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Foreword

Beginning in the spring of 2000, a series of four one-semester courses
were taught at Princeton University whose purpose was to present, in
an integrated manner, the core areas of analysis. The objective was to
make plain the organic unity that exists between the various parts of the
subject, and to illustrate the wide applicability of ideas of analysis to
other fields of mathematics and science. The present series of books is
an elaboration of the lectures that were given.

While there are a number of excellent texts dealing with individual
parts of what we cover, our exposition aims at a different goal: pre-
senting the various sub-areas of analysis not as separate disciplines, but
rather as highly interconnected. It is our view that seeing these relations
and their resulting synergies will motivate the reader to attain a better
understanding of the subject as a whole. With this outcome in mind, we
have concentrated on the main ideas and theorems that have shaped the
field (sometimes sacrificing a more systematic approach), and we have
been sensitive to the historical order in which the logic of the subject
developed.

We have organized our exposition into four volumes, each reflecting
the material covered in a semester. Their contents may be broadly sum-
marized as follows:

I. Fourier series and integrals.

II. Complex analysis.

III. Measure theory, Lebesgue integration, and Hilbert spaces.

IV. A selection of further topics, including functional analysis, distri-
butions, and elements of probability theory.

However, this listing does not by itself give a complete picture of
the many interconnections that are presented, nor of the applications
to other branches that are highlighted. To give a few examples: the ele-
ments of (finite) Fourier series studied in Book I, which lead to Dirichlet
characters, and from there to the infinitude of primes in an arithmetic
progression; the X-ray and Radon transforms, which arise in a number of
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problems in Book I, and reappear in Book III to play an important role in
understanding Besicovitch-like sets in two and three dimensions; Fatou’s
theorem, which guarantees the existence of boundary values of bounded
holomorphic functions in the disc, and whose proof relies on ideas devel-
oped in each of the first three books; and the theta function, which first
occurs in Book I in the solution of the heat equation, and is then used
in Book II to find the number of ways an integer can be represented as
the sum of two or four squares, and in the analytic continuation of the
zeta function.

A few further words about the books and the courses on which they
were based. These courses where given at a rather intensive pace, with 48
lecture-hours a semester. The weekly problem sets played an indispens-
able part, and as a result exercises and problems have a similarly im-
portant role in our books. Each chapter has a series of “Exercises” that
are tied directly to the text, and while some are easy, others may require
more effort. However, the substantial number of hints that are given
should enable the reader to attack most exercises. There are also more
involved and challenging “Problems”; the ones that are most difficult, or
go beyond the scope of the text, are marked with an asterisk.

Despite the substantial connections that exist between the different
volumes, enough overlapping material has been provided so that each of
the first three books requires only minimal prerequisites: acquaintance
with elementary topics in analysis such as limits, series, differentiable
functions, and Riemann integration, together with some exposure to lin-
ear algebra. This makes these books accessible to students interested
in such diverse disciplines as mathematics, physics, engineering, and
finance, at both the undergraduate and graduate level.

It is with great pleasure that we express our appreciation to all who
have aided in this enterprise. We are particularly grateful to the stu-
dents who participated in the four courses. Their continuing interest,
enthusiasm, and dedication provided the encouragement that made this
project possible. We also wish to thank Adrian Banner and José Luis
Rodrigo for their special help in running the courses, and their efforts to
see that the students got the most from each class. In addition, Adrian
Banner also made valuable suggestions that are incorporated in the text.
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We wish also to record a note of special thanks for the following in-
dividuals: Charles Fefferman, who taught the first week (successfully
launching the whole project!); Paul Hagelstein, who in addition to read-
ing part of the manuscript taught several weeks of one of the courses,
and has since taken over the teaching of the second round of the series;
and Daniel Levine, who gave valuable help in proofreading. Last but not
least, our thanks go to Gerree Pecht, for her consummate skill in type-
setting and for the time and energy she spent in the preparation of all
aspects of the lectures, such as transparencies, notes, and the manuscript.

We are also happy to acknowledge our indebtedness for the support
we received from the 250th Anniversary Fund of Princeton University,
and the National Science Foundation’s VIGRE program.

Elias M. Stein

Rami Shakarchi

Princeton, New Jersey
August 2002

As with the previous volumes, we are happy to record our great debt
to Daniel Levine. The final version of this book has been much improved
because of his help. He read the entire manuscript with great care and
made valuable suggestions that have been incorporated in the text. We
also wish to take this opportunity to thank Hart Smith and Polam Yung
for proofreading parts of the book.
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Preface to Book IV

Functional analysis, as generally understood, brought with it a change
of focus from the study of functions on everyday geometric spaces such
as R, Rd, etc., to the analysis of abstract infinite-dimensional spaces, for
example, functions spaces and Banach spaces. As such it established a
key framework for the development of modern analysis.

Our first goal in this volume is to present the basic ideas of this theory,
with particular emphasis on their connection to harmonic analysis. A
second objective is to provide an introduction to some further topics to
which any serious student of analysis ought to be exposed: probability
theory, several complex variables and oscillatory integrals. Our choice of
these subjects is guided, in the first instance, by their intrinsic interest.
Moreover, these topics complement and extend ideas in the previous
books in this series, and they serve our overarching goal of making plain
the organic unity that exists between the various parts of analysis.

Underlying this unity is the role of Fourier analysis in its interrelation
with partial differential equations, complex analysis, and number theory.
It is also exemplified by some of the specific questions that arose initially
in the previous volumes and that are taken up again here: namely, the
Dirichlet problem, ultimately treated by Brownian motion; the Radon
transform, with its connection to Besicovitch sets; nowhere differentiable
functions; and some problems in number theory, now formulated as dis-
tributions of lattice points. We hope that this choice of material will not
only provide a broader view of analysis, but will also inspire the reader
to pursue the further study of this subject.
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1 Lp Spaces and Banach Spaces

In this work the assumption of quadratic integrability
will be replaced by the integrability of |f(x)|p. The
analysis of these function classes will shed a particu-
lar light on the real and apparent advantages of the
exponent 2; one can also expect that it will provide
essential material for an axiomatic study of function
spaces.

F. Riesz, 1910

At present I propose above all to gather results about
linear operators defined in certain general spaces, no-
tably those that will here be called spaces of type (B)...

S. Banach, 1932

Function spaces, in particular Lp spaces, play a central role in many
questions in analysis. The special importance of Lp spaces may be said
to derive from the fact that they offer a partial but useful generalization
of the fundamental L2 space of square integrable functions.

In order of logical simplicity, the space L1 comes first since it occurs
already in the description of functions integrable in the Lebesgue sense.
Connected to it via duality is the L∞ space of bounded functions, whose
supremum norm carries over from the more familiar space of continuous
functions. Of independent interest is the L2 space, whose origins are
tied up with basic issues in Fourier analysis. The intermediate Lp spaces
are in this sense an artifice, although of a most inspired and fortuitous
kind. That this is the case will be illustrated by results in the next and
succeeding chapters.

In this chapter we will concentrate on the basic structural facts about
the Lp spaces. Here part of the theory, in particular the study of their
linear functionals, is best formulated in the more general context of Ba-
nach spaces. An incidental benefit of this more abstract view-point is
that it leads us to the surprising discovery of a finitely additive measure
on all subsets, consistent with Lebesgue measure.
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1 Lp spaces

Throughout this chapter (X,F , µ) denotes a σ-finite measure space: X
denotes the underlying space, F the σ-algebra of measurable sets, and µ
the measure. If 1 ≤ p < ∞, the space Lp(X,F , µ) consists of all complex-
valued measurable functions on X that satisfy

(1)
∫

X

|f(x)|p dµ(x) < ∞.

To simplify the notation, we write Lp(X, µ), or Lp(X), or simply Lp

when the underlying measure space has been specified. Then, if f ∈
Lp(X,F , µ) we define the Lp norm of f by

‖f‖Lp(X,F,µ) =
(∫

X

|f(x)|p dµ(x)
)1/p

.

We also abbreviate this to ‖f‖Lp(X), ‖f‖Lp , or ‖f‖p.

When p = 1 the space L1(X,F , µ) consists of all integrable functions
on X, and we have shown in Chapter 6 of Book III, that L1 together with
‖ · ‖L1 is a complete normed vector space. Also, the case p = 2 warrants
special attention: it is a Hilbert space.

We note here that we encounter the same technical point that we al-
ready discussed in Book III. The problem is that ‖f‖Lp = 0 does not
imply that f = 0, but merely f = 0 almost everywhere (for the measure
µ). Therefore, the precise definition of Lp requires introducing the equiv-
alence relation, in which f and g are equivalent if f = g a.e. Then, Lp

consists of all equivalence classes of functions which satisfy (1). However,
in practice there is little risk of error by thinking of elements in Lp as
functions rather than equivalence classes of functions.

The following are some common examples of Lp spaces.

(a) The case X = Rd and µ equals Lebesgue measure is often used in
practice. There, we have

‖f‖Lp =
(∫

Rd

|f(x)|p dx

)1/p

.

(b) Also, one can take X = Z, and µ equal to the counting measure.
Then, we get the “discrete” version of the Lp spaces. Measurable
functions are simply sequences f = {an}n∈Z of complex numbers,
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and

‖f‖Lp =

( ∞∑
n=−∞

|an|p
)1/p

.

When p = 2, we recover the familiar sequence space �2(Z).

The spaces Lp are examples of normed vector spaces. The basic prop-
erty satisfied by the norm is the triangle inequality, which we shall prove
shortly.

The range of p which is of interest in most applications is 1 ≤ p < ∞,
and later also p = ∞. There are at least two reasons why we restrict our
attention to these values of p: when 0 < p < 1, the function ‖ · ‖Lp does
not satisfy the triangle inequality, and moreover, for such p, the space
Lp has no non-trivial bounded linear functionals.1 (See Exercise 2.)

When p = 1 the norm ‖ · ‖L1 satisfies the triangle inequality, and L1

is a complete normed vector space. When p = 2, this result continues to
hold, although one needs the Cauchy-Schwarz inequality to prove it. In
the same way, for 1 ≤ p < ∞ the proof of the triangle inequality relies on
a generalized version of the Cauchy-Schwarz inequality. This is Hölder’s
inequality, which is also the key in the duality of the Lp spaces, as we
will see in Section 4.

1.1 The Hölder and Minkowski inequalities

If the two exponents p and q satisfy 1 ≤ p, q ≤ ∞, and the relation

1
p

+
1
q

= 1

holds, we say that p and q are conjugate or dual exponents. Here,
we use the convention 1/∞ = 0. Later, we shall sometimes use p′ to
denote the conjugate exponent of p. Note that p = 2 is self-dual, that is,
p = q = 2; also p = 1,∞ corresponds to q = ∞, 1 respectively.

Theorem 1.1 (Hölder) Suppose 1 < p < ∞ and 1 < q < ∞ are conju-
gate exponents. If f ∈ Lp and g ∈ Lq, then fg ∈ L1 and

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .

Note. Once we have defined L∞ (see Section 2) the corresponding in-
equality for the exponents 1 and ∞ will be seen to be essentially trivial.

1We will define what we mean by a bounded linear functional later in the chapter.



4 Chapter 1. LP SPACES AND BANACH SPACES

The proof of the theorem relies on a simple generalized form of the
arithmetic-geometric mean inequality: if A,B ≥ 0, and 0 ≤ θ ≤ 1, then

(2) AθB1−θ ≤ θA + (1 − θ)B.

Note that when θ = 1/2, the inequality (2) states the familiar fact that
the geometric mean of two numbers is majorized by their arithmetic
mean.

To establish (2), we observe first that we may assume B �= 0, and
replacing A by AB, we see that it suffices to prove that Aθ ≤ θA + (1 −
θ). If we let f(x) = xθ − θx − (1 − θ), then f ′(x) = θ(xθ−1 − 1). Thus
f(x) increases when 0 ≤ x ≤ 1 and decreases when 1 ≤ x, and we see that
the continuous function f attains a maximum at x = 1, where f(1) = 0.
Therefore f(A) ≤ 0, as desired.

To prove Hölder’s inequality we argue as follows. If either ‖f‖Lp = 0
or ‖f‖Lq = 0, then fg = 0 a.e. and the inequality is obviously verified.
Therefore, we may assume that neither of these norms vanish, and after
replacing f by f/‖f‖Lp and g by g/‖g‖Lq , we may further assume that
‖f‖Lp = ‖g‖Lq = 1. We now need to prove that ‖fg‖L1 ≤ 1.

If we set A = |f(x)|p, B = |g(x)|q, and θ = 1/p so that 1 − θ = 1/q,
then (2) gives

|f(x)g(x)| ≤ 1
p
|f(x)|p +

1
q
|g(x)|q.

Integrating this inequality yields ‖fg‖L1 ≤ 1, and the proof of the Hölder
inequality is complete.

For the case when the equality ‖fg‖L1 = ‖f‖Lp‖g‖Lq holds, see Exer-
cise 3.

We are now ready to prove the triangle inequality for the Lp norm.

Theorem 1.2 (Minkowski) If 1 ≤ p < ∞ and f, g ∈ Lp, then f + g ∈
Lp and ‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .

Proof. The case p = 1 is obtained by integrating |f(x) + g(x)| ≤
|f(x)| + |g(x)|. When p > 1, we may begin by verifying that f + g ∈ Lp,
when both f and g belong to Lp. Indeed,

|f(x) + g(x)|p ≤ 2p(|f(x)|p + |g(x)|p),
as can be seen by considering separately the cases |f(x)| ≤ |g(x)| and
|g(x)| ≤ |f(x)|. Next we note that

|f(x) + g(x)|p ≤ |f(x)| |f(x) + g(x)|p−1 + |g(x)| |f(x) + g(x)|p−1.
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If q denotes the conjugate exponent of p, then (p − 1)q = p, so we see
that (f + g)p−1 belongs to Lq, and therefore Hölder’s inequality applied
to the two terms on the right-hand side of the above inequality gives

(3) ‖f + g‖p
Lp ≤ ‖f‖Lp‖(f + g)p−1‖Lq + ‖g‖Lp‖(f + g)p−1‖Lq .

However, using once again (p − 1)q = p, we get

‖(f + g)p−1‖Lq = ‖f + g‖p/q
Lp .

From (3), since p − p/q = 1, and because we may suppose that ‖f +
g‖Lp > 0, we find

‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp ,

so the proof is finished.

1.2 Completeness of Lp

The triangle inequality makes Lp into a metric space with distance
d(f, g) = ‖f − g‖Lp . The basic analytic fact is that Lp is complete
in the sense that every Cauchy sequence in the norm ‖ · ‖Lp converges to
an element in Lp.

Taking limits is a necessity in many problems, and the Lp spaces would
be of little use if they were not complete. Fortunately, like L1 and L2,
the general Lp space does satisfy this desirable property.

Theorem 1.3 The space Lp(X,F , µ) is complete in the norm ‖ · ‖Lp .

Proof. The argument is essentially the same as for L1 (or L2); see
Section 2, Chapter 2 and Section 1, Chapter 4 in Book III. Let {fn}∞n=1

be a Cauchy sequence in Lp, and consider a subsequence {fnk
}∞k=1 of

{fn} with the following property ‖fnk+1 − fnk
‖Lp ≤ 2−k for all k ≥ 1.

We now consider the series whose convergence will be seen below

f(x) = fn1(x) +
∞∑

k=1

(fnk+1(x) − fnk
(x))

and

g(x) = |fn1(x)| +
∞∑

k=1

|fnk+1(x) − fnk
(x)|,
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and the corresponding partial sums

SK(f)(x) = fn1(x) +
K∑

k=1

(fnk+1(x) − fnk
(x))

and

SK(g)(x) = |fn1(x)| +
K∑

k=1

|fnk+1(x) − fnk
(x)|.

The triangle inequality for Lp implies

‖SK(g)‖Lp ≤ ‖fn1‖Lp +
K∑

k=1

‖fnk+1 − fnk
‖Lp

≤ ‖fn1‖Lp +
K∑

k=1

2−k.

Letting K tend to infinity, and applying the monotone convergence theo-
rem proves that

∫
gp < ∞, and therefore the series defining g, and hence

the series defining f converges almost everywhere, and f ∈ Lp.
We now show that f is the desired limit of the sequence {fn}. Since

(by construction of the telescopic series) the (K − 1)th partial sum of
this series is precisely fnK

, we find that

fnK
(x) → f(x) a.e. x.

To prove that fnK
→ f in Lp as well, we first observe that

|f(x) − SK(f)(x)|p ≤ [2max(|f(x)|, |SK(f)(x)|)]p
≤ 2p|f(x)|p + 2p|SK(f)(x)|p
≤ 2p+1|g(x)|p,

for all K. Then, we may apply the dominated convergence theorem to
get ‖fnK

− f‖Lp → 0 as K tends to infinity.
Finally, the last step of the proof consists of recalling that {fn} is

Cauchy. Given ε > 0, there exists N so that for all n,m > N we have
‖fn − fm‖Lp < ε/2. If nK is chosen so that nK > N , and ‖fnK

− f‖Lp <
ε/2, then the triangle inequality implies

‖fn − f‖Lp ≤ ‖fn − fnK
‖Lp + ‖fnK

− f‖Lp < ε

whenever n > N . This concludes the proof of the theorem.
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1.3 Further remarks

We begin by looking at some possible inclusion relations between the
various Lp spaces. The matter is simple if the underlying space has
finite measure.

Proposition 1.4 If X has finite positive measure, and p0 ≤ p1, then
Lp1(X) ⊂ Lp0(X) and

1
µ(X)1/p0

‖f‖Lp0 ≤ 1
µ(X)1/p1

‖f‖Lp1 .

We may assume that p1 > p0. Suppose f ∈ Lp1 , and set F = |f |p0 ,
G = 1, p = p1/p0 > 1, and 1/p + 1/q = 1, in Hölder’s inequality applied
to F and G. This yields

‖f‖p0
Lp0 ≤

(∫
|f |p1

)p0/p1

· µ(X)1−p0/p1 .

In particular, we find that ‖f‖Lp0 < ∞. Moreover, by taking the pth
0 root

of both sides of the above equation, we find that the inequality in the
proposition holds.

However, as is easily seen, such inclusion does not hold when X has
infinite measure. (See Exercise 1). Yet, in an interesting special case the
opposite inclusion does hold.

Proposition 1.5 If X = Z is equipped with counting measure, then the
reverse inclusion holds, namely Lp0(Z) ⊂ Lp1(Z) if p0 ≤ p1. Moreover,
‖f‖Lp1 ≤ ‖f‖Lp0 .

Indeed, if f = {f(n)}n∈Z, then
∑ |f(n)|p0 = ‖f‖p0

Lp0 , and supn |f(n)| ≤
‖f‖Lp0 . However∑

|f(n)|p1 =
∑

|f(n)|p0 |f(n)|p1−p0

≤ (sup
n

|f(n)|)p1−p0‖f‖p0
Lp0

≤ ‖f‖p1
Lp0 .

Thus ‖f‖Lp1 ≤ ‖f‖Lp0 .

2 The case p = ∞
Finally, we also consider the limiting case p = ∞. The space L∞ will
be defined as all functions that are “essentially bounded” in the follow-
ing sense. We take the space L∞(X,F , µ) to consist of all (equivalence
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classes of) measurable functions on X, so that there exists a positive
number 0 < M < ∞, with

|f(x)| ≤ M a.e. x.

Then, we define ‖f‖L∞(X,F,µ) to be the infimum of all possible values M
satisfying the above inequality. The quantity ‖f‖L∞ is sometimes called
the essential-supremum of f .

We note that with this definition, we have |f(x)| ≤ ‖f‖L∞ for a.e. x.
Indeed, if E = {x : |f(x)| > ‖f‖L∞}, and En = {x : |f(x)| > ‖f‖L∞ +
1/n}, then we have µ(En) = 0, and E =

⋃
En, hence µ(E) = 0.

Theorem 2.1 The vector space L∞ equipped with ‖ · ‖L∞ is a complete
vector space.

This assertion is easy to verify and is left to the reader. Moreover,
Hölder’s inequality continues to hold for values of p and q in the larger
range 1 ≤ p, q ≤ ∞, once we take p = 1 and q = ∞ as conjugate expo-
nents, as we mentioned before.

The fact that L∞ is a limiting case of Lp when p tends to ∞ can be
understood as follows.

Proposition 2.2 Suppose f ∈ L∞ is supported on a set of finite mea-
sure. Then f ∈ Lp for all p < ∞, and

‖f‖Lp → ‖f‖L∞ as p → ∞.

Proof. Let E be a measurable subset of X with µ(E) < ∞, and so
that f vanishes in the complement of E. If µ(E) = 0, then ‖f‖L∞ =
‖f‖Lp = 0 and there is nothing to prove. Otherwise

‖f‖Lp =
(∫

E

|f(x)|p dµ

)1/p

≤
(∫

E

‖f‖p
L∞ dµ

)1/p

≤ ‖f‖L∞µ(E)1/p.

Since µ(E)1/p → 1 as p → ∞, we find that lim supp→∞ ‖f‖Lp ≤ ‖f‖L∞ .
On the other hand, given ε > 0, we have

µ({x : |f(x)| ≥ ‖f‖L∞ − ε}) ≥ δ for some δ > 0,

hence ∫
X

|f |p dµ ≥ δ(‖f‖L∞ − ε)p.

Therefore lim infp→∞ ‖f‖Lp ≥ ‖f‖L∞ − ε, and since ε is arbitrary, we
have lim infp→∞ ‖f‖Lp ≥ ‖f‖L∞ . Hence the limit limp→∞ ‖f‖Lp exists,
and equals ‖f‖L∞ .
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3 Banach spaces

We introduce here a general notion which encompasses the Lp spaces as
specific examples.

First, a normed vector space consists of an underlying vector space V
over a field of scalars (the real or complex numbers), together with a
norm ‖ · ‖ : V → R+ that satisfies:

• ‖v‖ = 0 if and only if v = 0.

• ‖αv‖ = |α| ‖v‖, whenever α is a scalar and v ∈ V .

• ‖v + w‖ ≤ ‖v‖ + ‖w‖ for all v, w ∈ V .

The space V is said to be complete if whenever {vn} is a Cauchy
sequence in V , that is, ‖vn − vm‖ → 0 as n, m → ∞, then there exists a
v ∈ V such that ‖vn − v‖ → 0 as n → ∞.

A complete normed vector space is called a Banach space. Here
again, we stress the importance of the fact that Cauchy sequences con-
verge to a limit in the space itself, hence the space is “closed” under
limiting operations.

3.1 Examples

The real numbers R with the usual absolute value form an initial example
of a Banach space. Other easy examples are Rd, with the Euclidean norm,
and more generally a Hilbert space with its norm given in terms of its
inner product.

Several further relevant examples are as follows:

Example 1. The family of Lp spaces with 1 ≤ p ≤ ∞ which we have just
introduced are also important examples of Banach spaces (Theorem 1.3
and Theorem 2.1). Incidentally, L2 is the only Hilbert space in the
family Lp, where 1 ≤ p ≤ ∞ (Exercise 25) and this in part accounts for
the special flavor of the analysis carried out in L2 as opposed to L1 or
more generally Lp for p �= 2.

Finally, observe that since the triangle inequality fails in general when
0 < p < 1, ‖ · ‖Lp is not a norm on Lp for this range of p, hence it is not
a Banach space.

Example 2. Another example of a Banach space is C([0, 1]), or more
generally C(X) with X a compact set in a metric space, as will be de-
fined in Section 7. By definition, C(X) is the vector space of continuous
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functions on X equipped with the sup-norm ‖f‖ = supx∈X |f(x)|. Com-
pleteness is guaranteed by the fact that the uniform limit of a sequence
of continuous functions is also continuous.

Example 3. Two further examples are important in various applications.
The first is the space Λα(R) of all bounded functions on R which satisfy
a Hölder (or Lipschitz) condition of exponent α with 0 < α ≤ 1,
that is,

sup
t1 �=t2

|f(t1) − f(t2)|
|t1 − t2|α < ∞.

Observe that f is then necessarily continuous; also the only interesting
case is when α ≤ 1, since a function which satisfies a Hölder condition of
exponent α with α > 1 is constant.2

More generally, this space can be defined on Rd; it consists of contin-
uous functions f equipped with the norm

‖f‖Λα(Rd) = sup
x∈Rd

|f(x)| + sup
x�=y

|f(x) − f(y)|
|x − y|α .

With this norm, Λα(Rd) is a Banach space (see also Exercise 29).

Example 4. A function f ∈ Lp(Rd) is said to have weak derivatives
in Lp up to order k, if for every multi-index α = (α1, . . . , αd) with |α| =
α1 + · · · + αd ≤ k, there is a gα ∈ Lp with

(4)
∫

Rd

gα(x)ϕ(x) dx = (−1)|α|
∫

Rd

f(x)∂α
x ϕ(x) dx

for all smooth functions ϕ that have compact support in Rd. Here, we
use the multi-index notation

∂α
x =

(
∂

∂x

)α

=
(

∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd

.

Clearly, the functions gα (when they exist) are unique, and we also write
∂α

x f = gα. This definition arises from the relationship (4) which holds
whenever f is itself smooth, and g equals the usual derivative ∂α

x f , as
follows from an integration by parts (see also Section 3.1, Chapter 5 in
Book III).

2We have already encountered this space in Book I, Chapter 2 and Book III, Chapter 7.
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The space Lp
k(Rd) is the subspace of Lp(Rd) of all functions that have

weak derivatives up to order k. (The concept of weak derivatives will
reappear in Chapter 3 in the setting of derivatives in the sense of distri-
butions.) This space is usually referred to as a Sobolev space. A norm
that turns Lp

k(Rd) into a Banach space is

‖f‖Lp
k(Rd) =

∑
|α|≤k

‖∂α
x f‖Lp(Rd) .

Example 5. In the case p = 2, we note in the above example that an
L2 function f belongs to L2

k(Rd) if and only if (1 + |ξ|2)k/2f̂(ξ) belongs
to L2, and that ‖(1 + |ξ|2)k/2f̂(ξ)‖L2 is a Hilbert space norm equivalent
to ‖f‖L2

k(Rd).
Therefore, if k is any positive number, it is natural to define L2

k as
those functions f in L2 for which (1 + |ξ|2)k/2f̂(ξ) belongs to L2, and we
can equip L2

k with the norm ‖f‖L2
k(Rd) = ‖(1 + |ξ|2)k/2f̂(ξ)‖L2 .

3.2 Linear functionals and the dual of a Banach space

For the sake of simplicity, we restrict ourselves in this and the following
two sections to Banach spaces over R; the reader will find in Section 6
the slight modifications necessary to extend the results to Banach spaces
over C.

Suppose that B is a Banach space over R equipped with a norm ‖ · ‖. A
linear functional is a linear mapping � from B to R, that is, � : B → R,
which satisfies

�(αf + βg) = α�(f) + β�(g), for all α, β ∈ R, and f, g ∈ B.

A linear functional � is continuous if given ε > 0 there exists δ > 0 so
that |�(f) − �(g)| ≤ ε whenever ‖f − g‖ ≤ δ. Also we say that a linear
functional is bounded if there is M > 0 with |�(f)| ≤ M‖f‖ for all f ∈
B. The linearity of � shows that these two notions are in fact equivalent.

Proposition 3.1 A linear functional on a Banach space is continuous,
if and only if it is bounded.

Proof. The key is to observe that � is continuous if and only if � is
continuous at the origin.

Indeed, if � is continuous, we choose ε = 1 and g = 0 in the above
definition so that |�(f)| ≤ 1 whenever ‖f‖ ≤ δ, for some δ > 0. Hence,
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given any non-zero h, an element of B, we see that δh/‖h‖ has norm equal
to δ, and hence |�(δh/‖h‖)| ≤ 1. Thus |�(h)| ≤ M‖h‖ with M = 1/δ.

Conversely, if � is bounded it is clearly continuous at the origin, hence
continuous.

The significance of continuous linear functionals in terms of closed
hyperplanes in B is a noteworthy geometric point to which we return
later on. Now we take up analytic aspects of linear functionals.

The set of all continuous linear functionals over B is a vector space
since we may add linear functionals and multiply them by scalars:

(�1 + �2)(f) = �1(f) + �2(f) and (α�)(f) = α�(f).

This vector space may be equipped with a norm as follows. The norm
‖�‖ of a continuous linear functional � is the infimum of all values M for
which |�(f)| ≤ M‖f‖ for all f ∈ B. From this definition and the linearity
of � it is clear that

‖�‖ = sup
‖f‖≤1

|�(f)| = sup
‖f‖=1

|�(f)| = sup
f �=0

|�(f)|
‖f‖ .

The vector space of all continuous linear functionals on B equipped
with ‖ · ‖ is called the dual space of B, and is denoted by B∗.

Theorem 3.2 The vector space B∗ is a Banach space.

Proof. It is clear that ‖ · ‖ defines a norm, so we only check that B∗ is
complete. Suppose that {�n} is a Cauchy sequence in B∗. Then, for each
f ∈ B, the sequence {�n(f)} is Cauchy, hence converges to a limit, which
we denote by �(f). Clearly, the mapping � : f 	→ �(f) is linear. If M is
so that ‖�n‖ ≤ M for all n, we see that

|�(f)| ≤ |(� − �n)(f)| + |�n(f)| ≤ |(� − �n)(f)| + M‖f‖,
so that in the limit as n → ∞, we find |�(f)| ≤ M‖f‖ for all f ∈ B.
Thus � is bounded. Finally, we must show that �n converges to � in B∗.
Given ε > 0 choose N so that ‖�n − �m‖ < ε/2 for all n,m > N . Then,
if n > N , we see that for all m > N and any f

|(� − �n)(f)| ≤ |(� − �m)(f)| + |(�m − �n)(f)| ≤ |(� − �m)(f)| + ε

2
‖f‖.

We can also choose m so large (and dependent on f) so that we also have
|(� − �m)(f)| ≤ ε‖f‖/2. In the end, we find that for n > N ,

|(� − �n)(f)| ≤ ε‖f‖.
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This proves that ‖� − �n‖ → 0, as desired.

In general, given a Banach space B, it is interesting and very useful to
be able to describe its dual B∗. This problem has an essentially complete
answer in the case of the Lp spaces introduced before.

4 The dual space of Lp when 1 ≤ p < ∞
Suppose that 1 ≤ p ≤ ∞ and q is the conjugate exponent of p, that is,
1/p + 1/q = 1. The key observation to make is the following: Hölder’s
inequality shows that every function g ∈ Lq gives rise to a bounded linear
functional on Lp by

(5) �(f) =
∫

X

f(x)g(x) dµ(x),

and that ‖�‖ ≤ ‖g‖Lq . Therefore, if we associate g to � above, then we
find that Lq ⊂ (Lp)∗ when 1 ≤ p ≤ ∞. The main result in this section
is to prove that when 1 ≤ p < ∞, every linear functional on Lp is of
the form (5) for some g ∈ Lq. This implies that (Lp)∗ = Lq whenever
1 ≤ p < ∞. We remark that this result is in general not true when p = ∞;
the dual of L∞ contains L1, but it is larger. (See the end of Section 5.3
below.)

Theorem 4.1 Suppose 1 ≤ p < ∞, and 1/p + 1/q = 1. Then, with B =
Lp we have

B∗ = Lq,

in the following sense: For every bounded linear functional � on Lp there
is a unique g ∈ Lq so that

�(f) =
∫

X

f(x)g(x) dµ(x), for all f ∈ Lp.

Moreover, ‖�‖B∗ = ‖g‖Lq .

This theorem justifies the terminology whereby q is usually called the
dual exponent of p.

The proof of the theorem is based on two ideas. The first, as already
seen, is Hölder’s inequality; to which a converse is also needed. The
second is the fact that a linear functional � on Lp, 1 ≤ p < ∞, leads nat-
urally to a (signed) measure ν. Because of the continuity of � the measure
ν is absolutely continuous with respect to the underlying measure µ, and
our desired function g is then the density function of ν in terms of µ.

We begin with:
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Lemma 4.2 Suppose 1 ≤ p, q ≤ ∞, are conjugate exponents.

(i) If g ∈ Lq, then ‖g‖Lq = sup
‖f‖Lp≤1

∣∣∣∣∫ fg

∣∣∣∣.
(ii) Suppose g is integrable on all sets of finite measure, and

sup
‖f‖Lp ≤ 1

f simple

∣∣∣∣∫ fg

∣∣∣∣ = M < ∞.

Then g ∈ Lq, and ‖g‖Lq = M .

For the proof of the lemma, we recall the signum of a real number
defined by

sign(x) =

⎧⎨⎩ 1 if x > 0
−1 if x < 0

0 if x = 0.

Proof. We start with (i). If g = 0, there is nothing to prove, so
we may assume that g is not 0 a.e., and hence ‖g‖Lq �= 0. By Hölder’s
inequality, we have that

‖g‖Lq ≥ sup
‖f‖Lp≤1

∣∣∣∣∫ fg

∣∣∣∣ .
To prove the reverse inequality we consider several cases.

• First, if q = 1 and p = ∞, we may take f(x) = sign g(x). Then, we
have ‖f‖L∞ = 1, and clearly,

∫
fg = ‖g‖L1 .

• If 1 < p, q < ∞, then we set f(x) = |g(x)|q−1sign g(x)/‖g‖q−1
Lq . We

observe that ‖f‖p
Lp =

∫ |g(x)|p(q−1) dµ/‖g‖p(q−1)
Lq = 1 since p(q −

1) = q, and that
∫

fg = ‖g‖Lq .

• Finally, if q = ∞ and p = 1, let ε > 0, and E a set of finite posi-
tive measure, where |g(x)| ≥ ‖g‖L∞ − ε. (Such a set exists by the
definition of ‖g‖L∞ and the fact that the measure µ is σ-finite.)
Then, if we take f(x) = χE(x) sign g(x)/µ(E), where χE denotes
the characteristic function of the set E, we see that ‖f‖L1 = 1, and
also ∣∣∣∣∫ fg

∣∣∣∣ =
1

µ(E)

∫
E

|g| ≥ ‖g‖∞ − ε.
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This completes the proof of part (i).
To prove (ii) we recall3 that we can find a sequence {gn} of simple

functions so that |gn(x)| ≤ |g(x)| while gn(x) → g(x) for each x. When
p > 1 (so q < ∞), we take fn(x) = |gn(x)|q−1 sign g(x)/‖gn‖q−1

Lq . As be-
fore, ‖fn‖Lp = 1. However∫

fng =

∫ |gn(x)|q
‖gn‖q−1

Lq

= ‖gn‖Lq ,

and this does not exceed M . By Fatou’s lemma it follows that
∫ |g|q ≤

Mq, so g ∈ Lq with ‖g‖Lq ≤ M . The direction ‖g‖Lq ≥ M is of course
implied by Hölder’s inequality.

When p = 1 the argument is parallel with the above but simpler. Here
we take fn(x) = (sign g(x))χEn(x), where En is an increasing sequence
of sets of finite measure whose union is X. The details may be left to
the reader.

With the lemma established we turn to the proof of the theorem. It
is simpler to consider first the case when the underlying space has finite
measure. In this case, with � the given functional on Lp, we can then
define a set function ν by

ν(E) = �(χE),

where E is any measurable set. This definition makes sense because χE is
now automatically in Lp since the space has finite measure. We observe
that

(6) |ν(E)| ≤ c(µ(E))1/p,

where c is the norm of the linear functional, taking into account the fact
that ‖χE‖Lp = (µ(E))1/p.

Now the linearity of � clearly implies that ν is finitely-additive. More-
over, if {En} is a countable collection of disjoint measurable sets, and we
put E =

⋃∞
n=1 En, E∗

N =
⋃∞

n=N+1 En, then obviously

χE = χE∗
N

+
N∑

n=1

χEn .

Thus ν(E) = ν(E∗
N ) +

∑N
n=1 ν(En). However ν(E∗

N ) → 0, as N → ∞,
because of (6) and the assumption p < ∞. This shows that ν is countably

3See for instance Section 2 in Chapter 6 of Book III.
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additive and, moreover, (6) also shows us that ν is absolutely continuous
with respect to µ.

We can now invoke the key result about absolutely continuous mea-
sures, the Lebesgue-Radon-Nykodim theorem. (See for example Theo-
rem 4.3, Chapter 6 in Book III.) It guarantees the existence of an in-
tegrable function g so that ν(E) =

∫
E

g dµ for every measurable set E.
Thus we have �(χE) =

∫
χEg dµ. The representation �(f) =

∫
fg dµ then

extends immediately to simple functions f , and by a passage to the limit,
to all f ∈ Lp since the simple functions are dense in Lp, 1 ≤ p < ∞. (See
Exercise 6.) Also by Lemma 4.2, we see that ‖g‖Lq = ‖�‖.

To pass from the situation where the measure of X is finite to the
general case, we use an increasing sequence {En} of sets of finite measure
that exhaust X, that is, X =

⋃∞
n=1 En. According to what we have just

proved, for each n there is an integrable function gn on En (which we
can set to be zero in Ec

n) so that

(7) �(f) =
∫

fgn dµ

whenever f is supported in En and f ∈ Lp. Moreover by conclusion (ii)
of the lemma ‖gn‖Lq ≤ ‖�‖.

Now it is easy to see because of (7) that gn = gm a.e. on Em, whenever
n ≥ m. Thus limn→∞ gn(x) = g(x) exists for almost every x, and by
Fatou’s lemma, ‖g‖Lq ≤ ‖�‖. As a result we have that �(f) =

∫
fg dµ for

each f ∈ Lp supported in En, and then by a simple limiting argument, for
all f ∈ Lp. The fact that ‖�‖ ≤ ‖g‖Lq , is already contained in Hölder’s
inequality, and therefore the proof of the theorem is complete.

5 More about linear functionals

First we turn to the study of certain geometric aspects of linear function-
als in terms of the hyperplanes that they define. This will also involve
understanding some elementary ideas about convexity.

5.1 Separation of convex sets

Although our ultimate focus will be on Banach spaces, we begin by con-
sidering an arbitrary vector space V over the reals. In this general setting
we can define the following notions.

First, a proper hyperplane is a linear subspace of V that arises as
the zero set of a (non-zero) linear functional on V . Alternatively, it is
a linear subspace of V so that it, together with any vector not in V ,
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spans V . Related to this notion is that of an affine hyperplane (which
for brevity we will always refer to as a hyperplane) defined to be a
translate of a proper hyperplane by a vector in V . To put it another
way: H is a hyperplane if there is a non-zero linear functional �, and a
real number a, so that

H = {v ∈ V : �(v) = a}.

Another relevant notion is that of a convex set. The subset K ⊂ V is said
to be convex if whenever v0 and v1 are both in K then the straight-line
segment joining them

(8) v(t) = (1 − t)v0 + tv1, 0 ≤ t ≤ 1

also lies entirely in K.

A key heuristic idea underlying our considerations can be enunciated
as the following general principle:

If K is a convex set and v0 /∈ K, then K and v0 can be sep-
arated by a hyperplane.

This principle is illustrated in Figure 1.

K

v0

H

�(v) = a

Figure 1. Separation of a convex set and a point by a hyperplane

The sense in which this is meant is that there is a non-zero linear
functional � and a real number a, so that

�(v0) ≥ a, while �(v) < a if v ∈ K.

To give an idea of what is behind this principle we show why it holds in
a nice special case. (See also Section 5.2.)
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Proposition 5.1 The assertion above is valid if V = Rd and K is con-
vex and open.

Proof. Since we may assume that K is non-empty, we can also
suppose that (after a possible translation of K and v0) we have 0 ∈ K.
The key construct used will be that of the Minkowski gauge function p
associated to K, which measures (the inverse of) how far we need to go,
starting from 0 in the direction of a vector v, to reach the exterior of K.
The precise definition of p is as follows:

p(v) = inf
r>0

{r : v/r ∈ K}.

Observe that since we have assumed that the origin is an interior point
of K, for each v ∈ Rd there is an r > 0, so that v/r ∈ K. Hence p(v) is
well-defined.

Figure 2 below gives an example of a gauge function in the special case
where V = R and K = (a, b), an open interval that contains the origin.

ba 0 x

y = 1

p

Figure 2. The gauge function of the interval (a, b) in R

We note, for example, that if V is normed and K is the unit ball
{‖v‖ < 1}, then p(v) = ‖v‖.

In general, the non-negative function p completely characterizes K in
that

(9) p(v) < 1 if and only if v ∈ K.

Moreover p has an important sub-linear property:

(10)
{

p(av) = ap(v), if a ≥ 0, and v ∈ V .
p(v1 + v2) ≤ p(v1) + p(v2), if v1 and v2 ∈ V .
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In fact, if v ∈ K then v/(1 − ε) ∈ K for some ε > 0, since K is open,
which gives that p(v) < 1. Conversely if p(v) < 1, then v = (1 − ε)v′, for
some 0 < ε < 1, and v′ ∈ K. Then since v = (1 − ε)v′ + ε · 0 this shows
v ∈ K, because 0 ∈ K and K is convex.

To verify (10) we merely note that (v1 + v2)/(r1 + r2) belongs to K,
if both v1/r1 and v2/r2 belong to K, in view of property (8) defining the
convexity of K with t = r2/(r1 + r2) and 1 − t = r1/(r1 + r2).

Now our proposition will be proved once we find a linear functional �,
so that

(11) �(v0) = 1, and �(v) ≤ p(v), v ∈ Rd.

This is because �(v) < 1, for all v ∈ K by (9). We shall construct � in a
step-by-step manner.

First, such an � is already determined in the one-dimensional sub-
space V0 spanned by v0, V0 = {Rv0}, since �(bv0) = b�(v0) = b, when
b ∈ R, and this is consistent with (11). Indeed, if b ≥ 0 then p(bv0) =
bp(v0) ≥ b�(v0) = �(bv0) by (10) and (9), while (11) is immediate when
b < 0.

The next step is to choose any vector v1 linearly independent from v0

and extend � to the subspace V1 spanned by v0 and v1. Thus we can
make a choice for the value of � on v1, �(v1), so as to satisfy (11) if

a�(v1) + b = �(av1 + bv0) ≤ p(av1 + bv0), for all a, b ∈ R.

Setting a = 1 and bv0 = w yields

�(v1) + �(w) ≤ p(v1 + w) for all w ∈ V0,

while setting a = −1 implies

−�(v1) + �(w′) ≤ p(−v1 + w′), for all w′ ∈ V0.

Altogether then it is required that for all w, w′ ∈ V0

(12) −p(−v1 + w′) + �(w′) ≤ �(v1) ≤ p(v1 + w) − �(w).

Notice that there is a number that lies between the two extremes of the
above inequality. This is a consequence of the fact that −p(−v1 + w′) +
�(w′) never exceeds p(v1 + w) − �(w), which itself follows from the fact
that �(w) + �(w′) ≤ p(w + w′) ≤ p(−v1 + w′) + p(v1 + w), by (11) on V0

and the sub-linearity of p. So a choice of �(v1) can be made that is
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consistent with (12) and this allows one to extend � to V1. In the same
way we can proceed inductively to extend � to all of Rd.

The argument just given here in this special context will now be car-
ried over in a general setting to give us an important theorem about
constructing linear functionals.

5.2 The Hahn-Banach Theorem

We return to the general situation where we deal with an arbitrary vector
space V over the reals. We assume that with V we are given a real-valued
function p on V that satisfies the sub-linear property (10). However, as
opposed to the example of the gauge function considered above, which
by its nature is non-negative, here we do not assume that p has this
property. In fact, certain p’s which may take on negative values are
needed in some of our applications later.

Theorem 5.2 Suppose V0 is a linear subspace of V , and that we are
given a linear functional �0 on V0 that satisfies

�0(v) ≤ p(v), for all v ∈ V0.

Then �0 can be extended to a linear functional � on V that satisfies

�(v) ≤ p(v), for all v ∈ V .

Proof. Suppose V0 �= V , and pick v1 a vector not in V0. We will first
extend �0 to the subspace V1 spanned by V0 and v1, as we did before.
We can do this by defining a putative extension �1 of �0, defined on V1

by �1(αv1 + w) = α�1(v1) + �0(w), whenever w ∈ V0 and α ∈ R, if �1(v1)
is chosen so that

�1(v) ≤ p(v), for all v ∈ V1.

However, exactly as above, this happens when

−p(−v1 + w′) + �0(w′) ≤ �1(v1) ≤ p(v1 + w) − �0(w)

for all w, w′ ∈ V0.
The right-hand side exceeds the left-hand side because of �0(w′) +

�0(w) ≤ p(w′ + w) and the sub-linearity of p. Thus an appropriate choice
of �1(v1) is possible, giving the desired extension of �0 from V0 to V1.

We can think of the extension we have constructed as the key step in
an inductive procedure. This induction, which in general is necessarily
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trans-finite, proceeds as follows. We well-order all vectors in V that do
not belong to V0, and denote this ordering by <. Among these vectors we
call a vector v “extendable” if the linear functional �0 has an extension
of the kind desired to the subspace spanned by V0, v, and all vectors
< v. What we want to prove is in effect that all vectors not in V0 are
extendable. Assume the contrary, then because of the well-ordering we
can find the smallest v1 that is not extendable. Now if V ′

0 is the space
spanned by V0 and all the vectors < v1, then by assumption �0 extends
to V ′

0 . The previous step, with V ′
0 in place of V0 allows us then to extend

�0 to the subspace spanned by V ′
0 and v1, reaching a contradiction. This

proves the theorem.

5.3 Some consequences

The Hahn-Banach theorem has several direct consequences for Banach
spaces. Here B∗ denotes the dual of the Banach space B as defined in
Section 3.2, that is, the space of continuous linear functionals on B.

Proposition 5.3 Suppose f0 is a given element of B with ‖f0‖ = M .
Then there exists a continuous linear functional � on B so that �(f0) = M
and ‖�‖B∗ = 1.

Proof. Define �0 on the one-dimensional subspace {αf0}α∈R by
�0(αf0) = αM , for each α ∈ R. Note that if we set p(f) = ‖f‖ for every
f ∈ B, the function p satisfies the basic sub-linear property (10). We also
observe that

|�0(αf0)| = |α|M = |α|‖f0‖ = p(αf0),

so �0(f) ≤ p(f) on this subspace. By the extension theorem �0 extends
to an � defined on B with �(f) ≤ p(f) = ‖f‖, for all f ∈ B. Since this
inequality also holds for −f in place of f we get |�(f)| ≤ ‖f‖, and thus
‖�‖B∗ ≤ 1. The fact that ‖�‖B∗ ≥ 1 is implied by the defining property
�(f0) = ‖f0‖, thereby proving the proposition.

Another application is to the duality of linear transformations. Sup-
pose B1 and B2 are a pair of Banach spaces, and T is a bounded lin-
ear transformation from B1 to B2. By this we mean that T maps B1

to B2; it satisfies T (αf1 + βf2) = αT (f1) + βT (f2) whenever f1, f2 ∈ B
and α and β are real numbers; and that it has a bound M so that
‖T (f)‖B2 ≤ M‖f‖B1 for all f ∈ B1. The least M for which this inequal-
ity holds is called the norm of T and is denoted by ‖T‖.

Often a linear transformation is initially given on a dense subspace. In
this connection, the following proposition is very useful.
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Proposition 5.4 Let B1, B2 be a pair of Banach spaces and S ⊂ B1

a dense linear subspace of B1. Suppose T0 is a linear transformation
from S to B2 that satisfies ‖T0(f)‖B2 ≤ M‖f‖B1 for all f ∈ S. Then T0

has a unique extension T to all of B1 so that ‖T (f)‖B2 ≤ M‖f‖B1 for all
f ∈ B1.

Proof. If f ∈ B1, let {fn} be a sequence in S which converges to
f . Then since ‖T0(fn) − T0(fm)‖B2 ≤ M‖fn − fm‖B1 it follows that
{T0(fn)} is a Cauchy sequence in B2, and hence converges to a limit,
which we define to be T (f). Note that the definition of T (f) is indepen-
dent of the chosen sequence {fn}, and that the resulting transformation
T has all the required properties.

We now discuss duality of linear transformations. Whenever we have
a linear transformation T from a Banach space B1 to another Banach
space B2, it induces a dual transformation, T ∗ of B∗

2 to B∗
1 , that can

be defined as follows.
Suppose �2 ∈ B∗

2 , (a continuous linear functional on B2), then �1 =
T ∗(�2) ∈ B∗

1 , is defined by �1(f1) = �2(T (f1)), whenever f1 ∈ B1. More
succinctly

(13) T ∗(�2)(f1) = �2(T (f1)).

Theorem 5.5 The operator T ∗ defined by (13) is a bounded linear trans-
formation from B∗

2 to B∗
1. Its norm ‖T ∗‖ satisfies ‖T‖ = ‖T ∗‖.

Proof. First, if ‖f1‖B1 ≤ 1, we have that

|�1(f1)| = |�2(T (f1))| ≤ ‖�2‖ ‖T (f1)‖B2 ≤ ‖�2‖ ‖T‖.

Thus taking the supremum over all f1 ∈ B1 with ‖f1‖B1 ≤ 1, we see that
the mapping �2 	→ T ∗(�2) = �1 has norm ≤ ‖T‖.

To prove the reverse inequality we can find for any ε > 0 an f1 ∈ B1

with ‖f1‖B1 = 1 and ‖T (f1)‖B2 ≥ ‖T‖ − ε. Next, with f2 = T (f1) ∈ B2,
by Proposition 5.3 (with B = B2) there is an �2 in B∗

2 so that ‖�2‖B∗
2

= 1
but �2(f2) ≥ ‖T‖ − ε. Thus by (13) one has T ∗(�2)(f1) ≥ ‖T‖ − ε, and
since ‖f1‖B1 = 1, we conclude ‖T ∗(�2)‖B∗

1
≥ ‖T‖ − ε. This gives ‖T ∗‖ ≥

‖T‖ − ε for any ε > 0, which proves the theorem.

A further quick application of the Hahn-Banach theorem is the obser-
vation that in general L1 is not the dual of L∞ (as opposed to the case
1 ≤ p < ∞ considered in Theorem 4.1).
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Let us first recall that whenever g ∈ L1, the linear functional f 	→ �(f)
given by

(14) �(f) =
∫

fg dµ

is bounded on L∞, and its norm ‖�‖(L∞)∗ is ‖g‖L1 . In this way L1 can be
viewed as a subspace of (L∞)∗, with the L1 norm of g being identical with
its norm as a linear functional. One can, however, produce a continuous
linear functional of L∞ not of this form. For simplicity we do this when
the underlying space is R with Lebesgue measure.

We let C denote the subspace of L∞(R) consisting of continuous
bounded functions on R. Define the linear function �0 on C (the “Dirac
delta”) by

�0(f) = f(0), f ∈ C.

Clearly |�0(f)| ≤ ‖f‖L∞ , f ∈ C. Thus by the extension theorem, with
p(f) = ‖f‖L∞ , we see that there is a linear functional � on L∞, extend-
ing �0, that satisfies |�(f)| ≤ ‖f‖L∞ , for all f ∈ L∞.

Suppose for a moment that � were of the form (14) for some g ∈ L1.
Since �(f) = �0(f) = 0 whenever f is a continuous trapezoidal function
that excludes the origin, we would have

∫
fg dx = 0 for such functions f ;

by a simple limiting argument this gives
∫

I
g dx = 0 for all intervals ex-

cluding the origin, and from there for all intervals I. Hence the indefi-
nite integrals G(y) =

∫ y

0
g(x) dx vanish, and therefore G′ = g = 0 by the

differentiation theorem.4 This gives a contradiction, hence the linear
functional � is not representable as (14).

5.4 The problem of measure

We now consider an application of the Hahn-Banach theorem of a dif-
ferent kind. We present a rather stunning assertion, answering a basic
question of the “problem of measure.” The result states that there is a
finitely-additive5 measure defined on all subsets of Rd that agrees with
Lebesgue measure on the measurable sets, and is translation invariant.
We formulate the theorem in one dimension.

Theorem 5.6 There is an extended-valued non-negative function m̂, de-
fined on all subsets of R with the following properties:

(i) m̂(E1 ∪ E2) = m̂(E1) + m̂(E2) whenever E1 and E2 are disjoint
subsets of R.

4See for instance Theorem 3.11, in Chapter 3 of Book III.
5The qualifier “finitely-additive” is crucial.
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(ii) m̂(E) = m(E) if E is a measurable set and m denotes the Lebesgue
measure.

(iii) m̂(E + h) = m̂(E) for every set E and real number h.

From (i) we see that m̂ is finitely additive; however it cannot be countably
additive as the proof of the existence of non-measurable sets shows. (See
Section 3, Chapter 1 in Book III.)

This theorem is a consequence of another result of this kind, dealing
with an extension of the Lebesgue integral. Here the setting is the circle
R/Z, instead of R, with the former realized as (0, 1]. Thus functions on
R/Z can be thought of as functions on (0, 1], extended to R by periodicity
with period 1. In the same way, translations on R induce corresponding
translations on R/Z. The assertion now is the existence of a generalized
integral (the “Banach integral”) defined on all bounded functions on the
circle.

Theorem 5.7 There is a linear functional f 	→ I(f) defined on all
bounded functions f on R/Z so that:

(a) I(f) ≥ 0, if f(x) ≥ 0 for all x.

(b) I(αf1 + βf2) = αI(f1) + βI(f2) for all α and β real.

(c) I(f) =
∫ 1

0
f(x) dx, whenever f is measurable.

(d) I(fh) = I(f), for all h ∈ R where fh(x) = f(x − h).

The right-hand side of (c) denotes the usual Lebesgue integral.

Proof. The idea is to consider the vector space V of all (real-valued)
bounded functions on R/Z, with V0 the subspace of those functions that
are measurable. We let I0 denote the linear functional given by the
Lebesgue integral, I0(f) =

∫ 1

0
f(x) dx for f ∈ V0. The key is to find the

appropriate sub-linear p defined on V so that

I0(f) ≤ p(f), for all f ∈ V0.

Banach’s ingenious definition of p is as follows: We let A = {a1, . . . , aN}
denote an arbitrary collection of N real numbers, with #(A) = N denot-
ing its cardinality. Given A, we define MA(f) to be the real number

MA(f) = sup
x∈R

(
1
N

N∑
j=1

f(x + aj)

)
,
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and set

p(f) = inf
A
{MA(f)},

where the infimum is taken over all finite collections A.
It is clear that p(f) is well-defined, since f is assumed to be bounded;

also p(cf) = cp(f) if c ≥ 0. To prove p(f1 + f2) ≤ p(f1) + p(f2), we find
for each ε, finite collections A and B so that

MA(f1) ≤ p(f1) + ε and MB(f2) ≤ p(f2) + ε.

Let C be the collection {ai + bj}1≤i≤N1, 1≤j≤N2 where N1 = #(A), and
N2 = #(B). Now it is easy to see that

MC(f1 + f2) ≤ MC(f1) + MC(f2).

Next, we note as a general matter that MA(f) is the same as MA′(f ′)
where f ′ = fh is a translate of f and A′ = A − h . Also the averages
corresponding to C arise as averages of translates of the averages corre-
sponding to A and B, so it is easy to verify that

MC(f1) ≤ MA(f1) and also MC(f2) ≤ MB(f2).

Thus

p(f1 + f2) ≤ MC(f1 + f2) ≤ MA(f1) + MB(f2) ≤ p(f1) + p(f2) + 2ε.

Letting ε → 0 proves the sub-linearity of p.

Next if f is Lebesgue measurable (and hence integrable since it is
bounded), then for each A

I0(f) =
1
N

∫ 1

0

(
N∑

j=1

f(x + aj)

)
dx ≤

∫ 1

0

MA(f) dx = MA(f),

and hence I0(f) ≤ p(f). Let therefore I be the linear functional extend-
ing I0 from V0 to V , whose existence is guaranteed by Theorem 5.2. It
is obvious from its definition that p(f) ≤ 0 if f ≤ 0. From this it follows
that I(f) ≤ 0 when f ≤ 0, and replacing f by −f we see that conclu-
sion (a) holds.

Next we observe that for each real h

(15) p(f − fh) ≤ 0.
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In fact, for h fixed and N given, define the set AN to be {h, 2h, 3h, . . . , Nh}.
Then the sum that enters in the definition of MAN

(f − fh) is

1
N

N∑
j=1

(f(x + jh) − f(x + (j − 1)h)) ,

and thus |MAN
(f − fh)| ≤ 2M/N , where M is an upper bound for |f |.

Since p(f − fh) ≤ MAN
(f − fh) → 0, as N → ∞, we see that (15) is

proved. This shows that I(f − fh) ≤ 0, for all f and h. However, replac-
ing f by fh and then h by −h, we see that I(fh − f) ≤ 0 and thus (d) is
also established, finishing the proof of Theorem 5.7.

As a direct consequence we have the following.

Corollary 5.8 There is a non-negative function m̂ defined on all subsets
of R/Z so that:

(i) m̂(E1 ∪ E2) = m̂(E1) + m̂(E2) for all disjoint subsets E1 and E2.

(ii) m̂(E) = m(E) if E is measurable.

(iii) m̂(E + h) = m̂(E) for every h in R.

We need only take m̂(E) = I(χE), with I as in Theorem 5.7, where χE

denotes the characteristic function of E.

We now turn to the proof of Theorem 5.6. Let Ij denote the interval
(j, j + 1], where j ∈ Z. Then we have a partition

⋃∞
j=−∞ Ij of R into

disjoint sets.
For clarity of exposition, we temporarily relabel the measure m̂ on

(0, 1] = I0 given by the corollary and call it m̂0. So whenever E ⊂ I0 we
defined m̂(E) to be m̂0(E). More generally, if E ⊂ Ij we set m̂(E) =
m̂0(E − j).

With these things said, for any set E define m̂(E) by

(16) m̂(E) =
∞∑

j=−∞
m̂(E ∩ Ij) =

∞∑
j=−∞

m̂0((E ∩ Ij) − j).

Thus m̂(E) is given as an extended non-negative number. Note that if
E1 and E2 are disjoint so are (E1 ∩ Ij) − j and (E2 ∩ Ij) − j. It follows
that m̂(E1 ∪ E2) = m̂(E1) + m̂(E2). Moreover if E is measurable then
m̂(E ∩ Ij) = m(E ∩ Ij) and so m̂(E) = m(E).

To prove m̂(E + h) = m̂(E), consider first the case h = k ∈ Z. This is
an immediate consequence of the definition (16) once one observes that
((E + k) ∩ Ij+k) − (j + k) = (E ∩ Ij) − j, for all j, k ∈ Z.
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Next suppose 0 < h < 1. We then decompose E ∩ Ij as E′
j ∪ E′′

j , with
E′

j = E ∩ (j, j + 1 − h] and E′′
j = E ∩ (j + 1 − h, j + 1]. The point of

this decomposition is that E′
j + h remains in Ij but E′′

j + h is placed
in Ij+1. In any case, E =

⋃
j E′

j ∪
⋃

j E′′
j , and the union is disjoint.

Thus using the first additivity property proved above and then (16)
we see that

m̂(E) =
∞∑

j=−∞

(
m̂(E′

j) + m̂(E′′
j )

)
.

Similarly

m̂(E + h) =
∞∑

j=−∞

(
m̂(E′

j + h) + m̂(E′′
j + h)

)
.

Now both E′
j and E′

j + h are in Ij , hence m̂(E′
j) = m̂(E′

j + h) by the
translation invariance of m̂0 and the definition of m̂ on subsets of Ij .
Also E′′

j is in Ij and E′′
j + h is in Ij+1, and their measures agree for the

same reasons. This establishes that m̂(E) = m̂(E + h), for 0 < h < 1.
Now combining this with the translation invariance with respect to Z
already proved, we obtain conclusion (iii) of Theorem 5.6 for all h, and
hence the theorem is completely proved.

For the corresponding extension of Lebesgue measure in Rd and other
related results, see Exercise 36 and Problems 8∗ and 9∗.

6 Complex Lp and Banach spaces

We have supposed in Section 3.2 onwards that our Lp and Banach spaces
are taken over the reals. However, the statements and the proofs of
the corresponding theorems for those spaces taken with respect to the
complex scalars are for the most part routine adaptations of the real case.
There are nevertheless several instances that require further comment.
First, in the argument concerning the converse of Hölder’s inequality
(Lemma 4.2), the definition of f should read

f(x) = |g(x)|q−1 sign g(x)
‖g‖q−1

Lq

,

where now “sign” denotes the complex version of the signum function,
defined by sign z = z/|z| if z �= 0, and sign 0 = 0. There are similar oc-
currences with g replaced by gn.

Second, while the Hahn-Banach theorem is valid as stated only for real
vector spaces, a version of the complex case (sufficient for the applications
in Section 5.3 where p(f) = ‖f‖) can be found in Exercise 33 below.
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7 Appendix: The dual of C(X)

In this appendix, we describe the bounded linear functionals of the space C(X)
of continuous real-valued functions on X. To begin with, we assume that X is a
compact metric space. Our main result then states that if � ∈ C(X)∗, then there
exists a finite signed Borel measure µ (this measure is sometimes referred to as a
Radon measure) so that

�(f) =

Z

X

f(x) dµ(x) for all f ∈ C(X).

Before proceeding with the argument leading to this result, we collect some basic
facts and definitions.

Let X be a metric space with metric d, and assume that X is compact; that is,
every covering of X by open sets contains a finite sub-covering. The vector space
C(X) of real-valued continuous functions on X equipped with the sup-norm

‖f‖ = sup
x∈X

|f(x)|, f ∈ C(X)

is a Banach space over R. Given a continuous function f on X we define the
support of f , denoted supp(f), as the closure of the set {x ∈ X : f(x) �= 0}.6

We recall some simple facts about continuous functions and open and closed
sets in X that we shall use below.

(i) Separation. If A and B are two disjoint closed subsets of X, then there
exists a continuous function f with f = 1 on A, f = 0 on B, and 0 < f < 1 in the
complements of A and B.

Indeed, one can take for instance

f(x) =
d(x, B)

d(x, A) + d(x, B)
,

where d(x, B) = infy∈B d(x, y), with a similar definition for d(x, A).

(ii) Partition of unity. If K is a compact set which is covered by finitely many
open sets {Ok}N

k=1, then there exist continuous functions ηk for 1 ≤ k ≤ N so
that 0 ≤ ηk ≤ 1, supp(ηk) ⊂ Ok, and

PN
k=1 ηk(x) = 1 whenever x ∈ K. Moreover,

0 ≤PN
k=1 ηk(x) ≤ 1 for all x ∈ X.

One can argue as follows. For each x ∈ K, there exists a ball B(x) centered at x
and of positive radius such that B(x) ⊂ Oi for some i. Since

S

x∈K B(x) covers K,

we can select a finite subcovering, say
SM

j=1 B(xj). For each 1 ≤ k ≤ N , let Uk

be the union of all open balls B(xj) so that B(xj) ⊂ Ok; clearly K ⊂ SN
k=1 Uk.

By (i) above, there exists a continuous function 0 ≤ ϕk ≤ 1 so that ϕk = 1 on Uk

and supp(ϕk) ⊂ Ok. If we define

η1 = ϕ1, η2 = ϕ2(1 − ϕ1), . . . , ηN = ϕN (1 − ϕ1) · · · (1 − ϕN−1)

6This is the common usage of the terminology “support.” In Book III, Chapter 2, we
used “support of f” to indicate the set where f(x) �= 0, which is convenient when dealing
with measurable functions.
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then supp(ηk) ⊂ Ok and

η1 + · · · + ηN = 1 − (1 − ϕ1) · · · (1 − ϕN ),

thus guaranteeing the desired properties.

Recall7 that the Borel σ-algebra of X, which is denoted by BX , is the smallest
σ-algebra of X that contains the open sets. Elements of BX are called Borel sets,
and a measure defined on BX is called a Borel measure. If a Borel measure is
finite, that is µ(X) < ∞, then it satisfies the following “regularity property”: for
any Borel set E and any ε > 0, there are an open set O and a closed set F such
that E ⊂ O and µ(O − E) < ε, while F ⊂ E and µ(E − F ) < ε.

In general we shall be interested in finite signed Borel measures on X, that
is, measures which can take on negative values. If µ is such a measure, and µ+

and µ− denote the positive and negative variations of µ, then µ = µ+ − µ−, and
integration with respect to µ is defined by

R

f dµ =
R

f dµ+ − R f dµ−. Conversely,
if µ1 and µ2 are two finite Borel measures, then µ = µ1 − µ2 is a finite signed Borel
measure, and

R

f dµ =
R

f dµ1 −
R

f dµ2.

We denote by M(X) the space of finite signed Borel measures on X. Clearly,
M(X) is a vector space which can be equipped with the following norm

‖µ‖ = |µ|(X),

where |µ| denotes the total variation of µ. It is a simple fact that M(X) with this
norm is a Banach space.

7.1 The case of positive linear functionals

We begin by considering only linear functionals � : C(X) → R which are positive,
that is, �(f) ≥ 0 whenever f(x) ≥ 0 for all x ∈ X. Observe that positive linear
functionals are automatically bounded and that ‖�‖ = �(1). Indeed, note that
|f(x)| ≤ ‖f‖, hence ‖f‖ ± f ≥ 0, and therefore |�(f)| ≤ �(1)‖f‖.

Our main result goes as follows.

Theorem 7.1 Suppose X is a compact metric space and � a positive linear func-
tional on C(X). Then there exists a unique finite (positive) Borel measure µ so
that

(17) �(f) =

Z

X

f(x) dµ(x) for all f ∈ C(X).

Proof. The existence of the measure µ is proved as follows. Consider the
function ρ on the open subsets of X defined by

ρ(O) = sup {�(f), where supp(f) ⊂ O, and 0 ≤ f ≤ 1} ,

7The definitions and results on measure theory needed in this section, in particular the
extension of a premeasure used in the proof of Theorem 7.1, can be found in Chapter 6
of Book III.
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and let the function µ∗ be defined on all subsets of X by

µ∗(E) = inf{ρ(O), where E ⊂ O and O is open}.

We contend that µ∗ is a metric exterior measure on X.
Indeed, we clearly must have µ∗(E1) ≤ µ∗(E2) whenever E1 ⊂ E2. Also, if O is

open, then µ∗(O) = ρ(O). To show that µ∗ is countably sub-additive on subsets
of X, we begin by proving that µ∗ is in fact sub-additive on open sets {Ok}, that
is,

(18) µ∗

 ∞
[

k=1

Ok

!

≤
∞
X

k=1

µ∗(Ok).

To do so, suppose {Ok}∞k=1 is a collection of open sets in X, and let O =
S∞

k=1 Ok.
If f is any continuous function that satisfies supp(f) ⊂ O and 0 ≤ f ≤ 1, then
by compactness of K = supp(f) we can pick a sub-cover so that (after relabeling
the sets Ok, if necessary) K ⊂ SN

k=1 Ok. Let {ηk}N
k=1 be a partition of unity of

{O1, . . . ,ON} (as discussed above in (ii)); this means that each ηk is continuous
with 0 ≤ ηk ≤ 1, supp(ηk) ⊂ Ok and

PN
k=1 ηk(x) = 1 for all x ∈ K. Hence recalling

that µ∗ = ρ on open sets, we get

�(f) =
N
X

k=1

�(fηk) ≤
N
X

k=1

µ∗(Ok) ≤
∞
X

k=1

µ∗(Ok),

where the first inequality follows because supp(fηk) ⊂ Ok and 0 ≤ fηk ≤ 1. Tak-
ing the supremum over f we find that µ∗

`

S∞
k=1 Ok

´ ≤P∞
k=1 µ∗(Ok).

We now turn to the proof of the sub-additivity of µ∗ on all sets. Suppose {Ek}
is a collection of subsets of X and let ε > 0. For each k, pick an open set Ok

so that Ek ⊂ Ok and µ∗(Ok) ≤ µ∗(Ek) + ε2−k. Since O =
SOk covers

S

Ek, we
must have by (18) that

µ∗(
[

Ek) ≤ µ∗(O) ≤
X

k

µ∗(Ok) ≤
X

k

µ∗(Ek) + ε,

and consequently µ∗(
S

Ek) ≤Pk µ∗(Ek) as desired.
The last property we must verify is that µ∗ is metric, in the sense that if

d(E1, E2) > 0, then µ∗(E1 ∪ E2) = µ∗(E1) + µ∗(E2). Indeed, the separation con-
dition implies that there exist disjoint open sets O1 and O2 so that E1 ⊂ O1

and E2 ⊂ O2. Therefore, if O is any open subset which contains E1 ∪ E2, then
O ⊃ (O ∩O1) ∪ (O ∩O2), where this union is disjoint. Hence the additivity of µ∗
on disjoint open sets, and its monotonicity give

µ∗(O) ≥ µ∗(O ∩O1) + µ∗(O ∩O2) ≥ µ∗(E1) + µ∗(E2),

since E1 ⊂ (O ∩O1) and E2 ⊂ (O ∩O2). So µ∗(E1 ∪ E2) ≥ µ∗(E1) + µ∗(E2), and
since the reverse inequality has already been shown above, this concludes the proof
that µ∗ is a metric exterior measure.
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By Theorems 1.1 and 1.2 in Chapter 6 of Book III, there exists a Borel measure
µ on BX which extends µ∗. Clearly, µ is finite with µ(X) = �(1).

We now prove that this measure satisfies (17). Let f ∈ C(X). Since f can be
written as the difference of two continuous non-negative functions, we can assume
after rescaling, that 0 ≤ f(x) ≤ 1 for all x ∈ X. The idea now is to slice f , that is,
write f =

P

fn where each fn is continuous and relatively small in the sup-norm.
More precisely, let N be a fixed positive integer, define O0 = X, and for every
integer n ≥ 1, let

On = {x ∈ X : f(x) > (n − 1)/N}.

Thus On ⊃ On+1 and ON+1 = ∅. Now if we define

fn(x) =

8

<

:

1/N if x ∈ On+1,
f(x) − (n − 1)/N if x ∈ On −On+1,
0 if x ∈ Oc

n,

then the functions fn are continuous and they “pile up” to yield f , that is, f =
PN

n=1 fn. Since Nfn = 1 on On+1, supp(Nfn) ⊂ On ⊂ On−1, and also 0 ≤ Nfn ≤
1 we have µ(On+1) ≤ �(Nfn) ≤ µ(On−1), and therefore by linearity

(19)
1

N

N
X

n=1

µ(On+1) ≤ �(f) ≤ 1

N

N
X

n=1

µ(On−1).

The properties of Nfn also imply µ(On+1) ≤
R

Nfn dµ ≤ µ(On), hence

(20)
1

N

N
X

n=1

µ(On+1) ≤
Z

f dµ ≤ 1

N

N
X

n=1

µ(On).

Consequently, combining the inequalities (19) and (20) yields

˛

˛

˛

˛

�(f) −
Z

f dµ

˛

˛

˛

˛

≤ 2µ(X)

N
.

In the limit as N → ∞ we conclude that �(f) =
R

f dµ as desired.

Finally, we prove uniqueness. Suppose µ′ is another finite positive Borel measure
on X that satisfies �(f) =

R

f dµ′ for all f ∈ C(X). If O is an open set, and
0 ≤ f ≤ 1 with supp(f) ⊂ O, then

�(f) =

Z

f dµ′ =

Z

O
f dµ′ ≤

Z

O
1 dµ′ = µ′(O).

Taking the supremum over f and recalling the definition of µ yields µ(O) ≤ µ′(O).
For the reverse inequality, recall the inner regularity condition satisfied by a finite
Borel measure: given ε > 0, there exists a closed set K so that K ⊂ O, and µ′(O −
K) < ε. By the separation property (i) noted above applied to K and Oc, we can



32 Chapter 1. LP SPACES AND BANACH SPACES

pick a continuous function f so that 0 ≤ f ≤ 1, supp(f) ⊂ O and f = 1 on K.
Then

µ′(O) ≤ µ′(K) + ε ≤
Z

K

f dµ′ + ε ≤ �(f) + ε ≤ µ(O) + ε.

Since ε was arbitrary, we obtain the desired inequality, and therefore µ(O) = µ′(O)
for all open sets O. This implies that µ = µ′ on all Borel sets, and the proof of
the theorem is complete.

7.2 The main result

The main point is to write an arbitrary bounded linear functional on C(X) as the
difference of two positive linear functionals.

Proposition 7.2 Suppose X is a compact metric space and let � be a bounded
linear functional on C(X). Then there exist positive linear functionals �+ and �−

so that � = �+ − �−. Moreover, ‖�‖ = �+(1) + �−(1).

Proof. For f ∈ C(X) with f ≥ 0, we define

�+(f) = sup{�(ϕ) : 0 ≤ ϕ ≤ f}.

Clearly, we have 0 ≤ �+(f) ≤ ‖�‖‖f‖ and �(f) ≤ �+(f). If α ≥ 0 and f ≥ 0, then
�+(αf) = α�+(f). Now suppose that f, g ≥ 0. On the one hand we have �+(f) +
�+(g) ≤ �+(f + g), because if 0 ≤ ϕ ≤ f and 0 ≤ ψ ≤ g, then 0 ≤ ϕ + ψ ≤ f + g.
On the other hand, suppose 0 ≤ ϕ ≤ f + g, and let ϕ1 = min(ϕ, f) and ϕ2 = ϕ −
ϕ1. Then 0 ≤ ϕ1 ≤ f and 0 ≤ ϕ2 ≤ g, and �(ϕ) = �(ϕ1) + �(ϕ2) ≤ �+(f) + �+(g).
Taking the supremum over ϕ, we get �+(f + g) ≤ �+(f) + �+(g). We conclude
from the above that �+(f + g) = �+(f) + �+(g) whenever f, g ≥ 0.

We can now extend �+ to a positive linear functional on C(X) as follows. Given
an arbitrary function f in C(X) we can write f = f+ − f−, where f+, f− ≥ 0,
and define �+ on f by �+(f) = �+(f+) − �+(f−). Using the linearity of �+ on non-
negative functions, one checks easily that the definition of �+(f) is independent
of the decomposition of f into the difference of two non-negative functions. From
the definition we see that �+ is positive, and it is easy to check that �+ is linear
on C(X), and that ‖�+‖ ≤ ‖�‖.

Finally, we define �− = �+ − �, and see immediately that �− is also a positive
linear functional on C(X).

Now since �+ and �− are positive, we have ‖�+‖ = �+(1) and ‖�−‖ = �−(1),
therefore ‖�‖ ≤ �+(1) + �−(1). For the reverse inequality, suppose 0 ≤ ϕ ≤ 1. Then
|2ϕ − 1| ≤ 1, hence ‖�‖ ≥ �(2ϕ − 1). By linearity of �, and taking the supremum
over ϕ we obtain ‖�‖ ≥ 2�+(1) − �(1). Since �(1) = �+(1) − �−(1) we get ‖�‖ ≥
�+(1) + �−(1), and the proof is complete.

We are now ready to state and prove the main result.

Theorem 7.3 Let X be a compact metric space and C(X) the Banach space of
continuous real-valued functions on X. Then, given any bounded linear functional �
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on C(X), there exists a unique finite signed Borel measure µ on X so that

�(f) =

Z

X

f(x) dµ(x) for all f ∈ C(X).

Moreover, ‖�‖ = ‖µ‖ = |µ|(X). In other words C(X)∗ is isometric to M(X).

Proof. By the proposition, there exist two positive linear functionals �+ and �−

so that � = �+ − �−. Applying Theorem 7.1 to each of these positive linear func-
tionals yields two finite Borel measures µ1 and µ2. If we define µ = µ1 − µ2, then
µ is a finite signed Borel measure and �(f) =

R

f dµ.
Now we have

|�(f)| ≤
Z

|f | d|µ| ≤ ‖f‖ |µ|(X),

and thus ‖�‖ ≤ |µ|(X). Since we also have |µ|(X) ≤ µ1(X) + µ2(X) = �+(1) +
�−(1) = ‖�‖, we conclude that ‖�‖ = |µ|(X) as desired.

To prove uniqueness, suppose
R

f dµ =
R

f dµ′ for some finite signed Borel mea-
sures µ and µ′, and all f ∈ C(X). Then if ν = µ − µ′, one has

R

fdν = 0, and
consequently, if ν+ and ν− are the positive and negative variations of f , one finds
that the two positive linear functionals defined on C(X) by �+(f) =

R

f dν+ and
�−(f) =

R

f dν− are identical. By the uniqueness in Theorem 7.1, we conclude
that ν+ = ν−, hence ν = 0 and µ = µ′, as desired.

7.3 An extension

Because of its later application, it is useful to observe that Theorem 7.1 has an
extension when we drop the assumption that the space X is compact. Here we
define the space Cb(X) of continuous bounded functions f on X, with norm ‖f‖ =
supx∈X |f(x)|.
Theorem 7.4 Suppose X is a metric space and � a positive linear functional on
Cb(X). For simplicity assume that � is normalized so that �(1) = 1. Assume also
that for each ε > 0, there is a compact set Kε ⊂ X so that

(21) |�(f)| ≤ sup
x∈Kε

|f(x)| + ε‖f‖, for all f ∈ Cb(X).

Then there exists a unique finite (positive) Borel measure µ so that

�(f) =

Z

X

f(x) dµ(x), for all f ∈ Cb(X).

The extra hypothesis (21) (which is vacuous when X is compact) is a “tightness”
assumption that will be relevant in Chapter 6. Note that as before |�(f)| ≤ ‖f‖
since �(1) = 1, even without the assumption (21).

The proof of this theorem proceeds as that of Theorem 7.1, save for one key
aspect. First we define

ρ(O) = sup {�(f), where f ∈ Cb(X), supp(f) ⊂ O, and 0 ≤ f ≤ 1} .
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The change that is required is in the proof of the countable sub-additivity of
ρ, in that the support of f ’s (in the definition of ρ(O)) are now not necessarily
compact. In fact, suppose O =

S∞
k=1 Ok is a countable union of open sets. Let C be

the support of f , and given a fixed ε > 0, set K = C ∩ Kε, with Kε the compact
set arising in (21). Then K is compact and

S∞
k=1 Ok covers K. Proceeding as

before, we obtain a partition of unity {ηk}N
k=1, with ηk supported in Ok and

PN
k=1 ηk(x) = 1, for x ∈ K. Now f −PN

k=1 fηk vanishes on Kε. Thus by (21)

˛

˛

˛

˛

˛

�(f) −
N
X

k=1

�(fηk)

˛

˛

˛

˛

˛

≤ ε,

and hence

�(f) ≤
∞
X

k=1

ρ(Ok) + ε.

Since this holds for each ε, we obtain the required sub-additivity of ρ and thus
of µ∗. The proof of the theorem can then be concluded as before.

Theorem 7.4 did not require that the metric space X be either complete or
separable. However if we make these two further assumptions on X, then the
condition (21) is actually necessary.

Indeed, suppose �(f) =
R

X
f dµ, where µ is a positive finite Borel measure on X,

which we may assume is normalized, µ(X) = 1. Under the assumption that X is
complete and separable, then for each fixed ε > 0 there is a compact set Kε so
that µ(Kc

ε ) < ε. Indeed, let {ck} be a dense sequence in X. Since for each m
the collection of balls {B1/m(ck)}∞k=1 covers X, there is a finite Nm so that if

Om =
SNm

k=1 B1/m(ck), then µ(Om) ≥ 1 − ε/2m.
Take Kε =

T∞
m=1 Om. Then µ(Kε) ≥ 1 − ε; also, Kε is closed and totally

bounded, in the sense that for every δ > 0, the set Kε can be covered by finitely
many balls of radius δ. Since X is complete, Kε must be compact. Now (21)
follows immediately.

8 Exercises

1. Consider Lp = Lp(Rd) with Lebesgue measure. Let f0(x) = |x|−α if |x| < 1,
f0(x) = 0 for |x| ≥ 1; also let f∞(x) = |x|−α if |x| ≥ 1, f∞(x) = 0 when |x| < 1.
Show that:

(a) f0 ∈ Lp if and only if pα < d.

(b) f∞ ∈ Lp if and only if d < pα.

(c) What happens if in the definitions of f0 and f∞ we replace |x|−α by
|x|−α/(log(2/|x|)) for |x| < 1, and |x|−α by |x|−α/(log(2|x|)) for |x| ≥ 1?

2. Consider the spaces Lp(Rd), when 0 < p < ∞.
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(a) Show that if ‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp for all f and g, then necessarily
p ≥ 1.

(b) Consider Lp(R) where 0 < p < 1. Show that there are no bounded linear
functionals on this space. In other words, if � is a linear function Lp(R) → C
that satisfies

|�(f)| ≤ M‖f‖Lp(R) for all f ∈ Lp(R) and some M > 0,

then � = 0.

[Hint: For (a), prove that if 0 < p < 1 and x, y > 0, then xp + yp > (x + y)p.
For (b), let F be defined by F (x) = �(χx), where χx is the characteristic func-
tion of [0, x], and consider F (x) − F (y).]

3. If f ∈ Lp and g ∈ Lq, both not identically equal to zero, show that equality
holds in Hölder’s inequality (Theorem 1.1) if and only if there exist two non-zero
constants a, b ≥ 0 such that a|f(x)|p = b|g(x)|q for a.e. x.

4. Suppose X is a measure space and 0 < p < 1.

(a) Prove that ‖fg‖L1 ≥ ‖f‖Lp‖g‖Lq . Note that q, the conjugate exponent of
p, is negative.

(b) Suppose f1 and f2 are non-negative. Then ‖f1 + f2‖Lp ≥ ‖f1‖Lp + ‖f2‖Lp .

(c) The function d(f, g) = ‖f − g‖p
Lp for f, g ∈ Lp defines a metric on Lp(X).

5. Let X be a measure space. Using the argument to prove the completeness
of Lp(X), show that if the sequence {fn} converges to f in the Lp norm, then a
subsequence of {fn} converges to f almost everywhere.

6. Let (X,F , µ) be a measure space. Show that:

(a) The simple functions are dense in L∞(X) if µ(X) < ∞, and;

(b) The simple functions are dense in Lp(X) for 1 ≤ p < ∞.

[Hint: For (a), use E�,j = {x ∈ X : M�
j

≤ f(x) < M(�+1)
j

} where −j ≤ � ≤ j, and
M = ‖f‖L∞ . Then consider the functions fj that equal M�/j on E�,j . For (b) use
a construction similar to that in (a).]

7. Consider the Lp spaces, 1 ≤ p < ∞, on Rd with Lebesgue measure. Prove that:

(a) The family of continuous functions with compact support is dense in Lp,
and in fact:

(b) The family of indefinitely differentiable functions with compact support is
dense in Lp.
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The cases of L1 and L2 are in Theorem 2.4, Chapter 2 of Book III, and Lemma 3.1,
Chapter 5 of Book III.

8. Suppose 1 ≤ p < ∞, and that Rd is equipped with Lebesgue measure. Show
that if f ∈ Lp(Rd), then

‖f(x + h) − f(x)‖Lp → 0 as |h| → 0.

Prove that this fails when p = ∞.

[Hint: By the previous exercise, the continuous functions with compact support
are dense in Lp(Rd) for 1 ≤ p < ∞. See also Theorem 2.4 and Proposition 2.5 in
Chapter 2 of Book III.]

9. Suppose X is a measure space and 1 ≤ p0 < p1 ≤ ∞.

(a) Consider Lp0 ∩ Lp1 equipped with

‖f‖Lp0∩Lp1 = ‖f‖Lp0 + ‖f‖Lp1 .

Show that ‖ · ‖Lp0∩Lp1 is a norm, and that Lp0 ∩ Lp1 (with this norm) is a
Banach space.

(b) Suppose Lp0 + Lp1 is defined as the vector space of measurable functions f
on X that can be written as a sum f = f0 + f1 with f0 ∈ Lp0 and f1 ∈ Lp1 .
Consider

‖f‖Lp0+Lp1 = inf {‖f0‖Lp0 + ‖f1‖Lp1 } ,

where the infimum is taken over all decompositions f = f0 + f1 with f0 ∈
Lp0 and f1 ∈ Lp1 . Show that ‖ · ‖Lp0+Lp1 is a norm, and that Lp0 + Lp1

(with this norm) is a Banach space.

(c) Show that Lp ⊂ Lp0 + Lp1 if p0 ≤ p ≤ p1.

10. A measure space (X, µ) is separable if there is a countable family of measur-
able subsets {Ek}∞k=1 so that if E is any measurable set of finite measure, then

µ(E�Enk ) → 0 as k → 0

for an appropriate subsequence {nk} which depends on E. Here A�B denotes the
symmetric difference of the sets A and B, that is,

A�B = (A − B) ∪ (B − A).

(a) Verify that Rd with the usual Lebesgue measure is separable.

(b) The space Lp(X) is separable if there exists a countable collection of ele-
ments {fn}∞n=1 in Lp that is dense. Prove that if the measure space X is
separable, then Lp is separable when 1 ≤ p < ∞.
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11. In light of the previous exercise, prove the following:

(a) Show that the space L∞(R) is not separable by constructing for each a ∈ R
an fa ∈ L∞, with ‖fa − fb‖ ≥ 1, if a �= b.

(b) Do the same for the dual space of L∞(R).

12. Suppose the measure space (X, µ) is separable as defined in Exercise 10. Let
1 ≤ p < ∞ and 1/p + 1/q = 1. A sequence {fn} with fn ∈ Lp is said to converge
to f ∈ Lp weakly if

(22)

Z

fng dµ →
Z

fg dµ for every g ∈ Lq.

(a) Verify that if ‖f − fn‖Lp → 0, then fn converges to f weakly.

(b) Suppose supn ‖fn‖Lp < ∞. Then, to verify weak convergence it suffices to
check (22) for a dense subset of functions g in Lq.

(c) Suppose 1 < p < ∞. Show that if supn ‖fn‖Lp < ∞, then there exists f ∈
Lp, and a subsequence {nk} so that fnk converges weakly to f .

Part (c) is known as the “weak compactness” of Lp for 1 < p < ∞, which fails
when p = 1 as is seen in the exercise below.

[Hint: For (b) use Exercise 10 (b).]

13. Below are some examples illustrating weak convergence.

(a) fn(x) = sin(2πnx) in Lp([0, 1]). Show that fn → 0 weakly.

(b) fn(x) = n1/pχ(nx) in Lp(R). Then fn → 0 weakly if p > 1, but not when
p = 1. Here χ denotes the characteristic function of [0, 1].

(c) fn(x) = 1 + sin(2πnx) in L1([0, 1]). Then fn → 1 weakly also in L1([0, 1]),
‖fn‖L1 = 1, but ‖fn − 1‖L1 does not converge to zero. Compare with Prob-
lem 6 part (d).

14. Suppose X is a measure space, 1 < p < ∞, and suppose {fn} is a sequence of
functions with ‖fn‖Lp ≤ M < ∞.

(a) Prove that if fn → f a.e. then fn → f weakly.

(b) Show that the above result may fail if p = 1.

(c) Show that if fn → f1 a.e. and fn → f2 weakly, then f1 = f2 a.e.

15. Minkowski’s inequality for integrals. Suppose (X1, µ1) and (X2, µ2)
are two measure spaces, and 1 ≤ p ≤ ∞. Show that if f(x1, x2) is measurable on
X1 × X2 and non-negative, then

‚

‚

‚

‚

Z

f(x1, x2) dµ2

‚

‚

‚

‚

Lp(X1)

≤
Z

‖f(x1, x2)‖Lp(X1) dµ2.
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Extend this statement to the case when f is complex-valued and the right-hand
side of the inequality is finite.

[Hint: For 1 < p < ∞, use a combination of Hölder’s inequality, and its converse
in Lemma 4.2.]

16. Prove that if fj ∈ Lpj (X), where X is a measure space, j = 1, . . . , N , and
PN

j=1 1/pj = 1 with pj ≥ 1, then

‖
N
Y

j=1

fj‖L1 ≤
N
Y

j=1

‖f‖L
pj .

This is the multiple Hölder inequality.

17. The convolution of f and g on Rd equipped with the Lebesgue measure is
defined by

(f ∗ g)(x) =

Z

Rd

f(x − y)g(y) dy.

(a) If f ∈ Lp, 1 ≤ p ≤ ∞, and g ∈ L1, then show that for almost every x the
integrand f(x − y)g(y) is integrable in y, hence f ∗ g is well defined. More-
over, f ∗ g ∈ Lp with

‖f ∗ g‖Lp ≤ ‖f‖Lp‖g‖L1 .

(b) A version of (a) applies when g is replaced by a finite Borel measure µ: if
f ∈ Lp, with 1 ≤ p ≤ ∞, define

(f ∗ µ)(x) =

Z

Rd

f(x − y) dµ(y),

and show that ‖f ∗ µ‖Lp ≤ ‖f‖Lp |µ|(Rd).

(c) Prove that if f ∈ Lp and g ∈ Lq, where p and q are conjugate exponents, then
f ∗ g ∈ L∞ with ‖f ∗ g‖L∞ ≤ ‖f‖Lp‖g‖Lq . Moreover, the convolution f ∗ g
is uniformly continuous on R, and if 1 < p < ∞, then lim|x|→∞(f ∗ g)(x) =
0.

[Hint: For (a) and (b) use the Minkowski inequality for integrals in Exercise 15.
For part (c), use Exercise 8.]

18. We consider the Lp spaces with mixed norm, in a special case that is useful
is several contexts.

We take as our underlying space the product space {(x, t)} = Rd × R, with the
product measure dx dt, where dx and dt are Lebesgue measures on Rd and R
respectively. We define Lr

t (L
p
x) = Lp,r, with 1 ≤ p ≤ ∞, 1 ≤ r ≤ ∞, to be the
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space of equivalence classes of jointly measurable functions f(x, t) for which the
norm

‖f‖Lp,r =

 

Z

R

„

Z

Rd

|f(x, t)|p dx

«

r
p

dt

!

1
r

is finite (when p < ∞ and r < ∞), and an obvious variant when p = ∞ or r = ∞.

(a) Verify that Lp,r with this norm is complete, and hence is a Banach space.

(b) Prove the general form of Hölder’s inequality in this context

Z

Rd×R

|f(x, t)g(x, t)| dx dt ≤ ‖f‖Lp,r‖g‖Lp′,r′ ,

with 1/p + 1/p′ = 1 and 1/r + 1/r′ = 1.

(c) Show that if f is integrable over all sets of finite measure, then

‖f‖Lp,r = sup

˛

˛

˛

˛

Z

Rd×R

f(x, t)g(x, t) dxdt

˛

˛

˛

˛

,

with the sup taken over all g that are simple and ‖g‖Lp′,r′ ≤ 1.

(d) Conclude that the dual space of Lp,r is Lp′,r′
, if 1 ≤ p < ∞, and 1 ≤ r < ∞.

19. Young’s inequality. Suppose 1 ≤ p, q, r ≤ ∞. Prove the following on Rd:

‖f ∗ g‖Lq ≤ ‖f‖Lp‖g‖Lr whenever 1/q = 1/p + 1/r − 1.

Here, f ∗ g denotes the convolution of f and g as defined in Exercise 17.

[Hint: Assume f, g ≥ 0, and use the decomposition

f(y)g(x − y) = f(y)ag(x − y)b[f(y)1−ag(x − y)1−b]

for appropriate a and b, together with Exercise 16 to find that

˛

˛

˛

˛

Z

f(y)g(x − y) dy

˛

˛

˛

˛

≤ ‖f‖1−q/p
Lp ‖g‖1−q/r

Lq

„

Z

|f(y)|p|g(x − y)|r dy

«

1
q

.]

20. Suppose X is a measure space, 0 < p0 < p < p1 ≤ ∞, and f ∈ Lp0(X) ∩
Lp1(X). Then f ∈ Lp(X) and

‖f‖Lp ≤ ‖f‖1−t
Lp0 ‖f‖t

Lp1 , if t is chosen so that 1
p

= 1−t
p0

+ t
p1

.

21. Recall the definition of a convex function. (See Problem 4, Chapter 3, in
Book III.) Suppose ϕ is a non-negative convex function on R and f is real-valued
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and integrable on a measure space X, with µ(X) = 1. Then we have Jensen’s
inequality:

ϕ

„

Z

X

f dµ

«

≤
Z

X

ϕ(f) dµ.

Note that if ϕ(t) = |t|p, 1 ≤ p, then ϕ is convex and the above can be obtained
from Hölder’s inequality. Another interesting case is ϕ(t) = eat.

[Hint: Since ϕ is convex, one has, ϕ(
PN

j=1 ajxj) ≤PN
j=1 ajϕ(xj), whenever aj , xj

are real, aj ≥ 0, and
PN

j=1 aj = 1.]

22. Another inequality of Young. Suppose ϕ and ψ are both continuous,
strictly increasing functions on [0,∞) that are inverses of each other, that is,
(ϕ ◦ ψ)(x) = x for all x ≥ 0. Let

Φ(x) =

Z x

0

ϕ(u) du and Ψ(x) =

Z x

0

ψ(u) du.

(a) Prove: ab ≤ Φ(a) + Ψ(b) for all a, b ≥ 0.

In particular, if ϕ(x) = xp−1 and ψ(y) = yq−1 with 1 < p < ∞ and 1/p +
1/q = 1, then we get Φ(x) = xp/p, Ψ(y) = yq/q, and

AθB1−θ ≤ θA + (1 − θ)B for all A, B ≥ 0 and 0 ≤ θ ≤ 1.

(b) Prove that we have equality in Young’s inequality only if b = ϕ(a) (that is,
a = ψ(b)).

[Hint: Consider the area ab of the rectangle whose vertices are (0, 0), (a, 0), (0, b)
and (a, b), and compare it to areas “under” the curves y = Φ(x) and x = Ψ(y).]

23. Let (X, µ) be a measure space and suppose Φ(t) is a continuous, convex, and
increasing function on [0,∞), with Φ(0) = 0. Define

LΦ = {f measurable :

Z

X

Φ(|f(x)|/M) dµ < ∞ for some M > 0},

and

‖f‖Φ = inf
M>0

Z

X

Φ(|f(x)|/M) dµ ≤ 1.

Prove that:

(a) LΦ is a vector space.

(b) ‖ · ‖LΦ is a norm.

(c) LΦ is complete in this norm.
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The Banach spaces LΦ are called Orlicz spaces. Note that in the special case
Φ(t) = tp, 1 ≤ p < ∞, then LΦ = Lp.

[Hint: Observe that if f ∈ LΦ, then limN→∞
R

X
Φ(|f |/N) dµ = 0. Also, use the

fact that there exists A > 0 so that Φ(t) ≥ At for all t ≥ 0.]

24. Let 1 ≤ p0 < p1 < ∞.

(a) Consider the Banach space Lp0 ∩ Lp1 with norm ‖f‖Lp0∩Lp1 = ‖f‖Lp0 +
‖f‖Lp1 . (See Exercise 9.) Let

Φ(t) =

j

tp0 if 0 ≤ t ≤ 1,
tp1 if 1 ≤ t < ∞.

Show that LΦ with its norm is equivalent to the space Lp0 ∩ Lp1 . In other
words, there exist A, B > 0, so that

A‖f‖Lp0∩Lp1 ≤ ‖f‖LΦ ≤ B‖f‖Lp0∩Lp1 .

(b) Similarly, consider the Banach space Lp0 + Lp1 with its norm as defined in
Exercise 9. Let

Ψ(t) =

Z t

0

ψ(u) du where ψ(u) =

j

up1−1 if 0 ≤ u ≤ 1,
up0−1 if 1 ≤ u < ∞.

Show that LΨ with its norm is equivalent to the space Lp0 + Lp1 .

25. Show that a Banach space B is a Hilbert space if and only if the parallelogram
law holds

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2).

As a consequence, prove that if Lp(Rd) with the Lebesgue measure is a Hilbert
space, then necessarily p = 2.

[Hint: For the first part, in the real case, let (f, g) = 1
4
(‖f + g‖2 + ‖f − g‖2).]

26. Suppose 1 < p0, p1 < ∞ and 1/p0 + 1/q0 = 1 and 1/p1 + 1/q1 = 1. Show that
the Banach spaces Lp0 ∩ Lp1 and Lq0 + Lq1 are duals of each other up to an
equivalence of norms. (See Exercise 9 for the relevant definitions of these spaces.
Also, Problem 5∗ gives a generalization of this result.)

27. The purpose of this exercise is to prove that the unit ball in Lp is strictly
convex when 1 < p < ∞, in the following sense. Here Lp is the space of real-
valued functions whose pth power are integrable. Suppose ‖f0‖Lp = ‖f1‖Lp = 1,
and let

ft = (1 − t)f0 + tf1

be the straight-line segment joining the points f0 and f1. Then ‖ft‖Lp < 1 for all
t with 0 < t < 1, unless f0 = f1.
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(a) Let f ∈ Lp and g ∈ Lq, 1/p + 1/q = 1, with ‖f‖Lp = 1 and ‖g‖Lq = 1. Then

Z

fg dµ = 1

only when f(x) = sign g(x)|g(x)|q−1.

(b) Suppose ‖ft′‖Lp = 1 for some 0 < t′ < 1. Find g ∈ Lq, ‖g‖Lq = 1, so that

Z

ft′g dµ = 1

and let F (t) =
R

ftg dµ. Observe as a result that F (t) = 1 for all 0 ≤ t ≤ 1.
Conclude that ft = f0 for all 0 ≤ t ≤ 1.

(c) Show that the strict convexity fails when p = 1 or p = ∞. What can be said
about these cases?

A stronger assertion is given in Problem 6∗.

[Hint: To prove (a) show that the case of equality in AθB1−θ ≤ θA + (1 − θ)B, for
A, B > 0 and 0 < θ < 1 holds only when A = B.]

28. Verify the completeness of Λα(Rd) and Lp
k(Rd).

29. Consider further the spaces Λα(Rd).

(a) Show that when α > 1 the only functions in Λα(Rd) are the constants.

(b) Motivated by (a), one defines Ck,α(Rd) to be the class of functions f on Rd

whose partial derivatives of order less than or equal to k belong to Λα(Rd).
Here k is an integer and 0 < α ≤ 1. Show that this space, endowed with the
norm

‖f‖Ck,α =
X

|β|≤k

‚

‚

‚

∂β
x f
‚

‚

‚

Λα(Rd)
,

is a Banach space.

30. Suppose B is a Banach space and S is a closed linear subspace of B. The
subspace S defines an equivalence relation f ∼ g to mean f − g ∈ S. If B/S denotes
the collection of these equivalence classes, then show that B/S is a Banach space
with norm ‖f‖B/S = inf(‖f ′‖B, f ′ ∼ f).

31. If Ω is an open subset of Rd then one definition of Lp
k(Ω) can be taken to be the

quotient Banach space B/S, as defined in the previous exercise, with B = Lp
k(Rd)

and S the subspace of those functions which vanish a.e. on Ω. Another possible
space, that we will denote by Lp

k(Ω0), consists of the closure in Lp
k(Rd) of all f

that have compact support in Ω. Observe that the natural mapping of Lp
k(Ω0) to
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Lp
k(Ω) has norm equal to 1. However, this mapping is in general not surjective.

Prove this in the case when Ω is the unit ball and k ≥ 1.

32. A Banach space is said to be separable if it contains a countable dense subset.
In Exercise 11 we saw an example of a Banach space B that is separable, but where
B∗ is not separable. Prove, however, that in general when B∗ is separable, then B
is separable. Note that this gives another proof that in general L1 is not the dual
of L∞.

33. Let V be a vector space over the complex numbers C, and suppose there exists
a real-valued function p on V satisfying:

j

p(αv) = |α|p(v), if α ∈ C, and v ∈ V ,
p(v1 + v2) ≤ p(v1) + p(v2), if v1 and v2 ∈ V .

Prove that if V0 is a subspace of V and �0 a linear functional on V0 which satisfies
|�0(f)| ≤ p(f) for all f ∈ V0, then �0 can be extended to a linear functional � on V
that satisfies |�(f)| ≤ p(f) for all f ∈ V .

[Hint: If u = Re(�0), then �0(v) = u(v) − iu(iv). Apply Theorem 5.2 to u.]

34. Suppose B is a Banach space and S a closed proper subspace, and assume
f0 /∈ S. Show that there is a continuous linear functional � on B, so that �(f) = 0
for f ∈ S, and �(f0) = 1. The linear functional � can be chosen so that ‖�‖ = 1/d
where d is the distance from f0 to S.

35. A linear functional � on a Banach space B is continuous if and only if {f ∈ B :
�(f) = 0} is closed.

[Hint: This is a consequence of Exercise 34.]

36. The results in Section 5.4 can be extended to d-dimensions.

(a) Show that there exists an extended-valued non-negative function m̂ defined
on all subsets of Rd so that (i) m̂ is finitely additive; (ii) m̂(E) = m(E)
whenever E is Lebesgue measurable, where m is Lebesgue measure; and
m̂(E + h) = m̂(E) for all sets E and every h ∈ Rd. Prove this is as a conse-
quence of (b) below.

(b) Show that there is an “integral” I, defined on all bounded functions on
Rd/Zd, so that I(f) ≥ 0 whenever f ≥ 0; the map f �→ I(f) is linear; I(f) =
R

Rd/Zd f dx whenever f is measurable; and I(fh) = I(f) where fh(x) = f(x −
h), and h ∈ Rd.

9 Problems

1. The spaces L∞ and L1 play universal roles with respect to all Banach spaces
in the following sense.
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(a) If B is any separable Banach space, show that it can be realized without
change of norm as a linear subspace of L∞(Z). Precisely, prove that there
is a linear operator i of B into L∞(Z) so that ‖i(f)‖L∞(Z) = ‖f‖B for all
f ∈ B.

(b) Each such B can also be realized as a quotient space of L1(Z). That is, there
is a linear surjection P of L1(Z) onto B, so that if S = {x ∈ L1(Z) : P (x) =
0}, then ‖P (x)‖B = infy∈S ‖x + y‖L1(Z), for each x ∈ L1(Z). This gives an

identification of B (and its norm) with the quotient space L1(Z)/S (and its
norm), as defined in Exercise 30.

Note that similar conclusions hold for L∞(X) and L1(X) if X is a measure space
that contains a countable disjoint collection of measurable sets of positive and
finite measure.

[Hint: For (a), let {fn} be a dense set of non-zero vectors in B, and let �n ∈
B∗ be such that ‖�n‖B∗ = 1 and �n(fn) = ‖fn‖. If f ∈ B, set i(f) = {�n(f)}∞−∞.
For (b), if x = {xn} ∈ L1(Z), with

P∞
−∞ |xn| = ‖x‖L1(Z) < ∞, define P by P (x) =

P∞
−∞ xnfn/‖fn‖.]

2. There is a “generalized limit” L defined on the vector space V of all real
sequences {sn}∞n=1 that are bounded, so that:

(i) L is a linear functional on V .

(ii) L({sn}) ≥ 0 if sn ≥ 0, for all n.

(iii) L({sn}) = limn→∞ sn if the sequence {sn} has a limit.

(iii) L({sn}) = L({sn+k}) for every k ≥ 1.

(iii) L({sn}) = L({sn′}) if sn − s′n �= 0 for only finitely many n.

[Hint: Let p({sn}) = lim supn→∞
`

s1+···+sn
n

´

, and extend the linear functional L
defined by L({sn}) = limn→∞ sn, defined on the subspace consisting of sequences
that have limits.]

3. Show that the closed unit ball in a Banach space B is compact (that is, if
fn ∈ B, ‖fn‖ ≤ 1, then there is a subsequence that converges in the norm) if and
only if B is finite dimensional.

[Hint: If S is a closed subspace of B, then there exists x ∈ B with ‖x‖ = 1 and the
distance between x and S is greater than 1/2.]

4. Suppose X is a σ-compact measurable metric space, and Cb(X) is separable,
where Cb(X) denotes the Banach space of bounded continuous functions on X
with the sup-norm.

(a) If {µn}∞n=1 is a bounded sequence in M(X), then there exists a µ ∈ M(X)
and a subsequence {µnj}∞j=1, so that µnj converges to µ in the following
(weak∗) sense:

Z

X

g(x) dµnj (x) →
Z

X

g(x) dµ(x), for all g ∈ Cb(X).
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(b) Start with a µ0 ∈ M(X) that is positive, and for each f ∈ L1(µ0) consider
the mapping f �→ fdµ0. This mapping is an isometry of L1(µ0) to the
subspace of M(X) consisting of signed measures which are absolutely con-
tinuous with respect to µ0.

(c) Hence if {fn} is a bounded sequence of functions in L1(µ0), then there
exist a µ ∈ M(X) and a subsequence {fnj} such that the measures fnj dµ0

converge to µ in the above sense.

5.∗ Let X be a measure space. Suppose ϕ and ψ are both continuous, strictly
increasing functions on [0,∞) which are inverses of each other, that is, (ϕ ◦ ψ)(x) =
x for all x ≥ 0. Let

Φ(x) =

Z x

0

ϕ(u) du and Ψ(x) =

Z x

0

ψ(u) du.

Consider the Orlicz spaces LΦ(X) and LΨ(X) introduced in Exercise 23.

(a) In connection with Exercise 22 the following Hölder-like inequality holds:

Z

|fg| ≤ C‖f‖LΦ‖g‖LΨ for some C > 0, and all f ∈ LΦ and g ∈ LΨ.

(b) Suppose there exists c > 0 so that Φ(2t) ≤ cΦ(t) for all t ≥ 0. Then the dual
of LΦ is equivalent to LΨ.

6.∗ There are generalizations of the parallelogram law for L2 (see Exercise 25) that
hold for Lp. These are the Clarkson inequalities:

(a) For 2 ≤ p ≤ ∞ the statement is that

‚

‚

‚

‚

f + g

2

‚

‚

‚

‚

p

Lp

+

‚

‚

‚

‚

f − g

2

‚

‚

‚

‚

p

Lp

≤ 1

2
(‖f‖p

Lp + ‖g‖p
Lp) .

(b) For 1 < p ≤ 2 the statement is that

‚

‚

‚

‚

f + g

2

‚

‚

‚

‚

q

Lp

+

‚

‚

‚

‚

f − g

2

‚

‚

‚

‚

q

Lp

≤ 1

2
(‖f‖p

Lp + ‖g‖p
Lp)q/p ,

where 1/p + 1/q = 1.

(c) As a result, Lp is uniformly convex when 1 < p < ∞. This means that
there is a function δ = δ(ε) = δp(ε), with 0 < δ < 1, (and δ(ε) → 0 as ε →
0), so that whenever ‖f‖Lp = ‖g‖Lp = 1, then ‖f − g‖Lp ≥ ε implies that
‚

‚

f+g
2

‚

‚ ≤ 1 − δ.

This is stronger than the conclusion of strict convexity in Exercise 27.
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(d) Using the result in (c), prove the following: suppose 1 < p < ∞, and the
sequence {fn}, fn ∈ Lp, converges weakly to f . If ‖fn‖Lp → ‖f‖Lp , then
fn converges to f strongly, that is, ‖fn − f‖Lp → 0 as n → ∞.

7.∗ An important notion is that of the equivalence of Banach spaces. Suppose
B1 and B2 are a pair of Banach spaces. We say that B1 and B2 are equivalent
(also said to be “isomorphic”) if there is a linear bijection T between B1 and B2

that is bounded and whose inverse is also bounded. Note that any pair of finite-
dimensional Banach spaces are equivalent if and only if their dimensions are the
same.

Suppose now we consider Lp(X) for a general class of X (which contains for
instance, X = Rd with Lebesgue measure). Then:

(a) Lp and Lq are equivalent if and only if p = q.

(b) However, for any p with 1 ≤ p ≤ ∞, L2 is equivalent with a closed infinite-
dimensional subspace of Lp.

8.∗ There is no finitely-additive rotationally-invariant measure extending Lebesgue
measure to all subsets of the sphere Sd when d ≥ 2, in distinction to what happens
on the torus Rd/Zd when d ≥ 2. (See Exercise 36). This is due to a remarkable
construction of Hausdorff that uses the fact that the corresponding rotation group
of Sd is non-commutative. In fact, one can decompose S2 into four disjoint sets
A, B, C and Z so that (i) Z is denumerable, (ii) A ∼ B ∼ C, but A ∼ (B ∪ C).

Here the notation A1 ∼ A2 means that A1 can be transformed into A2 via a
rotation.

9.∗ As a consequence of the previous problem one can show that it is not possible to
extend Lebesgue measure on Rd, d ≥ 3, as a finitely-additive measure on all subsets
of Rd so that it is both translation and rotation invariant (that is, invariant under
Euclidean motions). This is graphically shown by the “Banach-Tarski paradox”:
There is a finite decomposition of the unit ball B1 =

SN
j=1 Ej , with the sets Ej

disjoint, and there are corresponding sets Ẽj that are each obtained from Ej by
a Euclidean motion, with the Ẽj also disjoint, so that

SN
j=1 Ẽj = B2 the ball of

radius 2.



2 Lp Spaces in Harmonic
Analysis

The important part played in Hilbert’s treatment of
Fredholm theory of integral equations by functions
whose squares are summable is well-known, and it was
inevitable that members of the Göttingen school of
mathematics should be led to set themselves the task
of proving the converse of Parseval’s theorem.... On
the other hand, efforts made to extend these isolated
results to embrace cases in which the known or un-
known index of summability is other than 2, appear
to have failed...

W. H. Young, 1912

...I have proved that two conjugate trigonometric se-
ries are at the same time the Fourier series of Lp func-
tions, p > 1. That is, if one is, so is the other. My
proof is unrelated to the theorem of Young-Hausdorff...

M. Riesz, letter to G. H. Hardy, 1923

Some months ago you wrote “... I have proved that
two conjugate... Lp functions, p > 1”. I want the
proof. Both I and my pupil Titchmarsh have tried
in vain to prove it...”

G. H. Hardy, letter to M. Riesz 1923

The fact that Lp spaces were bound to play a significant role in har-
monic analysis was understood not long after their introduction. Viewed
from that early perspective, these spaces stood at the nexus between
Fourier series and complex analysis, this connection having been given
by the Cauchy integral and the related conjugate function. For this rea-
son methods of complex function theory predominated in the beginning
stages of the subject, but they had to give way to “real” methods so as
to allow the extension of much of the theory to higher dimensions.

It is the aim of this chapter to show the reader something about both
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of these methods. In fact, the real-variable ideas that will be introduced
here will also be further exploited in the next chapter, when studying
singular integral operators in Rd.

The present chapter is organized as follows. We begin with an initial
view of the role of Lp in the context of Fourier series, together with a
related convexity theorem for operators acting on these spaces. Then we
pass to M. Riesz’s proof of the Lp boundedness of the Hilbert transform,
an iconic example of the use of complex analysis in this setting.

