensional Euclidean space to which we are accustomed, we see that
a ruler always appears smaller after a rotation than if it is seen frontally:
there is an apparent contraction of the length projected. But the spacetime
of special relativity, if its spatial component is indeed Euclidian,
corresponds to a new geometry, called hyperbolic, in what concerns the
relations between space and time. In such a hyperbolic rotation, there is an
apparent dilation, not a contraction.

In the case of photons (or more generally of massless particles), the
invariance of the speed of light is expressed by the nullification of this
element of four-dimensional distance. One understands better the physical
significance of the element ds if one understands that it is identified with a
particle’s interval of proper time, defined as the time which passes in the
frame of reference where it is at rest, which is directly tied to the particle. It
is this property of light of not seeing its own time pass that Einstein had



seen at a very young age in an intuitive form, and which was finally
realized in the form of an equation once the theory was constructed.

Classical mechanics has established that there exist deep connections
between the properties of space and time and the fundamental quantities of
energy, linear momentum, and angular momentum. They are called
“conservative,” since they are conserved, unchanged, over the course of
time. Given this, it is not surprising that an evolution of the concept of
spacetime implies fundamental consequences for the nature of these
quantities. One of the results of special relativity has become known to the
point of becoming part of universal culture: the relation of equivalence
between mass and energy discovered by Einstein, E = mc2. To establish this
relation, one generalizes in special relativity the form taken by the kinetic
energy of motion, and one discovers that even at rest, all bodies possess an
internal energy equal to the product of their mass by the square of the speed
of light.[43]

But work on special relativity and its foundations did not stop at the
beginning of the century. Its interpretation was clear for Einstein starting
with his 1905 article: it is thus that he writes there, as we have seen, that the
speed of light, while finite, possesses within the new framework all the
physical properties of an infinite speed. Nevertheless, these foundations
have been improved, in particular by the works of Wigner, then Lévy-
Leblond, and I have myself proved that one can obtain the special relativity
laws using two fewer axioms than the original derivations.[44] This work has
shown that the tie between special relativity and the speed of light was only
an accident of history. Einstein had obtained the Lorentz transformation by
adding to the principle of Galilean relativity that of the invariance of the
speed of light. We know today that this supplemental axiom was not
necessary, and that the laws of special relativity impose themselves as the
most general laws which satisfy the problem posed: that of the construction
of inertial transformation laws satisfying the principle of relativity, laws of
which those of Galileo are only a special case.[45]

In such an approach, one forgets that one knows (or thinks that one
knows) the laws of changing a frame of reference, and one tries to construct
them by application of the principle of relativity itself. This principle
necessitates that the laws of nature should be valid whatever the system of
coordinates. The transformation laws between coordinate systems are part
of the fundamental laws of nature: the principle of relativity should also be



able to be applied to itself! As a consequence, if one makes two successive
transformations of coordinate systems, the composed transformation should
be of the same kind as each of the initial transformations.[46]

Similarly, a change in the sign of a spatial or temporal variable should
not make any change to the transformation law. It is again a direct
consequence of relativity: what is arbitrary in the choice of coordinate
systems should in no way influence the physical character of the result.

Yet one can show that the only general transformation of coordinates
which satisfies these conditions takes precisely the form of the Lorentz
transformation, in the case of transformations of two variables, one of space
and the other of time, called linear, which are specific to special relativity.
[47] The constant c does not appear at all in this proof as the speed of light,
but as a purely mathematical constant assuring the generality of the
obtained transformation. The law of Galileo is equally a solution to the
same problem, but in the very special case where this constant would be
infinite. Thus the constant c has nothing to do (directly) with the speed of
light, no allusion to, or utilization of light coming about in this type of
proof. What, then, is the relation and why should the theory have been
historically constructed using this connection?

The answer to this question is obtained by studying the new forms that
the concepts of energy and linear momentum take in this new theory,
compared to Galilean theory. These concepts imply the impossibility for a
particle with mass to attain the speed c. It would take an infinite energy and
linear momentum for such a particle, no matter how low in mass, to go at
the speed c. It is in this sense that this speed is an asymptotic limit, which
can never be attained and possesses all the physical properties formerly
assigned to infinity. It is thus found to be fundamentally unsurpassable, in
the sense that surpassing infinity has no meaning. It is not a barrier, a sort of
border in the ordinary sense of the term. In this case, there is no other side
of the border; it simply does not exist.

These new laws of energy and momentum have another remarkable
property. If it is true that no object possessing mass can attain c, in contrast
an object with absolutely zero mass, of which the energy and momentum
would be zero in Galilean theory, finds a coherent existence in the theory of
Einstein. But such an object is then required to go at the speed c; no other
speed is permitted.



To summarize, special relativity implies that material particles can never
attain the speed c, and inversely that particles without mass can only travel
at the speed c. The correct definition of the speed limit then becomes clear:
it is the speed of any massless particle in a vacuum. Light thus does not
appear in relativity except as an archetype of a particle having this property.
But it shares this property with other particles, such as neutrinos (neutrinos
have now been discovered to have a mass, but so small that their velocity
remains indistinguishable from that of light). Its role in the construction of
the theory comes from what the physicist had available, a physical object
which attains the speed c, and which are accessible to him, thus allowing
relativistic effects to be shown by evidence. The essential point here is to
understand that, even if no physical object could reach this limit (that is to
say, if all particles, including photons, were discovered to have mass), this
would in no way change special relativity. The speed c would remain as a
speed limit for all transmission of information of any sort.

Ultimately, special relativity demonstrates the existence of spacetime.
The complexity of the relativistic formulae compared to their Galilean
version is only a consequence of a “bastardized” representation, in which
we continue to use three-dimensional concepts such as the usual velocity v,
while the transformations are four-dimensional in nature (try to imagine
what the representations of movements in ordinary three-dimensional space
would be like if one limited oneself to using only two variables). Thus, the
finitude of the speed of light is only an effect of perspective! It is simply the
equivalent of a vanishing point. Here again, one will easily understand it by
starting from equivalent effects encountered in our vision of space. Two
tracks of a railroad which continue infinitely are seen by us, by reason of
perspective, to converge at a finite distance on the “plane of the sky.” This
comes from the projection of a three-dimensional infinity on the celestial
sphere, our vision only being two-dimensional. The maximal speed is
similar: to be convinced, it is enough to observe that once expressed in four-
dimensional representation, the form of Galilean relations are recovered, in
which the speed of light now corresponds to a “four-dimensional speed,”
which is infinite.

One last question is that of the value of the speed of light. Why is it
300,000 km/s (roughly)?[48] This question is in reality not the right one. As
is often the case in relativity, rather than trying to answer it, one must
reverse one’s point of view. The numerical value of the speed of light is



completely dependent on the choice of units. But this is a priori arbitrary,
and furthermore, the choice of different units of time and speed is only
justified if space and time are not connected. Yet special relativity declares
that space and time do not exist independent of one another, but are
subspaces of four-dimensional spacetime. It is enough to imagine what
would happen if we were to measure in space (in three dimensions) the
heights in a different unit from the lengths and widths. All would go well
until a rotation occurred: one would then see, from the new reference point,
the relation between the units complicating all the results of measurement
and their interpretation.

It is thus with spacetime and the speed c, which is nothing but an artifact
of such a choice of different units: similar to how the relationship between a
height over a width is a pure number, without dimension, the true nature of
a speed (the ratio of length over time) is also without dimension. In other
words, from the moment when we measure space and time with the same
unit, which their true nature requires, the speed c disappears from physical
laws, becoming the pure number c = 1. Since 1985, by decision of the
International Bureau of Weights and Measures, there are effectively no
longer two separate units of time and length, but only a unit of time. The
unit of length is deduced once c is definitely fixed. This method enabled
taking into account the relativistic revolution while assuring continuity with
the former units. Perhaps one day we will go to the ultimate implications of
special relativity and we will measure lengths in nanoseconds?[49]

Speeds would then by definition be non-dimensional quantities and
would only be able to vary between -1 and +1. The question of the value of
the speed of light would no longer be posed, but only those of the typical
values of speeds at which we usually move (for example, 3 m/s would
corresponds to 10-8).
 





 
CHAPTER 5: EINSTEIN’S GENERAL RELATIVITY

 
In 1907, only two years after developing the theory of special relativity,
Einstein had the idea that he would later describe as “the happiest of his
entire life.” In this (inner) vision, what would be revealed as the essential
physical basis of general relativity appeared to him, even if it would take
him almost ten years to elaborate the theory mathematically. Einstein
realized that “if a man falls freely, he would not feel his weight.”[50]

Even the expression “free fall” is telling: though one is apparently
always attached to a gravitational field, attracted to the Earth from the
perspective of Newtonian theory, one finds freedom when one is falling. It
is this freedom that those who pursue free falling as a hobby seek to find
and to feel, even if it is only partial due to air resistance. It is of course
astronauts in “weightlessness” who truly experience over a long period this
feeling of no longer having any weight, of no longer being subject to the
force of the Earth’s attraction. Nevertheless, the great idea of Einstein was
the understanding that, if we jump up, during the brief moment of our jump,
we experience this “weightlessness.” In other words, there is no difference
in principle between a vessel in orbit around the Earth and a ball which we
throw here on Earth: both are in free fall; both are, for the duration of their
motion, satellites of the Earth.
 





 
The Equivalence Principle

 
Understanding this universal phenomenon led Einstein to formulate the
equivalence principle, according to which a gravitational field is locally
equivalent to a field of acceleration. In order to obtain this principle, he
drew upon a fundamental property of gravitational fields already brought to
light by Galileo and included in Newton’s equations: the acceleration
communicated to a body by a gravitational field is independent of its mass.

After the development of special relativity, the need to generalize the
theory seemed inevitable for multiple reasons. In fact, relativist unification
was far from complete. If the mechanics of free particles and
electrodynamics finally satisfied the same laws, it was not the case for
Newton’s theory of universal gravitation, otherwise the chief showpiece of
classical physics. The equations of Newton are invariant under the classical
transformation of Galileo, but not under those of Lorentz. Thus physics
remained split in two, in contradiction with the principle of relativity, which
necessitates the validity of the same fundamental laws in all situations.

Moreover, Newtonian theory is based on certain presuppositions in
contradiction with the principle of relativity: it is so with the concept of
Newtonian force, which acts at a distance by propagating instantaneously at
an infinite speed. The construction of a relativist theory of gravitation thus
seemed to Einstein (and other physicists) a logical necessity.

Another problem was just as serious: the relativist approach explicitly
gives itself the problem of changes of reference systems and their influence
on the form of physical laws. But the answer provided by special relativity
is only partial. It only considers frames of reference in uniform translation,
at constant speeds with respect to one another. However, the real world
constantly shows us rotations and accelerations, from the fact of the
multiple forces which are at work (such as gravity), or inversely, causing
new forces (such as the forces of inertia).

What are the laws of transformation in the case of accelerated frames of
reference? Why would such frames of reference not be as valid for writing
the laws of physics as inertial frames of reference? The answer is that such
a question requires a generalization of special relativity.

The originality of Einstein’s approach had been, in particular, to bring
together two problems, that of constructing a relativist theory of gravitation



and that of generalizing relativity to non-inertial systems, into a single
endeavor. The equivalence principle made this unity of approach possible:
if field of acceleration and gravitational field are locally indistinguishable,
the two problems of describing changes in the coordinate systems,
including those which are accelerated and those which are subject to a
gravitational field, boil down to a single problem. But such an approach is
not reducible to “making relativist” Newtonian gravitation. While certain
physicists could hope, at the time, that the problem of Newton’s theory
could be solved by a simple reformulation, by introducing a force which
propagated at the speed of light, it is the entire framework of classical
physics that Einstein proposed to reconstruct with general relativity. Better
yet, it was a new type of theory which he developed for the first time: a
theory of a framework (curved spacetime, now a dynamic variable) in
connection with its contents, and no longer only a theory of “objects” in a
rigid preexisting framework (as was Newton’s absolute space).

Why such a radical choice? Doubtless because special relativity itself
was unsatisfactory on at least one essential point: the spacetime which
characterizes it, even if it includes in its description a space and a time
which are no longer absolute taken individually, still remains absolute when
taken as a four-dimensional “object.” However, inspired in particular by the
ideas of Ernst Mach, Einstein had come to think that an absolute spacetime
could have no physical meaning, but rather, that its geometry should be in
correspondence with its material and energetic contents. Thus a reflection
on the problem of inertial forces, which had caused Newton to introduce
absolute space, led Einstein to the opposite conclusion.
 





 
The Problem of Inertial Forces

 
The existence of inertial forces acutely poses the problem of the absolute or
relative nature of motion and, ultimately, of spacetime. The ideas of Mach
in this area had a deep influence on Einstein. For Mach, the relativity of
motion did not apply solely to uniform motion in translation; rather, all
motion of whatever sort was by essence relative (Poincaré and, long before
him, Huygens had arrived at the same conclusions).

This proposition can seem in contradiction with the facts. If it is clear,
since Galileo, that it is impossible to characterize the state of inertial motion
of a body in an absolute manner (only the speed of a body with respect to
another has physical meaning), it seems different in the case of accelerated
motions. Thus, when one considers a body turning about itself, the
existence of its rotational motion seems to be able to be felt in a manner
totally intrinsic to the body. No other body of reference is needed: it is
enough to verify whether or not a centrifugal force appears which has a
tendency to deform the rotating body.

In reconsidering the thought experiment of Galileo’s ship, the difference
between inertial movement and rotational motion becomes heightened. No
experiment conducted in the cabin of a ship traveling in uniform and
rectilinear motion with respect to the Earth is capable of determining the
existence of the boat’s movement: as Galileo understood, “motion is like
nothing.” Relative motion can only be determined by opening a porthole in
the cabin and watching the shore pass by. But now, if the boat accelerates or
turns about itself, all the objects present in the cabin will be pushed toward
the walls. The experimenter will know that there is movement without
having to look outside. Thus, accelerated motion seems definable by a
purely local experiment.

It is such an argument which caused Newton to allow that one can define
an absolute space, in opposition with Leibniz (then Mach) for whom
defining a space independently of the objects it contains could not have
meaning.

Mach proposed a solution to the problem completely different from
Newton’s. Starting from the principle of relativity of all motion, he arrived
at the natural conclusion that the turning body, within which there appear
inertial forces, must turn not with respect to a certain absolute space, but



with respect to other material bodies. Which ones? It cannot be close
bodies, of which the fluctuations of distribution would provoke observable
fluctuations of inertial systems. This is unacceptable, since it is easy to
verify the coherence of these systems over great distances. Thus, if we look,
motionless with respect to the Earth, at the night sky, we do not see the stars
turning.[51] Nevertheless, if we turn about ourselves, we feel our arms
spreading out due to inertial forces and, in raising our eyes toward the sky,
we can see it turn. This was the initial observation of Mach: it is within the
same frame of reference that the arms are raised and the sky turns, and this
will be true for two points of the Earth separated by thousands of
kilometers. Mach suggested, then, that the common frame of reference is
determined by the entirety of distant matter, of bodies “at infinity,” of which
the cumulative gravitational influence would be at the origin of inertial
forces. In other words, the body would turn with respect to a frame of
reference, not absolute, but universal. An absolute motion would be defined
in itself, independently of all objects. However, Mach argued, all motion is
relative, remaining defined with respect to an “object,” even if this object is
the universe in its entirety.

The solution proposed by Einstein, that of the equivalence principle and
general relativity, incorporates some of these ideas while ultimately
distancing himself from the principle of Mach, even though his premises
were identical. The distribution of matter and energy in the whole of the
universe determines the geometric structure of spacetime, and then the
movements of bodies are brought about within the framework of this
geometry tied to matter.
 





 
Relativity of Gravity

 
Let us now return to Einstein’s great idea in 1907. If an observer descends
in free fall within a gravitational field, they no longer feel their weight,
which means that they no longer feel the existence of this field itself. This
remark, which can now seem obvious to us—we have all seen, on television
or in movies, astronauts in weightlessness floating in their ship, and the
objects that they drop going away from them at a constant speed—is
nevertheless revolutionary, for it implies that gravity does not exist in itself,
that its very existence depends on the choice of a frame of reference.

He thus distanced himself from the former concept of gravity. What,
apparently, can be more absolute than a gravitational field in the Newtonian
model? Gravity had been recognized by Newton as universal; here indeed
was a physical phenomenon of which the existence does not seem to be able
to depend on such and such a condition of observation.

However, if we allow an enclosed area to fall freely within a
gravitational field, and then put in motion a body at a certain velocity with
respect to this area, the body will move in a straight line at a constant speed
with respect to the walls of the enclosure; a body initially immobile (again,
with respect to the walls) will stay thus during the movement of the
enclosure’s fall. In other words, all experiments that we can perform there
would confirm that we are in an inertial frame of reference! Thus, gravity,
however universal it is, can be cancelled out solely by a judicious choice of
coordinate system: what Einstein understood in 1907 was that even the
existence of gravity was relative to the choice of coordinate system.

The principle of equivalence can thus be understood as a principle of the
relativity of gravity. Gravity no longer exists “in itself,” but is manifested
from the fact of our belonging to certain coordinate systems. If we feel
gravity on Earth, it is no longer, in Einstein’s theory, because a “force”
attracts us toward the center of the Earth, but because the existence of the
terrestrial ground requires us to remain fixed in the “wrong” coordinate
system. It is enough to place oneself within the appropriate system (that
which is in free fall in the gravitational field) to see this field disappear
again.

In actuality, the fall of bodies is only illusory. If we throw a body in front
of us, it will effectively approach the ground until the body strikes it. But



the final shock comes from the existence of the ground, which is not created
by gravity alone. The movement of the body before the shock would be
almost unchanged if all the mass of the Earth was concentrated in its center.
This thought experiment allows one to elucidate the true nature of a body’s
motion. Without the ground to stop it, it would pursue its movement toward
the center, then move further away to the opposite side, and would finish by
returning to its point of departure to start its journey again. In other words,
the body would follow an elliptical path of which the center of the Earth
would be a focal point. When we throw a body, we are doing nothing less
than creating a satellite around the Earth.

Everything occurs as if Einstein had taken the propositions of Newton
backward. To the original question, why do bodies fall on Earth while the
Moon does not fall?, Newton answered that in fact the Moon is always
falling if we compare its movement to what it should be (rectilinear and
uniform), if it were free of all force. Einstein answered it the other way
around: neither the Moon nor the body falls; both are satellites of the Earth.
It is of course the definition of what we consider to be “falling” which
explains the difference. These answers both allow the construction of a
universal theory of gravitation, but that of Einstein was shown to be deeper.

The reverse consequences of the equivalence principle are equally true.
The conditions of life in a ship uniformly accelerated at 10 m/s2 would be
completely identical to those we know on Earth: we would weigh the same,
an object thrown would follow the same parabola. The various experiments
that we could conduct would not allow us to distinguish between this field
of acceleration and a field of gravitation.

This is of course only true “locally,” that is, in a small region with
respect to the extent of the field. In a very large vessel, one would be able to
verify that the acceleration of the artificial weight stays parallel in a single
direction. By contrast, within a gravitational field created by a mass,
acceleration is central: precise measurements between different points far
apart would show the non-parallelism of the force of gravity. For a large
object, tidal forces would appear, deforming the object by the fact of the
variation of the gravitational force between its extremities.
 





 
Generalizing the Principle of Relativity

 
The two problems which Einstein posed for himself, to find a relativist
theory of gravitation and to generalize special relativity to non-inertial
frames of reference, thus find themselves indissolubly connected by the
equivalence principle. The sole fact of wanting to write the laws of physics
within systems undergoing whatever kind of motion, and in particular
uniformly accelerated movements, will imply that, in certain frames of
reference, gravitational properties will appear in the absence of mass, while
in other frames of reference, even in the presence of a mass, one will have
all the properties of an inertial system.

Einstein’s principle of general relativity therefore extends the principle
of relativity to arbitrary movements. It supposes that the laws of nature hold
true, whatever the state of motion of the coordinate system. In other words,
all systems of reference should be equivalent for the expression of physical
laws, whatever their state of motion.

The principle of general relativity is mathematically translated to
another principle, that of generalized covariance. This principle
necessitates that the form of physical equations stays unchanged within
whatever transformation of coordinate systems (that is to say, in actuality,
that they will keep the same form that they had in an inertial system, as we
will see in the second part of this work).
 





 
Relativity of Geometry

 
The link between geometry and gravity can be further strengthened. If
gravity is relative to the choice of coordinate systems, it is the same for
certain geometric statements, as we shall see.

From the point of view of an external observer, a space station in orbit
around the Earth periodically moves in ellipses around it. But for the
astronaut inside the station, as long as they do not look out the window,
everything that they can see in their environment seems to show that they
are truly situated in an inertial frame of reference: an object dropped
without initial velocity floats without moving; if they push it, it will move
at constant velocity until it hits a wall. Let us suppose that the astronaut
throws an object very gently and it crosses the station during the time of a
fraction of its orbital period. Within the vessel, the object follows a
rectilinear trajectory at constant velocity. But what would its trajectory be
for a terrestrial observer? An ellipse, that is, a curved trajectory. Thus, the
presence of a gravitational field is reflected by the fact that the straight line
within one frame of reference is a curve in another.

Another observation made by Einstein, his choice of non-Euclidean
geometries, was even more crucial. That one must abandon Euclidean
geometry is in fact a direct consequence of special relativity. Let us
consider the measurement of a disc’s circumference at various distances
from its center. The relation of the circumference over the radius of a circle
drawn on this disc will always be 2π if it is at rest with respect to the
ground.

But let us now consider a disc that turns. One might seek to find out, if
one does not yet make use of a more general theory, what special relativity
can tell us about such a movement. If the disc turns about itself at a uniform
speed, the speed of translation tied to this rotation grows with the distance
from the center. By now measuring the circumference with enough
precision (or if the disc turns so fast that the speed of its outer rim
approaches that of light), its length is diminished by the relativistic
contraction of Lorentz, and this contraction increases with the linear speed,
that is, when the distance to the center grows. Thus, the relation between
circumference and radius of a circle drawn on a turning disc only equals 2π
at the center and decreases toward the outside. Yet the value of this relation



is one of the bases of Euclidean geometry, which thus finds itself
overturned by relativity.

Finally, because neither gravity nor the geometry of space (and of time)
are absolute, and because the absence of geometric effects (rectilinear
motion) corresponds precisely to the absence of gravity (inertia), Einstein
was led to posit that gravity and geometry are ultimately one single,
identical concept. The theory of relativity had finally arrived at a statement
precisely of this kind, in identifying the effects of gravity as the
manifestations of the curvature of spacetime.
 





 
Curved Spacetime

 
Once the idea of the equivalence principle and that of a non-absolute
spacetime depending on its contents has been accepted, a new geometric
tool becomes necessary to put in effect the theory of general relativity.
Clearly, neither Euclidean geometry, nor its extension in special relativity,
the spacetime of Minkowski, are suited for such a project. Both are rigid,
absolute, and do not contain the structures which permit one to tie together
matter and geometry.

In Euclidean geometry, the set of points situated at a constant distance
from a fixed point is a circle in a plane, a sphere in three-dimensional space,
a hypersphere beyond that. The circumference of a circle of radius r is 2πr,
its surface πr2, the surface of a sphere 4πr2, and its volume (4/3)πr3, etc. The
sum of the angles of a triangle is 180°, and two parallel lines never cross.

Let us now place ourselves on the surface of a sphere, and imagine that
we are two-dimensional beings constrained to living on this sphere.
Suppose that not only us, but all physical objects propagate themselves
exclusively on this sphere. When we speak of “dimension,” of “axes,” of
going in a “straight” line, we make reference to the only thing we know:
moving within our “universe,” which we cannot know, by purely local
measurements, is the surface of a sphere. Not being able to extract
ourselves or to observe or make use of anything outside of it, we will be
informed of the nature of the world only by its intrinsic, internal properties.
Yet measurements at large scale will show that circles there have a
circumference less than 2πr and a surface less than πr2, that the sum of the
angles of a triangle are greater than 180°, and that parallel lines can cross.
This “universe” is spherical and corresponds to the surface of a sphere.

Let us return to our own universe. The surface of a sphere can thus be
seen as an object (in two dimensions) immersed in a three-dimensional
Euclidean space, but also from the intrinsic point of view like a genuine
two-dimensional space. One can make measurements of length and
establish relations between these measurements by exclusively using two
coordinates defined along this sphere, and no change of reference will allow
one to eliminate the difference between our observed relations and the
relations obtained within a plane.



These observations have led to a profound paradigm shift, to the creation
of a new geometric universe. It is Gauss, Bolyai, and Lobachevsky who
deserve the credit for having truly understood and accepted, at the
beginning of the nineteenth century, the logical possibility of a non-
Euclidean geometry. Gauss discovered that the methods that he had
developed for intrinsically describing the sphere allowed him to describe
another two-dimensional geometry, completely new, coherent, and that,
nevertheless, one could not construct as a surface immersed in our usual
Euclidean space. This space, called hyperbolic, is infinite and possesses all
the attributes of an authentic geometry, which allows one to compare it to
Euclidean space: one can construct “lines” of infinite length, and define an
infinite number of parallel lines, which we cannot do on the sphere. But
parallel lines can cross, the sum of angles of a triangle is less than 180°, the
circumference of a circle greater than 2πr. It is a full-fledged geometry, but
one which no longer satisfies the axioms of Euclid.

These new geometries are characterized by a new property, curvature.
The sphere is a two-dimensional space with constant positive curvature,
given by the inverse square of its radius. One can equally envision surfaces
of negative curvature: the surface of a horse’s saddle, which curves upward
or downward in orthogonal planes, is a good example of this. The
hyperbolic space of Gauss is precisely a space where the curvature is
negative but, moreover, constant.

Once the possibility of a geometry not satisfying all the axioms of
Euclid was understood, one still had explicitly to construct it, to make a
choice among all the possibilities available to the imagination. Gauss
decided to limit himself to locally Euclidean spaces, that is, for which the
law of Pythagoras remained valid for an infinitesimal area around each
point. This choice, conserved by Riemann in his generalization to spaces
having an arbitrary number of dimensions, will be seen as essential within
the construction of general relativity by Einstein: this is the locally flat
character of space (more precisely the locally Minkowskian character of
spacetime) which will allow the mathematical expression of the principle of
equivalence.

Let us observe at this juncture that the theory of scale relativity, which
we will speak of later, consists precisely in abandoning this hypothesis.
Spacetime is no longer locally flat, but fractal, which means that it
possesses internal structures even in small scales.



Gauss had studied the metric properties of curved spaces, such as for
example the relations between the lengths of the sides of a triangle. He
discovered that these properties were unique to the spaces and allowed one
to distinguish between them, with respect to each other as well as with
respect to flat space. The internal properties of these spaces boil down to
the knowledge of the distance between two arbitrary points.

The requirement of covariance (of being able to write the laws of
physics under the same form whatever the coordinate system) is achieved
when one knows how all the physico-mathematical quantities defined on a
space are transformed, and when one can use this knowledge to write
equations of which the form no longer depends on the particular system of
coordinates chosen (only numerical values taken by the quantities will
depend on the choice).
 





 
Geodesics

 
The theory to be constructed ought to take into account the trajectories of
bodies. The laws of motions always boil down, as a final resort, to a process
of optimization: traveling the shortest path. In the case of ordinary,
Euclidean space, the shortest trajectory between two points is a straight
line: thus inertial Galilean movement, uniform and rectilinear, answers well
to such an optimization. The principle of general relativity requires that all
frames of references be equivalent in the description of motion. It must then
be that the trajectory of the free particle in a gravitational field follows the
equivalent of a “straight line,” but within a curved spacetime. What is the
equivalent of the straight line in Riemannian geometry? It is what we call
the geodesic of space. For example, the geodesic upon a sphere, well known
to navigators, is composed not by an arc of constant latitude, but by a “great
circle” (see figure 1).[52]



Figure 1 Geodesic on the surface of a sphere
The shortest line between two points is an arc of a great circle, that is, an

equator passing through these two points.
 
Inertial motion and free fall within a gravitational field become the same
thing: in both cases, they are free movement. This extraordinary result is
reflected in the equation of the geodesics, which has exactly the same form,
generalized within a curved space, as the equation of inertial motion! It is
expressed simply by writing that acceleration is zero, and thus that the
object is moving at a uniform constant velocity. But this acceleration that is



canceled out is no longer only the usual acceleration. It contains in its
definition the effects induced by geometry on movement, which one
describes with the help of a generalization of ordinary differentiation, the
covariant derivative. Ultimately, these effects simply demonstrate the
general relativity of motion.

Let us consider a physical vector magnitude, like a velocity or a force. It
is represented by a small arrow—a vector. Let us now move the origin of
this arrow. If, in the course of such a movement, the arrow remains
unchanged, parallel to itself and of the same length, then it could have been
defined in an absolute manner. Inversely, abandoning the absolute character
of spacetime implies that, when being displaced, a vector should turn. What
the new derivative defines, and what Einstein’s theory of gravitation is, is
exactly that: an effect of rotation induced by translations. There is no need
to find a “cause” for such an effect. It is the simple expression of a larger
generality, in the sense in which it would be its non-existence that would
require a cause (owing to the non-absolute character of spacetime).

Thus, Einstein arrived at statements concerning gravity just as powerful
as those obtained by Galileo for inertial motion. “Motion is like nothing,” it
has no need of a cause, it is rest or the variation of motion which requires
one. Similarly, spacetime is, a priori, curved, for if it was not, this would be
equivalent to making the arbitrary hypothesis of its flatness and thus its
absolute character. Otherwise said, gravity is like nothing, it is as if it does
not exist. This property is shown effectively in the fact that an incalculable
number of curved geometries are solutions to Einstein’s equations without
source terms, that is, without matter or energy (we will see below that
matter acts as source for gravity, in the same way that electrical charges are
the sources of electromagnetic fields). If curvature and matter are indeed
connected by general relativity, it would be misguided to reduce this
connection to simple relations of cause and effect, since there can exist
curvature without matter. It would in this case be a pure gravitational field,
without cause other than the greatest generality of possibilities.

Riemannian geometry would allow Einstein to construct a one-of-its-
kind theory in physics: all the usual and formerly indispensable concepts, of
force, of potential, even of field, disappear in favor of the sole concept of
spacetime. In general relativity, matter changes the curvature of spacetime
and free test-particles follow the geodesics of this curved spacetime.
 





 
The Sources of Gravity

 
One final stone of the foundations is still missing: if spacetime is now
curved and fluctuating and no longer rigid and immovable, what is the
connection between this curvature and matter? What is it that curves
spacetime? The nature of field theories is to define sources for the fields,
which are the magnitudes that create them. More precisely, one introduces
charges (such as the electric charge in electricity, or the strong or “color”
charge in the theory of strong interaction), then one considers the movement
of these charges, which is their current (it is thus with electric current).
Finally, the equations of a field consist in expressing that the current
determines the variations of the field.

For gravity, part of the answer can be found in Newtonian theory: in this
theory, the attractive force which deviates trajectories of particles is
provoked by masses. Should one deduce that it is masses which curve
spacetime? The theory of special relativity teaches us that such a response
must be insufficient. Einstein demonstrated that mass boiled down to a rest
energy (this is what is expressed in the relation E = mc2) and that energy
itself is only the temporal component of a more complex mathematical
entity in four dimensions mixing energy and momentum (as is the case with
time and space). One should speak no longer of separate energy and
momentum, but of energy-momentum.

In the theory of Einstein, the “charge” for gravity (its “source”) is then
energy-momentum in all its forms, that of matter but also that of radiation.
Under what form will this “charge” appear in the final theory? We know
that, in the equations of electromagnetism, one sees the electric current
appear as “source” of the field, which represents the movements of electric
charges (the product of charges times their speed). The physical action of a
field is provoked by the current of acting charges. It will be the same for
gravitation, but with a very special result in this case. The equations of
gravity will in effect depend on the “current of gravitational charge,” that is
to say, on the current of energy-momentum, while momentum (product of
mass times velocity) is already a “current of mass.” It is this extraordinary
physical quantity (a “current of current”) which is identified in Einstein’s
theory with the geometry of spacetime.[53]



Finally, in the theory of general relativity, mass as well as emitted rays
play an active and passive gravitational role: for example, the
electromagnetic field contributes, with masses and all other forms of
energy, to curve spacetime and, in return, masses, photons, and all other
particles and bodies see their trajectories deviated by gravitational fields.
 





 
Spacetime Equations

 
The final step in the construction of the theory consists of determining what
geometric expression can be identified with this current of gravitational
charge. The equations sought by Einstein should be written in the form
GEOMETRY = MATTER. Thus, the two terms of this identity must have
the same properties. Yet matter is characterized by a conservation equation,
which expresses its continuity (in spacetime) in a generalized manner. Does
there exist an equivalent geometric property?

Riemannian spacetimes are, effectively, universally characterized by the
fact that “a border has no borders.” For example, the border of a square is
its perimeter. Upon this, a moving point could travel without ever
encountering an obstacle.[54] The same goes for a cube. Its border is
constituted by its six faces, which form a finite and closed space in two
dimensions, equivalent to the surface of a sphere. In a space with four
dimensions, this property becomes more difficult to visualize. The border
becomes the three-dimensional “wall” of a hypercube. This wall is made up
of eight cubes, each connected to the others by their respective faces. A
three-dimensional being like ourselves, who lived within this wall, would
never encounter any border, even though such a space would be finite. Here
is a general property of continuity and of conservation that is purely
geometric, which can then be identified with the equivalent property of
continuity for matter: such an identity is what the equations of spacetime in
general relativity boil down to.

Finally, what is the nature of Einstein’s equations? One can see them as
the expression of a constraint on the universes which are physically
possible. If all curved geometries are mathematically coherent, they are not
so from the point of view of physics. Physical geometries must in fact be
connected to the distribution of matter via these equations. But this does not
prevent there being an enormous diversity of possible solutions. Due to the
complexity of Einstein’s equations, only a few exact solutions are known.
These are extremely particular solutions, which one can only obtain using
highly simplifying hypotheses. It is like this for the cosmological solutions
describing the universe in its entirety using the hypothesis of homogeneity
and isotropy at large scale, or for the solution of Schwarzschild, based on
the hypothesis of spherical symmetry around a mass, which describes the



behavior of planets around the Sun. But as soon as one arrives at more
complex configurations, such as, for example, the problem of the movement
of a binary star system, there is no longer any exact known solution (we do,
of course, have approximative and/or numerical solutions).

These equations also achieve the goal that Einstein had set, that of a
general relativity of motion. Effectively, these are the most general
equations from among the simplest that one can write, which would be
invariant under changes of coordinate systems that are continuous and twice
differentiable (i.e., one can define a speed and an acceleration). Gravitation
in Einstein’s theory becomes the set of manifestations of spacetime’s
curvature. This curvature is itself the expression of a greater generality (in
relation to the hypothesis according to which spacetime would be flat).

One often tries to express the essence of general relativity by stating that
“matter curves spacetime.” This mode of description is not quite exact,
knowing that curvature can exist without matter and that, inversely, a great
quantity of matter can correspond to a spatially flat spacetime. It is because
of this that numerous solutions of Einstein’s equations for a vacuum exist,
of which the most simple are what we call gravitational waves (these are
fluctuations of geometry which propagate themselves in a wavelike
manner).[55] All the cosmological models, even those which are at the limit
of zero density, are spatiotemporally curved, which is translated by the
phenomenon of the expansion of the universe, meaning the dilation of their
spatial part over the course of time. Regarding this dilation, spatially flat
models correspond to a density, called critical, already quite high. Below
this density, curvature is negative, above, it is positive. All these examples
show that it would be more correct to translate the nature of the theory by
the statement that matter and energy change the curvature of spacetime.
Once again, it is the difference which is important (here of curvature), not
curvature in the absolute. One must not then interpret the relation between
matter and geometry in the equations of Einstein as “causal” (one would
“place” matter which would “then” curve spacetime), but as being an
identity (in each point and at every moment, the two members of these
equations, one geometric and the other material, are identical).

Thus the observed structures of our world would be the most general of
physically possible structures; no other world would be imaginable. To
arrive at a description yet more general, one would have to remove the last
residual hypotheses of general relativity: differentiability (which is the



project of the theory of scale relativity, of which I will speak at greater
length later in this work) and, beyond, possibly, of continuity (if this can
have physical meaning, which I personally doubt in the framework of a
theory of relativity).

Another essential property of general relativity, which it shares with no
other theory, is the connection it allows between equations of the
“gravitational field” (that is to say of the geometry of spacetime) and
equations of particles moving within the field. For example, in the
Maxwell-Lorentz theory of electrodynamics, one must add to the
electromagnetic field equations those of the Lorentz force, which acts upon
particles within the influence of this field. In Einstein’s theory, the
equations of motion are no longer independent of those of the field, but are
deduced from them. This unique property demonstrates the power of the
spatiotemporal and geometric approach. It comes from the fact that the
trajectories of particles are no longer seen as the result of the action of a
force, but tied to the geometric structure of spacetime, defined by its
geodesics.

I emphasize, to conclude this first part, the complementarity of the three
great principles used by Einstein to construct his theory. The generalized
principle of relativity states that motion and gravity are always relative to
the choice of the coordinate system. The non-existence in itself of
gravitation is derived from this. The strong principle of covariance requires
that the laws of motion within a gravitational field (the equations of
geodesics) be able to be written under the form that they have within a
vacuum lacking all force, that of the inertial laws. Finally, the principle of
equivalence specifies definitively that this locally inertial reference frame is
identical to the uniformly accelerated coordinate system, in free fall in the
gravitational field. These three principles are thus revealed as three ways of
illuminating the same whole, which is the connection: relativity—non-
existence in itself (of gravity)—free motion.
 





 
PART TWO: THE PRINCIPLE OF RELATIVITY

 





 
CHAPTER 6: WHAT THE PRINCIPLE OF RELATIVITY MEANS

 
The principle of relativity postulates that the fundamental laws of nature are
valid in any system of reference, whatever its state.

Having followed the evolution of this principle and its application (we
have seen that theories of relativity underwent many successive levels of
elaboration over the course of centuries), we will now try to analyze the
true meaning of this statement. In this form, it generalizes the meaning
Einstein attached to it in 1916: for Galileo, then Poincaré and Einstein, the
statement only concerned relativity of motion.[56]

The state changes of coordinate systems taken into account in the
relativity of today are those of position, orientation, and motion. But the
point of view developed in the present work is that a much broader sense
can be given to the principle of relativity, due to an extension of the concept
of a reference system: relativity, in this broader sense, is no longer a fixed
and finished principle, but an evolving one. Lévy-Leblond has already
insisted on the necessity of making a distinction between the principle of
relativity and the theories that one can construct based on it. This distinction
is all the more true when considering the most general version of the
principle, as we will do here. Our idea is that the principle of relativity
applies not only to motion, but to all the magnitudes which characterize the
state (which is always relative) of the reference system.

To reduce the principle of relativity to existing theories of relativity,
theories which remain incomplete, would be to kill the goose that lays the
golden eggs! Indeed, it is the “philosophical” principle of relativity in the
most profound sense that we will now analyze in more detail.
 





 
The Laws of Nature

 
The principle of relativity is a statement which concerns “the fundamental
laws of nature,” in the most general sense of the term. From this point of
view, this principle can be considered in essence as belonging more to
philosophy than to physics. What are the “laws of nature”? One cannot
expect a definition here: the goal of this chapter is precisely to show how
this concept has transformed over the course of evolution of physics. Laws
once thought fundamental have been relegated to a secondary status in
favor of more profound laws. As an example, the three laws of Kepler on
the motion of planets later become consequences of Newton’s law of
universal gravitation; today this latter law can be deduced as an
approximation of Einstein’s general relativity.

Do there even exist laws of nature? Their existence is a foundational
hypothesis, underlying physics and, more generally, all scientific
knowledge. It is a presupposition necessary to the scientific endeavor. The
progress of science, our furthering of knowledge, the successes of
experimental results, all support this hypothesis, and demonstrate its
effectiveness, but they cannot prove it.

The physicist, in practice, uses only the equations of physics. These
equations, one hopes, approach more and more closely these ultimate laws,
pinning them down with greater and greater precision. Some physicists
have even asked whether there will be an eventual end to physics: will our
equations one day express these laws in a perfect manner?[57] Notably, such
ideas arise regularly, particularly during periods of crisis (latent and often
inexplicit), like the end of the nineteenth century or the current time period.

Another perspective is possible: our equations will only ever be
imperfect approximations, valid in a limited framework and always
restricted by a border (expanding over the course of time), and past this
border, the representation that they give of the world becomes more and
more inexact. By viewing the evolution of science this way, the search for
knowledge could well have no end. These (hypothetical) laws of nature
would only be an asymptotic concept, a horizon, always glimpsed but never
attained. It is the dynamic change which counts, the movement of the mind,
the path which one follows, and not the end, which could be, in itself, just
an illusion.[58]



But this way of thinking should not be misappropriated (as is the case in
certain anti-scientific discourses which are currently flourishing): in no way
does it mean that science “is wrong,” nor that scientific truth does not exist!
This border, which limits the domain of a theory’s reliable applicability at a
certain time, is expanded much further by later theories, and in this process
all the successes and knowledge gained through the preceding theory are
conserved. A good example of this is the way in which Einstein’s general
relativity encompasses Newtonian theory in an enlarged framework, and in
this framework one still finds all the extremely precise results of Newton’s
theory. But Newtonian description, so precise as long as the gravitational
field stays weak (as it is for the gravity on the surface of the Earth, or for
the motion of planets further from the Sun), possesses its own border. Past
this border, observations contradict its predictions (as with the motion of
Mercury, the closest planet to the Sun, as well as light rays closely passing
the solar boundary). It is this particular relation between the two theories
which sometimes leads people to consider that Einstein’s contribution only
brings “relativistic corrections” to Newtonian theory (one speaks, for
example, of the advance of Mercury’s perihelion), while objectively it is the
entirety of the phenomenon considered that general relativity predicts (in
our example, the position of Mercury at every instant since its discovery).

Thus, in this evolutionary dynamic of science, continually opening new
fronts of research, certain laws become established in a definitive manner,
and they remain so in later expansions of the paradigm: this is the case, for
example, of extremely fundamental laws like the unsurpassability of the
speed of light in a vacuum, or the existence of an absolute zero for
temperature.
 





 
Toward More and More Fundamental Laws

 
To better grasp the nature of “truth” in science, one must understand that the
successive enlargements of one’s frame of mind as physics has developed
are accompanied by a broadening of the concept of a “law of nature.” This
is an essential point which, if not clarified, can lead to endless
misunderstandings and, eventually, to scientific dialogues carried out as if
between deaf persons. Laws which appear as fundamental in a certain time
period are shown, in an enlarged framework, to be nothing more than
phenomenological laws (that is, restricted to particular phenomena). The
example already given of the relation between the laws of Kepler and those
of Newton will allow us to better understand. Kepler’s three laws are purely
descriptive.[59] They concern geometric properties, discovered empirically,
of planetary orbits. They are attached to the phenomenon to be described
(the global motion of the planets), but do not provide any explanation. With
Newton’s law of universal gravitation, physics goes a step further. One no
longer is concerned with describing the result (the shape and speed of
orbits), but the source of motion (the Newtonian force at work between
bodies). Kepler’s laws can then be shown as consequences of this more
fundamental law, and are revealed to be a simple subset of every kind of
motion within gravitational fields.

Thus, within a new frame of mind, more general and profound laws
emerge, starting from which the preceding laws, often specific to a given
reference system, can be derived as a special case. Here is one of the key
principles used for resolving the greatest contradictions ever encountered in
the pursuit of knowledge. It is by such leaps that physics truly advances.
Moreover, when the mental framework expands, apparently unsolvable
problems are more often sidestepped than resolved; in other words, the
paradigm shift reveals that the questions were in fact poorly formed, since
they came from a limited perspective. It is useless to try to answer bad
questions. It is better to formulate them well, and indeed, just this work of
reformulation is often sufficient to find the answers.

Numerous examples of this have been given in the first part, which very
often manifest the principle of relativity and its unifying power. Consider
once more the Newtonian unification: what had been considered before the
intervention of Galileo and of Newton as the “laws” of terrestrial motion



and celestial “laws,” laws apparently opposed to each other and
contradictory (terrestrial bodies always fall, while celestial bodies
perpetually stay in the sky), become manifestations within different
coordinate systems of a single, more profound law, that of universal
gravitation. Einstein made a similar leap two-and-a-half centuries later.
Gravity itself became one of the manifestations of the general relativity of
motion. Geometry and matter became unified, and in this larger frame of
mind, the law of gravitation, which Newton had set out in an empirical
manner, became a derived result.
 





