


Kecai Cao, YangQuan Chen
Fractional Order Crowd Dynamics



Fractional Calculus in Applied
Sciences and Engineering

|
Editor-in Chief
Changpin Li

Editorial Board
Virginia Kiryakova
Francesco Mainardi
Dragan Spasic
Bruce Ian Henry
YangQuan Chen

Volume 4



Kecai Cao, YangQuan Chen

Fractional Order
Crowd Dynamics

|
Cyber-Human System Modeling and Control



Mathematics Subject Classification 2010
Primary: 93-02, 93A30, 93C99; Secondary: 70-02, 70B99

Authors
Dr Kecai Cao
Nanjing University of Posts
and Telecommunications
School of Automation
No. 66 Xinmofan Road
210003 Nanjing
P.R. China
caokecai@gmail.com

Prof. Dr YangQuan Chen
University of California
Merced
MESA Lab
School of Engineering
5200 N. Lake Road
Merced, CA 95343
USA
yqchen@ieee.org

ISBN 978-3-11-047281-3
e-ISBN (PDF) 978-3-11-047398-8
e-ISBN (EPUB) 978-3-11-047283-7
ISSN 2509-7210

Library of Congress Cataloging-in-Publication Data
Names: Cao, Kecai, author. | Chen, YangQuan, 1966- author.
Title: Fractional order crowd dynamics : cyber-human system modeling and control / Kecai Cao,
YangQuan Chen.
Description: 1 Edition. | Boston/Berlin : De Gruyter, 2018. | Series: Fractional calculus in applied
sciences and engineering, ISSN 2509-7210 ; 4
Identifiers: LCCN 2018008284| ISBN 9783110472813 (hardback : alk. paper) | ISBN 9783110473988
(PDF) | ISBN 9783110472837 (EPUB)
Subjects: LCSH: Pedestrian traffic flow--Mathematical models. | Fractional calculus. | BISAC:
MATHEMATICS / Applied. | MATHEMATICS / Calculus. | MATHEMATICS / Differential Equations. |
MATHEMATICS / Mathematical Analysis.
Classification: LCC HE336.P43 C36 2018 | DDC 363.32/30151583--dc23 LC record available at
https://lccn.loc.gov/2018008284

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2018 Walter de Gruyter GmbH, Berlin/Boston
Typesetting: VTeX UAB, Lithuania
Printing and binding: CPI books GmbH, Leck
Cover image: naddi/iStock/thinkstock

www.degruyter.com



|
To our colleagues, friends, and families





Preface

Cyber-physical systems (CPSs), which have been defined as “computational thinking
and integration of computation around the physical dynamic systems where sensing,
decision, actuation, computation, networking, and physical processes are mixed,”
have received a lot of attention in the past ten years. With the development of CPSs,
human-centric cyber-physical systems (HCPSs) or cyber-human systems (CHSs) have
drawn much attention of researchers. The CHS has evolved from human–machine
symbiosis, i. e., humans acting as operators of complex engineering systems, humans
as agents in multi-agent systems, humans as elements in controlled systems, and so
on. Although we can distinguish the research relevant to CHSs according to the top-
ics mentioned above, CHS research lies in a three-dimensional space comprising hu-
mans, computers, and the environment. Not only individuals but also a collection of
people and even the whole society can be included in the human dimension, where
thepeople’s capability to be enhanced and thepeople’s needs to be satisfiedhave to be
considered. Computing devices or mobile devices and even computational systems of
sensors and visual/audio devices that are embedded in the surrounding physical en-
vironment are categorized in the computer dimension. The environment dimension
is composed of discrete physical computational devices, immersive virtual environ-
ments, and somemixed reality systems inbetween. The interplay of humanswith com-
puter and environment needs deepmultidisciplinary joint research efforts to bemade.

With this monograph, we wish to provide the reader with a comprehensive un-
derstanding of CHSs with an emphasis on our past experience in the topic, especially
as regards crowds of pedestrians. In the past five years, we have worked on the topic
of modeling and control of crowds of pedestrians. Fractional calculus has been intro-
duced in the modeling and control of crowds of pedestrians, respectively.

This book is divided into two parts: the modeling part and the control part. We
first point out some of the problems that existed in the research of modeling and con-
trol of crowds of pedestrians. Then modeling of the crowds of pedestrians is studied
at the micro-scale, the macro-scale, and the meso-scale, respectively, with the intro-
duction of fractional calculus. Limitations of the existing model of crowds has been
reducedwhen themodeling problem is considered within the framework of fractional
calculus. Fractional control of the microscopic model and the macroscopic model are
further considered based on themodeling results obtained in the first part. Fractional
protocols or controllers are constructed to better address the cluster consensus prob-
lem or evacuation problem of crowds at micro-scale and macro-scale, respectively.
Finally, for further comprehension of CHSs, an intelligent evacuation system (IES) is
also presented in the last chapter of this book, where a simulation platform and an
experimental platform are presented.

This monograph is a result of five years of study under the name of FCCD (frac-
tional calculus and crowd dynamics) with a group website which also serves as the

https://doi.org/10.1515/9783110473988-201
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service website (http://mechatronics.ucmerced.edu/fccd) for this brief monograph.
The first author’s one-year visit to the second author at Utah State University under the
financial support of China Scholarship Council (CSC) has been fruitful andproductive,
leading to new ideas in research. The first author acknowledges the financial support
of the National Natural Science Foundation of China (Grant Nos. 61374055, 61503194),
Key University Science Research Project of Jiangsu Province (Grant No. 17KJA120003),
Natural Science Foundation of Jiangsu Province (Grant No. BK20161520), China Post-
doctoral Science Foundation (Grant No. 2013M541663), Jiangsu Planned Projects for
Postdoctoral Research Funds (Grant No. 1202015C), Scientific Research Foundation of
theMinistry of Educationof China forReturnedScholars (GrantNo. BJ213022). The sec-
ond author acknowledges the financial support of NIDDR (National Institute on Dis-
ability and Rehabilitation Research) under the project title “Experimental Research
on Pedestrian and Evacuation Behaviors of Individuals with Disabilities; Theory De-
velopment Necessary to Characterize Individual-Based Models.” We acknowledge the
following researchers for collaboration in work on the project: Dr Keith Christensen
(PI), Dr Anthony Chen, Dr Yong Kim, Dr M. S. Sharifi, and Dr Daniel Stuart. Dr Caibin
Zeng has also contributed to the modeling discussions involving fractional calculus.
We wish to thank Prof. Changpin Li, the series editor-in-chief of “Fractional Calculus
in Applied Sciences and Engineering” for this book project invitation. Last but not
least, our thanks go to Nadja Schedensack, project editor Mathematics and Physics
Science & Technology of De Gruyter. We sincerely hope this monograph is both moti-
vating and stimulating.

Nanjing, Jiangsu, China Ke-Cai Cao
Merced, California, USA YangQuan Chen
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1 Introduction

Abstract: Problems in modeling and control of crowds of pedestrians are firstly pre-
sented. Short comments on previous research and the organization of this book are
also presented in this chapter.

1.1 Motivation

Humans are the most socially complex animals on this planet. It is not surprising that
research related to crowds of pedestrian has received a lot of attention in recent years.
A lot of work has been conducted for particles, vehicles, robots, animals, and even
human beings from the perspectives of behavior, psychology, cognitive, and network
theory (see [8, 9, 11, 23, 20]). Among the previous work, problems related to crowds
of pedestrians are the most challenging due to difficulties in modeling of human be-
ings, as there are no universal tools to characterize the complex temporal and spatial
features of crowds.

On the other side, more and more tragedies due to people’s stampede have been
reported in recent years. The most tragic stampede occurred in Mecca in 1990, where
1426 pilgrims were trampled to death or suffocated. In evacuation, people got injured
or lost their lives due to panic motion or running in every direction without aim. The
catastrophic events have demonstrated the need to reanalyze and reexamine current
evacuation policies and procedures for crowds of pedestrians. Thus, policy makers
urgently need better crowd management or evacuation strategies.

The problems confronted in research of crowds of pedestrians can be listed as
follows:
(1) How to characterize or obtain a satisfactory social-dynamic model for crowds of

pedestrians that is much closer to reality compared to the previous model.
(2) How to enforce and stabilize the desired pattern formation of crowds of pedestri-

ans and how to avoid some rare or dangerous formation pattern in evacuation of
crowds.

1.2 Current status of research

1.2.1 Modeling of crowds

According to the differences in scales, the models for crowds of pedestrians can be
categorizedbymicroscopicmodel,macroscopicmodel andmesoscopicmodel (see [10,
3, 14, 2, 7]).

https://doi.org/10.1515/9783110473988-001



2 | 1 Introduction

(1) The Newton principle is a powerful tool to describe the motion of particles at mi-
croscopic scale but the heavy burden of computation will not make it a better
choice with the increase of the number of particles.

(2) Conservation of mass and momentum is the basic principle employed in obtain-
ing the macroscopic model. Although the computation burden has been reduced
greatly, the individual character of each pedestrian has been ignored when using
this kind of method and the heterogeneity of different pedestrians can’t be easily
characterized at the macro-scale.

(3) For a mesoscopic model, not only the computation burden has been reduced, but
also the heterogeneity of different pedestrians can be guaranteed. However, quali-
tative and quantitative results are not easy to obtain for integral-differential equa-
tions obtained at this scale.

Besides the problem of multiple scales in modeling crowds of pedestrians, there are
a lot of other effects that influence the pattern of motion of crowds, such as imitat-
ing behavior of neighbors, following external signals, psychological unity, emotional
intensity, and level of violence, as shown in [5]. The present status is that there is no
common agreement onwhichmodel is the best one in describing this kind of complex
social dynamics. Anewmethodology and theory are required for better approximating
and characterizing this complex social-dynamic system.

1.2.2 Control of crowds

Compared to the modeling of crowds mentioned above, control of crowds is much
more challenging as shown in recent work; see [14, 4, 10, 12, 6, 24].
– A lot of evacuation procedures or policies have been designed using computer

simulations. Considering the adaptability and robustness to the environment, the
method of simulation is not a good choice as the obtained modeling results or
evacuation policies are not effective anymore in different buildings or different
scenarios.

– In some of the previous research based on the mathematical model, pedestrians
have been treated as particles and some of the characteristics of human beings
have been neglected in control of the crowds, such as short-range and long-range
interactions, effects of memory, and statistical characters at the temporal or spa-
tial scale.

– In large crowds of pedestrians, self-organization or cooperative movement have
been observed a long time ago. But there is little research on how to realize the
desired formation patterns and prevent dangerous patterns so that a stampeding
tragedy can be avoided.
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As there is noperfectmodel for all kinds of scenarios, there arenouniversal controllers
that can solve all evacuation problems. Based on models that are much closer to real-
ity, many efforts have beenmade as regards control of crowds for the purpose of better
management and efficient evacuation of crowds.

1.2.3 Comments

Some manuscripts have been published in recent years concerning the modeling and
control problems of crowds of pedestrians, such as [22, 13, 25, 19, 1, 18, 21, 26, 17, 16].
But the authors found that some important characteristics of the crowds have beenne-
glected in previous research and their effects should be reconsidered and reexamined
in both the modeling and the control stages for crowds of pedestrians.
(1) Integer order versus fractional order at temporal scale.

The movements of each pedestrian are the results of a complex interaction be-
tween physical and psychological issues. Inter-event time has been proved to play
an important role in analyzing themovement of crowds, as shown in [27]. Contrary
to the fact that the distribution of inter-event time satisfies a power law distribu-
tion in most cases, an exponential law distribution has been assumed in most of
the previous research within the framework of calculus of integer order. The cal-
culus of fractional order has been introduced at the temporal scale as a remedy
for this gap in this book.

(2) Integer order versus fractional order in spatial scale.
Another important thing should be pointed out: the spatial scale is assumed to be
uniform and the dimensions of space are restricted to one dimension, two dimen-
sions, and three dimensions in the previous research. But these assumptions are
only reasonable if the crowds of pedestrians can fill space like particles of gases
or fluids, while this is not the case as is clear from observations. Theoretically,
only a normal diffusive process has been considered in the previous research and
few results have been reported for sub-diffusive or super-diffusive processes for
modeling of crowds.

(3) Short-range interactions versus long-range interactions
Short-range interactions have been extensively considered in the schooling of fish
and flocking of birds and in the control of multi-agent systems, while long-range
interactions dominating a system’s phase transition only has received attention
recently. Based on the results obtained in [15], long-range interactions at the
micro-scale have been proved to be closely connected to the dynamic model of
fractional order at the macro-scale. Not only short-range interactions but also
long-range interactions can easily be manipulated using the framework of the
calculus of fractional order.
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Figure 1.1: Organization of this book.

1.3 Organization of this book

In the first part of this book, a dynamic model of fractional order for crowds of pedes-
trians is studied at the micro-scale, macro-scale, and meso-scale. Ordinary differen-
tial equations (ODEs) of fractional order, partial differential equations (PDEs) of frac-
tional order and coupled ODE-PDEs of fractional order have been obtained for model-
ing of crowds where the characteristics of temporal, spatial, and long-range interac-
tions mentioned above have been embedded. Based on the obtained models, control
or evacuation of crowds is considered in the second part of this book. An intelligent
evacuation system based on FO-Diff-MAS2D is also introduced to illustrate or show
the effectiveness of the theoretical results. The organization of this book is shown in
Figure 1.1.
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Part I: Fractional modeling of large crowds

of pedestrians

First problem confronted in research of crowds of pedestrians is how to model the crowds of
pedestrians or which kind of model should be used to describe it. Different to previous research
on crowds of pedestrians where some simulation softwares have been employed to simulate or
predict the movement of crowds of pedestrians, explicit mathematical models will be given in
this part according to different scales so that much more scientific policies can be derived based
on the obtained mathematical models. Compared with dynamic models reported in the previous
publications, another difference lies in that time and spatial characteristics of crowds of pedes-
trians have been considered in the modeling process. Calculus of fractional order is introduced
into modeling the movement of crowds of pedestrians where some of the crowd’s characteristics
in time scale and spatial scale have beenwell described by fractional calculus. Thework reported
in this part provides a lot of interesting directions and hope the readers can get some inspirations
from the content of this part.





2 Microscopic model of fractional order
for evacuation of crowds

Abstract: In modeling of crowds of pedestrians using calculus of integer order, the
distribution of time between interchanging opinions is assumed to satisfy a Gaus-
sian distribution, while this assumption is not always satisfied in reality. Burst phe-
nomenon which is commonly observed in decision-making process of human is also
hard to be described using calculus of integer order. In the previous research, the dy-
namic decision-making process has been seldom considered. Modeling of the two-
alternative decision-making process for evacuation of crowds of pedestrians from a
bounded roomhas been firstly considered in this chapter using the framework of frac-
tional calculus. Dynamic decision-making models of fractional order have been pre-
sented for symmetric interactions and asymmetric interactions, respectively. A stabil-
ity analysis for asymmetric interactions has been studied using the technique of lin-
earization. Finally, a collective decision-making process for asymmetric interactions
is proved to depend on the initial distribution, while this is not the case for symmetric
interactions. Future work based on the results of this chapter is also discussed.

2.1 Introduction

Two-alternative forced choice (TAFC) is a method of psycho-physics developed by
Fechner [14] where each subject is forced to choose the correct option from two alter-
natives, as shown in Figure 2.1. As a lot of behaviors have been observed consistently
using TAFC, many different kinds of models have been proposed in recent years to
describe the dynamics of TAFC in the previous research.

The following assumptions, firstly presented in [5], have been widely assumed in
the previous research.

Assumption 2.1.
(1) Evidence favoring each alternative is integrated over time.
(2) The dynamic process is subject to random fluctuations.
(3) The decision is made when sufficient evidence has accumulated favoring one al-

ternative over the other.

Under Assumption 2.1, extensive research has been conducted to understand the
complex dynamic process for animals or human beings from different aspects such as
modeling work in [20, 1, 2], system analysis in [21, 10, 11], and even controller design
in [25, 26, 23].

https://doi.org/10.1515/9783110473988-002
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Figure 2.1: Example of six evidence accumulation sequences for unbiased TAFC fromWikipedia.

2.1.1 Isolated decision-making model for TAFC

In the isolated decision-making model (DMM) for TAFC in the previous research, the
following well-known Weber–Fechner law has been widely used, based on which a
drift–diffusion model (DDM) has been derived and proved to be a better choice for
describing the dynamics of TAFC, as shown in the review paper [5].

Definition 2.1 (Weber–Fechner law). The following equation describes the relation-
ship between the smallest change in stimuli dS that can be perceived and the current
intensity of stimulus S:

dS
S
= constant.

The relationship between changing decisions and evidence accumulating can be de-
scribed similarly.

The following DDM has been treated as standard model in modeling of the TAFC
problem, as shown in [40, 27, 36, 28]:

dx = Adt + cdW(t), (2.1)

where dx denotes the change in x over a small time interval dt, A ∈ R and c ∈ R
are, respectively, the drift rate and the diffusion rate, and W(t) is the standard one-
dimensional Wiener process. The pure diffusion model (2.1) has been extended to the



2.1 Introduction | 11

following Ornstein–Uhlenbeck model in [9]:

dx = (λx + A)dt + cdW(t), (2.2)

where the change rate of x is assumed to depend on its current value. Considering
the accumulating of different evidence that is favoring different alternatives, the Race
model

{
dx1 = I1dt + cdW1,

dx2 = I2dt + cdW2
(2.3)

has also been proposed where a decision will be made if the accumulation of evi-
dence reaches some predetermined thresholds. Based on the similarity between the
decision-making process and Brownian motion in one-dimensional space, the Race
model (2.3) is further generalized in [38] to describe two-dimensional diffusionprocess
on a disk. Also based on the Race model (2.3), mutual interactions between these two
evidence-accumulating processes are introduced in [42], where the inhibitory effect
of one evidence-accumulating process imposed on the other evidence-accumulating
process has been studied, and the following mutual inhibition model has been pro-
posed:

{
dx1 = (−kx1 − ωx2 + I1)dt + cdW1,

dx2 = (−kx2 − ωx1 + I2)dt + cdW2,
(2.4)

where k is the decay of the accumulators and ω is the rate of mutual inhibition.
Succinctly stated, model (2.1) has become the basicmodel for TAFC in the isolated

case. In the work of [4], the pure drift–diffusion model (2.1) has been proved to be
equivalent to thewell-knownBayesianmodel. Furthermore, the drift–diffusionmodel
(2.1) is also the optimal DMM for TAFC tasks in statistics, as shown in [5]. Recently, the
motion of a noise-driven, over-damped particle was employed in [37] to describe the
TAFC process and the following non-linear diffusion model:

𝜕TX = −
dE(X)
dX
+ σξ 3,

where E(X) = −ηΔvX − μv̄ X
2

2 ∓
X4

4 has been used to solve the curse of dimension that
is encountered in the following diffusionmodels for decisionmaking of multiple neu-
rons:

ẋ1 = f (x1, x2, . . . , xn; I + I1),
ẋ2 = f (x2, x1, . . . , xn; I + I2),
ẋ3 = f (x1 + x2, x1 ⋅ ⋅ ⋅ , xn; I3),

...
ẋn = f (x1 + x2, x1 ⋅ ⋅ ⋅ , xn; In).
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2.1.2 Networked decision-making model for TAFC

Compared to research on isolateddecision-makingprocesses, a lot of efforts have been
made by biologists and engineers onmodeling and analysis of the collective decision-
making process so that we can understand and control the collective behavior of ani-
mals, man-made systems, and even crowds of human beings.

The previous isolated DMM for TAFC has been extended to the following net-
worked DMM in [33]:

dxk = [β +
n
∑
j=1

aij(xj − xk)]dt + σdWk (2.5)

or in matrix form

dx = [b − Lx]dt + CdW , (2.6)

where aij > 0means theweight of difference between agent k and agent j, while aij = 0
implies that agent k and agent j do not communicate, x := (x1, x2, . . . , xn)T , b := β1n,
C := σI, dW = col(dW1, dW2, . . . , dWn), and L is the graph Laplacian matrix defined as

lkj := {
∑nj=1,j ̸=k akj, k = j,

−akj, k ̸= j.

The effects of different communication topologies on collective decision-making pro-
cesses (2.5) or (2.6) have been analyzed in [33] and [34]. Obtained results of [33] have
been further enhanced in [35] to characterize the information centrality and ordering
of each node, which is very useful in selecting leaders in the TAFC problem. The net-
worked drift–diffusion model (2.5) under network interactions was also adopted in
[39] to study the trade-off between speed and accuracy of the evidence accumulating
process where the reduced DDM has been used to approximate the original DDM. A
weight factor u has been introduced in [15] to characterize the balance between hold-
ingof personal opinionand followinghis (her) neighbor’s opinionwhere the following
uninformed and informed models (α is the preference term) have been proposed:

dxk = −dixi +
n
∑
j=1

uS(xj)dt, (2.7)

dxk = −dixi +
n
∑
j=1

uS(xj)dt + αi, (2.8)

and rich phenomena such as bifurcations under different values of u have been stud-
ied and implemented to validate observed behaviors in crowds.