Form this we turn to the real-variable methods, starting with the max-
imal function and its attendant “weak-type” estimate. The importance
of the weak-type space is that it provides a useful substitute for L1 when,
as in many instances, L1 estimates fail. We also study another significant
substitute for L1, the “real” Hardy space H1

r. It has the advantage that
it is a Banach space and that its dual space (a substitute for L∞) is the
space of functions of bounded mean oscillation. This last function space
is itself of wide interest in analysis.

1 Early Motivations

An initial problem considered was that of formulating an Lp analog of
the basic L2 Parseval relation for functions on [0, 2π]. This theorem
states that if an = 1

2π

∫ 2π

0
f(θ)e−inθ dθ denotes the Fourier coefficients of

a function f in L2([0, 2π]), usually written as

(1) f(θ) ∼
∞∑

n=−∞
aneinθ,

then the following fundamental identity holds:

(2)
∞∑

n=−∞
|an|2 =

1
2π

∫ 2π

0

|f(θ)|2 dθ.

Conversely, if {an} is a sequence for which the left-hand side of (2) is
finite, then there exists a unique f in L2([0, 2π]) so that both (1) and (2)
hold. Notice, in particular, if f ∈ L2([0, 2π]), then its Fourier coefficients
{an} belong to L2(Z) = �2(Z).1 The question that arose was: is there an
analog of this result for Lp when p �= 2?

Here an important dichotomy between the case p > 2 and p < 2 occurs.
In the first case, when f ∈ Lp([0, 2π]), although f is automatically in
L2([0, 2π]), examples show that no better conclusion than

∑ |an|2 < ∞

1See for instance Section 3 in Chapter 4 of Book III.
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is possible. On the other hand, when p < 2 one can see that essentially
there can be no better conclusion than

∑ |an|q < ∞, with q the dual
exponent of p. Analogous restrictions must be envisaged when the roles
of f and {an} are reversed.

In fact, what does hold is the Hausdorff-Young inequality:

(3)
(∑

|an|q
)1/q

≤
(

1
2π

∫ 2π

0

|f(θ)|p dθ

)1/p

,

and its “dual”

(4)
(

1
2π

∫ 2π

0

|f(θ)|q dθ

)1/q

≤
(∑

|an|p
)1/p

,

both valid when 1 ≤ p ≤ 2 and 1/p + 1/q = 1. (The case q = ∞ corre-
sponds to the usual L∞ norm.) These may be viewed as intermediate
results, between the case p = 2 corresponding to Parseval’s theorem, and
its “trivial” case p = 1 and q = ∞.

A few words about how the inequalities (3) and (4) were first attacked
are in order, because they contain a useful insight about Lp spaces: often,
the simplest case arises when p (or its dual) is an even integer. Indeed,
when, for example q = 4, a function belonging to L4 is the same as its
square belonging to L2, and this sometimes allows reduction to the easier
situation when p = 2. To see how this works in the present situation, let
us take q = 4 (and p = 4/3) in (3). With f given in Lp, we denote by F
the convolution of f with itself,

F(θ) =
1
2π

∫ 2π

0

f(θ − ϕ)f(ϕ) dϕ.

By the multiplicative property of Fourier coefficients of convolutions we
have

F(θ) ∼
∞∑

n=−∞
a2

neinθ,

with {an} the Fourier coefficients of f . Parseval’s identity applied to F
then yields ∑

|an|4 =
1
2π

∫ 2π

0

|F(θ)|2 dθ,
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and Young’s inequality for convolutions (the periodic analog of Exer-
cise 19, Chapter 1) gives

‖F‖L2 ≤ ‖f‖2
L4/3 ,

proving (3) when p = 4/3 and q = 4.
Once the case q = 4 has been established, the cases corresponding to

q = 2k, where k is a positive integer, can be handled in a similar way.
However the general situation, 2 ≤ q ≤ ∞, corresponding to 1 ≤ p ≤ 2,
involves further ideas.

In contrast to the above ingenious but special argument, in turns out
that there is a general principle of great interest that underlies such
inequalities, which in fact leads to direct and abstract proofs of both (3)
and (4). This is the M. Riesz interpolation theorem. Stated succinctly,
it asserts that whenever a linear operator satisfies a pair of inequalities
(like (3) for p = 2 and p = 1), then automatically the operator satisfies
the corresponding inequalities for the intermediate exponents: here all p
for 1 ≤ p ≤ 2, and q with 1/p + 1/q = 1. The formulation and proof of
this general theorem will be our first task in the next section.

Before we turn to that, we will describe briefly another initial source for
the role of Lp in harmonic analysis, one which highlights its connection
with complex analysis.

Together with the Fourier series (1) for f in L2, one considers its
“conjugate function” or “allied series”, defined by

(5) f̃(θ) ∼
∞∑

n=−∞

sign(n)
i

aneinθ,

where sign(n) = 1 if n > 0, sign(n) = −1 if n < 0, and sign(n) = 0 when
n = 0.2

The significance of this definition is that

1
2
(f(θ) + if̃(θ) + a0) ∼

∞∑
n=0

aneinθ = F (eiθ),

where F (z) =
∑∞

n=0 anzn is the analytic function in the unit disc |z| < 1
given as the Cauchy integral (projection) of f , namely:

F (z) =
1

2πi

∫ 2π

0

f(θ)
eiθ − z

ieiθ dθ.
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eiθ

1

i

z

0

Figure 1. The Cauchy integral F (z) is defined for |z| < 1, while f(θ) is
defined for z = eiθ.

Moreover, if f is real-valued (that is an = a−n), so is f̃ and thus f + a0

and f̃ represent respectively the real and imaginary parts of the boundary
values of the analytic function 2F in the unit disc.

The key L2 identity linking f and f̃ is a simple consequence of Parse-
val’s relation:

(6)
1
2π

∫ 2π

0

|f̃(θ)|2 dθ + |a0|2 =
1
2π

∫ 2π

0

|f(θ)|2 dθ.

An early goal of the subject was the extension of this theory to Lp, and
it was also achieved by M. Riesz.

As he tells it, he was led to the discovery of his result when preparing to
administer a “licenciat” exam to a rather mediocre student. One of the
problems on the exam was to prove (6). To quote Riesz: “ ... However it
was quite obvious that my candidate did not know Parseval’s theorem.
Before giving him the problem, I had therefore to think if there was
another way for him to arrive at the required conclusion. I immediately
realized that it was Cauchy’s theorem that was at the source of the result,
and this observation led me quite directly to the solution of the general
problem, a question that had longtime occupied me.”

What Riesz had in mind was the following argument. If we assume for
simplicity that a0 = 0, then under the (technical) assumption that the
analytic function F is actually continuous in the closure of the unit disc,
one has by the mean-value theorem (as a simple consequence of Cauchy’s

2Incidentally the conjugate function is the “symmetry-breaking” operator relevant to
the divergence of Fourier series considered in Book I.
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theorem) applied to the analytic function F 2, the identity

(7)
1
2π

∫ 2π

0

(F (eiθ))2 dθ = 0.

If we suppose, as above, that f is real-valued, then by considering the
real part of 4(F (eiθ))2, which is (f(eiθ))2 − (f̃(eiθ))2, we immediately
get (6). What became clear to Riesz is that when we replace F 2 by F 2k

in the above, with k a positive integer, and again consider its real part,
the boundedness of f 	→ f̃ in Lp, where p = 2k follows. Similar but more
involved arguments worked for all p, 1 < p < ∞.

Here, once again, the Riesz interpolation theorem can play a crucial
role. We will present these ideas below in the context where the unit disc
is replaced by the upper half-plane.

2 The Riesz interpolation theorem

Suppose (p0, q0) and (p1, q1) are two pairs of indices with 1 ≤ pj , qj ≤ ∞,
and assume that

‖T (f)‖Lq0 ≤ M0‖f‖Lp0 and ‖T (f)‖Lq1 ≤ M1‖f‖Lp1

where T is a linear operator. Does it follow that

‖T (f)‖Lq ≤ M‖f‖Lp , for other pairs (p, q)?

We shall see that this inequality will hold with values of p and q de-
termined by a linear expression involving the reciprocals of the indexes
p0, p1, q0 and q1. (Linearity in the reciprocals of the exponents already
arises in the relation 1/p + 1/p′ = 1 of dual exponents.)

The precise statement of the theorem requires that we fix some no-
tation. Let (X, µ) and (Y, ν) be a pair of measure spaces. We shall
abbreviate the Lp norm on (X,µ) by writing ‖f‖Lp = ‖f‖Lp(X,µ), and
similarly for the Lq norm for functions on (Y, dν). We will also con-
sider the space Lp0 + Lp1 that consists of functions on (X, µ) that can
be written as f0 + f1, with fj ∈ Lpj (X, µ), with a similar definition for
Lq0 + Lq1 .

Theorem 2.1 Suppose T is a linear mapping from Lp0 + Lp1 to Lq0 +
Lq1 . Assume that T is bounded from Lp0 to Lq0 and from Lp1 to Lq1⎧⎨⎩ ‖T (f)‖Lq0 ≤ M0‖f‖Lp0 ,

‖T (f)‖Lq1 ≤ M1‖f‖Lp1 .
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Then T is bounded from Lp to Lq,

‖T (f)‖Lq ≤ M‖f‖Lp ,

whenever the pair (p, q) can be written as

1
p

=
1 − t

p0
+

t

p1
and

1
q

=
1 − t

q0
+

t

q1

for some t with 0 ≤ t ≤ 1. Moreover, the bound M satisfies M ≤ M1−t
0 M t

1.

We should emphasize that the theorem holds for Lp spaces of complex-
valued functions because the proof of it depends on complex analysis.
Starting with the strip 0 ≤ Re(z) ≤ 1 in the complex plane, our oper-
ator T will lead us to an analytic function Φ, so that the hypotheses
‖T (f)‖Lq0 ≤ M0‖f‖Lp0 and ‖T (f)‖Lq1 ≤ M1‖f‖Lp1 are encoded in the
boundedness of Φ on the boundary lines Re(z) = 0 and Re(z) = 1, re-
spectively. Moreover, the conclusion will follow from the boundedness of
Φ at the point t on the real axis. (See Figure 2.)

Re(z) = 1Re(z) = 0

t

Figure 2. The domain of the function Φ

The analysis of the function Φ will depend on the following lemma.

Lemma 2.2 (Three-lines lemma) Suppose Φ(z) is a holomorphic func-
tion in the strip S = {z ∈ C : 0 < Re(z) < 1}, that is also continuous
and bounded on the closure of S. If

M0 = sup
y∈R

|Φ(iy)| and M1 = sup
y∈R

|Φ(1 + iy)|,

then

sup
y∈R

|Φ(t + iy)| ≤ M1−t
0 M t

1, for all 0 ≤ t ≤ 1.
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The term “three-lines” describes the fact that the size of Φ on the line
Re(z) = t is controlled by its size on the two boundary lines Re(z) = 0
and Re(z) = 1. The reader may note that this lemma belongs to the
family of results of the Phragmén-Lindelöf type that were discussed in
Chapter 4, Book II. As with other assertions of this kind, it is deduced
from the more familiar maximum modulus principle, and it is here that
the global assumption that Φ is bounded throughout the strip is used.
Notice, however, that the size of the assumed global bound of Φ does
not occur in the conclusion. (That some condition on the growth of Φ is
necessary is shown in Exercise 5.)

Proof. We begin by proving the lemma under the assumption that
M0 = M1 = 1 and sup0≤x≤1 |Φ(x + iy)| → 0 as |y| → ∞. In this case,
let M = sup |Φ(z)| where the sup is taken over all z in the closure of
the strip S. We may clearly assume that M > 0, and let z1, z2, . . . be
a sequence of points in the strip with |Φ(zn)| → M as n → ∞. By the
decay condition imposed on Φ, the points zn cannot go to infinity, hence
there exists z0 in the closure of the strip, so that a subsequence of {zn}
converges to z0. By the maximum modulus principle, z0 cannot be in the
interior of the strip, (unless Φ is constant, in which case the conclusion is
trivial) hence z0 must be on its boundary, where |Φ| ≤ 1. Thus M ≤ 1,
and the result is proved in this special case.

If we only assume now that M0 = M1 = 1, we define

Φε(z) = Φ(z)eε(z2−1), for each ε > 0.

Since eε[(x+iy)2−1] = eε(x2−1−y2+2ixy), we find that |Φε(z)| ≤ 1 on the
lines Re(z) = 0 and Re(z) = 1. Moreover,

sup
0≤x≤1

|Φε(x + iy)| → 0 as |y| → ∞,

since Φ is bounded. Therefore, by the first case, we know that |Φε(z)| ≤ 1
in the closure of the strip. Letting ε → 0, we see that |Φ| ≤ 1 as desired.

Finally, for arbitrary positive values of M0 and M1, we let Φ̃(z) =
Mz−1

0 M−z
1 Φ(z), and note that Φ̃ satisfies the condition of the previous

case, that is, Φ̃ is bounded by 1 on the lines Re(z) = 0 and Re(z) = 1.
Thus |Φ̃| ≤ 1 in the strip, which completes the proof of the lemma.

To prove the interpolation theorem, we begin by establishing the in-
equality when f is a simple function, and it clearly suffices to do so with
‖f‖Lp = 1. Also, we recall that to show ‖Tf‖Lq ≤ M‖f‖Lp it suffices to
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prove, by Lemma 4.2 in Chapter 1, that∣∣∣∣∫ (Tf)g dν

∣∣∣∣ ≤ M‖f‖Lp‖g‖Lq′ ,

where 1/q + 1/q′ = 1, and g simple with ‖g‖Lq′ = 1.

For now, we also assume that p < ∞ and q > 1. Suppose f ∈ Lp is
simple with ‖f‖Lp = 1, and define

fz = |f |γ(z) f

|f | where γ(z) = p

(
1 − z

p0
+

z

p1

)
,

and

gz = |g|δ(z) g

|g| where δ(z) = q′
(

1 − z

q′0
+

z

q′1

)
,

with q′, q′0 and q′1 denoting the duals of q, q0, and q1 respectively. Then,
we note that ft = f , while{ ‖fz‖Lp0 = 1 if Re(z) = 0

‖fz‖Lp1 = 1 if Re(z) = 1.

Similarly ‖gz‖Lq′0 = 1 if Re(z) = 0 and ‖gz‖Lq′1 = 1 if Re(z) = 1, and also
gt = g. The trick now is to consider

Φ(z) =
∫

(Tfz)gz dν.

Since f is a finite sum, f =
∑

akχEk
where the sets Ek are disjoint and

of finite measure, then fz is also simple with

fz =
∑

|ak|γ(z) ak

|ak|χEk
.

Since g =
∑

bjχFj
is also simple, then

gz =
∑

|bj |δ(z) bj

|bj |χFj
.

With the above notation, we find

Φ(z) =
∑
j,k

|ak|γ(z)|bj |δ(z) ak

|ak|
bj

|bj |
(∫

T (χEk
)χFj

dν

)
,
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so that the function Φ is a holomorphic function in the strip 0 < Re(z) <
1 that is bounded and continuous in its closure. After an application of
Hölder’s inequality and using the fact that T is bounded on Lp0 with
bound M0, we find that if Re(z) = 0, then

|Φ(z)| ≤ ‖Tfz‖Lq0‖gz‖Lq′0 ≤ M0‖fz‖Lp0 = M0.

Similarly we find |Φ(z)| ≤ M1 on the line Re(z) = 1. Therefore, by the
three-lines lemma, we conclude that Φ is bounded by M1−t

0 M t
1 on the

line Re(z) = t. Since Φ(t) =
∫

(Tf)g dν, this gives the desired result, at
least when f is simple.

In general, when f ∈ Lp with 1 ≤ p < ∞, we may choose a sequence
{fn} of simple functions in Lp so that ‖fn − f‖Lp → 0 (as in Exercise 6,
Chapter 1). Since ‖T (fn)‖Lq ≤ M‖fn‖Lp , we find that T (fn) is a Cauchy
sequence in Lq and if we can show that limn→∞ T (fn) = T (f) almost
everywhere, it would follow that we also have ‖T (f)‖Lq ≤ M‖f‖Lp .

To do this, write f = fU + fL, where fU (x) = f(x) if |f(x)| ≥ 1 and
0 elsewhere, while fL(x) = f(x) if |f(x)| < 1 and 0 elsewhere. Simi-
larly, set fn = fU

n + fL
n . Now assume that p0 ≤ p1 (the case p0 ≥ p1 is

parallel). Then p0 ≤ p ≤ p1, and since f ∈ Lp, it follows that fU ∈ Lp0

and fL ∈ Lp1 . Moreover, since fn → f in the Lp norm, then fU
n → fU

in the Lp0 norm and fL
n → fL in the Lp1 norm. By hypothesis, then

T (fU
n ) → T (fU ) in Lq0 and T (fL

n ) → T (fL) in Lq1 , and selecting appro-
priate subsequences we see that T (fn) = T (fU

n ) + T (fL
n ) converges to

T (f) almost everywhere, which establishes the claim.
It remains to consider the cases q = 1 and p = ∞. In the latter case

then necessarily p0 = p1 = ∞, and the hypotheses ‖T (f)‖Lq0 ≤ M0‖f‖L∞

and ‖T (f)‖Lq1 ≤ M1‖f‖L∞ imply the conclusion

‖T (f)‖Lq ≤ M1−t
0 M t

1‖f‖L∞

by Hölder’s inequality (as in Exercise 20 in Chapter 1).
Finally if p < ∞ and q = 1, then q0 = q1 = 1, then we may take gz = g

for all z, and argue as in the case when q > 1. This completes the proof
of the theorem.

We shall now describe a slightly different but useful way of stating the
essence of the theorem. Here we assume that our linear operator T is
initially defined on simple functions of X, mapping these to functions
on Y that are integrable on sets of finite measure. We then ask: for
which (p, q) is the operator of type (p, q), in the sense that there is a
bound M so that

(8) ‖T (f)‖Lq ≤ M‖f‖Lp , whenever f is simple?
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In this formulation of the question, the useful role of simple functions is
that they are at once common to all the Lp spaces. Moreover, if (8) holds
then T has a unique extension to all of Lp, with the same bound M in (8),
as long as either p < ∞; or p = ∞ in the case X has finite measure. This
is a consequence of the density of the simple functions in Lp, and the
extension argument in Proposition 5.4 of Chapter 1.

With these remarks in mind, we define the Riesz diagram of T to
consist of all all points in the unit square {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}
that arise when we set x = 1/p and y = 1/q whenever T is of type (p, q).
We then also define Mx,y as the least M for which (8) holds when x = 1/p
and y = 1/q.

Corollary 2.3 With T as before:

(a) The Riesz diagram of T is a convex set.

(b) log Mx,y is a convex function on this set.

Conclusion (a) means that if (x0, y0) = (1/p0, 1/q0) and (x1, y1) =
(1/p1, 1/q1) are points in the Riesz diagram of T , then so is the line seg-
ment joining them. This is an immediate consequence of Theorem 2.1.
Similarly the convexity of the function log Mx,y is its convexity on each
line segment, and this follows from the conclusion M ≤ M1−t

0 M t
1 guar-

anteed also by Theorem 2.1.
In view of this corollary, the theorem is often referred to as the “Riesz

convexity theorem.”

2.1 Some examples

Example 1. The first application of Theorem 2.1 is the Hausdorff-Young
inequality (3). Here X is [0, 2π] with the normalized Lebesgue measure
dθ/(2π), and Y = Z with its usual counting measure. The mapping T is
defined by T (f) = {an}, with

an =
1
2π

∫ 2π

0

f(θ)e−inθ dθ.

Corollary 2.4 If 1 ≤ p ≤ 2 and 1/p + 1/q = 1, then

‖T (f)‖Lq(Z) ≤ ‖f‖Lp([0,2π]).

Note that since L2([0, 2π]) ⊂ L1([0, 2π]) and L2(Z) ⊂ L∞(Z) we have
L2([0, 2π]) + L1([0, 2π]) = L1([0, 2π]), and also L2(Z) + L∞(Z) = L∞(Z).
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The inequality for p0 = q0 = 2 is a consequence of Parseval’s identity,
while the one for p1 = 1, q1 = ∞ follows from the observation that for
all n,

|an| ≤ 1
2π

∫ 2π

0

|f(θ)| dθ.

Thus Riesz’s theorem guarantees the conclusion when 1/p = (1−t)
2 + t,

1/q = (1−t)
2 for any t with 0 ≤ t ≤ 1. This gives all p with 1 ≤ p ≤ 2,

and q related to p by 1/p + 1/q = 1.

Example 2. We next come to the dual Hausdorff-Young inequality (4).
Here we define the operator T ′ mapping functions on Z to functions on
[0, 2π] by

T ′({an}) =
∞∑

n=−∞
aneinθ.

Notice that since Lp(Z) ⊂ L2(Z) when p ≤ 2, then the above is a well-
defined function on L2([0, 2π]) when {an} ∈ Lp(Z), by the unitary char-
acter of Parseval’s identity.

Corollary 2.5 If 1 ≤ p ≤ 2 and 1/p + 1/q = 1, then

‖T ′({an})‖Lq([0,2π]) ≤ ‖{an}‖Lp(Z).

The proof is parallel to that of the previous corollary. The case p0 =
q0 = 2 is, as has already been mentioned, a consequence of Parseval’s
identity, while the case p1 = 1 and q1 = ∞ follows directly from the fact
that ∣∣∣∣∣

∞∑
n=−∞

aneinθ

∣∣∣∣∣ ≤
∞∑

n=−∞
|an|.

An alternative proof of this corollary uses Corollary 2.4 as well as The-
orem 4.1 and Theorem 5.5 in the previous chapter.

Example 3. We consider the analog for the Fourier transform. Here
the setting is Rd and the Lp spaces are taken with respect to the usual
Lebesgue measure. We initially define the Fourier transform (denoted
here by T ) on simple functions by

T (f)(ξ) =
∫

Rd

f(x)e−2πix·ξ dx.
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Then clearly, ‖T (f)‖L∞ ≤ ‖f‖L1 , and T has an extension (by Proposi-
tion 5.4 in Chapter 1 for instance) to L1(Rd) for which this inequality
continues to hold. Also, T has an extension to L2(Rd) as a unitary
mapping. (This is essentially the content of Plancherel’s theorem. See
Section 1, Chapter 5 in Book III.) Thus in particular ‖T (f)‖L2 ≤ ‖f‖L2 ,
for f simple.

The same arguments as before then prove:

Corollary 2.6 If 1 ≤ p ≤ 2 and 1/p + 1/q = 1, then the Fourier trans-
form T has a unique extension to a bounded map from Lp to Lq, with
‖T (f)‖Lq ≤ ‖f‖Lp .

We summarize these results by describing in Figure 3 the Riesz dia-
grams for each of the above versions of the Hausdorff-Young theorem.
The three variants are as follows:

(i) The operator T in Corollary 2.4: the closed triangle I.

(ii) The operator T ′ in Corollary 2.5: the closed triangle II.

(iii) The operator T in Corollary 2.6: the line segment joining (1, 0) to
(1/2, 1/2), that is, the common boundary of these two triangles.

II

(1, 1)

(1, 0)

I

(0, 0)

1/q

1/p

( 1
2 , 1

2 )

Figure 3. Riesz diagrams for the Hausdorff-Young theorem

More precisely, the results above guarantee the inequality for the seg-
ment joining (1, 0) to (1/2, 1/2) in each of the three cases. If we use the
trivial inequality ‖f‖L1 ≤ ‖f‖L∞ in Example 1 above, we get that the
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point (0, 0) also belongs to the Riesz diagram of T , yielding the closed
triangle I. Similarly, because ‖T ′({an})‖L∞ ≤ ‖{an}‖L1 , we obtain the
triangle II for Example 2. Finally, we should note that in Example 3,
the Fourier transform, the Riesz diagram consists of no more than the
segment joining (1, 0) to (1/2, 1/2). (See Exercises 2 and 3.)

Example 4. Our last illustration is Young’s inequality for convolutions
in Rd. It states that whenever f and g are a pair of functions in Lp and
Lr respectively, then the convolution

(f ∗ g)(x) =
∫

Rd

f(x − y)g(y) dy

is well-defined (that is, the function f(x − y)g(y) is integrable for almost
every x), and moreover

(9) ‖f ∗ g‖Lq ≤ ‖f‖Lp‖g‖Lr ,

under the assumption that 1/q = 1/p + 1/r − 1, (with 1 ≤ q ≤ ∞). One
proof of this has been outlined in Exercise 19 of the previous chapter.
Here we point out that it is also a consequence of the similar special cases
corresponding to p = 1, and p the dual exponent of r. In fact it suffices to
prove (9) for simple functions f and g, and then pass to the general case
by an easy limiting argument. With this in mind, fix g, and consider
the map T defined by T (f) = f ∗ g. We know (see Exercise 17 (a) in
Chapter 1, where the role of f are g are interchanged) that ‖T (f)‖Lr ≤
M‖f‖L1 , with M = ‖g‖Lr . Also by Hölder’s inequality, ‖T (f)‖L∞ ≤
M‖f‖Lr′ , where 1/r′ + 1/r = 1. Now applying the Riesz interpolation
theorem gives the desired result.

There is of course the parallel situation of the periodic case. For ex-
ample, in one dimension, taking the functions with period 2π, the con-
volution of f and g is defined by

(f ∗ g)(θ) =
1
2π

∫ 2π

0

f(θ − ϕ)g(ϕ) dϕ.

If we set Lp = Lp([0, 2π]) with the underlying measure dθ/(2π), then one
has again ‖f ∗ g‖Lq ≤ ‖f‖Lp‖g‖Lr , but automatically in a larger range
because ‖g‖Lr ≤ ‖g‖Lr , whenever r ≤ r.

The Riesz diagrams are described as follows (Figure 4):
The solid line segment joining (1 − 1/r, 0) to (1, 1/r) represents Young’s

inequality for Rd. The closed (shaded) trapezoid represents the inequal-
ity in the periodic case.
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1/p

1/q

(1, 1
r
)

(1, 1)

(1, 0)(0, 0) (1 − 1
r
, 0)

Figure 4. Riesz diagrams for T (f) = f ∗ g, with g ∈ Lr

3 The Lp theory of the Hilbert transform

We carry out the theory of the “conjugate function,” alluded to earlier
in Section 1, but we do it in the parallel framework where the unit circle
and the unit disc are replaced by R and the upper half-plane R2

+ =
{z = x + iy, x ∈ R, y > 0}, respectively. While the technical details of
the proofs are a little more involved in the latter context, the resulting
formulas are more elegant and their form leads more directly to important
generalizations in higher dimensions.

3.1 The L2 formalism

We begin by setting down the basic formalism connecting the Hilbert
transform and the projection operator arising from the Cauchy integral.
Starting with an appropriate function f on R we define its Cauchy inte-
gral by

(10) F (z) = C(f)(z) =
1

2πi

∫ ∞

−∞

f(t)
t − z

dt, Im(z) > 0.

For the moment we restrict ourselves to f in L2(R). Then of course the
integral converges for all z = x + iy with y > 0, (because 1/(t − z) is in
L2(R) as a function of t) and F (z) is holomorphic in the upper half-plane.
We can also represent the Cauchy integral F in terms of the L2 Fourier
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transform f̂ of f as3

(11) F (z) =
∫ ∞

0

f̂(ξ)e2πizξ dξ, Im(z) > 0.

This integral converges because e−2πyξ as a function of ξ is in L2(0,∞),
for y > 0. The above representation comes about because of the formula

(12)
∫ ∞

0

e2πizξ dξ = − 1
2πiz

,

which holds for Im(z) > 0. (For more details about these assertions, and
their connection to the Hardy space H2, see Section 2, Chapter 5 in
Book III.)

As is clear from (11) and Plancherel’s theorem, one has F (x + iy) →
P (f)(x), as y → 0, in the L2(R) norm with

P (f)(x) =
∫ ∞

−∞
f̂(ξ)χ(ξ)e2πixξ dξ

and χ the characteristic function of (0,∞). Thus P is the orthogonal
projection of L2(R) to the subspace of those f for which f̂(ξ) = 0 for
almost every ξ < 0. So as in (5) of Section 1, one is led to define the
Hilbert transform H by

(13) H(f)(x) =
∫ ∞

−∞
f̂(ξ)

sign(ξ)
i

e2πixξ dξ.

Some elementary facts, following directly from the definitions of P and
H, are worth noting:

• P = 1
2(I + iH), where I is the identity operator.

• H is unitary on L2, and H ◦ H = H2 = −I.

In other words, ‖H(f)‖L2 = ‖f‖L2 , and H is invertible with H−1 = −H.

We now come to the important realization of the Hilbert transform as
a “singular integral.” It can be stated as follows.

Proposition 3.1 If f ∈ L2(R) then

(14) H(f)(x) = lim
ε→0

1
π

∫
|t|≥ε

f(x − t)
dt

t
.

3The Fourier transforms in the definitions below are taken in the L2 sense, via
Plancherel’s theorem.
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That is, with Hε(f) denoting the integral on the right-hand side above,
we have Hε(f) ∈ L2(R) for every ε > 0, and the convergence asserted
in (14) is in the L2(R) norm.

First, we make a few observations. Note that with z = x + iy, then

(15) − 1
iπz

= Py(x) + iQy(x)

where

Py(x) =
y

π(x2 + y2)
and Qy(x) =

x

π(x2 + y2)

are called the Poisson kernel and conjugate Poisson kernel, respec-
tively. Then because of (10), (11) and (15)

(16)
∫ ∞

0

f̂(ξ)e2πizξ dξ =
1
2

[(f ∗ Py)(x) + i(f ∗ Qy)(x)] ,

where (f ∗ Py)(x) =
∫

f(x − t)Py(t) dt =
∫

f(t)Py(x − t) dt, with simi-
lar formulas for f ∗ Qy.

Next define the reflection ϕ 	→ ϕ∼ by ϕ∼(x) = ϕ(−x), and observe
that (f ∗ Py)∼ = f∼ ∗ Py, while (f ∗ Qy)∼ = −(f∼ ∗ Qy), since Py and
Qy are respectively even and odd functions of x. Also (̂f∼) = (f̂)∼.
Therefore using (16) with f and f∼ we then obtain

(17)
(f ∗ Py)(x) =

∫ ∞
−∞ f̂(ξ)e2πixξe−2πy|ξ| dξ

(f ∗ Qy)(x) =
∫ ∞
−∞ f̂(ξ)e2πixξe−2πy|ξ| sign(ξ)

i dξ.

As a result, we obtain that the Fourier transforms of Py and Qy (taken
in L2) are given by

(18)
P̂y(ξ) = e−2πy|ξ|

Q̂y(ξ) = e−2πy|ξ| sign(ξ)
i .

With this we turn to the proof of the proposition. We note, by (13),
(17), (18), and Plancherel’s theorem, that f ∗ Qε → H(f) in the L2 norm,
as ε → 0. Now consider

1
π

∫
|t|≥ε

f(x − t)
dt

t
− (f ∗ Qε)(x) = Hε(f)(x) − (f ∗ Qε)(x).

This difference equals f ∗ ∆ε, where

∆ε(x) = 1
πx −Qε(x), for |x| ≥ ε

= −Qε(x), for |x| < ε.
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It is important to observe that ∆ε(x) = ε−1∆1(ε−1x), while |∆1(x)| ≤
A/(1 + x2), since 1/x − x/(x2 + 1) = O(1/x3), if |x| ≥ 1.4 In particular
∆1 is integrable over R and the family of kernels ∆ε(x) satisfies the
usual size conditions for an approximation to the identity,5 but not the
condition

∫
∆ε(x) dx = 1. Instead

∫
∆ε(x) dx = 0, for all ε �= 0, because

∆ε(x) is an odd function of x. As a consequence

(19) f ∗ ∆ε → 0 in the L2 norm, as ε → 0,

and this gives that Hε(f) → H(f) in the L2 norm, as ε → 0.

We recall briefly how (19) can be proved. First

(f ∗ ∆ε)(x) =
∫

f(x − t)∆ε(t) dt =
∫

(f(x − t) − f(x))∆ε(t) dt

=
∫

(f(x − εt) − f(x))∆1(t) dt.

Then by Minkowski’s inequality

‖f ∗ ∆ε‖L2 ≤
∫

‖f(x − εt) − f(x)‖L2 |∆1(t)| dt.

Now, the integral tends to zero with ε by the dominated convergence
theorem. This is because ‖f(x − εt) − f(x)‖L2 ≤ 2‖f‖L2 , and ‖f(x −
εt) − f(x)‖L2 → 0 as ε → 0 for each t. (For the continuity of the L2

norm used here, see Exercise 8 in Chapter 1.)

Remark. The above argument shows also that ‖Hε(f)‖L2 ≤ A‖f‖L2

with A independent of ε and f .

3.2 The Lp theorem

With the elementary properties of the Hilbert transform established we
can now turn to our goal: the theorem of M. Riesz. It states that the
Hilbert transform is bounded on Lp, 1 < p < ∞. One way to formulate
this is as follows.

Theorem 3.2 Suppose 1 < p < ∞. Then the Hilbert transform H, ini-
tially defined on L2 ∩ Lp by (13) or (14), satisfies the inequality

(20) ‖H(f)‖Lp ≤ Ap‖f‖Lp , whenever f ∈ L2 ∩ Lp,

4We remind the reader of the notation f(x) = O(g(x)), which means that |f(x)| ≤
C|g(x)| for some constant C and all x in a given range.

5A discussion of approximations to the identity can be found, for instance, in Book III,
Section 2 and Exercise 2 of Chapter 3.
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with a bound Ap independent of f . The Hilbert transform then has a
unique extension to all of Lp satisfying the same bound.6

To have a better appreciation of the nature of this theorem it may
help to see why the conclusions fail for p = 1 or p = ∞. For this, an
explicit calculation does the job. Let I denote the interval (−1, 1), and
f = χI be the characteristic function of that interval. Now f is an even
function, so its Hilbert transform is odd, and in fact a simple calcu-
lation gives H(f)(x) = limε→0 Hε(f)(x) = 1

π log
∣∣x+1
x−1

∣∣. Hence H(f) is
unbounded near x = −1 and x = 1, with mild (logarithmic) singularities
there. However H(f)(x) ∼ 2

πx as |x| → ∞, so it is obvious that H(f)
does not belong to L1.

It is also instructive to consider instead of f = χI , the odd function
g(x) = χJ(x) − χJ(−x), where J = (0, 1). Then the Hilbert transform

of g equals H(g)(x) = 1
π log

∣∣∣ x2

x2−1

∣∣∣, and is an even function. While H(g)

is still unbounded (with mild logarithmic singularities at −1, 0 and 1),
it is integrable on R, since H(g)(x) ∼ 1

πx2 , as |x| → ∞. (See Figure 5.)

−

−

2

2

−−

− −

11

1 1

11

1 1

2

2

as |x| → ∞
H(f)(x) ∼ 2

πx

f(x)

g(x)
H(g)(x) ∼ 1

πx2

as |x| → ∞

Figure 5. Two examples of Hilbert transforms

6For the general extension principle used, see Proposition 5.4 in Chapter 1.
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There is a nice lesson here whose significance will be clear at several
stages later on: namely, if f is (say) a bounded function with compact
support on R, then H(f) is in L1(R) if and only if

∫
f(x) dx = 0. (See

Exercise 7.)

3.3 Proof of Theorem 3.2

The main idea of the proof was already outlined at the end of Section 1 in
the context of Fourier series and the corresponding theorem for the con-
jugate function. While this proof, which depends on complex analysis,
is elegant, its approach is essentially limited to this operator and can-
not deal with the generalizations of the Hilbert transform in the setting
of Rd. The “real-variable” theory of those operators will be described in
Section 3 of the next chapter.

We turn to the proof of the Theorem 3.2, and in preparation we invoke
two technical devices. The first is very simple and is the realization that
it suffices to prove the theorem for real-valued functions, from which
its extension to complex-valued functions is immediate (with a result-
ing bound which is not more than twice the bound Ap for real-valued
functions).

The second device depends on the use of the space C∞
0 (R) of indefi-

nitely differentiable functions of compact support. There are two useful
facts concerning this space. First, it is dense in Lp(R), and more particu-
larly, if f ∈ L2 ∩ Lp, with p < ∞, there is a sequence {fn} with fn ∈ C∞

0 ,
and fn → f both in the L2 and Lp norms. (This follows from the argu-
ment to solve Exercise 7 in Chapter 1 as well as the references therein.)

For our purposes, a particularly helpful observation is that whenever
f ∈ C∞

0 (R) then its Cauchy integral F (z) = 1
2πi

∫ ∞
−∞

f(t)
t−z dt extends as a

continuous function on the closure of the upper half-plane, is bounded
there, and moreover satisfies the decay inequality

(21) |F (z)| ≤ M

1 + |z| , z = x + iy, y ≥ 0,

for an appropriate constant M . The simplest way to prove this is to
use the Fourier transform representation (11). Then the rapid decrease
at infinity of f̂ shows that F is continuous and bounded in the closed
half-plane R2

+. Moreover the smoothness of f̂ lets us integrate by parts,
giving

F (z)=
1

2πiz

∫ ∞

0

d(e2πizξ)
dξ

f̂(ξ) dξ =
1

2πiz

[
−

∫ ∞

0

e2πizξf̂ ′(ξ) dξ − f̂(0)
]

.
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As a result, |F (z)| ≤ M0/|z|, so together with the boundedness of F
the estimate (21) is established. Notice also that the continuity of F
with (11), (16) and (17) yields

(22) 2F (x) = 2 lim
y→0

F (x + iy) = f(x) + iH(f)(x).

It is also important to remark here that if f is real-valued (as we have
assumed), then by (14) the Hilbert transform H(f) is also real-valued.

With these matters out of the way, the main conclusions can be ob-
tained in a few strokes.

Step 1: Cauchy’s theorem. We see first that

(23)
∫ ∞

−∞
(F (x))k dx = 0, whenever k is an integer, k ≥ 2.

Indeed, if we integrate the analytic function (F (z))k over the contour γ
in the upper half-plane consisting of the rectangle (see Figure 6) whose
vertices are R + iε, R + iR, −R + iR, and −R + iε, then by Cauchy’s
theorem

∫
γ
(F (z))k dz = 0. Letting ε → 0 and R → ∞, also taking into

account the continuity of F and the decay (21) then gives (23). (Note
also that by (21), we have H(f) ∈ Lp for all p > 1.)

−R + iε

−R + iR R + iR

R + iε

Figure 6. The rectangle of integration γ

We now exploit (23). Observe that when k = 2, if we take the real
parts of this identity (using that f and H(f) are real-valued), we have∫ ∞
−∞(f2 − (Hf)2) dx = 0. This is essentially the unitarity of H on L2

that we mentioned previously.
Next we consider other values of k ≥ 2, those when k is even k = 2�.

(When k is odd, the identity (23) does not have an immediately useful
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consequence.) Suppose, for example, that k = 4. Then the real part
of (23) gives us∫

f4 dx − 6
∫

f2(Hf)2 dx +
∫

(Hf)4 dx = 0.

As a result,∫
(Hf)4 dx ≤ 6

∫
f2(Hf)2 dx ≤ 6

(∫
f4 dx

)1/2 (∫
(Hf)4 dx

)1/2

,

the last majorization following by Schwarz’s inequality. Hence(∫
(Hf)4 dx

)1/2

≤ 6
(∫

f4 dx

)1/2

,

which means

‖H(f)‖L4 ≤ 61/2‖f‖L4 .

In the same way, if we take p = 2�, with � an integer ≥ 1, we obtain

(24) ‖H(f)‖Lp ≤ Ap‖f‖Lp , p = 2�.

Indeed, the real part of (f + iH(f))2� is

�∑
r=0

f2r(Hf)2�−2rcr, where cr = (−1)�−r
(
2�
2r

)
, r = 0, 1, . . . , �.

Hence ∫
(Hf)2� dx ≤

�∑
r=1

ar

∫
f2r(Hf)2�−2r dx,

with ar =
(
2�
2r

)
. Now Hölder’s inequality (with dual exponents 2�

2r , 2�
2�−2r )

shows that ∫
f2r(Hf)2�−2r dx ≤ ‖f‖2r

Lp‖H(f)‖2�−2r
Lp ,

with p = 2�. Thus

‖H(f)‖2�
Lp ≤

�∑
r=1

ar‖f‖2r
Lp‖H(f)‖2�−2r

Lp .
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Note that this inequality is jointly homogeneous of degree 2� in ‖f‖Lp

and ‖H(f)‖Lp . Moreover the right-hand side is of degree at most 2� −
2 in ‖H(f)‖Lp . Upon normalizing f so that ‖f‖Lp = 1, and setting
X = ‖H(f)‖Lp we have X2� ≤ ∑�

r=1 arX
2�−2r. Now either X < 1 or

X ≥ 1. In the second case, then X2� ≤ (
∑�

r=1 ar)X2�−2. As a result
X2 ≤ ∑�

r=1 ar ≤ 22�. In either case X ≤ 2�, and therefore (24) is proved
with Ap = 2p/2.

To carry out the next step we extend the basic inequality (24), proved
for f ∈ C∞

0 , to f that are simple functions. Recall that we have already
defined H(f) whenever f is in L2, and in particular if f is simple. Next,
since such f belongs to L2 ∩ Lp, we can find a sequence {fn}, with fn ∈
C∞

0 , so that fn → f both in the L2 and Lp norms. As a result, {H(fn)}
are Cauchy sequences in both the L2 and Lp norms, while H(fn) → H(f)
in the L2 norm. Thus (24) is established when f is simple.

Step 2: Interpolation. Having proved (24) for simple functions and p
even, we can apply the Riesz interpolation theorem once we have ex-
tended H to complex-valued functions. But this is easily done by setting
H(f1 + if2) = H(f1) + iH(f2), for f1 and f2 real-valued. Note that as a
result, the inequality (24) extends to this case, but with Ap replaced by
2Ap. (By a further argument we can show that the original bound Ap

holds in this case also. See Exercise 8.)
With this in mind Riesz interpolation yields the inequality

‖H(f)‖Lp ≤ Ap‖f‖Lp

for all p such that 2 ≤ p ≤ 2�, where � is any positive integer. This follows
by taking p0 = q0 = 2, p1 = q1 = 2� and noting that if 1/p = (1 − t)/2 +
t/(2�), then p ranges over the interval 2 ≤ p ≤ 2�, when t ranges over
0 ≤ t ≤ 1. Since � may be taken to be arbitrarily large, we get (20) for
all 2 ≤ p < ∞ and f simple.

Step 3: Duality. We pass from the case 2 ≤ p < ∞ to the case 1 < p ≤
2 by duality. This passage is based on the simple identity

(25)
∫ ∞

−∞
(Hf)g dx = −

∫ ∞

−∞
f(Hg) dx

whenever f and g belong to L2(R) and are now allowed to be complex-
valued. In fact this follows immediately from Plancherel’s identity (f, g) =
(f̂ , ĝ), and the definition (13), which can be restated as

Ĥ(f)(ξ) =
sign(ξ)

i
f̂(ξ).
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One can invoke the abstract duality principle in Theorem 5.5 of Chap-
ter 1 or proceed directly as follows. Restricting attention to f and g
simple, one has by Lemma 4.2 in the previous chapter, with 1 < p ≤ 2,

‖H(f)‖Lp = sup
g

∣∣∣∣∫ H(f)g dx

∣∣∣∣ ,
where the supremum is taken over g simple, with ‖g‖Lq ≤ 1, 1/p + 1/q =
1. However, by (25) and Hölder’s inequality, this is equal to

sup
g

∣∣∣∣∫ fH(g) dx

∣∣∣∣ ≤ sup
g

‖f‖Lp‖H(g)‖Lq ≤ ‖f‖LpAq,

using (20) for q in place of p, and noting that 2 ≤ q < ∞.

Therefore (20) holds for all p, 1 < p < ∞, for all simple functions f .
The passage to all f ∈ L2 ∩ Lp, and thus to the general result, is by now
a familiar limiting argument.

4 The maximal function and weak-type estimates

Another important illustration of the occurrence of Lp spaces is in con-
nection with the maximal function f∗. For appropriate functions f given
on Rd, the maximal function f∗ is defined by

f∗(x) = sup
x∈B

1
m(B)

∫
B

|f(y)| dy,

where the supremum is taken over all balls B containing x, and m (as
well as dy) denote the Lebesgue measure.7

It is a fact that f∗ plays a role in a wide variety of questions in analysis,
and it is there that its Lp inequality

(26) ‖f∗‖Lp ≤ Ap‖f‖Lp , 1 < p ≤ ∞,

is of crucial interest.

Before we come to the proof of (26) a few observations are in order.
First, the mapping f 	→ f∗ is not linear, but does satisfy the sub-additive
property that f∗ ≤ f∗

1 + f∗
2 , whenever f = f1 + f2.

Next, while (26) obviously holds for p = ∞ (with A∞ = 1), the in-
equality for p = 1 fails. This can be seen directly by taking f to be

7An introduction to f∗, and a complete proof of (27) below can be found for instance
in Chapter 3 of Book III.
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the characteristic function of the unit ball B, and noticing that then
f∗(x) ≥ 1/(1 + |x|)d. This function clearly fails to be integrable at infin-
ity. The asserted inequality follows immediately from the fact that for
each x ∈ Rd the ball of radius 1 + |x| centered at x contains B. There
are also simple examples where the integrability of f∗ fails locally. (See
Exercise 12.)

There is nevertheless a very useful substitute for L1 boundedness
for f∗. It is the weak-type inequality: there is a bound A (independent
of f), so that

(27) m({x : f∗(x) > α}) ≤ A

α
‖f‖L1(Rd), for all α > 0.

We briefly recall the main steps in the proof of (27). If we denote by Eα =
{x : f∗(x) > α}, then to obtain the above majorization for m(Eα) it
suffices to have the same for m(K), where K is any compact subset of Eα.
Now, using the definition of f∗ we can cover K by a finite collection of
balls B1, B2, . . . , BN with

∫
Bi

|f(x)| dx ≥ α m(Bi), for each i. If we then
apply a Vitali covering lemma, we can select a disjoint sub-collection of
these balls Bi1 , Bi2 , . . . , Bin

with
∑n

j=1 m(Bij
) ≥ 3−dm(K). Adding the

above inequalities over the disjoint balls then gives m(K) ≤ 3d

α ‖f‖L1 ,
which leads to (27).

4.1 The Lp inequality

We turn to the proof of the Lp inequality for the maximal function. It
is formulated as follows.

Theorem 4.1 Suppose f ∈ Lp(Rd) with 1 < p ≤ ∞. Then f∗ ∈ Lp(Rd),
and (26) holds, namely

‖f∗‖Lp ≤ Ap‖f‖Lp .

The bound Ap depends on p but is independent of f .

Let us first see why f∗(x) < ∞, for a.e. x, whenever f ∈ Lp. Observe
that we can decompose f = f1 + f∞, where f1(x) = f(x) if |f(x)| > 1,
and f1(x) = 0 elsewhere; also f∞(x) = f(x) if |f(x)| ≤ 1 and f∞(x) = 0
elsewhere. Then f1 ∈ L1 and f∞ ∈ L∞. But clearly f∗ ≤ f∗

1 + f∗
∞ ≤

f∗
1 + 1, since |f∞(x)| ≤ 1 everywhere. Now from (27) (with f1 in place

of f), we see that f∗
1 is finite almost everywhere. Thus the same is true

for f∗.
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The proof that f∗ ∈ Lp relies on a more quantitative version of the
argument just given. We strengthen the weak-type inequality (27) by
incorporating in it the L∞ boundedness of the mapping f 	→ f∗. The
stronger version states

(28) m({x : f∗(x) > α}) ≤ A′

α

∫
|f |>α/2

|f | dx, for all α > 0.

Here A′ is a different constant; it can be taken to be 2A. The improve-
ment of (27), (except for a different constant, which is inessential), is
that here we only integrate over the set where |f(x)| > α/2, instead of
the whole of Rd.

To prove (28) we write f = f1 + f∞, where now f1(x) = f(x), if |f(x)| >
α/2, and f∞(x) = f(x) if |f(x)| ≤ α/2. Then f∗ ≤ f∗

1 + f∗
∞ ≤ f∗

1 + α/2,
since |f∞(x)| ≤ α/2 for all x. Therefore {x : f∗(x) > α} ⊂ {x : f∗

1 >
α/2}, and applying the weak-type inequality (27) to f1 in place of f
(and α/2 in place of α) then immediately yields (28), with A′ = 2A.

Distribution function

We will next need an observation concerning the quantity occurring on
the left-hand side of the inequalities (27) and (28), which we formulate
more generally as follows. Suppose F is any non-negative measurable
function. Then its distribution function, λ(α) = λF (α) is defined for
positive α by

λ(α) = m({x : F (x) > α}).

The key point here is that for any 0 < p < ∞,

(29)
∫

Rd

(F (x))p dx =
∫ ∞

0

λ(α1/p) dα,

and this holds in the extended sense (that is, both sides are simultane-
ously finite and equal, or both sides are infinite).

To see this, consider first the case p = 1. Then the identity is an
immediate consequence of Fubini’s theorem, in the setting Rd × R+,
applied to the characteristic function of the set {(x, α) : F (x) > α >
0}. Indeed, integrating the characteristic function first in α then in x

gives
∫

Rd

(∫ F (x)

0
dα

)
dx, while integrating in the reverse order yields∫ ∞

0
m({x : F (x) > α}) dα, and this shows (29) for p = 1. Finally, let

G(x) = (F (x))p, so {x : G(x) > α} = {x : F (x) > α1/p}. Using (29) for
p = 1 (and G instead of F ) then gives the conclusion for general p.
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We also note that

λ(α) ≤ 1
α

∫
Rd

F (x) dx,

which is Tchebychev’s inequality. In fact,∫
Rd

F (x) dx ≥
∫

F (x)>α

F (x) dx ≤ α m({x : F (x) > α}),

and this proves the assertion. One also sees, more generally, λ(α) ≤
1

αp

∫
(F (x))p dx for p > 0.

We now apply (29) to F (x) = f∗(x), utilizing (28). Then∫
Rd

(f∗(x))p dx =
∫ ∞

0

λ(α1/p) dα

≤ A′
∫ ∞

0

α−1/p

(∫
|f |>α1/p/2

|f | dx

)
dα.

We evaluate the integral on the right-hand side by interchanging the
order of integration. It then becomes

A′
∫

Rd

|f(x)|
(∫ |2f(x)|p

0

α−1/p dα

)
dx.

However, if p > 1,
∫ t

0
α−1/p dα = apt

1−1/p, for all t ≥ 0, (with ap = p/(p −
1)). So the double integral equals A′ap2p−1

∫
Rd |f(x)| |f(x)|p−1 dx, which

is Ap
p‖f‖p

Lp , with (Ap
p = A′ap2p−1), and this gives (26), proving the the-

orem.

Note, as a result of the above proof, that the constant Ap in (26)
satisfies Ap = O(1/(p − 1)) as p → 1.

Remark. The Hilbert transform H(f), like the maximal function f∗,
also satisfies a weak-type L1 inequality, a result we will prove in a more
general setting in the next chapter. In fact, this weak-type inequality
will then be used to prove Lp inequalities for the generalizations of the
Hilbert transform to Rd, in much the same way as they are used above
for the maximal function.

5 The Hardy space H1
r

We now come to the real Hardy space H1
r(R

d), which plays a significant
role as another substitute for L1(Rd), in the context where important
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Lp inequalities for p > 1 break down at p = 1. This space is a Banach
space that is “near” L1, and whose dual space also occurs naturally in
many applications. Moreover, H1

r stands in sharp contrast to the space of
weak-type functions considered above: the latter space cannot be made
into a Banach space, nor does it have any bounded linear functionals.
(See Exercise 15.)

The space H1
r(R

d) arose first for d = 1 in the setting of complex analy-
sis as the “real parts” of the boundary values of functions of the complex
Hardy space Hp, when p = 1. The Hardy space Hp, in the version of the
upper half-plane, consists of holomorphic functions F on R2

+ for which

sup
y>0

∫ ∞

−∞
|F (x + iy)|p dx < ∞,

and whose norm ‖F‖Hp , is defined as the pth-root of the quantity on the
left-hand side of the above inequality.8

Now, it can be shown that whenever F ∈ Hp, p < ∞, then the limit
F0(x) = limy→0 F (x + iy) exists in the Lp(R) norm and in fact ‖F‖Hp =
‖F0‖Lp(R). Moreover, when 1 < p < ∞, Riesz’s theorem can be reinter-
preted to say that 2F0 = f + iH(f) where f is a real-valued function in
Lp(R). Conversely, every element F ∈ Hp arises in this way. Thus, when
1 < p < ∞ we see that the Banach space Hp is the same, up to equiva-
lence of norms as (real) Lp(R). The equivalence breaks down at p = 1,
since the Hilbert transform H is not bounded on L1. This situation led
to the original definition of H1

r(R): the space of real-valued functions f
that arise as 2F0 = f + iH(f) where F ∈ H1. Equivalently, f ∈ H1

r(R)
if and only if f ∈ L1(R) and H(f), defined in an appropriate “weak”
sense, also belongs to L1(R). (An outline of the proof of these assertions
can be found in Problems 2, 7∗, and 8∗.)

The notion of H1
r was later extended to Rd, d > 1, and various equiv-

alent defining properties were ultimately found. It turns out that the
simplest of these to state, and the most useful in applications, is the
definition in terms of decompositions into “atoms.” To this we now turn.

5.1 Atomic decomposition of H1
r

A bounded measurable function a on Rd is an atom associated to a ball
B ⊂ Rd, if:

(i) a is supported in B, with |a(x)| ≤ 1/m(B), for all x; and,

8The case p = 2 is treated in Section 2, Chapter 5 of Book III.
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(ii)
∫

Rd a(x) dx = 0.

Note that (i) guarantees that for each atom a we have ‖a‖L1(Rd) ≤ 1.

The space H1
r(R

d) consists of all L1 functions f that can be written as

(30) f =
∞∑

k=1

λkak,

where the ak are atoms and the λk are scalars with

(31)
∞∑

k=1

|λk| < ∞.

Observe that (31) insures that the sum (30) converges in the L1 norm.
The infimum of the values

∑ |λk|, taken over all possible decompositions
of f of the form (30) is, by definition, the H1

r norm of f , written as
‖f‖H1

r
.

One can then observe the following properties of H1
r:

• With the above norm the space H1
r is complete, hence is a Banach

space. If f belongs to H1
r then f belongs to L1 and ‖f‖L1(Rd) ≤

‖f‖H1
r
; also obviously

∫
f(x) dx = 0.

• However, the above necessary conditions are far from sufficient to
imply f ∈ H1

r.

• The significance of the cancelation condition (ii) was already indi-
cated at the end of Section 3.2. Moreover, if one drops this can-
celation property for atoms, then sums of the kind (30) represent
arbitrary functions in L1(Rd).

• However, in the opposite direction if f is any Lp(Rd) function, 1 <
p, (say) of bounded support that satisfies the cancelation condition∫

f(x) dx = 0, then f belongs to H1
r.

Proofs of the first three assertions are outlined in Exercises 16, 17, and 18.
The fourth assertion is the deepest of these. Its proof, which follows
below, provides us with valuable insight into the nature of H1

r, and its
ideas will be exploited in several circumstances later.

We state the result mentioned above.

Proposition 5.1 Suppose f ∈ Lp(Rd), p > 1, and f has bounded sup-
port. Then f belongs to H1

r(R
d) if and only if

∫
Rd f(x) dx = 0.
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Note that f is automatically in L1, by Hölder’s inequality (see Proposi-
tion 1.4 in Chapter 1), and the cancelation condition is necessary as has
been pointed out.

To prove the sufficiency we assume that f is supported in a ball B1

of unit radius, and that
∫

B1
|f(x)| dx ≤ 1. These normalizations can be

achieved by a simple change of scale and multiplication of f by an ap-
propriate constant. We next consider a truncated version of the maximal
function f∗. We define f† by

f†(x) = sup
1

m(B)

∫
B

|f(y)| dy,

where the supremum is taken over all balls B of radius ≤ 1 that contain x.
We note that under our assumptions we have

(32)
∫

Rd

f†(x) dx < ∞.

Indeed, f†(x) = 0 if x /∈ B3, where B3 is the ball with same center as B1,
but with radius 3. This is because x /∈ B3 and if x ∈ B with the radius of
B less than or equal to 1, then B must be disjoint from B1, the support
of f . Thus∫

Rd

f†(x) dx =
∫

B3

f†(x) dx ≤ c

(∫
B3

(f†(x))p dx

)1/p

by Hölder’s inequality. However the last integral is finite by Theorem 4.1,
since clearly f†(x) ≤ f∗(x).

Now for each α ≥ 1, we consider a basic decomposition of f at “height”
α, carried out with respect to the set Eα = {x : f†(x) > α}. This is a
variant of the important “Calderón-Zygmund decomposition.” It will be
a little simpler to carry out the steps when d = 1, and this we do first;
we return to the general case d ≥ 2 immediately afterwards. The reader
who is impatient with the technicalities of the next few pages may want
to glance ahead to the lemma in Section 3.2 of the next chapter, where
a more streamlined version of the decomposition appears.

This decomposition allows us to write f = g + b where

(33) |g| ≤ cα, for an appropriate constant c, 9

9Here we continue the practice of using c, c1, etc. to denote constants that may not
be the same in different places.
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and where b is supported in Eα. In fact, since, as is easily seen, the set
Eα is open, we can write Eα =

⋃
Ij , where Ij are disjoint open intervals,

and we will be able to construct b so that b =
∑

bj , with bj supported
on Ij and satisfying

(34)
∫

bj(x) dx = 0, for all j.

The key observation used in this construction is

(35)
1

m(Ij)

∫
Ij

|f(x)| dx ≤ α, for all j.

When m(Ij) ≥ 1, the inequality (35) is automatic in view of our assump-
tions that

∫ |f(x)| dx ≤ 1 and α ≥ 1. Otherwise, writing Ij = (x1, x2)
we note that (35) follows because x1 ∈ Ec

α, and hence f†(x1) ≤ α while
f†(x1) ≥ 1

m(Ij)

∫
Ij
|f(x)| dx.

As a result, if

mj =
1

m(Ij)

∫
Ij

f(x) dx

denotes the mean of f on Ij , then |mj | ≤ α. Since 1 = χEc
α

+
∑

j χIj
,

we can write f = g + b with

g = fχEc
α

+
∑

j

mjχIj
,

and

b =
∑

j

(f − mj)χIj
=

∑
j

bj ,

where the bj ’s are defined by bj = (f − mj)χIj , and the χ’s designate the
characteristic functions of the indicated sets. Note that on Ec

α we have
f†(x) ≤ α, so that |f(x)| ≤ α for a.e. x on this set by the differentiation
theorem.10 Since the Ij are disjoint, (35) then guarantees that (33) holds,
with c = 1. The cancelation property (34) is also clear because∫

bj(x) dx =
∫

Ij

(f(x) − mj) dx = m(Ij)(mj − mj) = 0.

With the decomposition f = g + b given for each α, we now consider
simultaneously all decompositions of this form for α = 2k, k = 0, 1, 2, . . . .

10See for instance Theorem 1.3 in Chapter 3 of Book III.
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Thus for each k we can write f = gk + bk, with |gk| ≤ c2k, bk =
∑

j bk
j ,

where bk
j is supported on open intervals Ik

j , which for fix k are disjoint,
and moreover E2k = {x : f†(x) > 2k} =

⋃
j Ik

j , while
∫

bk
j (x) dx = 0.

Now since bk is supported in the set E2k , and the sets E2k are decreas-
ing with m(E2k) → 0, as k → ∞, we have that bk → 0 almost everywhere,
as k → ∞. Thus f = limk→∞ gk a.e., and

f = g0 +
∞∑

k=0

(gk+1 − gk).

However,

gk+1 − gk = bk − bk+1 =
∑

j

bk
j −

∑
i

bk+1
i =

∑
j

Ak
j ,

where Ak
j = bk

j −∑
Ik+1

i ⊂Ik
j

bk+1
i ; the last identity holds because each

Ik+1
i is contained in exactly one Ik

j . The Ak
j are supported in the in-

tervals Ik
j , and by the cancelation properties of bk

j and bk+1
i , we have

that
∫

Ak
j (x) dx = 0. Also since |gk+1 − gk| ≤ c2k+1 + c2k = 3c2k, and

gk+1 − gk = bk − bk+1, the disjointness of the intervals {Ik
j }j shows that

|Ak
j | ≤ 3c2k. As a result we will see that the sum

(36) f = g0 +
∑
k,j

Ak
j

will give us an atomic decomposition of f . In fact we set ak
j = 1

m(Ik
j )3c2k Ak

j ,

λk
j = m(Ik

j )3c2k, and f = g0 +
∑

k,j λk
j ak

j . Now the ak
j are atoms (asso-

ciated to the intervals Ik
j ) while

∑
k,j

λk
j =

∑
k

(∑
j

λk
j

)
= 3c

∑
k

2k

(∑
j

m(Ik
j )

)

= 3c

∞∑
k=0

2km({f†(x) > 2k}).

However, because m({f†(x) > α}) is decreasing in α,

2km({f†(x) > 2k}) ≤ 2
∫ 2k

2k−1
m({f†(x) > α}) dα,
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and hence summing in k we find that
∑

k,j λk
j < ∞, because∫ ∞

0

m({f†(x) > α}) dα =
∫

R

f†(x) dx < ∞

as we saw by (29) and (32). Finally, g0 is bounded and supported in B3,
while

∫
g0(x) dx = 0 because of the cancelation properties of f and Ak

j .
Hence g0 is a multiple of an atom, and this yields that (36) is an atomic
decomposition of f .

To extend the result to general d we need to modify the argument just
given in one point: the appropriate analog of the decomposition of the
open set Eα = {x : f†(x) > α} into a disjoint union of open intervals
is its decomposition into a union of (closed) cubes whose interiors are
disjoint and so that the distance from each cube to Ec

α is comparable to
the diameter of the cube.11 It is also helpful to take the cubes entering
in this union to be dyadic cubes. These cubes are defined as follows.

The dyadic cubes of the 0th-generation are the closed cubes of side-
length 1, whose vertices are points with integral coordinates. The dyadic
cubes of the kth-generation are the cubes of the form 2−kQ, where Q is a
cube of the 0th-generation. Notice that bisecting the edges of any dyadic
cube of the kth-generation decomposes it into 2d cubes of the (k + 1)th-
generation whose interiors are disjoint. Observe also that if Q1 and Q2

are dyadic cubes (of possibly different generations), and their interiors
intersect, then either Q1 ⊂ Q2, or Q2 ⊂ Q1.

The decomposition we need of an open set into a union of such cubes
is as follows.

Lemma 5.2 Suppose Ω ⊂ Rd is a non-trivial open set. Then there is
a collection {Qj} of dyadic cubes with disjoint interiors so that Ω =⋃∞

j=1 Qj, and

(37) diam(Qj) ≤ d(Qj ,Ωc) ≤ 4 diam(Qj).

Proof. We claim first that every point x ∈ Ω belongs to some dyadic
cube Qx for which (37) holds (with Qx in place of Qj).

Let δ = d(x, Ωc) > 0. Now the dyadic cubes containing x have diam-
eters varying over {√d2−k}, k ∈ Z. Hence we can find a dyadic cube
Qx which contains x, with δ/4 ≤ diam(Qx) ≤ δ/2. Now d(Qx, Ωc) ≤ δ ≤
4 diam(Qx), since x ∈ Qx. Also

d(Qx, Ωc) ≥ δ − diam(Qx) ≥ δ/2 ≥ diam(Qx),

11This kind of decomposition already arose in Chapter 1 of Book III.
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thus (37) is proved for Qx. Now let Q̃ be the collection of all cubes
Qx obtained as x ranges over Ω. Their union clearly covers Ω but their
interiors are far from disjoint. To achieve the desired disjointness select
from Q̃ the maximal cubes, that is, those cubes in Q̃ not contained in
larger cubes of Q̃. Clearly, by what has been said above, each Q is
contained in a maximal cube and these maximal cubes necessarily have
disjoint interiors. The lemma is therefore proved.

With the above lemma, we can redo the decomposition of f in the
setting d ≥ 2. The argument is essentially the same as before except for
some small changes. For α ≥ 1, we apply the lemma to the open set Eα =
{x : f†(x) > α}; therefore we have a decomposition f = g + b, with g =
fχEc

α
+

∑∞
j=1 mjχQj

, and b =
∑∞

j=1 bj , with bj = (f − mj)χQj
. Now as

in the case d = 1 we see that |mj | ≤ cα. In fact,
∫

Qj
|f | dx ≤ ∫

B
|f | dx

for any ball B ⊃ Qj . We choose B so that it contains a point x of Ec
α.

We can do this with a ball whose radius is 5 diam(Qj), since d(Q,Ec
α) ≤

4 diam(Qj). If we choose such a ball and it has radius ≤ 1 (that is,
diam(Qj) ≤ 1/5), then

1
m(B)

∫
B

|f(x)| dx ≤ f†(x) ≤ α,

and hence |mj | ≤ c1α where m(B)/m(Qj) = c1. (The ratio c1 is inde-
pendent of j). Otherwise, if diam(Qj) ≥ 1/5, the inequality |mj | ≤ c2α
is automatic (with c2 independent of j), since

∫ |f(x)| dx ≤ 1 by assump-
tion, and α ≥ 1. In either case, therefore |mj | ≤ cα. Next, since each
dyadic cube arising in the decomposition of {x : f†(x) > 2k+1} must be
a sub-cube of a dyadic cube arising for {x : f†(x) > 2k} we can proceed
as before to obtain

f = g0 +
∑
k,j

Ak
j

with Ak
j supported in the cube Qk

j , and {x : f†(x) > 2k} =
⋃

j Qk
j .

As a result we can write Ak
j = λk

j ak
j where λk

j = c′2km(Qk
j ) and ak

j are
atoms associated to the balls Bk

j where the ball Bk
j is defined to be,

for each k and j, the smallest ball containing the cube Qk
j . Note that

m(Bk
j )/m(Qk

j ) is independent of k and j. (See Figure 7.)
Finally, since∑

k,j

2km(Qk
j ) =

∑
k

2km({x : f†(x) > 2k}) < ∞,
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Bk
j

Qk
j

Figure 7. The cube Qk
j and the ball Bk

j

as above, we have established the atomic decomposition of f , concluding
the proof of the proposition.

5.2 An alternative definition of H1
r

A nearly immediate consequence of Proposition 5.1 allows us to recast
the atomic decomposition of H1

r in a more general form. For any p with
p > 1 we define a p-atom (associated to a ball B) to be a measurable
function a which satisfies:

(i′) a is supported in B, and ‖a‖Lp ≤ m(B)−1+1/p.

(ii′)
∫

Rd a(x) dx = 0.

We reserve the terminology of “atom” for the atoms defined previously
in Section 5.1, which correspond to p-atoms for p = ∞. Note that any
atom is automatically a p-atom.

Corollary 5.3 Fix p > 1. Then any p-atom a is in H1
r. Moreover there

is a bound cp, independent of the atom a, so that

(38) ‖a‖H1
r
≤ cp.

Note that the proof below yields that cp = O(1/(p − 1)) as p → 1. Also,
the requirement p > 1 for the conclusion of the corollary is necessary, as
can be seen by using the reasoning in Exercise 17.

Proof. One can rescale a p-atom a, associated to a ball B of ra-
dius r, by replacing a by ar, with ar(x) = rda(rx). Then clearly ar(x)
is supported where rx ∈ B, that is, x ∈ 1

rB = Br and the latter ball has
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radius one. Also since m(Br) = r−dm(B) and ‖ar‖Lp = rd−d/p‖a‖Lp , we
have ‖ar‖Lp ≤ m(Br)−1+1/p. Thus ar is a p-atom for the (unit) ball Br.
Moreover, as has already been observed ‖rdf(rx)‖H1

r
= ‖f‖H1

r
, for every

r > 0. Thus (38) has been reduced to the case of p-atoms associated to
balls of unit radius. Observe that automatically for such p-atoms one
has

∫ |a(x)| dx ≤ 1, therefore we see that we find ourselves exactly in the
setting of the proof of Proposition 5.1 with f(x) = a(x). In fact one notes
that what is proved there amounts to (38), with the constant cp incor-
porating the bound Ap in (26) for the maximal function, since the calcu-
lation for

∫
Rd f†(x) dx used to establish (32) shows that this quantity is

bounded by cAp‖f‖Lp . We have already noted that Ap = O(1/(p − 1))
as p → 1. Because f = a, the proof of (38) is complete.

As a result, if f =
∑∞

k=1 λkak with p-atoms ak, and
∑ |λk| < ∞, then

f is in H1
r and

‖f‖H1
r
≤ cp

∞∑
k=1

|λk|.

Conversely, whenever f ∈ H1
r, it has a decomposition with respect to

(p = ∞) atoms and therefore has such a decomposition with respect to
p-atoms. We may summarize this as follows.

In defining H1
r via (30) and (31), we may replace atoms by

p-atoms, p > 1, and obtain an equivalent norm.

5.3 Application to the Hilbert transform

The result below exemplifies the role of the Hardy space H1
r as an im-

provement over the space L1. In contrast with the failure of the bound-
edness of the Hilbert transform on L1, we have that it is bounded from
H1

r to L1.

Theorem 5.4 If f belongs to the Hardy space H1
r(R), then Hε(f) ∈

L1(R), for every ε > 0. Moreover Hε(f) (see (14)) converges in the L1

norm, as ε → 0. Its limit, defined as H(f), satisfies

‖H(f)‖L1(R) ≤ A‖f‖H1
r(R).

Proof. The argument below illustrates a nice feature of H1
r(R): to

show the boundedness of an operator on H1
r it often suffices merely to

verify it for atoms, and this is usually a simple task.
Let us first see that for all atoms a, we have

(39) ‖Hε(a)‖L1(R) ≤ A,
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with A independent of the atom a and ε. Indeed, we can avail ourselves of
the translation-invariance and scale-invariance of the Hilbert transform
to simplify matters even further by restricting ourselves in proving (39)
for the case of atoms associated to the (unit) interval I = [−1/2, 1/2].
This reduction proceeds, on the one hand, by recalling that if ar(x) =
ra(rx), then H(ar)(x) = rH(a)(rx); that ar is an atom associated to the
interval Ir = 1

r I whenever a is supported in I; and that ‖rF (rx)‖L1(R) =
‖F (x)‖L1(R), whenever F ∈ L1. On the other hand, the translations
f(x) 	→ f(x + h), h ∈ R, commute with the operator H, as is evident
from (14); also translation clearly preserves atoms and the radii of their
associated balls.

Thus in proving (39) we may assume that a is an atom associated to
the interval |x| ≤ 1/2. We will estimate Hε(a)(x) differently, according
to whether |x| ≤ 1, (x belongs to the “double” of the support of a), or
|x| > 1. In the first case, we have∫

|x|≤1

|Hε(a)(x)| dx ≤ 21/2

(∫
|x|≤1

|H(aε)(x)|2 dx

)1/2

≤ 21/2‖Hε(a)‖L2

≤ c‖a‖L2 = c,

using the Cauchy-Schwarz inequality and the L2 theory studied earlier.
Next when |x| > 1 we write (for small ε)

Hε(a)(x) =
1
π

∫
|t|≥ε

a(x − t)
dt

t
=

1
π

∫
|x−t|≥ε

a(t)
dt

x − t

=
1
π

∫
|x−t|≥ε

a(t)
[

1
x − t

− 1
x

]
dt,

since
∫

a(t) dt = 0. Hence if |x| > 1, then |H(aε)(x)| ≤ c/x2 because∣∣ 1
x−t − 1

x

∣∣ ≤ 1
x2 when |x| ≥ 1 and |t| ≤ 1/2, and |a(t)| ≤ 1. Therefore∫

|x|≥1
|Hε(a)(x)| dx ≤ 2c, and this proves (39) for atoms associated to

the interval [−1/2, 1/2], and thus for all atoms.
At the same time, the inequality |Hε(a)(x)| ≤ c/x2 when |x| > 1, and

the convergence in the L2 norm, guaranteed by Proposition 3.1, shows
that Hε(a) converges in the L1 norm to H(a), as ε → 0, for every atom a.

Now if f =
∑∞

k=1 λkak is an H1
r function with the indicated atomic

decomposition, then by (39)

‖Hε(f)‖L1 ≤ A

∞∑
k=1

|λk|,
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and if we take the infimum over atomic decompositions, we obtain

(40) ‖Hε(f)‖L1 ≤ A‖f‖H1
r
, for every f ∈ H1

r.

Next, let fN =
∑N

k=1 λkak, so that f = fN + (f − fN ). Now since fN

is a finite linear combination of atoms, it is itself a constant multiple of
an atom. So we know that Hε(fN ) converges in the L1 norm as ε → 0.
Also,

‖Hε1(f) − Hε2(f)‖L1 ≤ ‖Hε1(fN ) − Hε2(fN )‖L1 + 2A‖f − fN‖H1
r
.

However, ‖f − fN‖H1
r
→ 0, as N → ∞. Thus given δ > 0 and choosing

first N sufficiently large, then with both ε1 and ε2 sufficiently small,
we get that ‖Hε1(f) − Hε2(f)‖L1 < δ, which shows that Hε(f) converges
in the L1 norm. The conclusion asserted by the theorem then follows
from (40), and the proof is complete.

Remark. A more elaborate form of the argument given above shows that
in fact the Hilbert transform maps the Hardy space H1

r to itself. This is
outlined in a more general setting in Problem 2 of the next chapter.

6 The space H1
r and maximal functions

The real Hardy space H1
r also leads to interesting insights regarding

maximal functions. The fact that this might be the case was already
suggested by the use of f∗ (more precisely, its truncated version f†) in
the proof of Proposition 5.1. In parallel with what we saw for the Hilbert
transform, our goal will be to find a suitable maximal function that maps
H1

r to L1. In doing this we must keep in mind the following points.
First, neither f∗ nor f† can be used as such because by their definitions

both f∗ and f† involve f only through its absolute value, and therefore
cannot take into account the cancelation properties of f that enter to
exploit the fact that f ∈ H1

r.
Second, even if one removed the absolute values in the definitions of

these maximal functions this would not be enough, because the cut-off
functions involved (the characteristic functions of balls) are not smooth.

It is the notion of nice “approximations to the identity,” and the re-
sulting family of convolution operators that lead us to the version of the
maximal function relevant for H1

r. Recall that if we fix a suitable func-
tion Φ that, for example, is bounded and has compact support, then for
any f ∈ L1, if Φε = ε−dΦ(x/ε), then

(f ∗ Φε)(x) → f(x), as ε → 0, for a.e. x,
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under the assumption
∫

Φ(x) dx = 1.
Given this Φ we define the maximal function M corresponding to

the limit above by

(41) M(f)(x) = sup
ε>0

|(f ∗ Φε)(x)|.

Note that by what we have said it is easy to observe that for every
f ∈ L1(Rd)

|f(x)| ≤ M(f)(x) ≤ cf∗(x), for a.e. x,

where c is a suitable constant.
We shall also want to assume that Φ has some smoothness, as indicated

above. With this in mind we can state our result as follows.

Theorem 6.1 Suppose Φ is a C1 function with compact support on Rd.
With M defined by (41) we have that M(f) ∈ L1(Rd), whenever f ∈
H1

r(R
d). Moreover

(42) ‖M(f)‖L1(R) ≤ A‖f‖H1
r(Rd).

Before coming to the proof, which is very similar to that of the Hilbert
transform, we make some additional remarks.

• In the definition of M we have assumed that the function Φ that
enters has one degree of smoothness. Less could be assumed with
the same result (for example a Hölder condition of exponent α
with 0 < α < 1), but some degree of smoothness is necessary. (See
Exercise 22.)

• In fact, the inequality (42) can be reversed. Thus there is a converse
theorem that gives the maximal characterization of H1

r. This is
formulated in Problem 6∗.

Proof. Suppose f is in H1
r(R

d) and f =
∑

λkak is an atomic de-
composition. Then clearly M(f) ≤ ∑ |λk|M(ak), and thus it suffices to
prove (42) when f is an atom a.

In fact, note that with ar defined as ar(x) = rda(rx), r > 0, we have
(ar ∗ Φε)(x) = rd(a ∗ Φεr)(rx), and hence M(ar)(x) = rdM(a)(rx). Also
the mapping a 	→ M(a) clearly commutes with translations. Therefore
in proving (42) we may assume that the atom a is associated to the unit
ball (centered at the origin).
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Now we consider two cases; when |x| ≤ 2 and when |x| > 2. In the
first case clearly M(a)(x) ≤ c and hence

∫
|x|≤2

M(a)(x) dx ≤ c′. In the
second case, we write

(a ∗ Φε)(x) = ε−d

∫
Rd

a(y)Φ
(x − y

ε

)
dy

= ε−d

∫
Rd

a(y)
[
Φ

(x − y

ε

)
− Φ

(x

ε

)]
dy,

since
∫

a(y) dy = 0. However since |x| ≥ 2 and |y| ≤ 1, we have that |x −
y| ≥ |x|/2. Moreover since Φ ∈ C1 we have that

∣∣Φ (
x−y

ε

)− Φ
(

x
ε

)∣∣ ≤
c|y|/ε ≤ c/ε. In addition the fact that Φ has compact support implies
that (a ∗ Φε)(x) vanishes unless

∣∣x−y
ε

∣∣ ≤ A for some bound A, which in
turn means that ε > |x|/(2A). Altogether then

ε−d
∣∣∣Φ(x − y

ε

)
− Φ

(x

ε

)∣∣∣ ≤ cε−d−1 ≤ c′|x|−d−1

for those x. As a result
∫
|x|>2

M(a)(x) dx ≤ c. Therefore (42) is estab-
lished and the theorem is proved.

6.1 The space BMO

In the same sense that the real Hardy space H1
r(R

d) is a substitute for
L1(Rd), the space BMO(Rd) is the corresponding natural substitute for
the space L∞(Rd).

A locally integrable function f on Rd is said to be of bounded mean
oscillation (abbreviated by BMO) if

(43) sup
1

m(B)

∫
B

|f(x) − fB| dx < ∞,

where the supremum is taken over all balls B. Here fB denotes the
mean-value of f over B, namely

fB =
1

m(B)

∫
B

f(x) dx.

The quantity (43) is taken as the norm in the space BMO, and is denoted
by ‖f‖BMO.

We first make some observations about the space of BMO functions.

• The null elements of the norm are the constant functions. Thus,
strictly speaking, elements of BMO should be thought of as equiv-
alence classes of functions, modulo constants.
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• Note that if (43) holds with possibly different constants cB instead
of fB, then f would still be in BMO. Indeed, if for all B

1
m(B)

∫
B

|f(x) − cB| dx ≤ A

then necessarily |fB − cB| ≤ A and hence ‖f‖BMO ≤ 2A. It is also
easy to verify that one would obtain the same space, (with an
equivalence of norms), if the balls appearing in (43), were replaced
by, say, the family of all cubes.

• If f ∈ L∞ then it is obvious that f is in BMO. A more typical
example of a BMO function is f(x) = log |x|. Like the general
BMO function it has the property that it belongs (locally) to every
Lq space, with q < ∞. It also exemplifies a property shared by
BMO and the L∞ space: whenever f(x) belongs to one of these
spaces, then so does the scaled function f(rx), r > 0, with the
norm remaining unchanged. (For more about the above remarks,
see Exercise 23, and Problems 3 and 4.)

• The space of real-valued BMO functions forms a lattice, that is, if
f and g belong to BMO then so do min(f, g) and max(f, g). This is
because |f | is in BMO whenever f is, which in turn follows from the
fact ||f | − |f |B| ≤ |f − fB|. However, if f ∈ BMO and |g| ≤ |f |, it
is not necessarily true that g belongs to BMO.

• From the above, we also deduce that if f ∈ BMO is real-valued, and
f (k) is the truncation of f defined by f (k)(x) = f(x), if |f(x)| ≤
k; f (k)(x) = k if f(x) > k; and f (k)(x) = −k, if f(x) < −k, then
{f (k)} is a sequence of bounded BMO functions so that |f (k)| ≤ |f |
for all k, f (k) → f for a.e x as k → ∞, and hence ‖f (k)‖BMO →
‖f‖BMO as k → ∞.

If f is complex-valued, one may apply this to both the real and
imaginary parts of f .

Our focus now will be on the key fact that BMO is the dual space of
the Hardy space H1

r. This assertion means that every continuous linear
functional � on H1

r can be realized as

(44) �(f) =
∫

Rd

f(x)g(x) dx, f ∈ H1
r,

for some element g in BMO, when (44) is suitably defined. In fact, a little
care must be exercised when dealing with the pairing (44): for general
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f ∈ H1
r, and g ∈ BMO, the integral need not converge. See Exercise 24.

Thus we proceed indirectly, defining � first on a dense subspace of H1
r.

This will be H1
0 , the subspace of finite linear combinations of atoms.

Note that every element of H1
0 is itself a multiple of an atom. Also, if

f ∈ H1
0 the integral converges, and the ambiguity of the BMO element

g (that is, the additive constant) disappears because
∫

f dx = 0.

Our basic result then states:

Theorem 6.2 Suppose g ∈ BMO. Then the linear functional � defined
by (44), initially considered for f ∈ H1

0 , has a unique extension to H1
r

that satisfies

‖�‖ ≤ c‖g‖BMO.

Conversely, every bounded linear functional � on H1
r can be written as (44)

with g ∈ BMO and

‖g‖BMO ≤ c′‖�‖.

Here ‖�‖ stands for ‖�‖(H1
r)∗ , the norm of � as a linear functional on H1

r.

Proof. Let us first assume that g ∈ BMO is bounded. Start with a
general f ∈ H1

r, and let f =
∑∞

k=1 λkak be an atomic decomposition.
Then by the convergence of the sum in the L1 norm we get �(f) =∑

λk

∫
akg. But∫

ak(x)g(x) dx =
∫

ak(x)[g(x) − gBk
] dx,

where ak is supported in the ball Bk. However |ak(x)| ≤ 1
m(Bk) and thus

|�(f)| ≤
∑

k

|λk| 1
m(Bk)

∫
Bk

|g(x) − gBk
| dx.

Therefore considering all possible decompositions of f then gives∣∣∣∣∫ f(x)g(x) dx

∣∣∣∣ ≤ ‖f‖H1
r
‖g‖BMO,

under the assumption that g is bounded. Next, if we restrict ourselves to
f ∈ H1

0 (in particular to f that are bounded) with a general g in BMO,
and let g(k) be the truncation of g (as defined above), then the fact that∣∣∣∣∫ f(x)g(k)(x) dx

∣∣∣∣ ≤ ‖f‖H1
r
‖g(k)‖BMO
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just proved, together with a passage to the limit as k → ∞ using the
dominated convergence theorem, shows that

|�(f)| =
∣∣∣∣∫ f(x)g(x) dx

∣∣∣∣ ≤ c‖f‖H1
r
‖g‖BMO,

whenever f ∈ H1
0 and g ∈ BMO. Thus the direct conclusion of the the-

orem is established.
To prove the converse we will test the given linear functional � on

atoms, and here it will be convenient to test � on p-atoms, with p = 2.
For this purpose fix a ball B and consider the L2 space on B with

norm

‖f‖L2
B

=
(∫

B

|f(x)|2 dx

)1/2

,

and let L2
B,0 denote the subspace of those f ∈ L2

B for which
∫

f(x) dx =
0. Note that the ball ‖f‖L2

B,0
≤ m(B)−1/2 of L2

B,0 consists of exactly the
2-atoms associated to B.

Let us assume our linear functional � has been normalized so that its
norm is less than or equal to 1. Then restricting ourselves to f ∈ L2

B,0

we see that |�(f)| ≤ ‖f‖H1
r
≤ cm(B)1/2‖f‖L2

B,0
, the last inequality be-

ing a consequence of (38) in Corollary 5.3. Thus by the Riesz rep-
resentation theorem for L2

B,0 (or as a simple consequence of the self-
duality of L2 spaces) there is a gB ∈ L2

B,0, so that �(f) =
∫

fgB dx, for
f ∈ L2

B,0. We also have that ‖gB‖L2
B,0

≤ cm(B)1/2, because ‖�‖L2
B,0

≤
cm(B)1/2, as we have seen above. Hence for each ball B we have
a function gB defined on B. What we want is a single function g
so that for each B, g and gB differ by a constant on B. To con-
struct this g note that if B1 ⊂ B2 then gB1 − gB2 is a constant on B1,
since both gB1 and gB2 give the same linear functional on L2

B1,0. Now
replace each gB by g̃B = gB + cB, where the constant cB is so cho-
sen that

∫
|x|≤1

g̃B dx = 0. As a result g̃B1 = g̃B2 , on B1 if B1 ⊂ B2.
Therefore we can unambiguously define g on Rd by taking g(x) = g̃B(x),
for x ∈ B and B any ball. Now observe that 1

m(B)

∫
B
|g(x) − cB| dx ≤

m(B)−1/2‖g̃B − cB‖L2
B
≤ m(B)−1/2‖gB‖L2

B,0
≤ c. Therefore g ∈ BMO,

with ‖g‖BMO ≤ c. Since the representation has been established for
f ∈ L2

B,0 and all B, it holds for the dense subspace H1
0 . The proof of the

theorem is therefore concluded.
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7 Exercises

1. Show that an inequality

‖{an}‖Lq ≤ A‖f‖Lp , for all f ∈ Lp,

with an = 1
2π

R 2π

0
f(θ)e−inθ dθ, is possible only if 1/p + 1/q ≤ 1.

[Hint: Let DN (θ) =
P

|n|≤N einθ be the Dirichlet kernel. Then ‖DN‖Lp ≈ N1−1/p

as N → ∞, if p > 1 and ‖DN‖L1 ≈ log N .]

2. The following are simple generalizations of the Hausdorff-Young inequalities.

(a) Suppose {ϕn} is an orthonormal sequence on L2(X, µ). Assume also that
|ϕn(x)| ≤ M for all n. If an =

R

fϕn dµ, then ‖an‖Lq ≤ M (2/p)−1‖f‖Lp(X),
1 ≤ p ≤ 2, 1/p + 1/q = 1.

(b) Suppose f ∈ Lp on the torus Td, and an =
R

Td f(x)e−2πin·x dx, n ∈ Zd.
Then ‖{an}‖Lq(Zd) ≤ ‖f‖Lp(Td), where 1/q ≤ 1 − 1/p.

3. Check that an inequality of the form ‖f̂‖Lq(Rd) ≤ A‖f‖Lp(Rd) (holding for all
simple functions f) is possible if and only if 1/p + 1/q = 1.

[Hint: Let fr(x) = f(rx), r > 0. Then f̂r(ξ) = f̂(ξ/r)r−d.]

4. Prove that another necessary condition for the inequality in the previous exer-
cise is that p ≤ 2. In fact the estimate

Z

|ξ|≤1

|f̂(ξ)| dξ ≤ A‖f‖Lp

can hold only if p ≤ 2.

[Hint: Let fs(x) = s−d/2e−π|x|2/s, s = σ + it, σ > 0. Then (cfs)(ξ) = e−πs|ξ|2 .
Note that ‖fs‖Lp ≤ ctd(1/p−1/2) when σ = 1, and let t → ∞.]

5. Let ψ be the conformal map of the strip 0 < Re(z) < 1 to the upper half-plane
defined by ψ(z) = eiπz. Check that Φ(z) = e−iψ(z) is continuous on the closure of
the strip, |Φ(z)| = 1 on the boundary lines, but Φ(z) is unbounded in the strip.

6. Extend the Riesz convexity theorem (in Section 2) to the Lp,r spaces discussed
in Exercise 18 of Chapter 1. We assume T is a linear transformation from simple
functions to locally integrable functions. Suppose

‖T (f)‖Lq0,s0 ≤ M0‖f‖Lp0,r0 , and ‖T (f)‖Lq1,s1 ≤ M1‖f‖Lp1,r1

for all simple f . Prove that as a consequence ‖T (f)‖Lq,s ≤ Mθ‖f‖Lp,r where
1
p

= 1−θ
p0

+ θ
p1

, 1
r

= 1−θ
r0

+ θ
r1

, 1
q

= 1−θ
q0

+ θ
q1

, 1
s

= 1−θ
s0

+ θ
s1

, and 0 ≤ θ ≤ 1.
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[Hint: Suppose f and g are a pair of simple functions with ‖f‖Lp,r ≤ 1 and
‖f‖Lq′,s′ ≤ 1. Define

fz = |f(x, t)|pα(z) f(x, t)

|f(x, t)| ‖f(·, t)‖rβ(z)−pα(z)

Lp(dx) ,

where α(z) = 1−z
p0

+ z
p1

, β(z) = 1−z
r0

+ z
r1

. Note that when z = θ, then fz = f .
Also

‖f1+it‖Lp1,r1 ≤ 1 and ‖f0+it‖Lp0,r0 ≤ 1.

Make an analogous definition for gz and consider
R

T (fz)gz dxdt.]

7. Suppose f is a bounded function on R with compact support. Then H(f) ∈
L1(R) if and only if

R

f dx = 0.

[Hint: If a =
R

f dx, then H(f)(x) = a
πx

+ O(1/x2) as |x| → ∞.]

8. Suppose T is a bounded linear transformation mapping the space of real-valued
Lp functions into itself with

‖T (f)‖Lp ≤ M‖f‖Lp .

(a) Let T ′ be the extension of T to complex-valued functions: T ′(f1 + if2) =
T (f1) + iT (f2). Then T ′ has the same bound: ‖T ′(f)‖Lp ≤ M‖f‖Lp .

(b) More generally, fix any N , then

‖(
N
X

j=1

|T (fj)|2)1/2‖Lp ≤ M‖(
N
X

j=1

|fj |2)1/2‖Lp .

[Hint: For part (b), let ξ denote a unit vector in RN , and let Fξ =
PN

j=1 ξjfj ,

ξ = (ξ1, . . . , ξN ). Then
R |(TFξ)(x)|p ≤ Mp

R |Fξ(x)|p. Integrate this inequality
for ξ on the unit sphere.]

9. Show the identity of the following two classes of harmonic functions u in the
upper half-plane R2

+ = {z : x + iy, y > 0}.

(a) The harmonic functions u that are continuous in the closure R2
+, and that

vanish at infinity (that is, u(x, y) → 0, if |x| + y → ∞).

(b) The functions representable as u(x, y) = (f ∗ Py)(x), where Py(x) is the
Poisson kernel 1

π
y

x2+y2 , and f is a continuous function on R that vanishes

at infinity (that is, f(x) → 0, as |x| → ∞).

[Hint: To show that (a) implies (b), let f(x) = u(x, 0). Then D(x, y) = u(x, y) −
(f ∗ Py)(x) is harmonic in R2

+, continuous on R2
+, vanishes at infinity, and moreover

D(x, 0) = 0. Thus by the maximum principle, D(x, y) = 0.]

10. Suppose f ∈ Lp(R). Verify that:
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(a) ‖f ∗ Py‖Lp(R) ≤ ‖f‖Lp , 1 ≤ p ≤ ∞.

(b) f ∗ Py → f , as y → 0, in the Lp norm, when 1 ≤ p < ∞.

11. Assume f ∈ Lp(R), 1 < p < ∞. Prove that:

(a) f ∗ Qy = H(f) ∗ Py, where H, Py and Qy are respectively the Hilbert trans-
form, the Poisson kernel and the conjugate Poisson kernel.

(b) f ∗ Qy → H(f) in the Lp norm, as y → 0.

(c) Hε(f) → H(f) in the Lp norm, as ε → 0.

[Hint: Verify (a) first for f ∈ L2 by noting that the Fourier transform of both sides

equals f̂(ξ) sign(ξ)
ξ

e−2π|ξ|y.]

12. In Rd, suppose f(x) = |x|−d(log 1/|x|)−1−δ if |x| ≤ 1/2, f(x) = 0 otherwise.
Then observe that f∗(x) ≥ c|x|−d(log 1/|x|)−δ, if |x| ≤ 1/2. Hence if 0 < δ ≤ 1, we
have f ∈ L1(Rd) but f∗(x) is not integrable over the unit ball.

13. Prove that the basic distribution function inequality (28) for the maximal
function can essentially be reversed, that is, there is a constant A so that

m({x : f∗(x) > α}) ≥ (A/α)

Z

|f(x)|>α

|f(x)| dx.

[Hint: Write Eα = {x : f∗(x) > α} as
S∞

j=1 Qj , with Qj closed cubes satisfy-
ing (37), with Ω = Eα. For each Qj let Bj be the smallest ball so that Qj ⊂ Bj ,
and Bj intersects Ec

α. First m(Bj) ≤ cm(Qj), then 1
m(Bj)

R

Bj
|f | dx ≤ α. Thus

m(Qj) ≥ c−1

α

R

Bj
|f(x)| dx ≥ c−1

α

R

Qj
|f(x)| dx. Now add in j, and use the fact

that {x : |f(x)| > α} ⊂ {x : f∗(x) > α}.]

14. Deduce the following important consequence from (28) and the previous ex-
ercise. Suppose f is an integrable function on Rd, and B1, B2 are a pair of balls
with B1 ⊂ B2.

(a) f∗ is integrable on B1 if |f | log(1 + |f |) is integrable on B2.

(b) In the converse direction, whenever f∗ is integrable on B1 then |f | log(1 +
|f |) is also integrable there.

[Hint: Integrate the inequalities in α, for α ≥ 1.]

15. Consider the weak-type space, consisting of all functions f for which m({x :
|f(x)| > α}) ≤ A

α
for some A and all α > 0. One might hope to define a norm

on this space by taking the “norm” of f to be the least A for which the above
inequality holds. Denote this quantity by N (f).
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(a) Show, however, that N is not a genuine norm; moreover there is no norm
‖ · ‖ on this space so that ‖f‖ is equivalent with N (f).

(b) Prove also that this space has no non-trivial bounded linear functionals.

[Hint: Consider R. The function f(x) = 1/|x| has N (f) = 2. But if fN (x) =
1
N

[f(x + 1) + f(x + 2) + · · · + f(x + N)], then N (fN ) ≥ c log N .]

16. Prove that the space H1
r is complete as follows. Let {fn} be a Cauchy sequence

in H1
r. Then since {fn} is also Cauchy in L1, there is an L1 function f so that

f = limn→∞ fn in the L1 norm. Now for an appropriate sub-sequence {nk}, write
f = fn1 +

P∞
k=1(fnk+1 − fnk).

17. Consider the function f defined by f(x) = 1/(x(log x)2) for 0 < x ≤ 1/2 and
f(x) = 0 if x > 1/2, and extended to x < 0 by f(x) = −f(−x). Then f is inte-
grable on R, with

R

f = 0, hence f is a multiple of a 1-atom in the terminology of
Section 5.2.

Verify that M(f) ≥ c/(|x| log |x|) for |x| ≤ 1/2, hence M(f) /∈ L1, thus by The-
orem 6.1 we know that f /∈ H1

r.

18. Show that there exists a c > 1 so that every f ∈ L1(Rd) can be written as
f(x) =

P∞
k=1 λkak(x), with

P |λk| ≤ c‖f‖L1 , where the ak are “faux” atoms: each
ak is supported in a ball Bk; |ak(x)| ≤ 1/m(Bk) for all x; but ak does not necessarily
satisfy the cancelation condition

R

ak(x) dx = 0.

[Hint: Let fn = En(f), where En replaces f by its average over each dyadic cube of
the nth-generation. Then ‖fn − f‖L1 → 0. Pick {nk} so that ‖fnk+1 − fnk‖L1 <

1/2k, and write f = fn1 +
P∞

k=1(fnk+1 − fnk).]

19. The following illustrates two senses in which H1
r is near L1, but yet different.

(a) Suppose f0(x) is a positive decreasing function on (0,∞) that is integrable
on (0,∞). Then show that there is a function f ∈ H1

r(R) so that |f(x)| ≥
f0(|x|).

(b) However if f ∈ H1
r(R

d), and f is positive on an open set, then its size must
be “smaller” on that open set than a general integrable function. In fact,
prove that if f ∈ H1

r, and f ≥ 0 in a ball B1, then f log(1 + f) must be
integrable over any proper sub-ball B0 ⊂ B1.

[Hint: For (a) take f(x) = sign(x)f0(|x|), and find an atomic decomposition for f .
For (b) use Exercise 14, together with the maximal theorem in Section 6, with Φ
positive.]

20. When f ∈ L1(Rd) we know that its Fourier transform f̂ is bounded and f̂(ξ)
tends to 0 as |ξ| → ∞ (the Riemann-Lebesgue lemma), but no better assertion
about the “smallness” of f̂ can be made. (For the analogous result for Fourier
series, see Chapter 3 in Book III.) Show, however, that for f ∈ H1

r we have

Z

Rd

|f̂(ξ)| dξ

|ξ|d ≤ A‖f‖H1
r
.
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[Hint: Verify this for atoms.]

21. Prove that if |f(x)| ≤ A(1 + |x|)−d−1, and
R

Rd f(x) dx = 0, then f ∈ H1
r(R

d).

[Hint: While this is elementary, it is a little tricky. Write f =
P∞

k=0 fk, where
f0(x) = f(x) if |x| ≤ 1, 0 elsewhere, and fk(x) = f(x) if 2k−1 < |x| ≤ 2k and 0
elsewhere, and k ≥ 1. Let ck =

R

fk dx, sk =
P

j≥k cj , then s0 = 0. Fix a bounded

function η supported in |x| ≤ 1, with
R

η(x) dx = 1. Now write f(x) =
P∞

k=0(fk −
ckηk) +

P∞
k=0 ckηk, where ηk(x) = 2−kdη(2−kx) and

R

ηk = 1. The first sum is
clearly a sum of multiples of atoms (which are O(2−k)) supported on the balls |x| ≤
2k. That the second sum is similar can be seen by rewriting it as

P∞
k=1 sk(ηk −

ηk−1).]

22. Let f be the atom on R supported in |x| ≤ 1/2 given by f(x) = sign(x). Apply
to f the maximal function f∗

0 defined by

f∗
0 (x) = sup

ε>0
|(f ∗ χε)(x)|,

where χ is the characteristic function of |x| ≤ 1/2 and χε(x) = ε−1χ(x/ε).
Verify that |f∗

0 (x)| ≥ 1/(2|x|) if |x| ≥ 1/2 hence f∗
0 /∈ L1. Thus the maximal

function f∗
0 , defined in terms of χ, cannot be used to characterize the real Hardy

space H1
r.

23. Verify the following examples related to BMO:

(a) log |x| ∈ BMO(Rd).

(b) If f(x) = log x, when x > 0, and = 0 when x ≤ 0, then f /∈ BMO(R).

(c) If δ ≥ 0, (log |x|)δ ∈ BMO(Rd) if and only if δ ≤ 1.

[Hint: With f(x) = log |x|, note that f(rx) = f(x) + cr and so we may assume the
ball B has radius 1 in testing the condition (43). For (b), test f on small intervals
centered at the origin.]

24. Using Exercises 19 (a) and 23, give examples of f ∈ H1
r and g ∈ BMO so that

|f(x)g(x)| is not integrable over Rd.

8 Problems

1. Another way H1
r is an improvement over L1 is in its weak compactness of

the unit ball. The following can be proved. Suppose {fn} is a sequence in H1
r

with ‖fn‖H1
r
≤ A. Then we can select a subsequence {fnk} and find an f ∈ H1

r so

that
R

fnk(x)ϕ(x) dx → R

f(x)ϕ(x) dx, as k → ∞, for every ϕ that is a continuous
function of compact support.

This is to be compared with L1, and the failure there of weak compactness as
described in Exercises 12 and 13 in the previous chapter.



8. Problems 95

[Hint: Apply the result in Problem 4 (c) of the previous chapter to obtain a
subsequence {fnk} and a finite measure µ so that fnk → µ in the weak∗ sense.
Next use the fact that if supε>0 |µ ∗ ϕε| ∈ L1, for an appropriate ϕ, then µ is
absolutely continuous.]

2. Suppose Hp is the complex Hardy space defined in Section 5. For 1 < p < ∞,
prove the following:

(a) If F ∈ Hp, then limy→0 F (x + iy) = F0(x) exists in the Lp(R) norm.

(b) ‖F‖Hp = ‖F0‖Lp .

(c) One has 2F0 = f + iH(f), with f real-valued in Lp(R), and ‖F0‖Lp ≈ ‖f‖Lp .
Moreover, every F0 (and thus F ) arises this way. This gives a linear isomor-
phism (over the reals) of Hp, with Lp with an equivalence of norms.

[Hint: Here is an outline of the proof. For each y1 > 0, write Fy1(z) = F (z +

iy1) and F ε
y1(z) = Fy1(z)/(1 − iεz), ε > 0. One has that Fy1 is bounded R2

+ (see
Section 2, in Chapter 5, Book III). Thus by Exercise 9, F ε

y1(z) = (F ε
y1 ∗ Py)(x).

Now using the weak compactness of the unit ball in Lp, (Exercise 12 in Chapter 1),
we can find F0 ∈ Lp so that F ε

y1(x) → F0(x) weakly as ε and y1 → 0. Observe that
this breaks down for p = 1. Conclusion (c) is then essentially a restatement of the
boundedness of the Hilbert transform for 1 < p < ∞.]

3. Let P be any non-zero polynomial of degree k in Rd. Then f = log |P (x)| is in
BMO and ‖f‖BMO ≤ ck, where ck depends only on the degree k of the polynomial.

[Hint: Verify the result first when d = 1. Then use induction in the dimension and
the following assertion, stated for R2. Suppose f(x, y), (x, y) ∈ R2 is for each y a
BMO(R) function in x, uniformly in y. Assume also that this holds when the roles
of x and y are interchanged. Then f ∈ BMO(R2).]

4. Prove the following John-Nirenberg inequalities for every f ∈ BMO(Rd):

(a) For every q < ∞ there is a bound bq so that

sup
B

1

m(B)

Z

B

|f − fB |q dx ≤ bq
q‖f‖q

BMO.

(b) There are positive constants µ and A, so that

sup
B

1

m(B)

Z

B

eµ|f−fB | dx ≤ A, whenever ‖f‖BMO ≤ 1.

[Hint: For (a) test f against p-atoms, where p is dual to q. For (b) use the bound
cp = O(1/(p − 1)) as p → 1 (in (38)) to obtain bq = O(q), as q → ∞. Then write
eu =

P∞
q=0 uq/q!.]

5. The Hilbert transform of a bounded function is in BMO. Show this in two
different ways.
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(a) Directly: Suppose f is bounded (and belongs to some Lp, 1 ≤ p < ∞). Then
H(f) ∈ BMO with

‖H(f)‖BMO ≤ A‖f‖L∞ ,

with A not depending on the Lp norm of f .

(b) By duality, using Theorem 5.4.

[Hint: For (a), fix any ball B, and let B1 be its double. Consider separately, fχB1

and fχBc
1
.]

6.∗ The following is the maximal characterization of H1
r(R

d). Suppose Φ belongs
to the Schwartz space S and

R

Φ(x) dx �= 0. Let M(f)(x) = supε>0 |(f ∗ Φε)(x)|,
for f ∈ L1. Then

(a) f is in H1
r if and only if M(f) belongs to L1.

(b) The condition Φ ∈ S can be relaxed to require only

|∂α
x Φ(x)| ≤ cα(1 + |x|)−d−1−|α|.

(c) Note two interesting examples, first Φt1/2(x) = (4πt)−d/2e−|x|2/(4t): then
u(x, t) = (f ∗ Φt1/2)(x) is the solution of the Heat equation �xu = ∂tu, with

initial data u(x, 0) = f(x). Also, Φt(x) = cdt

(t2+|x|2)
d+1
2

with cd = Γ( d+1
2

)/π
d+1
2

so that u(x, t) = (f ∗ Φt)(x) is the solution to Laplace’s equation �xu +
∂2

t u = 0, with initial data u(x, 0) = f(x). (Here Γ denotes the gamma func-
tion.)

7.∗ Hp, when p = 1. The results in (a) and (b) of Problem 2 also hold for p = 1,
but require a different proof. The analog of (c) is as follows. One has 2F0 =
f + iH(f), where f belongs to the real Hardy space H1

r. Also ‖F0‖L1 ≈ ‖f‖H1
r
.

As a consequence, a necessary and sufficient condition that f ∈ H1
r is that both f

and H(f) are in L1.
The conclusions (a) and (b) may be proved by showing that any F ∈ H1 can

be written as F = F1 · F2 with Fj ∈ H2 and ‖Fj‖2
H2 = ‖F‖H1 , and then using the

corresponding results in H2.

8.∗ Suppose f ∈ L1(R). Then we can define H(f) ∈ L1(R) in the weak sense to
mean that there exists g ∈ L1(R) so that

Z

R

gϕ dx =

Z

R

fH(ϕ) dx, for all functions ϕ in the Schwartz space.

Then we say g = H(f) in the weak sense.
As a consequence of Problem 7∗, one has that f ∈ H1

r(R) if and only if f ∈ L1(R)
and H(f), taken in the weak sense, also belongs to L1(R).

9.∗ Let {fn} be a sequence of elements in H1
r so that ‖fn‖H1

r
≤ M < ∞ for all n.

Assume that fn converges to f almost everywhere. Then:
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(a) f ∈ H1
r.

(b)
R

fng → R

fg, as n → ∞, for all g continuous with compact support.

A corresponding result holds for Lp, p > 1, but fails for p = 1. See Exercise 14 in
Chapter 1.

10.∗ The following result illustrates the application of H1
r to the theory of com-

pensated compactness.
Suppose A = (A1, . . . , Ad) and B = (B1, . . . , Bd) are vector fields in Rd with

Ai, Bi ∈ L2(Rd) for all i. The divergence of A is defined by

div(A) =
d
X

k=1

∂Ak

∂xk

,

and the curl of B is the d × d matrix whose ij-entry is

(curl(B))ij =
∂Bi

∂xj
− ∂Bj

∂xi
.

(The derivatives here are taken in the sense of distributions, as in the next chapter.)

If div(A) = 0 and curl(B) = 0 then
Pd

k=1 AkBk ∈ H1
r.

This is in contrast with the result that in general, if f, g ∈ L2, then one only has
fg ∈ L1.



3 Distributions: Generalized
Functions

The heart of analysis is the concept of function, and
functions “belong” to analysis, even if, nowadays, they
occur everywhere and anywhere, in and out of math-
ematics, in thought, cognition, even perception.

Functions came into being in “modern” mathe-
matics, that is, in mathematics since the Renaissance.
By a rough division into centuries, the 17th and 18th
centuries made preparations, the 19th century created
functions of one variable, real and complex, and the
20th century has turned to functions in several vari-
ables, real and complex.

S. Bochner, 1969

... It was not accidental that the notion of function
generally accepted now was first formulated in the cel-
ebrated memoir of Dirichlet (1837) dealing with the
convergence of Fourier series; or that the definition
of Riemann’s integral in its general form appeared in
Riemann’s Habilitationsschrift devoted to trigonomet-
ric series; or that the theory of sets, one of the most
important developments of nineteenth-century mathe-
matics, was created by Cantor in his attempts to solve
the problem of the sets of uniqueness for trigonometric
series. In more recent times, the integral of Lebesgue
was developed in close connection with the theory of
Fourier series, and the theory of generalized functions
(distributions) with that of Fourier integrals.

A. Zygmund, 1959

The growth of analysis can be traced by the evolution of the idea
of what a function is. The formulation of the notion of “generalized
functions” (or “distributions” as they are commonly called) represents a
significant stage in that development with ramifications in many different
areas. Looking back, one can see that this concept had many antecedents.
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Among these were: Riemann’s formal integration and differentiation of
trigonometric series in his study of uniqueness; the necessity of using
weak solutions in the theory of partial differential equations; and the
possibility of realizing a function (say in Lp) as a linear functional on an
appropriate dual space. The importance of distributions derives from the
ease with which this tool permits us to carry out formal manipulations,
finessing numerous technical issues. While as such it is not a panacea, it
allows us, in many instances, to arrive more quickly at the heart of the
matter.

We divide our treatment of distributions in two parts. First, we set
down the basic properties of general distributions and the rules of their
manipulation. Thus we see that an ordinary function has derivatives of
all orders in the sense of distributions. Also in that sense, any function
that does not increase too fast at infinity has a Fourier transform.

Next, we study specific distributions of particular importance, begin-
ning with the principal-value distribution defining the Hilbert transform,
and more general homogeneous distributions. We also consider distribu-
tions that arise as fundamental solutions of partial differential equations.
Finally, we take up the Calderón-Zygmund distributions that occur as
kernels of singular integrals generalizing the Hilbert transform, and for
these we obtain basic Lp estimates.

1 Elementary properties

Classically a function f (defined on Rd) assigns a definite value f(x)
for each x ∈ Rd. For many purposes, it is often convenient to relax this
requirement by allowing f to remain undefined at certain “exceptional”
points x. This is particularly so when dealing with integration and mea-
sure theory. Thus in that context a function can be unspecified on a set
of measure zero.1

In contrast to this, a distribution or generalized function F will
not be given by assigning values of F at “most” points, but will instead
be determined by its averages taken with respect to (smooth) functions.
Thus if we are to think of a function f as a distribution F , we determine
F by the quantities

(1) F (ϕ) =
∫

Rd

f(x)ϕ(x) dx,

where the ϕ’s range over an appropriate space of “test” functions. There-
fore, in keeping with (1), our starting point in defining a distribution F

1More precisely, a function is then really an equivalence class of functions that agree
almost everywhere.
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will be to think of F as a linear functional on a suitable space of these
test functions.

Actually, there will be two classes of distributions (each with its space
of test functions) that we will consider: the broader class, which we deal
with first, and which can be defined on any open set Ω of Rd; also later,
a narrower class of distributions defined on Rd, those which are suitably
“tempered” at infinity, and that arise naturally in the context of Fourier
transforms.

1.1 Definitions

We fix an open set Ω in Rd. The test functions for the larger class of
distributions will be the functions that belong to C∞

0 (Ω), the complex-
valued indefinitely differentiable functions of compact support in Ω. In
keeping with a common notation used in this context we denote this
space of test functions as D (or more explicitly as D(Ω)). Now if {ϕn} is a
sequence of elements in D, and also ϕ ∈ D, we say that {ϕn} converges to
ϕ in D, and write ϕn → ϕ in D, if the supports of the ϕn are contained in
a common compact set and for each multi-index α, one has ∂α

x ϕn → ∂α
x ϕ

uniformly in x as n → ∞.2 With this in mind we come to our basic
definition. A distribution F on Ω is a complex-valued linear functional
ϕ 	→ F (ϕ), defined for ϕ ∈ D(Ω), that is continuous in the sense that
F (ϕn) → F (ϕ) whenever ϕn → ϕ in D. The vector space of distributions
on Ω is denoted by D∗(Ω).