 
Relativity as Unifying Principle

 
What does the principle of relativity tell us about the laws of nature? That
they are unique. That they apply in all cases and in every situation. That
there is not one law here and another there, one law for certain conditions
and another if the circumstances are different. The principle of relativity is,
indeed, a great unifying principle. What it says is that the world is one.

But from the moment when one has admitted that there exist laws of
nature (and that one understands by that fundamental laws), such a
statement becomes a matter of logic. In fact, to better understand the
principle of relativity, the best way is to imagine what a world disobeying it
would be like: a universe where different laws would prevail in different
conditions would simply be a world without law. The statement even of the
existence of laws in a fundamental sense necessitates their universality, and
thus their applicability to all systems.

One could then push the argument to the point of stating that, ultimately,
the principle of relativity does not exist as such, and boils down to a
tautology! The statement of the existence of laws, universal by nature, is
sufficient in itself. It is the logic of the world’s organization that requires it.
Said otherwise, the principle of relativity is reduced to the basic postulate
upon which science is founded:
 

There exist laws of nature.
 

Can we go further? Is this postulate itself justifiable? One of the most
effective measures, already used above, of understanding the meaning of a
statement is to analyze its opposite. To understand the statement of the
existence of laws, one must ask oneself what a world without law would be
like. One can already observe that the calculation of probabilities teaches us
that statistical laws arise in the absence of law (from pure chance).
Wherever chance rules, the laws of chance reign. A typical example of this
is thermodynamics, with its laws constructed based on statistical physics. It
is precisely upon the random character of the motion of individual particles
that new, global laws are constructed, leading to the emergence of
thermodynamic magnitudes such as temperature and pressure. One could
then propose the paradoxical statement according to which, in a world



without law, laws would probably appear due to the mere statement that
there are no laws.[60] A world without any laws seems difficult to imagine.

Thus, among the fundamental laws, the principle of relativity itself
stands out as the most fundamental law. Here is a working hypothesis, an
extremely fecund and powerful heuristic principle, which is in no way
reductive or contradictory with the eventual absence of limits in the search
for knowledge that we spoke of above: in effect, and I can never insist
enough upon this point, the principle of relativity is a dynamic principle,
which contains in itself its own evolution.

Principle of the world’s oneness, relativity has effectively intervened at
essential stages of the history of physics to reunify a disconnected world. It
can act as a sure diagnosis of a crisis (do the same laws apply everywhere?)
and can also supply the remedy (to take into consideration still more
general reference systems). The evolution of scientific ideas is punctuated
by great paradigm shifts in which the world has been reconstructed and
different universes reconciled thanks to it. Let us recall a few examples,
already mentioned in the first part of this work.

The pre-Copernican vision of the world was profoundly anti-relativist,
with its center of the universe and its terrestrial laws in contradiction with
celestial ones. The new system upheld by Galileo unified these separate
worlds.

It would be similar in the case of Poincaré and Einstein’s special
relativity: before its construction, physics had been cut in two, with the laws
of mechanics on one side, regulated by the Galilean transformation, and the
laws of electromagnetism and radiation which did not satisfy the
transformation. Two classes of objects, light and matter, two types of
different fundamental laws? Relativity necessitates unique laws; one of the
two laws would be false or incomplete. Only one law would triumph (the
Lorentz transformations), and light and matter found themselves united.
This unity of the law of change of reference systems necessitates, in
addition, the unification of space and time into a single concept, spacetime,
then similarly unifies mass and energy.

After the advent of special relativity, but before Einstein’s general
relativity, gravity (which remained Galilean) and the rest of physics (which
had become governed by special relativity) were in disagreement: here,
again, it was to Einstein’s credit to realize that it was not enough to “make
relativistic” Newtonian gravity, but that a new framework was needed,



implying still more general unique transformation laws. General relativity
achieves a marvelous new unification of geometry and matter-energy, of
gravitation and motion.

Has this story been finished? Is physics currently balanced and
harmonious, ruled by a single system of laws founded on first principles? It
is not, quite the contrary. The crisis of modern physics is at least as
profound as that of Aristotelian science. Depending on whether one
considers small or large scales (microscopic and macroscopic domains), the
phenomena concerned, the experiments, or the observations that one makes,
must be explained respectively by quantum or classical laws. Between
quantum mechanics, which regulates molecular, atomic, nuclear systems as
well as the physics of high-energy particles, and classical mechanics,
adapted to ordinary scales, to those of planets, stars, our galaxy, and
extragalactic systems, it is not only the laws which differ. It is a whole way
of thinking, a manner of treating problems, the choice of mathematical tools
and the rules which govern them, which differ at the most fundamental
level. One could say, in a provocative manner, that physics currently is in a
quasi-“schizophrenic” state, being not one, but two: two almost
contradictory physics coexist in an anything-but-peaceful manner.

Thus the relativist “diagnosis” applies especially well with the
contemporary physics. One will see that the principle of relativity allows us,
once again, to propose remedies for this crisis.
 





 
Reference Systems

 
The second essential concept in the statement of the principle of relativity,
after that of the “laws of nature,” is that of a reference system. In physics,
this more precisely means a “coordinate system.” One appreciates the
necessity of defining such a system in a clear and certain manner once one
wants to make measurements. An essential characteristic of physical
science (and what gives it its power) is that its statements concern results of
measurement. However, even without measurement, none of our
interactions with the external world would be made without the intervention
of a reference system. It is what allows us to envision the universality of the
principle of relativity and the possibility of its application to domains of
knowledge other than physics alone.

The first and simplest measurement is that of an object’s position. It is
immediately clear that this concept has no meaning without reference to
another body. Let us imagine a single isolated point within a completely
empty space. There would be no means of observing its position, nor any
way to define the meaning of this word. It is similar with the orientation of
an axis. Two points allow us to define an axis, but its orientation in three-
dimensional space can only be defined with respect to three other axes
constructed beforehand. Let us now imagine a boat in an empty space, with
no reference. How would we know whether it is moving or not? Here again,
without reference, the notion even of movement loses all sense. Finally, let
us consider the same boat, still in a vacuum. How can we measure its size,
without relating it to another object that can act as unit of comparison? The
scale of the boat has no meaning in itself, one must relate it to a body of
reference.

Ultimately, a frame of reference can be defined as an abstract system
which synthesizes the universal properties of the mechanism of
measurement, that is to say, those which are independent of the specific
characteristics of the instruments effectively used, but which are common to
all these instruments. It is in this way that the result of measuring a point’s
position along one direction is given uniquely by a number, expressed using
a certain unit, associated with an error bar, for example (12.35 ± 0.02) m.
This result requires only the definition of an origin, an axis, and a unit
which act as references, and a resolution for the uncertainty of the



measurement (the resolution is determined by the minimal unit accessible
by the given instrument, for example the interval between the two tick
marks closest together on a ruler). However, to obtain results in practice,
much more has been required than the quasi-abstract characteristics which
are a perfect point of origin, an infinitely thin axis and markings traced on
this axis. In reality, one must use a wooden, plastic, or other kind of ruler,
and trace the markings with such and such a method and such and such a
color. All these characteristics which are specific to the ruler actually used
disappear as non-significant in the definition of the ruler seen as an
archetype of an element of a coordinate system. It is similar with the details
of the constitution of a clock: only the numerical value of the time that it
gives is of importance, not its form or its inner composition.
 





 
Relativity of the Frame of Reference’s State

 
We now arrive at the essential observation, what enables us to designate this
type of theory as “relativity,” even though it is in many respects a quest for
an absolute.[61] But the absolute, which is translated in formal mathematical
terms by the search for and definition of invariants, cannot be elucidated as
long as the relative is not understood.[62] This is all the more true because
the “absolute” is contained in the statement of the relative. Yet the great
discovery of Galileo is that there does not exist motion in itself, only
motion relative to another body, which he expressed in the following way:
 

Among things which all share equally in any motion, it does not act,
and is as if it did not exist.[63]

 
More generally, the physical quantities which characterize the state of the
coordinate system (origin of the system, orientation of its axes, speed, etc.)
can never be defined in an absolute manner, but can only be defined relative
to another system. They have no existence by themselves; only the relation
between objects or systems taken two by two has meaning in physics.

Here is an extremely profound statement on the ultimate nature of
reality, which goes far beyond the science of physics. Indeed, the
impossibility of defining a position, an angle, or a speed “in itself” does not
correspond to a temporary limitation in instruments that an eventual future
progress may resolve, nor to a provisional conceptual difficulty that new
concepts will eliminate. It is the result of a much more profound and
definitive fact: the position of an object, its orientation, its speed, or its
acceleration—these do not exist! One can be convinced of this by
imagining, as we have already done, a body which would be isolated in
space in a universe which contained nothing else: the position of this body,
its orientation, and its speed would be concepts void of meaning, impossible
to define.

One should never even speak of the “speed of a body,” but only of “the
speed between two bodies” or “inter-speed”: the words which we still use
today have been forged in a non-relativist mental framework and contain in
them the error and illusion which were present at their construction.



Where does this illusion come from? Why does it seem so natural to
speak of our position or the speed of a vehicle in itself, when only relative
speed has meaning? Why, even, did Greek science, which otherwise
achieved leaps as prodigious as Euclidean geometry or number theory, go
astray on this subject? Why did it take more than two thousand years for
humanity, since the invention of science, to finally understand the laws of
inertia, to discover relativity with Galileo, and to make it triumphant with
Einstein?

The answer lies without a doubt in the particular position where we
humans are, tied and restricted inside coordinate systems with extremely
limited possibilities of transformations. One can attribute a large part of the
history of humanity to the relentless effort that it exerts to get around these
constraints: progress in the understanding of the laws of nature precedes
and accompanies the technological progress which allows the achievement
of feats that had sometimes been understood centuries before as thought
experiments. Galileo had been, by means of thought, one of the first
voyagers in space; Einstein, in his inner vision of the equivalence principle,
had virtually experienced in 1907 the feeling of weightlessness that all
astronauts discover when they see their pen float beside them in their space
capsule. Heliocentrism had to await Copernicus to be established, while
Aristarchus of Samos had proposed it one thousand seven hundred years
before.

Is it not because movements from one place to another (changes in the
origin of the system of reference) only rarely exceeded several thousand
kilometers up until the end of the Middle Ages? With the first voyages to
Asia, then the discovery of the Americas, soon followed by the first
circumnavigations, the changes in accessible point of view became the size
of the Earth; one discovers the sky of the southern hemisphere and its
completely new stars; the historic coincidence between the great discovery
of Copernicus and the epoch of great navigators is perhaps not an accident.
Similarly, the laws of motion in special relativity have been difficult to
discover because we are confined within frames of references of which the
relative speeds with respect to each other remain tiny in relation to the
speed of light, c. If it were not so, and if, like elementary particles, our
natural speeds were comparable to c, these bizarre laws (which are those of
rotations within a four-dimensional spacetime) would be intuitive for us,



simply because they would be a part of our everyday experience, like they
are for rotations in space.

The development and the ever-deeper understanding of relativity thus
accompanies an authentic development in the size of state changes of
possible reference systems, first by thought, then in practice. In the case of
scale relativity, which we will speak of later, the microscope and then the
particle accelerator (at small scales) and the telescope (at large scales) have
permitted an opening toward domains normally inaccessible to human
senses. In this new approach, one considers that the zoom of a microscope
or of a telescope, which puts in effect a transformation between scales, can
be identified with a new type of change of our reference system.
 





 
Relativity, Not Relativism

 
“Everything is relative!” How many times has one read or heard this phrase,
supposed to sum up the essence of relativity? But nothing could be further
from the spirit of relativity than this statement, with its too-great generality
and imprecision destroying its meaning. Often used as a defense of
confusion, this cliché tends to make one think that “one can be sure of
nothing,” that “one opinion is as valid as any other.” No! All is not relative.
On the contrary, certitudes can be achieved in physics, once the framework
where they are stated has been well defined.

What the principle of relativity affirms is exactly not that “all” is
relative, for one of the goals and the main tools of relativity is the discovery
and definition of invariants, in particular, of physical quantities which do
not depend on the choice of coordinate system. More generally, relativity is
expressed in the covariant mode of description, that is, when the form of
equations does not change in a transformation of reference frame. There
indeed exists an “absolute” in the theory of relativity, but this corresponds
to a higher level of abstraction. It is found at the level of relations rather
than objects, and appears even in the awareness of relativity.

What the principle of relativity affirms is that there exist certain special
quantities, characterizing the state of the coordinate system, quantities
which can never be defined in an absolute manner. In a yet more general
sense, one can say that these quantities bring about the interface between
ourselves and the outer world, upon which we would like to make
measurements.

Finally, what this principle affirms is that the always-relative character
of these quantities and none other is not just a profound and still
revolutionary statement, but a means of allowing one to construct the
equations of physics themselves. It is enough, to be convinced of this
revolutionary character, to remark how, after over four hundred years, after
and despite each of its successes, the principle of relativity finds itself each
time attacked and rejected for decades and sometimes centuries. Thus,
when Copernicus abandoned the absolute character of the Earth’s center
taken as origin of the world, it still needed to be defended by Galileo one
century later and remained so revolutionary that he risked his life to protect
it. It is indeed exactly the same principle of relativity of motion, such as



Galileo had stated three centuries earlier, that constituted the start of the
twentieth century’s scientific revolution when it was reintroduced by
Poincaré and Einstein (with new consequences)!
 





 
Relativity and Construction of Laws

 
The key idea discovered by Einstein is that the principle of relativity
enables one to construct the fundamental laws of physics. Einstein was
particularly conscious of this power of the relativist approach. In a letter to
Pauli from 1948, he writes: “I am a fierce partisan not of differential
equations, but of the principle of general relativity, whose heuristic force is
indispensable to us.”[64]

The principle of relativity is in fact not only an explanatory principle,
but also and above all a constructive one. In other words, the laws of
physics have no need to have been posed or written by some external
principle in the world. It is from merely stating their existence and from the
logical character of this existence that the form of the laws can even be
deduced.

How does one proceed concretely? One must first of all translate the
principle of relativity, which is applied to ideal laws, non-written, to a more
concrete principle, which is applied to the explicit version that we have of
these laws, that is, to the equations of physics. The universal validity of a
law, in all reference systems, is translated by the invariance of the form of
equations in the changes of systems. This is what Einstein called the
principle of covariance.[65] To construct laws then becomes a mathematical
problem. After having formally defined a general class of coordinate
transformations, one applies these transformations one or several times,
then one requires that the form of the laws, including the laws of
transformation themselves, be conserved. This constraint limits the
mathematically possible laws to those which are physically possible, that is,
which satisfy the principle of relativity. From the mathematical point of
view, this means requiring the formation of symmetries (such as invariance
by translation, by rotation, under spatial and temporal reflections, etc.), and
then establishing the general form of laws which satisfy them.

A double dynamic is thus seen in the development of physical theories
governed by relativity: generalization of possible transformations, which
will not work without a generalization of the geometric framework and
even of the mental framework, then restriction of geometries to those which
satisfy the principle of relativity.
 





 
From the Relative to the Absolute

 
Our everyday experience shows us that the apparent size of objects changes
according to the angle from which we view them. If we turn a ruler in front
of us, it will seem to dilate and contract, but we know very well that it is
only an effect of perspective, and that its length has remained constant.[66]

This illusion comes from our vision being only two-dimensional, while
space is three-dimensional.

It is similar with special relativity. The contraction of lengths and the
dilation of time predicted by Einstein’s theory in the case of a relative
motion are themselves nothing more than effects of four-dimensional
spacetime being projected on the subspaces of three and one dimension,
which are space and time. Here again, relativity enables us to define a
generalized length, in four dimensions, which does not change depending
on the state of motion of the observer. In Einstein’s general relativity, this
invariant becomes much more complicated, for it can depend on the
position in space and the instant in time under consideration.

One of the principal goals of the theory of relativity is precisely to
determine which quantities are invariant when the coordinate system
changes. In this sense, relativity is indeed a search for the universal through
an analysis of the relative. It means going beyond the appearance of
measurements, of which the numerical results depend on the choice of the
coordinate system, toward an intrinsic description of objects, independent
of all reference points.

More generally, one seeks a unity of physical description, which can stay
valid in passing from one point of reference to another. We have seen that
this invariance in form of physical quantities and of equations is what
Einstein called covariance. The idea is to obtain a general representation of
laws where the form no longer depends on the frame of reference in which
they are expressed. Nevertheless, once it is a matter of applying such
general laws to a particular problem, the choice of a reference point is
imposed, and the covariant relations will then be translated by numerical
values depending on this choice.
 





 
CHAPTER 7: TOWARD A NEW EXTENSION OF RELATIVITY

 



Relativity as Method and as Way of Thinking
 
Relativity is more than a principle; it is a method for investigation as well.
Huygens was one of the first physicists to have explicitly used the relativist
method to solve the problem of collision laws, when all other scientists
stumbled on this question. This method is simple: instead of trying to
describe the system under consideration (here, two balls of different masses
striking each other and then separating with velocities to be determined)
from the terrestrial reference point on which the balls roll, Huygens
understood that other reference points were much better adapted to the task.
[67] According to the question posed, it would be much better to locate
oneself at the perspective of one of the balls, or rather, at a reference point
corresponding to its center of gravity. It is much simpler and more effective
to solve a problem with a reference point adapted to it, and then to make the
change of coordinate systems which corresponds to the observer’s point of
reference, than it is to look immediately for a solution in the latter
coordinate system. The ordinary frame of reference, in fact, is in all
likelihood not at all adapted to the system, and adds a supplemental
complication to the problem to be solved. It is precisely relativity, with its
statement that all reference points are equally valid for the writing of
physical laws, that allows this choice of the “good” reference point.

Moreover, as Bergson understood, Einstein brought about a new way of
thinking. With general relativity, science answers, perhaps for the first time,
not only a “how?” (to which it is generally considered that it must be
limited) but in part a “why?”

One can recall in this regard the two fundamental questions asked by
Leibniz:
 

Why is there something rather than nothing? For nothing is simpler
and easier than something. Further, suppose that things must exist, we
must be able to give a reason why they must exist so and not otherwise.
[68]

 
If physics can clearly say nothing about the first question,[69] from the fact
of its existential character, it is well equipped for answering the second, of
course not in a definitive way, but by bringing progressive elements of an
answer. For this, the principle of relativity plays an essential role through its



capacity not only to describe, but to explain. It can, in fact, be understood in
a more general sense than its application to particular theories: we have
shown that it is a general tool of work, a universal mode of thought, as well
as a constructive method for obtaining the fundamental laws of physics.

It is true that the purely descriptive phase plays an irreplaceable role in
the development of ideas in physics. But it is equally true that science has
been able to arrive at an authentic understanding of certain phenomena (we
have shown this, for example, in the case of the nature of gravitation), even
if the answers given at a certain time, no matter their depth, always rest
upon a deeper “why,” which can remain long unanswered.

Let us note in this respect that the particular type of answer that physics
provides for fundamental questions does not lead to emphasizing “causes.”
On the contrary, the question of “why” is found to be definitively
circumvented when one shows the existence of certain phenomena as being
imposed from the fact of the greatest generality possible. It is thus that
Galileo discovered that uniform motion has no need of a cause; only rest or
a change in movement requires one. A body resting on Earth seems to be
self-evident, but this absence of relative motion indeed has a cause, and
indicates the connection between the body and the Earth. If one considers
two random bodies in the universe, the probability that they are at rest with
respect to each other is practically zero! There is thus nothing to justify the
existence of motion, which imposes itself (once the existence of space and
time is admitted). Similarly, as we have recalled in the second part,
Einstein’s theory derives the existence of gravitation as a consequence of
the non-absolute character of spacetime, that is, of the general relativity of
motion. A four-dimensional spacetime without gravitation (that is to say,
flat, and thus absolute) would be unthinkable.[70]

Furthermore, it is a problem of what we call “understanding” that lies at
the heart of the relativist way of thinking. Has there not been a connection
between relativist method and understanding, and thus, at a certain level,
between the relativist mind and scientific creativity? The way which leads
to understanding also advances with the possibility that one is ready to
change reference point or system. To see things from many perspectives, to
consider a problem in every sense, to invert, shake up, manipulate, and
illuminate it from multiple angles, is often a key element of the discovery.
In this process, a formerly hidden facet can appear, or rather, the same



object, turned inside out like a glove, can suddenly take on a totally new
appearance. To discover is often to see otherwise.

Here again, a particular point of view plays an essential role: that which
consists of putting oneself “in the place” of the system under consideration,
to envision it from the inside and not only from the outside. It is a matter of
placing oneself in the frame of reference best adapted to an understanding
of the problem, in a sort of “empathy” with nature. Such mental exertion is
required for one to speak of true understanding: one knows because one
sees and directly senses, even though virtually, the nature of the system to
be understood. Such was the privileged method adopted by Einstein, when
he anticipated special relativity in trying to imagine what an observer
travelling with a light wave would see or, later, when he laid the
foundations which would lead to general relativity by mentally visualizing
the experience of free fall in a gravitational field.
 





 
Beyond Spacetime

 
Is it possible to go further? One can ask if all the possible theories of
relativity have been constructed. Has the principle of relativity been pushed
to its utmost limits? Have all its consequences been understood and
described? We have seen how the development of theories of relativity
advances by developing the definition of coordinate systems. Have all
possible states of reference systems and all the transformations which tie
them together been taken into consideration? It is possible that one has not
yet fully analyzed the entirety of quantities which characterize our
measurement results and that all invariants have not yet been discovered.
Finally, is curved spacetime a large enough frame to understand all of
physics?

It seems that Einstein did not think so since, starting from the
development of the theory of general relativity in 1915-1917, he dedicated
himself to the quest which he vainly pursued for the rest of his life: that of
an even more extensive theory of relativity that would explain not only
gravity, but the electromagnetic field and quantum effects.[71]

It seems legitimate to ask oneself anew today the question of a possible
extension of relativity, without, of course, hoping to attain results as vast. In
fact, our understanding of quantum field theory has made enormous
progress in recent years, while new mathematical tools have come to light.
In particular, new geometries of spacetime can now be imagined, such as
fractal geometries, within which one can define transformations between
coordinate systems hitherto unknown.[72] In the remainder of this book, we
will see how one can apply the principle of relativity within the framework
of a spacetime possessing such a fractal geometry, which leads to
possibilities of a new understanding of quantum theory.

And further yet? Certain great philosophers have gone beyond,
concluding the nonexistence in itself of all things, of matter as well as of
mind. If we have been able to trace the history of relativity to Copernicus as
far as occidental thought and the materialist sciences are concerned, its first
statement in Asian thought seems to go all the way back to Siddhartha
Gautama, more than two thousand five hundred years ago. One finds in
Buddhist philosophy a truly relativist reflection on the emptiness of all



things, consequence of their non-being in themselves, their existence only
occurring in the relations between them.

One can only admire such an intuition, which we could consider an
inner vision of the distant goal, perhaps inaccessible, that a science would
propose based on the principle of relativity. Here there is no nihilism, nor
negation of reality or of existence, but rather a profound view of the nature
of existence itself. If things do not exist in an absolute manner, but exist
nonetheless, their nature is to be found in the relations which unify them.
Only relations between objects exist, not objects by themselves. Objects are
thus empty in themselves (i.e., devoid of proper or inherent existence), and
should be reduced to the entirety of their relations with the rest of the world.
They are these relations.

Here one recognizes, made universal, the statements of the principle of
relativity and of the equivalence principle, knowing their success in
describing the nature of motion and of gravitation. In this case, Einsteinian
physics has indeed put these ideas into effect: nonexistence of gravitation in
itself, existence of gravitation as relative to the coordinate system, absence
of gravitation in the system in free fall, inertial laws in this system, which
are those of motion in a vacuum lacking all force, and so on.

Will the physics of the future succeed in putting into equations what
currently amounts to a purely philosophic vision? This question obviously
goes well beyond the limited scope of the present work.
 





 
PART THREE: QUANTUM MECHANICS

 



 
Due to the impossibility of explaining certain experimental results in
microphysics using classical concepts, physicists created the field of
quantum mechanics. In its initial version (that of the Copenhagen
interpretation), it was a minimal theory, obtained by pruning away
apparently unnecessary notions and piecing together those closest to the
observed facts. The trajectories of particles are unobservable in the classical
sense: this concept is removed. In numerous situations, a system no longer
evolves in a strictly causal manner: starting from initial conditions that
seem perfectly identical, results can vary considerably. It becomes
impossible to predict the evolution of individual trajectories in such a
system. Nevertheless, one observes in these cases that the relative rate of
different possible results is perfectly stable, such that the probability of
obtaining a certain result stays the same: the theory is thus probabilistic in
essence.

The principal property upon which quantum theory is constructed is
wave-particle duality. This discovery, which we owe to Einstein and de
Broglie, is without a doubt one of the most beautiful unifications in the
history of physics. In 1905, when light was considered by all physicists as
wavelike, Einstein showed that the photoelectric effect can only be
understood if there exist light particles, which were later called photons.
Light seems to be wave and particle at the same time. During the same
period, the particle theory of matter, with the discoveries of molecules,
atoms, electrons, and then protons, was established. In 1923, Louis de
Broglie “lifted a corner of the great veil,” as Einstein wrote to Langevin
concerning de Broglie’s thesis, in proposing that matter also possesses
wavelike properties. When experiments on electron diffraction verified this
prediction, it allowed for attributing a similar status to light and to matter.

The basic tool of quantum theory simply and directly combines these
three elements (probability, wave, particle) in a single theoretical object, the
wave function, that is able to describe interferences (wavelike properties)
due to its complex nature (in the sense of complex numbers, that one can
think of as vectors on a plane: the simplest wave function is composed of
two quantities instead of one). The square of the modulus of this wave
function (square of the length of the vector which represents it) gives the
probability of observing the particle in a given position, moment, and/or



state. In this way, one of the principal mysteries of quantum behavior can be
described (if not understood): it is the wave functions (that is, vectors) that
are added together if an event can be brought about in several different
ways, and not directly the probabilities as in the classical case. And as the
sum of two non-zero vectors can be zero (if they are opposite), an event that
can be brought about in two possible ways, each very probable in itself,
might become impossible!

Schrödinger and Heisenberg succeeded in writing (in two different but
equivalent forms) the equation governing the wave function, and were
followed in more general cases by Pauli and Dirac. These equations, as well
as the correspondence principle associating operators acting on the wave
function with observable physical quantities (so-called observables),
constitute, with several other rules, the axioms of quantum mechanics.
 





 
CHAPTER 8: PRINCIPAL AXIOMS OF QUANTUM MECHANICS

 
In its current state, quantum mechanics is an essentially axiomatic theory.
Its forms and methods were established as a minimal conceptual framework
which could account for experiments carried out at the scale of atoms,
nuclei, or elementary particles. Instead of deriving or deducing its
fundamental equations, such as the Schrödinger equation, from first
principles, one must accept them as axioms. Quantum mechanics is a set of
rules which have become established through their success, but for which
the true source remains unexplained.

Certain physicists have even seriously predicted that it will always be
impossible to understand quantum mechanics, that it must always remain
beyond human intuition. Our intuition is only applicable to scales where
direct experimentation is possible. Other domains are definitively foreign to
us. However, this is to forget that the scales of cosmology are just as far
from our own as those of elementary particles, and that intuition, even in
the classical domain, is not given by itself but is constructed and developed
by experience and learning. If quantum mechanics has not been understood
until now, it is not necessarily because it is definitively non-intuitive, but
perhaps because a new type of intuition needs to be constructed. Along
these lines, one can observe that what we call intuition is often geometric in
nature (is this because sight is the most developed human sense?), and that
the unintuitive character of quantum mechanics could thus be tied to its
absence of spatiotemporal interpretation (or better yet, foundation).

Not being based on first principles the meaning of which would be prior
to equations (which is the case in general relativity), quantum theory must
be interpreted a posteriori. Its equations have first been written, and their
meaning elucidated afterward! Schrödinger had originally believed that he
had proven his equation in the article where he established it, at the start of
1926. But here is what he wrote of this “proof” in his second article:
 

We have only briefly described this correspondence [between the
mechanical equation and the wave equation] on its external analytical
side by [a] transformation which is in itself unintelligible, and by the
equally incomprehensible transition from the equating to zero of a



certain expression to the postulation that the space integral of the said
expression shall be stationary. (Note: This procedure will not be
pursued further in the present paper. It was only intended to give a
provisional, quick survey of the external connection between the wave
equation and the Hamilton-Jacobi equation.)[73]

 
For several years, Schrödinger maintained hope that one could still

arrive at a real (not complex) wave function. Other founders of quantum
theory convinced him otherwise. Finally, in 1927 Max Born proposed what
would become established as the definitive interpretation of the wave
function, four years after the introduction of matter waves by de Broglie,
and two years after the major conceptual leaps of Heisenberg and
Schrödinger.[74]

We will not enter into all the subtleties of quantum theory here, but
simply try to explain its principal axioms by illustrating them with some of
the experiments which have played a central role in its construction and
interpretation, first and foremost that of Young’s double-slit experiment.
 





 
Probability and the Wave Function

 
The first axiom of quantum mechanics defines the new tool of this theory,
the wave function. We must let go of the idea of the a priori well-
determined variables of classical theory in favor of probabilistic
description. This does not mean that certain variables cannot be determined
perfectly well. We must first of all object to a “fuzzy” picture of the
quantum universe, where nothing would be fixed, and uncertainty alone
would prevail. Instead, quantum mechanics changes the mode of
description. While classically one may speak of the position of a body, in
quantum theory only the probability of the body being in such and such a
position can be defined. However, the classical situation still fits within this
descriptive mode: it would be the case where the probability of a body
being in a given position is one, and thus zero at any other position.

Moreover, the probabilistic approach already exists in classical theory,
as in, for example, statistical physics. What gives quantum mechanics its
extraordinary character is that one no longer directly defines probabilities,
but instead defines a “wave function,” starting from which the probability is
calculated. This function, also known as the “probability amplitude” when
it is defined between two spatiotemporal events (following Feynman’s
terminology), carries more information than just the probability. In the
simplest case, the probability amplitude is given by two numbers, only one
of which defines the probability. But the essential point is that, while the
reduction to a single number can be compared to experimental data, one
must permanently “carry” the two together if the theory is to agree with the
experiment. The mathematical entity that describes the state of the system
thus contains a hidden part that we call the phase of the wave function. One
can have an approximate idea of the nature of this phase by comparison
with the description of classical waves: ocean waves are also characterized
by two quantities, their height (amplitude) and the distance between two
crests (the wavelength, which appears as the phase).

As Feynman explains in his book QED: The Strange Theory of Light
and Matter, to go from ordinary probabilities to quantum probabilities
means going from a number to a vector. Indeed, it is in their mode of
combination that probability amplitudes differ the most from classical
probabilities and allow for certain apparently extraordinary behaviors. The



wave function can be thought of as a small arrow. This arrow (or vector)
has a length and an orientation, defined by an angle in the simplest case
(two dimensions, corresponding to a vector defined within a plane). The
square of this length gives the probability and the angle, the phase.

The method of combining probability amplitudes with each other
depends on the accessible information. If an event can come about in two
different ways, but it is possible to know at any moment which one has
been “chosen” by the system, the probabilities are combined classically: the
global probability is the sum of probabilities of each path taken
independently. But if it is impossible to know which path is followed, the
resulting probability amplitude is the sum of the amplitudes of each path.
This means that one adds vectors and not numbers: it is a matter of putting
together two arrows. The final probability will be the length of the resulting
arrow, squared (see Figure 2).

Figure 2 Probability amplitude

One calculates probability in quantum mechanics by squaring the length of
a “probability amplitude” or “wave function.” The amplitudes behave as

vectors in an abstract space, in particular when one adds them together. The



probability amplitude is defined not only by a modulus, but by a phase as
well.

 
Here is what Feynman writes concerning quantum mechanics and its

rules:
 

One [has] to lose one’s common sense in order to perceive what [is]
happening at the atomic level. . . . In 1926, an “un-common-sensy”
theory was developed to explain the “new type of behavior” of
electrons in matter.
 
Will you understand what I’m going to tell you? . . . You think I’m
going to explain it to you so you can understand it? No, you’re not
going to be able to understand it. Why? . . . That is because I don’t
understand it. Nobody does.
 
The theory of quantum electrodynamics describes Nature as absurd
from the point of view of common sense. And it agrees fully with
experiment. So I hope you can accept Nature as She is—absurd.[75]

 
The result of combining quantum probabilities, which remains deeply

incomprehensible but was established because it “works” (theory and
experiment are in extremely precise agreement), is sometimes highly
paradoxical. Indeed, the probability is given by the length of the arrow, but
the sum of two vectors can be zero when neither of the two vectors are! For
example, it is similar with velocities, which are vectorial quantities: if
somebody walks on the deck of a ship in the opposite direction and with an
equal speed, they stay immobile with respect to the dock, even though
neither the speed of the boat with respect to the dock nor the person’s speed
with respect to the boat is zero.

But, if such a phenomenon is easily comprehensible for magnitudes
which have a self-evidently vectorial character, this is certainly not the case
for probabilities. Velocity can be positive or negative, but probabilities are
always positive. Yet this rule of combining wave functions allows for the
following incredible result: an event which can come about in two different
ways, each highly probable, can become impossible (its probability is



cancelled out). Inversely, its probability can also become greater than the
sum of the individual probabilities.

Young’s double-slit experiment illustrates this property. Two slits made
in a screen are illuminated by the same source. This source can be
luminous, but, as Louis de Broglie was the first to understand, one can also
perform the experiment using particles of matter such as electrons and
neutrons, and even with atoms: these last two quantum objects, while
complex and possessing an internal structure (neutrons are made up of
quarks, while atoms are formed by a nucleus surrounded by an electron
cloud), act as particles from the point of view of this experiment. Two
extreme types of Young’s double-slit experiment can now both be
performed: one where the slits are lit up with a source of light or radiation
(which corresponds to an enormous number of particles, eventually
indeterminate), the other where particles (photons for light, or particles of
matter) are sent one by one through the slits. The latter case highlights the
entire quantum paradox.

The slits make the radiation diffract, so that, at its exit, it can travel in all
directions. In fact, they simply act like two identical sources (which would
be much more difficult to do if one did not start with a single unique
source). The light rays (or the individual particles) are finally captured on
another screen situated farther along.

The first part of the experiment consists of only keeping one of the two
slits open. After having passed through the slit, the radiation strikes the
second screen in a pattern forming a continuous distribution with a single
maximum (this distribution characterizes those of the angles of diffraction
by the slit). For the experiment performed particle by particle, we cannot
precisely predict where any individual impact will be, but we observe that
the distribution of impacts, gradually as their number increases, more
closely approaches the distribution of intensity made by a strong ray. This
fact fully justifies the interpretation of the square of the wave function’s
modulus as a distribution of probability density: in the case of a strong ray,
the number of particles is such that this distribution is instantly realized, but
the experiment of “filling it in” particle by particle explains its true nature.

Next, the second experiment involves leaving both of the slits open and
comparing it to the result obtained in the preceding case. If the light ray or
particles had been classical, one would expect to obtain a distribution given
by the sum of distributions corresponding to each of the slits opened



individually. But nothing of this kind happens. The distribution obtained,
whether made immediately by a strong ray, or gradually as the sum of
individual impacts, shows a pattern alternating between dark and light
bands, that is, a distribution of probability showing successive peaks and
valleys. In such a way, there exist certain points on the screen where a great
number of particles might strike if one or the other slit is open, but where
no particle ends up when both are open! How is this possible, when one has
apparently increased the number of possibilities in opening a second slit? In
the case of the experiment performed particle by particle, one thus sees each
individual particle travelling one by one, systematically, to certain
predictable zones known in advance (those which will become the bright
bands after a great number of impacts) and avoiding others. This is one of
the principal aspects of the quantum “mystery.”

Certain commentators have not hesitated to write that everything
happens as if each particle, passing through one of the holes (but which one
is not known), was “informed” of the second opening. Others have
suggested that the particle in fact passes through both holes at the same
time. The first perspective privileges the particle-like aspect of the quantum
entity, the other its wavelike aspect. A more complete picture consists of
speaking of wave-particle duality, and considering, with Niels Bohr, that
these two aspects cannot be simultaneously observed, following the
theory’s principle of complementarity.

One can object to all of these attempts at description that they remain
ultimately attached to classical concepts and methods. Quantum mechanics
perfectly explains Young’s double-slit experiment, but it does not do so
with the help of a wave in the classical sense of the term (which
corresponds to the properties of a fluid like air or water), nor with the help
of a classical particle (constructed on the model of a billiard ball). The
quantum method involves a new concept, that of a complex wave of
probability, which cannot be reduced to classical concepts, nor even to a
combination of classical notions.

In fact, even wave-particle duality is not quite an appropriate concept, in
my view, for the description of quantum effects. Wave-particle duality
presupposes that the entity is either wave or particle according to the type of
experiment. But what one really does in quantum mechanics, that is, what
works to correctly explain and predict experimental results through theory,
consists of permanently “carrying” a probability wave defined by a



probability (square of the modulus of the vector describing this wave) and a
phase (orientation of the vector).

All attempts at ignoring one of these two quantities when performing
calculations will lead to erroneous results, in disagreement with experiment.
What are the wavelike or particle-like behaviors under these conditions? Is
the behavior with a single slit particle-like, and that with a double slit,
showing interference patterns, wavelike? But in both cases, one observes
the probability alone, never the phase! The phase of the wave function is
never observable, except indirectly. What actually happens in the double-
slit experiment is that, due to the nature of adding wave functions (vector
quantities), the term of phase difference in the single slit experiment is
recovered in the (observed) probability of the wave function in the double
slit experiment. Thus, it is the wavelike nature of the single slit experiment
which is behind the wavelike nature where the two slits are open. The phase
of this second experiment would only be observable a posteriori, as part of
a new experiment of interference.

What is there of the particle-like aspect? Can one abstract it away
between measurements and only allow that it appears at the moment of
measurement? Here again, such an interpretation does not seem to me to be
appropriate for the quantum method. The equations of quantum mechanics
describe the development over the course of time of a probability wave for
an entity being at a given position or in a certain state. This probability
would lose all meaning if there were no longer any particles: it would
become devoid of significance.

Moreover, every time one tries to address this question experimentally,
the answer is clear: the detectors show a well-localized distribution of
energy, momentum, charge, or other physical quantity which attests to the
existence of a particle. In such a way if one asks the question—which hole
did the particle pass through?—one can try to respond experimentally by
placing a detector immediately behind the two slits. It is even possible to
detect the passage of the particle (via another quantum figure other than
position or speed) without affecting its essential properties in any way from
the point of view of the experiment in progress. The result is known: the
entity is always detected behind one of the two holes, never both at the
same time.

But then, as soon as there is detection, even if it is non-perturbing, there
is also a disappearance of interferences! Feynman had even imagined an



experiment where a detector situated behind a slit would function in a
random manner. The result is that the subset of detected particles does not
form any interference pattern, while all the particles that have escaped
detection are distributed according to the light and dark bands.
Experimental projects proposed by Englert, Scully, and Walther have
demonstrated that ultimately, whether information concerning the path
followed by the entity exists or not is sufficient in itself for deciding the
result (interference pattern or not). This is in keeping with quantum
mechanics, but not with numerous attempts at interpretation, in particular
those which attributed the result of Young’s double-slit experiment to
Heisenberg’s relation of uncertainty between positions and speeds. The
moral of the story: every attempt at understanding quantum mechanics
should be based on its mathematical tool (or, if possible, should make use
of it) rather than contenting oneself by reproducing one of its
interpretations.
 





 
The Correspondence Principle

 
Another axiom of quantum mechanics that makes its intuitive
understanding even more difficult is the correspondence principle. As the
formalism of the theory became more developed, its creators replaced the
usual physical quantities of classical theory (the observable properties, or
observables, such as position, momentum, energy, etc.) by operators,
described in terms of complex numbers, which act upon the wave function
(i.e., they transform it). The construction of these operators is done by rules
of correspondence which were established by practice, but which have no
character of universality or uniqueness. They can be reduced, by a sort of
change of reference, to a set of numerical values which characterizes them
(that we call the proper values of the operator), and which provide the
possible values that the observable under consideration can take.
 





 
Schrödinger’s Equation

 
The equation for the wave function’s progress in time and space was
established by Schrödinger and, in an equivalent form, by Heisenberg. This
equation can be constructed by correspondence starting from the equivalent
classical equation (which is the one giving the total energy as a function of
kinetic and potential energies), but is not truly proven. It is thus generally
considered as one of the axioms of quantum mechanics. Schrödinger
himself, de Broglie, Klein, and Gordon generalized it for the relativistic
case, and, for the important case of the electron (which possesses an
original quantum property, spin), it was Dirac who generalized it.
 





 
Collapse of the Wave Function

 
One of the main axioms of quantum mechanics, essential for its
interpretation and for the theory of measurement, is that of the collapse of
the wave function. This axiom, formulated by John Von Neumann, states
that immediately after a measurement, the system is in the state given by
the measurement. It plays an essential role in the rationality of the theory
and in its relation to classical theory. In its absence all derived
interpretations would be possible, in particular that of a vision of the
quantum domain as a realm of perpetual uncertainty.

Von Neumann’s axiom ensures the continuity of the way in which
quantum systems develop. For example, applied to positions, it excludes the
possibility of a particle jumping from one point to another in space:
immediately after a particle has been measured at a point, one is sure that it
is in the neighborhood of this point. Applied to a polarization, this axiom
assures the agreement with experiments made with polarizers: if we
polarize light by making it go through a polarizer and no perturbation
intervenes, we can verify with the help of another polarizer that the light
has maintained its polarization. One speaks of wave function collapse since
the measurement makes the entity go from a state described by a set of
possible values of the observable to which various probabilities could be
attributed, to a new state where one single value remains possible (the
probability 1, which signifies certitude, is thus assigned to it).
 





 
CHAPTER 9: THE PARADOX OF QUANTUM PROPERTIES

 



Einstein-de Broglie Relations
 
The association, discovered by Einstein and de Broglie, between, on the one
hand, a free system’s energy and momentum (the system can be either
matter or radiation) and, on the other hand, a wavelength and a period (or
inversely, a frequency) constitutes one of the principal mysteries of the
quantum world. This structure is incorporated into quantum theory, but not
truly understood. In this way, the Schrödinger equation can be constructed
as the nonrelativistic equation of which such a wave would be a solution.

Energy-momentum constitutes, in classical mechanics, the most
fundamental characteristic property—the most “primary”—of physical
objects. It acts as “charge” for gravitation; everything that exists—from the
point of view of physics—possesses energy-momentum. All other physical
properties can disappear (there exist electrically charged bodies and others
uncharged, bodies possessing or not possessing a strong or weak charge),
but energy-momentum cannot be removed without the existence of the
object itself being nullified. This universality of energy-momentum gives an
idea of the extremely fundamental character of the Einstein-de Broglie
relation. All physical objects possess an energy, to which corresponds a
period which is inversely proportional. Similarly, if it is moving relative to
a reference point, the object possesses a momentum (product of its mass by
its velocity): corresponding to it is a wavelength which is inversely
proportional. The constant that connects them is Planck’s constant, h.

The existence of the de Broglie wave has been verified (by experiments
using interference and diffraction) on all sorts of particles, whether coming
from radiation (photons) or matter (neutrons, protons, electrons), but it also
exists for complex objects like atoms or molecules. Why are energy and
momentum thus universally associated with intervals of time and of length,
those which characterize the de Broglie wave? This is one of the main
questions which every attempt at understanding quantum phenomena
starting from first principles ought to address
 





 
Heisenberg Relations

 
One of the best known symbols of quantum theory is constituted by the
Heisenberg relations that give rise to the so-called “uncertainty” principle.
These relations do not belong to the axioms of quantum theory, as they can
be mathematically derived starting from a general physical property which
is not in fact specific to the quantum domain: that which defines how
certain variables (such as position in space or moment in time) relate to the
variables which are their conjugates (such as momentum or energy).[76]

From this point of view, quantum theory reinforces links which had
already been established by classical theory. Let us recall how physical
quantities which are conservative (invariable over the course of time) are
naturally constructed based on the symmetry of certain variables (that is, on
their invariance in certain transformations). It is thus with energy starting
from the uniformity of time, with linear momentum starting from the
uniformity of space, and angular momentum starting from its isotropy.