2.1 Introduction | 13

Similar to the Race model (2.3) and the inhibition model (2.4) where the evidence
accumulating process is explicitly described, the following DMM for TAFC has also
been presented in [41] to describe the cooperative interactions among individuals:

{
ṗi1(t) = −g12(t)pi1(t) + g21(t)pi2(t),
ṗi2(t) = g12(t)pi1(t) − g21(t)pi2(t),

(2.9)

where gij(t) is the transition probability from choosing one decision to choosing the
other decision and bifurcation phenomenon that is depending on the strength of in-
teraction is also explicitly studied in [41]. This is based on the fact that the sequence
of time duration for isolated decision makers is a renewal Poisson process, while the
time series generated by anetworked or self-organized cluster is not a Poissonprocess.
The DMM (2.9) of integer order for TAFC has been further generalized to the following
fractional Langevin equation for an infinite number of individuals in [45] using tech-
niques of the inverse Laplace transform:

𝜕μ−1t ϕ(t) = −λμ−1ϕ(t) + ε(t), (2.10)

where the inverse power law distribution of waiting time has been included for all-to-
all network and the stochastic fluctuations in the network has been described using
ε(t). Based on the important role of leaders in collective decision making as observed
in animal systems, the influence of the number of informed agents (leaders) and the
location of these leaders in TAFC have also been considered in [13] and [15], respec-
tively.

2.1.3 TAFC in evacuation of crowds

For efficient evacuation of crowds of pedestrians, the decision-making process has
been incorporated in the study of the evacuation problem. The social-force model
proposed by [20] has been enhanced using information as regards pedestrians at
the exit and information of followers in [46] where the decision-making process has
been embedded in the evacuation problem of pedestrians. The effects of the strength
of interactions, the distribution of initial leaders, and even the memory of human
beings have been considered in the social contagion model in [19], where cascading
propagation of information has been studied. Choosing between two asymmetric ex-
its for pedestrians in one corridor was also conducted in [22] using an experimental
study and it seems reasonable to allocate people with similar physical abilities to use
the same egress routes for realization of cooperative and efficient evacuation. The
influence of different interactions on evacuation patterns and evacuation time has
been considered in [29] using non-cooperative game theory. Game theory was also
utilized in [6] to prove that mutual cooperation will contribute to efficient evacuation,
and mean-field games have been employed in [8] to model the evacuating of crowds
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where a macroscopic optimal control problem has been solved under non-linear mo-
bilities of pedestrians.

Although there are some results on the evacuation of crowds under consideration
of the decision-making process, these results are only conducted using the framework
of calculus of integer order. Some elements, such as the effects of memory and the
distributions of time and space, have beenneglected in the previous study.Muchmore
appropriate models can be obtained based on characterizing these “human nature”
effects using appropriate tools.

2.1.4 Comments on the previous research

Research efforts on isolated decision making or networked decision making were so
far based on integer-order calculus. Specifically, the evidence aggregation process for
the TAFC problem has been extensively considered within the framework of calculus
of integer order. Butmore andmore evidence has shown that it ismuchmore appropri-
ate to model the dynamics of a decision-making process using calculus of fractional
order rather than calculus of integer order, such as memory effects in [12, 18], inverse
power law distribution on temporal and spatial scale for movement of human beings,
and even long-range interactions in [3] for group of animals.
Memory: Collectivememory has been proved to play an important role in the genera-

tion of different formation patterns in [12]. The effects of memory on decision time
for opiniondynamics are discussed in [18].Memory effects are also included in the
design of interactions in modeling particle’s motion in [16] for one-dimensional
space and in [43] for two-dimensional space.

Statistic character of time: As pointed out in [44], the exponential distribution of
the waiting time for an isolated individual should be replaced with an inverse
power law distribution due to interactions among nodes of the network. This kind
of non-Poisson intermittency that has been observed in transition from uncoor-
dinated random decisions to organized decisions is closely connected with the
fractional calculus.

Statistic character of space: The work of [7] has shown that the traveling of human
beings on geographical scales can be described as a super-diffusive process,while
the distribution of traveling distance satisfies an inverse power law and the prob-
ability of lasting time satisfies a distribution with heavy tail.

Long-range interactions: The roles of long-range interactions and short-range in-
teractions have been studied early for protein molecules in [17] and it was shown
that the long-range interactions are essential for cooperative behavior, while the
short-range interactions are responsible for accelerating the transitions. Based on
flocking data of European starlings (Sturnus vulgaris), the theory of maximum en-
tropy has been introduced in [3] inmodeling the flocking behavior where both the
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presence of long-range and scale-free correlations among pairs of birds have been
confirmed.

2.1.5 Overview of this chapter

Based on the above statements, dynamics of the decision-making process for evacu-
ation of crowds has been considered in this chapter using the calculus of fractional
order. The dynamic model of fractional order for choosing between two exits has
been constructed with symmetric interactions and asymmetric interactions, respec-
tively. As a generalization of the DMM of integer order that has been proposed in
[44], a stability analysis of the obtained dynamic model has been performed using
linearization around desired equilibrium. The relationship with the previous model
and discussion of future work for the obtained models are also given for complete-
ness.

This chapter is organized as follows. In Section 2.2, somepreliminaries such as the
definition of fractional calculus adopted and lemmas used are firstly presented; Sec-
tion 2.3 is devoted to showing themodel of fractional order with symmetric and asym-
metric interactions where a local stability analysis is also presented. Finally, in Sec-
tion 2.4, comparisons between our model of fractional order and the previous model
of integer order are discussed and future work based on the work of this chapter is
also included in this section.

2.2 Problem formulation

2.2.1 Definitions and lemmas

Definition 2.2 (TAFC [FromWikipedia]). Two-alternative forced choice1 (TAFC) is a
method for measuring the subjective experience of a person or animal through their
pattern of choices and response times. The subject is presented with two alternative
options, only one of which contains the target stimulus, and is forced to choose which
one is the correct option.

For fractional calculus, as shown in [32], there are mainly two widely used frac-
tional operators: Caputo and Riemann–Liouville (RL) fractional operators, where the
traditional definitions of the integral and derivative of a function are generalized from
integer orders to real or complex orders. The following Caputo definition for a frac-
tional derivative is adopted in this book because the Laplace transform of the Caputo

1 https://en.wikipedia.org/wiki/Two-alternative_forced_choice
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derivative allows for utilization of initial values of classical integer-order derivatives
with known physical interpretations.

Definition 2.3 (Caputo’s fractional derivative). The Caputo fractional-order differenti-
ation for f (t) with order α is defined by

C
t0D

α
t f (t) =

1
Γ(n − α)

t

∫
t0

f (n)(τ)
(t − τ)α−n+1

dτ,

where n is an integer satisfying n − 1 < α < n.

For a fractional-order linear time-invariant (FOLTI) system in the pseudo-state-
space model

{
C
0D

q
t x(t) = Ax(t) + bu(t),
y(t) = Cx(t),

(2.11)

the stability of the commensurate system (2.11) is guaranteed by the following lemma.

Lemma 2.1 (Stability of FOLTI system [31]). System (2.11) is stable if the following con-
dition is satisfied:

arg(eig(A))
 > q

π
2
,

where 0 < q < 2 and eig(A) represents the eigenvalue of matrix A.

2.2.2 Problem considered in this chapter

How do evacuees find their way to escape from a dangerous room? How should one
describe the dynamic process of decision making of each pedestrian? These are the
problems to be considered in this chapter.

We analyze the evacuation problem in a parallelogram room with two symmetri-
cal exits, as shown in Figure 2.2. The final choice of each pedestrian is the result of
interacting with his/her neighbors and balancing his/her preference of these two ex-
its. For the pedestrian in yellow color, shown in Figure 2.2, the choice between the
left exit and right exit has been made based on the distribution of red ones and blue
ones. For easy of analysis,each pedestrian has been assumed to be homogeneous in
the decision-making process in this chapter.

2.3 Fractional decision making model

Due to the evidence mentioned in Section 2.1.4, which is related to calculus of frac-
tional order, the following coupled master equation of fractional order is firstly pro-
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Figure 2.2: Evacuation of crowds of pedestrians in a room with two exits.

posed for TAFC:

{
C
t0D

α
t pi1(t) = −g12(t)pi1(t) + g21(t)pi2(t),

C
t0D

α
t pi2(t) = g12(t)pi1(t) − g21(t)pi2(t),

(2.12)

where α ∈ (0, 2) and pij(t) ∈ [0, 1] is the probability of the ith pedestrian being in the
state of choosing the jth exit (j = 1, 2). The transition probability from choosing exit
m to choosing exit n is denoted by gmn(t), which is dependent on his/her neighbor’s
choice

gmn(t) = (πm(t) − πn(t))
2
,

wherem ̸= n = 1, 2 and

πs(t) =
Ns(t)
N
,

whereN is the total number of neighbors for the ith pedestrian andNs(t) is the number
of the ith pedestrian’s neighbors who choose the sth exit at time t (s = 1, 2). Similarly,
we denote the following probability in the following sections:

Σs(t) =
Ωs(t)
Ω
,

where Ω is the total number of the sth nodes in the network and Ωs(t) is the number
of pedestrians in the entire network who choose the sth exit at time t (s = 1, 2).
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2.3.1 Symmetric interaction

Similar to the relationship between action and reaction of forces, g12(t) = g21(t) is
assumed under symmetric interactions. We denote the following ξ (t) as one global
variable:

ξ (t) = Σ1(t) − Σ2(t) =
1
Ω
[Ω1(t) − Ω2(t)], (2.13)

which concerns the differences of choosing different alternatives in TAFC. In an all-
to-all network, πs(t) = Σs(t) is satisfied, which means that Σs(t) will be a reasonable
approximation of the average opinion of the entire network no matter the number of
pedestrians goes to infinity or not.

Thus, based on the fractional DMM in (2.12), the opinion of thewhole network can
be described as

{{{
{{{
{

C
t0D

α
t
∑ pi1(t)

N
= −g12(t)

∑ pi1(t)
N
+ g21(t)
∑ pi2(t)

N
,

C
t0D

α
t
∑ pi2(t)

N
= g12(t)

∑ pi1(t)
N
− g21(t)
∑ pi2(t)

N
.

(2.14)

Subtracting the second line from the first line of system (2.12), the dynamic equa-
tion of the global variable ξ (t) can be described as

C
t0D

α
t ξ (t) = −2g12(t)

∑ pi1(t)
N
+ 2g21(t)

∑ pi2(t)
N

or

C
t0D

α
t ξ (t) = −2g12(t)ξ (t). (2.15)

Theorem 2.1. Under the assumption that the network is all-to-all, the DMM (2.15) that
is proposed for the evacuation problem with two exits is asymptotically stable under
symmetric interactions, where α ∈ (0, 2).

Proof. The proof of asymptotical stability of equilibrium can be found in references
[32, 31] and is omitted here.

Remark 2.1. As the probability of choosing one exit is equal to the probability of
choosing the other exit with symmetric interactions, there is no difference between
themotion of particles and themotion of pedestrians. Thus the number of pedestrians
that evacuated from different exits is equal to each other.

2.3.2 Asymmetric interaction

Similar to derivations in the previous subsection, the dynamics of the opinion of the
whole network under asymmetric interactions can also be obtained based on the frac-
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tionalmicroscopicmodel (2.14). The dynamic description of thewhole network’s opin-
ion can be computed as

C
t0D

α
t ξ (t) = −g12(t)

∑ pi1(t)
N
+ g21(t)
∑ pi2(t)

N

− g12(t)
∑(1 − pi2(t))

N
+ g21(t)
∑(1 − pi1(t))

N

= −g12(t)
∑ pi1(t)

N
+ g21(t)
∑ pi2(t)

N

− g12(t)[1 −
∑ pi2(t)

N
] + g21(t)[1 −

∑ pi1(t)
N
]

= −(g12(t) + g21(t))(
∑ pi1(t)

N
−
∑ pi2(t)

N
)

+ (g21(t) − g12(t)).

Then the generalized fractional dynamic model for TAFC can be described as

C
t0D

α
t ξ (t) = −(g12(t) + g21(t))ξ (t) + (g21(t) − g12(t)), (2.16)

where the transition probability between different choices that is proposed in [44],

gij(t) = g0 exp[K{πj(x, t) − πi(x, t)}] (2.17)

is used (i ̸= j = 1, 2). Then under the assumption of all-to-all network and an infinite
number of pedestrians, the transition probability gij(t) in (2.17) can also be written

{
g12 = g0 exp(−Kξ (t)),
g21 = g0 exp(kξ (t)),

(2.18)

where preference in choosing one of the two exits has been greatly amplified or sup-
pressed. Thus system (2.16) can also be written as

C
t0D

α
t ξ (t) = −g0(exp(kξ (t)) + exp(−kξ (t)))ξ (t)

+ g0(exp(kξ (t)) − exp(−kξ (t)))

or

C
t0D

α
t ξ (t) = −2g0 cosh(kξ (t))ξ (t) + 2g0 sinh(kξ (t)). (2.19)

For stability analysis of (2.19), the potential function

V(ξ ) = 2g0
K
[
K + 1
K

cosh(kξ ) − ξ sinh(Kξ )]

is constructed firstly. Contrary to Figure 3.8 for V(ξ ) that is shown in [44], the figures
for the potential function and its equilibria are redrawn in Figure 2.3 to provide an
overview for stability analysis.
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Figure 2.3: Potential function V(ξ) as a function of ξ for g0 = 0.01 and different K .

All the equilibria ξeq of the system (2.19) can be computed as

ξeq = 0 and ξeq = ±
√2(K − 1)

K

after setting the right side of (2.19) to zero andexpanding thehyperbolic functionusing
a Taylor series, as shown in Figure 2.3. The stability of each equilibrium is shown in
the following theorem.

Theorem 2.2. Under the assumption of all-to-all network, each equilibrium of the DMM
(2.19) with α ∈ (0, 2) is locally and asymptotically stable even under asymmetric inter-
action rules (2.18).

Proof. (1) Stability analysis of ξeq = 0.
When the initial value of global difference variable ξ (t) is close to zero, the asym-

metric interaction is similar to a symmetric interaction. Due to the following facts

{
g12 = g0 exp(−Kξ (t))→ g0,
g21 = g0 exp(kξ (t))→ g0.

Thus system (2.16) can be reduced to

C
t0D

α
t ξ (t) = −2g0ξ (t). (2.20)

It is easy to see that system (2.20) is locally asymptotically stable based on Lemma 2.1
for α ∈ (0, 2).
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(2) Stability analysis of ξeq = ±
√2(k−1)

k .
After substituting the following linear approximation of a hyperbolic function:

{
coshKξ = coshKξeq + sinhKξeq(ξ − ξeq),
sinhKξ = sinhKξeq + coshKξeq(ξ − ξeq)

into system (2.19), system (2.19) can be rewritten as

C
t0D

α
t ξ (t) = −2g0(coshKξeq + sinhKξeq ⋅ (ξ − ξeq))ξ (t)

+ 2g0(sinhKξeq + coshKξeq ⋅ (ξ − ξeq))
= −2g0(coshKξeq + sinhKξeq ⋅ (ξ − ξeq))ξ (t)
+ 2g0 coshKξeq ⋅ ξ (t)
= −2g0 sinhKξeq ⋅ (ξ − ξeq)ξ (t),

where sinhKξeq = ξeq coshKξeq is used due to the definition of equilibrium. Denoting
η(t) = ξ (t) − ξeq, then system (2.19) can be rewritten as

C
t0D

α
t η(t) = −2g0 sinhKξeqη(t)(η(t) + ξeq)

= −2g0ξeq sinhKξeqη(t) − 2g0 sinhKξeqη
2(t).

Thus, in neighborhood of each equilibrium ξeq = ±
√2(k−1)

k , system (2.19) can be ap-
proximated by

C
t0D

α
t η(t) = −2g0ξeq sinhKξeqη(t), (2.21)

where ξeq sinhKξeq > 0 is satisfied if ξeq ̸= 0. Based on the stability of the linear time-
invariant system of fractional order shown in Lemma 2.1, it is easy to see that these
two equilibria ξeq = ±

√2(k−1)
k are also locally and asymptotically stable.

Remark 2.2. Based on the results obtained in Theorem 2.2, it can be seen that the final
value of the global difference variable is dependent on the initial distribution of the
crowd’s choice.
– An asymmetric interaction can be reduced to a symmetric interaction if the initial

distribution of the whole crowd’s choice is close to zero and this balance will be
kept as time goes on. In other words, if half of the crowd chooses to evacuate from
exit 1 and the other half of the crowd chooses to evacuate fromexit 2, this situation
will be kept under symmetric interaction.

– It is often the case that the number of people choosing one exit is not equal to
that choosing the other exit. This can be validated using the results presented in
Theorem 2.2 with symmetric interaction. If one of the exits is much preferred for
some of the crowds, this kind of preference can be amplified, while the choices
of the other exit will be suppressed using the interaction rules proposed in (2.18).
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This kind of situation can be approved by the observation from a real evacuation
process that a lot of people try to exit from one exit, while there are not so many
people in the other exit.

– In a real evacuation of crowds of pedestrians, it is much preferred to avoid the
phenomenon of following the majority. Then how to reallocate the pedestrians in
different exits is an interesting problemandwill be helpful for bettermanagement
of crowds.

2.4 Discussions

2.4.1 Relationship to the previous models

(1) Due to the characteristics mentioned above for decision-making processes, there
are many limitations in previous research where the aggregation and diffusion of
evidence are only considered under the framework of calculus of integer order.

(2) Advantages of using calculus of fractional order inmodeling of the drift–diffusion
process lie in that more human-nature characteristics can be easily described or
modeled such as memory effects, statistic characteristics on temporal and spatial
scale, and short-range/long-range interactions among pedestrians.

As generalization of previous pedestrian models of integer order, the obtained model
of fractional order has provided us with much more freedom in characterizing and
understanding the complexity of the decision-making process.

2.4.2 Future topics

Related topics for future work are listed as follows.
(1) Homogeneity in the decision-making process has been assumed for each pedes-

trian in this chapter. Due to the heterogeneity in the aggregation and dissemina-
tion of evidence in the decision-making process, the dynamic model of fractional
variable order or the dynamic model of fractional distributed order that has been
proposed in [30, 24] will be useful in solving the challenges caused by heterogene-
ity.

(2) As all-to-all framework and infinite number of pedestrians have been assumed in
this paper, it is more reasonable to consider the decision making of crowds for
finite number of pedestrians and more general communication topologies. The
following DMM of fractional order

C
t0D

α
t ξ (t) = −(g12(t) + g21(t))ξ (t) + (g21(t) − g12(t)) + ε(t)

may be a better choice for the decision making process of this case.
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(3) The stability of multiple equilibria of the obtained fractional DMM has been ana-
lyzed locally without external forces. How to realize the transition from one equi-
librium to another equilibrium is an interesting problem that is worthy of putting
much more more efforts.

2.5 Conclusion

For the two-alternative choosing problem in evacuation of crowds, fractional calculus
has been employed to describe the dynamic decision-making process of each pedes-
trian which makes the model obtained much closer to reality compared to that of in-
teger order. Stability analysis of the obtained DMM of fractional order has been con-
sidered under symmetric and asymmetric interactions, respectively. It was found that
the final opinion of a whole crowd depends on the initial distribution of all pedestri-
ans’ choices under asymmetric interactions, while this is not the case for symmetric
interactions. Based on theDMMof fractional order that is proposed in this chapter, the
effects of different communication topologies on TAFC are addressed by the authors
now.
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3 Macroscopic model of fractional order for crowds
of pedestrians

Abstract: The diffusion process of integer order has been extensively used for mod-
eling of crowds in macro-scale in the previous research. Observations have revealed
that the classical diffusion process is not sufficient in characterizing the movement of
crowds in different scenarios. A macroscopic model of integer order has been further
generalized in this chapter using the fractional conservation law ofmass/momentum,
so that the fractional time and fractional space can be effectively characterized using
calculus of fractional order. For completeness, models for multiple types of pedestri-
ans under attractive and repulsive forces are also considered andmacroscopic equiva-
lent models of fractional order such as the sub-diffusion, super-diffusion, and porous
phenomena are also included.

3.1 Introduction

It is common to see gathering of people in real life due to some public activities such
as sports, religion, exhibition, traveling, or celebrating. More and more tragedies due
to people’s stampedes were reported in recent years, such as the stampede in Nige-
ria and the stampede in Shanghai as shown in Figure 3.1. The most tragic stampede
occurred in Mecca in 1990, where 1426 pilgrims were trampled to death or suffocated.
Incomplete statistics show thatmore than 4000 people died andmore than 9000were
injured from 2000 to 2010. From the long list of tragedies of recent years, shown in Ta-
ble 3.1, one concludes that there is an urgent need to reanalyze and reexamine the
current evacuation policies and procedures for evacuation of crowds. In order to fully
understand and control the motion of crowds, some work has been done in recent
years on the modeling and control of crowds of pedestrians, such as [42, 24, 48, 33, 2,
32, 41, 49, 31, 1]. Some manuscripts have also been published on this topic in recent
years, such as [42, 24, 48, 33, 2, 32, 41, 49, 31, 1, 27].

There are a lot of characteristics that should be considered in modeling and con-
trol of crowds, such as self-organization, following leaders, commonmotivations, psy-
chological unity, emotional intensity, and level of violence, as shown in [4]. Thus re-
search related to crowds of pedestrians has received a lot of attention in recent years.
A lot of work has been conducted from the perspectives of behavior, psychology, cog-
nition, andnetwork sciences to analyze themotion problems related to particles, vehi-
cles, robots, animals, and even human beings (see [36, 16, 45, 12, 14]). According to the
work of [26, 3, 15, 17, 6, 46], modeling of crowds has been categorized as microscopic
models, macroscopic models, and mesoscopic models.

https://doi.org/10.1515/9783110473988-003
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Figure 3.1: Stampede in Nigeria (from www.chinadaily.com.cn) and stampede in Shanghai (from
www.chinanews.com).

