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Preface

The purpose of this book is to provide a comprehensive coverage of the
basic concepts and methodologies used in the area of linear models. Given the
importance of this subject in both statistical theory and experimental research,
a good understanding of its fundamental principles and theory is essential.
Special emphasis has therefore been placed on the clarity of the presentation
combined with a rigorous development of the theory underlying linear mod-
els. This undertaking is supported by a large number of examples, numerical
or otherwise, in order to illustrate the applicability of the various methods
presented in this book. Furthermore, all chapters, except for Chapter 1, are
equipped with numerous exercises, some of which are designed to give the
reader added insight into the subject area discussed in a given chapter. In
addition, an extensive bibliography is provided for the benefit of the inter-
ested reader who can use it for more in-depth study of linear models and
related areas.

This book covers a wide variety of topics in linear models that incorporate
both the classical approach as well as the more recent trends and modeling
techniques that have been developed in the last 30 years. Coverage of the
material is done in a manner that reflects contemporary advances made in
linear models. However, it does not include topics on regression analysis,
such as model selection, multicollinearity, or regression diagnostics. These
topics are discussed in detail in numerous regression textbooks and are better
taught in methods courses. The focus of this book is more on the theory of
linear models.

This book is intended for graduate students who need to take a course
or two in linear models. In fact, a sizable portion of the book evolved from
material I used to teach a couple of courses in linear models at the University
of Florida in the last 20 years. In this respect, Chapters 1 through 8 can be
taught as a one-semester course followed by coverage of Chapters 9 through
13 as a second course on linear models. Chapters 11 and 12 can be particu-
larly helpful to graduate students looking for dissertation topics. This book
can also be useful for practicing statisticians and researchers who have an
interest in linear models, but did not have sufficient exposure to this area
during their educational training. This book is self-contained, but a course in
introductory statistics and some knowledge of matrix algebra and calculus
would be helpful.

This book contains 13 chapters. Chapter 1 gives some historical perspec-
tives on the evolution of certain methods and techniques used in linear

xv
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models. Chapter 2 reviews some fundamental concepts concerning vector
spaces and linear transformations. This chapter provides the groundwork for
Chapter 3, which deals with the basic concepts and results in matrix alge-
bra that are relevant to the study of linear models. The latter chapter is not
intended to provide detailed proofs for all the stated theorems and results.
Doing so is beyond the scope of this book and can detract from its focus.
Instead, Chapter 3 intends to make these theorems accessible to the reader
since they are utilized in the development of the methodology in the remain-
ing chapters. The references in the bibliography given at the end of the book
can be consulted for more detailed coverage of matrix algebra. It is important
here to recognize that matrices have played a central role in the development
of the modern approach in linear models. A working knowledge of matrices
and their properties is therefore crucial to the understanding of the theory of
linear models.

Chapter 4 discusses the multivariate normal distribution and some related
distributions. Chapter 5 presents a study of quadratic forms and their distri-
butional properties under the normality assumption. Quadratic forms play
an important role in the formulation of analysis of variance. Chapter 6 deals
with the analysis of full-rank linear models. These models encompass regres-
sion and response surface models whose model matrices have full column
ranks. The analysis of linear models that are not of full rank is the subject
of Chapter 7. Such models are typically encountered in analysis of variance
situations. Chapter 8 develops general rules for the analysis of balanced data.
The methodology presented in this chapter provides a systematic approach
for setting up a complete analysis of the data that includes hypothesis testing
and interval estimation concerning certain unknown parameters of a given
linear model.

Chapters 4 through 8 make up the core material in the study of classical
linear models. They also include more recent techniques for solving some
well-known problems, such as those that pertain to the distribution and
independence of quadratic forms in Chapter 5, the analysis of estimable linear
functions and contrasts in Chapter 7, and the general treatment of balanced
random and mixed-effects models in Chapter 8.

Chapters 9 through 13 cover more contemporary topics in linear mod-
els and can therefore be regarded as forming the second part of this book,
whereas Chapters 1 through 8 make up the first part. In particular, Chapter 9
addresses the adequacy of Satterthwaite’s approximation, a popular and
frequently used technique in analysis of variance. Chapter 10 discusses the
analysis of unbalanced data for linear models with all fixed effects. Chapter 11
also deals with unbalanced data, but it considers linear models whose effects
are either all random (random-effects models), or possibly include a com-
bination of fixed and random effects (mixed-effects models). This chapter
discusses estimation of variance components and estimable linear functions
of the fixed effects in a given mixed-effects model. It also provides detailed
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coverage of approximate and exact tests concerning certain random and
mixed-effects models.

Chapter 12 discusses several more recent topics in linear models. These
include heteroscedastic linear models, response surface models with ran-
dom effects, and linear multiresponse models. Finally, Chapter 13 presents
an introduction to generalized linear models. These models represent an
extension of classical linear models and provide a unified approach for the
modeling of discrete as well as continuous response data.