The Heisenberg relations of quantum mechanics are constructed using
the same pairs of variables: time-energy, position-linear momentum, angle-
angular momentum. They state that the product of uncertainties with which
we can know each of the two variables of such a pair is always greater than
a universal constant, equal to Planck’s constant h divided by 4π.[77] They
thus take the same form (in terms of inequality) as the Einstein-de Broglie
relations, but dealing with dispersions and not averages. The consequence is
that if one of the variables is known with greater precision (for example, the
position), then the uncertainty of the other (here momentum, and thus
speed) increases.

These relations have often been interpreted as a sort of loss for physics,
a limitation sometimes deemed intolerable. The truth is that there also exist
error bars and uncertainties in classical theory (and that one of the essential
methods of physics consists of always taking them into consideration when
interpreting results); more importantly, the precision of classical
measurements is in general so relatively inexact, and the value of h so small
that the product of the uncertainty of the position and velocity of a classical
system is always much, much greater than the quantum limit. Thus, in
actuality, the Heisenberg relations have taken nothing away from physics,
but have on the contrary added a new constraint between variables which



were not before connected. From this point of view, it is a matter of
relations of certainty rather than uncertainty: while one could in no way
speak, starting from classical mechanics, of the relationship between
resolutions in position and velocity, one is now aware that, due to quantum
mechanics, they are connected by the Heisenberg relation.
 





 
Spin

 
With spin, we arrive at the first quantum value that has no classical
counterpart. It demonstrates the absolute originality of the quantum object.
[78] However, it is also very difficult to picture the phenomenon.

The existence of spin, a kind of internal angular momentum of the
electron and other particles, was first established with the goal of explaining
experimental data. It was introduced by Uhlenbeck and Goudsmit to
account for the observation of electron states which could not be understood
using ordinary quantum numbers. The concept of spin was thus created.

But the inevitable advent of this new physical property marks a new step
in the gap between classical and quantum mechanics. Indeed, while
quantities such as energy, linear momentum, and angular momentum
behave differently in the two mechanics, their classical existence is still
certain. Spin simply does not exist classically. On the one hand, an electron
might be completely pointlike, and thus not have any angular momentum.[79]

It might, on the other hand, possess spatial extension, but one could then
calculate its speed of rotation as a function of the measured value of its spin
(ħ/2), and one would find that its surface must rotate more quickly than the
speed of light! This contradiction led to the conclusion that spin was a
purely quantum value, without any classical analogue. Ultimately, it was
shown to be the first of a long series of other quantum quantities (such as
isospin, lepton number, baryon number) which had to be introduced to
explain various observed properties of elementary particles.

Spin also plays an essential role since its existence brought renewed
attention to the nature of what, from the perspective of classical theory, was
considered to be radiation (or field of interaction) and what was considered
to be matter. In fact, two types of quantum values for spin exist, which
correspond to collective behaviors totally different, if not the opposite of
each other. Certain particles, such as quarks, or the protons and neutrons of
which they are the components, possess a half-integer spin.[80] This type of
particle, known as a fermion (from the name of Enrico Fermi, who along
with Paul Dirac established their statistical properties), is governed by the
Pauli principle, according to which two such particles cannot be found
together in the same state. The consequence is that they cannot be gathered
together in large numbers (there cannot be many together at the same point)



and are not able to act as the carriers of a field of interaction. Nevertheless,
this property allows them to make stable structures, like bricks in
construction. It is thus that the association of three quarks can form the
proton and the neutron, which can join together in nuclei, which form atoms
along with electrons. All known matter is composed of these elements.

The particles of integer spin (called bosons, from the name of Satyendra
Nath Bose, who together with Einstein established their statistics) have the
inverse property: “extroverted” characters, they tend to assemble in groups
of which the number is in general not even known.[81] This property, shared
by photons, the weak W and Z bosons, and gluons as well, allows them to
be vectors of fundamental interactions (respectively electromagnetic, weak,
and strong). However, bosons cannot form structures since such structures
would collapse.

These results of quantum theory continued in a remarkable way the start
of a unification achieved by Einstein and de Broglie. Not only do light and
matter have particle-like and wavelike properties, but their description is
now similar. A set of particles constitute a quantum field (a Dirac field for
the electron, an electromagnetic field for the photon), characterized using
the same method in all cases. The differences in behavior, as significant as
they are, come only from the difference in spin! This fantastic success gave
hope to physicists to go further yet, and to complete the unification in
allowing for the existence of a transformation between fermions and
bosons. These would then be no longer two different types of particles, but
the same type of particle in different states. This postulated new symmetry
between elementary particles, called supersymmetry, has not yet been
verified by experiment.
 





 
Indistinguishability of Identical Particles

 
Indistinguishability is one of the surprising properties specific to quantum
objects, and it also has no classical counterpart. It is connected to a
profound change in the concept of identity in quantum mechanics, and is
possible due to the quantization and discretization of the physical properties
defining not only elementary particles, but their combination in more
complex structures (nucleons, nuclei, atoms).[82] Thus, all electrons possess
exactly the same mass, the same charge, and the same spin.[83] Their identity
goes well beyond anything imaginable classically. As similar as two
macroscopic objects can be, their strict, absolute identity is impossible. Two
electrons, on the other hand, are identical to the point of being completely
indistinguishable, not because the information which would allow us to
distinguish between them is inaccessible to us, but because this information
does not exist at all. This fact has practical consequences: the quantum
object composed of two electrons can no longer be considered as the sum of
two objects, each individual electron. Rather, it is a new object, with
different statistics. The exchange of two electrons simply makes no sense
physically, since no “label” would allow us to identify them. The system
obtained after the exchange is rigorously the same, so thoroughly that the
“two” systems should be considered as one from the statistical point of
view instead of two, classically speaking. This has been confirmed by
experiment.
 





 
Inseparability, Entanglement, and Nonlocality

 
The Einstein-Podolsky-Rosen (EPR) paradox, in its modern version of John
Bell’s inequalities and the experiment of Alain Aspect, highlights in the
most striking manner the difference between classical and quantum
mechanics.

Two particles having spins which are the inverse of each other, but not
defined, are emitted in two opposite directions. The spin values are then
measured at the same time for the two particles. The quantum information
arises here solely from an anticorrelation between the particles. Neither of
the two spins have a well-defined value, but their sum is nevertheless zero
with certainty. It is thus impossible to predict the value which will be
measured for either of the particles (for example + ½ or - ½ with the same
probability), but one can still be certain that if one measures the spin of one
at + ½, the spin of the other particle must always be - ½, and it can thus be
predicted with certainty starting from the first measurement.

Such a result might not seem very unusual from the perspective of
classical mechanics. In classical mechanics, a measurement reveals the
value of a quantity that preexists the measurement (which was not known to
us due to lack of information about the system). It is totally different with
quantum mechanics: the information known about the system is complete.
No value for the spin exists before measurement. The measured value
appears at the moment of measuring, but does not preexist it, like in an
experiment of head or tails.

The physicist John Bell was able to show that the difference between
these two situations—unknown hidden, but preexisting parameter, or
complete absence of such a parameter—can be shown through experiment,
since certain inequalities, strictly valid if there exist hidden parameters,
should be able to be violated in quantum mechanics. The EPR-type
experiment, performed by Aspect, has effectively demonstrated the
definitive nonexistence of hidden parameters by verifying a violation of
Bell’s inequalities.

The EPR experiment becomes astonishing when one considers that at
the moment when the spins of these two particles are measured, these
particles can be arbitrarily distant; if one wants to reason in terms of
transfer of information (in supposing that, as soon as one of the two spins is



measured, the information about the result is transferred to the other
particle, thus allowing the inverse spin to be obtained), this information
must move faster than the speed of light, in contradiction with special
relativity! It is as if one tossed two coins, one on the Earth, the other on the
Moon (at a distance of about a light-second), at the same instant (with the
assistance of clocks synchronized beforehand) and always obtained heads
for one and tails for the other.[84]

But all attempts at using an EPR experiment to effectively transmit
information are doomed to fail. This is why this type of interpretation has
been rejected by most physicists. What quantum description expresses is
that the “two” particles in fact constitute one single, entangled system: they
are inseparable. This non-separability, as we have seen, in no way depends
on the extent of the system, which necessitates another essential property of
quantum objects (even “elementary”): their fundamental nonlocality.

These are some of the strange properties that any attempt at a new
theory wishing to base quantum theory on first principles must be able to
take into account. It now seems clear, after almost one hundred years of
theoretical and experimental developments in the quantum domain, that
attempts to return to determinism or the introduction of hidden parameters
should be abandoned. Quantum mechanics, with all its paradoxes, must be
included in any eventual future theory, in the same way that Newtonian
theory is fully encompassed by Einstein’s theory.
 





 
CHAPTER 10: EINSTEIN AND QUANTUM THEORY

 
Einstein’s position in relation to quantum theory is more subtle and
complex than what tends to be said, which often amounts to caricature. No
month goes by without some theoretical or experimental result confirming
the predictions of quantum mechanics being the basis for headlines such as
“Einstein was wrong…” However, to suppose that Einstein rejected these
predictions constitutes a thorough betrayal of his thinking, which has only
been denounced by some few commentators.[85] Einstein’s thoughts are in
fact clearly expressed in numerous texts on the subject.

Between the construction of the theory in 1925-1927 and around 1933,
there is no doubt that Einstein had attacked quantum nondeterminism,
especially regarding the Heisenberg relations. During these years, much of
his efforts tended to think of experiments which would disprove these
relations of uncertainty. But he was finally unambiguously persuaded by
Bohr’s arguments, since his critiques afterward gradually became aimed at a
much more foundational level, that of the fundamental concepts of the
theory.

Beginning in 1933, in fact, Einstein no longer argued that one must
retract the nondeterminism of microphysics which quantum theory
emphasized. In a lecture given around this time, he says:
 

It seems to me certain that we have to give up the notion of an absolute
localization of the particles in a theoretical model. This seems to me to
be the correct theoretical interpretation of Heisenberg’s indeterminacy
relation.[86]

 
It seems that he kept an open mind toward all possibilities. In a 1950

letter to Schrödinger, he writes:
 

The fundamentally statistical character of the theory is simply a
consequence of the incompleteness of the description. This says
nothing about the deterministic character of the theory.[87]

 



If, to the great despair of his friend Max Born especially (see the
Einstein-Born correspondence), he strove to argue that quantum mechanics
was an incomplete theory of reality, one must recall that he thought the
same thing for the theory of relativity, of which even its “general” version
he considered to be provisory, and indeed for all of physics:
 

Not for a moment, of course, did I doubt that this formulation was
merely a makeshift in order to give the general principle of relativity a
preliminary closed expression. For it was essentially not anything more
than a theory of the gravitational field, which was somewhat artificially
isolated from a total field of as yet unknown structure.[88]

 
One must still remember that for Einstein, there was no question that

any future theory could be obtained by extending quantum mechanics:
 

I believe, however, that this theory offers no useful point of departure
for future development.[89]

 
Einstein in no way went in the direction of theories of hidden parameters

that he in fact never supported, contrary to what is often believed. He thus
writes, in 1954, to Bohm, one of the principle physicists who had tried to
develop such an approach:
 

In the last few years several attempts have been made to complete
quantum mechanics as you have also attempted. But it seems to me
that we are still quite remote from a satisfactory solution to the
problem.[90]

 
He expresses himself still more clearly on the interpretation of quantum

mechanics in a text of 1953:
 

The acceptable interpretation of the Schrödinger equation is the
statistical interpretation given by Born.[91]

 
What Einstein could not accept as definitive in the theory of

microphysics was that quantum mechanics was by nature statistical, that
probabilities should be placed at the level of the theory’s principles. This



would abandon an explanation of individual elementary phenomena.
Einstein, on the other hand, thought that any physical theory worthy of the
name could not be probabilistic in its fundamentals, and that the necessity
of a statistical description must, to be fully comprehended, be derived from
more fundamental principles applicable to the description of “the state of
individual systems.” As we shall see in what follows, the theory of scale
relativity comes under such a view: its fundamental foundation is in terms
of nondifferentiable and fractal spacetime, and the statistical description is a
consequence of the fact that geodesics are themselves fractal and infinite in
number in such a spacetime.
 

The argument (in quantum mechanics) completely leaves the processes
affecting individual systems completely in the dark; these are totally
eliminated from the representation provided by the method of
statistical explanation.[92]

 
The physicist . . . will have to give up his position that the Ψ-function
constitutes a complete description of a real factual situation. . . . The
statistical character of the present theory would then have to be a
necessary consequence of the incompleteness of the description of the
systems in quantum mechanics, and there would no longer exist any
ground for the supposition that a future basis of physics must be based
upon statistics.[93]

 
If one wants to consider the quantum theory as final (in principle), then
one must believe that a more complete description would be useless
because there would be no laws for it. If that were so then physics
could only claim the interest of shopkeepers and engineers; the whole
thing would be a wretched bungle.[94]

 
It is this, and nothing else, that he meant by his so-often-repeated
expression “God does not play with dice” (where “God” is to be understood
in the sense of “laws of nature,” Einstein often clarified), and in any case
certainly not a rejection of the Heisenberg uncertainty principle nor a non-
recognition of the gains and extraordinary successes of quantum mechanics:
 



[Quantum theory] represents an important, in a certain sense even
final, advance in physical knowledge.[95]

 
It seems that what Einstein had in mind is that quantum theory must one

day be encompassed by a larger theory based on different principles, in the
same sense that Newtonian physics is encompassed by his theory of general
relativity. In this process, the nonphysical concepts of the theory, such as
that of a force acting instantaneously at a distance, disappear from the
foundations (but might reappear as practical approximations). This is the
fate which would thus be reserved, in this eventual future theory, for
concepts such as the wave function and wave-function collapse.

Let us compare quantum mechanics and relativity. General relativity, as
we have seen, is a theory that, even if it can become complicated in its
application, is based on simple and comprehensible principles. On the
contrary, the foundations of quantum theory are purely axiomatic in nature.
Relativity is an essentially geometric theory, based on the primacy of the
four-dimensional spacetime continuum (which even becomes its primary
instrument). Quantum theory is, on the other hand, an algebraic theory for
which the principal framework is constituted by spaces of abstract states:
there often follows a loss of intuitive comprehension of phenomena.
Finally, one can consider that general relativity contains conceptual levels
deeper than quantum theory. In effect, the fundamental equations of
Einstein’s theory are those of the geometric structure of spacetime; the
equation of trajectories (that is, of geodesics) is deduced from it; ultimately
the equation of a set of geodesics is itself constructed starting from this
latter equation. One might compare this last type of equation to
Schrödinger’s equation. Currently, there is no equation of an eventual
“quantum spacetime.” Here again, one can in this respect compare quantum
theory to Newtonian theory in its time: an extremely precise theory, which
“sticks to the facts,” but remains unsatisfactory from the point of view of
fundamental concepts.

In a letter to Louis de Broglie written at the end of his life, Einstein in
part explained this point of view in specifying that the future theory should
be a field theory (in the same sense as general relativity, that is, a theory of
spacetime). Here, he is not alluding to a quantum field theory, which
currently exists for fields such as electromagnetism and weak and strong



interaction, but of a theory explaining quantum effects as the manifestation
of a new field (ultimately meaning a geometry of spacetime).

In this sense, one must admit that none of the theoretical and
experimental developments of the past few decades, as spectacular as they
are, address in any way the problem posed by Einstein (and thus have
brought no solution either way), since they are all situated (except the
attempts at theories of hidden parameters which reject nondeterminism and
are destined to failure after Bell’s theorem) within a framework where the
fundamental laws themselves are in essence probabilistic.

Regarding theories of quantum gravity, Jean-Pierre Luminet writes:
“Hawking has deemed that the uncertainty principle applied to the black
hole was transcended by what he calls the ‘principle of randomness.’ . . .
Hawking’s answer is the following: ‘Not only does God play with dice, but
He throws them where they can’t be seen.’”[96] These theories are obtained
starting from the a priori precept of quantization and the methods of
quantum mechanics, and thus unfortunately do not address this fundamental
question: that of the search for first principles which would be able to act as
the foundation of quantum theory.
 





 
PART FOUR: SCALE RELATIVITY, FRACTAL SPACETIME, AND

QUANTUM MECHANICS
 





 
CHAPTER 11: SCALES IN NATURE

 
Since antiquity, since the age of Plato, Euclid, and Aristotle, numerous
philosophers and writers (such as Voltaire with Micromegas or Swift with
Gulliver’s Travels), in addition to mathematicians and physicists (among
others, Leibniz, Boscovich, Laplace, and Poincaré), have considered the
question of scales of length in Nature. If the philosopher or novelist has
often imagined that there might exist men of lilliputian size or giants as
large as the Earth, we know that in reality, one sees nothing of the sort. The
height of an adult human can hardly vary by more than a factor of two, no
one has a height of a millimeter or a kilometer. The size of atoms is of the
order of a few angstroms, and there do not exist atoms with a radius of one
meter, nor of one fermi: it is their nuclei which one encounters at the latter
scale.[97] Inversely, the radius of a star is of the order of millions of
kilometers and can reach one hundred times this size, but not one million
times. At the scale of 10 kpc (ten thousand parsecs, the parsec being the
astronomic base unit), the structures encountered are galaxies, but no
galaxy is a thousand times smaller or bigger.[98]

Thus, any given structure is often characterized by a scale or a limited
range of scales and, inversely, at any given scale there generally
corresponds a certain type of structure. Why is it thus? What determines
these scales? This is one of the essential problems, in large part unresolved,
of fundamental physics.

The question is so much the more difficult since it is not always the case.
Numerous physical systems, on the contrary, show no particular scale over
a large interval (we call them “scale invariant”). Recall, for instance, the
televised images of the first Moon landing. The observation, over the course
of the descent of the lunar module, of its surface constellated by craters did
not allow at any moment an estimation of the distance of the vessel to the
Moon, due to the similarity of the craters to each other. In the same manner,
estimating distances and depths becomes impossible on certain slopes on
which rest rocks of all sizes. A small pebble up close becomes
indistinguishable from a distant boulder without the help of another object
for reference, such as a person or a house. Concerning the laws of gravity,
Laplace writes: “One of the remarkable properties of Newtonian attraction



is that, if the dimensions of all bodies in the universe, their mutual distances
and their velocities grew or shrank in proportion, they would follow curves
entirely similar to those which they followed before.”[99] The substructures
of a fern leaf are similar, within their scale, to the entire leaf.

Examples of scale-invariant objects and systems abound; a large number
of them have been catalogued and studied by Benoit Mandelbrot, who came
up with the word “fractal” to name sets showing the existence of structures
at all scales (or over a wide range). But where do fractals come from? What
are the physical principles which underlie their emergence? Why and how
can there be a coexistence of scale-invariant laws or systems over a large
interval of possible scales, and characteristic scales which break this
invariance (for example, in the case of the fern, the size of its leaf at large
scale and that of its smallest dendrites at small scale)? These questions have
taken on a growing importance in contemporary physics.

There also exist objects whose very nature is to change scale. Growth
and regression are characteristics of living organisms. The universe itself
dilates over the course of time, and in its past went through a primordial
phase over the course of which its characteristic size was enormously
smaller than it is now, the phase described by big bang theory.

 



 



Figure 3 “Scale of scales” in nature
The distance between a tick and the next corresponds to an enlargement by

a factor of 10. From the Planck scale to the scale of the cosmological
constant the ratio is over 1060.

 
Modern physics has certainly made enormous progress. But the origin of

the characteristic principal scales remains insufficiently explained. It is thus
that the characteristic size of atoms can be theoretically calculated by
quantum mechanics and that of stars by astrophysics. However, this
theoretical prediction involves the mass and charge of the electron (in
addition to fundamental constants such as the speed of light c, and Planck’s
constant ħ).[100] Similarly, the characteristic radius of stars can be calculated
with the theory of stellar equilibrium, but as a function of the same
constants, to which is added the gravitational constant G and the mass of
the proton. Yet there currently exists no theoretical prediction of the mass of
elementary particles (neither of electrons nor of quarks which form the
proton). The values of their different charges (electrical, but also those
which characterize their coupling due to other forces of fundamental
interaction) are equally unexplained, essentially. The mass and charge of
elementary particles are known to us only through their experimental
measurements.[101] All of our theoretical calculations ultimately boil down to
these measurements: for example, the set of energy levels of atoms, upon
which rests all of chemistry, depends on the mass and charge of the electron
and Planck’s constant. The whole house of physics seems to be built upon
sand.

At a certain level, we can say that not only do we not know how to
calculate the value of the electric charge, but also that we do not really
know what it is. The particular values of mass, in addition to their origins,
remains in large part a mystery.

The American physicist Richard Feynman writes along these lines:
 

There is no theory that adequately explains these numbers. We use the
numbers all the time in our theories, but we don’t understand them—
what they are, or where they come from. I believe that from a
fundamental point of view, this is a very interesting and serious
problem.[102]

 



Yet this problem can ultimately reduce to a question of scale of length or
of a ratio of scales. Quantum mechanics shows a correspondence between
every mass and a characteristic length scale which is inversely proportional,
called the Compton wavelength.[103] Theoretically predicting the value of the
Compton scale of the electron leads to a prediction of its mass. Similarly,
the ratio of this scale to that of Bohr (which limits the size of atoms) yields
the value of the electric charge (See figure 3).

But the theoretical calculation of the atomic radius or that of stars does
not only depend on the physical characteristics of their elementary
constituents, which are electrons and protons. It also involves the numerical
value of the fundamental constants G, ħ, and c. The relation which ties the
mass of the electron to its Compton wavelength also depends on ħ and c.
These constants appear at all levels of the laws of physics. Certainly, a
constant like the mass of the electron takes on a universal character, from
the fact of the universality of the electron itself (it has been verified,
through the study of the spectra of very distant extragalactic objects, that
the electron was indeed the same as here and now, at a distance of
gigaparsecs and a time of billions of years). But the universality of G, ħ,
and c is of another order. These constants are at play at the level of the
fundamental laws of physics and do not depend on any particular object.
Let us briefly recall their origin.

The gravitational constant, G, was initially introduced within the
framework of Newton’s universal gravitation. Its appearance is especially
important for questions of units of measure. It is connected to the equality
of inertial mass and gravitational mass which was discovered by Galileo
and which forms the observational basis for Einstein’s equivalence principle
underlying his theory of general relativity. Newton introduced these two
types of mass in the expression of two different kinds of forces. The
fundamental law of dynamics states that the result of a force is an
acceleration that increases as the mass of the body subject to the force
diminishes. In other words, a force is equal to the product of its inertial
mass and its acceleration.[104] Along these lines, gravitational force is
proportional to the product of the gravitational masses of the bodies which
attract one another and inversely proportional to the square of their
distance. Equating the formulae of dynamics and of gravitational force thus
necessitates the introduction of a constant, G, whose dimensions (M-1L3T-2)
(a volume divided by a mass and by the square of a length of time) will



allow gravitational force to have the right dimension. But this constant
acquires, in general relativity, a new and yet more universal status. It is
what relates the geometry of the universe to its material and energetic
content in Einstein’s equations. It thus corresponds to something more
fundamental than a simple constant characteristic of a particular field, in
being connected with the geometry of spacetime. This constant is
unfortunately one of the least well known in physics[105] (this may be linked
to the fact that, in practice, it does not intervene alone but rather through its
product by a mass: for example the product GM for the Sun mass is known
with great precision).

The speed of light, c, also plays a role in assuring the homogeneity of
physical units. It appears in the equations of physics only because one has
chosen a priori different units for the measurement of length and of time.
Nevertheless, since the advent of special relativity (within which it acts as a
maximum speed, unsurpassable) and the understanding that neither space
nor time have an independent existence, but are only the subsets of a four-
dimensional spacetime, its status has become better understood. Similar to
how we do not use different units to measure a length and a height in space,
we should use the same unit for measurements of length and of time. In
these conditions, speed is a truly dimensionless physical quantity, and the
speed of light a fundamental “1.” The question of its numerical value no
longer has any meaning in itself, for it only reflects our inadequate choice
of different units (the meter and the second). These theoretical findings
have now been taken into consideration in the definition of units: since
1985, there no longer exist independent units of length and of time, but one
unit only, that of time, of which that of length is deduced via the speed of
light, now fixed in an exact manner.[106] This choice aims to maintain
continuity with the previous choices: one might have, in a more radical (but
equivalent) manner set c to 1 (without dimension) and measured lengths in
nanoseconds, for example.[107]

Finally, Planck’s constant is the fundamental constant of quantum
mechanics. It was initially introduced in 1900 by Planck, in order to
understand the nature of the law of blackbody radiation that he had just
discovered. For this purpose, he made the hypothesis that radiation is not
exchanged in a continuous manner, but by “quanta” of discontinuous
energies. It was in 1905 that the theory of quanta was truly born, when
Einstein made a giant step in postulating, in order to explain the



photoelectric effect (in which electrons are removed from a metal by light),
that the quanta were not only a property of the exchange of energy, but of
light itself. Thus the light particle, which was later called the “photon,” was
discovered, with its dual nature of wave and particle. It is precisely Planck’s
constant, h, which connects these wavelike properties to the particle-like
ones, that is, which connects the frequency of radiation v (which defines the
color of visible light) and its energy E, following the Planck-Einstein
formula E = hv. As we have already noted, this unification was finally
completed twenty years later, when Louis de Broglie applied the inverse
reasoning to matter: just as Einstein had shed light on the particle-like
nature of radiation (considered as purely wavelike since the work of Fresnel
and Young at the start of the nineteenth century), de Broglie postulated in
1923 the wavelike nature of particles like protons or electrons. This
remarkable vision was quickly confirmed experimentally by the observation
of effects of diffraction for electrons, and more recently on entire atoms:
everything shows the universality of the Einstein-de Broglie relations.
Planck’s constant, which connects energy and frequency, as well as linear
momentum and wavelength, possesses a dimension (that of angular
momentum, ML2T-1, product of a mass by the square of a length divided by
a time) that is fixed, here again, by the dimensionality of the physical
quantities which it relates.[108]

Can we imagine one day predicting the numerical value of these
fundamental constants by theory alone? Contrary to the mass or the charge
of the electron, they are independent of any particular object. Their values
depend on the units of physics, which have been chosen in an arbitrary
manner. This problem is fundamentally a question of scale. In fact, starting
from G, ħ, and c, one can come up with three fundamental scales, a length,
a time, and a mass, called Planck’s scales. All laws of physics can be re-
expressed in terms of these three new constants. In such a formulation,
lengths and times operate only in relation to the Planck length and Planck
time, and masses by their relation to the Planck mass. The equations of
physics then become dimensionless. Would these three scales of Planck be
natural units, allowing us to remove the arbitrary character of the choice of
our units? Do we not thus lack a fundamental theory in which these
magnitudes would naturally occupy this place, in the same way that, since
the special relativity of Poincaré and Einstein, the speed of light plays the



role of a natural unit for speeds? I will suggest answers to these questions in
the remainder of the present work.

Let us return to the question of scale. One does not only see the
existence of fundamental scales in nature, but also the existence of laws that
are explicitly dependent on scale. In such a case, the physical quantities
under consideration take on values which change according to the scale
with which one measures them. To give a familiar example, it is so with the
length of the coast of Britain, which clearly depends on the scale of the map
which one uses to determine it. The more detail this map allows one to see,
the more there appear new gulfs, inlets, and recesses which increase this
length. Yet this variation of the length as dependent on the resolution
(which is the size of the smallest observable detail on the map) is not made
in any which way, but following a well-determined law. Such phenomena
have led to concepts of scale laws and scale invariance, and to geometric
description in terms of fractal objects.[109]

The dependence on scale can in certain cases be of an extremely
fundamental nature. Thus, in quantum mechanics, the results of
measurement explicitly depend on the resolution of the device which was
used in the experiment, that is, of the smallest interval of the measured
quantity observable with the device. Hence, to change the resolution in
general requires one to change the measuring device. In cosmology, it is the
scale of distances between galaxies which changes over the course of time
due to the expansion of the universe: space in its entirety dilates. Moreover,
one encounters scale laws and scaling behaviors in numerous situations,
from small scales (in microphysics), to large scales (extragalactic
astrophysics and cosmology), but also on intermediate scales (particularly
in the domain of living beings). Most of the time, the discovery of such
laws is made in an empirical manner. But it is rare that they are truly
understood. We still lack a theory which would allow us to deduce them
from fundamental principles.

The problems attached to scale do not stop there. One of these
problems is one of the greatest puzzles encountered over the course of the
history of science: this is the appearance of quantum phenomena in
microphysics experiments. Not only is the nature of observed structures
different according to the scale, but, as we have seen in the preceding
chapters, the laws of physics themselves change between small and large
scales. According to whether one studies microscopic domains (nuclear,



atomic, and particle physics) or macroscopic (celestial mechanics,
cosmology), the physical theory to use must pass from quantum mechanics
to classical mechanics. Nor can we speak of an absolute scale of transition
between the quantum and the classical: this is shown, for instance, by the
existence of quantum effects in the macroscopic domain, such as in
superconductivity (which allows, along with other effects, the transmission
of electricity without loss). Inversely, in certain conditions, particles can be
treated in a classical manner (it is thus, for example, with the image of their
trajectory produced by a bubble chamber). Certain astrophysical problems
at a large scale, like the internal structure of a neutron star or that of the
very early universe, which both call for a description in terms of elementary
particles, must make use of quantum mechanics. Nevertheless, there do
exist relative scales of transition between the quantum and the classical
domain, since, for a given system, the theoretical analysis should be
classical at larger scales and quantum at smaller ones. It is simply that the
scale of transition between the two behaviors depends on the considered
system (on its mass, its speed, or its temperature), and is therefore not
absolute, but relative.

This dichotomy in contemporary physics is extremely deep and
troubling. It goes further than a simple change of laws in the classical sense
of the term, which could have been attributed to the existence of new fields
at small scale in relation to those known classically (gravitation and
electromagnetism). Such new fields indeed exist (the strong and weak
nuclear interactions), but the problem is not that. Everything changes
between quantum and classical physics: the concepts, the mathematical
tools, the manner of posing problems, even of thinking about them, the
manner in which theory is formed, the manner in which it is understood.

It seems more and more clear, after a century of concerted effort
concerning the relations between classical and quantum physics, that one
cannot pass directly from one domain to the other: neither of the two is
deduced from the other; they must coexist and be given independently. But
is there no other way of unifying them? Cannot each of these two
representations of the world be deduced from a third, more general
representation, which encompasses them, and is reduced, according to the
scale of the observation or the description, respectively to quantum and
classical representations? It is such an approach which will be in question in
the rest of the present work.



The idea serving as Ariadne’s thread for this point of view is that there
does exist a fundamental principle upon which to base the new theory: this
is the principle of relativity itself. However, one must go beyond the
principle of relativity of motion, as it has been developed by Galileo,
Poincaré, and Einstein. It is necessary to introduce an extension of this
principle which also encompasses the transformations between scales.

What can we expect from such an extension of our frame of thought?
As we will see, one first consequence is that it implies a profound

change to the nature of spacetime. The general relativity of Einstein had led
to a generalization from the flat and absolute space of Newtonian theory to
a curved spacetime, dependent on its material and energetic content.
Similarly, the idea of scale relativity introduces a new spatiotemporal
geometry, more complicated yet: spacetime becomes fractal. The concept of
fractals was expressly constructed by the mathematician Benoit Mandelbrot
to designate objects, sets, or functions whose form is extremely irregular
and fragmented at every scale, and for which the geometry thus explicitly
depends on the resolution used in considering them (see figure 4 and the
following). A new usage should nevertheless be made here. One no longer
attempts to describe fractal objects, a priori included as contents of a space
defined beforehand, but fractal spaces (more generally, fractal spacetimes),
which should therefore be defined intrinsically, from the inside, since it is
the container instead of the content. Moreover, as it is already the case in
Einstein’s theory of general relativity, it is not a question here of an absolute
spacetime, but on the contrary, of the construction of a fractal spacetime
that must be relative to its material and energetic content.

A second consequence is a new possibility of understanding quantum
mechanics. We will see how elementary particles can be reinterpreted as
families of “geodesics” (being the shortest trajectories from the viewpoint
of proper time) of a fractal spacetime showing structures at all scales
toward microscopic scales. More generally, the main axioms of quantum
mechanics (meaning its mathematical principles, currently arbitrarily posed,
and not understood) can be reconstructed and derived in the new approach
starting from the principle of relativity itself (applied to motion and scales).
Similar to how, in Einstein’s general relativity, gravitation is nothing other
than the set of manifestations of the curvature of spacetime, the theory of
scale relativity suggests that quantum effects appear as manifestations of the
fractal character of spacetime at small scales.



But we can go further yet. Scale relativity not only allows us to propose
a source for quantum mechanics, it also leads to possible generalizations at
very small scales. The application of the principle of relativity to scale
transformations of coordinate systems leads us to propose possible forms
for the laws which govern the internal structures of spacetime, structures
we postulate to exist in each “point.” Original fractal structures, more
general than “ordinary” fractals, thus emerge. In this enlarged paradigm, the
problem of the infinite divisibility of space and of time finds a new solution.
It remains possible to divide a spatial or temporal interval in two, and then
to divide that new interval in two, and so forth to infinity, but the result of
this operation is no longer zero, but a finite interval. Similar to how one can
add velocities to each other without end in special relativity, but the result
of this sum always remains lower than the speed of light, here there appears
a universal, minimal scale, unsurpassable, upon which any magnification
would have no effect.

As we will see, it seems natural to identify this scale with the Planck
scale, whose role as the natural unit of length and of time would find itself
to be thus justified. This scale would then possess all the physical properties
which were formerly attributed to the point zero and would replace it, all
scales between zero and the Planck scale no longer having any existence
(similar to how the speed of light possesses, in special relativity of motion,
all the physical properties of an infinite speed).

 



Figure 4 Fractal curve

A fractal curve shows new structures at all scales (in the particular case of
this figure, which represents a self-similar fractal, it is the same structure
that one finds at different scales). Such a curve depends explicitly on the
resolution, which is the smallest interval of length accessible for a given

measurement device (a magnifying glass, then a microscope, then a particle
accelerator will increase the resolution). These always-new structures

prevent one from defining a slope, that is, a tangent to this curve; thus, one
is unable to define the speed of a particle which would follow such a
trajectory. But a slope can be defined for all given finite values of the



resolution: in scale relativity, one thus reintroduces a generalized slope,
which is no longer a number, but an explicit function of the resolution.

 
Such new laws not only change physics at the Planck scale; they also

have observable (and thus testable) consequences in the domain of energy
currently accessible to large particle accelerators. The problem of the origin
of masses and charges of elementary particles can be seen in a new light, as
well as that of the value of scales of unification.

Moreover, the consequences of the theory of scale relativity do not only
concern the infinitely small: as I will show in closing, it also allows us to
cast a new light on cosmology (the domain of very large scales of length
and of the universe taken in its entirety), as well as the general problem of
the formation and development of structures, in particular gravitational
structures.

In fact, one of the possible consequences of this approach is that quasi-
quantum laws could also be applied to the macroscopic domain. Certainly,
it is not a matter of applying quantum theory as we know it now, with all its
properties and paradoxes (briefly recalled in the third part). This is out of
the question, precisely because our analysis allows us to bring to light
everything that, in quantum theory, must be attributed to the particular
nature of objects in the microscopic domain (elementarity, identity,
nonlocality, indistinguishability, etc.).[110] But this analysis, inversely, allows
one also to show that the fundamental equations of quantum mechanics (the
Schrödinger, Klein-Gordon, and Dirac equations) have a character of
universality.[111] As shown also by the Canadian physicist Garnet Ord, these
equations can be obtained without depending on the interpretations of
standard quantum mechanics. They can thus have an enlarged domain of
application in a different context and with a different interpretation: in such
a quantum-like approach (in which macroscopic classical systems may be
subjected to a Schrödinger-type regime), if we lose the predictability of
individual trajectories, this is largely compensated, as we shall see, by the
new capacity of the theory to predict the emergence of structures. In
particular, I concluded my 1993 book, Fractal Space-Time and
Microphysics, by predicting that a fractal medium may play, for the
particles which move in this medium, a role similar to that of a fractal space
for its geodesics. These particles are then expected, under some conditions
of chaos, fractality, and irreversibility, to acquire macroscopic quantum-like



properties, but in terms of a macroscopic constant which is no longer the
microscopic Planck constant. Much indirect evidence of such a process has
been subsequently suggested not only in the astronomical realm, but also in
biology[112] and solid state physics[113] and, more recently, direct
experimental proofs have been found in laboratory experiments involving
turbulent fluids.[114]

 





 
CHAPTER 12: THE CONCEPTS OF POINT AND INSTANT IN

PHYSICS
 
Is our current representation of the world complete? As far as classical laws
go, the notion of spacetime has been developed with the evolution of ideas
in physics. But can we reduce the physical world to the set of positions and
instants, and to the motions that tie them together? The classical concept of
spacetime can only have physical meaning if the mathematical concept of a
“point” is also meaningful.

In the case of time, doubt concerning the existence of an instant, or a
temporal point, can be traced back to Greek philosophy and Zeno’s
paradox. As for space, Kant posed the problem with his antinomies: but
Kant went further in showing that the antinomies had bearing upon the
infinitely large in addition to the infinitely small. The existence of a
symmetry between the statements one can make about these two infinities
will become a frequent observation in what follows. One cannot touch zero
without touching infinity. Mathematically, they are the inverse of each
other, and we will see that this operation of inversion has a very particular
meaning in scale relativity.

In its most profound version, the paradox of Zeno’s arrow sheds light on
the problem. This paradox has two aspects. In the first, one considers that in
order to reach a target, an arrow must first travel half the distance, and then
half the remaining distance, and so forth ad infinitum. In this form, it
demonstrates the endless divisibility of space. The mathematical discovery
of convergent series, for which an infinite sum of terms can perfectly well
be finite, solved the problem. In this way, adding ½, ¼, ⅛, and so on
ultimately yields 1 at the limit.

But behind this paradox lies a deeper problem which is still unresolved
in the scope of physics today. This problem concerns the concepts of
instants and of motion. If the instant, meaning a precise and fixed value of
the temporal coordinate, without any incertitude regarding this value, has a
physical meaning, Zeno’s arrow must be considered at this instant as totally
immobile. How does one reconcile the movement of the arrow, known to us
by its observed displacement over a finite non-zero interval of time, with
this total immobility of the arrow at each individual instant?



For Kant, this line of thinking is still more directly tied to the problem of
the infinitely large. Let us first consider the microscopic domain. Is space
infinitely divisible? To this question Kant says yes. The appearance of a
sudden barrier, an interval of space which one could no longer divide,
would have no meaning. But, inversely, does the limit of these successive
dissections (the point, the interval of length zero) have meaning? If so, it
can only be attained following an infinite number of operations, which
cannot actually be brought about. It is similar with the infinitely large.
There is no reason why one could not always think of a volume larger than
any given volume. But the “limit” of this process (which is in fact without
limit), an infinite space, cannot practically be realized, even more clearly
than in the case of the point zero.

Of course, the statement of these problems has greatly evolved due to
the findings of modern physics, in particular with curved spaces which can
be finite but without bound in general relativity, as well as the Heisenberg
uncertainty principle in quantum mechanics. However, in their essence, the
problems remain. For Kant, the fact that each of the two theses is
established by demonstrating the impossibility of the other suggests that the
question itself is absurd. We will nonetheless see how the theory of scale
relativity provides an original answer to the problem of antinomies, in
which the two terms are no longer contradictory. The universe can be
infinite while possessing a maximal scale, and infinitely divisible even
though a lower limit to each scale of length and time can be defined.

Let us continue with the analysis of the concept of position and instant.
If the mathematical point can have a proper definition, is it the same for a
physical point? Can one bring into existence a true point? The question can
also be asked about other geometrical objects such as lines and surfaces,
supposedly without thickness. If one wishes to explain what a point is to a
child, one can simply draw a dot. But what has one actually done? The
sheet, board, or computer screen upon which the point is drawn, even the
receptors that are used to detect this image (our eyes in particular) are in
actuality characterized by a certain limiting resolution. The dot on the page
or screen may be smaller than this resolution, but it still has nothing to do
with the mathematical point, which must be strictly zero in extension. One
can simply examine it with a magnifying glass to realize that it is in fact an
extended spot. Then, one could take a sharper pencil, a pointier instrument,
and make a point recognizable as such under the magnifying glass. But



using a microscope would also show us its internal structure, and so on until
infinity. The mathematical point or line ultimately cannot be physically
realized.[115]

Einstein has already insisted on the difference between physics and
mathematics:
 

It seems to me that when mathematical propositions correspond to
reality, they are not certain, and that when they are certain, they do not
correspond to reality.[116]

 
What should we replace the mathematical point, curve, or surface with if
they are in actuality inadequate for physical description? The answer is a
mathematical tool which includes in its definition itself what the physicist
does in practice: one magnifies them more and more with a lens, then an
optical microscope, then an electron microscope, then a field-emission
microscope, then a particle accelerator. All these instruments change the
scale of observation. Toward the larger scales, the use of glasses and
telescopes plays a similar role. Yet what experiment and observation has
taught us is that never in the course of this type of operation does the strict
equivalent of these mathematical objects appear, these objects which we
nonetheless use to describe the world. By improving the resolution of an
instrument, new internal structures will always appear. But a new geometry
now exists, precisely characterized by the existence of structures at every
scale: fractal geometry.
 





 
CHAPTER 13: FRACTAL GEOMETRY

 
The word “fractal” was coined in 1975 by Benoit Mandelbrot to designate
objects, curves, functions, or sets “of which the form is highly irregular
and/or fragmented at all scales.” Such objects have been studied by
mathematicians for over a century. They are characterized by new, often
non-integer dimensions, by the appearance of infinities, and by their
nondifferentiability (the impossibility of defining a tangent line). Let us
explain in more detail what this means.
 





 
Topological Dimension and Fractal Dimension

 
Geometry has always recognized fundamental objects like points, curves,
surfaces, or volumes. These objects differ from each other by their
dimension. This characteristic can be defined in many different ways, which
agree with each other for the simplest geometric objects, but in general
differ when applied to the new fractal objects.

The first definition is that of topological dimension. This refers to our
intuitive concept of dimension: a point has zero dimensions, a straight line
one, a surface two, and a volume three. In physics, it corresponds to the
number of coordinates necessary to locate a point inside the object.

However, this apparent simplicity was ill-equipped to handle the
discovery of strange mathematical sets at the end of the nineteenth century.
The Peano curve is one such example (see Figure 5). It is constructed by
successive iterations starting from a segment of length one. The first level
of construction (the “generator”) contains nine segments of length ⅓, and
then one reproduces the same structure in each segment, and so forth to
infinity.

Figure 5 “Peano curve”
Here we see three levels of construction of this “curve.” Its length is

infinite. At the limit, it completely fills the surface of a square.
 

The paradox of such a “curve” is that it allows one to obtain any point
on the surface, since at the limit it completely fills the inside of a square!



Should one conclude that there is ultimately no essential difference between
a curve and a surface? The solution to the problem lies in another property
of the Peano curve: while it is true that all points of a surface are touched by
this curve, many of them are touched more than once. At the limit of its
construction, the curve inevitably cuts in on itself, indeed it must contain an
infinite number of multiple points. In other words, if one wants to use this
curve as a system of coordinates, the same point must be referred to using
many different values of coordinates. This is true of all curves which fill a
plane.

This property has allowed one to give a meaningful definition of
topological dimensions. Two sets have the same topological dimension if
and only if one can define a continuous and one-to-one transformation
between them. Thus, although one can define a continuous transformation
between a straight line and the Peano curve, this transformation is not one-
to-one, since certain points are reached several times. The “Peano curve,”
then, is not in fact a curve, but a surface.

The topological dimension of different geometrical objects is thus
defined by putting them into correspondence with sets of points (of zero
dimensions by definition), of curves (one dimension), or surfaces (two
dimensions), etc. This implies that the topological dimension will always be
an integer number. As complicated as they may be, it is the same with
different fractal objects: one speaks of fractal curves, of fractal surfaces, etc.

Figure 6 Similarity of non-fractal objects



If one doubles the size of a line segment (which is one dimensional), the
resulting segment is two times as large. If one doubles the size of a square,
which is of two dimensions, one obtains four times the initial square, that is
22. In the case of a cube (of three dimensions), the multiplicative factor is 8,

or 23.
 

But other definitions of dimension are possible, which in general are
called fractal dimensions. Among them, one plays a central role in the study
of fractals, the similarity dimension. It is based on the following
observation: when one applies a homothetic factor n to a line segment (that
is, when one enlarges it by n times), one obtains a new line segment n times
as large; applied to a square, one obtains a new square with a surface n2 as
large; for a cube, the volume is multiplied by n3; for a “hypercube”
(generalization of the cube beyond three dimensions) having a topological
dimension DT, the multiplicative factor is nDT, etc. (see figure 6). The
exponent used in the factor of enlargement is the similarity dimension. In
all cases of standard geometry, the similarity dimension coincides with the
topological dimension.