In what follows we shall tend to reserve the upper case letters F ,
G, . . . for distributions, and the lower case letters f , g, . . . for ordinary
functions. First, we look at a few quick examples of distributions.

Example 1. Ordinary functions. Let f be any locally integrable func-
tion on Ω.3 Then f defines a distribution F = Ff , according to the
formula (1). Distributions arising this way are of course referred to as
“functions.”

Example 2. Let µ be a (signed) Borel measure on Ω which is finite on
compact subsets of Ω (sometimes called a Radon measure). Then

F (ϕ) =
∫

ϕ(x) dµ(x)

2We recall the notation: ∂α
x = (∂/∂x)α = (∂/∂x1)α1 · · · (∂/∂xd)αd , |α| = α1 + · · · +

αd, and α! = α1 · · ·αd, where α = (α1, . . . , αd).
3By this we mean that f is measurable and Lebesgue integrable over any compact

subset of Ω. (Compare this definition with the one in Chapter 3 of Book III, where it has
a slightly different meaning.)
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is a distribution which, in general, is not a function as above. The special
case, when µ is the point-mass which assigns total mass of 1 to the origin,
gives the Dirac delta function δ, that is, δ(ϕ) = ϕ(0). (Note, however,
that δ is not a function!)

Further examples arise from the above by differentiation. In fact, a
key feature of distributions is that, as opposed to ordinary functions,
these can be differentiated any number of times. The derivative ∂α

x F
of a distribution generalizes that of a differentiable function. Indeed,
whenever f is a smooth function on Ω and (say) ϕ ∈ D(Ω), then an
integration by parts yields∫

(∂α
x f) ϕ dx = (−1)|α|

∫
f (∂α

x ϕ) dx.

Hence in keeping with (1) we define ∂α
x F as the distribution given by

(∂α
x F )(ϕ) = (−1)|α|F (∂α

x ϕ) , whenever ϕ ∈ D(Ω).

Thus in particular, if f is a locally integrable function, we can define its
partial derivatives as distributions. A few examples may be useful here.

• Suppose h is the Heaviside function on R, that is, h(x) = 1 for x >
0, and h(x) = 0, for x < 0. Then dh/dx, taken in the sense of distri-
butions equals the Dirac delta δ. This is because − ∫ ∞

0
ϕ′(x) dx =

ϕ(0), whenever ϕ ∈ D(R). Note however that the usual derivative
of h is zero when x �= 0, and is undefined at x = 0. So we must be
careful to distinguish the distribution derivative of a function, from
its usual derivative (when it exists), if the function is not smooth.
(See also Exercises 1 and 2.)

A higher dimensional variant of the Heaviside function is given in
Exercise 15.

• Suppose the function f is of class Ck on Ω, that is, all the partial
derivatives ∂α

x f with |α| ≤ k, taken in the usual sense, are continu-
ous on Ω. Then these derivatives of f agree with the corresponding
derivatives taken in the sense of distributions.

• More generally, suppose f and g are a pair of functions in L2(Ω)
and ∂α

x f = g in the “weak sense” as discussed in Section 3.1 of
Chapter 1, or in Section 3.1, Chapter 5 of Book III. If F and G
are the distributions determined by f and g respectively, according
to (1), then ∂α

x F = G.
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1.2 Operations on distributions

As in the case of differentiation, one can carry over various operations on
distributions by transforming the corresponding actions on test functions.
We first give some simple examples.

• Whenever F belongs to D∗ and ψ is a C∞ function, then we can
define the product ψ · F by (ψ · F )(ϕ) = F (ψϕ), for every ϕ ∈ D.
This agrees with the usual pointwise definition of the product when
F is a function.

• For a distribution on Rd the actions of translations, dilations and
more generally non-singular linear transformations can be defined
by the corresponding actions on test functions via “duality.” Thus
for the translation operator τh, defined for functions by τh(f)(x) =
f(x − h), h ∈ Rd, the corresponding definition on distributions is:

τh(F )(ϕ) = F (τ−h(ϕ)), for every test function ϕ.

Similarly, for dilations given on functions f by the simple rela-
tion fa(x) = f(ax), a > 0, one defines Fa by Fa(ϕ) = a−dF (ϕa−1).
More generally, if L is a non-singular linear transformation then
the extension of fL(x) = f(L(x)) to distributions is given by the
rule FL(ϕ) = |detL|−1F (ϕL−1) for every ϕ ∈ D.

It is important that one can also extend the notion of convolution,
defined for appropriate functions on Rd by

(f ∗ g)(x) =
∫

Rd

f(x − y)g(y) dy

to large classes of distributions.
To begin with, suppose that F is a distribution on Rd and ψ a test

function. Then there are two ways that we might define F ∗ ψ (in keeping
with (1) when F is a function). The first is as a function (of x) given by
F (ψ∼

x ), with ψ∼
x (y) = ψ(x − y).

The second is that F ∗ ψ is the distribution determined by

(F ∗ ψ)(ϕ) = F (ψ∼ ∗ ϕ), with ψ∼ = ψ∼
0 .

Proposition 1.1 Suppose F is a distribution and ψ ∈ D. Then

(a) The two definitions of F ∗ ψ given above coincide.

(b) The distribution F ∗ ψ is a C∞ function.
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Proof. Let us observe first that F (ψ∼
x ) is continuous in x and in

fact indefinitely differentiable. Note that if xn → x0 as n → ∞, then
ψ∼

xn
(y) = ψ(xn − y) → ψ(x0 − y) = ψ∼

x0
(y) uniformly in y, and the same

is true for all partial derivatives. Therefore ψ∼
xn

→ ψ∼
x0

in D (as func-
tions of y) as n → ∞, and thus by the assumed continuity of F on D
we have that F (ψ∼

x ) is continuous in x. Similarly, all corresponding dif-
ference quotients converge and the result is that F (ψ∼

x ) is indefinitely
differentiable, with ∂α

x F (ψ∼
x ) = F (∂α

x ψ∼
x ).

It remains to prove conclusion (a), and for this it suffices to show that

(2)
∫

F (ψ∼
x )ϕ(x) dx = F (ψ∼ ∗ ϕ), for each ϕ ∈ D.

However since ψ ∈ D, and of course ϕ is continuous with compact sup-
port, then it is easily seen that

(ψ∼ ∗ ϕ)(x) =
∫

ψ∼(x − y)ϕ(y) dy = lim
ε→0

S(ε)

where S(ε) = εd
∑

n∈Zd ψ∼(x − nε)ϕ(nε). Here the convergence of the
Riemann sums S(ε) to ψ∼ ∗ ϕ is in D. Clearly, S(ε) is finite for each
ε > 0, and thus F (Sε) = εd

∑
n∈Zd F (ψ∼

nε)ϕ(nε). Hence by the continu-
ity of x 	→ F (ψ∼

x ), a passage to the limit ε → 0 yields (2), proving the
proposition.

A simple application of the proposition is the observation that every
distribution F in Rd is the limit of C∞ functions. We say that a sequence
of distributions {Fn} converges to a distribution F in the weak sense
(or in the sense of distributions), if Fn(ϕ) → F (ϕ), for every ϕ ∈ D.

Corollary 1.2 Suppose F is a distribution on Rd. Then there exists a
sequence {fn}, with fn ∈ C∞, and fn → F in the weak sense.

Proof. Let {ψn} be an approximation to the identity constructed as
follows. Fix a ψ ∈ D with

∫
Rd ψ(x) dx = 1 and set ψn(x) = ndψ(nx).

Form Fn = F ∗ ψn. Then by the second conclusion of the proposition,
each Fn is a C∞ function. However by the first conclusion

Fn(ϕ) = F (ψ∼
n ∗ ϕ) for every ϕ ∈ D.

Moreover, as is easily verified, ψ∼
n ∗ ϕ → ϕ in D. Thus Fn(ϕ) → F (ϕ),

for each ϕ ∈ D, and the corollary is established.
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1.3 Supports of distributions

We come next to the notion of the support of a distribution. If f is a con-
tinuous function its support is defined as the closure of the set where
f(x) �= 0. Or put another way, it is the complement of the largest open
set on which f vanishes. For a distribution F we say that F vanishes
in an open set if F (ϕ) = 0, for all test functions ϕ ∈ D which have their
supports in that open set. Thus we define the support of a distribu-
tion F as the complement of the largest open set on which F vanishes.

This definition is unambiguous because if F vanishes on any collection
of open sets {Oi}i∈I , then F vanishes on the union O =

⋃
i∈I Oi. In-

deed suppose ϕ is a test function supported in the compact set K ⊂ O.
Since O covers the compact set K, we may select a sub-cover which (af-
ter possibly relabeling the sets Oi) we can write as K ⊂ ⋃N

k=1 Ok. A
regularization applied to the partition of unity obtained in Section 7 in
Chapter 1 yields smooth functions ηk for 1 ≤ k ≤ N so that 0 ≤ ηk ≤ 1,
supp(ηk) ⊂ Ok, and

∑N
k=1 ηk(x) = 1 whenever x ∈ K. Then F (ϕ) =

F (
∑N

k=1 ϕηk) =
∑N

k=1 F (ϕηk) = 0, since F vanishes on each Ok. Thus
F vanishes on O as claimed.4

Note the following simple facts about the supports of distributions.
The supports of ∂α

x F and ψ · F (with ψ ∈ C∞) are contained in the
support of F . The support of the Dirac delta function (as well as its
derivatives) is the origin. Finally, F (ϕ) = 0 whenever the supports of F
and ϕ are disjoint

We observe next the additivity of the supports under convolution.

Proposition 1.3 Suppose F is a distribution whose support is C1, and
ψ is in D and has support C2. Then the support of F ∗ ψ is contained in
C1 + C2.

Indeed for each x for which F (ψ∼
x ) �= 0, we must have that the support

of F intersects the support of ψ∼
x . Since the support of ψ∼

x is the set x −
C2 this means that the set C1 and x − C2 have a point, say y, in common.
Because x = y + x − y, while y ∈ C1 and x − y ∈ C2 (since y ∈ x − C2)
we have that x ∈ C1 + C2, and thus our assertion is established. Note
that the set C1 + C2 is closed because C1 is closed and C2 is compact.

We can now extend the definition of convolution to a pair of distribu-
tions if one of them has compact support. Indeed, if F and F1 are given
distributions with F1 having compact support, then we define F ∗ F1 as

4One must take care that this notion of support does not coincide with the “sup-
port” defined in Chapter 2 of Book III for an integrable function, when such function is
considered as a distribution. A further clarification is in Exercise 5.
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the distribution (F ∗ F1)(ϕ) = F (F∼
1 ∗ ϕ), where F∼

1 is the reflected dis-
tribution given by F∼

1 (ϕ) = F1(ϕ∼). This extends the definition given
above when F1 = ψ ∈ D. Notice that if C is the support of F1, then
−C is the support of F∼

1 . Therefore by the previous proposition F∼
1 ∗ ϕ

has compact support and is C∞, hence it belongs to D. The fact that
the mapping ϕ 	→ (F ∗ F1)(ϕ) has the required continuity in D is then
straightforward and is left to the reader to verify.

Other properties of convolutions that are direct consequences of the
above reasoning are as follows:

• If F1 and F2 have compact support, then F1 ∗ F2 = F2 ∗ F1. (For
this reason we shall sometimes also write F1 ∗ F for F ∗ F1, when
only F1 has compact support.)

• With δ the Dirac delta function

F ∗ δ = δ ∗ F = F.

• If F1 has compact support, then for every multi-index α

∂α
x (F ∗ F1) = (∂α

x F ) ∗ F1 = F ∗ (∂α
x F1).

• If F and F1 have supports C and C1 respectively, and C is com-
pact, then the support of F ∗ F1 is contained in C + C1. (This fol-
lows from the previous proposition and the approximation stated
in part (b) of Exercise 4.)

1.4 Tempered distributions

There are distributions on Rd that, roughly speaking, are of at most poly-
nomial growth at infinity. The restricted growth of these distributions
is reflected in the space S of its test functions. This space S = S(Rd)
of test functions (the Schwartz space5) consists of indefinitely differ-
entiable functions on Rd that are rapidly decreasing at infinity with all
their derivatives. More precisely, we consider the increasing sequence of
norms ‖ · ‖N , with N ranging over the positive integers, defined by6

‖ϕ‖N = sup
x∈Rd,|α|,|β|≤N

∣∣xβ(∂α
x ϕ)(x)

∣∣ .
5The space S occurred already in Chapters 5 and 6 of Book I.
6We shall use the notation ‖ · ‖N throughout this chapter. This is not to be confused

with the Lp norm, ‖ · ‖Lp .



106 Chapter 3. DISTRIBUTIONS: GENERALIZED FUNCTIONS

We define S to consist of all smooth functions ϕ such that ‖ϕ‖N < ∞ for
every N . Moreover, one says that ϕk → ϕ in S, whenever ‖ϕk − ϕ‖N →
0, as k → ∞, for every N .

With this in mind we say that F is a tempered distribution if
it is a linear functional on S which is continuous in the sense that
F (ϕk) → F (ϕ) whenever ϕk → ϕ in S. We shall write S∗ for the vec-
tor space of tempered distributions. Since the test space D = D(Rd) is
contained in S, and convergence in D implies convergence in S, we see
that any tempered distribution is automatically a distribution on Rd in
the previous sense. However the converse is not true. (See Exercise 9).
It is worthwhile to note that D is dense in S in that for every function
ϕ ∈ S, there exists a sequence of functions ϕk ∈ D such that ϕk → ϕ in
S as k → ∞. (See Exercise 10.)

It is also useful to observe that any tempered distribution is already
controlled by finitely many of the norms ‖ · ‖N .

Proposition 1.4 Suppose F is a tempered distribution. Then there is a
positive integer N and a constant c > 0, so that

|F (ϕ)| ≤ c‖ϕ‖N , for all ϕ ∈ S.

Proof. Assume otherwise. Then the conclusion fails and for each
positive integer n there is a ψn ∈ S with ‖ψn‖n = 1, while |F (ψn)| ≥ n.
Take ϕn = ψn/n1/2. Then ‖ϕn‖N ≤ ‖ϕn‖n as soon as n ≥ N , and thus
‖ϕn‖N ≤ n−1/2 → 0 as n → ∞, while |F (ϕn)| ≥ n1/2 → ∞, contradict-
ing the continuity of F .

The following are some simple examples of tempered distributions.

• A distribution F of compact support is also tempered. This follows
from the fact that if C is the support of F , there is an η ∈ D, with
η(x) = 1 for all x in a neighborhood of C, hence F (ϕ) = F (ηϕ) if
ϕ ∈ D. Thus the linear functional F defined on D has an obvious
extension to S given by ϕ 	→ F (ηϕ), and this gives the correspond-
ing distribution.

• Suppose f is locally integrable on Rd and for some N ≥ 0,∫
|x|≤R

|f(x)| dx = O(RN ), as R → ∞.

Then the distribution corresponding to f is tempered. Hence in
particular this holds if f ∈ Lp(Rd) for some p with 1 ≤ p ≤ ∞.
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• Whenever F is tempered so is ∂α
x F for all α; also xβF (x) is tem-

pered for all multi-index β ≥ 0.

The last assertion can be generalized as follows: let ψ be any C∞ function
on Rd which is slowly increasing: this means that for each α, ∂α

x ψ(x) =
O(|x|Nα) as |x| → ∞, for some Nα ≥ 0. Then ψF defined by (ψF )(ϕ) =
F (ψϕ) is also a tempered distribution, whenever F is tempered.

The properties of convolutions of distributions discussed in Sections 1.2
and 1.3 have modifications for tempered distributions. The proofs of the
assertions below are routine adaptations of previous arguments.

(a) If F is tempered and ψ ∈ S, then F ∗ ψ, defined as the function
F (ψ∼

x ) is C∞ and slowly increasing. Moreover the alternate defini-
tion (F ∗ ψ)(ϕ) = F (ψ∼ ∗ ϕ), for ϕ ∈ S, continues to be valid here.
To verify this we need the fact that ψ∼ ∗ ϕ ∈ S, whenever ψ and ϕ
are in S. (See Exercise 11.)

(b) If F is a tempered distribution and F1 is a distribution of compact
support, then F ∗ F1 is also tempered. Note that (F ∗ F1)(ϕ) =
F (F∼

1 ∗ ϕ), and to establish the claim we need the implication
that F∼

1 ∗ ϕ ∈ S, if F1 has compact support and ϕ ∈ S. (See Ex-
ercise 12.)

1.5 Fourier transform

The main interest of tempered distributions is that this class is mapped
into itself by the Fourier transform, and this is a reflection of the fact
that the space S is also closed under the Fourier transform.

Recall that whenever ϕ ∈ S, its Fourier transform ϕ∧ (also sometimes
denoted by ϕ̂) is defined as the convergent integral7

ϕ∧(ξ) =
∫

Rd

ϕ(x)e−2πix·ξ dx.

The mapping ϕ 	→ ϕ∧ is a continuous bijection of S to S whose inverse
is given by the mapping ψ 	→ ψ∨, where

ψ∨(x) =
∫

Rd

ψ(ξ)e2πix·ξ dξ.

In this connection it is useful to keep in mind the simple norm estimates

‖ϕ̂‖N ≤ CN‖ϕ‖N+d+1,

7For the elementary facts about the Fourier transform on S that are used here, see for
example Chapters 5 and 6 of Book I.
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which holds for every ϕ ∈ S and every N ≥ 0. (This estimate is itself
immediate from the observation supξ |ϕ̂(ξ)| ≤ ∫

Rd |ϕ(x)| dx ≤ A‖ϕ‖d+1.)
The multiplication identity∫

Rd

ψ̂(x)ϕ(x) dx =
∫

Rd

ψ(x)ϕ̂(x) dx

(which holds for all ϕ,ψ ∈ S) suggests the definition of the Fourier
transform F∧ (sometimes denoted by F̂ ) for a tempered distribution F .
It is

F∧(ϕ) = F (ϕ∧), for all ϕ ∈ S.

From this it follows that the mapping F 	→ F∧ is a bijection of the space
of tempered distributions, with inverse the mapping F 	→ F∨, where F∨

is defined by F∨(ϕ) = F (ϕ∨). Indeed

(F∧)∨(ϕ) = F∧(ϕ∨) = F ((ϕ∨)∧) = F (ϕ).

Moreover the mappings F 	→ F∧ and F 	→ F∨ are continuous with con-
vergence of distributions taken in the weak sense, that is, Fn → F if
Fn(ϕ) → F (ϕ), as n → ∞ for all ϕ ∈ S. (This convergence is also said
to be in the sense of tempered distributions.)

Next it is worthwhile to point out that the definition of the Fourier
transform in the general context of tempered distributions is consistent
with (and generalizes) previous definitions given in various particular
settings. Let us take for example the L2 definition via Plancherel’s theo-
rem.8 Starting with an f ∈ L2(Rd), we write F = Ff for the correspond-
ing tempered distribution. Now f can be approximated (in the L2 norm)
by a sequence {fn}, with fn ∈ S. Thus taken as distributions, fn → F
in the weak sense above. Hence f̂n → F̂ also in the weak sense, but
since f̂n converges in the L2 norm to f̂ , we see that F̂ is the function f̂ .
Similar arguments hold for f ∈ Lp(Rd), with 1 ≤ p ≤ 2, and f̂ defined in
Lq(Rd), 1/p + 1/q = 1, in accordance with the Hausdorff-Young theorem
in Section 2 of the previous chapter.

Let us next remark that the usual formal rules involving differentiation
and multiplication by monomials apply to the Fourier transform in this
general context. Thus, if F ∈ S∗, we have

(∂α
x F )∧ = (2πix)αF∧,

8See Section 1, Chapter 5 in Book III.
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because

(∂α
x F )∧ (ϕ) = ∂α

x F (ϕ∧)

= (−1)|α|F (∂α
x (ϕ∧))

= F (((2πix)αϕ)∧)

= (2πix)αF∧(ϕ).

Similarly ((−2πix)αF )∧ = ∂α
x (F∧). One should also observe that if 1 is

the function that is identically equal to 1, then as tempered distributions

1̂ = δ and δ̂ = 1,

and by the above

((−2πix)α)∧ = ∂α
x δ while (∂α

x δ)∧ = (2πix)α.

The following additional properties elucidate the nature of the Fourier
transform in the context of tempered distributions.

Proposition 1.5 Suppose F is a tempered distribution and ψ ∈ S. Then
F ∗ ψ is a slowly increasing C∞ function, which when considered as a
tempered distribution satisfies (F ∗ ψ)∧ = ψ∧F∧.

Proof. The fact that F (ψ∼
x ) is slowly increasing follows from the

proposition in Section 1.4 together with the observation that for any
function ψ ∈ D and N , ‖ψ∼

x ‖N ≤ c(1 + |x|)N‖ψ‖N , and more generally,

‖∂α
x ψ∼

x ‖N ≤ c(1 + |x|)N‖ψ‖N+|α|.

Since (F ∗ ψ)(ϕ) = F (ψ∼ ∗ ϕ), it follows that (F ∗ ψ)∧(ϕ) = F (ψ∼ ∗ ϕ∧).
On the other hand, ψ∧F∧(ϕ) = F∧(ψ∧ϕ) = F ((ψ∧ϕ)∧). Thus the de-
sired identity, (F ∗ ψ)∧(ϕ) = (ψ∧F∧)(ϕ) is proved because, as is easily
verified, (ψ∧ϕ)∧ = ψ∼ ∗ ϕ∧.

Proposition 1.6 If F is a distribution of compact support then its Fourier
transform F∧ is a slowly increasing C∞ function. In fact, as a func-
tion of ξ, one has F∧(ξ) = F (eξ) where eξ is the element of D given by
eξ(x) = η(x)e−2πixξ, with η a function in D that equals 1 in a neighbor-
hood of the support of F .

Proof. If we invoke Proposition 1.4, we see immediately that |F (eξ)| ≤
C‖eξ‖N ≤ c′(1 + |ξ|)N . By the same estimate, every difference quotient
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of F (eξ) converges and
∣∣∂α

ξ F (eξ)
∣∣ ≤ cα(1 + |ξ|)N+|α|. Therefore F (eξ)

is C∞ and slowly increasing. To prove that the function F (eξ) is the
Fourier transform of F it suffices to see that

(3)
∫

Rd

F (eξ)ϕ(ξ) dξ = F (ϕ̂) for every ϕ ∈ S.

We prove this first when ϕ ∈ D.
Now by what we have already seen, the function g(ξ) = F (eξ)ϕ(ξ) is

continuous and certainly has compact support. Thus∫
Rd

F (eξ)ϕ(ξ) dξ =
∫

Rd

g(ξ) dξ = lim
ε→0

Sε,

where for each ε > 0, Sε is the (finite) sum εd
∑

n∈Zd g(nε). However
Sε = F (sε), with sε = εd

∑
n∈Zd enε(x)ϕ(nε). Clearly as ε → 0, we have

sε(x) → η(x)
∫

Rd

e−2πix·ξϕ(ξ) dξ = η(x)ϕ̂(x)

in the ‖ · ‖N norm. Thus, using Proposition 1.4 again, we get that Sε →
F (ηϕ̂). Now since η = 1 in a neighborhood of the support of F , then
F (ηϕ̂) = F (ϕ̂). Altogether we have (3) when ϕ ∈ D, and to extend this
result to ϕ ∈ S it suffices to recall that D is dense in S.

1.6 Distributions with point supports

Unlike continuous functions, distributions can have isolated points as
their support. This is the case of the Dirac delta function and each of its
derivatives. That these examples represent essentially the general case
of this phenomenon, is contained in the following theorem.

Theorem 1.7 Suppose F is a distribution supported at the origin. Then
F is a finite sum

F =
∑

|α|≤N

aα∂α
x δ.

That is,

F (ϕ) =
∑

|α|≤N

(−1)|α|aα(∂α
x ϕ)(0), for ϕ ∈ D.

The argument is based on the following.
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Lemma 1.8 Suppose F1 is a distribution supported at the origin that
satisfies for some N the following two conditions:

(a) |F1(ϕ)| ≤ c‖ϕ‖N , for all ϕ ∈ D.

(b) F1(xα) = 0, for all |α| ≤ N .

Then F1 = 0.

In fact, let η ∈ D, with η(x) = 0 for |x| ≥ 1, and η(x) = 1 when |x| ≤ 1/2,
and write ηε(x) = η(x/ε). Then since F1 is supported at the origin,
F1(ηεϕ) = F1(ϕ). Moreover, by the same token F1(ηεx

α) = F1(xα) = 0
for all |α| ≤ N , and hence

F1(ϕ) = F1

⎛⎝ηε(ϕ(x) −
∑

|α|≤N

ϕ(α)(0)
α!

xα)

⎞⎠ ,

with ϕ(α) = ∂α
x ϕ(0). If R(x) = ϕ(x) −∑

|α|≤N
ϕ(α)(0)

α! xα is the remain-
der, then |R(x)| ≤ c|x|N+1 and |∂β

xR(x)| ≤ cβ|x|N+1−|β|, when |β| ≤ N .
However |∂β

xηε(x)| ≤ cβε−|β| and ∂β
xηε(x) = 0 if |x| ≥ ε. Thus by Leib-

nitz’s rule, ‖ηεR‖N ≤ cε, and our assumption (a) gives |F1(ϕ)| ≤ c′ε,
which yields the desired conclusion upon letting ε → 0.

Proceeding with the proof of the theorem, we now apply the above
lemma to F1 = F −∑

|α|≤N aα∂α
x δ where N is the index that guaran-

tees the conclusion of Proposition 1.4, while the aα are chosen so that
aα = (−1)|α|

α! F (xα). Then since ∂α
x (δ)(xβ) = (−1)|α|α!, if α = β, and zero

otherwise, we see that F1 = 0, which proves the theorem.

2 Important examples of distributions

Having described the elementary properties of distributions, we now in-
tend to illustrate their occurrence in several areas of analysis.

2.1 The Hilbert transform and pv( 1
x)

We consider the function 1/x, defined for real x with x �= 0. As it stands,
this function is not a distribution on R because it is not integrable near
the origin. However, there is a distribution that can be naturally associ-
ated to the function 1/x. It is defined as the principal value

ϕ 	→ lim
ε→0

∫
|x|≥ε

ϕ(x)
dx

x
.
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We observe first that the limit exists for every function ϕ ∈ S. Assuming
ε ≤ 1, we write

(4)
∫
|x|≥ε

ϕ(x)
dx

x
=

∫
1≥|x|≥ε

ϕ(x)
dx

x
+

∫
|x|>1

ϕ(x)
dx

x
.

The right most integral clearly converges because of the (rapid) decay
of ϕ at infinity. As to the other integral on the right-hand side, we can
write it as ∫

1≥|x|≥ε

ϕ(x) − ϕ(0)
x

dx

because
∫
1≥|x|≥ε

dx
x = 0 due to the fact that 1/x is an odd function.

However |ϕ(x) − ϕ(0)| ≤ c|x| (with c = sup |ϕ′(x)|), thus the limit as ε →
0 of the left-hand side of (4) clearly exists. We denote this limit as

pv
∫

R

ϕ(x)
dx

x
.

It is also evident from the above that∣∣∣∣pv
∫

R

ϕ(x)
dx

x

∣∣∣∣ ≤ c′‖ϕ‖1

(where the norm ‖ · ‖1 is defined in Section 1.4), and thus

ϕ 	→ pv
∫

R

ϕ(x)
dx

x

is a tempered distribution. We denote this distribution by pv( 1
x).

As the reader may have guessed, the distribution pv( 1
x) is intimately

connected with the Hilbert transform H studied in the previous chapter.
We observe first that

(5) H(f) =
1
π

pv(
1
x

) ∗ f, for f ∈ S.

Indeed, according to the definition of pv( 1
x) and the definition of the

convolution, we have

1
π

pv(
1
x

) ∗ f = lim
ε→0

1
π

∫
|y|≥ε

f(x − y)
dy

y
,
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and this limit exists for every x. However Proposition 3.1 of the previous
chapter asserts that the right-hand side also converges in the L2(R) norm
to H(f) as ε → 0, whenever f ∈ L2(R). Thus the convolution 1

πpv
(

1
x

) ∗
f equals the L2 function H(f).

We now give several alternate formulations of pv( 1
x). The meanings

of the abbreviations used will be explained in the proof of the theorem
below.

Theorem 2.1 The distribution pv( 1
x) equals:

(a) d
dx(log |x|).

(b) 1
2

(
1

x−i0 + 1
x+i0

)
.

Also, its Fourier transform equals π
i sign(x).

Regarding (a), note that log |x| is a locally integrable function. Here
d
dx(log |x|) is its derivative taken as a distribution. Now in that sense(

d

dx
log |x|

)
(ϕ) = −

∫ ∞

−∞
(log |x|)dϕ

dx
dx, for every ϕ ∈ S.

However the integral is the limit as ε → 0 of − ∫
|x|≥ε

(log |x|)dϕ
dx dx, and

an integration by parts shows that this equals∫
|x|≥ε

ϕ(x)
x

dx + log(ε)[ϕ(ε) − ϕ(−ε)].

Moreover, ϕ(ε) − ϕ(−ε) = O(ε) since in particular ϕ is of class C1. There-
fore log(ε)[ϕ(ε) − ϕ(−ε)] → 0 as ε → 0, and we have established (a).

We turn to conclusion (b) and consider for ε > 0 the bounded function
1/(x − iε). We will see that as ε → 0, the function 1/(x − iε) converges
to a limit in the sense of distributions, which we denote by 1/(x − i0).
We will also see that 1/(x − i0) = pv( 1

x) + iπδ. Similarly, limε→0 1/(x +
iε) = 1/(x + i0) will exist and equals pv( 1

x) − iπδ. To prove this, we are
thus lead to the function

1
2

(
1

x − iε
+

1
x + iε

)
=

x

x2 + ε2
.

We claim first that

(6)
x

x2 + ε2
→ pv

(
1
x

)
, as ε → 0



114 Chapter 3. DISTRIBUTIONS: GENERALIZED FUNCTIONS

in the sense of distributions.
We are dealing in effect with the conjugate Poisson kernel Qε(x) =

1
π

x
x2+ε2 , defined in Section 3.1 of the previous chapter. The argument

there, after the identities (18), shows that

1
π

∫
|x|≥ε

ϕ(x)
dx

x
−

∫
R

ϕ(x)Qε(x) dx =
∫

R

ϕ(x)∆ε(x) dx

=
∫
|x|≤1

[ϕ(x) − ϕ(0)]∆ε(x) dx +
∫
|x|>1

ϕ(x)∆ε(x) dx,

since ∆ε(x) is an odd function of x. This function satisfies the estimate
|∆ε(x)| ≤ A/ε, and |∆ε(x)| ≤ Aε/x2. Moreover if ϕ ∈ D, then |ϕ(x) −
ϕ(0)| ≤ c|x| and ϕ is bounded on R. Therefore∣∣∣∣∫

R

ϕ(x)∆ε(x) dx

∣∣∣∣ ≤ O

{
ε−1

∫
|x|≤ε

|x| dx + ε

∫
ε<|x|≤1

dx

|x| + ε

∫
1<|x|

dx

x2

}
.

The expression on the right is clearly O(ε| log ε|) as ε → 0, and hence
tends to zero. Therefore we have established (6). Next, recall the iden-
tity (15) in the previous chapter

− 1
iπz

= Py(x) + iQy(x), z = x + iy,

where Py(x) is the Poisson kernel 1
π

y
x2+y2 . By letting y = ε > 0, and

taking complex conjugates we see

1
x − iε

= πQε(x) + iπPε(x).

Since the Py form an approximation to the identity (see Chapter 3 in
Book III) or by an argument very similar as the one just given for Qy,
we have that Pε → δ as ε → 0. Thus

1
x − i0

= pv(
1
x

) + iπδ.

We may take complex conjugates of the above identity and also obtain,
as a limit in the sense of distributions,

1
x + i0

= pv(
1
x

) − iπδ.

Adding these two gives conclusion (b). Notice that incidentally, we have
obtained the identity

iπδ =
1
2

(
1

x − i0
− 1

x + i0

)
.
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To prove the last statement of the theorem we consider the Fourier
transform of x/(x2 + ε2) taken in the sense of distributions. By (17) in
Section 3.1 of the previous chapter we have that∫

R

f(−x)
x dx

x2 + ε2
= π

∫
R

f̂(ξ)e−2πε|ξ| sign(ξ)
i

dξ

for all f ∈ L2(R), and this holds in particular for f ∈ S. Substituting
for f , f = ϕ̂, (and noting that (ϕ∧)∧ = ϕ(−x)) we get( x

x2 + ε2

)∧
(ϕ) =

( x

x2 + ε2

)
(ϕ̂) = π

∫
R

ϕ(ξ)e−2πε|ξ| sign(ξ)
i

dξ.

Letting ε → 0, this yields(
pv

1
x

)∧
(ϕ) = π

∫
R

ϕ(ξ)
sign(ξ)

i
dξ,

which shows that
(
pv 1

x

)∧
is the function π

i sign(ξ), and the proof of the
theorem is concluded.

Let us remark that we have seen from the above that the distribu-
tions 1/(x − i0), 1/(x + i0), and pv( 1

x), while different, all agree with
the function 1/x away from the origin.

2.2 Homogeneous distributions

We pass to the next topic by observing that pv( 1
x) is a homogeneous

distribution. To define this notion, recall that a function f defined on
Rd − {0} is said to be homogeneous of degree λ, if fa = aλf , for every
a > 0, where fa(x) = f(ax). Now the dilation Fa of a distribution F has
been defined by duality:

Fa(ϕ) = F (ϕa),

where ϕa is the dual dilation of ϕ, that is, ϕa = a−dϕa−1 . We can in-
cidentally define the dual dilation F a by F a(ϕ) = F (ϕa), and note that
F a = a−dFa−1 .

In view of the above, a distribution F is said to be homogeneous of
degree λ, if Fa = aλF for all a > 0.

Now the function 1/x is clearly homogeneous of degree −1, but what
is significant for us is that the distribution pv( 1

x) is homogenous of de-
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gree −1. In fact

pv(
1
x

)a(ϕ) = pv(
1
x

)(ϕa) = a−1 lim
ε→0

∫
|x|≥ε

ϕ(x/a)
dx

x

= a−1 lim
ε→0

∫
|x|≥ε/a

ϕ(x)
dx

x
= a−1pv(

1
x

)(ϕ).

The next to the last identity follows from making the change of vari-
ables x → ax and noting that dx/x remains unchanged. The reader may
also verify that the distributions 1/(x − i0), 1/(x + i0), and δ are also
homogenous of degree −1.

There is an important interplay between homogeneous distributions
and the Fourier transform. A hint that this may be so is the elementary
identity (ϕa)∧ = (ϕ∧)a, that holds for all ϕ ∈ S, where ϕa and ϕa are
the dilations of ϕ defined earlier. The simplest proposition containing
this idea is the following.

Proposition 2.2 Suppose F is a tempered distribution on Rd that is
homogeneous of degree λ. Then its Fourier transform F∧ is homogeneous
of degree −d − λ.

Remark. The restriction that F be tempered is unnecessary. It can
be shown that any homogeneous distribution is automatically tempered.
See Exercise 8 for this result.

To deal with (F∧)a we write successively,

(F∧)a(ϕ) = F∧(ϕa) = F ((ϕa)∧) = F ((ϕ∧)a)

= F a(ϕ∧) = a−dFa−1(ϕ∧) = a−d−λF (ϕ∧) = a−d−λF∧(ϕ).

Thus (F∧)a = a−d−λF∧, as was to be proved.

A particularly interesting example arises if we consider the function
|x|λ which is homogeneous of degree λ and locally integrable if λ > −d.
Let Hλ denote the corresponding distribution (for λ > −d); this is clearly
tempered.

The following identity holds.

Theorem 2.3 If −d < λ < 0, then

(Hλ)∧ = cλH−d−λ, with cλ =
Γ( d+λ

2 )
Γ(−λ

2 ) π−d/2−λ.
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Note that the assumption λ < 0 guarantees that −d − λ > −d so that
|x|−d−λ, which defines H−d−λ, is again locally integrable.

To prove the theorem we start with the fact that ψ(x) = e−π|x|2 is its
own Fourier transform. Then since (ψa)∧ = (ψ∧)a we get (with a = t1/2)∫

Rd

e−πt|x|2ϕ̂(x) dx = t−d/2

∫
Rd

e−π|x|2/tϕ(x) dx.

We now multiply both sides by t−λ/2−1 and integrate over (0,∞), and
then interchange the order of integration. We note that∫ ∞

0

e−tAt−λ/2−1 dt = Aλ/2Γ(−λ/2),

if A > 0 and λ > 0, by making the indicated change of variables that
reduces the identity to the case A = 1. Thus using the above identity
with A = π|x|2, we get∫

Rd

∫ ∞

0

e−πt|x|2ϕ̂(x)t−λ/2−1 dt dx = πλ/2Γ(−λ/2)
∫

Rd

|x|λϕ̂(x) dx.

Similarly, we deal with
∫ ∞
0

t−d/2t−λ/2−1e−A/t dt by making the change
of variables t → 1/t which shows that this integral equals∫ ∞

0

td/2+λ/2−1e−At dt = A−d/2−λ/2Γ
(

d

2
+

λ

2

)
.

Inserting this in
∫

Rd

∫ ∞
0

t−d/2e−π|x|2/tϕ(x) dt dx yields

πλ/2Γ(−λ/2)
∫

Rd

|x|λϕ̂(x) dx =

π−d/2−λ/2Γ(d/2 + λ/2)
∫

Rd

|x|−d−λϕ(x) dx,

and this is our theorem.

The principal value distribution pv( 1
x) and the Hλ just considered

have in common the property that these distributions agree with C∞

functions when tested away from the origin. We formulate this notion
in the following definition. We say that a distribution K is regular
if there exists a function k that is C∞ in Rd − {0}, so that K(ϕ) =∫

Rd k(x)ϕ(x) dx for all ϕ ∈ D whose supports are disjoint from the origin.
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We also refer to this by saying that K is C∞ away from the origin,
and calling k the function associated to K. (Note that k is uniquely
determined by K.) One should remark that the function associated to
pv( 1

x) is 1/x.

Returning to the general case one may observe that the function k is
automatically homogeneous of degree λ if the distribution K is homoge-
neous of degree λ. In fact, if ϕ ∈ D is supported away from the origin,
K(ϕ) =

∫
k(x)ϕ(x) dx, while

Ka(ϕ) = K(ϕa) = a−d

∫
Rd

k(x)ϕ(x/a) dx =
∫

Rd

ka(x)ϕ(x) dx.

Hence ∫
Rd

(aλk(x) − ka(x))ϕ(x) dx = 0

for all such ϕ, which means that ka(x) = aλk(x).

The above considerations and examples raise the following two ques-
tions.
Question 1. Given a function k, homogeneous of degree λ, and C∞

away from the origin, when does there exist a regular homogeneous dis-
tribution K of degree λ such that k is its associated function? If such a
distribution exists, to what extent is it uniquely determined by k?

Question 2. How do we characterize the Fourier transform of such K?

We answer first the second question.

Theorem 2.4 The Fourier transform of a regular homogeneous distri-
bution K of degree λ is a regular homogeneous distribution of degree
−d − λ, and conversely.

Proof. We already know from Proposition 2.2 that K∧ is homoge-
neous of degree −d − λ. To prove that K∧ agrees with a C∞ function
away from the origin, we decompose K = K0 + K1, with K0 supported
near the origin and K1 supported away from the origin. To do this,
fix a cut-off function η that is C∞, is supported in |x| ≤ 1, and that
equals 1 on |x| ≤ 1/2. Write K0 = ηK, K1 = (1 − η)K. In particular
K1 is the function (1 − η)k, since 1 − η vanishes near the origin. Also
K∧ = K∧

0 + K∧
1 .

Now by Proposition 1.6, K∧
0 is an (everywhere) C∞ function. To

prove that K∧
1 is C∞ away from the origin we observe that by the usual

manipulations of the Fourier transform valid for tempered distributions,

(7) (−4π2|ξ|2)N∂α
ξ (K∧

1 ) =
(�N [(−2πix)αK1]

)∧
.
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Recall that � denotes the Laplacian, � = ∂2/∂x2
1 + · · · + ∂2/∂x2

d.
Now when |x| ≥ 1, K1 = k, so there ∂β

x (K1) is a bounded homogeneous
function of degree λ − |β| and thus is O(|x|λ−|β|), for |x| ≥ 1. Therefore
�N [xαK1] is O(|x|λ+|α|−2N ) for |x| ≥ 1 while it is certainly a bounded
function for |x| ≤ 1. Hence for N sufficiently large (2N > λ + |α| + d)
this function belongs to L1(Rd). As a result its Fourier transform is
continuous. (See Chapter 2 in Book III.) This shows by (7) that ∂α

x (K∧
1 )

agrees with a continuous function away from the origin. Since this holds
for every α, it follows from Exercise 2 that K∧

1 is a C∞ function away
from the origin, as desired.

Note that since the inverse Fourier transform is the Fourier transform
followed by reflection, that is, K∨ = (K∧)∼, the converse is a conse-
quence of the direction we have just proved.

We now turn to the first question raised above.

Theorem 2.5 Suppose k is a given C∞ function on Rd − {0} that is
homogeneous of degree λ.

(a) If λ is not of the form −d − m, with m a non-negative integer, then
there exists a unique distribution K homogeneous of degree λ that
agrees with k away from the origin.

(b) If λ = −d − m, where m is a non-negative integer, then there exists
a distribution K as in (a) if and only if k satisfies the cancelation
condition ∫

|x|=1

xαk(x) dσ(x) = 0, for all |α| = m.

(c) Every distribution arising in (b) is of the form

K +
∑

|α|=m

cα∂α
x δ.

Proof. We deal first with the question of constructing the distri-
bution K given by k. Note that the function k automatically satisfies
the bound |k(x)| ≤ c|x|λ. Indeed, k(x)/|x|λ is homogeneous of degree 0
and is bounded on the unit sphere (by continuity of k there), thus it is
bounded throughout Rd − {0}.

So if λ > −d, the function k is locally integrable on Rd, and thus we
can take K to be the distribution defined by k. This local integrability
fails when λ ≤ −d.
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In the general case we shall proceed by analytic continuation. Our
starting point is the integral

(8) I(s) = I(s)(ϕ) =
∫

Rd

k(x)|x|−λ+sϕ(x) dx, with ϕ ∈ S,

initially defined for complex s with Re(s) > −d, which we will see con-
tinues to a meromorphic function in the entire complex plane. We will
then ultimately set

K(ϕ) = I(s)|s=λ .

In fact, for our given homogeneous function k, and ϕ any test function
in S, we note by the above bound on k, that the integral (8) converges
when Re(s) > −d, thus I is analytic in that half-plane. Moreover I
continues to the whole complex plane, with at most simple poles at s =
−d,−d − 1, . . . ,−d − m, . . . .

To prove this, write I(s) =
∫
|x|≤1

+
∫
|x|>1

. Given the rapid decrease
of ϕ at infinity, the integral over |x| > 1 gives an entire function of s.
However, for every N ≥ 0,

∫
|x|≤1

k(x)|x|−λ+sϕ(x) dx =
∑

|α|<N

ϕ(α)(0)
α!

∫
|x|≤1

k(x)|x|−λ+sxα dx+

(9)

+
∫
|x|≤1

k(x)|x|−λ+sR(x) dx,

where R(x) = ϕ(x) −∑
|α|<N

ϕ(α)(0)
α! xα, with ϕ(α)(0) = ∂α

x ϕ(0).
Now by the homogeneity of k and the use of polar coordinates, we see

that∫
|x|≤1

k(x)|x|−λ+sxα dx =
(∫

|x|=1

k(x)xα dσ(x)
)∫ 1

0

rs+|α|+d−1 dr,

with the last integral equalling 1/(s + |α| + d). Moreover the remainder
R(x) satisfies |R(x)| ≤ c|x|N , and this together with |k(x)| ≤ c|x|λ im-
plies that

∫
|x|≤1

k(x)|x|−λ+sR(x) dx is analytic in the half-plane Re(s) >

−d − N .
As a result, for each non-negative integer N , we have that I(s) can be

continued in the half-plane Re(s) > −d − N and can be represented as

I(s) =
∑

|α|<N

Cα

s + |α| + d
+ EN (s)
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in that half-plane, with EN (s) analytic there, and

Cα =
ϕ(α)(0)

α!

(∫
|x|=1

k(x)xα dσ(x)
)

.

Now for our given λ with λ �= −d,−d − 1, . . . we need only to take N so
large that λ > −d − N , and define the distribution K by setting K(ϕ) =
I(λ). (See Figure 1.) Moreover, by keeping track of the bounds that
arise, one sees that |K(ϕ)| ≤ c‖ϕ‖M , with M ≥ max(N + 1, λ + d + 1),
with the norm ‖ · ‖M defined earlier. Thus K is a tempered distribution.

−d−d − N −d − N + 1

Re(s) > −d − N

−d − 1

s = λ

Figure 1. The half-plane Re(s) > −d − N , and the definition of I(λ)

To verify that K agrees with the function k away from the origin, we
note that whenever ϕ vanishes near the origin, the integral I(s) converges
for every complex s and is an entire function. Therefore by (8)

K(ϕ) = I(λ) =
∫

Rd

k(x)ϕ(x) dx.

This proves the claim.
Next notice that for any a > 0, whenever Re(s) > −d,

I(s)(ϕa) =
∫

Rd

k(x)|x|−λ+sa−dϕ(x/a) dx

= as

∫
Rd

k(x)|x|−λ+sϕ(x) dx = asI(s)(ϕ).

This follows by the homogeneity of k, and the change of variables x 	→ ax.
As a result, I(s)(ϕa) = asI(s) when Re(s) > −d, and thus by analytic
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continuation this continues to hold at all s at which I(s) is analytic, and
hence at s = λ. Therefore the distribution K = I(λ) has the asserted
homogeneity, and this proves the existence stated in part (a) of the theo-
rem. If we also note that under the cancelation conditions of part (b) of
the theorem one has Cα = 0 whenever |α| = m, our argument also proves
the existence in that case.

We next come to the question of the uniqueness of the distribution K
when λ �= −d,−d − 1, . . . . Suppose K and K1 are a pair of regular dis-
tributions of degree λ, each of which agrees with k away from the ori-
gin. Then D = K − K1 is supported at the origin and hence, by Theo-
rem 1.7, D =

∑
|α|≤M cα∂α

x δ for some constants cα. Now on the one hand
D(ϕa) = aλD(ϕ), because K and K1 are homogeneous of degree λ. On
the other hand ∂α

x δ(ϕa) = a−d−|α|∂α
x δ(ϕ), and as a result,

aλD(ϕ) =
∑

|α|≤M

cα∂α
x δ(ϕ)a−d−|α| for all a > 0.

We now invoke the following simple observation, which we state in a form
that will also be useful later.

Lemma 2.6 Suppose λ1, λ2, . . . , λn, are distinct real numbers and that
for constants aj and bj, 1 ≤ j ≤ n, we have

n∑
j=1

(ajx
λj + bjx

λj log x) = 0 for all x > 0.

Then aj = bj = 0 for all 1 ≤ j ≤ n.

For λ �= −d,−d − 1, . . . , we apply the lemma to λ1 = λ, λ2 = −d,
λ3 = −d − 1, and so on, and x = a, to obtain D(ϕ) = 0 as desired.
If λ = −d − m, we get D(ϕ) =

∑
|α|=m cα∂α

x δ(ϕ), proving the relative
uniqueness asserted in conclusion (c) of the theorem.

To prove the lemma we assume, as one may, that λn is the largest of
the λj ’s. Then multiplying the identity by x−λn and letting x tend to
infinity we see that bn as well as an must vanish. Thus we are reduced
to the case when n is replaced by n − 1, and this induction gives the
lemma.

Finally we show that when λ = −d − m and
∫
|x|=1

k(x)xα dσ(x) �= 0,
for some α, with |α| = m, then there does not exist a homogeneous dis-
tribution of degree −d − m that agrees with k(x) away from the origin.
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We consider first the case m = 0, and examine I(s), given by (8), near
s = −d, in the special case k(x) = |x|−d. In this case we use (9) with
N = 1, which is valid for Re(s) > −d − 1. With R(x) = ϕ(x) − ϕ(0) this
yields
(10)

I(s)(ϕ) = Ad
ϕ(0)
s + d

+
∫
|x|≤1

[ϕ(x) − ϕ(0)]|x|s dx +
∫
|x|>1

ϕ(x)|x|s dx.

(Here Ad = 2πd/2/Γ(d/2) denotes the area of the unit sphere in Rd).
Since the two integrals are analytic when Re(s) > −d − 1, the factor
Adϕ(0) represents the residue of the pole of I(s)(ϕ) as s = −d, and in
particular, as distributions

(s + d)I(s) → Adδ, as s → −d.

We will temporarily call J the distribution that arises as the next term
in the expression of I(s) as s → −d, I(s) = Adδ

s+d + J + O(s + d), that is

J = ((s + d)I(s))′s=−d.

This distribution J , which we shall now write as
[

1
|x|d

]
, is given, because

of (10), by

(11)
[

1
|x|d

]
(ϕ) =

∫
|x|≤1

ϕ(x) − ϕ(0)
|x|d dx +

∫
|x|>1

ϕ(x)
|x|d dx.

We observe the following facts about
[

1
|x|d

]
:

(i) It is a tempered distribution. Indeed, it is easily verified that∣∣∣[ 1
|x|d

]
(ϕ)

∣∣∣ ≤ c‖ϕ‖1.

(ii)
[

1
|x|d

]
agrees with the function 1/|x|d away from the origin; this is

because when tested with ϕ that vanishes near the origin, the term
ϕ(0) disappears from (11).

(iii) However,
[

1
|x|d

]
is not homogeneous.

What holds is the identity
(12)[

1
|x|d

]
(ϕa) = a−d

[
1

|x|d
]

(ϕ) + a−d log(a)Adϕ(0), for all a > 0.
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To prove this note that[
1

|x|d
]

(ϕa) = a−d

∫
|x|≤1/a

[ϕ(x) − ϕ(0)]
dx

|x|d + a−d

∫
|x|>1/a

ϕ(x)
dx

|x|d

as a change of variable shows. A comparison of this with the case a = 1
immediately yields (12). A consequence of this identity is contained in
the following.

Corollary 2.7 There is no distribution K0 that is homogeneous of de-
gree −d and that agrees with the function 1/|x|d away from the origin.

If such a K0 existed, then K0 −
[

1
|x|d

]
would be supported at the

origin, and hence equal to
∑

|α|≤M cα∂α
x δ. Applying this difference to

ϕa would yield that

a−dK0(ϕ) − a−d

[
1

|x|d
]

(ϕ) − a−d log(a)Adϕ(0)−

−
∑

|α|≤M

cαa−d−|α|∂α
x δ(ϕ) = 0,

for all a > 0. This leads to a contradiction with Lemma 2.6 if we take ϕ
so that ϕ(0) �= 0.

The result of Corollary 2.7 can be restated as follows. If k is homo-
geneous of degree −d, and

∫
|x|=1

k(x) dσ(x) �= 0, then there is no distri-
bution K homogeneous of degree −d, that agrees with k away from the
origin.

Indeed, write k(x) = c
|x|d + k1(x), where

c

∫
|x|=1

dσ(x) =
∫
|x|=1

k(x) dσ(x),

and c �= 0, while
∫
|x|=1

k1(x) dσ(x) = 0. Now if K1 is the distribution
whose associated function is k1, and whose existence is guaranteed by
conclusion (b), then 1

c (K − K1) would be a homogeneous distribution of
degree −d agreeing with 1/|x|d away from the origin. This we have seen
is precluded by Corollary 2.7.

Finally, turning to the general case, suppose K is a homogeneous dis-
tribution of degree −d − m, whose associated function is k(x). Let K ′ =
xαK for some α with |α| = m and

∫
|x|=1

k(x)xα dσ(x) �= 0. Then clearly
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K ′ is homogeneous of degree −d − m + |α| = −d, while k′(x) = xαk(x)
is its associated function. However now∫

|x|=1

k′(x) dσ(x) �= 0,

which contradicts the special case λ = −d considered above. The theo-
rem is therefore completely proved.

Remark 1. The results of the theorems continue to hold with minor
modifications if λ, which was assumed to be real, is allowed to be com-
plex. In this situation the proof of Lemma 2.6 needs a slight additional
argument, which is indicated in Exercise 20.

Remark 2. When λ = −d with k satisfying the cancelation condition∫
|x|=1

k(x) dσ(x) = 0, the resulting distribution K is then a natural gen-
eralization of pv( 1

x) in R considered earlier. Indeed, as we have seen

K(ϕ) =
∫
|x|≤1

k(x)[ϕ(x) − ϕ(0)] dx +
∫
|x|>1

k(x)ϕ(x) dx

and this equals the “principal value”

lim
ε→0

∫
ε≤|x|

k(x)ϕ(x) dx

because
∫

ε≤|x|≤1
k(x) dx = log(1/ε)

∫
|x|=1

k(x) dσ(x) = 0. Distributions
of this kind, first studied by Mihlin, Calderón and Zygmund, are often
denoted by pv(k).

2.3 Fundamental solutions

Among the most significant examples of distributions are fundamental
solutions of partial differential equations and derivatives of these funda-
mental solutions. Suppose L is a partial differential operator

L =
∑

|α|≤m

aα∂α
x on Rd,

with aα complex constants. A fundamental solution of L is a distri-
bution F so that

L(F ) = δ,

where δ is the Dirac delta function. The importance of a fundamental
solution9 is that it implies that the operator f 	→ T (f) = F ∗ f , mapping

9Note that a fundamental solution is not unique since we can always add to it a solution
of the homogeneous equation L(u) = 0.
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D to C∞, is an “inverse” to L. One way to interpret this is the statement
that

LT = TL = I

when acting on D. This holds because as we have seen earlier in this
chapter, ∂α

x (F ∗ f) = (∂α
x F ) ∗ f = F ∗ (∂α

x f) for all α, hence L(F ∗ f) =
(LF ) ∗ f = F ∗ (Lf), while of course δ ∗ f = f .

Now let

P (ξ) =
∑

|α|≤m

aα(2πiξ)α,

be the characteristic polynomial of the operator L. Since, for example
when f belongs to S, one has (L(f))∧ = P · f∧, we might hope to find
such an F by defining it via F̂ (ξ) = 1/P (ξ) or as

(13) F =
∫

Rd

1
P (ξ)

e2πix·ξ dξ,

taken in an appropriate sense.
The main problem with this approach in the general case is due to the

zeros of P and the resulting difficulty of defining 1/P (ξ) as a distribution.
However in a number of interesting cases this can de done quite directly.

We consider first the Laplacian

� =
d∑

j=1

∂2

∂x2
j

in Rd.

Here 1/P (ξ) = 1/(−4π2|ξ|2), and when d ≥ 3 this function is locally in-
tegrable, and the required calculation of a fundamental solution is given
by Theorem 2.3. This results in the following.

Theorem 2.8 For d ≥ 3, the locally integrable function F defined by
F (x) = Cd|x|−d+2 is a fundamental solution for the operator �, with

Cd = −Γ( d
2−1)

4π
d
2

.

This follows by taking λ = −d + 2 (in Theorem 2.3), then Γ
(

d+λ
2

)
=

Γ(1) = 1, while Γ(d/2) = (d/2 − 1)Γ(d/2 − 1). Therefore F̂ (ξ) equals
1/(−4π2|ξ|2), and hence

(�F )∧ = 1, which means �F = δ.

The case of two dimensions leads to the following variant.
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Theorem 2.9 When d = 2, the locally integrable function 1
2π log |x| is a

fundamental solution of �.

This fundamental solution arises when considering the limiting case λ →
−d + 2 = 0 in Theorem 2.3. It can be given formally as

−1
4π2

∫
R2

1
|ξ|2 e2πixξ dξ,

but we need to assign a meaning to this non-convergent integral. In fact,
we shall be led to the distribution

[
1

|x|d
]

considered in (11). We start
with the identity

(14)
∫

R2
ϕ̂(x)|x|λ dx = cλ

∫
R2

ϕ(ξ)|ξ|−λ−2 dξ,

with −2 < λ < 0, and cλ = Γ(1+λ/2)
Γ(−λ/2) π−1−λ. We examine (14) near λ = 0

and use the fact that cλ ∼ −λ/(2π) + c′λ2 as λ → 0, for some constant
c′. This follows from the fact that Γ(1) = 1, the function Γ(s) is smooth
near s = 1, and the identity Γ(s + 1) = sΓ(s) with s = −λ/2. Looking
back at (10) (with s = −λ − 2), we differentiate both sides of (14) with
respect to λ, which is justified by the rapid decay of ϕ and ϕ̂. After a
multiplication of 1/2π the result is, upon letting λ → 0,

1
2π

∫
R2

ϕ̂(x) log |x| dx

=
−1
4π2

{∫
|x|≤1

ϕ(x) − ϕ(0)
|x|2 dx +

∫
|x|>1

ϕ(x)
dx

|x|2
}

− c′ϕ(0).

That is, if we take F = 1
2π log |x|, then

F̂ = − 1
4π2

[
1

|x|2
]
− c′δ.

Now it is clear that |x|2δ = 0, because |x|2δ(ϕ) = |x|2ϕ(x)|x=0 = 0. Also,

for all ϕ ∈ S, |x|2
[

1
|x|2

]
(ϕ) =

∫
R2 ϕ(x) dx, which means |x|2

[
1

|x|2
]

equals

the function 1. Thus (�F )∧ = −4π2|x|2F̂ = 1, and so �F = δ, proving
that F is a fundamental solution for � on R2.

We shall next give an explicit fundamental solution for the heat oper-
ator

L =
∂

∂t
−�x,



128 Chapter 3. DISTRIBUTIONS: GENERALIZED FUNCTIONS

taken over Rd+1, with (x, t) ∈ Rd+1 = Rd × R, and �x the Laplacian
in the x-variables, x ∈ Rd. We do this by linking the inhomogeneous
equation L(u) = g with the homogeneous initial-value problem, L(u) = 0
for t > 0 with u(x, t)|t=0 = f(x) given on Rd.

Recall from Chapters 5 and 6 in Book I that the latter problem is
solved by the heat kernel

H∧
t (ξ) = e−4π2|ξ|2t,

where the Fourier transform is taken only in the x-variables. This shows
that if f ∈ S, then u(x, t) = (Ht ∗ f)(x) solves the equation L(u) = 0,
while u(x, t) → f(x) in S as t → 0. Notice also that

∂Ht

∂t
= �xHt(x), and

∫
Rd

Ht(x) dx = 1,

and Ht is an “approximation to the identity.” (For these properties of Ht,
see Chapter 5, Book I and Chapter 3 in Book III.)

Now on Rd+1 define F by

F (x, t) =
{ Ht(x), if t > 0,

0, if t ≤ 0.

It follows that F is locally integrable on Rd+1 (and in fact one has∫
|t|≤R

∫
Rd F (x, t) dx dt ≤ R), and so F defines a tempered distribution

on Rd+1.

Theorem 2.10 F is a fundamental solution of L = ∂
∂t −�x.

Proof. Since LF (ϕ) = F (L′ϕ) with L′ = − ∂
∂t −�x, it suffices to see

that F (L′ϕ), which equals

lim
ε→0

∫
t≥ε

∫
Rd

F (x, t)
(
− ∂

∂t
−�x

)
ϕ(x, t) dx dt,

is δ(ϕ) = ϕ(0, 0).
Now F (x, t) = Ht(x) when t > 0, so an integration by parts in the
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x-variables gives∫
t≥ε

∫
Rd

F (x, t)
(
− ∂

∂t
−�x

)
ϕ(x, t) dx dt =

= −
∫

Rd

(∫
t≥ε

Ht
∂ϕ

∂t
+ (�xHt)ϕdt

)
dx

= −
∫

Rd

(∫
t≥ε

Ht
∂ϕ

∂t
+

∂Ht

∂t
ϕ dt

)
dx

=
∫

Rd

Hε(x)ϕ(x, ε) dx.

However, because ϕ ∈ S, one has |ϕ(x, ε) − ϕ(x, 0)| ≤ O(ε) uniformly
in x. Therefore∫

Rd

Hε(x)ϕ(x, ε) dx =
∫

Rd

Hε(x)(ϕ(x, 0) + O(ε)) dx,

and this tends to ϕ(0, 0), since Ht is an approximation to the identity.

An alternate proof can be given by computing the Fourier transform
of F , as in Exercise 21.

2.4 Fundamental solution to general partial differential equa-
tions with constant coefficients

We now tackle the general case of any constant coefficient partial dif-
ferential operator L on Rd by addressing the convergence issues raised
by (13), where a candidate for a fundamental solution F was written as

F =
∫

Rd

1
P (ξ)

e2πix·ξ dξ,

with P the characteristic polynomial of the operator L. Ignoring for
a moment the problem of convergence, we note that if ϕ ∈ D, then we
would have

F (ϕ) =
∫

Rd

ϕ(x)
∫

Rd

1
P (ξ)

e2πix·ξ dξ dx,

and hence after interchanging the order of integration,

(15) F (ϕ) =
∫

Rd

ϕ̂(−ξ)
P (ξ)

dξ.
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To circumvent the obstacle that arises in (15) because of possible zeroes
of P , we shift the line of integration in the ξ1-variable to avoid any zeroes
of the polynomial p(z) = P (z, ξ′), where ξ′ = (ξ2, . . . , ξd) is fixed. The
result we obtain is as follows.

Theorem 2.11 Every constant coefficient (linear) partial differential
equation L on Rd has a fundamental solution.

Proof. After a possible change of coordinates consisting of a rotation
and multiplication by a constant, we may assume that the characteristic
polynomial of L will be of the form

P (ξ) = P (ξ1, ξ
′) = ξm

1 +
m−1∑
j=0

ξj
1Qj(ξ′),

where each Q′
j is a polynomial of degree at most m − j. A proof that

a general polynomial P can be written in the above form, can be found
for instance in Section 3, Chapter 5, Book III, where an earlier version
of the “invertibility” of L appears.

For each ξ′, the polynomial p(z) = P (z, ξ′) has m roots in C, which
can be ordered lexicographically, say α1(ξ′), . . . , αm(ξ′). We claim that
we can pick an integer n(ξ′) so that:

(i) |n(ξ′)| ≤ m + 1 for all ξ′.

(ii) If Im(ξ1) = n(ξ′), then |ξ1 − αj(ξ′)| ≥ 1 for all j = 1, . . . , m.

(iii) The function ξ′ 	→ n(ξ′) is measurable.

Indeed, for each ξ′ the polynomial p has m zeroes, so at least one of the
m + 1 intervals I� = [−m − 1 + 2�,−m − 1 + 2(� + 1)) (for � = 0, . . . , m)
has the property that it does not contain any of the imaginary parts of
the zeroes of p. We can then set n(ξ′) to be the mid-point of such
interval I� with the smallest � having the above property. Condition (ii)
is then automatically satisfied. Finally, Rouché’s theorem10 applied to
small circles around the zeroes of p shows that α1(ξ′), . . . , αm(ξ′) are
continuous functions of ξ′, and this implies (iii).

So, instead of (15) we now define

(16) F (ϕ) =
∫

Rd−1

∫
Im(ξ1)=n(ξ′)

ϕ̂(−ξ)
P (ξ)

dξ1 dξ′, whenever ϕ ∈ D.

10See for example Chapter 3 in Book II.
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In the above, the inner integral is taken over the line {Im(ξ1) = n(ξ′)}
in the complex ξ1-space.

To see that F is well defined as a distribution, recall first that since ϕ
has compact support then ϕ̂ is analytic with rapid decay on each line
parallel to the real axis, so it suffices to show that P is uniformly bounded
from below on the line of integration. To this end, fix ξ on such line, and
consider the polynomial in one variable q(z) = P (ξ1 + z, ξ′). Then q is a
polynomial of degree m with leading coefficient 1, so if λ1, . . . , λm denote
the roots of q, then q(z) = (z − λ1) · · · (z − λm). By (ii) above we have
that |λj | ≥ 1 for all j, hence |P (ξ)| = |q(0)| = |λ1 · · ·λm| ≥ 1, as desired.
Therefore F defines a distribution.

Finally, the rapid decrease also allows us to differentiate under the in-
tegral sign, so if L′ =

∑
|α|≤m aα(−1)|α|∂α

x , then the characteristic poly-
nomial of L′ is P (−ξ) therefore (L′(ϕ))∧ = P (−ξ)ϕ̂(ξ). Hence

(LF )(ϕ) = F (L′(ϕ)) =
∫

Rd−1

∫
Im(ξ1)=n(ξ′)

ϕ̂(−ξ) dξ1 dξ′.

We can now deform the contour of integration back to the real line, so
that

(LF )(ϕ) =
∫

Rd

ϕ̂(−ξ) dξ = ϕ(0) = δ(ϕ),

which completes the proof of the theorem.

Remark. We obtain from this the following existence theorem: when-
ever f ∈ C∞

0 (Rd), there exists a u ∈ C∞(Rd) so that L(u) = f . This is
clear if we take u = F ∗ f , with F the fundamental solution above.11 It
should also be pointed out that an analogous solvability fails if L is not
constant-coefficient, as is seen in Section 8.3 of Chapter 7.

2.5 Parametrices and regularity for elliptic equations

In many instances it is convenient to replace the notion of a fundamental
solution by a more flexible variant, that of an “approximate fundamental
solution” or parametrix. Given a differential operator L with constant
coefficients, a parametrix for L is a distribution Q, so that

LQ = δ + r

where the “error” r is in (say) S. In this sense, the difference LQ − δ is
small.

11This result may be compared with Section 3 in Chapter 5 of Book III, where not-
necessarily smooth solutions are found by a different method.
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Of particular interest are parametrices that are smooth away from the
origin. Adopting the terminology used earlier, we say that Q is regular
if this distribution agrees with a C∞ function away from the origin.

An important class of partial differential operators that have regu-
lar parametrices are the elliptic operators. A given partial differential
operator L =

∑
|α|≤m aα∂α

x , of order m, is said to be elliptic if its char-
acteristic polynomial P satisfies the inequality |P (ξ)| ≥ c|ξ|m, for some
c > 0, and all sufficiently large ξ. Note that this is the same as assuming
that Pm, the principal part of P (the part of P which is homogeneous of
degree m), has the property that Pm(ξ) = 0 only when ξ = 0.

Note, for example, that the Laplacian � is elliptic.

Theorem 2.12 Every elliptic operator has a regular parametrix.

Proof. Observe first by a straightforward inductive argument in k,
that whenever |α| = k and P is any polynomial(

∂

∂ξ

)α (
1

P (ξ)

)
=

∑
0≤�≤k

q�(ξ)
P (ξ)�+1

,

where each q� is a polynomial of degree ≤ �m − k.
Now suppose |P (ξ)| ≥ c|ξ|m, whenever |ξ| ≥ c1, and let γ be a C∞

function which is equal to 1 for all large values of ξ and is supported in
|ξ| ≥ c1. Then observe from the above identity that

(17)
∣∣∣∣∂α

ξ

(
γ(ξ)
P (ξ)

)∣∣∣∣ ≤ Aα|ξ|−m−|α|.

Now let Q be the tempered distribution whose Fourier transform is the
(bounded) function γ(ξ)/P (ξ). Taking up the same argument as in the
proof of Theorem 2.4, we have(

(−4π2|x|2)N∂β
xQ

)∧
= �N

ξ [(2πiξ)β(γ/P )].

Because of (17) and Leibnitz’s rule, the right-hand side above is clearly
dominated by A′

α|ξ|−m−2N+|β| for |ξ| ≥ 1; it is also bounded when |ξ| ≤
1. Thus as soon as 2N + m − |β| > d, this function is integrable, and
therefore |x|2N∂β

xQ, being its inverse Fourier transform up to a multi-
plicative constant, is continuous. Since this is true for each β, we see
that Q agrees with a C∞ function away from the origin.

Note moreover that (LQ)∧ = P (ξ)[γ(ξ))/P (ξ)] = γ(ξ) = 1 + (γ(ξ) −
1). By its definition, γ(ξ) − 1 is in D, and hence γ(ξ) − 1 = r̂, for some
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r ∈ S. Finally, (LQ)∧ = 1 + r̂, which means LQ = δ + r, as was to be
shown.

The following variant is useful.

Corollary 2.13 Given any ε > 0, the elliptic operator L has a regular
parametrix Qε that is supported in the ball {x : |x| ≤ ε}.

In fact, let ηε be a cut-off function in D, that is 1 when |x| ≤ ε/2,
and that is supported where |x| ≤ ε. Set Qε = ηεQ, and observe that
L(ηεQ) − ηεL(Q) involves only terms that are derivatives of ηε of posi-
tive order, and these vanish when |x| < ε/2. The difference is therefore a
C∞ function. However, ηεL(Q) = ηε(δ + r) = δ + ηεr. Altogether, this
gives L(Qε) = δ + rε, where rε is a C∞ function. Notice that rε is auto-
matically also supported in |x| ≤ ε.

Elliptic operators satisfy the following basic regularity property.

Theorem 2.14 Suppose the partial differential operator L has a regular
parametrix. Assume U is a distribution given in an open set Ω ⊂ Rd and
L(U) = f , with f a C∞ function in Ω. Then U is also a C∞ function
on Ω. In particular, this holds whenever L is elliptic.

Remark. The terminology hypo-elliptic is used to denote operators
for which the above regularity holds. The prefix “hypo” reflects the
fact that there are non-elliptic operators (for example the heat operator
∂
∂t −�x) that also have this property as a result of the fact that they
have a regular fundamental solution. However, it should be noted that
for general partial differential operators, hypo-ellipticity fails; a good
example is the wave operator. (See Exercise 22 and Problem 7∗.)

Proof of the theorem. It suffices to show that U agrees with a C∞

function on any ball B with B ⊂ Ω. Fix such a ball (say of radius ρ),
and let B1 be the concentric ball having radius ρ + ε, with ε > 0 so small
that B1 ⊂ Ω. Next, choose a cut-off function η in D, supported in Ω,
with η(x) = 1 in a neighborhood of B1. Define U1 = ηU . Then U1 and
L(U1) = F1 are distributions of compact support in Rd and moreover F1

agrees with a C∞ function (that is, f) in a neighborhood of B1. Thus
F1 agrees in a smaller neighborhood of B1 with a C∞ function f1 that
has compact support.

We now apply the parametrix Qε supported in {|x| ≤ ε} whose exis-
tence is guaranteed by Corollary 2.13. On the one hand,

Qε ∗ L(U1) = L(Qε) ∗ U1 = (δ + rε) ∗ U1 = U1 + rε ∗ U1,
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and since rε ∗ U1 = U1 ∗ rε by Proposition 1.1, we have that rε ∗ U1 is a
C∞ function in Rd. On the other hand,

Qε ∗ L(U1) = Qε ∗ F1 = Qε ∗ f1 + Qε ∗ (F1 − f1).

Now again, Qε ∗ f1 is a C∞ function, while by Proposition 1.3, Qε ∗ (F1 −
f1) is supported in the closure of the ε-neighborhood of the support of
F1 − f1. Since F1 − f1 vanishes in a neighborhood of B1 it follows that
Qε ∗ (F1 − f1) vanishes in B. Altogether then U1 is a C∞ function on
B. Since U1 = ηU and η equals 1 in B, then U is a C∞ function in B,
and the theorem is therefore proved.

3 Calderón-Zygmund distributions and Lp estimates

We will now consider an important class of operators that generalize the
Hilbert transform and that have a corresponding Lp theory. These arise
as “singular integrals,” that is, as convolution operators T given by

(18) T (f) = f ∗ K,

with K that are appropriate distributions. Among kernels K of this kind
the first considered were homogeneous distributions of critical degree −d,
similar to those described in Remark 2 at the end of Section 2.2.12

Over time, various generalizations and extensions of these operators have
arisen. Here we want to restrict our attention to a narrow but partic-
ularly simple and useful class of such operators, which have the added
feature that they can be defined either in terms of (18) or in terms of
the Fourier transform via

(19) (Tf)∧(ξ) = m(ξ)f̂(ξ).

The reciprocity of the resulting conditions on the kernel K and the mul-
tiplier m, with m = K∧, can then be seen as a generalization of Theo-
rem 2.4 when λ = −d.

3.1 Defining properties

We consider a distribution K that is “regular” in the terminology used
in Sections 2.2 and 2.5. This means that for such K there is a function k
that is C∞ away from the origin so that K agrees with k away from the
origin. Given a K of this kind, we consider the following differential
inequalities for its associated function k,

(20) |∂α
x k(x)| ≤ cα|x|−d−|α|, for all α.

12Without however requiring a high degree of smoothness of k.
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Notice that the above for α = 0, implies that the distribution K is tem-
pered.

In addition to (20) we formulate a cancelation condition as follows.
Given an integer n, we say that ϕ is a C(n)-normalized bump function
if ϕ is a C∞ function supported in the unit ball and

sup
x

|∂α
x ϕ(x)| ≤ 1, all |α| ≤ n.

We define ϕr by ϕr(x) = ϕ(rx), for r > 0. Our condition is then that for
some fixed n ≥ 1, there is an A so that

(21) sup
0<r

|K(ϕr)| ≤ A, for all C(n)-normalized bump functions ϕ.

Proposition 3.1 The following three properties of a distribution K are
equivalent.

(i) K is regular and satisfies the differential inequalities (20) together
with the cancelation property (21).

(ii) K is tempered, and m = K∧ is a function that is C∞ away from
the origin that satisfies

(22) |∂α
ξ m(ξ)| ≤ c′α|ξ|−α, for all α.

(iii) K is a regular distribution that satisfies the differential inequali-
ties (20) and K∧ is a bounded function.

We refer to kernels K that satisfy these equivalent properties as Calderón-
Zygmund distributions.13

The proof will be facilitated by noting the dilation-invariance of the set
of all distributions that satisfy the above conditions. Recall the scaling
of a distribution K as defined in Section 2.1. For each a > 0, the scaled
distribution Ka is given by Ka(ϕ) = K(ϕa), with ϕa(x) = ϕ(ax). With
this we claim that whenever K satisfies (20) and (21), Ka satisfies (20)
and (21) with the same bounds. In fact, the function associated to Ka

is a−dk(x/a), while Ka(ϕr) = K(ϕar), as the reader may easily verify.
Moreover, if m = K∧, then ma = (Ka)∧, and ma(ξ) = m(aξ), so ma

satisfies (22) with the same bounds.
Once this is observed, the proof of the proposition is in the same spirit

as that of Theorem 2.4, and so we will be correspondingly brief. Let us

13We should note that phrases like “Calderón-Zygmund operators” or “Calderón-
Zygmund kernels” have been used in many contexts to denote different but related objects
in the theory.
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begin by assuming condition (i). We first observe that m = K∧ is a C∞

function away from the origin. This is done by splitting K as K0 + K1,
where K0 = ηK and K1 = (1 − η)K (with η a C∞ cut-off function that
is supported in the unit ball and is equal to 1 when |x| ≤ 1/2), and
proceeding as in the proof of Theorem 2.4.

To show that the inequalities (22) are satisfied for m(ξ) = K∧, ξ �= 0,
we can reduce matters to the case |ξ| = 1 by the dilation-invariance
pointed out above. Now by Proposition 1.6, K∧

0 (ξ) = K(ηe−2πix·ξ), and
the latter is K(ϕ) with ϕ(x) = η(x)e−2πix·ξ. Now ϕ is a multiple (inde-
pendent of ξ, for |ξ| = 1) of a C(n)-normalized bump function, so (20)
implies |K∧

0 (ξ)| ≤ c′. The same argument gives |∂α
ξ K∧

0 (ξ)| ≤ c′α.
Next, since K1 = (1 − η)K = (1 − η)k is supported where |x| ≥ 1/2,

we have by (7)

|ξ|2N |∂α
ξ K∧

1 (ξ)| = c|(�N (xαK1))∧|

≤ cα,N

∫
|x|≥1/2

|x|−d+|α|−2N dx < ∞

if 2N > |α|. Thus |∂α
ξ K∧

1 (ξ)| ≤ c′α when |ξ| = 1, and therefore combining
estimates for K∧

0 and K∧
1 implies (ii) in the proposition.

To prove that (ii) implies (i), we first assume that m satisfies (22)
and, in addition, has bounded support, but we will make our estimates
independent of the size of the support of m.

Define K(x) =
∫

Rd m(ξ)e2πiξ·x dξ. Then clearly K is a bounded C∞

function on Rd, and K∧ = m in the sense of distributions. In proving
the differential inequalities (20), it will be sufficient to do this for |x| = 1,
because of the dilation-invariance used earlier. Now write K = K0 + K1,
with Kj defined like K with m replaced by mj , where m0(ξ) = m(ξ)η(ξ)
and m1(ξ) = m(ξ)(1 − η(ξ)). Now obviously |∂α

x K0(x)| ≤ cα, since m0

is bounded and is supported in the unit ball. Also in analogy with (7)
and the previous argument,

|x|2N |∂α
x K1(x)| = c

∣∣∣∣∫
Rd

�N
ξ (ξαm1(ξ)) dξ

∣∣∣∣
≤ cα,N

∫
|ξ|≥1/2

|ξ|α|ξ|−2Ndξ < ∞

if 2N − |α| > d. Since |x| = 1, these estimates for K0 and K1 yield (20)
for |x| = 1, and thus for all x �= 0.

To prove the cancelation condition, take n = d + 1. Note first that
(2πiξ)αϕ̂(ξ) = (∂α

x ϕ)∧(ξ), so this implies that supξ(1 + |ξ|)d+1|ϕ̂(ξ)| ≤ c,
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whenever ϕ is a C(n)-normalized bump function, and as a result∫
Rd

|ϕ̂(ξ)| dξ ≤ c

∫
Rd

dξ

(1 + |ξ|)d
≤ c′

for such a normalized bump functions.
However, K(ϕr) = Kr(ϕ) =

∫
mr(−ξ)ϕ̂(ξ) dξ. Therefore |K(ϕr)| ≤

supξ |m(ξ)| ∫ | ˆϕ(ξ)| dξ ≤ A, and the condition (21) is established.
To dispense with the hypothesis that m has compact support, consider

the family mε(ξ) = m(ξ)ηε(ξ), with ε > 0. Observe that each mε has
compact support and (22) is satisfied uniformly in ε. Set

Kε(x) =
∫

Rd

mε(ξ)e2πix·ξ dξ.

Then since mε → m pointwise and boundedly as ε → 0, the convergence
is also in the sense of tempered distributions, and this implies the conver-
gence of Kε to K in the sense of tempered distributions, with K∧ = m.
Now the differential inequalities (20) hold for x �= 0, and Kε, uniformly
in ε. Thus these estimates hold for K, (more precisely for its associated
function k). Similarly, since the cancelation conditions (21) hold for Kε,
uniformly in ε, these conditions hold for K, and thus altogether we see
that (ii) implies (i). We observe that the argument just given shows that
(iii) implies (i). Since (iii) is clearly a consequence of (i) and (ii) together,
all three conditions are equivalent, finishing the proof of the proposition.

The following points may help clarify the nature of the hypotheses
concerning Calderón-Zygmund distributions.

• It is clear that if the cancelation condition holds for C(n)-normalized
bump functions for a given n, then it also holds with n′ > n. In
the other direction, it can be shown that in the presence of (20),
the fact that (21) holds for some n implies that it holds for n = 1,
and thus for all n′ ≥ 1. This is sketched in Exercise 32.

• Given a function k that satisfies the differential inequalities (20), we
may ask if there is a Calderón-Zygmund distribution K that has k
as its associated function. The necessary and sufficient condition
on k is that

sup
0<a<b

∣∣∣∣∫
a<|x|<b

k(x) dx

∣∣∣∣ < ∞.

The proof of this fact is outlined in Exercise 33. Note however
that K is not uniquely determined by k.
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• We make a last remark about the significance of Calderón-Zygmund
distributions in the theory of partial differential equations. It is
that, whenever Q is a parametrix for an elliptic operator L of or-
der m as in Section 2.5, then ∂α

x Q is a Calderón-Zygmund dis-
tribution, whenever |α| ≤ m. This follows immediately from the
estimate (17) and the characterization of such distributions by the
Fourier transform given by assertion (ii) of the proposition.

3.2 The Lp theory

The Lp estimates for operators of the form (18) are given by the following
theorem.

Theorem 3.2 Let T be the operator T (f) = f ∗ K, with K as in Propo-
sition 3.1. Then T initially defined for f in S extends to a bounded
operator on Lp(Rd), for 1 < p < ∞.

This means that for each p, 1 < p < ∞, there is a bound Ap so that

(23) ‖Tf‖Lp(Rd) ≤ Ap‖f‖Lp(Rd)

for f ∈ S. Thus by Proposition 5.4 in Chapter 1 we see that T has a
(unique) extension to all of Lp that satisfies the bound (23) for f ∈ Lp.
We break the proof into five steps.

Step 1: L2 estimate. The case p = 2 follows directly from the fact that
(Tf)∧ = f∧K∧, (see Proposition 1.5) and that

‖Tf‖L2 = ‖(Tf)∧‖L2 ≤ (sup
ξ

|K∧(ξ)|) ‖f̂‖L2 ≤ A‖f‖L2 ,

by Plancherel’s theorem. The inequality supξ |K∧(ξ)| ≤ A is of course a
consequence of Proposition 3.1.

Step 2: A variant of atoms. While our operator T does not in general
map L1 to itself (as the example in Section 3.2 of the previous chapter
already shows), its Lp theory for 1 < p < ∞ is bound up with a “weak-
type” L1 estimate, as was the case for the maximal function treated
in Section 4 of Chapter 2. Here we arrive at this kind of estimate by
studying the action of T on variants of the atoms that are relevant for
the Hardy space theory. In the present situation we deal with “1-atoms,”
the case p = 1 of the p-atoms (specifically excluded from Corollary 5.3
in the previous chapter!).

A 1-atom a associated to a ball B is an L2 function with:
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(i) a is supported in B, and
∫ |a(x)| dx ≤ 1.

(ii)
∫

B
a(x) dx = 0.

Notice that the L2 norm of a does not enter into the conditions (i) and
(ii) above; the requirement that a ∈ L2 is made only for technical conve-
nience.

For each ball B we will denote by B∗ its double, that is, the ball
with the same center as B but with twice its radius. The key estimate
involving our operator T and 1-atoms is that there is a bound A so that

(24)
∫

(B∗)c

|T (a)(x)| dx ≤ A, for all 1-atoms a.

Now (24) will be a consequence of an inequality satisfied by the function
k associated to the distribution kernel K of the operator, namely that
for all r > 0

(25)
∫
|x|≥2r

|k(x − y) − k(x)| dx ≤ A, whenever |y| ≤ r.

To see (25), note that by the mean-value theorem,

|k(x − y) − k(x)| ≤ |y| sup
z∈L

|∇k(z)|,

where L is the line segment joining x to x − y. Since |x| ≥ 2r and |y| ≤ r,
it follows that |z| ≥ |x|/2, whenever z ∈ L. Thus the differential inequal-
ities (20) for |x| = 1 show that |k(x − y) − k(x)| ≤ c|x|−d−1, and (25)
follows because r

∫
|x|≥2r

|x|−d−1 dx is independent of r (and is finite).
To deduce (24) from this, observe first that whenever f is in S and is

supported in the ball B, then for x /∈ B∗ we have

T (f)(x) =
∫

B

k(x − y)f(x) dy.

This is so because the distribution K agrees with the function k away
from the origin and here |x − y| ≥ r. Since k(x − y) is bounded there, a
passage to the limit shows that the same identity holds if f is supported
in B and is assumed merely to be in L2. So if a is a 1-atom associated
to B and x /∈ B∗, we have

T (a)(x) =
∫

B

k(x − y)a(y) dy =
∫

B

(k(x − y) − k(x))a(y) dy,
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because
∫

B
a(y) dy = 0. Therefore,∫

x/∈B∗
|T (a)(x)| dx ≤

∫
B

{∫
x/∈B∗

|k(x − y) − k(x)| dx

}
|a(y)| dy,

and (24) is established if we invoke (25) with r the radius of the ball B.

Step 3: The decomposition. We exploit (24) by decomposing any in-
tegrable function f as a sum of a “good” function g, for which the L2

theory applies, and an infinite sum of multiples of atoms, for which the
estimate (24) is used.

Lemma 3.3 For each f in L1(Rd) and α > 0, we can find an open
set Eα and a decomposition f = g + b so that:

(a) m(Eα) ≤ c
α‖f‖L1(Rd).

(b) |g(x)| ≤ cα, for all x.

(c) Eα is a union
⋃

Qk of cubes Qk whose interiors are disjoint. More-
over b =

∑
k bk, with each function bk supported in Qk and∫

|bk(x)| dx ≤ cαm(Qk), while
∫

Qk
bk(x) dx = 0.

Note that (c) implies that b is supported in Eα hence g(x) = f(x) if
x /∈ Eα. Observe also that each bk is of the form cαm(Qk)ak, where ak

is a 1-atom.

The proof of the lemma is a simplified version of the argument used to
prove Proposition 5.1 in the previous chapter; in particular, here we use
the full maximal function f∗ instead of the truncated version f†. The
guiding idea is to try to cut the domain of f into the set when |f(x)| > α
and its complement. However, as before, we must be more subtle and in
the present situation cut f according to where f∗(x) > α. Thus we take
Eα = {x : f∗(x) > α}. The conclusion (a) is therefore the weak-type
estimate for f∗ given in (27) of the previous chapter.

Next, since Eα is open we can write it as
⋃

k Qk, where the Qk are
closed cubes with disjoint interiors, with the distance of Qk from Ec

α

comparable to the diameter of Qk. (This is Lemma 5.2 of the previous
chapter.) Now set

mk =
1

m(Qk)

∫
Qk

f dx.
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Thus if xk is a point of Ec
α closest to Qk, one has |mk| ≤ cf∗(xk) ≤

cα. We define g(x) = f(x) for x /∈ Ec
α and g(x) = mk for x ∈ Qk. As a

result |f(x)| ≤ α for x ∈ Ec
α, because f∗(x) ≤ α there. Altogether then

|g(x)| ≤ cα, proving conclusion (b).
Finally, b(x) = f(x) − g(x) is supported in Eα =

⋃
k Qk and hence b =∑

k bk, where each bk is supported in Qk and equals f(x) − mk there.
Thus∫

|bk(x)| dx =
∫

Qk

|f(x) − mk| dx ≤
∫

Qk

|f(x)| dx + |mk|m(Qk).

Also as before∫
Qk

|f(x)| dx ≤ cm(Qk)f∗(xk) ≤ cαm(Qk),

hence ∫
|bk(x)| dx ≤ cαm(Qk),

since |mk| ≤ cα. Clearly,
∫

bk(x) dx =
∫

Qk
(f(x) − mk) dx = 0, and so

the decomposition lemma is proved.

One observes that if we were also given that f was in L2(Rd), then it
would follow that g, b, and each bk would also be in L2(Rd). Since the
supports of the bk are disjoint, the sum b =

∑
k bk would converge not

only in the obvious pointwise sense, but also in the L2 norm.

Step 4: Weak-type estimate. Here we show that

(26) m({x : |T (f)(x)| > α}) ≤ A

α
‖f‖L1 , for each α > 0

whenever f ∈ L1 ∩ L2, with the bound A independent of f and α. To do
this we decompose f = g + b according to the lemma and note that

m({x : |T (f)(x)| > α}) ≤ m({x : |T (g)(x)| > α/2})
+ m({x : |T (b)(x)| > α/2}),

because T (f) = T (g) + T (b). Now by Tchebychev’s inequality and the
L2 estimate for T ,

m({x : |T (g)(x)| > α/2}) ≤
(

2
α

)2

‖Tg‖2
L2 ≤ c

α2
‖g‖2

L2 .
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However
∫ |g(x)|2 dx =

∫
Ec

α
|g(x)|2 dx +

∫
Eα

|g(x)|2 dx. Now on Ec
α we

have g(x) = f(x) and |g(x)| ≤ cα, so the first integral on the right is
majorized by cα‖f‖L1 . Also∫

Eα

|g(x)|2 dx ≤ cα2m(Eα) ≤ cα‖f‖L1 ,

by conclusion (a) of the lemma. As a result

m({x : |T (g)(x)| > α/2}) ≤ c

α
‖f‖L1 .

To deal with T (b) =
∑

k T (bk), we let Bk denote the smallest ball that
contains Qk, and B∗

k the double of Bk. We define E∗
α =

⋃
B∗

k. Now,
again by Tchebychev’s inequality, for a bounded set S,

m({x ∈ S : |T (b)(x)| > α/2}) ≤ 2
α

∫
S

|T (b)(x)| dx

≤ 2
α

∑
k

∫
S

|T (bk)(x)| dx,

since T (b) =
∑

k T (bk), with convergence in the L2 norm.
Now set S = (E∗

α)c ∩ B, where B is a large ball. Letting the radius of
B tend to infinity then yields

m({x /∈ E∗
α : |T (b)(x)| > α/2}) ≤ 2

α

∑
k

∫
(B∗

k)c

|T (bk)(x)| dx,

because E∗
α =

⋃
B∗

k implies that (E∗
α)c ⊂ (B∗

k)c for each k. However
as we have noted, bk is of the form cαm(Qk)ak, where ak is a 1-atom
associated to the ball Bk. Hence the estimate (24) gives

m({x ∈ (E∗
α)c : |T (b)(x)| > α/2}) ≤ c

∑
k

m(Qk) = cm(Eα) ≤ c

α
‖f‖L1 .

Finally,

m(E∗
α) ≤

∑
k

m(B∗
k) = c

∑
m(Qk) = cm(Eα) ≤ c′

α
‖f‖L1 ,

because m(B∗
k) = cm(Qk) for every k.

Gathering the inequalities for T (g) and T (b) together then shows that
the weak-type estimate (26) is established.
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Step 5: The Lp inequalities. We now borrow the idea used in Chapter 2
in the proof of the Lp estimates for the maximal function f∗ in which the
weak-type inequality is transformed to its more elaborate form, given in
equation (28) of that chapter. In our case the stronger version is
(27)

m({x : |T (f)(x)| > α}) ≤ A

(
1
α

∫
|f |>α

|f | dx +
1
α2

∫
|f |≤α

|f |2 dx

)
,

whenever f belongs to both L1 and L2. To prove this, we cut f (this time,
more simply) into two parts for each α > 0, according to the size of f .
Namely, we set f = f1 + f2 where f1(x) = f(x) if |f(x)| > α, and f1(x) =
0 otherwise; also f2(x) = f(x) if |f(x)| ≤ α, and f2(x) = 0 otherwise.
Then again

m({|T (f)(x)| > α}) ≤ m({|T (f1)(x)| > α/2}) + m({|T (f2)(x)| > α/2}).
By the weak-type estimate just proved,

m({|T (f1)(x)| > α/2}) ≤ A

α
‖f1‖L1 =

A

α

∫
|f |>α

|f | dx.

By the L2-boundedness of T and Tchebychev’s inequality

m({|T (f2)(x)| > α/2}) ≤
(

2
α

)2

‖T (f2)‖2
L2 =

A

α2

∫
|f |≤α

|f |2 dx,

proving (27).
Now (see (29) in Chapter 2)∫

|T (f)(x)|p dx =
∫ ∞

0

λ(α1/p) dα,

where λ(α) = m({x : |T (f)(x)| > α}). Therefore, because of (27), the
above integrals are majorized by

A

(∫ ∞

0

α−1/p

(∫
|f |>α1/p

|f | dx

)
dα +

∫ ∞

0

α−2/p

(∫
|f |≤α1/p

|f |2 dx

)
dα

)
.

We have∫ ∞

0

α−1/p

(∫
|f |>α1/p

|f | dx

)
dα =

∫
|f |

(∫ |f |p

0

α−1/p dα

)
dx

= ap

∫
|f |p dx
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if p > 1 where ap = p/(p − 1). Also,∫ ∞

0

α−2/p

(∫
|f |≤α1/p

|f |2 dx

)
dα = bp

∫
|f |p dx

if p < 2, with bp = p/(2 − p). Thus we get

‖T (f)‖Lp ≤ Ap‖f‖Lp ,

with Ap = A · p · ( 1
p−1 + 1

2−p). This takes care of the case 1 < p < 2 (the
case p = 2 having been settled before).

To pass to the case 2 ≤ p < ∞, we use the duality of Lp spaces set
forth in Section 4 of the first chapter.

We note that whenever f and g are in S then by Plancherel’s theorem∫
Rd

T (f)g dx =
∫

Rd

m(ξ)f̂(ξ)ĝ(ξ) dξ =
∫

Rd

fT ∗(g) dx.

Here T ∗(g) = g ∗ K∗, where (K∗)∧ = m, with m = K∧. Now m satisfies
the same characterization (22) that m does, and hence the results above
apply to T ∗. In particular the identity

(28)
∫

Rd

(Tf)g dx =
∫

Rd

f(T ∗g) dx

extends to f and g in L2.
Next with 2 ≤ p < ∞, let q be its dual exponent (1/p + 1/q = 1),

where now 1 < q ≤ 2. Then, by Lemma 4.2 in Chapter 1,

‖T (f)‖Lp = sup
g

∣∣∣∣∫ T (f)g dx

∣∣∣∣ ,
where the supremum is taken over all g that are simple with ‖g‖Lq ≤ 1.
However∣∣∣∣∫ T (f)g dx

∣∣∣∣ =
∣∣∣∣∫ f(T ∗(g)) dx

∣∣∣∣ ≤ ‖f‖Lp‖T ∗(g)‖Lq ≤ Aq‖f‖Lp ,

by Hölder’s inequality and the boundedness of T ∗ on Lq (1 < q ≤ 2).
The result is now (23) for all f ∈ S, for 1 < p < ∞, concluding the proof
of the theorem.

We make two closing comments about the theorem just proved.
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• The result leads to “interior” estimates for solutions of elliptic equa-
tions in terms of Lp based Sobolev spaces. As such, these may be
viewed as a quantitative version of Theorem 2.14. This is outlined
in Problem 3.

• The essential properties of K that enter in the proof of the Lp

theorem are, first, the L2 boundedness via the Fourier transform,
and second, the use of inequality (25). This inequality has natu-
ral extensions to a variety of contexts that arise in applications,
in particular where the underlying structure of Rd is replaced by
another suitable “geometry.” However, obtaining L2 boundedness
in other settings is more problematic, since in general the Fourier
transform may be unavailing. For this, further ideas have been
developed that use the almost-orthogonality principle in Proposi-
tion 7.4 of Chapter 8, but these will not be pursued here.

4 Exercises

1. Suppose F is a distribution on Ω and F = f , with f a Ck function in Ω. Show
that ∂α

x F , taken in the sense of distributions, agrees with ∂α
x f for each |α| ≤ k.

2. The following represent converses to the previous exercise.

(a) Suppose f and g are continuous functions on (a, b) ⊂ R and df
dx

(taken in
the sense of distributions) agrees with g. Show that for every x ∈ (a, b),
(f(x + h) − f(x))/h → g(x) as h → 0.

(b) If f and g are merely assumed to be in L1(a, b) with df
dx

= g in the sense
of distributions, then f is absolutely continuous and (f(x + h) − f(x))/h →
g(x) as h → 0 for a.e. x.

As a result, if f is a continuous but nowhere differentiable function on R,
then the distribution derivative of f is not a locally integrable function on
any sub-interval.

(c) Generalize (a) as follows: Suppose k ≥ 1 is an integer, and that f is a
continuous function on an open set Ω. If for each multi-index α with |α| ≤ k,
the distribution ∂α

x f equals a continuous function gα, then f is of class Ck

and ∂α
x f = gα as functions, for all |α| ≤ k.

[Hint: To see (a), let x0 ∈ (a, b), h > 0, and let η be a test function on (a, b) so
that

R

η = 1. With δ > 0, define ηδ(x) = δ−1η(x/δ) and

ϕ(x) =

Z x

−∞
ηδ(x0 + h − y) − ηδ(x0 − y) dy.

Then
R

f(x) d
dx

ϕ(x) dx = − R g(x)ϕ(x) dx and let δ, h → 0.
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For (b), show as a first step that, up to a constant, f equals the indefinite
integral of g, almost everywhere. Then use Theorem 3.8 in Chapter 3, Book III,
about the differentiability almost everywhere of an absolutely continuous function.]

3. Show that a bounded function f on Rd satisfies a Lipschitz condition (also
known as a Hölder condition of exponent 1)

|f(x) − f(y)| ≤ C|x − y|, for all x, y ∈ Rd,

if and only if f ∈ L∞ and all the first order partial derivatives ∂f/∂xj , 1 ≤ j ≤ d,
belong to L∞ in the sense of distributions.

[Hint: Let fn = f ∗ ψn, where ψn is an approximation to the identity as in Corol-
lary 1.2. Then ∂fn/∂xj ∈ L∞ uniformly in n.]

4. Suppose F is a distribution on Ω.

(a) There exist fn ∈ C∞, each of compact support in Ω, so that fn → F in the
sense of distributions.

(b) If F is supported in the compact set C, then for every ε > 0 we can choose
the fn so that their supports are in the ε-neighborhood of C.

5. Let f be locally integrable on Rd. Then the “support” of f in the measure-
theoretic sense is the set E = {x : f(x) �= 0}. Note that E is essentially determined
only modulo sets of measure zero.

Show that the support of f , as a distribution, is equal to the intersection of all
closed sets C such that E − C has measure zero.

6. Assume that Ω is a region in Rd defined by Ω = {x ∈ Rd : xd > ϕ(x′)}, with
x = (x′, xd) ∈ Rd−1 × R, and ϕ a C1 function. Suppose f is a function that is
continuous in Ω and whose first derivatives are also continuous in Ω, with f |∂Ω = 0.

Let f̃ be the extension of f to Rd defined by f̃(x) = f(x) if x ∈ Ω, and f̃(x) = 0

if x /∈ Ω. Then ∂f̃
∂xj

, taken in the sense of distributions, is the function which is ∂f
∂xj

in Ω, and zero in Ω
c
. (Note that it is not necessarily true that ∂f̃

∂xj
is continuous.)

[Hint: Show that − R
Ω

f(x) ∂ψ
∂xj

dx =
R

Ω
∂f
∂xj

ψ dx for all C∞ functions ψ of compact

support in Rd.]

7. Show that the distribution F is tempered if and only if there is an integer N ,
and a constant A, so that for all R ≥ 1,

|F (ϕ)| ≤ ARN sup
|x|≤R, 0≤|α|≤N

|∂α
x ϕ(x)| ,

for all ϕ ∈ D supported in |x| ≤ R.

8. Suppose F is a homogeneous distribution of degree λ. Show that F is tempered.



4. Exercises 147

[Hint: Fix η ∈ D, η(x) = 1, for |x| ≤ 1, η supported in |x| ≤ 2. Let ηR(x) =
η(x/R). Find N so that |η1F (ϕ)| ≤ c‖ϕ‖N . Then deduce that |(ηRF )(ϕ)| ≤
cRN+|λ|‖ϕ‖N .]

9. Check that on the real line, f(x) = ex, considered as a distribution, is not
tempered.

[Hint: Show that the criterion in Exercise 7 fails for every N .]

10. Verify that D is dense in S.

[Hint: Fix η ∈ D so that η = 1 in a neighborhood of the origin. Let ηk(x) = η(x/k)
and consider ϕk = ηkϕ.]

11. Suppose that ϕ1, ϕ2 ∈ S.

(a) Verify that ϕ1 · ϕ2 belongs to S.

(b) Using the Fourier transform, prove that ϕ1 ∗ ϕ2 ∈ S.

(c) Show directly from the definition of convolution that ϕ1 ∗ ϕ2 ∈ S.

12. Prove that if F1 is a distribution of compact support and ϕ ∈ S, then F1 ∗ ϕ ∈
S.

[Hint: For each N , there exists a constant cN so that

‖ψ∼
y ‖N ≤ cN (1 + |y|)N‖ψ‖N .]

13. Use the previous exercise to prove that if F1 and F are distributions with F1

having compact support and F being tempered then:

(a) F ∗ F1 is tempered, and;

(b) (F ∗ F1)
∧ = F∧

1 F∧, (F∧
1 is C∞ and slowly increasing.)

14. Check that f(x) = 1
2
|x| is a fundamental solution for d2

dx2 on R.

15. A d-dimensional generalization of the identity for the Heaviside function is
the identity

δ =
d
X

j=1

„

∂

∂xj

«

hj ,

with hj(x) = 1
Ad

xj

|x|d , and Ad = 2πd/2/Γ(d/2) denotes the area of the unit sphere

in Rd.

[Hint: When d > 2, write δ =
Pd

j=1
∂

∂xj

“

∂
∂xj

Cd|x|−d+2
”

.]

16. Consider the complex plane C = R2, with z = x + iy.
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(a) Note that the Cauchy-Riemann operator

∂z =
1

2

„

∂

∂x
+ i

∂

∂y

«

is elliptic.

(b) Show that the locally integrable function 1/(πz) is a fundamental solution
for ∂z.

(c) Suppose f is continuous in Ω, and ∂zf = 0 in the sense of distributions.
Then f is analytic.

[Hint: For (b), use Theorem 2.9, and note that � = 4∂z∂z, where ∂z = 1
2

“

∂
∂x

− i ∂
∂y

”

.]

17. Suppose f(z) is a meromorphic function on Ω ⊂ C. Prove:

(a) log |f(z)| is locally integrable.

(b) �(log |f(z)|) taken in the sense of distributions is equal to 2π
P

j mjδj −
2π
P

k m′
kδk. Here the δj are the delta functions placed at the distinct zeroes

of f , namely δj(ϕ) = ϕ(zj), and the δk are placed at the poles z′
k of f ; also

mj , and m′
k are the respective multiplicities.

[Hint: 1
2π

log |z| is a fundamental solution of �.]

18. Prove that a distribution F is homogeneous of degree λ if and only if

d
X

j=1

xj
∂F

∂xj
= λF.

[Hint: For the converse, consider Φ(a) = F (ϕa) for a > 0, ϕ ∈ D. Then Φ(a) is

C∞ for a > 0, and dΦ(a)
da

= λ
a
Φ(a).]

19. Prove the following facts about distributions in R.

(a) Given a distribution F , there exists a distribution F1 so that

d

dx
F1 = F.

(b) Show that F1 is unique modulo an additive constant.

[Hint: For (a) fix ϕ0 ∈ D, with
R

ϕ0 = 1, and note that each ϕ ∈ D can be written
uniquely as ϕ = dψ

dx
+ aϕ0 for some ψ ∈ D and a constant a. Then define F1(ϕ) =

F (ψ). For (b), use the fact that d/dx is elliptic.]

20. Show that if λ1, . . . , λd are distinct complex exponents and
Pn

j=1(ajx
λj +

bjx
λj log x) = 0 for all x > 0, then aj = bj = 0 for all 1 ≤ j ≤ n.
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[Hint: Proceed as in the proof of Lemma 2.6, and use the fact that
R R

1
x−1+iµj dx

is equal to log R if µj = 0 and that this integral is O(1) if µj is real and �= 0.]

21. Let F (x, t) = Ht(x), for t > 0, and F (x, t) = 0, when t ≤ 0, as in Theo-
rem 2.10. Prove directly that

F̂ (ξ, τ) =
1

4π2|ξ|2 + 2πiτ

where (ξ, τ) ∈ Rd × R, with ξ dual to x, and τ dual to t.

[Hint: Use the two identities

Z ∞

0

e−4π2|ξ|2te−2πiτt dt =
1

4π2|ξ|2 + 2πiτ
for |ξ| > 0

and
Z

Rd

Ht(x)e−2πix·ξ dx = e−4π2|ξ|2t for t > 0.]

22. Suppose f is a locally integrable function defined on R, and let u be the
function defined by u(x, t) = f(x − t), for (x, t) ∈ R2. Verify that u, taken as a
distribution, satisfies the wave equation

∂2u

∂x2
=

∂2u

∂t2
.

More generally, let F be any distribution on R. Construct U (in analogy to f(x −
t)) as follows. If ϕ is in D(R2), R2 = {(x, t)}, set U(ϕ) =

R

R
(F ∗ ϕ(x, ·))(x) dx.

Then U satisfies

∂2U

∂x2
=

∂2U

∂t2
.

Note that U is invariant under the translations (h, h), for h ∈ R.

23. Show that in R3 the function

F (x) =
−1

4π|x|e
−|x|

is a fundamental solution of the operator �− I. The function F is the “Yukawa
potential” in the theory of elementary particles. In contrast to the “Newtonian
potential” −1/(4π|x|), the fundamental solution of �, the function F has a very
rapid decay at infinity and it thus accounts for the short-range forces in the theory.

[Hint: Let F be the inverse Fourier transform of −(1 + 4π2|ξ|2)−1. Going to polar
coordinates in R3, one then uses the identity

Z

|ξ|=1

e2πiξ·x dσ(ξ) =
2 sin(2π|x|)

|x| ,
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together with the Fourier transform of the conjugate Poisson kernel, given by (18)
of the previous chapter.]

24. The following statements deal with the uniqueness of the fundamental solu-
tions of the Laplacian.

(a) Up to an additive constant, the unique fundamental solutions of � in Rd,
d ≥ 2, that are rotationally invariant, are the ones given in Theorems 2.8
and 2.9.

(b) The unique fundamental solution of � in Rd, d ≥ 3, that vanishes at infinity
is the one given in Theorem 2.8.

25. A distribution F defined on Ω ⊂ R is positive if F (ϕ) ≥ 0 for all ϕ ∈ D
supported in Ω, with ϕ ≥ 0. Show that F is positive if and only if F (ϕ) =

R

ϕ dµ
for some Borel measure dµ on Ω that is finite on compact subsets.

26. Recall that a real-valued function on (a, b) is convex if f(x0(1 − t) + x1t) ≤
(1 − t)f(x0) + tf(x1), for x0, x1 ∈ (a, b), 0 ≤ t ≤ 1. (See also Problem 4 in Chap-
ter 3, Book III.) A function f on Ω ⊂ Rd is convex if the restriction of f to any
line segment in Ω is convex.

(a) Suppose f is continuous on (a, b). Then it is convex if and only if the

distribution d2f
dx2 is positive.

(b) If f is continuous on Ω ⊂ Rd, it is convex if and only if for each ξ =

(ξ1, . . . , ξd) ⊂ Rd the distribution
P

1≤i,j,≤d ξjξj
∂2f

∂xi∂xj
is positive.

[Hint: For (a), let ϕ ∈ D, ϕ ≥ 0,
R

ϕ dx = 1 and set ϕε(x) = ε−1ϕ(x/ε). Consider
fε = f ∗ ϕε.]

27. Every distribution F of compact support in Rd is of finite order in the
following sense: for each such F , there exists an integer M and continuous functions
Fα of compact support, so that

F =
X

|α|≤M

∂α
x Fα.

Moreover if F is supported in C, then for every ε > 0 we may take Fα to be
supported in an ε-neighborhood of C. Prove this by carrying out the following
three steps.

(a) Pick N so that |F (ϕ)| ≤ c‖ϕ‖N , for all ϕ ∈ S, and choose M0 so that 2M0 >
d + N . Let Q be the inverse Fourier transform of 1/(1 + 4π2|ξ|2)M0 , and
observe that Q is a fundamental solution of (1 −�)M0 , and Q is of class
CN .
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(b) For each ε, construct Qε corresponding to Q, so that (1 −�)M0Qε = δ + rε,
where Qε is supported in the ε-neighborhood of the origin (as in Corol-
lary 2.13). Prove that F ∗ Qε is a continuous function, using the fact that
|F (ϕ)| ≤ c‖ϕ‖N .

(c) Hence F = (1 −�)M0(Qε ∗ F ) − F ∗ rε, and the result is proved with M =
2M0.

28. One can characterize tempered distributions F whose Fourier transforms have
compact support.

We already know by Proposition 1.6 that such an F must in fact be a function
f that is C∞ and slowly increasing. A precise characterization when d = 1 is given
in the statement below.

The Fourier transform of a tempered distribution F is supported in the interval
[−M, M ] if and only F equals a function f that is C∞, slowly increasing, and having
an analytic extension to the complex plane as an entire function of exponential type
2πM ; that is, for every ε > 0, |f(z)| ≤ Aεe

2π(M+ε)|z|, where z = x + iy.

(An analogous assertion holds in higher dimensions.)

[Hint: Assume F̂ is supported in [−M, M ]. Using Exercise 27 allows us to write
F̂ =

P

|α|N ∂α
x (gα), where gα are continuous and supported in [−M − ε, M + ε],

and thus reduce to the case when F̂ is a continuous function.
To prove the converse, consider fδ = fγδ where γδ(x) = 1

δ

R

e−2πixξη(ξ/δ) dξ
with η ∈ C∞, supported in |ξ| ≤ 1 and such that

R

η = 1. Then γδ(z) is of expo-
nential type 2πδ and is rapidly decreasing on the real axis. Thus apply the simpler
version of the result given in Theorem 3.3, Chapter 4 in Book II to the function
fδ, and let δ → 0.]

29. In this exercise, we consider the L2 Sobolev spaces.
The space L2

m consists of the functions f ∈ L2(Rd) whose derivatives ∂α
x f taken

in the sense of distributions, are in L2(Rd) for all |α| ≤ m. This space is sometimes
denoted by Hm(Rd). Note that this is the special case for p = 2 of the Sobolev
space given as an example in Section 3 of Chapter 1. However, here we use a
slightly different (but equivalent) norm, which makes L2

m into a Hilbert space.
On L2

m we define the inner product

(f, g)m =
X

|α|≤m

(∂α
x f, ∂α

x g)0,

with (f, g)0 =
R

Rd f(x)g(x) dx. Then, L2
m with the norm ‖f‖L2

m
= (f, f)

1/2
m is a

Hilbert space.

(a) Verify that f ∈ L2
m if and only if f̂(ξ)(1 + |ξ|)m ∈ L2, and that the norms

‖f‖L2
m

and ‖f̂(ξ)(1 + |ξ|)m‖L2 are equivalent.