I would like to thank all those who reviewed and commented on a prelim-
inary outline of the book manuscript. I am also grateful to my wife, Ronnie,
for her support and patience during the five years it has taken me to complete
the writing of this book.

André I. Khuri
Gainesville, Florida
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1
Linear Models: Some Historical Perspectives

Quite often, experimental research work requires the empirical identification
of the relationship between an observable response variable, Y, and a set of
associated variables, or factors, believed to have an effect on Y. In general,
such a relationship, if it exists, is unknown, but is usually assumed to be of a
particular form, provided that it can adequately describe the dependence of Y
on the associated variables (or factors). This results in the establishment of the
so-called postulated model which contains a number of unknown parameters,
in addition to a random experimental error term. The role of this error term
is to account for the extra variation in Y that cannot be explained by the
postulated model. In particular, if the unknown parameters appear linearly
in such a model, then it is called a linear model.

In this book, we consider two types of linear models depending on the
nature of the factors that affect the response variable Y. If the factors are
quantitative (that is, they can be measured on a continuous scale, such as the
temperature and pressure of a certain chemical reaction), then the model is
called a regression model. For example, we may have a regression model of
the form,

Y = β0 +
k∑

i=1

βixi + ε, (1.1)

where
x1, x2, . . . , xk are mathematical variables that represent the levels of the

associated factors
β0, β1, . . . , βk are unknown parameters
ε is a random experimental error term

It is common to refer to x1, x2, . . . , xk as control, input, or explanatory vari-
ables. A more general expression for a regression model is one of the form

Y = f ′(x)β + ε, (1.2)

where
x = (x1, x2, . . . , xk)

′
f ′(x) is a known vector function whose elements are powers and cross

products of powers of x1, x2, . . . , xk up to a certain degree
β is a vector of unknown parameters

1
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The model in (1.2) is called a polynomial model in x1, x2, . . . , xk. For example,
a second-degree polynomial model in just x1, x2 is of the form

Y = β0 + β1x1 + β2x2 + β12x1x2 + β11x2
1 + β22x2

2 + ε.

Estimates of the elements of β in (1.2) can be obtained by running a series of
experiments in which the response Y is measured (or observed) for particular
settings of x1, x2, . . . , xk. The resulting values can then be used as input data
in an appropriate estimation method.

If the factors affecting the response are qualitative (that is, their levels
are not necessarily measurable, but can be described, such as machines and
operators in an industrial experiment), then the model is called an analysis of
variance (ANOVA) model. For example, we may have the models

Yij = μ + αi + εij, (1.3)

Yijk = μ + αi + βj + (αβ)ij + εijk, (1.4)

Yijk = μ + αi + βij + εijk, (1.5)

which will be described and discussed later on in this book. Model (1.3) is
the one-way classification model, the one in (1.4) is the two-way crossed clas-
sification with interaction model, and in (1.5) we have the two-fold nested
classification model. The parameters that appear in these models represent
the various effects that influence the response. For example, in (1.3), αi repre-
sents the effect of level i of a given factor. In the second model in (1.4), αi and
βj represent the effects of levels i and j, respectively, of two given factors, and
(αβ)ij is their interaction effect. In (1.5), βij represents the effect of the jth level
of a factor which is nested within the ith level of the factor represented by αi.

Given a set of observations on Y, both regression and ANOVA models
can be expressed in matrix form as

Y = X β + ε, (1.6)

where
Y is the vector of observations on Y
X is a known matrix called the model matrix
β is the vector of unknown parameters
ε is the vector of random experimental errors

In the case of a regression model, as in (1.2), the rows of X are values of f ′(x)

at various settings of x inside the region of experimentation. If, however,
(1.6) represents an ANOVA model, then the elements of X consist of zeros
and ones.

Typically, in an ANOVA model, the interest is in estimating means asso-
ciated with the levels of the factors under consideration, in addition to testing
certain hypotheses concerning these means. Such hypotheses are set up for
the purpose of assessing the significance of the associated factors. On the other
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hand, in a regression model, in addition to testing significance of its control
variables, estimates of the model’s unknown parameters can be obtained for
the purpose of estimating the mean response (that is, the mean of Y) as well
as predicting “future” response values within a certain region of interest.

Linear models have played an important role in many aspects of statistical
experimental research for the past 75 years. Furthermore, the theory of linear
models has been instrumental in the development of several areas in statis-
tics, such as regression analysis, analysis of variance, experimental design,
response surface methodology, multivariate analysis, time series analysis,
and growth curve analysis, to name just a few.

In the remainder of this chapter, we provide some brief history concerning
certain key concepts and techniques used in the early development of linear
models.