Table 3.1: Catastrophic events occurred around the world in recent years.

Time Location Place Injuries and deaths

Oct. 13, 2013 Bond tia, the central of India Bridge 115 deaths, more than
100 injuries

Jan. 1, 2011 State of Kerala, the southern
Indian

Road 104 deaths, 50 injuries

Nov. 22, 2010 Diamond island, Phnom
penh of Cambodia

Bridge 339 deaths, hundreds
of people were injured

Jul. 25, 2010 Duisburg, Germany Tunnel entrance 19 deaths, more than
100 injuries

Dec. 7, 2009 Yucai middle school,
Xiangtan city of HuNan
province

Stair 8 deaths, 26 injuries

Mar. 29, 2009 Abidjan, Cote d’Ivoire Gym 19 deaths, 132 injuries
Feb. 4, 2006 Manila area, Philippines Gym 74 deaths, 342 injuries
Feb. 12, 2006 Mecca, Saudi Arabia Mosque 362 deaths,

300 injuries
Aug. 31, 2005 Baghdad, Iraq Mosque 965 deaths,

815 injuries
May 9, 2001 Arak, the capital of Ghana Gym 126 deaths
Jun. 2, 1990 Mecca, Saudi Arabia Undergrand passage 1426 deaths

Fascinated by the phenomena observed, such as schooling of fish and flocking of
birds, a lot efforts have been made to find connections between microscopic inter-
actions and macroscopic patterns. It has been found in [13] that different formation
patterns can be generated for swarming of fish through simply tuning the area of at-
traction and repulsion. Relationship between repulsion and attraction has been quan-
titatively analyzed in [35]. Contrary to the local interactions used in [13] and in [35],
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the role of long-range interactions was firstly considered in [50], where transition phe-
nomena fromdisordered states to ordered states have been observedunder long-range
interactions. A phase transition from chaos to turbulence has also been reported in
[53], where long-range interactions (described by 1

l1+α , where l is the distance between
oscillators and α is the tuning parameter) have been added for synchronization of non-
linear oscillators. Transitions from a purely diffusive regime to flocking patterns have
been also realized in [28] through tuning the size of the range and strength of the in-
teractions under local, non-local, or configuration-dependent interactions.

Another thing that should never be neglected is the effect of memory. It has been
shown in [13] that the collective memory plays an important role in generating differ-
ent collective behaviors such as alignment, swarm, and torus behavior. On the hys-
teresis phenomenon we read the following. (FromWikipedia:Hysteresis is the depen-
dence of the output of a system not only on its current input, but also on its history
of past inputs.) It has been explicitly studied in [12], where a non-linear relationship
between collective behaviors and the range of interactions has been explicitly shown
in Figure 3.2, from which it is obvious that the change of a group’s behavior not only
depends on the current control input but also depends on the history of individual

Figure 3.2: Hysteresis phenomenon borrowed from [12].
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behavior and the previous shape of the group. The hysteresis phenomena or effects
of memory are so common that they can be found in acceleration, deceleration, and
equilibrium of traffic flows as explored in [54]. The fractional Fokker–Planck equation
has been derived in [47] for particles withmemory if the correlating function of proba-
bility density is in the form of a power law. Considering the memory of crowds, a non-
negative kernel function η(⋅) has been introduced in [10] to generalize the Lighthill–
Whitham–Richards (LWR) model using the following convolution:

ρ ⋆ η = ∫
R2

η(x − ξ )ρ(t, ξ )dξ ,

where the preferred path can be found and regions of high density can be avoided.
Phenomena such as an individual’s memory and long-range interactions are

not easily characterized within the framework of calculus of integer order. Recent
advances in fractional calculus have shown that these characteristics are fully or par-
tially connected with the calculus of fractional order. As a generalization of calculus
of integer order, the models derived with the help of fractional calculus are much
closer to reality.

3.2 Mathematical model for crowds of pedestrians

3.2.1 Microscopic model for pedestrians

When the density of crowds is low, each pedestrian can move freely and interactions
among pedestrians can be modeled using the framework of social forces. A lot of re-
search has also been conducted using Newton’s laws, as shown in the following mi-
croscopic model:

mi
dvi
dt
= f Si +

n
∑
j=1

f Nij +∑ fWk , (3.1)

where f Si is the self-driven force towards some desired velocity, f Nij is the interaction
between agent i and its neighbor j, and fWk represents the interactions with the envi-
ronment, such as walls or corridors.

In current research, only external effects have been considered inmost of the pre-
viousmodeling work at micro-scale. For example, interactions with the external envi-
ronment such as the spatial–temporalmarkings have beendescribedusing apotential
function and have been added to the right side of (3.1), as done in [25]. An external po-
tential function is also employed in [39], where the relationship between formation
patterns and different types of interactions has been studied. It has been proved that
neither internal forces nor external forces alone can perform well in the evacuation
of crowds of pedestrians and a practical and efficient method is introducing both of
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them in the modeling of crowds in (3.1), where appropriate f Nij and f
W
k have been con-

structed for panic crowds. Similarly, it has been shown in [34] that not only external
forces, such as interactions with neighbors and environments, but also some inter-
nal forces, such as the forces due to personal will and personal emotion, should be
considered in the modeling process.

Most of the simulation results are also conducted at this scale, as shown in [41],
because the methods are simple and animations are realistic. In order to realize sim-
ulations with high realism and real-time animation, the idea of mapping the desired
behaviors to a stable solutions of classical non-linear dynamic system such as the Van
der Pol oscillator or fixed-point attractor has been introduced in [22] and [37]. With the
help of the non-linear transformation introduced in [37], connecting the pedestrian’s
periodic or aperiodic motion with one structurally stable system, real-time animation
has been realized in low-dimensional space without losing details.

Remark 3.1. Comments on microscopic model:
– The main advantages of microscopic model lie in the heterogeneity of pedestri-

ans, which can be considered explicitly, and the simulation results obtained are
highly realistic. But the microscopic model is not a good choice if the number of
pedestrians becomes very high as some unnecessary interactions or effects have
been included.

– Most of the previouswork has treated each pedestrian as a single physical particle
and littleworkhas been conducted considering the effects of pedestrians’memory
or other internal effects.

– Local interacting rules have received a lot of attention in the previous research,
while long-range interacting rules are not so popular.

3.2.2 Macroscopic model for large crowds

Based on the methods of modeling of fluids, great progress has been made in con-
structing macroscopic models for traffic systems. Due to the similarity between traffic
systems and crowds of pedestrians at macro-scale, modeling of macroscopic crowds
has benefited a lot from the macroscopic model for traffic systems, where the well-
known LWRmodel (3.2) and Payne–Whitham (PW)model (3.3) have been proposed in
[31]. The macroscopic model proposed for a traffic system in one-dimensional space
and two-dimensional space are described by

𝜕
𝜕t
ρ(t, x) + 𝜕

𝜕x
f (t, x) = 0 (3.2)

and
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{{{
{{{
{

𝜕
𝜕t
ρ(t, x) + 𝜕

𝜕x
ρ(t, x)v(t, x) = 0,

𝜕
𝜕t
v(t, x) + v(t, x) 𝜕

𝜕x
v(t, x) = V(ρ) − v

τ
−
A(ρ)x
ρ
+ μvxx

ρ
,

(3.3)

where ρ denotes the density of the crowd and f (t, x) is the flux of the crowd, V(ρ) is
the equilibrium speed, V(ρ)−vτ is the relaxation term, A(ρ)xρ is the anticipation term, and
μ vxx

ρ is the viscosity term. The relationship between flux and density has attracted a
lot of interest, as shown in the following Greenshield model:

𝜕
𝜕t
ρ + 𝜕
𝜕x

vf ρ(1 −
ρ
ρm
) = 0,

where v(ρ) = vf (1 −
ρ
ρm
) is assumed, or the following Greenberg model:

𝜕
𝜕t
ρ + 𝜕
𝜕x

vf ρ ln(
ρm
ρ
) = 0,

where v(ρ) = vf ln(
ρm
ρ ) is assumed. Also based on (3.3), the following diffusion model

can be similarly obtained:

𝜕
𝜕t
ρ + 𝜕
𝜕x
[vf(1 −

ρ
ρm
) −

D
ρ
𝜕ρ
𝜕x
] = 0,

where v(ρ) = [vf (1 −
ρ
ρm
) − D

ρ
𝜕ρ
𝜕x ] is assumed, vf is the velocity of free flow, ρ is the max-

imum density, and D is the diffusion coefficient. Compared with the classical LWR
model, a much more complex relationship between flux and density has been con-
structed in [55] where both a high-order LWRmodel and a low-order LWRmodel have
been given. A new relationship between speed and density is also discussed in [11],
where the Lighthill–Whitham model in panic scenarios has been derived. Based on
the fundamental conservation law of mass and momentum, the macroscopic model
(3.2) has been further generalized to the following two-dimensional case in [29]:

𝜕
𝜕t
ρ + 𝜕
𝜕x
(ρu) + 𝜕
𝜕y
(ρy) = 0, (3.4)

where different types of pedestrians with different walking habits have been consid-
ered.

The interactions among pedestrians have been assumed to be the same at the
macro-scale since it is not easy to incorporate the heterogeneity of each pedestrian.
In order to characterize the crowds of pedestrians more precisely, mesoscopic models
are much preferred. A modeling procedure based on the following time-varying mea-
sures has been proposed in [15] for better characterization of the crowd–pedestrian
system:

μt = θmt + (1 − θ)Mt , (3.5)
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where mt = ∑
N
j=1 δPj(t) and dMt(x) = ρ(t, x)dx are the microscopic and macroscopic

mass, respectively. Both topological interactions such as the Braess paradox (obsta-
cles may contribute to improving the flow of people in some situations) characterized
atmacro-scale and anisotropic interactions such as the granular role of somepedestri-
ans described at micro-scale can be considered within this framework using the time-
varying measure (3.5). Similar models such as that are composed of an agent-based
microscopic model and a flow-based macroscopic model have been shown in [52] and
[38], where the accuracy of the microscopic model and the efficiency of the macro-
scopicmodelwere combinedusing the techniques of aggregationanddis-aggregation.
Details of themesoscopicmodel for crowds of pedestrians are left to the next chapters.

Remark 3.2. Comments on macroscopic model:
– The computation time has been greatly decreased as pedestrians have been

treated as same particles with same characteristics at macro-scale.
– The main disadvantage of macroscopic models lies in the heterogeneity of pedes-

trians: interactions or mobilities cannot be characterized or considered in detail
at this scale.

3.3 Macroscopic model of fractional order based on conservation
law

3.3.1 Definitions and lemmas

The following definitions of the fractal derivative and some lemmas to be used are first
presented.

Definition 3.1 ([40]). For a set F ⊂ R and a subdivision P[a,b], a < b, the mass function
γα(F, a, b) is given by

γα(F, a, b) = lim
δ→0

inf
{P[a,b] :|P|<δ}

n−1
∑
i=0

(xi+1 − xi)α

Γ(α + 1)
θ(F, [xi, xi+1]),

where

θ(F, [xi, xi+1]) = 1 if F ∩ [xi, xi+1]

is non-empty and zero otherwise, P[a,b] is a subdivision of the interval [a, b], and

|P| = max
0≤i≤n−1
(xi+1 − xi),

the infimum being taken over all subdivisions P of [a, b] such that |P| < δ.
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Definition 3.2 ([40]). Let a0 be an arbitrary but fixed real number. The integral stair-
case function SαF(x) of order α for a set F is given by

SαF(x) = {
γα(F, a0, x) if x ≥ a0,
−γα(F, x, a0) otherwise.

Definition 3.3 ([40]). The fractal derivative for Fα-derivative of f at x is

𝒟α
F(f (x)) = F- limy→x

f (y) − f (x)
SαF(y) − S

α
F(x)

(3.6)

if the limit exists.

Definition 3.4 ([40]). A point x is a point of change of a function f , if f is not constant
over any open interval (c, d) containing x. The set of all points of change of f is called
the set of change of f and is denoted by Sch(f ).

Remark 3.3. From Definitions 3.1 to 3.3 listed above, it is easy to see that the defini-
tion of integer order can be treated as a special case of fractal derivative when α = 1.
Thus the fractal calculus offers us much more freedom in modeling dynamic behav-
iors where ordinary differential equations (ODEs) and methods of calculus of integer
order may be inadequate.

Lemma 3.1 ([40]). Let f : R → R be a continuous function and Fα a differentiable func-
tion such that Sch(f ) is contained in an α perfect set F and let h : R→ Rbe F-continuous,
such that

h(x)χF(x) = 𝒟
α
F(f (x)).

Then
b

∫
a

h(x)dαFx = f (b) − f (a). (3.7)

3.3.2 Conservation law of mass/momentum

Denote by ρ(t, x) the density of the fluid in the one-dimensional space that is shown in
Figure 3.3. The fluid enters at the left edge x1 and leaves from the right edge x2 and the

Figure 3.3: One-dimensional flow.
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changes of the density are only caused by the fluxes at the boundary x1 and x2, which
are defined as

q(t, x1) = ρ(t, x1)v(t, x1),
q(t, x2) = ρ(t, x2)v(t, x2),

where v(t, x) is the velocity of the fluid.
The following mathematical model can be derived in parallel using conservation law
of mass/momentum.

(1) Conservation law in integral form
It is assumed that there are no exits or entrance ramps in Figure 3.3. Then the number
of pedestrians within [x1, x2] at a given time t is given by

N =
x2

∫
x1

ρ(x, t)dx. (3.8)

The change of pedestrians within [x1, x2] is caused by pedestrians entering or leaving
at the boundaries x1 and x2. Assuming that no pedestrians are created or destroyed,
the following conservation law in differential form can be derived:

dN
dt
= fx1 (ρ, v) − fx2 (ρ, v), (3.9)

where f (ρ, v) = ρ(t, x)v(t, x) is the flow of pedestrians.
After substituting (3.8) into (3.9), it is easy to obtain

d
dt

x2

∫
x1

ρ(x, t)dx = fx1 (ρ, v) − fx2 (ρ, v). (3.10)

If the endpoints x1 and x2 are independent and not fixedwith time, then the above full
derivative can be replaced by a partial derivative and the following conservation law
in integral form can be obtained:

𝜕
𝜕t

x2

∫
x1

ρ(x, t)dx = fx1 (ρ, v) − fx2 (ρ, v). (3.11)

(2) Conservation law in differential form
If ρ(t, x) and v(t, x) aredifferentiable functions, the changeof thefluxat theboundaries
can be written as

fx1 (ρ, v) − fx2 (ρ, v) = ρ(t, x1)v(t, x1) − ρ(t, x2)v(t, x2)

= −

x2

∫
x1

𝜕
𝜕x

f (ρ, v)dx. (3.12)
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Substituting (3.12) into (3.11), we have

x2

∫
x1

[
𝜕
𝜕t
ρ(x, t) + 𝜕

𝜕x
f (ρ, v)]dx = 0. (3.13)

Since (3.13) is satisfied for all independent x1 and x2, the following conservation equa-
tion in differential form can be obtained:

𝜕
𝜕t
ρ(x, t) + 𝜕

𝜕x
f (ρ, v) = 0. (3.14)

Considering the integral on [x1, x2] for both sides of equation (3.14), it is easy to
obtain

𝜕
𝜕t

x2

∫
x1

ρ(x, t)dx + f (ρ(x2, t), v(x2, t)) − f (ρ(x1, t), v(x1, t)) = 0. (3.15)

It is easy to see from (3.15) that the changes of crowds in the bounded area are
caused by the net influx at the boundaries. Thus (3.14) is the conservation law in dif-
ferential form.

(3) General conservation law
– Case 1: Two-dimensional space

Consider the conservation law in differential form in a two-dimensional space,

𝜕
𝜕t
ρ(x, y, t) + 𝜕

𝜕x
f1(ρ, v) +

𝜕
𝜕y

f2(ρ, v) = 0, (3.16)

where f1(ρ, v) and f2(ρ, v)mean the flux along x direction and y direction, defined
as

f1(ρ, v) = ρ(x, y, t)u(x, y, t) and f2(ρ, v) = ρ(x, y, t)v(x, y, t),

where u(x, y, t) and v(x, y, t) are the velocities at (x, y, t) along x direction and y
direction, respectively. The corresponding conservation law in integral form is

𝜕
𝜕t

x2

∫
x1

y2

∫
y1

ρ(x, y, t)dxdy =
y2

∫
y1

ρ(x1, y, t)dy +
x2

∫
x1

ρ(x, y1, t)dy −
y2

∫
y1

ρ(x2, y, t)dy

−

x2

∫
x1

ρ(x, y2, t)dy.

– Case 2: n-dimensional space
For modeling in n dimensional space, the differential conservation law

𝜕ρ
𝜕t
+ ∇ ⋅ F(u) = 0
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and the integral conservation law

𝜕
𝜕t
∫
VF

udV +∮
S

Fn(u)dS = 0

have been proposed in [23], where∇⋅F(u)means the divergence of the vector field
F(u).

3.3.3 Fractional-order modeling based on conservation law

Fractional calculus has shown great potential in different applications, such as parti-
cles in fluid, plasma physics, quantum optics and many other fields. Some phenom-
ena, such as self-similarity, non-stationary and spiky phenomena, short or longmem-
ory, and long-range interactions, are closely related to fractional calculus.

The authors havenoticed that potential applications of fractional calculus inmod-
eling and control of crowds have been mentioned or implied in the previous research
[6, 30, 43, 5, 44]. Based on the previous research, some intrinsic characteristics at the
temporal scale and spatial scale have been added in themodeling of crowds. Thus, the
mathematical models proposed in the previous work, such as that in [31], are further
generalized and can be considered as a special case of the work of this chapter.

Consider the following mass of pedestrians from x = x1 to x = x2 at time t, as
shown in Figure 3.3:

mass in [x1, x2] at time t =
x2

∫
x1

ρ(x, t)dxα. (3.17)

The total mass of pedestrians that enters the section from the edge at x = x1 is given
by

inflow at x1from time t1 to t2 =
t2

∫
t1

ρ(x1, t)v(t, x1)dt
β. (3.18)

Similarly, the total mass of pedestrians that leaves the section from the edge at x = x2
is given by

outflow at x2 from time t1 to t2 =
t2

∫
t1

ρ(x2, t)v(t, x2)dt
β. (3.19)

Applying the conservation law of mass, the change of mass in space [x1, x2] on
time interval [t1, t2] is equal to the mass that enters at x1 minus the mass that exits at



38 | 3 Macroscopic model of fractional order for crowds of pedestrians

x2 during the time interval [t1, t2], which can be described by

x2

∫
x1

ρ(t2, x)dx
α −

x2

∫
x1

ρ(t1, x)dx
α

=

t2

∫
t1

ρ(x1, t)v(t, x1)dt
β −

t2

∫
t1

ρ(x2, t)v(t, x2)dt
β.

The above equation can also be written as the following double integral form:

x2

∫
x1

t2

∫
t1

𝜕
𝜕tβ

ρ(t, x) + 𝜕
𝜕xα
[ρ(t, x)v(t, x)]dtβdxα = 0. (3.20)

Since equation (3.20) is satisfied for every t and x, the following macroscopic model
of fractional order can be derived for the one-dimensional case:

𝜕
𝜕tβ

ρ(t, x) + 𝜕
𝜕xα
[ρ(t, x)v(t, x)] = 0. (3.21)

Remark 3.4. Compared to dynamic models of integer order in the previous research,
some advantages and disadvantages of the obtained model of fractional order are
listed:
– In time domain: Only a normal diffusive process has been considered in the pre-

vious study due to the limitations of calculus of integer order. Besides the normal
diffusive process, sub-diffusive process or super-diffusive process can also be uti-
lized to describe the crowds of pedestrians using calculus of fractional order.

– In spatial domain: The dimensions of space are only limited to 1, 2, or 3 in the
previous research, while a fractional dimension can also be included within the
framework of fractional calculus.

Remark 3.5. A traffic model of fractional order has also been proposed in [51] with
α = β, where the dimensions of fractal time and fractal space are assumed to be equal
to each other. Thus the model proposed in [51] can also be treated as a special case of
our work.

Remark 3.6. We do not want to prove that models of integer order are not effective
anymore in reality; we merely want to show that calculus of fractional order as a gen-
eralization of calculus of integer order has provided us with much more freedom in
characterizing and understanding the complexities of crowds of pedestrians. The au-
thors admit that there is a lot of challenging work left to do for the obtained model of
fractional order, such as crowd controller design, stability analysis, and performance
evaluation.
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3.4 Extensions of macroscopic model

3.4.1 Equivalent model for multiple types of pedestrians

Partial differential equations for crowds composed by one single type of pedestri-
ans have been proposed in the previous section, while it is obvious that the whole
crowds are always composed of several types of pedestrians, who have different walk-
ing habits, destinations, andmobilities. Thus it is reasonable to study themacroscopic
description for crowds composed of different types of pedestrians.