(b) If m > d/2, then f can be corrected on a set of measure zero, so that f
becomes continuous and is in fact in Ck, for k < m − d/2. This is a version
of the Sobolev embedding theorem.
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[Hint: ξαf̂ ∈ L1(Rd) if |α| < m − d/2.]

30. The following observation is useful in connection with the L2 theory of
Calderón-Zygmund distributions on Rd.

(a) The Fourier transform of the distribution
h

1
|x|d
i

equals c1 log |ξ| + c2, with

c1 �= 0.

(b) Prove the following consequence of (a). Suppose k is a homogeneous function
of degree −d that is C∞ away from the origin and with

Z

|x|=1

k(x) dσ(x) �= 0.

If K is any distribution that agrees with k away from the origin, then the
Fourier transform of K is not a bounded function. Another way of stating
this is that the operator T , defined by T (ϕ) = K ∗ ϕ initially defined for
ϕ ∈ D, does not extend to a bounded operator on L2(Rd).

31. Suppose k is a C∞ function homogenenous of degree −d, not identically equal
to zero, and

Z

|x|=1

k(x) dσ(x) = 0.

If K is the principal value distribution defined by k, that is, K = pv(k), then K is
a Calderón-Zygmund distribution but the operator T given by Tf = f ∗ K is not
bounded on L1 or L∞.

The special case of the Hilbert transform is in Exercise 7, Chapter 2.

[Hint: If ϕ ∈ D, then Tϕ(x) = ck(x) + O(|x|−d−1) as |x| → ∞, where c =
R

ϕ.]

32. The cancelation condition (21) for the Calderón-Zygmund distributions for
some n > 1 implies the condition for n = 1. Show this by first proving the following
fact: Whenever K satisfies (20) and (21) for some n ≥ 1, then for every 1 ≤ j ≤ d,
the distribution xj · K equals the locally integrable function xjk.

[Hint: The distribution xjK − xjk is supported at the origin. Then use The-
orem 1.7 to test xjK − xjk against ϕr as r → 0 for suitable ϕ, to conclude that
this difference vanishes. Next, write any C(1)-normalized bump function as ϕ(x) =
η(x) +

Pd
j=1 xjϕj(x) where η and the ϕj are multiples of C(n) and C(0)-normalized

bump functions respectively, and use the above fact.]

33. Suppose k is a C∞ function in Rd − {0}, that satisfies the differential inequal-
ities (20). Then there is a Calderón-Zygmund distribution K which has k as its

associated function if and only if sup0<a<b

˛

˛

˛

R

a<|x|<b
k(x) dx

˛

˛

˛

< ∞.

[Hint: In one direction, note that |K(ηb − ηa)| ≤ 2A, where η(x) = 1 if |x| ≤ 1/2,
and η(x) = 0 if |x| ≥ 1, with η ∈ C∞. In the other direction, define

K(ϕ) =

Z

|x|≤1

k(x)(ϕ(x) − ϕ(0)) dx +

Z

|x|≥1

k(x)ϕ(x) dx
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and verify that the conditions (20) and (21) hold for K.]

34. Suppose H is a Calderón-Zygmund distribution and η belongs to S. Verify
that ηK is a Calderón-Zygmund distribution.

5 Problems

1. We consider periodic distributions and their Fourier series.

(a) The notion of a periodic distribution on Rd can be defined in two equivalent
ways:

First, one can consider distributions F on Rd which are periodic in the sense
that τh(F ) = F for all h ∈ Zd;

Alternatively, one can consider the continuous linear functionals on D(Td),
the space of C∞ periodic functions on Rd. (Here Td = Rd/Zd denotes the
d-dimensional torus.)

(b) Note that if ϕ ∈ D(Td), then ϕ has a Fourier series expansion

ϕ(x) =
X

n

ane2πin·x,

where the Fourier coefficients an =
R

Td f(x)e−2πin·x dx are rapidly decreas-

ing, that is, for every N > 0, |an| ≤ O(|n|−N ) as |n| → ∞.

Similarly, if F is a periodic distribution, and an = F (e−2πinx) denote its
Fourier coefficients, then an are slowly increasing in the sense that for some
N > 0, |an| ≤ O(|n|N ) as |n| → ∞.

Moreover, the Fourier series
P

ane2πinx converges to F in the sense of dis-
tributions.

[Hint: To prove the equivalence in (a), consider the “periodization” operator P :
D(Rd) → D(Td),

P (ϕ)(x) =
X

h∈Zd

τh(ϕ)(x) =
X

h∈Zd

ϕ(x − h).

Then find γ ∈ D(Rd) so that P (γ) = 1. This allows to prove that P is surjective,
and that, in the same way, its dual P ∗ : D∗

2 → D∗
1 is also surjective. (Here D∗

1

and D∗
2 denote, respectively, the two spaces of distributions described in (a).) To

construct γ, pick ψ ∈ D(Rd) so that ψ ≥ 0 and ψ = 1 on {0 ≤ xj < 1, 1 ≤ j ≤ d},
and let γ = ψ/P (ψ).]

2. Suppose Tf = f ∗ K is a singular integral operator as in Theorem 3.2 of Sec-
tion 3. Then the mapping f �→ T (f) is bounded on the Hardy space H1

r, and in
particular maps H1

r to L1.
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[Hint: Consider first a 2-atom a associated to the unit ball B. Then for an appropri-
ate constant c (bounded independently of a) we have T (a) = c(a∗ + Φ). Here a∗ is
a 2-atom for the ball Bast, the double of B, and Φ satisfies |Φ(x)| ≤ (1 + |x|)−d−1,
R

Rd Φ(x) dx = 0. With this apply Exercise 21 in Chapter 2. Then obtain the analog
for 2-atoms a, after rescaling and translation.]

3. Prove the following interior estimates for an elliptic operator L of order m with
constant coefficients.

Suppose O and O1 are bounded subsets of Rd with O ⊂ O1. Assume u and f
are Lp functions in O1 with Lu = f in O1 in the sense of distributions. Then if
1 < p < ∞ and k is a non-negative integer, we have

X

|α|≤m+k

‖∂α
x u‖Lp(O) ≤ c

0

@

X

|β|≤k

‖∂β
x f‖Lp(O1) + ‖u‖Lp(O1)

1

A

where the derivatives are taken in the sense of distributions.

[Hint: Consider the parametrix Qε = ηεQ given in Corollary 2.13 which is sup-
ported in |x| ≤ ε. Here ε is chosen so that Oε ⊂ O1, where Oε are the points of
distance ≤ ε from O.

Set U = ψu, with ψ a C∞ function that is 1 near Oε but vanishes outside O1.
Then

L(U) = ψL(u) +
X

|γ|<m

ψγ∂γ
xu,

and what is important is that the ψγ vanishes in Oε. Now U + rε ∗ U = Qε ∗ L(U),
where rε ∈ S. This gives

ψu = Qε ∗ (ψf) − rε(ψu) +
X

r

Qε ∗ (ψγ∂γ
xu).

As has been pointed out, ∂α
x Q are Calderón-Zygmund distributions whenever |γ| ≤

m, so the same is true for Qε. Then using Theorem 3.2, the result follows.]

4.∗ Let P (x) be any real polynomial in Rd, and k a homogeneous function of
degree −d with

R

|x|=1
k(x) dσ(x) = 0.

(a) One can define the tempered distribution pv
“

eiP (x)k(x)
”

= K by

K(ϕ) = lim
ε→0

Z

|x|≥ε

eiP (x)k(x)ϕ(x) dx.

(b) Then the Fourier transform of K is a bounded function (with bound inde-
pendent of the coefficients of P ).

5.∗ Let Q be a fixed real-valued polynomial on Rd. Consider the distributions
initially defined for Re(s) > 0 by

I(s)(ϕ) =

Z

Q(x)>0

|Q(x)|sϕ(x) dx, where ϕ ∈ S.
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Then I(s)(ϕ) has a meromorphic continuation to the whole complex s-plane, with
poles at most at s = −k/m, where m is a positive integer determined by Q, and k
is any positive integer. The order of the poles do not exceed d.

6.∗ As a consequence of the results in Problem 5∗, one may prove the following.

(a) Suppose L =
P

|α|≤m aα∂α
x is a non-zero partial differential operator on Rd

with aα complex constants. Then L has a tempered fundamental solution.
As an immediate corollary we also have:

(b) Suppose P is a complex-valued polynomial on Rd. Then there exists a
tempered distribution F that agrees with 1/P where P (x) �= 0.

In fact, let P be the characteristic polynomial of L and apply the result of the
previous problem to Q = |P |2. Suppose I(s) has a pole of order r at s = 1, then
define the tempered distribution F by

F = P
1

r!

dr

dsr
(s + 1)rI(s)

˛

˛

˛

˛

s=−1

.

Consequently, PF = 1, and the inverse Fourier transform of F is the desired fun-
damental solution of L.

7.∗ Suppose L =
P

|α|≤m aα∂α
x is a partial differential operator on Rd, with aα

complex constants. Then L is hypo-elliptic if and only if for each α �= 0

∂α
ξ P (ξ)

P (ξ)
→ 0 as |ξ| → ∞,

where P denotes the characteristic polynomial of L.

8.∗ We describe several fundamental solutions of the wave operator

� =
∂2

∂t2
−�x,

where (x, t) ∈ Rd × R and �x =
Pd

j=1
∂2

∂x2
j
.

We let Γ+ be the forward open cone = {(x, t) : t > |x|}, and Γ− = −Γ+, the
backward cone. For each s with Re(s) > −1 we define the function Fs by

(29) Fs(x, t) =

j

as(t
2 − |x|2)s/2, if (x, t) ∈ Γ+

0 otherwise.

Here a−1
s = 2s+dπ

d−1
2 Γ

`

s+d+1
2

´

Γ (s/2 + 1). Then s �→ Fs has an analytic continu-
ation in the complex s plane as an entire (tempered) distribution-valued function.
Moreover, one can prove that F+ = Fs|s=−d+1 is a fundamental solution of �.

Note that F−, obtained from F+ by mapping t �→ −t, is also a fundamental
solution, and F+ and F− are supported in Γ+ and Γ− respectively. In addition,
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if d is odd and d ≥ 3, then as vanishes for s = −d + 1, so both F+ and F− are
supported on the boundary of their cones, which is a reflection of the Huygens’
principle.

Finally, a third fundamental solution F0 of interest is given by

F∧
0 = lim

ε→0, ε>0

1

4π2

„

1

|ξ|2 − τ2 + iε

«

,

with the limit taken in the sense of distribution, and (ξ, τ) representing the dual
variables to (x, t). The fundamental solutions F+, F−, and F0 are each homo-
geneous of degree −2, and invariant under the Lorentz group of linear transfor-
mations of determinant 1 that preserves Γ+. Also each fundamental solution of
� with these invariance properties can be written as c1F+ + c2F− + c3F0, with
c1 + c2 + c3 = 1.



4 Applications of the Baire
Category Theorem

We see the profound difference that lies between sets
of the two categories; this difference lies not within
denumerability, nor within density, since a set of the
first category can have the power of the continuum and
can also be dense in any interval one considers; but it
is in some sense a combination of these two preceding
notions.

R. Baire, 1899

In the late nineteenth century, Baire introduced in his doctoral disser-
tation a notion of size for subsets of the real line which has since provided
many fascinating results. In fact, his careful study of functions led him to
the definition of the first and second category of sets. Roughly speaking,
sets of the first category are “small,” while sets of the second category
are “large.” In this sense the complement of a set of the first category is
“generic.”

Over time the Baire category theorem has been applied to metric
spaces in different and more abstract settings. Its noteworthy use has
been to show that a number of phenomena in analysis, found first in
specific counter-examples, are in fact generic occurrences.

This chapter is organized as follows. We begin by stating and proving
the Baire category theorem, and then proceed with the presentation of
a variety of interesting applications. We start with the result about
continuous functions which Baire proved in his thesis: a pointwise limit
of continuous functions has itself “many” points of continuity. Also,
we shall prove the existence of a continuous but nowhere differentiable
function, as well as the existence of a continuous function with Fourier
series diverging at a point, by showing that the category theorem allows
us to see that such functions are indeed generic. We also deduce from
Baire’s theorem two further general results, the open mapping and closed
graph theorems, and provide in each case an example of their use. Finally,
we apply the category theorem to show that a Besicovitch-Kakeya set is
generic in a natural class of subsets of R2.
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1 The Baire category theorem

Although Baire proved his theorem on the real line, his result actually
holds in the more general setting of complete metric spaces. For the
purpose of the applications we have in mind it is better to have access to
this more general formulation right away. Fortunately, the proof of the
theorem remains very simple and elegant.

To state the main result, we begin with a list of definitions. Let X be
a metric space with metric d, carrying the natural topology induced by
d. In other words, a set O in X is open if for every x ∈ O there exists
r > 0 so that Br(x) ⊂ O, where Br(x) denotes the open ball centered at
x and of radius r,

Br(x) = {y ∈ X : d(x, y) < r}.

By definition, a set is closed if its complement is open.
We define the interior E◦ of a set E ⊂ X to be the union of all open

sets contained in E. Also, the closure E of E is the intersection of all
closed sets containing E. Since one checks easily that the union of any
collection of open sets is open, and the intersection of any collection of
closed sets is closed, we see that E◦ is the “largest” open set contained
in E, and E is the “smallest” closed set containing E.

Suppose E is a subset of X. We say that the set E is dense in X if
E = X. Also, the set E is nowhere dense if the interior of its closure is
empty, (E)◦ = ∅. For instance, any point in Rd is nowhere dense in Rd.
Also, the Cantor set is nowhere dense in R, but the rationals Q are not
since Q = R. We note here that in general E is closed and nowhere dense
if and only O = Ec is open and dense.

We now describe the central notion of category due to Baire, and the
dichotomy it introduces.

• A set E ⊂ X is of the first category in X if E is a countable union
of nowhere dense sets in X. A set of the first category is sometimes
said to be “meager.” A set E that is not of the first category in X
is referred to as being of the second category in X.

• A set E ⊂ X is defined to be generic if its complement is of the
first category.

Thus the idea of category is to describe “smallness” in purely topological
terms (involving closures, interiors, etc.) It reflects the idea that elements
of a set of the first category are to be thought of as “exceptional,” while
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those of a generic set are to be considered “typical.” Connected with this
is the fact that a countable union of sets of the first category is of the
first category, while the countable intersection of generic sets is a generic
set. Also we record here the useful fact that any open dense set is generic
(this follows from our remark earlier).

In general relying on one’s intuition about the category of sets requires
a little caution. For instance, there is no link between this notion and
that of Lebesgue measure. Indeed, there are sets in [0, 1] of the first
category that are of full measure, and hence uncountable and dense. By
the same token, there are generic sets of measure zero. (Some examples
are discussed in Exercise 1.)

The main result of Baire is that “the continuum is of the second cate-
gory.” The key ingredient used in his argument is the fact that the real
line is complete. This is the main reason why his theorem immediately
carries over to the case of a complete metric space.

Theorem 1.1 Every complete metric space X is of the second category
in itself, that is, X cannot be written as the countable union of nowhere
dense sets.

Corollary 1.2 In a complete metric space, a generic set is dense.

Proof of the theorem. We argue by contradiction, and assume that X
is a countable union of nowhere dense sets Fn,

(1) X =
∞⋃

n=1

Fn.

By replacing each Fn by its closure, we may assume that each Fn is
closed. It now suffices to find a point x ∈ X with x /∈ ⋃

Fn.
Since F1 is closed and nowhere dense, hence not all of X, there exists an

open ball B1 of some radius r1 > 0 whose closure B1 is entirely contained
in F c

1 .
Since F2 is closed and nowhere dense, the ball B1 cannot be entirely

contained in F2, otherwise F2 would have a non-empty interior. Since F2

is also closed, there exists a ball B2 of some radius r2 > 0 whose closure
B2 is contained in B1 and also in F c

2 . Clearly, we may choose r2 so that
r2 < r1/2.

Continuing in this fashion, we obtain a sequence of balls {Bn} with
the following properties:

(i) The radius of Bn tends to 0 as n → ∞.
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(ii) Bn+1 ⊂ Bn.

(iii) Fn ∩ Bn is empty.

Choose any point xn in Bn. Then, {xn}∞n=1 is a Cauchy sequence be-
cause of properties (i) and (ii) above. Since X is complete, this sequence
converges to a limit which we denote by x. By (ii) we see that x ∈ Bn

for each n, and hence x /∈ Fn for all n by (iii). This contradicts (1), and
the proof of the Baire category theorem is complete.

To prove the corollary, we argue by contradiction and assume that
E ⊂ X is generic but not dense. Then there exists a closed ball B entirely
contained in Ec. Since E is generic we can write Ec =

⋃∞
n=1 Fn where

each Fn is nowhere dense, hence

B =
∞⋃

n=1

(Fn ∩ B).

It is clear that Fn ∩ B is nowhere dense, hence the above contradicts
Theorem 1.1 applied to the complete metric space B, and the corollary
is proved.

The theorem actually extends to certain cases of metric spaces that are
not complete, in particular to open subsets of a complete metric space.
To be precise, suppose we are given a subset X0 of a complete metric
space X. Then X0 is itself a metric space, inheriting its metric from X
by restricting the metric on X to X0. The fact is that if X0 is an open
subset of X, then the conclusion of the theorem holds for it; that is, X0

cannot be written as a countable union of sets that are nowhere dense
(in X0). See Exercise 3. A simple example is given by the open interval
(0, 1) with the usual metric.

1.1 Continuity of the limit of a sequence of continuous functions

Suppose X is a complete metric space, {fn} is a sequence of continuous
complex-valued functions on X, and that the limit

lim
n→∞

fn(x) = f(x)

exists for each x ∈ X. It is well known that if the limit is uniform in x,
then the limiting function f is also continuous. In general, when the limit
is just pointwise, we may ask: must f have at least one point of conti-
nuity? We answer this question affirmatively with a simple application
of the category theorem.
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Theorem 1.3 Suppose that {fn} is a sequence of continuous complex-
valued functions on a complete metric space X, and

lim
n→∞

fn(x) = f(x)

exists for every x ∈ X. Then, the set of points where f is continuous is
a generic set in X. In other words, the set of points where f is discon-
tinuous is of the first category.

Therefore f is in fact continuous at “most” points of X.

To show that the set D of discontinuities of f is of the first category,
we use a characterization of points of continuity of f in terms of its
oscillations. More precisely, we define the oscillation of the function f
at a point x by

osc(f)(x) = lim
r→0

ω(f)(r, x), where ω(f)(r, x) = supy,z∈Br(x) |f(y) − f(z)|.

The limit exists since the quantity ω(f)(r, x) decreases with r. In par-
ticular, we see that osc(f)(x) < ε if there exists a ball B centered at x
so that |f(y) − f(z)| < ε whenever y, z ∈ B. Two more observations are
in order:

(i) osc(f)(x) = 0 if and only if f is continuous at x.

(ii) The set Eε = {x ∈ X : osc(f)(x) < ε} is open.

Property (i) follows immediately from the definition of continuity. For (ii),
we note that if x ∈ Eε, there is an r > 0 so that supy,z∈Br(x) |f(y) −
f(z)| < ε. Consequently, if x∗ ∈ Br/2(x), then x∗ ∈ Eε because

sup
y,z∈Br/2(x∗)

|f(y) − f(z)| ≤ sup
y,z∈Br(x)

|f(y) − f(z)| < ε.

Lemma 1.4 Suppose {fn} is a sequence of continuous functions on a
complete metric space X, and fn(x) → f(x) for each x as n → ∞. Then,
given an open ball B ⊂ X and ε > 0, there exists an open ball B0 ⊂ B
and an integer m ≥ 1 so that |fm(x) − f(x)| ≤ ε for all x ∈ B0.

Proof. Let Y denote a closed ball contained in B. Note that Y is
itself a complete metric space. Define

E� = {x ∈ Y : sup
j,k≥�

|fj(x) − fk(x)| ≤ ε}.
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Then, since fn(x) converges for every x ∈ X, we must have

(2) Y =
∞⋃

�=1

E�.

Moreover, each E� is closed since it is the intersection of sets of the
type {x ∈ Y : |fj(x) − fk(x)| ≤ ε} which are closed by the continuity of
fj and fk. Therefore, by Theorem 1.1 applied to the complete metric
space Y , some set in the union (2), say Em, must contain an open ball
B0. By construction,

sup
j,k≥m

|fj(x) − fk(x)| ≤ ε whenever x ∈ B0,

and letting k tend to infinity we find that |fm(x) − f(x)| ≤ ε for all x ∈
B0. This proves the lemma.

To finish the proof of Theorem 1.3, we define

Fn = {x ∈ X : osc(f)(x) ≥ 1/n},

in other words, Fn = Ec
ε with ε = 1/n in the notation of (ii) above.

Then, by our observation (i), we have

D =
∞⋃

n=1

Fn,

where we recall that D is the set of discontinuities of f . The theorem
will be proved if we can show that each Fn is nowhere dense.

Fix n ≥ 1. Since Fn is closed, we must show that it has empty interior.
Assume on the contrary, that B is an open ball with B ⊂ Fn. Then, if
we set ε = 1/4n in the lemma, we find that there is an open ball B0 ⊂ B,
and an integer m ≥ 1 so that

(3) |fm(x) − f(x)| ≤ 1/4n, for all x ∈ B0.

By the continuity of fm, we may find a ball B′ ⊂ B0 so that

(4) |fm(y) − fm(z)| ≤ 1/4n, for all y, z ∈ B′.

Then, the triangle inequality implies

|f(y) − f(z)| ≤ |f(y) − fm(y)| + |fm(y) − fm(z)| + |fm(z) − f(z)|.
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If y, z ∈ B′, the first and third terms are bounded by 1/4n because of
condition (3). The middle term is also bounded by 1/4n due to (4).
Therefore

|f(y) − f(z)| ≤ 3
4n

<
1
n

whenever y, z ∈ B′.

Consequently, if x′ denotes the center of B′, we have osc(f)(x′) < 1/n
which contradicts the fact that x′ ∈ Fn. This concludes the proof of the
theorem.

1.2 Continuous functions that are nowhere differentiable

Our next application of the category theorem is to the problem of the
existence of a continuous function that is nowhere differentiable.

Our first answer to this question appeared in Chapter 4 of Book I where
we showed that the complex-valued function f given by the following
lacunary Fourier series

f(x) =
∞∑

n=0

2−nαei2nx with 0 < α ≤ 1

is continuous but nowhere differentiable. Moreover, a slight change in
the proof shows that both the real and imaginary parts of f are also
nowhere differentiable. Other examples arose in Chapter 7 of Book III,
in the context of the von Koch and space-filling curves.

Here, we prove the existence of such functions by showing that they
are generic in an appropriate complete metric space. The space we have
in mind consists of all real-valued continuous functions on [0, 1], which
we denote by

X = C([0, 1]).

This vector space is equipped with the sup-norm

‖f‖ = sup
x∈[0,1]

|f(x)|.

Together with this norm, C([0, 1]) is a complete normed vector space (a
Banach space). The completeness follows because the uniform limit of a
sequence of continuous functions is necessarily continuous. Finally, the
metric d on X is chosen to be d(f, g) = ‖f − g‖, and hence (X, d) is a
complete metric space.

Theorem 1.5 The set of functions in C([0, 1]) that are nowhere differ-
entiable is generic.
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We must show that the set D, of continuous functions in [0, 1] that are
differentiable at least at one point, is of the first category. To this end,
we let EN denote the set of all continuous functions so that there exists
0 ≤ x∗ ≤ 1 with

(5) |f(x) − f(x∗)| ≤ N |x − x∗|, for all x ∈ [0, 1].

These sets are related to D by the inclusion

D ⊂
∞⋃

N=1

EN .

To prove the theorem it suffices to show that for each N , the set EN is
nowhere dense. This will be achieved by showing successively:

(i) EN is a closed set.

(ii) the interior of EN is empty.

Thus
⋃

EN is of the first category, hence so is the set D.

Proof of property (i)
Suppose that {fn} is a sequence of functions in EN so that ‖fn − f‖ →

0. We must show that f ∈ EN . Let x∗
n be a point in [0, 1] for which (5)

holds with f replaced by fn. We may choose a subsequence {x∗
nk
} that

converges to a limit in [0, 1], which we denote by x∗. Then,

|f(x) − f(x∗)| ≤ |f(x) − fnk
(x)| + |fnk

(x) − fnk
(x∗)| + |fnk

(x∗) − f(x∗)|.
On the one hand, since ‖fn − f‖ → 0, we see that given ε > 0, there
exists K > 0 so that whenever k > K the first and third terms together
are < ε. On the other hand, we may estimate the middle term by

|fnk
(x) − fnk

(x∗)| ≤ |fnk
(x) − fnk

(x∗
nk

)| + |fnk
(x∗

nk
) − fnk

(x∗)|.
Therefore, applying the fact that fnk

∈ EN twice yields

|fnk
(x) − fnk

(x∗)| ≤ N |x − x∗
nk
| + N |x∗

nk
− x∗|.

Putting all these estimates together, we obtain

|f(x) − f(x∗)| ≤ ε + N |x − x∗
nk
| + N |x∗

nk
− x∗|

for all k > K. Letting k tend to infinity, and recalling that x∗
nk

→ x∗ we
get

|f(x) − f(x∗)| ≤ ε + N |x − x∗|.
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Since ε is arbitrary, we conclude that f ∈ EN , and (i) is proved.

Proof of property (ii)

To show that EN has no interior, let P denote the subspace of C([0, 1])
that consists of all continuous piecewise-linear functions. Also, for each
M > 0, let PM ⊂ P denote the set of all continuous piecewise-linear func-
tions, each of whose line segments have slopes either ≥ M or ≤ −M .
Functions in PM are naturally called “zig-zag” functions. Note the key
fact that PM is disjoint from EN if M > N .

Lemma 1.6 For every M > 0, the set PM of zig-zag functions is dense
in C([0, 1]).

Proof. It is plain that given ε > 0 and a continuous function f ,
there exists a function g ∈ P so that ‖f − g‖ ≤ ε. Indeed, since f is
continuous on the compact set [0, 1] it must be uniformly continuous,
and there exists δ > 0 so that |f(x) − f(y)| ≤ ε whenever |x − y| < δ. If
we choose n so large that 1/n < δ, and define g as a linear function on
each interval [k/n, (k + 1)/n] for k = 0, . . . , n − 1 with g(k/n) = f(k/n),
g((k + 1)/n) = f((k + 1)/n), we see at once that ‖f − g‖ ≤ ε.

It now suffices to see how to approximate g on [0, 1] by zig-zag functions
in PM . Indeed, if g is given by g(x) = ax + b for 0 ≤ x ≤ 1/n, consider
the two segments

ϕε(x) = g(x) + ε and ψε(x) = g(x) − ε.

Then, beginning at g(0), we travel on a line segment of slope +M until
we intersect ϕε. Then, we reverse direction and travel on a line segment
of slope −M until we intersect ψε (see Figure 1).

We obtain h ∈ PM so that

ψε(x) ≤ h(x) ≤ ϕε(x), for all 0 ≤ x ≤ 1/n,

and therefore |h(x) − g(x)| ≤ ε in [0, 1/n].
Then, we begin at h(1/n) and repeat this argument on the interval

[1/n, 2/n]. Continuing in this fashion, we obtain a function h ∈ PM with
‖h − g‖ ≤ ε. Hence ‖f − h‖ ≤ 2ε, and the lemma is proved.

We deduce at once from this lemma that EN has no interior points.
Indeed, given any f ∈ EN and ε > 0, we first choose a fixed M > N .
Then, there exists h ∈ PM so that ‖f − h‖ < ε, and moreover h /∈ EN

since M > N . Therefore, no open ball around f is entirely contained
in EN , which is the desired conclusion. Theorem 1.5 is proved.



166 Chapter 4. APPLICATIONS OF THE BAIRE CATEGORY THEOREM

h

ψε

g

ϕε

2/n0 1/n

Figure 1. Approximation by PM

2 The uniform boundedness principle

Next, we turn to another corollary of Baire’s theorem, one that itself has
many applications. The main conclusion we find is that if a sequence of
continuous linear functionals is pointwise bounded on a “large” set, then
this sequence must in fact be bounded.

Theorem 2.1 Suppose that B is a Banach space, and L is a collection
of continuous linear functionals on B.

(i) If sup�∈L |�(f)| < ∞ for each f ∈ B, then

sup
�∈L

‖�‖ < ∞.

(ii) This conclusion also holds if we only assume that sup�∈L |�(f)| < ∞
for all f in some set of the second category.

We note that the collection L need not be countable.

Proof. It suffices to show (ii) since by Baire’s theorem, B is of the
second category. So suppose that sup�∈L |�(f)| < ∞ for all f ∈ E, where
E is of the second category.

For each positive integer M , define

EM = {f ∈ B : sup
�∈L

|�(f)| ≤ M}.
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Then, the hypothesis in the theorem guarantees that

E =
∞⋃

M=1

EM .

Moreover, each EM is closed, since it can be written as an intersection
EM =

⋂
�∈L EM,�, where EM,� = {f : |�(f)| ≤ M} is closed by the con-

tinuity of �. Since E is of the second category, some EM must have
non-empty interior, say when M = M0. In other words, there exists
f0 ∈ B, and r > 0 so that Br(f0) ⊂ EM0 . Hence for all � ∈ L we have

|�(f)| ≤ M0 whenever ‖f − f0‖ < r.

As a result, for all ‖g‖ < r, and all � ∈ L we have

‖�(g)‖ ≤ ‖�(g + f0)‖ + ‖�(−f0)‖ ≤ 2M0,

and this implies the conclusion (ii) in the theorem.

2.1 Divergence of Fourier series

We now consider the problem of the existence of a continuous function
whose Fourier series diverges at a point.

In Book I we gave an explicit construction of a function with this
property. The main idea there was to break the symmetry inherent in
the Fourier series

∑
|n|�=0 einx/n of the sawtooth function.

The solution we present here, which relies on a simple application
of the uniform boundedness principle, provides only the existence of a
continuous function with diverging Fourier series. However, we also learn
that, in fact, a generic set of continuous functions have this property.

Let B = C([−π, π]) be the Banach space of continuous complex-valued
functions on [−π, π] with the usual sup-norm ‖f‖ = supx∈[−π,π] |f(x)|.
The Fourier coefficients of f ∈ B are defined by

an = f̂(n) =
1
2π

∫ π

−π

f(x)e−inxdx, for all n ∈ Z,

and the Fourier series of f is

f(x) ∼
∞∑

n=−∞
aneinx.
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Also, the N th partial sum of this Fourier series is defined by

SN (f)(x) =
N∑

n=−N

aneinx.

We saw in Book I an elegant expression for these partial sums in terms
of convolutions, namely

SN (f)(x) = (f ∗ DN )(x)

where

DN (x) =
N∑

n=−N

einx =
sin[(N + 1/2)x]

sin(x/2)

is the Dirichlet kernel, and

(f ∗ g)(x) =
1
2π

∫ π

−π

f(y)g(x − y)dy =
1
2π

∫ π

−π

f(x − y)g(y)dy

is the convolution on the circle.

Theorem 2.2 Let B denote the Banach space of continuous functions
on [−π, π] with the sup-norm.

(i) Given any point x0 ∈ [−π, π], there is a continuous function whose
Fourier series diverges at x0.

(ii) In fact, the set of continuous functions whose Fourier series diverge
on a dense set in [−π, π] is generic in B.

For a stronger version of these results, see Problem 3.

We begin with (i), and assume without loss of generality that x0 = 0.
Let �N denote the linear functional on B defined by

�N (f) = SN (f)(0) =
1
2π

∫ π

−π

f(−y)DN (y) dy.

If (i) were not true, then supN |�N (f)| < ∞ for every f ∈ B. Moreover, if
we knew that each �N is continuous, the uniform boundedness principle
would then imply that supN ‖�N‖ < ∞. The proof of (i) will thus be
complete if we can show that each �N is continuous yet ‖�N‖ → ∞ as N
tends to infinity.
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Now, �N is continuous for each N , since

|�N (f)| ≤ 1
2π

∫ π

−π

|f(−y)| |DN (y)| dy

≤ LN‖f‖,

where we have defined

LN =
1
2π

∫ π

−π

|DN (y)| dy.

In fact, the norm of the linear functional �N is precisely equal to the
integral LN .

Lemma 2.3 ‖�N‖ = LN for all N ≥ 0.

Proof. We already know from the above that ‖�N‖ ≤ LN . To prove
the reverse inequality, it suffices to find a sequence of continuous functions
{fk} so that ‖fk‖ ≤ 1, and �N (fk) → LN as k → ∞. To do so, first let g
denote the function equal to 1 when DN is positive and −1 when DN is
negative. Then g is measurable, ‖g‖ ≤ 1, and

LN =
1
2π

∫ π

−π

g(−y)DN (y) dy

where we used the fact that DN is even, hence g(y) = g(−y). Clearly,
there exists a sequence of continuous functions {fk} with −1 ≤ fk(x) ≤ 1
for all −π ≤ x ≤ π, and so that∫ π

−π

|fk(y) − g(y)| dy → 0 as k → ∞.

As a result, we find that �N (fk) → LN as k → ∞, while ‖fk‖ ≤ 1, hence
‖�N‖ ≥ LN , as desired.

The proof of part (i) in the theorem will be complete if we can show
that ‖�N‖ = LN tends to infinity as N → ∞. This is precisely the content
of our final lemma.

Lemma 2.4 There is a constant c > 0 so that LN ≥ c log N .

Proof. Since | sin y|/|y| ≤ 1 for all y, and sin y is an odd function, we
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see that1

LN ≥ c

∫ π

0

| sin(N + 1/2)y|
|y| dy

≥ c

∫ (N+1/2)π

0

| sinx|
x

dx

≥ c

N−1∑
k=0

∫ (k+1)π

kπ

| sinx|
x

dx

≥ c

N−1∑
k=0

1
(k + 1)π

∫ (k+1)π

kπ

| sinx| dx.

However, for all k we have
∫ (k+1)π

kπ
| sin x| dx =

∫ π

0
| sinx| dx, so that

LN ≥ c

N−1∑
k=0

1
k + 1

≥ c log N,

as was to be shown.

The proof of (ii) in Theorem 2.2 is immediate. Indeed, part (ii) of the
uniform boundedness principle, together with what we have just shown,
guarantees that the set of continuous functions f for which
supN |SN (f)(0)| < ∞ is of the first category, and consequently, the set
of functions whose Fourier series converges at the origin is also of the
first category. Therefore the set of functions whose Fourier series di-
verges at the origin is generic. Similarly, if {x1, x2, . . .} is any countable
collection of points in [−π, π], then for each j, the set Fj of continuous
functions whose Fourier series diverge at xj is also generic. Hence the
set

⋂∞
j=1 Fxj

which consists of continuous functions whose Fourier series
diverge at every point x1, x2, . . . , is also generic, and the proof of the
theorem is complete.

3 The open mapping theorem

Let X and Y be Banach spaces with norms ‖ · ‖X and ‖ · ‖Y respectively,
and T : X → Y a mapping. Observe that T is continuous if and only if
{x ∈ X : T (x) ∈ O} is open in X whenever O is open in Y . This holds
regardless of whether T is linear or not. In particular, if T has an inverse
S : Y → X that is also continuous, the above observation applied to S

1In this calculation, the value of the constant c may change from line to line.
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shows that the image by T of any open set in X is open in Y . A mapping
T that maps open sets to open sets is called an open mapping.

We recall that a mapping T : X → Y is surjective if T (X) = Y , and
injective if T (x) = T (y) implies x = y. Also, T is bijective if it is both
surjective and injective.

A bijective mapping has an inverse T−1 : Y → X defined as follows: if
y ∈ Y , then T−1(y) is the unique element x ∈ X so that T (x) = y. This
definition is unambiguous precisely because T is surjective and injective.
In general, if T is linear, then the inverse T−1 is also linear, but T−1

need not be continuous. However, by the previous observation, we see
that T−1 will be continuous if T is an open mapping. The next result
says that surjectivity guarantees openness.

Theorem 3.1 Suppose X and Y are Banach spaces, and T : X → Y is
a continuous linear transformation. If T is surjective, then T is an open
mapping.

Proof. We denote by BX(x, r) and BY (y, r) the open balls of radius r
centered at x ∈ X and y ∈ Y respectively, and we write simply BX(r)
and BY (r) for the open balls centered at the origin. Since T is linear,
it suffices to show that T (BX(1)) contains an open ball centered at the
origin.

First, we prove the weaker statement that T (BX(1)) contains an open
ball centered at the origin. To see this, note that since T is surjective,
we must have

Y =
∞⋃

n=1

T (BX(n)).

By the Baire category theorem, not all the sets T (BX(n)) can be nowhere
dense, so for some n, the set T (BX(n)) must contain an interior point.
As a result of the fact that T is linear, this implies that

T (BX(1)) ⊃ BY (y0, ε)

for some y0 ∈ Y , and ε > 0. By definition of the closure, we may pick
a point y1 = T (x1) where x1 ∈ BX(1) and ‖y1 − y0‖Y < ε/2. Then, if
y ∈ BY (ε/2), we find that y − y1 belongs to T (BX(1)), and writing y =
T (x1) + y − y1 we find that y ∈ T (BX(2)). Therefore, the ball BY (ε/2)
is contained in T (BX(2)). Using once again the fact that T is linear, we
see that BY (ε/4) is contained in T (BX(1)), and this proves the weaker
claim. In fact, replacing T by (4/ε)T , we may assume that

(6) T (BX(1)) ⊃ BY (1),
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and consequently

(7) T (BX(2−k)) ⊃ BY (2−k), for all k.

Next, we strengthen the result and show that in fact

(8) T (BX(1)) ⊃ BY (1/2).

Indeed, let y ∈ BY (1/2), and by (7) with k = 1, select a point x1 ∈
BX(1/2) so that y − T (x1) ∈ BY (1/22). Then, by (7) again, applied with
k = 2, we may find x2 ∈ BX(1/22) so that y − T (x1) − T (x2) ∈ B(1/23).
Continuing this process, we obtain a sequence of points {x1, x2, . . .} so
that ‖xk‖X < 1/2k. Since X is complete, the sum x1 + x2 + · · · con-
verges to a limit x ∈ X with ‖x‖ <

∑∞
k=1 1/2k = 1. Moreover, since we

have

y − T (x1) − · · · − T (xk) ∈ BY (1/2k+1),

and T is continuous, we find in the limit that T (x) = y. This implies (8),
which then clearly implies that T (BX(1)) contains an open ball centered
at the origin.

We gather two interesting corollaries to this theorem.

Corollary 3.2 If X and Y are Banach spaces, and T : X → Y is a con-
tinuous bijective linear transformation, then the inverse T−1 : Y → X
of T is also continuous. Hence there are constants c, C > 0 with

c‖f‖X ≤ ‖T (f)‖Y ≤ C‖f‖X for all f ∈ X.

This follows immediately from the discussion preceding Theorem 3.1.

Recall that two norms ‖ · ‖1 and ‖ · ‖2 on a vector space V are said to
be equivalent, if there are constants c, C > 0 so that

c‖v‖2 ≤ ‖v‖1 ≤ C‖v‖2 for all v ∈ V .

Corollary 3.3 Suppose the vector space V is equipped with two norms
‖ · ‖1 and ‖ · ‖2. If

‖v‖1 ≤ C‖v‖2 for all v ∈ V ,

and V is complete with respect to both norms, then ‖ · ‖1 and ‖ · ‖2 are
equivalent.

Indeed, the hypothesis implies that the identity mapping I : (V, ‖ · ‖2) →
(V, ‖ · ‖1) is continuous, and since it is clearly bijective, its inverse I :
(V, ‖ · ‖1) → (V, ‖ · ‖2) is also continuous. Hence c‖v‖2 ≤ ‖v‖1 for some
c > 0 and all v ∈ V .
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3.1 Decay of Fourier coefficients of L1-functions

We return to the Fourier series discussed in Section 2.1 for an interesting
application of the open mapping theorem. Recall the Riemann-Lebesgue
lemma, which states

lim
|n|→∞

|f̂(n)| = 0,

if f ∈ L1([−π, π]), where f̂(n) denotes the nth Fourier coefficient of f .2

A natural question that arises is the following: given any sequence of
complex numbers {an}n∈Z that vanishes at infinity, that is, |an| → 0 as
|n| → ∞, does there exist f ∈ L1([−π, π]) with f̂(n) = an for all n?

To reformulate this question in terms of Banach spaces, we let B1 =
L1([−π, π]) equipped with the L1-norm, and B2 denote the vector space
of all sequences {an} of complex numbers with |an| → 0 as |n| → ∞. The
space B2 is equipped with the usual sup-norm ‖{an}‖∞ = supn∈Z |an|
which clearly makes B2 into a Banach space.

Then, we ask whether the mapping T : B1 → B2 defined by

T (f) = {f̂(n)}n∈Z

is surjective.
The answer to this is negative.

Theorem 3.4 The mapping T : B1 → B2 given by T (f) = {f̂(n)} is lin-
ear, continuous and injective, but not surjective.

Therefore, there are sequences of complex numbers that vanish at in-
finity and that are not the Fourier coefficients of L1-functions.

Proof. We first note that T is clearly linear, and also continuous
with ‖T (f)‖∞ ≤ ‖f‖L1 . Moreover, T is injective since T (f) = 0 implies
that f̂(n) = 0 for all n, which then implies3 that f = 0 in L1. If T were
surjective, then Corollary 3.2 would imply that there is a constant c > 0
that satisfies

(9) c‖f‖L1 ≤ ‖T (f)‖∞, for all f ∈ B1.

However, if we set f = DN the N th Dirichlet kernel given by DN =∑
|n|≤N einx, and recall from Lemma 2.4 that ‖DN‖L1 = LN → ∞ as

N → ∞, we find that (9) is violated as N tends to infinity, which is our
desired contradiction.

2See for instance Problem 1 in Chapter 2 of Book III.
3This result can be found in Theorem 3.1 in Chapter 4 of Book III.
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4 The closed graph theorem

Suppose X and Y are two Banach spaces, with norms ‖ · ‖X and ‖ · ‖Y

respectively, and T : X → Y is a linear map. The graph of T is defined
as a subset of X × Y by

GT = {(x, y) ∈ X × Y : y = T (x)}.

The linear map T is closed if its graph is a closed subset in X × Y . In
other words, T is closed if whenever {xn} ⊂ X and {yn} ⊂ Y are two
converging sequences in X and Y respectively, say xn → x and yn → y,
and if T (xn) = yn, then T (x) = y.

Theorem 4.1 Suppose X and Y are two Banach spaces. If T : X → Y
is a closed linear map, then T is continuous.

Proof. Since the graph of T is a closed subspace of the Banach
space X × Y with the norm ‖(x, y)‖X×Y = ‖x‖X + ‖y‖Y , the graph GT

is itself a Banach space. Consider the two projections PX : G(T ) → X
and PY : G(T ) → Y defined by

PX(x, T (x)) = x and PY (x, T (x)) = T (x).

The mappings PX and PY are continuous and linear. Moreover, PX is
bijective, hence its inverse P−1

X is continuous by Corollary 3.2. Since
T = PY ◦ P−1

X , we conclude that T is continuous, as was to be shown.

4.1 Grothendieck’s theorem on closed subspaces of Lp

As an application of the closed graph theorem, we prove the following
result:

Theorem 4.2 Let (X,F , µ) be a finite measure space, that is, µ(X) <
∞. Suppose that:

(i) E is a closed subspace of Lp(X,µ), for some 1 ≤ p < ∞, and

(ii) E is contained in L∞(X, µ).

Then E is finite dimensional.

Since E ⊂ L∞, and X has finite measure, we find that E ⊂ L2 with

‖f‖L2 ≤ C‖f‖L∞ whenever f ∈ E.
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The essential idea in the proof of the theorem is to reverse this inequality,
and then use the Hilbert space structure of L2.

Equipped with the Lp-norm, E is a Banach space since it is a closed
subspace of Lp(X,µ). Let

I : E → L∞(X, µ)

denote the identity mapping I(f) = f . Then, E is linear and closed.
Indeed, suppose that fn → f in E and fn → g in L∞. Then, there
exists a subsequence of {fn} that converges almost everywhere to f (see
Exercise 5 in Chapter 1), and therefore f = g almost everywhere, as
desired. By the closed graph theorem there is an M > 0 so that

(10) ‖f‖L∞ ≤ M‖f‖Lp for all f ∈ E.

Lemma 4.3 Under the assumptions of the theorem, there exists A > 0
so that

‖f‖L∞ ≤ A‖f‖L2 for all f ∈ E.

Proof. If 1 ≤ p ≤ 2, then Hölder’s inequality with the conjugate
exponents r = 2/p and r∗ = 2/(2 − p) yields∫

|f |p ≤
(∫

|f |2
)p/2 (∫

1
) 2−p

2

.

Since X has finite measure, we see after taking pth roots in the above,
that there is some B > 0 so that ‖f‖Lp ≤ B‖f‖L2 for all f ∈ E. Together
with (10), this proves the lemma when 1 ≤ p ≤ 2.

When 2 < p < ∞, we note first that |f(x)|p ≤ ‖f‖p−2
L∞ |f(x)|2, and in-

tegrating this inequality gives

‖f‖p
Lp ≤ ‖f‖p−2

L∞ ‖f‖2
L2 .

If we now use (10), and assume that ‖f‖L∞ �= 0, we find that for some
A > 0, we have ‖f‖L∞ ≤ A‖f‖L2 whenever f ∈ E, and the proof of the
lemma is complete.

We now return to the proof of Theorem 4.2. Suppose f1, . . . , fn is an
orthonormal set in L2 of functions in E, and let B denote the unit ball
in Cn,

B = {ζ = (ζ1, . . . , ζn) ∈ Cn :
n∑

j=1

|ζj |2 ≤ 1}.
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For each ζ ∈ B, let fζ(x) =
∑n

j=1 ζjfj(x). By construction we have
‖fζ‖L2 ≤ 1, and the lemma gives ‖fζ‖L∞ ≤ A. Hence for each ζ, there
exists a measurable set Xζ of full measure in X (that is, µ(Xζ) = µ(X)),
so that

(11) |fζ(x)| ≤ A for all x ∈ Xζ .

By first taking a countable dense subset of points in B, and then using
the continuity of the mapping ζ 	→ fζ(x), we see that (11) implies

(12) |fζ(x)| ≤ A for all x ∈ X ′, and all ζ ∈ B

where X ′ is a set of full measure in X. From this, we claim that

(13)
n∑

j=1

|fj(x)|2 ≤ A2 for all x ∈ X ′.

Indeed, it suffices to establish this inequality when the left-hand side is
non-zero. Then, if we let σ = (

∑n
j=1 |fj(x)|2)1/2, and set ζj = fj(x)/σ,

then by (12) we find that for all x ∈ X ′

1
σ

n∑
j=1

|fj(x)|2 ≤ A,

that is, σ ≤ A, as we claimed.
Finally, integrating (13), and recalling that {f1, . . . , fn} is orthonor-

mal, we find n ≤ A2, and therefore, the dimension of E must be finite.

Remark. Problem 6 shows that the space L∞ in the theorem cannot
be replaced by any Lq for 1 ≤ q < ∞.

5 Besicovitch sets

In Section 4.4, Chapter 7 of Book III, we constructed an example of a
Besicovitch set (or “Kakeya set”) in R2, that is, a compact set with
two-dimensional Lebesgue measure zero that contains a unit line segment
in every direction. We recall that this set was obtained as a union of
finitely many rotations of a specific set: one that is given as a union of
line segments joining points from a Cantor-like set on the line {y = 0} to
another Cantor-like set on the line {y = 1}. Our goal here is to present
an ingenious idea of Körner that proves the existence of Besicovitch sets
using the Baire category theorem; in fact, it is shown that in the right
metric space, such sets are generic.
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The starting point of the analysis is an appropriate complete metric
space of sets in R2. Suppose A is a subset of R2 and δ > 0. We define
the δ-neighborhood of A by

Aδ = {x : d(x,A) < δ}, where d(x,A) = infy∈A |x − y|.
Then, if A and B are subsets of R2 we define the Hausdorff distance4

between A and B by

dist(A,B) = inf{δ : B ⊂ Aδ and A ⊂ Bδ}.
We shall restrict our attention to compact subsets of R2. The distance d
then satisfies the following properties.

Suppose A,B and C are non-empty compact subsets of R2:

(i) dist(A,B) = 0 if and only if A = B.

(ii) dist(A,B) = dist(B,A).

(iii) dist(A,C) ≤ dist(A, B) + dist(B, C).

(iv) The set of compact subsets of R2 equipped with the Hausdorff
distance is a complete metric space.

Verification of (i), (ii), and (iii) can be left to the reader, while the proof
of (iv), which is a little more intricate, is deferred to the end of this
section.

We now restrict our attention to the compact subsets of the square
[−1/2, 1/2] × [0, 1] which consist of a union of line segments joining points
from L0 = {−1/2 ≤ x ≤ 1/2, y = 0} to points on L1 = {−1/2 ≤ x ≤
1/2, y = 1} and spanning all possible directions. More precisely, let K
denote the set of closed subsets K of the square Q = [−1/2, 1/2] × [0, 1]
with the following properties:

(i) K is a union of line segments � joining a point of L0 to a point
of L1.

(ii) For every angle θ ∈ [−π/4, π/4] there exists a line segment � in K
making an oriented angle of θ with the y-axis.

Simple limiting arguments then show that K is a closed subset of the
metric space of all compact subsets in R2 with the metric d, and conse-
quently K with the Hausdorff distance is a complete metric space.

Our aim is to prove the following:

4Incidentally, this distance already arose in Chapter 7 of Book III.
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Theorem 5.1 The collection of sets in K of two-dimensional Lebesgue
measure zero is generic.

In particular, this collection is non-empty, and in fact dense.
Loosely stated, the key to the argument is to show that sets K in K

whose horizontal slices {x : (x, y) ∈ K} have “small” Lebesgue measure
are generic. The argument is best carried out by using a “thickened”
version Kη of K.

To this end, given 0 ≤ y0 ≤ 1 and ε > 0 we define K(y0, ε) as the collec-
tion of all compact subsets K in K with the property that there exists η >
0 so that the η-neighborhood Kη satisfies: for every y ∈ [y0 − ε, y0 + ε]
the horizontal slice {x : (x, y) ∈ Kη} has one-dimensional Lebesgue mea-
sure less than 10ε, that is,

(14) m1({x : (x, y) ∈ Kη}) < 10ε, for all y ∈ [y0 − ε, y0 + ε].5

Lemma 5.2 For each fixed y0 and ε, the collection of sets K(y0, ε) is
open and dense in K.

To prove that K(y0, ε) is open, suppose K ∈ K(y0, ε) and pick η so that
Kη satisfies the condition above. Suppose K ′ ∈ K with dist(K,K ′) <
η/2. This means in particular that K ′ ⊂ Kη/2, and the triangle inequal-
ity then shows that (K ′)η/2 ⊂ Kη. Therefore

m1({x : (x, y) ∈ (K ′)η/2}) ≤ m1({x : (x, y) ∈ Kη}) < 10ε,

and as a result K ′ ∈ K(y0, ε), as was to be shown.
To establish the rest of the lemma, we need to show that if K ∈ K and

δ > 0, there exists K ′ ∈ K(y0, ε) so that dist(K, K ′) ≤ δ. The set K ′ will
be given as the union of two sets A and A′. The set A will be constructed
by picking line segments � in K, and looking at the corresponding angular
sector obtained by rotating the line segment � by a small angle around
its intersection with y = y0. This will result in two solid triangles with a
vertex on y = y0, and we shall try to control the length of the intersection
of these triangles with any line segment parallel to the x-axis (Figure 2).

More precisely, if N is a positive integer, we can consider the partition
of the interval [−π/4, π/4] defined by

θn =
−π

4
+

n

N

π

2
, for n = 0, . . . , N − 1.

5The choice of 10 for the constant appearing in (14) is of no particular significance;
indeed, smaller constants would have done as well.
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y = y0

y = 1

y = 0

θ

�(x, θ)

Figure 2. Rotation of �(x, θ) around its intersection with y = y0

Then the angles θn are uniformly spaced in [−π/4, π/4] and the N inter-
vals defined by

In = [θn, θn + π/(2N)],

cover [−π/4, π/4]. Moreover each of these sub-intervals has length equal
to π/(2N).

If we use �(x, θ) to denote the line segment joining {y = 0} to {y = 1}
that passes through the point (x, y0) and which makes an oriented angle θ
with the y-axis, then for each θn as defined above, by property (ii) of
the set K there exists a number −1/2 ≤ xn ≤ 1/2 so that �(xn, θn) ∈ K.
For each n = 0, . . . , N consider the compact set

Sn =
⋃

ϕ∈In

�(xn, ϕ).

Each Sn therefore consists of (at most) two closed triangles with vertex
at the point (xn, y0). Now let

A =
N⋃

n=0

Sn.

If N ≥ c/δ (for a large enough constant c), then the sets Sn that are
not entirely contained in the square Q can be translated slightly to the
left or right so that the resulting set A belongs to Q, and moreover so
that every point in A is at a distance less than δ from a point in K; that
is A ⊂ Kδ.
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However it is not necessarily true that every point of K is close to A,
since in defining A we have dealt only with some of the lines �(xn, θn) that
make up K. To remedy this we add a finite set of lines to obtain a set A′

that is close to K in the Hausdorff metric. In more detail, recall that K
is itself a union of lines, K =

⋃
�, and let �δ be the δ-neighborhood of �.

Then
⋃

�δ is an open cover of K and thus we can select a finite subcover⋃M
m=1 �δ

m of K. We define A′ =
⋃M

m=1 �m and set

K ′ = A ∪ A′.

Observe first that K ′ ∈ K. Note next that by its definition, A′ ⊂ K, but
(A′)δ ⊃ K. Therefore (K ′)δ ⊃ K. Also Kδ ⊃ K ′, since Kδ ⊃ A as we
have seen, and Kδ ⊃ K ⊃ A′. This shows that dist(K ′,K) ≤ δ.

We next estimate m1({x : (x, y) ∈ (K ′)η}) for y0 − ε ≤ y ≤ y0 + ε, by
adding the corresponding estimates with K ′ replaced by A and A′. Note
that for fixed y the set {x : (x, y) ∈ A} consists of N intervals arising
from the intersection of the horizontal line at height y, with the N trian-
gles that have their vertices at height y0. By a simple trigonometric argu-
ment, since |y − y0| ≤ ε and the magnitudes of the angles at the vertices
are π/(2N), each corresponding interval of Aη has length ≤ 8ε/N + 2η.
Thus

m1({x : (x, y) ∈ (K ′)η}) ≤ 8ε + 2ηN.

Next A′ consists of M line segments, so the set {x : (x, y) ∈ A′} con-
sists of M points, and therefore the set {x : (x, y) ∈ (A′)η} is the union
of M intervals of length 2η; this has measure ≤ 2ηM . Altogether then
m1({x : (x, y) ∈ (K ′)η}) ≤ 8ε + 2η(M + N) and we get estimate (14)
for K ′ if we take η < ε/(M + N). This completes the proof of the lemma.

We can now proceed with the final argument in the proof of the theo-
rem. For each m, consider the set

KM =
M⋂

m=1

K(m/M, 1/M).

Each KM is open and dense, and moreover if K ∈ KM , each slice of K
along any 0 ≤ y ≤ 1 has one-dimensional Lebesgue measure that is
O(1/M). Since open dense sets are generic, and the countable inter-
section of generic sets is generic, the set

K∗ =
∞⋂

M=1

KM
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is generic in K, and by the above observation if K ∈ K∗ then each slice
Ky = {x : (x, y) ∈ K} (0 ≤ y ≤ 1) has Lebesgue measure 0, hence Fu-
bini’s theorem implies that K has two-dimensional Lebesgue measure
equal to 0. This completes the proof of Theorem 5.1.

We conclude this section with the proof of property (iv) of the Haus-
dorff distance, the completeness of the metric.

Suppose {An} is a sequence of (non-empty) compact subsets that is
Cauchy with respect to the Haussdorff distance; let An =

⋃∞
k=n Ak and

A =
⋂∞

n=1 An. We claim that A is non-empty, compact, and An → A.
Given ε > 0 there exists N1 so that dist(An, Am) < ε for all n,m ≥ N1.

As a result, it is clear that whenever n ≥ N1, then
⋃∞

k=n Ak ⊂ (An)ε,
hence An ⊂ (An)2ε. This implies

(15) A ⊂ (An)2ε whenever n ≥ N1.

Since each An is non-empty and compact, and since An+1 ⊂ An, it fol-
lows that A is non-empty and compact, and moreover dist(An,A) → 0.
Indeed, if dist(An,A) did not converge to zero, then there would ex-
ist ε0 > 0, an increasing sequence nk of positive integers, and points
xnk

∈ Ank
so that d(xnk

,A) ≥ ε0. Since {xnk
} ⊂ A1, which is compact,

we may assume (after picking a subsequence and relabeling if neces-
sary) that {xnk

} converges to a limit, say x, which would clearly satisfy
d(x,A) ≥ ε0. But for every M , we have xnk

∈ AM for all sufficiently
large nk, and since AM is compact, we must have x ∈ AM , thus x ∈ A.
This contradicts the fact that d(x,A) ≥ ε0, hence dist(An,A) → 0.

Returning to our proof of (iv), pick N2 so that dist(An,A) < ε for all
n ≥ N2. This implies that An ⊂ A2ε for n ≥ N2, therefore

(16) An ⊂ A2ε whenever n ≥ N2.

Combining (15) and (16) yields the inequality dist(An,A) ≤ 2ε whenever
n ≥ max(N1, N2), which implies An → A, and that concludes the proof.

6 Exercises

1. Below are some examples of generic sets and sets of the first category.

(a) Let {xj}∞j=1 denote an enumeration of the rational numbers in R, and con-
sider the sets

Un =

∞
[

j=1

(xj − 1

n2j
, xj +

1

n2j
), and U =

∞
\

n=1

Un.

Show that U is generic but has Lebesgue measure zero.
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(b) Use a Cantor-like set (as described, for example, in Exercise 4, Chapter 1
of Book III) to give an example of a subset of the first category that has
full Lebesgue measure in [0, 1]. Note that automatically this subset will be
uncountable and dense. Also, its complement is generic and has measure
zero, giving an alternative to the set U in (a).

2. Suppose F is a closed subset and O an open subset of a complete metric space.

(a) Show that F is of the first category if and only if F has empty interior.

(b) Show that O is of the first category if and only if O is empty.

(c) Consequently, prove that F is generic if and only if F = X; and O is generic
if and only if Oc contains no interior.

[Hint: For (a), argue by contradiction, assuming that a closed ball B is contained
in F . Apply the category theorem to the complete metric space B.]

3. Show that the conclusion of the Baire category theorem continues to hold if X0

is a metric space that arises as an open subset of a complete metric space X.

[Hint: Apply the Baire category theorem to the closure of X0 in X.]

4. Prove that every continuous function on [0, 1] can be approximated uniformly
by continuous nowhere differentiable functions. Do so by either:

(a) using Theorem 1.5.

(b) using only the fact that a continuous nowhere differentiable function exists.

5. Let X be a complete metric space. We recall that a set is a Gδ in X if it is a
countable intersection of open sets. Also, a set is an Fσ in X if it is a countable
union of closed sets.

(a) Show that a dense Gδ is generic.

(b) Hence a countable dense set is an Fσ, but not a Gδ.

(c) Prove the following partial converse to (a). If E is a generic set, then there
exists E0 ⊂ E with E0 a dense Gδ.

6. The function

f(x) =

j

0 if x is irrational
1/q if x = p/q is rational and expressed in lowest form

is continuous precisely at the irrationals. In contrast to this, prove that there is
no function on R that is continuous precisely at the rationals.
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[Hint: Show that the set of points where a function is continuous is a Gδ (see the
proof of Theorem 1.3), and apply Exercise 5.]

7. Let E be a subset of [0, 1], and let I be any closed non-trivial interval in [0, 1].

(a) Suppose E is of the first category in [0, 1]. Show that for every I, the set
E ∩ I is of the first category in I.

(b) Suppose E is generic in [0, 1]. Show that for every I, the set E ∩ I is generic
in I.

(c) Construct a set E in [0, 1] so that for all I, the set E ∩ I is neither of the
first category nor generic in I.

[Hint: Consider the Cantor set in [0, 1]; then in each open interval of its complement
place a scaled copy of the Cantor set; continue this process indefinitely. For a
related measure theoretic result, see Exercise 36 in Chapter 1 of Book III.]

8. A Hamel basis for a vector space X is a collection H of vectors in X, such
that any x ∈ X can be written as a unique finite linear combination of elements
in H.

Prove that a Banach space cannot have a countable Hamel basis.

[Hint: Show that otherwise the Banach space would be of the first category in
itself.]

9. Consider Lp([0, 1]) with Lebesgue measure. Note that if f ∈ Lp with p > 1,
then f ∈ L1. Show that the set of f ∈ L1 so that f /∈ Lp, is generic.

A more general result can be found in Problem 1.

[Hint: Consider the set EN = {f ∈ L1 :
R

I
|f | ≤ Nm(I)1−1/p for all intervals I}.

Note that each EN is closed and that Lp ⊂ SN EN . Finally, show that EN is

nowhere dense by considering f0 + εg where g(x) = x−(1−δ) with 0 < δ < 1 − 1/p.]

10. Consider Λα(R), with 0 < α < 1. Show that the set of nowhere differentiable
functions is a generic set in Λα(R).

Note however that functions corresponding to the case α = 1, that is, Lipschitz
functions, are almost everywhere differentiable. (See Exercise 32 in Chapter 3 of
Book III.)

11. Consider the Banach space X = C([0, 1]) over the reals, with the sup-norm
on X. Let M be the collection of functions that are not monotonic (increasing
or decreasing) in any interval [a, b], where 0 ≤ a < b ≤ 1. Prove that M is generic
in X.

[Hint: Let M[a,b] denote the subset of X consisting of functions that are not
monotonic in [a, b]. Then M[a,b] is dense in X, while Mc

[a,b] is closed.]

12. Suppose X, Y and Z are Banach spaces, and T : X × Y → Z is a mapping
such that:
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(i) For each x ∈ X, the mapping y �→ T (x, y) is linear and continuous on Y .

(ii) For each y ∈ Y , the mapping x �→ T (x, y) is linear and continuous on X.

Prove that T is (jointly) continuous on X × Y , and in fact,

‖T (x, y)‖Z ≤ C ‖x‖X ‖y‖Y

for some C > 0 and all x ∈ X and y ∈ Y .

13. Let (X,F , µ) be a measure space, and let {fn} a sequence of functions
in Lp(X, µ). We know from Exercise 12 in Chapter 1, that if 1 < p < ∞, and
supn ‖fn‖Lp < ∞, then some subsequence of {fn} converges weakly in Lp. In
other words, there exist a subsequence {fnk} of {fn}, and an f ∈ Lp, so that if q
denotes the conjugate exponent of p, that is 1/p + 1/q = 1, then

Z

X

fnk(x)g(x) dµ(x) →
Z

X

f(x)g(x) dµ(x) for every g ∈ Lq.

More generally, we say that a sequence {fn} in Lp is weakly bounded if

sup
n

˛

˛

˛

˛

Z

X

fn(x)g(x) dµ(x)

˛

˛

˛

˛

< ∞ for all g ∈ Lq.

Prove that if 1 < p < ∞, and {fn} is a sequence of functions in Lp that is weakly
bounded, then

sup
n

‖fn‖Lp < ∞.

In particular this holds if {fn} converges weakly in Lp.

[Hint: Apply the uniform boundedness principle to �n(g) =
R

X
fn(x)g(x) dµ(x).]

14. Suppose X is a complete metric space with respect to a metric d, and T :
X → X a continuous function. An element x∗ in X is universal for T if the orbit
set {T n(x∗)}∞n=1 is dense in X. Here T n = T ◦ T ◦ · · · ◦ T denotes n compositions
of T .

Show that the set of universal elements for T in X is either empty or generic.

[Hint: Suppose x∗ is universal for T , let {xj} be a dense set of elements in X,
and let Fj,k,N = {x ∈ X : d(T nx, yj) < 1/k for some n ≥ N}. Show that Fj,k,N

is open and dense.]

15. Let B denote the closure of the unit ball in Rd, and consider the metric space C
of compact subsets of B with the Hausdorff distance. (See Section 5.) Show that
the following two collections are generic.

(a) The subsets of Lebesgue measure zero.

(b) The subsets that are nowhere dense.
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[Hint: For (a) show that the collection of sets C so that m(C) < 1/n is open and
dense. In fact for such a set, Cc ⊃ SM

j=1 Qj , where Qj are disjoint open cubes so
that

P |Qj | > 1 − 1/n. Now shrink the Qj . For (b) fix an open set O and show
that the collection CO of sets in C that contain O is closed and nowhere dense.]

7 Problems

1. Let T : B1 → B2 be a bounded linear transformation of a Banach space B1 to a
Banach space B2.

(a) Prove that either T is surjective, or the image T (B1) is of the first category
in B2.

(b) As a consequence, prove the following: Suppose (X, µ) is a finite measure
space, and 1 ≤ p1 < p2 ≤ ∞. One has of course Lp2(X) ⊂ Lp1(X). Show
that Lp2(X) is a set of the first category in Lp1(X) (except in the trivial
case for which each element of Lp1 belongs to Lp2).

[Hint: For (a), assume that T (B1) is of the second category and use an argument
similar to the proof of Theorem 3.1 to show that the image under T of a ball
centered at the origin of B1 contains a ball centered at the origin in B2.]

2. For each integer n ≥ 2, let Λn denote the set of real numbers x so that there
exists infinitely many distinct fractions p/q so that

|x − p/q| ≤ 1/qn.

Show that:

(a) Λn is a generic set in R.

(b) However, the Hausdorff dimension of Λn equals 2/n.

(c) Hence m(Λn) = 0, if n > 2, where m denotes the Lebesgue measure.

The elements of Λ =
T

n≥2 Λn are called the Liouville numbers. While it is not
difficult to see that every element of Λ is transcendental, it is a deeper fact that
the same holds for each element of Λn when n > 2. (Note that in the case n = 2,
the set Λ consists of the irrationals.)

3. Consider the Banach space B of continuous functions on the circle (with the
sup-norm). Prove that the set of f in B whose Fourier series diverges in a generic
set on the circle, is itself a generic set in B.

[Hint: Choose {xi} dense in [0, 1], let Ei = {f ∈ B : supN |SN (f)(xi)| = ∞}, and
E = ∩Ei. Then E is generic. For each f ∈ E, define On = {x : |SN (f)(x)| >
n some N}. Show that ∩On is generic.]

4. Let D denote the open unit disc in the complex plane, and let A be the Banach
space of all continuous complex-valued functions on D that are holomorphic on D,
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equipped with the sup-norm. Then, the space of functions in A which cannot be
extended analytically past any point of the boundary of D is generic. To prove
this statement establish the following:

(a) The set AN = {f ∈ A : |f(eiθ) − f(1)| ≤ N |θ|} is closed.

(b) AN is nowhere dense.

[Hint: For (b) use the function f0(z) = (1 − z)1/2 and consider f + εf0.]

5. Let I = [0, 1] denote the unit interval, and C∞(I) the vector space of all smooth
functions on I equipped with the metric d given by

d(f, g) =

∞
X

n=0

1

2n

ρn(f − g)

1 + ρn(f − g)
,

where ρn(h) = supx∈I |h(n)(x)|. A function f ∈ C∞(I) is analytic at a point x0 ∈
I, if its Taylor series

∞
X

n=0

f (n)(x0)

n!
(x − x0)

n

converges in a neighborhood of x0 to the function f . The function f is said to be
singular at x0 if its Taylor series diverges at x0.

(a) Show that (C∞(I), d) is a complete metric space.

(b) Prove that the set of functions in C∞(I) that are singular at every point is
generic.

[Hint: For (b), consider the set FK of smooth functions f that satisfy |f (n)(x∗)|/n! ≤
Kn for some x∗ and all n, and show that FK is closed and nowhere dense.]

6. The space L∞ in Theorem 4.2 cannot be replaced by any Lq, with 1 ≤ q < ∞.
In fact there exists a closed infinite dimensional subspace of L1([0, 1]) consisting
of functions that belong to Lq for all 1 ≤ q < ∞.

[Hint: One may use Exercise 19 in the next chapter.]

7.∗ As an application of Exercise 14, let H denote the vector space of entire func-
tions, that is, the set of functions that are holomorphic in all of C. Given a compact
subset K of the complex plane and f ∈ H, let ‖f‖K = supz∈K |f(z)|. If Kn denotes
the closed disc centered at the origin and of radius n, define

d(f, g) =
∞
X

n=1

1

2n

‖f − g‖Kn

1 + ‖f − g‖Kn

whenever f, g ∈ H.

Then d is a metric, and H is a complete metric space with respect to d. Also,
d(fn, f) → 0 if and only if fn converges to f uniformly on every compact subset
of C.
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Birkhoff’s theorem (Problem 5, Chapter 2, Book II) states that there exists an
entire function F so that the set {F (z + n)}∞n=1 is dense in H. Also, MacLane’s
theorem (see the end of the same problem in Book II) says that there is an entire
function G so that the set of its derivatives {G(n)(z)}∞n=1 is dense in H.

By Exercise 14, the set of functions in H with either of these properties is generic
in H, hence the set of entire functions with both properties is also generic.



5 Rudiments of Probability
Theory

The whole of my work in probability theory together
with Khinchin, in general the whole first period of my
work in this theory was marked by the fact that we
employed methods worked out in the metric theory of
functions. Such topics as conditions for the applica-
bility of the law of large numbers or a condition for
convergence of a series of independent random vari-
ables essentially involved methods forged in the gen-
eral theory of trigonometric series...

A. N. Kolmogorov, ca. 1987

One owes to Steinhaus the definition of independent
functions, whether there are finitely or infinitely many.
It follows from this definition, first published here,
that certain systems of orthogonal functions... (in-
cluding) those of Rademacher, consist of independent
functions.

M. Kac, 1936

The simplest way to introduce the basic concepts of probability theory
is to begin by considering Bernoulli trials (for example, coin flips) and
inquire as to what happens in the limit as the number of trials tends to
infinity. Essential here is the idea of independent events that is subsumed
in the more elaborate notion of mutually independent random variables.1

The case of Bernoulli trials where each flip has probability 1/2 can
be translated as the study of the Rademacher functions. As we will
see, the properties of these mutually independent functions lead to some
remarkable consequences for random series. In particular, when a formal
Fourier series is randomized by the Rademacher functions there is then
the following striking instance of the “zero-one law”: either almost every

1We prefer to use the terminology “function” instead of “random variable” in much of
what follows.
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resulting series corresponds to an Lp function for every p < ∞, or almost
none is the Fourier series of an L1 function.

From this special set of independent functions we turn to the aspects
of the general theory, and our focus is on the behavior of sums of more
general independent functions. In the first instance, when these functions
are identically distributed (and square integrable) we obtain the “central
limit theorem” in this more extended setting. We also see that there is a
close link with the ergodic theorem, and this allows us to prove one form
of the “law of large numbers.”

Next we consider independent functions that are not necessarily iden-
tically distributed. Here the main property that is exploited is that the
corresponding sums form a “martingale sequence.” In fact, an interesting
case of this was seen in the analysis of sums involving Rademacher func-
tions. Of importance at this point is the maximal theorem for martingale
sequences, akin to the maximal theorem in Chapter 2.

We conclude this chapter by returning to Bernoulli trials, now inter-
preted as a random walk on the line. It is natural to consider the anal-
ogous random walks in d dimensions. For these we find some striking
differences between the cases d ≤ 2 and d ≥ 3, in terms of their recur-
rence properties.

1 Bernoulli trials

An examination of some questions related to coin flips give the easiest
examples of some of the concepts of probability theory.

1.1 Coin flips

We begin by considering the simplest gambling game. Two players, A
and B, decide to flip a fair coin N times. Each time the coin comes up
“heads” player A wins one dollar; each time the coin comes up “tails”
player A loses a dollar. Since each flip has two possible outcomes, there
are 2N possible sequences of outcomes for their game. If we take into
account the resulting possibilities, a question that arises is: what are
(say) player A’s chances of winning, and in particular, his chances of
winning k dollars, for some k?

To answer this question we first formalize the above situation and
introduce some terminology whose more general usage will occur later.
The 2N possible scenarios (or “outcomes”) under consideration can be
thought of as points in ZN

2 , the N -fold product of the two-point space
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Z2 = {0, 1}, with 0 standing for heads and 1 for tails. That is,

ZN
2 = {x = (x1, . . . , xN ), with xj = 0 or 1 for each j, 1 ≤ j ≤ N}.

If we assume that flipping heads or tails, at the nth flip, is equally proba-
ble (and hence each has probability 1/2) for every n, we are then quickly
led to the following definitions: The space ZN

2 is our underlying “prob-
ability space”; on it there is a measure m, the “probability measure”
which assigns measure 2−N to each point of ZN

2 , and m(ZN
2 ) = 1. We

note that if En denotes the collection of events for which the nth flip is
heads, En = {x ∈ ZN

2 : xn = 0}, then m(En) = 1/2 for all 1 ≤ n ≤ N ;
also m(En ∩ Em) = m(En)m(Em), for all n,m with n �= m. The latter
identity reflects the fact that the outcomes of the nth and mth flips are
“independent.”

We also need to consider certain functions on our probability space. (In
the parlance of probability theory, functions on probability spaces are of-
ten referred to as random variables; we prefer to retain the designation
“functions.”) We define the function rn to be the amount player A wins
(or losses) at the nth flip, that is, rn(x) = 1 if xn = 0, and rn(x) = −1 if
xn = 1, where x = (x1, . . . , xn). The sum

SN (x) = S(x) =
N∑

n=1

rn(x)

gives the total winnings (or losses) of player A after N flips.

Next, let us get an idea of what is the probability that S(x) = k, for
a given integer k. If a given point x ∈ ZN

2 has N1 zeroes and N2 ones
among its coordinates, (that is, player A has N1 wins and N2 losses),
then of course S(x) = k means k = N1 − N2, while N1 + N2 = N . Thus

N1 = (N + k)/2 and N2 = (N − k)/2,

and k has the same parity as N . To proceed further, we assume that N
is even; the case of N odd is similar. (See Exercise 1.)

Thus in our probability space one has as many points x for which
S(x) = k as ways one can choose N1 zeroes when making N choices
among either 0 or 1. This number is the binomial coefficient(

N

N1

)
=

N !
N1!(N − N1)!

=
N !(

N+k
2

)
!
(

N−k
2

)
!
.
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As a result, since each point carries measure 2−N , we have that

(1) m({x : S(x) = k}) = 2−N N !(
N+k

2

)
!
(

N−k
2

)
!
.

What can we say about the relative size of these numbers as k varies
from −N to N , (with k even)? The smallest values of (1) are attained
at the end-points, k = −N or k = N , with m({x : S(x) = N}) = m({x :
S(x) = −N}) = 2−N . As k varies from −N to 0 (with k even), m({x :
S(x) = k}) increases, and then decreases as k increases from 0 to N .
This is because

m({x : S(x) = k + 2})
m({x : S(x) = k}) =

N − k

N + k + 2
,

and the right-hand side is greater than 1 or less than 1 according to
whether k ≤ −2 or k ≥ 0, respectively. Thus clearly (1) attains its max-
imum value at k = 0, and this is

2−N N !
((N/2)!)2

.

By Stirling’s formula (more about this below), this quantity is approxi-
mately 2√

2π
N−1/2, which is much larger than the minimum value 2−N .

With this, we leave these elementary considerations and begin to deal
with the questions of probability theory that arise when we pass to the
limiting situation N → ∞.

1.2 The case N = ∞
Here we take our probability space to be the infinite product of copies
of Z2, which is written as Z∞

2 , and which we denote more simply as X.
That is,

X = {x = (x1, . . . , xn, . . .), each xn = 0 or 1 for all n ≥ 1}.

The space X inherits the natural product measure from each of the
measures of the partial products ZN

2 (in turn from each of the factors
Z2) above as follows. A set E is a cylinder set in X whenever there is a
(finite) N and a set E′ ∈ ZN

2 , so that x ∈ E if and only if (x1, . . . , xN ) ∈
E′. With this definition the collection of cylinder sets together with their
finite unions and intersections, and complements, forms an algebra on X.
The main point now is that the function m defined first on these sets
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by m(E) = mN (E′), (where mN = m is the measure on ZN
2 described

in the previous section) extends to a measure on the σ-algebra of sets
generated by the cylinder sets. Clearly m(X) = 1. (In this connection,
the reader may consult Exercises 14 and 15 in Chapter 6 of Book III.)

More generally consider a pair (X, m), where we are given a σ-algebra
of subsets of X (the “measurable” sets, or “events”) and a measure m
on this σ-algebra, with m(X) = 1. Adopting the terminology used pre-
viously, we refer to X as a probability space and m as a probability
measure. In this context, one uses the terminology “almost surely” to
mean “almost everywhere.”

Returning to the case X = Z∞
2 with the product measure defined

above, we can extend to it the functions rn, for all 1 ≤ n < ∞. This
means that we take rn(x) = 1 − 2xn, where x = (x1, . . . , xn, . . .) and
xn = 0 or 1, for each n. These functions may also be viewed as set-
ting up a correspondence between X and the interval [0, 1], with the
measure m then identified with Lebesgue measure on this interval. In
fact, consider the mapping D : X → [0, 1] given by

(2) D : (x1, . . . , xn, . . .) 	→
∞∑

j=1

xj

2j
= t ∈ [0, 1].

The correspondence D becomes a bijection from X to [0, 1] if we remove
the denumerable sets Z1 and Z2 respectively from X and [0, 1], with Z1

consisting of all points in X whose coordinates are all 0 or all 1 after a
finite number of places; and Z2 consists of all dyadic rationals (points
in [0, 1] of the form �/2m, with � and m integers). Moreover, note that
if E ⊂ X is the cylinder set E = {x : xj = aj , 1 ≤ j ≤ N} where the
aj are a given finite set of 0’s and 1’s, then m(E) = 2−N . Moreover,
D maps E to the dyadic interval

[
�

2N , �+1
2N

]
, with � =

∑N
j=1 2N−jaj . Of

course this interval has Lebesgue measure 2−N . From this observation,
the assertions about the correspondence of X with [0, 1] follow easily.

The identification of X with [0, 1] allows us to write the functions rn

also as functions of t ∈ [0, 1] (each undefined on a finite set); thus we shall
write rn(x) or rn(t) interchangeably (with x ∈ X, or t ∈ [0, 1]). Note that
r1(t) = 1 for 0 < t < 1/2, and r1(t) = −1, for 1/2 < t < 1. Also if we
extend r1 to R by making it periodic of period 1, then rn(t) = r1(2n−1t).
The functions {rn} on [0, 1) are the Rademacher functions.

The critical property enjoyed by these functions is their mutual inde-
pendence, defined as follows. Given a probability space (X,m), we say
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Figure 1. The Rademacher functions r1 and r2

that a sequence {fn}∞n=1 of real-valued measurable2 functions on X are
mutually independent if for any sequence of Borel sets Bn in R

(3) m

( ∞⋂
n=1

{x : fn(x) ∈ Bn}
)

=
∞∏

n=1

m({x : fn(x) ∈ Bn}).

Similarly, we say that a collection of sets {En} are mutually independent
if their characteristic functions are mutually independent. There is of
course a similar definition of mutual independence if we are given only a
finite collection f1, . . . , fN of functions or a finite collection E1, . . . , EN

of sets. Note that for a pair of sets En and Em, this notion coincides with
what has been previously encountered. However a collection of functions
(or sets) need not be mutually independent, even if they are pair-wise
so. (See Exercise 2.) Also, note that if f1, . . . , fn are (say) bounded and
mutually independent functions, then the integral of their product equals
the product of their integrals,

(4)
∫

X

f1(x) · · · fn(x) dm =
(∫

X

f1(x) dm

)
· · ·

(∫
X

fn(x) dm

)
.

This follows by first verifying the identity directly when the f ’s are finite
linear combinations of characteristic functions and then passing to the
limit.

A general way that independent functions arise is as follows. Suppose
our probability space (X,m) is a product of probability spaces (Xn, mn),

2All functions (and sets) that arise are henceforth assumed to be measurable. Also we
keep to the assumption that our functions (random variables) are real-valued, except in
Section 1.7 and Section 2.6 onwards.
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n = 1, 2, . . . with m equal to the product measure of the mn. Assume
that the function fn(x), defined for x ∈ X, depends only on the nth co-
ordinate of x, that is fn(x) = Fn(xn), where each Fn is given on Xn, and
x = (x1, x2, . . . , xn, . . .). Then the functions {fn} are mutually indepen-
dent. To see this set En = {x : fn(x) ∈ Bn} with En ⊂ X, similarly
E′

n = {xn : Fn(xn) ∈ Bn} with E′
n ⊂ Xn. Then En = {x : xn ∈ E′

n} is
a cylinder set with m(En) = mn(E′

n). Hence it is clear that for each N

m

(
N⋂

n=1

En

)
=

N∏
n=1

mn(E′
n) =

N∏
n=1

m(En).

Letting N → ∞ gives (3), proving our assertion. This obviously applies
to the Rademacher functions, showing their mutual independence.

Incidentally, this example of mutually independent random variables
in a way represents the general situation. (See Exercise 6.)

1.3 Behavior of SN as N → ∞, first results

After these preliminaries we are ready to consider the behavior of

SN (x) =
N∑

n=1

rn(x),

which represents player A’s winnings after N flips. It turns out that
the order of magnitude of SN , as N → ∞, is essentially much smaller
than N . A hint of what is to be expected comes from the following
observation.

Proposition 1.1 For each integer N ≥ 1,

(5) ‖SN‖L2 = N1/2.

This proposition follows from the fact that {rn(t)} is an orthonormal
system on L2([0, 1]). Indeed, we have that

∫ 1

0
rn(t) dt = 0 because each

rn is equal to 1 on a set of measure 1/2, and equal to −1 on a set of
measure also 1/2. Moreover, by their mutual independence and (4), we
have ∫ 1

0

rn(t)rm(t) dt = 0 if n �= m.

In addition, we obviously have
∫ 1

0
r2
n(t) dt = 1. Therefore∥∥∥∥∥

N∑
n=1

anrn

∥∥∥∥∥
2

L2

=
N∑

n=1

|an|2,
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and the assertion follows by taking an = 1 for 1 ≤ n ≤ N .

Note: The sequence {rn} is far from complete in L2([0, 1]). See Exer-
cises 13 and 16.

As an immediate consequence we have the convergence of the averages
SN/N to 0 “in probability.” The relevant definition is as follows. One
says that a sequence of functions {fn} converges to f in probability,
if for every ε > 0,

m({x : |fN (x) − f(x)| > ε}) → 0 as N → ∞.3

Corollary 1.2 SN/N converges to 0 in probability.

In fact,

m({|SN (x)/N | > ε}) = m({|SN (x)| > εN}) ≤ 1
ε2N2

∫
|SN (x)|2 dm,

by Tchebychev’s inequality. Hence m({x : |SN (x)/N | > ε}) ≤ 1/(ε2N),
and the corollary is proved. It is to be noted that by the same argument
one gets the better result that SN/Nα → 0 in probability as N → ∞,
as long as α > 1/2. A stronger version of this conclusion is given in
Corollary 1.5 below.

1.4 Central limit theorem

The identity (5) suggests that the way to look more carefully at SN for
large N is to normalize it and consider instead SN/N1/2. Studying the
limit of this quantity in the appropriate sense leads us to the central
limit theorem. This is expressed in terms of the notion of distribution
measure of a function, defined as follows. Whenever f is a (real-valued)
function on a probability space (X, m), its distribution measure is defined
to be the unique (Borel) measure µ = µf on R that satisfies

µ(B) = m({x : f(x) ∈ B}) for all Borel sets B ⊂ R.

Note that a distribution measure is automatically a probability measure
on R, since µ(R) = 1. Incidentally the distribution measure is closely
related to the distribution function λ that appeared in Section 4.1 of
Chapter 2, because

λf (α) = m({x : |f(x)| > α}) = µ|f |((α,∞)).

3In measure theory, this notion is usually referred to as “convergence in measure.”
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The argument used there to prove (29) can also be applied to estab-
lish the following assertions. First, f is integrable on X precisely when∫ ∞
−∞ |t| dµ(t) < ∞, and then

∫
X

f(x) dm =
∫ ∞
−∞ t dµ(t). Similarly, f is in

Lp(X,m) exactly when
∫ ∞
−∞ |t|p dµ(t) is finite and this quantity equals

‖f‖p
Lp .

More generally, if G is a non-negative continuous function on R (or
continuous and bounded), then

(6)
∫

X

G(f)(x) dm =
∫

R

G(t) dµ(t).

See Exercise 12.

We say (using the parlance of probability theory) that f has a mean if
f is integrable, and its mean m0 (also called its expectation) is defined
as

m0 =
∫

X

f(x) dm =
∫ ∞

−∞
t dµ(t).

If f is also square integrable on X, the we define its variance σ2 by

σ2 =
∫

X

(f(x) − m0)2 dm.

In particular, if m0 = 0, then

σ2 = ‖f‖2
L2 =

∫ ∞

−∞
t2 dµ(t).

A measure µ that arises naturally in this context is the Gaussian
(or normal distribution), the measure on R whose density function is

1√
2π

e−t2/2, that is,

ν((a, b)) =
∫ b

a

1√
2π

e−t2/2 dt.

More generally, the normal measure with variance σ2 is the one given by

νσ2((a, b)) =
∫ b

a

1
σ
√

2π
e−t2/(2σ2) dt.
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1.5 Statement and proof of the theorem

We can now come to De Moivre’s theorem, the central limit theorem in
the special context of coin flips. It states that the distribution measure
of SN/N1/2 converges to the normal distribution in the following sense.

Theorem 1.3 For each a < b, we have

m({x : a < SN (x)/N1/2 < b}) →
∫ b

a

e−t2/2

√
2π

dt, as N → ∞.

In proving this result we consider first the case when we restrict ourselves
to N even; the limit when N is restricted to be odd is, except for small
changes, treated the same way. Joining the two cases will give the desired
result.

Proof. According to (1), with k = 2r, r an integer, and α < β,

m({x : α < SN (x) < β}) =
∑

α<2r<β

Pr, where Pr = 2−N N !
(N/2+r)!(N/2−r)! .

Hence

m({x : a < SN (x)/N1/2 < b}) =
∑

aN1/2<2r<bN1/2

Pr.

With a and b fixed, this means that the r’s are restricted by r = O(N1/2).
We claim that under this restriction

(7) Pr =
2√

2πN1/2
e−2r2/N

(
1 + O(1/N1/2)

)
as N → ∞.

To verify this we use a version of Stirling’s formula,4 which we state as

N ! =
√

2πNN+1/2e−N
(
1 + O(1/N1/2)

)
as N → ∞.

It follows from this that

Pr =
2√
2π

1
N1/2

1
(1 + 2r

N )N/2+r+1/2

1
(1 − 2r

N )N/2−r+1/2

(
1 + O(1/N1/2)

)
.

Now log(1 + x) = x − x2/2 + O(|x|3), as x → 0, so if

Ar =
(

N

2
+ r +

1
2

)
log(1 + 2r/N),

4See for instance Theorem 2.3 in Appendix A, Book II. The error terms O(1/N1/2)
can be improved; but even a weaker bound would suffice for our purpose.
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then

Ar =
(

N

2
+ r +

1
2

)(
2r

N
− 2r2

N2

)
+ O(N−1/2) since r = O(N1/2).

Hence Ar + A−r = 2r2

N + O(N−1/2), and because[(
1 +

2r
N

)N/2+r+1/2 (
1 − 2r

N

)N/2−r+1/2
]

= e−Ar−A−r ,

we have the asserted result (7).

r
N1/2

r+1
N1/2

y = 2√
2π

e−2x2

Figure 2. Approximating the integral of a Gaussian

Now e−2r2/N − e−2t2 = O(e−2t2/N1/2) if t ∈ [r/N1/2, (r + 1)/N1/2], again
because r = O(N1/2). Therefore

1
N1/2

e−2r2/N =
∫ (r+1)/N1/2

r/N1/2
e−2t2 dt(1 + O(N−1/2)).

Taking (7) into account we see that as a result

m({x : a < SN (x)/N1/2 < b}) =
∑

aN1/2<2r<bN1/2

Pr

=
∫ b/2

a/2

2√
2π

e−2t2 dt + O(N−1/2)

=
∫ b

a

1√
2π

e−t2/2 dt + O(N−1/2),

upon making the change of variables t → t/2. Letting N → ∞ gives our
desired conclusion.
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1.6 Random series

A striking illustration of randomness inherent in the Rademacher func-
tions is the observation that, although the series

∑∞
n=1 1/n diverges, the

series
∑∞

n=1(±)1/n converges for “almost all” choices of ± signs, where
the ± signs for the different n’s are chosen independently and with equal
probability.

A precise and more general formulation is as follows.

Theorem 1.4

(a) Suppose
∑∞

n=1 |an|2 < ∞. Then for almost every t ∈ [0, 1], the se-
ries

∑∞
n=1 anrn(t) converges.

(b) However if
∑∞

n=1 |an|2 diverges, then
∑∞

n=1 anrn(t) diverges for
almost all t ∈ [0, 1].

Note. The fact that these conclusions must hold almost everywhere (if
they hold on sets of positive measure) is a particular case of the “zero-one
law.” More about this in Section 2.3.

To prove the theorem, recall that {rn} is an orthonormal sequence
in L2([0, 1]). Thus if

∑∞
n=1 |an|2 < ∞, the sequence {∑N

n=1 anrn(t)}
converges in the L2 norm, as N → ∞, to a function f ∈ L2([0, 1]). For
this f it is convenient to write

f ∼
∞∑

n=1

anrn, and set SN (f) =
N∑

n=1

anrn.

To prove the almost everywhere convergence of the SN , we bring in
averaging operators that average over dyadic intervals, which are defined
as follows. For each positive integer n the dyadic intervals of length 2−n

are the 2n sub-intervals of [0, 1] of the form
(

�
2n , �+1

2n

]
with 0 ≤ � < 2n.

These obviously form a disjoint covering of [0, 1] (except for the origin).
Now for each f that is integrable over [0, 1], and every n, set

En(f)(t) =
1

m(I)

∫
I

f(s) ds

when t ∈ I, and I is a dyadic interval of length n. (Note that En(f)(t)
is not defined for t = 0, but this is immaterial.)

For the functions f that arise as above (as L2 limits of finite linear
combinations of the rn), there is the basic identify

(8) EN (f) = SN (f) for all N .
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To prove this note first that EN (rn) = rn if N ≥ n. In fact, when N ≥
n, each rn is constant on every dyadic interval of length 2−N . Also
EN (rn) = 0 if n > N , since the integral of rn on each dyadic interval of
length 2−N vanishes. These facts are easily reduced to the case n = 1 by
using the identity rn(t) = r1(2n−1t). Thus we have shown that (8) holds
for any finite linear combination of the Rademacher functions. Hence
SN (f) = EN (Sn(f)), if n ≥ N , and a passage to the limit, as n → ∞,
establishes (8).

Now by the Lebesgue differentiation theorem5 limN→∞ EN (f)(t) exists
and equals f(t) at all points of the Lebesgue set of f , and hence almost
everywhere. Thus by (8) the series converges almost everywhere, and
part (a) is proved.

Before we turn to the converse, part (b), we digress to strengthen
the conclusion obtained in Section 1.3. There we considered the sums
SN (t) =

∑N
n=1 rn(t) and showed that SN/N → 0 in probability. This

initial conclusion is itself implied by the “strong law of large numbers,”
which in this case takes the following form.

Corollary 1.5 Let SN (t) =
∑N

n=1 rn(t). Then SN (t)/N → 0, as N →
∞ for almost every t. In fact, if α > 1/2, then SN (t)/Nα → 0 for almost
every t.

Proof. Fix 1/2 < β < α, and let an = n−β and bn = nβ. Clearly∑
a2

n < ∞. Set S̃N (t) =
∑N

n=1 anrn(t). Then, by summation by parts,
setting S̃0 = 0, we get

SN (t) =
N∑

n=1

rn =
N∑

n=1

anrnbn

=
N∑

n=1

(S̃n − S̃n−1)bn

= S̃NbN +
N−1∑
n=1

S̃n(bn − bn+1).

However |bn − bn+1| = bn+1 − bn, and
∑N−1

n=1 (bn+1 − bn) = bN − 1 =
O(Nβ) while the convergence of the series

∑∞
n=1 anrn(t) for almost all t

guarantees that |S̃n(t)| = O(1) for almost every t. As a result, for those t,
SN (t) = O(Nβ) and this implies SN (t)/Nα → 0 for almost all t, proving
the corollary.

5See for example Theorem 1.3 and its corollaries in Chapter 3, Book III.
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We now turn to the proof of part (b) of the theorem. It is based on
the following lemma.

Lemma 1.6 Suppose E is a subset of [0, 1] with m(E) > 0. Then there
is a c > 0 and a positive integer N0 so that if F is any finite sum of the
form

F (t) =
∑

n≥N0

anrn(t)

then ∫
E

|F (t)|2 dt ≥ c
∑

n≥N0

a2
n.

Besides the orthogonality of the {rn} already used, the proof requires a
stronger orthogonality, which again exploits the mutual independence of
the Rademacher functions.

For each ordered pair (n,m), with n < m, define ϕn,m(t) = rn(t)rm(t).
Then the collection {ϕn,m} is an orthonormal sequence in L2([0, 1]). To
see this, consider

∫ 1

0
ϕn,m(t)ϕn′,m′(t) dt. When (n,m) = (n′,m′) the in-

tegral clearly equals 1. Now if (n,m) �= (n′, m′), but n or m equals n′

or m′ (in any order), then we see that the integral vanishes by the or-
thogonality of the {rn}. Finally, if neither n or m equals n′ or m′, then
we apply (4) to the four mutually independent functions rn, rm, rn′ and
rm′ , establishing the assertion.

Assuming that F is any finite sum of the form
∑

n anrn(t), we have

(F (t))2 =
∑

n

a2
nr2

n(t) + 2
∑
n<m

anamrn(t)rm(t),

hence

(9)
∫

E

(F (t))2 dt = m(E)
∑

n

a2
n + 2

∑
n<m

anamγn,m,

with γn,m =
∫

E
rn(t)rm(t) dt =

∫ 1

0
χE(t)ϕn,m(t) dt. Thus by the orthog-

onality of the {ϕn,m} and Bessel’s inequality,6
∑

n,m γ2
n,m ≤ m(E) ≤ 1.

Hence for any fixed δ > 0 (δ will be chosen momentarily), there is an N0

so that
∑

N0≤n<m γ2
n,m ≤ δ. We apply this with Schwarz’s inequality to

the last term on the right-hand side of (9), restricting ourselves to F ’s of

6For Bessel’s inequality, see Section 2.1 in Chapter 4 of Book III.
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the form F (t) =
∑

n≥N0
anrn(t). The result is that this term is bounded

by

2

( ∑
N0≤n<m

(anam)2
)1/2

δ1/2 ≤ 2δ1/2
∑

n≥N0

a2
n.

If we choose δ so that 2δ1/2 ≤ m(E)/2, then from (9) we get∫
E

|F (t)|2 dt ≥ 1
2
m(E)

∑
n≥N0

a2
n,

and the lemma is proved with c = m(E)/2.

To conclude the proof of part (b) of Theorem 1.4 we suppose the
opposite, that {SN (t)} converges in a set of positive measure. Then
this sequence is uniformly bounded on a set of positive measure, and
that means that there is an M and a set E, with m(E) > 0, so that
|SN (t)| ≤ M for all N if t ∈ E. As a result there is an M ′ so that, for

all N ≥ N0, one has
∣∣∣∑N0≤n≤N anrn(t)

∣∣∣ ≤ M ′ whenever t ∈ E.

The lemma guarantees that
∑

N0≤n≤N a2
n ≤ c−1(M ′)2 for all N , and

letting N → ∞ gives us that
∑

a2
n converges. This establishes the con-

tradiction and finishes the proof of the theorem.

1.7 Random Fourier series

The ideas above can also be used to obtain remarkable results about
random Fourier series, that is, Fourier series on [0, 2π] of the form

∞∑
n=−∞

±cneinθ.

To parametrize the choices of ± signs in terms of the Rademacher func-
tions, we need to re-index these functions so that their indices range
over Z. For this reason, it is convenient to change notation and write ρn

for the functions defined by ρn(t) = r2n+1(t), if n ≥ 0, and ρn(t) = r−2n(t),
if n < 0, with n ∈ Z. We allow the coefficients cn to be complex, so that
here we deal with complex-valued functions.

Theorem 1.7

(a) If
∑∞

n=−∞ |cn|2 < ∞, then for almost every t ∈ [0, 1] the function

(10) ft(θ) ∼
∞∑

n=−∞
ρn(t)cneinθ
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belongs to Lp([0, 2π]) for every p < ∞.

(b) If
∑∞

n=−∞ |cn|2 = ∞, then for almost every t ∈ [0, 1] the series (10)
is not the Fourier series of an integrable function.

The proof is based on Khinchin’s inequality, which like Lemma 1.6 is a
further exploitation of the independence of the Rademacher functions.

Suppose {an} are complex numbers with
∑∞

n=−∞ |an|2 < ∞. Let
F (t) =

∑∞
n=−∞ anρn(t), with F taken as the L2 limit on L2([0, 1]) of

the partial sums.

Lemma 1.8 For each p < ∞ there is a bound Ap so that

‖F‖Lp ≤ Ap‖F‖L2 ,

for all F ∈ Lp([0, 1]) of the form F (t) =
∑∞

n=−∞ anρn(t).

It clearly suffices to prove the corresponding statement when the an are
assumed real and have been normalized so that ‖F‖2

L2 =
∑∞

−∞ a2
n = 1.

Now observe that the defining property (3) shows that whenever {fn}
is a sequence of mutually independent (real-valued) functions, so is the
sequence {Φn(fn)}, with {Φn} any sequence of continuous functions from
R to R. As a result the functions {eanρn(t)} are mutually independent.
Thus if FN (t) =

∑
|n|≤N anρn(t), then

(11)∫ 1

0

eFN (t) dt =
∫ 1

0

(
N∏

n=−N

eanρn(t)

)
dt =

N∏
n=−N

(∫ 1

0

eanρn(t) dt

)
.

However,
∫ 1

0
eanρn(t) dt = cosh(an), since each ρn takes values +1 or −1

on sets of measure 1/2 respectively. Also, cosh(x) ≤ ex2
for real x, as a

comparison of their power series clearly shows. Hence∫ 1

0

eFN (t) dt ≤
N∏

n=−N

ea2
n ≤ e

P
a2

n ≤ e.

A similar inequality holds with the an replaced by −an. Altogether then∫ 1

0

e|FN (t)| dt ≤ 2e.

A simple passage to the limit, as N → ∞, then gives that e|F (t)| is in-
tegrable over [0, 1], and

∫ 1

0
e|F (t)| dt ≤ 2e. However for each p there is a
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constant cp so that up ≤ cpe
u for all u ≥ 0. Thus ‖F‖p

Lp ≤ 2ecp, and the
lemma is proved with Ap = (2ecp)1/p.

We turn now to the proof of part (a) of the theorem. We may assume
that

∑∞
n=−∞ |cn|2 = 1, and set F (t) = ft(θ), with an = cneinθ, and θ

fixed. Now ∫ 1

0

|F (t)|p dt =
∫ 1

0

|ft(θ)|p dt ≤ Ap
p

by the lemma. Thus integrating over θ ∈ [0, 2π] gives∫ 2π

0

∫ 1

0

|ft(θ)|p dt dθ ≤ 2πAp
p,

and by Fubini’s theorem, ∫ 2π

0

|ft(θ)|p dθ < ∞,

for almost every t ∈ [0, 1], and this is what was to be proved.

To prove the converse, part (b) in the theorem, suppose that for a
set E1 ⊂ [0, 1] of positive measure we have ft(θ) ∈ L1([0, 2π]), whenever
t ∈ E1. Since every function in L1([0, 2π]) has a Fourier series that is
Cesàro summable almost everywhere, it then follows that there is a set
Ẽ ⊂ [0, 1] × [0, 2π] of positive two-dimensional measure, and an M so
that

(12) sup
N

|σN (ft)(θ)| ≤ M for each (t, θ) ∈ Ẽ.

Here σN is the Cesàro sum given by σN (ft)(θ) =
∑

|n|≤N ρn(t)cneinθ(1 −
|n|/N). However, by Fubini’s theorem, (12) holds for at least one θ0, and
all t ∈ E, where m(E) > 0. Now write cneinθ0 = αn + iβn, with αn and
βn real, then apply Lemma 1.6. Thus there is an M ′ and an N0 so that

sup
N0≤|n|≤N

∑
α2

n ≤ M ′,

and letting N → ∞ shows that
∑∞

−∞ α2
n converges. Similarly

∑∞
−∞ β2

n

converges and the theorem is proved.

1.8 Bernoulli trials

Many of the results in Sections 1.1 to 1.5 that were proved above continue
to hold in modified form when the equal probabilities of heads and tails
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are replaced by probabilities p and q, with p + q = 1 and 0 < p < 1. This
more general situation is often referred to as that of Bernoulli trials.

To consider it we begin by replacing the probability measure on Z∞
2 by

the measure mp that arises as the product measure on Z∞
2 where for each

factor Z2 = {0, 1} the point 0 is assigned measure p and the point 1 is
assigned measure q. (Incidentally, when p �= 1/2, then under the mapping
D : Z∞

2 → [0, 1], the measure mp now corresponds to a singular measure
dµp on [0, 1]. For this, see Problem 1.)

In this setting the law of large numbers takes the form that SN/N →
p − q as in Corollaries 1.2 and 1.5. The proof of the analog of the first
corollary can be carried out in much the same way as before. The variant
of the second corollary requires some further ideas and is dealt with in
a general context in the next section. In addition, a modification of the
proof of Theorem 1.3 gives its analog

mp({x : a <
SN (x) − N(p − q)

N1/2
< b}) → 1

σ
√

2π

∫ b

a

e−t2/(2σ2) dt

as N → ∞, where σ2 = 1 − (p − q)2.

This result is subsumed in the general form of the central limit theorem
proved in the last part of the next section.

2 Sums of independent random variables

Our aim in this section is to put in a more general and abstract form
some of the results for coin flips and Bernoulli trials dealt with in the
first section. To begin with, we shall present a version of the law of large
numbers.

2.1 Law of large numbers and ergodic theorem

Here we deduce a general form of this law from the ergodic theorem.7 An-
other version, derived from the theory of martingales, will be presented
in Section 2.2 below.

A sequence (f0, f1, . . . , fn, . . .) of functions is said to be identically
distributed if the distribution measures µn of fn (as defined in Sec-
tion 1.4) are independent of n, that is, the measures m({x : fn(x) ∈ B})
are the same for all n for every Borel set B. If the sequence {fn} is

7A treatment of the ergodic theorem needed here can be found in Section 5* of Chap-
ter 6 in Book III.
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identically distributed and if f0 has a mean (equal to m0), then of course
all fn have a mean that equals m0. The first main theorem is as follows.

Theorem 2.1 Suppose {fn} is a sequence of functions that are mutually
independent, are identically distributed, and have mean m0. Then

1
N

N−1∑
n=0

fn(x) → m0 for almost every x ∈ X, as N → ∞.

The possibility of reducing this theorem to the ergodic theorem depends
on the device of replacing the sequence {fn} by another sequence that is
“equimeasurable” with the first, in the following sense.

Given functions f1, . . . , fN , their joint distribution measure is de-
fined as the measure on RN that satisfies for all Borel sets B ⊂ RN

µf1,...,fN
(B) = m({x : (f1(x), . . . , fN (x)) ∈ B}.

Now suppose {gn} is a sequence on a (possibly different) probability
space (Y,m∗). Then we say that {fn} and {gn} have the same joint
distribution if for every N , we have

µf1,...,fN
(B) = µg1,...,gN

(B) for all Borel sets B ⊂ RN .

With this definition in hand we come to the space Y that is relevant
here. It is the infinite product Y = R∞ =

∏∞
j=0 Rj , where each Rj is R.

On each Rj we consider the measure µ, the common distribution measure
of the fn. Define m∗ to be the corresponding product measure on Y .

We also consider the shift τ : Y → Y , given by τ(y) = (yn+1)∞n=0, if
y = (yn)∞n=0. Finally we take for the {gn} the coordinate functions on Y
given by gn(y) = yn, if y = (yn)∞n=0.

Everything will now be a consequence of the following four steps.

Observation 1. gn(τ(y)) = gn+1(y) for all n ≥ 0; hence gn(y) = g0(τny).

Observation 2. τ is measure-preserving and ergodic.

Conclusion 1. limN→∞ 1
N

∑N−1
n=0 gn(y) = m0, for almost every y ∈ Y .

Conclusion 2. limN→∞ 1
N

∑N−1
n=0 fn(x) = m0, for almost every x ∈ X.

The first observation is immediate.
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That τ is measure preserving means that m∗(τ−1(E)) = m∗(E) for
every (measurable) set E ⊂ Y . Since Y is a product space, it suffices to
verify this for all cylinder sets E, and then a simple limiting argument
proves this for the general set E. If E is a cylinder set, E depends
only on the first N coordinates, for some N . This means that E =
E′ ×∏∞

j=N Rj , with E′ a subset of
∏N−1

j=0 Rj , and m∗(E) = µ(N)(E′),
where µ(N) is the N -fold product of µ on the first N factors. However

τ−1(E) = R0 × E
′′ ×

∞∏
j=N+1

Rj ,

with (y
′′
1 , . . . , y

′′
N ) ∈ E

′′
if and only if (y

′
0, . . . , y

′
N−1) ∈ E

′
, where y

′′
n+1 =

y
′
n, for 0 ≤ n ≤ N − 1. Thus m∗(τ−1(E)) = µ(N+1)(R0 × E

′′
) = µ(N)(E′)

and the assertion m∗(τ−1(E)) = m∗(E) is proved.

The ergodicity of τ follows from the fact that τ is mixing,8 which
means

(13) lim
n→∞

m∗(τ−n(E) ∩ F ) = m∗(E)m∗(F )

for all pairs of E, F ⊂ Y .
To prove the mixing property it suffices, as before, to assume that both

E and F are cylinder sets. So, for a sufficiently large N we have that
E = E′ ×∏∞

j=N Rj and F = F ′ ×∏∞
j=N Rj , where both E′ and F ′ are

subsets of
∏N−1

j=0 Rj . Now, as above if n ≥ 1,

τ−n(E) =
n−1∏
j=0

Rj × E′′ ×
∞∏

j=N+n

Rj ,

where E′′ is the subset of
∏N+n−1

j=n Rj that corresponds to E′. Thus if
n > N

τ−n(E) ∩ F = F ′ ×
n−1∏
j=N

Rj × E′′ ×
∞∏

j=N+n

Rj .

As a result m∗(τ−n(E) ∩ F ) = m∗(E)m∗(F ) whenever n > N and (13)
is established.

It follows immediately from (13), when taking F = E, that if E is an
invariant set, that is τ−1(E) = E almost everywhere, then m∗(E) =

8Also referred to as “strongly-mixing”; see Chapter 6 in Book III.
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(m∗(E))2, so m∗(E) = 0 or m∗(E) = 1. Thus there is no proper subset
of X invariant under τ , and this means that τ is ergodic; so our second
observation is established.

Now the function g0 is integrable on Y since∫
Y

|g0(y)| dm∗(y) =
∫

R

|y0| dµ(y0) =
∫

X

|f0(x)| dm(x) < ∞,

because µ is the distribution measure of f0 that is integrable. We can
now apply the ergodic theorem in Corollary 5.6 of Chapter 6, Book III,
which gives us the first conclusion with m0 =

∫
Y

g0 dm∗ =
∫

X
f0 dm.

To deduce the second conclusion we need the following lemmas.

Lemma 2.2 If {fN} and {gN} have the same joint distribution, then so
do the sequences {ΦN (f)} and {ΦN (g)}. Here ΦN (f) = ΦN (f1, . . . , fN ),
ΦN (g) = ΦN (g1, . . . , gN ), and each ΦN is a continuous function from RN

to R.

To see this, note that if B ⊂ RN is a Borel set, and Φ = (Φ1, . . . ,ΦN ),
then B′ = Φ−1(B) is also a Borel set in RN , so if f = (f1, . . . , fN ) and
g = (g1, . . . , gN ), then µΦ(f)(B) = µf (B′) and µΦ(g)(B) = µg(B′). Since
f and g have the same joint distribution we must have µf (B′) = µg(B′),
and the lemma is proved.

Lemma 2.3 If {FN} and {GN} have the same joint distribution, then
FN (x) → m0 almost everywhere as N → ∞ if and only if GN (y) → m0

almost everywhere as N → ∞.

To prove this lemma, note that if we define EN,k = {x : supr≥N |Fr(x) −
m0| ≤ 1/k}, then FN → m0 almost everywhere if and only if m(EN,k) →
1, as N → ∞, for each k. If E′

N,k = {y : supr≥N |Gr(x) − m0| ≤ 1/k},
then m(EN,k) = m∗(E′

N,k), and this leads to our desired result.

Once we take ΦN (t1, . . . , tN ) = 1
N

∑N
k=1 tk, FN (x) = 1

N

∑N−1
k=0 fk(x),

and GN (y) = 1
N

∑N−1
k=0 gk(y), we see that the lemmas complete the proof

of the theorem.

2.2 The role of martingales

We shall now look at sums of independent functions (random variables)
from a different angle and relate these sums to the notion of martingales.
The basic definition required is that of the conditional expectation of
a function f with respect to a σ sub-algebra A of the σ-algebra M of



2. Sums of independent random variables 209

measurable sets of X. In fact, for the sake of brevity of terminology, in
what follows we drop the adjective “σ” and use “algebra” and sub-algebra
to mean σ-algebra and σ sub-algebra, respectively.

Suppose A is a given such sub-algebra. We say that a function F on X
is measurable with respect to A (or A-measurable) if F−1(B) ∈ A for
all Borel subsets B of R. The algebra A is said to be determined by F ,
sometimes written A = AF , if A is the smallest algebra with respect to
which F is measurable; that is, AF = {F−1(B)}, as B ranges over the
Borel sets of R.

Given an integrable function f on X and a sub-algebra A, then EA(f),
also sometimes written as E(f |A), is the unique function F described by
the proposition below. It is called the conditional expectation of f
with respect to A.