1.1 The Invention of Least Squares

The origin of linear models can be traced back to the early nineteenth cen-
tury. Undoubtedly, the tool that has made it possible to develop the theory
of linear models is the method of least squares. This method, which evolved
shortly after 1800, is used to estimate the unknown parameters in a given
linear model. It was initially developed in response to the needs of scientists
in the fields of astronomy and geodesy. From the historical point of view,
there has been some dispute as to who was the first to introduce this method
(see Stigler, 1981; 1986, Chapter 1). The method was first published in 1805 by
Adrien Marie Legendre (1752–1833) as an appendix entitled “Sur la méthode
des moindres quarrés” (on the method of least squares), which appeared in
Legendre’s book, Nouvelles Méthodes Pour la Détermination des Orbites des
Comètes (New Methods for the Determination of the Orbits of the Comets). Four
years later, Carl Friedrich Gauss (1777–1855) published the method in 1809 in
Volume 2 of his work (written in Latin) on celestial mechanics entitled Theoria
Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium (The Theory
of the Motion of Heavenly Bodies Moving Around the Sun in Conic Sections). Gauss,
however, claimed that he had been using the method since 1795. His claim
was the source of the aforementioned controversy. Plackett (1972) presented
an account of the circumstances in which the discovery of the method took
place and the course of the ensuing controversy. He also included interesting
translations of letters exchanged between Legendre and Gauss and between
Gauss and other mathematicians of his time. Stigler (1981) stated that “It is
argued (though not conclusively) that Gauss probably possessed the method
well before Legendre, but that he was unsuccessful in communicating it to
his contemporaries.” It should be mentioned here, however, that Gauss went
far beyond Legendre in linking the method to probability and providing
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algorithms for the computation of estimates (see Stigler, 1981, p. 472). In fact,
the first discussion of the model in (1.1) in which the probability distribution
of the error term was explicitly considered was in Gauss’s 1809 work (see
Seal, 1967, Section 1.3).

1.2 The Gauss–Markov Theorem

The Gauss–Markov theorem is an important theorem associated with least-
squares estimation. It represents a turning point in the early development of
the theory of linear models. The theorem was first proved by Gauss during the
period 1821–1823. It states that among all the unbiased estimates of a linear
function of the parameters which are expressible as linear combinations of
the observations (elements of the response vector Y), the one produced by
the least-squares procedure has minimum variance. Such an estimate became
known as the best linear unbiased estimate (BLUE). Gauss’s result has therefore
provided a strong impetus to the use of least squares as a method of parameter
estimation due to this optimal property.

Another version of Gauss’s proof was given by Andrey Markov (1856–
1922) in 1912. His proof was described by Neyman (1934) as being “elegant.”
Neyman believed that Markov’s contribution, which was written in Russian,
had been overlooked in the West. As a compromise, the name Gauss–Markov
theorem was adopted.

It should be noted that Gauss’s proof assumed a linear model with uncor-
related errors having zero means and equal variances. An extension of this
proof to the case of correlated errors with a known variance–covariance
matrix was given by Aitken (1935). It is interesting here to remark that Aitken
gave the first formulation of the theorem in terms of matrices.

1.3 Estimability

Estimability is an important property, particularly for ANOVA models where
the matrix X in (1.6) is not of full column rank (see the treatment of such mod-
els in Chapter 7). In this case, the least-squares equations (or normal equa-
tions) do not yield a unique solution for estimating the parameter vector β.
However, for some particular linear functions of β, namely λ′β, where λ′ is
a linear combination of the rows of X, the corresponding estimate, λ′β̂, is
unique. Such linear functions are said to be estimable. Here, the elements of
β̂ are obtained by using any solution to the normal equations. Thus, even
though β̂ is not unique, the value of λ′β̂ is unique as it remains invariant to
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the choice of β̂. Furthermore, λ′β̂ is the BLUE of λ′β (see Theorem 7.6 which
is an extension of the Gauss–Markov theorem to less-than-full-rank models).
By contrast, for regression models where the matrix X is of full column rank,
β̂ is unique and is the BLUE of β. We conclude that whenever λ′β is estimable
(in the case of an ANOVA model), the properties of λ′β̂ are the same as those
under a regression model.

The notion of estimability in linear models was first introduced by Bose
(1944). It has since become an important consideration in the analysis of
ANOVA models. Seely (1977) pointed out that in some linear model text-
books, little justification is given to the requirement that the elements of Aβ

be estimable when testing a null hypothesis concerning Aβ, where A is a
known matrix of full row rank. Such justification, however, is given in the
book by Searle (1971) where it is shown that unless the elements of Aβ are
estimable, the numerator sum of squares in the associated F-ratio is not well
defined (see Section 7.4.2 regarding testing a hypothesis concerning Aβ when
the elements of Aβ are estimable).