Similar to the fractional model in one-dimensional space in (3.21), each type of
pedestrians in two dimensional space can be described by

−
𝜕ρi
𝜕tβ
+
𝜕
𝜕xα
(ρiui(x, y, t)) +

𝜕
𝜕yα
(ρivi(x, y, t)) = 0,

where ui(x, y, t) and vi(x, y, t) are the flow velocity of the ith type of pedestrians along
the x and y directions without considering the effect of other pedestrian flows. Denote
ϕi as the potential that each type of pedestrian has in reaching his destination. Then
ui(x, y, t) and vi(x, y, t) can also be written as

ui(x, y, t) = wi(ρ)
− 𝜕ϕi
𝜕x

√( 𝜕ϕi
𝜕x )

2 + ( 𝜕ϕi
𝜕y )

2
, vi(x, y, t) = wi(ρ)

− 𝜕ϕi
𝜕y

√( 𝜕ϕi
𝜕x )

2 + ( 𝜕ϕi
𝜕y )

2
,

where the velocity function wi(ρ) is a velocity function that depends on the density
of the entire crowds. Based on the inspiration of the classical Greenshield model, the
following velocity function is selected in two-dimensional space:

wi(ρ) = v
f
i (1 −

ρ
ρm
), (3.22)

where vfi is the free flow speed, ρ is the total density of the whole crowd, which is
different from ρi used in Greenshield’s model, and ρm is the maximum density of the
whole crowd. Then each type of pedestrian can be described as

−
𝜕ρi
𝜕tβ
+
𝜕
𝜕xα
[ρiv

f
i (1 −

ρ
ρm
)
− 𝜕ϕi
𝜕x

√( 𝜕ϕi
𝜕x )

2 + ( 𝜕ϕi
𝜕y )

2
]

+
𝜕
𝜕yα
[ρiv

f
i (1 −

ρ
ρm
)
− 𝜕ϕi
𝜕y

√( 𝜕ϕi
𝜕x )

2 + ( 𝜕ϕi
𝜕y )

2
] = 0.
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For crowds composed of N types of pedestrians, the steady flow per unit width of
each type is given by

q1 = ρ1w1(ρ),
q2 = ρ2w2(ρ),
...

qN = ρNwN (ρ).

(3.23)

Dividing each qi in (3.23) by vif and adding yields the effective flow velocity,

qeff =
N
∑
i=1

qi
vif
=

N
∑
i=1

ρi(1 −
ρ
ρm
) = (1 − ρ

ρm
)

N
∑
i=1

ρi = ρ(1 −
ρ
ρm
).

As the density ρ in Greenshield’s model (3.22) is the total velocity, defined as

ρ =
N
∑
i=1

ρi,

the equivalent flux of the crowds composed of N types of pedestrians is given by

ρ2(1 − ρ
ρm
).

Thus the equivalent model for multiple types of pedestrians can be described by

−
𝜕ρ
𝜕t
+
𝜕
𝜕xα
[ρ2(1 − ρ

ρm
) cos α] + 𝜕

𝜕yα
[ρ2(1 − ρ

ρm
) sin α] = 0,

where

cos α =⟨
− 𝜕ϕi
𝜕x

√( 𝜕ϕi
𝜕x )

2 + ( 𝜕ϕi
𝜕y )

2
⟩, sin α =⟨

− 𝜕ϕi
𝜕y

√( 𝜕ϕi
𝜕x )

2 + ( 𝜕ϕi
𝜕y )

2
⟩,

and ⟨⋅⟩means the average direction of these N types of pedestrians.

3.4.2 Macroscopic model with attraction and repulsion

Different from the linear speed–density relationship, which is widely used in (3.22),
the speed wi(ρ) can be further generalized to the following non-local form:

Γ(ρ) = G(K ∗ ρ) = G(
∞

∫
−∞

K(x − ξ )ρ(ξ , t)dξ). (3.24)
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Table 3.2:Mutual interaction forces used in the previous literature.

References Attraction Repulsion Comments

[19] 1
2πm2

r
e−(s−sr )

2/(2m2
r ) 1

2πm2
a
e−(s−sa)/(2m

2
a) Gaussian interactions

[7, 35] e
|s|
sa e

|s|
sr Morse interactions

[8, 9] zα
α

zr
r Power law interactions

[21] r a
rn Hybrid interactions

...
...

...
...

Based on the non-local interactions in (3.24), the fractional macroscopic model (3.21)
can be rewritten as

𝜕
𝜕tβ

ρ(t, x) + 𝜕
𝜕xα
[ρ(t, x)G(

∞

∫
−∞

K(x − ξ )ρ(ξ , t)dξ)] = 0, (3.25)

where the kernelK(⋅)means the difference between repulsive and attractive forces and
is defined by

K(s) = sgn(s)(lrKr(s) − laKa(s))

as in [18] or in [35, 20], where Kr is the repulsive function and Ka is the attractive func-
tion. Commonly used repulsive functions and attractive functions in the previous re-
search have been summarized in Table 3.2.

3.4.3 Macroscopic model with diffusion and attraction

In order to counteract the effects of a cohesive potential function (attraction forces),
the effect of motility (repulsion forces) has been added to prevent the density ρ from
converging to a delta function (complete collapse of crowds) in [30]. Similar to the
work of [30], diffusion terms have been added into the fractional model (3.25), result-
ing in

𝜕
𝜕tβ

ρ(t, x) = 𝒟ρ(t, x) − 𝜕
𝜕xα
[ρ(t, x)G(

∞

∫
−∞

K(x − ξ )ρ(ξ , t)dξ)],

to counteract the action of attraction forces, where 𝒟 is an operator describing the
diffusion of crowds. In order to satisfy the conservation law of mass, the following
condition is assumed:

∞

∫
−∞

𝒟ρ(t, x)dx = 0,
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which can be obtained through integration of (3.25). Denote P(t, x) = ρ(t,x)
C , where C is

selected to ensure that P(t, x) is a probability density function. Then the macroscopic
model of fractional order with competition between diffusive and attractive forces can
be written as

𝜕
𝜕tβ

P(t, x) = 𝒟P(t, x) − C 𝜕
𝜕xα
[P(t, x)G(

∞

∫
−∞

K(x − ξ )P(ξ , t)dξ)]. (3.26)

Possible choices of the above linear operator 𝒟 are listed in the following based
on the work of [30]:
(a) Second-order differential operator

𝒟 = D 𝜕
2

𝜕x2
− v 𝜕
𝜕x
.

(b) Linear pseudo-differential operator on space variable x

ℱ{Dp(x, t); x → q} = −a(q)p̃(q, u).

(c) Linear pseudo-differential operator on space variable x and time variable t

ℱ{Dp(x, t); x → q, t → u} = −b(q, u)p∗(q, u),

where

ℱ{g(x); x → q} =
∞

∫
−∞

eiqxg(x)dx

is the Fourier transformation.

3.5 Conclusion

Macroscopic models for crowds of pedestrians have been considered in this chapter
within the framework of conservation law of mass. Compared with the previous work
onmodeling of crowds of pedestrians, some characteristics at temporal scale and spa-
tial scale have been included in themodeling of crowds of pedestrianswith the help of
calculus of fractional order. A macroscopic model of fractional order was constructed
using the conservation law where models proposed in the previous research can be
considered as a special case. Macroscopicmodel formultiple types of pedestrians and
macroscopic model with competition between attractive forces and repulsive forces
have also been presented in this chapter.
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4 Mesoscopic model of fractional order for crowds
of pedestrians

Abstract:Based on themicroscopicmodel and themacroscopicmodel proposed in the
previous two chapters, mesoscopic models of fractional order for crowds of pedestri-
ans are further considered in this chapter. In order to characterize the competitive and
cooperative interactions among pedestrians, fractional mean-field games are utilized
when the number of pedestrians goes to infinity. Mesoscopic models of fractional or-
der that are composed of fractional backward and fractional forward equations are
constructed for crowds of pedestrians in this chapter.

4.1 Introduction

Helbing’s framework of social forces has received a lot of attention inmodeling crowds
of pedestrians due to its similarity with the framework of Newton’s principle and it
is easy to understand. Another reason for the widespread use of this framework lies
in the heterogeneity of the pedestrians, such as individual mobilities or reactions,
which can be considered explicitly using Helbing’s framework. Thus not only theo-
retical work but also simulation results have gained a lot of attention, as shown in
[5, 10, 9, 29, 28].

At the same time, macroscopic models were also studied by a lot of researchers,
as in [20, 15, 17, 18], to relieve the burden of computation when the number of pedes-
trians goes to infinity. Although the computational burden in macroscopic model has
been reduced greatly compared to that in microscopic model, pedestrians have been
treated as same particles in the previous research. Thus, the main disadvantage of
macroscopic model is that individual characters or heterogeneity of each pedestrian
has been neglected in macroscopic model.

For crowds with large numbers of pedestrians, it is impossible and not necessary
to consider all interactions one by one. Methods based on mean field have been used
to approximate the effects of interactions, whose basic idea is replacing the total in-
teractions with an averaged interaction that is in “mean-field” form to relieve the bur-
den of computation. Methods based on mean field have been applied to control of
multi-agent systems in [25, 26, 27], where decentralized consensus protocols and de-
centralized optimizing algorithms were considered. In recent years, this method was
also introduced in the modeling problem for crowds of pedestrians. Coupled dynamic
models composed of backward Hamilton–Jacobi–Bellman (HJB) equations and for-
wardFokker–Planck equations havebeen constructed for crowds of pedestrians in [13]
using a mean-field limit approach. In [21], the method of mean-field games (MFGs) is
utilized to model the congestion and aversion phenomenon that is observed in inter-

https://doi.org/10.1515/9783110473988-004
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actions of two types of pedestrians, and coupled dynamic models composed of back-
ward (HJB) equations and forward Fokker–Planck equations have been constructed.
The theory of MFGs has also been used in modeling traffic systems at meso-scale, as
shown in [8], where a micro–macro model has been proposed. Other applications of
themean-fieldmethods are referred to physical systems, financial systems, and social-
dynamic systems as shown in [1, 7, 14, 13].

Table 4.1: Comparisons of models for crowds in different scales.

Heterogeneity Interactions Computation (N → ∞)

Microscopic model Good Good Not good
Macroscopic model Not good Not good Good
Mesoscopic model Acceptable Acceptable Acceptable

Remark 4.1. Comments on microscopic, macroscopic, and mesoscopic model for
crowds of pedestrians are summarized in Table 4.1.
– The main advantages of the microscopic model lie in modeling heterogeneity of

each pedestrian, which can be considered explicitly, but the burden of compu-
tation and the curse of dimensions are the main disadvantages for microscopic
model when the number of pedestrians goes to infinity.

– The computation time has been greatly decreased in macroscopic models but
some of the heterogeneity of pedestrians are lost in macroscopic model.

– As a negotiation between microscopic model and macroscopicmo del, these two
advantages mentioned above have been combined in mesoscopic model.

As shown by [6], the mesoscopic scale has been selected as the most appropriate
scale to describe the complex characteristics of human crowds. Mesoscopic models of
fractional order are considered in this chapter for crowds of pedestrians. Based on the
previous two chapters, fractional MFG theory is introduced in this chapter to model
the competitive and cooperative interactions among pedestrians. For completeness,
the mesoscopic model of integer order and the mesoscopic model of fractional order
are both included in this chapter.

4.2 Mesoscopic model of integer order

4.2.1 Mesoscopic model based on kinetic theory

Boltzmann’s transport equation is an effective and powerful tool in describing the sta-
tistical behavior of thermodynamic systems since the nineteenth century. It has been
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widely used in astrophysics, engineering, social science, and even biology. Although
Boltzmann’s equation described by

𝜕
𝜕t
f (t, x, ξ ) + ξ ⋅ ∇xf (t, x, ξ ) = 0 (4.1)

looks very simple, great success andmany generalizations of this equation have been
made in previous research. As both variables in macro-scale and variables in micro-
scale are connected in equation (4.1), a lot of mesoscopic model for crowds of pedes-
trians have been reported based on the Boltzmann equation (4.1).

The following mesoscopic model has been firstly proposed in [15] based on the
conservation laws of mass and momentum at macro-scale,

𝜕
𝜕t
ρμ +
𝜕
𝜕x
(ρμvμ) = ∫mμqμdvμ +∑

μ
[
mμ

mv
ρvχ

μv
μ (1) − ρμχ

μv
μ (1)], (4.2)

where ρμ is the density, the first term on the right is caused by pedestrians entering or
leaving the areas of interest, and the second term describes the effects caused by in-
ternalmotivations and external influences. The results of [15] were further generalized
to crowds in two-dimensional space in [16],

𝜕tρ + [𝜕x1 (ρv1) + 𝜕x2 (ρv2)] + [𝜕v1 (ρA1) + 𝜕v2 (ρA2)] = (𝜕tρ)
+
event − (𝜕tρ)

−
event,

where 𝜕x1 (ρv1) + 𝜕x2 (ρv2) means the changes of density due to convection, 𝜕v1 (ρA1) +
𝜕v2 (ρA2) are terms describing the acceleration and deceleration of crowds, and
(𝜕tρ)+event − (𝜕tρ)

−
event describes the influence of events. Nonlinear mesoscopic mod-

els have been reported in [2] to describe the evolution of the crowds’ distribution
under competitions and interactions for different types of crowds,

𝜕fi
𝜕t
(t, u) = J[fi](t, u) + γi(t, u),

where fi is the distribution of the ith type of crowds at time t, J[fi](t, u) describes the
gain and loss of the distribution fi, and γi(t, u) describes the production andmigration
of the ith type of crowds due to artificial inlet. A general mesoscopic model, proposed
in [4], is

𝜕f
𝜕t
+ V 𝜕f
𝜕x
+ F(t, x) 𝜕f

𝜕V
= Q(f , u), (4.3)

where f (⋅) is the distribution function, F(⋅) is the acceleration applied to it by environ-
ment, and Q(⋅) is derived by phenomenological arguments that is depending on f and
on local gross quantities u. Not only binary interactions, but also mean-field interac-
tions can be described using the general mesoscopic model (4.3).

More and more general interactions have been considered in mesoscopic models
so that the obtained models are much closer to real crowds of pedestrians. For exam-
ple, Enskog-like interactions and stochastic interactions have been considered in [12],
nonlinear interactions instead of linear interactions have been studied in [3], and both
short-range and long-range interactions have been reported in [11].
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4.2.2 Mesoscopic model based on mean-field games

MFGs have been recently introduced by Lasry and Lions in [22, 23, 24] and seem to be
very useful in modeling complex interactions in large group of “intelligent individu-
als.” The general framework for MFGs can be shown by the differential games among
N players whose microscopic models are described by

̇xi(t) = vi(t)dt + σdℬi, (4.4)

where i = 1, . . . ,N, vi(t) is the control input or velocity of each pedestrian, and ℬi is an
independent Brownian motion. Each pedestrian tries to minimize the following cost
function:

Exi[
T

∫
t

[
1
2
vi(s)

2
+ L(xs,m(s,

1
N − 1
∑
j ̸=i
δxj(s)))]ds + G(XT ,

1
N − 1
∑
j ̸=i
δxj(T))], (4.5)

where the terms 1
N−1 ∑j ̸=i δxj(s) and

1
N−1 ∑j ̸=i δxj(T) means the influence of other pedes-

trians on the ith pedestrian. Due to the ability of anticipating the evolution of crowds,
some terms depending on the final state can also be added

ℰ[
T

∫
0

L(Xx
t , ut)dt + V(X

x
t )dt + Ψ(X

x
T)],

where L(Xx
t , ut) is the control and position cost, V(X

x
t ) is the state cost, and Ψ (X

x
T ) are

terms depending on the final state of the crowds. The solution of the above problem
has been reduced to find a solution to the following MFG system:

{{{
{{{
{

𝜕tm −
σ2

2
Δm + div(m)𝜕pH(x, ∇v) = 0,

𝜕tv +
σ2

2
Δv + H(x, ∇v) = V(m),

(4.6)

where H is the Legendre transform of L as in [13].
(1) Deterministic mean-field games
For simplicity, all pedestrians in large crowds of pedestrians are assumed to have iden-
tical motivations and the movement of each pedestrian is assumed to be described by

̇xi(t) = v(t, xi(t)).

Denote m(t, x) as the density with respect to the Lebesgue measure on Rd. Then the
following approximation

1
N

N
∑
i=1

F(xi(t)) ≈ ∫
Rd

m(t, x)F(x)dx (4.7)
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is satisfied for any smooth, compactly supported functions F(x). After differentiating
both sides of (4.7), the following advection equation can be obtained:

𝜕tm(t, x) + ∇ ⋅ (mv)(t, x) = 0, (4.8)

which describes the evolution of crowds without random noise.
Contrary to the value function in the classical optimizationproblem, the following

value function has been used in deterministic MFGs:

inf
T

∫
t

[
1
2
|Ẋs|

2 + L(Xs,m(s,Xs))]ds + G(XT ,m(T ,XT )), (4.9)

where m(t, x) is the non-negative density function that satisfies ∫Rd m(s, x)dx = 1 for
all s ∈ [0,T]. Parallel to the above analysis in classical optimization problems, the
following HJB equation can be obtained:

−𝜕tJ(t,X) +
1
2
∇xJ(t,X)


2
= L(X,m). (4.10)

Thus the mesoscopic model for large crowds without noise can be described by the
following coupled equations composedof the backwardHJB equation and the forward
advection equation:

{
{
{

−𝜕tJ(t,X) +
1
2
∇xJ(t,X)


2
= L(X,m),

𝜕tm(t, x) + ∇ ⋅ (mv)(t, x) = 0.

(2) Stochastic mean-field games
Different from the problem considered in deterministic case, now each pedestrian is
described by

̇xi(t) = v(t, xi(t))dt + σdℬt ,

where ℬt is the standard Brownian motion. Based on the approximation of

1
N

N
∑
i=1

F(xi(t) + v(t, xi(t))dt + σdℬt) ≈ ∫

Rd

m(t + dt, x)F(x)dx, (4.11)

the following Fokker–Planck equation can be derived to describe the evolution of
crowd’s distribution at macro-scale

𝜕tm(t, x) −
σ2

2
Δm(t, x) + ∇ ⋅ (mv)(t, x) = 0. (4.12)

At micro-scale, each pedestrian tries to minimize the following value function:

E[
T

∫
t

[
1
2
|Ẋs|

2 + L(Xs,m(s,Xs))]ds + G(XT ,m(T ,XT ))].
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After Taylor expansion, the HJB equation

−𝜕tJ(t,X) −
σ2

2
ΔJ + 1

2
∇xJ(t,X)


2
= L(X,m) (4.13)

can be derived with the help of Ito’s formula. Thus the mesoscopic model for large
crowds with noise can be described by the following coupled backward HJB equation
and forward Fokker–Planck equation:

{
{
{

−𝜕tJ(t,X) +
1
2
∇xJ(t,X)


2
= L(X,m),

𝜕tm(t, x) + ∇ ⋅ (mv)(t, x) = 0.

Remark 4.2. In real crowds of pedestrians, the movement and decision making of
each pedestrian depend on his/her neighbors, which may be stochastically chang-
ing according to time, space, or other stochastic effects. Different kinds of MFGs have
been proposed according to different couplings at micro-scale and different pay-off
functions introduced in decision-making, which have been summarized in Table 4.2.

Table 4.2: Categories of MFGs.

Movement Payoff

WeakMFG (4.14) (4.15)
WeakMFG (4.16) (4.17)
WeakMFG (4.18) (4.17)
Strong MFG (4.18) (4.19)

dxj,t = fjt(xjt , ujt)dt + σjt(xjt , ujt)dℬjt , (4.14)

Vjt =
1
N

N
∑
i=1

V̄(xjt , ujt , xit), (4.15)

dxj,t = fjt(xjt , ujt , x−jt , u−jt)dt + σjt(xjt , ujt)dℬjt , (4.16)

Vjt =
1
N

N
∑
i=1

V̄(xjt , ujt), (4.17)

dxj,t = ∑
i∈Nj

ωij(t)fjt(xjt , ujt , xit , uit)dt + ∑
i∈Nj

ωij(t)σjt(xjt , ujt , xit , uit)dℬjt , (4.18)

Vjt = ∑
i∈Nj

ωij(t)V̄(xjt , ujt , xit , uit). (4.19)
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Figure 4.1:Movement of pedestrians based on fractional mean-field games.

4.3 Mesoscopic model of fractional order

4.3.1 Hamilton–Jacobi–Bellman equation of fractional order

(1) Deterministic case
For each pedestrian i, we assume the following cost function to be minimized in
his/her movement from the initial starting point x(t0) = x0 to the desired location
x(T), as shown in Figure 4.1:

J(t0, x0) = infv(⋅)

T

∫
t0

f (t, x(t), v(t))dtα + h(T , x(T)), (4.20)

where the terminal cost is described using the convex function h(T , x(T)) and the con-
vex even function f (t, x(t), v(t))means the running cost during the movement.

Similar to the derivation of the HJB equation of integer order in Section 4.2.2, the
fractional HJB equation will be discussed first and then the optimal velocity will be
proposed for each pedestrian.

Denote the cost function from (t0, x0) to (T , xT ) by J(t0, x0). Then the pedestrian
will arrive at a new place x0 +vdtα after an infinitesimal time interval dtα. The running
cost on the time interval (t0, t0 + dtα) can be described by

f (v)dtα.