Figure 7 “Koch curve”



This curve is constructed starting from a “generator” F1, which contains
four segments of length ⅓, by replacing F1 by F1 itself, but at smaller scale,

and then continuing this process to infinity. Its length is infinite (each
iteration multiplies the length by 4/3). Its fractal dimension is 1.26. This

curve is not differentiable, since the tangent of a point will differ according
to the level of construction and is not, in general, defined at the limit.

 
However, if one enlarges a self-similar fractal by a factor q, one can

obtain p versions of the initial fractal, without p being a power of q. This
means that the similarity dimension can now be non-integer. For example,
the famous “Koch curve” (see figure 7), magnified three times, contains
four versions of the initial curve! The similarity dimension, which is one of
the examples of the new fractal dimensions, is then given by the ratio
between the logarithms of p and q.[117] That of the “Koch curve,” which is
equal to log 4 / log 3, about 1.262, is greater than its topological dimension
(equal to one).

Everything behaves as if a fractal curve had a kind of thickness which
makes it something in between a line and a surface. One can understand this
by comparing a straight line, which is an infinitely narrow curve with one
dimension, with the Koch curve above (of fractal dimension D = 1.26), and
then with the zigzag fractal in figure 8 (fractal dimension 1.5), and finally to
the Peano fractal which fills the plane and has a fractal dimension of 2.



Figure 8 Fractal curve of dimension 1.5
Its generator is composed of 8 segments of length ¼.

 
An important property of fractal curves is their “nondifferentiability.”

This can be seen, for a curve in a plane, by the impossibility of defining a
tangent when one progresses to the limit of the iterative construction of the
fractal, as in the Koch curve above. In the case of a fractal function, that is,
where each value on the x-axis corresponds to a single value on the y-axis,
nondifferentiability exists as a divergence of the slope (meaning that the
tangent to the curve is always vertical): in this case, the derivation does not
exist in the usual sense of the term, not only because it is undefined due to
fluctuating endlessly under changes of scale, but also because it is infinite at
the limit (see figure 9).



Figure 9 Fractal function

This function is obtained by projecting the fractal curve of the preceding
figure on the horizontal axis. The derivative of this function tends to infinity

at each of its points.
 

Another type of fractal dimension is the covering dimension. To
understand the nature of a fractal curve, it is possible to consider it at all the
different possible resolutions. This can be done by covering it with “balls”
of variable radius ε. To simplify the example, we will consider the
“resolution” to be the radius of this ball, which in covering the curve creates
a smoothing effect.[118] One can also see this radius as a kind of uncertainty
or an error bar on the positions of points on the curve.



Figure 10 Zooming in on two fractal curves

Each of these two series of images can be made into frames of a film. Since
the fractals are self-similar, the series loop on themselves, image ten being

identical to image 0.
 

What characterizes a fractal curve is the appearance of new structures
when the resolution improves, that is, when the covering ball becomes
smaller and smaller. These supplemental structures can lead to a growth
without limit in the length of the curve when the interval of resolution tends
to zero. In the simplest case of self-similarity, this growth follows a power
law, the exponent of this law characterizing the fractal covering dimension.



[119] If one continuously zooms in on such a fractal curve, one will
periodically come across the same structures (see figure 10).

In the case of a fractal surface (see figure 11), the measured area tends to
infinity over the course of successive zoom-ins, due to the continual
appearance of new fluctuations upon this surface. The same goes for higher
topological dimensions (volumes, hypervolumes, etc.).

Figure 11 Fractal surface

One can construct a continuous fractal starting from the folding of a
generator containing gaps (at left). One obtains the generator in the middle,
composed of 65 squares with sides of length 1/5 (fractal dimension 2.59).

The figure on the right gives an idea of the next level in the construction, in
which each square of the generator is replaced by a copy of itself at smaller
scale. Only part of the surface is depicted (corresponding to the five cubes

in the upper right of the generator).
 

Nevertheless, we must note that most of the fractal objects encountered
in nature do not truly display structures at all scales. They are geometrically
characterized by the existence of lower and/or upper scales of transition
beyond which they become standard, unstructured objects. As we will see
in the following, it will be the same for fractal spacetimes which can be
constructed to account for quantum behavior. In this latter case, the
transition between fractal behavior (at relatively small scales) and non-
fractal (at larger scales) marks the transition between quantum and classical
behavior.[120] This type of transition, which does not take place in spacetime,
but in the new space of resolutions (space which must be introduced to
allow a complete description of a fractal object), can be identified as a



spontaneous “symmetry breaking” of the laws of scale. Strictly speaking,
the quantum spacetime is fractal at all scales, but the combination of the
laws of scales with the laws of motion (i.e., of the two relativities, of scale
and of motion) leads to the appearance of an effective transition from the
quantum realm (dominated by scale laws) to the classical realm (dominated
by motion laws).

Two examples will illustrate this property. One of the best known
instances of a fractal curve is the coast of Britain, whose length grows when
one measures it using maps of larger and larger scale. This growth ends
when one reaches the scale of the shore itself.[121]

 

Figure 12 Fractal/Non-fractal transition
Transition between fractal behavior and scale-independent behavior. The

length of a curve of fractal dimension 2 is plotted as a function of the
resolution of measurement. The units are logarithmic: the same distance on

this diagram corresponds to a constant ratio (the values 1, 2, and 3



correspond to an increase of 10, 100, and 1,000 times the initial length). At
large scale, the surface upon which this curve is drawn is relatively smooth,

so much that the length of the curve does not depend on its resolution;
however, at smaller scales, aberrations in the surface appear more and more

and the length of the curve rapidly grows.
 

Inversely, let us consider the surface of the sheet of paper upon which
these lines are printed. If we measure its area with a resolution of a
centimeter, then of a millimeter, and even of a tenth of a millimeter, we will
obtain the same value (with greater and greater precision): at these
(relatively) large scales, there is no variation of the area as a function of the
resolution. But what about smaller scales? As the magnification increases,
the irregularities of the paper will appear more and more; the total area must
take these structures into account, and then the structures within the
structures. The area will thus increase with the diminution of the scale of
resolution. Here we have a fractal object at small scale which is not fractal
at larger scales, with a rather quick transition between the two behaviors
(see figure 12).
 

Figure 13 Fractal curve in space



The generator of this curve, which exists in a three-dimensional space, is
composed of 9 segments of length ⅓, so that its fractal dimension is D = 2.
Four successive levels of construction by iteration are shown. Such a curve
possesses an infinite length and zero volume, but has a finite “area,” even

though it is not a surface!
 

In the simplest cases, the different definitions of fractal dimensions
coincide. This result allowed Mandelbrot to introduce the general concept
of “fractal dimension,” which corresponds in many real situations to a
covering dimension or a similarity dimension. Whatever it may be, I will
here use the word fractal, in particular when it will be applied to spacetime,
in a very general sense: that of an explicit dependence of metric quantities
(lengths, surfaces) as a function of spatiotemporal resolutions, which may
diverge at the smallest scales.

Let us note here that it would be incorrect to define fractals as sets
characterized by non-integer dimensions. For example, one can perfectly
well construct curves (therefore of topological dimension 1), which do not
cross themselves, having a fractal dimension 2, within a space with three
dimensions (see figure 13): as we shall see, these are just the characteristics
of the geodesics of a fractal spacetime that lead to standard quantum
mechanics.

Curves possessing this type of property play an essential role in the new
approach to quantum phenomena which we will discuss in the rest of this
book. The measurement of these curves is an area, even though they do not
at all resemble surfaces. Inversely, if the fractal dimension of a continuous
fractal is equal to the topological dimension of the space which contains it,
one knows that it will cross itself at an infinite number of points (we say it
possesses multiple points).

It is also possible to imagine generalizations of ordinary fractals, in
which the fractal dimension becomes variable as a function of position (see
figure 14) or of scale. This latter class of curves plays an important role in
physics, as we shall see below.
 



Figure 14 Fractal curve of variable dimension
The dimension is at first equal to one (left part of the curve), then increases

regularly to reach 2, the value for which it fills the plane.
 





 
Where Do Fractals Come From?

 
The extraordinarily frequent appearance of fractal structures in natural
systems (physical and biological) is now an undeniable observational fact.
Mandelbrot gave a large number of examples (coast of Britain,
mountainous surfaces, crystalline structures, distribution of galaxies,
Brownian motion, turbulence, lung structure, etc.), and further research has
added yet more examples (asteroids, lunar craters, solar spectrum, brain,
circulation, and digestive systems, hadron jets, growth phenomena). The list
is now so long that it is practically impossible to be exhaustive.

The now-definitive confirmation of the universality of fractals demands,
in a more urgent manner than in the past, an explanation of their physical
origin. From what underlying laws of nature do they emerge? One might
answer this question from a number of possible angles. But the ultimate
response might be that fractal geometries are simply more general than
Euclidean and curved geometries. Fractals would then be, in the case where
they occur at a fundamental level (involving spacetime itself), the structural
manifestation of the primary nondifferentiability of nature.

Thus, to recognize that fractal phenomena dominate non-fractal ones
leads us to recognize finally that the laws of nature are not governed by
differentiability, a fundamental axiom which underlies all of classical
mechanics. However, before coming to this general argument, some
examples can be given of the physical processes naturally leading to the
emergence of fractal behavior.
 





 
Optimization Under Constraint

 
One can obtain fractal structures in terms of a process of optimization under
constraint, or more generally of the optimization of several quantities,
sometimes apparently contradictory. Suppose, for example, that the
evolution of a system leads to a maximization of surface area (which is the
case in the process of exchange, as in the lung) while minimizing the
volume. A solution which optimizes the two constraints is a fractal of
dimension greater than two, but smaller than three (it would correspond to a
surface tending toward infinity and an infinitesimal volume).

One of the simplest cases of fractal objects (which should not be
considered the only case) is that of self-similar fractal objects. These are
sets for which one observes the same structure after successive
magnifications. However, for the mathematical objects which have been
most studied thus far, one does not find the exact initial configuration
unless considered at discrete values of the dilation factor. In other words,
when one analyzes them in terms of the variable of resolution (as a
logarithm), a self-similar fractal is a periodic system in the new dimension
of scale.

This “discrete scale invariance” has recently been developed and applied
in numerous domains, in particular by Didier Sornette and his collaborators,
to earthquakes or stock market crashes, but also by Chaline, Grou, and
myself to the evolution of species and of human societies,[122] and to
embryogenesis.[123] What might be the origin of such a discrete scale
invariance? Under the hypothesis where fractalization does indeed arise
from a law of optimization, one can interpret it in the following manner:
after a first generic dilation which allows for optimization, there comes up
again a new blockage in the system, which is thus returned to the preceding
state, except for a scaling factor. The problem being the same, the solution
is also similar, and therefore a new iteration can operate (see Fig. 15).

Let us illustrate these two aspects of fractals, that is, multiple
optimization and the return to a preceding state, by a simple example.
Suppose that a system needed to increase the energetic intake coming from
the environment, which is done with a membrane. This is proportional to
the surface of the membrane; thus the system necessitates the maximization
of a quantity of topological dimension DT = 2. The simplest solution would



be to exchange energy across the external surface limiting the body.
Optimization would thus lead to an increase in size. However, the end result
of such a process is negative: increasing the size by a factor ρ increases the
surface by ρ2, while the volume increases by ρ3, so that the energy per unit
of volume decreases by 1/ρ. Moreover, the thermal energy (of heat) losses
take place across the external surface, so well that it is not possible to
increase it by too much (this, with the constraint of gravity, leads to a well-
known limit to the size of living organisms on Earth).

Thus the problem is now posed in a different manner: is it possible to
increase the surface of exchange without increasing the volume of the body
(or equivalently, its external surface)? The only solution is clearly to enlarge
the interior surface of the body by “invagination” (see Figure 15).



Figure 15 Model of self-similar growth
The fractal nature of an exchange surface (here, viewed in cross section and

reduced to a line) allowing the growth of its area without increasing the
exterior volume. It is thus with the lung, whose total exchange surface is

more than 100 m2.
 

Still, this increase will soon encounter another limit, when the internal
growth is limited by the external surface. But when this limit is attained, the
problem posed is brought back to the preceding problem. The solution is the
same: new invaginations, at smaller scale. Self-similarity is here assured by
the principle of causality. The same causes produce the same effects, and
one expects that fractalization will continue to smaller and smaller scales
with self-similar structures. The process stops when other constraints are
applied to the system (in our example, the thickness of the membrane and
diameter of various openings). The lung, with its twenty levels of
fractalization (in base two), from the trachea to the alveoli, is an example of
a natural system where such a model could describe it as a first
approximation.
 





 
Renormalization Group

 
Another path toward the emergence of fractal properties rests on the form of
the renormalization group. It is an approach for multi-scale phenomena,
developed mostly by Kenneth Wilson. These methods had initially been
developed in the domain of quantum field theory.

The approach of the renormalization group consists of locally describing
the system at small scale, and then dilating the system by a certain scale
factor. One then studies the way in which various quantities, fields,
coupling constants, etc., have changed (have been “renormalized” in this
transformation). One is thus brought back to the preceding problem and the
process can be iterated. The advantage of this method is that the number of
steps allowing one to move from elementary structures to global description
is now given by the logarithm of the number of elements, and not by the
number itself.

Here is an example of a problem which this type of method aims to
resolve. The global magnetization of a material results from the orientation
of elementary spins of all its atoms. How can one calculate this considering
that the number of atoms is of the order of 1025? It seems impossible to
manage such immense numbers. With the method of the renormalization
group, one considers all the possible groupings of a small set of elementary
quantum spins, then one iterates with groupings of groupings, etc. If the
spins have been grouped in blocks of ten, twenty-five steps suffice instead
of 1025!

The similitude between fractals and the renormalization group is
established by itself: iteration and scale dependence are present in the two
cases.[124] One must nevertheless mention an important difference. In going
from one scale to the next one (larger), one usually replaces the information
about the system with an average, so that it is not possible to return to the
smaller scale. In other words, there is no inverse transformation in the
renormalization group: it is, mathematically speaking, a semigroup. On the
other hand, fractals are often constructed starting from a large scale and
moving toward smaller scales. One defines a generator (which is the
elementary structure which will be reproduced by iterations), then one
constructs smaller and smaller structures by the successive application of
the generator after it has been reduced in scale. In this sense, fractals can be



conceptualized as a sort of inverse transformation of the renormalization
group.
 





 
Dynamical Chaos

 
An important area of research in recent years in which fractals play a
leading role is that of dynamical chaos. What is this chaos? It is random
behavior which is produced in certain deterministic systems. It thus has
nothing to do with the usual meaning of the word chaos, which refers to
confusion, complete disorder, and absence of law. Chaos is a property of
(seemingly) deterministic systems, those which are adequately described by
laws, in general those of classical mechanics. Our fascination with it
perhaps comes from this paradox, discovered by Henri Poincaré: “A system
described by perfectly deterministic laws can have a behavior arising from
chance!”

How is this possible? The answer has to do with the nature of laws in
modern physics. These laws describe relations, constraints between
physical quantities, which are expressed mathematically by differential
equations. However, knowing an equation does not automatically mean
understanding its solutions.

Chaos is characterized by a high sensitivity to initial conditions. Two
initially close trajectories, both solutions to the same equation, can diverge
from one another extremely rapidly. When this divergence is an exponential
function of time, the final separation can quickly reach enormous values,
even though the initial separation was tiny. The determinism of the equation
then becomes illusory. It corresponds to an idealized situation where one
can know the position and the speed of an object at any given instant with
an infinite precision. In reality, the existence of an inevitable uncertainty
concerning these quantities implies, for a chaotic system, the existence of a
temporal horizon of predictability, beyond which the precise evolution of a
particular trajectory becomes impossible to predict.

Even in this case, a partial theoretic prediction can still be possible. This
is what allows one to speak of “order in chaos.” To understand this, let us
first consider a non-chaotic system, one that is completely predictable, such
as a swinging pendulum. A pendulum will oscillate less and less until it lies
at rest at its lowest point. This final condition (the lowest point and zero
velocity), independent of the initial conditions (how one has moved the
pendulum and the speed at which one pushed it), is called the attractor of



the system. This evocative term should not make one believe in some kind
of finalism: it is a case of a deterministic system, governed by causality.

Yet many chaotic systems can also be characterized by attractors, which
have been called “strange” by Ruelle and Takens due to their great
complexity. Such chaotic attractors are often fractal (see figure 16).

Celestial mechanics offers numerous other examples of the relation
between chaos and fractals: fractals are not explained by chaos, or chaos by
fractals, but the same underlying phenomenon (the resonances between
orbital periods) gives rise to both the fractal structure and to chaotic
trajectories, which ultimately leads to unpredictability.

Consider the three-body problem corresponding to two massive bodies
and a test-particle. It is thus, for example, with the combination formed by
the Sun, Jupiter, and an asteroid. In such a case, the source of chaos and its
fractal properties begin to be well understood. Chaos arises from the
resonances between the orbits, which are produced when the periods of
Jupiter and the test-object are fractions composed of small integer numbers.
Take the example of a body having a period double that of Jupiter
(resonance 2 : 1). Every two revolutions, the body passes extremely close to
Jupiter and is submitted to a violent “kick” which perturbs its trajectory. At
the limit, it can finally be ejected, if its trajectory, from the point of its
greatest eccentricity, is led to cross the orbits of other planets: such a
phenomenon allowed J. Wisdom to explain several of the so-called
Kirkwood gaps in the asteroid belt found between Mars and Jupiter.



Figure 16 Lorenz’s chaotic attractor

This attractor corresponds to the evolution of certain variables of a
simplified model of atmospheric convection (the rise of hot air). If one

starts from whatever conditions, the system will always evolve toward this
attractor composed of two layers. Once on the attractor, the state of the

system will advance by turning around one of the centers and occasionally
jumping from one layer to the other in an unpredictable manner.

 
Over very long scales of time, it is, at the limit, the set of the distribution

of rational numbers, which forms a fractal dust, which could intervene to
determine the distribution of asteroids between Mars and Jupiter (see figure
17).



Figure 17 Fluctuations of Jupiter’s force

Fluctuations of the average force exerted by Jupiter on another body of the
solar system. I have plotted the amplitude of this fluctuation as a function of

the ratio of the period between the body and Jupiter (which varies as the
distance of the Sun at the power of 3/2). Only the simplified case of circular
orbits is considered. The fluctuation becomes significant for rational ratios
of periods. It is thus a fractal function corresponding to the distribution of

rational numbers among the reals.
 

But chaos theory has led to an even more dramatic result: it has been
shown by Jacques Laskar that the solar system is chaotic and that the
positions of planets could no longer be predicted over 100 million years.
The chaos is so strong for a planet like Mercury, that, according to this
description in terms of classical equations of dynamics, it could be ejected
from the solar system within 3 billion years.

However, as we shall see in what follows, the new scale relativity
approach leads to a different conclusion: its application is founded on the
loss of predictability on very long timescales due to chaos, which may



allow a transformation of the classical equations into a new, quantum-type
form. Under this “Schrödinger regime,” one finds theoretically that
planetary systems can be stabilized provided the planets follow quantized
orbits. This expectation has just been verified in our solar system and in
some recently discovered extrasolar planetary systems.
 





 
Beyond Differential Geometry

 
When it is applied to the structure of spacetime, the concept of fractals can
be justified in a much more fundamental manner: it can be defined as a
nondifferentiable generalization of Riemannian (i.e. curved) geometry.

A fundamental theorem connects fractals to nondifferentiability. It
allows us to introduce the notion of fractal space, more generally of fractal
spacetime, not as a supplemental hypothesis in relation to classical space,
but on the contrary as the consequence of abandoning a hypothesis, that of
differentiability. This theorem states that a continuous curve that is nowhere
(or almost nowhere) differentiable is fractal. The word “fractal” is here
used in the sense in which the length of such a curve is explicitly dependent
on the resolution with which one considers it and tends toward infinity as
the resolution tends toward zero.[125] One can easily generalize the proof to a
surface, a volume, and more generally a continuous space or spacetime.

As we shall see, the concept of fractal space (more generally, fractal
spacetime) will play an essential role in the future developments of
fundamental physics. Up to now, even if the words “fractal geometry” have
been abundantly used, the mathematical domain of fractals has not yet
attained a status comparable to that of Euclidean or Riemannian geometry.
The concept of fractals in its current usage characterizes certain natural
phenomena or objects immersed in an underlying Euclidean space.

Applying the concept of fractals to spaces is a different story. To
understand this, let us return to Gauss’s discovery of curved geometries.
This discovery became effective when Gauss was able to characterize a
surface using completely intrinsic methods, in particular with the definition
of invariants which did not depend on coordinates traced upon this surface
(as with latitude and longitude on the terrestrial globe). This allows one to
describe already-known surfaces, such as spheres, from inside the two-
dimensional surface itself (without referring to the three-dimensional
volume of the sphere under the surface). But this intrinsic definition was
important mainly because it allowed one to prove the logical existence of
surfaces which cannot be immersed in a Euclidean space, such as
hyperbolic spaces. After opening this “Pandora’s box,” Gauss partially shut
it again by limiting the new geometry to locally Euclidean spaces. This
hypothesis was conserved by Riemann in his more general construction of



spaces possessing more than two dimensions. Gauss’s hypothesis also
played a fundamental role when Einstein used Riemannian geometries as a
mathematical tool in his construction of the theory of general relativity. In
effect, to suppose that spacetime is locally flat implies that around a point,
the principles of special relativity apply, within which the laws of physics
are those of free inertial motion. Thus, Gauss’s hypothesis is the basis of the
mathematical transcription of the equivalence principle, according to which
gravitation disappears in a freely moving frame of reference. In other
words, since gravitation is the manifestation of curvature, the local absence
of curvature means the local absence of gravitation.

Today, the Pandora’s box has been opened anew with fractal geometries.
One can consider the fractal hypothesis as the abandonment of Gauss’s
hypothesis. In the case of fractals, instead of finding flatness at small scales,
one sees the constant appearance of new details as the scale becomes
smaller and smaller. This implies that the curvature of a fractal space tends
toward infinity as the resolution δx tends toward zero. One can construct
fractal surfaces which are flat at large scale, and whose curvature at the
infinitesimal level is everywhere infinite, these infinities, alternately
positive and negative, being themselves distributed in a fractal manner.

Thus, what I will call fractal spacetime throughout this book is, by
definition, a geometry which is both nondifferentiable and explicitly
dependent on scale. Such a concept goes well beyond ordinary spacetime
and cannot be reduced to the latter, due to the appearance of structures at
every scale.

In such a framework, the question “Why should spacetime be fractal?”
gains a similar status to that of the traditional question “Why is spacetime
curved?” In both cases, the answer that one can suggest is that curvature,
then fractalization are simply the expression of abandoning an axiom which
had heretofore been implicitly made in a simplifying manner, that is, a
process of moving toward a greater generality. In these conditions, the new
theory cannot be in contradiction with the previous one, since it necessarily
contains the latter within itself, being an extension of it. In the same way
that curved geometries always contain as special cases Euclidean
geometries, or that Einstein’s equations can allow flat spaces as solutions,
continuous “fractal” spaces (in this extended meaning) include
differentiable and nondifferentiable geometries and therefore contain curved
spaces as special cases. It is a matter of taking into consideration all



continuous spaces, whether they are differentiable or not differentiable (and
therefore fractal).

We are certainly very far, within the new fractal approach, from the
successes obtained by general relativity. We can all the same set out the
goal of such a theoretical effort: this would be to find a system of equations
which would be covariant under the continuous (but not necessarily
differentiable) transformations of coordinates. The theorem stated above,
which connects nondifferentiability and scale dependence, implies the
necessity in this endeavor of taking into consideration not only changes of
motion, but changes in scale as well.

One can hope that such a program will provide, as an inevitable
consequence, the description of fractal structures of spacetime. But one
must keep in mind that such structures, imposed by physics at a
fundamental level, would in all likelihood possess different properties from
the fractals which we know of today. We will see in particular that quantum
behavior itself would be, in this approach, a manifestation of this
underlying fractal geometry.
 





 
From Fractal Objects to Fractal Spaces

 
Fractal curves, with their infinite length, their fractal dimension greater than
one, their thickness, and their absence of slope (that is, their
nondifferentiability), constitute geometric objects which, within a plane,
occupy an intermediate position between lines and surfaces. In space, they
can become intermediaries between lines and volumes. One can thus
construct curves of fractal dimension 2, whose length is infinite, the volume
infinitesimal, but whose “area” is finite. The measure of the “contents” of
such an object can be expressed in square meters (like surfaces), even
though it is an authentic curve.

In general relativity (and in the Riemannian spaces which constitute the
geometric tool of Einstein’s theory), the notion of coordinate system is
generalized to curvilinear coordinates (Einstein used the image of a
“mollusk” of coordinates). The “axes” of such a system are no longer the
rectilinear angles of a Cartesian frame of reference, but can become curves
(traced in spacetime, which includes accelerations). Nevertheless, these
curvilinear reference systems, as well as the transformations which connect
them, remain differentiable.

With the concept of the fractal curve, one can imagine going further and
placing oneself within a system of fractal coordinates. Would this be
enough for a new physics to appear? The answer is no. Here again, the
example of general relativity is illuminating. In placing oneself in a
curvilinear system (accelerated), the forces of inertia appear which
resemble gravitation (this is the equivalence principle). Thus, the laws
inside a rocket accelerated at 1 g (the acceleration of Earth’s gravity) are,
locally, at all points similar to those of the fall of bodies on Earth. But true
gravitation—that is to say, a manifestation of the geometric curvature of
spacetime—is different in essence. It corresponds to something which,
other than locally, cannot be cancelled out by a choice of coordinate system.
From this point of view, a curve is not “curved”: as complex as it may be, it
can be unbent into a straight line without being broken. On the contrary, a
curved surface (for example an orange peel) cannot be applied to a plane
without being torn or folded (which makes it impossible to render a map of
the world without deformation or omission). It is this property that we call
curvature and which is manifest in the form of gravitation.



It is the same for fractal curves which, from the point of view that
interests us here (the appearance of a new field, a manifestation of fractal
geometry), no longer have curvature, nor any irreducible geometric
property. In effect, a fractal line can, like a differentiable curve, be unbent
until it becomes a straight line. The difference is that a portion of a
differentiable curve is of finite length and becomes, straightened out, a
finite segment, while a fractal curve, having an infinite length, becomes an
infinite line once unbent (see the fractal curves shown in figures 4-14).

Nevertheless, if one were to try to flatten a fractal surface to a plane, one
would tear it at each of its points! One can be convinced of this starting
from the construction, depicted in figure 11, of a continuous fractal surface
made from the folding of a flat fractal with holes. Its curvature is effectively
everywhere infinite, with a fractal distribution of positive and negative
signs.

It is this type of irreducible property in the choice of coordinate system
which could allow for the appearance of a universal “field.” I will suggest
below that one of the manifestations of such a field is quantum mechanics
itself.
 





 
CHAPTER 14: THE “MISSING LINK” IN QUANTUM THEORY

 
Comparing the structure of current quantum theory and that of general
relativity reveals the profound incompleteness of the former, as we will see.
It is not a matter of incompleteness in the sense where a return to
determinism would be necessary, but a profound conceptual gap. What
would this missing concept be in quantum theory? The answer, proposed by
the theory of scale relativity is: spacetime.

The fundamental equations of general relativity correspond, in fact, to
the geometric description of a dynamic spacetime, tied to its material and
energetic contents. The conceptions of Leibniz, then the analysis of Mach
reinforced by Einstein, have led to the physical impossibility of an absolute
spacetime independent of its contents.

But what is the spacetime of quantum theory? It is, according to the
current quantum theory, the flat spacetime of Galilean relativity or, at high
energies, that of special relativity. Both are absolute by essence. However,
at very small scales, all objects encountered and all the physical properties
of these objects have a quantum nature. How is it that the spacetime of
which they are the contents is not affected? How can it remain classical,
absolute and independent of the quantum properties of the matter that it
contains. Here is a flagrant contradiction of the current description of the
microscopic domain with respect to the historic evolution of ideas in
physics.

This point of view is confirmed by the nature of the fundamental
equations of the two theories. Those of general relativity describe the
geometry of spacetime; the equations of the motion of bodies are deduced
from the equations of geodesics (that is, the shortest possible lines
according to proper time). Nevertheless, those of quantum mechanics are
equivalent to equations of trajectories (more precisely, to a set of paths,
which cannot be identified with the classical concept of trajectory of a
particle). Could there not exist an underlying spacetime, of which the
fundamental equations (Schrödinger’s equation, Dirac’s equation) would
describe the geodesics? Such is the fundamental question of the new scale
relativity approach.
 





 
The Nature of Quantum Spacetime

 
The problem comes down to asking oneself what kind of geometry could
give rise to quantum effects, in a similar manner to how curvature manifests
itself as what we call gravitation. For such an endeavor, lessons from the
history of science are an essential aide. Since Einstein established his theory
of gravitation (1915-1917), numerous attempts at extending the theory have
been undertaken. One of the principal goals of these attempts was to
construct a unified theory of electromagnetism and gravitation. But
Einstein’s deep intention over the course of his multiple attempts, which he
pursued up until the end of his life, was also to take into consideration
quantum effects. It is thus that he wrote in a letter to Louis de Broglie at the
end of his life (February 15, 1954):
 

In truth, like you I am convinced that we must find a substructure, a
necessity that current quantum theory cleverly hides with the
application of the statistical form.

But for a long time I have been certain that we will not be able to
find this substructure by a constructive method beginning from
(empirical) behavior of known physical things, since the necessary
conceptual leap exceeds human ability. It is not only because of the
futility of numerous years of effort that I have arrived at this opinion,
but also by my experience in the theory of gravitation. The equations
of gravitation could have been discovered solely on the basis of a
purely formal principle (general covariance), that is, on the basis of the
conviction that the laws of nature have the greatest logical simplicity
imaginable. As it was obvious that the theory of gravitation constituted
only a first step toward the discovery of the simplest possible general
field laws, it seemed to me that first of all this logical method must be
pursued to the end before being able to hope to arrive at a solution to
the quantum problem as well.[126]

 
The failure of these attempts allows one to convince oneself of the

impossibility of obtaining quantum effects starting from the geometry of
differentiable manifolds. The extensions of general relativity considered by
Einstein (and many other physicists, such as Schrödinger, Kaluza and



Klein, Jordan, Weyl, etc.), even if they introduced new elements such as
supplemental dimensions or torsion in addition to curvature, all remained
within the framework of differentiable spacetimes.

But the conclusion (that many physicists drew) according to which all
geometric attempts were doomed to failure was premature. It was making
the implicit hypothesis that there was nothing beyond Riemannian geometry
or its known extensions. The only valid conclusion is that an eventual
deeper vision of the nature of spacetime in microphysics will not be
obtained unless new concepts are introduced. Moreover, an essential fact
can serve to guide us in the search for new geometric tools: the
spatiotemporal approach, being a description of the framework and not only
the objects within a pre-established framework, cannot be based on
particular fields, but instead on the properties of matter and radiation which
have a character of universality.
 





 
Toward a Nondifferentiable Spacetime

 
A new area of research has been opened. Why must spacetime be
differentiable? No proof exists, either theoretical or experimental, of its
differentiability. Certainly, all of celestial mechanics and its tremendous
successes demonstrate, if there was any need, that the hypothesis of
differentiability has no reason to be abandoned within a large physical
domain. But this success does not extend to scales of length and time which
are much smaller or greater than those where experimental and
observational results have been able to be obtained.

Yet the mathematical statement of the existence of a derivative for a
variable (in particular those of position and instant) is precisely an
asymptotic statement of a very small scale. For example, the existence of a
derivative over the course of time, that is to say, a velocity, supposes the
existence of a limit for the ratio between the variation of position and the
time interval when the latter tends toward zero. However, it is precisely by
investigating the microscopic domain that quantum effects have been
demonstrated. Classical mechanics, differentiable by nature, no longer
applies at small scales, where another form of mechanics, quantum, applies.
Is this not exactly because the hypothesis of differentiability finally shows
its limits?

One might object to this point of view that the impossibility of defining
a velocity should also show effects on classical scales. But the physically
measured velocity is very different from the mathematical derivative. In the
mathematical definition of velocity, the ratio of a length interval and a time
interval which are zero at the limit must be taken into account. On the other
hand, the physical measurement of velocity can only be performed at finite
non-zero intervals of length and time. Measuring a speed in classical
mechanics necessarily considers only intervals of length and time which
stay within the classical domain.

Nothing, then, prevents the nondifferentiability of space at very small
scales, since nondifferentiability could well be unapparent at the
macroscopic domain. It is possible to go further: not only is it not excluded,
but numerous arguments seem to argue for its existence.

Einstein himself glimpsed the possibility that abandoning
differentiability was a key for understanding the quantum domain. In a 1948



letter to Pauli (of which an extract has already been cited above), he wrote:
 

If the Ψ function does not completely describe the real situation of an
individual system, there should still be a complete description, and we
must find it. Besides, we have to anticipate what the true natural laws
are in relation to this complete description, and not the incomplete
description. (Naturally this complete description would not be limited
to the fundamental concepts used in point mechanics.)

I have told you more than once that I am a fierce partisan not of
differential equations, but of the principle of general relativity, whose
heuristic force is indispensable to us. Yet, in spite of much research, I
have not succeeded at satisfying the principle of general relativity
otherwise than using differential equations; perhaps someone will
discover another possibility, if they look with enough perseverance.[127]

 
Thus Einstein had seriously considered the abandonment of

differentiability. But this abandonment could at first only be associated with
giving up differential equations, then the main mathematical tool of the
physicist. This dilemma has been resolved by the introduction of fractal
geometries. As we shall see, the scale relativity method, in which one
includes scale resolutions in an explicit way in the equations of physics,
allows one to describe nondifferentiable phenomena in terms of differential
equations (but acting both in spacetime and in scale space).
 





 
Feynman and the Return to a Spatiotemporal Representation

 
Around the same time, Richard Feynman established the connection
between nondifferentiability and quantum mechanics. In the 1940s, he tried
to return to a spacetime approach to quantum mechanics. Part of this work
was published twenty years later in the book he co-authored with Albert
Hibbs.

Feynman first developed an approach, the “path integral,” based on an
initial remark by Dirac. Contrary to the Copenhagen interpretation of
quantum mechanics, which completely abandoned the notion of trajectory,
Dirac reintroduced the notion of paths for particles. His method allowed for
all possible paths (in infinite number) going from one point to another to be
taken into account a priori. Paths which greatly diverged from the classical
trajectory cancelled each other out by destructive interference. On the other
hand, paths which stayed close to the classical trajectory (in an area which
could be quite large) became highly probable due to constructive
interference.

Feynman then pushed this analysis further, to study the typical paths of a
particle in quantum mechanics, that is, those which make the largest
contribution to the final probability distribution. Can we characterize them
by some interesting property?

Feynman writes:
 

The important paths for a quantum-mechanical particle are not those
which have a definite slope (or velocity) everywhere, but are instead
quite irregular on a very fine scale. . . . Thus, although a mean velocity
can be defined, no mean-square velocity exists at any point. In other
words, the paths are nondifferentiable. . . . The square of the velocity is
of the order 1/δt and thus becomes infinite as δt approaches zero.[128]

 
What Feynman describes here (and which he had understood by the

1940s) is exactly what we now call a fractal curve (a concept which did not
exist at the time). Better yet, his discovery that the square of the velocity
varies as the inverse of the time interval is equivalent to the statement that it
has a fractal dimension of two. This result was obtained using different
methods by Abbott and Wise and several other authors at the beginning of



the 1980s. These potential quantum trajectories, while they are all different
and infinite in number, all possess a common geometric property: they are
all fractal curves of fractal dimension 2.

Thus Feynman not only established for the first time the
nondifferentiability of quantum paths, but went further and described them
in terms which are identical to those which Mandelbrot later named fractal
curves. If Feynman had known this concept and that of their connected
fractal dimension, he might well have expressed his results in these terms
and further pushed the geometric interpretation and analysis.

But even without Feynman, the Copenhagen interpretation of quantum
mechanics itself says nothing else: the abandonment of the concept of
trajectory precisely means the abandonment, at least in part, of the classical
concepts of acceleration, velocity, and eventually position. In other words,
the abandonment of the concepts of the differentiability of velocities and
coordinates, perhaps even of continuity.[129] The Heisenberg uncertainty
principle itself removes all physical meaning of the limit “δx or δt tending
to zero,” since one must use an infinite momentum and energy to make such
an infinitely precise measurement.

I must insist here on one point: to abandon differentiability does not
mean abandoning continuity. Mathematicians have known since the
nineteenth century that there exist continuous but nondifferentiable
functions (which appeared, at the moment of their discovery, to be kinds of
“monsters.”)

Since Newton, all of mathematical physics is based on integration and
differentiation. The apogee of classical physics is the theory of general
relativity, of which the equations are invariant under continuous and twice
differentiable transformations of the coordinate system, as we have
recalled. It is thus clear that a future physics allowing for processes
everywhere nondifferentiable could in no way be classical, since classical
physics rests in its entirety on this axiom, even if it is often implicitly so.
 





 
An Extension of Relativity?

 
A geometric approach to the quantum problem thus seems possible, an
approach which would consist of generalizing the principles of relativity
and of covariance to changes of coordinate systems which are no longer a
priori differentiable. What might be the equations of such a “super-
relativity,” invariant under these new extremely general transformations?
They would automatically include Einstein’s equations in generalizing
them, and would thus describe new structures going beyond gravitation.
What would these new structures be? Would it be possible that they include
quantum laws?

Trying to resolve this problem in this form proves to be an extremely
difficult project. This is for a very simple reason: differential calculus is the
fundamental tool of physics since Leibniz and Newton. The laws of modern
physics, as Poincaré so well expressed, are those of differential equations. If
one were to abandon differentiability, would one not also abandon
differential equations, as Einstein feared? This would be to abandon the
same method which has made physics an “exact” predictive science. What
tool should be used instead? Everything would have to be redone.

Fortunately, another way is possible which, in an astonishing manner,
boils down to all the preceding in providing a mathematical tool which
brings a solution to the problem I have just raised. Before such a wall it is
useless to push forward with a lowered head. One must go around it. Such a
problem is not resolved, it is surpassed. Scale relativity is precisely the art
of dealing with nondifferentiability with the help of differential equations.
 





 
CHAPTER 15: SCALE RELATIVITY

 
The key to the problem can be found implicitly contained in the work of
Feynman and in its reinterpretation in terms of fractals. It is clearly not
possible to keep the concept of deterministic trajectory for a quantum
particle, since the number of possible paths is infinite. Nor is it possible to
keep the concept of velocity in the classical sense over any of this infinite
number of potential paths. This velocity being formally infinite, Feynman
tells us that it “does not exist.” But it is only infinite at the limit where we
make the interval of time tend to zero.

Here we have put our finger on the essence of the problem! The
differential method in physics is based on the Cartesian project, which
could have been called reductionist (but to which we owe three centuries of
extraordinary successes, one must not forget): one decomposes the complex
object to study it in its smaller parts. This simplicity allows a local
description (differential) which, after integration, allows one to grasp the
global properties of the system.

But what happens if the parts, instead of being “more simple,” are
shown to be more complex, or simply different? If, in observing the object
under consideration with a microscope (or at a smaller scale, with a particle
accelerator), instead of observing the expected smooth, “rectified” behavior,
new structures appeared, then others, then others again, and so forth without
end, which is just a general expression of fractality? This continual
appearance of new structures over the course of a “zoom” toward smaller
and smaller scales is precisely the result obtained in experiments. It is true
of the quantum “objects.” Could it not also be true of the spacetime which
contains them?
 





 
The Structure of the Electron

 
The electron itself provides a typical example of such behavior. Although it
is authentically an elementary particle, the electron is, from a certain point
of view, simpler at greater scale than at smaller scale. In an experiment
done under classical conditions, it behaves as a point-like particle, without
internal structure. The same is true for the quantum mechanical electron
within an atom, at the level of the angstrom.[130] This scale stays “non-
relativist,” in the sense in which the characteristic velocities involved are of
the order of a hundredth of the speed of light.

But if we want to describe the electron at scales one hundred times
smaller, lower than its Compton wavelength, it becomes more complex and
is subject to curious phenomena.[131] The reason is that the Compton
wavelength of a particle is given, up to a constant, by the inverse of its
mass. Therefore, if one wants to make measurements at this scale, an
energy greater than the rest energy of the particle should be used, which
becomes sufficient for creating other, new particles. As a consequence, the
smaller the scale at which one “looks” at the electron, the more it becomes
complex and made of an increasing number of different particles.

The very nature of electric charge leads the electron to emit and absorb
photons continuously, the particles of the electromagnetic field. Indeed, the
charge is nothing else than this capacity of emitting and absorbing photons.
Some of these photons can be emitted by an electron and be absorbed by
another particle (which creates an interaction between the electron and this
particle). But the majority of them are reabsorbed by the electron itself.
These photons are called virtual, since one cannot observe them directly. To
observe them would be to capture them by another particle, before their
absorption by the electron that emitted them. Their lifetime, given by the
Heisenberg relation, is extremely short: the more energetic they are, the
shorter they “live.” They are thus, in a certain matter, part of the electron.
They also contribute to its “self-energy,” that is, to its mass.

But over scales of very short length and time, these photons become so
energetic (above two times the mass of the electron) that they can be
transformed for a very brief time into an electron-positron pair (see figure
18). At scales of length two hundred times smaller, (thus at energies two
hundred times greater), one crosses the threshold of the creation of muon-



antimuon pairs.[132] And, gradually, in diminishing the interval with which
one considers the electron, one encounters at its interior the whole set of
elementary particles, in forms of particle-antiparticle pairs. These include,
among others, in addition to the electron and the muon, the tau lepton and
the up, down, charm, strange, bottom, and top quarks.

Figure 18 Virtual particles internal to the electron

An electron perpetually emits and absorbs photons (which is the nature of
its electric charge). Over very short intervals of time, these photons exceed
by two times the energy of the mass of the electron and can be transformed

in an electron-positron pair (right part of the figure).
 

These internal structures are called virtual due to their brief lifespan, but
they are effectively real since their existence determines the production of
the mass and charge of the electron.[133] In fact, the calculation of their
contribution to this mass and this charge even gives them infinite values
within the standard quantum framework! These infinities are not directly
observable since they correspond to the “naked” electron, seen at the
smallest possible scale. On the other hand, the contributions of the cloud of
virtual particles which the electron “wears” imply that its charge and its
mass should vary as a function of the scale beneath the Compton
wavelength (see figure 19).



Figure 19 Variation of the electric charge as a function of the scale of
length

I have plotted here the inverse of the square of the charge (which one calls
the “fine structure constant”), in dimensionless units. The distance from one
tick to the next along the horizontal axis corresponds to a diminution of the
considered scale by a factor of 2.72. The charge stays constant and equal to

its macroscopic value (≈137) up until the Compton scale of the electron.
Smaller than that, virtual electron-positron pairs contribute to its value,

which increases at lower scales. For intervals of length that are 200 times
smaller, pairs of muons and then of quarks contribute as well, which

amplifies the variation of the charge.
 

This variation has been experimentally observed: while the square of the
electric charge is only equal to 1/137 at the Compton scale of the electron, it
is equal to 1/129 at the scale of bosons of weak interaction, 200,000 times
smaller. Thus the electron can be considered as simple at large scale and
more and more complex at smaller scales.
 





 
Resolutions in Physics

 
The measurement of spatiotemporal coordinates is always performed at a
certain finite resolution. It is thus with whatever kind of measurement in
physics.

In certain cases the resolution corresponds to the precision of the
measuring device: thus, in the domain of classical physics, a measurement
made with a better resolution will give the same result with greater
precision. In other cases, it corresponds to the existence of an intrinsic
physical limitation. For example, it is doubtful that the distance between the
Earth and the Sun could be measured at a precise instant with an uncertainty
of one fermi.[134] Such a measurement is expected to never have any
physical meaning, since it would require determining the positions of
centers of gravity of two macroscopic bodies with the resolution of the
nucleus of an atom.[135]

But in the case of quantum physics, the physical status of resolutions
changes in a yet more radical manner. The resolution of the measuring
device plays a completely new role with respect to the classical case: the
results of measurement depend on it in an essential manner, as described by
the Heisenberg relations. These relations state that the result of a
measurement of momentum depends on the spatial resolution at which it is
made: the fluctuation of values obtained for momentum will be inversely
proportional to the spatial resolution. Similarly, the result of a measurement
of energy depends on the time resolution.