1.4 Maximum Likelihood Estimation

Suppose that we have a random variable, Y, whose distribution depends on
some unknown parameters denoted by θ1, θ2, . . . , θp. Let g(y, θ) denote the
density function, or probability mass function, of Y depending on whether
Y is a continuous or a discrete random variable, respectively, where θ =
(θ1, θ2, . . . , θp)

′ and y is a value of Y. Let us also suppose that we have a
sample of n independent observations on Y denoted by Y1, Y2, . . . , Yn. Then,
the density function (or probability mass function) of Y = (Y1, Y2, . . . , Yn)′ is
given by

h(y, θ) =
n∏

i=1

g(yi, θ), (1.7)

where
y = (y1, y2, . . . , yn)′
yi is a given value of Yi (i = 1, 2, . . . , n)

By definition, the likelihood function, L(θ, Y), for the sample, Y1, Y2, . . . , Yn,
is a function of θ, which for a given value, y, of Y is equal to the density
function in (1.7), that is,

L(θ, y) = h(y, θ). (1.8)

Note that in (1.8) the likelihood function is obtained by reversing the roles of
y and θ so that L(θ, y) is viewed as a function of θ for the given value, y, of Y.
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The method of maximum likelihood estimates θ by finding the value, θ̂, of
θ that maximizes L(θ, y) over a certain parameter space of θ for each y
in some set S. The resulting value is called the maximum likelihood estimate
of θ. Note that in this method, we try to find the values of the parameters
that would have most likely produced the data obtained from the observed
sample. It should also be noted that θ̂ may not be unique since the likelihood
function can possibly attain its maximum value at several locations inside the
parameter space.

The method of maximum likelihood is generally attributed to R. A. Fisher
(1890–1962) who propounded it as a means of parameter estimation in his two
renowned papers, Fisher (1922, 1925). Even though other methods similar to
this method have been in existence prior to the work of Fisher, the definition
of likelihood itself appears to be entirely his own (see Edwards, 1974). The
introduction of this method by Fisher has led to the establishment of a whole
new branch of statistical theory. Aldrich (1997) stated that “the making of
maximum likelihood was one of the most important developments in 20th
century statistics.” The method has since become a very important tool in
the repertoire of linear models as well as generalized linear models (see
Chapter 13). Interesting accounts concerning the history of this method and
the work of R. A. Fisher can be found in Norden (1972), Edwards (1974), and
Aldrich (1997), among others.

1.5 Analysis of Variance

Analysis of variance (ANOVA) is a statistical technique developed by R. A.
Fisher in the 1920s in order to facilitate the analysis and interpretation of
data from field trials and laboratory experiments. Fisher’s (1918) paper on
population genetics introduced the terms “variance” and “analysis of vari-
ance.” However, it was after the publication of Fisher’s (1925) book that
ANOVA became widely used as an important tool in experimental research.
The ANOVA table devised by Fisher provides a convenient tabulation of
sums of squares that measure the amounts of variation associated with the
various effects in a given model. Using ratios of mean squares (sums of
squares divided by their corresponding degrees of freedom), it is possible to
derive test statistics for certain hypotheses concerning the effects under con-
sideration. These statistics have, under certain assumptions which include
normality, F-distributions (the symbol F was introduced in honor of R. A.
Fisher by G. W. Snedecor (1934)).

The initial development of ANOVA was designed for what are now called
fixed-effects models (or just fixed models). By definition, a fixed-effects model
is one in which all of its effects, except for the error term, are represented
by fixed unknown parameters. The F-statistics that can be derived from the
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corresponding ANOVA table test the hypotheses that the effects of the levels
of each factor are all equal. A fixed-effects model is also called Model I. On the
other hand, if all the effects in the model, except for the general (or grand)
mean, are random, then the model is called a random-effects model (or just
random model), a variance components model, or Model II. The terminology of
“Model I” and “Model II” is due to Eisenhart (1947), and the use of “vari-
ance components” refers to the variances of the random effects in the model.
We recall that Fisher (1918) introduced the term “variance” in the literature
and he implicitly employed variance components models. His (1918) paper
was a milestone to variance components theory. The third model type is the
so-called mixed-effects model (or just mixed model) which contains random
effects (besides the error term) as well as fixed effects (besides the general
mean). This model is also referred to as Model III. Whenever a model contains
a random effect, the interest is in estimating its variance component in addi-
tion to testing its significance. The determination of which effects are to be
considered as fixed and which as random depends on the nature of the levels
of the associated factors. If the levels of a factor are of particular interest, as
in the consideration of particular varieties of corn in an agricultural experi-
ment, then the levels are said to have fixed effects. However, if the levels are
selected at random from a large population, as in the random sampling of
machine parts from a large warehouse in an industrial experiment, then the
corresponding factor is said to have a random effect.