For pedestrians at the new position (t0 + dtα, x0 + vdtα), the cost function for the re-
maining journey is described by J(t0 + dtα, x0 + vdtα). It is easy to obtain the following
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relationship between J(t0, x0) and J(t0 + dtα, x0 + vdtα):

J(t0, x0) = J(t0 + dt
α, x0 + vdt

α) + f (v)dtα. (4.21)

Based on a Taylor expansion, equation (4.21) can be rewritten as

J(t0, x0) = J(t0, x0) + dt
α[
𝜕α

𝜕tα
J(t0, x0) + v ⋅

𝜕β

𝜕xβ
J(t0, x0) + f (v)], (4.22)

and the optimal problem (4.20) is now transformed into finding a proper vminimizing

v ⋅ 𝜕
β

𝜕xβ
J(t0, x0) + f (v), (4.23)

where minimum v will be unique and will be some functions of 𝜕
β

𝜕xβ J(t0, x0) due to the
strict convexity condition. The Legendre transformation H : Rd → R of f : Rd → R
with

H(p) := sup
v(⋅)
[v ⋅ p − f (v)] (4.24)

is introduced in solving the minimum problem (4.23). Then the minimization value of
equation (4.23) is just −H( 𝜕

β

𝜕xβ J(t0, x0)), since f (⋅) is an even function. Then substituting

the minimum value −H( 𝜕
β

𝜕xβ J(t0, x0)) into equation (4.22),

J(t0, x0) = J(t0, x0) + dt
α[
𝜕α

𝜕tα
J(t0, x0) − H(

𝜕β

𝜕xβ
J(t0, x0))]

will be satisfied for any t0 and any x0. Then the fractional HJB equation is derived as

−
𝜕α

𝜕tα
J(t0, x0) + H(

𝜕β

𝜕xβ
J(t0, x0)) = 0. (4.25)

From the above discussions, we know that there are some v minimizing the fol-
lowing expression:

v ⋅ 𝜕
β

𝜕xβ
J(t0, x0) + f (v),

and ṽ = −v maximizes the following:

v ⋅ 𝜕
β

𝜕xβ
J(t0, x0) − f (v).

As seen from (4.24), ṽ as a function of p should satisfy

𝜕
𝜕ṽ
(ṽ ⋅ p − f (ṽ)) = 0.
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Thus the derivative of H(p) can be obtained using the chain rule as follows:

d
dp

H(p) = 𝜕H
𝜕ṽ
𝜕ṽ
𝜕p
+
𝜕H
𝜕p

=
𝜕
𝜕ṽ
(ṽ ⋅ p − f (ṽ)) 𝜕ṽ

𝜕p
+
𝜕H
𝜕p

= ṽ,

and the following velocity for each pedestrian to move in the next step is derived:

v = −H( 𝜕
β

𝜕xβ
J(t0, x0)).

(2) Stochastic case
When the pedestrian’smovement evolves according to the controlled stochastic differ-
ential equation shown in (4.4), the behavior of the pedestrians can now be evaluated
by the following stochastic cost function:

J(t0, x0) = E[
T

∫
t0

f (t, x(t), v(t))dtα + h(T , x(T))xs=x0]. (4.26)

After Taylor expansion using Ito’s formula, the cost function (4.26) can be written as

J(t0, x0) = J(t0, x0) + dt
α[
𝜕α

𝜕tα
J(t0, x0) + v ⋅

𝜕β

𝜕xβ
J(t0, x0) +

σ2

2
ΔJ(t0, x0) + L(v)],

where the derivation has been omitted as it is similar to that in the previous section.
Finally, the dynamic equation of fractional order

𝜕α

𝜕tα
J(t0, x0) − H(

𝜕β

𝜕xβ
J(t0, x0)) +

σ2

2
ΔJ(t0, x0) = 0 (4.27)

can be constructed to describe how the pedestrians evaluate their behavior under
Brownian motion noise. Compared with the deterministic case in (4.25), the only dif-
ference is that an additional term of σ2

2 ΔJ(t0, x0) has been added in equation (4.27).

Remark 4.3. A typical quadratic cost function that does not depend on the position of
pedestrians can be selected as 1

2 |v|
2 to penalize pedestrians that are moving too fast.

Much more generalized running cost functions that are depending on time, position
and velocity, can also be used as shown in the following section.

4.3.2 Mesoscopic model of fractional order with interactions

In constructing the mesoscopic model, a decomposition of the motion space is firstly
conducted using the Voronoi diagram technique. Based on the decomposition of mo-
tion space, the microscopic model of fractional order and the macroscopic model of
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fractional order are coupled on the Voronoi diagram using techniques of aggregation
and dis-aggregation, as shown in Figure 4.2. Within this framework, not only local
interactions, which have received a lot of attention in the previous study, but also
non-local interactions, which are seldom considered, can be mixed together in the
mesoscopic models of this chapter.

Figure 4.2: Fractional micro–macro model of crowds of pedestrians.

(1) MFGs model with local interactions
We describe the movement of each pedestrian by

𝜕x2i (t)
𝜕t2
=

n
∑
j=1

fij + F(xi(t)), (4.28)

where xi(t) is the displacement from the exit, F(xi(t)) is the external force that the ith
pedestrian has received, and the term ∑nj=1 fij means the interaction between the ith
pedestrian and all his/her neighbors, which is defined as

n
∑
j=1

fij =
n
∑
j=1

J(i, j)xj, (4.29)

where J(i, j)means the strength of interactions between the ith pedestrian and the jth
pedestrian. The following J(i, j) has been selected for local interactions:

J(i, j) = δi+1,j − 2δi,j + δi−1,j,

where δi,j is the Kronecker symbol and

n
∑
j=1

fij = (xi+1(t) − xi(t)) − (xi(t) − xi−1(t)).
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It has been proved in [30] that the continuousmacroscopic equationwhen the number
of pedestrians goes to infinity can be described as

𝜕2

𝜕t2
ρ(t, x) = G 𝜕

2

𝜕x2
ρ(t, x) + F(u). (4.30)

Since both the differentiations with respect to time and space in (4.30) are of integer
order, the HJB equation selected in this case is the integer version of (4.25), which is
described by

−
𝜕
𝜕t
J(t0, x0, ρt(x)) + H(

𝜕
𝜕x

J(t0, x0, ρt(x))) = 0.

Thus, the mesoscopic model based on MFG can be obtained as follows:

{{{{
{{{{
{

𝜕2

𝜕t2
ρ(t, x) − G 𝜕

2

𝜕x2
ρ(t, x) − F(u) = 0,

−
𝜕
𝜕t
J(t0, x0, ρt(x)) + H(

𝜕
𝜕x

J(t0, x0, ρt(x))) = 0.

(2) MFGs model with non-local interactions
For non-local interactions, the long-range interaction, defined in [19],

J(n) = |n|−(β+1)

will be used in constructing the mesoscopic model based on MFGs, where β is a pos-
itive non-integer number. The dynamic equation with Riesz derivatives of fractional
order

𝜕2

𝜕t2
ρ(t, x) − 𝜕

β

𝜕|x|β
ρ(t, x) − F(u) = 0

can be derived to model the distribution of crowds in this case, where 0 < β < 1 comes
from the order for long-range interactions. Themesoscopicmodel for crowds of pedes-
trians in this case can be described by

{{{{
{{{{
{

𝜕2

𝜕t2
ρ(t, x) − 𝜕

β

𝜕|x|β
ρ(t, x) − F(u) = 0,

−
𝜕
𝜕t
J(t0, x0, ρt(x)) + H(

𝜕β

𝜕|x|β
J(t0, x0, ρt(x))) = 0.

(3) Generalized mesoscopic model
Based on the recent advances in motion of random particles, it is well known that the
classical diffusion model,

𝜕W
𝜕t
= K 𝜕

2

𝜕x2
W(x, t),

can be used to describe themovement of a particle’s diffusion when themeanwaiting
time and the jump length variance are finite. Using calculus of fractional order, the
classical diffusion can be further generalized as follows.
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– The power law waiting time and jump length variance are finite.
If the probability distribution function (PDF) of the waiting time satisfies the fol-
lowing power law:

ψ(t) ∽ t−(1+α) (0 < α < 1) (4.31)

and the variance of jump length is finite, then themovement of these particles can
be described by the following sub-diffusion equation:

𝜕αW
𝜕tα
= K 𝜕

2

𝜕x2
W(x, t),

where the Caputo fractional derivative is used.
– The power law jump length variance and waiting time are finite.

If the probability distribution function (PDF) of the jump length variance satisfies
the power law

η(x) ∽ x−(1+β) (0 < β < 2) (4.32)

and the mean waiting time is finite, then the movement of these particles can be
described by the following super-diffusion equation:

𝜕W(x, t)
𝜕t
= K 𝜕

β

𝜕xβ
W(x, t),

where the spatial Riesz fractional derivative is used andW(x, t) is the probability
distribution function (PDF) in x at time t.

– Power law waiting time and power law jump length variance.
Based on the above statement, the generalized dynamic model of fractional order
can be obtained:

𝜕αW
𝜕tα
= K 𝜕

β

𝜕xβ
W(x, t)

when both of the two assumptions (4.31) and (4.32) are satisfied.

Based on [8] addressing the traffic system, we assume the following utility function or
velocity-choosing scheme for the ith pedestrian:

f Ni (xi, vi) = vi(1 − F(
1
N
∑ω(xj − xi))),

where the first term vi means that the ith pedestrian tries to arrive at his destination as
fast as possible and the second term means that the ith pedestrian tunes his/her ve-
locity according to pedestrians around him. The bounded non-negative anticipating
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function ω(⋅) has been introduced to weight different impacts from different neigh-
bors. Thus for the ith pedestrian, cooperative and competitive interactions with other
pedestrians are manifested through choosing the velocity for the next step.

Denote byN the number of interacting pedestrians, by ρt(y) the number of pedes-
trians in interval [x, x+dxβ], and byω(⋅) the smooth anticipating function that is com-
pactly supported functions on the space. Then the following expression can be satis-
fied:

lim
N→∞

1
N
∑ω(xj − xi)→

∞

∫
0

ρt(y)ω(y − x)dy
β. (4.33)

Using the Lebesgue–Stieltjes integral, (4.33) can also be written as

1
N
∑ω(xj − xi) ≈

∞

∫
0

ω(y − x)dΓNt (y),

where ΓNt (x) is the empirical distribution function for the crowds. If there is a non-
decreasing right-continuous function Γt(x) such that the following expression is sat-
isfied:

∞

∫
0

ω(y − x)dΓNt (y)→
∞

∫
0

ω(y − x)dΓt(y) (N →∞),

then the following limits

1
N
∑ω(xj − xi)→

∞

∫
0

ρt(y)ω(y − x)dy
β (N →∞),

vi(1 − F(
1
N
∑ω(xj − xi)))→ vi(1 − F(

∞

∫
0

ρt(y)ω(y − x)dy
β))

will be satisfied when the number of pedestrians N goes to infinity. Then the macro-
scopic model in terms of density and velocity and fractional HJB equation can be ob-
tained using similar derivations as shown in Section 4.3.1. Thus the generalizedmodel

{{{
{{{
{

−
𝜕α

𝜕tα
J(t0, x0, ρt(x)) + H(

𝜕β

𝜕xβ
J(t0, x0, ρt(x))) = 0,

𝜕
𝜕tα

ρ(t, x) + 𝜕
𝜕xβ
[ρ(t, x)v(t, x)] = 0,

(4.34)

which is based on MFGs, can be proposed for crowds of pedestrians at meso-scale.

Remark 4.4. (1) Due to the coupling relationship between the microscopic model
and macroscopic model in (4.34), the optimal velocity v for the next step can be
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solved from the first line of equation (4.34) under initial conditions of J(T ,XT )
and ρ0(x), while the density of crowds ρ(t, x) can be solved from the second line
of equation (4.34) under the initial condition of ρ0(x) and the following v:

v = −H( 𝜕
β

𝜕xβ
J(t0, x0, ρt(x))).

(2) Comparison with a recent study on the mesoscopic model.
– Only functions of Dirac type and exponential type for ω(xj − xi) have been

considered in [8] using the framework of calculus of integer order. Some other
generalized anticipating function such as the following one of inverse power
law

f Ni (xi, vi) = vi[1 − F(
1
N
∑(|xj − xi| + 1)

−2)],

can be easily considered within the framework of calculus of fractional order.
– MFG theory has been utilized in [13] for modeling crowds of pedestrians at

meso-scale. But work of [13] was mainly conducted within the framework of
calculus of integer order and some statistical features at temporal scale and
spatial scale have not been considered, such as power law in the distribution
of crowds, power law in the distribution of inter-event time, and long-range
interactions among pedestrians.

4.4 Conclusion

Due to the complexity of crowdsof pedestrians, amesoscopicmodel of fractional order
has been proposed based on themicroscopicmodel and themacroscopicmodel in the
previous two chapters. Fractional MFGs has also been utilized to describe the meso-
scopic model when the number of pedestrians goes to infinity. Fractional backward–
forward partial differential equations have been presented in the end. As only some
theoretical work has been obtained in this chapter, a lot of work has been left for fu-
ture research as regards this topic, such as the existence and uniqueness of solution,
the rate of convergence, and the stability of equilibria.
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|
Part II: Fractional control of large crowds of

pedestrians

Controlling flow of pedestrians has been recognized to be a very important research area espe-
cially in scenarios of emergencies. Feedback controllers can not only improve the performance of
flow of pedestrians but also enhance the robustness to internal or external perturbations. Com-
pared with the previous study on feedback control of flow of pedestrians, dynamic model of frac-
tional order has been considered in this part where appropriate controllers has been proposed.
Information obtained through using different sensors is also introduced to guarantee realization
of smooth and efficient evacuation of crowds of pedestrians. As only some simple control prob-
lems have been considered for the mathematical model of fractional order, there is a lot of inter-
esting work unexplored along this direction. The authors hope that this part can provide some
inspirations for other researchers who are interested in control of crowds of pedestrians.





5 Cluster consensus for crowds of pedestrians
at micro-scale

Abstract: As the phenomenon of cluster consensus is commonly observed in move-
ment of crowds, the cluster consensus problem is considered in this chapter. Different
to previous work on cluster consensus problems where a consensus protocol of inte-
ger order has been studied for systems of integer order, the cluster consensus problem
for a system of fractional order is studied in this chapter. One sufficient condition has
been obtained for the cluster consensus of system of fractional order. The influence
of the fractional order on the cluster consensus is also analyzed using simulations.
Results obtained in this chapter can provide some reference for choosing leaders in
evacuation control of crowds of pedestrians.

5.1 Introduction

Due to the similarity toNewton’s principle, themicroscopicmodel for crowds of pedes-
trians in the social-force framework has received a lot of attention in different sce-
narios, such as panic crowds [12], consensus of crowds with leaders [9], interactions
among pedestrians [6, 5], or interactions among subgroups [25]. Some other model-
ingmethods at micro-scale have also been reported in recent years, such as the agent-
basedmodel shown in [11, 24], or cellular automatonmodels in [33]. For a short review
and some comments on the microscopic model, please refer to Chapter 2 of this book
or the recent reviews in [33] and [4].

Compared to the modeling problem for crowds of pedestrians, control of crowds
of pedestrians is recognized to be another very important problem, especially during
emergencies. How to generate desiredmotion patterns or avoid undesiredmotion pat-
terns has received a lot of attention. The results obtained in the previous research can
be roughly categorized as control of crowdswith leaders and control of crowdswithout
leaders.

5.1.1 Control of microscopic pedestrians using leaders

Based on inspirations from swarming of ants, schooling of fish, and flocking of birds,
how to formulate or control the collective behaviors has interested a lot of researchers
from control, communication, and computer science. One of the main reasons is that
the fascinating phenomena mentioned above can be generated from simple or ba-
sic interacting rules and control of this kind of collective behaviors can be realized
through controlling just a small part of the group.

https://doi.org/10.1515/9783110473988-005
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The consensus problem has firstly been proposed in [15], where the average-
consensus problem has been realized through appropriately choosing the moving
direction of each agent. As far as the evacuation of crowds is concerned, the result
obtained in [2] has shown that the evacuation rate can be greatly improved by adding
some leaders with global knowledge and it is always good for the evacuation process
if we scatter some leaders in the crowds of pedestrians. Influence of number of added
leaders and their topology on the consensus problem has been further discussed in
[10] using experiments and it has been proved that a small number of leaders are
enough for driving a large number of uninformed individuals to reach consensus
without explicit communications.

5.1.2 Control of microscopic pedestrian without leaders

At the same time, there is also some work on control of crowds without using leaders.

(1) Decentralized control of microscopic pedestrians
Using the methodology of decomposition, control problems for one complex system
can be transformed into control problems for several simpler subsystems. A lot of de-
centralized controllers have been constructed using the framework of decomposition
in the previous research. Decentralized controllers for a large number of stochastic
agents have been given in [18] where not only the evolution at temporal scale but
also the evolution at spatial scale has been considered. Decentralized controllers have
also been constructed using the framework of decomposition in [13], where a com-
plex linear–quadratic–Gaussian (LQG) games problem has been reduced to one game
problem of two players.

The advantages of the decentralized framework are that the burden of computa-
tion has been greatly reduced and the obtained results can be easily extended to sys-
tems of large numbers. Compared to distributed controllers, drawback of this mehod
lies in that neighbor’s information has not been used in design of decentralized con-
trollers.

(2) Distributed control of microscopic pedestrians
Since most of the consensus protocols constructed for a multi-agent system lie in this
framework,wewill not state themonebyone and the interested readermay refer to the
review papers in [3, 19] (on multi-agent systems), [28, 30, 29] (on control of crowds),
and the references therein.

One big challenge for distributed control is the burden of computation especially
when the number of pedestrians goes to infinity. Some previous research has adopted
the mean-field methods to estimate the influence of neighboring agents to relieve
the burden of computation. Mean-field methods have been used in [20] in controller
design for agents with linear stochastic dynamics. Work of [31] has used mean-field
methods to estimate effects of neighboring pedestrians where distributed controllers
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for random agents have been constructed. LQG controllers based on mean field have
been proposed in [14] for socially optimal control problems where cost functions of
each agent are coupled with each other. Similar results can also be found in [21, 22],
where control of stochastic multi-agent systems is studied and statistical information
of neighboring agents are obtained using mean-field methods.

In order to study interactions among agents, game theory has also been com-
bined with mean-field method in control of agents of large numbers, which we will
call mean-field games in the following. Based on the mean-field games introduced
in [17], dynamics of humans’ decision-making process has been considered in [8],
wheremean-field game theory has been employed in the backwardHamilton–Jacobi–
Bellman (HJB) equation and forward Fokker–Planck equation (FPE). The forward–
backward equations have also been utilized in [16] to describe aversion and conges-
tion phenomena at macroscopic scale. Something that should be pointed out is that
the information used in controllers based on the mean-field method is just initial dis-
tribution of crowds. The widely used topology condition such as connected graphs or
jointly connectedgraphs inmulti-agent systems is no longerneeded. Thus thismethod
is much preferred in control of crowds.

5.1.3 Motivation for work of this chapter

The phenomenon of cluster consensus is commonly observed in themovement of ani-
mals, as shown in Figure 5.1, themovement of pedestrians, as shown in Figure 5.2, and
even in the distribution of people in a stadium, as is shown in Figure 5.3. Fascinated by
these phenomena, the focus of this chapter lies on the cluster consensus problem of
microscopic pedestrians. A microscopic model of fractional order is firstly proposed
in this chapter; then cluster consensus of this model under a consensus protocol of
integer order is studied in this chapter. Simulation results using Matlab are employed
to illustrate that the consensus protocol of integer order is still effective for the clus-

Figure 5.1: Cluster phenomena observed in groups of animals. Source: www.vcg.com.
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Figure 5.2: Cluster phenomena observed in evacuation of people. Source: www.news.cn and
www.119.cn.

Figure 5.3: Cluster phenomena observed in groups of people. Source: www.vcg.com.

ter consensus problem of a fractional integrator when α ∈ (0, 1). Our conclusion and
future topics are also included in this chapter.

5.2 Microscopic model of fractional order

5.2.1 Nice properties of fractional calculus [7, 23]

It is well known that one integral process ϕ(t) can be described by

dϕ
dt
= −

t

∫
0

K(t − τ)ϕ(τ)dτ, (5.1)

where the memory kernel K(t) has the form of a power law tα−1 and one differential
process η(t) can be described by

dαη
dtα
= Bη(t), (5.2)

where B is an operator.
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Remark 5.1. Contrary to kernel of exponential form where no memory has been con-
sidered, the kernel of power-law form is much closer to reality as the influence of past
experience on movement of each pedestrian can be easily included.

5.2.2 Microscopic model of fractional order

The following dynamic model of integer order has been extensively used in previous
research:

{{{{
{{{{
{

dxi
dt
= vi,

mi
dvi
dt
= f Si +

n
∑
j=1

f Nij +∑ fWk ,
(5.3)

under one common assumption that the movement of each pedestrian is continuous
and differentiable everywhere, where xi is the position of each pedestrian and vi is the
velocity of each pedestrian. The assumption of a smooth trajectory can be satisfied if
we observe the movement of each pedestrian at large scale. That is not the case if the
trajectory of each pedestrian is zoomed in and described at a very small scale. Then
zigzag phenomenonwill be observed in the trajectory of each pedestrian, as shown in
Figure 5.4. The zigzag phenomenon has been also observed in traffic control systems
and studied in [7] from the viewpoint of fractional calculus. Similarly, the trajectory
of each pedestrian is not smooth due to the interactions with neighbors and thus frac-
tional calculus can also be introduced in modeling of pedestrian at micro-scale.