It is not useless to insist on the importance of resolution in physics. A
given set of data has no meaning unless it is accompanied by “errors of
measurement” or “uncertainties,” and more generally by the resolutions
characterizing the considered system. Complete information about the
measurement of position and instant are only obtained if one gives not only
the spatiotemporal coordinates, but also the resolutions with which these
coordinates are measured. While such an analysis already plays a primary
role in the theory of measurement and interpretation of quantum mechanics,
one must still observe that its consequences concerning the nature of
spacetime at quantum scales have not yet been drawn. This lack could come
from the fact that the resolutions do not appear in an explicit manner either
in the definition of coordinate systems or in the fundamental equations of



physics. This seems to contradict the fact that they become essential
variables in quantum theory, since they carry a part of the information
needed to understand the physical significance of the results of
measurement. As we shall see, one of the main goals of the theory of scale
relativity is to solve this problem.
 





 
Relativity of Scales

 
Intervals of length and of time are always relative quantities: no absolute
scale exists in nature (even if universal scales exist). Thus, just as there is
relativity of positions and of instants, of orientation of axes and of motion,
there is also relativity of scales. The resolutions with which positions and
instants are measured, being themselves given by intervals of length or of
time, are subject to this relativity of scales. One of the essential propositions
of the theory of scale relativity is that spatiotemporal resolutions must be
included in the very definition of coordinate systems. Numerous arguments
lead to this new conception as we shall now see.
 





 
Changes of Units

 
Up until now, physics has considered transformations of spatio-temporal
coordinate systems which correspond to changes of the origin and
orientation of axes (changes of orientation in space-time includes
movement in space). The relative origin of the coordinates, the relative
angles between the axes, and its relative velocity are the quantities which
characterize the state of the coordinate system.

Do there not exist other essential magnitudes which could play a similar
role?

The results of measurement in physics depend, in particular, on the
choice of units. Several attempts have been made at including the
transformation of units into physical laws. However, the choice of unit is in
most cases a purely arbitrary choice which does not describe the conditions
of the measurement, but only their recording in terms of numerical result.
One does not expect to see the change of units play anything but a trivial
role.

Nevertheless, we can still look further into the meaning and the physical
role of units. There is a radical way to realize the incompleteness of our
present definition of a coordinate system: it is constructed by drawing axes
(3 for space or 4 for spacetime) and defined by giving the (relative) origin
of these axes, their (relative) orientation, and their (relative) motion
(velocity, acceleration). This is the current definition. But try to make a
measurement with such a coordinate system: it is impossible.
Measurements can be done only if you draw ticks on the axes (according to
units and the measurement resolution), but this is not explicitly specified in
the used definition. As a consequence, changing the state of the reference
system with this current definition includes changing position, orientation,
and motion, but not resolution. A complete description of reference systems
should therefore include the measurement resolution in the variables that
characterize their state.

The necessity of using units to measure intervals of length and of time is
directly tied to the relativity of all scales in nature. When one claims that
one is measuring a length, one effectively determines the ratio between the
lengths of two bodies (one of which is taken as the unit). The speed of a
body has no absolute physical meaning, but only has meaning as the speed



of a body relative to another, as Galileo discovered. Motion is not
something intrinsic to a body, there is no velocity of an object, but only an
inter-velocity between two objects. In the same way, the length of an object
or the period of a clock has no physical meaning in itself, but only has
meaning as the ratio between the lengths of two bodies (the object and the
body that serves as unit) or the ratio between the periods of two clocks (the
temporal phenomenon being measured and the clock that serves as
reference).

When one says that a body has a length of 132 cm, what one means is
that a second body, to which we arbitrarily assign a length of 1 cm and that
one defines as a “unit,” must be dilated 132 times to obtain the length of the
first body. The direct measurements of intervals of length and of time
always boil down to, ultimately, ratios of dilation. The tendency for
physicists to define a unique system of units has certainly been a good
thing, which has allowed a rational comparison of measurement results
between different laboratories and countries. However, the fact of relating
all lengths to a single reference body (or a single period for all
measurements of time) has given the false impression of absolutism: this
method masks the essential characteristic of the relation between intervals
of lengths, which is in fact a relation taken two at a time.

What has allowed this use of a single unit is the simplicity of the law of
the composition of dilations, given directly by their product. There is no
doubt that this law is extremely well verified in the classical domain: a body
of length 2.1 m measures 210 cm as well with certitude, knowing that one
meter is equal to one hundred centimeters. However, one can observe that
the knowledge we have about laws of dilation in the two domains of
quantum physics and of cosmology is only indirect. Metric kinds of
measurement of length and of time are impossible in these two domains.
The values assigned to intervals of length and of time here are deduced
from observations of other variables (for example energy and momentum of
particles at small scale, luminosity and apparent diameter of galaxies at
large scale) and from an underlying theory (respectively, of quantum
mechanics and of general relativity), which have been constructed under the
implicit hypothesis that the usual laws of dilation are correct. Such a
situation can be compared to the status of the laws of motion before the
advent of special relativity: it seemed equally obvious that the law of
composition of velocities had to be their direct sum, w = u + v. But Poincaré



and Einstein have demonstrated that this law is valid only for small
velocities and should be replaced by a more general one.[136] We will see
that such an analysis effectively leads us to make new propositions
concerning the nature of the laws of scale in the two asymptotic domains of
very large and very small scales.
 





 
Change of Resolution

 
Let us now consider the physical status of resolutions. This status is deeply
connected to that of units: the interval of resolution with which a
measurement is performed corresponds to the minimal physical unit
accessible for the experiment under consideration. There is no change of
physical conditions if one decides to express a result of length measurement
in another unit, for example (8.152 ± 0.001) m in the form (815.2 ± 0.1) cm;
the limit of such a reformulation is attained when the chosen unit becomes
of the order of the resolution (which is 1 mm in this example): this would
yield (8,152 ± 1) mm. The use of a unit much smaller than the millimeter to
express such a result would make no sense. For example, if one were to
obtain a result like (8,152.003 ± 1) mm, the last digits would have no
physical meaning. On the other hand, reperforming the measurement of the
same length with a higher resolution takes a new and essential physical
significance: the conditions of the measurement have changed, not only the
expression of the result. For example, at the resolution of 1 μm, one could
find 8,152.076 ± 0.001 mm, a result which would now be meaningful and in
agreement with the measurement at a much lower resolution. But the new
digits include much more information.

A change of resolution corresponds to an explicit change of
experimental conditions. To measure a length with a resolution of 1/10 mm
requires the use of a magnifying glass; at 10 μm, one needs a microscope; at
0.1 μm, an electron microscope; at 1 Å, a scanning tunneling or field-
emission microscope. At yet smaller scales, measurements of length
become indirect, knowing that we have attained, and then passed beneath
the size of atoms.

When one enters into the quantum domain, that is, for resolutions lower
than the de Broglie lengths and times of a system (this will be clarified
later), the physical status of resolutions changes radically, as I have already
shown.[137] While in the classical domain one can equate resolution with the
precision of the measurement (two measurements performed at different
resolutions produce the same result, but with more or less precision), in the
quantum domain, on the other hand, the results of the measurement are
affected by the resolution of the device.



In quantum mechanics, the dependence on scale is already implicitly
present, in particular with respect to the Heisenberg uncertainty principle.
But it is explicitly apparent neither in the axioms, nor in the physical
variables, nor in the equations. Under these conditions, should current
theory not be considered as conceptually incomplete? Should a complete
physical theory not include in its variables and in its equations the entirety
of physical information provided by the experiment? In other words, it is a
question of asking that the theory of measurement, rather than being added
in an external manner to theory (under the form of interpretive statements
posed a posteriori), should be an integral part of it, and that the essential
observed dependence for physical laws as a function of spatiotemporal
resolutions be expressed right at the level of the fundamental equations of
physics. Such a theory should not need interpretation if the operating rules
are posed beforehand at the level of its foundations.

There is a more general argument pointing out the need for an explicit
introduction of scale variables in physics. If one asks a student in physics to
write the equation of motion of an object, they will naturally write
Newton’s equation of dynamics. But if one specifies that the object size is
actually smaller than one Angstrom, the answer is that one should use the
Schrödinger equation. In scale relativity, as we shall see, there is a
spontaneous and natural transition from one equation to the other, instead of
just a “diktat” as in present physics.
 





 
Universality of the Heisenberg Relation

 
The interpretation of quantum mechanics can then be more deeply analyzed
by the light of these ideas. I have made the observation that, among the
properties of physical objects, only those that have a character of
universality can be compared to the properties of spacetime itself. In the
quantum domain, this criterion of universality leads us to two fundamental
relations in particular: that of de Broglie and that of Heisenberg.

The universality of the Einstein-de Broglie relation is a manifestation of
the universality of wave-particle duality: all physical systems, not only
elementary ones, possess wavelike properties characterized by the de
Broglie period and wavelength, which are inversely proportional to the
momentum and energy of the body. This has been verified by experiments
involving interference and diffraction of elementary particles like electrons
or photons, but also on composite objects like nuclei or atoms.

As for the Heisenberg relation (recall that it states the existence of a
minimal possible value for the product of resolutions in position and in
momentum), it is a direct consequence of the formalism at the base of
quantum mechanics. Even if the Heisenberg relation is an inequality and not
a strict equality, it is a universal law of nature. However, this law, in spite of
its universality, is often considered in current quantum theory as a property
of quantum “objects” themselves, or rather of the mechanism of
measurement.[138] One might object to this point of view that the Heisenberg
relation can be established in a general manner without alluding to any
particular measurement, knowing that it is deduced from a purely
mathematical property. It is thus a direct consequence of the wavelike
nature of quantum systems. The difference with the lower limit value
(which is a fraction of the reduced Planck constant ħ)[139] fluctuates
depending on experimental conditions, but it is not so for this limit itself
which is completely independent of the measuring device.

A new interpretation of quantum measurements is then possible: the
essential dependence of physical laws as a function of spatiotemporal
resolutions, which are manifest in the Heisenberg relations, could preexist
all measurements and constitute a geometric property of spacetime itself.
The effective measurements will do nothing other than reveal this universal
property of nature. Thus, one way to implement the principle of scale



relativity would be the introduction of a new spacetime possessing such
properties of universal dependence on scale.

It is remarkable that we have arrived at the same conclusions as before,
but via a completely different path. We had started from an analysis of the
current limitations of the principle of relativity: being limited to changes of
twice differentiable coordinates, one feels the necessity of its extension to
nondifferentiable motion. This is especially true after Feynman’s work on
the continuous but nondifferentiable character of the typical paths of
particles in quantum mechanics. Yet one of the key principles of the entire
scale-relativistic approach is the theorem according to which the continuity
and the nondifferentiability of spacetime require its explicit dependence on
resolutions. We had previously seen that an attempt of geometric translation
of Heisenberg relations leads us to introduce an explicitly scale-dependent,
i.e. fractal, spacetime. Now, following a different and independent avenue,
that of generalizing the differentiable spacetime of Einstein’s relativity to a
continuous but nondifferentiable geometry, we also arrive at the same
concept: namely, a spacetime which would be fundamentally dependent on
scale, in such a way that lengths measured inside it become infinite when
the scale interval tends to zero. This means, following the general definition
adopted here, introducing the notion of fractal spacetime.

The combining of the two desired generalizations of relativity, that of
nondifferentiable motion and that of scales, is now complete. It is not a
matter of adding another hypothesis to physics (that spacetime is fractal in
nature at the microscopic scale), but on the contrary of going toward a
greater generality, and thus toward a yet more inevitable version of physical
laws. One abandons the implicit hypothesis that spacetime is differentiable,
which, in maintaining its continuity,[140] necessitates its explicit dependence
as a function of resolutions and its divergence toward small scales. But
where it is a matter of relativity and of covariance, and not of an arbitrary
generalization without constraint, we must require that the new laws written
for such a nondifferentiable (and hence fractal) spacetime keep the same
form as in the differentiable case.
 





 
The Principle of Scale Relativity

 
We have at last arrived at the definition and statement of the principle of
scale relativity, the principle which will allow us to construct the new scale
laws. Indeed, such an approach implies that the various physical variables,
in particular the coordinates themselves, become explicitly dependent on
scales of spatiotemporal resolution. This explicit new dependence is
expected to be described by well-defined physical laws of scale. How can
we construct such new laws, which are absent from standard physics? For
that, we need a fundamental principle. The history of physics has shown
that the most deep and efficient principle upon which to construct the laws
of nature is the principle of relativity itself. It therefore seems natural to
derive the new scale laws from the principle of relativity, once it has itself
been extended to scale transformation of the coordinate systems.

The idea which underlies scale relativity consists of replacing the usual
physical quantities with functions explicitly dependent on resolutions. We
can see why by considering the first of these quantities, spacetime
coordinates. The coordinate of a point situated on one of the axes of a
reference system (eventually curvilinear) is the distance to the origin
measured along this axis. This coordinate, once the units have been chosen,
is a number. But suppose now that we define a system of axes which are no
longer curvilinear, but fractal. This can be a choice (but a complicated one!)
in a flat or curved space. On the other hand, in a fractal space, it is a
necessity; we have no choice since all coordinate systems in the fractal
space are themselves fractal. In this case, with the usual methods, which
amount to placing oneself at the limit of zero space and time intervals, the
coordinate is the length of a fractal curve measured between two distant
points (one point is the origin of the reference system, the other is the point
itself of which we measure the coordinate): it is thus infinite. The problem
seems to be unsolvable (like “attempting to breathe in empty space,” said
Einstein).

But if one now explicitly introduces resolution, this “length” returns to
being finite at all non-zero resolution intervals. Considering all possible
resolutions, the coordinate is no longer a number, but an explicit function of
the resolution. This function can be clearly defined and known: the apparent
impossibility of working with an infinite quantity is solved in this way,



being translated by the fact that this function just tends to the infinite when
the resolution interval tends to zero.[141] It would be the same for all physical
quantities depending on spatiotemporal coordinates.

The resolutions then take on the new meaning of essential variables,
intrinsic to the nature of spacetime. Our task now is to consider the
continuum of all possible resolutions and the relations which tie them
together, in the form of a “scale space.”[142]

All these elements can now be combined to arrive at the proposition,
made independently by Garnet Ord of Ryerson University and myself at the
beginning of the 1980s, that quantum properties are a result of the fractal
nature of spacetime at small scales.

However, once resolutions have been explicitly introduced, what
physical meaning do we give to them? A first possibility consists of
extending the notion of reference system by introducing spatiotemporal
resolutions as new coordinates. One can imagine the introduction of
resolutions as the attribution of a thickness to the axes of coordinate
systems: this corresponds more to the reality of measurements actually
performed, involving the impossibility of actually making use of the
infinitely fine axes that we implicitly assume in physics today.

Nevertheless, this concept of resolutions as generalized coordinates is
found to be insufficient. It does not incorporate the analysis made above on
the relative character of resolutions. The fact that spatiotemporal resolutions
possess this same property of relativity which already characterizes motion
is nevertheless remarkable: only a ratio between two scales has meaning;
one cannot define an interval of length or of time in an absolute manner.

We will thus interpret resolutions not as new coordinates of the reference
system, but as physical quantities characterizing its state. Similar to how
velocities characterize the state of relative motion of the coordinate system,
spatiotemporal resolutions will define its scale state, a state of scale that is
always relative to another system of reference. This redefinition, by
assuring a complete parallelism with already constructed theories of
relativity (which concern static displacements and motion), allows us to
apply relativity to scales themselves.

In addition, by extending Einstein’s formulation of the principle of
relativity of motion, a principle of scale relativity can be stated in the
following form:
 



The laws of nature must be valid in all coordinate systems, no matter
what their scale state.

 
The extended principle of relativity will require the validity of the laws of
nature in all coordinate systems, no matter what their state of motion and of
scale. The mathematical translation of scale relativity will finally be scale
covariance (which will complete the covariance of motion):
 

The equations of physics keep their form (are covariant) under all
transformations of scale (that is, under the contractions and dilations of
spatiotemporal resolutions).

 





 
CHAPTER 16: SPECIAL SCALE RELATIVITY

 
The power of the principle of relativity, in particular its constructive
character which we insisted upon earlier, can now be used to establish the
structure of the new scale laws. What are the laws of dilation and of
contraction of resolutions? What are the laws of the dependence of various
physical quantities as a function of the variation of scale which come under
the principle of relativity? This question can take two forms: are the laws
currently accepted, deduced from experiment (such as those of the
composition of dilations, given by their direct product, or the power laws of
constant exponents of ordinary fractals) in agreement with this principle?
Are they the most general laws possible?

In other words, are the laws which seem “simplest” to us indeed those
which are optimized by nature? What general laws are compatible with the
principle of scale relativity, even in the more restricted case of linear scale
transformations?

The answer to this simple question, as we will now see, leads to the
proposition of a profound paradigm shift for the physics of the infinitely
small and the infinitely large. We will follow slightly more technical
developments in the two next sections to show how we will answer the
question. But it can be summarized here in a few words: similar to how the
relativity of motion leads us to introduce an unsurpassable speed (the
velocity of light), scale relativity concludes that there exist two finite,
unsurpassable scales, one minimal and the other maximal, possessing the
physical properties which have heretofore been given to zero and infinity.
[143]

 





 
“Galilean” Scale Laws

 
The first point to examine concerns the problem of laws of ordinary
contraction and dilation, which are generally considered to be beyond
dispute—but we must recall how before the advent of the special relativity
of motion, the law of composition of velocities given by their simple sum
seemed equally unassailable.

If one starts with a scale λ1 and one dilates it with a factor ρ, one obtains
a new scale λ2 = ρ λ1. A new dilation of λ2 by a factor ρ’ gives us a scale λ3 =
ρ’ λ2.[144] In contemporary physics, one supposes that the dilation ratio
between λ3 and λ1 is ρ’’ = ρρ’ and is thus given by the product of the two
initial dilations. For example, it is assumed without debate that if a scale
(#1) is two times greater than another (#2), itself three times larger than a
scale (#3), the first (#1) is six times larger than the third (#3).

By using a logarithmic notation, scale transformations become most
meaningful. This notation is naturally introduced when we are dealing with
scale ratios. For example, a zoom lens on a camera will tend not to enlarge
by 2, then 3, 4, 5, 6 times, but instead 2, 4, 8, 16, 32 times; measurements of
sonic intensity are made in decibels, also defined in terms of logarithms.
This transforms the product of dilations to a sum. A dilation by a factor 10
= 101, then by a new factor 100 = 102, leads to a factor of 1,000 = 103. In
other words, logarithms transform the product 10 × 100 = 1,000 into the
sum 1 + 2 = 3. In this natural form, the law of composition of dilations
takes the same form as that of velocities in Galilean theory (a sum).

The comparison does not end there. Let us measure the length of a
standard fractal curve (of constant fractal dimension) between two points, at
a given resolution, and then at another resolution. How does the length of
the curve change over the course of the change in resolution? By analyzing
the effects of such a transformation, we shall be able to put to work the
principle of scale relativity, similar to how the laws of relativity of motion
can be established by studying the effects of a change in speed.

The measured length along the fractal curve is considered, in the
framework of scale-relativistic theory, as a generalized curvilinear
coordinate: we assume we can work on a fractal coordinate system. As for
the change in resolution, it is considered as a change in coordinate systems:



but it is now the scale state of this system that has changed, when the origin,
the orientation of axes, and the state of motion have remained the same. The
invariant of the transformation is the fractal dimension, which is assumed to
stay constant.

The result we obtain is fascinating: one can show that a scale
transformation on such a fractal coordinate takes precisely the mathematical
form of the Galilean transformation of motion![145] The length here plays the
role of the coordinate of position, the fractal dimension the role of time, and
the resolution, as it should, of velocity (length and resolutions being taken
as logarithms, as expected for scale laws). Self-similar fractal behavior (see
figure 4) is thus the simplest solution to the problem of scale
transformations and is revealed to be the equivalent for the scale laws of
what uniform rectilinear motion at constant velocity is for the laws of
motion.

In other words, self-similarity is a sort of “scale inertia.” The analysis by
relativity had allowed the conclusion that Galilean motion “is like nothing,”
and that it demonstrates the simplest of possible motions, without necessary
cause. One arrives at the same type of conclusion concerning self-similar
fractals (of constant fractal dimension). Once one allows that dependence
on scale is intrinsic to the nature of things, since it just manifests a greater
generality (the abandonment of the differentiability hypothesis), one can
look for the simplest possible scale laws, which are shown to be those of
self-similar fractals. This is why “fractals are everywhere.”[146]

We can now answer the first question which we asked: the scale-
invariant fractal laws satisfy the principle of relativity, since the Galilean
transformation is indeed a solution (even if it is particular and degenerate)
of the relativity problem.

One can go still further. In effect, it is not a case of a simple analogy
between laws of motion and laws of scale, but indeed the same fundamental
problem. In the two cases, movement (in one dimension) and scale, we look
for the law of transformation of two variables, depending on a relative
parameter (respectively velocity and resolution) which comes under the
principle of relativity. Should the same problem not have the same solution?

Yet the Galilean solution, as we now know in the case of the laws of
motion, is only an approximation, the correct solution being the Lorentz
transformation. The Galilean transformation is a very special case of the



Lorentz transformation, in which the speed limit c is infinite, which causes
a sort of degeneration of the law. What about the scale laws?
 





 
“Lorentzian” Scale Laws

 
To answer such a question, one must forget what one knows (or what one
thought one knew) about the laws of dilation and contraction, and ask the
problem without any a priori information. It is a matter of determining how
two variables, length and fractal dimension, are affected in a transformation
which depends on only one parameter, the resolution. This will oblige us to
a new attempt at abstraction. The search for a more general law leads us to
introduce a “fractal dimension,” which itself becomes variable. It could
then play a totally new role for the scale laws, that of a dynamic variable.

To better understand this point of view, one must remember that what
one now calls time in physics has undergone a similar evolution. Before
Galileo, time was “the measure of motion.” It was not seen as a primary
variable, but as something to be deduced from positions and motion.
Galileo invented spacetime (even if space and time remained decoupled) by
treating the time and space variables on the same plane, and by deducing
from them the notion of velocity. It is a similar evolution that the relativity
of scales suggests. The variables of position (on a generalized fractal curve)
and the fractal dimension are now treated at the same level, and the
spatiotemporal resolutions become derivative variables (similar to how
velocity is the derivative of position).

Like in the relativity of motion, the difficulty of the general problem (a
priori highly nonlinear) leads us to consider provisionally the special
problem of linear transformations (this is “special” scale relativity).[147]

This problem is posed for the scale laws in the same mathematical form
as in the case of motion. The general solution to this problem is well
known: it is not the Galileo group, but the Lorentz group, as we have
previously recalled. The way by which this fundamental result is obtained is
similar for motion and for scale. In both cases, one first states the principle
of relativity in its “philosophical” form (“the fundamental laws of nature are
valid whatever the state of the reference system – of motion and of scale”);
then one translates it in its physical form of covariance principle (“the
equations of physics should keep their form in any change of the reference
system – of motion and of scale”); and, finally, it becomes a mathematical
statement and proof, by writing in an explicit way the expression of these
changes of coordinate system, and by requiring that the invariance of form



of the equations apply in particular to the equations of transformation of
coordinates themselves. The result of this approach is a proof of the Lorentz
transformation as a universal solution of the “special relativity” problem.
This proof is based on the mere principle of relativity, and mathematically
translated in terms of only two axioms: closure (the first axiom of group
theory: the form of the law of transformation by two successive dilations is
the same as that of the initial dilations) and reflection invariance (the scale
variable being logarithmic, changing its sign means going from a dilation to
a contraction by the same factor: the form of the laws of change of
coordinate systems should not vary under this transformation).[148]

This reasoning naturally leads to the idea that the standard laws,
currently assumed, of dilation and contraction, which are considered as
undeniable truth, are only an approximation, valid only at our current
scales, of more general laws. The structure of these new laws becomes
“Lorentzian” toward very small scales (beyond the Compton scale, meaning
very high energies, larger than the mass energy of particles).

Within such laws, the fractal dimension is no longer constant, but
becomes variable and plays for scales the same role that time plays for
motion. This variable is now combined with the fractal coordinates to form
a vector of a five-dimensional space: fractal coordinates and fractal
dimension no longer are independently transformed, but collectively as
components of a vector. If one follows the principle of scale relativity, there
is really no choice: the general solution to the problem of linear scale
transformations is the Lorentz transformation, of which the Galilean
transformation is only a degenerate and extremely special case.

There is a third solution to this problem, which is the standard laws of
rotation in Euclidean space. Concerning motion, this solution is indeed
implemented as projection effects during a rotation, which is in effect a
manifestation of the principle of relativity, applied to orientation. But
concerning scales, this solution is not applicable, since the product of two
dilations could yield a contraction of the initial scale, which can easily be
excluded.
 





 
The Planck Length as Invariant, Unsurpassable, and Unreachable

Scale
 
What is the nature of the new laws? They are characterized by several
original properties compared to the usual scale laws. Let us first consider
the new law of composition of dilations and contractions. One can show
that it takes the same mathematical form as the law of composition of
velocities in Einstein’s theory, but these are now the dilation ratios between
resolutions which play (via their logarithm) the role of velocities.[149]

The principal new property of this transformation is the appearance of a
scale of minimal length Λp, which cannot be exceeded (toward smaller
scales), and is invariant under dilations and contractions.[150] It is
automatically the same for time: there thus appears a minimal scale TP = λP /
c for all temporal intervals. Indeed, scale relativity is based on the relativity
of motion of Poincaré and Einstein and completes it, but certainly does not
substitute it: therefore, the fundamental relations between space and time
remain.

Figure 20 Fractal laws in special scale relativity



(to be compared with figure 12, knowing that the scales become smaller and
smaller toward the right of this diagram). A non-fractal curve at large scales
(its length L is constant and its effective fractal dimension D = 1 + δ equals
1) becomes fractal at smaller scales: in the framework of ordinary laws, its

fractal dimension D = 1 + δ then becomes equal to 2, and its length diverges
according to a power law (dashed line). In the framework of the new

Lorentzian laws [solid curve L(ε)], the fractal dimension itself becomes a
function of the scale [curve δ = δ(ε)] and tends toward infinity, as does the

length of the curve, when the resolution tends toward the minimal,
unsurpassable scale (shaded area at right). The numerical values correspond

to the case where the scale of transition (V = 0) is the reduced Compton
wavelength (3.86 x 10-13m) and the invariant scale limit λP is the Planck

scale (for which V = ln(λe / λP) = 51.5). For comparison, the minimal scale
attained by current particle accelerators corresponds to V = 12.

 
The minimal scale will play for resolutions the same role that the speed

of light plays for velocities. It replaces the point zero, which no longer has
any physical meaning in this framework. But it is important to insist on the
fact that it is not a matter of being a wall, nor a barrier or a quantization of
spacetime. Rather, the nature of this limiting scale is that of a horizon. It
does not put into question the nondifferentiability of the spacetime we are a
part of, nor the continued emergence of structures over the course of
successive enlargements. It is simply the effect of enlargements which is
changed. From the point of view of motion, one can indefinitely add
velocities to each other (there is no limit to the changes of successive
reference systems), but the result will always stay lower than c. Similarly,
an arbitrarily large number of successive contractions, applied to whatever
initial scale, will lead to a scale which will always be greater than the
minimal scale limit λP. Thus, space and time, in the new framework, remain
indefinitely divisible. It is the result of these divisions which is limited, not
the possibility of dividing.



Figure 21 New dilation laws

Object 1 is twice as large as object 2. Object 2 is 3 times larger than object
3. Nevertheless, under the new “Lorentzian” dilation laws, object 1 is less
than 6 times as large as object 3. All that matters are ratios taken two at a
time. The law defining the composition of these ratios is no longer their

direct product.
 

The scale limit in fact possesses all the physical properties once
attributed to zero: the scales of energy and momentum now tend toward
infinity when one approaches TP and λP, the length of a fractal curve
diverges, but also the fractal dimension. All this confirms the unsurpassable
character of the minimal length, in the sense in which all scales between it
and zero no longer have any existence.

Similar to how we can summarize the relativity of motion by affirming
that, from the point of view of velocities, 2 + 2 no longer equals 4, scale
relativity proposes that, for resolutions, 2 × 3 would no longer equal 6 (see
figure 21).

A final fundamental question is raised: what is the value of this scale
limit, unique and universal by nature? Do we need to introduce a new
fundamental scale in the laws of physics? Or does this scale already exist in
current physics, but simply needs to be interpreted as the invariant scale?



The second proposition seems more natural. In effect, the Planck length
scale, λP = (Għ/c3)½, seems to have all the required properties to be
identified as the scale limit. We have seen that starting from three
fundamental constants of physics, G, ħ, and c, one can construct three
quantities, the Planck mass, the Planck length, and the Planck time, of
which the numerical values—2 x 10-5 g (or 1.2 x 1019 GeV in energy), 1.6 x
10-35 m, and 5.4 x 10-44 s—depend on the (arbitrary) choice of our units.
They thus constitute three natural units for these fundamental quantities.
Moreover, this scale is already recognized in current physics as a sort of
natural barrier, since it represents the limit beyond which the effects of
gravity become as important as quantum effects. It is the spacetime
continuum itself which seems to be broken in the extremely difficult
endeavor to construct a theory (“quantum gravity”) which would describe
the physical phenomena at such energies.[151]

Another argument justifies this reinterpretation of the physical meaning
of the Planck scale. Let us consider a thought experiment in which a ruler of
length equal to the Planck length would be observed from a reference
system in relative motion with respect to the ruler. It should undergo a
Lorentz contraction. Yet the Planck scale depends on no particular object in
nature. Other fundamental and universal scales exist (like the Compton
wavelength of the electron or the electroweak scale), but all are the
characteristics of particular physical “objects” (the electron, weak bosons,
the Higgs field, etc.). One can thus find it surprising that the Planck scale
depends on the motion of the reference system where one measures it. This
problem is resolved in the new transformation, since it becomes in this
framework completely invariant under all dilations and contractions,
including the Lorentz contraction of special (motion) relativity.

If the intervention of ħ and of c in the definition of the minimal
microscopic scale seems natural, is it so in the case of G, the characteristic
macroscopic constant of the gravitational field? G does not play a part here
as the gravitational constant of Newton, but instead as the constant of
Einstein, which connects matter and geometry in a universal manner in
general relativity. We will see in the following that, in the framework of
scale relativity and the fractal approach to quantum mechanics, ħ also
acquires a new meaning as a constant connecting matter and geometry.

Ultimately, if experiment confirms the new role proposed here for the
Planck scale, special scale relativity will lead to a refoundation of the



question of units of length and time. Let us recall that the special relativity
of motion has already led us to eliminate the unit of length. This unit is now
deduced from the unit of time and the speed of light, which has been
definitively fixed. The speed of light is essentially equal to one. All
different values arise from an inadequate choice of units. As soon as one
admits the existence of a four-dimensional spacetime and not a separate
space and time, the unit of space and the unit of time should be chosen to be
identical (in the same way that we use the same unit for measuring widths
and heights). Velocities, being the relation of an interval of length over an
interval of time, then become quantities without dimension, pure numbers.
Finally, special relativity states that these numbers do not vary between zero
and infinity, but between zero and one.

It will be the same for intervals of length and of time: if the Lorentzian
structure of dilation laws is confirmed at small scale (at the level of the
“internal structure” of particles), the Planck spacetime scale will play for
them the role of a fundamental “one.” In natural Planck units, it would be in
the nature of all intervals of length or of time to be a dimensionless number
always greater than one.

These new scale laws could have observable consequences at the very
high energies attained by large particle accelerators, mainly because of the
separation between the Planck mass scale and the Planck spacetime scale.
[152] But, before examining some of the possible consequences (we will say
more about the nature of the Planck scale in Part Five), we will return to the
ordinary dilation laws and show how the concept of fractal spacetime can
be applied in quantum theory in the microscopic domain.
 





 
CHAPTER 17: SCALE RELATIVITY AND QUANTUM THEORY

 



Introduction
 
We have seen how an analysis of the properties of the quantum world
allows us to form the hope that this behavior, bizarre as it may be, has a
geometric origin, but in the framework of a new geometry,
nondifferentiable and fractal. Can we go further and attempt to found
quantum mechanics on such a basis? In other words, is it possible to
reconstruct the axioms of quantum mechanics starting from a first principle,
such as that of scale relativity? The origin of quantum behavior would then
be clarified as the manifestation of a fractal and nondifferentiable geometry
of spacetime at small scale, similar to how gravity and its properties are
already understood, in general relativity, as manifestations of the curvature
of spacetime at large scale.

We cannot pretend that the theory of scale relativity has completely
accomplished such a goal: quantum mechanics retains a large part of its
mystery. But several significant advances have been able to have been made
which we will now discuss.

The argument can be summarized as follows. The non-differentiability
of spacetime implies (at a minimum) three effects. The first is that each
geodesic (curve that optimizes the proper time) becomes fractal. The second
is that there exist an infinite number of geodesics where classically only one
was salient. The third is that the concept of average velocity (which remains
definable, as Feynman had emphasized) is no longer single, but double.
Taking into consideration these three effects in the equations of motion
transforms classical mechanics into a quantum-type mechanics.
 





 
Fractal Geodesics

 
The first step consists of establishing the internal scale laws from which the
effects elicited upon motion, one hopes, could be manifested in the form of
quantum properties. We have previously seen that fractals of constant
dimension appear naturally as the simplest solutions of relativistic scale
laws. This is also the behavior obtained by Feynman for potential quantum
trajectories: recall that he had found the typical trajectories of particles in
quantum mechanics to be (what we now call) fractal curves of dimension 2.

It is within the special framework of a description of geodesics as fractal
curves that we will situate ourselves in the following. But one must
understand that generalizations of the obtained results are possible, as soon
as these restrictive hypotheses are loosened (in progressing to a fractal
dimension different from 2, and then a Lorentzian structure of scale laws).
 





 
Infinite Geodesics and Probabilities

 
In a geometric theory of spacetime, the answer to the question—what
trajectory do free particles follow?—is a spatiotemporal geodesic, meaning
the shortest line at the initial fixed conditions. More precisely, it is the line
that optimizes the proper time, i.e. the time given by a clock following this
trajectory. In empty, flat Euclidean space, the geodesics are just the straight
lines followed at constant speed in Galilean free inertial motion. Einstein
understood that the natural generalization of this free motion to different
geometries is the concept of geodesic curves. For example, the geodesics on
a sphere are the great circles.

In the theory of scale relativity, it is therefore also natural to use this
concept for the description of the motion of particles. However, there is a
fundamental difference with the case of general relativity. In Einstein’s
theory, the geodesics are deterministic trajectories followed by material
particles. In quantum mechanics, the concept of particle trajectory loses its
meaning. As we shall see, this is also the case in a nondifferentiable
spacetime. Therefore, it should be made clear that the fractal geodesics are
not the “trajectories” of a particle, but are just purely geometric paths from
which the wave function (that represents the particle in quantum
mechanics) can be constructed. As we shall see, there is an infinity of
geodesics in a fractal spacetime which form a fluid, and the wave function
comes as a direct manifestation of the velocity field of this fluid.

Indeed, a fractal spacetime is characterized by the presence of obstacles
at all scales, which will multiply the number of geodesics to the point of
making it infinite. The equation of geodesics of a given space is a
differential equation which expresses this optimization of the path followed
to an infinitesimal level. One must imagine a fractal spacetime as
fluctuating locally, at all scales, in space and in time, in an extremely
complex manner (see figures 11 and 22). Therefore, the solution of this
optimization is not, in this case, a unique, small elementary displacement,
but an infinite number of such infinitesimal intervals!

One can form an idea of this multiplication to infinity of possible paths
starting from the effects of gravitational mirage in general relativity.[153] In
Einstein’s theory, light follows particular geodesics of (4-dimensional) null
length. The effect of a mass is to curve spacetime, which implies as a



consequence the curvature of geodesics. One of the results of this deviation
of light is that, around a point-like mass, two paths can connect a single
source to the observer. One then obtains two images of the same object
instead of one! Such effects of gravitational mirage have now been
observed in great numbers. If the mass is extended, as in the case where the
deflector is a galaxy, one finds three or five images. But the distribution of
the deflecting mass can become extremely complex, as in the case where it
is composed of a cluster of galaxies in its entirety as well as individual
galaxies. The number and deformations of images of the same object can
then become impressive. And now imagine the effects of a fractal
spacetime, in which each point, having an infinite curvature, would become
such a deflector.

Figure 22 Geodesics on a generator of fractal surface
At the first stage of the construction of a fractal surface, even for a very

simple and determinate model, the shortest lines between two points (the
geodesics) become multiple. (At the left, the continuous folded version, at

right, the lacunar unfolded version, in which the shaded squares indicate the
points which are connected in the folding). At the following stage, a new
multiplication takes place to avoid the new obstacles which appear within

each square (see figure 11). At the limit, the number of geodesics is infinite.
 



As already pointed out, the notion of a particle following a well-defined
trajectory cannot remain in such a framework. Suppose that a particle has
been emitted at a point. How does one predict its evolution, knowing that it
could follow an infinite number of equivalent trajectories? All that we can
do now is to describe the evolution of the set made up by all the potential
trajectories, which constitute a kind of “geodesics fluid.”

The probabilistic approach becomes a necessity as soon as one wants to
make predictions. The statistical character of the theory to be constructed is
thus established, not as a fundamental law, but as a consequence of the
nature of spacetime (and of our wish to make theoretical predictions).
Spacetime could, in principle, be perfectly determinate,[154] but its fractal
nature (in which no lower limit exists to the structures that appear at smaller
and smaller scales[155]) implies, in a definitive manner, the nondeterministic
nature of trajectories.

Therefore, in the new framework, the quantum indeterminacy is a direct
consequence of the nondifferentiable geometry. One sees here how the
introduction of a new concept, that of a structured and fractal spacetime,
allows us to express in a new manner the problem of nondeterminism.
There is indeed nondeterminism, unavoidably so, in the approach of scale
relativity, but this nondeterminism is that of “trajectories.” It is explained
starting from the geometric nature of spacetime, but this spacetime,
inversely, is not a priori subject to nondeterminism. Such a theory is thus
not statistical in essence (at the level of a first principle), as Einstein
required in his criticism of the quantum theory, but is of geometric essence
and statistical by logical necessity, as a consequence of a deeper principle.
 





 
The Nature of Particles

 
The fractal approach enables us to shine a new light on the concept of the
elementary particle. We can envision being able to give up the idea of a
mass-possessing point with “internal” properties (spin, charge, other
quantum numbers, etc.), and describe the “particles” (with their dual wave-
particle nature) as fractal spacetime geodesics. From this perspective, each
type of particle would correspond to subsets of geodesics possessing the
common geometric properties which define its nature (scale of fractal/non-
fractal transition for the mass, internal structure within scales for spin and
charge, etc.).

In contemporary quantum theory, the electron, considered from the point
of view of its particle-like nature, is totally point-like. The essential
physical quantities which define it, such as its mass, its spin, or its charge,
are thus considered as purely “internal” quantities. Spin, the internal
angular momentum of a particle, is tied to a symmetry of spacetime
(isotropy), but has no classical counterpart. Charge and other quantum
numbers characterizing the particles correspond to symmetries which are
themselves internal, which have no counterpart in spacetime.

The concept of fractal spacetime allows a reconsideration of these
statements. It is no longer simply a case of spacetime in the classical sense
of the term, structured by movements and rotations (the laws of motion),
but of a “spacetime zoom,” the description of which necessitates taking into
account new structures tied to the transformation of resolution (scale laws).
The possibility raised by this observation is that internal quantum numbers
finally result from symmetries tied to scale transformations, and that they
thus acquire a new geometric meaning, in the sense of the new
nondifferentiable geometry. The concept of the particle would no longer
then concern an object that “possesses” a mass, a spin, or a charge, but
would be identified as the fractal geodesics themselves of a
nondifferentiable spacetime, geodesics of which mass, spin, and charge
would be a manifestation of common geometric properties.[156] Such a
program is naturally far from being completed, but several results pointing
in this direction seemed already encouraging at the date of the first
publication of this book.[157] Much of these preliminary results have since
been confirmed and developed into a full theory.[158]



First of all, the de Broglie wavelength (λ = ħ/p) and the de Broglie
period (τ = ħ/E) associated with a particle find a geometric interpretation as
a transition from a fractal behavior (at small scale) to non-fractal behavior
(at large scales): these are the scales beneath which retrograde motions
appear in geodesics, in space and in time. Starting from this de Broglie
scale, one can calculate the energy, momentum, classical (average) velocity,
the phase velocity, and, finally, the mass of the particle. All these quantities
thus find themselves brought back to geometric characteristics of fractal
trajectories. Nevertheless, one must understand that it is not a matter of
geometric structures in the spacetime (of positions and instants), but instead
in the new space of scales, which describes the set of possible resolutions in
nature (see figure 3).

A similar result is true for internal angular momentum (spin): in the
scale relativity framework, it can be derived and understood in a purely
geometric way. The spin cannot exist classically, since it is proportional to
the square of the radius of the particle, which is zero. But it is also
proportional to the speed of rotation, which can be infinite on a fractal
trajectory! The remarkable result is the following: one can show that this
product, which is written informally as zero times infinity, is always zero
when the fractal dimension of the trajectory is lower than 2 (the classical
situation of dimension 1 is a special case), always infinite when it is greater
than 2, but becomes finite just for the “critical” value D = 2. Yet this value
is precisely what one obtains starting from the Heisenberg relation, or in an
equivalent manner, what one can deduce from Feynman’s analysis of
typical trajectories of quantum particles. The existence of spin is then
established as a consequence of the fractal geometry. It is remarkable that
this kind of simple fractal helix model for spin, first established in the
1980s,[159] has since been fully supported by exact solutions of quantum
mechanical equations, themselves exactly derived from the equations of
geodesics of a nondifferentiable spacetime.[160]

As for electric charge, one can show that it can be understood as an
invariant quantity finding its origin in scale symmetry itself.[161] This new
physical description of charge and electromagnetism will be explained in
more detail in part V. Since the first publication of the present book, it has
been extended to all gauge field theories[162] (which includes also quantum
chromodynamics—the strong interaction—and the weak interaction, mixed
with electromagnetism in the electroweak field). The various “charges” of



these interactions can all be understood in terms of invariants (conservative
quantities) constructed from scale symmetries which are specific to the
scale space interior of “particles” (i.e., to the inner structures of the fractal
geodesics of the nondifferentiable spacetime).
 





 
Quantum/Classical Duality

 
The potential paths thus constitute an infinite set of curves, all of which are
themselves fractal. One can show that the description of any one of these
curves brings into play coordinates that can be decomposed into the sum of
two contributions: a mean part, which is differentiable and scale-
independent[163] (and is identical, at the classical limit, with the classical
trajectory), and fractal fluctuations, which are explicitly dependent on scale
(see figure 23). These fluctuations are negligible at resolutions greater than
the de Broglie length of the system: this is classical behavior. But they
strongly dominate the average motions at small scale. A large part of
quantum effects comes from them.

Figure 23 Evolution over time of a coordinate on a fractal path



At large scale, there exists an average velocity, and the average variation of
the coordinate is δx = <δX>, of the order of δt. On the other hand, at small
scale, the fluctuation with respect to this average dominates, δX ≈ δξ, and
becomes much larger than δt. It is given in absolute value by δξ ≈ δt1/D,

where D is the fractal dimension of the path.
 

Thus classical and quantum behaviors are a question of scale, but the
relative character of the transition (which depends on the mass and the
velocity, and/or the temperature) explains that there might exist
macroscopic quantum effects. It is so, for example, with superconductivity,
which appears at low temperature, below a critical temperature depending
on the material (in this phenomenon, the free electrons are grouped in pairs
and thus acquire the collective quantum properties of a gas of bosons,
which enables them to flow without resistance).[164]

 





 
Irreversibility and the Complex Character of the Wave Function

 
The doubling of position variables in terms of differentiable part and fractal
part is not all. Another doubling, just as fundamental, comes from the
nondifferentiability of spacetime and the principle of microscopic
reversibility. It involves not only the fractal fluctuations, but also the mean
differentiable part of the velocity.