Variance components models were used by astronomers, long before they
were known to statisticians. These models can be traced back to the works
of the astronomers Airy (1861) and Chauvenet (1863) or even earlier. For
example, Airy made an explicit use of a variance components model for the
one-way model. Fisher’s (1925) book further advanced variance components
theory by initiating what has come to be known as the ANOVA method of
estimation. In this method, the so-called ANOVA estimates of variance compo-
nents in a given random or mixed model are obtained by equating the mean
squares of the random effects in the corresponding ANOVA table to their
expected values. The resulting equations, which are linear, are then solved
for the variance components to be estimated. Maximum likelihood estima-
tion, which was developed by R. A. Fisher, as was previously mentioned,
can also be used to estimate variance components. This was first attempted
by Crump (1947, 1951). Other methods of estimation of variance components
were later developed by other authors (see the survey article by Khuri and
Sahai, 1985; also Robinson, 1987; Searle, 1995).

1.5.1 Balanced and Unbalanced Data

One important consideration before undertaking any analysis of a given data
set is whether the data are balanced or unbalanced. A data set is said to be
balanced if the numbers of observations in the subclasses of the data are all
equal. When these numbers are not equal, including perhaps situations where
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no observations exist in some subclasses, the data set is said to be unbalanced.
While the analysis of balanced data is quite developed with well-defined
methods for estimation and hypothesis testing for the associated models, the
same cannot be said about unbalanced data (see Chapters 8, 10, and 11).
One of the difficulties with unbalanced data is the lack of a unique ANOVA
table, as is the case with balanced data. This makes it difficult to come up with
a unified approach for the analysis of unbalanced data. Furthermore, unlike
the case of balanced data, there are no exact tests that can be applied to random
or mixed models, except in a small number of special cases (see Chapter 11).

Some of the early papers dealing with the analysis of unbalanced data
are those by Yates (1934), who developed the methods of unweighted and
weighted squares of means for data with no empty cells, and Wald (1940, 1941).
Henderson’s (1953) landmark paper presented three methods for estimating
variance components, the last of which became the standard procedure for
obtaining ANOVA estimates of the variance components for both random
and mixed models. A coverage of the history of unbalanced data analysis
from Yates’s (1934) paper to the beginning of the computational revolution
in the 1960s was given by Herr (1986).

1.6 Quadratic Forms and Craig’s Theorem

Let A be a known symmetric matrix of order n × n, and let Y be a random
vector of n elements. By definition, Y ′AY is called a quadratic form in Y with
respect to the matrix A. Quadratic forms play an important role in analysis of
variance. More specifically, if Y is a data vector associated with a given linear
model, then every sum of squares in the corresponding ANOVA table can
be expressed as a quadratic form in Y. In addition, if Y has the multivariate
normal distribution with a mean μ and a nonsingular variance–covariance
matrix, Σ, that is, Y ∼ N(μ, Σ), then it would be of interest to know the distri-
butions of the sums of squares (or quadratic forms) in the ANOVA table. This
is important since these sums of squares can be used to develop test statistics
concerning the various effects in the associated linear model.

There are two important theorems that pertain to quadratic forms in nor-
mally distributed random vectors. The first theorem concerns the distribution
of Y′AY where Y ∼ N(μ, Σ). This theorem states that a necessary and suffi-
cient condition for Y ′AY to have a chi-squared distribution with r degrees of
freedom is that AΣ should be idempotent of rank r (see Section 3.9 for a defi-
nition of an idempotent matrix). The second theorem concerns the stochastic
independence of two quadratic forms in Y, Y ′AY and Y ′BY, where A and B
are symmetric matrices and Y ∼ N(μ, Σ). A necessary and sufficient condition
for these quadratic forms to be stochastically independent is that AΣB = 0.
The proofs of these two theorems are given in Chapter 5.
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The independence theorem was first considered by Craig (1943) and is
therefore referred to as Craig’s theorem. Craig, however, assumed that Y has
the standard multivariate normal distribution, N(0, In). Several authors have
since worked on extending Craig’s result to the general case where Y ∼
N(μ, Σ). While the sufficiency part of this theorem is easy to prove (that
is, showing that AΣB = 0 implies independence of the quadratic forms),
the necessity part (showing that independence implies AΣB = 0) in the
noncentral case (that is, μ �= 0) turned out to be quite difficult to prove.
Driscoll and Gundberg (1986) gave a history of the development of Craig’s
theorem in the noncentral case. They pointed out that authors of earlier papers
and textbooks had given “incorrect or incomplete coverage of Craig’s theorem
and its proof.” They did indicate, however, that a correct proof was finally
given by Laha (1956). Laha’s approach was based on a difficult mathematical
result that he did not actually prove. Reid and Driscoll (1988) discovered
that Ogawa (1950) had apparently been the first person to give a correct
and complete proof of Craig’s theorem for the noncentral case. They then
proceeded to give “an accessible” proof of Craig’s theorem (in the noncentral
case) which only required the use of linear algebra and calculus.