Proposition 2.4 Given an integrable function f and a sub-algebra A of
M, there is a unique9 function F so that:

(i) F is A-measurable.

(ii)
∫

A
F dm =

∫
A

f dm for any set A ∈ A.

In general, one may think of the conditional expectation as the “best
guess” of the function f given the knowledge of A. A simple example to
keep in mind is EA(f) = En(f) given in Section 1.6 above. In that case,
A is the (finite) algebra generated by the dyadic intervals of length 2−n

on [0, 1].

Proof. We denote by m′ the restriction of the measure m to A.
Define a (σ-finite) signed measure ν on A by ν(A) =

∫
A

f dm, for A ∈ A.
Then since ν is clearly absolutely continuous with respect to m′, the
Lebesgue-Radon-Nikodym theorem10 guarantees that there is a function
F that is A-measurable so that ν(A) =

∫
A

F dm′ =
∫

A
F dm. Given the

definition of ν, the existence of the required F is therefore established.
Its uniqueness is clear because if G is A-measurable and

∫
A

Gdm = 0 for
every A ∈ A, then necessarily G = 0.

Once the algebra A is fixed, we shall not always indicate the depen-
dence of the conditional expectation on the algebra, but write it simply
as E instead of EA.

There are a number of elementary observations about conditional ex-
pectations E that are direct consequences of the defining proposition for
F = E(f). We leave these for the reader to verify.

9Uniqueness, of course, means determined up to a set of measure zero.
10See for example Theorem 4.3 in Chapter 6 of Book III.
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• The mapping f 	→ E(f) is linear.

• ∫
X

E(f) dm =
∫

X
f dm, and E(1) = 1.

• E(f) ≥ 0 if f ≥ 0, and |E(f1)| ≤ E(f) if |f1| ≤ f .

• E2 = E, and in particular E(f) = f if f is A-measurable.

• E(gf) = gE(f), if g is bounded and A-measurable.

Two other noteworthy properties of E are contained in the following.

Lemma 2.5

(a) If f ∈ L2, then E(f) ∈ L2and ‖E(f)‖L2 ≤ ‖f‖L2 .

(b) If f, g ∈ L2, then
∫

X
E(f)g dm =

∫
X

fE(g) dm.

Note. The conclusion (b) of the lemma, together with the property
E2 = E shows that E is an orthogonal projection on the Hilbert space
L2(X, m).

Proof. To establish (a) observe that if g is bounded and A-measurable,
then by the proposition above,

∫
X

gf dm =
∫

X
E(gf) dm =

∫
X

gE(f) dm.
But

‖E(f)‖L2 = sup
g

∣∣∣∣∫
X

gE(f) dm

∣∣∣∣ ,
where g ranges over bounded A-measurable functions with ‖g‖L2 ≤ 1 (see
Lemma 4.2 in Chapter 1), because of the fact that E(f) is A-measurable.
Moreover

∣∣∫
X

gf dm
∣∣ ≤ ‖f‖L2 for such g, gives conclusion (a).

Next observe that
∫

X
E(g)f dm =

∫
X

E(E(g)f) dm =
∫

X
E(g)E(f) dm,

whenever g is bounded. By symmetry in f and g this gives conclusion (b)
when both f and g are bounded, and by the continuity in (a) the result
extends to f and g in L2.

After these preliminaries, we are ready for the task at hand. We now
assume we are given an increasing sequence of sub-algebras of M, that
is, we have

A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ · · · ⊂ M,

and to each sub-algebra we attach its conditional expectation,

En = EAn for n = 0, 1, 2, . . . .



2. Sums of independent random variables 211

The increasing character of the sequence An implies that expectation
operators form an increasing sequence in the sense that

EnEm = Emin(n,m), for all n,m.

Indeed, if m ≤ n, then Am ⊂ An, so g = Em(f) is An-measurable, and
consequently En(g) = g. In the other case, if n ≤ m, and A ∈ An, then∫

A

En(f) =
∫

A

f =
∫

A

Em(f),

where the second equality follows from the fact that A is also Am-
measurable. Therefore the definition of conditional expectation implies
that En(Em(f)) = En(f).

With this we arrive at the crucial definition. Having fixed our increas-
ing family of algebras {An} and the resulting conditional expectations,
we say that a sequence {sn} of integrable functions on X forms a mar-
tingale sequence if for all k and n,

(14) sk = Ek(sn), whenever k ≤ n.

Note that by this definition, each sk is automatically Ak-measurable.
If the sequence is finite (and consists of s0, s1, . . . , sm) then this is

equivalent with sk = Ek(sm), for all k ≤ m. An important class of mar-
tingale sequences are those that are complete. This means that there
is an integrable function s∞ so that sk = Ek(s∞) for all k.

The fundamental connection between sums of independent random
variables and martingales is contained in the following assertion.

Proposition 2.6 Suppose {fk} is a sequence of integrable functions that
are mutually independent and each have mean zero. Then there is an
increasing family An of sub-algebras so that with respect to these sn =∑n

k=0 fk is a martingale sequence.

To see this, we require further terminology. Let {Bn} be a sequence of
sub-algebras of M that are not assumed to be increasing. Then these
are said to be mutually independent if for every N ,

m(
N⋂

j=0

Bj) =
N∏

j=0

m(Bj) for all choices Bj ∈ Bj .

Notice that if Afn
are the sub-algebras determined by the fn, then the

fact that {Afn
} are mutually independent is equivalent to the functions

{fn} being mutually independent, according to the definition given in (3).
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Now starting with our independent functions f0, f1, . . . , fn, . . . we de-
fine An to be the algebra generated by Af0 ∪ Af1 ∪ · · · ∪ Afn . It is use-
ful to have the short-hand

∨n
j=0 Bj to denote the algebra generated by

B0 ∪ B1 ∪ · · · ∪ Bn. Thus we have set An =
∨n

j=0 Afj . Our claim is that∨n−1
j=0 Afj and Afn are mutually independent. This is an immediate con-

sequence of the following lemma.

Lemma 2.7 Suppose B0, . . . ,Bn are mutually independent algebras.
Then for each k < n, the algebras

∨k
j=0 Bj and Bn are mutually inde-

pendent.

See Exercise 7.

Now clearly {An} is an increasing sequence of algebras and Ek(f�) =
f�, if k ≥ �, since each f� is also Ak-measurable. We next observe that
Ek(f�) = 0 if k < �. Indeed, recall first that F = Ek(f�) is Ak-measurable
and ∫

Ak

F dm =
∫

Ak

f� dm, for every set Ak ∈ Ak.

But ∫
Ak

f� dm =
∫

X

χAk
f� dm = m(χAk

)
∫

X

f� dm = 0,

by the independence of Ak and Af�
, and the fact that the mean of f� is

zero. Hence F = 0. Finally for k ≤ n

Ek(sn) = Ek(f0 + f1 + · · · + fk) + Ek(fk+1 + · · · + fn)

= f0 + · · · + fk = sk.

Thus (14) holds and the proposition is proved.

Having reached this point, we are ready to use the ideas of martingales
to extend the results of Section 1.6.

Theorem 2.8 Suppose f0, . . . , fn, . . . are independent functions that are
square integrable, and that each has mean zero, and variance σ2

n = ‖fn‖2
L2 .

Assume that
∞∑

n=0

σ2
n < ∞.

Then sn =
∑n

k=0 fk converges (as n → ∞) almost everywhere.
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A corollary of this where we only assume that the {σn} are bounded,
gives the strong law of large numbers in this setting.

Corollary 2.9 If supn σn < ∞, then for each α > 1/2

sn

nα
→ 0 almost everywhere as n → ∞.

Note that here, unlike in Theorem 2.1, we have not assumed that the
fn are identically distributed. On the other hand, we have made a more
restrictive assumption in requiring square integrability.

We begin the proof of the theorem by noting that under its assump-
tions the sequence sn =

∑n
k=0 fk converges in the L2 norm, as n → ∞.

Indeed, since the fn are mutually independent and
∫

X
fn dm = 0, then

by (4) they are mutually orthogonal. Hence by Pythagoras’ theorem,
if m < n, ‖sn − sm‖2

L2 =
∑n

k=m+1 ‖fk‖2 =
∑n

k=m+1 σ2
k → 0, as n,m →

∞. Thus sn converges to a limit (call it s∞) in the L2 norm. Using (14)
and the fact that each En is continuous in the L2 norm by Lemma 2.5,
we arrive at

sn = En(s∞), for all n.

Our desired result now follows from a basic maximal theorem for mar-
tingales and its corollary, which gives convergence almost everywhere.

Theorem 2.10 Suppose s∞ is an integrable function, and sn = En(s∞),
where the En are conditional expectations for an increasing family {An}
of sub-algebras of M. Then:

(a) m({x : supn |sn(x)| > α}) ≤ 1
α‖s∞‖L1 for every α > 0.

(b) If sn converges in the L1 norm as n → ∞, then it also converges
almost everywhere to the same limit.

Note. The assumption in part (b) is in reality redundant because if sn =
En(s∞) with s∞ ∈ L1, then automatically sn converges in the L1 norm;
but in general this limit need not be s∞. (See Exercise 27.) However
in the situation in which we apply the theorem, we know already that
sn → s∞ in the L2 norm, hence also in the L1 norm.

For the proof of part (a) we may assume that s∞ is non-negative,
for otherwise we may proceed with |s∞| instead of s∞ and then obtain
the result once we observe that |En(s∞)| ≤ En(|s∞|). For fixed α, let
A = {x : supn sn(x) > α}. Then we can partition A =

⋃∞
n=0 An, where
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An is the set where n is the first time that sn(x) > α. That is An = {x :
sn(x) > α, but sk(x) ≤ α, for k < n}. Note that An ∈ An. Also,∫

A

s∞ dm =
∞∑

n=0

∫
An

s∞ dm =
∞∑

n=0

∫
An

En(s∞) dm =
∞∑

n=0

∫
An

sn dm

> α
∑

n

∫
An

dm

= αm(A).

The identity
∫

An
En(s∞) dm =

∫
An

s∞ dm follows from the definition of
the conditional expectation En(s∞). Thus

(15) m(A) ≤ 1
α

∫
A

s∞ dm, with A = {x : supn sn(x) > α},

and part (a) is proved. (The reader might find it instructive to com-
pare (15) with a corresponding estimate for the Hardy-Littlewood max-
imal function in equation (28) of Chapter 2.)

To prove (b), assume first that sn → s∞ in the L1 norm. Remark
that we always have sn − s∞ = En(s∞ − sk) + sk − s∞ if n ≥ k, because
then En(sk) = sk. We will show that if Aα = {x : lim supn→∞ |sn(x) −
s∞(x)| > 2α}, then m(Aα) = 0 for every α > 0, and this assures our
conclusion about the existence of the limit. Now with α given, let ε > 0
be arbitrary. Then choose k so large that ‖sk − s∞‖L1 < ε. Then

lim sup
n→∞

|sn − s∞| ≤ sup
n≥k

|En(s∞ − sk)| + |sk − s∞|.

If A1
α = {x : supn |En(s∞ − sk)(x)| > α} and A2

α = {x : |sk(x) − s∞(x)| >
α}, then

m(Aα) ≤ m(A1
α) + m(A2

α).

By part (a) applied to s∞ − sk instead of s∞, we get m(A1
α) ≤ ε/α. Also

Tchebychev’s inequality gives m(A2
α) ≤ ε/α. Altogether then m(Aα) ≤

2ε/α, and since ε was arbitrary we have m(Aα)=0, which holds for ev-
ery α, proving the result under the additional hypothesis that sn con-
verges to s∞ in the L1 norm. Dropping that assumption we can define
s′∞ to be the limit of the sequence {sn} in the L1 norm which was as-
sumed to exist. Then by (14) and the continuity of Ek on the L1 norm,
we get sk = Ek(s′∞), and we are back to the previous situation with s′∞
in place to s∞. The theorem is therefore completely proved.

The corollary then follows by the same argument used in the proof of
Corollary 1.5.



2. Sums of independent random variables 215

2.3 The zero-one law

The kernel of the idea is the observation that if A1 and A2 are two
independent algebras, and the set A belongs simultaneously to both A1

and A2, then necessarily m(A) = 0 or m(A) = 1.
Indeed, in this situation, m(A) = m(A ∩ A) = m(A)m(A) by inde-

pendence, which proves the assertion. This idea is elaborated in Kol-
mogorov’s zero-one law that we now formulate.

Suppose A0,A1, . . . ,An, . . . is a sequence of sub-algebras of M, that
are not necessarily increasing. With

∨∞
k=n Ak denoting the algebra11

generated by An,An+1, . . . , we define the tail algebra to be
∞⋂

n=0

∞∨
k=n

Ak.

Theorem 2.11 If the algebras A0,A1, . . . ,An, . . . are mutually indepen-
dent then every element of the tail algebra has either measure zero or one.

Proof. Let B denote the tail algebra. Note that Ar is automatically
independent from

∨∞
k=r+1 Ak, by Lemma 2.7. Hence each Ar is inde-

pendent of B, and thus the algebras B and B are mutually independent!
Therefore as observed above, every element of B has measure zero or one.

A simple consequence is the following.

Corollary 2.12 Suppose f0, f1, . . . , fn, . . . are mutually independent
functions. The set where

∑∞
k=0 fk converges has measure zero or one.

Proof. Set An = Afn . Then these algebras are independent. Now
with sn =

∑n
k=0 fk, and a fixed positive integer n0, we have by the

Cauchy criterion that

{x : lim sn(x) exists} =
∞⋂

�=1

∞⋃
r=n0

{x : |sn(x) − sm(x)| <
1
�
, all n,m ≥ r}.

Since {x : |sn(x) − sm(x)| < 1/�, all n,m ≥ r} ∈ ∨∞
k=n0

Ak whenever
r ≥ n0 we conclude that the set of convergence is a tail set, as desired.

2.4 The central limit theorem

We generalize the special case of this theorem given in Section 1.4, con-
necting its proof in an elegant way with the Fourier transform.

11Recall that we are using “algebra” as a short-hand for “σ-algebra.”



216 Chapter 5. RUDIMENTS OF PROBABILITY THEORY

The setting is as follows. On our probability space (X, m) we are given
a sequence f1, f2, . . . , of identically distributed, square integrable, and
mutually independent functions (random variables) that each have mean
m0 and variance σ2.

Theorem 2.13 Let SN =
∑N

n=1 fn. Under the above conditions

m({x : a <
SN − Nm0

N1/2
< b}) → 1

σ
√

2π

∫ b

a

e−t2/(2σ2) dt

as N → ∞, for each a < b.

In proving the theorem we can immediately reduce to the case where
the mean m0 is zero, by replacing fn by fn − m0 for each n. Suppose
now that µ is the common distribution measure of the fn, that µN is the
distribution measure of SN/N1/2 and νσ2 is the distribution measure of
the Gaussian with mean zero and variance σ2. We consider the Fourier
transforms of these measures, called their characteristic functions. In
the case of µ it is given by

µ̂(ξ) =
∫ ∞

−∞
e−2πiξt dµ(t),

with similar formulas12 for µ̂N and ν̂σ2 .
Note first that ν̂σ2 can be computed explicitly. It is given by the

formula13

ν̂σ2(ξ) = e−2σ2π2ξ2
.

The proof of the theorem can now be presented in three relatively easy
steps:

(i) The identity µ̂N (ξ) = µ̂(ξ/N1/2)N , for each N .

(ii) The fact that µ̂N (ξ) → ν̂σ2(ξ), for each ξ, as N → ∞.

(iii) The resulting consequence that µN ((a, b)) → νσ2((a, b)), as N → ∞
for all intervals (a, b).

12To be consistent with our previous usage of the Fourier transform, we have kept the
factor 2π in the exponential, which is not the usual practice in probability theory.

13See for instance Chapter 5 in Book I.
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Now if µ is the common distribution of the fn, then as we noted in (6),
for any G : R → R that is (say) continuous and bounded we have∫

X

G(fn)(x) dm =
∫ ∞

−∞
G(t) dµ(t).

In particular, taking G(t) = e−2πitξ, with ξ real, we have

µ̂(ξ) =
∫

X

e−2πiξfn(x) dm.

Similarly µ̂N (ξ) =
∫

X
e−2πiξSN (x)/N1/2

dm. However SN (x) =
∑N

n=1 fn(x),
thus by the mutual independence of the fn∫

X

e−2πiξSN (x)/N1/2
dm =

N∏
n=1

(∫
X

e−2πiξfn(x)/N1/2
dm

)
= µ̂(ξ/N1/2)N .

(Note here the similarity with equation (11).) The identity (i) is therefore
established.

To carry out the second step we prove the following.

Lemma 2.14 µ̂(ξ/N1/2) = 1 − 2σ2π2ξ2/N + o(1/N), as N → ∞.

Proof. Indeed, when ξ is fixed

e−2πiξt/N1/2
= 1 − 2πiξt/N1/2 − 2π2ξ2t2/N + EN (t)

with EN (t) = O(t2/N), but also EN (t) = O(t3/N3/2). Integrating this
in t, we get

µ̂(ξ/N1/2) = 1 − 2π2ξ2

N
σ2 +

∫ ∞

−∞
EN (t) dµ(t),

because m0 =
∫ ∞
−∞ t dµ(t) = 0, and σ2 =

∫ ∞
−∞ t2 dµ(t). The lemma will

be proved as soon as we see that
∫ ∞
−∞ EN (t) dµ(t) = o(1/N). However,

the integral in question can be divided into a part where t2 < εNN , and
a complementary part where t2 ≥ εNN . Here we choose εN to tend to
zero as N → ∞, while εNN → ∞ as N → ∞; (for example, the choice
εN = N−1/2 will do.) Now for the first part∫

t2<εN N

EN (t) dt = O

(∫
t2<εN N

t3/N3/2 dµ(t)
)

= O

(
ε
1/2
N

N

∫ ∞

−∞
t2 dµ(t)

)
= o(1/N).
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In addition, for the second part we can estimate∫
t2≥εN N

EN (t) dt = O

(
1
N

∫
t2≥εN N

t2 dµ(t)
)

= o(1/N).

Having thus proved the lemma we see that

µ̂N (ξ) = µ̂(ξ/N1/2)N =
(
1 − 2σ2π2ξ2/N + o(1/N)

)N
,

and this converges to e−2σ2π2ξ2
, completing step (ii).

To finish the proof of the theorem we need the following lemma. We
say that a measure is continuous if each point has measure zero.

Lemma 2.15 Suppose {µN}, N = 1, 2, . . . , and ν are non-negative fi-
nite Borel measures on R, and that ν is continuous. Assume that µ̂N (ξ) →
ν̂(ξ), as N → ∞, for each ξ ∈ R. Then µN ((a, b)) → ν(a, b) for all a < b.

Proof. We prove first that

(16) µN (ϕ) → ν(ϕ) as N → ∞

for any ϕ that is C∞ and has compact support, where we have used the
notation µN (ϕ) =

∫ ∞
−∞ ϕ(t) dµN (t) and ν(ϕ) =

∫ ∞
−∞ ϕ(t) dν(t).

Notice that since µ̂N (0) =
∫ ∞
−∞ dµN (t), then the convergent sequence∫ ∞

−∞ dµN (t) must be bounded. As a result, for some M we have |µ̂N (ξ)| ≤
M for all N and also |ν̂(ξ)| ≤ M .

Next, the function ϕ can be represented by its inverse Fourier trans-
form ϕ(t) =

∫ ∞
−∞ e−2πitϕ∨(ξ) dξ, where ϕ∨(ξ) = ϕ̂(−ξ) is necessarily in

the Schwartz space S. This shows that∫
R

ϕ(t) dµN (t) =
∫

R

ϕ∨(ξ)µ̂N (ξ) dξ,

by applying Fubini’s theorem to
∫ ∫

e−2πitξϕ∨(ξ) dµN (t) dξ, which is jus-
tified by the rapid decrease of ϕ∨. Similarly,

∫
ϕ dν =

∫
ϕ∨(ξ)ν̂(ξ) dξ.

Then since µ̂N (ξ) → ν̂(ξ) pointwise and boundedly we obtain (16).

Now for (a, b) fixed, let ϕε be a sequence of positive C∞ functions with
ϕε ≤ χ(a,b), and ϕε(t) → χ(a,b)(t) for every t as ε → 0. Then

µN ((a, b)) ≥ µN (ϕε) → ν(ϕε) as N → ∞.
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ϕε

ba

ψε

Figure 3. The functions ϕε and ψε in Lemma 2.15

As a result, lim infN→∞ µN (a, b) ≥ ν(ϕε), and letting ε → 0 gives

lim inf
N→∞

µN ((a, b)) ≥ ν((a, b)).

Similarly, let ψε be a sequence of C∞ functions so that ψε ≥ χ[a,b]

and ψε(t) → χ[a,b](t) for every t, as ε → 0. Then by the same reason-
ing, lim supN→∞ µN ((a, b)) ≤ ν([a, b]) = ν((a, b)), by the continuity of ν.
Thus the lemma is proved, and with it the theorem is established, once
we take ν = νσ2 .

Another way to put the conclusion of the theorem is in terms of weak
convergence of measures. We say that a sequence of probability measures
{µN} converges weakly to the probability measure ν, if (16) holds for
all continuous functions ϕ that are bounded on R.

Corollary 2.16 If µN is the distribution measure of (SN − Nm0)/N1/2,
then µN converges weakly to ν = νσ2 .

We note first that (16) holds for any function ϕ that is continuous and
has compact support. Indeed such a ϕ can be uniformly approximated
by a sequence {ϕε} of C∞ functions of compact support.14 Now

µN (ϕ) − ν(ϕ) = µN (ϕ − ϕε) − ν(ϕ − ϕε) + (µN − ν)(ϕε).

Now the sum of the first two terms on the right-hand side is majorized
by 2 supt |ϕ(t) − ϕε(t)|, and this can be made small by choosing ε con-
veniently. Once ε is chosen we need only let N → ∞ and apply (16)
for ϕε.

14See for example the proof of Lemma 4.10 in Chapter 5 of Book III.
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To pass to ϕ whose support is not compact, we note that

(17) lim sup
N→∞

µN (χ(IR)c) ≤ ε(R),

where ε(R) → 0 as R → ∞, and IR is the interval |t| ≤ R. In fact if ηR is
continuous with 0 ≤ ηR ≤ χIR

, ηR(t) = 1 for |t| ≤ R/2, then µN (χIR
) ≥

µN (ηR) → ν(ηR), as N → ∞. Hence lim infN→∞ µN (χIR
) ≥ 1 − ν(1 −

ηR), but ν(1 − ηR) = ε(R) → 0, as R → ∞ so (17) holds.
Now suppose ϕ is a given continuous and bounded function on R.

We can assume that 0 ≤ ϕ ≤ 1. For each R, let ϕR be a continuous
function with ϕR(t) = ϕ(t) for |t| ≤ R, but ϕR(t) = 0 for |t| ≥ 2R, while
0 ≤ ϕR(t) ≤ ϕ(t) everywhere.

Then ϕ ≤ ϕR + χ(IR)c , so

µN (ϕ) ≤ µN (ϕR) + µN (χ(IR)c).

Therefore lim supN→∞ µN (ϕ) ≤ ν(ϕ) + ε(R), and letting R → ∞ gives
lim supN→∞ µN (ϕ) ≤ ν(ϕ). However

lim inf
N→∞

µN (ϕ) ≥ lim
N→∞

µN (ϕR) = ν(ϕR) → ν(ϕ) as R → ∞.

Thus limN→∞ µN (ϕ) = ν(ϕ), proving the corollary.

2.5 Random variables with values in Rd

Up to this point, with the exception of Section 1.7, our functions have
been assumed to be real-valued. However, for many purposes it is useful
to extend the theory to the setting where the functions take their values
in Rd (and in particular, to complex-valued functions, which corresponds
to the case d = 2). Often this extension is rather routine. In what follows,
we will limit ourselves to a formulation of the d-dimensional version of
the central limit theorem. First, some notation.

Suppose f is an Rd-valued function on (X, m). We write it in coor-
dinates as f = (f (1), f (2), . . . , f (d)), where each f (k) is real-valued. The
distribution measure of f is the non-negative Borel measure µ on Rd

defined by

µ(B) = m(f−1(B)) = m({x : f(x) ∈ B}), for each Borel set B ⊂ Rd.

Of course µ(Rd) = 1, so µ is a probability measure.

The function f is said to the integrable if |f | =
(∑d

k=1 |f (k)|2
)1/2

is integrable. Square integrability of f is defined similarly. When
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f is integrable then its mean (or expectation) is defined as the vector
m0 = (m(k)

0 ), with m
(k)
0 =

∫
X

f (k)(x) dm.
If f is square integrable, the covariance matrix of f is the d × d

matrix {aij} with

aij =
∫

X

(f (i)(x) − m
(i)
0 )(f (j)(x) − m

(j)
0 ) dm.

Note that aij =
∫

Rd(ti − m
(i)
0 )(tj − m

(j)
0 ) dµ(t), and this matrix is sym-

metric and non-negative. It has a (unique) square root σ which is sym-
metric and non-negative, and thus we write σ2 for the covariance matrix
of f .

Next, we say that the sequence of Rd-valued functions, f1, . . . , fn . . .
are mutually independent if the algebras

An = Afn
= {f−1

n (B), all Borel sets B in Rd}
are mutually independent. Notice that this implies that for each vec-
tor ξ = (ξ1, . . . , ξd) ∈ Rd the scalar-valued functions ξ · f1, . . . , ξ · fn, . . .

where ξ · fn = ξ1 · f (1)
n + ξ2 · f (2)

n + · · · + ξd · f (d)
n , are mutually indepen-

dent.

Two other preliminary matters. Given an Rd-valued random variable
(function) f , its characteristic function is the d-dimensional Fourier
transform µ̂(ξ) =

∫
Rd e−2πiξ·t dµ(t), ξ ∈ Rd, where µ is the distribution

measure of f . Of course µ̂(ξ) =
∫

X
e−2πiξ·f(x) dm.

Also adapting a previous terminology, if {µN} is a sequence of proba-
bility measures on Rd, and ν is another probability measure on Rd, then
we say that µN → ν weakly if∫

Rd

ϕdµN →
∫

Rd

ϕdν as N → ∞,

for all continuous and bounded functions ϕ on Rd.

We now come to the theorem. We suppose that our sequence {fn} of
Rd-valued functions are mutually independent, that they are identically
distributed and are square integrable with mean zero. If σ2 denotes the
common covariance matrix, we assume that σ is invertible, and write
σ−1 for its inverse.

Let µN be the distribution measure of 1
N1/2

∑N
n=1 fn, and νσ2 be the

measure on Rd given by

νσ2(B) =
1

(2π)d/2(det σ)

∫
B

e−
|σ−1(x)|2

2 dx
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for all Borel sets B ⊂ Rd.

Theorem 2.17 Under the above conditions on {fn}, the measures µN

converge weakly to νσ2 as N → ∞.

The proof proceeds essentially as in the case of real-valued functions,
showing first the analog of (16) for smooth functions with compact sup-
port, and then proceeding as in Corollary 2.16 for continuous functions.
The calculation of the characteristic function of the Gaussian is given in
Exercise 32.

Remark. The following generalization can be deduced by a slight mod-
ification of the proof of Theorem 2.17. Suppose {fn} satisfies the condi-
tions of the theorem, t > 0, and define

SN,t =
1

N1/2

[Nt]∑
n=1

fn.

(Here [x] denotes the integer part of x.) Then, the distribution measure
of SN,t converges weakly to νtσ2 as N → ∞. In fact, if 0 ≤ s < t, then
the distribution measure of SN,t − SN,s converges weakly to ν(t−s)σ2 as
N → ∞.

2.6 Random walks

The coin tossing (or sums of Rademacher functions) considered in Sec-
tion 1.1 can be thought of as representing a random walk on the real
line. This walk can be described as follows.

One starts at the origin, then moves along a straight line with steps of
unit length; each step taken has equal probability of going to the right or
left, with different steps having independent probabilities. The position
after the nth step is given by sn =

∑n
k=1 rk. Notice that the values of sn

are always integers.
In Rd we will consider a particular version of a random walk, giving

the simplest generalization of the above. It starts at the origin, and the
position of the nth step is obtained from the previous step by moving
a unit length in a direction of one of the coordinate axes, and doing
this with equal probability, (that is probability 1/(2d)). The passage at
each step will be assumed to be independent of the previous steps. We
formalize this situation as follows.

Let Z2d be the set of 2d points in Rd labeled by {±e1,±e2, . . . ,±ed},
where ej = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the jth coordinate and 0 else-
where. Assign to Z2d the measure that gives weight 1/(2d) to each of its
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points. Let X = Z∞
2d be the infinite product of copies of Z2d, endowed

with the product measure, and call this measure m. Thus X consists
of points x = (xn)∞n=1, where each xn ∈ Z2d. Now define rn(x) = xn for
each n. So rn(x) is one of the ±ej , for each n, and therefore in fact
takes its values in the lattice Zd of Rd. Also {rn} are mutually inde-
pendent functions, since rn(x) depends only on the nth coordinate of x.
Note finally that each rn has mean zero and the identity as its covariance
matrix.

The sums

sn(x) =
n∑

k=1

rk(x)

represent our random walk, in that x labels a possible path and sn(x)
gives the position of this path at the nth step. It is convenient to set
s0(x) = 0 for all x.

0

sn(x)

Figure 4. The random walk sn in dimension two

Here we examine only one of the interesting properties exhibited by
this random walk. It illustrates a significant dichotomy between the case
of dimension d ≤ 2 and d ≥ 3.

Theorem 2.18 For the above random walk:

(a) If d = 1 or 2, the random walk is recurrent in the sense that almost
all paths return to the origin for infinitely many n.
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(b) If d ≥ 3, then almost every path returns to the origin at most a
finite number of times. Moreover, there is a positive probability
that the path never returns to the origin.

In fact, when d = 1 or 2, the random walk visits almost surely every point
of Zd infinitely often. However, when d ≥ 3, one has limn→∞ |sn| = ∞
almost surely. The proofs of these further conclusions are outlined in
Exercises 34 and 35.

Proof. Let µ be the common distribution measure of each of the rn.
Then µ is the measure on Rd, concentrated at the points ±e1,±e2, . . . ,
±ed, assigning measure 1/(2d) to each of these points. Let µn be the
distribution measure of sn. Like µ, the measure µn is clearly supported
on Zd.

If

µ̂(ξ) =
∑
k∈Zd

m({x : rn(x) = k})e−2πikξ

is the characteristic function of µ, and

µ̂n(ξ) =
∑
k∈Zd

m({x : sn(x) = k})e−2πikξ

that of µn, then µ̂n(ξ) = (µ̂(ξ))n by the independence argument used
previously several times. (See for instance (11).) Moreover, as is easily
seen

µ̂(ξ) =
1
d

(cos 2πξ1 + · · · + cos 2πξd) .

However µ̂n(ξ), like µ̂(ξ), is periodic with periods e1, e2, . . . , ed, and thus
for each n

(18) m({x : sn(x) = 0}) =
∫

Q

µ̂n(ξ) dξ =
∫

Q

(µ̂(ξ))n dξ,

where Q is the fundamental cube defined by Q = {ξ : −1/2 < ξj ≤ 1/2,
j = 1, . . . , d}.

As a result of all of this we assert that,

(19)
∞∑

n=0

m({x : sn(x) = 0}) =
∫

Q

dξ

1 − µ̂(ξ)
.

Note first that µ̂(ξ) ≤ 1, so the integrand on the right-hand side is always
non-negative (or +∞). The claim is that both sides are simultaneously
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infinite, or finite and equal. In fact multiplying both sides of (18) by rn,
for 0 < r < 1, and summing gives

∞∑
n=0

rnm({x : sn(x) = 0}) =
∫

Q

dξ

1 − rµ̂(ξ)
,

and letting r → 1 then yields (19).
Now since

1 − µ̂(ξ) = 1 − 1
d

(cos 2πξ1 + · · · + cos 2πξd)

=
2π2

d
|ξ|2 + O(|ξ|4) as ξ → 0,

and 1 − µ̂(ξ) ≥ c1 if c2 ≤ |ξ|, ξ ∈ Q, for suitable positive constants c1 and
c2, we can conclude that the integral∫

Q

dξ

1 − µ̂(ξ)

diverges when d = 1 or d = 2, but converges when d ≥ 3. This means that∑∞
n=0 m({x : sn(x) = 0}) diverges or converges depending on whether

d ≤ 2 or d ≥ 3.

The above has the following interpretation. Let An = {x : sn(x) = 0},
and χAn its characteristic function. Then #(x) =

∑∞
n=0 χAn(x) is the

number of times the path x visits the origin. Thus
∫

X
#(x) dm is the

expected number of times all paths visit the origin. However∫
X

#(x) dm =
∞∑

n=0

m({x : sn(x) = 0}) =
∞∑

n=0

m(An),

so if d ≥ 3 this expectation is finite, and therefore almost all paths return
to the origin only a finite number of times, proving the first part of
conclusion (b) of the theorem.

While the expectation is infinite when d ≤ 2, this, by itself, does not
show that almost all paths return infinitely often to the origin. That
we will now see. To proceed we define Fk to be the set of paths where
sk(x) = 0 for the first time

Fk = {x : sk(x) = 0,but s�(x) �= 0 for 1 ≤ � < k}.

(Here we set F1 = ∅.) Since the Fk are disjoint,
∑∞

k=1 m(Fk) ≤ 1. We
shall see that for d = 1 or 2 in fact

∑∞
k=1 m(Fk) = 1, which means that
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almost all paths return to the origin at least once. This is in contrast
with d ≥ 3 where

∑∞
k=1 m(Fk) < 1 which means that for a set of positive

probability, the paths never return to the origin.

We prove these assertions by showing first

(20) m(An) =
∑

1≤k≤n

m(Fk)m(An−k), for all n ≥ 1.

In fact, An =
⋃

1≤k≤n(Fk ∩ An), where this union is disjoint. Therefore
m(An) =

∑
1≤k≤n m(Fk ∩ An). However

Fk ∩ An = Fk ∩ {x : sn(x) − sk(x) = 0}.
Hence m(Fk ∩ An) = m(Fk)m({x : sn(x) − sk(x) = 0}) since the sets Fk

and {x : sn(x) − sk(x) = 0} = {x :
∑n

�=k+1 r�(x) = 0} are clearly inde-
pendent. However

m({x : sn(x) − sk(x) = 0}) = m({x : sn−k(x) = 0}) = m(An−k),

by the shift-invariance of the measure on the product space Z∞
2d. (We

have already observed this kind of invariance in Section 2.1 in a different
setting.) Thus m(Fk ∩ An) = m(Fk)m(An−k), giving us (20).

If we set A(r) =
∑∞

n=0 rnm(An), F (r) =
∑∞

n=0 rnm(Fn), 0 < r < 1,
then (20) can be interpreted to say A(r) = A(r)F (r) + 1, that is F (r) =
1 − 1/A(r). First, when d ≤ 2, since the series

∑∞
n=0 m(An) diverges,

then A(r) → ∞ as r → 1, which gives F (1) =
∑∞

n=1 m(Fn) = 1, and
proves that almost all paths return to the origin at least once. Sec-
ondly, when d ≥ 3, since the series

∑∞
n=0 m(An) converges, we deduce

that F (1) =
∑∞

n=1 m(Fn) < 1, hence there is a set of positive probability
where paths never return to the origin.

For the case d ≤ 2, to prove infinite recurrence we define for each � ≥ 1

F (�)
n = {x : sn(x) = 0, but sk(x) = 0, � − 1 times, for 1 ≤ k < n}.

(Here we set F
(�)
1 = ∅.) Note that F

(1)
n = Fn, and

∑∞
n=1 m(F (�)

n ) = 1
means that almost every path returns to the origin at least � times.
Then by an argument very similar to that giving (20) we get when � ≥ 2

m(F (�)
n ) =

∑
1≤k≤n

m(F (�−1)
k )m(F (1)

n−k).

So if F (�)(r) is defined by
∑∞

n=1 rnm(F (�)
n ), then

F (�)(r) = F (�−1)(r)F (1)(r),
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which by iteration yields F (�)(r) = (F (1)(r))�. Letting r → 1 then gives∑∞
n=1 m(F (�)

n ) = 1, so almost all paths return to the origin at least �
times. Since this holds for all � ≥ 1, conclusion (a) of the theorem is also
proved.

It is interesting to ask what happens to our random walk, when the
time interval between successive steps is taken to be 1/n, the paths are
re-scaled by a factor 1/n1/2, and we then pass to the limit n → ∞ in
accordance with the central limit theorem. The answer is that in this
way we are led to Brownian motion. This important topic will be our
next subject.

3 Exercises

1. Consider SN (x) =
PN

n=1 rn(x), with N odd.

(a) Calculate m({x : SN (x) = k}), and show that as k varies over the integers,
the maximum is attained at k = −1 and k = 1.

(b) Adapt the proof when N is even to show that for odd N ,

m({x : a <
SN (x)

N1/2
< b}) → 1√

2π

Z b

a

e−t2/2 dt, as N → ∞.

2. Find three functions f1, f2, and f3, so that any pair are mutually independent,
but the three are not.

[Hint: Let f1 = r1, f2 = r2, and express f3 in terms of r1 and r2.]

3. The collection {rn} of mutually independent functions on [0, 1] cannot be much
enlarged and still remain mutually independent. In fact, prove that if we adjoin
a function f to the collection {rn}, then the resulting collection is also mutually
independent only when f is constant.

[Hint: See also Exercise 16.]

4. Suppose µ and ν are two finite measures on a space X that agree on a collection
of sets C. If C contains X and is closed under finite intersections, then show that
µ = ν on the σ-algebra generated by C.

[Hint: The equality µ = ν holds on finite unions of sets in C because

µ(
k
[

j=1

Cj) =
k
X

j=1

µ(Cj) −
X

i<j

µ(Ci ∩ Cj)+

+
X

i<j<�

µ(Ci ∩ Cj ∩ C�) + · · · + (−1)k−1µ(

k
\

j=1

Cj).]
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5. Prove that the Rd-valued functions f1, . . . , fn are mutually independent if
and only if their joint distribution measure equals the product of the individual
distribution measures:

µf1,...,fn = µf1 × · · · × µfn as measures on Rnd = Rd × · · · × Rd.

[Hint: Check the equality on cylinder sets in Rnd and use the previous exercise.]

6. Suppose {fn} is a sequence of mutually independent functions on the probability
space (X, m). Prove that there exists a probability space (X ′, m′), with X ′ an
infinite product, X ′ =

Q∞
n=1 Xn, (Xn, mn) probability spaces, and m′ the product

measure of the mn, so that the following holds: there are functions {gn} on X ′

so that {fn} and {gn} have the same joint distributions, but each function gn

depends only on the nth coordinate of X ′.

[Hint: Take (Xn, mm) = (X, m) for each n and define gn in terms of the fn ac-
cordingly, and use the previous exercise.]

7. Show that if B0, . . . ,Bn are mutually independent algebras, then for each k < n,
the algebras

Wk
j=0 Bj and Bn are mutually independent.

Prove this by noting the following. First, use induction to show that if Bj ∈ Bj ,
then B0 ∩ · · · ∩ Bk is independent of Bn. Now fix B ∈ Bn, and consider the two
finite measures µ(E) = m(E ∩ B) and ν(E) = m(E)m(B), and the collection C of
sets that are of the form E = B0 ∩ · · · ∩ Bk, where Bj ∈ Bj . Then apply Exercise 4.

8. Verify the following further facts about probability distribution measures.

(a) Suppose f = (f1, . . . , fk) with each fj an Rd-valued function. Let µ be the
probability distribution measure of f , and let L be a linear transformation
of Rdk to itself. Suppose that µ is the probability distribution measure of f .
Then the distribution measure of L(f) is µL, where µL(A) = µ(L−1A) for
every Borel set A ⊂ Rdk.

(b) Suppose the distribution measure of fj is Gaussian with covariance matrix
σ2

j I, 1 ≤ j ≤ k. Assume also that the {fj} are mutually independent. Then
the distribution measure of c1f1 + · · · + ckfk is Gaussian with covariance
matrix (c2

1σ
2
1 + · · · + c2

kσ2
k)I.

[Hint: For (b), compute the Fourier transforms (the characteristic functions) of
the measures in question.]

9. Consider the space L2(Ω, Rd) of square-integrable Rd-valued functions on the
probability space (Ω, P ). A closed subspace G of this space is called a Gaus-
sian subspace if it is spanned by a sequence {fn} of mutually independent func-
tions, each having a Gaussian distribution measure with mean zero, and covari-
ance {σ2

nI}.
Prove that if F1, F2, . . . , Fk are mutually orthogonal elements of G, then they

are mutually independent. Note that the converse of this is immediate.
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[Hint: Consider the case when G is finite-dimensional, and G is spanned by f1, . . . , fN .
One may suppose, after multiplication by appropriate scalars, that the fj and Fj

each have L2 norm equal to 1. So there exists an orthogonal linear transformation
L so that L(fj) = Fj . Then apply Exercises 5 and 8.]

10. Consider the following two types of convergence of a sequence {fn} to a limit
f on a probability space:

(i) fn → f almost everywhere,

(ii) fn → f in terms of weak convergence of their distribution measures.

Prove that (i) implies (ii), but that this implication cannot be reversed.

[Hint: Recall that if ϕ is continuous and bounded, then
R

ϕ(f) dµ =
R

ϕ dµf , where
µf is the distribution measure of f , and apply the dominated convergence theorem.]

11. On [0, 1] with Lebesgue measure, construct a function f whose distribution
measure is normal.

[Hint: Consider the “error function” Erf(x) = 1√
2π

R x

−∞ e−t2/2 dt and its inverse

function.]

12. Prove the identity (6), which says that if G is a non-negative continuous
function on R (or continuous and bounded), and f is a real-valued measurable
function (on a probability space (X, m)) with distribution measure µ = µf , then

Z

X

G(f)(x) dm =

Z

R

G(t) dµ(t).

[Hint: Note that if f is bounded, then
P

k G(k/n) m({k/n < f < (k + 1)/n}) con-
verges to both integrals as n → ∞.]

13. The Rademacher sequence {rn} is far from complete on L2([0, 1]). In fact it
cannot be completed by adjoining any finite collection of functions. Prove this in
two ways.

(a) By considering the functions {rnrm} for n < m.

(b) By using the Lp inequality of Lemma 1.8.

See also Exercise 16.

14. Consider the power series

∞
X

n=1

±anzn =
∞
X

n=1

rn(t)anzn = F (z, t),

where
P |an|2 = ∞ and lim sup |an|1/n ≤ 1.
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Show that for almost every t, the function F (z, t) cannot be analytically con-
tinued outside the unit disc.

[Hint: Argue as in Theorem 1.7 part (b) using Abel summation rather than Cesàro
summation.]

15. Show that the L2([0, 1]) span of {rn} can be characterized as the subspace
of L2 consisting of those f for which

EN (f) = SN (f), for all N ,

where EN are the conditional expectations corresponding to the dyadic intervals
of length 2−N .

16. A natural completion of the collection of Rademacher functions are the Walsh-
Paley functions. One defines this collection on [0, 1], denoted by {wn}, in the
following way.

First one sets w0(t) = 1, w1(t) = r1(t), w2(t) = r2(t) and w3(t) = r1(t)r2(t).
More generally, if n ≥ 1, n = 2k1 + 2k2 + · · · + 2k� , where 0 ≤ k1 < · · · < k�, then
one defines

wn(t) =
�
Y

j=1

rkj+1(t).

In particular w2k−1 = rk.

(a) Prove that {wn}∞n=0 is a complete orthonormal system on L2([0, 1]).

(b) Verify the following additional interesting property of the Walsh-Paley func-
tions: they are the continuous characters of the compact abelian group Z∞

2

(thought of as the product of the two-point abelian groups Z2).

[Hint: Equip the group Z∞
2 with the addition x + y defined by (x + y)j = xj + yj

mod 2 if x = (xj) and y = (yj). Then rk(x + y) = rk(x)rk(y).
Consider also the “Dirichlet kernel” KN (t) =

PN−1
k=0 wk(t), and show that if

N = 2n, then KN (t) =
Qn

j=1(1 + rj(t)), hence K2n(t) = 2n if 0 ≤ t ≤ 2−n and 0

otherwise. As a result, using the convolution
R

f(y)KN (x + y) dy, note that if
f ∼P akwk, then

P

k<2n akwk = En(f), where En was defined in Section 1.6.
See also Problem 2∗.]

17. The inequality in Lemma 1.8 may be strengthened as follows. Let F (t) =
P∞

n=1 anrn(t), with an real and
P∞

n=1 a2
n = 1. Then

(a)
R 1

0
eµ|F (t)| dt ≤ 2eµ2

, for all 0 ≤ µ.

(b) As a result, for some c > 0,
R 1

0
ec|F (t)|2 dt < ∞.

[Hint: Part (a) implies that m({t : |F (t)| > α}) ≤ 2eµ2−µα. Choose µ = α/2, and
obtain (b) with c < 1/4.]
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18. Prove that there exists an f in Lp([0, 2π]), for all p < ∞, f ∼P∞
−∞ cneinθ,

so that
P |cn|q = ∞, for all q < 2. Hence the Hausdorff-Young inequality in Sec-

tion 2.1 of Chapter 2 fails for p > 2.

[Hint: Use Theorem 1.7.]

19. Suppose F (t) =
P∞

n=1 anrn(t) with
P

a2
n < ∞.

(a) Prove directly that there exists a constant A so that

‖F‖L4 ≤ A‖F‖L2 .

(b) Show as a result that there is a constant A′ so that ‖F‖L2 ≤ A′‖F‖L1 .

(c) Conclude that ‖F‖Lp ≤ Ap‖F‖L1 , for 1 ≤ p < ∞.

[Hint: For (a) write out
R 1

0
F 4(t) dt as a sum and use the orthogonality of rn(t)rm(t).

For (b) use Hölder’s inequality. For (c) use Lemma 1.8.]

20. Suppose {An} is a sequence of subsets of the probability space X.

(a) If
P

m(An) < ∞, then m(lim supn→∞ An) = 0, where lim supn→∞ An is de-
fined as

T∞
n=1

S∞
k=n Ak.

(b) However if
P

m(An) = ∞, and the sets {An} are mutually independent,
then m(lim supn→∞ An) = 1.

This dichotomy is often referred to as the Borel-Cantelli lemma. (See also Book III.)

[Hint: In the case (b), m
`

Tn
k=r Ac

k

´

=
Qn

k=r(1 − m(Ak)).]

21. Except for a countable set (the dyadic rationals) it is possible to assign a
unique dyadic expansion to each real number α in [0, 1], that is,

α =

∞
X

j=1

xj

2j
with xj = 0 or 1.

Given such a number α let #N (α) denote the number of 1’s that appear among
the first N terms in the dyadic expansion of α. We say that α is normal, if its
dyadic expansion contains a density of 1’s equal to the density of 0’s, that is,

lim
N→∞

#N (α)

N
= 1/2.

(a) Prove that (with respect to the Lebesgue measure) almost every number in
[0, 1] is normal.

(b) More generally, given an integer q ≥ 2 consider the q-expansion of a real
number α in [0, 1],

(21) α =

∞
X

j=1

xj

qj
with xj = 0, 1, . . . , q − 1.
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Again, ignoring a countable subset, this expansion is unique. For a given real
number α and for each 0 ≤ p ≤ q − 1, define #p,N (α) to equal the number
of j’s with 0 ≤ j ≤ N for which xj = p in the q-expansion of α. A number
that satisfies

lim
N→∞

#p,N (α)

N
= 1/q,

for every 0 ≤ p ≤ q − 1 is said to be normal to base q.

Show that almost all real numbers in [0, 1] satisfy this property.

[Hint: Consider the infinite product
Q

Zq with each factor given the uniform mea-
sure. Under (21) the product measure corresponds to the Lebesgue measure on
[0, 1]. Now apply the law of large numbers as in Theorem 2.1.]

22. A sequence {fn}∞n=0 of functions on X is called a (discrete) stationary
process if for every N the joint probability distribution of fr, fr+1, . . . , fr+N is
independent of r.

Consider the probability space Y constructed as in the proof of Theorem 2.1.
Show that whenever the sequence {fn} is a stationary process, then it has the same
joint distribution as the sequence {g0(τ

n(y))}, where g0 is a suitable function on Y
and τ is the shift. Hence the ergodic theorem is equally applicable in this more
general situation.

23. Prove that the conditions in Theorem 2.1 are sharp in the following sense. If
{fn}∞n=0 are mutually independent and identically distributed, but

R

X
|f0(x)| dm =

∞, then for almost every x, the averages 1
N

PN−1
n=0 fn(x) fail to converge to a limit

as N → ∞.

[Hint: Let An = {x : |fn(x)| > n}. The sets An are independent. However,
P∞

n=0 m(An) =
P∞

n=0 m({x : |f0(x)| > n}) ≈ R
X
|f0(x)| dm = ∞. Then use Ex-

ercise 20.]

24. The following are examples of conditional expectations.

(a) Suppose X =
S

An is a finite (or countable) partition of X, with m(An) > 0
whenever An is non-empty. Let A be the algebra generated by the sets {An}.
Then EA(f)(x) = 1

m(An)

R

An
f dm whenever x ∈ An.

(b) Let X = X1 × X2, with the measure m on X being the product of the
measures mi on Xi. Let A = {A × X2}, where A ranges over arbitrary
measurable sets of X1. Then EA(f)(x1, x2) =

R

X2
f(x1, y) dm2(y).

25. In the following four exercises {sn} will denote a martingale sequence corre-
sponding to the increasing sequence of algebras An and their conditional expecta-
tions En.

Suppose sn = En(s∞) with s∞ ∈ L2. Then {sn} converges in L2.

[Hint: Note that if fn = sn − sn−1 then the fn’s are mutually orthogonal and
sn − s0 =

Pn
k=1 fk.]
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26. Prove the following.

(a) If s∞ ∈ Lp, then sn = En(s∞) ∈ Lp, and ‖sn‖Lp ≤ ‖s∞‖Lp for all p with
1 ≤ p ≤ ∞.

(b) Conversely, if {sn} is martingale and supn ‖sn‖Lp < ∞, then there exists
s∞ ∈ Lp, so that sn = En(s∞), when 1 < p ≤ ∞.

(c) Show, however, that the conclusion in (b) may fail when p = 1.

[Hint: For (a) argue as in the proof of Lemma 2.5(a). For (b), use Lemma 2.5 and
also the weak compactness of Lp, p > 1, as in Exercise 12 in Chapter 1. For (c),
let X = [0, 1] with Lebesgue measure, and consider sn(x) = 2n for 0 ≤ x ≤ 2−n,
sn(x) = 0 otherwise.]

27. Suppose that sn = En(s∞), with s∞ integrable on X.

(a) Show that sn converges in the L1 norm as n → ∞.

(b) Moreover sn → s∞ in L1 if and only if s∞ is measurable with respect to the
algebra A∞ =

W∞
n=1 An.

[Hint: For (a) use Exercises 25 and 26 (a). Then lim sn = EA∞(s∞), and use the
previous exercise.]

28. Suppose that sn = En(s∞), and s∞ ∈ L1.

(a) Show that

m({x : sup
n

|sn(x)| > α}) ≤ 1

α

Z

|s∞(x)|>α

|s∞(x)| dx.

(b) Prove as a result ‖ supn |sn|‖Lp ≤ Ap‖s∞‖Lp if s∞ ∈ Lp and 1 < p ≤ ∞.

[Hint: For (a), note that when s∞ ≥ 0 this is a consequence of (15). To deduce (b)
adapt the argument in the proof of Theorem 4.1 in Chapter 2 for the maximal
function f∗.]

29. The results for real-valued martingale sequences {sn} discussed in Section 2.2
go through if we assume that the sn take their values in Rd. Verify in particular
that the following consequences of identity (14) hold:

(a) |sk| ≤ Ek(|sn|), if k ≤ n.

(b) m({x : supn |sn(x)| > α}) ≤ 1
α

R

|s∞(x)|>α
|s∞(x)| dx.

Here | · | denotes the Euclidean norm in Rd.

[Hint: To prove (a), note that (sk, v) = Ek((sn, v)), where (·, ·) is the inner product
on Rd, and v is any fixed vector in Rd. Then take the supremum over unit vectors v.
The conclusion (b) is a consequence of (a) and part (a) of Exercise 28.]
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30. The ideas regarding conditional expectations extend to spaces (X, m) whose
total measures are not necessarily finite. Consider the following example: X = Rd,
with m the Lebesgue measure. For each n ∈ Z, let An be the algebra generated by
all dyadic cubes of side-length 2−n. The dyadic cubes are the open cubes, whose
vertices are points of 2−nZd, and have side-length 2−n. Clearly An ⊂ An+1 for
all n. Let f be integrable on Rd, and set En(f) = EAn(f), with

En(f)(x) =
1

m(Q)

Z

Q

f dm

whenever x ∈ Q, with Q a dyadic cube of length 2−n.

(a) Show that the maximal inequality in Theorem 2.10 extends to this case.

(b) If f ≥ 0, then supn∈Z En(f)(x) ≤ cf∗(x) for an appropriate constant c, with f∗

the Hardy-Littlewood maximal function discussed in Chapter 2.

(c) Show by example that the converse inequality f∗(x) ≤ c′ supn∈Z En(f)(x)
fails. Prove however that a substitute result holds

m({x : f∗(x) > α}) ≤ c1m({x : sup
n∈Z

En(f)(x) > c2α})

for all α > 0. Here c1 and c2 are appropriate constants.

31. Let {µN}∞N=1 and ν be probability measures on Rd. Prove the following are
equivalent as N → ∞.

(a) µ̂N (ξ) → ν̂(ξ), all ξ ∈ Rd.

(b) µN → ν weakly.

(c) In R, µN ((a, b)) → ν((a, b)) for all open intervals (a, b), if we assume the
measure ν is continuous.

(d) In Rd, µN (O) → ν(O) for all open sets O, if we assume the measure ν is
absolutely continuous with respect to Lebesgue measure.

[Hint: In R, the equivalence of (a), (b) and (c) is implicit in the argument given
in the proofs of Lemma 2.15 and Corollary 2.16. To show that (a) implies (d) in
the case when O is an open cube, generalize the argument given in the text to Rd.
Then, prove that the analog of (d) holds for closed cubes. Finally, use the fact
that any open set is an almost disjoint union of closed cubes. To show that (d)
implies (b), approximate a continuous function ϕ of compact support uniformly
by step functions that are constant on cubes.]

32. The proof of Theorem 2.17 requires the following calculation. Suppose σ is a
strictly positive definite symmetric matrix with σ−1 denoting its inverse. Let νσ2

be the measure on Rd with density equal to 1

(2π)d/2(det σ)
e−

|σ−1(x)|2
2 , x ∈ Rd. Then

ν̂σ2(ξ) = e−2π2|σ(ξ)|2 .
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[Hint: Verify this by making an orthogonal change of variables that puts σ in a
diagonal form. This reduces the d-dimensional integral in question to a product of
corresponding 1-dimensional integrals.]

33. For the d-dimensional random walk {sn(x)} considered in Section 2.6, find
the limit of the distribution measures of sn(x)/n1/2 as n → ∞.

34. If k is a lattice point in Zd and d = 1 or 2, show that for almost every path,
the random walk visits k infinitely often, that is,

m({x : sn(x) = k for infinitely many n} = 1.

[Hint: There exists �0 so that m({s�0 = −k}) > 0. If the conclusion fails, then
there exists r0 so that m({sn �= k, for all n ≥ r0}) > 0. Then note that

{sn �= 0, all n ≥ �0 + r0} ⊃ {s�0 = −k} ∩ {sn − s�0 �= k, all n ≥ �0 + r0},

and that the sets on the right-hand side are independent.]

35. Prove that if d ≥ 3, then the random walk sn satisfies limn→∞ |sn| = ∞ almost
everywhere.

[Hint: It is sufficient to prove that for any fixed R > 0 the set

B = {x : lim inf
n→∞

|sn(x)| ≤ R}

has measure 0. To this end, for each lattice point k, define

B(k, �) = {x : s�(x) = k, and sn(x) = k for infinitely many n}.

Clearly, B ⊂ S�, |k|≤R B(k, �). But d ≥ 3, so m(B(k, �)) = 0).]

4 Problems

1. In the context of Bernoulli trials with probabilities 0 < p, q < 1, where p + q =
1, let D : Z∞

2 → [0, 1], be given by

D(x) =

∞
X

n=1

xn/2n if x = (x1, . . . , xn, . . .).

Under this mapping the measure mp goes to the measure µp that can be written
symbolically as a “Riesz product,” µp =

Q∞
n=1(1 + (p − q)rn(t)) dt. The meaning

of this is as follows. For each N , let

FN (t) =

Z t

0

N
Y

n=1

(1 + (p − q)rn(s)) ds.

Then one can show that:
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(a) Each FN is increasing on [0, 1].

(b) FN (0) = 0, FN (1) = 1.

(c) FN converges uniformly to a function F , as N → ∞.

(d) µp = dF , in the sense that µp((a, b)) = F (b) − F (a).

(e) If p �= 1/2, then µp is completely singular (that is dF/dt = 0 almost every-
where.)

[Hint: Show that if I = (a, b) is a dyadic interval of length 2−n, a = �/2n and
b = (� + 1)/2n, and N ≥ n, then

FN (b) − FN (a) = pn0qn1 ,

where n0 is the number of zeroes in the first n terms of the dyadic expansion of
�/2n, and n1 is the number of 1’s, with n0 + n1 = n.]

2.∗ There is an analogy between the Walsh-Paley expansion (see Exercise 16) and
the Fourier expansion, that is, between {wn}∞n=0 and {einθ}∞n=−∞. In this anal-
ogy the Rademacher functions rk = w2k−1 correspond to the lacunary frequencies

{ei2kθ}∞k=0. In fact, the following is known:

(a) If
P∞

k=0 ckei2kθ is an L2([0, 2π]) function, then it belongs to Lp, for every
p < ∞.

(b) If
P∞

k=0 ckei2kθ is the Fourier series of an integrable function, it belongs to
L2, and hence to Lp for every p < ∞.

(c) This function belongs to L∞ if and only if
P∞

k=0 |ck| < ∞.

(d) From (c) it follows that the conclusion (a) of Theorem 1.7 does not neces-
sarily extend to p = ∞.

3. The following is a general form of the central limit theorem. Suppose f1, . . . , fn, . . .
are square integrable mutually independent functions on X, and assume for sim-
plicity that each has mean equal to 0. Let µn be the distribution measure of fn,
and σ2

n the variance. Set S2
n =

Pn
k=1 σ2

n. The critical assumption is that for every
ε > 0

lim
n→∞

1

S2
n

n
X

k=1

Z

|t|≥εSn

t2 dµn(t) = 0.

Under these conditions the distribution measures of 1
Sn

Pn
k=1 fk converge weakly

to the normal distribution ν with variance 1.

4.∗ Suppose {fn} are identically distributed, square integrable, mutually indepen-
dent, have each mean 0 and variance 1. Let sn =

Pn
k=1 fk. Then for a.e. x

lim sup
n→∞

sn(x)

(2n log log n)1/2
= 1.
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This is the law of the “iterated logarithm.”

5. An interesting variant of the random walk in Rd (often referred to as a “random
flight”) arises if the motion of unit distance at the nth step is allowed to be in any
direction (of the unit sphere). More precisely

sn = f1 + · · · + fn,

where the fn are mutually independent, and each fn is uniformly distributed on
the unit sphere Sd−1 ⊂ Rd. The underlying probability space is defined as the infi-
nite product X =

Q∞
j=1 Sj , where each Sj = Sd−1 with the usual surface measure

normalized to have integral 1.

(a) If µ is the distribution measure of each fn, connect µ̂(ξ) with Bessel func-
tions.

(b) What is the covariance matrix?

(c) What is the limiting distribution of sn(x)/n1/2?

[Hint: Show that µ̂(ξ) = Γ(d/2)(π|ξ|)(2−d)/2J(d−2)/2(2π|ξ|) by using the formulas
in Problem 2, Chapter 6 of Book I.]



6 An Introduction to Brownian
Motion

Norbert Wiener: a precocious genius... whose feeling
for physics and appreciation of Lebesgue integration
was so deep that he was the first to understand the
necessity of and the proper context for a rigorous def-
inition of Brownian motion, which he then devised,
going on to initiate the fundamentally important the-
ory of stochastic integrals; who, however, was so unfa-
miliar with the standard probability techniques even
at elementary levels that his methods were so clum-
sily indirect that some of his own doctoral students
did not realize that his Brownian motion process had
independent increments; who was the first to offer a
general definition of potential theoretic capacity; who,
however, published his probabilistic and potential the-
oretic triumphs in a little-known journal, with the re-
sult that this work remained unknown until too late
to have its deserved influence...

J. L. Doob, 1992

Between the 19th and 20th centuries there was a change in the scientific
view of the natural world. The belief in the ultimate regularity and pre-
dictability of nature gave way to the recognition of a degree of inherent
irregularity, uncertainty, and randomness. No mathematical construct
better encompasses this idea of randomness, nor has wider general inter-
est, than the process of Brownian motion.

While there are different ways of constructing the Brownian motion
process, the approach we have chosen attempts to see the Brownian paths
in Rd as limits of random walk paths, appropriately rescaled. The ana-
lytic problem that then must be dealt with is the question of convergence
of the measures induced by these random walks to the “Wiener measure”
on the space P of paths.

A remarkable application of Brownian motion is to the solution of
Dirichlet’s problem in a general setting.1 It is based on the following

1See also the previous discussion for the disc in terms of Fourier series in Book I, in
relation to conformal mappings in Book II, and the use of Dirichlet’s principle in Book III.



1. The Framework 239

insight that goes back to Kakutani. Namely, whenever R is a bounded
region in Rd, x a fixed point in it, and E a subset of ∂R, then the
probability that a Brownian path starting at x exits R at E, is the
“harmonic measure” of E with respect to x.

A key to understanding this approach is the notion of a “stopping
time.” The basic example here is the first time that the path starting
at x hits the boundary. Incidentally, stopping times were already used
implicitly in the proof of the martingale maximal theorem in the previous
chapter.

One also needs to come to grips with the “strong Markov” property of
Brownian motion, which essentially states that if the Brownian motion
process is restarted after a stopping time, the result is an equivalent
Brownian motion. The application of this Markov property is a little
intricate, and it is best understood in terms of an identity that involves
two stopping times.

1 The Framework

Here we begin by sketching the framework of our construction of Brown-
ian motion. At first we describe the situation somewhat imprecisely, and
postpone to Sections 2 and 3 below the exact definitions and statements.

We recall the random walk in Rd studied in the previous chapter (in
Section 2.6). It is given by a sequence {sn}∞n=1 where

sn = sn(x) =
n∑

k=1

rk(x),

with sn(x) ∈ Zd for each x in the probability space Z∞
2d. This probability

space carries the probability measure m, which is the product measure
on Z∞

2d. In this random walk we visit points in Zd moving from a point
to one of its neighbors in steps of unit “time” and “distance.”

Next we consider the rectilinear paths obtained by joining these suc-
cessive points, and then rescale both time and distance, so that between
two consecutive steps the elapsed time is 1/N and the traversed distance
is 1/N1/2, all in accordance with our experience with the central limit
theorem. That is, for each N we consider

(1) S
(N)
t (x) =

1
N1/2

∑
1≤k≤[Nt]

rk(x) +
(Nt − [Nt])

N1/2
r[Nt]+1(x).

Now for each N , S
(N)
t is a stochastic process, that is, for 0 ≤ t < ∞,
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S
(N)
t is a function (random variable) on a fixed probability space (here,

(Z∞
2d,m)).
Our goal is the proper formulation and proof of the assertion that we

have the convergence

(2) S
(N)
t → Bt as N → ∞,

where Bt is the Brownian motion process in Rd.

So to proceed we need first to set down the properties that characterize
this process. Brownian motion Bt is defined in terms of a probability
space (Ω, P ), with P its probability measure and ω denoting a typical
point in Ω. We suppose that for each t, 0 ≤ t < ∞, the function Bt is
defined on Ω and takes values in Rd. The Brownian motion process
Bt = Bt(ω) is then assumed to satisfy B0(ω) = 0 almost everywhere and:

B-1 The increments are independent, that is, if 0 ≤ t1 < t2 < · · · < tk,
then Bt1 , Bt2 − Bt1 , . . . , Btk

− Btk−1 are mutually independent.

B-2 The increments Bt+h − Bt are Gaussian with covariance hI and
mean zero,2 for each 0 ≤ t < ∞. Here I is the d × d identity matrix.

B-3 For almost every ω ∈ Ω, the path t 	→ Bt(ω) is continuous for 0 ≤
t < ∞.

Note that in particular, Bt is normally distributed with mean zero and
covariance tI.

Now it will turn out that this process can be realized in a canonical way
in terms of a natural choice of the probability space Ω. This probability
space, denoted by P, is the space of continuous paths in Rd starting at
the origin: it consists of the continuous functions t 	→ p(t) from [0,∞)
to Rd with p(0) = 0.

Since, by assumption B-3, for almost every ω ∈ Ω the function t 	→
Bt(ω) is such a continuous path, we get an inclusion i : Ω → P and then
the probability measure P gives us, as we will see, a corresponding mea-
sure W (the “Wiener measure”) on P.3

One can in fact reverse the logic of these implications, starting with
the space P and a probability measure W given on it. From this, one
can define a process B̃t on P with

(3) B̃t(p) = p(t).

2In the notation of the previous chapter the increments have distribution νhI .
3More precisely, the inclusion i is defined on a subset of Ω of full measure.
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We then say that the measure W on P is a Wiener measure if the
process B̃t defined by (3) satisfies the properties of Brownian motion set
down in B-1, B-2 and B-3 above. Thus the existence of a Wiener measure
is tantamount to the existence of Brownian motion. In fact, we will focus
on constructing a Wiener measure and then relabel B̃t and designate it
by Bt. Moreover we will see that such a Wiener measure on P is unique,
and so we speak of “the” Wiener measure.

Now returning to the random walks and their scalings given in (1), we
have defined for each x ∈ Z∞

2d a continuous path t 	→ S
(N)
t (x) defined for

0 ≤ t < ∞. Thus the probability measure m on Z∞
2d induces a probability

measure µN on P via

µN (A) = m({x ∈ Z∞
2d : S

(N)
t (x) ∈ A}),

where A is any Borel subset of paths in P. With this, our goal is the
following assertion:

The measures µN converge weakly to the Wiener measure W
as N → ∞.

Notice that it is not claimed that the convergence in (2) is anything like
pointwise almost everywhere, but only a statement essentially weaker in
appearance in terms of convergence of induced measures.4

2 Technical Preliminaries

With P denoting the collection of continuous paths t 	→ p(t) from [0,∞)
to Rd such that p(0) = 0, we endow P with a metric with respect to which
convergence is equivalent to uniform convergence on compact subsets of
[0,∞).

For two such paths, p and p′ in P, we set

dn(p, p′) = sup
0≤t≤n

|p(t) − p′(t)|,

and

d(p, p′) =
∞∑

n=1

1
2n

dn(p, p′)
1 + dn(p, p′)

.

Then it is easily verified that d is a metric on P. We record here some
simple properties of d, whose proofs may be left to the reader:

4Since S
(N)
t and Bt are defined on different probability spaces, pointwise almost ev-

erywhere convergence would not be meaningful. It is also to be noted that the rectilinear

paths corresponding to S
(N)
t are a subset of zero W -measure of P.
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• We have d(pk, p) → 0, as k → ∞, if and only if pk → p uniformly
on compact subsets of [0,∞).

• The space P is complete with respect to the metric d.

• P is separable.

(See also Exercise 2.)
We next consider the Borel sets B of P, defined as the σ-algebra

of subsets of P generated by the open sets. Since P is separable, the
σ-algebra B is the same as the σ-algebra generated by the open balls
in P.

A useful class of elementary sets in B is that of the cylindrical sets,
defined as follows. For each sequence 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, and a Borel
set A in Rdk = Rd × · · · × Rd (that is, k factors Rd), then

{p ∈ P : (p(t1), p(t2), . . . , p(tk)) ∈ A}

is called a cylindrical set.5 We denote by C the σ-algebra of P generated
by these sets (as k ranges over all positive integers and A over all Borel
sets in Rdk).

Lemma 2.1 The σ-algebra C is the same as the σ-algebra B of Borel
sets.

Proof. If O is an open set in Rdk, then clearly

{p ∈ P : (p(t1), p(t2), . . . , p(tk)) ∈ O}

is open in P, and hence this set belongs to B. As a result, cylindrical
sets are in B, thus C ⊂ B.

To see the reverse inclusion, note that for any fixed n and a and a given
path p0, the set {p ∈ P : sup0≤t≤n |p(t) − p0(t)| ≤ a} is the same as the
corresponding set where the supremum is restricted to the t in [0, n] that
are rational, and hence this set is in C. It is then not too difficult to see
that for any δ > 0, the ball {p ∈ P : d(p, p0) < δ} is in C. Since open
balls generate B we have B ⊂ C, and the lemma is established.

We will now consider probability measures on P, and in what follows
these will always be assumed to be Borel measures, that is, defined
on the Borel subsets B of P. For any such measure µ, and any choice

5This terminology is used to distinguish it from “cylinder sets” that appear in product
spaces.
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0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, we define the section µ(t1,t2,...,tk) of µ to be the
measure on Rdk given by

(4) µ(t1,t2,...,tk)(A) = µ({p ∈ P : (p(t1), p(t2), . . . , p(tk)) ∈ A})

for any Borel set A in Rdk.
It follows from Lemma 2.1 and Exercise 4 in the previous chapter that

two measures µ and ν on P are identical if µ(t1,t2,...,tk) = ν(t1,t2,...,tk) for
all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, since they then agree on all cylindrical sets
(and the intersection of two cylindrical set is also a cylindrical set). The
converse, that if µ = ν then all their sections agree, is obviously true.

We will be concerned with a sequence {µN} of measures on P, and
the question whether this sequence converges weakly, that is, whether
there exists another probability measure µ so that

(5)
∫
P

f dµN →
∫
P

f dµ as N → ∞, for every f ∈ Cb(P).

Here Cb(P) denotes the continuous bounded functions on P.
A particular feature of our metric space P that does not allow certain

compactness arguments to apply in regard to (5) is that P is not σ-
compact. (See Exercise 3.) This is the reason for the significance of the
following lemma of Prokhorov.

Suppose X is a metric space. Assume that {µN} is a sequence of
probability measures on X, and that this sequence is tight in the sense
that for each ε > 0, there is a compact set Kε ⊂ X so that

(6) µN (Kc
ε ) ≤ ε, for all N .

In other words, the measures µN assign a probability of at least 1 − ε to
Kε for all N .

Lemma 2.2 If {µN} is tight, then there is a subsequence {µNk
} that

converges weakly to a probability measure µ on X.

Proof. For each compact set K1/m arising in (6) with ε = 1/m, we
construct a countable collection of functions Dm ⊂ Cb(X) so that:

(i) The functions g|K1/m
, with g ∈ Dm, are dense in C(K1/m).

(ii) supx∈X |g(x)| = supx∈K1/m
|g(x)|, if g ∈ Dm.
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The Dm can be obtained as follows. Since K1/m is compact, K1/m and
C(K1/m) are both separable. (See Exercise 4.) Now if {g′�} is a count-
able dense subset of C(K1/m), we can extend each g′� defined on K1/m

to a function g� defined on X by the Tietze extension principle. (See
Exercise 5.) The resulting collection of functions is taken to be Dm.

Now since D =
⋃∞

m=1 Dm is a countable collection of functions in
Cb(X), we can use the usual diagonalization procedure to find a sub-
sequence of the measures {µN}, which we relabel as {µN}, so that

µN (g) =
∫

g dµN

converges to a limit as N → ∞, for each g ∈ D.
Next we fix f ∈ Cb(X), and write

µN (f) = µN (f − g) + µN (g).

Now given any m we can find g ∈ Dm, so that |(f − g)(x)| ≤ 1/m if
x ∈ K1/m. Therefore, with ‖ · ‖ denoting the sup-norm on X, we have

|µN (f − g)| ≤
∫

K1/m

|f − g| dµN +
∫

Kc
1/m

|f − g| dµN

≤ 1
m

+
1
m
‖f − g‖

≤ 1
m

+
1
m

(
2‖f‖ +

1
m

)
,

where we have used (ii) above. From this it is clear that

lim sup
N→∞

µN (f) − lim inf
N→∞

µN (f) = O(1/m),

and since m was arbitrary, the conclusion is that limN→∞ µN (f) exists.
This defines a linear functional � on Cb(X) by

�(f) = lim
N→∞

µN (f).

Now we note that � satisfies the requirements of Theorem 7.4 in Chap-
ter 1. In fact, given ε > 0, if we choose Kε as in the definition of tightness,
then

|µN (f)| ≤
∫

Kε

|f | dµN +
∫

Kc
ε

|f | dµN ,
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so the inequality (6) implies

|µN (f)| ≤ sup
x∈Kε

|f(x)| + ε‖f‖,

and thus the same estimate holds for �(f), satisfying the hypothesis (21)
of the relevant theorem in Chapter 1. This yields that the linear func-
tional � is representable by a measure µ, and since we then have µN (f) →
µ(f) for all f ∈ Cb(X), we see that µN → µ weakly.

Corollary 2.3 Suppose the sequence of probability measures {µN} is
tight, and for each 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk the measures µ

(t1,...,tk)
N con-

verge weakly to a measure µt1,...,tk
, as N → ∞. Then the sequence {µN}

converges weakly to a measure µ, and moreover µ(t1,...,tk) = µt1,...,tk
.

Proof. First, by Lemma 2.2, there is a subsequence {µNm} that
converges weakly to a measure µ. Next, µ

(t1,...,tk)
Nm

→ µ(t1,...,tk) weakly.
In fact, if πt1,t2,...,tk is the continuous mapping from P to Rkd that as-
signs to p ∈ P the point (p(t1), p(t2), . . . , p(tk)) ∈ Rkd, then, by defini-
tion, µ(t1,...,tk)(A) = µ((πt1,...,tk)−1A) for any Borel set A ⊂ Rdk. As a
result ∫

Rdk

f dµ(t1,...,tk) =
∫
P

(f ◦ πt1,...,tk) dµ

for any f ∈ Cb(Rdk), with a similar identity with µ replaced by µNm .
From this, and the weak convergence of µNm to µ, it follows that µ(t1,...,tk) =
µt1,...,tk

.
We now observe that the full sequence {µN} must converge weakly

to µ. Suppose the contrary. Then there is another sequence µN ′
n

and a
bounded continuous function f on P, so that

∫
f dµN ′

n
converges to a

limit that is not equal to
∫

f dµ. Now using Lemma 2.2 again, there is
a further subsequence {µN ′′

n
} and a measure ν, so that µN ′′

n
converges

weakly to ν, while ν �= µ. However by the previous argument we have
ν(t1,...,tk) = µ(t1,...,tk) for all choices of 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk. Therefore
ν = µ, and

∫
f dµ =

∫
f dν. This contradiction completes the proof of

the corollary.

In applying the lemma and its corollary it will be necessary to prove
that appropriate subsets K of the path space P are compact. The fol-
lowing gives a sufficient condition for this when K is closed. (It can be
shown to be necessary. See Exercise 6.)
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Lemma 2.4 A closed set K ⊂ P is compact if for each positive T there
is a positive bounded function h 	→ wT (h), defined for h ∈ (0, 1] with
wT (h) → 0 as h → 0, and so that

(7) sup
p∈K

sup
0≤t≤T

|p(t + h) − p(t)| ≤ wT (h), for h ∈ (0, 1].

The condition (7) implies that the functions on K are equicontinuous on
each interval [0, T ]. The lemma then essentially follows from the Arzela-
Ascoli criterion. (Recall, this criterion was used in a special setting in
Section 3, Chapter 8 of Book II.)

3 Construction of Brownian motion

We now prove the existence of the probability measure W on P that
satisfies the following: If we define the process Bt on the probability
space (P,W ) by

Bt(p) = p(t), for p ∈ P,

then Bt verifies the defining properties B-1, B-2 and B-3 of Brownian mo-
tion set down at the beginning of this chapter (with (P,W ) playing the
role of (Ω, P )). Note that if we are assured of the existence of such a W ,
the measure W (t1,t2,...,tk) is the distribution measure of (Bt1 , . . . , Btk

).
Therefore, by Exercise 8 in Chapter 5, this distribution measure is de-
termined by properties B-1 and B-2, hence with this data the Wiener
measure W is uniquely determined, as in the remarks following the proof
of Lemma 2.1.

To construct W we return to the random walk {sn} discussed at the
beginning of this chapter, with its attached probability space (Z∞

2d,m).
Now for each x ∈ Z∞

2d there is a path t 	→ S
(N)
t (x) given by (1). This

gives an injection iN : Z∞
2d → P. If PN denotes the image of iN (the

collection of random walk paths scaled by the factor N−1/2) then PN

is clearly a closed subset of P. Now via iN , the product measure m on
Z∞

2d induces a Borel probability measure µN on P, which is supported on
PN , by the identity µN (A) = m(i−1

N (A ∩ PN )). (Note that i−1
N (A ∩ PN )

is a cylinder set in the product space Z∞
2d whenever A is a cylindrical set

in P.)

Theorem 3.1 The measures µN on P converge weakly to a measure as
N → ∞. This limit is the Wiener measure W .
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There are two steps in the proof. The first, that the sequence µN satisfies
the tightness condition, is a little intricate. The second, that then µN

converges to the Wiener measure, is more direct. The second step is
based on the central limit theorem.

For the first step, the following lemma is key. It is a consequence of
the martingale properties of sums of independent random variables dealt
with in the previous chapter. Consider the unscaled random walk

sn(x) =
∑

1≤k≤n

rk(x).

This is S
(N)
t in (1) with N = 1 and t = n.

Lemma 3.2 We have as λ → ∞,

(8) sup
n≥1

m({x : sup
k≤n

|sk(x)| > λn1/2}) = O(λ−p)

for every p ≥ 2.

Remark. In the first application below it suffices to have the conclusion
for some p such that p > 2.

To prove the lemma we apply the martingale maximal theorem of the
previous chapter (Theorem 2.10, in the form that it takes in Exercise 29,
part (b)) to the stopped sequence {s′k} defined as s′k = sk if k ≤ n, s′k =
sn if k ≥ n, and s′∞ = sn. With s∗n = supk≤n |sk| = supk |s′k| we then
have

(9) m({x : s∗n > α}) ≤ 1
α

∫
|sn|>α

|sn| dm.

Multiplying both sides by pαp−1 and integrating, using an argument
similar to the one used in Section 4.1 of Chapter 2 yields∫

(s∗n)p dm ≤ p

p − 1

∫
|sn|p dm.

Now, the Khinchin inequality of Lemma 1.8 in the previous chapter,
applied to the more general setting described in Exercise 10 gives∫

|sn|p dm ≤ A

(∫
|sn|2 dm

)p/2

.
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Thus

m({s∗n > α}) ≤ 1
αp

‖s∗n‖p
Lp ≤ A′

αp
‖sn‖p

L2 .

Setting α = λn1/2 and recalling that ‖sn‖L2 = n1/2 completes the proof
of the lemma.

Let us now prove that the sequence {µN} converges weakly to a mea-
sure µ. For this we use Corollary 2.3, and begin by showing that the
sequence {µN} is tight, that is, for every ε > 0 there is a compact subset
Kε of P so that µN (Kc

ε ) ≤ ε for all N .
To this end we will invoke Lemma 2.4 and first consider the situa-

tion for T = 1. We fix 0 < a < 1/2, throughout the rest of the proof of
the theorem. Then with our given ε we will see that we can select a
sufficiently large constant c1 so that

(10) m({x : sup
0≤t≤1, 0≤h≤δ

|S(N)
t+h − S

(N)
t | > c1δ

a for some δ ≤ 1}) ≤ ε.

Therefore if we define

K(1) = {x : sup
0≤t≤1, 0≤h≤δ

|S(N)
t+h − S

(N)
t | ≤ c1δ

a, all δ ≤ 1},

and

K(1) = {p : sup
0≤t≤1, 0≤h≤δ

|p(t + h) − p(t)| ≤ c1δ
a, all δ ≤ 1},

then m((K(1))c) = µN ((K(1))c) ≤ ε. Note also that then (7) is satisfied
for K = K(1), T = 1, and w1(δ) = c1δ

a, and hence K(1) is compact.

In proving (10), let us first consider the analog of this set but with δ
fixed, and δ of the form δ = 2−k, with k a non-negative integer. We then
decompose the interval [0, 1] via the 2k + 1 partition points {tj}, where
tj = jδ = j2−k, with 0 ≤ j ≤ 2k. Next, observe that for any function f
defined on [0, 1 + δ], we have

sup
0≤t≤1, 0≤h≤δ

|f(t + h) − f(t)| ≤ 2max
j

{ sup
0≤h≤δ

|f(tj + h) − f(tj)|}.

Thus with f(t) = S
(N)
t and any fixed σ > 0,

m({ sup
0≤t≤1, 0≤h≤δ

|S(N)
t+h − S

(N)
t | > σ}) ≤

2k∑
j=0

m({ sup
0≤h≤δ

|S(N)
tj+h − S

(N)
tj

| >
σ

2
}).



3. Construction of Brownian motion 249

However m({x : sup0≤h≤δ |S(N)
tj+h − S

(N)
tj

| > σ/2}) equals the same quan-
tity with tj replaced by 0, that is, it equals

m({x : sup
0≤h≤δ

|S(N)
h | > σ/2}),

and this itself equals m({x : supn≤δN |sn(x)| > (σ/2)N1/2}). These as-
sertions follow from the definition (1) and the “stationarity” of the ran-
dom walk: the fact that the joint probability distribution of (rm, rm+1,
. . . , rm+n) is independent of m, for all m ≥ 1 and n ≥ 0. (Recall that
{rn} are defined in Section 2.6 of the previous chapter.)

Thus by Lemma 3.2, if we take λ = σ/(2δ1/2), then N1/2 σ
2 = λ(δN)1/2,

and

m({x : sup
0≤t≤1, 0≤h≤δ

|S(N)
t+h − S

(N)
t | > σ}) = O

(
1
δ

( σ

2δ1/2

)−p
)

.

Here p is at our disposal. We now set σ = c1δ
a, with a fixed 0 < a < 1/2.

Then the O term becomes O(c−p
1 δb), with b = −1 + (1

2 − a)p. Therefore,
since a < 1/2 we can make b strictly positive by choosing p large enough,
and then fix p. To summarize, with δ = 2−k we have proved

m({x : sup
0≤t≤1, 0≤h≤δ

|S(N)
t+h − S

(N)
t | ≥ c1δ

a}) = O
(
c−p
1 2−kb

)
.

Now each δ, with 0 < δ ≤ 1, lies between 2−k+1 and 2−k for some integer
k ≥ 0. Thus when we take the union of the corresponding sets and add
their measures (summing over k) we get a total measure that is O(c−p

1 ),
and this is less than ε if c1 is large enough. So we have obtained our
desired conclusion (10).

In the same way we can prove the following analog of this conclusion:
for any T > 0, and εT > 0, there is a constant cT sufficiently large so
that m((K(T ))c) ≤ εT , where

K(T ) = {x : sup
0≤t≤T, 0≤h≤δ

|S(N)
t+h − S

(N)
t | ≤ cT δa, all δ ≤ 1}.

This can be restated as follows. If

K(T ) = {p ∈ P : sup
0≤t≤T, 0≤h≤δ

|p(t + h) − p(t)| ≤ cT δa, all δ ≤ 1},

then µN ((K(T ))c) = m((K(T ))c) ≤ εT .
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Therefore, if we let T range over the positive integers, set εn = ε/2n,
and K =

⋂∞
n=1 K(n), then we have µN (Kc) ≤ ε, and thus by the com-

pactness of K guaranteed by Lemma 2.4, the tightness of the sequence
{µN} will be established.

Now to show that the measure converges weakly it suffices, by Corol-
lary 2.3, to show that for each 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk, the measures
µ

(t1,...,tk)
N converge weakly to the putative measure W (t1,...,tk). How-

ever the central limit theorem (Theorem 2.17 of the previous chapter
together with Exercise 1 below) shows that the distribution measures
of S

(N)
tj

− S
(N)
tj−1

converge weakly to the Gaussian measure νtj−tj−1 (see
Exercise 1). Moreover, since

S
(N)
t�

= S
(N)
t1

+ (S(N)
t2

− S
(N)
t1

) + · · · + (S(N)
t�

− S
(N)
t�−1

),

Exercise 8 (a) in the previous chapter shows that the distribution mea-
sures of the vectors of random variables (S(N)

t1
, S

(N)
t2

, . . . , S
(N)
tk

) converge
weakly to the presumed measure W (t1,...,tk) as N → ∞. Thus the se-
quence {µN} converges weakly to a measure and this measure is then
the desired Wiener measure W , and this completes the proof of the the-
orem.

Our construction of Brownian motion was done in terms of the limit of
scalings of the simple random walk treated in Section 2.6 of the previous
chapter. However the Brownian motion process can also be obtained as
a corresponding scaling limit of more general random walks, as follows.

Let f1, . . . , fn, . . . be a sequence of identically distributed mutually
independent square integrable Rd-valued functions on a probability space
(X, m), each having mean zero and the identity as its covariance matrix.
Define, as in (1),

S
(N)
t =

1
N1/2

∑
1≤k≤[Nt]

fk +
(Nt − [Nt])

N1/2
f[Nt]+1,

and let µN be the corresponding measures on P induced via the measure
m on X. The result is then that {µN} converges weakly to the Wiener
measure W as N → ∞.

In this general setting the result is known as the Donsker invariance
principle. The modifications needed for a proof of this generalization
are outlined in Problem 2. A particularly striking example of the con-
vergence to the Brownian motion process then arises if we choose the
{fn} occurring in the process of “random flight” discussed in Problem 5
in the previous chapter.
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4 Some further properties of Brownian motion

We describe now several interesting properties enjoyed by the Brownian
motion process. In general it is useful to think of this process as either in
terms of an abstract realization Bt on (Ω, P ) satisfying conditions B-1,
B-2 and B-3, or its concrete realization on (P,W ) with W the Wiener
measure, given in terms of Bt(ω) = p(t), where ω is identified with p.
More about this identification can be found in Exercises 8 and 9 below.
It will also be convenient to augment the Borel σ-algebra of P by all
subsets of Borel sets of W -measure zero.6

We begin by observing three simple but significant invariance state-
ments. (Another symmetry of Brownian motion is described in Exer-
cise 13.)

Theorem 4.1 The following are also Brownian motion processes:

(a) δ−1/2Btδ for every fixed δ > 0.

(b) o(Bt) whenever o is an orthogonal linear transformation on Rd.

(c) Bt+σ0 − Bσ0 whenever σ0 ≥ 0 is a constant.

We need only check that these new processes satisfy the conditions B-1,
B-2, and B-3 defining Brownian motion. Thus the assertion (a) of the
theorem is clear once we observe that for any function f , the covariance
matrix of δ−1/2f is δ−1 times the covariance matrix of f . The asser-
tion (b) is also obvious once we note that the covariance matrix of o(f)
is the same as that of f ; and that if f1, . . . , fn, . . . are mutually indepen-
dent so are o(f1), o(f2), . . . , o(fn), . . . . Finally (c) is immediate from the
definition of Brownian motion.

The next result concerns the regularity of the paths of Brownian mo-
tion. The conclusion is that almost all paths satisfy a Hölder condition
of exponent a, with a < 1/2; this fails however when a > 1/2. (This fail-
ure extends to the critical case a = 1/2, but this is discussed separately
in Exercise 14.) Moreover, almost every path is nowhere differentiable.
The conclusions are subsumed in the theorem below.

Theorem 4.2 With W the Wiener measure on P we have:

(a) If 0 < a < 1/2 and T > 0, then, with respect to W almost every
path p satisfies

sup
0≤t≤T, 0<h≤1

|p(t + h) − p(t)|
ha

< ∞.

6This is the completion of the measure space as outlined in Exercise 2, Chapter 6 of
Book III.
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(b) On the other hand, if a > 1/2, then for almost every path p

lim sup
h→0

|p(t + h) − p(t)|
ha

= ∞, for every t ≥ 0.

The first conclusion is implicit in our construction of Brownian motion.
Indeed, suppose K(T ) is the set arising in the proof of Theorem 3.1.
Then we have seen that µN (K(T )) ≥ 1 − ε for every N . Thus the same
holds for the weak limit of the {µN}. Hence W (K(T )) ≥ 1 − ε. But by
the definition of K(T ) we have the inequality in (a) for every p ∈ K(T ).
Since ε is arbitrary, the first conclusion holds.

To prove the second conclusion we fix an a > 1/2, and a positive integer
k, so that dk(a − 1/2) > 1.

Now, for any positive integer n, note that if there is a t0 ∈ [0, 1] so
that

(11) sup
0<h≤(k+1)/n

|p(t0 + h) − p(t0)|
ha

≤ λ,

then there is an integer j0, 0 ≤ j0 ≤ n − 1 so that

max
1≤�≤k

∣∣∣∣p(
j0 + � + 1

n

)
− p

(
j0 + �

n

)∣∣∣∣ ≤ Ckλn−a,

where Ck = 2(k + 1)a. By renaming λ, we may proceed assuming Ck =
1. Thus if we let Eλ

n denote the set of path p where (11) holds, then
Eλ

n ⊂ Ẽλ
n with

Ẽλ
n =

n−1⋃
j0=0

{
p ∈ P : max

1≤�≤k

∣∣∣∣p(
j0 + � + 1

n

)
− p

(
j0 + �

n

)∣∣∣∣ ≤ λn−a

}
.

But the k sets
{
p ∈ P :

∣∣p (
j0+�+1

n

)− p
(

j0+�
n

)∣∣ ≤ λn−a
}
, 1 ≤ � ≤ k are

mutually independent; also the measures of these sets are the same as �
and j0 vary. Hence

W ({p ∈ P : max
1≤�≤k

∣∣∣∣p(
j0 + � + 1

n

)
− p

(
j0 + �

n

)∣∣∣∣ ≤ λn−a}) =

= (W{p ∈P : |p(1/n)| ≤ λn−a})k.

Thus W (Eλ
n) ≤ W (Ẽλ

n) = n(W{p ∈ P : |p(1/n)| ≤ λn−a})k. However,
by the scaling property (a) of the previous theorem

W{p ∈ P : |p(1/n)| ≤ λn−a} = W{p ∈ P : |p(1)| ≤ λn1/2−a}.
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However p(1) has a Gaussian as its distribution measure. Thus the last
quantity is O(λdnd(1/2−a)) as n → ∞. As a result

W (Eλ
n) = O(λdknndk(1/2−a))

and this converges to zero as n → ∞. Thus for every positive λ, the set
of p where (11) holds has measure converging to zero as n → ∞ because
a > 1/2. This establishes conclusion (b) of the theorem.

At this point, it may be worthwhile to recall the variety of ways a
nowhere differentiable function has arisen in different settings in these
Volumes. First, as a specific example of a lacunary Fourier series in
Book I; next as a von Koch fractal, in Book III; further as the generic
continuous function via the Baire category theorem in Chapter 4; and
now lastly as almost every Brownian path.

One last remark. Given our construction it is intuitively tempting to
think of almost every Brownian path as the “limit” of an appropriate
collection of random walk paths (paths in PN with N → ∞). However it
is not clear how to make such an idea precise. Despite this, the following
less satisfactory substitute is a direct consequence of Theorem 3.1.

Let q ∈ P be any fixed path. Suppose ε > 0 and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn
are given. We consider the open set

Oε = {p ∈ P : |p(tj) − q(tj)| < ε, 1 ≤ j ≤ n}

of paths close to q, and set O(N)
ε = Oε ∩ PN , the bundle of corresponding

random walk paths. Then

(12) m({x ∈ Z∞
2d : S

(N)
t (x) ∈ O(N)

ε }) → W (Oε), as N → ∞.

In fact, (12) is merely a restatement of the assertion µN (Oε) → W (Oε) as
N → ∞. This follows because µN → W weakly, using Exercise 7, since
it is easily checked that W (Oε −Oε) = 0.

5 Stopping times and the strong Markov property

The goal of the rest of this chapter is to exhibit the remarkable role of
Brownian motion in the solution of the Dirichlet problem. A general
setting for this problem is as follows.

We are given a bounded open set R in Rd and a continuous function
f on the boundary ∂R = R−R. Then the issue is that of finding a
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function u, continuous on R, harmonic in R, that is �u = 0, and with
the boundary condition u|∂R = f .

The connection of this question with Brownian motion arises when we
fix a point x ∈ R and consider Brownian motion starting at x, that is,
the process Bx

t = x + Bt. Now for each ω ∈ Ω we consider the first time
t = τ(ω) = τx(ω), when the Brownian motion path t 	→ Bx

t (ω) exits R
(in particular, Bx

τ(ω)(ω) = Bx
τx(ω)(ω) ∈ ∂R).

x + Bτ(ω)(ω)

R

x

Figure 1. Path ω, exiting at time τ = τ(ω)

Then the resulting induced measure µx = µ on ∂R, given by

µx(E) = P ({ω : Bx
τ(ω)(ω) ∈ E})

(also called “harmonic measure”) leads to the solution of the problem:
under appropriate restrictions on the set R

u(x) =
∫

∂R
f(y) dµx(y), x ∈ R

is the desired harmonic function.
Now the function ω 	→ τ(ω) will be seen to be a “stopping time,” and

we begin by discussing this notion, which arose implicitly when we proved
the maximal theorem for martingale sequences in Theorem 2.10 of the
previous chapter.

5.1 Stopping times and the Blumenthal zero-one law

Suppose {sn}∞n=0 is a martingale sequence associated to the increasing
sequence {An}∞n=0 of σ-algebras on the probability space (X,m). Then
an integer-valued function τ : x 	→ τ(x) is a stopping time if {x : τ(x) =
n} ∈ An for all n ≥ 0, or equivalently if {x : τ(x) ≤ n} ∈ An for all n.
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We note here the basic fact that if (say) τ(x) ≤ N < ∞ for all x, then

(13)
∫

sτ(x)(x) dm =
∫

sN (x) dm.

Indeed, the left-hand side is
∑N

n=0

∫
An

sn(x) dx, with An = {x : τ(x) =
n}. However, by the martingale property (that is, (14) in the previous
chapter)

∫
An

sn(x) dx =
∫

An
sN (x) dx, and summing over n gives (13)

above.
Similarly, for a subset A, we say that the integer-valued function x 	→

τ(x) defined on A is a stopping time relative to A if {x ∈ A : τ(x) =
n} ⊂ An for all n. In this case

∫
A

sτ(x)(x) dx =
∫

A
sN (x) dx. When this

is applied to A = {x : supn≤N sn(x) > α}, then this yields essentially the
maximal inequality (15) in the previous chapter.

Martingales are relevant to Brownian motion because that process is a
continuous version of a martingale in the following sense. For each t ≥ 0,
let At be the σ-algebra generated by all functions Bs, 0 ≤ s ≤ t, that is,
the smallest σ-algebra containing the ABs for all 0 ≤ s ≤ t.7 Then we
have:

(a) For any sequence 0 ≤ t0 < t1 < · · · < tn < · · · the sequence
{Btn}∞n=0 is a martingale relative to the σ-algebras {Atn}∞n=0.

(b) For almost every ω, the path Bt(ω) is continuous in t.

Now (a) follows immediately from the proof of Proposition 2.6 in the
previous chapter and the fact that the process Bt has independent in-
crements, with each Bt having mean zero. Also, (b) is the condition B-3
arising in the definition of Brownian motion.

At this point, because it will be useful below, we remark that the max-
imal inequality (9) immediately leads to the Brownian motion inequality:

(14) P ({ω : sup
0≤t≤T

|Bt(ω)| > α}) ≤ 1
α
‖BT ‖L1

for all T > 0 and α > 0.

In analogy with the discrete case above we say that a non-negative
function ω 	→ τ(ω) is a stopping time if {ω : τ(ω) ≤ t} ∈ At for every
t ≥ 0.

7To be precise, At is the σ-algebra generated by all functions Bs, 0 ≤ s ≤ t, together
with all subsets of sets of measure zero. See also the previous footnote.
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Now suppose R is a bounded open set of Rd and define the first “exit
time” for the path Bx

t (ω) = x + Bt(ω) to be

τ(ω) = τx(ω) = inf{t ≥ 0, Bx
t (ω) /∈ R}.

Also define the “strict” exit time τ∗ = τx
∗ by

τx
∗ (ω) = inf{t > 0, Bx

t (ω) /∈ R}.

Proposition 5.1 Both τx and τx
∗ are stopping times.

We note that both τ and τ∗ are well-defined, that is, finite almost ev-
erywhere, because almost every path ultimately exits the bounded open
set R. (See Exercise 14.)

Proof. For simplicity of notation we take x = 0; we can then recover
the general case by reducing to the situation where R is replaced by
R− x. Now for any open set O in Rd define τO(ω) = inf{t ≥ 0, Bt(ω) ∈
O}. Then, up to a set of measure zero,

{τO(ω) < t} =
⋃
r<t

{Br(ω) ∈ O},

where the union is taken over all the indicated rationals r. This is because
a continuous path is in O before time t if and only if it is in O at
some rational time r, with r < t. Thus {τO(ω) < t} ∈ At. Next let
On = {x : d(x,Rc) < 1/n}. If t > 0, then

(15) {τ(ω) ≤ t} =
⋂
n

{τOn(ω) < t},

because a path exits R by time t, if and only if it is in On before time t,
for every n. Therefore, for t > 0 we have {τ(ω) ≤ t} ∈ At. However
{τ(ω) = 0} is the empty set or Ω, depending on whether x ∈ R or not.
Thus τ is a stopping time.

Note that τx
∗ (ω) = τx(ω) > 0 for all ω if x ∈ R while τx

∗ (ω) = τx(ω) =
0, for x /∈ R. Therefore the only difference between τx

∗ and τx can occur
when x is on the boundary, ∂R = R−R. We notice that as above, when
t > 0,

{τx
∗ (ω) ≤ t} ∈ At.

But then {τx
∗ (ω) = 0} ∈ ⋂

t At. Given the increasing character of the
σ-algebra At, it is natural to denote

⋂
t At by A0+. So the proposition

follows from the lemma below.
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Lemma 5.2 A0+ = A0.

The proof of this simple looking fact is however a little indirect. The
conclusion, that any set A ∈ ⋂

t>0 At is trivial (is either of measure 0 or
1), is referred to as Blumenthal’s zero-one law. (A generalization is given
in Exercise 16.)

As a result, for each x in the boundary of R we have the dichotomy:
{τx

∗ (ω) = 0} has measure 1 or 0. In the former case, the point x is called
a regular point at the boundary. In brief, a boundary point is regular,
if almost all paths starting at that point are outside R for arbitrarily
small positive times. This property plays a crucial role in the Dirichlet
problem for R.

Proof of the lemma. Fix a bounded continuous function f on Rkd, and
a sequence 0 ≤ t1 < t2 < · · · < tk. For any δ > 0, set

fδ = f(Bt1+δ − Bδ, Bt2+δ − Bt1+δ, . . . , Btk+δ − Btk−1+δ).

If A is any set in A0+, then A ∈ Aδ, for δ > 0. Then by the independence
of the above increments from Bδ, we see that∫

A

fδ dP = P (A)
∫

Ω

fδ dP.

Thus by continuity of the paths we can let δ → 0 and obtain∫
A

f0 dP = P (A)
∫

Ω

f0 dP.

Now any bounded continuous function g on Rkd can be written in the
form g(x1, . . . , xk) = f(x1, x2 − x1, . . . , xk − xk−1) where f is another
such function. As a result∫

A

g(Bt1 , . . . , Btk
) dP = P (A)

∫
Ω

g(Bt1 , . . . , Btk
) dP.

Hence by a passage to the limit, this holds if g is the characteristic
function of a Borel set of Rkd. Thus P (A ∩ E) = P (A)P (E) whenever E
is a cylindrical set. From this, we deduce the same equality for any Borel
set E by using Exercise 4 in the previous chapter. Therefore P (A) =
P (A)2, which implies P (A) = 0 or P (A) = 1. Since A was an arbitrary
subset of A0+, the lemma, and also the proposition, are proved.

Note. Lastly, it will be important below to remark that the stopping
time τx(ω) is jointly measurable in x and ω. This follows from

{(x, ω) : τx(ω) > ρ} =
∞⋃

n=1

⋂
r≤ρ, r∈Q

{ω : x + Br(ω) ∈ Rn},
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where Rn = {x : d(x,Rc) > 1/n}.

5.2 The strong Markov property

Suppose σ is a stopping time (relative to the σ-algebras {At}t≥0). We
can define the collection Aσ to be the collection of sets A, such that
A ∩ {σ(ω) ≤ t} ∈ At, for all t ≥ 0. One notes that in fact Aσ is a σ-
algebra; that Aσ = Aσ0 if σ(ω) is constant and equals σ0; and that σ is
measurable with respect to Aσ. (See also Exercise 18.)

In studying the Dirichlet problem we shall need, in addition to the
stopping time τ (the first exit time from R), another stopping time σ.
What happens when Brownian motion is restarted after time σ is the
subject of the “strong Markov property,” one version of which is con-
tained in the following.

Theorem 5.3 Suppose Bt is a Brownian motion and σ is a stopping
time. Then the process B∗

t , defined by

B∗
t (ω) = Bt+σ(ω)(ω) − Bσ(ω)(ω)

is also a Brownian motion. Moreover B∗
t is independent of Aσ.

In other words, if a Brownian motion is stopped at time σ(ω), then the
process which is appropriately restarted is also a Brownian motion that
is now independent of the past Aσ.8

Proof. We have already noted that if σ(ω) is a constant, σ(ω) =
σ0, then Bt+σ0 − Bσ0 is a Brownian motion (see Theorem 4.1), so the
assertion in the theorem holds in this case.

Next assume that σ is discrete, that is, it takes on only a countable set
of values σ1 < σ2 < · · · < σ� < . . . . Also suppose 0 ≤ t1 < t2 < · · · < tk
are fixed. Let us use the temporary notation

B = (Bt1 , Bt2 , . . . , Btk
)

B∗ = (B∗
t1 , B

∗
t2 , . . . , B

∗
tk

)

B∗
� = (Bt1+σ�

− Bσ�
, Bt2+σ�

− Bσ�
, . . . , Btk+σ�

− Bσ�
),

with all these bold-face vectors taking values in Rkd. Now if E is a Borel
set in Rkd, then

{ω : B∗ ∈ E} =
⋃
�

{ω : B∗
� ∈ E, and σ = σ�}.

8A corresponding independence when σ is an arbitrary positive constant is character-
istic of a “Markov” process.
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So

{ω : B∗ ∈ E} ∩ A =
⋃
�

({ω : B∗
� ∈ E} ∩ A ∩ {σ = σ�}),

with the union clearly disjoint.
However if A ∈ Aσ, then A ∩ {σ = σ�} ∈ Aσ�

. By the special case
when σ = σ� is constant throughout, we see that the measure of {ω :
B∗ ∈ E} ∩ A equals∑

�

P (B∗
� ∈ E)m(A ∩ {σ = σ�}),

because A ∩ {σ = σ�} ∈ Aσ�
and this set is independent of {B∗

� ∈ E}.
However P (B∗

� ∈ E) = P (B ∈ E), and we obtain that

(16) P ({ω : B∗ ∈ E, ω ∈ A}) = P ({ω : B ∈ E})P (A).

Now using (16) when A = Ω shows that B∗ satisfies the conditions B-1
and B-2 of Brownian motion. Also B-3 is obvious. Finally, using (16) for
any A ⊂ Aσ gives the desired independence of B∗ from Aσ.

Turning to the case of general stopping time σ, we approximate it by
a sequence {σ(n)} of stopping times, so that each σ(n) takes on only a
countable set of values as above, and

(i) σ(n)(ω) ↘ σ(ω), as n → ∞, for every ω; and

(ii) Aσ ⊂ Aσ(n) .

For each n define σ(n)(ω) = k2−n if (k − 1)2−n < σ(ω) ≤ k2−n for k =
1, 2, . . . , and σ(n)(ω) = 0 if σ(ω) = 0. Property (i) is obvious. Next, for
each t there is a k so that k2−n ≤ t < (k + 1)2−n. Then {σ(n) ≤ t} =
{σ ≤ k2−n} ∈ Ak2−n ⊂ At. Thus σ(n) is a stopping time.

Also suppose that A ⊂ Aσ, then A ∩ {σ(n) ≤ t} = A ∩ {σ ≤ k2−n} ∈
Ak2−n ⊂ At, and hence A ∈ Aσ(n) . Thus (ii) is established.

Now let B
∗(n)
t be the analog of B∗

t , with σ replaced by σ(n), and let
B∗(n) = (B∗(n)

t1
, . . . , B

∗(n)
tk

). Suppose A ⊂ Aσ (then A ⊂ Aσ(n)). Then
by what we have proved in the discrete case

P ({B∗(n) ∈ E, ω ∈ A}) = P (B ∈ E)P (A).

A passage to the limit then shows that (16) holds for the general σ. This
limiting argument is carried out in two steps using exercises from the
previous chapter. First, by Exercises 10 and 31 part (d), since B∗(n)
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converges pointwise to B∗, we have that (16) holds whenever E is an
open set. To conclude that such equality holds for all Borel sets E, we
apply Exercise 4 in the previous chapter.

For any given stopping time σ, let us write Bσ for the function ω 	→
Bσ(ω)(ω). We note that the argument above, where we approximate the
stopping time, also shows that Bσ is Aσ-measurable. (See Exercise 18.)

5.3 Other forms of the strong Markov Property

Another version of the strong Markov property involves integration of
functions defined on all paths. To describe this we need a little additional
notation. We define P̃ to be the space of all paths, that is, all continuous
functions from [0,∞) to Rd. The space P̃ differs from the space P
considered earlier, in that in the latter all paths start at the origin.
We can write each p̃ in P̃ as a pair (p, x) with p ∈ P, x ∈ Rd where
p = p̃ − p̃(0), and x = p̃(0). So we have P̃ = P × Rd, and every function
f on P̃ can be written as f(p̃) = f1(p, x), with f1 a function on the
product P × Rd. Moreover, P̃ inherits a metric from the metrics on P
and Rd, and a corresponding class of Borel subsets.

We shall also use the short-hand that the path t 	→ Bt(ω) will be des-
ignated by B·(ω); similarly the path t 	→ Bσ(ω)+t(ω) will be written as
Bσ(ω)+·(ω); also the paths t 	→ Bσ(ω)+t(ω) − Bσ(ω)(ω) that appear in
Theorem 5.3 will be represented as B∗

· (ω). With these definitions our
result is as follows.

Theorem 5.4 Let f be a bounded Borel function on the space P̃ of all
paths. Then
(17)∫

Ω

f
(
Bσ(ω)+·(ω)

)
dP (ω) =

∫∫
Ω×Ω

f
(
B·(ω) + Bσ(ω′)(ω′)

)
dP (ω) dP (ω′).

Proof. We write f(p̃) = f1(p, x) as above; then (17) becomes

∫
Ω

f1

(
B∗

· (ω), Bσ(ω)(ω)
)
dP (ω) =

(18)

∫∫
Ω×Ω

f1

(
B·(ω), Bσ(ω′)(ω′)

)
dP (ω) dP (ω′),

since Bσ(ω)+t(ω) = B∗
t (ω) + Bσ(ω)(ω).

We consider first functions f1 of the product form f1 = f2 · f3, with
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f1(p, x) = f2(p)f3(x). Then the right-hand side of (18) is∫
Ω

f2(B·(ω)) dP (ω) ×
∫

Ω

f3(Bσ(ω′)(ω′)) dP (ω′).

However
∫
Ω

f2(B·(ω)) dP (ω) =
∫
Ω

f2(B∗
· (ω)) dP (ω), since by Theorem 5.3

B∗
t is also a Brownian motion and so has the same distribution measures

as Bt. Also, by the independence guaranteed by that theorem (and the
fact that Bσ(ω′)(ω′) is Aσ-measurable) we see that the product∫

Ω

f2(B∗
· (ω)) dP (ω) ×

∫
Ω

f3(Bσ(ω′)(ω′)) dP (ω′)

equals ∫
Ω

f2(B∗
· (ω))f3(Bσ(ω)(ω)) dP (ω),

which is the left-hand side of (18).
To pass to the case of general f we may argue as follows. Let µ

and ν denote the measures on P̃ defined by µ(E), (respectively ν(E)),
as the left-hand side, (respectively the right-hand side) of (18) whenever
f is the characteristic function of E, with E any Borel set in P̃. Then
what we have already proved implies that µ(E) = ν(E) for all Borel
sets of the form E = E2 × E3, with E2 ⊂ P and E3 ⊂ Rd. According to
Exercise 4 in the previous chapter, this identity then extends to the σ-
algebra generated by these sets, and hence to all Borel sets of P̃, because
this σ-algebra contains the open sets. Finally, because any bounded Borel
function on P̃ is the bounded pointwise limit of finite linear combinations
of characteristic functions of Borel sets, we see that (18) holds for all those
f1 = f , and the theorem is proved.

The final version of the strong Markov property we present is the
statement closest to the immediate application to the Dirichlet problem.
It involves two stopping times σ and τ , with σ ≤ τ , where τ is the exit
time for the bounded open set R. Let us recall that By

t (ω) = y + Bt(ω),
and τy(ω) = inf{t ≥ 0, By

t (ω) /∈ R}. We define the stopped process

B̂y
t (ω) = y + Bt∧τy(ω)(ω)

where t ∧ τy(ω) = min(t, τy(ω)). If y = 0 we drop the subscript y in the
above definitions.
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Theorem 5.5 Suppose σ and τ are stopping times with σ(ω) ≤ τ(ω) for
all ω. If F is a bounded Borel function on Rd, then for every t ≥ 0

(19)
∫

Ω

F
(
B̂σ(ω)+t(ω)

)
dP (ω) =

∫∫
Ω×Ω

F
(
B̂

y(ω′)
t (ω)

)
dP (ω) dP (ω′)

where y(ω′) = B̂σ(ω′)(ω′).