Consider a potential fractal geodesic arriving at a given point at a given
instant. There are an infinite number of geodesics coming out of this point.
Each point of spacetime thus plays the role of a sort of diffuser (recall the
analogy with a multiplication to infinity of gravitational mirages). But such
a process is fundamentally irreversible locally: in a reversal of the sign of
the temporal differential element, the nondifferentiability of space implies
that there is no longer reversibility of the process.[165] We can be more
specific about what this is. From the point of view of usual methods, the
derivative of a nondifferentiable variable does not exist (in particular the
velocity, which is the derivative of the position), by definition. The method
of scale relativity consists of reintroducing a derivative, explicitly
dependent on the resolution. It is only at the limit of an interval of zero
resolution (the only case considered by classical methods) that the
derivative does not exist, whether it becomes infinite or it fluctuates without
limit. But this zero limit point does not really make physical sense—I have
already heavily emphasized this point—since there would have to be an
infinite energy to attain it. One can thus ignore it without any problems, and
replace the ideal mathematical derivative with a physical derivative
becoming an explicit function of the time interval. But it is here that a new
fact appears: while the ordinary derivative is invariant under the change of
sign of the temporal differential element, there is no reason that it would be
the same for the new derivative.[166] There are thus two derivatives instead
of one, each of them being a fractal function! Applied to the spatial
coordinate, this reasoning implies that there are two velocities instead of
one, a doubling which remains when considering the mean, differentiable
part of the velocity.

Such a doubling of the average velocity has already been introduced by
Edward Nelson, under the framework of his stochastic approach to quantum
mechanics, but with a fundamentally different interpretation. In his



stochastic mechanics, one obtains this two-valuedness of velocity by
reversing the sign of time itself (which may be problematic with regards to
causality), leading to the introduction of a “forward” and a “backward”
velocity. In scale relativity, it is only the sign of the time differential
element which is reversed: since we need two points to define a velocity
(while only one for position), one may take a point “before” or “after” the
instant when we compute the velocity. Moreover, Nelson equated the
movement of particles to Brownian motion and was able to obtain the
Schrödinger equation in terms of a process of nonclassical diffusion. One
must nonetheless note that this is only fully justified, in my opinion, in a
framework where spacetime itself is affected, not only the trajectories. It is
clear that true Brownian motion (that of microparticles immersed in a
liquid), while nondifferentiable in its physical description, does not lead to a
doubling of average velocities. It is certainly the same if we only consider
fractal trajectories in a non-fractal space. Once averaged, these trajectories
become classical at large scale. It is the fact of considering, not fractal
trajectories a priori, but a fractal space of which the geodesics would
thereby be fractals, which is here essential. It is because spacetime is
arbitrarily chaotic at all scales that the doubling of velocities remains, even
for the mean differentiable (large scale) part of the velocities.

Nonetheless, symmetry by reversal of time—that is, reversibility—is a
fundamental symmetry in physics, first in relativity, where the “invariance
by reflection” plays an essential role in the establishment of the Lorentz
transformation, but also in microphysics. Now we have two processes
instead of one, which differ under the reflection (i.e., the change of sign) on
the time differential element, dt –> -dt. These two processes should be
considered as equally valid for the description of physical laws.

Here is an essential point. In the classical (differentiable) case, the
problem does not come up, since in that case the derivative is unique and
does not depend on scale. If spacetime is not differentiable, the two
processes become a priori different, while they are both equally qualified
for the description of elementary laws. Which to choose? One solution
alone seems possible: to take into consideration, in a permanent manner, the
two processes together, in combining them in the form of a new double
process. One can prove mathematically that the complex numbers enact the
simplest representation of such a double process. This, taken in its entirety,
becomes locally reversible. Such is the origin, in this theory of scale



relativity, of the complex character of the wave function and other physical
quantities, and, in large part, of the paradoxical properties of the quantum
world.

One will note that, with this effect of doubling of velocities,
nondifferentiability is shown to be more profound than fractality, as already
indicated by the fact that scale dependence is a consequence of the
abandonment of the differentiability hypothesis (if one keeps continuity).

Before passing to the final step, that of the proof of the Schrödinger
equation, the theory should provide a meaning for the wave function. What
is the nature of this mathematical tool? Why and how has it come to replace
classical tools? The response is simply that, in scale relativity, the wave
function is nothing other than a reformulation of the fundamental physical
quantity called action.[167] This concept is particularly important in physics
since the fundamental equations of dynamics are derived from optimizing it
(a method called “least action principle”). Moreover, in relativity theories, it
becomes proportional to the proper time: therefore, optimizing the action
becomes nothing else than optimizing the proper time, which yields just the
equation of geodesics. But the new ingredient here is the two-valuedness of
derivatives, leading to introduce a twin fluid of geodesics, a complex action
(in the sense of complex numbers), and finally equations of motion written
in terms of complex numbers.

Another important role of the action is that the energy and momentum of
a given system can be obtained by taking its derivative, respectively with
respect to time and space. This provides another way to understand the
fundamental meaning of the wave function: it just gives the velocity field of
the twin fluid of geodesics.[168]

In effect, once a complex derivation is introduced, thus a complex
velocity, the entirety of classical mechanics can be reformulated. One must
remember that the action is defined as an integral over the course of time of
a function of coordinates and velocities, called the Lagrange function. The
velocity being now written in terms of complex numbers, it is the same for
this function, thus the action and, finally, the wave function itself. The
principle of action (which is no longer a principle of least action, since there
is no ordering relation in the complex plane) stays definable as a principle
of “stationary action”: following this principle, the physical paths are those
which cancel the variation of action. It is, finally, the entirety of mechanics
which can be reformulated by this method, in a way that keeps the form of



classical mechanics (this is “covariance” under a generalized meaning), but
that is no longer classical. The result is indeed the attainment of a new
mechanics of quantum nature, as we shall see.[169]

 



 



Free Motion and the Schrödinger Equation
 
The final steps toward this transformation of classical mechanics to
quantum mechanics in a nondifferentiable geometry should include the
proof of its other main axioms, the principle of correspondence (which
makes an operator acting on the wave function correspond to observables),
the Schrödinger equation (which is the equation of which the wave function
is a solution), and the statistical interpretation of Born (according to which
the square of the modulus of the wave function gives the probability of
presence of the “particle”).

The example of Einstein’s theory of general relativity is essential for this
final task. The effects of the curvature of spacetime on different physical
quantities is there described with the help of a “covariant derivative.” This
adds new terms with respect to the ordinary derivation, under the form of an
effect of rotation of vectors induced by their movements, due precisely to
this curvature (meaning the gravitational field). In other words, instead of
taking into account the effects of geometry as acting from the exterior on
motion (like in the case of forces), one accounts for them from the interior
by including them in the derivative itself.

However, the covariant tool of general relativity, based on
differentiability, is no longer adapted to the description of effects of
movements in a fractal spacetime. But the concept of covariant derivation,
which translates these effects in a universal manner (one must construct the
rules which make it applicable to all physical quantities), is still
fundamental and should be kept and reconstructed. It is effectively possible
to summarize the three principal effects of abandoning the differentiability
hypothesis (infinite number of geodesics, fractal fluctuations of dimension
2, local irreversibility leading to two-valuedness of derivatives) in terms of
such a tool, which takes the form of an operator of “quantum covariant
derivation.”[170]

This derivation operator, written in terms of complex numbers,
completes the transformation of classical mechanics to quantum mechanics,
and above all implements scale relativity thanks to an authentic covariance.
It enables us to justify definitively the fundamental statement of this
approach according to which the motion of quantum “particles” can be
described as that of geodesics of a fractal space(time).



What is the covariant form of an equation of geodesics? It is simply the
equation of inertial motion, which expresses that the free particle moves
according to a uniform and rectilinear motion at constant velocity, that is,
with zero acceleration. The acceleration is zero: such is already the form of
the equation of geodesics in general relativity. But this simple equation is
expressed in terms of the covariant derivative containing the effects of
curvature; when those effects are explicated, the equation of Galilean
motion is transformed, through the “miracle” of covariance, into an
equation generalizing, in Einstein’s theory, the equation of Newtonian
dynamics in a gravitational field.

A similar result is obtained in scale relativity. An equation keeping the
form of that of classical inertial motion (which expresses that the particle
moves, locally, in a straight line and at constant velocity), but written using
the new “quantum-covariant” (or “scale-covariant”) derivative, is
transformed, once the expression of it is made explicit, into the Schrödinger
equation of a free particle![171] Similar to the effects of gravity appearing as
a manifestation of the curved geometry of spacetime, one thus sees the
quantum effects emerge as manifestation of the fractal and
nondifferentiable geometry of spacetime. More generally, the equation of
Newtonian dynamics for a particle in a potential well is transformed into
the corresponding Schrödinger equation.

These results allow us to obtain solutions to the Schrödinger equation by
numerical simulation, without having to write the equation explicitly, solely
by the description of elementary laws of motion given by scale relativity.[172]

The correspondence principle for momentum and energy (which, in
quantum mechanics, associates them with certain differential operators) can
also be proven, no longer in the form of a simple correspondence, but
indeed with strict equality. Finally, the Born interpretation, which allows
one to deduce the probability density of the wave function, is also
established in a natural manner. In effect, the set of geodesics can be
described as a sort of fluid, of which the density is effectively given by the
square of the modulus of the wave function (the imaginary part of the
Schrödinger equation is identical to an equation of continuity for this fluid).
Over the course of a real experiment, the outcome will be proportional to
the density of number of these geodesics, which naturally becomes a
density of probability.



Of course, this is only a beginning. The nonrelativistic quantum theory,
corresponding to “low” energies (those of atoms) governed by the
Schrödinger equation is only a small link in a vast chain which has been
developed since the foundation of quantum mechanics in 1925. In
progressing toward higher energies (nuclei, elementary particles), one must
progress to relativistic situations of velocities on the order of the speed of
light.

In this case, it is no longer space alone which is fractal (this hypothesis
was sufficient for obtaining the Schrödinger equation), but spacetime.
Virtual trajectories thus can move backward not only in space, but in time.
This does not pose any causality problem, though, since the sections of the
trajectory that move backward in time are simply interpreted, as Feynman
has already proposed, as antiparticles. The theory explains virtual pairs of
particle-antiparticles, and resolves the problem of the infinite length of
trajectories (which could have led to infinite velocities, in contradiction
with special relativity): there is indeed divergence of length in space, but
also in time, such that the ratio between the two (i.e., the velocity) remains
limited by the speed of light c.[173]

Moving forward, the development of the theory should tackle the Klein-
Gordon equation (which is the first relativistic equation of quantum
mechanics), then the Dirac equation (the relativistic equation for electrons)
and it should account for the electromagnetic, weak, and strong fields, and
then the electroweak field. Twenty years after the first publication of this
book, these successive steps have now been completed in large part, in
particular thanks to the work of Marie-Noëlle Célérier.[174] But the vast
endeavor which involves translating the different levels of quantum theory
in terms of scale relativity and fractal spacetime (and possibly extending it
to new realms) has just begun.

Finally, the new theory, as we had initially hoped, allows us to solve the
problems of misunderstanding of the quantum theory, not by replacing it,
but by refounding it on first principles; and it resolves the problem of
quantum/classical incompatibility, but not by establishing a bridge between
the two. The proposed solution is obtained with the help of a description
which is neither quantum nor classical, but coming from a deeper level, and
which can be reduced to classical and quantum descriptions depending on
the conditions of motion and scale.



Recall that these conditions are: (i) infinite number of geodesics; (ii)
each geodesic is itself fractal; (iii) two-valuedness of derivatives. All three
conditions can be derived from nondifferentiable and continuous geometry.
One can show that only the three conditions taken together lead to quantum
mechanics, while two, one, or none of them lead to various type of classical
equations. For example, the case when no condition is fulfilled leads to the
usual deterministic Newtonian-like classical theory, while keeping
condition (i) leads to a statistical-type classical theory. Therefore, the theory
includes a description of the transition from classical laws to quantum laws,
by specifying the way the three above conditions may emerge.[175]

Another important consequence of this theory is that the three above
conditions, if they are strictly fulfilled in a fully nondifferentiable spacetime
(assumed to be exactly implemented at microphysical scales), may also be
satisfied approximatively in other, macroscopic situations, for example in
chaotic or turbulent phenomena. In this case, one expects a macroscopic,
quantum-type “Schrödinger regime” to emerge, which is no longer based on
the microscopic Planck constant, but on a macroscopic constant specific to
the system. Such a new “macroquantum” physics does not share all the
aspects of standard quantum mechanics (as we have recalled, many of them
come from elementarity), but nonetheless owns the fundamental aspects of
a density of probability which is the square of the modulus of a wave
function, itself a solution of a Schrödinger-type equation. In particular, we
have suggested, starting in the early nineties,[176] that a fractal medium could
play a role similar to a fractal space for the particles that move into it, and
that, as a consequence these particle, could acquire some type of
macroscopic quantum properties.

Before ending with some examples of applications of the theory to
various sciences, let us summarize the steps of its construction, which
proceeds mainly by extensions rather than by hypotheses:

 
-      extension of spacetime geometry to a nondifferentiable continuum;
-      as a consequence, extension of the description of physical functions

to explicitly scale dependent and divergent (i.e., fractal) functions;
-      extension to scales of the principle of relativity, by considering

resolution as defining the state of scale of the reference system;
-      writing the equations of physics in terms of differential equations,

not only in position space but also in scale space;



-      including the new effects of the fractal and non-differentiable
geometry (the three conditions above) in the construction of a new
“covariant” derivative;

-      writing the equation of motion as an equation of geodesics, which
takes the very simple form of the inertia equation in a vacuum in
terms of this covariant derivative;

-      identifying the wave function with a manifestation of the velocity
field of the fluid of fractal geodesics;

-      finally, showing that the equation of motion, reexpressed in terms of
this wave function, can be integrated under the form of the equations
of quantum mechanics.

 





 
PART FIVE: FROM ELEMENTARY PARTICLES TO THE LARGE

STRUCTURES OF THE UNIVERSE
 



 
The theory of scale relativity makes it possible to propose solutions to a
number of problems in current physics. We will discuss several examples of
such propositions, taken from the three domains of application privileged in
theory: high-energy physics, cosmology, and the study of self-organized
systems in astrophysics. Of course, the novelty of these results necessitates
their being considered as preliminary: some of them have been validated,
but, as always in science, independent confirmations will be necessary
before allowing them as definitively established.

As we shall see, after the first publication of this book twenty years ago,
many validations of the first theoretical predictions have been obtained (as
for example with exoplanets) and new structures discovered. Moreover, the
theory of scale relativity has been applied to several other sciences, such as
geosciences, geography, and systems biology.
 





 
CHAPTER 18: PARTICLE PHYSICS

 
A paradigm shift as profound as that proposed by scale relativity leads to
numerous consequences in physics, which must be studied one by one.
What is essential is that the theory should be refutable. In the domain of
elementary particles, one expects in particular to see growing and non-
negligible corrections to standard quantum mechanics at very high energies
(beyond the energy of the most massive of elementary fermions, the top
quark with mass 174 GeV/c2), which should be able to be put to the test by
the next generation of accelerators.[177]

The most immediate change concerns the relation between scale of
mass-energy-momentum and scale of length-time (see figure 24). In today’s
quantum theory, the two scales are directly inverse to each other, as shown
by the Compton or Heisenberg relations. Energy-momentum tends toward
infinity when the interval of time-length tends toward zero. In the new laws
of special scale relativity, this interval cannot become lower than the Planck
scale. However, just as the energy and momentum of a massive particle
tend toward infinity when its velocity approaches that of light in special
relativity (of motion), the Planck length now corresponds to an infinite
energy (in special relativity of scale).
 



Figure 24 New relation between scales of length and energy in special scale
relativity

In standard quantum theory, the scales of mass-energy and length-time are
inverse to each other (dot-dashed line). In the framework of the new

dilation laws (solid curve), the Planck length-scale becomes an
unsurpassable and unattainable horizon (shaded area at the top of the

graph). It corresponds to an infinite energy. A new scale of length now
corresponds to the Planck mass-scale mp, which is revealed to be, relative to

the scale of weak bosons (≈ 100 GeV), the scale of grand unification (λp,
which is 1012 times smaller than the electroweak scale in the minimal

standard model).
 





 
Grand Unification

 
In standard theory, the Planck length-scale (10-33 cm) corresponds with the
Planck energy (1019 GeV). This can no longer be the case in special scale
relativity. A new universal length-scale, totally constrained by theory (it has
no free adjustable parameter), while relative to the scale of observation, is
thus naturally introduced. One finds that this scale is 1012 times smaller than
the length-scale of the gauge bosons of electroweak theory (100 GeV). This
new scale corresponds precisely to the scale of grand unification in the
minimal standard model. This result means that, in the new framework, the
unification of the three fundamental interactions is made at the Planck
energy. However, as the Planck energy is precisely where gravitation
becomes on the same order as the other forces, if there should be a
unification, it can only be a total unification of the four interactions, almost
simultaneously (see figure 25).



Figure 25 Variation of charges in the minimal standard model in special
scale relativity

We have shown here the variation in function of the scale of the inverse
squares of the charges of fundamental interactions (inverse of running



couplings), between the scale of the electron e and that of Planck λP (energy
scales on top and length-scales below). Two other fundamental scales

appear in this diagram, that of grand unification (GUT), which is equated in
the new theory to the Planck energy-scale, and that of electroweak

unification (WZ). Numerous structures predicted by the new theory are
apparent in this figure, for example, the intersections of the running

couplings with the line C(r) = ln (r/ λP) and the special value 4π2 of the
inverse couplings, meaning in particular that the charge value at infinite

energy is 1/2π (Ip in this figure is for the Planck length-scale λP).
 

In the current standard model (or its various extensions), one does not
obtain such a common unification at the Planck energy scale, but a
unification in two steps, first of the three gauge fields (at 1014 to 1016 GeV),
then only later with gravitation at 1019 GeV. This result is therefore more
satisfying for the mind, although it does not make the problem of explicitly
constructing a unified theory any easier.[178] But it would have the advantage
of putting an end (at least partially) to one of the fundamental questions of
physics: why does the gravitational constant have its value?[179]

Alternatively, one can pose the question by reducing it to the quantum
expression of such a force, meaning writing it in natural units given by the
product ħc of the Planck constant ħ and the speed of light c. This type of
expression allows us to define a dimensionless coupling constant, like for
example the fine structure constant in the case of electromagnetic
interaction.[180] Applied to the gravitational force, this method introduces the
Planck mass as mass unit and implies a coupling constant—that is equal to
one![181] The question of the value of G, then, takes a new form: if the
Planck mass thus plays the role of a natural unit of mass, should one not
expect that this unit be realized in the form of the most elementary and
fundamental particles in nature? This is effectively the case. One can
consider, in fact, that the most fundamental particles in nature would be the
bosons transporting the totally unified interaction, from which would issue
at lower energy the particles which are vectors of the disunified fields
(photons, weak bosons, and gluons): this unification taking place, in the
new framework, directly at the Planck energy, a large part of these bosons
would have precisely the Planck mass, and would thus physically realize
this universal unit of mass.[182]

 





 
Charge Variation in Function of Scale

 
One of the main results obtained in the application of special scale relativity
to particle physics is the suggestion of a solution to one of the most difficult
still-open problems in physics: that of the divergence of masses and charges
in quantum field theories. Actually, almost all quantities are divergent
(infinite) in these theories, but a partial solution has been found, called
renormalization. In this method, one replaces the theoretically infinite
values of mass, charge and probability densities by their finite observed
values, and all the other calculated quantities become finite and agree very
precisely with their experimental values. The drawback is that the infinities
in masses and charges have not really been solved.

In the new framework of special scale relativity, thanks to the new
meaning given to the Planck spacetime scale as a minimal scale, invariant
under dilations, the problems of divergences which remain in quantum
theory are automatically resolved. The situation is, once again, similar to
what happens in special motion relativity. We know that any object of mass
m possesses a rest energy mc2. But in Galilean relativity, the light velocity is
assumed to be infinite, so that there is actually a general problem of mass-
energy divergence in the classical nonrelativistic theory: this (implicit)
problem is solved just by realizing that the velocity of light is finite. The
same is true for scales: in the standard theory, the ratio between any length-
scale and the null length-scale which corresponds to infinite energy is
infinite. In special scale relativity, it is now the finite Planck spacetime
scale that corresponds to infinite energy, so that there is no longer any
divergence of elementary particle masses and charges.

This enables us to pose in a renewed manner the question of the origin
and values of charges (meaning the coupling constants of fundamental
interactions). In current theory, these vary explicitly as a function of scale
(see figure 19): for example, the fine structure constant (square of the
electric charge), which is equal to about 1/137 at the Compton scale of the
electron (energy 0.5 MeV), has increased to around 1/129 at the scale of
electroweak bosons (energy of around 100 GeV). This variation has raised
the possibility of being able to calculate the macroscopic value, observed at
low energy, of these “constants” starting from their value at scale zero.
Unfortunately, in the standard model, as we have seen, the charges are



either zero or infinite at the limit of a zero resolution scale, which has thus
far prevented the putting into effect of such a program.

The problem can be resolved in scale relativity, a theory in which naked
charges take a finite value, starting from which one can find the observed
values of the coupling constants at low energy, and even bring into effect
new theoretical predictions for some of them (see below and figure 25).
 





 
Nature of the Electric Charge and the Electromagnetic Field

 
Scale relativity also enables us to clarify the problem of the nature of charge
and the interaction fields. In effect, the existence of an “internal” structure
of particles (meaning structures inside the fractal geodesics of which they
are manifestations) implies symmetries, no longer in spacetime, but in the
new dimensions of scale. Similar to how symmetries of space and time
constitute the invariant quantities such as energy, linear momentum, and
angular momentum, some conserved quantities (here, no matter at what
scale) will appear from the fact of these new scale symmetries, quantities
which can be equated with charges.

As for fields of interaction—electromagnetism and weak interaction,
which at high energies combine to form the electroweak field (coupling
constants α1 and α2 in figure 25), as well as the strong interaction (α3 in
figure 25)—they are described as “gauge fields” in current quantum theory.
The notion of “gauge invariance” plays an essential role in particle physics
today, even though some of its aspects remain obscure. It is a case of
transformations on wave functions (namely, on their phase), which have no
classical counterpart. The importance of this notion holds to the fact that the
conservation of charge and even the existence of the electromagnetic field
are directly tied to it.

But gauge invariance poses a surprising problem. The nature of the
electromagnetic field does not change in a transformation (called “gauge”)
involving a completely arbitrary function of space and time; nevertheless,
this function reappears, coupled to the charge, in the wave function of the
electron. In other words, this “arbitrary” function, considered in general as
devoid of physical meaning, is the conjugate variable of the charge. This is
a very important point, linked to Noether’s theorem, which connects the
fundamental symmetries of nature with the conservative quantities that
these symmetries imply. Hence the uniformity of time leads to the
conservation of energy E, which is the conjugate variable of time t. The
homogeneity of space leads to the conservation of momentum p (conjugate
of position x) and the isotropy of space to the conservation of angular
momentum σ (conjugate of angles φ). In the phase of the wave function,
one sees the product of these variables and their conjugate.[183]



The gauge function thus holds the key to the nature of charge, similar to
how the uniformity of space and time are the keys to the nature of
momentum and energy. How could it stay arbitrary under these conditions?

The framework of scale relativity enables us to propose a solution to this
problem. The basic idea is to describe the electron as a purely geometric
object (a network of fractal geodesics), structured in scale beneath its
Compton scale (which is the inverse of its mass). Let us now consider one
of these microstructures and observe it (by thought) over the course of a
spatial or temporal movement of the electron. It is impossible that this
structure remains at the same scale over the course of this movement, since,
if that were the case, the scales would no longer be relative, but absolute.
From the fact of the relativity of scales, the scale corresponding to this
structure ought to vary. In other words, a movement in spacetime must
induce an effect of dilation or contraction of the internal scales of the
electron.

By mathematically describing such a process, one finds that this dilation
field induced by the movements is nothing else than the electromagnetic
field, having all its properties. If one now makes the same argument for any
other of its internal structures, and one compares the two effects, one finds
the relation of gauge invariance. However, in this reconstructed gauge
invariance, the function which was arbitrary no longer is, since it is given
by a ratio between scales (in logarithm). The gauge invariance can thus be
reduced to a scale invariance acting inside the electron geodesics, in the
framework of the new meaning given to spatiotemporal resolutions.



Figure 26 Relation between mass and charge of the electron
This diagram is an enlargement of figure 25 around the scale of the

electron. The constant α0 in figure 25 is equal to the fine structure constant
α (pictured here) multiplied by 8/3. The observed convergence at the scale
of the electron mass between α-1 (asymptotic) and 8C/3 where C(r) = ln(r/
λP), is predicted by the new theory and yields a relation between the mass

and the charge of the electron, which enables us to calculate the mass of the
electron starting from its charge. As for the charge, it is derived from

“running” it from the Planck length-scale (i.e., infinite energy scale), where
it is expected from very simple theoretical arguments to have the value

1/2π, which is supported with high precision by experimental values and the
knowledge of the charge variation with scale (“running couplings”).

 
This new interpretation of gauge invariance has no consequence in

Galilean scale relativity (in which resolutions have no lower bound). On the



other hand, it enables us to obtain new results in the framework of
Lorentzian scale laws where the Planck length-scale becomes a minimal
scale. Let us recall, in fact, that the conditions of quantization in quantum
mechanics come from the existence of limit conditions. For example, it is
the constraint that angles always vary between 0 and 360° which
necessitates the universal quantization of angular momenta. It is the same
here. The limitation by the Planck scale of relations between possible scale
ratios implies the quantization of charges and enables us to obtain new
relations between masses and charges, which are well verified
experimentally (see the structures of figures 25 and 26). Through this
process, both the mass of the electron (511 keV, from its ratio with the
Planck mass) and its charge squared (1/137.04 in dimensionless units) can
be theoretically predicted with high precision.
 





 
CHAPTER 19: COSMOLOGY

 
The applications of scale relativity to cosmology occur in two domains.[184]

One studies the consequences of the new dilation laws on the microscopic
scale for the description of the primordial universe (big bang theory). The
other considers that the Lorentzian scale laws can also be applied to very
large scales, which would lead to the introduction of a maximal scale of
resolution, unsurpassable and invariant under all dilations, possessing the
physical properties of infinity (the reverse of the Planck spacetime scale,
which possesses the properties of zero).

The primordial universe is one of the natural domains of applying
special scale relativity, for multiple convergent reasons: because of the great
temperatures and high energies of the first instants, big bang theory has
already connected quantum theory and cosmology; the expansion of the
universe can itself be described as a universal scale law (the dilation over
the course of time of all the inter-distances between galaxies); moreover,
scale relativity brings important new corrections to very small scales,
spatial as well as temporal, which is precisely the domain of the first
instants of the Universe.
 





 
The Problem of the Origin

 
One first consequence concerns the problem of the origin. The point zero,
spatial or temporal, no longer having any physical meaning (no longer
existing!) in scale relativity, we can no longer start expansion at the moment
t = 0. The singularity poses a problem for certain cosmological models: for
example, in the open hyperbolic model (the one which seems favored by
most observations today), the universe is infinite in its simplest topology,
and this is true at every instant t greater than zero, no matter how small,
while its spatial part disappears “all at once” at the moment t = 0. In scale
relativity, this is no longer a problem, since the expansion would start
asymptotically from the Planck length and time-scale, for which spacetime
is completely degenerate (Planck time is a “horizon”).

But, in any case, it seems premature to try to understand this period,
knowing that we are doubtless very far from understanding its laws. It is
perhaps insufficient to construct a theory of quantum gravity to comprehend
this domain. In fact, such an attempt (which has not finished to this day)
rests on the idea that gravity should be described by quantum field theory
when quantum effects and gravitational effects become of the same order.
However, if there is no doubt that the current theory of gravity becomes
insufficient at the scale of Planck energy, one often forgets that it is
probably also true for quantum theory itself! All of our physical theories
must be “reset to zero” at this energy, and we are probably still very far
from even catching a glimpse of what this unified theory would be.

One must add to this that, during the earliest moments of the big bang,
there is no longer any static scale to which to relate the intervals of length
and time: only the relations of dilation and contraction can be defined. In
other words, to speak of periods of time such as 10-30 seconds after the
singularity or a radius of the universe of 10-25 cm is probably meaningless.
 





 
Horizon and Causality

 
One of the problems for which scale relativity proposes a novel solution is
that of horizon and causality. Recall its statement: the universe is filled with
a bath of photons at the temperature of 2.73 Kelvin, a fossil of the earliest
moments. If one observes this cosmological blackbody radiation in two
opposing directions into space, one finds that its temperature (once
correcting for our own movement relative to it) is practically the same, with
differences around only 10-5 or so. Yet due to the existence of the initial
singularity, the regions of the universe from which this radiation arises have
never been able to be causally connected in their own past. In these
conditions, how can they show the same temperature (knowing that a
blackbody has radiation in thermodynamic equilibrium with its sources, and
that its thermalization is made precisely by continual interactions)? The
response given in general to this problem is that the primordial universe
could have undergone a phase of inflation (meaning exponential expansion)
which could have allowed us to connect all the regions observed today. But
this solution is both ad hoc and partial. It only establishes a connection
among one another for regions of the universe observable today, and would
no longer be valid in a very distant future. Moreover, it necessitates the
introduction of a new field of interaction (and even a series of fields),
completely unobserved and for which nothing otherwise seems to confirm
its existence.

In scale relativity, the problem is no longer present, due to the new laws
of dilation which take the form of the Lorentz transformation (see figure
27). These laws require that any distance, measured at the Planck
resolution, would have the Planck length. Such a statement can seem, at
first glance, extremely paradoxical, if not totally absurd. The size of this
book, the diameter of the Earth, our distance to the Andromeda nebula, the
universe itself would be reduced (even today, not simply during the big
bang) to the Planck scale! But a simple thought experiment shows that it is
indeed the case, without any contradiction. To make an effective
measurement of any one of these lengths at the Planck resolution, it would
be necessary to construct a ruler for which the gradations are separated by
the Planck length. But the generalized Heisenberg relations in the new
framework state that it would take an infinite energy-momentum just to



mark these gradations, or to compare them to the lengths to be measured.
Where can we find such energy? Only the universe in its entirety can
provide it (and again, only if it is infinite). To make such a measurement,
one would have to inject the entire universe into the Planck scale, which
returns us finally to the initial statement (which means, of course, that
ultimately it is impossible to make explicit measurements at the Planck
resolution).

Applied to the first moments, this new structure implies that all the
points in the universe are automatically connected at the Planck era, which
solves the problem of causality (figure 27).

Figure 27 Widening of light cones approaching the Planck era in special
scale relativity

In the new framework, all the points of the universe could have
communicated with each other in the past. The horizontal axis corresponds
to space and the vertical to time. The base of the diagram is the big bang
(which starts asymptotically in the new theory starting from the Planck

time). The dotted line (z = 1,000) corresponds to the period of the
combination of nuclei and electrons into atoms. The current epoch is at the

top (t= t0).
 





 
Maximal Scale and Cosmological Constant

 
One of the principal results of the relativistic approach concerns the
universality of the Lorentz transformation. The application of the principle
of relativity to the dilation laws at small scale leads to the introduction of a
minimal scale, invariant under dilations. But what if one applied the same
principles to very large scales, referring to cosmology? One then obtains a
similar result: the appearance of a maximal scale, invariant under dilations,
a horizon for the possible resolutions in nature, which would possess the
physical properties of infinity in the same way that the minimal scale
possesses the properties of zero. Here again, one must understand that it is
in no way a barrier, a limit, or a finitude in the ordinary sense of the term: to
the question of if we can consider a given scale, and multiply it by 2, then
by 2, and so forth to infinity, the answer still remains yes. On the other
hand, it is the result of the successive multiplications which is now found to
be limited. The two first products will yield a result a little less than 4, the
third less than 8, and so on. It is a limit for possible resolutions in nature,
which only have meaning in the new paradigm where those resolutions
become explicit variables, intrinsic to the nature of spacetime, which again
becomes fractal at very large scales.

If it is natural to identify the minimal scale as the scale of the Planck
length λP, what would it be for the maximal scale? Does there already exist
a scale of length, produced by theory or observation, of which the
properties could be reinterpreted (and better understood) in terms of this
maximal scale?

Einstein’s general relativity in fact provides an invariant scale whose
meaning is not clear and over which much ink has been spilt: this is the
scale of the cosmological constant. This constant Λ was introduced by
Einstein in 1917 in his equations for the gravitational field, to allow for
static cosmological solutions (in agreement with the results of stellar
observations at the time, which were limited to our own galaxy, which is
globally static) satisfying Mach’s principle. The identification of spiral
nebulae as extragalactic objects in 1924, and then the discovery of the
expansion of the universe seemed to make this constant no longer
necessary. Nevertheless, Élie Cartan had meanwhile shown that the
equations of Einstein with a cosmological constant constituted the general



solution to the problem which Einstein had posed, and that there was not
any a priori reason to exclude it.

The cosmological constant Λ in Einstein’s equations has the dimension
of a curvature (which is one of the tools allowing us to describe curved
geometry: for example, the curvature of a sphere is positive, it is the inverse
of the square of its radius, while the curvature of a hyperbolic space is
negative). Therefore it is the inverse of the square of a certain cosmic
length: Λ = 1/L2. To suppose that the cosmological constant is vanishing
means to make the cosmic scale L a priori infinite. The cosmological
constant Λ is apparently very small: the observational limits at the time of
the first publication of this book indicated that it is lower than 3 x 10-52 m-2;
it is now well measured thanks to the WMAP and Planck satellites, and its
value is around 1.1 x 10-52 m-2. This very small number simply manifests the
fact that the corresponding cosmic length is very large, namely it
characterizes cosmological scales (see figure 28).

Several arguments enable us to equate the new scale of maximal
resolution with this cosmic length. The first is that it is strange to see an
invariant length, static like L is, defined at a scale of length on the order of
the size of the universe, where all real physical objects are a priori drawn to
by expansion. The second is a calculation of quantum gravity made by
Stephen Hawking, according to which the probability of possible values of
Λ is maximal for the value zero, meaning L is infinite. But this calculation
is performed in a framework where the laws of dilation are the ordinary
laws (which correspond to a “Galilean” scale relativity). Generalized to
Lorentzian laws, one expects that the most probable value of L is now given
by the scale that plays the role of infinity in the new framework, meaning
the maximal scale, invariant under dilations.

The existence of a minimal scale (the Planck scale λp) and a maximal
scale (the cosmic length L), finally introduces into theory a pure number K,
invariant, given by the ratio of these two lengths K = L/λp, for which the
value is now (2018) precisely known as K = 5.9 x 1060. The existence of this
number, which corresponds to a ratio of maximal possible dilation between
resolutions, allows the understanding of certain empirical cosmological
relations (called the large number coincidence of Eddington-Dirac), up until
now obscure. Let us see how.



Figure 28 Scale dependence of fractal dimension
Schematic variation, as a function of the resolution, of the effective fractal

dimension (given by D = 1 + δ) of the geodesics of spacetime in special
scale relativity. There appears in this framework a scale of minimal

resolution, identical to the Planck scale, and a maximal scale, tied to the
cosmological constant. The scale symmetry is broken in two (non-absolute)
transition scales which divide the scale space into three domains (at least,

since this is just a schematic and simplified view): a classical, intermediate,
domain, where spacetime does not explicitly depend on resolutions since
the laws of motion are dominant with respect to the scale laws (but in this
domain, many systems may be fractal on a large range of scales); and two
asymptotic domains at very small or very great scales (microscopic and
cosmological) where the scale laws dominate the laws of motion, which

makes explicit the underlying fractal structure of spacetime.
 





 
Energy Density of the Quantum Vacuum

 
Yakov Zel’dovich tried to elucidate the nature of the cosmological constant
starting from the following observation (initially made by Georges
Lemaître). In the Einstein equations, the cosmological constant a priori
plays a geometric role. But it turns out that its contribution has the same
form as that given by the energy of the quantum vacuum. Recall that the
vacuum, in quantum mechanics, is not nothingness: It is the minimum state
of energy of a field, which is a priori non-null (this is what allows the
electron not to crash into the nucleus in an atom). From this came the idea
that the cosmological constant was the manifestation of the energy density
of all the zero points (the vacua) of the different fields that exist in nature.
More generally, the true cosmological constant should be the sum of an
eventual geometric constant and of the density of the vacuum.
Unfortunately, if one wishes to calculate this energy density, one finds it to
be infinite! Perhaps one should only integrate the zero points of fields just
up to the Planck scale, which represents a sort of barrier in the standard
model of physics: one then finds an effective cosmological constant 10120

times larger than its astrophysical estimations!
The proposed solution in scale relativity (see figure 29) consists of

describing the vacuum as a fractal (i.e., as scale dependent and diverging
toward small scales) and of considering its energy density not as a number,
but as an explicit function of the scale, in agreement with the basic method
of this theory. This explicit scale dependence of the vacuum energy density
is also just what one expects from quantum mechanics, through the
Heisenberg relations. There is then no reason to attribute to the universe (at
the cosmological scale) the value of the energy density calculated at the
Planck scale. In fact, the energy is defined as a close additive constant, so
that the quantum vacuum can very well be reduced to a zero energy (it is
thus said to be “renormalized”). On the other hand, in terms of what
concerns the fluctuations of the vacuum energy, if those are cancelled out
on average, their average square cannot be cancelled out due to the fact of
the Heisenberg relations. Yet these fluctuations will gravitationally interact
with each other, and will produce a self-energy of gravitational coupling
which itself cannot be avoided. The density of this self-energy varies as a
function of the scale as inverse of the square of volume, which enables us to



propose an explanation of the Dirac large numbers relation. This
explanation states that the scale of elementary particles is found as a third of
the scale of the universe in the scale space in logarithmic notation (see
figures 3 and 29), which one effectively obtains by the calculations of scale
relativity. One then obtains an acceptable value for the cosmological
constant (1.36 x 10-52 m-2), thus the scale of maximal length.[185] I concluded
the first version (1998, in French) of this book with the words: “We will
have to await the direct measurements of astrophysics to confirm or deny
this possibility.”

Twenty years later (2018), the value of the cosmological constant
(nowadays sometimes called “dark energy”) is now precisely known from
astronomical observations (a Nobel Prize has been given to this result in
2011), and the theoretical argument has been improved. The agreement
between the theoretically expected value (reduced cosmological constant
0.3115±0.0001) and the observational value (0.318±0.012 from the Planck
mission) is very good.

Let us summarize this more complete argument. It relies on applying the
expansion of the universe, not only to real matter, but also to the virtual
particles which constitute the quantum vacuum. In Dirac’s description of
the vacuum, it is like a “sea,” totally filled with particles of negative energy.
If a particle from the vacuum jumps to positive energy because of quantum
fluctuations, it leaves a hole in the Dirac sea, and the couple (particle, hole)
will be seen as a particle-antiparticle pair. The interdistance between the
Dirac sea particles, and therefore between the pair members, is expected to
increase with time because of the expansion of the universe. As we have
previously seen, the self-energy density of the pairs can always be
renormalized, but not the gravitational self-energy density (thanks to
Heisenberg’s relations), which is therefore the best candidate for being the
source of the “dark energy.” But this gravitational self-energy density of
pairs (i.e., of energy fluctuations) decreases very quickly (as 1/r6) when the
interdistance r between the pair members increases. As a consequence, it is
not able to constitute today an effective cosmological constant.

Indeed, two of the main properties of the vacuum allowing it to appear
as an (invariant) cosmological constant is first to be Lorentz invariant
(which it is), but also an adiabatic invariant: namely, it should not change
under a dilation or a contraction. But the expansion of the universe is just a
dilation of the universe over time. Therefore, the vacuum energy densities



of almost all components of the Dirac sea are unable to make a
cosmological constant.

However, there is one class of elementary particles for which the
situation is different: quarks. Quarks are said to be confined in the nucleons
and in other composed particles like the pion. This means that one has
never seen a free quark, and that this is probably impossible. Why? Assume
you want to separate the two quarks making a pion by pulling them apart. In
order to do that, you must use energy. The force that links the two quarks
together is like a string, and you must use enough energy to break the string.
But one finds that this string-breaking energy is larger than the energy
needed to create a new quark-antiquark pair. Thus, while you wanted to get
two separated free quarks, you actually end with two separated pairs of
quarks, while the interdistance between the quarks in each pair remains
unchanged!

Applied to the Dirac sea of quarks, this argument means that the
interdistance between quarks of the vacuum takes its maximal value. No
composed particles contribute to the vacuum; it is made of truly elementary
particles, in this case quarks. When the expansion of the universe pulls
them apart, the confinement energy leads to particle creation, which keeps
the density of particles constant. In other words, the quark vacuum is
frozen.

Having arrived at this point, there are still two problems to be solved: (i)
the gravitational self-energy density of quantum fluctuations is negative,
while dark energy is positive; (ii) this gravitational energy is of
gravitational origin, and it has therefore no reason to be itself a source of
gravitation (while the cosmological constant enters into Einstein’s equations
of the gravitational field). Both problems are solved by an implementation,
introduced by Sciama, of what Einstein has called “Mach’s principle,”
which is the “postulate of the relativity of all inertia.” This means that any
body, ultimately, should be free (this is also the conclusion derived, by other
means, in the theory of scale relativity). Concretely, this principle implies
that the total energy of any body or entity should be null. When it is applied
in the rest frame of a massive body, it means that the sum of the rest mass
mc2 of this body and of its gravitational coupling with all the bodies of the
universe should vanish. Due to the equivalence principle, the mass of the
body disappears from this equation, which becomes a cosmological relation
between the “mass” and the “radius” of the universe.[186] But the main point



here is that, in this Machian relation, the gravitational potential energy is
found to be just the opposite of the body’s mass, which is the source of
gravitation.

Mach’s principle should apply to the quantum vacuum as well. If not,
the vacuum energy density (created from the gravitational potential energy
of fluctuations) would contradict the freeness of any entity in physics.
Therefore one expects it to be cancelled by a “dark energy,” which is just its
opposite (thus with positive sign as expected) and which may be a source of
gravitation, as mass is.

The last step toward a solution to the cosmological constant problem
amounts to having an estimate of the interdistance between the Dirac sea
quarks at which this freezing occurs. Concerning real particles, the lowest
energy particles composed of quarks are pions (remember that lower
energy-momentum corresponds to larger time-length in quantum
mechanics). Charged pions have a small part of their mass coming from
electromagnetic energy, while neutral pions can be expected to yield an
optimal knowledge of pure confinement energy (which is probably of
quantum chromodynamical [QCD] nature). Therefore the effective mass of
quarks in the neutral pion (67.49 MeV) and its associated length-scale (r0 =
2.92 fm, see Fig.29) provides a theoretically founded numerical estimate of
the dark energy/cosmological constant (reduced constant 0.3115±0.0001).

As we have recalled, it is in very good agreement with the observed
value (0.318±0.012). Moreover, being more precise by a factor of ≈ 100,
this prediction could be checked again in the future (accounting also for the
fact that other contributions may exist at this level of precision). Note also
that it is not fully theoretical, since it relies on the experimentally observed
value of the pion mass. However, being a composite particle, it is possible
to derive its mass from the quark masses (through Goldstone boson models,
similar to the Higgs mechanism, but in QCD instead of electroweak theory).
The problem is that the quark masses are unknown, so that these models are
used in the reverse way, by deriving the quark masses from the composed
particle masses. If one day a theoretical prediction can be made for the
quark masses, the prediction of the cosmological constant value by this
process would become fully theoretical.



Figure 29 Scale dependence of vacuum energy

Variation as a function of scale of the effective cosmological constant
(proportional to the energy density of the quantum vacuum). It is calculated

as the sum of a geometric constant, ρcosm, and of the gravitational self-
energy of the fluctuations of the quantum vacuum, which varies as 1/r6.

These two terms meet in the domain of the scale of elementary particles (≈
1 MeV to 100 GeV). The fact that the energy density varies as the inverse
of the sixth power of the scale, while the cosmological constant varies as

the inverse of the square of the cosmic length, allows us to explain the
empirical relation of Dirac (L/λP) = (r0/λP)3, where λP denotes the Planck
length and r0 the elementary particle scale where the quantum vacuum is

“frozen.” It can be most probably identified with the scale of the effective
mass of quarks in the neutral pion, corresponding to an energy of 67.5 MeV.
 





 
CHAPTER 20: FORMATION AND EVOLUTION OF STRUCTURES
 
To finish, we arrive now at one of the propositions of the new approach for
which the consequences could be the greatest: the idea that the formalism of
scale relativity (including some of its quantum-type method) can be applied
(over relatively large scales of time and at the cost of a different
interpretation) to systems that had been considered until now to be strictly
classical.