The theorem concerning the distribution of Y ′AY also has a similar history.
As before, the sufficiency part of this theorem (showing that idempotency of
AΣ implies chi-squaredness of Y ′AY) is easy to prove. However, the necessity
part (showing that chi-squaredness of Y ′AY implies idempotency of AΣ) is
not easy to prove, particularly when μ �= 0 (the noncentral case). Proofs given
in the statistical literature of the latter part either assume that μ = 0, which
is a relatively easy case, or invoke the same result by Laha (1956) that was
mentioned earlier. An alternative proof of the necessity part was given more
recently in Khuri (1999) using only simple calculus tools and basic matrix
results.

A more general theorem dealing with quadratic forms in normally dis-
tributed random vectors is the one due to Cochran (1934). This theorem,
which is discussed in Chapter 5 (see Theorem 5.7), is a remarkable one since
it has useful applications in analysis of variance, particularly in the case of
fixed-effects models as will be shown in Chapter 5.

1.7 The Role of Matrix Algebra

Matrices were introduced in mathematics around the middle of the nine-
teenth century. Their use in statistics, however, did not begin until the 1930s
with the publication of Turnbull and Aitken’s (1932) book. Matrices have
since become a very important tool in many areas of statistics, particularly in
linear models and multivariate analysis. In fact, it can be easily said that the
modern development of the theory of linear models is due in large part to
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matrix algebra. The use of matrices has made the derivation of vital results in
linear models much easier, faster, and more direct than what was practiced
earlier. Matrix algebra replaced the tedious use of the summation notation
that was commonplace in statistics before 1930.

Craig (1943) used determinants in his proof of the independence theorem
of quadratic forms. Cramér (1946) had a whole chapter on matrices and
determinants. Books by Kempthorne (1952) and Rao (1952) seem to be the
first to have made considerable use of matrix algebra. C. R. Rao is credited
with having introduced into statistics the concept of generalized inverses
of singular matrices in the 1960s (see Rao, 1962, 1966) using the work of
Moore (1920) and Penrose (1955) (see the definition of a generalized inverse
of a matrix in Section 3.7.1). Generalized inverses became very useful in
finding a solution to the normal equations in the case of a linear model
whose model matrix is not of full column rank. They were also instrumental
in understanding estimability of linear functions of the model’s unknown
parameters. This has led to the development of a unified theory of least
squares (see Rao, 1973b).

Without any doubt, the availability of modern computers and computer
software has made the actual execution of matrix computations in linear
models and statistics, in general, a very simple task. Matrix operations, that
nowadays take only few seconds to execute, used to take hours if not days
before the advent of modern computers. Searle (1999) reported that “During
graduate student days in a small computing group at Cornell, there was great
excitement when in 1959 we inverted a 10-by-10 matrix in seven minutes.
After all, only a year or two earlier, a friend had inverted a 40-by-40 matrix, by
hand, using electric (Marchant or Monroe) calculators. That took six weeks!”

1.8 The Geometric Approach

Another approach to linear models, other than the well-known algebraic one,
is the geometric or coordinate-free approach. This approach, although interesting,
has not attracted a great deal of attention. Actually, there are certain concepts
in linear models, such as least squares, that naturally elicit the use of the
geometric approach.

R. A. Fisher used to think geometrically from time to time (see Fisher,
1915). W. H. Kruskal (1919–2005) was one of the early advocates of the
coordinate-free approach to linear models. His (1961) paper described the
geometric version of the Gauss–Markov theorem. Kruskal (1968) addressed
the question of equality of ordinary least squares and best linear unbiased
estimates using a coordinate-free approach. In Kruskal (1975), an analytic geo-
metric approach was used in dealing with generalized inverses of matrices.
Herr (1980) reviewed several papers that used the geometric approach to
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linear models, starting with Fisher’s (1915) paper and ending with Kruskal’s
(1975) paper. L. Fisher (1973) presented a proof of Cochran’s theorem that
emphasized the geometric approach. Schey (1985) used geometrical argu-
ments to explain certain features of orthogonal contrasts in the context of
the one-way ANOVA model (see Section 7.7). Other papers that considered
the geometric approach to linear models include Eaton (1970) and Haberman
(1975). More recently, Wichura (2006) devoted an entire book on the geometric
approach to the theory of linear models. His book discussed optimal proper-
ties of various methods of estimating and testing hypotheses concerning the
unknown parameters in linear models.
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2
Basic Elements of Linear Algebra

2.1 Introduction

This chapter provides the groundwork for Chapter 3, which gives a basic
introduction to matrix algebra. Both chapters are vital for the understanding
of the theory of linear models.

The present chapter reviews some fundamental concepts concerning vec-
tor spaces and subspaces, linear dependence and independence of elements
in a vector space, direct sums, bases, and dimensions of vector spaces, in
addition to linear transformations. The main purpose of this chapter is to
familiarize the reader with these concepts, but without delving deeply into
the theory of linear algebra. The references at the end of the book can be
consulted for a more detailed study of the subject area.