Concerning the dynamics of each pedestrian, the transformed velocity dαx/dtα

has been utilized to describe the dynamics of each pedestrians as follows:

{{{{
{{{{
{

dαxi
dtα
= vi,

mi
dβvi
dtβ
= f Si +

n
∑
j=1

f Nij +∑ fWk ,
(5.4)

Figure 5.4: Zigzag phenomenon of each
pedestrian.
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where f Si is the self-driven force towards some desired velocity, f Nij is the interaction
between agent i and its neighbor j, and fWk represents the interactions with the envi-
ronment, such as walls or corridors.

5.3 Consensus of microscopic pedestrians of fractional order

5.3.1 Consensus algorithm for integer-order system

For consensus of a multi-agent system composed of N nodes that are described by

dxi
dt
= ui,

it is well known that consensus will be realized using the following protocol:

ui(t) = ∑
j∈Ni

aij[xj(t) − xi(t)], (5.5)

where aij ̸= 0 if node i and node j are connected.

5.3.2 Consensus algorithm for fractional-order system

Considering the position of fractional order in a closed system, there are three kinds
of consensus algorithms, as shown by [26].
Case 1: Fractional-order system with integer-order consensus protocol. The dynamics

for a fractional integrator under the integer-order consensus protocol of (5.5) can
be described as

dαxi
dtα
= ∑

j∈Ni

aij[xj(t) − xi(t)].

Case 2: Integer-order system with fractional-order consensus protocol. For an integra-
tor of integer order, the following fractional dynamics can be obtained under frac-
tional consensus protocol as follows:

dxi
dt
= ∑

j∈Ni

aij[
C
0D

β
t xj(t) −

C
0 D

β
t xi(t)].

Case 3: Fractional-order system with fractional-order consensus protocol. The follow-
ing general fractional dynamics can be easily derived for an integrator of frac-
tional order under fractional consensus protocol

dαxi
dtα
= ∑

j∈Ni

aij[
C
0D

β
t xj(t) −

C
0 D

β
t xi(t)].
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For the Caputo definition of fractional derivative, case 2 and case 3 can be transformed
to case 1 with the help of the Caputo integral operator C0D

−β
t . Thus case 1 can be con-

sidered as a generalized form of the fractional consensus dynamics.

5.3.3 Analysis of fractional consensus

The fractional consensus of case 1 will be analyzed first in this section to show that
consensus of a fractional integrator can be realized using a consensus protocol of in-
teger order.

Theorem 5.1. For the fractional integrator system described by

dαxi
dtα
= ui, (5.6)

where i = 1, 2, . . . ,N is the index of each integrator, under the following consensus pro-
tocol:

ui = ∑
j∈Ni

aij[xj(t) − xi(t)], (5.7)

consensus will be reached if the Laplacian matrix ℒN has a simple zero eigenvalue. Fur-
thermore, if ℒN has a simple zero eigenvalue and v = [v1, v2, . . . , vn]T ≥ 0 satisfying
1TNv = 1 and ℒT

Nv = 0, then Eα,1(−ℒN t) → 1NvT , as t → ∞, where Eα,1(⋅) is the Mittag-
Leffler function defined by

Eα,β(z) =
∞
∑
k=0

zk

Γ(αk + β)
.

Proof. Denote A = −ℒN and let J be the Jordan form associated with A, i. e., A = SJS−1.
Then, based on the definition of the Mittag-Leffler function, we have

Eα,1(At
α) = SEα,1(Jt

α)S−1

and Eα,1(−λtα) → 0 as t → ∞ for ∀λ > 0. Thus we see that Eα,1(Jtα) converges to the
following matrix:

Eα,1(Jt
α)→
[[[[[

[

1 0 ⋅ ⋅ ⋅ 0
...

...
. . . 0

0 0 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ 0

]]]]]

]

as (t →∞).

Since A has only one zero eigenvalue and all the other eigenvalues lie in the left-hand
side of the plane, there is only one non-zero element in the above matrix.
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Notice that AS = SJ and the first column of matrix S is the right eigenvector wr
of A with respect to the eigenvalue 0. Similarly, the first row of matrix S−1 is the left
eigenvector wl of matrix A with respect to the eigenvalue 0 as S−1A = JS−1 is satisfied.
Straightforward calculation shows that

Eα,1(At
α)→ S
[[[[[

[

1 0 ⋅ ⋅ ⋅ 0
...

...
. . . 0

0 0 ⋅ ⋅ ⋅ 0
0 0 ⋅ ⋅ ⋅ 0

]]]]]

]

S−1 = wrw
T
l as (t →∞).

When the communication graph is an indirect and connected graph or a strongly
connected digraph, the sum of each row of Laplacian matrix A equals zero and zero is
the only eigenvalue of A with the right eigenvector wr = [1 1 ⋅ ⋅ ⋅ 1]T . After substituting
the right eigenvector wr, we have

Eα,1(At
α)→ 1wT

l as (t →∞).

Thus the average-consensus problem is realized for the fractional system (5.6) under
the consensus protocol (5.7).

5.4 Cluster consensus algorithm for fractional-order system

For a complex network that is composed of n+m pedestrians, we use a graphG = (x, ε)
of n + m nodes to describe the topology of these pedestrians. Denote by G1(x1, ε1)
and G2(x2, ε2) the sub-networks that are formed by n and m pedestrians with x1 =
(x1, x2, . . . , xn)T and x2 = (xn+1, xn+2, . . . , xn+m)T . Hence, all the pedestrians are divided
into two groups and the pedestrians in each group build up a sub-networkGs( s = 1, 2).

Definition 5.1 (Cluster consensus). For integrators of fractional order, the cluster
consensus problem is to find some protocols to asymptotically solve the average-
consensus problem for each subgroup, which can also be described by

(1) lim
t→∞

xi(t) =
1
n

n
∑
j=1

xj(0) ∀i ∈ p1,

(2) lim
t→∞

xi(t) =
1
m

n+m
∑
j=n+1

xj(0) ∀i ∈ p2,

where p1 = {1, 2, . . . , n}, p2 = {n + 1, n + 2, . . . , n +m}.

Assumption 5.1. Both of G1(x1, ε1) and G2(x2, ε2) are strongly connected balanced
graphs, where a graph is called a balance graph if the following two conditions are
satisfied:
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(1) ∑n+mj=n+1 aij = 0, ∀i ∈ p1;
(2) ∑nj=1 aij = 0, ∀i ∈ p2.

Different from the average-consensus problem of one group that has been pro-
posed in previous research, the following consensus protocol has been proposed for
the cluster consensus problem:

ui =
{
{
{

∑j∈N1i
aij[xj(t) − xi(t)] +∑j∈N2i

aijxj(t), ∀i ∈ p1,

∑j∈N1i
aijxj(t) +∑j∈N2i

aij[xj(t) − xi(t)], ∀i ∈ p2,
(5.8)

where coupling terms between these two subgroups have been added. Under the clus-
ter consensus protocol (5.8), the closed-loop system can be described by

dαxi
dtα
=
{
{
{

∑j∈N1i
aij[xj(t) − xi(t)] +∑j∈N2i

aijxj(t), ∀i ∈ p1,

∑j∈N1i
aijxj(t) +∑j∈N2i

aij[xj(t) − xi(t)], ∀i ∈ p2,

or in the following matrix form:

C
0D

α
t x(t) = −Lx(t), (5.9)

where L = [lij] and lij is defined by

lij = {
−aij, j ̸= i,
∑j∈N1i

aij, j = i.

Denote e(t) = [e1(t), e2(t)]T as the state error, where e1(t) = [e1(t), e2(t), . . . , en(t)]T ,
e2(t) = [en+1(t), en+2(t), . . . , en+m(t)]T , and ei(t) is defined by

ei(t) =
{
{
{

xi(t) −
1
n ∑

n
j=1 xj(0), ∀i ∈ p1,

xi(t) −
1
m ∑

n+m
j=n+1 xj(0), ∀i ∈ p2.

(5.10)

Based on the closed-loop system (5.9), the dynamics of the state error (5.10) can be
written as

C
0D

α
t e(t) = −Le(t). (5.11)

Thus the consensus protocol (5.8) can solve the cluster consensus problem if and only
if the zero solution of (5.11) is asymptotically stable. One sufficient condition for cluster
consensus is presented in Theorem 5.2 based on the Lyapunov stability on fractional
systems.

Lemma 5.1 ([1]). Let x(t) ∈ Rn be a continuous and differentiable function.
Then, for any time instant t ≥ t0, the following inequality is satisfied:

1
2
C
0D

α
t (x

T (t)x(t)) ≤ xT (t)C0D
α
t x(t), ∀α ∈ (0, 1).
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Theorem 5.2. Under the assumption of (5.1), the cluster consensus problem of system
(5.6) can be realized using the protocol (5.8) if there exist matrices such that

[
−2λ(L11) +M1 + X1 W

WT −2λ(L22) +M2 + X2
] < 0,

where

M1 = Θ
T
21Z2Θ21, M2 = Θ

T
12Z1Θ12, W = (Y1 − I)Θ12 + Θ

T
12(Y

T
2 − I),

and Θ12, Θ21 are defined by

[
U1 0
0 U2
]
T

L [U1 0
0 U2
] =
[[[[

[

0 0 0 0
0 Θ11 0 Θ12
0 0 0 0
0 Θ21 0 Θ22

]]]]

]

,

where U1 and U2 are orthogonal matrices.

Proof. For the analysis of the stability of system (5.11), the following Lyapunov func-
tion is constructed:

V(e) = 1
2
e

1
2
+
1
2
e

2
2
.

Due to Lemma 5.1, the fractional differential of V(e) can be computed as

C
0D

α
t V(e) ≤ −(e

1)
TL11e

1 − (e1)TL12e
2 − (e2)TL21e

1 − (e2)TL22e
2. (5.12)

after replacing ui with the following consensus protocol:

ui = ∑
j∈N1i

aijxj ∀i ∈ p1.

Since G1(x1, ε1) is a strongly connected balanced graph from Assumption 5.1, the in-
equality

V̇1(e) = −(e
1)
TL11e

1 ≤ −λ(L11)
e

1
2

can easily be checked for V1(e) =
1
2 (e

1)Te1, where λ(L11) is called the algebraic connec-
tivity of the graph L11. Similarly, the inequality

−(e2)TL22e
2 ≤ −λ(L22)

e
2
2

can also be obtained for G2(x2, ε2).
Denote

X̃i = [
0 0
0 ̄Xi
] , Ỹi = [

0 0
0 ̄Yi
] , Z̃i = [

0 0
0 ̄Zi
] ,
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where i = 1, 2 and ̄Xi, ̄Yi, ̄Zi satisfy

[
̄Xi ̄Yi
̄Yi ̄Zi
] > 0.

Then, similar to the derivation for group consensus of the integer-order system in [32],
C
0D

α
t V(t) < 0 in (5.12) is guaranteed if

[
−2λ(L11) + M̃1 + X̃1 W̃

W̃T −2λ(L22) + M̃2 + X̃2
] < 0,

where M̃1 = LT21Z̃2L21, M̃2 = LT12Z̃1L12, and W̃ = (Ỹ1 − I)L12 +L
T
12(Ỹ

T
2 − I). Thus, after linear

transformation of orthogonal matrices, the cluster consensus of system (5.6) can be
realized if the following inequality is satisfied:

[
−2λ(L11) +M1 + X1 W

WT −2λ(L22) +M2 + X2
] < 0.

Remark 5.2. Basedon the results of Theorem5.1, the cluster consensusof the fractional-
order integrator (5.6) can also be realized using the consensus protocol (5.7) of integer
orderwhereα ∈ (0, 1). The assumptionof balancedgraph inAssumption 5.1 has played
an important role where the interactions between different subgroups have been bal-
ancedwith each other and the cluster consensus problems have been simplified to the
consensus problems of two subgroups. Unfortunately, the assumption of a balanced
graph is hard to satisfy and testify in the evacuation of crowds of pedestrians.

5.5 Simulation results

Considering unexpected or dangerous events in a real-life experiment, only simula-
tion results are conducted to show the difference between models of fractional order
and models of integer order in this chapter. In the following simulations, evacuation
problems of six pedestrians are simulated usingmodels of integer order and fractional
order, respectively. Since it is reasonable that not everyone can get the information of
the desired position during evacuation, we have assumed that there are two conflict-
ing opinions that are insisted by one informed leader in each subgroup. The commu-
nication topology is presented in Figure 5.5.

5.5.1 Cluster consensus for pedestrians of integer order

The order of the dynamicmodel for each pedestrian is assumed to be 1 in this case and
the simulation results are shown in Figure 5.6 and Figure 5.7. Consensus of X coordi-
nates and Y coordinates is separated into two subgroups, as shown in Figure 5.6; the
phenomenon of cluster consensus can be easily observed from Figure 5.7 where the
trajectory of each pedestrian of integer order has been plotted.
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Figure 5.5: Balanced communication graph for six agents of fractional order with two leaders.

5.5.2 Cluster consensus for pedestrians of fractional order

(1) Simulations with the same fractional order α ∈ (0, 1).
For the analysis of the influence of the fractional order on the cluster consensus prob-
lem, two different scenarios with α = 0.95 and α = 0.85 have been selected in the
following simulations.
α = 0.95: The order of the dynamic model for each pedestrian is assumed to be 0.95

in this case and the simulation results are shown in Figure 5.8 and Figure 5.9. The
consensus of X coordinates and Y coordinates is separated into two subgroups,
as shown in Figure 5.8, and the phenomenon of cluster consensus can be easily
observed from Figure 5.9.

α = 0.85: The order of the dynamic model for each pedestrian is assumed to be 0.85
in this case and the simulation results are shown in Figure 5.10 and Figure 5.11.
Consensus of X coordinates and Y coordinates are also separated into two sub-
groups as shown in Figure 5.10 and the phenomenon of cluster consensus can also
be observed from Figure 5.11. Compared to the simulation results obtained when
α = 0.95, the distance between the final value of cluster consensus is smaller in
this case.

(2) Simulations with mixed fractional order α ∈ (0, 1).
From the communication topology shown inFigure 5.5,we see that only thefirst pedes-
trian in the first subgroup can receive information from the second subgroup. Simi-
larly only the fourth pedestrian in the second subgroup can receive information from
the first subgroup. For further understanding of the influence of the fractional order
and the communication topology, two kinds of scenarios with mixed fractional order
[0.95 0.65 0.65 0.95 0.65 0.65] (Case 1) and [0.75 0.65 0.65 0.75 0.65 0.65] (Case 2)
have been considered in the following simulations.
Case 1: Compared to the fractional order of uninformed agents, the fractional order of

the informed agent is selected very close to 1 in this case. As shown in Figure 5.12
and Figure 5.13, cluster consensus can be observed using the same consensus pro-
tocol.

Case 2: The fractional order of the informed agent has been changed from0.95 to 0.75
in this case, while the fractional orders of the uninformed agents are the same as
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Figure 5.6: Cluster consensus of dynamic pedestrians (5.3) with integer order.

Figure 5.7: Trajectories of the movement of pedestrians of integer order.

those in Case 1. From the results shown in Figure 5.14 and Figure 5.15, we see that
the distance between the two clusters has been greatly decreased in this case.

Remark 5.3. The assumption of balanced communication topology has played an im-
portant role in the cluster consensus problem. Besides the conclusion that the con-
sensus protocol of integer order is still effective for the cluster consensus of the frac-
tional agents, simulation results has shown that the closer to 1 of the informed agent’s
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Figure 5.8: Cluster consensus of dynamic pedestrians of (5.4) with fractional order (α = 0.95).

Figure 5.9: Trajectories of the movement of pedestrians of with fractional order (α = 0.95).

fractional order, the easier to realize cluster consensus. Therefore, the selection of ap-
propriate leader is of great importance in evacuation control of large crowds.

5.6 Conclusions and further work

Cluster consensus for fractional pedestrians has been considered in this chapter at
micro-scale. Based on the previous research on the consensus of integrator systems,
sufficient conditions for cluster consensus of the fractional system have been dis-
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Figure 5.10: Cluster consensus of dynamic pedestrians of (5.4) with fractional order (α = 0.85).

Figure 5.11: Trajectories of the movement of pedestrians with fractional order (α = 0.85).

cussed in this chapter. Simulation results using Matlab are presented to illustrate the
effectiveness of the results obtained.

Based on the results obtained in this chapter, there are also some interesting top-
ics that areworthy of further investigationwithin the framework of fractional calculus.
More general communication topology: Astatic topologyhas been assumed in the

cluster consensus problem in this chapter. It is not always the case, especially in
the evacuation of crowds of pedestrians. Dynamic or switching topologies may be
very reasonable assumptions.
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Figure 5.12: Cluster consensus of dynamic pedestrians of (5.4) with fractional order
[0.95 0.65 0.65 0.95 0.65 0.65].

Figure 5.13: Trajectories of the movement of pedestrians with fractional order
[0.95 0.65 0.65 0.95 0.65 0.65].

The balanced graph has played an important role in the cluster consensus prob-
lem in this chapter. The balanced assumption has made the cluster consensus
problem much easier as the interactions between different subgroups have been
canceled or balanced. In real evacuations of crowds, the balanced assumption is
also hard to satisfy.

Noise is essential: All systems are prone to be affected by noise or perturbations. It
should be pointed out that not all of the noise is bad for the systemand someof the
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Figure 5.14: Cluster consensus of dynamic pedestrians of (5.4) with fractional order
[0.75 0.65 0.65 0.75 0.65 0.65].

Figure 5.15: Trajectories of the movement of pedestrians with fractional order
[0.75 0.65 0.65 0.75 0.65 0.65].

noise can facilitate ordering in the collective behavior of self-propelled particles,
as shown in [27], where noise or perturbations can drive the particles from an
inefficient regime into a much more efficient one with more interactions. As the
role of noise in the evacuation of crowds of fractional order is not clear now, it is
still one open problem now.

Role of leadership: In control of crowds of pedestrians using leaders, there are also
some problems unclear or unsolved now, such as the role of the leadership in col-
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lective behavior, what kind of leaders should be chosen, the relationship between
optimal placement of leaders, and the efficient evacuation of crowds. For efficient
and safe evacuation of crowds, all these problems are worth to put more efforts.
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6 Feedback control of crowds of pedestrians
at macro-scale

Abstract: The evacuation of crowds of pedestrians is considered at macro-scale in this
chapter. Based on the inspiration of diffusion processes and anomalous diffusion pro-
cesses of fluids, distributed controllers have been constructed within the framework
of calculus of fractional order. Compared to the previous work conducted within the
framework of calculus of integer order, muchmore freedomhas been provided in con-
trol of crowds atmacro-scale using the controllers obtained. Simulation results in two-
dimensional space are also presented to illustrate the effectiveness of the fractional
and distributed controllers proposed in this chapter.

6.1 Introduction

Tragedies due to people’s crushing or trampling have often been reported in public
gatherings such as sports, meetings, exhibitions, or transportation in recent years.
In order to prevent the occurrence of these tragedies and understand the reason be-
hind these accidents, a lot of research has been conducted in modeling, predicting,
and even controlling the behavior of crowds of pedestrians. Both simulation-based
evacuation policies and model-based evacuation controllers have been reported in
the previous research. Due to its simplicity and eye-catching features, the simulation-
basedmethodhas beenwidely used inmodeling or predicting the evolutionof crowds.
On the other hand, some explicit and analytic controllers have also been constructed
where the performance of transient or stable process is greatly improvedwith the help
of feedback.

(1) Simulation-based evacuation policies
Numerical simulations based on Monte Carlo have been used in [2] to validate meso-
scopic models of crowds of particles. A simulator based on a co-existing microscopic
model and macroscopic model has been proposed in [18]. The improvement of effi-
ciency and accuracy using this simulator has been shown on amulti-resolutionmodel
for crowds. Simulation-based evacuation policies have also been used in [8] to navi-
gate the crowds in real-time and predict the flow of crowds in [4]. Autonomousmobile
robots have been introduced to improve the performance of evacuation in [6] where
computer simulations are employed to show the effectivenesswithout constructing ex-
plicit controllers. In order to decrease the discrepancy between simulations and real
crowds, a micro-spatial environment such as the geographic information system has
been introduced into the simulation study of crowds in [11], where a much more real-
istic flow of crowds has been simulated. Many more references on the simulation of
crowds can also be found in the book of [12] and in [7].

https://doi.org/10.1515/9783110473988-006
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(2) Model-based evacuation controllers
In the evacuation of crowds of pedestrians, the moving direction and the moving
speed are two important indices for smooth and efficient evacuation of crowds. Thus
the velocity of crowds has been selected as control input in [14] and [15], where dis-
tributed feedback controllers have been constructed at macro-scale for the control of
crowds in one- and two-dimensional space. Themain idea of [14] and [15] is to approx-
imate an infinite dimensional system using a finite dimensional system, so that the
theory of non-linear control can be used in the design of feedback controllers. One of
the main problems of this framework is that the original systemmay still be unstable,
even if the obtained controllers work very well on the reduced system.

Without resorting to the technique of approximation, distributed controllers have
been directly constructed for themacroscopic partial differential equations in [17] and
[16], where diffusion-based controllers, advection-based controllers, and advective-
diffusion-based controllers have been presented. A comparison of these distributed
controllers is further considered in [3] where one interesting phenomenon has been
reported that someproblemsmayarise if only diffusion-feedback controller is adopted
in control of crowds, because during the evacuation of crowds there is no preferred
direction to follow for each pedestrian. Work of [3] has also shown that a faster evacu-
ation of crowds is possible if diffusion–advection state feedback controllers are used,
since the direction of evacuation is provided by the advection term in the diffusion-
advection feedback controllers.