Proof. Start with the left-hand side of (19). It equals∫
τ(ω)≥σ(ω)+t

F
(
B̂σ(ω)+t(ω)

)
dP (ω) +

∫
τ(ω)<σ(ω)+t

F
(
B̂σ(ω)+t(ω)

)
dP (ω)

=
∫

τ(ω)≥σ(ω)+t

F
(
Bσ(ω)+t(ω)

)
dP (ω) +

∫
τ(ω)<σ(ω)+t

F
(
Bτ(ω)(ω)

)
dP (ω)

= I1 + I2.

We will first look at

I1 =
∫

Ω

F
(
Bσ(ω)+t(ω)

)
χτ(ω)≥σ(ω)+t dP (ω).

Consider the following real-valued function on paths:

f(p̃) = F (p̃(t)) χτ(p)≥t.

Here we define for any path p̃ the quantity τ(p̃) = inf{s ≥ 0 : p̃(s) /∈ R}.
In particular, note that if p̃(·) = B·(ω), then τ(p̃) = τ(ω). Now, given ω
set p̃(·) = Bσ(ω)+·(ω). Then

f(p̃) = f
(
Bσ(ω)+·(ω)

)
= F

(
Bσ(ω)+t(ω)

)
χτ(ω)−σ(ω)≥t.

Indeed, note that

τ(Bσ(ω)+·(ω)) = inf{s ≥ 0 : Bσ(ω)+s(ω) /∈ R} = τ(ω) − σ(ω).

This is true because the path B·(ω) exits at time τ(ω), and therefore
the path Bσ(ω)+·(ω) exits at time τ(ω) − σ(ω). Therefore

f
(
Bσ(ω)+·(ω)

)
= F

(
Bσ(ω)+t

)
χτ(ω)≥σ(ω)+t,

which is the integrand in I1, so we can apply (17) to get

I1 =
∫

Ω

∫
Ω

f
(
Bσ(ω′)(ω′) + B·(ω)

)
dP (ω) dP (ω′).
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But now note that the integrand in the above equals

F
(
Bσ(ω′)(ω′) + Bt(ω)

)
χτ(Bσ(ω′)(ω′)+B·(ω))≥t.

To conclude the calculation of I1 it suffices to note that the quantity
τ
(
Bσ(ω′)(ω′) + B·(ω)

)
equals τy(ω′)(ω), and so

I1 =
∫

Ω

∫
Ω

F
(
Bσ(ω′)(ω′) + Bt(ω)

)
χτy(ω′)(ω)≥t dP (ω) dP (ω′)

=
∫

Ω

∫
Ω

F
(
B

y(ω′)
t (ω)

)
χτy(ω′)(ω)≥t dP (ω) dP (ω′)

=
∫

Ω

∫
Ω

F
(
B̂

y(ω′)
t (ω)

)
χτy(ω′)(ω)≥t dP (ω) dP (ω′).

We now look at the second integral I2 defined by

I2 =
∫

Ω

F
(
Bτ(ω)(ω)

)
χτ(ω)<σ(ω)+t dP (ω).

Here we define a real-valued function on paths

g(p̃) = F (p̃(τ(p̃)))χτ(p̃)<t.

Setting p̃(·) = Bσ(ω)+·(ω) gives

g(Bσ(ω)+·(ω)) = F
(
Bτ(ω)(ω)

)
χτ(ω)<σ(ω)+t.

For the characteristic function χ, the argument is the same as above.
For the first part (that is, the component F (· · · )), note that τ(p̃) gives
the time of exit of R of the path p̃, and p(τ(p)) the value (in Rd) where
the path exits. Since both Bσ(ω)+·(ω) and B·(ω) exit at the same point
in space (although at different times, namely, τ(ω) − σ(ω) and τ(ω) re-
spectively) we get the above. Therefore by (17)

I2 =
∫

Ω

∫
Ω

g
(
Bσ(ω′)(ω′) + B·(ω)

)
dP (ω) dP (ω′).

Now note that

g
(
Bσ(ω′)(ω′) + B·(ω)

)
= F

(
Bσ(ω′)(ω′) + Bτy(ω′)(ω)(ω)

)
χτy(ω′)(ω)<t.
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Hence

I2 =
∫

Ω

∫
Ω

g
(
Bσ(ω′)(ω′) + B·(ω)

)
dP (ω) dP (ω′)

=
∫

Ω

∫
Ω

F
(
Bσ(ω′)(ω′) + Bτy(ω′)(ω)(ω)

)
χτy(ω′)(ω)<t dP (ω) dP (ω′)

=
∫

Ω

∫
Ω

F
(
B̂

y(ω′)
t (ω)

)
χτy(ω′)(ω)<t dP (ω) dP (ω′).

Therefore, putting the two integrals for I1 and I2 together yields

I1 + I2 =
∫

Ω

∫
Ω

F
(
B̂

y(ω′)
t (ω)

)
dP (ω) dP (ω′),

which completes the proof of (19).

Final remark. With almost no change in the argument one can prove
generalizations of the two theorems above in which the left-hand side
of (17) and (19) are integrated over any set A in Aσ, instead of Ω.
The result corresponding to (17) may then be rephrased in terms of
conditional expectations EAσ to read:

EAσ
(f(Bσ(ω)+·)) =

∫
Ω

f(B·(ω) + x) dP (ω)
∣∣∣∣
x=Bσ(ω′)(ω′)

.

The conclusion corresponding to (19) is∫
A

F
(
B̂σ(ω)+t(ω)

)
dP (ω) =

∫
A

∫
Ω

F
(
B̂

y(ω′)
t (ω)

)
dP (ω) dP (ω′),

whenever A ∈ Aσ.

6 Solution of the Dirichlet problem

Recall the definitions given at the beginning of Section 5. Here R is a
bounded open set in Rd, and for each x ∈ R, we define µx as the measure
on the boundary ∂R of R, given by

µx(E) = P ({ω : Bx
τx(ω)(ω) ∈ E}),

with τx(ω) the first exit time of the path Bx
t (ω). Here E ranges over the

Borels sets of ∂R, which itself is a compact subset of Rd.
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For a continuous function f on ∂R we defined

(20) u(x) =
∫

∂R
f(y) dµx(y), when x ∈ R.

Observe that u is measurable (and in fact Borel measurable) since

u(x) =
∫

Ω

f(x + Bτx(ω)(ω)) dP (ω),

and τx(ω) is jointly measurable, as noted at the end of Section 5.1.

The main theorem is as follows.

Theorem 6.1 If u is defined by (20), then:

(a) u is a harmonic function in R.

(b) u(x) → f(y), as x → y, for x ∈ R, if y is a regular point of ∂R.

Proof. To establish (a) we fix x ∈ R and let S denote a sphere
centered at x together with its interior ball is contained in R. We will
prove the mean-value property

(21) u(x) =
∫

S

u(y) dm(y),

where m is the standard measure on the sphere, normalized to have total
mass 1. To prove (21) let σ be the stopping time defined as the first time
Bx

t (ω) hits S.

R

S

x

Bx
τ(ω)(ω)

Bx
σ(ω)(ω)

∂R

Figure 2. Brownian motion stopping on S and then ∂R

We claim that for any continuous function G on S we have

(22)
∫

Ω

G(Bx
σ(ω1)

(ω1)) dP (ω1) =
∫

S

G(y) dm(y).
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To see this, consider the case where x = 0, and note that the left-hand
side defines a continuous linear functional on the continuous functions
on S, and hence is of the form

∫
S

G(y) dµ(y), for some measure µ on S.
By the rotation invariance of the Brownian motion it follows that µ is
rotation-invariant and hence by Problem 4 in Chapter 6, Book III, we
have µ = m.

Suppose B̂x
t = Bx

t∧τx is the stopped process. Note that B̂x
σ(ω1)

(ω1) =
Bx

σ(ω1)
(ω1) = y(ω1) ∈ S, because a path starting at x meets S before it

meets ∂R.
We now invoke (19). If we take F to be any continuous bounded

extension of f to all of Rd, and let t → ∞ we obtain
(23)∫ ∫

Ω×Ω

F (By(ω1)

τy(ω1)(ω2)
(ω2)) dP (ω2) dP (ω1) =

∫
Ω

F (Bx
τx(ω)(ω)) dP (ω).

The right-hand side of (23) above equals u(x), while the left-hand side
equals ∫

Ω

u(y(ω1)) dP (ω1).

Finally, since Bx
σ(ω1)

(ω1) = y(ω1) we can apply (22) with u = G and de-
duce that ∫

Ω

u(y(ω1)) dP (ω1) =
∫

S

u(y) dm(y).

This completes the proof of the mean-value identity (21), and from this it
follows that u is harmonic. The ideas behind the proof of this well-known
fact are summarized in Exercise 19.

To prove conclusion (b), we establish first that if y ∈ ∂R, and y is
regular, then

(24) lim
x→y, x∈R

P ({τx > δ}) = 0, for all δ > 0.

In fact, P ({Bx
t ∈ R, all ε ≤ t ≤ δ}), ε > 0, is continuous in x, because

at each ω for which Bt is continuous, the characteristic function of
{Bx

t ∈ R, all ε ≤ t ≤ δ} at ω converges to the characteristic function of
{By

t ∈ R, all ε ≤ t ≤ δ} at ω, as x → y. However the functions P ({Bx
t ∈

R, all ε ≤ t ≤ δ}) are decreasing as ε ↘ 0. The limit is

P ({ω : Bx
t (ω) ∈ R, all 0 < t ≤ δ}) = P ({τx > δ})
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and is thus upper semi-continuous in x. Hence lim supx→y P ({τx > δ}) ≤
P ({τy > δ}) = 0, since y is a regular point. Thus (24) is established. As
a consequence we have for s > 0 and ε > 0 given,

(25) P ({ω : |y − Bx
τx(ω)(ω)| > s}) < ε

if x is sufficiently close to y ∈ ∂R. In fact, by the maximal inequality (14)
we can find a δ > 0, so that P ({ω : supt≤δ |Bt(ω)| > s/2}) ≤ ε/2, since
‖Bδ‖L1 = cδ1/2. Also by (24), if x is sufficiently close to y, P ({τx >
δ}) ≤ ε/2. As a result, if x is sufficiently close to y, (25) holds.

Now

u(x) − f(y) =
∫

∂R
(f(y′) − f(y)) dµx(y′) =

∫
∂R1

+
∫

∂R2

= I1 + I2.

Here ∂R1 is the set of y′ in ∂R so that |y′ − y| ≤ s and ∂R2 is the
complementary set in ∂R. Now the points y′ ∈ ∂R are of the form y′ =
Bx

τ(ω)(ω), while µx(∂R2) = P ({ω : |y − Bx
τ(ω)| > s}). Thus by (25) we

see that µx(∂R2) ≤ ε if x is sufficiently close to y. So the contribution
of I2 is majorized by 2 sup |f |µx(∂R2)ε = O(ε). Also |f(y) − f(y′)| < ε
if |y − y′| ≤ s and s is small enough, so the contribution of I1 can be
made less than ε. Altogether this shows that u(x) − f(y) is majorized
by a multiple of ε for x sufficiently close to y. Since ε was arbitrary, the
second assertion of the theorem is proved.

Our final result is a very useful sufficient condition for the regularity
of a boundary point. A (truncated) cone Γ is the open set

Γ = {y ∈ Rd : |y| < α(y · γ), |y| < δ}.

Here γ is a unit vector, α > 1, δ > 0 are fixed, and y · γ is the inner
product between y and γ. The vector γ determines the direction of the
cone, and the constant α gives the size of the aperture.

Proposition 6.2 Suppose x ∈ ∂R and x + Γ is disjoint from R, for
some truncated cone Γ. Then x is a regular point.

Proof. We assume x = 0, and consider the set A of Brownian paths
starting at the origin that enter Γ for an infinite sequence of times tending
to zero. Let An =

⋃
rk<1/n{ω : Brk

(ω) ∈ Γ} where rk is an enumeration
of the positive rationals. Then A =

⋂∞
n=1 An. However An ∈ An for

each n, and hence A ∈ A0+ = A0, by the zero-one law. So m(A) = 0 or
m(A) = 1, and we show that in fact m(A) = 1. Assume the contrary, that
is m(A) = 0. By the rotation invariance of Brownian motion, the same
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x

∂R

R

x + Γ

Figure 3. Truncated cone at x disjoint from R

result would hold for any rotation of our truncated cone, and finitely
many such rotations cover the ball of radius δ, with the origin excluded,
while every path enters that ball at arbitrarily small times. This is a
contradiction.

Now returning to our boundary point x, if x + Γ is disjoint from R,
then there are, for each ω, arbitrarily small times for which Bt(ω) ∈ Γ,
and hence Bx

t (ω) /∈ R. Thus x is regular.

In view of the above we say that a bounded open set R satisfies the
outside cone condition, if whenever x ∈ ∂R, there is a truncated
cone Γ, so that x + Γ is disjoint from R. Our final result generalizes
the theorem proved by very different methods in Chapter 5, Book III
only for the special case of two dimensions.

Corollary 6.3 Suppose the bounded open set R satisfies the outside cone
condition. Assume f is a given continuous function on ∂R. Then there
is a unique function u that is continuous in R, harmonic in R, and such
that u|∂R = f .

Proof. Theorem 6.1 and Proposition 6.2 show that u is continuous
in R and u|∂R = f . The uniqueness is a consequence of the well-known
maximum principle.9

7 Exercises

1. Show that if t > 0, then the distribution measure of S
(N)
t converges weakly

to the Gaussian νt with mean zero and variance t as N → ∞. More generally, if
t > s ≥ 0, then the distribution measure of S

(N)
t − S

(N)
s converges weakly to the

Gaussian νt−s with mean zero and covariance matrix (t − s)I.

[Hint: Using the notation in the remark following Theorem 2.17 in Chapter 5, and

setting fk = rk, one has S
(N)
t − SN,t = (Nt−[Nt])

N1/2 r[Nt]+1.]

9See for example Corollary 4.4 in Chapter 5 of Book III.
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2. Let (P, d) be the metric space defined in Section 2. Verify:

(a) The space is complete.

(b) The space is separable.

[Hint: For (b), let e1, . . . , ed be a basis for Rd, and consider the polynomials
p(t) = e1p1(t) + · · · + edpd(t), where the pj have rational coefficients.]

3. Show that the metric space (P, d) is not σ-compact.

[Hint: Assume the contrary. Then the Baire category theorem implies that there
exists a compact set that has a non-empty interior. As a result there exists an open
ball whose closure is compact. However, consider for example the ball of radius 1
centered at 0, and a sequence of continuous piecewise linear functions {fn} with
fn(0) = 1, fn(x) = 0, when x ≥ 1/n.]

4. Suppose X is a compact metric space. Show that:

(a) X is separable.

(b) C(X) is separable.

[Hint: For each m, find a finite collection Bm of open balls, each of radius 1/m, so
that the collection Bm covers X. For (a) take the centers of the balls in

S∞
m=1 Bm.

For (b), consider {η(m)
k } the partition of unity corresponding to the covering of X

by Bm (as given, for example, in Chapter 1). Show that the finite linear combina-

tions of the η
(m)
k with rational coefficients are dense in C(X).]

5. Let X be a metric space, K ⊂ X a compact subset, and f a continuous function
on K. There there is a continuous function F on X, so that

F |K = f, and sup
x∈X

|F (x)| = sup
x∈K

|f(x)|.

[Hint: The argument given in Lemma 4.11, Chapter 5 of Book III for X = Rd can

be copied over in this general setting.]

6. Suppose K is a compact subset of P. Show that for each T > 0, there exists a
function wT (h), defined for h ∈ (0, 1] with wT (h) → 0 as h → 0 and such that

sup
p∈K

sup
0≤t≤T

|p(t + h) − p(t)| ≤ wT (h), for h ∈ (0, 1].

[Hint: Fix T > 0 and ε > 0. Each p is uniformly continuous on closed intervals,
so there exists δ = δ(p) > 0 so that sup0≤t≤T |p(t + h) − p(t)| ≤ ε whenever 0 <
h ≤ δ. Now use the fact that since K is compact, the covering K ⊂ Sp{p′ ∈ P :

d(p′, p) < ε} has a finite subcover.]

7. Suppose µN → µ weakly. Show as a result:
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(a) lim infN→∞ µN (O) ≥ µ(O) for any open set O.

(b) limN→∞ µN (O) = µ(O), O an open set, if µ(O −O) = 0.

[Hint: µ(O) = supf{
R

f dµ, where 0 ≤ f ≤ 1 and supp(f) ⊂ O}.]

8. Given the Wiener measure W in P, we have a realization of Brownian motion
(satisfying B-1, B-2 and B-3) with Bt(ω) = p(t), Ω = P, and P = W . Conversely,
suppose we start with {Bt} satisfying B-1, B-2 and B-3. For any cylindrical set C =
{p ∈ P : (p(t1), . . . , p(tk)) ∈ A} in P, define W o(C) = P ({ω : (Bt1(ω), . . . , Btk(ω)) ∈
A}). Verify that W o, initially defined on the cylindrical sets, extends to the Wiener
measure on P.

9. This exercise deals with the degree to which the Brownian motion process is
uniquely determined by the properties B-1, B-2 and B-3.

Let us say that such a process is “strict” if in addition to the above it satisfies
the following two conditions:

(i) Bt(ω1) = Bt(ω2) for all t implies ω1 = ω2.

(ii) The collection of measurable sets of (Ω, P ) is exactly A∞, which is the
σ-algebra generated by the At, with t < ∞.

Now given any Brownian motion process Bt on (Ω, P ) it induces a strict process B#
t

on (Ω#, P#) as follows: Let Ω# denote the collection of equivalence classes on Ω
under the equivalence relation ω1 ∼ ω2 if Bt(ω1) = Bt(ω2) for all t. We also denote
by {ω} the equivalence class to which ω belongs. On Ω# define B#

t ({ω}) = Bt(ω),
and P#({A}) = P (A) if A ∈ A∞. Verify:

(a) B#
t is a strict Brownian motion on (Ω#, P#).

(b) The process (P, W ) constructed in Section 3 is a strict Brownian motion.

(c) If (B1
t , Ω1, P 1) and (B2

t , Ω2, P 2) are a pair of Brownian motion processes,
then up to subsets of sets of measure zero, there is a bijection Φ : (Ω1)# →
(Ω2)#, so that (P 2)#(Φ(A)) = (P 1)#(A) and (B2

t )#(Φ(ω)) = (B1
t )#(ω).

10. Prove the following version of Khinchin’s inequality (Lemma 1.8 in the pre-
vious chapter). Suppose {fn} are identically distributed Rd-valued functions that
are bounded, have mean zero, and are mutually independent. Then for any p < ∞,
we have

‖
X

anfn‖Lp ≤ Ap

“

X

|an|2
”1/2

.

[Hint: One can reduce to the case d = 1. Assuming
P |an|2 ≤ 1, write

R

e
P

anfn =
Q

n

R

eanfn and use eu = 1 + u + O(u2) if |u| ≤ M . The result is that the first
integral above is majorized by

Q

(1 + M2a2
n) if |fn| ≤ M for all n.]

11. Prove the following variant of Lemma 3.2. Suppose {fk}∞k=1 is a sequence of
identically distributed, mutually independent, Rd-valued functions on a probability
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space (X, m) each having mean zero and the identity as its covariance matrix. If
sn =

Pn
k=1 fk, then

lim sup
n→∞

m({x : sup
1≤k≤n

|sk(x)| > λn1/2}) = O(λ−p), for p > 0.

[Hint: If νn denotes the distribution measure of sn/n1/2 and α = λn1/2, then the
right-hand side of (9) equals 1

λ

R

|t|>λ
|t| dνn(t). With λ ≥ 1 fix M ≥ 1 and write

this last integral as the sum of two terms λ−1
R

|t|>λM +λ−1
R

λM≥|t|>λ
. Using the

fact that
R |sn|2

n
dm = 1, the first term is O(λ−1−M ). By the central limit theorem

limn→∞ λ−1
R

λM≥|t|>λ
|t| dνn(t) = O

“

λ−1
R

|t|>λ
|t|e−|t|2/2 dt

”

so the limit of the

second term is also O(λ−1−M ).]

12. Prove that almost everywhere

|Bt(ω)| = O(t1/2+ε), as t → ∞,

for every ε > 0. This is the analog of the strong law of large numbers given in
Corollary 2.9 of the previous chapter.

[Hint: If B∗
T (ω) denotes sup0≤t≤T |Bt(ω)|, then the maximal inequality (14) gives

W ({B∗
T > α}) ≤ 1

α
‖BT ‖L1 = c′ T1/2

α
. If Ek = {B∗

2k > 2
k
2 (1+ε)}, then we have

P

k≥0 W (Ek) = O
“

P

k≥0 2− k
2 ε
”

< ∞.]

13. If Bt is a Brownian motion process then so is B′
t = tB1/t.

[Hint: Note the continuity of almost all paths of B′
t at the origin follows from the

previous exercise. To verify property B-2, use Exercise 29 in the previous chapter.]

14. Show that lim supt→0
|Bt(ω)|

t1/2 = ∞ almost everywhere; hence almost all Brow-
nian paths are not Hölder 1/2.

Also show that lim supt→∞
|Bt(ω)|

t1/2 = ∞ almost everywhere; hence almost all
Brownian paths exit every ball.

[Hint: By the previous exercise it suffices to check the result when t → 0. Consider
d = 1. Then

W ({|Bα − Bβ | > γ}) =
1

p

2π(β − α)

Z

|u|>γ

e
− u2

2(β−α) du, if β > α.

Thus

W ({|B2−k − B2−k+1 | > 2−k/2µk}) ≥ 1√
2π

Z

|u|≥µk

e−u2/2 du ≥ c1e
−c2µ2

k .

Now choose µk → ∞ so slowly that
P

k≥0 e−c2µ2
k = ∞ and apply the Borel-Cantelli

lemma (Exercise 20 in the previous chapter).]
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15. Calculate the (joint) probability distribution measure of (Bt1 , Bt2 , . . . , Btk).

[Hint: Use Exercise 8 (a) in the previous chapter.]

16. Show that the following generalization of the fact that A0+ = A0 holds: if we
define At+ to be

T

s>t As, then At+ = At.

17. The previous exercise gives the right-continuity of the collection {As}. Prove
the following left-continuity for every t > 0, At = At−, where At− is the σ-algebra
generated by all As for s < t.

[Hint: Consider first cylindrical sets in At.]

18. Let σ be a stopping time. Show that:

(a) σ is Aσ-measurable.

(b) Bσ(ω)(ω) is Aσ-measurable.

(c) Aσ is the σ-algebra determined by the stopped process B̂t with B̂t(ω) =
Bt∧σ(ω)(ω).

[Hint: For (a), note that {σ(ω) ≤ α} ∩ {σ(ω) ≤ t} = {σ(ω) ≤ min(α, t)}. For (b),
show first that for any Borel subset E of Rd and t ≥ 0, one has {Bσ(ω)(ω) ∈
E} ∩ {σ ≤ t} ∈ At whenever σ takes on only discrete values. Then approximate σ
by σ(n) as in the proof of Theorem 5.3.]

19. Let u be a bounded Borel measurable function on a bounded open set R ⊂ Rd.
Suppose that u satisfies the mean-value property on spheres, that is, (21).

(a) Show that if B is a ball contained in R and centered at x, then

u(x) =
1

m(B)

Z

B

u(y) dy,

where m is the Lebesgue measure on Rd.

(b) As a result, the function u is continuous in R and the argument in Sec-
tion 4.1, Chapter 5 of Book III shows that the function u is harmonic in R.

[Hint: For (b), show that locally, u(x) = (u ∗ ϕ)(x), where ϕ is a smooth radial
function supported on an appropriately small ball and with

R

ϕ = 1.]

20. An bounded open set R has a Lipschitz boundary if ∂R can be covered
by finitely many balls, so that for each such ball B, the set ∂R∩ B can (possibly
after a rotation and translation) be written as xd = ϕ(x1, . . . , xd−1), where ϕ is a
function that satisfies a Lipschitz condition.

Verify that if R has a Lipschitz boundary, then it satisfies the outside cone
condition. Thus, in particular, if R is of class C1 (in the sense of Section 4 in
Chapter 7) then R satisfies the outside cone condition.
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So in these cases the Dirichlet problem is uniquely solvable.

21. Suppose R1 and R2 are two open and bounded sets in Rd, with R1 ⊂ R2. Let
µx

1 and µx
2 denote the harmonic measures of R1 and R2 respectively, as defined at

the beginning of Section 5. Show that the following generalization of the mean-
value property (21) holds: whenever x ∈ R1, then

µx
2 =

Z

∂R1

µy
2 dµx

1(y),

in the sense that µx
2(E) =

R

∂R1
µy

2(E) dµx
1(y) for any Borel set E ⊂ ∂R2.

8 Problems

1. The condition of continuity of Brownian paths B-3 is in effect a consequence of
properties B-1 and B-2. This is implied by the following general theorem.

Suppose that for each t ≥ 0, we are given an Lp function Ft = Ft(x) on the space
(X, m). Assume that ‖Ft1 − Ft2‖Lp ≤ c|t1 − t2|α, with α > 1/p, and 1 ≤ p ≤ ∞.
Then there is a “corrected” F̃t, so that for each t, Ft = F̃t (almost everywhere with
respect to m), and so that t �→ F̃t(x) is continuous for all t ≥ 0, for almost every
x ∈ X. Moreover the functions t �→ F̃t(x) satisfy a Lipschitz condition of order γ
if γ < α − 1/p.

2. The proof of the Donsker invariance principle follows along the same lines as the
proof of Theorem 3.1. Let f1, . . . , fn, . . . be a sequence of identically distributed
mutually independent square integrable Rd-valued functions on a probability space
(X, m), each having mean zero and the identity as its covariance matrix. Define

S
(N)
t =

1

N1/2

X

1≤k≤[Nt]

fk +
(Nt − [Nt])

N1/2
f[Nt]+1,

and let {µN} be the corresponding measures on P induced via the measure m on
X.

(a) Instead of Lemma 3.2 use Exercise 11 to show that for T = 1, η > 0 and
σ > 0, there exists 0 < δ < 1 and an integer N0 so that for all 0 ≤ t ≤ 1 one
has

m({x : sup
0<h<δ

|S(N)
t+h − S

(N)
t | > σ}) ≤ δη, for all N ≥ N0.

(b) Deduce from the above that for all T > 0, ε > 0, and σ > 0 there is a δ > 0
so that

m({x : sup
0≤t≤T, 0<h<δ

|S(N)
t+h − S

(N)
t | > σ}) ≤ ε, for all N ≥ 1.

(c) Use the inequality in (b) to show that the sequence {µN} is tight.
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(d) Conclude as before that {µN} converges weakly to W .

3. There are a number of other constructions of Brownian motion besides the one
given in this chapter. A particularly elegant approach is based on simple Hilbert
space ideas.

On (Ω, P ) consider a sequence {fn} of independent, identically distributed Rd-
valued functions with Gaussian distribution of mean zero and covariance matrix
equal to the identity. Observe that the sequence {fn} is an orthonormal sequence
of L2(Ω, Rd). Let H denote the closed subspace of L2(Ω, Rd) spanned by {fn}.

Observe that H is a separable infinite dimensional Hilbert space. Hence there
is a unitary correspondence U between L2([0,∞), dx) and H. Let Bt = U(χt)
where χt is the characteristic function of the interval [0, t]. Then, each Bt can be
corrected as in Problem 1, so that the process {Bt} becomes Brownian motion. In
this connection see also Exercise 9 in Chapter 5.

Note that for instance, if Bt =
P

cn(t)fn, then Bt − Bs =
P

[cn(t) − cn(s)]fn

with
P |cn(t) − cn(s)|2 = t − s.

4.∗ In the previous chapter, we noted that recurrence results for the (discrete)
random walks depend on the dimension d, and in particular, whether d ≤ 2 or
d ≥ 3 (see Theorem 2.18 in Chapter 5 and the remark that follows it).

One can establish the following results for the (continuous) Brownian motion
Bt in Rd.

(a) If d = 1, Brownian motion hits, almost surely, every point infinitely often,
in the sense that for each x ∈ R and for any t0 > 0,

P ({ω : Bt(ω) = x for some t ≥ t0}) = 1.

Thus Bt is pointwise recurrent in R.

(b) If d ≥ 2, then for every point x ∈ Rd, Brownian motion almost surely never
hits that point, that is,

P ({ω : Bt(ω) = x for some t > 0}) = 0.

So, in this case, Brownian motion is not pointwise recurrent.

(c) However if d = 2, then Bt is recurrent in every neighborhood of every point,
that is, if D is any open disc with positive radius, and t0 > 0, then

P ({ω : Bt(ω) ∈ D for some t ≥ t0}) = 1.

(d) Finally, when d ≥ 3, Brownian motion is transient, that is, it escapes to
infinity in the sense that

P ({ω : lim
t→∞

|Bt(ω)| = ∞}) = 1.
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5.∗ The law of the iterated logarithm describes the amplitude of the oscillations
of Brownian motion as t → ∞ and t → 0: if Bt is an R-valued Brownian motion
process, then for almost all ω

lim sup
t→∞

Bt(ω)√
2t log log t

→ 1, lim inf
t→∞

Bt(ω)√
2t log log t

→ −1.

By Exercise 13, time inversion implies that for almost all ω

lim sup
t→0

Bt(ω)
p

2t log log(1/t)
→ 1, lim inf

t→0

Bt(ω)
p

2t log log(1/t)
→ −1.

6.∗ There is a converse to Theorem 6.1 when d ≥ 2: if u(x) → f(y) as x → y with
x ∈ R, for each continuous function f , then y is a regular point.

[Hint: If y is not regular, then, using Problem 4∗ (b), show that P ({|By
τy − y| >

0}) = 1, hence P ({|By
τy − y| ≥ δ}) > 1/2 for some δ > 0. If Sε denotes the sphere

centered at y of radius ε < δ, use the strong Markov property to prove that there
exists xε ∈ Sε ∩R so that P ({|Bxε

τxε − y| ≥ δ}) > 1/2. Then, considering any con-
tinuous function 0 ≤ f ≤ 1 on R with f(y) = 1, and f(z) = 0 whenever |z − y| ≥ δ,
leads to a contradiction.]

7.∗ A simple example of a non-regular point arises when we remove from an open
ball its center, with the center then becoming a non-regular point. A more inter-
esting example of a non-regular point is given by Lebesgue’s thorn with its cusp
at the origin.

Suppose d ≥ 3, and consider the ball B = {x ∈ Rd : |x| < 1} from which we re-
move the set

E = {(x1, . . . , xd) ∈ Rd : 0 ≤ x1 ≤ 1, x2
2 + · · · + x2

d ≤ f(x1)}.

Here f is continuous and f(x) > 0 if x > 0. If f(x) decreases sufficiently rapidly
as x → 0, then the origin is non-regular for the set R = B − E. Clearly, R can be
modified so that its boundary is smooth except at the origin.



7 A Glimpse into Several
Complex Variables

In dealing with the existence of solutions of partial dif-
ferential equations it was customary during the nine-
teenth century and it still is today in many applica-
tions, to appeal to the theorem of Cauchy-Kowalewski,
which guarantees the existence of analytic solutions
for analytic partial differential equations. On the other
hand a deeper understanding of the nature of solu-
tions requires the admission of non-analytic functions
in equations and solutions. For large classes of equa-
tions this extension of the range of equation and solu-
tion has been carried out since the beginning of this
century. In particular much attention has been given
to linear partial differential equations and systems of
such. Uniformly the experience of the investigated
types has shown that — speaking of existence in the
local sense — there always were solutions, indeed,
smooth solutions, provided the equations were smooth
enough. It was therefore a matter of considerable sur-
prise to this author, to discover that this inference is
in general erroneous.

H. Lewy, 1957

When we go beyond the introductory parts of the subject, what is
striking is the extent to which the study of complex analysis in several
variables differs from that of one variable. Among the new features
that arise are: the automatic analytic continuation of functions from
certain domains to larger domains; the crucial role of the tangential
Cauchy-Riemann operators; and the significance of (complex) convexity
properties of boundaries of domains.

Even though the subject has developed far exploiting these concepts,
it is our purpose here to give the reader only a first look at these ideas.

1 Elementary properties

The definition and elementary properties of analytic (or “holomorphic”)
functions in Cn are straight-forward adaptations of the corresponding
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notions for the case n = 1. We start with a bit of notation. For any
z0 = (z0

1 , . . . , z0
n) ∈ Cn and r = (r1, . . . , rn) with rj > 0, we denote by

Pr(z0) the polydisc given by the product

Pr(z0) = {z = (z1, . . . , zn) ∈ Cn : |zj − z0
j | < rj , for all 0 ≤ j ≤ n}.

We will also set Cr(z0) to be the corresponding product of boundary
circles

Cr(z0) = {z = (z1, . . . , zn) ∈ Cn : |zj − z0
j | = rj , all 0 ≤ j ≤ n}.

We also write zα for the monomial zα1
1 zα2

2 · · · zαn
n , where α = (α1, . . . , αn)

with αj non-negative integers.

We shall see below that for any continuous function f on an open set Ω,
the following conditions, defining the analyticity of f , are equivalent:

(i) The function f satisfies the Cauchy-Riemann equations

(1)
∂f

∂zj
= 0, for j = 1, . . . , n

(taken in the sense of distributions). Here

∂f

∂zj
=

1
2

(
∂f

∂xj
+ i

∂f

∂yj

)
, and zj = xj + iyj , with xj , yj ∈ R.

(ii) For each z0 ∈ Ω and 1 ≤ k ≤ n, the function

g(zk) = f(z0
1 , . . . , z0

k−1, zk, z0
k+1, . . . , z

0
n)

is analytic in zk (in the one-variable sense) for zk in some neigh-
borhood of z0

k.

(iii) For any polydisc Pr(z0) whose closure lies in Ω we have the Cauchy
integral representation

(2) f(z) =
1

(2πi)n

∫
Cr(z0)

f(ζ)
n∏

k=1

dζk

ζk − zk
, for z ∈ Pr(z0).

(iv) For each z0 ∈ Ω, the function f has a power series expansion f(z) =∑
aα(z − z0)α that converges absolutely and uniformly in a neigh-

borhood of z0.
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Proposition 1.1 For a continuous function f given in an open set Ω,
the conditions (i) to (iv) above are equivalent.

Proof. To see why (i) implies (ii), let � be the Laplacian on Cn,

� =
n∑

j=1

(
∂2

∂x2
j

+
∂2

∂y2
j

)
,

with zj = xj + iyj , and where Cn is thus identified with R2n. Note that
then

� = 4
n∑

j=1

∂

∂zj

∂

∂zj
,

where ∂f
∂zj

= 1
2

(
∂f
∂xj

+ i ∂f
∂yj

)
and ∂f

∂zj
= 1

2

(
∂f
∂xj

− i ∂f
∂yj

)
, so if f satis-

fies (i) (in the sense of distributions), then in fact �f = 0. From the
ellipticity of the operator � and its resulting regularity (see Section 2.5
of Chapter 3) we see that f is in C∞, and in particular in C1. Thus
the Cauchy-Riemann equations are satisfied in the usual sense and (ii)
is established.

Now suppose z ∈ Pr(z0), with Pr(z0) ⊂ Ω. Then if (ii) holds we can
apply the one-variable Cauchy integral formula in the first variable, with
z2, z3, . . . , zn fixed, to obtain

f(z) =
1

2πi

∫
|ζ1−z0

1 |=r1

f(ζ1, z2, . . . , zn)
dζ1

ζ1 − z1
.

Next, using the Cauchy integral formula in the second variable to repre-
sent f(ζ1, z2, . . . , zn) with ζ1, z3, . . . , zn fixed, gives

f(z) =
1

(2πi)2

∫
|ζ1−z0

1 |=r1

∫
|ζ2−z0

2 |=r2

f(ζ1, ζ2, . . . , zn)
(ζ2 − z2)(ζ1 − z1)

dζ2 dζ1.

Continuing this way yields assertion (iii).
To obtain (iv) as a consequence of (iii), note that

1
ζk − zk

=
1

ζk − z0
k − (zk − z0

k)
=

∞∑
m=0

(zk − z0
k)m

(ζk − z0
k)m+1

.

This series converges for z ∈ Pr(z0) and ζ ∈ Cr(z0), since then |zk −
z0

k| < |ζk − z0
k| = rk for all k. So if we take Pr(z0) with Pr(z0) ⊂ Ω, and



1. Elementary properties 279

insert for each k the series in formula (2) we get f(z) =
∑

aα(z − z0)α

with

aα =
1

(2πi)n

∫
Cr(z0)

f(ζ)
n∏

k=1

dζk

(ζk − z0
k)αk+1

.

As a result |aα| ≤ Mr−α, where r−α = r−α1
1 r−α2

2 · · · r−αn
n , and

M = sup
ζ∈Cr(z0)

|f(ζ)|.

Thus the series converges uniformly and absolutely if z ∈ Pr′(z0) and
r′k < rk, for all k = 1, . . . , n.

To complete the proof of the proposition, note that (iv) implies (i)
as follows. If

∑
aα(z − z0)α converges absolutely for all z near z0, we

can choose a z′ near z0, so that z′k − z0
k �= 0 for each k with 1 ≤ k ≤ n,

and thus
∑ |aα|ρα converges with ρ = (ρ1, . . . , ρn), ρk = |z′k − z0

k| > 0.
Thus for any z ∈ Pρ(z0) we can differentiate the series term by term and
see that in particular f is in C1 in that polydisc and satisfies the usual
Cauchy-Riemann equations there. Since this is valid for each z0 ∈ Ω, it
follows that f is of class C1 throughout Ω and satisfies (1) in the usual
sense. A fortiori property (i) holds, and the proof of the proposition is
concluded.

Two additional remarks are in order. First, the requirement in (i)
that f be continuous can be weakened. In particular, if f is merely
locally integrable and satisfies (i) in the sense of distributions then f can
be corrected on a set of measure zero so as to become continuous (and
thus by the above, analytic).

Second, a more difficult equivalence is that it suffices to have asser-
tion (ii) without the a priori assumption that f be (jointly) continuous.
See Problem 1∗.

Another aspect of analysis in Cn that is essentially unchanged from
the case of one variable is the following feature of analytic identity.

Proposition 1.2 Suppose f and g are a pair of holomorphic functions
in a region1 Ω, and f and g agree in a neighborhood of a point z0 ∈ Ω.
Then f and g agree throughout Ω.

Proof. We may assume that g = 0. If we fix any point z′ ∈ Ω,
it suffices to prove that f(z′) = 0. Using the pathwise connectedness
of Ω we can find a sequence of points z1, . . . , zN = z′ in Ω and polydiscs
Prk

(zk), for 0 ≤ k ≤ N , so that

1Recall that a region is defined to be an open and connected set.
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(a) Prk
(zk) ⊂ Ω,

(b) zk+1 ∈ Prk
(zk), for 0 ≤ k ≤ N − 1.

Now if f vanishes in a neighborhood of zk, it must necessarily vanish
in all of Prk

(zk). (This little fact is established in Exercise 1.) Thus f
vanishes in Pr0(z

0), and by (b), it vanishes in Prk+1(z
k+1) if it vanishes

in Prk
(zk). Hence, by an induction on k, we arrive at the conclusion

that the function f vanishes on PrN
(zN ), and therefore f(z′) = 0, and

the proposition is proved.

2 Hartogs’ phenomenon: an example

As soon as we get past the elementary properties of holomorphic func-
tions of several variables, we find new phenomena for which there are no
analogs in the case of one variable. This is highlighted by the following
striking example.

We let Ω be the region in Cn, n ≥ 2, lying between two concentric
spheres; take in particular Ω = {z ∈ Cn, ρ < |z| < 1}, for some fixed
0 < ρ < 1.

Theorem 2.1 Suppose F is holomorphic in Ω = {z ∈ Cn, ρ < |z| < 1},
for some fixed ρ, 0 < ρ < 1. Then F can be analytically continued into
the ball {z ∈ Cn : |z| < 1}.

Here we give a simple and elementary proof of this. Using more sophis-
ticated arguments we shall see below that this property of “automatic”
continuation holds under very general circumstances.

The quick proof we have in mind is based on a primitive example of
this continuation, which we give in the case of C2. Suppose

K1 = {(z1, z2) : |z1| ≤ a, and |z2| = b1}

and

K2 = {(z1, z2) : |z1| = a, and b2 ≤ |z2| ≤ b1}.

Lemma 2.2 If the function F is holomorphic in a region O that con-
tains the union K1 ∪ K2 then F extends analytically to an open set Õ
containing the product set

(3) {(z1, z2) : |z1| ≤ a, b2 ≤ |z2| ≤ b1}.
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K1

K2

|z2|

|z1|
b2

b1

a

Figure 1. Õ contains the shaded region

See Figure 1 for an illustration of the sets K1, K2 and their product.
Proof. Consider the integral

I(z1, z2) =
1

2πi

∫
|ζ1|=a+ε

F (ζ1, z2)
ζ1 − z1

dζ1,

which is well-defined for small positive ε, when (z1, z2) is in a neighbor-
hood Õ of the product set (3). In fact then the variable of integration
ranges over a neighborhood of K2, where F is analytic and hence contin-
uous. Moreover I(z1, z2) is analytic in Õ, since it is visibly analytic in z1

for fixed z2 when |z1| < a + ε, and z2 is near the set b2 ≤ |z2| ≤ b1; also it
is analytic in z2 (for fixed z1) in that set, by virtue of the analyticity of F .
Finally when (z1, z2) is near the set K1, then I(z1, z2) = F (z1, z2) by the
Cauchy integral formula, and thus I provides the desired continuation
of F .

We give the proof of the theorem in the case n = 2, and start when
ρ < 1/

√
2. Here we let K1 = {|z1| ≤ a1, |z2| = b1} and K2 = {|z1| =

a1, b2 ≤ |z2| ≤ b1} with a1 = b1, ρ < a1, b1 < 1/
√

2, and b2 = 0. (See
Figure 2.)

Then K1 and K2 both belong to Ω, and according to the lemma, F
continues to the product {|z1| ≤ 1/

√
2, |z2| ≤ 1/

√
2}, which together

with Ω covers the entire unit ball.
When 1/

√
2 ≤ ρ < 1, we use the same idea, but now carry out the

argument by descending in a finite number of steps the staircase in the
(|z1|, |z2|) plane whose corners are denoted by (αk, βk). (See Figure 3.)

We take β1 = ρ, α1 = (1 − β2
1)1/2 = (1 − ρ2)1/2, and more generally
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|z2|

|z1|ρ 1

K1

K2

Figure 2. The case where ρ < 1/
√

2

β2
k+1 = ρ2 − α2

k, α2
k+1 = 1 − β2

k+1. Hence β2
k = 1 − k(1 − ρ2), α2

k = k(1 −
ρ2).

We start at k = 1 and stop as soon as 1 − k(1 − ρ2) < 0 for k = N ,
with N the smallest integer > 1/(1 − ρ2). With this we choose (ak, bk)
so that ak < αk, bk > βk with (ak, bk) near (αk, βk), yet aN = 1, bN = 0.

Now let Rk = {ρ < |z| < 1} ∪ {|z| < 1; bk ≤ |z2|}. As above, the lemma
gives a continuation of F into a neighborhood of R1. Using the lemma
again (this time with a = ak, b1 = bk, b2 = bk+1) gives a continuation
of F from a neighborhood of Rk to a neighborhood of Rk+1. Now
RN = {|z| < 1}, and so we are done.

The corresponding argument in dimension ≥ 3 is similar to that of
n = 2, and is left to the interested reader to work out.

We mention one immediate application of the previous theorem: a
holomorphic function in Cn, n > 1, cannot have an isolated singularity;
nor can it have an isolated zero. In fact we need only apply Theorem 2.1
to an appropriate pair of concentric balls, centered at the purported sin-
gularity. The fact that a zero of f cannot be isolated follows from the
previous conclusion applied to the function 1/f . A more extensive as-
sertion holds, namely if f is holomorphic in Ω and vanishes somewhere,
its zero set must reach the boundary of Ω. (See Exercise 4.) Also the
nature of the zero set of f near a point where f vanishes can be de-
scribed quite precisely by the Weierstrass preparation theorem, discussed
in Problem 2∗.

Finally, notice that holomorphic functions inside the unit ball {|z| < 1}
cannot necessarily be extended outside the ball, as the simple example
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|z2|

|z1|1ρ

(αk, βk)

Figure 3. Staircase

f(z) = 1/(z1 − 1) shows. In fact, we shall see later that the “convex-
ity” of the boundary of Ω plays a crucial role in determining whether a
function can be extended past its boundary.

3 Hartogs’ theorem: the inhomogeneous Cauchy-Riemann

equations

Having seen some simple examples of automatic analytic continuation,
we now come to the general situation. The method that will be used
here, and that turns out to be useful in a number of questions in com-
plex analysis, is the study of solutions of the system of inhomogeneous
Cauchy-Riemann equations

(4)
∂u

∂zj
= fj for j = 1, . . . , n,

where the fj are given functions.
The wide applicability of solutions of these equations results from the

following necessity. Often one wishes to construct a holomorphic func-
tion F with certain desired properties. A first approximation F1 can be
found that enjoys these properties, but with that function not usually
holomorphic. The extent to which it fails to satisfy that requirement is
given by the non-vanishing of ∂F1/∂zj = fj , for 1 ≤ j ≤ n. Now if we
could find an appropriately well-chosen u that solves ∂u/∂zj = fj , then
we could correct our F1 by subtracting u from it. In the case below, the
“good” choice of u will be the one that has compact support (assuming
the fj have compact support).
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In considering (4), we look first at the one-dimensional case, which is

(5)
∂u

∂z
(z) = f(z), where ∂

∂z = 1
2

(
∂
∂x + i ∂

∂y

)
and z = x + iy ∈ C1.

One can state right away a solution to this problem. It is given by

(6) u(z) =
1
π

∫
C1

f(ζ)
z − ζ

dm(ζ) =
1
π

∫
C1

f(z − ζ)
ζ

dm(ζ)

with dm(ζ) the Lebesgue measure in C1. Alternatively, we can write u =
f ∗ Φ, with Φ(z) = 1/(πz). The precise statement regarding (5) and (6)
is the following assertion.

Proposition 3.1 Suppose f is continuous and has compact support on C.
Then:

(a) u given by (6) is also continuous and satisfies (5) in the sense of
distributions.

(b) If f is in the class Ck, k ≥ 1, then so is u, and u satisfies (5) in
the usual sense.

(c) If u is any C1 function of compact support, then u is already of the
form (6); in fact

u =
∂u

∂z
∗ Φ.

Proof. Note first that

u(z + h) − u(z) =
1
π

∫
C1

f(z + h − ζ) − f(z − ζ)
dζ

ζ
,

and that this tends to zero as h → 0, by the uniform continuity of f
and the fact that the function 1/ζ is integrable over compact sets in C1.
If f is in the class Ck, k ≥ 1, an easy elaboration of this shows that we
can differentiate under the integral sign in (6) and find that any partial
derivative of u of order ≤ k is represented in the same way in terms of
partial derivatives of f .

Next we use the fact that Φ(z) = 1/(πz) is a fundamental solution
of the operator ∂/∂z. This means that in the sense of distributions
∂
∂z Φ = δ0, with δ0 the Dirac delta function at the origin. (See Exercise 16
in Chapter 3.) So using the formalism of distributions, as in Chapter 3,
we have

∂

∂z
(f ∗ Φ) = f ∗

(
∂Φ
∂z

)
=

(
∂f

∂z

)
∗ Φ.
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The first set of equalities means that ∂u/∂z = f , since f ∗ δ0 = f , and so
assertions (a) and (b) are now proved. Using the equality of the second
and third members above (with u in place of f) gives u = u ∗ δ0 = ∂u

∂z ∗ Φ,
and this is assertion (c).

When we turn to the inhomogeneous Cauchy-Riemann equations (5)
for n ≥ 2, there is an immediate difference that is obvious: the fj ’s cannot
be given “arbitrarily” but must satisfy a necessary consistency condition

(7)
∂fj

∂zk
=

∂fk

∂zj
, for all 1 ≤ j, k ≤ n.

Moreover, it turns out that now the assumption that the fj have compact
support implies the existence of a solution of compact support. The result
is contained in the following proposition.

Proposition 3.2 Suppose n ≥ 2. If fj, 1 ≤ j ≤ n, are functions of class
Ck of compact support that satisfy (7), then there exists a function u
of class Ck and of compact support that satisfies the inhomogeneous
Cauchy-Riemann equations (4).2

Proof. Write z = (z′, zn), where z′ = (z1, . . . , zn−1) ∈ Cn−1 and set

(8) u(z) =
1
π

∫
C1

fn(z′, zn − ζ)
dm(ζ)

ζ
.

Then by the previous proposition ∂u/∂zn = fn. However by differenti-
ating under the integral sign (which is easily justified) we see that for
1 ≤ j ≤ n − 1

∂u

∂zj
=

1
π

∫
C1

∂fn

∂zj
(z′, zn − ζ)

dm(ζ)
ζ

=
1
π

∫
C1

∂fj

∂zn
(z′, zn − ζ)

dm(ζ)
ζ

= fj(z′, zn).

The next-to-last step results from the consistency condition (7), and the
last step is a consequence of part (c) of Proposition 3.1. Therefore u
solves (4).

Next, since the fj have compact support, there is a fixed R, so that
the fj vanish when |z| > R for all j. Thus by Proposition 1.1, u is
holomorphic in |z′| > R, so by (8), u also vanishes there. Since the latter

2In the case k = 0, the identities (7) and (4) are taken in the sense of distributions.
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is an open subset of the connected set |z| > R, Proposition 1.2 implies
that u vanishes when |z| > R, and all our assertions are proved.

A few remarks may help clarify the nature of the solutions provided
by the previous propositions.

• As opposed to the higher-dimensional case, when n = 1 it is not
possible in general to solve (4) with a function u of compact sup-
port, given f of compact support. In fact it is easily seen that
a necessary condition for the existence of such a solution is that∫

C1 f(z) dm(z) = 0. The full necessary and sufficient conditions are
described in Exercise 7.

• When n ≥ 2, the solution given by (8) is the unique solution which
has compact support. This is evident because the difference of
two solutions is a holomorphic function on all of Cn. Similarly,
when n = 1, the solution u given by (6) is the unique one for which
u(z) → 0, as |z| → ∞.

The simple facts that we have proved about solutions of the inhomo-
geneous Cauchy-Riemann equations in the whole space Cn allow us to
obtain a general form of Hartog’s principle illustrated by Theorem 2.1.
This can be formulated as follows.

Theorem 3.3 Suppose Ω is a bounded region in Cn, n ≥ 2, and K is a
compact subset of Ω such that Ω − K is connected. Then any function F0

analytic in Ω − K has an analytic continuation into Ω.

This means that there is an analytic function F on Ω, so that F = F0

on Ω − K.

To prove the theorem observe first that there exists ε > 0, so that
the open set Oε = {z : d(z, Ωc) < ε} is at a positive distance from K.
Note that then (Ω ∩ Oε) ⊂ (Ω − K). Next we can construct a C∞ cut-off
function3 η so that η(z) = 0 for z in a neighborhood of K, while η(z) = 1
for z ∈ Oε. With this function we define F1 in Ω by

F1(z) =
{

η(z)F0(z) for z ∈ Ω − K
0 for z ∈ K.

The function F1 is C∞ in Ω. While F1 gives an extension to Ω of F0,
this extension is of course not analytic. But by how much does it fail to
have this property? To answer this, we define fj by

(9) fj =
∂F1

∂zj
, for j = 1, . . . , n.

3Note that C2 instead of C∞ would do for the rest of this proof.
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Note that the fj are C∞ functions in Ω, and automatically satisfy
the consistency conditions (7) there. Moreover the fj vanish near the
boundary of Ω (in particular for z ∈ Oε ∩ Ω) because of the analyticity
of F0. Thus the fj can be extended to be zero outside Ω so that now
the extended fj are C∞ and satisfy (7) in the whole of Cn. We call the
extended fj by the same name. We now correct the error given by (9)
using Proposition 3.2 to find a function u of compact support so that
∂u/∂zj = fj for all j, and take F = F1 − u.

Note that F is holomorphic in Ω (since ∂F/∂zj = 0, 1 ≤ j ≤ n, there).
We will next see that F agrees with F0 in an appropriate open subset of
Ω − K, which is the same as saying that u vanishes in that open set.

To describe the open set in question we find the smallest R so that
Ω ⊂ {|z| ≤ R}. Then clearly there is a z0 ∈ ∂Ω with |z0| = R. We set
Bε = Bε(z0) = {z : |z − z0| < ε}, and will see that Ω ∩ Bε is an open set
in Ω − K where u vanishes. (See Figure 4.)

����
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����
����
����
����
����

z0

Ω

|z| = R

Bε

K

Figure 4. The function u vanishes in Ω ∩ Bε

The fact that Ω ∩ Bε is an open non-empty set in Ω − K is immedi-
ate since Bε ⊂ Oε and hence Bε is disjoint from K; also if Ω ∩ Bε were
empty, z0 could not be a boundary point of Ω. In addition, u is holomor-
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phic in Bε (more generally in Oε), since the fj vanish there. Moreover,
u is zero in {|z| > R} since u is analytic there, this set is connected,
and u vanishes outside a compact set. Finally, Bε ∩ {|z| > R} is clearly
a non-empty open set of Bε. Therefore u vanishes throughout Bε and
in particular in Ω ∩ Bε. This shows that F and F0 agree on an open set
of Ω − K, and since the latter set is connected, they agree throughout
Ω − K. The theorem is therefore proved.

4 A boundary version: the tangential Cauchy-Riemann

equations

We have just seen that if a holomorphic function F0 is given in a (con-
nected) neighborhood of the boundary of a region Ω in Cn, n ≥ 2, then it
extends to the whole region. Since the neighborhood on which F0 is given
can in principle be arbitrarily narrow, it is natural to ask what happens
in the limiting situation where F0 is given only on the boundary ∂Ω of Ω.
To answer this we must answer the question: what functions F0 given
only on ∂Ω extend to holomorphic functions in all of Ω?

We shall formulate this problem precisely and solve it in the context of
regions with sufficiently smooth boundaries. We begin by reviewing the
relevant definitions and elementary background facts that are needed for
this.

We start in the setting of Rd and later pass to Cn by identifying the
latter space with the former when d = 2n. Now suppose we are given a
region Ω in Rd. A defining function ρ of Ω is a real-valued function
on Rd so that ⎧⎨⎩

ρ(x) < 0, when x ∈ Ω,
ρ(x) = 0, when x ∈ ∂Ω,
ρ(x) > 0, when x ∈ Ω

c
.

For any integer k ≥ 1 the boundary of Ω is said to be of class Ck if Ω
has a defining function ρ which satisfies

• ρ ∈ Ck(Rd);

• |∇ρ(x)| > 0, whenever x ∈ ∂Ω.

The boundary ∂Ω is an example of a hypersurface of class Ck. More
generally we shall say that M is a (local) hypersurface of class Ck if
there is a real-valued Ck function ρ, defined on a ball B ⊂ Rd, so that
M = {x ∈ B : ρ(x) = 0}, and |∇ρ(x)| > 0 whenever x ∈ M .

For a region Ω whose boundary is of class Ck one knows that near
any boundary point ∂Ω can be realized as a “graph.” More precisely,
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fixing any point of reference x0 ∈ ∂Ω and making an appropriate affine-
linear change of coordinates (in fact a translation and rotation of Rd)
then, by the implicit function theorem, we can achieve the following:
With the new coordinate system written as x = (x′, xd) where x′ ∈ Rd−1

and xd ∈ R, the initial reference point x0 corresponds to (0, 0) and near
x0 = (0, 0) the region Ω and its boundary are given by

(10)
{

Ω : xd > ϕ(x′),
∂Ω : xd = ϕ(x′).

Here ϕ is a Ck function defined near the origin in Rd−1. We can also ar-
range matters so that (in addition to ϕ(0) = 0), one has ∇x′(ϕ)(x′)|x′=0 =
0, which means that the tangent plane to ∂Ω at the origin is the hyper-
plane xd = 0. (See Figure 5.)

x0 x′

xd

Ω

xd = ϕ(x′)

Figure 5. The set Ω and its boundary in the coordinate system (x′, xd)

In this coordinate system, because ρ(x′, ϕ(x′)) = 0, we have

ρ(x) = ρ(x′, xd) − ρ(x′, ϕ(x′))

=
∫ 1

0

∂

∂t
ρ(x′, txd + (1 − t)ϕ(x′)) dt

= (ϕ(x′) − xd)a(x),

with a(x) = − ∫ 1

0
∂ρ
∂xd

(x′, txd + (1 − t)ϕ(x′)) dt. In other words, ρ(x) =
a(x)(ϕ(x′) − xd), where a is a Ck−1 function. Also a(x) > 0 if x is suffi-
ciently close to the reference point x0, since then ∂ρ

∂xd
< 0, in view of the

fact that ∂/∂xd points “inwards” with respect to Ω.
Now suppose ρ̃ is another Ck defining function for Ω. Then near x0

we again have ρ̃(x) = ã(x)(ϕ(x′) − xd) and thus

(11) ρ̃ = cρ, where c(x) > 0
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and c is of class Ck−1.

Next we recall that a vector field X on Rd can be viewed as a first-order
linear differential operator of the form

X(f) =
d∑

j=1

aj(x)
∂f

∂xj

with (a1(x), a2(x), . . . , ad(x)) the “vector” corresponding to the point
x ∈ Rd. This vector field is tangential at ∂Ω, if

X(ρ) =
d∑

j=1

aj(x)
∂ρ

∂xj
= 0, whenever x ∈ ∂Ω.

Because of (11) and Leibnitz’s rule, this definition does not depend on
the choice of the defining function of Ω.

Next we fix an � with � ≤ k. Then, any function f0 defined on ∂Ω is
said to be of class C� if there is an extension f of f0 to Rd so that f is
of class C� on Rd. Now if X is a tangential vector field and f and f ′ are
any two extensions of f0, then as is easily seen X(f)|∂Ω = X(f ′)|∂Ω. (See
Exercise 8.) So in this sense we may speak of the action of a tangential
vector field on functions defined only on ∂Ω.

We now pass to the complex space Cn that we identify with Rd, d = 2n.
We do this by writing z ∈ Cn, z = (z1, . . . , zn), zj = xj + iyj , 1 ≤ j ≤ n,
and then setting x = (x1, . . . , x2n) ∈ R2n with xj , 1 ≤ j ≤ n, as before,
and xj+n = yj , for 1 ≤ j ≤ n. Vector fields on Cn can now be written as

n∑
j=1

(
aj(z)

∂

∂zj
+ bj(z)

∂

∂zj

)
.

(Here it is necessary to allow the coefficients to be complex-valued.) Such
a vector field is called a Cauchy-Riemann vector field, if bj = 0 for
all j, that is, X is of the form

X =
n∑

j=1

aj(z)
∂

∂zj
.

Equivalently, X is a Cauchy-Riemann vector field if it annihilates all
holomorphic functions.
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Given a region Ω (with Ck boundary) then the above Cauchy-Riemann
vector field X is tangential if

n∑
j=1

aj(z)ρj(z) = 0, where ρj(z) = ∂ρ
∂zj

.

Now near any fixed z0 ∈ ∂Ω, at least one of the ρj(z0), 1 ≤ j ≤ n, must
be non-zero, since |∇ρ(z0)| > 0; for simplicity we may assume j = n.
Then the n − 1 vector fields

(12) ρn
∂

∂zj
− ρj

∂

∂zn
, 1 ≤ j ≤ n − 1

are linearly independent and span the tangential Cauchy-Riemann vector
fields near z0 (up to multiplication by functions).

Without making the particular choice j = n one notes that the n(n −
1)/2 vector fields

(13) ρk
∂

∂zj
− ρj

∂

∂zk
, 1 ≤ j < k ≤ n

span the tangential Cauchy-Riemann vector fields (globally), but of course
are not linearly independent.

There is a way of expressing this neatly by using the language of dif-
ferential forms. Suppose u is a complex-valued function. Then we can
abbreviate the equations ∂u

∂zj
= fj , for 1 ≤ j ≤ n, by

∂u = f,

with ∂u and f the “one-forms”4 defined by
∑n

j=1
∂u
∂zj

dzj and
∑n

j=1 fjdzj ,
respectively. Now for any one-form w =

∑n
j=1 wjdzj , we define the two-

form ∂w by

∂w =
n∑

j=1

∂wj ∧ dzj

=
∑

1≤k,j≤n

∂wj

∂zk
dzk ∧ dzj

=
∑

1≤k<j≤n

(
∂wj

∂zk
− ∂wk

∂zj

)
dzk ∧ dzj ,

4More precisely, (0, 1)-forms.



292 Chapter 7. A GLIMPSE INTO SEVERAL COMPLEX VARIABLES

since dzk ∧ dzj = −dzj ∧ dzk in this formalism.

With this notation the inhomogeneous Cauchy-Riemann equations (4)
can be written as ∂u = f , and the consistency condition (7) is the same as
∂f = 0. Moreover a function F0 is annihilated by the tangential Cauchy-
Riemann vector fields ((12) or (13)) exactly when

(14) ∂F0 ∧ ∂ρ|∂Ω = 0.

So whenever F0 is the restriction to ∂Ω of a function of class C1(Ω) that
is holomorphic in Ω, it must satisfy these tangential Cauchy-Riemann
equations. The remarkable fact is that, broadly speaking, the converse
of this holds. This is the thrust of Bochner’s theorem.

Theorem 4.1 Assume Ω is a bounded region in Cn, whose boundary is
of class C3, and suppose the complement of Ω is connected. If F0 is a
function of class C3 on ∂Ω that satisfies the tangential Cauchy-Riemann
equations, then there is a holomorphic function F in Ω that is continuous
in Ω, so that F |∂Ω = F0.

The fact that some connectedness property is required for both this and
the previous theorem can be seen in Exercise 10.

The proof of this theorem is in the same spirit as the previous one,
but the details are different. The function F0 of class C3(∂Ω) can, by
definition, be thought of as a function of class C3 on the whole space.
Now F0 satisfies the tangential Cauchy-Riemann equations, and we can
modify it (without changing its restriction to ∂Ω), so that the modified
function F1 is of class C2 and

(15) ∂F1|∂Ω = 0.

This modification is achieved by taking F1 = F0 − aρ, where a is a suit-
able C2 function. Indeed, F1 already satisfies the tangential Cauchy-
Riemann equations. An independent Cauchy-Riemann vector field (that
is not tangential) is given by N , with

N(f) =
n∑

j=1

ρj

∂f

∂zj
.

In fact, we note that

N(ρ) =
n∑

j=1

∣∣∣∣ ∂ρ

∂zj

∣∣∣∣2 =
1
4
|∇ρ|2 > 0.
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Thus if we set a = N(F0)/N(ρ) near the boundary of Ω and extend a
strictly away from the boundary to be zero, then (15) is achieved because
of (14).

We now define the one-form f in Ω by f = ∂F1. Then f is continuous
on Ω, is of class C1(Ω), vanishes on ∂Ω, and satisfies ∂f = 0 in the inte-
rior of Ω. We can now extend f to Cn (keeping the same name) so that
f = 0 outside of Ω. Then f satisfies ∂f = 0 in Cn (at least in the sense
of distributions). This would be evident if we supposed that F0 and ∂Ω
were of class C4 instead of class C3. In the latter case an additional
argument is needed (see Exercise 6 in Chapter 3). We can now invoke
Proposition 3.2 to obtain a continuous function u so that ∂u = f and
moreover u has compact support. Since u is holomorphic on Ω

c
and this

set is connected, it follows that u vanishes throughout Ω
c

and by conti-
nuity it vanishes on ∂Ω. Finally, take F = F1 − u, then F is holomorphic
in Ω, continuous in Ω and F |∂Ω = F1|∂Ω = F0|∂Ω, completing the proof
of the theorem.

In the case n = 1, there are no tangential Cauchy-Riemann equations
and the conditions on F0 are global in nature. See Exercise 12.

By a different argument one can reduce the degree of regularity in-
volved on F0. See Problem 3∗.

Given the nature of the conditions that are sufficient when n > 1, it
is natural to ask if there is in fact a “local” version of the extension
theorem just proved. For this to be possible, the formulation of such a
result must distinguish on which “side” of the boundary this continuation
holds. The example of the “inside” of the sphere, where continuation
takes place as opposed to the “outside” where it fails, suggests that a
convexity property might be involved. This is indeed the case because of
the complex structure of Cn, as we will see when we examine the local
nature of the boundary of a region.

5 The Levi form

Let us briefly glance back to the situation in Rd. We will see that near
any boundary point x0 the region Ω can be put in a very simple canonical
form. We already noted earlier that near x0, in the appropriate coordi-
nates, we can represent Ω as {xd > ϕ(x′)}. Now if we introduce new co-
ordinates (x1, x2, . . . , xd), by xd = xd − ϕ(x′), xj = xj , 1 ≤ j < d (with
inverse xd = xd + ϕ(x′), xj = xj , 1 ≤ j < d) we obtain that locally Ω is
now represented by the half-space xd > 0, and ∂Ω by the hyperplane
xd = 0.

However to be applicable to the study of holomorphic functions in
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Cn, the new coordinates that we can allow (that is, the change of vari-
ables that is permissible) must be given by holomorphic functions, so
our choices are more restricted. The coordinates that result from such
changes of variables (starting with the standard coordinates about a fixed
point z0) will be called holomorphic coordinates. Here we assume
that ∂Ω is of class C2, and use the notation zj = xj + iyj .

Proposition 5.1 Near any point z0 ∈ ∂Ω we can introduce holomorphic
coordinates (z1, . . . , zn) centered at z0 so that

(16) Ω = {Im(zn) >

n−1∑
j=1

λj |zj |2 + E(z)}.

Here the λj are real numbers, and E(z) = xn�(z′) + Dx2
n + o(|z|2), as

z → 0; 5 also �(z′) is a linear function of x1, . . . , xn−1, y1, . . . , yn−1, and
D is a real number.

A few remarks may help to clarify the nature of the cannonical represen-
tation (16).

• By making a further change of scale zj → δjzj , δj �= 0, we can set
the λj to be either 1, −1 or 0.

• The number of λj that are positive, negative or zero (the signature
of the quadratic form) is a holomorphic invariant as we will see
below.

• It can be seen from (16) that it is natural to assign the variables
z1, . . . , zn−1 “weight 1” and the variable zn “weight 2,” which, dis-
regarding the error term, makes the expression homogeneous of
weight 2. This homogeneous version of (16) gives us the “half-
space” U that we consider further in the Appendix to this chapter.

• If we had assumed that ∂Ω was of class C3, then the error estimate
o(|z|2) would be improved to O(|z|3), as z → 0.

Proof of the proposition. As in (10), we see that we can introduce
complex coordinates (with an affine complex linear change of variables)
so that near z0 the set Ω is given by

Im(zn) > ϕ(z′, xn)

5f(z) = o(|z|2) as z → 0 means that |f(z)|/|z|2 → 0, as |z| → 0.
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with z = (z′, zn), z′ = (z1, . . . , zn−1), and zj = xj + iyj . We can also
arrange matters so that ϕ(0, 0) = 0 and

∂

∂xj
ϕ|(0,0) =

∂

∂yj
ϕ|(0,0) =

∂

∂xn
ϕ|(0,0), 1 ≤ j ≤ n − 1.

Using Taylor’s expansion of ϕ at the origin up to order 2 we see that

ϕ =
∑

1≤j,k≤n−1

(αjkzjzk + αjkzjzk)+

+
∑

1≤j,k≤n−1

βjkzjzk + xn�′(z′)+

+ Dx2
n + o(|z|2), as z → 0.

Here βjk = βkj and �′ is a (real) linear function of the variables x1, . . . ,
xn−1 and y1, . . . , yn−1, with D a real number.

Next we introduce the (global) holomorphic change of coordinates
ζn = zn − 2i

∑
1≤j,k≤n−1 αjkzjzk, and ζk = zk, for 1 ≤ k ≤ n − 1. Then

Im(ζn) = Im(zn) −∑
1≤j,k≤n−1(αjkzjzk + αjkzjzk), and thus in these

new coordinates (where we immediately relabel the ζ’s as z’s) the func-
tion ϕ becomes

∑
1≤j,k≤n−1 βjkzjzk + xn�′(z′) + Dx2

n + o(|z|2).
Next, a unitary mapping (in the z1, . . . , zn−1 variables) allows us to

diagonalize the Hermitian form and ϕ becomes

(17)
n−1∑
j=1

λj |zj |2 + xn�(z′) + Dx2
n + o(|z|2)

with λ1, . . . , λn−1, the eigenvalues of the quadratic form. This proves
the proposition.

The Hermitian matrix
{

∂2ϕ
∂zj∂zk

}
1≤j,k≤n−1

that appears implicitly above,

or its diagonalized version the form in (16),
∑n−1

j=1 λj |zj |2, is referred to
as the Levi form of Ω (at the boundary point z0.) A more intrinsic def-
inition comes about by noticing that the vectors ∂/∂zj , 1 ≤ j ≤ n − 1,
are tangent to ∂Ω at z0. If ρ(z) = ϕ(z′, xn) − yn, then the corresponding
quadratic form is

(18)
∑

1≤j,k≤n

∂2ρ

∂zj∂zk
ajak,

restricted to the vectors
∑n

k=1 ak∂/∂zk that are tangential at z0. Note
also that these tangent vectors form a complex subspace (of complex
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dimension n − 1) of the full tangent space (which has real dimension
2n − 1).

Now let ρ′ be another defining function for Ω. Then ρ′ = cρ with c > 0,
and we assume c is of class C2. Then by Leibniz’s rule,

∑ ∂2ρ′

∂zj∂zk
ajak = c

∑ ∂2ρ

∂zj∂zk
ajak on ∂Ω,

since ρ = 0 there, and also
∑n

k=1 ak
∂ρ
∂zk

= 0 because
∑n

k=1 ak
∂

∂zk
is tan-

gential. Thus the signature of the form (18) is independent of the choice
of defining function.

Finally let z 	→ Φ(z) = w be a biholomorphic mapping defined near the
origin (with Φ(0) = 0), giving us a new holomorphic coordinate system
(w1, . . . , wn) in the neighborhood of z0. Then by holomorphicity the
differential of Φ maps tangent vectors at z0 of the form

∑n
k=1 ak

∂
∂zk

to
tangent vectors of the form

∑n
k=1 a′

k
∂

∂wk
. Now if ρ′ is a defining function

of Φ(Ω) then ρ′(Φ(z)) = ρ′′(z) is another defining function of Ω near z0

and we can conclude by the above that the signature of (18) is invariant
under holomorphic bijections.

With regard to the above, one says that a boundary point z0 ∈ ∂Ω is
pseudo-convex if the Levi form is non-negative, and strongly pseudo-
convex if that form is strictly positive definite. A region Ω is pseudo-
convex if every boundary point of Ω has this property.

A good illustration is given by the unit ball {|z| < 1}. If we take
ρ(z) = |z|2 − 1 to be its defining function, we see that at every boundary
point the Levi form corresponds to the identity matrix, and hence the
unit ball is strongly pseudo-convex.

Pseudo-convexity may be thought of as the complex analytic analog for
n > 1 of the standard (real) convexity in Rd; for the latter see Exercise 26
in Chapter 3 and the problems in Chapter 3 of Book III. The nature of
the Levi form at z0 turns out to have important implications for the
behavior of holomorphic functions defined in Ω near z0. In particular,
we shall next see some interesting consequences that follow if one of the
eigenvalues of the Levi form is strictly positive.

6 A maximum principle

A noteworthy implication of the partial positivity of the Levi form is the
following “local” maximum principle in Cn, n ≥ 2, which has no analog
in the case n = 1.
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Suppose we are given a region Ω with boundary of class C2, and B
is an open ball centered at some point z0 ∈ ∂Ω. Assume that at each
z ∈ ∂Ω ∩ B at least one eigenvalue of the Levi form is strictly positive.

Theorem 6.1 In the above circumstances there exists a (smaller) ball
B′ ⊂ B, centered at z0, so that whenever F is a holomorphic function
on Ω ∩ B that is continuous on Ω ∩ B, then

(19) sup
z∈Ω∩B′

|F (z)| ≤ sup
z∈∂Ω∩B

|F (z)|.

A counter-example of assertion (19) in the case n = 1 is outlined in Ex-
ercise 16.

Proof. We consider first the special situation when z0 = 0 and Ω is
given in the canonical form (16). We may assume that λ1 > 0.

We write z = (z1, z
′′, zn), where z′′ = (z2, . . . , zn−1) ∈ Cn−2, and we

consider points of the form (0, 0, iyn). We denote by B = Br the ball
of radius r centered at the origin and prove that whenever 0 < yn ≤
cr2, with r sufficiently small, then at these special points we have the
preliminary conclusion

(20) |F (0, 0, iyn)| ≤ sup
z∈∂Ω∩Br

|F (z)|.

Here c is a constant to be chosen below (c = min(1, λ1/2) will do).
This will be proved by considering the complex one-dimensional slice

passing through the point (0, 0, iyn). Indeed, let Ω1 = {z1 : (z1, 0, iyn) ∈
Ω ∩ Br}. It is obvious that Ω1 is an open set containing the point
(0, 0, iyn). We note the following key fact: if r is sufficiently small, then

(21) If z1 ∈ ∂Ω1 then (z1, 0, iyn) ∈ ∂Ω ∩ Br.

Indeed, if z1 is on the boundary of the slice Ω1, then either (z1, 0, iyn) is
on the boundary of Ω, or (z1, 0, iyn) is on the boundary of Br (or both
alternatives hold). In fact the second alternative is not possible, because
if it held, then it would imply that |z1|2 + y2

n = r2. Since yn ≤ cr2 this
yields |z1|2 ≥ r2 − c2r4 ≥ 3r2/4, if we take c ≤ 1 and r ≤ 1/2. Moreover
since any such point must be in Ω we must have that yn ≥ λ1|z1|2 +
o(|z1|2) and therefore cr2 ≥ λ13r2/4 + o(r2), which is not possible if we
take c ≤ λ1/2 and r is sufficiently small. Since now the second alternative
has been ruled out, we have established (21).

Now for yn fixed, we define f(z1) = F (z1, 0, iyn). Then f is a holo-
morphic function in z1 on the slice Ω1 and is continuous on Ω1. Since
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0 ∈ Ω1, the usual maximum principle implies

|F (0, 0, iyn)| = |f(0)| ≤ sup
z1∈Ω1

|f(z1)| = sup
z1∈∂Ω1

|f(z1)| ≤ sup
z∈∂Ω∩Br

|F (z)|,

because of (21). Therefore the claim in (20) is established.
We will pass from this particular estimate to the general situation by

showing that for every point z ∈ Ω sufficiently close to the boundary
of Ω, we can find an appropriate coordinate system so that with respect
to it the point z is given by (0, 0, iyn), and thus the conclusion (20) holds
for z. This is done as follows.

First, for every point z ∈ Ω sufficiently close to ∂Ω there is a (unique)
point π(z) ∈ ∂Ω which is nearest to z and moreover, the vector from π(z)
to z is perpendicular to the tangent plane at π(z). Now at each π(z) ∈ ∂Ω
we can introduce a coordinate system leading to the description (17) of Ω
near π(z). We also observe that the mapping from the initial ambient
coordinates of Cn to those appearing in (17) is affine linear and preserves
Euclidean distances. Because of the orthgonality of the vector from π(z)
to z to the tangent plane, the point z has coordinates (0, 0, iyn) in this
coordinate system, and in fact |z − π(z)| = yn.

With B the initial ball centered at z0, we will define B′ = Bδ(z0) to
be the ball of radius δ centered at z0. That radius will be determined by
another radius r, so that δ = c∗r2, with the constant c∗ specified below.
We will have 0 < c∗ ≤ 1, and ultimately take r (and hence δ) sufficiently
small.

We can assume that λ1 is the largest eigenvalue appearing in (17) and
since ∂Ω is of class C2, the quantity λ1 varies continuously with the base
point π(z). We denote by λ∗ the infimum of these λ1, and in parallel
with the special case treated above we set c∗ = min(1, λ∗/2).

We then note that if z ∈ Ω ∩ Bδ and we take r sufficiently small, then:

• |z − π(z)| < δ, and;

• Br(π(z)) ⊂ B.

In fact if z ∈ Bδ(z0), then z0 ∈ ∂Ω implies that d(z, ∂Ω) < δ, which
gives |z − π(z)| < δ.

Secondly

|ζ − z0| ≤ |ζ − π(z)| + |π(z) − z| + |z − z0|,

so if ζ ∈ Br(π(z)), then |ζ − π(z)| < r while |z − π(z)| < δ, and |z −
z0| < δ (since z ∈ Bδ). This means that |ζ − z0| ≤ r + 2δ, and hence
ζ ∈ B, if r (and then δ = c∗r2) are sufficiently small.
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We can now return to the argument leading to the proof of the special
case (20). With the ball Br(π(z)) playing the role of Br above, we see
as before that we obtain (20) by the maximum principle, because for
z ∈ Ω ∩ B we have yn > λ∗|z1|2 + o(|z|2), z1 → 0 with an “o” term that
is uniform as z (and hence π(z)) varies. (This uniformity is a consequence
of the fact that the corresponding “o” term in the Taylor development
of ϕ in (17) is uniform, by virtue of the fact that ϕ is of class C2.)

All this shows that if we take r sufficiently small, and δ = c∗r2, then
for z ∈ Bδ(z0) = B′ the conclusion of the theorem holds.

The implication of the theorem, and its proof, are valid in a more gen-
eral setting where the boundary ∂Ω is replaced by a local hypersurface.
This can be formulated as follows.

Suppose M is a local C2 hypersurface given in a ball B with a defining
function ρ, so that M = {z ∈ B : ρ(z) = 0}. Set Ω− = {z ∈ B : ρ(z) <
0}.
Corollary 6.2 Suppose the Levi form, as given by (18), has at least one
strictly positive eigenvalue for each z ∈ M . Under these circumstances,
for every z0 ∈ M there is a ball B′ centered at z0 so that whenever F is
holomorphic in Ω− and continuous in Ω− ∪ M we have

(22) sup
z∈Ω−∩B′

|F (z)| ≤ sup
z∈M

|F (z)|.

The theorem we have just proved tells us that when an eigenvalue of
the Levi form is positive, the control of the restriction of a holomorphic
function to a small piece of the boundary gives us a corresponding control
of the function in an interior region. This is a strong hint that for such
boundaries a local version of Bochner’s theorem (Theorem 4.1) should
be valid. Our proof of this will be based on a remarkable extension of
the Weierstrass approximation theorem, to which we now turn.

7 Approximation and extension theorems

The classical Weierstrass approximation theorem can be restated to as-
sert: given a continuous function f on a compact segment of the real
axis in C1, then f can be uniformly approximated by polynomials in
z = x + iy. The general question we will deal with is as follows. Suppose
M is a (local) hypersurface in Cn. Given a continuous function F on M ,
can F be approximated on M by polynomials P� in z1, z2, . . . , zn?

Note that if n > 1, the restriction to M of each P� necessarily satisfies
the tangential Cauchy-Riemann equations, and so F would necessarily
have to satisfy these equations in at least some “weak” sense. We shall
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now see that this necessary condition is indeed sufficient. That is the
thrust of the Baouendi-Treves approximation theorem stated below.

We suppose we are given a C2 local hypersurface M in Cn, defined
near z0 ∈ M , which after a complex affine-linear change of coordinates,
the point z0 has been brought to the origin and M is represented near
z0 as a graph

(23) M = {z = (z′, zn) : Im(zn) = ϕ(z′, xn)}.

If we set ρ(z) = ϕ(z′, xn) − yn, with yn = Im(zn), the tangential Cauchy-
Riemann vector fields are spanned by

ρn
∂

∂zj
− ρj

∂

∂zn
, 1 ≤ j ≤ n − 1,

with ρj = ∂ρ/∂zj , and in particular ρn = 1
2(ϕxn

− i), where we define
ϕxn

= ∂ϕ/∂xn. Thus we can write the corresponding tangential Cauchy-
Riemann equations as

Lj(f) = 0, 1 ≤ j ≤ n − 1,

with

(24) Lj(f) =
∂f

∂zj
− aj

∂f

∂zn
, where aj = ρj/ρn.

In the coordinates (z′, xn) on M , these become Lj(f) = ∂f
∂zj

− aj

2
∂f

∂xn
.

Next, we define the transpose of Lj , namely, Lt
j , by

Lt
j(ψ) = −

(
∂ψ

∂zj
− 1

2
∂(ajψ)
∂xn

)
,

so that ∫
Cn−1×R

Lj(f)ψ dz′ dxn =
∫

Cn−1×R

fLt
j(ψ) dz′ dxn

whenever both f and ψ are C1 functions, with one of them having com-
pact support. (We use the shorthand dz′dxn to designate Lebesgue mea-
sure on Cn−1 × R.) In view of the above we say that a continuous func-
tion f satisfies the tangential Cauchy-Riemann equations in the weak
sense if ∫

Cn−1×R

fLt
j(ψ) dz′dx = 0
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for all ψ that are in C1 and whose support is sufficiently small. Our
theorem is then as follows:

Theorem 7.1 Suppose M ⊂ Cn is a hypersurface of class C2 as above.
Given a point z0 ∈ M , there are open balls B′ and B, centered at z0, with
B

′ ⊂ B, so that: if F is a continuous function in M ∩ B that satisfies
the tangential Cauchy-Riemann equations in the weak sense, then F can
be uniformly approximated on M ∩ B

′
by polynomials in z1, z2, . . . , zn.

Two remarks may help to clarify the nature of the conclusion asserted
above.

• The theorem holds for all n ≥ 1. In the case n = 1 there are of
course no tangential Cauchy-Riemann equations so the conclusion
is valid without further assumptions on F . Note however that
in general the scope of this theorem must be local in nature. A
simple illustration of this arises already when n = 1 and M is the
boundary of the unit disc. See also Exercise 12.

• Note that for n > 1, there are no requirements on a Levi form
related to M .

Proof. We shall first take B small enough so that in B, the hy-
persurface M has been represented by M = {yn = ϕ(z′, xn)} where z0

corresponds to the origin. Besides ϕ(0, 0) = 0, we can also suppose that
the partial derivatives ∂ϕ

∂xj
, 1 ≤ j ≤ n, and ∂ϕ

∂yj
, 1 ≤ j ≤ n − 1, vanish at

the origin.
Now for each u ∈ Rn−1, sufficiently close to the origin we define the

slice Mu of M to be the n-dimensional sub-manifold given by

Mu = {z : yn = ϕ(z′, xn), with z′ = x′ + iu}.
We let Φ = Φu be the mapping identifying the neighborhood of the
origin Rn with Mu given by Φ(x) = (x′ + iu, xn + iϕ(x′ + iu, xn)) with
x = (x′, xn) ∈ Rn−1 × R = Rn. Observe that M is fibered by the collec-
tion {Mu}u. Now for fixed u, the Jacobian of the mapping x 	→ Φ(x),
that is, ∂Φ

∂x , is the complex n × n matrix given by I + A(x), where the en-
tries of A(x) are zero, except in the last row, and in that row we have the

vector
(
i ∂ϕ
∂x1

, i ∂ϕ
∂x2

, . . . , i ∂ϕ
∂xn

)
. So A(0) = 0, and det

(
∂Φ
∂x

)
= 1 + i ∂ϕ

∂xn
.

We shall need to shrink the ball B further so that ‖A(x)‖ ≤ 1/2, on this
ball, where ‖ · ‖ denotes the matrix-norm.

Now with u fixed, the map Φ carries the Lebesgue measure on Rn to
a measure (with complex density) dmu(z) = J (x) dx on Mu defined by∫

Mu

f(z) dmu(z) =
∫

Rn

f(Φ(x))J (x) dx, where J (x) = det
(

∂Φ(x)
∂x

)
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for every continuous function f with sufficiently small support.
Next take B′ any ball with the same center as B but strictly interior

to it. Define χ to be a smooth (say C1) cut-off function which is 1 on
a neighborhood of B′, and vanishes when x /∈ B. With this, define for
each u ∈ Rn−1 (close to the origin), and ε > 0, the function Fu

ε by

(25) Fu
ε (ζ) =

1
εn/2

∫
Mu

e−
π
ε (z−ζ)2F (z)χ(z) dmu(z).

Here we use the shorthand w2 = w2
1 + · · · + w2

n if w = (w1, . . . , wn) ∈ Cn.
We should remark at this point that, like the classical approximation
theorem, the argument below comes down to the fact that the functions
ε−n/2e

−π
ε x2

form an “approximation to the identity” in Rn.6

The Fu
ε have the following three properties:

(i) Each Fu
ε (ζ) is an entire function of ζ ∈ Cn.

(ii) Whenever ζ ∈ Mu and ζ ∈ B
′
, the Fu

ε (ζ) converge uniformly to
F (ζ), as ε → 0.

(iii) For each u, limε→0 Fu
ε (ζ) − F 0

ε (ζ) = 0, uniformly for ζ ∈ B
′
.

The first property is clear, since e−
π
ε (z−ζ)2 is an entire function in ζ,

and the integration in z is taken over a compact set.
For the second property note that z ∈ Mu, and ζ = ξ + iη ∈ Mu, if

z = Φ(x) and ζ = Φ(ξ), with Φ = Φu. Therefore

(z − ζ)2 = (Φ(x) − Φ(ξ))2 =
(

∂Φ
∂ξ

(ξ)(x − ξ)
)2

+ O(|x − ξ|3)

= ((I + A(ξ))(x − ξ))2 + O(|x − ξ|3).
Now making our initial ball B smaller if necessary (which of course de-
creases the size of B′), we can guarantee that whenever z and ζ are
in B

(26) Re(z − ζ)2 ≥ c|x − ξ|2, c > 0,

once we take into account that ‖A(ξ)‖ ≤ 1/2. Thus the exponential ap-

pearing in (25) can be written as e−
π
ε ((1+A(ξ))(x−ξ))2 + O

(
|x−ξ|3

ε e−
c′|x−ξ|2

ε

)
.

Thus Fu
ε (ζ) = I + II, with

I = ε−n/2

∫
Rn

e−
π
ε ((I+A(ξ))(x−ξ))2f(x) dx

6For the classical theorem, see for instance Theorem 1.13 in Chapter 5 of Book I.
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and

II = O

(
ε−n/2

∫
Rn

|v3|
ε

e−c′|v|2/ε dv

)
,

with f(x) = F (Φ(x))χ(Φ(x)) det(I + A(x)), where ∂Φ
∂x = I + A(x). Now

after a change of variables v = x − ξ, the first integral is handled by the
following observation.

Lemma 7.2 If A is an n × n complex matrix with constant coefficients
and ‖A‖ < 1 then for every ε > 0

(27)
1

εn/2
det(I + A)

∫
Rn

e−
π
ε ((I+A)v)2 dv = 1.

Corollary 7.3 If f is a continuous function of compact support, then

det(I + A)
εn/2

∫
Rn

e−
π
ε ((I+A)v)2f(ξ + v) dv → f(ξ)

uniformly in ξ as ε → 0.

To prove the lemma note that Re(((I + A)v)2) ≥ |v|2 − ‖A‖|v|2 ≥ c|v|2,
with c > 0, so that the integral in (27) converges. A change of scale
reduces the identity to the case ε = 1. Now if A is real, a further change
of variables v′ = (I + A)v (which is invertible since ‖A‖ < 1) reduces this
case to the standard Gaussian integral. Finally, we pass to the general
situation by analytic continuation, noting that the left-hand side of (27)
is holomorphic in the entries of A, whenever ‖A‖ < 1. The corollary then
follows from the usual arguments about approximations of the identity as
in Section 4, Chapter 2 in Book I and Section 2 in Chapter 3 of Book III.

Now the term II is dominated by a multiple of
∫

Rn ε1/2|v|3e−c′|v|2 dv =
cε1/2, as is seen by a change of scale. Thus property (ii) is proved.

Up to this point, we have not used the fact that F satisfies the tangen-
tial Cauchy-Riemann equations. It is in the proof of property (iii) that
this is crucial. We begin by considering the case where F is assumed to
be in class C1. Later we will see how to lift this restriction. We recall
that the tangential Cauchy-Riemann vector field Lj is given by (24).

Lemma 7.4 Suppose f is a C1 function on M . Then

(28)
∂

∂uj

(∫
Mu

f(z) dmu(z)
)

=
2
i

∫
Mu

Lj(f) dmu(z),

for all 1 ≤ j ≤ n − 1.
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Proof. Recall that Φ(x) = Φu(x) = (x′ + iu, xn + iϕ(x′ + iu, xn)) and
from before we have that det

(
∂Φ
∂x

)
= 1 + iϕxn . Also, recall that ρ(z) =

ϕ(z′, xn) − yn, hence, for 1 ≤ j ≤ n − 1, one has

Lj =
∂

∂zj
− ρj

ρn

∂

∂zn
=

∂

∂zj
+

2
i

∂ϕ
∂zj

(1 + iϕxn)
∂

∂zn
,

and therefore
2
i

∫
Mu

Lj(f) dmu(z) =
2
i

∫
Rn

(Ljf)(Φ)(1 + iϕxn)

=
2
i

∫
Rn

∂f

∂zj
(1 + iϕxn) − 4

∫
Rn

∂ϕ

∂zj

∂f

∂zn
,

where we simplify the writing by sometimes omitting Φ from the formu-
las. Now, starting from the left-hand side of (28)

∂

∂uj

(∫
Mu

f(z) dmu(z)
)

=
∂

∂uj

(∫
Rn

f(Φ)(1 + iϕxn
)
)

=
∫ (

∂f

∂uj
+ ϕuj

∂f

∂yn

)
(1 + iϕxn) − i

∫
ϕuj

(
∂f

∂xn
+ ϕxn

∂f

∂yn

)
,

where we have used an integration by parts and the fact that f has
compact support to obtain the second integral on the right-hand side.
Using the fact that f has compact support again, we also note that

0 =
∫

Rn

∂

∂xj
[f(Φ)(1 + iϕxn)]

=
∫

Rn

(
∂f

∂xj
+ ϕxj

∂f

∂yn

)
(1 + iϕxn) − i

∫
Rn

ϕxj

(
∂f

∂xn
+ ϕxn

∂f

∂yn

)
,

where once again we have integrated by parts to obtain the last integral.
Combining the two results above we find that

∂

∂uj

(∫
Mu

f(z) dmu(z)
)

=

= −2i

∫
Rn

(
∂f

∂zj
+

∂ϕ

∂zj

∂f

∂yn

)
(1 + iϕxn)

− 2
∫

Rn

∂ϕ

∂zj

(
∂f

∂xn
+ ϕxn

∂f

∂yn

)
=

2
i

∫
Rn

∂f

∂zj
(1 + iϕxn) − 4

∫
Rn

∂ϕ

∂zj

∂f

∂zn

=
2
i

∫
Mu

Lj(f) dmu(z),



7. Approximation and extension theorems 305

which is (28).

Now set f(z) = ε−n/2e−
π
ε (z−ζ)2F (z)χ(z). Then

Fu
ε − F 0

ε =
∫ 1

0

∂

∂s
Fus

ε ds

=
∫ 1

0

n∑
j=1

uj
∂

∂(ujs)

(∫
Mus

f(z) dmus(z)
)

ds

=
∫ 1

0

n∑
j=1

uj
2
i

(∫
Mus

Lj(f) dmus(z)
)

ds,

because of Lemma 7.4. Now Lj(f) = ε−n/2e−π(z−ζ)2/εFLj(χ), since
e−(z−ζ)2/ε is holomorphic in z, and Lj(F ) = 0 by assumption. How-
ever Lj(χ) is supported at a positive distance from B′. So if ζ ∈ B′, the
inequality (26) guarantees that

|Fu
ε − F 0

ε | = O(ε−n/2e−c′/ε) as ε → 0

for some c′ > 0, and the property (iii) is established, under the assump-
tion that F ∈ C1.

To complete the proof of the theorem note that a combination of (ii)
and (iii) shows that F 0

ε converges uniformly to F when ζ ∈ M ∩ B
′
. Now

each F 0
ε , being an entire function of ζ, can be uniformly approximated

by polynomials in ζ for ζ in the compact set B
′
. Altogether then, F can

be uniformly approximated by polynomials on M ∩ B
′
and the theorem

is proved in that case.

To pass to the general case note that what we have shown in (28) is that
when f is of class C1, u = (0, . . . , 0, uj , 0, . . . , 0), and v = (0, . . . , 0, vj ,
0, . . . , 0) then

(29) Fu
ε − F v

ε =
2
i

∫ uj

vj

∫
Rn

Lj(f)J (x) dx dyj .

To extend (29) to the case where f is merely continuous, and Lj(f) (taken
in the sense of distributions) is also continuous, a limiting argument
with (29), as it stands, will not suffice. This is because the “weak”
definition of Lj(f) requires an integration over Rn × Rn−1, while in (29)
we only integrate over Rn × R. To get around this we observe first (still
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assuming f ∈ C1 and has compact support) that (28) implies

−
∫

Rn×Rn−1
f(Φy′

(x))
∂ψ

∂yj
(y′)J (x) dx dy′ =(30)

=
2
i

∫
Rn×Rn−1

f(Φy′
(x))Lt

j [ψ(y′)J (x)] dx dy′

for any C1 function ψ on Rn−1 having compact support. Now at this
stage we can pass to an arbitrary continuous f of compact support (by
approximating such f uniformly by C1 functions) and see that (30) holds
for f that are merely continuous and of compact support.

As a result we have that

−
∫

Rn×Rn−1
f(Φy′

(x))
∂ψ

∂yj
(y′)J (x) dx dy′ =(31)

=
2
i

∫
Rn×Rn−1

Lj(f)ψ(y′)J (x) dx dy′,

where Lj(f) is taken in the sense of distributions (assuming that Lj(f)
is continuous).

Now set ψ(y′) = ψδ(yj)ψ̃δ(ỹ), where ỹ is defined by ỹ = (y1, . . . , yj−1, 0,
yj+1, . . . , yn−1). Here ψδ(yj) = 1 if vj ≤ yj ≤ uj , and vanishes if yj ≤
vj − δ or yj ≥ uj + δ; in addition

∣∣∣∂ψδ(yj)
∂yj

∣∣∣ ≤ cδ−1. As a result note that
for any continuous function g

−
∫

g(yj)
∂ψδ

∂yj
dyj = g(uj) − g(vj) as δ → 0,

since ∂ψδ

∂yj
is the difference of two approximations to the identity centered

at uj and vj , respectively.
Also ψ̃δ(ỹ) = δ−n+2ψ̃(ỹ/δ), where

∫
Rn−2 ψ̃(ỹ) dỹ = 1, making {ψ̃δ} an

approximation to the identity in Rn−2. Inserting these in (31) and let-
ting δ → 0 shows that the left-hand side of (31) converges to Fu

ε − F v
ε ,

while the right-hand side converges to 2
i

∫ uj

vj

∫
Rn Lj(f) dx dyj , and (29)

is proved. The rest of the argument then continues as before, and the
proof of the theorem is now complete.

The approximation theorem just proved, together with the maximum
principle in Section 6 lead directly to the famous Lewy extension theorem.
Here again M is a C2 hypersurface given in a ball B, with M = {z ∈
B, ρ(z) = 0}. As before we set Ω− = {x ∈ B, ρ(z) < 0}.
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Theorem 7.5 Suppose that the Levi form (18) has at least one strictly
positive eigenvalue for each z ∈ M . Then for each z0 ∈ M , there is a
ball B′ centered at z0 so that whenever F0 is a continuous function on
M that satisfies the tangential Cauchy-Riemann equations in the weak
sense, there exists an F which is holomorphic in Ω− ∩ B′, continuous in
Ω− ∩ B′ and so that F (z) = F0(z) for z ∈ M ∩ B′.

To prove the theorem we first use Theorem 7.1 to find a ball B1 cen-
tered at z0 so that F0 can be uniformly approximated (on M ∩ B1) by
polynomials {pn(z)}. Then we invoke the corollary to Theorem 6.1 to
find a ball B′ so that (22) holds (with B1 in place of B). Therefore the
pn also converge uniformly in Ω− ∩ B′. The limit of this sequence, F ,
is then holomorphic there, continuous in Ω− ∩ B′, and gives the desired
extension of F0.

8 Appendix: The upper half-space

In this appendix we want to illustrate some of the concepts discussed in the present
chapter, as viewed in terms of a special model region. We will only sketch the
proofs of the results, leaving the details to the interested reader, and providing
some further relevant ideas in Exercises 17 to 19.

The region we have in mind is the upper half-space U in Cn given by

U = {z ∈ Cn : Im(zn) > |z′|2},

and its boundary

(32) ∂U = {z ∈ Cn, Im(zn) = |z′|2},

with z = (z′, zn), and z′ = (z1, . . . , zn−1). It is prompted by the canonical form (16).
The region U in Cn, n > 1, plays a role similar to the upper half-plane in C1. The
definitions suggest that zn can be thought of as the “classical” variable, while z′

is the “new” variable that comes about when n > 1. As in the case n = 1, the
region U is holomorphically equivalent with the unit ball {w ∈ Cn : |w| < 1} via
a fractional linear transformation, namely

wn =
i − zn

i + zn
wk =

2izk

i + zn
, k = 1, . . . , n − 1,

as the reader may easily verify.
This mapping also extends to a correspondence of the boundaries, except that

the “south-pole” of the unit ball (0, . . . , 0,−1) corresponds to the point at infinity
of ∂U . The analysis of the region U is enriched by a number of symmetries it
enjoys.

The boundary of U , which by (32) is parametrized by (z′, xn) ∈ Cn−1 × R, car-
ries a natural measure dβ = dm(z′, xn), with the latter being Lebesgue measure
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on Cn−1 × R. More precisely, if F0 is a function on ∂U , and F �
0 designates the

corresponding function on Cn−1 × R,

F0(z
′, xn + i|z′|2) = F �

0 (z′, xn),

then by definition

Z

∂U
F0 dβ =

Z

Cn−1×R

F �
0 dm.

8.1 Hardy space

In analogy with C1, we consider the Hardy space H2(U), which consists of all
functions F , holomorphic in U , that satisfy

sup
ε>0

Z

∂U
|F (z′, zn + iε)|2 dβ < ∞.

For those F the number ‖F‖H2(U) is defined as the square root of the above supre-
mum. It will be convenient to abbreviate F (z′, zn + iε) by Fε(z), and sometimes
also use the same symbol for the restriction of Fε to ∂U .

Theorem 8.1 Suppose F ∈ H2(U). Then, when restricted to z ∈ ∂U , the limit

lim
ε→0

Fε = F0

exists in the L2(∂U , dβ) norm. Also

‖F‖H2(U) = ‖F0‖L2(∂U).

For several arguments below we use the following observation.

Lemma 8.2 Suppose B1 and B2 are two open balls in Cn−1, with B1 ⊂ B2. Then,
whenever f is holomorphic in Cn−1

sup
z′∈B1

|f(z′)|2 ≤ c

Z

B2

|f(w′)|2 dm(w′).

Indeed for sufficiently small δ, whenever z′ ∈ B1 then Bδ(z
′) ⊂ B2, so since f is

harmonic in R2n−2, the mean-value property and the Cauchy-Schwarz inequality
gives

|f(z′)|2 ≤ 1

m(Bδ)

Z

Bδ(z′)
|f(w′)|2 dm(w′),

proving the claim.

The proof of the theorem can be given by the Fourier transform representation of
each F ∈ H2(U) in analogy with the case n = 1 treated in Chapter 5 of Book III.
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We define the space H of functions f(z′, λ), with (z′, λ) ∈ Cn−1 × R+, that are
jointly measurable, holomorphic in z′ ∈ Cn−1 for almost every λ, and for which

‖f‖2
H =

Z ∞

0

Z

Cn−1
|f(z′, λ)|2e−4πλ|z′|2 dm(z′) dλ < ∞.

One can show that with this norm the space H is complete and hence a Hilbert
space (see Exercises 18 and 19). With this, every F ∈ H2(U) can be represented
as

(33) F (z′, zn) =

Z ∞

0

f(z′, λ)e2πiλzn dλ, with f ∈ H.

Proposition 8.3 If f ∈ H, then the integral in (33) converges absolutely and uni-
formly for (z′, zn) lying in compact subsets of U , and F ∈ H2(U). Conversely any
F ∈ H2(U) can be written as (33) for some f ∈ H.

In fact if (z′, zn) belongs to a compact subset of U , we may suppose that
Im(zn) > |z′|2 + ε, for some ε > 0. We will also restrict z′ to range in a ball
B1, with B1 ⊂ B2, and take the radius B2 so small that Im(wn) > |w′|2 + ε/2,
if w′ ∈ B2.

Now by the Cauchy-Schwarz inequality the absolute value of the integral in (33)
is estimated by

„

Z ∞

0

|f(z′, λ)|2e−4πλ(yn−ε/2) dλ

«1/2 „Z ∞

0

e−4πλε/2 dλ

«1/2

.

Invoking the lemma we get as an estimate for this

c

„

Z ∞

0

Z

Cn−1
|f(w′, λ)|2e−4πλ|w′|2 dm(w′) dλ

«1/2

c′ε−1/2 = c′′ε−1/2‖f‖H.

This shows that the integral converges absolutely and uniformly when z′ ∈ B1 and
Im(zn) > |z′|2 + ε, and thus uniformly on any compact subset of U . Thus F is
holomorphic in U . Observe next that for F given by (33), Fε(z) = F (z′, zn + iε) is
given in terms of fε, with fε(z

′, λ) = f(z′, λ)e−2πλε. Now for fixed z′, Plancherel’s
theorem in the xn variable shows that

Z

R

|Fε(z
′, xn + i|z′|2)|2 dxn =

Z ∞

0

|fε(z
′, λ)e−2πλ|z′|2 |2 dλ.

Integrating in z′ gives

Z

∂U
|Fε|2 dβ = ‖fε‖2

H ≤ ‖f‖2
H.

By the same token,
R

∂U |Fε − Fε′ |2 dβ = ‖fε − fε′‖2
H → 0 as ε, ε′ → 0. Thus Fε

converges in L2(∂U , dβ) to a limit F0 given by (33) with yn = |z′|2. Moreover

(34) ‖F0‖L2(∂U) = ‖F‖H2(U) = ‖f‖H.
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Conversely, suppose F ∈ H2(U). One observes that whenever z′ is restricted to a
compact subset of Cn−1,

|F (z′, zn + iε)| ≤ c

ε1/2
‖F‖H2 .

(Here we use Lemma 8.2 and also follow the reasoning used in the case n = 1 to
study H2(R2

+) in Section 2 of Chapter 5 in Book III.) We set F δ
ε (z) = F (z′, zn +

iε)(1 − iδzn)−2. Then for each z′, the function F δ
ε (z′, zn) is in H2 of the half-space

{Im(zn) > |z′|2}. So we may define fδ
ε (z′, λ) by

fδ
ε (z′, λ) =

Z

R

e−2πiλ(xn+iyn)F δ
ε (z′, zn) dxn,

noting that the right-hand side is independent of yn, if yn > |z′|2, by Cauchy’s
theorem. Also then F δ

ε is represented by (33) with fδ
ε in place of f and fδ

ε ∈ H.
Now letting δ → 0 and using (34) we see that Fε(z) is given by (33), with

fε = fδ
ε |δ=0 in place of f , and that fε ∈ H. Finally, since Fε(z) = F (z′, zn + iε),

we have that fε(z
′, λ) = f(z′, λ)e−2πλε, and using (34) again with ε → 0 gives us

the representation (33) for our given F ∈ H2(U). The theorem is thus proved.

Remark. By the completeness of H given in Exercise 19 we see that H2(U) is
also a Hilbert space.

We now ask:

Which F0 ∈ L2(∂U) arise as limε→0 Fε for F ∈ H2(U) ?

When n > 1 the tangential Cauchy-Riemann operators provide the answer. If
F0 is given on ∂U , recall that F �

0 (z′, xn) = F0(z
′, xn + i|z′|2) is the corresponding

function on Cn−1 × R. In this setting the vector fields Lj , given by

Lj =
∂

∂zj
− izj

∂

∂xn
, j = 1, . . . , n − 1,

form a basis for the tangential Cauchy-Riemann vector fields, as is given by (24),
with ρ(z) = |z′|2 − Im(zn). Note that in this case Lt

j = −Lj . So here a function
G ∈ L2(Cn−1 × R) satisfies the tangential Cauchy-Riemann equations Lj(G) = 0,
j = 1, . . . , n − 1, in the weak sense, if

(35)

Z

Cn−1×R

G(z′, xn)Lt
j(ψ)(z′, xn) dm(z′, xn) = 0, 1 ≤ j ≤ n − 1,

for all ψ that are (say) C∞ and have compact support.

Proposition 8.4 An F0 in L2(∂U) arises from an F ∈ H2(U) as in Theorem 8.1
if and only if F �

0 satisfies the tangential Cauchy-Riemann equations in the weak
sense.

Proof. First, assume that F ∈ H2(U). Then since Fε is holomorphic in a
neighborhood of U , the function F �

ε satisfies Lj(F
�
ε ) = 0 in the usual sense. The fact
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that Fε → F0 in the L2(∂U) norm (which is the same as F �
ε → F �

0 in L2(Cn−1 × R))
then implies that F �

0 satisfies (35) with G = F �
0 .

Conversely, suppose G is in L2(Cn−1 × R), and set

(36) g(z′, λ) =

Z

R

e−2πiλxnG(z′, xn) dxn.

Also choose ψ(z′, xn) = ψ1(z
′)ψ2(xn). Then by Plancherel’s theorem in the xn

variable,
Z

R

G(z′, xn)
∂ψ2

∂xn
(xn) dxn = −

Z

R

g(z′, λ)2πiλψ̂2(−λ) dλ

for almost every z′. Integrating in z′ then shows that

Z

Cn−1×R

G(z′, xn)Lt
j(ψ(z′, xn)) dm(z′, xn) =

= −
Z

Cn−1

Z

R

g(z′, λ)

„

∂ψ1

∂zj
(z′) − 2πλzjψ1(z

′)
«

ψ̂2(−λ)dλ dm(z′).

So if G satisfies (35) it follows that

Z

Cn−1
g(z′, λ)

„

∂ψ1

∂zj
(z′) − 2πλzjψ1(z

′)
«

dm(z′) = 0

for almost every λ, and this means that

Z

Cn−1
f(z′, λ)

∂(ψ1(z
′)e−2π|z′|2λ)

∂zj
(z′) dm(z′) = 0,

where f(z′, λ) = g(z′, λ)e2πλ|z′|2 , which itself implies that f(z′, λ) satisfies the
Cauchy-Riemann equations in Cn−1 in the weak sense, for almost every λ. But we
saw in Section 1 that this shows that the functions f(z′, λ) are holomorphic in z′.
Now (36) and the Fourier inversion formula shows that

Z

R

Z

Cn−1
|g(z′, λ)|2 dm(z′) dλ =

Z

R

Z

Cn−1
|f(z′, λ)|2e−4πλ|z′|2 dm(z′) dλ

are both finite. Also, with F given by (33), we have G(z′, xn) = F (z′, xn + i|z′|2).
Finally, because

R

Cn−1 |f(z′, λ)|2e−4πλ|z′|2 dm(z′) < ∞ for almost every λ, then

necessarily f(z′, λ) = 0 for those λ that are negative. Thus we have given G as F �
0 ,

with F as in (33), and f ∈ H. The proposition is therefore proved.

8.2 Cauchy integral

The Cauchy integral7 in U can be defined as follows. For each z, w ∈ Cn we set

r(z, w) =
i

2
(wn − zn) − z′ · w′

7Also referred to as the Cauchy-Szegö integral.
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with z = (z′, zn), w = (w′, wn) and

z′ · w′ = z1w1 + · · · + zn−1wn−1.

Note that r(z, w) is holomorphic in z, conjugate holomorphic in w, and r(z, z) =
Im(zn) − |z′|2 = −ρ(z), with ρ the defining function for U used earlier.

Next, we define

S(z, w) = cnr(z, w)−n, where cn = (n−1)!
(4π)n .

Observe that S(z, w) = S(w, z), and that for each w ∈ U , the function z �→ S(z, w)
is in H2(U). Also for each z ∈ U , the function w �→ S(z, w) is in L2(∂U). We define
the Cauchy integral C(f) of a function f on U by

(37) C(f)(z) =

Z

∂U
S(z, w)f(w) dβ(w), z ∈ U .

The reproducing property of C is what interests us here.

Theorem 8.5 Suppose F ∈ H2(U), and let F0 = limε→0 Fε as in Theorem 8.1.
Then

(38) C(F0)(z) = F (z).

The key lemma used is an observation giving a reproducing identity for a related
space of entire functions on Cn−1. We consider the holomorphic functions f on
Cn−1 for which

Z

Cn−1
|f(z′)|2e−4πλ|z′|2 dm(z′) < ∞,

where λ > 0 is fixed.

Lemma 8.6 For f as above, we have

(39) f(z′) =

Z

Cn−1
Kλ(z′, w′)f(w′)e−4πλ|w′|2 dm(w′)

with Kλ(z′, w′) = (4λ)n−1e4πλz′·w′
.

Proof. In fact, consider first the case when 4λ = 1, and z′ = 0. Then (39),

which states f(0) =
R

Cn−1 f(w′)e−π|w′|2 dm(w′), is a simple consequence of the
mean-value property of f (taken on spheres in Cn−1 centered at the origin) and

the fact that
R

Cn−1 e−π|z′|2 dm(z′) = 1.

We now apply this identity to w′ �→ f(z′ + w′)e−πz′·w′
for fixed z′. The result

is then (39) when 4λ = 1. A simple rescaling argument then gives (39) in general.

Turning to the proof of the theorem, we observe that

S(z, w) =

Z ∞

0

λn−1e−4πλr(z,w) dλ,
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since
R∞
0

λn−1e−Aλ dλ = (n − 1)!A−n, whenever Re(A) > 0. So, at least formally,

Z

∂U
S(z, w)F0(w) dβ =

=

Z ∞

0

Z

∂U
F0(w

′, un + i|w′|2)λn−1e−4πλr(z,w) dm(w′, un) dλ.

But as we have seen

Z

R

F0(w
′, un + ivn)e−2πiλ(un+ivn) dun = f(w′, λ).