In this chapter, as well as in the remainder of the book, the set of all real
numbers is denoted by R, and its elements are referred to as scalars. The set
of all n-tuples of real numbers will be denoted by Rn (n ≥ 1).

2.2 Vector Spaces

A vector space over R is a set V of elements, which can be added or multiplied
by scalars, in such a way that the sum of two elements of V is an element of
V, and the product of an element of V by a scalar is an element of V. More
specifically, the following properties must be satisfied:

(1) For every u, v in V, u + v is a uniquely defined element of V.

(2) For every u in V and any scalar α, αu is an element in V.

(3) u + v = v + u for all u, v in V.

(4) u + (v + w) = (u + v) + w for all u, v, w in V.

(5) There exists an element in V, called the zero element and is denoted by
0, such that 0 + u = u + 0 = u for every u in V.

13
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(6) For each u in V, there exists a unique element −u in V such that u +
(−u) = (−u) + u = 0.

(7) For every u and v in V and any scalar α, α(u + v) = αu + αv.

(8) (α + β)u = αu + βu for any scalars α and β and any u in V.

(9) α(βu) = (αβ)u for any scalars α and β and any u in V.

(10) For every u in V, 1u = u, where 1 is the number one, and 0u = 0, where
0 is the number zero.

Example 2.1 Let V = Rn be the set of all n-tuples of elements in R, n ≥ 1. Let
(u1, u2, . . . , un) and (v1, v2, . . . , vn) be two elements in V. Their sum is defined
as (u1 + v1, u2 + v2, . . . , un + vn). Also, for any scalar α, α(u1, u2, . . . , un)

is defined as (αu1, αu2, . . . , αun). It is easy to verify that properties (1)
through (10) are satisfied. The zero element is the n-tuple (0, 0, . . . , 0).

Example 2.2 Let V = P(x) be the set of all polynomials in x over R. Any two
polynomials can be added to produce a third polynomial, and the product of
a polynomial with a scalar is also a polynomial. Thus V is a vector space.

Example 2.3 In P(x) of Example 2.2, let Pk(x) be the set of all polynomials of
degree k or less. Then Pk(x) is a vector space, and any element in Pk(x) can be
written as

∑k
n=0 anxn, where a0, a1, . . . , ak are scalars.

Example 2.4 The set of all positive numbers is not a vector space, since
multiplying any positive number by a negative scalar produces a negative
number.

2.3 Vector Subspaces

Let V be a vector space over R, and let W be a subset of V. Then W is said to
be a vector subspace of V if it satisfies the following conditions:

(1) If u and v are any two elements in W, then their sum u + v is an element
of W.

(2) If u is any element in W, and if α is any scalar, then αu is an element
in W.

(3) The zero element, 0, of V is also an element of W.

It follows that in order for W to be a vector subspace of V, it must itself
be a vector space, that is, properties (1) through (10) in Section 2.2, which are
satisfied for all elements of V, must also be satisfied for all elements of W.
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Example 2.5 The vector space defined in Example 2.3 is a subspace of the
vector space defined in Example 2.2.

Example 2.6 The set V of all functions defined on the closed interval [−1, 1]
is a vector space. The set W of all continuous functions defined on [−1, 1] is
a subspace of V.

Example 2.7 The set W of all pairs (x1, x2) in R2 such that x2 − ax1 = 0, where
a is a scalar, is a vector subspace of R2. However, if this equation is replaced
with x2 − ax1 = b, where b �= 0, then W is no longer a vector subspace since
the zero element (0, 0) in R2 does not belong to W.

Example 2.8 Let W be the set of all elements (u1, u2, . . . , un) in Rn such that
un = 0. Then W is a vector subspace of Rn.

It should be noted that if W1 and W2 are subspaces of V, then their
intersection W1 ∩ W2 is clearly a subspace of V. However, the union W1 ∪ W2
of W1 and W2 is not necessarily a subspace of V. For example, if Wi is the
set of all ordered pairs (x1, x2) in R2 such that x2 − aix1 = 0, where ai is a
scalar (i = 1, 2), then W1 and W2 are vector subspaces of R2 (see Example 2.7).
However, W1 ∪ W2 is not a vector subspace of R2 since for the pairs (1, a1)

and (1, a2), which belong to W1 and W2, respectively, and hence belong to
W1 ∪ W2, the sum (1, a1) + (1, a2) = (2, a1 + a2) belongs to neither W1 nor W2,
and therefore does not belong to W1 ∪ W2, if a1 �= a2.

Definition 2.1 Let W1, W2, . . . , Wn be vector subspaces of the vector space V.
The direct sum of W1, W2, . . . , Wn, denoted by ⊕n

i=1Wi, consists of all elements
u in V that can be uniquely expressed as u = ∑n

i=1 ui, where ui ∈ Wi, i =
1, 2, . . . , n.