The reason for such a proposition is the following: as I have briefly
shown in Part Four, the Schrödinger equation can be obtained in a very
general manner starting from the fundamental equation of dynamics. In all
the situations where one can no longer attribute well-defined individual
trajectories to bodies, since they can follow a large number of potential
trajectories; where each one of these virtual trajectories is a fractal curve of
dimension 2 (which corresponds to a total loss of information); where,
finally, there is an irreversibility at small scales of time; in all these cases,
one can replace classical deterministic dynamics with a statistical
description in terms of probability amplitudes (another name for wave
functions) and the Schrödinger equation. The square of this amplitude will
then give the probability density of the structure under consideration (that
the individual particles will only cross). Garnet Ord (who also introduced
the concept of fractal spacetime at the beginning of the 1980s for
understanding quantum mechanics) has also arrived at a similar conclusion
concerning the possible universality of the Schrödinger equation.

I must of course insist again on the fact that the corresponding theory is
not standard quantum mechanics, such as it is applied to atoms and
particles. In the microphysical domain where it describes elementary
objects, it is associated with an interpretation and a theory of measurement
which have no reason to remain valid in macrophysics. In particular, the
“macroquantum” application of the scale relativity theory is not expected,
in general, to involve extreme quantum behaviors such as the
indiscernibility of identical particles or quantum entanglement.

The advantage of the new description is that it can be done in terms of
wave functions, solutions of a generalized Schrödinger equation, from
which one can deduce a probability. This description is then interpreted as



the tendency for a system to form structures. By abandoning the hope of
following individual trajectories, we gain the possibility of describing a
self-organization, a morphogenesis of complex systems. In fact, one of the
properties of quantum theory is to predict the characteristic structures of
well-determined morphology (for example, atomic orbitals), in a manner
that is tied to boundary conditions, and to the various spatiotemporal
constraints to which the system is subjected (external forces, symmetries).
Stationary solutions can be obtained independently from any initial
condition, which enables us to solve problems of the “chicken and egg”
variety.
 





 
Gravitational Structures

 
It seemed logical to try, initially, to validate the new theory in the area
where chaos was for the first time demonstrated, celestial mechanics. This
established all the more so that our own solar system seems to show
numerous structures, all of which are not satisfactorily explained by the
standard model of formation (distribution of the distances between planets,
their angular momentum, their mass, etc.).

It is a matter of applying the new theory to bodies immersed in a
gravitational field. This imposes new constraints, which will render yet
more distinct the theory of its microphysical counterpart. The primary
constraint is the equivalence principle of Einstein, which should remain
valid in the new framework. This is translated by the fact that, in the
equation of generalized geodesics (which is transformed into a Schrödinger
equation), the inertial mass of the object whose motion one is following
should disappear. Moreover, in the case of the Kepler problem (that of a
body orbiting a central body), one expects that the fractal fluctuations
increase with the active gravitational mass of the central body, as is already
the case for the curvature of spacetime. As a result of these two constraints,
the constant w which appears in the Schrödinger equation is expected to
have the dimension of a velocity, instead of the Planck constant of action, ħ,
having the dimension of an angular momentum, which appears in standard
quantum mechanics applied to microphysics. One thus foresees a universal
quantization of the velocities of astronomical bodies: as we shall see, this
prediction is now verified by observational data from our own solar system
up to cosmological scales.
 





 
The Kepler Problem

 
In applying the new theory to Kepler’s problem of a body orbiting a central
potential (which can correspond to the planets around a star or again to
binary star systems, to galaxies, or to other celestial bodies), one finds that,
contrary to the “predictions” of classical theory, all the distances are no
longer equiprobable. More precisely, the classical theory makes no
prediction in that case, which we translate by equal probability. It is able to
predict the position of a planet starting from known initial conditions of
position and velocity, but it has no answer to the general question: “What is
the distance of a planet to its star?” This is the opposite of the quantum
description of an electron in an atom: the theory can give the probability of
presence of the electron at a certain distance of the nucleus, independently
of any initial condition (but dependent on its quantized energy). The
distribution of probabilities of position of planets shows marked peaks for
quantized values of the distance. As a function of a certain quantum integer
number n, one predicts that the most probable distances should vary as n2

and the velocities as vn = w/n.
 





 
The Solar System

 
The first Keplerian system on which to put such a prediction to the test is
clearly our own solar system. The intuition of the existence of a law of
structuring the distances between planets goes back to Kepler. Numerous
empirical propositions have been made (Titius-Bode laws), but have not
been very convincing or significant, since there are too few constraints in
this kind of law (too many parameters for too few objects).

Our prediction of an n2 law sheds new light upon this question, since it is
made with only one free parameter, the constant w0. Moreover, as we shall
see, the value of this constant, w0 ≈ 150 km/s, while not predicted
theoretically,[187] can be derived from extragalactic observations, which are
completely independent of planetary data and, however, yield the same
structures, with the same numerical values for velocities (although the
distances differ by a factor 1012!). It has already been noted elsewhere that
empirical laws varying as n2 provide a much better alignment with our
planetary systems than the scale laws (Pecker and Schatzman). One can
also recall in this regard the attempt of Herbert Jehle, who had proposed as
early as 1938 to apply the recent development of quantum mechanics to the
solar system (but without any justification), and that of Philippe Blanchard,
of the University of Bielefeld in Germany, who used Edward Nelson’s
stochastic mechanics as description of the diffusion process of the initial
disc (but in a different manner than the proposition made here).

I have applied the new scale relativity approach to the solar system in
collaboration with Gérard Schumacher, Jean Gay, Patrick Galopeau, and
Eric Lefèvre.[188] It is in fact sufficient to calculate the velocities of the
planets of the inner solar system (the telluric planets) to verify that our
theoretical prediction is accurate in its smallest details (see figure 30). The
velocities of the inner solar system’s planets are effectively given by vn =
w0/n km/s, where w0 = 144.3 ± 1.2 km/s, and where Mercury, Venus, the
Earth, and Mars respectively take the positions n = 3, 4, 5, and 6: ≈ 48 km/s
for Mercury, ≈ 36 km/s for Venus, ≈ 29 for the Earth, and ≈ 24 for Mars.



Figure 30 Fit between theory and observations in our solar system

the figure compares the observed positions of planets with theoretical
prediction (white: peaks of probability density; grey: minima of probability
density). The internal solar system in its entirety is the orbital n = 1 in the
outer solar system, which allows us to reconcile the constants of the two

systems.
 

This law extends up to the asteroid belt, where the principal peaks (in
mass) correspond to n = 7 to 10. Its validity for the system of satellites
around the giant planets has been recently confirmed with a high statistical
significance.[189]

But the most remarkable result is that, according to this law, Mercury is
not the first potential planet in the solar system, but the third. In particular,
the fundamental level (n=1) predicted by the new theory is expected to lie at
0.043 Astronomical Unit by solar mass (AU, the distance between the Earth
and the Sun). Moreover, this theory is not specific to our own solar system,
but should apply to any planetary system formed under similar conditions.



As we shall see hereafter, this theory has been able to anticipate the
discovery of extrasolar planetary systems and to predict (before their
discovery starting in 1995) the existence of fundamental structures for these
systems, the first of which is a peak of probability density lying just on this
fundamental orbital.

In our solar system, two intra-mercurial orbitals are thus predicted, one
at ≈ 0.17 AU (n = 2) and the other at ≈ 0.043 AU from the Sun (n = 1). The
existence of a small planet or of an asteroid belt at 0.17 AU is not out of the
question.[190] The mass of a planet should be lower than 1/1,000 of that of
the Earth, to not perturb the well-established result of the advance of
Mercury’s perihelion predicted by Einstein’s general relativity (42.98
arcseconds per century, the observed value being 43.11 ± 0.21). No small
planet has been found, but there is indirect evidence for a possible asteroid
belt at this distance from the Sun, since the extrapolation of the orbits of
many Earth-crossing asteroids has shown that they come from this region.
Similarly, if it seems very improbable that a small body could have survived
at 0.04 AU from the Sun (it would have quickly evaporated), there have
been repeated indications of the existence of transient dust density peaks
just at this distance from the Sun.[191]

Many other structures in the solar system can be accounted for by the
“macroquantum” approach. Some of them were known but misunderstood,
but also completely new structures have been predicted, then subsequently
validated by new observations.

The mass distribution of planets in the inner and outer solar system
(decreasing toward the Sun and toward the exterior) can be accounted for
by the shapes of the solutions (“orbitals”) to the equation of dynamics,
which has taken a Schrödinger-type form (due to the fractality of the
chaotic orbits). These shapes provide the density distribution of the initial
protoplanetary disk, which is subsequently fragmented into substructures
finally giving rise to the planets with their observed mass distribution:
decreasing toward the interior and the exterior, implying the existence of
asteroid belts instead of accreted planets to the exterior, namely, the Mars-
Jupiter belt for the inner solar system and the Kuiper belt for the outer one.

The new fractal approach can be applied to the Sun itself. The Keplerian
velocity at its radius (wsun = 437 km/s) is very close to three times the
velocity of the fundamental orbital. Moreover, the concept of a
macroquantum theory naturally leads to introducing the equivalent of the de



Broglie wavelength and period (but with a macroscopic constant which is
no longer the Planck constant, but is now linked to the Sun mass and to the
above velocity wsun). The remarkable result is that this macroscopic de
Broglie period yields exactly the Sun cycle period of 11 years, which was
up to now unexplained. The same formula also accounts very well for the
recently observed magnetic and spot cycle of other nearby solar-like stars.
[192]

Structuring has been predicted and validated for many other objects in
the solar system, such as perihelia of sungrazers (comets which approach
very close to the Sun and often fall on it); the Mars-Jupiter belt; obliquities
and inclinations of planets and satellites; and even space debris around the
Earth.

But one of the most impressive successes of the theory concerns the
Kuiper belt (the scattered and very distant one), since, as for exoplanets, the
prediction of structures was made at the beginning of the 1990s, well before
the objects themselves were discovered. The first prediction amounts to just
extrapolating the outer solar system sequence in n2, as can be seen in Fig.
30 (lower part). The inner solar system is n = 1, Jupiter, Saturn, Uranus and
Neptune are n = 2 to 5, and Pluto n = 6. We now know that Pluto is not
alone, and that the main Kuiper belt shows a large density peak just at this
distance of 40 AU. But we can see on this figure (dating from the beginning
of the nineties and given in the first version of this book, then still empty)
that other zones of high probability are expected beyond this distance (n = 7
to 10).

As can be seen in Fig. 31, the scattered Kuiper belt objects (SKBOs)
discovered since this book’s original publication support this prediction in a
remarkable way. Moreover, it is noticeable that the dwarf planet Eris, the
discovery of which is the cause for Pluto, less massive than Eris, being
demoted to the status of dwarf planet, has a semimajor axis that lies just in
the density peak n = 8, at a distance of 68 AU.



Figure 31 Probability peaks in Kuiper Belt
Distribution of the semimajor axis of Scattered Kuiper Belt Objects,

compared with the theoretical expectation of probability density peaks for
the outer solar system. (The very high Kuiper belt peak at n=6 is not

shown). One theoretically expects probability peaks for integer values of
the variable √(a/1.115), a being the semimajor axis of the orbit in AU. The

probability of obtaining such an agreement between prediction and
observation by chance is only 2 x 10-4.

 
This is not all. A new hierarchical level of the outer solar system can be

expected for the SKBO population, by taking their main peak at 57 AU as
the fundamental level. One therefore expects new probability peaks for
semimajor axes 57 n2 AU, i.e. 228 AU (n = 2), 513 AU (n = 3), 912 AU (n
= 4), 1425 AU (n = 5), etc. This new level of hierarchy has indeed been
discovered these last years with the dwarf planet Sedna, having a semimajor
axis of 509 AU, which agrees closely with the n=3 density peak. Moreover,
several objects have been found around 220 AU (n=2) and one around 910
AU (n=4).



The solar system is therefore structured in a self-similar way over at
least five levels of hierarchy (Sun, intramercurial zone, inner solar system,
outer solar system, very distant SKBOs), with each of these levels
themselves showing well-defined structuring in close agreement with the
new “Schrödinger” approach (based on the chaotic dynamics of these
subsystems on long time scales).

 





 
Extrasolar Planets

 
The scale relativity approach has been successfully applied to the study of
extrasolar planetary systems.[193] At the time of this theoretical prediction
(beginning of the nineties[194]), extrasolar planetary systems had not yet been
discovered. But based on the universality of the proposed theoretical
approach, we were able to conclude that these planetary systems, once
discovered, should show universal structuring: in particular, we expected
exoplanets to lie preferentially in the fundamental ‘orbital’ at an orbital
velocity of about 150 km/s (corresponding to a semimajor axis of 0.043
UA/solar mass). This prediction has been verified in an extraordinary way,
since the first exoplanet discovered around a solar-like star, 51 Peg, has
been found to lie precisely at this expected fundamental distance, followed
by many others. Today (2018), more than 3,000 exoplanets are now known,
and almost one third of these planets have been found in the predicted peak
of probability density.

I show in Fig. 32 (established before 1998 and given in the first edition
of the present book) the observed distances to their star of the first
discovered exoplanets, compared with the solar system planets and with the
zones of expected high probability. Then in Fig. 33, the observed
distribution in 2008: the n2 law was still supported with a very low
probability to be obtained by chance of only 4 x 10-7 and the fundamental
level peak has become clearly dominant. There is a clear peak for n = 7,
while this density peak is suppressed in our own solar system due to
resonances with Jupiter. This is different from the case of the n=8 and n=9
peaks, which are manifested in the solar system as the main masses of
dwarf planets (Ceres and Hygeia) in the Mars-Jupiter asteroid belt.

Today (2018), there are a large number of different planetary systems
discovered by various methods, which have a tendency to smooth out the
subtle structures. However, as can be shown in Fig. 34, the main density
peak predicted from the solar system data to lie around 140-150 km/s is still
present in a very clear way, thus offering a strong validation of the scale
relativity theory (in its macroquantum version applied to the formation and
evolution of planetary systems). The paradox is that such a scale theory,
which places the scaling effect not at the level of phenomena, but at the
fundamental level of spacetime itself, leads to a crystal-like regular



quantization inside each subsystem (not of the positions themselves, but of
their peak of probability density). However, a self-similar scaling is
recovered between the subsystems, as we have seen for our own solar
system.
 

 
Figure 32 Distribution of first exoplanets (1996)

Fit between theoretical predictions and observations for the first discovered
exoplanets (1996). This diagram (given in the 1998 edition of this book)
compares, for the inner solar system and the first exoplanets to have been

found, the predicted values at the observed values of the semimajor axes of
planetary orbits (the zones of high probability are in white, those of low

probability are shaded). The peaks of probability are not adjusted, but are a
priori fixed (they correspond to the constant w0 = 144 km/s). The

probability of obtaining such a configuration by chance is less than
1/10,000.



Figure 33 Observed distribution of exoplanets (2008)
the fundamental orbital peak is dominant, and secondary probability peaks

are observed at the expected values, around the positions of the solar system
planets.

 



Figure 34 Exoplanet velocities (2018)
Observed distribution of velocities for 900 exoplanets with masses larger
than one twentieth of the mass of Jupiter (2018). The expected probability

peak around 150 km/s is clearly apparent.
 





 
Planets Around a Pulsar

 
More extraordinary yet is the case of the three planets discovered around
the pulsar PSR B1257 + 12 by A. Wolszczan and his collaborators. The
agreement with theory is so precise that the second-order terms can be
tested.[195] In fact, the conservation of energy and of the center of gravity of
the sub-disks finally giving rise to the planets after accretion implies that, in
the absence of perturbation, the planets should be found at the average
values of the probability distributions (given by n2 + n/2), instead of the
peaks of these probability distributions (in n2). The agreement was (in 1998)
at the level of around 1/10,000 (see figure 35), ten times better than with the
formula in n2 (which would already have been remarkable).

Figure 35 System of three pulsar planets



Fit between theory and observations for the system of three planets around
pulsar PSR B1257 + 12. The diagram compares the observed values of the
semimajor axes of three planets orbiting around the pulsar PSR B1257 + 12

to the possible values theoretically predicted. The agreement between
prediction and observation is much more precise than the resolution of the
diagram, so three insets enlarged by a factor of ≈ 50 have been inserted to
show the slight residual differences. We have supposed here that the mass

of the pulsar was 1.48 times the solar mass, which corresponds to a velocity
in the fundamental state for this system of 3 w0 (which is just the Keplerian
velocity at the Sun radius). The quality of the alignment does not depend on
this choice, only the value of the slope. The probability of obtaining such a

configuration by chance would be on the order of 1/100,000.
 

This agreement has since still been improved. By analytically integrating
the motion of these planets to about 1 billion years (since their formation),
we have been able to show that the conditions which held in their formative
epoch were still achieved today, without major perturbation. This is due in
particular to the small masses of the three planets (on the order of 3 times
the Earth mass and the Moon mass). Moreover, the continuing observation
of the system over more than 13 years by Wolszczan, and the account of
mutual gravitational effects between the planets has allowed for a great
improvement in the determination of their orbital elements. These new
values could have degraded the agreement with the scale relativity theory
predictions. On the contrary, this agreement has been improved by a factor
10, reaching a precision on the order of some 10-5. Such a precision is
usually reserved for relative celestial mechanics measurements, while it is
applied here to the position of the planets themselves (their semimajor axes,
and also the eccentricities).[196] To give a comparison, this means that if one
makes a model of this system at a scale of 100 m (this has been in process
at Paris-Meudon Observatory), the positions of the planets would fall on the
expected law with a precision of some millimeters.
 





 
Structure Formation

 
In the standard theory of gravitational structure formation, whatever the
scale, structures cannot form from an initial constant density. One needs an
initial fluctuation, which is difficult to reconcile with the conditions of the
primeval universe, which were remarkably smooth. In the scale
relativity/macroscopic Schrödinger approach, this problem is solved:
indeed, a constant density is expressed as a harmonic oscillator potential,
and the Schrödinger equation has well-known stationary solutions in that
case (see Fig. 36).[197]

 



Figure 36 Quantum harmonic oscillator
The first three modes of the solution of a Schrödinger equation for a particle

in a 3-dimensional harmonic oscillator potential correspond to the
gravitational potential of a background of constant density (the mode n = 2
decays into two submodes). In the scale relativity approach, the geodesic

equation can be integrated in terms of a Schrödinger equation, so that
structures are formed even in a medium of strictly constant density.

Depending on the value of the energy, discretized stationary solutions are
found that describe the formation of one object (n = 0), two objects (n = 1),
etc. I have simulated these solutions by distributing points according to the



probability density. The mode n = 1 corresponds to the formation of binary
objects (binary stars, double galaxies, binary clusters of galaxies, etc.).

 
The remarkable result is that these solutions are spontaneously self-

organized in terms of one object, a pair of objects, an alignment of objects
(three or more), or a trapezoidal shape of four objects, etc. This explains a
well-known fact of astronomy: stars, clusters of stars, galaxies, and clusters
of galaxies appear as single objects, but also very frequently as pairs, of
stars—more than 50% of stars in the galaxy are double—but also pairs of
star clusters, of galaxies, and of clusters of galaxies. Concerning the
alignment and quadrilateral shapes, it is clear that they cannot be stable
because of the mutual effect between the bodies. Such shapes can therefore
appear only at the epoch of their formation, than are expected to change.
Here again, this is confirmed by observations: the zones of star formation
show in a systematic way star alignment and trapezia (such as the Orion
trapezium cluster, well-known to amateur astronomers). The same is true
for galaxies: compact groups of galaxies showing similar shapes do exist
and are considered as young systems seen just after their formation. The
reason for these shapes is not known in the standard framework, while it is
clearly predicted and understood in the scale relativity theory.
 





 
Planetary Nebulae

 
Planetary Nebulae are, despite their misleading name, stars which have
ejected their outer envelope. Besides the naturally expected spherical shape,
they have shown a wide diversity of different shapes which are not really
explained by the standard theory. The scale relativity approach has been
able to account for them in detail, see Fig. 37 (predicting in particular the
numerical values of the ejection angles). Moreover, some new structures
which had not yet been observed at the date of this prediction (for example,
the bottom-left shape of Fig. 37) have subsequently been discovered.[198]

 

Figure 37 Quantized shapes of planetary nebulae

Comparison between quantized shapes predicted from the scale relativity
equation (taking the form of a macroscopic Schrödinger equation) for the

ejection of gas from a center, and typical observed Planetary Nebulae (outer
shells ejected by some stars).



 





 
Galaxies

 
Several structures are also observed at the extragalactic scales, which
demonstrate the expected universality of structuring in velocity space (in
agreement with, and as a consequence of, Einstein’s equivalence principle).
For example, the rotation velocity of spiral galaxies is known to increase
from their center and to show a flat maximum in their outer regions: this is
one of the arguments for a missing component in the dynamics of
extragalactic objects, sometimes attributed to “dark matter,” since the
rotation velocity should decrease outside the galaxy according to Kepler’s
law. As can be seen in Fig. 38, the probability distribution of these
maximum velocities shows a well-defined peak at the same value (around
150 km/s) as the fundamental orbital of our inner solar system, which
corresponds also to the main exoplanet probability peak.[199]

Figure 38 Distribution of the outermost observed velocities in spiral
galaxies



(flat rotation curves) from the catalog of rotation curves for 967 spiral
galaxies by Persic and Salucci.

 
A similar result is obtained for galaxy pairs. In 1977, a statistical effect

of quantization of redshift between the two members of pairs of galaxies
was suggested by William Tifft of the University of Arizona.[200] Such an
effect seemed very improbable, since the redshift is expected to come from
radial velocity, i.e. from the velocity projected along the line of sight, while
the pairs can have any orientation. Indeed, it has not been confirmed with
modern data. The catalogs of galaxy pairs were very scarce at that time, and
the numbers therefore showed strong relative fluctuations. Today, new
catalogs have been built of more than 13,000 galaxy pairs, and the
distribution of their observed radial (i.e., projected) velocity differences is
quite smooth and monotonic as expected, in agreement with the standard
view of the redshift as radial velocity. However, if one performs a statistical
deprojection of these velocity differences, one finds that some values of the
three dimensional velocity are more probable than others (see Fig. 39).[201]

Moreover, one obtains a remarkable new result. Pairs of galaxies, from the
viewpoint of dynamics, correspond (in what one calls reduced coordinates
and masses) to exactly the same “Kepler” gravitational problem as a star-
planet couple, but at a mass scale and distance scale larger by a factor 1012.
The universality of the scale relativity approach, despite this huge scale
ratio, leads one to expect to recover the same fundamental level solution as
for our solar system and exoplanets as the main probability peak at around
150 km/s: this is exactly what is observed, in a systematic way, on all the
pair catalogs studied.



Figure 39 Velocity differences in galaxy pairs
Histogram of the distribution of the velocity differences between the

members of galaxy pairs (13,114 pairs in the Nottale-Chamaraux catalog),
obtained from a statistical deprojection of the radial velocities. The main

probability peak lies around 150 km/s, the same as for exoplanets (see Fig.
34), as expected from the universality of the scale relativity approach to

formation and evolution of gravitational structures.
 

Let us note, finally, that these results are only part of a much larger set of
structures predicted by the scale relativity theory. Toward extremely large
and small scales (temporally and spatially), other more definite
consequences of scale relativity are expected.

In the case of gravitational systems, only the Kepler problem has been
discussed here, but other types of quantization are predicted and have been
able to be confirmed for other potentials, the extragalactic case (the
universe at large scale) being particularly interesting. Verifications of the
theory in multiple systems have been obtained, over a vast range of scales:
the innermost solar system, satellites of giant planets,[202] asteroids and
comets, binary stars,[203] zones of formation of stars, planetary nebulae as we



have seen, galactic dynamics, local group of galaxies,[204] dynamics of
groups and clusters of galaxies, etc.[205]

 





 
Other Sciences

 
The theory of scale relativity/fractal spacetime has also been successfully
applied to sciences other than physics. This is not unexpected, since many
realms show an explicit dependence on phenomena over scales, as in
geography (which is even the origin of the concept through the scale of a
map), or living systems (biology). There are essentially two kinds of
possible applications.

One of them is the use of new scale laws to account for misunderstood
scaling phenomena. Recall that the scale relativity method amounts to
describing the scale dependence in terms of differential equations acting in
scale space. These differential equations, as in the case of motion laws, are
obtained from an optimization principle that ultimately comes back to the
principle of relativity itself. This allowed us to generalize the simple self-
similar fractal laws (of constant fractal dimensions) to more complex laws:
it is similar to the jump from inertial laws to Newton’s dynamics in the case
of motion laws.

The other application consists of applying the macroquantum
Schrödinger-type approach to systems for which the three underlying
conditions (infinity of virtual trajectories, fractality, and two-valuedness of
derivatives due to local irreversibility) are fulfilled, at least as an
approximation and on a large enough range of scales, which corresponds to
many turbulent or chaotic systems. We have already seen many applications
of this kind to gravitational structuring in astronomy.

Let us briefly review (in a non-exhaustive way) some of the new
applications of scale relativity to other sciences and domains.[206] Note that
scale relativity has led to important mathematical developments, in
particular by J. Cresson and F. Ben Adda;[207] to deep studies in philosophy
of science, especially led by Charles Alunni,[208] and in sociology by V.
Bontems and Y. Gingras;[209] to applications to psychoanalysis and
neurosciences in collaboration with Pierre Timar;[210] and to proposals, in
collaboration with Thierry Lehner, of new technological devices using
macroscopic quantum potentials.[211]

One of the most promising applications of the new scale laws has been
in geography. With Philippe Martin and Maxime Forriez, we showed that
the simple self-similar fractal laws with constant fractal dimension were



insufficient for describing drainage basins, while an approach in terms of
varying fractal dimension (corresponding to a kind of “scale dynamics”)
allowed a very precise and predictive description (see Fig. 40).[212]



Figure 40 Variable fractal dimension in geography

The first figure is a contour line in the drainage basin of the Gardons
(France). The second figure shows the observed variation with scale of its

fractal dimension (blue curve). It is compared with its variation (red dashed
curve) theoretically expected from an analysis of the fractal organization of
the rivers and of their corresponding drainage basin. The maximal fractal

dimension is also theoretically predicted by the same analysis to be
log3/log2 ≈ 1.585, in fair agreement with its observed value.

 
In geosciences, we applied, as early as 2006, the scale acceleration laws

obtained as solutions of scale differential equations to the question of the
arctic sea ice melting.[213] This acceleration of the melting was understood
from the fractal structure of the ice fracturation. At that time, the current



view was that the sea ice would not melt fully (after summer) before about
the year 2100. We were the first to use a critical scale law (that is, a law
including in its expression an explicit limitation in time) to show, before the
observation of the surprisingly low 2007 value, that the melting was
accelerating and that the arctic could be void of ice in the September
months as early as 2030 or before. This is now a well-known fact described
by many different models (see Fig. 41).

Figure 41 Acceleration of arctic sea ice melting
Comparison of the observed sea ice extent in the arctic with an exponential

model of melting acceleration (2017 data). The full melting (just after
summer) is expected between 2020 and 2030. Accounting for the ice

thickness, one finds a date even earlier than 2022 according to this model.
 

In biology, we developed models of morphogenesis and self-
organization in collaboration with Marc Pocard and Etienne Rouleau, then
with Charles Auffray and Eric Eveno in systems biology. More recently,
this approach has been applied in the different context of plant growth in
collaboration with Philip Turner. I shall just briefly illustrate this approach
by two examples.



The first example concerns morphogenesis of plant-like structures.
Based on the underlying fractal substratum of living systems (and on their
multi-scale organization), one can suggest that their growth equation,
written as a geodesics equation, takes a macroscopic Schrödinger form on
account of the fractal geometry at a large range of scales. The most simple
case to look at is the free growth of a system from a center. One obtains
probability density distributions depending on the ejection angles, similar to
the planetary nebulae case, but here along only one direction instead of two.
We have represented in Fig. 42 one of the results obtained by “injecting”
matter along the peaks of probability. We clearly get flower-like structures.
This is just the most probable shape, which is accompanied by many
slightly different manifestations resembling it, but with different angles. In
the figure, we have changed a tension term, which allows the opening of the
“flower,” and we have added the effect of gravity. The number of petals and
the number of shells are controlled by integer quantum numbers. This is not
contradictory with the genetic determination of biological shapes: it
supports it and simplifies it, since the genetic code would only need to store
these integer numbers to determine the shape.

Figure 42 This is not a flower



Opening of a flower-like structure, solution of a macroscopic Schrödinger
equation describing growth from a center. The various elements of the
shape (petals, sepals, stem, pistil) are all obtained once from the same

solution (it is not a flower model).
 

Another example of application concerns cell organization and division.
One of the most crucial questions in life science is the origin of cells. The
first living organism was a prokaryotic cell, and the most complicated
present organisms are still made of cells. They look like a kind of “life
atom” or “life quantum.” In the scale relativity framework, this is easily
understood through the natural quantization induced by the Schrödinger
form taken by the equation of dynamics. Moreover, among the new scale
laws obtained from scale differential equations, some of them (linked to
contraction/dilation) yield natural membrane or cell wall structures.
Another basic element of life is the process of cell division. In a classical
system, the energy can change in a continuous way, and if one increases the
energy, one generally increases the size of the system. But in a Schrödinger
regime, there are only some quantized values of the energy for which
structures can persist, and the effect of jumping from the fundamental state
to the first excited state does not yield an increase of size, but a spontaneous
division into two structures of about the same size as the original one.



Figure 43 Successive steps of a spontaneous “cell-like” division

The first (top left) and last (bottom right) structures are the fundamental
level and first excited state of the stationary Schrödinger equation. They

correspond respectively to one body and two separated bodies: one jumps
from one state to the other by simply changing the (quantized) energy. The

intermediary steps are also solutions, but of the time-dependent Schrödinger
equation, and can therefore only be transitory.

 
It is clear that a real cell and real cell division are far more complicated

than this simple description. The idea is simply that the division process
may correspond to a very fundamental and basic law which has been
implemented by biological evolution (in combination with many other
elements, some of which are also accounted for by the scale relativity
approach).[214]

Let us end this brief review of applications of scale relativity by
recalling various occurrences of log-periodic laws, in particular in life
sciences (species evolution and embryogenesis), history (evolution of
civilizations), and geosciences (earthquakes). These scale laws are



characterized by fluctuations around self-similar laws accelerating toward a
critical date or decelerating from this date. They can be obtained as a
natural consequence of scale covariance.

In collaboration with Pierre Grou and Jean Chaline, the major
evolutionary leaps of several lineages of species evolution have been shown
to be accelerating toward a critical time, specific to the lineage, while some
of them, like echinoderms, decelerate from their date of advent (see fig. 44).
[215] The critical date of accelerating lineages can be interpreted as the end of
their capacity of evolution, not their extinction a priori. For example, for
some dinosaurs the critical date is about 140 million years in the past, while
they disappeared 65 million years ago. It is just that the morphological
criterion used (shape of the legs) ceased to evolve after the critical time and
remained adapted to the environment. In the case of rodents, which show
the largest variability among mammals, the critical date can be as large as
60 million years in the future. For primates (including hominidae), Tc is two
millions years in the future, but all this research (which is concerned with
lineages, not species and even less individual beings) is at the scale of
resolution of million years, so that this may mean that the critical date has
been reached for our lineage. Note that in this case, a kind of retrodiction
has been gained, since the fit of the jump dates to a log-periodic law has
revealed a missing link (from the viewpoint of fossil records) about 10
million years in the past. This is exactly the estimate from genetic distances
(which uses the “distances,” i.e. the amount of difference, between two
DNAs) of the date of the pan-gorilla-homo common ancestor, whose fossil
has not yet been found.

In collaboration with Roland Cash, the same kind of law has been used
to analyze the chronology of the main dates of embryogenesis and human
development. We have found a clear decelerating log-periodicity beginning
right at the conception date and including events like the birth and the
passage to adulthood.[216]

Under the impetus of the economist Pierre Grou, the same kind of
analysis has been also applied to the evolution of societies/civilizations, to
economic history, and by Ivan Brissaud to many examples of the
chronology of technological innovation.[217] One can show that the
alternations of crises and economic upturns that most societies experience
can be described by log-periodic scale laws accelerating toward a critical
date (dependent on the civilization studied). In particular, we have found (in



1996) that the whole western civilization shows an acceleration toward a
critical date around 2050-2080, since the neolithic and even before (see Fig.
46). This result has subsequently been confirmed and reinforced by
Johansen and Sornette, using different economic indices. This “super-crisis”
should not be considered as catastrophic in itself. It is just the manifestation
of a natural change, of an inevitable transition, like the teenage crisis which
is the passage to adulthood.[218] Then the critical date does not mean that
something specific will happen at this precise date: it is more like the
summit of a mountain. Actually, it has now become clear to everyone that
humanity is entering a crisis (or natural change) period of a completely
different level from previous crises. The question is: shall we accept it and
participate in this inevitable change, allowing a soft transition, or deny it
and fight against it, which can only lead to suffering.
 





Figure 44 Log-periodic evolution on the “tree of life”
The dates of major evolutionary events of seven lineages (common

evolution from life origin to viviparity, Theropod and Sauropod dinosaurs,
Rodents, Equidae, Primates including Hominidae, and Echinoderms) are

plotted as black points in terms of log(Tc − T). Their log-periodicity
therefore appears as a quasi-periodicity in this diagram, although they

strongly accelerate or decelerate in real time (see the numbers, given in
million years in the past). They are compared with the numerical values

from their corresponding log-periodic models (computed with their best-fit
parameters). The adjusted critical times Tc and scale ratios g are indicated
for each lineage. The number between brackets is the uncertainty on Tc in

million years.

Figure 45 Main steps of embryogenesis and human development

The decimal logarithm log(Tn) of the dates (in days), counted starting from
the conception date, is plotted in terms of their rank, showing a log-periodic

deceleration with a scale ratio g = 1.71±0.01.
 



Let us end with an application in geosciences, performed in
collaboration with Fred Heliodore, using log-periodic laws to study
earthquakes. This has been one of the first domains of application of log-
periodicity, by Didier Sornette and his collaborators.[219] However, here the
idea is different, since, instead of searching for log-periodic variations of
external measured quantities (which are not always available), we directly
use the observed magnitudes and rates of earthquakes. The large seisms are
systematically followed by aftershocks: the rate of these aftershocks shows
peaks at some particular dates which decelerate in a very clear log-periodic
way from the main earthquake date (see Fig. 47). The aftershocks also show
bursts of their magnitudes, the burst dates being also governed by the same
log-periodic law.[220] There is therefore some predictability of the
aftershocks, but with uncertainties which increase with time, due to the
logarithmic nature of the law.

Figure 46 Log-periodicity of civilizations
Comparison of the median dates of the main economic “crises” of Western
civilization with a log-periodic accelerating law of critical date Tc around

2075 and scale ratio g = 1.32 (figure a). The last white point corresponds to
the predicted next crisis predicted around 2000 at the date of the study
(1996), as has been later supported in particular by the 1998 and 2000
market crashes. Figure b shows the estimation of the critical date. This

result is statistically highly significant (the probability to obtain such a high
peak by chance is smaller than 1/10,000).



 
Finally, one of the most extraordinary applications of the theory of scale

relativity will perhaps be to understanding turbulence. Although it was
described by Leonardo Da Vinci several centuries ago, and though the
equations of fluid mechanics date back to the beginning of the 19th century
with Euler, Navier, and Stokes, turbulence remains essentially
misunderstood. The breakthrough came from Louis de Montera’s insight,
according to which the scale relativity approach and methods should be
applied, in the description of a turbulent fluid, in velocity space instead of
position space.[221] As a consequence, the equations of dynamics (or more
precisely, their derivative) can be given the form of a macroscopic
Schrödinger equation. In collaboration with Thierry Lehner, definite proofs
of the validity of this proposal have been obtained from an analysis of
experimental data, leading in particular to an understanding of the
intermittent character of turbulence.[222] Therefore, fluid turbulence
implements my now 25-year-old insight[223] according to which a fractal
medium (the turbulent fluid in velocity space) may play the role of a fractal
and nondifferentiable space, and then confer to the particles which move in
it (the test particles and/or the fluid particles themselves) macroscopic
quantum-type properties. This means that, at last, not only observational,
but now experimental evidence has been obtained in laboratory of the
existence of a macroquantum regime governed by a Schrödinger equation
in a classical system, which was a theoretical prediction of the scale
relativity theory.

Figure 47 Log-periodicity of seismic aftershocks



The rate of aftershocks which followed the main Sichuan earthquake of
May 12.27, 2008 (magnitude 7.9) is shown in function of the logarithm of
the difference between the aftershock date and the main earthquake date,

ln(T − Tc), for Tc = 12.2665 May 2008. The vertical lines indicate the peaks
expected according to the best fit period, 0.619 (corresponding to a scale
ratio g = 1.86). It is clearly seen that the observed peaks of the aftershock
rate agree very closely with a log-periodic law decelerating from the main

seism date, from time-scales of hours to several months.
 





 
CONCLUSION

 
In this work, I have endeavored to show how the principle of relativity is
not a definitively fixed principle, but a developing one, and to present the
outline of an attempt to generalize it. I have tried to describe here the
underlying physical principles of the new theory, and have also tried to
present (in a non-exhaustive manner) some possible consequences of this
new approach. As we have seen, the theory of scale relativity enables us to
propose concrete solutions to a certain number of problems which have
remained unresolved in the framework of current physics.

However, scale relativity, being in addition an extension of the relativist
way of thinking, allows us to shed a new light on questions that go much
further than physics alone. Many apparently unsolvable problems find a
solution by the mere extension of our mental structures. What seemed
impossible at one point is no longer so one day, not because the outside
world has changed, but because our mind has opened to new possibilities,
once hidden. As a way of concluding (and of beginning, since we are only
at the start of such an enterprise: it is not impossible that it will take several
centuries to decipher the abundance of structures entailed by the
abandoning of the hypothesis of differentiability), we will discuss some of
these questions.
 
By explicitly introducing scales into our way of thinking, we can better
understand certain problems coming from scientific fields other than
physics. Thus, in the life sciences, there is a tendency to reduce the
description of living systems to their genetic code or their genes. Yet these
systems, especially the most highly evolved, are characterized by the
nesting of different levels of organization: atoms, genetic code bases, DNA,
chromosomes, cell nuclei, cells, tissues, organs, organisms. It is possible to
envision that all these levels coexist, that each one has its own way of
functioning, that none are reducible to the others, but that they are all
connected to one another. Each level is essential, and contains new
information that cannot be reduced to that of the preceding levels. In
addition, this information circulates between scales, from the small to the



large, but also in the other direction, assuring the cohesiveness of all the
levels.

Over the passing of billions of years, from unicellular to multicellular
life, new complex structures do not replace older ones: the multicellular
being that we are is a set of cells, not a single enormous cell. It is a new
level of organization which has appeared. Not only does it not suppress the
cellular level, but on the contrary it protects and expands its possibilities of
surviving.

This logic can be extended to social organization. We can live at the
level of local associations, of the city, of the region, of the nation, of the
continent, and of the planet: none of these levels should substitute another
one; all are necessary, being able to have their own mode of democratic
organization, and assuring the cohesion of everything by a double
communication, between elements of the same level (for example the
European countries among themselves), but also between different scales
(with Europe as a whole and with their separate states).[224]

 
One question which has fascinated physicists and philosophers is that of the
nature of time and its passing. Relativity enables us to elucidate several
aspects.

First of all, the special relativity of Einstein and Poincaré considers time
as the fourth dimension of spacetime. While we are conscious of the three
dimensions of space, our consciousness of time escapes us—more
specifically, we are not conscious of time directly, but only through a
change in space—, but this is purely a consequence of our situations. As we
are able, for the moment, to travel only at slow velocities relative to the
speed of light, the rotations which are accessible to us in spacetime are
minuscule, while we can turn as we like in space (recall that a motion in
space is but a rotation in spacetime). If one day humanity is able to access
velocities close to that of light, we would “see” time by experiencing four-
dimensional rotations.[225]

Special relativity also implies, by the existence of light cones, the
separation between past and future, and thus allows causality. Had
spacetime been Euclidean, it would have been possible to make a complete
turn in spacetime and to return to the past simply by accelerating, with the
problems of causality that this would have provoked. The existence of a



maximal speed that cannot be exceeded (the speed of light) limits the
possible rotations and separates the past and the future.

Let us now consider the question of the passage of time. Why does time
pass? We have learned that time is one of the coordinates of spacetime and
that what is time in one reference system can become space in another. In
addition, this question has no meaning in itself. One should ask whether
space passes as well! But the “passage” of space is motion. It is in the
nature of things that, with respect to whatever reference system, the three
spatial coordinates change. It is immobility which poses a question, not
change. Even if we believe we can speak of rest for a macroscopic body, it
is never anything but an approximation, and quantum mechanics teaches us
that the particles which it is made of are never at rest. Rest, ultimately, does
not exist between two objects: even for a temperature of absolute zero,
which is an unattainable horizon, one would have to take into consideration
the energy of a vacuum. There is only rest in an extremely particular
reference system, which is the proper reference system specific to each
object, moving as the object moves.

We can now think, no longer in terms of space over the course of time,
but in terms of spacetime. The passing of the temporal variable then poses
no problem, quite the contrary. The other three (spatial) coordinates always
being subject to change, it is the same way with the fourth (temporal).
“Change is like nothing,” in space as well as time. Nevertheless, rest in
space does indeed exist, in the reference system proper to each object. What
is it for time? When we speak of a proper reference system, we mean a
reference that moves with the object, but in which time passes (this is
proper time, which defines the invariant of Einstein’s theories). But we can
go further, and place oneself in a reference system completely proper in
spacetime, which is quite simply the reference of the present. In this
reference system of the here and now, which is finally that of each
individual object, time no longer passes, and the relativistic invariant takes
the form that it has for light, ds = 0! It is a completely free and empty
reference. But certainly the extension and the multiplicity of objects implies
the coexistence of multiple different reference systems so well that, in the
changes of reference, the passage of time and different phenomena
reappear.

If the passage of time can thus be understood, what about its arrow?
Why does it always seem to flow in the same direction for all objects? This



manner of asking the question corresponds, once again, to the limited vision
of our current experience of reality. It is true for us, macroscopic bodies
conscious of the passage of time at the resolution of a hundredth of a
second at best, and moving at low speeds. However, we can change the
scale and the rate of movement, and imagine ourselves to be elementary
particles, traveling at speeds close to that of light, and being able to discern
temporal resolutions of 10-25 seconds. Then what would we see around us?
A flood of particles, some of which would advance in the direction of time,
but others which would move backward in time. Feynman has explained
antiparticles to be particles which travel backward in time. The more we
progress toward smaller scales, the more the number of particles and
antiparticles are balanced due to the creation and annihilation of pairs.
Toward very small temporal resolutions, meaning at very high energies,
there are as many objects that travel backward through time as objects
which move forward. Furthermore, according to the description in terms of
fractal trajectories within spacetime, each individual particle oscillates
between past and future at very small scales, as Garnet Ord showed at the
beginning of the 1980s. Time’s arrow is also dependent on scale.

One final question concerning time is that of irreversibility. It is not the
irreversibility or the reversibility of the laws in themselves which pose a
problem, but the coexistence of the two: one of the biggest problems in
physics is precisely the apparent contradiction between the reversibility of
fundamental laws and the irreversibility of real macroscopic systems.[226]

Scale relativity will not claim that the “true” laws are reversible—or
irreversible, but states the question otherwise: reversibility and
irreversibility are no longer absolute terms, but become relative on the scale
under consideration.

First of all, it introduces a local level of description, more profound than
that of current quantum mechanics. At this level, the fundamental laws are
irreversible: there is no invariance by reversal of direction of the
infinitesimal temporal element.

The methods of quantum mechanics are then reconstructed by
combining the two directions of the passage of time: the laws obtained, at a
more global level, become reversible again, in terms of a new descriptive
tool (the wave function), which accounts for both time directions together
using complex numbers.



Next, the reduction (also called “collapse”) of the wave function
reintroduces a fundamental irreversibility tied to measurement in the
passage from quantum to classical. Still, the laws of classical mechanics for
point particles are reversible (this last transition remains problematic).

The passage to statistical mechanics for a very large number of particles
reintroduces, with thermodynamics, a fundamental irreversibility described
by the law of increasing entropy. With dynamical chaos, this becomes true
even for a small number of bodies: the laws of celestial mechanics become
chaotic starting from the three-body problem. One then finds irreversibility
again over very large scales of time, beyond the horizon of predictability
implied by chaos.

Finally, we have seen in the fifth part that one can reconstruct on this
basis a quasi-quantum macroscopic theory, in which reversibility again
occurs, no longer at the level of individual trajectories, but at the level of
the structures considered in their globality.

Thus the laws of physics can go through different “phase transitions” in
the changes of scale, and move from reversibility to irreversibility and vice
versa.
 