Now insert this in the above, recalling that r(z, w) = −wn−zn
2i

− z′ · w′, and that

(4λ)n−1
R

Cn−1 f(w′, λ)e−4πλ|w′|2 dm(w′) = f(z′, λ). The result is that

Z

∂U
S(z, w)F0(w) dβ(w) =

Z ∞

0

f(z′, λ)e2πiλzn dλ,

which by (33) is what we want to obtain.
To make this argument rigorous, we proceed as in the proof of Theorem 8.1, with

the improved function F δ
ε in place of F . Then all the integrals in question converge

absolutely, and therefore the interchanges of integration are justified. This gives
the reproducing property (38) for F δ

ε instead of F . Then we let δ → 0, and next
ε → 0, giving (38) for any F ∈ H2(U).

8.3 Non-solvability

We will use the Cauchy integral C to illuminate a basic example of Lewy of a
non-solvable partial differential equation.

Here we look at U in C2, with its boundary parametrized by C × R. We consider
the tangential Cauchy-Riemann vector field L = L1 = ∂

∂z1
− iz1

∂
∂x2

, and show that
in order for L(U) = f to be even locally solvable, the function f must satisfy a
stringent necessary condition. For purposes of the statement of the result, it will
be more convenient to deal with

L =
∂

∂z1
+ iz1

∂

∂x2

instead of L. (To revert back to L then one needs only to replace f by its conju-
gate.)

We consider the Cauchy integral (37), written now as acting on functions on
C × R, identified with ∂U in C2. If f is such a function then (37) takes the form

(40)

Z

C×R

S(z, u2 + i|w1|2)f(w1, u2) dm(w1, u2).

We can extend (40) to define the Cauchy integral when f is a distribution (say of
compact support), by setting

C(f)(z) = 〈f, S(z, u2 + i|w1|2)〉, z ∈ U .
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Here 〈·, ·〉 is a pairing between the distribution f and the C∞ function (w1, u2) �→
S(z, u2 + i|w1|2), with z fixed. The necessary condition is then:

(41) C(f)(z) has an analytic continuation to a neighborhood of 0.

Note that this property depends only on the behavior of f near the origin. Indeed,
if f1 agrees with f near the origin, then C(f − f1) is automatically holomorphic
near the origin, because visibly S(z, w) is holomorphic for z in a small neighborhood
of the origin, with w staying outside a given neighborhood of the origin in Cn.

Theorem 8.7 Suppose U is a distribution defined on C × R, so that L(U) = f in
a neighborhood of the origin. Then (41) must hold.

Proof. Assume first that U has compact support, and L(U) = f everywhere.
Then

C(f)(z) = 〈f, S(z, u2 + i|w1|2)〉 = 〈L(U), S(z, u2 + i|w1|2)〉
= −〈U, L(S(z, u2 + i|w1|2))〉
= 0,

since L(S(z, u2 + i|w1|2)) = 0, because w �→ S(z, w) is conjugate holomorphic. Thus
trivially C(f)(z) is holomorphic everywhere.

If U does not have compact support and L(U) = f only in a neighborhood of the
origin, then replace U by ηU , with η a C∞ cut-off function that is 1 near the origin.
With U ′ = ηU , then L(U ′) = f ′ everywhere, so C(f ′) = 0 but C(f − f ′) is analytic
near the origin because f − f ′ vanishes near the origin of C × R. Therefore (41)
holds.

We give a particular example. Take the function

F (z1, z2) = e−(z2/2)1/2
e−(i/z2)1/2

= F (z2).

It is easy to verify that F is holomorphic in the half-plane Im(z2) > 0, continuous
(in fact C∞) in the closure, and rapidly decreasing as a function of (z1, z2) ∈ U .
However it is clearly not holomorphic in a neighborhood of the origin.

Now set f = F |∂U , that is, in the C × R coordinates, f(z1, x2) = F (x2 + i|z1|2).
However C(f) = F by Theorem 8.5.

Thus we have reached the conclusion that L(U) = f is not locally solvable near
the origin, even though this particular f is a C∞ function.

9 Exercises

1. Suppose f is holomorphic in a polydisc Pr(z
0), and assume that f vanishes in

a neighborhood of z0. Then f = 0 throughout Pr(z
0).

[Hint: Expand f(z) =
P

aα(z − z0)α in Pr(z
0), using Proposition 1.1, and note

that all aα are zero.]

2. Show that:
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(a) If f is holomorphic in a pair Pσ(z0) and Pτ (z0) of polydiscs centered at z0

with σ = (σ1, . . . , σn) and τ = (τ1, . . . , τn), then f extends to be holomor-
phic in Pr(z

0), wherever r = (r1, . . . , rn) and rj ≤ σ1−θ
j τθ

j , 1 ≤ j ≤ n, for
some 0 ≤ θ ≤ 1.

(b) If S = {s = (s1, . . . , sn), sj = log rj , where f is holomorphic in Pr(z
0)},

then S is a convex set.

[Hint: Consider
P

aα(z − z0) that represents f both in Pσ(z0) and Pτ (z0).]

3. Given Ω any open subset of C1, construct a holomorphic function f in Ω that
cannot be continued analytically outside Ω.

[Hint: Given any sequence of points {zj} in Ω, which does not have a limit point
in Ω, there exists an analytic function in Ω vanishing exactly at those zj .]

4. Suppose Ω is a bounded region in Cn, n > 1, and f is holomorphic in Ω.
Suppose Z, the zero set of f , is non-empty. Then Z intersects ∂Ω, that is, Z ∩ ∂Ω
is not empty.

[Hint: Let w be a point in Ω
c
. Let z0 ∈ Z be a point furthest from w. Define γ to

be the unit vector in the direction from z0 to w, and let ν be another unit vector
so that both ν and iν are perpendicular to γ. Consider the one-variable function
hε(ζ) given by hε(ζ) = f(z0 − εγ + ζν). Then for ε > 0, the function hε(ζ) does
not vanish in a fixed neighborhood of ζ = 0.]

5. Suppose f is continuous and has compact support in C1.

(a) Show that u = f ∗ Φ in Proposition 3.1 belongs to Lip(α), for every α < 1.

(b) Show that u is not necessarily in C1.

[Hint: For (b) consider f(z) = z(log(1/|z|))ε but modified away from the origin to
have compact support.]

6. Verify the identity in C1

F (z) =
1

2πi

Z

∂Ω

F (ζ)

ζ − z
dζ − 1

π

Z

Ω

(∂F/∂ζ)(ζ)

(ζ − z)
dm(ζ)

for appropriate regions Ω and C1 functions F . Use this identity to give an alter-
native proof of Proposition 3.1.

7. Prove the following. The necessary and sufficient condition that the solution
u(z) = 1

π

R f(ζ)
ζ−z

dm(ζ) of ∂u/∂z = f in C1, have compact support when f has
compact support, is that

Z

C

ζnf(ζ) dm(ζ) = 0, for all n ≥ 0.
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[Hint: In one direction, note that ∂
∂z

(znu(z)) = znf(z). For the converse, observe
that for large z, u(z) =

P∞
n=0 anz−n−1, with an = 1

π

R

ζnf(ζ) dm(ζ).]

8. Suppose Ω is a region in Rd with a defining function ρ that is of class Ck.

(a) If F is a Ck function defined on Rd and F = 0 on ∂Ω, show that F = aρ,
with a ∈ Ck−1.

(b) Suppose F1 = F2 on ∂Ω. Show that if X is any tangential vector field then

X(F1)|∂Ω = X(F2)|∂Ω.

[Hint: Write F1 − F2 = aρ.]

9. Verify that the extension F given by Theorem 4.1 is the unique solution to the
Dirichlet problem for Ω with boundary data F0.

10. Use the region {z ∈ Cn : ρ < |z| < 1} to show that the connectedness hy-
potheses in Theorem 3.3 and Theorem 4.1 are necessary.

11. That the connectedness properties in the hypotheses of Theorems 3.3 and 4.1
are related can be seen as follows. Suppose Ω is a bounded region with C1

boundary. For ε > 0, let Ωε be the “collar” defined by {z : d(z, ∂Ω) < ε}, and
let Ω−

ε = Ωε ∩ Ω. Then for sufficiently small ε the following are equivalent:

(i) Ω
c

is connected,

(ii) Ωε is connected,

(iii) Ω−
ε is connected.

[Hint: For instance to see why (ii) or (iii) implies (i), suppose P1 and P2 are two
points in Ω

c
, and let Γ1 and Γ2 denote the connected components of Ω

c
which

contain P1 and P2 respectively. Connect P1 to a point Q1 on ∂Ω ∩ Γ1, and P2 to
a point Q2 on ∂Ω ∩ Γ2. Since Ω−

ε is connected one can then connect Q1 to Q2 by
a path in Ω

c
.

Conversely, to show that (i) implies (iii) for example, let A be a point in Ω and
B a point in Ω

c
. If P0 and P1 belong to ∂Ω, let γ0 be any path starting at A

traveling in Ω, passing through P0, then traveling in Ωc ending at B. Similarly, let
γ1 be path connecting A to B passing through P1. These paths can be constructed
because both Ω and Ω

c
are connected. Then, since Cn is simply-connected, deform

the path γ0 into γ1, and denote such transformation by s �→ γs with 0 ≤ s ≤ 1. To
conclude, consider the intersection of γs with ∂Ω.]

12. Let Ω be a simply connected bounded region in C1 with a boundary of class C1.
Suppose F0 is a given continuous function on ∂Ω. Show that a necessary and
sufficient condition that there is an F , holomorphic in Ω, continuous on Ω so that
F = F0 on ∂Ω is that

R

∂Ω
znF0(z) dz = 0, for n = 0, 1, 2, . . . .
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[Hint: One direction is clear from Cauchy’s theorem. For the converse define

F±(z) = 1
2πi

R

∂Ω

F0(ζ)
ζ−z

dζ, according to whether z ∈ Ω or z ∈ Ω
c
. Now the hypothe-

sis implies that F+(z) = 0, z ∈ Ω
c
. Also F−(z) − F+(z̃) → F0(ζ), z → ζ if ζ ∈ ∂Ω,

z ∈ Ω, the segment [z, ζ] is normal to the tangent line of ∂Ω at ζ, and z̃ is the re-
flection of z across that line. That is, z̃+z

2
= ζ, z̃ ∈ Ω

c
. The convergence asserted

is related to the expression of the delta function given by iπδ = 1
2

“

1
x−i0

− 1
x+i0

”

,

in Section 2 of Chapter 3.]

13. Show that with an additional change of variables, that is, introducing complex
coordinates, the canonical representations (16) and (17) of the boundary can be
simplified to state

yn =

n−1
X

j=1

λj |zj |2 + o(|z′|2), for z′ → 0.

[Hint: Consider the change of variables zn �→ zn − zn(c1z1 + · · · + cn−1zn−1 + Dzn),
zj �→ zj , 1 ≤ j ≤ n − 1, for suitable constants c1, . . . , cn−1.]

14. The fact that when n = 1 there are no local holomorphic invariants at bound-
ary points is indicated by the following fact. Suppose γ is a Ck curve in C1.
Then for every z0 ∈ γ, there is a holomorphic bijection Φ of a neighborhood of
z0 to a neighborhood of the origin, so that Φ(γ) is the curve {y = ϕ(x)}, with
ϕ(x) = o(xk) as x → 0.

[Hint: Suppose y = a2x
2 + · · · + akxk + o(xk) as x → 0, and consider Φ−1 defined

by Φ−1(z) = z + i
“

Pk
j=2 ajz

j
”

.]

15. Consider the hypersurface M in C3 given by M = {Im(z3) = |z1|2 − |z2|2}.
Show that M has the remarkable property that any holomorphic function F defined
in a neighborhood of M continues analytically into all of C3.

[Hint: Use Theorem 7.5 to find a fixed ball B centered at the origin so that F
continues into all of B. Then rescale.]

16. That the maximum principle of Theorem 6.1 does not hold in the case n = 1
can be seen as follows. Start with f(eiθ) ∈ C∞, so that f ≥ 0, f(eiθ) = 0 for |θ| ≤
π/2, f(eiθ) = 1 for 3π/4 ≤ |θ| ≤ π. Write f(eiθ) =

P∞
n=0 aneinθ +

Pn=−1
−∞ aneinθ,

G(z) =
P∞

n=0 anzn, and FN (z) = eNG(z). Verify that FN is continuous in the

closed disc |z| ≤ 1, |FN (eiθ)| = 1, for |θ| ≤ π/2 but |FN (z)| ≥ c1e
c2N(1−|z|) in the

closed disc, for two positive constants c1 and c2.

[Hint: G(z) = u + iv where u(r, θ) = f ∗ Pr, with Pr the Poisson kernel.]

17. Verify the following:

(a) The inverse of the mapping of U to the unit ball given in the Appendix is

zn = i
“

1−wn
1+wn

”

, and zk = wk
1+wn

, k = 1, . . . , n − 1.



318 Chapter 7. A GLIMPSE INTO SEVERAL COMPLEX VARIABLES

(b) For each (ζ, t) ∈ Cn−1 × R consider the following “translation” on Cn, r(ζ,t)

given by

r(ζ,t)(z
′, zn) = (z′ + ζ, zn + t + 2i(z′ · ζ) + i|ζ|2).

Then r(ζ,t) maps U and ∂U to themselves, respectively. Composing these
mappings leads to the composition formula

(ζ, t) · (ζ′, t′) = (ζ + ζ′, t + t′ + 2Im(ζ · ζ′
)).

Under this law Cn−1 × R becomes the “Heisenberg group.”

(c) U (as well as ∂U) is invariant under the “non-isotropic” dilations (z′, zn) →
(δz′, δ2zn), δ > 0.

(d) Both U and ∂U are invariant under the mappings (z′, zn) �→ (u(z′), zn),
where u is a unitary mapping of Cn−1.

18. Define Hλ to be the space of functions f holomorphic in Cn−1, for which

Z

Cn−1
|f(z)|2e−4πλ|z|2 dm(z) = ‖f‖2

Hλ
< ∞.

Show that:

(a) Hλ is trivial if λ ≤ 0.

(b) Hλ is complete in the indicated norm, so Hλ is a Hilbert space.

(c) Define Pλ(f)(z) =
R

Cn−1 f(w)Kλ(z, w)e−4πλ|w|2 dm(w), where Kλ(z, w) =

(4λ)n−1e4πλz·w.

Then Pλ is the orthogonal projection of L2(e−4πλ|w|2dm(w)) to Hλ.

[Hint: Show that convergence in the norm Hλ implies uniform convergence on
compact subsets of Cn−1, using Lemma 8.2.]

19. Prove:

(a) The space H in Section 8.1, is complete, and hence is a Hilbert space.

(b) Show that the Cauchy integral f �→ C(f) gives the orthogonal projection
from L2(∂U , dβ) to the linear space of functions F0 that arise as limε→0 Fε,
for F ∈ H2(U).

[Hint: For (a), use the previous exercise.]
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10 Problems

The problems below are not intended as exercises for the reader but are
meant instead as a guide to further results in the subject. Sources in
the literature for each of the problems can be found in the “Notes and
References” section.

1.∗ Suppose f = f(z1, . . . , zn) is defined in a region Ω ⊂ Cn, and for each j, 1 ≤
j ≤ n, the function f is holomorphic in zj with the other variables fixed. Then
f is holomorphic in Ω. This was shown at the start of the chapter when f is
continuous, and the point of this problem is that no condition on f is required
besides the analyticity in each separate variable.

An important ingredient in the proof of this result is an application of the Baire
category theorem.

2.∗ Assume f is holomorphic in a neighborhood of the origin and f(0) = 0. Let
f(z) =

P

aαzα be the power series expansion of f valid near the origin. The order
of the zero (at z = 0) is the integer k that is the smallest |α|, for which aα �= 0.
Then, after a linear change of variables, we can write f(z) = c(z)P (z) near the
origin, where P (z) = zk

n + ak−1(z
′)zk−1

n + · · · + a0(z
′) with (z′, zn), and c(z) �= 0

while ak−1(0) = · · · = a0(0) = 0. This result is the Weierstrass preparation
theorem.

[Hint: Assume that our coordinate system (z′, zn) ∈ Cn−1 × C is such that f(0, zn) =
zk

n. Then by Rouché’s theorem we can choose ε, r > 0, so that zk → f(z′, zk) has k
zeroes inside the disc |zk| ≤ r, but is non-vanishing on the boundary, for all |z′| < ε.
Let γ1(z

′), γ2(z
′), . . . , γk(z′) be an arbitrary ordering of these zeroes. Then the

symmetric functions σ1(z
′) =

Pk
�=1 γ�(z

′), σ2(z
′) =

P

m<� γ�(z
′)γm(z′), . . . , are

holomorphic in z′, for |z′| < ε. This follows since the sums sm(z′) =
Pk

�=1(γ�(z
′))m,

1 ≤ m ≤ k, have this property because they are given by the formula

sm(z′) =
1

2πi

Z

|w|=r

wm (∂f/∂w)(z′, w)

f(z′, w)
dw.

Now we need only take ak−j(z
′) = (−1)jσj(z

′), and the result holds for P (z) =
zk

n + ak−1(z
′)zk−1 + · · · + a0(z

′).]

3.∗ The original proof of Theorem 4.1 represented F in terms of F0 by Green’s
theorem via the “Bochner-Martinelli integral.” The result then held for F0 merely
of class C1.

4.∗ We are concerned with the problem

(42) ∂u = f, on Ω,

where Ω is a bounded region in Cn with C∞ boundary and f is given in Ω with
∂f = 0 there.

(a) If Ω is pseudo-convex, and f ∈ C∞(Ω) then there is u ∈ C∞(Ω) that solves (42).
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(b) The “normal” solution (if it exists) is defined as the (unique) solution u in
L2(Ω) for which

Z

Ω

uF dm(z) = 0

for all F that are holomorphic in Ω and are in L2 there. For Ω that are
strongly pseudo-convex (and many other classes of Ω) whenever f ∈ C∞(Ω),
the normal solution u also belongs to C∞(Ω). This results from the study
of the “∂-Neumann problem.”

5.∗ Domains of holomorphy. A domain of holomorphy is a region Ω with the
property that there exists a holomorphic function F so that for every z0 ∈ ∂Ω,
the function F cannot be continued into some ball centered at z0. If Ω is a
domain of holomorphy and has boundary of class C2, then Ω is pseudo-convex, by
Theorem 7.5. Conversely, it can be shown that if Ω is pseudo-convex, then it is a
domain of holomorphy.

6.∗ The converse to Theorem 8.7 holds. If f is a distribution with compact support
so that C(f)(z) is analytic near z = 0 then L(U) = f is locally solvable near the
origin.

This is proved by finding a kernel K so that the convolution operator T (f) =
f ∗ K on the Heisenberg group is a relative inverse to L in the sense that LT (f) =
f − C(f). Then write f = f − C(f) + C(f) = f1 + f2, with f1 = f − C(f) and
f2 = C(f). We can solve L(U1) = f1 by what has just been asserted, and we
can solve L(Uu2) = f2 locally by the Cauchy-Kowaleski theorem, since f2 is real-
analytic at the origin.



8 Oscillatory Integrals in
Fourier Analysis

The origin of my devotion to these problems is after I
attended in 1839 Nichol’s Senior Natural Philosophy
class, I had become filled with the utmost admira-
tion for the splendor and poetry of Fourier... I asked
Nichol if he thought I could read Fourier. He replied
‘perhaps.’ He thought the book a work of most tran-
scendent merit. So on the 1st of May... I took Fourier
out of the University Library; and in a fortnight I had
mastered it – gone right through it.

W. Thompson (Kelvin), 1840

This result might also have been obtained from the
integral U in its original shape, namely,
R∞
0

cos(x3 − nx) dx ... If x1 be the positive value of
x which renders x3 − nx a minimum, we have x1 =

3− 1
2 n

1
2 . Let the integral U be divided into three parts,

by integrating separately from x = 0 to x = x1 − a,
from x = x1 − a to x = x1 + b, and from x = x1 + b
to x = ∞; then make n infinite...

G. G. Stokes, 1850

The study of oscillatory integrals and their asymptotics has been a
vital part of harmonic analysis from the beginnings of the subject. The
Fourier transform and the attendant Bessel functions provided initial
examples of such oscillatory integrals. One should also note the study of
asymptotics in the early works of Airy, Lipschitz, Stokes, and Riemann.
In the work of the last two, the principle of stationary phase appears,
if only implicitly; for Stokes it was in a reexamination of Airy’s integral
and for Riemann it was in the calculation of certain Fourier series. This
principle was then used more generally by Kelvin in an 1887 paper on
water waves. The application of these ideas to number theory and lattice
point problems was initiated in the first quarter of the next century by
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Voronoi and van der Corput, among others.
Given this long history it is an interesting fact that only relatively re-

cently (1967) did one realize the possibility of restriction theorems for the
Fourier transform, and the relation of the above mentioned asymptotics
to differentiation theory and maximal functions had to wait another ten
years to come to light.

Here we present an introduction to the development of some of these
ideas. Of importance to us is the bearing of certain geometric consider-
ations (involving curvature) on the decay of the Fourier transform and
these are explained by the behavior of oscillatory integrals.

Two pillars of the theory are: averaging operators, and restriction
theorems for the Fourier transform. Once we have described some basic
facts about these, we apply the results of the restriction theorems to
partial differential equations of “dispersion” type. We also reexamine
the Radon transform, emphasizing its common traits with the averaging
operator. Finally, we turn to the problem of counting lattice points and
see what the ideas of oscillatory integrals teach us.

1 An illustration

We begin with a simple example that hints at the role of curvature in
harmonic analysis. The setting is Rd with d = 3, and we consider the
averaging operator A that gives for each function f its average over
the sphere of radius 1 centered at x. It can be written as

A(f)(x) =
1
4π

∫
S2

f(x − y) dσ(y),

with dσ the induced Lebesgue measure on the sphere S2 = {x ∈ R3 :
|x| = 1}. (See Book III, Chapter 6 for the definition and properties
of dσ.)

The unexpected fact about the operator A is that it smooths f in
several senses, the simplest one being that when f ∈ L2(R3), then A(f)
will have first derivatives also in L2. This is expressed in the inequality

(1)
∥∥∥∥ ∂

∂xj
A(f)

∥∥∥∥
L2

≤ c‖f‖L2 , j = 1, 2, 3.

More precisely, this estimate states that for f ∈ L2, the convolution
1
4π (f ∗ dσ), which is itself an L2 function (see for instance Exercise 17 in
Chapter 1), has first derivatives taken in the sense of distributions that
are L2 functions and that satisfy (1).
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Now these assertions are a direct consequence of a corresponding esti-
mate for the Fourier transform d̂σ of the measure dσ, namely

d̂σ(ξ) =
∫

S2
e−2πix·ξ dσ(x).

In the present case one knows d̂σ explicitly:

d̂σ(ξ) =
2 sin(2π|ξ|)

|ξ| ,

from which it is evident1 that

(2) |d̂σ(ξ)| ≤ c(1 + |ξ|)−1.

Now simple manipulations of distributions and their Fourier transforms
(see Section 1.5 in Chapter 3) show that (f ∗ dσ)∧ = f̂ d̂σ, and

(
∂

∂xj
A(f))∧(ξ) =

1
4π

2πiξj f̂(ξ)d̂σ(ξ),

so (1) follows from (2) and Plancherel’s theorem.

The results above have extensions to d dimensions for all d > 1. We
define the averaging operator A in Rd by

A(f) =
1

σ(Sd−1)

∫
Sd−1

f(x − y) dσ(y),

with dσ the induced measure on the unit sphere Sd−1. We also recall
the Sobolev space L2

k described in Section 3.1 of Chapter 1.

Proposition 1.1 The mapping f 	→ A(f) is bounded from L2(Rd) to
L2

k(Rd), with k = d−1
2 .

Note that if d is odd (and hence k is integral), this means∑
|α|≤k

‖∂α
x A(f)‖L2 ≤ c‖f‖L2 .

The proof of that proposition relies on properties of Bessel functions
which we do not prove here. However, these may be found in Book I,

1This formula follows by integrating over S2, using polar coordinates; see Chapter 6
in Book III.
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Chapter 6, Problem 2, and Book II, Appendix A. In any case, we will see
below that these results can be deduced without the use of the theory of
Bessel functions.

Proof. The proposition is a consequence of the identity

(3) d̂σ(ξ) = 2π|ξ|−d/2+1Jd/2−1(2π|ξ|),

where d̂σ(ξ) =
∫

Sd−1 e−2πix·ξ dσ(x), and Jm is the Bessel function of or-
der m. In turn this is just another version of the formula for the Fourier
transform of a radial function f(x) = f0(|x|), given by f̂(ξ) = F (|ξ|),
with

(4) F (ρ) = 2πρ−d/2+1

∫ ∞

0

Jd/2−1(2πρr)f0(r)rd/2 dr,

from which (3) follows by a simple limiting argument. From (3) we obtain
the key decay estimate

(5) |d̂σ(ξ)| ≤ O(|ξ|− d−1
2 ) as |ξ| → ∞.

Indeed, (5) is deducible from (3) and the asymptotic behavior of the
Bessel functions that guarantees that Jm(r) = O(r−1/2) as r → ∞.

Once (5) is established the proof of the proposition is finished via
Plancherel’s theorem as in the case d = 3.

The following comments may help put the result in perspective.

• It is natural to ask if it is some special feature of the sphere among
hypersurfaces (for instance, its symmetry with respect to rotations)
that guarantee the crucial decay estimate (5), or does that phe-
nomenon hold in more general circumstances for hypersurfaces M?
We will see below that the analog of (5) is true when an appropriate
“curvature” of M is non-vanishing.

• Moreover, simple examples show that anything like (5) fails com-
pletely when M is “flat” (Exercise 2), and more generally, whatever
decay one might hope for d̂σ(ξ) is linked to the degree to which the
curvature of M does not vanish.

• One can also observe that the degree of smoothing k = (d − 1)/2
asserted in Proposition 1.1 can only happen in the context of L2,
and not for Lp, p �= 2. (A result in this direction is outlined in
Exercise 7.)
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• Finally, it is interesting to remark that when d = 3 the averaging
operator furnishes the solution of the wave equation �xu(x, t) =
∂2

∂t2 u(x, t), (x, t) ∈ R3 × R with u(x, 0) = 0 and ∂u
∂t (x, 0) = f(x).

The solution for time t = 1 is given by u(x, 1) = A(f)(x), and for
other times it can be obtained by rescaling. (See Chapter 6 in
Book I, where A is denoted by M .)

2 Oscillatory integrals

Certain basic facts about oscillatory integrals will allow us to generalize
the decay estimate (5) we have obtained for the sphere. What we have
in mind are the integrals of the form

(6) I(λ) =
∫

Rd

eiλΦ(x)ψ(x) dx,

and the question of their behavior for large λ.
The function Φ is called the phase and ψ the amplitude. In what

follows we assume that both the phase Φ and the parameter λ are real-
valued, but ψ may be allowed to be complex-valued.2

There is a basic principle underlying the analysis, that of stationary
phase: in so far as the derivative (or gradient) of the phase is non-
vanishing, the integral is rapidly decreasing in λ (and thus negligible);
thus the main contribution of (6) comes from those points x where the
gradient of Φ vanishes; so when d = 1 these are the x for which Φ′(x) = 0.

The first observation along these lines is merely an extension of a
simple estimate for the Fourier transform (effectively the case Φ(x) =
2π ξ

|ξ| · x, and λ = |ξ|). We assume here that Φ and ψ are C∞ functions,
and that ψ has compact support.

Proposition 2.1 Suppose |∇Φ(x)| ≥ c > 0 for all x in the support of ψ.
Then for every N ≥ 0

|I(λ)| ≤ cNλ−N , whenever λ > 0.

Proof. We consider the following vector field

L =
1
iλ

d∑
k=1

ak
∂

∂xk
=

1
iλ

(a · ∇),

2However in some circumstances it is of interest to allow Φ or λ to be complex valued.
This arises in particular when d = 1 and Φ (and ψ) are analytic and the integral (6) is
treated by deforming contours of integration, as in Appendix A of Book II.
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with a = (a1, . . . , ad) = ∇Φ
|∇Φ|2 . Then the transpose Lt of L is given by

Lt(f) = − 1
iλ

d∑
k=1

∂

∂xk
(akf) = − 1

iλ
∇ · (af).

Because of our assumption on ∇Φ, the aj and all their partial derivatives
are each bounded on the support of ψ.

Now observe that L(eiλΦ) = eiλΦ, therefore LN (eiλΦ) = eiλΦ for every
positive integer N . Thus

I(λ) =
∫

Rd

LN (eiλΦ)ψ dx =
∫

Rd

eiλΦ(Lt)N (ψ) dx.

Taking absolute values in the last integral gives |I(λ)| ≤ cNλ−N for pos-
itive λ, thus proving the proposition.

The next two assertions are limited to dimension one, where we can ob-
tain more precise conclusions with simpler hypotheses. In this situation
it is appropriate to consider first the integral I1 given by

(7) I1(λ) =
∫ b

a

eiλΦ(x) dx,

where a and b are any real numbers. Thus in (7) there is no amplitude
ψ present, (or put another way, ψ(x) = χ(a,b)(x)). Here we assume only
that Φ is of class C2, and Φ′(x) is monotonic (increasing or decreasing),
while |Φ′(x)| ≥ 1 in the interval [a, b].

Proposition 2.2 In the above situation, |I1(λ)| ≤ cλ−1, all λ > 0, with
c = 3.

What is important here is not the specific value of c, but that it is
independent of the length of the interval [a, b]. Note that the order of
decrease in λ cannot be improved, as the simple example Φ(x) = x, and
I1(λ) = 1

iλ(eiλb − eiλa) shows.

Proof. The proof uses the operator L that occurred in the previous
proposition. We may assume Φ′ > 0 on [a, b], because the case when
Φ′ < 0 follows by taking complex conjugates. So L = 1

iλΦ′(x)
d
dx , and

Lt(f) = − 1
iλ

d
dx(f/Φ′), hence

I1(λ) =
∫ b

a

L(eiλΦ) dx =
∫ b

a

eiλΦLt(1) dx +
[
eiλΦ 1

iλΦ′

]b

a

,
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and now (because we do not have an amplitude ψ that vanishes at the
end-points) there are boundary terms. Since |Φ′(x)| ≥ 1, these two terms
contribute a total majorized by 2/λ. But the integral on the right-hand
side is clearly bounded by∫ b

a

|Lt(1)| dx =
1
λ

∫ b

a

∣∣∣∣ d

dx

(
1
Φ′

)∣∣∣∣ dx.

However Φ′ is monotonic and continuous while |Φ′(x)| ≥ 1, so d
dx (1/Φ′)

does not change sign in the interval [a, b]. Therefore∫ b

a

∣∣∣∣ d

dx

(
1
Φ′

)∣∣∣∣ dx =

∣∣∣∣∣
∫ b

a

d

dx

(
1
Φ′

)
dx

∣∣∣∣∣ =
∣∣∣∣ 1
Φ′(b)

− 1
Φ′(a)

∣∣∣∣ .
Altogether then |I1(λ)| ≤ 3/λ and the proposition is proved.

Remark. If in the above proposition we assumed that |Φ′(x)| ≥ µ (in-
stead of |Φ′(x)| ≥ 1), then we could get |I1(λ)| ≤ c(λµ)−1. This is obvi-
ous on replacing Φ by Φ/µ, and λ by λµ in the proposition.

Next we ask what happens to I1(λ) when Φ′(x0) = 0 for some x0, if
we make the assumption that the critical point x0 is non-degenerate
in the sense that Φ′′(x0) �= 0. A good indication of what we may expect
comes from the case Φ(x) = x2 (where the critical point is the origin).
Here one has∫

eiλx2
ψ(x) dx = c0λ

−1/2 + O(|λ|−3/2), as λ → ∞,

and more generally

(8)
∫

eiλx2
ψ(x) dx =

N∑
k=0

ckλ−1/2−k + O
(|λ|−3/2−N

)
,

for every N ≥ 0. To see (8) we start with the formula for the Fourier
transform of the Gaussian that states∫

R

e−πsx2
ψ(x) dx = s−1/2

∫
R

e−πξ2/sψ̂(ξ) dξ.

Now since both sides have analytic continuations for Re(s) > 0, the pass-
ing to the limit, s = −iλ/π yields∫

eiλx2
ψ(x) dx =

(
πi

λ

)1/2 ∫
e−iπ2ξ2/λψ̂(ξ) dξ.
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So the expansion eiu2
=

∑N
k=0

(iu2)k

k! + O(|u|2N+2) gives us (8) with ck =
(iπ)1/2 ik

22kk!
ψ(2k)(0). This indicates that a decrease of order O(λ−1/2) can

be expected when the phase has a critical point which is non-degenerate.
There is a version of Proposition 2.2 for the second derivative that

takes this observation into account: it is the following estimate of van
der Corput. Here Φ is again supposed to be of class C2 in the interval
[a, b], but now we assume that |Φ′′(x)| ≥ 1 throughout the interval.

Proposition 2.3 Under the above assumptions, and with I1(λ) given
by (7) we have

(9) |I1(λ)| ≤ c′λ−1/2 for all λ > 0, with c′ = 8.

Again, it is not the exact value of c′ that matters, but that it is indepen-
dent of [a, b].

Proof. We may assume that Φ′′(x) ≥ 1 throughout the interval, be-
cause the case Φ′′(x) ≤ −1 follows from this by taking complex conju-
gates. Now Φ′′(x) ≥ 1 implies that Φ′(x) is strictly increasing, so if Φ has
a critical point in [a, b], it can have only one. Assume x0 is such a critical
point and break the interval [a, b] in three sub-intervals: the first is cen-
tered at x0 and is [x0 − δ, x0 + δ] with δ chosen momentarily. The other
two make up the complement and are [a, x0 − δ] and [x0 + δ, b]. Now the
first interval has length 2δ, so trivially the integral taken over that in-
terval contributes at most 2δ. On the interval [x0 + δ, b] we observe that
Φ′(x) ≥ δ (because Φ′′ ≥ 1) and so by Proposition 2.2 and the remark
that follows it, the integral contributes at most 3/(δλ); similarly for the
interval [a, x0 − δ]. Thus altogether I1(λ) is majorized by 2δ + 6/(δλ),
and upon choosing δ = λ−1/2 we get (9). Note that if Φ has no critical
points in [a, b] and/or one of the three intervals is smaller than indicated,
then each of the estimates holds a fortiori, and hence also the conclusion.

There is a similar conclusion when an amplitude ψ is present. We
suppose ψ is of class C1 in the interval [a, b].

Corollary 2.4 Assume Φ satisfies the hypotheses of Proposition 2.3.
Then

(10)

∣∣∣∣∣
∫ b

a

eiλΦ(x)ψ(x) dx

∣∣∣∣∣ ≤ cψλ−1/2,

where cψ = 8
(∫ b

a
|ψ′(x)| dx + |ψ(b)|

)
.
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Proof. Let J(x) =
∫ x

a
eiλΦ(u) du. We integrate by parts, using J(a) =

0. Then ∫ b

a

eiλΦ(x)ψ(x) dx = −
∫ b

a

J(x)
dψ

dx
dx + J(b)ψ(b),

and the result follows, because |J(x)| ≤ 8λ−1/2 for each x, by the propo-
sition.

As an illustration, we give a quick proof of the Bessel function estimate

(11) Jm(r) = O(r−1/2) as r → ∞

when m is a fixed integer. We have (see, for instance, Section 4 in
Chapter 6, Book I) that

Jm(r) =
1
2π

∫ 2π

0

eir sin xe−imx dx.

Here λ = r, Φ(x) = sinx, and ψ(x) = 1
2πe−imx. Now break the interval

[0, 2π] into two parts, according to whether | sin x| ≥ 1/
√

2 or | cos x| ≥
1/
√

2. The first part consists of two sub-intervals to which we may
apply the corollary, giving a contribution of O(r−1/2). The second part
is the sum of three sub-intervals to which one can apply a version of
Proposition 2.2 (analogous to the corollary), and this gives a contribution
of O(r−1) = O(r−1/2), as r → ∞.

In dimension d greater than 1, the fact is that there are no analogs of
the strict estimates given by Propositions 2.2 and 2.3. However, there is
a workable version of the second derivative test of Proposition 2.3 that
can be established. We now take this up and then apply it below.

We consider phase and amplitude functions Φ and ψ that are C∞ and
we suppose that ψ has compact support. We form the d × d Hessian
matrix of Φ, given by

{
∂2Φ

∂xj∂xk

}
1≤j,k≤d

, and abbreviated as ∇2Φ.

The main assumption will be that

(12) det{∇2Φ} �= 0 on the support of ψ.

Proposition 2.5 Suppose (12) holds. Then

(13) I(λ) =
∫

Rd

eiλΦ(x)ψ(x) dx = O(λ−d/2), as λ → ∞.
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We estimate I(λ) via |I(λ)|2 = I(λ)I(λ). This simple trick allows us to
bring in the Hessian of Φ (that is, second derivatives) in terms of first
derivatives of differences of Φ, an idea that has many variants.

Before we exploit this artifice we must take a precaution: we will
assume that the support of ψ is sufficiently small, in particular, that it
lies in a ball of fixed radius ε, where ε will be chosen in terms of Φ. Once
the estimate (13) has been proved for such ψ, we can obtain (13) for
general ψ as a finite sum of these estimates, by using a partition of unity
to cover the support of the original ψ.

Now

I(λ)I(λ) =
∫

Rd

∫
Rd

eiλ[Φ(y)−Φ(x)]ψ(y)ψ(x) dx dy.

Here we make the change of variables y = x + u (with x fixed), that is,
u = y − x. Then the double integral becomes∫

Rd

∫
Rd

eiλ[Φ(x+u)−Φ(x)]ψ(x, u) dx du,

where ψ(x, u) = ψ(x + u)ψ(x) is a C∞ function of compact support. No-
tice that ψ(x, u) is supported where |u| ≤ 2ε, since both x and y are
restricted to range in the same ball of radius ε. Therefore we have
|I(λ)|2 =

∫
Rd Jλ(u) du, where

Jλ(u) =
∫

Rd

eiλ[Φ(x+u)−Φ(x)]ψ(x, u) dx.

We claim that

(14) |Jλ(u)| ≤ cN (λ|u|)−N , for every N ≥ 0.

This is in the spirit of Proposition 2.1, and the proof of (14) follows the
approach of that proposition.

We use the vector field

L =
1
iλ

(a · ∇)

and its transpose Lt given by Lt(f) = − 1
iλ∇ · (af). Here

a =
∇x(Φ(x + u) − Φ(x))

|∇x(Φ(x + u) − Φ(x))|2 =
b

|b|2 ,

with b = ∇x(Φ(x + u) − Φ(x)).
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We have

(15) |b| = |∇x(Φ(x + u) − Φ(x))| ≈ |u|,

if |u| is sufficiently small, in particular if |u| ≤ 2ε.3

The upper estimate |b| � |u| is clear since Φ is smooth. For the
lower estimate observe that by Taylor’s theorem, ∇x(Φ(x + u) − Φ(x)) =
∇2Φ(x) · u + O(|u|2). However our assumption (12) means that the lin-
ear transformation represented by ∇2Φ(x) is invertible, so |∇2Φ(x) · u| ≥
c|u| for some c > 0. Therefore (15) is established if ε has been taken small
enough. Observe also that |∂α

x b| ≤ cα|u|, for all α, and hence, using (15)
we see that

(16) |∂α
x a| ≤ cα|u|−1 for all α,

and as a result |(Lt)N (ψ(x, u))| ≤ cN (λ|u|)−N for every positive inte-
ger N .

However,

Jλ(u) =
∫

Rd

LN
(
eiλ[Φ(x+u)−Φ(x)]

)
ψ(x, u) dx

=
∫

Rd

eiλ[Φ(x+u)−Φ(x)](Lt)N (ψ(x, u)) dx,

and thus by (16), we have |Jλ(u)| ≤ cN (λ|u|)−N , proving (14).
With this estimate established we take N = 0, and N = d + 1 in (14)

and see that

|I(λ)|2 ≤
∫

Rd

|Jλ(u)| du ≤ c′
∫

Rd

du

(1 + λ|u|)d+1
= cλ−d,

as is evident by rescaling the last integral. This proves (13) and the
proposition.

For later applications, it is of interest to elaborate some aspects of
Proposition 2.5.

(i) The conclusion requires only that Φ is of class Cd+2 and ψ of class
Cd+1. In fact, as the patient reader may verify, in the estimate |I(λ)| ≤
Aλ−d/2, the bound A depends only on the Cd+2 norm of Φ, the Cd+1

norm of ψ, the lower bound for |det{∇2Φ}|, and the diameter of the
support of ψ.

3Here we use the notation X � Y and X ≈ Y to denote the fact that X ≤ cY and
c−1Y ≤ X ≤ cY respectively, for appropriate constants c.
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Similarly, the bound CN appearing in Proposition 2.1 depends only on
the CN+1 norm of Φ, the CN norm of ψ, a lower bound for |∇Φ|, and
the diameter of the support of ψ.

(ii) There is a version of Proposition 2.5 in which we assume only that
the rank of the Hessian of Φ is greater than or equal to m, 0 < m ≤ d,
on the support of ψ. In that case the conclusion is

(17) I(λ) = O(λ−m/2), as λ → ∞.

This may be deduced from the case m = d, already established. One
proceeds as follows. For each x0, the symmetric matrix ∇2Φ(x0) can
be diagonalized by introducing (via a rotation) a new coordinate sys-
tem x = (x′, x′′) ∈ Rm × Rd−m, so that ∇2Φ(x0), when restricted to
Rm, has a non-vanishing determinant. Hence for a small open ball B
centered at x0, the same is true for ∇2Φ(x) when x ∈ B. Now for
each fixed x′′ ∈ Rd−m we use the proposition (where d = m) to obtain
| ∫

Rm eiλΦ(x′,x′′)ψB(x′, x′′) dx′| ≤ Aλ−m/2, with ψB supported in B. Af-
ter integrating in x′′ and summing over finitely many such balls that
cover the support of ψ, we obtain (17).

3 Fourier transform of surface-carried measures

We will now study surface-carried measures and their Fourier transforms.
Our goal is a generalization of the estimate (5), which we had seen in
the case of the sphere.

Recall from Section 4 of the previous chapter that given a point x0 on
a C∞ hypersurface4 M we dealt with a new coordinate system centered
at x0 (given via a translation and rotation of the initial coordinates),
written as x = (x′, xd) ∈ Rd−1 × R, so that in a ball centered at x0, the
surface M is represented as

(18) M = {(x′, xd) ∈ B̃ : xd = ϕ(x′)}
where B̃ is the corresponding ball centered at the origin. We can also
arrange matters so that the function ϕ, which is C∞, satisfies ϕ(0) = 0,
and ∇x′ϕ(x′)|x′=0.

Now this representation gives a defining function ρ1 of M , with ρ1(x) =
ϕ(x′) − xd. Among the various possible defining functions of M near x0,
we now choose one, ρ, which is normalized by the condition |∇ρ| = 1
on M . This can be achieved by setting ρ = ρ1/|∇ρ1| near M . With such

4The thrust of the C∞ requirement is that M is of class Ck for sufficiently large k;
later we will be more specific about how large k must be taken.
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a normalized defining function, the curvature form of M at x ∈ M
(also known as the second fundamental form) is the form

(19)
∑

1≤k,j≤d

ξkξj
∂2ρ

∂xk∂xj
(x),

restricted to vectors
∑

ξk
∂

∂xk
that are tangent to M at x. The reader

might note here the parallel between the curvature just described in terms
of a quadratic form given by the defining function, and its complex analog
(the Levi form) that was important in the previous chapter.

It is straightforward to verify that this form does not depend on the
choice of a normalized defining function.

Now reverting to (18) and using ∇x′ϕ(x′)|x′=0 = 0 we see that

ϕ(x′) =
1
2

∑
1≤k,j≤d−1

akjxkxj + O(|x′|3),

and the curvature form is represented by the (d − 1) × (d − 1) matrix{
∂2ϕ

∂xk∂xj

}
= {akj}, 1 ≤ k, j ≤ d − 1. Now if we make an appropriate

rotation in the x′ ∈ Rd−1 space and relabel the coordinates accordingly
we have

ϕ(x′) =
1
2

d−1∑
j=1

λjx
2
j + O(|x′|3).

The eigenvalues λj are called the principal curvatures of M (at x0) and
their product (the determinant of the matrix) is the total curvature or
Gauss curvature of M .5

Notice that there is an implicit choice of signs (or “orientation”) that
has been made. The signs of the principal curvatures can be reversed if
we use −ρ instead of ρ as the defining function of M .

We mention briefly several examples.

Example 1. The unit sphere in Rd. If we start with ρ1 = |x|2 − 1
as a defining function, then ρ = 1

2ρ1 is “normalized.” All the principal
curvatures are equal to 1.

Example 2. The parabolic hyperboloid {x3 = x2
1 − x2

2} in R3. This
hypersurface has non-vanishing principal curvatures of opposite sign at
each point.

5There is a neat geometric interpretation of the Gauss curvature in terms of “Gauss
map,” see Problem 1.
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Example 3. The circular cone {x2
d = |x′|2, xd �= 0} in Rd. This hy-

persurface has d − 2 identical non-vanishing principal curvatures at each
point. The calculations involved are outlined in Exercise 9.

Next we consider the induced Lebesgue measure on M , the measure dσ
that has the following property: for any continuous function f on M with
compact support ∫

M

f dσ = lim
ε→0

1
2ε

∫
d(x,M)<ε

F dx.

Here F is a continuous extension of f into a neighborhood of M and
{x : d(x,M) < ε} is the “collar” of points at distance < ε from M . Now,
as is well-known (see also Exercise 8), in our coordinate system dσ =
(1 + |∇x′ϕ|2)1/2 dx′, in the sense that

(20)
∫

M

f dσ =
∫

Rd−1
f(x′, ϕ(x′))(1 + |∇x′ϕ|2)1/2 dx′.

With this we can say that a measure dµ is a surface-carried measure
on M with smooth density if dµ is of the form dµ = ψdσ, where ψ is
a C∞ function of compact support.

We now have all the ingredients necessary to state the main result
concerning the Fourier transform of dµ defined by

d̂µ(ξ) =
∫

M

e−2πix·ξ dµ.

Note that d̂µ(ξ) is bounded on Rd since the measure dµ is finite.

Theorem 3.1 Suppose the hypersurface M has non-vanishing Gauss
curvature at each point of the support of dµ. Then

(21) |d̂µ(ξ)| = O(|ξ|−(d−1)/2) as |ξ| → ∞.

Corollary 3.2 If M has at least m non-vanishing principal curvatures
at each point of the support of dµ, then

|d̂µ(ξ)| = O(|ξ|−m/2) as |ξ| → ∞.

First some preliminary remarks. We can assume that the support
of ψ is centered in a sufficiently small ball (so that in particular the
representation (18) of M holds in it), because we can always write a
given ψ as a finite sum of ψj of that type. Next, all our estimates can
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be made in the coordinate system used in (18) since the transformations
of the x-space Rd used in that change of coordinates involves only a
translation and a rotation. The Fourier transform d̂µ(ξ) then undergoes
a multiplication by a factor of absolute value 1 (a character) and the
same rotation in the ξ variable. Thus the estimate (21) is unchanged.

Now because of (20) we have

(22) d̂µ(ξ) =
∫

Rd−1
e−2πi(x′·ξ′+ϕ(x′)ξd)ψ̃(x′) dx′,

with ξ = (ξ′, ξd) ∈ Rd and ψ̃ the C∞ function with compact support
given by

ψ̃(x′) = ψ(x′, ϕ(x′))(1 + |∇x′ϕ|2)1/2.

We divide the ξ space into two parts: the “critical” region, the cone
|ξd| ≥ c|ξ′|, where c can be taken to be any fixed positive constant; and
the subsidiary region, |ξd| < c|ξ′|, but here we need to assume that in
fact c is small.

In the first region we may suppose that ξd is positive, since the case
when ξd is negative follows by complex conjugation, or can be done
similarly, and we write the exponent in the Fourier transform as

−2πi(x′ · ξ′ + ϕ(x′)ξd) = iλΦ(x′),

with the choice of λ = 2πξd, and Φ(x′) = −ϕ(x′) − x′·ξ′

ξd
. Observe that

∇2
x′Φ = −∇2

x′ϕ, and hence if the support of ψ is sufficiently small (which
means we are sufficiently close to x0), the determinant of the Hessian of Φ
is non-vanishing. This is because of the corresponding property of ϕ that
represents the non-vanishing of the curvature of M . Note also that Φ
has, for any fixed N , a CN norm that is uniformly bounded as ξ ranges
over the set |ξd| ≥ c|ξ′|. We can now apply Proposition 2.5 (with Rd−1

in place of Rd) and get

|d̂µ(ξ)| = O(λ− d−1
2 ) = O(ξ−

d−1
2

d ) = O(|ξ|− d−1
2 ),

since here |ξd| ≥ c|ξ′|.
In the complementary region |ξd| < c|ξ′| we write λ = 2π|ξ′|, and Φ(x′) =

−ϕ(x′) ξd

|ξ′| − x′·ξ′

|ξ′| . Note that |∇x′

(
x′·ξ′

|ξ′|
)
| = 1, while |ξd|

|ξ′| |∇x′ϕ| ≤ 1/2

if c is so small that c|∇x′ϕ| ≤ 1/2 throughout the support of ψ. So if
we invoke Proposition 2.1, the fact that |∇x′Φ| ≥ 1/2 yields for each
positive N ,

|d̂µ(ξ)| = O(λ−N ) = O(|ξ′|−N ) = O(|ξ|−N )
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when ξ is in the second region. Taking N ≥ d−1
2 completes the proof of

the theorem.
The corollary can be proved by the same argument if one uses the

estimate (17) instead of (13).

Suppose that Ω is a bounded region whose boundary M = ∂Ω satisfies
the hypothesis of Theorem 3.1. If χΩ is the characteristic function of Ω,
then its Fourier transform has a decay that is one order better than that
of the corresponding surface-carried measure on its boundary.

Corollary 3.3 If M = ∂Ω has non-vanishing Gauss curvature at each
point, then

χ̂Ω(ξ) = O(|ξ|− d+1
2 ), as |ξ| → ∞.

Proof. Using an appropriate partition of unity we can write

χΩ =
N∑

j=0

ψjχΩ,

with each ψj a C∞ function of compact support; ψ0 is supported in
the interior of Ω, while each ψj , 1 ≤ j ≤ N , is supported in a small
neighborhood of the boundary in which the boundary is given as (18).
Now since ψ0χΩ = ψ0, it is clear that (ψ0χΩ)∧ is rapidly decreasing.
Next consider any (ψjχΩ)∧ for 1 ≤ j ≤ N . In analogy with (22), this
has the form ∫

xd>ϕ(x′)
e−2πi(x′·ξ′+xdξd)ψj(x′, ξd) dx′ dxd,

which is, after changing variables so that xd = u + ϕ(x′),

(23)
∫

Rd−1
e−2πi(x′·ξ′+ϕ(x′)ξd)Ψ(x′, ξd) dx′

where Ψ(x′, ξd) =
∫ ∞
0

e−2πiuξdψj(x′, u + ϕ(x′)) du. Note that Ψ(x′, ξd)
is a C∞ function in x′ of compact support, uniformly in ξd. When
|ξd| < c|ξ′|, the argument proceeds as before, giving an estimate O(|ξ|−N )
for each N ≥ 0. To deal with the situation when |ξd| ≥ c|ξ′| write

Ψ(x′, ξd) = − 1
2πiξd

∫ ∞

0

d

du
(e−2πiuξd)ψ(x′, u + ϕ(x)) du.

and integrate by parts, giving us an additional decay of O(1/|ξd|) =
O(1/|ξ|) in (23). This proves the corollary.
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Remark. In view of the comments following the proof of Proposition 2.5,
we see that the results of this section hold if the C∞ assumption we made
about M is replaced by the requirement that M is only of class Cd+2.

4 Return to the averaging operator

We consider here a more general averaging operator. Given a hyper-
surface M in Rd and a surface-carried measure dµ = ψdσ with smooth
density of compact support, we set

(24) A(f)(x) =
∫

M

f(x − y) dµ(y).6

We shall prove that under the proper assumptions on M , the operator A
regularizes f as a mapping from L2(Rd) to L2

k(Rd), and in addition that
it “improves” f in the sense that it takes Lp(Rd) to Lq(Rq), for some
q > p, if 1 < p < ∞.

Theorem 4.1 Suppose the Gauss curvature is non-vanishing at each
point x ∈ M in the support of dµ. Then

(a) The map A given by (24) takes L2(Rd) to L2
k(Rd), with k = d−1

2 .

(b) The map extends to a bounded linear transformation from Lp(Rd)
to Lq(Rd) with p = d+1

d , and q = d + 1.

Corollary 4.2 The Riesz diagram (see Section 2 in Chapter 2) of the
map A is the closed triangle in the (1/p, 1/q) plane whose vertices are
(0, 0), (1, 1) and ( d

d+1 , 1
d+1).

In fact, the Lp, Lq boundedness asserted in this corollary is optimal, as
is seen in Exercise 6.

Corollary 4.3 If we only assume that M has at least m non-vanishing
principal curvatures, then the same conclusions hold with k = m/2, and
p = m+2

m+1 , q = m + 2.

The proof of part (a) in the theorem is the same as that for the sphere
once we invoke the decay (21), which implies that (1 + |ξ|2)k/2d̂µ(ξ) is
bounded. Hence

‖A(f)‖L2
k

= ‖(1 + |ξ|2)k/2Âf(ξ)‖L2

= ‖(1 + |ξ|2)k/2f̂(ξ)d̂µ(ξ)‖L2

≤ c‖f̂‖L2 = c‖f‖L2 .

6Here we have omitted a normalizing factor in the definition of A, since the density ψ
is not necessarily positive.



338 Chapter 8. OSCILLATORY INTEGRALS IN FOURIER ANALYSIS

(1, 1)

( d
d+1 , 1

d+1 )

(0, 0)

1/q

1/p

Figure 1. Riesz diagram of the map A in Corollary 4.2

The proof of part (b) combines two aspects of the operator A via in-
terpolation, somewhat akin to the proof of the Hausdorff-Young theorem
in Section 2 of Chapter 2. First, there is an L1 → L∞ estimate. The in-
equality involved is merely one of size, involving only the absolute value
of our functions, but in order to get to it we have to “improve” the op-
erator A by “integrating” it (of order 1). This estimate does not depend
on the curvature of M .

Second, there is an L2 → L2 estimate. It comes, like part (a) of the
theorem, via Plancherel’s theorem together with Theorem 3.1, and it
allows us to “worsen” the operator A by essentially “differentiating” of
degree d−1

2 . The operator intermediate between the improved and the
worsened operators is A itself, and the resulting intermediate estimate is
then conclusion (b).

The scheme of the proof we have outlined in fact occurs in a number
of situations. To carry it out we need a version of the Riesz interpola-
tion theorem in which the operator in question is allowed to vary. The
proper framework for this is an analytic family of operators defined
as follows.7

For each s in the strip S = {a ≤ Re(s) ≤ b} we assume we are given
a linear mapping Ts taking simple functions on Rd to functions on Rd

that are locally integrable. We also suppose that for any pair of simple

7Here we state the results for the space Rd with Lebesgue measure. The same ideas
can be carried over to the setting of more general measure spaces as in Theorem 2.1 in
Chapter 2.
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functions f and g, the function

Φ0(s) =
∫

Rd

Ts(f)g dx

is continuous and bounded in S and analytic in the interior of S. We
further assume the two boundary estimates

sup
t∈R

‖Ta+it(f)‖Lq0 ≤ M0‖f‖Lp0 ,

and

sup
t∈R

‖Tb+it(f)‖Lq1 ≤ M1‖f‖Lp1 .

Proposition 4.4 With the above assumptions,

‖Tc‖Lq ≤ M‖f‖Lp ,

for any c with a ≤ c ≤ b, where c = (1 − θ)a + θb and 0 ≤ θ ≤ 1; and

1
p

=
1 − θ

p0
+

θ

p1
and

1
q

=
1 − θ

q0
+

θ

q1
.

Once we have formulated this result, we in fact observe that we can prove
it by essentially the same argument as in Section 2 in Chapter 2.

We write s = a(1 − z) + bz, so z = s−a
b−a , and the strip S is thereby

transformed into the strip 0 ≤ Re(z) ≤ 1. For f and g given simple
functions, we write fs = |f |γ(s) f

|f | and gs = |g|δ(s) g
|g| where we define

γ(s) = p
(

1−s
p0

+ s
p1

)
, and δ(s) = q

(
1−s
q′
0

+ s
q′
1

)
. We then check that

Φ(s) =
∫

Rd

Ts(fs)gs dx

is continuous and bounded in the strip S and analytic in the interior.
We then apply the three-lines lemma to Φ(s) and obtain the desired
conclusion as in the proof of Theorem 2.1 in Chapter 2.

Returning to the averaging operator A, we shall assume (as we may)
that the support of dµ has been chosen to lie in a ball for which M is
given in coordinates by (18).

Now the operators Ts we will consider are convolution operators

Ts = f ∗ Ks
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defined initially for Re(s) > 0, with

(25) Ks = γs|xd − ϕ(x′)|s−1
+ ψ0(x).

The following explains the several terms appearing in the definition of Ks.

• The factor γs equals s(s + 1) · · · (s + N)es2
.

The purpose of the product s(s + 1) · · · (s + N) will be clear mo-
mentarily, and the factor es2

is there to mitigate the growth of that
polynomial as Im(s) → ∞. Here N is fixed with N ≥ d−1

2 .

• The function |u|s−1
+ equals us−1 when u > 0 and equals 0 when

u ≤ 0.

• ψ0(x) = ψ(x)(1 + |∇x′ϕ(x′)|2)1/2, with ψ the density of dµ = ψdσ.

We note first that when Re(s) > 0, the function Ks is integrable over Rd.
Our main claim is then the following.

Proposition 4.5 The Fourier transform K̂s(ξ) is analytically continu-
able into the half-plane −d−1

2 ≤ Re(s) and satisfies

(26) sup
ξ∈Rd

|K̂s(ξ)| ≤ M in the strip −d−1
2 ≤ Re(s) ≤ 1.

This is based on the following one-dimensional Fourier transform calcu-
lation. We suppose that F is a C∞ function on R with compact support,
and let

(27) Is(ρ) = s(s + 1) · · · (s + N)
∫ ∞

0

us−1F (u)e−2πiuρ du, ρ ∈ R.

Lemma 4.6 Is(ρ) initially given above for Re(s) > 0, has an analytic
continuation into the half-space Re(s) > −N − 1. Also

(a) |Is(ρ)| ≤ cs(1 + |ρ|)−Re(s), when −N − 1 < Re(s) ≤ 1.

(b) I0(ρ) = N !F (0).

Here cs is at most of polynomial growth in Im(s) and it depends only on
the CN+1 norm of F and the support of F .

The reader should note that when when ρ = 0, we are dealing with the
analytic continuation of a homogenous distribution, |x|s−1

+ , much in the
same way as in Section 2.2 in Chapter 3.
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Proof. Write s(s + 1) · · · (s + N)us−1 =
(

d
du

)N+1
us+N . Then an

(N + 1)-fold integration by parts yields

Is(ρ) = (−1)N+1

∫ ∞

0

us+N

(
d

du

)N+1

(F (u)e−2πiuρ) du,

from which the analytic continuation of Is to the half-space Re(s) >
−N − 1 is evident. It also proves the estimate (a) when ρ is bounded,
for example when |ρ| ≤ 1.

The proof of the size estimate (a) when |ρ| > 1 is similar but requires
a little more care. We break the range of integration in (27) into two
parts, essentially according to u|ρ| ≤ 1 or u|ρ| > 1. We suppose η is a C∞

cut-off function on R with η(u) = 1 if |u| ≤ 1/2, and η(u) = 0 if |u| ≥ 1,
and insert η(uρ) or 1 − η(uρ) in the integral (27).

When we insert η(uρ) we write the resulting integral as

(−1)N+1

∫ ∞

0

us+N

(
d

du

)N+1

(η(uρ)e−2πiuρF (u)) du,

and so it is dominated by a constant multiple of

(1 + |ρ|)N+1

∫
0≤u≤1/|ρ|

uσ+N du, with σ = Re(s).

Since σ + N > −1 this quantity is itself dominated by the product (1 +
|ρ|)N+1|ρ|−σ−N−1, which is � (1 + |ρ|)−σ, since we have assumed |ρ| ≥ 1.

When we insert 1 − η(uρ) we write the resulting integral as

s(s + 1) · · · (s + N)
1

(−2πiρ)k

∫ ∞

0

us−1F (u)(1 − η(uρ))
(

d

du

)k

(e−2πiuρ) du

where k is chosen so that Re(s) < k. Then, except for a factor that does
not depend on ρ (and is a polynomial in s), the integral equals

ρ−k

∫ ∞

0

e−2πiuρ

(
d

du

)k

[us−1F (u)(1 − η(ρu))] du.

Since F has support in some interval |u| ≤ A, it is easily verified that
the above is dominated by a multiple of ρ−k

∫ A

1/(2|ρ|) uσ−k−1 du, which is
O(ρ−σ), because σ = Re(s) < k; that yields the bound required in (a).

Finally, the integration by parts we have used also shows that

Is(ρ) = −(s + 1) · · · (s + N)
∫ ∞

0

us d

du
(F (u)e−2πiuρ) du,
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so setting s = 0 gives conclusion (b), since F (0) is equal to the integral
− ∫ ∞

0
d

du(F (u)e−2πiuρ) du. The lemma is therefore proved.

We return to Proposition 4.5. Looking back at (25) we see that when
Re(s) > 0, making the change of variables u = xd − ϕ(x′) yields

K̂s(ξ) = γs

∫
Rd

|xd − ϕ(x′)|s−1
+ ψ0(x)e−2πi(x′·ξ′+xdξd) dx

= γs

∫ ∞

0

us−1e−2πiuξd

∫
Rd−1

e−2πi(x′·ξ′+ϕ(x′)ξd)(28)

ψ0(x′, u + ϕ(x′)) dx′ du

= es2
Is(ξd),

with

F (u) =
∫

Rd−1
e−2πi(x′·ξ′+ϕ(x′)ξd)ψ0(x′, u + ϕ(x′)) dx′,

in the formula (27) for Is.
However, by Theorem 3.1 (essentially the estimates we have for the

integrals in (22)) it follows that |F (u)| ≤ c(1 + |ξ|)− d−1
2 , with the same

order of decay in |ξ| for any derivative of F with respect to u. Therefore
by conclusion (a) of the lemma we get that

|K̂s(ξ)| ≤ cs|es2 |(1 + |ξd|)−Re(s)(1 + |ξ|)− d−1
2 ,

which yields (26). Note that in the strip −d−1
2 ≤ Re(s) ≤ 1, we have

|es2 | ≤ ce−(Im(s))2 and cs is at most of polynomial growth in Im(s).
Proposition 4.5 is therefore proved.

We now return to the operators Ts and apply our analysis of the ker-
nels Ks.

Suppose f and g are a pair of simple functions on Rd. The fact that
these are in L2 allows us to use the Fourier transform and Plancherel’s
theorem. So if we set Φ0(s) =

∫
Ts(f)g dx for Re(s) > 0, then

Φ0(s) =
∫

Rd

(f ∗ Ks)g dx =
∫

Rd

(f ∗ Ks)∧ĝ(−ξ) dξ

=
∫

Rd

K̂s(ξ)f̂(ξ)ĝ(−ξ) dξ.

So the proposition and Schwarz’s inequality show that Φ0(s) is contin-
uous and bounded on the strip −d−1

2 ≤ Re(s) ≤ 1 and analytic in the
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interior. It is also apparent by the proposition that

sup
t

‖T− d−1
2 +it(f)‖L2 ≤ M‖f‖L2 .

Next, clearly supx |Ks(x)| ≤ M , for Re(s) = 1. Thus

sup
t

‖T1+it(f)‖L∞ ≤ M‖f‖L1 .

However, by (28) and conclusion (b) of the lemma, K̂0(ξ) = N !d̂µ(ξ) and
thus

T0(f) = N !A(f).

We can therefore apply the interpolation theorem, Proposition 4.4. Here
we have a = −d−1

2 , b = 1, and c = 0. Also p0 = q0 = 2, p1 = 1, q1 =
∞. However 0 = (1 − θ)a + θb so θ = d−1

d+1 . Since 1/p = 1−θ
2 + θ, we

get 1/p = d
d+1 ; similarly 1/q = 1

d+1 , giving us the desired result for the
operator A.

5 Restriction theorems

We come to a second significant application of oscillatory integrals. Here
we focus on the possibility of restricting the Fourier transform of a func-
tion to a lower dimensional surface. The background for this is as follows.

5.1 Radial functions

To start with, the Fourier transform f̂ of an L1 function is continuous
(see Section 4* in Chapter 2, Book III) while by the Hausdorff-Young
theorem, f̂ belongs to Lq if f ∈ Lp for 1 ≤ p ≤ 2, and 1/q + 1/p = 1.
Now Lq functions are in general determined only almost everywhere.
Thus (without further examination) this suggests that the Fourier trans-
form of an Lp function, 1 < p ≤ 2, cannot in general be meaningfully
defined on a lower dimensional subset, and this is indeed the case when
p = 2.

The first hint that things might in fact be quite different is the obser-
vation that for certain p, 1 < p < 2, whenever f is radial and in Lp and
d ≥ 2, then its Fourier transform is continuous away from the origin.

Proposition 5.1 Suppose f ∈ Lp(Rd) is a radial function. Then f̂ is
continuous for ξ �= 0 whenever 1 ≤ p < 2d/(d + 1).



344 Chapter 8. OSCILLATORY INTEGRALS IN FOURIER ANALYSIS

Note the sequence of exponents 2d
(d+1) : 1, 4

3 , 3
2 , 8

5 , . . . that tends to 2 as
d → ∞.

Proof. Suppose f(x) = f0(|x|). Then f̂(ξ) = F (|ξ|) with F defined
by (4), namely,

(29) F (ρ) = 2πρ−d/2+1

∫ ∞

0

Jd/2−1(2πρr)f0(r)rd/2 dr.

We can make the simplifying assumption that f vanishes in the unit
ball (thus the integral above is taken for r ≥ 1) because an Lp function
supported in a ball is automatically in L1 and its Fourier transform is
then continuous.

We also restrict ρ = |ξ| to a bounded interval excluding the origin, and
note that then the integral in (29) converges absolutely and uniformly
in ρ. In fact the integral is dominated by a constant multiple of

(30)
∫ ∞

1

|f0(r)|rd/2−1/2 dr,

since |Jd/2−1(u)| ≤ Au−1/2 if u > 0, as we have already seen. Now let q
be the exponent dual to p, (1/p + 1/q = 1), and write

rd/2−1/2 = r
d−1

p r
d−1

q r−
d−1
2 .

Then by Hölder’s inequality the integral (30) is majorized by the product
of an Lp and an Lq norm. The Lp factor is(∫ ∞

1

|f0(r)|prd−1 dr

)1/p

= c‖f‖Lp(Rd),

while the second factor is(∫ ∞

1

rd−1−q( d−1
2 )dr

)1/q

,

and this is finite if d − 1 − q
(

d−1
2

)
< −1, which means q > 2d/(d − 1),

and thus p < 2d/(d + 1). The asserted convergence of (30) therefore
proves the continuity in ρ of F in (29) and establishes the proposition.

An examination of the proof shows the range 1 ≤ p < 2d/(d + 1) can-
not be extended.

We now turn to the question of what happens when f is not assumed
to be radial.
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5.2 The problem

Let us fix a (local) hypersurface M in Rd. One can then phrase the re-
striction problem for M as follows. Suppose dµ is a given surface-carried
measure, dµ = ψdσ, with smooth non-negative density ψ of compact sup-
port. For a given 1 < p < 2, does there exist a q (not necessarily the dual
exponent to p) so that the a priori inequality below

(31)
(∫

M

|f̂(ξ)|q dµ(ξ)
)1/q

≤ c‖f‖Lp(Rd)

holds?
By this we mean the inequality (31) is to be valid for an appropriate

dense class of functions f in Lp, with the bound c independent of f . If the
answer to the question is affirmative we say that the (Lp, Lq) restriction
holds for M .

Here is what we can assert about this problem.

1. Non-trivial results of the kind (31) are possible only if M has some
degree of curvature.

2. Suppose M has non-zero Gauss curvature at each point (in par-
ticular when M is the sphere). Then one is led to guess that
the correct range for (31) to be valid is 1 ≤ p < 2d/(d + 1) and
q ≤ (

d−1
d+1

)
p′ with 1/p′ + 1/p = 1. Note the end-points of this rela-

tion, q = ∞ when p = 1, and q → 2d/(d + 1) when p → 2d/(d + 1).
When d = 2 this guess is indeed correct; the proof is outlined in
Problem 4.

3. For d ≥ 3 it is still not known whether the expected result holds,
but an interesting part, corresponding to q = 2 (and hence for q ≥
2) is settled. This is what we now address.

5.3 The theorem

Here we prove the following result.

Theorem 5.2 Suppose M has non-zero Gauss curvature at each point
of the support of dµ. Then the restriction inequality (31) holds for q = 2
and p = 2d+2

d+3 .

Note here that we have another sequence of exponents 2d+2
d+3 : 1, 6

5 ,
4
3 ,107 , . . . , tending to 2.
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The proof starts with several quick observations. Let R denote the
restriction operator

R(f) = f̂(ξ)
∣∣∣
M

=
∫

Rd

e−2πix·ξf(x) dx

∣∣∣∣
M

,

which is initially defined to map continuous functions f of compact sup-
port on Rd to continuous functions on M . Consider also the “dual” R∗,
mapping continuous functions F on M to continuous functions on Rd,
defined by

R∗(F )(x) =
∫

M

e2πiξ·xF (ξ) dµ(ξ).

We note that an interchange of integration proves the duality identity

(32) (R(f), F )M = (f,R∗(F ))Rd ,

where (f, g)Rd =
∫

Rd f(x)g(x) dx and (F, G)M =
∫

M
F (ξ)G(ξ) dµ(ξ).

Now we consider the composition R∗R. We have

R∗R(f)(x) =
∫

M

e2πiξ·x
{∫

Rd

e−2πiy·ξf(y) dy

}
dµ(ξ).

Hence

(33) R∗R(f) = f ∗ k, with k(x) = d̂µ(−x).

There is then the following relation between bounds for R, R∗ and R∗R.

Proposition 5.3 For a given p with p ≥ 1, the three norm estimates
below are equivalent:

(i) ‖R(f)‖L2(M,dµ) ≤ c‖f‖Lp(Rd).

(ii) ‖R∗(F )‖Lp′ (Rd) ≤ c‖F‖L2(M,dµ), where 1/p + 1/p′ = 1.

(iii) ‖R∗R(f)‖Lp′ (Rd) ≤ c2‖f‖Lp(Rd).

The equivalence of (i) and (ii) follows directly from the duality of Lp

spaces and the general duality theorem (Theorem 4.1 and Proposition 5.3
in Chapter 1).

We assume (i) (or (ii)) then this implies (iii) once we apply (ii) with
F = R(f).
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Conversely, we know by (32) that

(R(f),R(f))M = (R∗R(f), f)Rd .

Hence if (iii) holds, then (R(f),R(f))M ≤ c2‖f‖2
Lp(Rd)

by Hölder’s in-
equality. This gives (i) and the proposition is proved.

From this proposition, we see that to establish the theorem we have
to show that the operator R∗R is bounded from Lp(Rd) to Lp′

(Rd),
with p = 2d+2

d+3 . The argument is very much like that for the averaging
operator A, except here inverted via the Fourier transform.

In fact, here the analytic family of operators we consider is {Ss} given
by

Ss(f) = f ∗ ks,

where ks is defined by ks(x) = K̂s(−x), and Ks is given initially by (25),
and with K̂s extended in the strip −d−1

2 ≤ Re(s) ≤ 1 by Proposition 4.5.
Recall that K̂0(ξ) = N !d̂µ(ξ), so S0(f) = N !R∗R(f) by (33). But

when Re(s) = 1

‖Ss(f)‖L2 ≤ M‖f‖L2 ,

since K1+it ∈ L∞, and supt ‖K1+it‖L∞ ≤ M , we have

k̂1+it(ξ) = K1+it(ξ).

Also, when Re(s) = −d−1
2 , then ks ∈ L∞ by (26) in Proposition 4.5, since

ks(x) = K̂s(−x). Thus

sup
t

‖S− d−1
2 +it(f)‖L∞ ≤ M‖f‖L1 .

Finally, it is easily verified (again using Proposition 4.5) that Φ0(s) =∫
Rd Ss(f)g dx is continuous, and is bounded in the strip −d−1

2 ≤ Re(s) ≤
1 and analytic in the interior, whenever f and g are in L1(Rd) (and
in particular when f and g are simple). We therefore can apply the
interpolation theorem (Proposition 4.4) to Ss. In this case a = −d−1

2 ,
b = 1, and c = 0, so 0 = (1 − θ)a + θb implies that θ = d−1

d+1 . Also here
p0 = 1, q0 = ∞, and p1 = 2, q2 = 2.

So 1/p = 1−θ
p0

+ θ
p1

, gives 1/p = 1 − θ + θ/2 = 1 − θ/2 and as a result
1/p = d+3

2d+2 . Similarly 1/q = 1−θ
q0

+ θ
q1

= θ/2, and 1/q = 1 − 1/p = 1/p′.
Therefore S0 = N !R∗R maps Lp to Lp′

and by the equivalence guaran-
teed by Proposition 5.3, the theorem is proved.
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Corollary 5.4 Under the assumptions of the theorem, the restriction
inequality (31) holds for 1 ≤ p ≤ 2d+2

d+3 and q ≤ (
d−1
d+1

)
p′.

This follows by combining the critical case p = 2d+2
d+3 , q ≤ 2 (a conse-

quence of the theorem and Hölder’s inequality) with the trivial case
p = 1, q = ∞ via the Riesz interpolation theorem.

The key to the theorem is of course the decay of the Fourier transform
of the surface-carried measure dµ. This is highlighted by the following
assertion which is clear upon reexamination of the proof of the theorem.

Here we deal with a hypersurface M , where we make no explicit as-
sumptions about its curvature. The measures dµ considered will be of
the form ψdσ as before.

Corollary 5.5 Suppose that for some δ > 0, we have

|d̂µ(ξ)| = O(|ξ|−δ), as |ξ| → ∞, for all measures of the above form.

Then the restriction property (31) holds for p = 2δ+2
δ+2 , q = 2.

In particular, if we assume M has m non-vanishing principal curva-
tures, then using the corollary in Section 3, we get this conclusion for
p = 2m+4

m+4 .

6 Application to some dispersion equations

Dispersion equations have, broadly speaking, the property that as time
varies, their solutions conserve some form of mass or energy (for example,
the L2 norm), yet these solutions disperse, in the sense that their sup-
norms decay as time increases. In what follows we will see how the ideas
we have discussed in this chapter apply to some equations of this kind,
both linear and non-linear.

6.1 The Schrödinger equation

Typical of linear equations of the dispersion kind is the imaginary-time
Schrödinger equation

(34)
1
i

∂u

∂t
= �u,

for u(x, t), and (x, t) ∈ Rd × R = Rd+1, with its Cauchy problem of de-
termining a solution of (34) with initial data f , that is,

(35) u(x, 0) = f(x).
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Here � =
∑d

j=1
∂2

∂x2
j

is the Laplacian on Rd.

If we proceed formally, we are led to define the operators eit� by

(36) (eit�f)∧(ξ) = e−it4π2|ξ|2 f̂(ξ),

where ∧ denotes the Fourier transform in the x-variable, and one expects
that u(x, t) = eit�(f)(x) is the solution of the problem (34) and (35).
That this is so can be seen in two different contexts, the first of which is
in the setting of the Schwartz space S of testing functions.

Proposition 6.1 For each t:

(i) eit� maps S to S.

(ii) If we set u(x, t) = eit�(f)(x), with f ∈ S, then u is a C∞ function
of (x, t) that satisfies (34) and (35).

(iii) eit�(f) = f ∗ Kt, if t �= 0, where Kt(x) = (4πit)−d/2e−|x|2/(4it).

(iv) ‖eit�(f)‖L∞ ≤ (4π|t|)−d/2‖f‖L1 .

Proof. That eit� maps S to S is clear because the multiplier e−it4π2|ξ|2

has the property that each derivative in ξ is of at most polynomial in-
crease. Next, the Fourier inversion formula gives

u(x, t) =
∫

Rd

e−it4π2|ξ|2e2πix·ξf̂(ξ) dξ.

The rapid decrease of f̂ guarantees that the function u is C∞ in the x
and t variables. The fact that then u satisfies (34) is clear since the
action of 1

i
∂
∂t brings down a factor of −4π2|ξ|2, which is the same factor

that results from the application of �.
The conclusion (iii) is a consequence of the identity

(37) K∧
t (ξ) = e−it4π2|ξ|2 , t �= 0

when both bounded functions Kt(x) = (4πit)−d/2e−|x|2/(4it) and e−it4π2|ξ|2

are viewed as tempered distributions, and the usual relation between con-
volutions and Fourier transforms as in Chapter 3.

To prove (37) we start with the familiar identity for Gaussians

(u−d/2e−π|x|2/u)∧(ξ) = e−uπ|ξ|2 , when u > 0.

Here we are dealing with rapidly decreasing functions and the Fourier
transform is taken in, say, the L1 sense. We now write u = 4πs, and we
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extend the above identity by analytic continuation to complex s = σ + it,
with σ > 0, since the functions in question are still rapidly decreasing.
Thus

((4πs)−d/2e−|x|2/(4s))∧ = e−4π2s|ξ|2 .

Finally, if t is fixed, t �= 0, then letting σ → 0, the functions on the left-
hand side and right-hand side converge pointwise and boundedly (and
hence in the sense of tempered distributions) to K∧

t (ξ) and e−it4π2|ξ|2 ,
respectively. Therefore (37) is established. Finally

‖f ∗ Kt‖L∞ ≤ ‖Kt‖L∞‖f‖L1 = (4π|t|)−d/2‖f‖L1 ,

and the proposition is proved.

We look again at the operator eit� given by (36), but now in the
context of L2.

Proposition 6.2 For each t:

(i) The operator eit� is unitary on L2(Rd).

(ii) For every f , the mapping t 	→ eit�(f) is continuous in the L2(Rd)
norm.

(iii) If f ∈ L2(Rd), then u(x, t) = eit�(f)(x) satisfies (34) in the sense
of distributions.

Proof. Conclusion (i) is immediate from Plancherel’s theorem, since
the multiplier e−it4π2|ξ|2 has absolute value one. Now if f̂ ∈ L2(Rd),
then clearly e−it4π2|ξ|2 f̂(ξ) → e−it04π2|ξ|2 f̂(ξ) in the L2(Rd) norm when
t → t0, so (ii) follows again from Plancherel’s theorem.

To prove the third conclusion we use the short-hand L = 1
i

∂
∂t −�,

and L′ = −1
i

∂
∂t −� for its transpose. Conclusion (iii) asserts that when-

ever ϕ is a C∞ function on Rd × R of compact support, then

(38)
∫ ∫

Rd×R

L′(ϕ)(x, t)(eit�f)(x) dx dt = 0.

Now if f ∈ S, then (38) holds for such f , because then u(x, t) = eit�(f)(x)
satisfies L(u) = 0 in the usual sense, as we have seen. For general f ∈ L2,
approximate f in L2(Rd) by a sequence {fn} with fn ∈ S. Then be-
cause of conclusion (i) we may pass to the limit and obtain (38) for any
f ∈ L2(Rd), finishing the proof of the proposition.



6. Application to some dispersion equations 351

We remark that the decay estimate (iv) in the first proposition can be
extended to read

(39) ‖eit�f‖Lq(Rd) ≤ cp|t|−d(1/p−1/2)‖f‖Lp(Rd),

if 1/q + 1/p = 1, and 1 ≤ p ≤ 2, with cp = (4π)−d(1/p−1/2). This in fact is
a direct consequence of the Riesz interpolation theorem (see Theorem 2.1
in Chapter 2) when we combine the cases corresponding to p = 1 and p =
2, in the propositions above. Another way to see (39) is to realize that
the operator eit� is a disguised version of a rescaled Fourier transform,
and thus (39) is a restatement of the Hausdorff-Young theorem. This is
outlined in Exercise 12.

Now the decay estimates (39) raise the question whether one can see
any decrease for large time, when the initial data is merely assumed to
be in L2. Given the unitarity of eit�, the best one can hope for is an
overall, or average, decay in both x and t. Thus one is led to ask whether
an estimate of the kind

(40) ‖u(x, t)‖Lq(Rd×R) ≤ c‖f‖L2(Rd)

is possible (say for q < ∞).
By a simple scaling argument we can see that (40) can hold only with

the exponent q = 2d+4
d . Indeed, if u(x, t) = eit�(f)(x), replace f by fδ

where fδ(x) = f(δx), and u by uδ, with uδ(x, t) = u(δx, δ2t), and δ > 0.
Then uδ is a solution of (34) with corresponding initial data fδ. That is,
uδ(x, t) = eit�(fδ)(x). Thus if (40) held, we would have ‖uδ‖Lq(Rd+1) ≤
c‖fδ‖L2(Rd), for all δ > 0, with c independent of δ. But ‖fδ‖L2(Rd) =

δ−d/2‖f‖L2(Rd), while ‖uδ‖Lq(Rd+1) = δ−
d+2

q ‖u‖Lq(Rd+1), and so δ−
d+2

q ≤
c′δ−d/2 for all δ > 0, which is possible only when d+2

q = d
2 , that is, q =

2d+4
d .

One should notice that q = 2d+4
d is exactly the (dual) exponent arising

in the restriction result in Theorem 5.2 (that is, 1/p + 1/q = 1, with
p = 2d+4

d+4 ) when we are in Rd+1 instead of Rd. This is no accident as we
will now see.

Theorem 6.3 If u(x, t) = eit�(f)(x) with f ∈ L2(Rd), then (40) holds
when q = 2d+4

d .

Results of this kind are called Strichartz estimates. We will see that
in fact this theorem is a direct consequence of the results in Section 5.

We consider the Fourier transform now on the space Rd+1 = Rd × R =
{(x, xd+1)}, relabeling the variable t as xd+1. In the corresponding dual
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space (also Rd+1) the dual variables are denoted by (ξ, ξd+1), with ξ
dual to x and ξd+1 dual to xd+1. In this dual space we take M to be the
paraboloid given by

M = {(ξ, ξd+1) : ξd+1 = −2π|ξ|2},

where |ξ|2 = ξ2
1 + · · · + ξ2

d.
On M we define the non-negative measure dµ = ψdσ = ψ0dξ, where

dξ is the Lebesgue measure on Rd, and ψ0 is a C∞ function of compact
support that equals 1 for (ξ, ξd+1) ∈ M and |ξ| ≤ 1. (As a result ψ =
ψ0(1 + 16π2|ξ|2)1/2.)

Since the paraboloid M has a non-zero Gauss curvature, we can apply
the restriction theorem, in particular its dual statement given in Proposi-
tion 5.3, with Rd+1 in place of Rd. This assertion deals with the operator

R∗(F )(x) =
∫

M

e2πi(x·ξ+xd+1ξd+1)F (ξ, ξd+1) dµ

and then guarantees that

‖R∗(F )‖Lq(Rd+1) ≤ c‖F‖L2(M,dµ).

Now let us take F (ξ, ξd+1) = f̂(ξ). Then we see that R∗(F ) = eit�(fψ0),
because we have set xd+1 = t, dµ = ψ0dξ, and on M we have ξd+1 =
−2π|ξ|2. As a result

(41) ‖eit�(f)‖Lq(Rd+1) ≤ c‖f‖L2(Rd),

whenever f̂ is supported in the unit ball. This is the essence of the result
and from it the theorem follows easily.

In fact, if we replace f by fδ(x) = f(δx), and u by uδ(x) = u(δx, δ2t)
then, as we have seen above, (41) also holds with the same bound. How-
ever (fδ)∧(ξ) = f̂(ξ/δ)δ−d, and now the support of (fδ)∧ is the ball
|ξ| < δ. So allowing δ to be arbitrarily large shows that (41) is valid
whenever f is in L2 and f̂ has compact support. Since such f are dense
in L2, a simple limiting argument establishes (41) for all f ∈ L2(Rd),
proving the theorem.

6.2 Another dispersion equation

We now digress briefly to touch on another dispersion equation and sketch
certain aspects that are parallel with the Schrödinger equation.
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We have in mind the cubic equation on R × R

∂u

∂t
=

∂3u

∂x3
,

with its initial value problem u(x, 0) = f(x).

We can write the solution operator f 	→ et( d
dx)3

(f), with(
et( d

dx)3

(f)
)∧

(ξ) = et(2πiξ)3 f̂(ξ).

Again this operator maps S to S for each t and is unitary on L2(R).
Note one difference with the Schrödinger equation: Here we can en-

visage solutions u that are real-valued, which is not possible for the
equation (34), where the solutions need to be complex-valued because of
the coefficient 1/i.

When t �= 0, we can write

et( d
dx)3

(f) = f ∗ K̃t, for f ∈ S,

where the kernel K̃t is given in terms of the Airy integral

Ai(u) =
1
2π

∫
R

ei( v3
3 +uv)dv.8

In fact, since K̃t(x) =
∫

R
et(2πiξ)3e2πixξ dξ, the change of variables

−(2π)3tξ3 = v3/3, ξ = −v(3t)−1/3(2π)−1 shows that

K̃t(x) = (3t)−1/3Ai(−x/(3t)1/3).

Now one knows that

(42)
{ |Ai(u)| ≤ c

|Ai(u)| ≤ c|u|−1/4

for all u. From the first of these inequalities we get the dispersion esti-
mate

‖et( d
dx)3

(f)‖L∞ ≤ c|t|−1/3‖f‖L1 .

There is also an analog of Theorem 6.3.

8The convergence of this integral and the estimates stated below can be found in
Appendix A of Book II. There these are carried out using complex analysis. The results
needed can also be obtained by the methods in Section 2 of this chapter, and are outlined
in Exercise 13.
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Theorem 6.4 The solution et( d
dx)3

(f) satisfies

‖u‖Lq(R2) ≤ c‖f‖L2(R), with q = 8.

The proof of this is result is parallel with that of the previous theorem
and reduces to a restriction theorem on R2 for the cubic curve

Γ = {(ξ1, ξ2) : ξ2 = −4π2ξ3
1}.

According to Corollary 5.5, what is needed is an estimate for d̂µ(ξ),
where dµ is a smooth measure carried on the cubic curve Γ. The desired
estimate can be rephrased as follows.

Lemma 6.5 Let I(ξ) =
∫

R
e2πi(ξ1t+ξ2t3)ψ(t) dt, where ψ is a C∞ func-

tion of compact support. Then

I(ξ) = O(|ξ|−1/3), as |ξ| → ∞.

Proof. First note that I(ξ) = O(|ξ2|−1/3). In fact

I(ξ) =
∫
|t|≤|ξ2|−1/3

+
∫
|t|>|ξ2|−1/3

.

The first integral is obviously O(|ξ2|−1/3). For the second term we use
the second derivative test (Proposition 2.3 and Corollary 2.4) noting that
the second derivative of the phase exceeds c|ξ2||ξ2|−1/3 = c|ξ2|2/3, so this
term is also O(|ξ2|−1/3), which proves that I(ξ) = O(|ξ2|−1/3). We apply
this result when |ξ2| ≥ c′|ξ1|, where c′ is a suitably small constant, giving
I(ξ) = O(|ξ|−1/3) in this case.

In the case when |ξ1| > (1/c′)|ξ2|, we apply the first derivative test
(Proposition 2.1) noting that there the first derivative of the phase ex-
ceeds a multiple of |ξ1|. Thus I(ξ) = O(|ξ1|−1) = O(|ξ|−1/3). A combi-
nation of these two cases yields the lemma.

We can now invoke Corollary 5.5 with δ = 1/3 and obtain

‖R(f)‖L2(Γ) ≤ c‖f‖Lp(R2)

and

‖R∗(F )‖Lq(R2) ≤ c‖F‖L2(Γ),

for p = 2δ+2
δ+2 = 8

7 , and 1/p + 1/q = 1, so q = 8. The estimate for R∗ then
proves our theorem.

There are also corresponding space-time estimates for solutions of the
wave equation in terms of its initial data. See Problem 5.
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6.3 The non-homogeneous Schrödinger equation

We return to the imaginary-time Schrödinger equation and now consider
the non-homogeneous problem

(43)
1
i

∂u

∂t
−�u = F,

with F given. Here we require

(44) u(x, 0) = 0.

It is easy to write down a formal solution to this problem by integrating
the corresponding equation when � is replaced by a scalar. This leads
to the solution operator

(45) S(F )(x, t) = i

∫ t

0

ei(t−s)�F (·, s) ds.

Here ei(t−s)�F (·, s) indicates that for each t and s the operator ei(t−s)�

has been applied to F (x, s) as a function of x. The use of formula (45)
can be justified in several different settings. The simplest is the following.

Proposition 6.6 Suppose F is a C∞ function on Rd × R of compact
support. Then S(F ) is a C∞ function that satisfies (43) and (44).

Proof. Write F = eit�G(·, t) with G(x, t) = i
∫ t

0
e−is�F (·, s) ds. Now

F (·, s) is in the Schwartz space S(Rd) for each s and depends smoothly
on s. Thus the same is true for G(·, s) and then for S(F )(·, s), so this
function is C∞. Now differentiate both sides of the identity

e−it�(S(F ))(·, t) = i

∫ t

0

e−is�F (·, s) ds,

with respect to t.
The left-hand side gives e−it� (−i� + ∂

∂t

)
S(F )(·, t). The right-hand

side yields ie−it�F (·, t). After composing with eit�, we see that(
−i� +

∂

∂t

)
S(F )(·, t) = iF (·, t),

as was to be proved. Note that it is obvious that S(F )(·, 0) = 0.
The corresponding result in the L2 setting is detailed in Exercise 14.
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We come to the key estimate for the operator S. It arises from the
question of proving an estimate of the form

(46) ‖S(F )‖Lq(Rd×R) ≤ c‖F‖Lp(Rd×R),

where q = 2d+4
d . Here q is the exponent for which u ∈ Lq(Rd × R), when-

ever u(x, t) = eit�(f)(x), with f ∈ L2. Again, a simple scaling argument
(which we leave to the reader) shows that (46) can hold only if p = 2d+4

d+4 ,
the dual exponent of q.

Theorem 6.7 The estimate (46) holds if q = 2d+4
d and p = 2d+4

d+4 .

This means that S, initially defined on C∞ functions F of compact sup-
port, satisfies (46) with c independent of F , and hence has a unique
extension to a bounded operator from Lp(Rd × R) to Lq(Rd × R) for
which (46) is valid.

To prove the theorem we first make two simplifications. To begin with,
we replace the operator S by S+ given by

S+(F )(x, t) = i

∫ t

−∞
ei(t−s)�F (·, s) ds,

and next, to avoid issues of convergence, we replace S+ by Sε, where

Sε(F )(x, t) = i

∫ t

−∞
ei(t−s)�e−ε(t−s)F (·, s) ds.

We will prove that

(47) ‖Sε(F )‖Lq(Rd×R) ≤ c‖F‖Lp(Rd×R)

with c independent of ε. Once (47) is established then (46) will follow
easily.

The advantage of S+ (and Sε) over S is that now we are dealing with
convolutions on the space Rd × R. For Sε the kernel K(x, t) is formally

i
(4πit)d/2 e−

|x|2
4it e−εt when t > 0, and 0 when t < 0.

We prove (47) by the same method used in Theorem 4.1 and in the
restriction theorem. We embed Sε in an analytic family of operators,
{Tz}, with the complex variable ranging over the half-plane −1 ≤ Re(z).
The operator will be first given when d/2 − 1 < Re(z) as a convolution,
Tz(f) = f ∗ Kz, with the locally integrable kernel

(48) Kz(x, t) = γ(z)
e−

|x|2
4it

(4πit)d/2
e−εttz+.
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Here tz+ = tz when t > 0 and 0 otherwise, while γ(z) = ez2

Γ(z+1) i, and the
factor γ(z) is bounded in any strip a ≤ Re(z) ≤ b, because 1

Γ(z+1) =
O(e|z| log |z|) as |z| → ∞, by Stirling’s formula. We note that the Fourier
transform of Kz on Rd × R (as a tempered distribution) is the function

K∧
z (ξ, ξd+1) = γ(z)

∫ ∞

0

e−i4π2t|ξ|2e−εte−2πitξd+1tz dt

= iez2
(ε + i(4π2|ξ|2 + 2πξd+1))−z−1.

This is because of (37) and the fact that∫ ∞

0

e−Attz dt = Γ(z + 1)A−z−1 whenever Re(A) > 0,

as is seen by verifying the formula first when A > 0.
Next, if ε is fixed with ε > 0, then K∧

z is, by the above, a bounded func-
tion of (ξ, ξd+1) ∈ Rd × R as long as −1 ≤ Re(z). This Fourier multiplier
defines Tz as a bounded operator on L2(Rd × R) whenever −1 ≤ Re(z),
and gives a continuation of Tz, initially defined for d/2 − 1 < Re(z). We
also observe that K∧

z is bounded independently of ε when Re(z) = −1,
and therefore

(49) ‖Tz(F )‖L2(Rd×R) ≤ c‖F‖L2(Rd×R) when Re(z) = −1,

with c independent of ε.
Now the kernel Kz given by (48) is clearly a bounded function on

Rd × R when Re(z) = d/2, with a bound independent of ε. Thus

(50) ‖Tz(F )‖L∞ ≤ c‖F‖L1 , when Re(z) = d/2,

with c again independent of ε.
The interpolation theorem (Proposition 4.4) yields ‖T0(F )‖Lq ≤ c‖F‖Lp ,

first for simple functions, and then by a passage to the limit for all F
that are C∞ of compact support. Again the bound is independent of ε.
We also recognize that

(51) T0 = Sε

when acting on C∞ functions of compact support.
In fact, by taking the Fourier transform in the x-variable we see that

Sε(F )∧(ξ, t) = i

∫ t

−∞
e−i(t−s)4π2|ξ|2e−ε(t−s)F̂ (ξ, s) ds.
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Then the Fourier transform in the t variable gives

S∧
ε (F )∧(ξ, ξd+1) = i

(∫ ∞

0

e−it4π2|ξ|2e−εte−2πitξd+1 dt

)
F̂ (ξ, ξd+1)

= i(ε − i(4π2|ξ|2 + 2πξd+1))−1F̂ (ξ, ξd+1),

which establishes (51), and hence proves (47).
We now finish the proof by modifying F so that F (x, s) = 0 when

s ≤ 0. Hence from (47), when we let ε → 0, we get(∫
Rd

∫ ∞

0

|S(F )(x, t)|q dx dt

)1/q

≤ c‖F‖Lp(Rd×R).

Changing t into −t (and s into −s) gives us a parallel inequality, but with
the integration in t now taken over (−∞, 0). Adding these two finally
yields (46) and the theorem is proved.

A final fact about the action of the solving operator S on the space
Lp(Rd × R) is as follows.

Proposition 6.8 If F ∈ Lp(Rd × R) then S(F ) can be corrected (that is,
redefined on a set of measure zero) so that for each t, S(F )(·, t) belongs
to L2(Rd) and, moreover, the map t 	→ S(F )(·, t) is continuous in the
L2(Rd) norm.

This is based on the inequality

(52) ‖
∫ β

α

e−is�F (·, s) ds‖L2(Rd) ≤ c‖F‖Lp(Rd×R),

with c independent of the finite numbers α and β.
In fact, (52) is essentially the dual statement of (40) in Theorem 6.3.

We let g be any element of L2(Rd) with ‖g‖L2(Rd) ≤ 1. Then by the
unitarity of e−is� we have∫ β

α

(∫
Rd

e−is�F (x, s)g(x) dx

)
ds =

∫ β

α

(∫
Rd

F (x, s)v(x, s) dx

)
ds,

where v(x, s) = (eis�g)(x). So by (40), ‖v‖Lq(Rd×R) ≤ c and Hölder’s
inequality gives∣∣∣∣∣

∫
Rd

(∫ β

α

e−is�F (·, s) ds

)
g(x) dx

∣∣∣∣∣ ≤ c‖F‖Lp(Rd×R),
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and since g was arbitrary, this suffices to establish (52).
Next, since S(F )(x, t) = ieit� ∫ t

0
e−is�F (·, s) ds, taking α = 0 and β =

t in (52), we see that for each t the function S(F )(·, s) belongs to L2(Rd),
and

(53) sup
t

‖S(F )(·, t)‖L2(Rd) ≤ c‖F‖Lp(Rd×R).

Finally, approximate F in the Lp norm by a sequence {Fn} of C∞ func-
tions of compact support. Then for each n, S(Fn)(·, t) is clearly contin-
uous in t in the L2(Rd) norm. Since by (53)

sup
t

‖S(F )(·, t) − S(Fn)(·, t)‖L2 ≤ c‖F − Fn‖Lp → 0,

the continuity in t carries over to S(F )(·, t) and the proposition is proved.

6.4 A critical non-linear dispersion equation

We now consider the non-linear problem

(54)

⎧⎪⎨⎪⎩
1
i

∂u

∂t
−�u = σ|u|λ−1u

u(x, 0) = f(x).

Here σ is a non-zero real number and the exponent λ is greater than 1.
Besides its relative simplicity, the interest of the equation (54) is that
its solution has two noteworthy conservation properties, namely that
the “mass”

∫
Rd |u|2 dx, and the “energy”

∫
Rd(1

2 |∇u|2 − σ
λ+1 |u|λ) dx are

conserved over time. (See Exercise 15.)

We shall deal in particular with the initial-value problem for f in
L2(Rd). In this setting there is a “critical” exponent λ, the one for
which the problem is scale-invariant. More precisely, suppose u is any
solution of (54) with initial data f . Then we seek an exponent a so that
δau(δx, δ2t) also solves the equation (54), (with initial data δaf(δx)), for
all δ > 0. For the linear case σ = 0 of course any a will do, but in the
present situation this requires d + 2 = λa. Now if we also want the L2

norm of the initial data to be invariant under these scalings then we need
a = d/2, and as a result λ = 1 + 4/d.

We should observe a related significant fact about the critical expo-
nent λ: we have q = λp, where q and p are the dual exponents arising in
our estimates (Theorems 6.3 and 6.7). This is the case because q = 2d+4

d ,
p = 2d+4

d+4 , and λ = d+4
d .
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Incidentally, one notices that the exact value of the coefficient σ in (54)
is not significant; what matters is its sign, since it can be replaced by ±1
via the fixed scaling (x, t) 	→ (|σ|1/2x, |σ|t).

After these preliminaries we can now state the main result. Given an
f ∈ L2(Rd), we will say that a function u in Lq(Rd × R) is a strong
solution of (54) if

(i) u satisfies the differential equation in the sense of distributions.

(ii) For each t, the function u(·, t) belongs to L2(Rd), the mapping
t 	→ u(·, t) is continuous in the L2(Rd) norm, and u(·, 0) = f .

We can also envisage solutions u that are given only for time t with
|t| < a, for some fixed 0 < a < ∞. In that case we assume u is in Lq(Rd ×
{|t| < a}) and consider u as a distribution on the open set Rd × {|t| <
a} ⊂ Rd × R, and define a strong solution in the same way as above.

The theorem below guarantees the solution of our problem under two
scenarios. First for all times t, if the initial data is small enough. Second,
for all initial data f , for a finite time interval.

Theorem 6.9 Suppose λ, p and q are as above.

(i) There is an ε > 0 so that whenever ‖f‖L2(Rd) < ε then there exists
a strong solution of (54).

(ii) Given any f ∈ L2(Rd), there is an a > 0, (depending on f), so
that (54) has a strong solution for |t| < a.

The proof exemplifies the use of fixed-point arguments in non-linear prob-
lems.

Suppose u0 = eit�(f). As will be seen, the problem reduces to find-
ing u so that

(55) u = σS(|u|λ−1u) + u0.

The existence of u is obtained by a classical iteration argument, the
existence of a fixed point of a suitable contraction mapping M.

We consider first the alternative (i) of the theorem and here the map-
ping M will be defined on the underlying space

B = {u ∈ Lq(Rd × R), with ‖u‖Lq ≤ δ},

with δ fixed below.
The mapping M will be given by

M(u) = σS(|u|λ−1u) + u0.
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For an appropriate choice of δ, and then a choice of ε implying ‖f‖L2 < ε,
we will see that

(a) M maps B to itself.

(b) ‖M(u) −M(v)‖Lq ≤ 1
2‖u − v‖Lq for u, v ∈ B.

In fact, ‖M(u)‖Lq ≤ |σ|‖S(|u|λ−1u)‖Lq + ‖u0‖Lq . To estimate the first
term we use Theorem 6.7, and this gives

‖S(|u|λ−1u)‖Lq ≤ c‖|u|λ‖Lp = c‖u‖λ
Lq ,

since q = pλ. So if ‖u‖Lq ≤ δ, then |σ|‖S(|u|λ−1u)‖Lq ≤ δ/2, as long as
|σ|cδλ ≤ δ/2, which is the case if δ is small enough.

However by Theorem 6.3, ‖u0‖Lq ≤ cε, since ‖f‖L2 < ε. Thus ‖u0‖Lq <
δ/2, if cε < δ/2, and with this choice of ε in terms of δ, property (a) is
proved.

Next

‖M(u) −M(v)‖Lq = |σ|‖S(|u|λ−1u − |v|λ−1v)‖Lq

≤ c|σ|‖|u|λ−1u − |v|λ−1v‖Lp .

However, as is easily verified

||u|λ−1u − |v|λ−1v| ≤ cλ|u − v|(|u| + |v|)λ−1

for any pair of complex numbers u and v. Thus

‖|u|λ−1u − |v|λ−1v‖Lp ≤ cλ‖(u − v)(|u| + |v|)λ−1‖Lp .

Disregarding the constant cλ, the pth power of the term on the right is∫ |u − v|p(|u| + |v|)(λ−1)p. We estimate this by using Hölder’s inequality
with exponents λ and λ′ = λ/(λ − 1). Since λp = q and λ′(λ − 1)p = q
we see that this integral is majorized by(∫

|u − v|q
)1/λ (∫

(|u| + |v|)q

)1/λ′

= ‖u − v‖p
Lq‖|u| + |v|‖(λ−1)p

Lq .

Taking pth root gives

‖M(u) −M(v)‖Lq ≤ c′λ‖u − v‖Lq‖|u| + |v|‖(λ−1)
Lq ,

and we only need to choose δ so that c′λ(2δ)λ−1 ≤ 1/2 to obtain (b).
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Next define u1, u2, . . . , uk, . . . successively according to uk+1 = M(uk),
k = 0, 1, 2, . . . . Then, since u0 ∈ B, it follows from (a) that each uk ∈
B. Also by property (b) we have ‖uk+1 − uk‖Lq ≤ 1

2‖uk − uk−1‖Lq and

hence ‖uk+1 − uk‖Lq ≤ (
1
2

)k ‖u1 − u0‖Lq .
Therefore the sequence {uk} converges in the Lq norm to a u ∈ B, and

hence u = M(u) = σS(|u|λ−1u) + u0, since uk+1 = M(uk). To see that
u is a distribution solution of (54) we must verify that

(56)
∫

Rd×R

uL′(ϕ) dx dt = σ

∫
Rd×R

|u|λ−1uϕdx dt,

for every ϕ that is C∞ and has compact support, with L′ = −1
i

∂
∂t −�.

However, by Proposition 6.6,

(57)
∫

S(F )L′(ϕ) dx dt =
∫

Fϕ dx dt

if F is a C∞ function of compact support. We now approximate an arbi-
trary F in Lp(Rd × R) by a sequence {Fn} of C∞ functions of compact
support. Since Theorem 6.7 implies that S(Fn) → S(F ) in the Lq norm,
the identity (57) for the Fn holds also for F ∈ Lp. Thus we may ap-
ply (57) to F = σ|u|λ−1u and use Proposition 6.2 part (iii) to conclude
that (56) is valid, because u = S(F ) + u0.

Next, applying Proposition 6.8 to F = σ|u|λ−1u shows that for each t,
the function u(·, t) belongs to L2(Rd) and t 	→ u(·, t) is continuous in the
L2 norm. Obviously u(·, 0) = f(·) so the proof that u is a strong solution
is complete.

In the second alternative, where we do not assume ‖f‖ < ε, we instead
choose a positive constant a so that(∫ ∫

Rd×{|t|<a}
|eit�(f)(x, t)|q dx dt

)1/q

≤ δ/2.

Such a choice of a, which depends on f , is possible since eit�f ∈ Lq(Rd ×
R). We then proceed as in the previous alternative with the understand-
ing that now B consists of functions on Rd × {|t| < a} (of norm ≤ δ).
Note that S(F )(·, t), for |t| < a, depends only on F (·, s) for |s| < a, so
all inequalities used are still valid in this context, and the proof can be
carried out as before.

The uniqueness of the solution of (54) and its continuous dependence
on its initial data is outlined in Exercise 17.
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7 A look back at the Radon transform

We now link the averaging operator studied in Section 4 with the Radon
transform, pointing out certain striking affinities between these two, and
formulating a common generalization.

Some elementary properties of the Radon transform were set down
in Book I, where one can find an indication of its early interest. Of
further significance is its role in the theory of Besicovitch-Kakeya sets.
There, an L2 smoothness property for d ≥ 3, somewhat akin to that
of averaging operators, is responsible for the continuity of measures of
hyperplane sections asserted in Chapter 7 of Book III. Moreover the
existence of Besicovitch sets may be said to be possible because when
d = 2 the smoothing in L2 is exactly of critical order 1/2; in addition,
this property of the Radon transform allowed one to see that Besicovitch
sets in Rd, d = 2, must have Hausdorff dimension 2.

7.1 A variant of the Radon transform

Recall that in Rd the Radon transform R is defined by

R(f)(t, γ) =
∫
Pt,γ

f

where (t, γ) ∈ R × Sd−1 and Pt,γ is the affine hyperplane {x : x · γ = t}.
The smoothing property of R we have in mind can be stated most

easily when d = 3 as the identity

(58)
∫

S2

∫
R

∣∣∣∣ d

dt
R(f)(t, γ)

∣∣∣∣2 dt dσ(x) = 8π2

∫
R3

|f(x)|2 dx.

This is a direct consequence of the observation that R̂(f)(λ, γ) = f̂(λγ),
with R̂(f)(λ, γ) denoting the Fourier transform in t of R(f)(t, γ) (with
dual variable λ), and f̂ denoting the usual 3-dimensional Fourier trans-
form of f .

To pursue this point a little further we consider briefly a simple “lin-
earized” variant of the Radon transform that, unlike R, is directly given
as a mapping of functions of Rd to functions of Rd. This variant is deter-
mined once one fixes a non-degenerate bilinear form B on Rd−1 × Rd−1,
and is denoted by

RB(f)(x) =
∫

Rd−1
f(y′, xd − B(x′, y′)) dy′,
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where we have set x = (x′, xd) ∈ Rd−1 × R and y = (y′, yd) ∈ Rd−1 × R.
So RB(f)(x) can be written as

RB(f)(x) =
∫

Mx

f,

with Mx denoting the affine hyperplane {(y′, yd) : yd = xd − B(x′, y′)}.
The integration measure on Mx is taken to be dy′, the Lebesgue measure
on Rd−1.

Note that the mapping x 	→ Mx is an injective mapping from Rd to the
set of affine hyperplanes on Rd, and this mapping is surjective on the col-
lection of hyperplanes that are not perpendicular to the hyperplane M0.
Since the excepted collection of hyperplanes is a lower-dimensional sub-
set, then, broadly speaking, RB can be thought of as a substitute for R.

Now let us revert to the simplest case, d = 3, where an analog of (58)
is

(59)
∫

R3

∣∣∣∣ ∂

∂x3
RB(f)(x)

∣∣∣∣2 dx = cB

∫
R3

|f(x)|2 dx,

which we prove when f is (say) a smooth function with compact support.
To see (59) consider the Fourier transform in the x3-variable (with ξ3

its dual variable), that is, R̂B(f)(x′, ξ3) is given by∫
R2

e−2πiξ3B(x′,y′)f̂(y′, ξ3) dy′,

where here f̂ denotes the Fourier transform in the x3-variable. Sim-

ilarly,
(

∂
∂x3

RB(f)
)∧

(x′, ξ3) (also taking the Fourier transform in the

x3-variable) is given by

2πiξ3

∫
R2

e−2πiξ3B(x′,y′)f̂(y′, ξ3) dy′.

However, B(x′, y′) = C(x′) · y′ for some invertible linear transformation C
on R2. Therefore, introducing the new variable ξ3C(x′) = u, with u ∈ R2,
we have ξ3B(x′, y′) = u · y′ and ξ2

3 |det(C)| dx′ = du. So an application
of Plancherel’s theorem in R2 leads to∫

R2

∣∣∣∣∣
(

∂

∂x3
R(f)

)∧
(x′, ξ3)

∣∣∣∣∣
2

dx′ =
4π2

|det(C)|
∫

R2
|f̂(y′, ξ3)|2 dy′.

Hence, integrating in ξ3 and applying Plancherel’s theorem again, but
this time in the x3-variable, yields (59).
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If we consider an appropriately localized version R′
B of RB, then using

the above it is easy to see that

‖R′
B(f)‖L2

1(R
3) ≤ c‖f‖L2(R3).

Corresponding results for general d, when d is odd, giving L2 smoothing
of order (d − 1)/2 can be obtained in the same way. The steps leading
to these conclusions are outlined in Exercises 18 and 19.

7.2 Rotational curvature

We have learned from the above considerations that there seems to be a
parallel between the averaging operator A and the Radon transform RB

in terms of their smoothing properties. Each of these operators is of the
form

f 	→
∫

Mx

f(y) dµx(y),

where for each x ∈ Rd we have a manifold Mx (that depends smoothly
on x) over which we integrate. In the case of A it is Mx = x + M , and in
the case of RB it is Mx = {y = (y′, xd − B(x′, y′)), y′ ∈ Rd−1}. However,
paradoxically, the key feature of A was the curvature of M , while in the
case of RB the corresponding manifolds Mx are hyperplanes and have
no curvature. So how are we to see them as different manifestations
of the same phenomenon? Another issue is the question of having a
diffeomorphic-invariant formulation for the conclusions regarding these
operators. This question arises naturally, because the spaces L2, Lp, and
L2

k, are (at least locally) invariant under diffeomorphism.

What unifies the above examples is a common rotational curvature
that takes into account not only the (possible) curvature of each fixed
Mx, but how the Mx evolve (or “rotate”) as x varies. This concept can
be formulated as follows.