In order to avoid undesirable congestion and blockages in the evacuation of
crowds, optimal feedback controllers have been considered in [9] and [10] by adjust-
ing their velocities. Robust controllers were also considered for crowds of pedestrians
in recent years. For example, Lyapunov techniques have been utilized in [1] to con-
struct velocity controllers for automated highway systems where not only position
and time but also the effects of lanes, drivers, and destinations have been included in
the macroscopic partial differential equation (PDE) model; diffusion-based feedback
controllers that were proposed in [3] have been further generalized using themethods
of Lyapunov redesign in [19] to deal with the disturbance attenuation problem in the
evacuation of crowds; robust controllers based on sliding-model control have been
constructed in [13] for the control of macroscopic crowds with matched uncertainties
and unmatched uncertainties.

Although some contribution has been achieved for the control of crowds in the
previous study,mainwork has been conductedwithin the framework of calculus of in-
teger order and there are also some conservation in the controller obtained. Feedback
evacuation controllers for a macroscopic model of fractional order are considered in
this chapter,where the techniques of feedback linearizationhave beenutilized. Exten-
sion of obtained controllers such as diffusion-based controllers, sub-diffusion-based
controllers, and super-diffusion-based controllers, have also been presented.

The organization of this chapter is as follows. Mathematical models of integer or-
der and fractional order in one-dimensional space and in two-dimensional space are
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firstly shown in Section 6.2. The controller design for crowds of pedestrians is given
in Section 6.3. Simulations of the evacuation process in closed and squared area with
or without exits are shown in Section 6.4, where an approximating process using the
Lax–Friedrichs scheme has been included.

6.2 Fractional macroscopic model

Mathematical models of integer order and fractional order for crowds of pedestrians
are firstly presented based on the principle of conservation law. PDEs of integer order
and fractional order have been obtained for crowds of pedestrians in one-dimensional
space as shown in Figure 6.1 and in two-dimensional space as shown in Figure 6.2.

Figure 6.1: Conservation law of mass.

6.2.1 Macroscopic model of integer order in one-dimensional corridor

Similar to Chapter 3, the followingmodel can be obtained for the evacuation of crowds
in a one-dimensional corridor:

𝜕
𝜕t
ρ(x, t) + 𝜕

𝜕x
q(x, t) = 0,

with the following initial and boundary conditions:

ρ(x, t0) = ρ0(x),
ρ(0, t0) = 0, ρ(L, t) = 0,

where ρ(x, t) denotes the density of people, which is a function of position x and time
t and q(x, t) = ρ(x, t)v(x, t) is the flow of crowds at a given x and at time t. With the
help of the conservation law of momentum, the evolution of flux of crowds can also
be described by

𝜕
𝜕t
(ρ(x, t)v(x, t)) + 𝜕

𝜕x
(ρ(x, t)v(x, t)2) = −𝜕p(x, t)

𝜕x
,
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where p(x, t)means the pressure imposed on the crowds. Thus the dynamic model for
crowds in a one-dimensional corridor can be written as

{{{
{{{
{

𝜕
𝜕t
ρ(x, t) + 𝜕

𝜕x
q(x, t) = 0,

𝜕
𝜕t
(ρ(x, t)v(x, t)) + 𝜕

𝜕x
(ρ(x, t)v(x, t)2) = −𝜕p(x, t)

𝜕x
,

with the following initial condition:

ρ(x, t0) = ρ0(x), q(x, t0) = q0(x)

and the boundary condition

ρ(0, t0) = ρ(L, t) = 0, q(0, t0) = q(L, t) = 0.

6.2.2 Macroscopic model of fractional order in one-dimensional corridor

Parallel to the dynamicmodel of integer order, the conservation law ofmass also plays
an important role in constructing dynamic model of fractional order. Based on the
inspiration of diffusion, sub-diffusion, and super-diffusion of fluids, viscoelasticity of
fluids has been introduced in modeling the movement of pedestrians at macro-scale.
For simplicity, only the fractional order at the time scale has been considered in this
section.

Similar to themodelingprocess that is shown inChapter 3, themacroscopicmodel
of integer order

𝜕
𝜕t
ρ(t, x) + 𝜕

𝜕x
[ρ(t, x)v(t, x)] = 0 (6.1)

can be generalized to the following macroscopic model of fractional order:

𝜕α

𝜕tα
ρ(t, x) + 𝜕

𝜕x
[ρ(t, x)v(t, x)] = 0, (6.2)

with the following initial condition and boundary conditions:

ρ(x, t0) = ρ0(x),
ρ(0, t0) = 0, ρ(L, t) = 0,

where the viscoelasticity of fluids has been described using the fractional order α
(α ∈ (0, 1)), ρ(x, t) denotes the density of people, which is a function of position x and
time t, and q(x, t) = ρ(x, t)v(x, t) is the flow of crowds at a given x and at time t.

Thus for crowds in a one-dimensional space corridor, the dynamic model with
viscoelasticity can be described by

{{{
{{{
{

𝜕
𝜕tα

ρ(t, x) + 𝜕
𝜕x
[ρ(t, x)v(t, x)] = 0,

𝜕
𝜕t
(ρ(x, t)v(x, t)) + 𝜕

𝜕x
(ρ(x, t)v(x, t)2) = −𝜕p(x, t)

𝜕x
,
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with the initial conditions:

ρ(x, t0) = ρ0(x), q(x, t0) = q0(x)

and the boundary conditions

ρ(0, t0) = ρ(L, t) = 0, q(0, t0) = q(L, t) = 0.

6.2.3 Macroscopic model of fractional order in two-dimensional space

Figure 6.2: Two-dimensional flow of crowds.

Similarly, for the evacuation problem of crowds in two-dimensional space, as shown
in Figure 6.2, the macroscopic model of fractional order can be described by

𝜕
𝜕tα

ρ(x, y, t) + 𝜕
𝜕x
[ρ(x, y, t)u(x, y, t)] + 𝜕

𝜕y
[ρ(x, y, t)v(x, y, t)] = 0,

with the following initial condition and boundary conditions:

ρ(x, y, t0) = ρ0(x, y),
ρ(0, y, t0) = ρ(x,0, t0) = ρ(L, y, t0) = ρ(x, L, t) = 0,

where the viscoelasticity of the crowd flow has been described using the fractional
order α (α ∈ (0, 1)). Considering the pressure imposed on the crowds, the dynamic
model for crowds of pedestrians in two-dimensional space can be described by

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

𝜕
𝜕tα

ρ(x, y, t) + 𝜕
𝜕x
[ρ(x, y, t)u(x, y, t)] + 𝜕

𝜕y
[ρ(x, y, t)v(x, y, t)] = 0,

𝜕
𝜕t
(v(x, y, t)) + v(x, y, t) 𝜕

𝜕x
(v(x, y, t)) + u(x, y, t) 𝜕

𝜕y
(v(x, y, t)) + C0

ρ
ρx

= −
wi(ρ) − v(x, y, t)

τ
,

𝜕
𝜕t
(u(x, y, t)) + v(x, y, t) 𝜕

𝜕x
(u(x, y, t)) + u(x, y, t) 𝜕

𝜕y
(u(x, y, t)) + C0

ρ
ρy

= −
wi(ρ) − u(x, y, t)

τ
,
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where v(x, y, t) and u(x, y, t) are velocity of crowds along the x direction and the y di-
rection, wi(ρ) is the Greenshield relation between the velocity and density defined in
(3.22), and τ is the relaxation time.

Remark 6.1. For simplicity, only the viscoelasticity at temporal scale has been con-
sidered for crowds at macro-scale, where the viscoelasticity has been assumed to just
depend on time in this chapter. In real evacuations of crowds, the viscoelasticity of
crowds may be changing with time andmay be different at different positions. Thus it
is interesting to consider the modeling problem using fractional calculus not only at
the temporal scale but also at the spatial scale.

6.3 Controller design for crowds of pedestrians

6.3.1 Controller of integer order

Normal diffusive process
Based on the Greenshield relation between velocity and density defined in (3.22), the
macroscopic model of integer order (6.1) can be written as

𝜕
𝜕t
ρ(x, t) + 𝜕

𝜕x
[u(x, t)(1 − ρ(x, t)

ρmax
)ρ(x, t)] = 0, (6.3)

where the free flow speed vf (x, t) in (3.22) has been assigned the role of control input,
which is denoted by u(x, t). Then, under the feedback controller

u(x, t) = −[(1 − ρ(x, t)
ρmax
)ρ(x, t)]

−1
D𝜕ρ(x, t)
𝜕x
, (6.4)

the evolution of the closed-loop system can be described using the following classical
Fick diffusion equation:

𝜕
𝜕t
ρ(x, t) = D 𝜕

2

𝜕x2
ρ(x, t).

Besides Fick diffusion, some other diffusion processes, such as sub-diffusion and
super-diffusion, have been selected as the objective of control in controller design in
the following section so that some other scenarios of the evacuation of crowds can be
realized.

6.3.2 Controller of fractional order

Fick’s diffusion is an ideal process and cannot be used to describe some phenomena
observed in real crowds, such as the phenomenon of stampedes and the phenomenon
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of fast evacuation of crowds in different scenarios. Thus, the anomalous diffusion of
fluids is introduced in the controller design in this section so that different evacuation
processes can be united into the framework of fractional calculus.

(1) Sub-diffusion process
– Under the controller (6.4), the closed-loop system for macroscopic model (6.2) is

𝜕α

𝜕tα
ρ(x, t) = D 𝜕

2

𝜕x2
ρ(x, t), (6.5)

which is a sub-diffusion process for the evacuation of crowds with viscoelasticity
depending on time.

– Under the controller

u(x, t) = −[(1 − ρ(x, t)
ρmax
)ρ(x, t)]

−1
D 𝜕

1−α

𝜕t1−α
𝜕
𝜕x

ρ(x, t), (6.6)

where 0 < α < 1, the closed-loop system for the macroscopic model (6.3) is also
the sub-diffusion process (6.5).

Remark 6.2. Sub-diffusion evacuation can be realized not only in a macroscopic
model of fractional order but also in a macroscopic model of integer order. Compared
to Fick diffusion, a longer time may be needed in realizing the evacuation of crowds,
which is caused by the presence of viscoelasticity in (6.2) or by improper evacuation
policies in (6.6).

(2) Super-diffusion process
– Under the controller of spatial fractional order which is described by

u(x, t) = −[(1 − ρ(x, t)
ρmax
)ρ(x, t)]

−1
D 𝜕

β

𝜕xβ
ρ(x, t), (6.7)

where 1 < β < 2, the closed-loop system of the macroscopic model (6.1) can be
described by the following super-diffusion process:

𝜕
𝜕t
ρ(x, t) = D 𝜕

β

𝜕xβ
ρ(x, t). (6.8)

– Under the controller

u(x, t) = −[(1 − ρ(x, t)
ρmax
)ρ(x, t)]

−1
D 𝜕

α−1

𝜕tα−1
𝜕
𝜕x

ρ(x, t), (6.9)

where the information of the history of the density’s gradient has been used, the
closed-loop system of the macroscopic model (6.3) can also be described by the
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following super-diffusive process in the time domain:

𝜕2−α

𝜕t2−α
ρ(x, t) = D 𝜕

2

𝜕x2
ρ(x, t). (6.10)

Remark 6.3. Compared to the sub-diffusive process (6.5), the super-diffusive process
(6.10) will accelerate the crowd’s evacuation, and stampede accidentsmay be avoided
using the controller proposed in (6.7) or (6.9).

(3) General-diffusive process
Substituting the controller (6.4) into the generalized fractional dynamic model

𝜕
𝜕tα

ρ(t, x) + 𝜕
𝜕xβ
[ρ(t, x)v(t, x)] = 0, (6.11)

then the closed-loop system can be described by the following general-diffusive pro-
cess:

𝜕α

𝜕tα
ρ(x, t) = D 𝜕

β

𝜕xβ
ρ(x, t), (6.12)

where α < 1 and 1 < β < 2.

Remark 6.4. In the general diffusion process, the final motion pattern is determined
by the competition between sub-diffusive processes and super-diffusive processes in
equation (6.12). Thusmuchmore freedomhas been provided in themodeling and con-
trol problems for the crowds of pedestrians.

6.4 Simulation results

In order to avoid searching the solution of PDEs, finite-volume methods (FVMs) have
been used to divide the space into grid cells or finite volumes, as shown in Figure 6.3.

Figure 6.3: Lax–Friedrichs scheme in
two-dimensional space.
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The partial derivatives of a function f (x, y, t) along the x axis and y axis have been
approximated using

𝜕
𝜕x

f (xi, yj, t) +
𝜕
𝜕y

f (xi, yj, t) =
1
Δx
[f (xi+ 12 , yj, t) − f (xi− 12 , yj, t)]

+
1
Δy
[f (xi, yj+ 12 , t) − f (xi, yj− 12 , t)]

in the following simulations.

6.4.1 Simulation in closed and squared area without exits

Simulation results on fractional macroscopic model in two-dimensional space are
firstly conducted where β = 1 is imposed for simplicity. The Lax–Friedrichs scheme
has been used to approximate the spatial derivatives in solving the non-linear PDEs
due to its efficiency in computation. Based on the Lax–Friedrichs scheme, the PDE in
two-dimensional space

𝜕
𝜕tα

ρ(t, x, y) + 𝜕
𝜕x
[ρ(t, x, y)v(t, x, y)]

+
𝜕
𝜕y
[ρ(t, x, y)v(t, x, y)] = 0

has been transformed into

𝜕
𝜕tα

ρ(t, x, y) + 1
2Dx
[ρ(t, x + 1, y)v(t, x + 1, y) − ρ(t, x − 1, y)v(t, x − 1, y)]

+
1

2Dy
[ρ(t, x, y + 1)v(t, x, y + 1) − ρ(t, x, y − 1)v(t, x, y − 1)] = 0

in the following simulations.
We have used the following initial Gaussian distribution in simulations:

ρ(x, y,0) = C exp(−(x − a)2 − (y − b)2),

where C = 1 is the density value and (a, b) determines the center of initial density
distribution. The average speed of free flow has been chosen to be vx = vy = 1.36m s−1

for each pedestrian, as done in many previous studies. Pedestrians are also assumed
to move freely within a square area with no obstacles and no exits.

Simulation results for α = 0.6 and α = 1 are shown in Figure 6.4 to Figure 6.5
and Figure 6.6 to Figure 6.7, respectively. From Figure 6.4 and Figure 6.6, it can be
concluded that pedestrians described by a fractional model are much more scattered
in the closed square area than that is described by a model of integer order. The same
conclusions can be obtained from comparisons between Figure 6.5 and Figure 6.7.



94 | 6 Feedback control of crowds of pedestrians at macro-scale

Figure 6.4: Density response for crowds of pedestrians with α = 0.6 using the Lax–Friedrichs
scheme.
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Figure 6.5: Contour of the density response for crowds of pedestrians with α = 0.6 using the Lax–
Friedrichs scheme.
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Figure 6.6: Density response for crowds of pedestrians of integer order using the Lax–Friedrichs
scheme.
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Figure 6.7: Contour of the density response for crowds of pedestrians of integer order using the Lax–
Friedrichs scheme.
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6.4.2 Simulation in closed and squared area with one exit

Based on the results obtained in Section 6.4.1, the following dynamic model has been
simulated for evacuations of crowds in closed and squared corridor with one exit:

{{{{{{{{{
{{{{{{{{{
{

𝜕
𝜕tα

ρ(t, x, y) + 𝜕
𝜕x
[ρ(t, x, y)v(t, x, y)] + 𝜕

𝜕y
[ρ(t, x, y)v(t, x, y)] = 0,

vt + vvx =
V − v
τ
−
C20
ρ
ρx ,

ut + uuy =
U − u
τ
−
C20
ρ
ρy ,

where C0 = 0.8 is the anticipation term which describes the response of each pedes-
trian to the density of people in his/her neighborhood and V and U are the desired
velocity along x direction and y direction, which are taken to be

{{{{{
{{{{{
{

V = V(ρ) xe − xi
√(xe − xi)2 + (ye − yi)2

,

U = U(ρ) ye − yi
√(xe − xi)2 + (ye − yi)2

,

where V(ρ) and U(ρ) are the flux–density relationships in Greenshield’s model in [5].
The simulation results are shown in Figure 6.8 and Figure 6.9, where dynamic

models with fractional order 0.85 and 1 have been used. Form the results obtained,
it is easy to see that the density of pedestrians around the exit is much lower for the
fractional model than that obtained using a model of integer order.

Remark 6.5. The final distribution of crowds will be different if a different fractional
order is selected in the design of feedback controllers in the simulation study. Thus,
how to choose the fractional order of feedback controllers to generate the desired dis-
tribution of crowds is an interesting problem that is worthy of further consideration
in future research.

6.5 Conclusion

Macroscopic models of fractional order for crowds of pedestrians are firstly presented
in this chapter where only the viscoelasticity at the temporal scale has been consid-
ered for simplicity ofmodeling and controller design. Basedon themacroscopicmodel
of fractional order, distributed feedback controllers have been presented where not
only classical diffusion process but also anomalous diffusion process has been real-
ized for evacuation of crowds using the controllers presented in this chapter. Simula-
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Figure 6.8: Density response for crowds of pedestrians with α = 0.85 using the Lax–Friedrichs
scheme.

Figure 6.9: Contour of the density response for crowds of pedestrians with α = 1 using the Lax–
Friedrichs scheme.

tion results based on the Lax–Friedrichs scheme have also been presented to show the
diversity and effectiveness of the modeling and control techniques that are proposed
within the framework of fractional calculus.
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Although some theoretical results and some initial simulations are presented in
this paper, there is much more work unexplored as regards this topic, such as stabil-
ity analysis of classical or anomalous diffusion process, performance evaluation of
obtained distributed controllers.
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7 Intelligent evacuation systems for crowds
of pedestrians

Abstract: Based on the results obtained for fractional modeling and fractional control
of crowds, intelligent evacuation systems for modeling of crowds and control of evac-
uation are considered in this chapter. Both simulation platform and an experiment
platform are studied where control, information, communication, and computation
techniques have been embedded to enhance crowd safety and management without
changing the physical structure of the facility. We hope that this chapter can provide
some reference for the design of intelligent evacuation systems.

7.1 Introduction

Catastrophic events around theworldhavedemonstrated theneed to reanalyze and re-
design evacuation policies and procedures. The dynamic and uncertain nature of dis-
asters also leads to the need for changing backup contingency plans and adaptation to
current evacuation needs. For solving this problem, micro- or macro-simulationmod-
els are employed to study the complex evacuation problem of crowds and understand
the influences of different kinds of elements such as stochastic perturbations and the
built public environment. Based on these simulation and experimental studies, the
response behavior of crowds to hazardous events or public facilities will be examined
and visualized for the givenmathematical model, regulationmethod, and evacuation
policy, proposed in previous research. Also based on these simulation and experiment
results, the performance of the crowds as a whole in some life-saving tasks, such as
preventing, preparing for, and recovering from hazardous events can be further opti-
mized and improved.

With the dynamic model of fractional order and distributed controllers for evac-
uation control developed in the previous chapters, the next step is to implement the
evacuationof crowds in simulationand in real emergency evacuations. There are some
simulation platforms and experiment platforms, such as VISSIM, EXODUS, Simulex,
PSCrowd, PEDSIM, and VISWALK, that have been proposed to study the evacuation
problem of crowds, and a lot of simulation results have been obtained on these plat-
forms. The main problem existing in these platforms is that the model adopted is
very simple and the application of the obtained controllers or evacuation policies is
also limited for these simple models. Another issue that should be pointed out is that
the platforms mentioned above are not effective anymore if the modeling and control
problem are conducted within the framework of fractional calculus.

https://doi.org/10.1515/9783110473988-007
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A bigmap that is used in simulation platforms and experiment platforms is firstly
presented in Section 7.2. The main parts of the simulation platform and experiment
platform are shown in Section 7.3 and Section 7.4, respectively.

7.2 Big map for intelligent evacuation systems

In order to study the complex crowd–pedestrian system and provide some references
for control of the crowd–pedestrian system, a general framework, called cyber-human
systems (CHSs), is proposed in this chapter, as shown in Figure 7.1.

The CHS is composed of two coupling parts, called the “PHYSICAL PART” and the
“CYBER PART” in Figure 7.1. Transferring of information between these two parts has
been implemented through networked Segways, with on-board emergency response
personnel, and facility sensing and actuation. In the cyber part, ordinary differen-
tial equations (ODEs), partial differential equations (PDEs), and integral-differential
equations are employed to describe the crowds of pedestrians using calculus of frac-
tional order in micro-scale, macro-scale, and meso-scale, respectively. Interesting in-
formation such as speed, density, flux, and even formation patterns that are obtained
through CCTV, Segways, cell phones, and some other sensors can be used in calculat-
ing the models obtained, controlling the crowds, and even predicting the tragedy of a
stampede that is going to occur. From the viewpoint of a closed-loop system, the flow
of information and the major points of each part can easily be seen from Figure 7.1.

7.2.1 Modeling crowds of pedestrians using fractional calculus

Calculus of fractional order is as old as calculus of integer order. After more than 300
years’ development, it is well known that more and more systems and phenomena
can be better described or approximated using calculus of fractional order (or systems

Figure 7.1: Cyber-human systems for modeling, control, and management of crowds.
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containing fractional derivatives and integrals) such as self-similarity (“burstiness”)
and fractal dimensionality, which has been found in Internet traffic data [22], scale-
invariance and power-laws in empirical data, as shown in [10] and [2]. More references
can be found in [9, 24, 39, 27, 15].