Before closing, let us add a few words on the problem of zero and infinity.
Kant, wishing to study the problem of the limits of the world in time and
space, was led to one of his antinomies of pure reason. Based on the
impossibility of an infinite series of phenomena and the necessity of
stopping somewhere, the thesis states that “the world has a beginning in
time, and is also limited in regard to space.” But the antithesis does not see
why one should stop here rather than there, and states that “the world has no
beginning, and no limits in space, but is, in relation to both time and space,
infinite.” Kant’s goal was not that “of finally deciding in favour of either
side, but to discover whether the object of the struggle is not a mere
illusion.”[227] Scale relativity’s introduction of finite and unsurpassable
scales of resolutions, which nevertheless possess the physical properties of
zero and infinity, finally resolves, it seems to me, this contradiction.

But one must not forget that this solution is obtained at the cost of a
radical change of the form of the laws of dilation toward the infinitely small
and toward the infinitely large. The nature of the Planck spacetime scale
and the cosmic scale become almost unthinkable to us. There are no longer
any laws at these two extremities of the world of scales, where physics



becomes totally degenerate. It would take a “microscope” capable of
infinite enlargement to “see” the Planck length. Inversely, the measure at
the Planck resolution of any interval of length, even that of the whole
universe, would be—the Planck length itself! Absurd statement? No, since
this measurement would necessitate an infinite energy, which simply cannot
be found except by taking the universe in its entirety. The Planck scale
contains the whole universe! At the other extremity, if one considers the
world at the maximal resolution, assumed to be given by the cosmological
constant, and one wishes to double this resolution, nothing happens: the
resolution has not doubled and the measured contents have not changed.
The existence of an invariant cosmic scale implies the statement, finally
coherent, that the universe is “one,” seen at its own resolution. Zero and
infinity meet. The physics of fractal spacetime is the physics of the
infinite...
 





 
AFTERWORD: THEORIES OF RELATIVITY: WHAT IT MEANS

FOR PHILOSOPHY
 

Charles Alunni
 

To Mia Zapata and Kristin Hersh
 
 

“There is nothing in the whole system of laws of physics that cannot be
deduced unambiguously from epistemological considerations.”

 
Sir Arthur Eddington[228]

 
“The present difficulties of his science force the physicist to come to grips

with philosophical problems to a greater degree than was the case with
earlier generations.”

 
Albert Einstein[229]

 
“The reciprocal relationship of epistemology and science is of noteworthy

kind. They are dependent upon each other. Epistemology without contact
with science becomes an empty scheme. Science without epistemology is –

insofar as it is thinkable at all – primitive and muddled.”
 

Albert Einstein[230]

 
“Relativity, a philosophical and scientific postulate, is a unifying principle

as well, a method of constructing the laws of physics, a mode of diagnosing
its crises, even a way of thought.”

 
Laurent Nottale[231]

 



 
1) Context

 
Since 1905, and in an always increasing manner, the technical
developments of Einsteinian relativity have been accompanied by a
necessary philosophical offshoot which has taken multiple and varied
forms.[232] The great names attached to these theories (special and then
general) have from the beginning always strongly insisted on the
incalculable consequences that the relativist revolution would have on our
ways of thinking, but also, on the fundamental importance of a
philosophical tradition entirely renewed by the elaboration of these same
scientific ideas.[233] To cite just a few, from the French tradition: Paul
Langevin (1872-1946), Jean Becquerel (1878-1953), Charles Nordmann
(1881-1940), E. M. Lémeray, Henri Galbrun (1879-1940), Léon Bloch
(1876-1947), Élie Cartan (1869-1951), and Georges Darmois (1888-1960);
and, elsewhere: Hermann Weyl (1885-1955), Sir Arthur Eddington (1882-
1944), Wolfgang Pauli (1900-1958), and Théophile de Donder (1872-1957).
[234]

Paul Dirac (1902-1984), author of a wonderful introduction to the
mathematics required for understanding general relativity, bears witness to
this connection of the scientific with the philosophical:
 

The time I am speaking of is the end of the First World War. That war
had been long and terrible. . . . Then the end of this war came, rather
suddenly and unexpectedly, in November 1918. There was
immediately an intense feeling of relaxation. It was something dreadful
that was now finished. People wanted to get away from thinking about
the awful war that had passed. They wanted something new. And that is
when relativity burst upon us.

I can’t describe it by other words than by saying that it just burst
upon us. It was a new idea, a new kind of philosophy, and it aroused
interest and excitement in everyone. The newspapers, as well as the
magazines, both popular and technical, were continually carrying
articles about it. These articles were mainly written from the
“philosophical” point of view. Everything had to be considered
relatively to something else. . . . At that time I was sixteen years old



and a student of engineering at Bristol University. . . . I was caught up
in the excitement of relativity along with my fellow students. We were
studying engineering, and all our work was based on Newton. We had
absolute faith in Newton, and now we learned that Newton was wrong
in some mysterious way. This was a very puzzling situation. Our
professors were not able to help us, because no one really had the
precise information needed to explain things properly, except for one
man, Arthur Eddington.[235]

 
Concerning Eddington, let us recall this typically British anecdote of an
absolutely essential author for one conducting a philosophical study of
theories of relativity and of attempts to unify these theories.[236] Ludwik
Silberstein[237] approached Eddington at the Royal Society’s November 6th,
1919 meeting, where he had defended Einstein’s relativity with his Brazil-
Principe solar eclipse calculations with some degree of skepticism, and
ruefully charged Arthur Eddington as one who claimed to be one of three
men who actually understood the theory (Silberstein, of course, was
including himself and Einstein as the other). When Eddington refrained
from replying, he insisted Arthur not be “so shy,” whereupon Eddington
replied, “Oh, no! I was wondering who the third one might be!”
 



 
2) Reception of Theories of Relativity

 
How does a new theory or discovery get accepted or rejected by a scientific
community? Historians of science have published many studies of the
reception of Einstein’s special and general theories of relativity.[238] For
Stephen Brush, there are three kinds of reasons for accepting relativity: 1)
empirical predictions and explanations; 2) social-psychological factors; and
3) aesthetic-mathematical factors.

We know that historians and sociologists of science belonging to the
analytic school consider that empirical (or “positivist”) and social factors
are the only alternatives for explaining how scientists choose theories.
Others, philosophers and, importantly, participants in the scientific
enterprise have stressed the importance of the third factor: the fact that a
theory must be correct because it is mathematically convincing and elegant,
aesthetically pleasing, and expresses a necessary truth about Nature. Albert
Einstein expressed this view in his 1933 lecture:
 

Nature is the realization of the simplest conceivable mathematical
ideas. I am convinced that we can discover, by means of purely
mathematical constructions, those concepts and those lawful
connections between them, which furnish the key to the understanding
of natural phenomena. Experience may suggest the appropriate
mathematical concepts, but they most certainly cannot be deduced
from it. Experience remains, of course, the sole criterion of physical
utility of a mathematical construction. But the creative principle
resides in mathematics. In a certain sense, therefore, I hold it true that
pure thought can grasp reality, as the ancients dreamed.[239]

 
Since Einstein began his 1905 paper with an aesthetic question—the

problem of symmetry in Maxwell’s theory—it would not be surprising if his
followers also gave priority to such issues.[240] The most important advocate
of the theory was Max Planck (1858-1947). Planck presented the theory at
the physics colloquium in Berlin during the winter semester of 1905-6, and
published a paper on it in 1906 (the first publication on relativity other than
Einstein’s). While Planck did not yet believe that the truth of the theory had



been demonstrated experimentally, he considered it such a promising
approach that it should be further developed and carefully tested. As a
professor at Berlin (at that time one of the major centers of physics) Planck
encouraged his students and colleagues to work on relativity theory. As
editor of the prestigious journal Annalen der Physik, Planck saw to it that
any paper on relativity meeting the normal standards would get published.
 

According to Goldberg,[241] Planck was attracted to relativity theory
because of “his philosophical and ethical convictions about the
ultimate laws of reality.” He liked the “absolute character with which
the physical law was endowed” by relativity theory, such as that the
laws of nature are the same for all observers. “For Planck this
represented the supreme objectivity toward which science was striving.
[242]

 
Max von Laue (1879-1960), who learned about the theory from Planck,

was quickly converted to it and eventually published the first definitive
monograph on relativity in 1911: he wrote that relativity “has found an
ever-growing amount of attention” despite its inadequate empirical
foundation and puzzling assertions about space and time.[243] We can see the
radical position of a physicist who gave the first experimental proofs of the
general theory: “If there were no experimental evidence in support of
Einstein’s theory, it would nevertheless have made a notable advance by
exposing a fallacy underlying the older mode of thought—the fallacy of
attributing unquestioningly a more than local significance to our terrestrial
reckoning of space and time.”[244]

One year later, in 1923, Eddington specified:
 

The present widespread interest in the theory arose from the
verification of certain minute deviations in the theory from Newtonian
laws. To those who are still hesitating and reluctant to leave the old
faith, these deviations will remain the chief centre of interest: but for
those who have caught the spirit of the new ideas the observational
predictions form only a minor part of the subject. It is claimed for the
theory that it leads to an understanding of the world of physics clearer
and more penetrating than that previously attained.[245]

 



As he asserted in a famous dictum, one should not “put overmuch
confidence in the observational results that are put forward until they have
been confirmed by theory.”[246]

Dirac, who constructed the first successful synthesis of special relativity
and quantum mechanics, made it clear that the experimental evidence was
not the primary source for his subsequent belief in the theory:
 

Suppose a discrepancy had appeared, well confirmed and
substantiated, between the [general relativity] theory and observations.
. . . Should one then consider the theory to be basically wrong? I would
say the answer . . . is emphatically no. The Einstein theory of
gravitation has a character of excellence of its own. . . . A theory with
the beauty and elegance of Einstein’s theory has to be substantially
correct. If a discrepancy should appear in some application of the
theory, it must be caused by some secondary feature relating to this
application which has not been adequately taken into account, and not
by a failure of the general principles of the theory.[247]

 
Einstein himself, though pleased by the eclipse results, gave them little
weight as evidence for his theory. According to his student, Ilse Rosenthal-
Schneider, after showing her a cable he received from Arthur Eddington
about the measurements, Einstein remarked, “But I knew that the theory is
correct.” When she asked what he would have done if the prediction had
not been confirmed, he said, “Then I would have been sorry for the dear
Lord—the theory is correct.” Later he wrote: “I do not by any means find
the chief significance of the general theory of relativity in the fact that it has
predicted a few minute observable facts, but rather in the simplicity of its
foundation and its logical consistency.”[248]

Many new fundamental and philosophical questions are involved in
these principles that will be carried on and extended in the theory of scale
relativity of Laurent Nottale.
 
α) The philosophical essence of theories of relativity
 

Eddington (as would Hermann Weyl or Gaston Bachelard) summarizes
it explicitly:
 



It is natural for a scientific man to approach Einstein’s theory of
Relativity with some suspicion, looking on it as an incongruous
mixture of speculative philosophy with legitimate physics. There is no
doubt that it was largely suggested by philosophical considerations,
and it leads to results hitherto regarded as lying in the domain of
philosophy and metaphysics.[249]

 
β) The centrality of the concept of relation
 

The relations unite the relata; the relata are the meeting points of the
relations. The one is unthinkable apart from the other. I do not think
that a more general starting-point of structure could be conceived.[250]

 
γ) The crisis of the concept of substance
 

In contemplating the starry heavens, the eye can trace patterns of
various kinds—triangles, chains of stars, and more figures. In a sense
these patterns exist in the sky; but their recognition is subjective. So
out of the primitive events which make up the external world, an
infinite variety of ‘patterns’ can be formed. There is one type of pattern
which for some reason the mind loves to trace wherever it can; where it
can trace it, the mind says, ‘Here is substance’; where it cannot, it says
‘How uninteresting! There is nothing in my line here’. The mind is
dealing with a real objective substratum; but the distinction of
substance and emptiness is the mind’s own contribution, depending on
the kind of pattern it is interested in recognising. It seems probable that
the reason for selecting the particular type of pattern is that this pattern
has (from its own geometrical character, and independently of the
material in which it is traced) a property known as Conservation.
Reverting from the four-dimensional world to ordinary space and time,
this property appears as permanence. That the mind would necessarily
choose for the substance of its world something which is permanent
seems natural and inevitable. The interesting point is that there is no
obligation on Nature to provide explicitly anything permanent; the
permanence is introduced by the geometrical quality of the
configuration, which the mind looks out for in whatever Nature
provides.[251]



 
δ) The promotion of the concept of structure
 

The investigation of the external world in physics is a quest for
structure rather than substance. A structure can best be represented as
a complex of relations and relata; and in conformity with this we
endeavour to reduce the phenomena to their expressions in terms of the
relations that we call intervals and the relata that we call events.[252]

 
Einstein’s law is the simpler law because it is consistent with what we
now know of the general plan of world-structure; Newton's law could
only be made possible by introducing a novel and specialized feature—
a stratified arrangement of structure—which is not revealed in any
other phenomena.[253]

 
ε) The idea of a “selective subjectivism” that rejects the idea of a pure
subject
 

The terms space and time have not only a vague descriptive reference
to a boundless void and an ever-rolling stream, but denote an exact
quantitative system of reckoning distances and time-intervals.
Einstein’s first great discovery was that there are many such systems of
reckoning – many possible frames of space and time – exactly on all
fours with one another. No one of these can be distinguished as more
fundamental than the rest; no one frame rather than another can be
identified as the scaffolding used in the construction of the world. . . .
Nature offers an infinite choice of frames; we select the one in which
we and our petty terrestrial concerns take the most distinguished
position.[254]

 
Perhaps a better way of expressing this selective influence of mind on
the laws of Nature is to say that values are created by the mind. All the
“light and shade” in our conception of the world of physics comes in
this way from the mind, and cannot be explained without reference to
the characteristics of consciousness. . . . The mind has by its selective
power fitted the processes of Nature into a frame of law of a pattern
largely of its own choosing; and in the discovery of this system of law



the mind may be regarded as regaining from Nature that which the
mind has put into Nature.[255]

 
Here, it is essential to establish a parallel with Hermann Weyl’s

coordinate systems[256] as “the unavoidable residuum of the ego’s
annihilation.”[257] For Weyl, the requirement of a coordinate system needed
for the application of analysis to geometry is the residuum of the “pure,
sense-giving ego” and its “immediate life of intuition” in the otherwise
completely “geometrico-physical” world of relativity theory. It bears the
ineradicable trace of transcendental subjectivity that “‘constitutes’ within
itself” the sense of this objective, purely conceptual, world. Of course,
according to the principle of general covariance, the choice of coordinate
system is essentially arbitrary since the laws of nature are to be formulated
in tensor form, valid for all coordinate systems. For Weyl, the choice of a
coordinate system, arbitrarily exhibited by an act of the constituting ego,
implies as well a local choice of unit length or gauge. In physics, more
specifically, the purely symbolic world of the tensor fields of classical
relativistic physics, is constituted or constructed only via subjectivity and is
not understandable as pertaining to objects of completely mind-independent
reality, transcendent to consciousness. The exact determination of the
concepts of physics obtained through symbolization cannot be
accomplished without the introduction of a coordinate system. It must not
be thought, however, that such an “objectification,” relative to a coordinate
system, is absolute:
 

But this objectification [Objektivierung] through exclusion of the ego
and its immediate life of intuition, is not attained without remainder;
the coordinate system, exhibited only through an individual act (and
only approximately) remains as the necessary residue of this
annihilation of the ego [das notwendige Residuum dieser Ich
Vernichtung].[258]

 
In his Philosophie der Mathematik und Naturwissenschaft (1926), Weyl

returns several times to “the problem of relativity,” in one instance
repeating the Ich Vernichtung passage of Raum-Zeit-Materie:
 



On the basis of objective geometrical relations, with which the axioms
are concerned, it is not possible to determine a point absolutely, but
conceptually only relative to a coordinate system, through numbers.
For understanding the application of mathematics to reality the
distinction between the “giving” [dem “Geben”] of an object through
individual exhibition on the one side and, on the other in conceptual
ways, is fundamental. The objectification through exclusion of the ego
and its immediate life of intuition [Objektivierung durch Ausschaltung
des Ich und seines unmittelbaren Lebens der Anschauung] is not
attained without remainder. The coordinate system, exhibited only
through an individual act (and only approximately), remains as the
necessary residuum of this annihilation of the ego [das notwendige
Residuum dieser Ich-Vernichtung][259]

 
ζ) A Relativist Geometry of Space as a Geometrodynamics Project[260]

 
Take a pair of compasses and twiddle them on a sheet of paper. Is the
resulting curve a circle or an ellipse? Copernicus from his standpoint
on the sun declares that owing to the FitzGerald contraction the two
points drew nearer together when turned in the direction of the Earth’s
orbital motion; hence the curve is flattened into an ellipse. But here I
think Ptolemy has a right to be heard; he points out that from the
beginning of geometry circles have always been drawn with compasses
in this way, and that when the word ‘circle’ is mentioned every
intelligent person understands that this is the curve meant. The same
pencil line is in fact a circle in the space of the terrestrial observer and
an ellipse in the space of a solar observer. It is at the same time a
moving ellipse and a stationary circle. I think that illustrates as well as
possible what we mean by the relativity of space.[261]

 
And, more radically:
 

The difference between space occupied by matter and space which is
empty is simply a difference in its geometry. There seems to be no
reason to postulate that there is an entity of foreign nature present
which causes the difference of geometry; and if we did postulate such
an entity it would scarcely be proper to regard it as physical matter;



because it is not the foreign entity but the difference of geometry which
is the subject of physical experiment.[262]

 
η) The External World of Physics as “the viewpoint of no one in particular”
 

Eddington was also heretical enough to accept Weyl’s generalization of
Einstein’s theory and to generalize it further, for epistemological reasons
essentially similar to Weyl’s. Eddington sought the same goal of
constituting the “real world of physics” by reconstructing relativity theory
within a differential geometry capable of yielding only objects that are a
“synthesis of all aspects” present to all conceivable observers. The external
world of physics might be defined in this way as a world conceived “from
the viewpoint of no one in particular,” a standpoint both necessary and
sufficient for objective representation in physics. The epistemological
significance of relativity theory lay in showing that the attempt to portray
the physical world from this impersonal perspective resulted in its
geometrization. In turn, the physical knowledge captured in such a portrayal
is knowledge only of that world’s structure. Physics could be about no other
world than that expressly incorporating all viewpoints at once, an “absolute
world” as opposed to the “relative” world of each individual perspective,
that is, any “conceivable observer.” The relation between the relative and
the absolute is mathematically captured by the tensor calculus and physical
knowledge accordingly must be represented in the form of tensor identities
through a method Eddington called “world building.”

There are two important aspects to this, which relate to the structuralist
and subjectivist components of Eddington’s thought, respectively. By matter
as the putative cause of irregularities in the field, Eddington meant matter
as substance, and thus this construction was seen as eliminating substance
from our ontology in favor of relational structures. Secondly, “matter,” in
this new sense, became dependent on the mind, since “Matter is but one of
a thousand relations between the constituents of the World, and it will be
our task to show why one particular relation has a special value for the
mind.”[263]

The point of view of the observer is declared by Eddington “the
parochial standpoint”: “We must try another plan. I do not think we can
ever eliminate altogether the human element in our conception of nature;
but we can eliminate a particular human element, namely, this framework



of space and time.”[264] Using the example of a chair, considered as a solid
object which cannot be identified “with any one of our two-dimensional
pictures of it, but giving rise to them all as the position of the observer is
varied,” Eddington specifies:
 

By sheer necessity our brains have been forced to construct the
conception of the solid chair to combine these changing appearances.
But we do not vary our motion to any appreciable extent and our brains
have not hitherto been called upon to combine the appearances for
different motions; thus the effort which we now ask the brain to make
is a novel one. That explains why the result seems to transcend our
ordinary mode of thought.[265]

 
Let us finally note that these questions echo the remarkable

Eddingtonian conception of tensors developed in his Tarner Lectures:
 

Since physical knowledge must in all cases be an assertion of the
results of observation (actual or hypothetical), we cannot avoid setting
up a dummy observer; and the observations which he is supposed to
make are subjectively affected by his position, velocity and
acceleration. The nearest we can get to a non-subjective, but
nevertheless observational, view is to have before us the reports of all
possible dummy observers, and pass in our minds so rapidly from one
to another that we identify ourselves, as it were, with all the dummy
observers at once. To achieve this we seem to need a revolving brain.

Nature not having endowed us with revolving brains, we appeal to
the mathematician to help us. He has invented a transformation process
which enables us to pass very quickly from one dummy observer’s
account to another’s. The knowledge is expressed in terms of tensors
which have a fixed system of interlocking assigned to them; so that
when one tensor is altered all the other tensors are altered, each in a
determinate way. By assigning each physical quantity to an appropriate
class of tensor, we can arrange that, when one quantity is changed to
correspond to the change from dummy observer A to dummy observer
B, all the other quantities change automatically and correctly. We have
only to let one item of knowledge run through its changes – to turn one



handle – to get in succession the complete observational knowledge of
the dummy observers.

The mathematician goes one step farther; he eliminates the turning
of the handle. He conceives a tensor symbol as containing in itself all
its possible changes; so that when he looks at a tensor equation, he sees
all its terms changing in synchronised rotation. This is nothing out of
the way for a mathematician; his symbols commonly stand for
unknown quantities, and functions of unknown quantities; they are
everything at once until he chooses to specify the unknown quantity.
And so he writes down the expressions which are symbolically the
knowledge of all dummy observers at once – until he chooses to
specify a particular dummy observer.

But, after all, this device is only a translation into symbolism of
what we have called a revolving brain. A tensor may be said to
symbolise absolute knowledge; but that is because it stands for the
subjective knowledge of all possible subjects at once.[266]

 
We cannot develop this matter here, but it is interesting to note that these
views are connected with the concepts of shadow and skeleton held by both
Einstein and Bachelard:
 

If you want to fill a vessel with anything you must make it hollow. . . .
Any of the young theoretical physicists of today will tell you that what
he is dragging to light as the basis of all the phenomena that come
within his province is a scheme of symbols connected by mathematical
equations. . . . Now a skeleton scheme of symbols is hollow enough to
hold anything. It can be—nay it cries out to be—filled with something
to transform it from skeleton into being, from shadow into actuality,
from symbols into the interpretation of the symbols.[267]

 
It is this metaphor of the skeleton that Einstein would use, for example,

to demonstrate that with his theory, gravity moves from the periphery to the
true center of physics: “The gravitational field . . . appears, as it were, as the
skeleton from which everything hangs.”[268]

 



 
3) The Theory of Scale Relativity (TSR) of Laurent Nottale

 
On this basis of the different philosophical postulates, essential to the
existence of the special and general theories of relativity, the theory of scale
relativity sets forth, pursuing and continuing, or rather rectifying the initial
work of Albert Einstein and his disciples.

A few words on this point.
For Laurent Nottale, the principle of scale relativity generalizes the

claim of Einstein: the same laws of nature apply whatever state of motion
an object is in, but also whatever the scale of the coordinate system may be.
Spatiotemporal resolutions possess the same relativity as motion: just as
one would not be able to define an interval of length or of time in an
absolute manner, only a relation between two scales has meaning. When
one applies to spacetime itself this idea that physical quantities explicitly
depend on this resolution, one is led to the geometric concept of fractals. In
the beginning of the 1980s, Garnet Ord, of the University of Ontario, and
Laurent Nottale have independently proposed that quantum properties arise
from the fractal nature of microscopic spacetime.

But what about the corresponding mathematics? Since Isaac Newton, we
have used the differential method to put physical phenomena into equations:
we decompose a complex object into its simpler parts. This simplicity
allows a local description, a differential, which, after integration, provides
the global properties of this object.

However, this method is no longer valid when the parts, instead of
becoming more simple, become more complex or different from the object
from which one began. This is exactly what happens in particle physics:
when we observe an object with a particle accelerator, which replaces the
microscope at these scales, new structures appear whenever there is an
enlargement. Quantum mechanics describes this behavior. Einstein’s
principle of “general” relativity, based on differentiability, is then
necessarily incapable of taking into consideration quantum effects, which
are based on non-differentiability.
 
α) Relativity of coordinate systems
 



We know that the theory of special relativity is the general solution to the
relativistic problem of inertial motion, which one could already ask in
Galileo’s age: what are the laws of transformation of the inertial coordinate
systems (moving with a constant relative velocity with respect to each
other) that satisfy the principle of relativity? These are the Lorentz
transformations. One of the improvements that Laurent Nottale adds here to
classical theory is that to obtain these laws, one does not need to add to the
principle of Galilean relativity the postulate of the invariance of the speed
of light in a vacuum, as Einstein did in 1905: in the establishment of their
general form, a constant c appears, which one can then identify as the speed
of any massless particle in a vacuum. The Galileo transformation is then no
longer anything but a special case of the Lorentz transformation, which
corresponds to the choice of an infinite constant c. The principle of
relativity entails the Lorentz transformations, and thus the concept of
spacetime.
 
β) Deducing gravity from relativity
 
From the perspective of Einstein’s general theory of relativity, even the
existence of a gravitational field is no longer absolute, but dependent on the
motion of the coordinate system under consideration: in a system in free fall
within this field, gravity completely disappears.[269] This is what astronauts
experience as “weightlessness.” Gravity can be understood as the set of
manifestations of curvature, necessitating the transition from a flat,
Euclidean spacetime, to a curved spacetime. In general relativity, the
motion of a particle under the influence of an arbitrarily complicated
gravitational field is described by a locally inertial motion (at constant
velocity) along the geodesics of a curved spacetime. The Einstein equations
which connect the curvature of spacetime with the distribution of energy
and matter are the simplest and most general equations which are invariant
under continuous and twice-differentiable transformations of coordinate
systems: thus, Einsteinian relativity dictates the existence of gravity as well
as the form of the equations which describe it.
 
γ) The axioms of quantum mechanics
 



Quantum theory relies on axioms, deduced from microphysical experiments
which are impossible to explain using classical concepts. The paths of
particles are not observable: the paths are absent. Quantum theory
combines the three elements of “probability,” “wave,” and “particle” into
one sole theoretical object, the wave function. Erwin Schrödinger and
Werner Heisenberg wrote the equations which govern it. However, these
equations and the “correspondence principle,” which associates operators
acting on a wave function to observable magnitudes, cannot be deduced
starting from a first principle, but are supposed a priori.

In current quantum theory, spacetime is flat, as in special relativity.
Nevertheless, the development of ideas in physics (Leibniz, Mach, and
Einstein) has deprived all scientific meaning from the idea of a space
independent of its contents. Is it not a contradiction to allow for, on the one
hand, the existence of microphysical objects with universal quantum,
nonclassical properties, and on the other hand, to consider that the
framework which contains these objects is in no way modified?
 
δ) Nondifferentiable spacetime
 
In Richard Feynman’s 1965 book written with Albert Hibbs, Feynman
describes the virtual paths typical of a quantum particle:
 

The important paths for a quantum-mechanical particle are not those
which have a definite slope (or velocity) everywhere, but are instead
quite irregular on a very fine scale. . . . Typical paths of a quantum-
mechanical particle are highly irregular on a fine scale. . . . Thus,
although a mean velocity can be defined, no mean-square velocity
exists at any point. In other words, the paths are nondifferentiable.[270]

 
This introduction of nondifferentiability into physics is all the more
remarkable considering that, during the same period, Einstein had himself
explicitly imagined that a realistic approach to the quantum problem could
follow the same route. In 1948, he wrote in a letter to Wolfgang Pauli:
 

This complete description would not be limited to the fundamental
concepts used in point mechanics. I have told you more than once that
I am a fierce partisan not of differential equations, but of the principle



of general relativity, whose heuristic force is indispensable to us. Yet,
in spite of much research, I have not succeeded at satisfying the
principle of general relativity otherwise than using differential
equations; perhaps someone will discover another possibility, if they
look with enough perseverance.[271]

 
Laurent Nottale is precisely this “someone”!

From a philosophical point of view, it is important to note here that as
early as 1940, in a chapter titled “Elementary spatial connections. Non-
analyticity,” Bachelard foretold the fractal character of his epistemology by
drawing the attention of the philosophic community to what would much
later become the concept of “quantum scaling.”
 

Mechanics has slowly freed itself from the concept of a jet or a throw,
it has not sufficiently thought about the circumstances of a traject or
course. Now the trajectory of a micro-object is a closely circumscribed
traject. Continuity of the whole must not be postulated; the connection
must be examined link by link.[272]

 
This is the hypothesis of non-analyticity, first postulated in his thesis of
1927, and which he would detect even in the foundations of Wolfgang
Pauli’s exclusion principle.[273] The second step would be for him to extend
wave mechanics:
 

As soon as one abandons the very special claim of mathematics to
analyticity, as soon as one accepts the non-analytical constitution of
trajectories, it becomes clear that one can set up connections which, in
spite of their artificial character, permit information about certain
properties of trajectories in wave mechanics.[274]

 
He took his example of “non-analytic paths” from “the simple yet

profound work of Adolphe Buhl.”[275] Working independently of Paul Dirac,
whose work on the Zitterbewegung [“trembling motion”] of the electron
whose fluctuation makes its physical trajectory oscillate to such an extent
that it has an “average velocity” as low as experiment measures it, Adolphe
Buhl raised the fact starting in 1934 that such a trembling is already
imaginable in classical mechanics, and that if we were to stop seeing only



“taut” paths, we would discover an infinite number of random trajectories
that corresponded well to the equations of mechanics. Bachelard recognized
in this, through a detailed technical analysis, an applied rationalization of
the Heisenberg principle.[276] But it is by a true return to the consequences
(for philosophical thought) of this Buhlian hetero-induction that he would
explicitly, and definitively, lay the groundwork for a fractal axiomatic, a
true surrational manifesto:
 

The ingeniousness of Buhl’s memoir lies in the fact that he really
integrates the ambiguity all the way along the integral curve whereas
intuition lazily confines itself to attaching it to the origin of the
trajectories. Let us, therefore, take stock of the freedom we have. . . .
We see that a saw-toothed path appears, each of the teeth representing
a little arc which responds to the obligations of the problem. The
number of teeth can, moreover, be increased at will, since the track
segments are as small as one cares to make them.

Moreover, this trajectory, made up of vibrations, retains some
important properties. It keeps continuity, and it keeps the length of the
trajectory which common intuition would have selected, since all its
fragments satisfy the isometric condition. But in spite of the continuity,
the infinitely small appears as infinitely broken up, intimately ruptured,
without any quality, without any concern, without any destiny passing
from one point to the neighboring point.[277] It seems as if, along a
Buhlian trajectory, motive power had nothing to transmit. It is really
the most gratuitous movement. But along a trajectory of natural
intuition, on the contrary, the motive power transmits what it does not
possess; it transmits the cause of its direction, a sort of coefficient of
curvature which makes it impossible for the trajectory to change
sharply. . . . The objection will be raised that common experience
affords no examples of hesitant trajectories. We shall even be accused
of a veritable initial contradiction since we adopt a non-analytical
solution for a problem posed within the framework of analytical data.
Let us look more closely at these two objections.

To be sure, everyday experience only yields analytical trajectories
and we can actually only draw analytical curves. But the argument
comes back on itself. As Buhl justly observes one can perfectly well
inscribe a sub-design within the thickness of an experimental line



itself, a wavering line, a veritable arabesque which specifically
represents indeterminacy of the second degree of approximation. In
short any linear structure whether real or realized encloses finer
structures. This refinement is without limit. It is really a matter of “an
indefinitely fine structure.” And so we see, within the domain of pure
geometry, that concept of fineness of structure which has played so
important a role in the progress of spectrography. And this is no mere
metaphorical juxtaposition.[278] It really appears that the works of Buhl
illuminate a priori a great many problems of micromechanics and of
microphysics. In these fine structures there appear, be it said in
passing, the famous continuous functions without derivatives,
continuous curves without tangents. They are the mark of the perpetual
indeterminacy of the trajectory of fine structure. . . .

But we also have to counter the accusation that we have been
inherently contradictory. Is not the genesis of isometric trajectories
actually a basic differential equation? Does one not, therefore, posit the
existence of a derivative at all the points of the integral curve? How
then can one offer a continuous curve, but without derivative, as the
solution of an equation which is involved with the elementary intuition
of the derivative?

This second objection, like the first, must be turned back against the
partisans of natural intuitions. . . . Here, as Buhl points out, the
methodological contradiction is, all things considered, nothing but the
result of an unjustified claim inherent in the postulates of the research.
. . . Naturally, if the proposed problem admits solution by a saw-
toothed trajectory it also admits (subject to some modifications
suggested by Buhl) a return of the trajectory upon itself, a folding
back. All this is by way of demonstration that the conditions which
establish the path of a mobile point can be endlessly diversified even
when restrained by a law as simple as that of an isometric trajectory,
and that irreversibility in particular is a very special notion which loses
the greater part of its normal meaning when it comes to a study of
second degree approximation. This is a conclusion to which
microphysics has become accustomed.[279]

 
Then Bachelard, through a movement of recursion or of inductive retro-

construction, moves on to the quantum domain:



 
Thus it is very interesting to observe, with Adolphe Buhl, that the
complementary uncertainties organized by Heisenberg find a useful
illustration in Buhlian propagation. Actually the theme of the principle
of Heisenberg can be connected to the entirely geometric fine intuitions
organized by Buhl without the necessity of appending dynamic
circumstances. . . . In the problem of Buhlian “ray,” at the level of
indefinitely fine structure a precise concept of a tangent at a precise
point makes no sense. It is impossible to attach a tangent to a well-
defined point. And vice-versa, if one gives a well-defined tangential
direction one cannot discover the point which will receive it. . . . In a
humorous vein one might say that the tangent is flighty and space is
dotty in every sense of the words. The two kinds of madness are
correlative. There is an opposition between precision of position and
precision of direction.

The Buhlian trajectory is thus enriched by its value as a
supplementary diagram. . . . The work of Adolphe Buhl thus brings
about a veritable rationalization of the Heisenberg principle.[280]

 
The problem posed by such a change in the geometric paradigm seems

nevertheless to be extremely difficult: would the abandonment of
differentiability not require one to abandon differential equations, an
essential methodology for all physics? Fortunately, another way, that
followed and developed by Laurent Nottale, is possible which, in a stunning
manner, is brought back to the preceding, all while providing a
mathematical tool that allows one to describe nondifferentiability with the
assistance of differential equations.

The key for the solution is found by interpreting Feynman’s work in
terms of fractals. Without entering into the details, this results from a
theorem of the mathematician Henri Lebesgue: a curve of finite length is
differentiable almost everywhere. Inversely, if a continuous curve is
nondifferentiable almost everywhere, it is necessarily of an infinite length.
Abandoning the arbitrary hypothesis that a curve in spacetime is
differentiable, while maintaining its continuity, implies an explicit
dependence on resolutions.[281] Relativity extended to nondifferentiable
motion is thus equivalent to scale relativity. Nottale simply requires that the
equations written in such a nondifferentiable spacetime satisfy the



covariance principle, meaning that they keep the same form as in the
differentiable case.

One initial way of discovering the form of these scale laws is to
postulate that they are the simplest possible.[282] One writes a first-order
differential equation over an infinitesimal change in resolution: its solution
is the length of a fractal curve of constant dimension. Thus, the fractal
functions of constant dimension, which diverge in a power relation as a
function of the resolution, are the simplest forms of laws which depend
explicitly on the scale. This is precisely the behavior obtained by Feynman
for quantum paths.
 
ε) Deducing quantum physics from relativity
 
Laurent Nottale then deduces the principal axioms of quantum mechanics
from the fractal spacetime concept, since nondifferentiability requires the
probabilistic character of the description. In Einstein’s theory, the path of a
free particle is a geodesic in spacetime. It would be the same in a fractal
spacetime. Nevertheless, the presence of fluctuations at small scales makes
the number of geodesics infinite, all of which, by definition, are equally
probable: the only possible prediction concerning the motion of the
“particle” should be deduced from the density of this infinite family of
geodesics (a density which is variable and generates a probability density).

Such a statement is incomplete, since the fractal approach also
transforms the concept of the elementary particle. In current quantum
theory, the electron, from the perspective of its particle-like nature is a
point. In fractal spacetime, one gives up the idea of points with mass and
considers “particles,” with the dual nature of wave and point, as the set of
properties of geodesics. Here we arrive at a connection with a true
geometrodynamics (of the Wheeler-Eddington type): the “internal”
properties finally resulting from symmetries connected to scale
transformations take on a geometric significance, in the sense of
nondifferentiable geometry. The concept of a particle no longer concerns an
object which “has” a spin, a mass, or a charge, but is reduced to the
geometric structures of the fractal geodesics in nondifferentiable spacetime.

Two examples:
— the indistinguishability of identical particles is an immediate

consequence of their identical fractal paths. These paths possess no proper



characteristic which would allow us to distinguish them. A set of many
particles is no longer considered as a collection of individual objects in the
classical sense: it is a new object, a network of geodesics which possesses
its own geometric properties.[283]

— the meaning of wave-particle duality is different from the usual
interpretation in quantum theory. In classical quantum theory, the wave
function describes a wave-particle. Here, its particle-like nature is a
consequence of quantization and of elementarity (in agreement with
quantum physics where particles are quanta). If a photon reaches a screen, it
cannot be divided and can only be absorbed by a single electron of a single
atom. Here is the cause of the single “click” which leads to the concept of
the particle. But the geodesics which arrive at this point (at a given
resolution) remain at an infinite number. This is clear for example in the
Young double-slit experiment conducted one particle at a time.[284]

Moreover, the sheaf of possible geodesics, the only methodology which
enables us to make predictions, conveys the wave-like properties. In
conclusion, not only is the TSR, anchored on extremely profound
philosophical principles, an extension of Einstein’s special and general
relativity, by the addition of a supplementary dimension, but it also opens
the field of unification with quantum theory, which, in this framework, is all
naturally deduced (the Schrödinger equation, the Dirac equation . . . within
a fractal spacetime): we are very far from the extremely complex
contrivances and purely mathematical conjectures such as string theory and
superstring theory, conjectures which address a very different problem,
since they base themselves within the framework of quantum mechanics
without seeking to understand or provide a foundation for it.

The production of theoretical texts and experimental results covering not
only the domain of physics, but including a large number of related
disciplines such as biology and geology is very impressive. The situation is
clear regarding the present and future power of this theory, and yet...
 



 

4) The Question of the “Reception” of the TSR
 
In conclusion, instead of elaborating a sociological theory of the reception
of this theory, one should simply highlight the situation which leaves the
philosopher a prohibited figure, and which should, at the very least, attract
the attention of the physicist.

During the nineties, and up until 2005, the TSR benefited from great
interest marked by different publications seeking to introduce the theory to
the public, to spread awareness of it and to popularize it. One can cite issue
number 936 of Science & Vie [“Science and Life”], from September 1995,
for which Laurent Nottale appears on the cover: “Fifty years after Einstein a
scholar sheds light on the mysteries of the universe.” At the same time, also
in September 1995, the French edition of Scientific American devoted a
significant section to scale relativity, with an article by its creator entitled
“Fractal spacetime; The theory of scale relativity generalizes Einstein’s
principle of relativity; Quantum mechanics becomes a consequence of
relativity.”[285]

Another issue, this time dedicated to alternatives to the standard model
of physics, appeared in 2005, the year of Einstein. Again Laurent Nottale
was on the cover of Science & Vie alongside Alain Connes, Carlo Rovelli,
and Gabriele Veneziano in a group photo, under the title “Relativity is a
hundred years old; Moving beyond Einstein; They want to reinvent space
and time.”[286] Inside, the magazine simultaneously presented approaches in
noncommutative geometry, loop quantum gravity, string theory, and scale
relativity.

After these signs of public interest in TSR, not only was there a sudden
halt in coverage, but there was a series of attacks by the physico-
mathematical community against the theory . . . Thus, I will pose a multi-
faceted question to this community:
 
α) Why has interest in this theory been of concern for philosophers
foremost (but not only)?[287] Part of the answer can be found in the first part
of this text;
 



β) Why was the purely objective, meaning scientific and rational debate
concerning the TSR silenced in a Stalinesque trial supported by assorted
malodorous rumors about its author?
 
γ) Why have the same people, initially welcoming of the theory, silently
distanced themselves, then actively opposed it as soon as experimental
evidence materialized?

Would the very French syndrome of the “grandes écoles” [great schools]
be one of the primary reasons: the École Centrale de Paris, from which
Laurent Nottale came, pitted against the symbolic power of the École
Normale Supérieure, the nucleus of the contempt and the attacks?
 
δ) Why the ad hominem attacks and threats against those who were closely
interested in this theory?
 
ε) Why the shy silence on behalf of the less hostile?
 
ζ) And finally, an essential question, what has happened to this community
of physicists so that it only puts forth such arguments of authority as
answers of the kind: “No, I haven’t studied this theory, but I’ve heard
people say that…” in response to rational debate concerning the
“falseness,” the “faults,” or the “errors of calculation” for which nobody has
ever provided the least amount of evidence?
 

Here is not the place to answer these questions which concern the
community and which are nothing but the symptom of a true crisis in
physics, tied to the loss of historical memory of the discipline, to the forced
march toward globalization (collusion of committees of peer reviewers), to
the most savage competition for research funding, the massive financial
stakes of contemporary experimental physics, before the serious alternative
proposed by the TSR, which has the potential to open phenomenal
possibilities of scale economies and new developments in research. And
this is to say nothing of its results on the terrain of a number of other
disciplines: economics, medicine, biology, paleontology, geography, not to
mention chaos theory in physics, turbulence, and complex systems.[288]

Therefore, just one more word: read and study this marvelous theory,
allow yourself to be moved by its beauty, its depth, and its major



experimental implications, which are nothing less than fundamental for the
future of science and for philosophy.
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Principle of Relativity: Original Papers by A. Einstein and H. Minkowski.
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[37] “On the Electrodynamics of moving bodies” 2.
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here, not the Galilean mathematical laws of relativity, which have to be
changed.
[39] “On the Electrodynamics of moving bodies” 2.
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to the special case of an infinite speed of light.
[41] The Lorentz factor is written: γ = 1/√(1–v2/c2).
[42] The Minkowski invariant is written ds2 = c2dt2 – (dx2 + dy2 + dz2). The
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[44] L. Nottale, “The theory of scale relativity,” International Journal of
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[47] See Nottale, “The Theory of Scale Relativity.”
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[49] A nanosecond corresponds to about 30 cm.
[50] Einstein, “How I Created the Theory of Relativity,” 47.
[51]Unless we wait several hours, which would allow us to verify that we are
not really in an inertial system, but in a rotating system with the Earth. The
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several months, it would be the movement of the Earth rotating around the
Sun which would manifest, etc.
[52] The arc contained within a plane passing through the two points to be
connected and the center of the sphere.
[53] At a close factor of proportionality which boils down to Newton’s
gravitational constant.
[54] Here we ignore the right angles so as to concentrate on the properties of
the square similar to those of the circle.
[55] The direct observation of gravitational waves since 2015 in the LIGO
and Virgo detectors has brought a new and spectacular proof of Einstein’s
theory of gravitation.
[56]The English translation reads: “In general, Laws of Nature are expressed
by means of equations which are valid for all coordinate systems, that is,
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of the Generalized Theory of Relativity”).
[57] Cf. Steven Weinberg, Dreams of a final theory: the search for the
fundamental laws of nature (London: Vintage,1993) and Stephen Hawking,
A Brief History of Time (New York: Bantam, 1998).
[58] To illustrate this point of view, we can recall that as the equations of
physics become more fundamental, they become more difficult to solve.
Thus, the two-body problem of gravity (that of the motion of a binary star)
is simple in Newtonian theory, but unsolvable in an exact manner in
Einstein’s theory. One might imagine that if one day the equations of a
totally unified field are written, even the one-body problem will no longer
have an exact solution!
[59] The three laws are: 1) Planets travel in ellipses of which the Sun is one
of the foci; 2) the vector radius that is drawn between the Sun and a planet
covers equal areas in equal times; 3) the relation of the cube of the
semimajor axis over the square of the period is the same for all planets in
the solar system.
[60] The emergence of the laws of quantum mechanics from a
nondifferentiable continuous (then fractal) spacetime in the theory of scale
relativity comes, at some level, under such a statement.
[61] Here the word “absolute” is not used in its sense of “unconditioned” or
“not-relative,” which would just be contradictory with the viewpoint of



relativity. It rather refers to looking for what does not change within
change.
[62] Invariants are of two kinds: some are conservative quantities which do
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precisely to the statement according to which particles in free fall in a
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