We start with a C∞ function ρ = ρ(x, y) given on a ball in Rd × Rd (a
“double” defining function), and assign to it its rotational matrix M,
defined as the (d + 1) × (d + 1) matrix given by

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ ∂ρ
∂y1

· · · ∂ρ
∂yd

∂ρ
∂x1

...
∂2ρ

∂yj∂xk

∂ρ
∂xd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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We define the rotational curvature of ρ, denoted by rotcurv(ρ), as the
determinant of the matrix M,

rotcurv(ρ) = det(M).

Our basic condition is that where ρ = 0, then rotcurv(ρ) �= 0. This
clearly implies ∇yρ(x, y) �= 0 there. Hence if Mx = {y : ρ(x, y) = 0}, each
Mx is a C∞ hypersurface in Rd, that in fact depends smoothly on x.
We then note the following properties of rotational curvature that are
straight-forward to verify.

1. If ρ(x, y) = ρ(x − y), the translation-invariant case, then Mx = x +
M0. Here one also has the condition that rotcurv(ρ) �= 0 is equivalent
with the non-vanishing of the Gauss curvature of M0.

2. In the case of RB, we take ρ(x, y) = yd − xd + B(x′, y′), and then
rotcurv(ρ) �= 0 is equivalent to B being non-degenerate.

3. If ρ′(x, y) = a(x, y)ρ(x, y), with a(x, y) �= 0, then ρ′ is another defining
function for {Mx} and rotcurv(ρ′) = ad+1rotcurv(ρ) whenever ρ = 0.

4. The invariance of rotational curvature under local diffeomorphisms
can be stated this way: Suppose x 	→ Ψ1(x) and y 	→ Ψ2(y) are a pair of
(local) diffeomorphisms on Rd and set ρ′(x, y) = ρ(Ψ1(x),Ψ2(y)). Then
rotcurv(ρ′) = J1(x)J2(y)rotcurv(ρ) whenever ρ′(x, y) = 0, where J1 and
J2 are the Jacobian determinants of Ψ1 and Ψ2 respectively.

With these notions in hand we can come to the regularity theorem for
the general form of the Radon transform.

We assume we are given a double defining function ρ as above with
rotcurv(ρ) �= 0. We set Mx = {y : ρ(x, y) = 0}. For each x we let
dσx(y) be the induced Lebesgue measure on Mx, and define dµx(y) =
ψ0(x, y)dσx(y), where ψ0 is some fixed C∞ function on Rd × Rd of com-
pact support. Given this, we define the general averaging operator A
by

(60) A(f)(x) =
∫

Mx

f(y) dµx(y),

initially for functions f on Rd that are (say) continuous with compact
support.

Theorem 7.1 The operator A extends to a bounded linear map of L2(Rd)
to L2

k(Rd), with k = d−1
2 .
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It should be pointed out that the averaging operator A of Section 4 is
translation-invariant, and the Radon transform RB is partially so; it is
translation-invariant with respect to the x3-variable. So in both cases
the Fourier transform can be used. However in the general situation the
Fourier transform is unavailable and we must proceed differently.

There will be two steps. The first will use an oscillatory integral op-
erator that partly substitutes for the Fourier transform and Plancherel’s
theorem. The second is an L2 estimate, obtained via a dyadic decom-
position of “almost-orthogonal” parts, that further serves to implement
this approach.

7.3 Oscillatory integrals

We turn to the first idea. We consider an operator Tλ (depending on a
positive parameter λ) of the form

Tλ(f)(x) =
∫

Rd

eiλΦ(x,y)ψ(x, y)f(y) dy.

Here Φ and ψ are a pair of C∞ functions on Rd × Rd, the latter assumed
to have compact support. The phase Φ is supposed to be real-valued,
and the key assumption is that its mixed Hessian

(61) det{∇2
x,yΦ} = det{ ∂2Φ

∂xk∂yj
}1≤k,j≤d,

is non-vanishing on the support of ψ.

Proposition 7.2 Under the above assumptions we have ‖Tλ‖ ≤ cλ−d/2,
λ > 0, with ‖ · ‖ denoting the norm of the operator acting on L2(Rd).

For us the importance of this proposition is the consequence it has for
a corresponding oscillatory integral that involves the defining function ρ.
We set

(62) Sλ(f)(x) =
∫

R×Rd

eiλy0ρ(x,y)ψ(x, y0, y)f(y) dy0 dy.

Here the integration is over (y0, y) ∈ R × Rd. The function ψ is again a
C∞ function with compact support in all variables, but the noteworthy
further assumption is that ψ is supported away from y0 = 0.

Corollary 7.3 Assume that the double defining function ρ satisfies the
condition rotcurv(ρ) �= 0 on the set where ρ = 0. Then

‖Sλ‖ ≤ cλ− d+1
2 .
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Note. We have an extra gain of λ−1/2 over what can be said for Tλ.

The proof of the proposition is in many ways like that of the scalar
version, Proposition 2.5 in Section 2, so we will be brief. As before, we
begin by taking the precaution that ψ is supported in a small ball. Now
if T is an operator on L2, then ‖T ∗T‖ = ‖T‖2, where T ∗ denotes the
adjoint of T .9

However Tλ is given by the kernel K(x, y) = eiλΦ(x,y)ψ(x, y), that is,
Tλ(f)(x) =

∫
K(x, y)f(y) dy, so T ∗

λ is given by the kernel K(x, y) and
T ∗

λTλ is given by the kernel

M(x, y) =
∫

Rd

K(z, x)K(z, y) dz =
∫

Rd

eiλ[Φ(z,y)−Φ(z,x)]ψ(x, y, z) dz,

with ψ(x, y, z) = ψ(z, x)ψ(z, y). The crucial point will be like (14),
namely,

|M(x, y)| ≤ cN (λ|x − y|)−N for every N ≥ 0.

Here, with z = (z1, . . . , zd) ∈ Rd, we use the vector field

L =
1
iλ

d∑
j=1

aj
∂

∂zj
= a · ∇z

and its transpose, Lt(f) = − 1
iλ

∑d
j=1

∂(ajf)
∂zj

, where

(aj) = a =
∇z(Φ(z, x) − Φ(z, y))

|∇z(Φ(z, x) − Φ(z, y))|2 .

Now because u = x − y is sufficiently small in view of the support as-
sumptions made on ψ, we see as before that |a| ≈ |x − y|−1 and |∂α

x a| �
|x − y|−1, for all α. Thus

|M(x, y)| ≤
∣∣∣∣∫ LN

(
eiλ[Φ(z,y)−Φ(z,x)]

)
ψ(x, y, z) dz

∣∣∣∣
≤

∫
|(Lt)Nψ(x, y, z)| dz

≤ cN (λ|x − y|)−N .

9In this connection, see for instance Exercise 19, in Chapter 4 of Book III.
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However, then

|T ∗
λTλf(x)| ≤

∫
|M(x, y)||f(y)| dy

≤
∫

M0(x − y)|f(y)| dy

=
∫

M0(y)|f(x − y)| dy,

where M0(u) = c′N (1 + λ|u|)−N , and by Minkowski’s inequality

‖T ∗
λTλ(f)‖L2 ≤ ‖f‖L2

∫
M0(u) du.

However
∫

M0(u) du = cλ−d, if in the estimate for M0 the N is taken
to be greater than d. As a result ‖T ∗

λTλ‖ ≤ cλ−d, and the proposition is
proved.

We turn now to the corollary. The link between the rotational curva-
ture of ρ and the phase Φ in the proposition occurs in passing from Rd

to Rd+1. With x = (x0, x) ∈ R × Rd = Rd+1 and y = (y0, y) ∈ R × Rd =
Rd+1, we set

Φ(x, y) = x0y0ρ(x, y).

Then, as is evident,

det(∇2
x,yΦ) = (x0y0)d+1rotcurv(ρ).

Now define Fλ(x0, x) by

Fλ(x0, x) = Fλ(x) =
∫

Rd+1
eiλΦ(x,y)ψ1(x0, x, y0, y)f(y) dy0 dy(63)

=
∫

Rd+1
eiλx0y0ρ(x,y)ψ1(x0, x, y0, y)f(y) dy0 dy

with ψ1(1, x, y0, y) = ψ(x, y0, y), and ψ1 having compact support that is
disjoint from x0 = 0 or y0 = 0.

This means that Sλ(f)(x) = Fλ(1, x).
To proceed we need the following little calculus lemma, valid for any

function g which is of class C1 in an interval I of length one. Suppose
u0 ∈ I, then

(64) |g(u0)|2 ≤ 2
(∫

I

|g(u)|2 du +
∫

I

|g′(u)|2 du

)
.
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Indeed, for any u ∈ I, one has g(u0) = g(u) +
∫ u0

u
g′(r) dr. So by Schwarz’s

inequality

|g(u0)|2 ≤ 2
(
|g(u)|2 +

∫
I

|g′(r)|2 dr

)
,

and an integration in u ranging over I then yields (64).
We apply this inequality with I = [1, 2], u0 = 1 and g(u) = Fλ(u, x)

(that is, u is the variable x0). Since Fλ(1, x) = Sλ(f)(x), we therefore
have after an integration in x ∈ Rd∫

Rd

|Sλ(f)(x)|2 dx ≤ 2
(∫

R×Rd

|Fλ(x0, x)|2 dx0 dx

+
∫

R×Rd

| ∂

∂x0
Fλ(x0, x)|2 dx0 dx

)
.

The first term on the right-hand side of the inequality is dominated by a
multiple of λ−(d+1)

∫
Rd |f(y)|2 dy, as we see by applying the proposition

(with Rd+1 in place of Rd), since ψ1 has compact support in y0.
However the second term is more problematic, because differentiation

in x0 in (63) brings down an extra factor of λ. We get around this by
observing that

∂

∂x0

(
eiλx0y0ρ(x,y)

)
=

∂

∂y0

(
eiλx0y0ρ(x,y)

) y0

x0

and then integrating by parts in the y0 variable in (63). We note that
because of the support property of ψ1, the variable y0 is bounded away
from 0, and the differentiation in y0 falls only on the smooth functions
of the integrand, and not f(y) since it is independent of y0.

This shows that the second term also satisfies the desired estimate,
establishing the corollary.

7.4 Dyadic decomposition

We now come to the dyadic decomposition of the operators A. When we
fix any Schwartz function h on R that is normalized by

∫
R

h(ρ) dρ = 1,
then we know (see Exercise 8) that for any smooth hypersurface M in Rd

with defining function ρ, and any continuous function f on Rd of compact
support,

lim
ε→0

ε−1

∫
Rd

h(ρ(x)/ε)f(x) dx =
∫

M

f
dσ

|∇ρ| ,

with dσ the induced Lebesgue measure on M .
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As a result (see (60))

A(f)(x) =
∫

Mx

f(y) dµx(y) = lim
ε→0

ε−1

∫
Rd

h

(
ρ(x, y)

ε

)
ψ(x, y)f(y) dy

where ψ(x, y) is a C∞ function of compact support given by ψ(x, y) =
ψ0(x, y)|∇yρ| and dµx(y) = ψ0(x, y) dσx(y).

Now choose γ(u) to be a C∞ function on R with γ supported in |u| ≤
1, and γ(u) = 1 if |u| ≤ 1/2, and let h(ρ) =

∫
R

e2πiuργ(u) du. Then by
the Fourier inversion theorem

∫
R

h(ρ) dρ = 1, and also
∫

e2πiuργ(εu) du =
ε−1h(ρ/ε).

Next write ε = 2−r, with r a positive integer, and γ(2−ru) = γ(u) +∑r
k=1(γ(2−ku) − γ(2−k−1u)). Letting r → ∞ we have

1 = γ(u) +
∞∑

k=1

η(2−ku)

with η(u) = γ(u) − γ(u/2), and η is supported in 1/2 ≤ |u| ≤ 2.
As a result of the above, we can write, whenever f is continuous,

A(f)(x) =
∞∑

k=0

Ak(f)(x) = lim
r→∞

r∑
k=0

Ak(f)(x),

where

(65) Ak(f)(x) =
∫

R×Rd

e2πiuρ(x,y)η(2−ku)ψ(x, y)f(y) du dy

(with a similar formula for A0, but with η(2−ku) replaced by γ(u)). The
limit here exists for each x.

We now make the following observations about the operators Ak(f),
the first of which is self-evident.

(a) Ak(f) is a C∞ function of compact support for each f ∈ L2(Rd).

(b) We have the estimates

(66) ‖Ak(f)‖L2 ≤ c2−k( d−1
2 )‖f‖L2 .

In fact, if we make the change of variables 2−ku = y0, then

(67) Ak(f)(x) = 2k

∫
R×Rd

e2πi2ky0ρ(x,y)ψ(x, y0, y)f(y) dy0 dy,
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with ψ(x, x0, y) = ψ(x, y)η(y0), which, in light of (62), equals

2kSλ(f)(x),

where λ = 2π2k. Thus the inequality (66) is an immediate consequence
of Corollary 7.3, since η is supported away from zero.

(c) We have the following strong “almost-orthogonality” of the collection
{Ak}: there is an integer m > 0 so that whenever |k − j| ≥ m,

(68) ‖AkA∗
j (f)‖L2 ≤ cN2−N max(k,j)‖f‖L2 ,

for each N ≥ 0. A similar assertion holds for A∗
kAj .

To verify (c) we make a simple estimate of the size of the kernel of the
operator AkA∗

j . A straight-forward calculation yields that its kernel is
given by
(69)

K(x, y) = 2k2j

∫
R×R×Rd

e2πi(2jvρ(z,y)−2kuρ(z,x))ψ(z, x, y)η(u)η(v) dz du dv

where ψ(z, x, y) = ψ(z, x)ψ(z, y). Now assume j ≥ k (the case k ≥ j is
similar). Write the exponent in (69) as

2πi(2jvρ(z, y) − 2kuρ(z, x)) = iλΦ(z),

with λ = 2π2j and Φ(z) = vρ(z, y) − 2k−juρ(z, x). Recall that because
of the support properties of η we have 1/2 ≤ |v| ≤ 2 and 1/2 ≤ |u| ≤ 2.
As a result |∇zΦ(z)| ≥ c′ > 0 if j − k ≥ m, for some fixed m that is large
enough, (because |∇zρ(z, y)| ≥ c, while |∇zρ(z, x)| ≤ 1/c for a constant
c that is small enough).

We now can invoke Proposition 2.1 to estimate
∫

Rd eiλΦ(z)ψ(z, x, y) dz,
and as a result obtain that for each N ≥ 0

|K(x, y)| ≤ cN2k2j2−jN

≤ cN ′2−N ′ max(k,j), with N ′ = N − 2.

Since K also has fixed compact support, the estimate (68) for AkA∗
j is

therefore established. Of course a parallel argument works for A∗
kAj ,

and property (c) is proved.

(d) Our last assertion concerns the operators
(

∂
∂x

)α Ak = ∂α
xAk, which

we denote by A(α)
k . Note that A(α)

k , like Ak, has a kernel that is C∞ and
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has compact support. The {A(α)
k } satisfy estimates very similar to those

for {Ak}. In fact,

(70) ‖A(α)
k ‖ ≤ cα2k|α|2−k( d−1

2 ),

and

(71) ‖A(α)
k (A(α)

j )∗‖ ≤ cα,N2−N max(k,j), if |k − j| ≥ m.

There is a parallel estimate for (A(α)
k )∗A(α)

j . Here of course ‖ · ‖ denotes
the operator norm on L2(Rd).

Looking at (67) we see that carrying out the differentiation ∂α
x on

Ak(f) yields a finite sum of terms like Ak (but with modified ψ’s) mul-
tiplied by factors that do not exceed 2k|α|. Thus (70) and (71) are direct
consequences of assertions (b) and (c) above.

7.5 Almost-orthogonal sums

Since we have appropriate control of the norms of the different pieces Ak

making up A, we now put these together by using a general almost-
orthogonality principle.

We consider a sequence {Tk} of bounded operators on L2(Rd) and we
assume we are given positive constants a(k), with −∞ < k < ∞, so that
the sum is finite, that is, A =

∑∞
k=−∞ a(k) < ∞.

Proposition 7.4 Assume that

‖TkT ∗
j ‖ ≤ a2(k − j) and ‖T ∗

k Tj‖ ≤ a2(k − j).

Then for every r,

(72) ‖
r∑

k=0

Tk‖ ≤ A.

The thrust of this proposition is of course that the bound A is indepen-
dent of r.

Proof. We write T =
∑r

k=0 Tk and recall that ‖T‖2 = ‖TT ∗‖. Since
TT ∗ is self-adjoint we may use this identity repeatedly to obtain ‖T‖2n =
‖(TT ∗)n‖, (at least when n is of the form n = 2s for some integer s). Now

(TT ∗)n =
∑

i1,i2,...,i2n

Ti1T
∗
i2 · · ·Ti2n−1T

∗
i2n

.
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We make two estimates for the norm of each term in the above sum.
First

‖Ti1T
∗
i2 · · ·Ti2n−1T

∗
i2n

‖ ≤ a2(i1 − i2)a2(i3 − i4) · · · a2(i2n−1 − i2n),

which is obtained by associating the product as (Ti1T
∗
i2

) · · · (Ti2n−1T
∗
i2n

).
Next

‖Ti1T
∗
i2 · · ·Ti2n−1T

∗
i2n

‖ ≤ A2a2(i2 − i3)a2(i4 − i5) · · · a2(i2n−2 − i2n−1),

which is obtained by associating the product as Ti1(T
∗
i2

Ti3) · · ·
(T ∗

i2n−2
Ti2n−1)T

∗
i2n

, and using the fact that Ti1 and T ∗
i2n

are both bounded
by A. Taking the geometric mean of these estimates yields

‖Ti1T
∗
i2 · · ·Ti2n−1T

∗
i2n

‖ ≤ Aa(i1 − i2)a(i2 − i3) · · · a(i2n−1 − i2n).

Now we sum this first in i1, then i2, and so on, until i2n−1, obtaining
a further factor of A each time, because A =

∑
a(k). When we sum

in i2n we use the fact that there are r + 1 terms in the sum. The result
is then ‖T‖2n ≤ A2n(r + 1). Taking the (2n)th root and letting n → ∞
gives (72) and the proposition.

7.6 Proof of Theorem 7.1

We consider first the case when the dimension d is odd, and thus the
fraction (d − 1)/2 is integral. The case when d is even is slightly more
complicated, and will be dealt with separately.

In this first case we must show that whenever |α| ≤ (d − 1)/2, and
f ∈ L2(Rd), the derivative ∂α

xA(f) exists in the sense of distributions, is
an L2 function, and the mapping f 	→ ∂α

xA(f) is bounded on L2.
For each r we consider

∂α
x

r∑
k=0

Ak =
r∑

k=0

Tk, where Tk = A(α)
k = ∂α

xAk.

Now because of (70) and (71) we see that the hypotheses in Proposi-
tion 7.4 are satisfied with in fact a(k) = cN2−|k|N , (and in particular for
N = 1). Thus

(73) ‖∂α
x

r∑
k=0

Ak(f)‖L2 ≤ A‖f‖L2 , |α| ≤ d−1
2 .
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However, by (70) for α = 0, the sum
∑r

k=0 Ak converges in the L2 norm
as r → ∞ to A(f), (since the latter also converges pointwise to A(f)),
and hence in the sense of distributions. Thus ∂α

x

∑r
k=0 Ak(f) also con-

verges in the sense of distributions as r → ∞ but since this sum is uni-
formly in L2 as r varies, the limit is also in L2.

Finally then we have

‖∂α
xA(f)‖L2 ≤ A‖f‖L2 ,

whenever f is continuous and of compact support and |α| ≤ (d − 1)/2,
with d odd. Hence Theorem 7.1 is proved in this case.

Now we consider the case when d is even. Here we need to involve the
“fractional derivative” operator Ds, defined on the Schwartz space S by
its action as a multiplier on the Fourier transform, namely

(Dsf)∧(ξ) = (1 + |ξ|2)s/2f̂(ξ).

Note that ‖Ds(f)‖L2 = ‖f‖L2
σ
, where σ = Re(s), whenever f is in S. We

also need to observe that if Re(s) = m is a positive integer, then

(74) ‖Ds(f)‖L2 ≤ c
∑

|α|≤m

‖∂α
x f‖L2 .

Indeed, this follows directly from the inequality (1 + |ξ|2)m/2 ≤
c′

∑
|α|≤m |ξα|, ξ ∈ Rd, and Plancherel’s theorem.

Now arguing as above for the case when d is odd, it will suffice to prove
that

(75) ‖D d−1
2

r∑
k=0

Ak(f)‖L2 ≤ c‖f‖L2 ,

with the bound c independent of r. To this end, consider the family of
operators T s, depending on the complex parameter s, defined by

(76) T s(f) = Ds+ d−1
2

r∑
k=0

2−ksAk(f),

for f ∈ L2(Rd) (in particular for simple f). As we have already noted, for
such f the Ak(f) are in S so (76) is well-defined and T s(f) is itself in S.
Moreover, whenever g ∈ L2, (in particular, if it is a simple function) then
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by Plancherel’s theorem

Φ(s) =
∫

Rd

T s(f)g dx

=
r∑

k=0

2−ks

∫
Rd

(1 + |ξ|2)s/2Fk(ξ)ĝ(−ξ) dξ,

where each Fk belongs to S. Hence Φ is analytic (in fact entire) in s,
and by Schwarz’s inequality, bounded in any strip a ≤ Re(s) ≤ b.

Next

(77) sup
t

‖T− 1
2+it(f)‖L2 ≤ M‖f‖L2 .

In fact, by (74) and (76) it suffices to see that

‖
r∑

k=0

2−k/2∂α
xAk(f)‖L2 ≤ M‖f‖L2 , for |α| ≤ d−2

2 .

But this is proved like (73) by using estimates (70) and (71) for A(α)
k =(

∂
∂x

)α Ak together with the almost-orthogonality proposition in Sec-
tion 7.5.

Similarly, one shows that

(78) sup
t

‖T 1
2+it(f)‖L2 ≤ M‖f‖L2 .

Finally, we apply the analytic interpolation given by Proposition 4.4.
Here the strip is a ≤ Re(s) ≤ b, with a = −1/2, b = 1/2 and c = 0, while
p0 = q0 = p1 = q1 = 2. The result is then

‖T 0(f)‖L2 ≤ M‖f‖L2 ,

which in view of the definition (76) is the estimate (75). This completes
the proof of the theorem.

Remark. The Lp, Lq boundedness result of Theorem 4.1 (b) and Corol-
lary 4.2 extends to this setting. The proof is outlined in Exercise 20.

8 Counting lattice points

In this last section we will see the relevance of oscillatory integrals to
some questions related to number theory.
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8.1 Averages of arithmetic functions

The arithmetic functions we have in mind are r2(k), the number of rep-
resentations of k as the sum of two squares, and d(k), the number of
divisors of k. Even a cursory examination of the size of these functions
as k → ∞ reveals a high degree of irregularity, so that it is not possible
to capture by simple analytic expressions the essential behavior of these
functions for large k.

In fact, it is an elementary observation that r2(k) = 0 and d(k) =
2, each for infinitely many k, while given any A > 0, one has r2(k) ≥
(log k)A for infinitely many k, and the same is true for d(k).10

In this context an inspired idea was to inquire instead as to the average
behavior of these arithmetic functions. That this might be a fruitful
question is already indicated by the observation of Gauss: the average
value of r2(k) is π. This means that 1

µ

∑µ
k=1 r2(k) → π, as µ → ∞.

In more detail, we have the following result.

Proposition 8.1
∑µ

k=1 r2(k) = πµ + O(µ1/2), as µ → ∞.

The proof depends on the realization that
∑µ

k=0 r2(k) represents the
number of lattice points in the disc of radius R with R2 = µ. In fact,
with Z2 denoting the lattice points in R2, that is, the points in R2 with
integral coordinates, then r2(k) = #{(n1, n2) ∈ Z2 : k = n2

1 + n2
2}, and

hence
µ∑

k=0

r2(k) = #{(n1, n2) ∈ Z2 : n2
1 + n2

2 ≤ R2}.

So if N(R) is the quantity above, then the proposition is equivalent to

(79) N(R) = πR2 + O(R), as R → ∞.

To prove this we write DR for the closed disc {x ∈ R2 : |x| ≤ R}, and let
D̃R be the rectangular region that is the union of unit squares centered
at points n ∈ Z2 with n ∈ DR, that is,

D̃R =
⋃

|n|≤R, n∈Z2

(S + n),

with S = {x = (x1, x2) : −1/2 ≤ xi < 1/2, i = 1, 2}.

10For the elementary facts about r2(k) and d(k) stated here, including the asymptotic
formula (81), see, for example, Chapter 8 in Book I and Chapter 10 in Book II.
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D̃R

DR

Figure 2. The region D̃R

Since the squares S + N are mutually disjoint and each has area 1, we
see that m(D̃R) = N(R). However

(80) DR−2−1/2 ⊂ D̃R ⊂ DR+2−1/2 .

In fact if x ∈ S + n with |n| ≤ R, then |x| ≤ 2−1/2 + |n| ≤ R + 2−1/2, so
D̃R ⊂ DR+2−1/2 . The reverse inclusion can be proved the same way. It
follows from (80) that

m(DR−2−1/2) ≤ m(D̃R) ≤ m(DR+2−1/2),

and hence

π(R − 2−1/2)2 ≤ N(R) ≤ π(R + 2−1/2)2,

proving that N(R) = πR2 + O(R).

There is a similar but somewhat more intricate statement for the av-
erages of the divisor function. Dirichlet’s theorem asserts:

(81)
µ∑

k=1

d(k) = µ log µ + (2γ − 1)µ + O(µ1/2) as µ → ∞,

where γ is Euler’s constant.
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Again this is a consequence of counting lattice points in the plane:
the left-hand side of (81) is the number of lattice points (n1, n2), with
n1, n2 > 0 that lie on or below the hyperbola x1x2 = µ.11

Both (79) and (81) raise the question of what are the true sizes of
the error terms appearing in these asymptotic statements. Like other
important questions of this kind in number theory, these problems have
a long history involving much effort, but yet remain unsolved. It will be
our purpose here to show only how the first results that go beyond (79)
and (81) can be obtained by the help of ideas treated in this chapter.

8.2 Poisson summation formula

Indispensable for any further insight into these problems is the applica-
tion of the Poisson summation formula. We state this identity here in
the general context of Rd, but with a restricted hypothesis sufficient for
our applications.12

Proposition 8.2 Suppose f belongs to the Schwartz space S(Rd). Then

(82)
∑
n∈Zd

f(n) =
∑
n∈Zd

f̂(n).

Here Zd denotes the collection of lattice points in Rd, the points with
integral coordinates, and f̂ is the Fourier transform of f .

For the proof consider two sums∑
n∈Zd

f(x + n) and
∑
n∈Zd

f̂(n)e2πin·x.

Both are rapidly converging series (since f and f̂ are in S(Rd)), and hence
both these sums are continuous functions. Moreover each is periodic,
that is, each is unchanged when x is replaced by x + m, for any m ∈ Zd.
For the sum

∑
n∈Zd f(x + n) this is clear, because replacing x by x + m

merely reshuffles the sum. Also the second sum is unchanged, because
of the periodicity of e2πin·x for each n ∈ Zd. Moreover both sums have
the same Fourier coefficients. To see this, let Q be the fundamental cube

11That there might be some connection between the averages r2(k) and d(k) is sug-
gested by the fact that r2(k) = 4(d1(k) − d3(k)), for k ≥ 1, where d1 and d3 are respec-
tively the number of divisors of k ≡ 1 mod 4 or ≡ 3 mod 4.

12Other settings for the formula can be found in Chapter 5 in Book I, and Chapter 4
in Book II.
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Q = {x ∈ Rd : 0 < xj ≤ 1, j = 1, . . . , d}, and fix any m ∈ Zd. Then∫
Q

(∑
n

f(x + n)

)
e−2πim·x dx =

∑
n

∫
Q+n

f(x)e−2πim·x dx

=
∫

Rd

f(x)e−2πim·x dx

= f̂(m),

since
⋃

n∈Zd(Q + n) is a partition of Rd into cubes {Q + n}n∈Zd . More-
over ∫

Q

(∑
n

f̂(n)e2πin·x
)

e−2πim·x dx = f̂(m),

because
∫

Q
e2πin·xe−2πim·x dx = 1 if n = m, and is 0 otherwise. Since∑

n f(x + n) =
∑

n f̂(n)e2πinx have the same Fourier coefficients, these
functions must be equal,13and setting x = 0 gives us (82).

Next let us see what happens to the summation formula (82) when we
apply it first to the case of a radial function on R2, f(x) = f0(|x|), that
is in S, and then we try it with χR, the characteristic function of the
disc DR.

Using the formula (4) in Section 1 we obtain

(83)
∑
n∈Z2

f0(|n|) = 2π

∫ ∞

0

f0(r)r dr +
∞∑

k=1

F0(k1/2)r2(k),

once we gather together the terms for which |n|2 = k. Here F0(ρ) =
2π

∫ ∞
0

J0(2πρr)f0(r)r dr, and we note that J0(0) = 1.

If we could apply this formula to the case when f is χR, (the obstacle
is that of course χR is not smooth), and use the fact that rJ1(r) =∫ r

0
σJ0(σ) dσ, which is outlined in Exercise 23, this would give us Hardy’s

identity

N(R) = πR2 + R

∞∑
k=1

r2(k)
k1/2

J1(2πk1/2R).

Note that since J1(u) is of order u−1/2 as u → ∞ (see (11)), the series
does not converge absolutely, and this is the barrier in trying to ap-
ply (83), even if one is guaranteed the (conditional) convergence of the

13See, for instance, Exercise 16 in Chapter 6 of Book III.
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series. Nevertheless, since each term of the series is O(R−1/2), it might be
hoped that the error term, N(R) − πR2, is roughly of the order O(R1/2),
and this is what is conjectured.14

Here we prove the following weaker assertion that is, however, an im-
provement over (79).

Theorem 8.3 N(R) = πR2 + O(R2/3), as R → ∞.

Proof. We replace the characteristic function χR by a regularized
version as follows. We fix a non-negative “bump” function ϕ that is C∞,
is supported in the unit disc, and has

∫
R2 ϕ(x) dx = 1. We set ϕδ(x) =

δ−2ϕ(x/δ), and let

χR,δ = χR ∗ ϕδ.

Then clearly χR,δ is a C∞ function of compact support and hence the
summation formula (82) applies to it. Notice that χ̂R,δ(ξ) = χ̂R(ξ)ϕ̂δ(ξ),
and χ̂R,δ(0) = χ̂R(0)ϕ̂δ(0) = πR2.

As a result, if we define Nδ(R) =
∑

n∈Z2 χR,δ(n), then the summation
formula yields

Nδ(R) = πR2 +
∑
n�=0

χ̂R(n)ϕ̂(δn).

We now estimate the sum above by breaking it into two parts as∑
0<|n|≤1/δ

+
∑

|n|>1/δ

.

For the first sum we use the fact that

|χ̂R(n)| =
R

|n| |J1(2π|n|R)| = O(R1/2|n|−3/2),

by what has been said above, and that |ϕ̂(nδ)| = O(1). This gives

∑
0<|n|≤1/δ

= O

⎛⎝R1/2
∑

0<|n|≤1/δ

|n|−3/2

⎞⎠
= O

(
R1/2

∫
|x|≤1/δ

|x|−3/2 dx

)
= O(R1/2δ−1/2).

14More precisely the guess is that the error term is O(R1/2+ε) for every ε > 0. See also
Problem 6.
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Similarly,

∑
|n|>1/δ

= O

⎛⎝R1/2δ−1
∑

|n|>1/δ

|n|−5/2

⎞⎠ ,

since |ϕ̂(nδ)| = O(|n|−1δ−1). (In fact ϕ̂(ξ) is rapidly decreasing.) Thus
this sum is also O(R1/2δ−1/2). We conclude therefore that

(84) Nδ(R) = πR2 + O(R1/2δ−1/2).

However there is a simple relation between Nδ(R) and N(R), namely

(85) Nδ(R − δ) ≤ N(R) ≤ Nδ(R + δ).

This in turn follows from the observation that

χR−δ,δ ≤ χR ≤ χR+δ,δ.

The inequality on the right-hand side, χR(x) ≤ ∫
χR+δ(x − y)ϕδ(y) dy,

is clear because x ∈ DR and |y| ≤ δ implies x − y ∈ DR+δ. Similarly for
the inequality on the left-hand side.

Finally by (84), we have Nδ(R + δ) = πR2 + O(R1/2δ−1/2) + O(Rδ)
and analogously Nδ(R − δ) = πR2 + O(R1/2δ−1/2) + O(Rδ). Altogether
then, (85) yields that

N(R) = πR2 + O(R1/2δ−1/2) + O(Rδ).

By choosing δ = R−1/3 we make both O terms above equal, and this
gives

N(R) = πR2 + O(R2/3).

The theorem is therefore proved.

The approach to Theorem 8.3, leads to a wide generalization in which
the disc in R2 is replaced by an appropriate convex set in Rd.

Recall that a set Ω is convex if whenever x and x′ are in Ω, so is the line
segment joining them. Suppose in addition that Ω is a bounded set with
C2 boundary (in the sense of Section 4 in Chapter 7). Then whenever ρ
is a defining function for Ω, the second fundamental form (19) is positive
semi-definite. (In fact, assuming the contrary, we can find a point on
the boundary and coordinates (x1, . . . , xd) centered at this point, so that
xd is in the direction of the inward normal, and the quadratic form has
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an eigenvalue λ1 < 0 in the direction x1. Hence near the origin in this
coordinate system, the intersection of Ω with the plane determined by
the x1 and xd axes is then given by {xd > λ1x

2
1 + o(x2

1)}, which is clearly
not convex, contradicting the convexity of Ω.)

With this in mind, we say that Ω is strongly convex when the
quadratic form (19) is strictly positive definite at each point of the bound-
ary of Ω. We denote by RΩ the dilated set {Rx : x ∈ Ω} and write
NR = #{lattice points in RΩ}.
Theorem 8.4 Suppose Ω is a bounded domain in Rd with sufficiently
smooth boundary.15 Assume that Ω is strongly convex and 0 ∈ Ω. Then

NR = Rdm(Ω) + O(Rd− 2d
d+1 ) as R → ∞.

The proof follows closely the argument for Theorem 8.3.

Proof. Let χ denote the characteristic function of Ω and χR that
of RΩ, so χR(x) = χ(x/R). With ϕ a non-negative C∞ function sup-
ported in the unit ball that satisfies

∫
ϕ(x) dx = 1, we set ϕδ(x) =

δ−dϕ(x/δ). We let χR,δ = χR ∗ ϕδ, and set

NR,δ =
∑
n∈Zd

χR,δ(n).

Now, by the summation formula (82)

NR,δ = Rδm(Ω) +
∑
n �=0

χ̂R,δ(n),

since χ̂R,δ(0) = χ̂R(0)ϕ̂(0), χ̂R(0) = Rdχ̂(0) = Rdm(Ω), and ϕ̂(0) = 1.

However χ̂(ξ) = O
(
|ξ|− d+1

2

)
by Corollary 3.3. Thus

χ̂R(n) = Rdχ̂(Rn) = O
(
R

d−1
2 |n|− d+1

2

)
,

so

χ̂R,δ(n) = O
(
R

d−1
2 |n|− d+1

2

)
ϕ̂(δn).

Now we break the sum
∑

n �=0 χ̂R,δ(n) as
∑

1≤|n|≤1/δ +
∑

1/δ<|n|. For

the first term we use the fact that χ̂R,δ = O(R
d−1
2 |n|− d+1

2 ), and we es-
timate that sum by O(R

d−1
2 δ−

d−1
2 ), (for example by comparing it with

R
d−1
2

∫
|x|≤1/δ

|x|− d+1
2 dx).

15The proof will show that Cd+2 suffices. See the remark at the end of Section 3.
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The second term leads to R
d−1
2

∑
|n|>1/δ |n|−

d+1
2 (|n|δ)−r for any r > 0,

since ϕ̂ is rapidly decreasing. Choosing r sufficiently large, say r = d/2

gives in the same way the estimate O
(
R

d−1
2 δ−

d−1
2

)
for this part of the

sum. Hence

(86) NR,δ = Rdm(Ω) + O
(
R

d−1
2 δ−

d−1
2

)
.

Next we observe that for an appropriate c > 0

(87) NR−cδ,δ ≤ NR ≤ NR+cδ,δ.

This inequality follows from

χR−cδ,δ ≤ χR ≤ χR+cδ,δ.

The inequality on the right-hand side,

χR(x) ≤
∫

χR+cδ(x − y)ϕδ(y) dy,

is a consequence of the geometric observation that there is a c > 0, so
that whenever R ≥ 1, and δ ≤ 1,

(88) x in RΩ and |y| ≤ δ imply that x − y ∈ (R + cδ)Ω.

The proof of this geometrical fact about the convexity of Ω is outlined
in Exercise 21.

The inequality χR−cδ,δ ≤ χR is seen in the same way.

Now a combination of (86) and (87) show that

NR = Rdm(Ω) + O
(
R

d−1
2 δ−

d−1
2

)
+ O(Rd−1δ).

If we now choose δ = R− d−1
d+1 , then both O terms are O

(
Rd− 2d

d+1

)
, and

the theorem is proved.

8.3 Hyperbolic measure

We turn to the improvement of (81) for the divisor problem that is anal-
ogous to Theorem 8.3.
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Theorem 8.5

(89)
µ∑

k=1

d(k) = µ log µ + (2γ − 1)µ + O(µ1/3 log µ) as µ → ∞.16

Now as much as we might wish to follow the lines of the proof of The-
orem 8.3, there are serious obstacles that seem to stand in the way. In
fact, if χµ is the characteristic function of the region

(90) {(x1, x2) ∈ R2 : x1x2 ≤ µ, x1 > 0, and x2 > 0},
which consists of the area on or below the hyperbola x1x2 = µ, then
indeed

µ∑
k=1

d(k) =
∑
n∈Z2

χµ(n).

However the other side of the Poisson summation formula (82) for f = χµ

is problematic as it stands. In fact, χ̂µ(0) =
∫

R2 χµ dx = ∞, and for the
same reason the integral giving each term χ̂µ(n) is not well-defined.

A further issue is that the main term in (89) is µ log µ, while a simple
scaling of the region (90) would suggest rather a term linear in µ. Con-
nected with this is the mysterious occurrence of Euler’s constant γ in the
subsidiary term.

Now the essence of our analysis of lattice points in DR (and formulas
like (83)) are the facts about Fourier transforms of radial functions in
two dimensions, which in turn depend on the Fourier transform of the
invariant measure of the circle. In parallel to this we seek the analog
where instead of radial functions we consider functions invariant under
“hyperbolic dilations” (x1, x2) → (δx1, δ

−1x2), δ > 0, and a correspond-
ing invariant measure in R2 supported on the hyperbola x1x2 = 1.

We begin with the hyperbolic measure on R2, denoted by dh, and
which is defined by the integration formula∫

R2
f(x) dh =

∫ ∞

0

f(u, 1/u)
du

u
,

valid for every continuous function f of compact support. Alternatively

h(E) =
∫ ∞

0

χE(u, 1/u)
du

u

16Recall the correspondence µ = R2 when comparing this with the result for lattice
points in DR.
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for every Borel set E in R2, with the integral taken in the extended
sense. Note that the measure h is invariant under the scalings (x1, x2) →
(δx1, δ

−1x2), for δ > 0.
Now the linear functional f 	→ ∫ ∞

0
f(u, 1/u) du

u is well-defined for f ∈
S in view of the rapid convergence of the integral, and moreover this
convergence shows that the measure h can be considered by this formula
to be a tempered distribution. We seek to determine the Fourier trans-
form of this distribution, and matters will depend on a pair of oscillatory
integrals J+ and J−. These are given formally by

J±(λ) =
∫ ∞

0

eiλ(u±1/u) du

u
.

Since these integrals do not converge absolutely (either at 0 or at infinity)
they must be considered as appropriate limits after truncation.

For this purpose we pick η to be a non-negative C∞ function on [0,∞)
with η(u) = 0 for small u, and η(u) = 1 if u ≥ 1, and set ηa(u) = η(u/a).
We then define the convergent integral

J+
a,b(λ) =

∫ ∞

0

eiλ(u+ 1
u )ηa(u)ηb(1/u)

du

u
,

with a similar definition for J−
a,b(λ). To begin with we take 0 < a, b ≤ 1/2.

Proposition 8.6 For each λ �= 0, the limit J+(λ) = lima,b→0 J+
a,b(λ) ex-

ists. Moreover, uniformly in a and b, we have:

(i) J+
a,b(λ) =

(∑N
k=0 ckλ−1/2−k

)
e2iλ + O

(|λ|−3/2−N
)
, for |λ| ≥ 1/2

and for every N ≥ 0, with c0, c1, . . . , ck, . . . appropriate constants.

(ii) J+
a,b(λ) = O (log 1/|λ|), for |λ| ≤ 1/2.

Proof. We divide the integral J+
a,b into three parts as follows. Let α be

a C∞ function so that α(u) = 1 when 3/4 ≤ u ≤ 4/3, and α is supported
in [1/2, 2]. Set β = 1 − α so β is supported where u ≤ 3/4 or u ≥ 4/3.
Then split J+

a,b as I + II + III, where

II =
∫ 2

1/2

eiλΦ(u)α(u)
du

u
, I =

∫ 3/4

0

eiλΦ(u)β(u)ηa(u)
du

u
,

and

III =
∫ ∞

4/3

eiλΦ(u)β(u)ηb(u)
du

u
.
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Here we have written Φ(u) for u + 1/u.
Now we observe that Φ′(1) = 0, while Φ′′(u) > 0 for all u, so that u = 1

is the (only) critical point of Φ. Also, since Φ(1) = 2, we are led to make
the change of variables Φ(u) = u + 1/u = 2 + x2. Solving the quadratic
equations involved gives

x =
u − 1
u1/2

, u = 1 +
x2

2
+

x(4 + x2)1/2

2
,

which shows that u 	→ x is a smooth bijection of the intervals [1/2, 2]
with [−2−1/2, 21/2].

Making the indicated change of variables, we see that the integral II
becomes

e2iλ

∫
eiλx2

α̃(x) dx,

with α̃ a C∞ function of compact support. We now invoke the asymptotic
formula (8) to obtain

II =

(
N∑

k=0

ckλ−1/2−k

)
e2iλ + O

(|λ|−3/2−N
)
,

for every N ≥ 0.
Next, to deal with the integral I, we write

L =
1

iλΦ′(u)
d

du
.

Then L(eiλΦ) = eiλΦ, and for every integer N ≥ 1

(91) I =
∫ 3/4

0

LN (eiλΦ)β(u)ηa(u)
du

u
.

Let us first consider the case N = 1. Since Φ′(u) = 1 − 1/u2, and
1/Φ′(u) = u2/(u2 − 1), integration by parts shows

I = − 1
iλ

∫ 3/4

0

eiλΦ(u) d

du
(uβ1(u)ηa(u)) du,

where β1(u) = β(u)/(u2 − 1), and β1 is smooth.
Carrying out the differentiation leads to two terms. First, if the deriva-

tive falls on β1(u), the resulting contribution to I is certainly O(1/|λ|).
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For the second, if the derivative falls on ηa(u) the contribution is also
O(1/|λ|), since (ηa(u))′ = O(1/a), and η′

a(u) is supported on [0, a]. This
shows that I = O(1/|λ|).

For N > 1 we use (91) again, and carry out the integration by parts
N times. Now at each step we get a gain of a factor of u and a possible
loss of a factor of a−1, the latter occurring when ηa is differentiated.
So altogether this shows that I = O(|λ|−N ) for each positive integer N .
The integral III is similar to that of I, as can be seen by transforming
it by the mapping u 	→ 1/u. So we also have III = O(|λ|−N ), and hence
conclusion (i) of the proposition is proved.

Next, when |λ| ≤ 1/2, since II is obviously bounded, we need only
estimate I and III. Turning to I we write as before

I = − 1
iλ

∫ 3/4

0

eiλΦ(u) d

du
(uβ1(u)ηa(u)) du

= − 1
iλ

∫ |λ|

0

− 1
iλ

∫ 3/4

|λ|
.

But the first term is majorized by a multiple of

1
|λ|

∫ |λ|

0

(1 + u|η′
a(u)|) du = O(1),

while the second term can be written∫ 3/4

|λ|
eiλΦ(u)β(u)ηa(u)

du

u
+ O(1),

which is clearly O
(∫ 3/4

|λ|
du
u

)
+ O(1) = O(log 1/|λ|). The estimate for III

is similar, so conclusion (ii) is established.
To prove the convergence of J+

a,b as a, b → 0, note that the integral II
is independent of a and b. Now consider I and recall that it depends
only on a. We have

Ia − Ia′ =
∫

eiλΦ(u)(ηa(u) − ηa′(u))β(u)
du

u
,

and the integrand is supported only on (0, max(a, a′)). Now as before

Ia − Ia′ =
1
iλ

∫
d

du
(eiλΦ(u))(ηa(u) − ηa′(u))uβ1(u) du
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and an integration by parts shows that this difference is O
(

1
|λ| max(a, a′)

)
.

Since λ is fixed, λ �= 0, this tends to zero with a and a′, and so Ia tends
to a limit as a → 0. The term III is treated similarly, and hence J+

a,b

tends to a limit, proving the proposition.

A similar result holds for J−
a,b, except for one change.

Corollary 8.7 The conclusions for J−
a,b are the same as those for J+

a,b

stated in Proposition 8.6, except that (i) should be modified to read that
uniformly in a, b,

(i′) J−
a,b = O(|λ|−N ) for |λ| ≥ 1/2, for every N ≥ 0.

The only change occurs in the treatment of II, namely
∫

eiλΦ(u)α(u) du
u ,

where now Φ(u) = u − 1/u. In this case Φ′(u) = 1 + 1/u2 > 1, and there
is no critical point. So Proposition 2.1 implies that II = O(|λ|−N ) for
every N ≥ 0, and then conclusion (i′) follows by the arguments we have
used for I and III previously.

Remarks. Two further observations about J+
a,b are straight-forward

consequences of the arguments given above.
1. J+ and J− are both continuous in λ if λ �= 0.
2. The uniformity of the estimates (i), (i′) and (ii) holds in the wider
range 0 < a < ∞, 0 < b < ∞, with the only change being that in the
asymptotic formula in (i) the constants ck may depend on a and b, but
are still uniformly bounded. For example, when a ≤ 1/2 but now b is
unrestricted, then in the term II, α(u) is replaced by α(u)η(1/(bu)),
which is still uniformly smooth when b ≥ 1/2. In I, the function β1(u) is
replaced by β1(u)η(1/(bu)) with the same effect. This reasoning clearly
applies when both a and b are large.

8.4 Fourier transforms

We now come to the Fourier transform of h. It is convenient at this point
to change our notation slightly, so that a general point (x1, x2) of R2 will
now be denoted instead by (x, y), and similarly the dual variable in R2

will be denoted by (ξ, η).17

We divide the plane R2 into its four proper quadrants Q1, Q2, Q3 and
Q4, (together with the x and y axes) with Q1 = {(x, y) : x > 0 and y >
0}, Q2 = {(x, y) : x < 0 and y > 0} and so on.

17This will reduce the burden of subscripts in some of our formulas.
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Proposition 8.8 The Fourier transform ĥ (taken as a tempered distri-
bution) is a continuous function when ξη �= 0 and is given by

J+(−2π|ξη|1/2) in Q1.
J−(−2π|ξη|1/2) in Q2.
J+(2π|ξη|1/2) in Q3.
J−(2π|ξη|1/2) in Q4.

Proof. We approximate h by the finite measures hε given by∫
R2

f dhε =
∫ ∞

0

f(u, 1/u)ηε(u)ηε(1/u)
du

u
.

Now clearly
∫

f dhε →
∫

fdh as ε → 0, whenever f ∈ S, so the mea-
sures hε converge to h in the sense of tempered distributions. Now

ĥε(ξ, η) =
∫ ∞

0

e−2πi(ξu+η/u)ηε(u)ηε(1/u)
du

u
.

Suppose first (ξ, η) is in Q1 and therefore ξ > 0 and η > 0. Keeping (ξ, η)
fixed, we make the change of variables u 	→ (η/ξ)1/2u. Then ξu + η/u
becomes (ξη)1/2(u + 1/u), while ηε(u) = η(u/ε) is transformed to ηa(u),
with a = ε(ξ/η)1/2, while ηε(1/u) becomes ηb(1/u), with b = ε(η/ξ)1/2.
Also, the measure du

u is unchanged. So

ĥε = J+
a,b(−2π|ξη|1/2)

in the first quadrant, with analogous formulas in the other three quad-
rants.

Now the conclusions (i), (ii), and (i′) of Proposition 8.6 and its corollary
show that

|ĥε(ξ, η)| ≤ A|ξη|−1/2 for |ξη| ≥ 1/2,
|ĥε(ξ, η)| ≤ A log(1/|ξη|) for |ξη| ≤ 1/2,

uniformly in ε. Moreover, for each (ξ, η) with ξη �= 0, ĥε(ξ, η) converges
to a limit as ε → 0. This suffices to show that ĥε converges in the sense of
tempered distributions to the function ĥ given by limε→0 ĥε(ξ, η). This
is because the above estimates imply that∫

R2
ĥεg →

∫
ĥg, for any g ∈ S,

by the dominated convergence theorem. Thus the proposition is proved.
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We next study the Fourier transform of functions in R2 that are in-
variant under the dilations (x, y) → (δx, δ−1y), with δ > 0. We state the
result for a restricted class of smooth functions of the type that is needed
below, although the main identities hold for broader classes of functions.
We will suppose that f is of the form f(x, y) = f0(xy) in the first quad-
rant, and vanishes in the other three quadrants. The function f0 will be
assumed to be a C∞ function with compact support on (0,∞). Functions
f of this form are never integrable on the whole of R2 (unless f0 = 0)
but since they are bounded, they are of course tempered distributions.

Theorem 8.9 Let f̂ be the Fourier transform of f(x, y) = f0(xy). Then
f̂ is a continuous function where ξη �= 0. It is given by

(92) f̂(ξ, η) = 2
∫ ∞

0

J+(−2π|ξη|1/2ρ)f0(ρ2)ρ dρ

for (ξ, η) ∈ Q1. In Q2, Q3, and Q4 it is given by the analogous formulas,
with J+(−·) replaced by J−(−·), J+(+·) and J−(+·), respectively.

Proof. We approximate f by fε, with fε(x, y) = f0(xy)ηε(x)ηε(y).
Then each fε is a C∞ function of compact support, and clearly fε → f
in the sense of tempered distributions.

Now

f̂ε(ξ, η) =
∫

e−2πi(ξx+ηy)f0(xy)ηε(x)ηε(y) dxdy.

We introduce new variables (u, ρ) in the first quadrant with x = uρ,
y = ρ

u , and observe that

∂(x, y)
∂(u, ρ)

=
(

ρ u
− ρ

u2
1
u

)
,

which has a determinant equal to 2ρ/u. Therefore dx dy = 2ρdu
u dρ and

f̂ε(ξ, η) = 2
∫ ∞

0

∫ ∞

0

e−2πi(ξuρ+ηρ/u)f0(ρ2)ηε(ρu)ηε(ρ/u)ρ
du

u
dρ.

Again, if (ξ, η) is in the first quadrant and if we make the change of
variables u 	→ (η/ξ)1/2u, then we have

(93) f̂ε(ξ, η) = 2
∫ ∞

0

J+
a,b(−2π|ξη|1/2ρ)f0(ρ2)ρ dρ,

with now a = ε
ρ

(
ξ
η

)1/2

and b = ε
ρ

(
η
ξ

)1/2

.
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The analogous formulas for f̂ε(ξ, η) hold when (ξ, η) are in the second,
third and fourth quadrants. So the fact that f̂ε converges in the sense of
tempered distributions to the limit f̂ given by (92) then follows by the
same reasoning used in the proof of Proposition 8.8.

Corollary 8.10 The Fourier transforms f̂ε and f̂ satisfy the following
estimate, uniformly in ε:

(94) |f̂ε(ξ, η)| ≤ AN |ξη|−N when |ξη| ≥ 1/2,

for every N ≥ 0.

This is a consequence of the asymptotic behavior of J±(λ) for λ as
given in Proposition 8.6 and its corollary together with the fact that∫ ∞
0

e−4πiρ|ξη|1/2
f0(ρ2)ρ dρ is O(|ξη|−N ) for every N ≥ 0, since f0(ρ2)ρ is

a C∞ function with compact support in (0,∞).

8.5 A summation formula

Here we obtain the hyperbolic analog of the summation formula (83). It
will be convenient now to put together the oscillatory integrals for the
four quadrants and write J for

J(λ) = 2
(
J+(λ) + J+(−λ) + J−(λ) + J−(−λ)

)
.18

Again f0 is a C∞ function with compact support in (0,∞).

Theorem 8.11

(95)
∞∑

k=1

f0(k)d(k) =
∫ ∞

0

(log ρ + 2γ)f0(ρ) dρ +
∞∑

k=1

F0(k)d(k),

where

F0(u) =
∫ ∞

0

J(2πu1/2ρ)f0(ρ2)ρ dρ.

Proof. We apply the Poisson summation formula∑
Z2

fε(m,n) =
∑
Z2

f̂ε(m,n),

to the approximating functions fε, and then pass to the limit as ε → 0.
Now the sum on the left-hand side is clearly taken over a bounded set of

18The expression of J in terms of Bessel-like functions is given in Problem 7.
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lattice points since f0(u) has compact support in (0,∞). Thus, gathering
together the (m,n) for which mn = k gives the left-hand side of the
formula.

Now divide the sum on the right-hand side in two parts. One part
taken over those (m,n) for which mn �= 0, and the other part taken over
those (m,n) where either m = 0, or n = 0, or both, m = n = 0.

By the theorem and Corollary 8.10, we see first that

lim
ε→0

∑
mn�=0

f̂ε(m,n) =
∑

mn�=0

f̂(m,n),

since the series are dominated by the convergent series
∑

mn �=0 |mn|−2.
Next, gathering together those (m,n) for which |mn| = k, gives us

∑
mn�=0

f̂(m,n) =
∞∑

k=1

F0(k)d(k)

because of formula (92).
It remains to evaluate the limit as ε → 0 of

(96)
∑

mn=0

f̂ε(m,n).

Now, one part of (96) is
∑

m f̂ε(m, 0), which, by the Poisson summation
formula (this time in its one-dimensional form) equals∑

m

∫
R

fε(m, y) dy.

However fε(x, y) = f0(xy)ηε(x)ηε(y) and fε is supported in the first quad-
rant, so this sum is

∞∑
m=1

∫ ∞

0

f0(my)ηε(m)ηε(y) dy.

Upon making the change of variables my → y in the integral and inter-
changing the summation and integration (which is easily justified), we
see that the sum becomes ∫ ∞

0

kε(y)f0(y) dy,

with kε(y) =
∑∞

m=1 ηε(y/m) 1
m , when we take 0 < ε ≤ 1. (Note that then

ηε(m) = 1 if m ≥ 1.)
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We claim that if c0 =
∫ 1

0
η(x) dx

x , then

(97) kε(y) = log(y/ε) + γ + c0 + O(ε/y) as ε → 0,

and this estimate is uniform as long as y ranges over a compact subset
of (0, α).

To see this we divide the sum kε(y) in two parts: where the sum-
mation is taken over m with m ≤ y/ε, and the complementary part.
Since ηε(y/m) = η(y/(εm)) = 1 when m ≤ y/ε, that part of the sum is∑

1≤m≤y/ε 1/m which equals log(y/ε) + γ + O(ε/y) by the defining prop-
erty of Euler’s γ.19

On the other hand,∑
m≥y/ε

η(y/(εm))
1
m

−
∫

u≥y/ε

η(y/(εu))
du

u
= O

(∫ ∞

y/ε

du

u2

)
= O

(
ε

y

)
,

because d
du

(
η
(

y
εu

)
1
u

)
= O(1/u2), which in turn follows since η′(u) is

compactly supported in (0,∞). As a result (97) is established with

c0 =
∫ ∞

1

η(1/u)
du

u
=

∫ 1

0

η(u)
du

u
.

By symmetry we also get∑
n

f̂ε(0, n) =
∫ ∞

0

kε(y)f0(y) dy,

with kε given by (97).

It remains to evaluate f̂ε(0, 0), which is the excess of
∑

m f̂ε(m, 0) +∑
m f̂ε(0,m) over

∑
mn=0 f̂(m,n).

However,

f̂ε(0, 0) =
∫

R2
fε(x, y) dx dy

=
∫

R2
f0(xy)ηε(x)ηε(y) dx dy

=
∫ ∞

0

k′
ε(y)f0(y) dy,

with k′
ε(y) =

∫ ∞
0

η(x/ε)η(y/(εx)) dx
x , as a simple change of variables shows.

19See, for instance, Proposition 3.10 in Chapter 8 of Book I.
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Now divide the integration in x into four parts: where both x/ε and
y/(εx) are ≥ 1; where one is ≥ 1, but the other is < 1; and where both
are < 1. The first part gives

∫ y/ε

ε
dx
x = log y − 2 log ε, since η(x/ε) =

1 and η(y/(εx)) = 1 there. Next if x/ε ≤ 1 but y/(εx) ≥ 1 the inte-
gral is

∫ ε

0
η(x/ε) dx

x =
∫ 1

0
η(x) dx

x = c0. A similar evaluation holds when
y/(εx) ≤ 1 and x/ε > 1. Finally the last range of x’s is empty when ε is
sufficiently small since x < ε implies y/(εx) > 1, whenever ε ≤ y and y is
bounded away from 0. Thus

(98) k′
ε(y) = log y − log 2ε + 2c0.

Altogether then

∑
mn=0

f̂ε(m,n) =
∫ ∞

0

(2kε − k′
ε)f0(y) dy,

and because of (97) and (98) this converges to
∫ ∞
0

(log y + 2γ)f0(y) dy as
ε → 0. Theorem 8.11 is therefore proved.

We come now to the proof of the main theorem, whose conclusion is
stated in (89). Here we would like to apply the sum formula (95) to
f0 = χµ, the characteristic function of the interval (0, µ). However this
function does not have the smoothness required for the validity of (95).
We are guided instead by the reasoning used in the proofs of Theorems 8.3
and 8.4 that suggest we regularize χµ in an appropriate way.

To proceed, let us note that in the sense that Theorem 8.3 and (89)
in Theorem 8.5 are parallel, we have to think of µ as playing the role
of R2. Indeed, setting µ = R2 will lead us to the proper choices below.
With this in mind we want to replace χµ by a function χµ,δ, which is
defined so that effectively χµ,δ(t) = 1 if 0 < t ≤ µ, that is, χµ,δ(ρ2) = 1
if 0 ≤ ρ ≤ R = µ1/2; and moreover so that χµ,δ(ρ2) decreases smoothly
to zero in R ≤ ρ ≤ R + δ. Here δ is the quantity R−1/3 that arises in the
proof of Theorem 8.3.

To give the precise definition of χµ,δ we fix a C∞ function ψ on [0, 1] so
that 0 ≤ ψ ≤ 1, with ψ = 0 near the origin and ψ = 1 near 1. We define

χµ,δ(ρ2) =

⎧⎨⎩
ψ(ρ) for 0 ≤ ρ ≤ 1,
1 for 1 ≤ ρ ≤ R,
1 − ψ

(
ρ−R

δ

)
for R ≤ ρ ≤ R + δ.

Now consider the sum formula (95) with f0(u) = χµ,δ(u). Then the in-
tegral term on the right-hand side is

∫ ∞
0

(log ρ + 2γ)χµ,δ(ρ) dρ, which is



396 Chapter 8. OSCILLATORY INTEGRALS IN FOURIER ANALYSIS

equal to ∫ µ

1

(log ρ + 2γ) dρ + O(1) + O

(∫ µ+cµ1/3

µ

log ρ dρ

)
,

because R2 = µ and (R + δ)2 = (R + R−1/3)2 = µ + O(µ1/3). Thus the
integral equals

(99) µ log µ + (2γ − 1)µ + O(µ1/3 log µ).

We now estimate each term
∫ ∞
0

J(2πk1/2ρ)f0(ρ2)ρ dρ that arises in the
sum on the right-hand side of (95) with f0(ρ2) = χµ,δ(ρ2). We make two
estimates for this term, with R = µ1/2:

(a) O(R1/2/k3/4) and

(b) O(R1/2δ−1/k5/4).

To see this consider the main contribution to J(λ) for large λ as given
via (i) and (i′) in Proposition 8.6 and its corollary. This is the term
c0λ

−1/2e2iλ. Thus for its contribution we need to estimate

(100) σ−1/2

∫ ∞

0

eiσρχµ,δ(ρ2)ρ1/2 dρ,

where we have set σ = ±2 · 2πk1/2.
First since eiσρ = 1

iσ
d
dρ(eiσρ), we may integrate by parts in (100) and

see that (100) is majorized by a multiple of

σ−3/2

(∫ R

0

ρ−1/2 dρ +
∫ R+δ

R

ρ1/2 dρ

)
,

because χµ,δ(ρ2) = 1 for 1 ≤ ρ ≤ R, and d
dρχµ,δ(ρ2) = O(1/δ) for R ≤

ρ ≤ R + δ. This gives us the estimate O(σ−3/2R1/2) = O(k−3/4R1/2)
and this is (a) above. If instead we integrate by parts twice we see
that (100) is majorized by a multiple of

σ−5/2

∫ ∞

0

∣∣∣∣∣
(

d

dρ

)2

(χµ,δ(ρ2)ρ1/2)

∣∣∣∣∣ dρ.

However
(

d
dρ

)2

(χµ,δ(ρ2)ρ1/2) = O(1) when 0 ≤ ρ ≤ 1; it is cρ−5/2 when

1 ≤ ρ ≤ R; and O(R1/2δ−2) when R ≤ ρ ≤ R + δ. So we obtain the
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bound of the form σ−5/2
(
O(1) + R1/2δ−1

)
= O(σ−5/2R1/2δ−1) for (100).

Thus we have established the bounds (a) and (b) for the main contri-
bution coming from the first term in (i) of Proposition 8.6. The other
terms in the asymptotic series give obviously smaller contributions, and
we need only go as far as N = 1 in the formula (i), because then the error
term will contribute less then either (a) or (b). Thus the estimates (a)
and (b) have been established for the individual terms of the series on
the right-hand side of (95).

Our conclusion is then that modulo an error term that is O(µ1/3 log µ)
we have∑

χµ,δ(m, n) = µ log µ + (2γ − 1)µ+(101)

+O

⎛⎝R1/2
∑

1≤k≤1/δ2

d(k)k−3/4 + R1/2δ−1
∑

k>1/δ2

d(k)k−5/4

⎞⎠ .

Now it is a simple fact that∑
1≤k≤r

d(k)kα = O
(
rα+1 log r

)
as r → ∞, if α > −1,

and ∑
r<k

d(k)kα = O
(
rα+1 log r

)
as r → ∞, if α < −1.

(The proof of this is outlined in Exercise 22.) Taking r = 1/δ2 = R2/3

and α = −3/4 or α = −5/4, the above shows that the O term in (101)
is majorized by a multiple of

(R1/2R2/3·1/4 + R1/2R1/3R−2/3·1/4) log R = 2R2/3 log R.

Now if we set Nδ(R) =
∑

m,n χµ,δ(m,n), with µ = R2, then (101) states
that

(102) Nδ(R) = R2 log R2 + (2γ − 1)R2 + O(R2/3 log R).

However by the way χµ,δ has been defined it is clear that

χ(R−δ)2,δ ≤ χµ ≤ χ(R+δ)2,δ,

with µ = R2. Thus

Nδ(R − δ) ≤
∑

1≤k≤µ

d(k) ≤ Nδ(R + δ).
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If we look back at (102) we see this implies∑
1≤k≤µ

d(k) = µ log µ + (2γ − 1)µ + O(µ1/3 log µ),

since µ = R2 and δ = R−1/3. Therefore our main result is now estab-
lished.

9 Exercises

1. Use spherical coordinates to show that in Rd

Z

Sd−1
e−2πix·ξ dσ = cd

Z 1

−1

e−2πi|ξ|u(1 − u2)
d−3
2 du,

with cd the area of the unit sphere Sd−2 in Rd−1. Then deduce formula (3) from
Problem 2 in Chapter 6, Book I.

2. Let the hypersurface M contain a neighborhood of a hyperplane (for example

{xd = 0}). Show that in this case cdµ(ξ) �= O(|ξ|−ε), as |ξ| → ∞ for any ε > 0.

3. Principle of stationary phase when d = 1. Consider

I(λ) =

Z ∞

−∞
eiλΦ(x)ψ(x) dx,

where ψ is a C∞ function of compact support and x = 0 is the only critical point
of Φ in the support of ψ, while Φ′′(0) �= 0. Then for every positive integer N ,

I(λ) =
eiλΦ(0)

λ1/2

“

a0 + a1λ
−1 + · · · + aNλ−N

”

+ O(λ−N−1/2), as λ → ∞.

The ak are determined by Φ′′(0), . . . , Φ(2k+2)(0), and ψ(0), . . . , ψ(2k)(0). In par-

ticular a0 =
“

2π
−iΦ′′(0)

”1/2

ψ(0).

Prove this in two steps:

(a) Consider first the special case when ϕ(x) = x2 dealt with by (8).

(b) Pass to the case of general ϕ by a change of variables that brings ϕ(x) to
x2 or −x2.

4. Suppose Φ is of class Ck in an interval [a, b] with k ≥ 2. Assume that |Φ(k)(x)| ≥
1 throughout the interval. Prove the following generalization of Proposition 2.3

˛

˛

˛

˛

Z b

a

eiλΦ(x) dx

˛

˛

˛

˛

≤ ckλ−1/k.
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[Hint: Suppose Φ(k−1)(x0) = 0, and argue by induction as in the proof of Propo-
sition 2.3.]

5. Consider the curve γ(t) = (t, tk) in R2, with k an integer ≥ 2. Its curvature
vanishes nowhere when k = 2 and only at the origin, of order k − 2, when k > 2.
Let dµ be defined by

R

R2 f dµ =
R

R
f(t, tk)ψ(t) dt, where ψ is a C∞ function of

compact support, and ψ(0) �= 0. Then prove:

(a) |cdµ(ξ)| = O(|ξ|−1/k).

(b) However, this decay estimate is optimal, that is, |cdµ(0, ξ2)| ≥ c|ξ2|−1/k if ξ2

is large.

[Hint: For (a) use Exercise 4. For (b) consider for example the case when k is even

and verify that
R∞
−∞ eiλxk

e−xk

dx = cλ(1 − iλ)−1/k.]

6. Show that the (Lp, Lq) results for the averaging operator A given by Corol-
lary 4.2 are optimal by proving the following (in, say, the case of the sphere in
R3):

(a) Suppose f(x) vanishes for small x and f(x) ≥ |x|−r, for |x| ≥ 1. Then ob-
serve A(f)(x) ≥ c|x|−r and thus we must always have q ≥ p. This restriction
corresponds to the side of the triangle joining (0, 0) and (1, 1).

(b) Next let f = χBδ , where Bδ is the ball of radius δ. Note that if δ is small
A(χBδ ) ≥ cδ2 for |1 − |x|| < δ/2. So ‖f‖Lp ≈ δ3/p while ‖A(f)‖Lq � δ2δ1/q.
Hence the inequality ‖A(f)‖Lq ≤ c‖f‖Lp implies 2 + 1/q ≥ 3/p, which cor-
responds to the side of the triangle joining (3/4, 1/4) and (1, 1).

(c) For the third inequality, use duality and (b).

7. By refining the argument given in Exercise 6 (b) one can show that the smooth-
ing of degree (d − 1)/2 asserted in Proposition 1.1 fails when p �= 2.

In the case p < 2 and d = 3, this can be seen by taking δ > 0 small and setting
f = ϕδ, where ϕδ = ϕ(x/δ) and ϕ is a non-negative smooth function of compact
support. Here ‖ϕδ‖Lp ≈ cδ3/p, while ‖∇A(ϕδ)‖Lp � δδ1/p. Hence the inequality
‖A(ϕδ)‖L

p
1(R3) ≤ C‖ϕδ‖Lp(R3) fails for small delta when p < 2.

[Hint: If c1 > 0 is sufficiently small, then δ2 � A(ϕδ) and |∇A(ϕδ)| � δ, whenever
|1 − |x|| ≤ c1δ.]

8. Let M be a (local) hypersurface given in coordinates (x′, xd) ∈ Rd−1 × R as
{xd = ϕ(x′)}. Suppose F is any continuous function of small support defined in a
a neighborhood of M and set f = F |M .

(a) Show that limε→0
1
2ε

R

d(x,M)<ε
F dx exists and equals

R

Rd−1 f(x′, ϕ(x′))(1 +

|∇x′ϕ|2)1/2 dx′. This limit defines the induced Lebesgue measure dσ and
equals

R

M
f dσ.
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(b) Suppose ρ is any defining function of M . Show that

lim
ε→0

1

2ε

Z

|ρ|<ε

F dx =

Z

M

f
dσ

|∇ρ| .

(c) Suppose h is a Schwartz function on R with
R

R
h(u) du = 1. Then

lim
ε→0

ε−1

Z

Rd

h(ρ/ε)F dx =

Z

M

f
dσ

|∇ρ| .

[Hint: For (c), assume h is even and let I(t) =
R

|ρ(x)|<t
F (x) dx. Then

ε−1

Z

h(ρ/ε)F dx = ε−1

Z ∞

0

h(u/ε)
dIu

du
du = −ε−1

Z ∞

0

(u/ε)h′(u/ε)

„

1

u
Iu

«

du.

Now use the fact that − R∞
0

uh′(u) du = 1/2 and Iu
2u

→ R

M
f dσ

|∇ρ| , as u → 0.]

9. Observe the following Euclidean-invariance properties of the principal curva-
tures of a hypersurface M in Rd. For each h ∈ Rd consider the translate M + h of
M ; also for each rotation r of Rd, the rotated surface r(M); and for each δ ∈ R,
δ �= 0, the dilated surface δM . Denote by {λj(x)} the principal curvatures of M
at x.

(a) Show that {λj(x − h)}, {λj(r
−1(x))}, and {δ−2λj(x/δ)} are the principal

curvatures of M + h, r(M), δM at the points x + h, r(x) and δx, respec-
tively.

(b) Consider the cone {x2
d = |x′|2, x �= 0} with defining function ρ = |x′|2 − x2

d.
Using (a), show that at x there are d − 2 principal curvatures that equal
x−2

d , and one that vanishes.

10. Let f0(r) = r−1/2(log r)−δ, 0 < δ < 1, when r ≥ 2, and f0(r) = 0 otherwise.

(a) Prove that
R |Jk(2πρr)|f0(r) dr = ∞ for every ρ > 0.

(b) Show as a result that, if p ≥ 2d/(d + 1), then (31) cannot hold for any q
when M is the sphere.

11. One can prove that the conjectured condition q ≤
“

d−1
d+1

”

p′ for (Lp, Lq) re-

striction cannot hold in a larger range, by the following argument given in the case
d = 2.

(a) Suppose the inequality (31) holds for some p and q. Show that as a result

Z

1−δ≤|ξ|≤1

|f̂(ξ)|q dξ ≤ c′δ‖f‖q
Lp for small δ.



9. Exercises 401

(b) Next choose f̂(ξ1, ξ2) = η((ξ1 − 1)/δ)η(ξ2/δ) when η(u) = 1 if |u| ≥ 1. That
is, f̂(ξ) dominates the characteristic function of a rectangle of approximate
side lengths δ and δ1/2 that fits inside the annulus 1 − δ ≤ |ξ| ≤ 1. Use this

to obtain a contradiction q >
“

d−1
d+1

”

p′ by letting δ → 0.

12. Connect the operator eit and the Fourier transform as follows. Let mt be

the multiplication operator mt : f(x) �→ 1
(4πit)d e−

i|x|2
4t f(x).

(a) Show that eit(f) = i−dmt(fmt)
∧ when t = 1/4π.

(b) Generalize this identity to any t �= 0 by rescaling.

13. Let Ai(u) = limN→∞ 1
2π

R N

−N
e

i

„
v3
3 +uv

«
dv.

(a) Show that this limit exists for every u ∈ R.

(b) Prove that |Ai(u)| ≤ c(1 + |u|)−1/4.

(c) Moreover, show that Ai(u) is rapidly decreasing as u → ∞, for u > 0.

[Hint: Write Φ(r) = r3

3
+ ru, and apply the estimates in Section 2. For (a) use the

fact that Φ′(r) → ∞ as |r| → ∞. For (b), use the fact that |Φ′(r)| ≥ |u|/2, when
|r| ≤ ( 1

2
|u|)1/2, while |Φ′′(r)| ≥ 2|r| when |r| > ( 1

2
|u|)1/2.]

14. Suppose F ∈ L2(Rd × R) and S(F )(x, t) = i
R t

0
ei(t−s)F (·, s) ds. Prove that:

(a) For each t, S(F )(·, t) ∈ L2(Rd), and

‖S(F )(·, t)‖L2(Rd) ≤ |t|1/2‖F‖L2(Rd×R).

(b) If F (·, t) = eitG(·, t), then

‖G(0, t1) − G(0, t2)‖L2(Rd) ≤ |t1 − t2|1/2‖G‖L2(Rd×R).

(c) As a result, t �→ F (0, t) is continuous in the L2(Rd) norm.

[Hint: For (a) and (b) use the unitarity of eit and Schwarz’s inequality. For (c),
approximate F by C∞ functions of compact support, using (b) and (c).]

15. Suppose u is a smooth solution of (54) that decays sufficiently quickly as |x| →
∞. Show that both

R

Rd |u|2 dx, and
R

Rd( 1
2
|∇u|2 − σ

λ+1
|u|λ) dx are independent of

t.

[Hint: For the first, note that
R

Rd �u v dx =
R

Rd u�v dx. For the second, observe

that ∂
∂t

R

Rd |∇u|2 dx = − R
Rd

`

∂u
∂t

�u + ∂u
∂t

�u
´

dx.]
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16. The following is a converse of Propositions 6.6 and 6.8. Suppose u(·, t) is
in L2(Rd) for each t, with t �→ u(·, t) continuous in the L2 norm, and u(·, 0) = 0.
Assume that 1

i
∂u
∂t

−�u = F as distributions, with F ∈ L2(Rd × R). Then show
that u = S(F ).

[Hint: Use the following fact. If H(·, t) is in L2(Rd) for each t, with t �→ H(·, t)
continuous in the L2 norm, H(·, 0) = 0, and ∂H

∂t
= 0 in the sense of distributions,

then H = 0. Apply this to H(·, t) = e−it(u(·, t) − S(F )(·, t)).]

17. A solution u of the non-linear Schrödinger equation (54) is uniquely determined
by its initial data f . Moreover the solution depends continuously on this data.
These are two features of the “well-posedness” of the problem and can be stated
as follows. Assume λ = d+4

d
and q = 2d+4

d
.

(a) Suppose u and v are two strong solutions defined for |t| < a, having the
same initial data f ∈ L2(Rd). Show that u = v.

(b) Given f ∈ L2(Rd), prove that there are ε > 0 and a > 0 (depending on f) so
that if ‖f − g‖L2 < ε, and u and v are strong solutions of (54) with initial
data f and g respectively, then

‖u − v‖Lq ≤ c‖f − g‖L2(Rd).

Here Lq = Lq(Rd × {|t| < a}).

[Hint: Adapt the argument in Theorem 6.9, and for (a) proceed as follows: note
that for small � > 0

‖u‖Lq(Rd×I) < δ and ‖v‖Lq(R×I) < δ

for all intervals I of length ≤ 2�. Thus

‖u − v‖Lq ≤ ‖M(u) −M(v)‖Lq ≤ 1

2
‖u − v‖Lq ,

with Lq = Lq(Rd × {|t| < �}), and so u = v for 0 ≤ t ≤ �. Now use the t-translation
invariance to apply the same argument for u(·, t + �) and v(·, t + �), and so on.

For (b) note that by choosing a and ε sufficiently small ‖eitf‖Lq < δ/4 and
then ‖eitg‖Lq < δ/2, where Lq = Lq(Rd × {|t| < a}). Now the iteration argu-
ment shows that the solutions u and v satisfy ‖u‖Lq , ‖v‖Lq < δ. Also ‖u − v‖Lq ≤
‖S(|u|λ−1u − |v|λ−1v)‖Lq + c‖f − g‖L2 . But ‖S(|u|λ−1u − |v|λ−1v)‖Lq ≤ 1

2
‖u −

v‖Lq , so this proves (b).]

18. Consider the Radon transform RB defined by

RB(f)(x′, xd) =

Z

Rd−1
f(y′, xd − B(x′, y′)) dy′

x = (x′, xd) ∈ Rd−1 × R, where B is a fixed non-degenerate bilinear form on Rd−1 ×
Rd−1. We write B(x′, y′) = C(x′) · y′, and assume that the dimension d is odd.

Verify that:
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(a) ‖
“

∂
∂xd

”

d−1
2 RB(f)‖2

L2(Rd) = cB‖f‖2
L2 for every f ∈ S, with cB = 2(2π)d−1

| det(C)| .

(b) If (RB)∗ is the (formal) adjoint of RB , then R∗
B = RB∗ , with B∗(x, y) =

−B(x, y). Also ∂
∂xd

RB = RB
∂

∂xd
.

(c) Deduce from (a) and (b) the inversion formula

„

i
∂

∂xd

«d−1

R∗
BRB(f) = cBf.

19. We take the Radon transform RB as in the previous exercise (with the di-
mension d odd) and consider a localized version of it, R′

B , given by

R′
B = η′RB(ηf)

where η and η′ are a pair of C∞ functions of compact support. Show that:

(a) ‖R′
B(f)‖L2 ≤ c‖f‖L2 .

(b)
`

∂
∂x

´α R′
B(f) is a finite linear combination of terms of the form

“

∂
∂xd

”�

(η′
�RB(η�(f))) with 0 ≤ � ≤ |α|.

(c) Deduce from the above and part (a) of the previous exercise that f �→ R′
B(f)

is a bounded linear transformation from L2 to L2
d−1
2

.

20. The averaging operator from Section 7 satisfies the Lp, Lq conclusions stated
for the operator A in Corollary 4.2. Prove this by proceeding according to the
following steps.

First, recall that A =
P∞

k=0 Ak, with Ak given by (65) in Section 7.4, with the
sum convergent in the L2 norm. Now fix r and consider

Ts = (1 − 21−s)es2
r
X

k=0

2−ksAk.

Note that T0 = −Pr
k=0 Ak, and so it will suffice to make Lp → Lq estimates for T0

that are independent of r. Now prove:

(a) ‖Ts(f)‖L2(Rd) ≤ M‖f‖L2(Rd) if Re(s) = − d−1
2

.

(b) ‖Ts(f)‖L∞(Rd) ≤ M‖f‖L1(Rd) if Re(s) = 1.

Once (a) and (b) have been established, an interpolation via Proposition 4.4 yields

‖T0(f)‖Lq ≤ M‖f‖Lp ,

with p = d+1
d

and q = d + 1, and this leads to the desired conclusion.
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[Hint: Part (a) follows from the estimates (70) and (71) for α = 0, and the almost-
orthogonality argument, Proposition 7.4. To prove (b) note that it suffices to

prove that (1 − 21−s)es2 Pr
k=0 2−ksη(2−ku) has a bounded Fourier transform if

Re(s) = 1. Let v be the dual variable to u. We assume first |v| ≤ 1. Let k0 be the
integer for which 2k0 ≤ 1/|v| ≤ 2k0+1. Now

r
X

k=1

2−ks

Z

η(2−ku)e2πiuv du =
X

k≤k0

+
X

k>k0

.

In the first sum, write e2πiuv = 1 + O(|u||v|), and recall that η(γ) is supported in
1/2 ≤ |γ| ≤ 2, thus

X

k≤k0

= O

0

@c
X

k≤k0

2−ks2k

1

A+ O

0

@

X

k≤k0

2−ks

Z

η(2−ku) |v| |u| du

1

A ,

where c =
R

η. However
P

k≤k0
2−ks2k is O(1/|1 − 21−s|) if Re(s) = 1, while the

second term above is (when Re(s) = 1)

= O(|v|)
0

@

X

k≤k0

2−k

Z

|η(2−ku)||u| du

1

A = O(|v|)
X

k≤k0

2k = O(1).

Finally for the second sum,
P

k>k0
, integrate by parts, writing e2πiuv as

1
2πiv

d
du

(e2πiuv) to obtain a sum that is O
“

1
|v|
P

k>k0
2−k

”

= O(2−k0/|v|) = O(1).

If |v| > 1, take k0 = 0, and argue similarly.]

21. Suppose Ω is a bounded open convex set with 0 ∈ Ω and with C2 boundary.
Then there is a constant c > 0 so that whenever R ≥ 1 and δ ≤ 1, then x ∈ RΩ
and |y| ≤ δ implies x + y ∈ (R + cδ)Ω.

[Hint: One may reduce to the case R = 1 by rescaling. To see, for example, that
there is a µ so that x + y = (1 + µδ)Ω whenever x ∈ ∂Ω and |y| < δ for δ sufficiently
small, proceed as follows. By a Euclidean change of variables, introduce new
coordinates so that x has been moved to (0, 0) ∈ Rd−1 × R, and near that point Ω
is given by xd > ϕ(x′), with φ(0) = 0 and ∇x′ϕ(0) = 0. Then by convexity of Ω,
the point corresponding to the initial origin is given by (z′, zd) with zd ≥ c1 > 0.
Also x + y ∈ (1 + µδ)Ω is equivalent with

yd + µδzd

1 + µδ
> ϕ

„

y′ + µδz′

1 + µδ

«

.

Since |yd| < δ, the left-hand side is ≥ c1
2

µδ
1+µδ

, as soon as µ ≥ 2/c1. Fix such a µ.
Now the right-hand side is dominated by

A

˛

˛

˛

˛

y′ + µδz′

1 + µδ

˛

˛

˛

˛

2

≤ A′
„

δ2 + (µδ)2

1 + µδ

«

,
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and we need only choose δ ≤ c2/µ, for appropriately small c2.]

22. Prove the following two estimates for r → ∞:

(a)
P

1≤k≤r d(k)kα = O
`

rα+1 log r
´

if α > −1.

(b)
P

r<k d(k)kα = O
`

rα+1 log r
´

if α < −1.

[Hint: Write

X

k>r

d(k)kα =
X X

mn>r

(mn)α =
X

n

nα

0

@

X

m>r/n

mα

1

A

= O

 

X

n

nα min(1, (r/n)α+1)

!

.

23. Prove that rJ1(r) =
R r

0
σJ0(σ) dσ, by verifying the following:

(a) J ′
1(r) = 1

2
(J0(r) − J2(r)).

(b) J1(r) = r
2

(J0(r) + J2(r)).

The above shows that rJ ′
1(r) + J1(r) = rJ0(r), so d

dr
(rJ1(r)) = rJ0(r), proving

the assertion.

[Hint: Recall that Jm(r) = 1
2π

R 2π

0
eir sin θe−imθ dθ. For (a), differentiate in r under

the integral sign. For (b), write eiθ = − 1
i

d
dθ

(e−iθ) and integrate by parts.]

10 Problems

The problems below are not intended as exercises for the reader but are
meant instead as a guide to further results in the subject. Sources in
the literature for each of the problems can be found in the “Notes and
References” section.

1.∗ Suppose M is a local hypersurface in Rd. In a neighborhood of a point x0 ∈ M
one can choose a smooth vector field ν, defined in this neighborhood restricted
to M , so that ν(x) is a unit normal vector of M at each x ∈ M . (There are two
choices of this vector field, determined up to a sign.) The map x �→ ν(x) from M
to Sd−1 (with Sd−1 the unit sphere in Rd) is called the Gauss map.

One can prove that the Gauss curvature of M near x0 is non-vanishing if and
only if the Gauss map is a diffeomorphism near x0. Moreover, if dσM and dσSd−1

are the induced Lebesgue measures of M and Sd−1, and (dσSd−1)∗ the pull-back
of dσSd−1 to M defined by

Z

M

f (dσSd−1)
∗ =

Z

Sd−1
f(ν−1(x)) dσSd−1(x),
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then KdσM = (dσSd−1)∗, with K the absolute value of the Gauss curvature.

2.∗ The spherical maximal function. Define

At(f)(x) =
1

σ(Sd)

Z

Sd

f(x − ty) dσ(y)

for each t �= 0, and A∗(f)(x) = supt�=0 |At(f)(x)|. Then

‖A∗(f)‖Lp ≤ cp‖f‖Lp , if p > d/(d − 1) and d ≥ 2.

As a result, if f ∈ Lp, p > d/(d − 1), then limt→0 At(f)(x) = f(x) a.e. Simple
examples show that this fails if p ≤ d/(d − 1).

A hint that there may be estimates for supt |At(f)| (and in particular that the
result holds for p = 2 and d ≥ 3) is the following simple observation for d ≥ 3:

‖ sup
1≤t≤2

|At(f)| ‖L2 ≤ c‖f‖L2 .

To establish this, one notes that

Z 2

1

˛

˛

˛

˛

∂As(f)(x)

∂s

˛

˛

˛

˛

2

dx ds ≤ c′‖f‖2
L2

by using Theorem 3.1. However sup1≤t≤2 |At(f)| ≤ R 2

1

˛

˛

˛

∂As(f)
∂s

˛

˛

˛

ds + |A1(f)(x)|,
hence the assertion follows by using Schwartz’s inequality.

Refinements of this argument prove the result for supt>0 |At(f)|, p = 2 and
d ≥ 3, and then also for p > d/(d − 1). Further ideas are needed for the case
d = 2.

3.∗ There is a variant of Problem 2 that applies to the wave equation.

Suppose u solves �xu = ∂2u
∂t2

for (x, t) ∈ Rd × R, with u(x, 0) = 0, and ∂u
∂t

(x, 0) =

f(x). If f ∈ L2 we observe that u(x,t)
t

→ f(x) in the L2(Rd) norm as t → 0. One

can show that limt→0
u(x,t)

t
exists and equals f(x) a.e. if f ∈ Lp, p > 2d/(d + 1).

4.∗ The restriction phenomenon (inequality (31)) is valid in R2, for the full range
1 ≤ p < 4/3.

[Hint: One may dualize the assertion as in the proof of Theorem 5.2. Consider the
operator R∗ defined by

R∗(F )(x) =

Z

M

e2πix·ξF (ξ) dµ(ξ).

The desired result then becomes the inequality

‖R∗(F )‖Lq(R2) ≤ A‖F‖Lp(dµ)
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when q = 3p′ and 1 ≤ p < 4. Now the key point is that if we consider the singular
measure dν = Fdµ, then the convolution ν ∗ ν is actually an absolutely continuous
measure f dx with density f , a locally integrable function on R2. This fact reflects
the assumed curvature of M . Indeed, it can be shown that f ∈ Lp(R2), with
3
r

= 2
p

+ 1, whenever F ∈ Lp(dµ) and 1 ≤ p ≤ 4, and ‖f‖Lr(R2) ≤ c‖F‖2
Lp(dµ) and

1 ≤ p < 4. Now if this is so, then

R∗(F )2 = (ν̂(−x))2 = (ν ∗ ν)∧(−x) = f̂(x),

and by the Hausdorff-Young inequality,

‖R∗(F )‖2
L2r′ ≤ ‖(R∗(F ))2‖Lr′ = ‖f̂‖Lr′ ≤ c‖F‖2

Lp ,

and this proves the assertion since 2r′ = 3p′.]

5.∗ An analog of Theorem 6.3 for the wave equation is as follows. Let u(x, t) be

the solution of the wave equation ∂2u
∂t2

= �u for (x, t) ∈ Rd × R, with initial data

j

u(x, 0) = 0
∂u
∂t

(x, 0) = f(x).

Then ‖u(x, t)‖Lq(Rd×R) ≤ c‖f‖L2(Rd) if q = 2d+2
d−2

and d ≥ 3.

6.∗ The following further results are known about E(R) = N(R) − πR2, the error
term appearing in Theorem 8.3.

(a) The Hardy series R
P∞

k=1
r2(k)

k1/2 J1(2πk1/2R) converges for each R ≥ 0, and

its sum equals E(R) whenever R �= k1/2, for any positive integer k.

(b) The error E(R) is on the average a multiple of R1/2 in the sense that

Z r

0

E(R)2R dR = cr3 + O(r2+ε),

for some c > 0 and every ε > 0.

(c) However, E(R) is not exactly O(R1/2) since

lim sup
R→∞

|E(R)|
R1/2

= ∞.

(d) It has been proved that E(R) = O(Rα+ε), for certain α, 1/2 < α < 2/3. A
relatively recent result of this kind is for α = 131/208.

7.∗ The oscillatory integral J(λ) can be identified in terms of Bessel functions of
the second and third kind. One has that

J(λ) = 4K0(2λ) − 2πY0(2λ),
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where Ym and Km are respectively Neumann and Macdonald functions.

8.∗ Consider the error term in the divisor problem

∆(µ) =

µ
X

k=1

d(k) − µ log µ − (2γ − 1)µ − 1/4.

It is given for µ not an integer by the convergent series

−2

π
µ1/2

∞
X

k=1

d(k)

k1/2

h

K1(4πk1/2µ1/2) +
π

2
Y1(4πk1/2µ1/2)

i

.

For ∆ there are estimates, analogous to those for E in Problem 6, with ∆(µ) =
O(µβ+ε) and β = α/2.



Notes and References

Chapter 1

The first citation is taken from the article [40] by F. Riesz, while the second is
a translation from an excerpt of Banach’s book [3].

General sources for topics in this chapter are Hewitt and Stromberg [23],
Yosida [59], and Folland [18].

For Problem 7∗, we refer, for instance, to the book [9] by Carothers, while
results related to the Clarkson inequalities in Problem 6∗ can be found in Chap-
ter 4 of Hewitt and Stromberg [23]. For a treatment of Orlicz spaces, see Rao
and Ren [39]. Finally, in Wagon [57] the reader will find further information on
the ideas described in Problems 8∗ and 9.

Chapter 2

The first citation is taken from Young’s article [60]. The second citation, trans-
lated from the French, is an extract of a letter from M. Riesz to Hardy. The last
citation is an extract from a letter from Hardy to M. Riesz. Both are cited in
Cartwright [10]. In addition, this reference also contains the M. Riesz citation
in the text in Section 1.

For the theory of the conjugate function on the circle, analogous to the Hilbert
transform on the real line, see Chapter VII of Zygmund [61], and Katznelson [31].
The theory of H1

r and BMO is treated in Stein [45] where other sources in the
literature can be found.

For Problem 6∗ see for example Chapter III in Stein [45].
The proof of the result in Problem 7 can be carried out by complex methods

using Blaschke products. For the details of this approach in the analogous sit-
uation when the upper half-plane is replaced by the unit disc, see Chapter VII
in Zygmund [61]. An alternate approach by real methods is, for example, in
Chapter III of Stein and Weiss [47].

Problem 9∗ is a result of Jones and Journé, which can be found in [28], while
the reader can consult Coifman et al. [38] for results related to Problem 10∗.

Chapter 3

The first citation is taken from Bochner [7], while the second comes from the
preface of Zygmund [61].

The foundations of distribution theory can be found in the work of Schwartz [41].
A further in depth source for distribution theory is Gelfand and Shilov [20],

which is the first volume of a series of books on the topic.
Formulations of Theorem 3.2 that are more general, because they require less

regularity of the kernels of the operators, may be found in Stein [44], Chapter 2,
and Stein [45], Chapter 1.

For Problems 5∗ and 6∗ see Bernstein and Gelfand [4], and Atiyah [1]. In fact,
Hörmander [26] is also relevant for Problems 6∗ and 7∗.

Finally, for Problem 8∗, see for instance Folland [17], where other references
may be found, in particular the original work of M. Riesz, Methée, and others.
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Chapter 4
The citation is a translation taken from the original work of Baire [2].

The proof of the existence of Besicovitch sets using the Baire category theorem
was originally given in Körner [34].

The concept of a universal element defined in Exercise 14 and also discussed in
Problem 7∗ comes originally from ergodic theory and the study of dynamical sys-
tems. For a good survey regarding universality, and also the related hypercyclic
operators see Grosse-Erdmann’s article [21].

Chapter 5
The first citation is taken from an article by Shiryaev on Kolmogorov that ap-
pears in Kolmogorov in Perspective, History of Mathematics, Volume 20, Amer-
ican Mathematical Society, 2000. The second citation is an excerpt of a transla-
tion from [29].

There are many good texts for general probability theory and stochastic pro-
cesses. For instance, the reader may consult Doob [13], Durrett [14] and Koralov
and Sinai [33].

For more information on the Walsh-Paley functions in Exercise 16 and Prob-
lem 2∗, the reader may turn to Schipp et al. [42]. The reader will also find
some information on lacunary series relevant for Problem 2∗, in Sections 6 to 8,
Chapter V in Volume 1 of Zygmund [61].

Chapter 6
Doobs’ citation is from a review of Masani’s book, Norbert Wiener. This review
appeared in the Bulletin of the American Mathematical Society, Volume 27,
Number 2, October 1992.

The following are general sources for material on Brownian motion: Billings-
ley [5] and [6], Durrett [14], Karatzas and Shreve [30], Stroock [52], Koralov and
Sinai [33], and Çinlar [11].

For problems 4∗ and 7∗, see Durrett [14] or Karatzas and Shreve [30].

Chapter 7
Lewy’s citation is from [37].
Relevant references for the topics discussed in this chapter, as well as the gen-

eral theory of several complex variables, are Gunning and Rossi [22], Hörmander [25],
and Krantz [35].

The approximation result in Theorem 7.1 can be found, for example in Boggess [8],
Baouendi et al. [15] or Treves [56].

For further information on the theory of Cauchy-Riemann equations and
extensions of some results discussed in this chapter, the reader may turn to
Boggess [8].

More about analysis on the upper half-space U treated in the Appendix and
its relation to the Heisenberg group can be found in Stein [45], Chapters XII
and XIII.

For Problems 1 and 2, see for instance Gunning and Rossi [22] or Krantz [35].
Problem 3∗ is in Chapter 2 of Chen and Shaw [12], while the theory of the

∂-Neumann equation in Problem 4∗ can be found in Folland and Kohn [19], and
Chen and Shaw [12].
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Finally, for domains of holomorphy in Problem 5∗ see, for instance, Chap-
ter 2 in Hörmander [25], or Chapters 3 and 4 in Chen and Shaw [12], while for
Problem 6∗, see for instance Chapter XIII in Stein [45].

Chapter 8

The epigraph (1840) from Kelvin is taken from [54], while the epigraph of Stokes
is taken from [48].

Some general references for topics covered in Sections 1 to 5 and 7 of this
chapter are Sogge [43] and Stein [45], Chapters 8–11. We have omitted any
discussion of the important topic of Fourier integral operators. An introduction
to this subject is in Sogge [43], Chapter 6, where further references may be found.

Early work on dispersion equations was by done by Segal, Strichartz [51],
Ginibre and Velo, and Strauss [49]. A systematic survey and exposition of the
subject is in Tao [53], where further references to the literature may be found.

Sources for the results on lattice points in Section 8 are Landau [36], Part 8;
Titchmarsh [55], Chapter 12; Hlawka [24]; and Iwaniec and Kowalski [27], Chap-
ter 4.

For more about the Gauss map discussed in Problem 1∗ see, for example,
Kobayashi and Nomizu [32], Sections 2 and 3.

A treatment of the spherical maximal function can be found in Stein and
Wainger [46] for d ≥ 3 and Sogge [43] for d = 2.

For Problem 4∗, the restriction theorem when d = 2, see Stein [45], Section 5
in Chapter 9.

The result in Problem 5∗, in a more general form, is in Strichartz [51].
For the results (a)–(c) in Problem 6∗ concerning r2(k), see Landau [36]. The

exponent α = 131/208 is due to M. N. Huxley.
The identification of J with Bessel-type functions in Problem 7∗ can be de-

duced from formulas (15) and (25) in Erdélyi [16], and Sections 6.21 and 6.22
in Watson [58]. With the aid of these formulas one can connect Proposition 8.8
and Theorem 8.9 in this chapter with Theorem 1 in Strichartz [50], and formulas
in Sections 2.6–2.9 in Gelfand and Shilov [20].

The identity for ∆(µ) in Problem 8∗ goes back to Voronoi and in fact predates
Hardy’s identity for r2(k).
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Symbol Glossary

The page numbers on the right indicate the first time the symbol or
notation is defined or used. As usual, Z, Q, R, and C denote the integers,
the rationals, the reals, and the complex numbers respectively.

Lp(X,F , µ),
Lp(X, µ), Lp(X)

Lp space 2

‖ · ‖Lp(X), ‖ · ‖Lp ,
‖ · ‖p

Lp norm 2

L∞(X,F , µ) L∞ space 7
‖ · ‖L∞ L∞ norm or essential-supremum 8
C(X) Continuous functions on X with the sup-

norm
9

Λα Hölder space of exponent α 10
Lp

k Sobolev space 11
B∗ Dual space of B 12
BX Borel sets of X 29
M(X) Finite signed Borel measures on X 29
Cb(X) Bounded functions in C(X) 33
Lp0 + Lp1 Sum of Lp0 and Lp1 36
A�B Symmetric difference of A and B 36
Lp,r, ‖ · ‖Lp,r Mixed space and mixed norm 38
LΦ Orlicz space 40
Ck,α Functions whose kth derivative are in Λα 42
R2

+ Upper half-plane 61
H(f) Hilbert transform of f 62
Py, Qy Poisson and conjugate Poisson kernels 63
O(· · · ) O notation 64
C∞

0 (R) Space of indefinitely differentiable functions
with compact support on R

66

λF (α), λ(α) Distribution function of F 72
H1

r(R
d) Real Hardy space 75

‖ · ‖H1
r

H1
r(R

d) norm 75
f† Truncated maximal function 76
‖ · ‖BMO Bounded mean oscillation (or BMO) norm 86
C∞

0 (Ω), D(Ω) Smooth functions with compact support
in Ω, or test functions

100

∂α
x , |α|, α! Partial derivatives and related functions 100
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D∗(Ω) Space of distributions on Ω 100
δ(·) Dirac delta 101
Ck, Ck(Ω) Functions of class Ck on Ω 101
S(Rd), S Schwartz space, or test functions 105
‖ · ‖N Sup-norm for derivatives up to order N 105
S∗ Space of tempered distributions 106
pv( 1

x) Principal value 111
� Laplacian operator 119
Ad Area of unit sphere in Rd 123
∂z, ∂

∂z , ∂z, ∂
∂z Derivative with respect to z and z 148, 277

� Wave operator 155
Aδ δ-neighborhood of A 177
ZN

2 N -fold product of Z2 189
Z∞

2 Infinite product of Z2 191
rn Rademacher functions 192
m0, σ2 Mean or expectation, and variance 196
νσ2 Gaussian distribution with mean zero and

variance σ2

196

EA(f), E(f |A), E Conditional expectation of f with respect
to A

209

P Continuous paths in Rd starting at the ori-
gin

240

τ(ω) Stopping time 254
Pr(z0) Polydisc in Cn 277
Cr(z0) Boundary circles of Pr(z0) 277
∂ Cauchy-Riemann operator 291
Lj Tangential Cauchy-Riemann operator 300
U Upper half-space in Cn 307
H2(U) Hardy space on U 308
X � Y , X ≈ Y X ≤ cY and c−1y ≤ X ≤ cY for some c > 0 331
rotcurv(ρ) Rotational curvature 366
r2(k) Number of ways k is a sum of two squares 377
d(k) Number of divisors of k 385
h Hyperbolic measure 385



Index

Relevant items that also arose in Book I, Book II or Book III are listed
in this index, preceded by the numerals I, II or III, respectively.

C(n)-normalized bump function, 135
Lp norm, 2
δ-neighborhood, 177
O notation, 64; (III)12

affine hyperplane, 17
algebra, 209

tail, 215
allied series, 50
almost surely, 192
almost-orthogonality, 372
amplitude, 325; (I)3; (II)323
analytic family of operators, 338
analytic identity, 279
approximation to the identity, 64;

(I)49; (III)109
atomic decomposition, 74
atoms, 74

1-atom, 138
p-atoms, 81
“faux”, 93

averaging operator, 322, 323, 366

Banach integral, 24
Banach space, 9

equivalent, 46
Banach-Tarski paradox, 46
Baouendi-Treves approximation

theorem, 300
Bernoulli trials, 205
Besicovitch set, 176; (III)360, 362,

374
bijective mapping, 171
Blumenthal’s zero-one law, 257
BMO, 86
Bochner’s theorem, 292
Bochner-Martinelli integral, 319
Borel

σ-algebra, 29; (III)23, 267

measure, 29, 242; (III)269
sets, 29, 242; (III)23, 267

Borel-Cantelli lemma, 231; (III)42,
63

bounded mean oscillation, 86
Brownian motion, 227, 240

recurrent, 274
transient, 274

Calderón-Zygmund
decomposition, 76
distributions, 135

cancelation condition, 135
category

first, 158
second, 158

Cauchy integral
representation, 277
upper half-space, 312

Cauchy-Riemann
equations, 277; (II)12
tangential weak sense, 300
operator, 148
vector field, 290
tangential, 291

Cauchy-Szegö integral, 311
central limit theorem, 195, 220
characteristic

function, 216, 221; (III)27
polynomial, 126; (III)221, 258

Clarkson inequalities, 45
class Ck; (I)44

function, 101, 290
hypersurface, 288

closed linear map, 174
closure of a set, 158
complete normed vector space, 5
conditional expectation, 209
cone, 267
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backward, 155
forward, 155
outside condition, 268

conjugate
exponents, 3
function, 50
Poisson kernel, 63; (III)255

convergence in probability, 195
convex set, 17, 382; (III)35
convolution; (I)44, 139, 239; (III)74,

94, 253
distributions, 102
functions, 38, 60

covariance matrix, 221
critical point, 327; (II)326
curvature

form, 333
Gauss, 333
principal, 333
rotational, 366
total, 333

cylinder set, 191; (III)316
cylindrical set, 242

defining function, 288
dense set, 158
differential form, 291
Dirac delta function, 23, 101;

(III)110, 285
Dirichlet

kernel, 90; (I)37; (III)179
problem, 264; (I)20, 28, 64, 170;

(II)212, 215, 216; (III)230
dispersion equations, 348

non-linear, 359
distance

Hausdorff, 177; (III)345
distribution, 99, 100

convolution, 102
derivative, 101
finite order, 150
function, 72
fundamental solution, 125
Gaussian, 196
homogeneous, 115
joint, 206
measure, 195, 220
normal, 196
periodic, 153

positive, 150
principal value, 111
regular, 117, 132
support, 104
tempered, 106
weak sense convergence, 103

domain of holomorphy, 320
Donsker invariance principle, 250
dual

exponents, 3
space, 12
transformation, 22

dyadic intervals, 199

elliptic differential operator, 132
equivalence, 41
equivalent Banach spaces, 46
ergodic, 208; (I)111; (III)294
error function, 229
essential-supremum, 8
event, 192
expectation conditional, 209
exponential type, 151; (II)112

Fourier coefficients, 48; (I)16, 34;
(III)170

Fourier series; (I)34; (II)101;
(III)171

conjugate function, 50
decay of coefficients, 173
diverging at a point, 167
periodic distributions, 153
random, 202

Fourier transform; (I)134, 136, 181;
(II)111

surface-carried measure, 334
tempered distribution, 108

fractional derivative, 375
function

analytic in Cn, 276
class Ck, 101
convolution, 38, 60
Dirac delta, 101; (III)110
expectation, 196
gauge, 18
holomorphic in Cn, 276
homogeneous, 115
mean, 196
measurable, 209; (III)28
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mutual independence, 193
nowhere differentiable, 163, 253;

(III)154, 383
Rademacher, 192
slowly increasing, 107
support, 28, 104, 146; (III)53
variance, 196
Walsh-Paley, 230
zig-zag, 165

fundamental solution, 125

gauge function, 18
Gauss

curvature, 333
map, 405

Gaussian; (I)135, 181; (III)88
distribution, 196
subspace, 228

generalized function, 99
generic set, 158
graph of a linear map, 174

Hahn-Banach Theorem, 20, 43
Hamel basis, 183
Hardy space, 73, 308; (III)174, 203,

213
harmonic measure, 254
Hartog’s phenomenon, 280
Hausdorff distance, 177; (III)345
Hausdorff-Young inequality, 49, 57,

90
heat

kernel, 128; (I)120, 146, 209;
(III)111

operator, 127, 133
Heaviside function, 101; (III)285
Heisenberg group, 318
Hessian matrix, 329
Hilbert transform, 62; (III)220, 255
Hölder

condition, 10; (I)43
inequality, 3, 35, 38, 39
converse, 14

holomorphic coordinates, 294
Huygens’ principle, 156; (I)193
hyperbolic measure, 385
hyperplane, 17

affine, 17
proper, 16

hypersurface, 288
class Ck, 288

hypo-elliptic, 133

identically distributed functions, 205
injective mapping, 171
interior of a set, 158; (III)3
invariance principle (Donsker), 250
invariant set, 207; (III)302
iterated logarithm, 237, 275

Jensen’s inequality, 40
John-Nirenberg inequalities, 95
joint distribution, 206

Khinchin’s inequality, 203

Laplacian, 119, 126; (I)20, 149, 185;
(II)27; (III)230

lattice points, 377, 379
law of large numbers, 213
law of the iterated logarithm, 237,

275
Lebesgue’s thorn, 275
Levi form, 295
Lewy

example, 313
extension theorem, 306

linear functional, 11; (III)181
bounded, 11
continuous, 11

linear transformation
bounded, 21

Liouville numbers, 185
Lipschitz

boundary, 272
condition, 10, 146; (I)82; (III)90,

147, 151, 330, 362

martingale sequence, 211
complete, 211

maximal function, 70, 76, 85;
(III)100, 261

spherical, 406
maximum principle, 296; (I)92;

(III)235
meager set, 158
mean, 196
measurable, 209
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measure
Borel, 29, 242
continuous, 218
harmonic, 254
hyperbolic, 385
Radon, 28, 100

Minkowski inequality, 4
for integrals, 37

mixed norm, 38
mixing, 207; (III)305
multiplier, 134; (III)220
mutual independence, 193

function, 193
sub-algebras, 211

non-linear dispersion equation, 359
norm, 9, 21

of a continuous linear functional,
12

normal
distribution, 196
number, 231; (III)318

normed vector space, 3, 9
nowhere dense set, 158
nowhere differentiable function, 163,

253; (I)113, 126; (III)154, 383

open mapping, 171
open mapping theorem, 171; (II)92
Orlicz space, 41, 45
oscillation of a function, 161; (I)288
outside cone condition, 268

parallelogram law, 41, 45; (III)176
parametrix, 131
partition of unity, 28
path, 223
periodization operator, 153
phase, 325; (I)3; (II)323
Poisson

kernel, 63; (I)37, 55, 149, 210;
(II)67, 78, 109, 113, 216;
(III)111, 171, 217

conjugate, 63; (I)149; (II)78, 113;
(III)255

Poisson summation formula, 379;
(I)154–156, 165, 174; (II)118

polydisc, 277
principal

curvatures, 333
value, 111

probability
convergence, 195
measure, 192, 195
weak convergence, 219
space, 192

process
stationary, 232
stochastic, 239
stopped, 261

Prokhorov’s lemma, 243
proper hyperplane, 16
pseudo-convex, 296

strongly, 296

Rademacher functions, 192
Radon

measure, 28, 100
transform, 363; (I)200, 203;

(III)363
random

flight, 237
Fourier series, 202
variable, 190
walk, 222
recurrent, 223

recurrent
Brownian motion
neighborhood, 274
pointwise, 274
random walk, 223

reflection, 63
regular

distribution, 117, 132
point, 257

restriction (Lp, Lq), 345
Riemann-Lebesgue lemma, 93;

(I)80; (III)94
Riesz

convexity theorem, 57
diagram, 57
interpolation theorem, 52
product, 235

rotational
curvature, 366
matrix, 365

Schrödinger equation, 348
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Schwartz space, 105; (I)134, 180
second fundamental form, 333
section, 243
separable

Lp space, 36
Banach space, 43
measure space, 36

set
Borel, 29, 242
closure, 158; (II)6
convex, 17, 382; (II)107
cylinder, 191; (III)316
cylindrical, 242
dense, 158
first category, 158
generic, 158
interior, 158; (II)6
invariant, 207
meager, 158
nowhere dense, 158
second category, 158
strongly convex, 383

signature, 294
signum, 14
singular integral, 62, 134
Sobolev

embedding, 151; (III)257
space, 11, 151

spherical maximal function, 406
stationary

process, 232
stationary phase, 325, 398; (II)326
stochastic process, 239
stopped process, 261
stopping time, 254, 255
Strichartz estimates, 351
strong Markov property, 258
strong solution, 360
strongly convex set, 383
strongly pseudo-convex, 296
sub-algebra, 209
support

distribution, 104
function, 104; (III)53
of a function, 28, 146

surface-carried measure, 334
smooth density, 334

surjective mapping, 171

tail algebra, 215

tangential
Cauchy-Riemann vector field, 291
vector field, 290

Tchebychev inequality, 73; (III)91
tempered distribution, 106
test functions, 100, 105
three-lines lemma, 53, 339; (II)133
Tietze extension principle, 269
tight, 33, 243
total curvature, 333
type (of an operator), 56

uniformly convex, 45
universal element, 184
upper

half-plane, 61
half-space, 307

van der Corput inequality, 328
variance, 196; (I)160
vector field, 290

Walsh-Paley functions, 230
wave operator, 155
weak

boundedness, 184
compactness of Lp, 37
convergence, 37, 221, 243;

(III)198
weak sense

continuity, 108
convergence, 103
derivative, 101
derivative in Lp, 10
tangential Cauchy-Riemann

equations, 300
weak∗ convergence, 44
weak-type, 92
weak-type inequality, 71; (III)101
Weierstrass approximation theorem,

299; (I)54, 63, 144, 163
Weierstrass preparation theorem,

282, 319
Wiener measure, 240, 241

Young’s inequality, 39, 40, 60
Yukawa potential, 149

zero-one law, 199, 215
zig-zag function, 165
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