Based on the connection between fractional calculus and the observed phenom-
ena in crowds of pedestrians such as fractal distributions, fractional dynamic games,
and fractional evolutions of distributions, modeling of crowds has been firstly consid-
ered within the framework of fractional calculus. According to different scales, mod-
eling of crowds has been categorized into three kinds of models.
– Atmicro-scale level, the behavior of eachpedestrian canbedescribed by theODEs

based on some widely used methods such as the social force model (3.1) or an
agent based model. A lot of work has been done to find the appropriate parame-
ters inmicroscopicmodels using empirical or observed data fromdifferent crowds
so that the heterogeneity of the pedestrians can be properly described. Another
effective way to model the heterogeneity of crowds is using a model of fractional
distributed order, as shown in Figure 7.2, especially when the effects of memory
and motion habits are included at micro-scale.

Figure 7.2: Normalized effect of activity variables on potential fields.

– At macro-scale level, the density of crowds is so high that the motion of all pedes-
trians can be modeled as continuum fluids where PDEs can be derived using con-
servation laws of mass or momentum. The main differences between crowds of
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pedestrians and smoothing fluids are that different patterns of motion, such as
crossing or intersecting, are allowed in the crowd–pedestrian system due to the
freedom of choosing different routes. We believe that not only the characteristics
at temporal scale but also the characteristics at spatial scale should be considered
in modeling of crowds of pedestrians, as shown by the following dynamic model
of fractional order:

𝜕
𝜕tα

ρ(t, x) + 𝜕
𝜕xβ
[ρ(t, x)v(t, x)] = 0, (7.1)

which was firstly proposed in [5].
– Atmeso-scale level withmediumdensity, the dynamics of an evacuation or egress

process is similar to the diffusion process of active particles in many aspects such
as the porous or granular patterns in smoothing fluids. Fractional convection–
diffusion equations are useful tools to model crowds of pedestrians in this case
because the phenomenon of porosity that is observed at this scale is connected
to fractional calculus. Heterogeneous pedestrians can be modeled using mobile
potential fields indexed by activity variables, as shown in Figure 7.2, to guarantee
the heterogeneity on this level. Interactions between the microscopic model and
themacroscopicmodel can also be realized throughmean-field games to increase
the validation of the models obtained and relieve the burden of computation.

Remark 7.1. Comments on modeling of crowds using fractional calculus:
– As there is no general or universal method for modeling crowds of pedestrians for

all kinds of scenarios, it is reasonable to choose the most appropriate model for
different problems. Since themicroscopicmodel is powerful in describing the het-
erogeneity of pedestrians, we choose to use themicroscopic model when the den-
sity is low. With increasing of the density, granular flows with the porosity phe-
nomenon can be observed in large crowds. This kind of heterogeneity is modeled
usingdifferentmobile potential fields,which caneasily be added to the right-hand
side of equation (4.3) to describe their influences at micro-scale. The porosity or
granular phenomenon disappears when the density becomes very high. Then the
macroscopic model can be constructed using a generalized conservation law of
mass or momentum as done in the previous research.

– The macroscopic model is responsible for generating a homogenizing effect with
desirable smoothness at macro-scale, and the microscopic model is responsible
for characterizing heterogeneity and interactions from the macro-scale. For the
mesoscopic model, not only the heterogeneity and the porous patterns of crowds
can be explicitly characterized, but also the interactions betweenmicro-scale and
macro-scale can be included in the integral-differential equations.

– Althoughwe describe themodeling of crowds at different scales according to their
densities, themodels obtained are not independent of each other, as shown in Fig-
ure 7.3. Themacro-scale variables such as the density or flow come from an aggre-
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Figure 7.3: Fractional model at micro-scale and macro-scale.

gation of micro-scale data of each pedestrian and the motion of each pedestrian
is also affected or constrained by the people around him/her.

7.2.2 Control of crowds of fractional order

Finding an appropriate method to model the complex crowd–pedestrian system is
very important. But the more important thing is: what should be done after the mod-
eling stage and how can that be done with the obtainedmodel? Control of the crowd–
pedestrian system is much more important in order to prevent a stampede tragedy in
gathering of large crowds andmay provide some suggestions for planning and design
of infrastructure facilities at railway stations, stadiums, and airports, as well as man-
agement of pedestrian flows in such facilities. The reader is referred to [18, 17, 19, 20,
21, 43] for preliminary work on control of the crowd–pedestrian system.

Similar to themodeling of crowds of pedestrians, control of the crowd–pedestrian
system is also categorized into three different kinds.
– At themicroscopic level, the control of eachpedestrian is focusedonanalyzing the

relationshipbetweendifferent interactions andcollectivepatterns,wherenot only
interactions based on topology but also short-range and long-range interactions
will play an important role.
– The dynamics of a crowd–pedestrian system with long-range interactions is

closely related to fractional calculus and has a significant effect in generating
different collective patterns.

– Mobile Segwayswill be employed to tune the range of interactions to generate
some desired collective patterns.
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– At the macroscopic level, fractional controllers based on fractional convection,
diffusion, or both of them can be constructed for control of crowds of pedestrians
in different scenarios.
– Due to the high densities in this scale, it is not easy to inject control agents

into the fluids. In our framework, mobile Segways with emergency personnel
will be dispatched to control the inflow and outflow of crowds from outside
based on the theory of boundary control to guarantee the smooth evacuation
of high-density crowds without breakdowns.

– Feedback controllers based on diffusion process or on diffusion–convection
process will compensate the feedback controller constructed within the
framework of calculus of integer order. Thusmore scenarios of evacuation can
be realized using diffusion-based controllers or diffusion-convection-based
controllers.

– At the mesoscopic level, a coupled equation composed of forward fractional
diffusion–convection equations and backward fractional Hamilton–Jacobi–Bell-
man (HJB) equations are used to model crowds of pedestrians, where the forward
part describes the evolution of crowds and the backward part describes the evo-
lution of the decision-making process.
– Mean-field games can be used to estimate a neighbor’s influence and reduce

the burden of communication and computation in the coupled mesoscopic
model.

– Mobile Segways with global instructions can be used to guide or drive the
crowds through broadcasting or changing the structure of the environment to
control the velocity or flow of crowds.

Remark 7.2. Comments on the above control framework:
– For crowds with low density, mobile Segways can easily be added to the crowds

as informed leaders and control of the crowd–pedestrian system can be realized
through coordination between uninformed pedestrians and informed Segways.

– For crowds of high density, it is not wise to add mobile Segways into the crowds
due to the high density of pedestrians. Themovement of each pedestrian is totally
determined by his/her neighbors. Due to the tight connection among pedestrians,
evacuation control of crowds can be realized by Segways placed on the boundary
of crowds.

– For crowds with medium density, interactions between microscopic model and
macroscopic model are the main challenges in the control of the mesoscopic
model. Mean-field-based methods such as mean-field games can be used to sim-
plify the interaction between the microscopic model and the macroscopic model.
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7.3 Simulation platform for modeling and evacuation of crowds

7.3.1 DIFF-MAS2D [25]

Due to the requirements of data processing and computation ability in modeling and
control of crowds of pedestrians, use of Matlab is much preferred in simulation re-
search. We try to study the modeling and control problem using the platform of diffu-
sionwith networkedmovable actuators and sensors in two-dimensional domain (Diff-
MAS2D). Diff-MAS2D is a simulation software package for the control of the diffusion
process using moving actuators andmoving sensors and it has been firstly developed
in [25] for simulating the measurements and control of diffusion processes using Mat-
lab script and Simulink.

Themain reason to develop this software was that no currently available software
package (Matlab, Maple, Mathematica, MathCAD, Ansys, Nastran, FEMLAB) is able to
solve the problem that Diff-MAS2D is able to solve. Diff-MAS2D is written completely
in Matlab script and Simulink.

Diff-MAS2D is able to solve the following problem numerically:

𝜕u(x, y, t)
𝜕t
= k(𝜕

2u(x, y, t)
𝜕x2
+
𝜕2u(x, y, t)
𝜕y2
) + fc(x, y, t) + fd(x, y, t),

where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 is the spatial domain, t ≥ 0 is the time domain, u(x, y, t)
is the variable we want to control, k is a positive real constant related to the system
parameters, fc(x, y, t) is the control from the actuators, and fd(x, y, t) is the disturbance.

An arbitrary combination of the following two types of boundary conditions can
be used as the boundary condition for each boundary (x = 0, x = 1, y = 0, or y = 1):
– Dirichlet boundary condition:

u = C,

where C is a real constant,
– Neumann boundary condition:

𝜕u
𝜕n

u = C1 + C2u,

where C1 and C2 are two real constants and n is the outward direction normal to
the boundary.

We are using a number of moving sensors to measure u(x, y, t) and moving actuators
as controllers. The control effect of each actuator is assumed to be concentrated rather
than actually distributed. The error generated by this assumption can be neglected if,
at any time instant, the area affected by each controller is very small compared to the
whole area 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
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Diff-MAS2D is able to simulate the above problem for the following cases:
– Any number of sensors and actuators.
– Sensors and actuators can be collocated or non-collocated.
– Disturbances can be movable.
– Movement of sensors and actuators can be open-loop (designed by the user as

functions of time only) or closed-loop (designed by the user as functions of time,
sensor data, sensor position/velocity, and actuator position/velocity).

– Arbitrary control algorithms designed by the user.

7.3.2 FO-Diff-MAS2D [6, 7]

FO-Diff-MAS2D is a platform for measurement and control of fractional diffusion
model with mobile sensors andmobile actuators whose dynamic process is described
by the time fractional differential equation:

CD
α
0,tu(x, y, t) = kα(𝜕2u(x, y, t)𝜕x2

+
𝜕2u(x, y, t)
𝜕y2
) + fc(u, x, y, t) + fd(ũ, x, y, t) (7.2)

and by the space fractional differential equation

𝜕u(x, y, t)
𝜕t
= kβ(
𝜕βu(x, y, t)
𝜕|x|β

+
𝜕βu(x, y, t)
𝜕|y|β

) + fc(u, x, y, t) + fd(ũ, x, y, t), (7.3)

where u(x, y, t) is the density to be controlled, kα and kβ are positive constants rep-
resenting the diffusion rate, fd(u, x, y, t) is the source, ũ(x, y, t) is the measured data
of u(x, y, t) from the sensors, fc(u, x, y, t) is the control input by mobile actuators to
neutralize the controlled density, and its exact form depends on the closed-loop con-
trol law designed by the user based on a certain control performance requirement.
The term CDα

0,tu(x, y, t) is the Caputo fractional derivative of order α (0 < α ≤ 1)
defined by

CD
α
0,tu(x, y, t) = {{

{

1
Γ(1−α) ∫t0(t − τ)−αu(x, y, τ)dτ, 0 < α < 1,𝜕u(x,y,t)𝜕t , α = 1,

and the operators 𝜕βu(x,y,t)𝜕|x|β are Riesz fractional derivatives defined by

𝜕βu(x, y, t)
𝜕|x|β

=
{
{
{

−Cβ(RLD
β
a,xu + RLDβ

x,bu), 1 < β < 2,𝜕2u𝜕x2 , β = 2,

where RLD
β
a,xu and Dβ

x,bu are left/right Riemann–Liouville derivatives for variable x

defined in [31]. A similar definition for 𝜕βu(x,y,t)𝜕|y|β is omitted here.
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Similar to the platform of DIFF-MAS2D, FO-Diff-MAS2D also uses the finite-
difference method to discretize the spatial derivative in (7.3), and it uses the frac-
tional central difference to approximate the space fractional derivative in (7.3). Then it
leaves the time domain integration to Matlab/Simulink. Specifically, FO-Diff-MAS2D
is used to solve a two-dimensional fractional diffusion equation. As an extension of
Diff-MAS2D in [25], the main features of FO-Diff-MAS2D are listed as follows:
– Sensors and actuators can be collocated or non-collocated.
– Disturbances can be movable and time-varying.
– Themobility platformdynamics of sensors andactuators canbemodeled as either

first-order or second-order.
– Movement of sensors and actuators can be open-loop or closed-loop.
– Arbitrary control algorithms can be applied in fc(u, x, y, t).

The Oustaloup algorithms proposed in [30] can be used to realize the fractional differ-
entiation of an unknown function. The continuous filter

Gf (s) = K ⋅
k=N
∏
k=−N (s + ωk)(s + ωk)

(7.4)

has been constructed in the approximation on frequency band (ωb,ωh), where

ωk = ωb(
ωh
ωb
)

k+N+ 12 (1−γ)
2N+1

, ωk = ωb(
ωh
ωb
)

k+N+ 12 (1+γ)
2N+1

,

K = (ωh
ωb
)
− γ2 k=N
∏
k=−N ωk

ωk .
Based on the Mason formula for the transfer function, (7.4) can be constructed

using Simulink of Matlab, as shown in Figure 7.4. Then, based on the state space real-
ization of equation (7.4), the fractional-integrator part that is shown in Figure 7.5 can
be successfully realized. The initial lay-outs and snapshot of the running of this sim-
ulation platform are shown in Figure 7.6 and Figure 7.7, respectively.

Figure 7.4: Block diagram of continuous filter using Simulink.
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Figure 7.5:Main framework of FO-DIFF-MAS2D.

Figure 7.6: Initial lay-outs of actuators, sensors, and obstacle.

Remark 7.3. Comments on platform of FO-Diff-MAS2D.
To the best of our knowledge, Diff-MAS2D is the only available software package

capable of simulating control of the diffusion process using movable sensors and ac-
tuators. FO-Diff-MAS2D is also the only software package for simulation of the time
fractional diffusion process or the space fractional diffusion process controlled using
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Figure 7.7: Running of fractional diffusion simulation.

moving actuators andmoving sensors. Thus this platform is a good choice for the sim-
ulation task of modeling and controlling crowds of pedestrians. With Diff-MAS2D and
FO-Diff-MAS2D, some hard questions might be answered, such as the following:
– Given large crowds of pedestrians, what are the minimal number of sensors and

the minimal number of actuators required?
– What are the advantages (disadvantages) of the collocated scheme or the non-

collocated scheme in evacuation control of crowds of pedestrians?
– Are there any better controllers or better schemes for modeling and controlling

the evacuation of crowds?

7.4 Experiment platform for modeling and evacuation of crowds

7.4.1 Control architecture

A four-layer hierarchical control architecture that is similar to the one proposed in
[21] has been used in the experiment platform as shown in Figure 7.8. The four-layer
architecture is composed of a network layer, link layer, planning layer, and regulation
layer. The main purposes and functions of each layer are listed as follows.
Network layer: The task in this layer is to assign an escape route for each evacuee in

the systemso that the evacuation of crowds canbefinished in optimal time.Due to
changing of the environment and the influence of stochastic noise, escape routes
based on feedback controllers are much more preferred compared to open-loop
controllers.
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Figure 7.8: Four-layer architecture of
the experiment platform.

Link layer: For efficient evacuation of crowds in an emergency scenario, the whole
crowd is firstly decomposed into different sections according to the structure of
buildings, stadiums, or stations using the techniques of Voronoi diagrams. Then
different evacuation speeds and exits will be assigned by different link layers. In
order to avoid jamming or a stampeding tragedy, the evacuation speed will be
derived from the macroscopic models (PDEs in Chapter 3) using the density infor-
mation on each cell of the Voronoi diagram.

Planning layer: Based on the escape route received from the network layer and the
evacuation speed received from the link layer, the main task of the planning layer
is to produce a plan so that each evacuee in different links can move along the
assigned path. Another task of this layer is cooperatingwith other planning layers
to avoid conflicts and collisions among the cells of the Voronoi diagram.

Regulation layer: Themain task of the regulation layer is to satisfy requests from the
planning layer using feedback controllers basedon the current position andveloc-
ity of each evacuee. After various controllers in this layer have been implemented
using hardwares in the physical layer, next action in time will be conducted to
realize the evacuation of whole crowds.

Based on the four-layer hierarchical control architecture, the infrastructure of the in-
telligent evacuation system (IES) can be described by Figure 7.9, which is composed of
the “physical” part and the “cyber” part as shown inFigure 7.1. The transfer of informa-

Figure 7.9:Mass pedestrian evacuation system.
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tion between these two parts is implemented through the use of networked Segways
with on-board emergency response personnel and facility sensing and actuation.

7.4.2 Data acquisition

Originally, collecting data of each pedestrian has been finished by counts and surveys
such as questionnaires as done in [35], where the “manually” collected data have been
used in analysis of behavior of pedestrians. Now with the vast development of the
computer, communication, and computation, there aremanydifferent appliances and
methods for collecting the data of crowds such as cell phones, GPS, and video tracking
[41].
Cell phones: The benefits of mobile technology have made mobile phones a conve-

nient method for data collection. It has been used in [36] for mobility detection
and in [23] for analysis of the way-finding behavior of pedestrians. Due to some
problems, such as data storage and data uploading, this method still needs to be
further explored.

GPS: Theglobal positioning system (GPS) has beenused in [1, 26] and [34] for analysis
of the pedestrian’s spatial behavior such as calibrating activity and determining
the location. However, application of this method is restricted to outdoor environ-
ments due to the accuracy problem and loss of GPS signal in a building environ-
ment.

Video: Different from the accuracy problemexisting in cell phones andGPS, the tech-
nique of video image process has gained a lot of attention inmodeling and control
of crowds in recent years. Counts of pedestrians and trajectories of the crowds
have been collected using the technique of video image processing to calibrate
and validate the mathematical models obtained.
– Automatic counting of pedestrians has been studied in [32] and [33], where

some algorithms or filters have been proposed for automatic counting of
pedestrians. Similarly, an automatic counting method for bi-directional
pedestrians has also been studied in [8]. Although the methods proposed
for automatic counting are useful for obtaining density or flux information of
the crowds, they cannot be used in motion planing problems and trajectory
tracking problems; this is important for the evacuation of crowds where the
actual trajectory of each pedestrian is desired, as shown in Figure 7.10 and
Figure 7.11.

– With the development of video image processing techniques, thismethod has
been introduced into the research of modeling and control of crowds. Param-
eters for crowds, such as free speed, moving direction, and density of people,
have been obtained in [13, 12, 11, 40] using the technique of video image pro-
cessing. Pedestrian tracking methods are also realized using the technique
of video image processing in [40, 38, 28, 37]. Considering the performance
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Figure 7.10: Extracting microscopic pedestrian characteristics from video data in [16].

Figure 7.11: PEtrack: Automatic extraction of pedestrian trajectories from video recordings in [3].

requirements in video tracking and data reduction, there are many issues un-
explored in concrete applications of thesemethods, such aswhat kind of sen-
sors should be used andwhere these sensors should be arranged in a concrete
scenario. The interested reader is referred to [42, 14, 4] for control using mo-
bile sensors and actuators in distributed parameter systems.

Remark 7.4. Different from static sensing receiving a lot attention in previous stud-
ies, it is much preferred to use mobile sensing in modeling and control of crowd–
pedestrian systems. Besides the use of facility cameras, emergency sensors, cell
phones, and GPS, security personnel on Segways are also introduced as sensors and
actuators in our framework as shown in Figure 7.12 and Figure 7.13. Previous work on
the simulation platform DIFF-MASS2D has provided some reference for architecture
design and realization of distributed sensing and control of crowds.
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Figure 7.12: The framework for evacuation experiment of crowds of pedestrians.

Figure 7.13: Center of Monitor and Control in Nanjing University of Posts and Telecommunications.

7.4.3 Data extraction

The main task of the data analysis is extracting useful information from each pedes-
trian’s movement to calibrate the microscopic model or the macroscopic model, pre-
dict the future behavior of crowds, and even control the movement of crowds so that
efficient evacuation can be realized without stampeding.

Due to the powerful numeric engine and friendly programming environment with
interactive tools, MATLAB and related data analysis products have provided very con-
venient ways in statistical analysis, image processing, signal processing, and some
other domains [29]. To facilitate the analyzing of various aspects of the data obtained
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in experiments of crowds, a graphic user interface (GUI) has been created using Mat-
lab. Although there are some other forms of programming that can be used, Matlab
is selected due to its ease of use by several different programmers and also its abil-
ity to display graphs and manipulate data quickly. The complete GUI can be found in
Figure 7.14, which is fast in constructing a prototype model and analyzing a system’s
performance.

Figure 7.14:Matlab GUI created for data extraction and analysis in [37].

The data acquisition and data extraction mentioned above have been conducted in a
series of large-scale crowd experiments in 2012, to study heterogeneous combinations
of individuals with disabilities within a crowd. To track pedestrians, each individual
wore a graduation cap with a marker axed that can be tracked via a series of cameras.
The experiments took place in a gymof Utah State University, where a circuit was built
containing a built environment possessing common facility structures such as a door-
way, a bottleneck, corners, an oblique corner, and varying hallway widths, as shown
in [37]. All structures are Americans with Disabilities Act Accessibility Guidelines-
compliant. The circuit of the environment, the overview of the crowd movement, and
the extracted information using the Matlab-GUI are shown in Figure 7.15.

7.5 Conclusion

An intelligent evacuation systembased on technology of control, communication, and
computation has been proposed in this chapter. Main components of the simulation
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Figure 7.15: Experiment circuit of crowds.

platform and experiment platform have been introduced for modeling and control of
crowds of pedestrians. Potential topics related to the simulation and experiment stud-
ies on these platforms are also mentioned for future research.
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