From this definition, it follows that two elements, u1 = ∑n
i=1 u1i and u2 =∑n

i=1 u2i, in ⊕n
i=1Wi are equal if and only if for each i, u1i = u2i (i = 1, 2, . . . , n).

The addition of two such elements is defined to be u1 + u2 = ∑n
i=1(u1i + u2i).

Furthermore, if α is a scalar and u = ∑n
i=1 ui is an element in ⊕n

i=1Wi, then
αu is defined as

∑n
i=1(αui).

It is easy to verify that if W1, W2, . . . , Wn are vector subspaces of V, then
⊕n

i=1Wi is also a vector subspace of V. In addition, ∩n
i=1Wi consists of just

the zero element 0 of V. To prove this last assertion, let u be an element
of ∩n

i=1Wi. Then u belongs to Wi for all i (i = 1, 2, . . . , n). It follows that
sums of the form

∑n
i=1 ui, where only one ui is equal to u and the remaining

ones are equal to the zero element in the corresponding vector subspaces
(i = 1, 2, . . . , n), must belong to ⊕n

i=1Wi. But, all such sums are equal to u, and
ui = 0 for all i since the representation of u as

∑n
i=1 ui is unique. Consequently,

u = 0.
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2.4 Bases and Dimensions of Vector Spaces

The elements of a vector space V can be represented as linear combinations
of a set of elements of V that form a basis of V. To understand what a basis
is, let us consider the following definitions:

Definition 2.2 Let V be a vector space over R, and let u1, u2, . . . , un be ele-
ments of V. Then, u1, u2, . . . , un are linearly dependent if there exist scalars,
α1, α2, . . . , αn, not all equal to zero, such that

∑n
i=1 αiui = 0. If, however,∑n

i=1 αiui = 0 is true only when all the αi’s are zero, then u1, u2, . . . , un are
said to be linearly independent.

It should be noted that if u1, u2, . . . , un are linearly independent, then
none of them can be zero. To see this, suppose, for example, that u1 = 0. Then
α1u1 +0u2 +· · ·+0un = 0 for any α1 �= 0, which implies that u1, u2, . . . , un are
linearly dependent, a contradiction. From this we can conclude that any set
of elements of V that contains the zero element 0 must be linearly dependent.
Also, if u1, u2, . . . , un are linearly dependent, then at least one of them can
be expressed as a linear combination of the remaining elements. This easily
follows from the fact that in

∑n
i=1 αiui = 0, at least one αi is not equal to zero

when u1, u2, . . . , un are linearly dependent.

Definition 2.3 Let u1, u2, . . . , un be n elements in a vector space V. The collec-
tion of all linear combinations of the form

∑n
i=1 αiui, where α1, α2, . . . , αn

are scalars, is called the linear span of u1, u2, . . . , un and is denoted by
L(u1, u2, . . . , un).

It is easy to see that L(u1, u2, . . . , un) is a vector subspace of V. Such a sub-
space is said to be spanned (that is, generated) by u1, u2, . . . , un. For example,
if u1 = (a1, b1) and u2 = (a2, b2) are elements in the vector space V = R2, then
the set of elements

α1u1 + α2u2 = (α1a1 + α2a2, α1b1 + α2b2)

forms a linear span of u1, u2.

Definition 2.4 Let V be a vector space. If there exist linearly independent
elements u1, u2, . . . , un in V such that V = L(u1, u2, . . . , un), then u1, u2, . . . , un
form a basis of V. The number, n, of elements in this basis is called the dimension
of V, and is denoted by dim(V). In case V consists of just the zero element, its
dimension is set to zero.

For example, consider the functions x, ex, which are defined on the inter-
val [0,1]. These functions are linearly independent. To show this, suppose
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that there exist scalars, α1 and α2, such that

α1x + α2ex = 0

for all x in [0,1]. Differentiating the two sides of this relation with respect to
x gives

α1 + α2ex = 0.

By subtracting the first relation from the second, we obtain α1(1 − x) = 0 for
all x in [0,1], and hence α1 = 0. Using the first relation, it follows that α2 = 0.
Hence, x and ex are linearly independent. If W = L(x, ex) is the linear span of
x and ex, then x and ex form a basis of W, which is of dimension 2.

It should be noted that a basis of a vector space is not unique. However,
its dimension, dim(V), is unique. Furthermore, if u1, u2, . . . , un form a basis of
V, and if u is a given element in V, then there exists a unique set of scalars,
α1, α2, . . . , αn, such that u = ∑n

i=1 αiui. To show this, suppose that there
exists another set of scalars, β1, β2, . . . , βn, such that u = ∑n

i=1 βiui. Then∑n
i=1(αi − βi)ui = 0, which implies that αi = βi for all i since the ui’s are

linearly independent.

Theorem 2.1 Let W1, W2, . . . , Wn be vector subspaces of the vector space V.
Then

dim
[⊕n

i=1Wi
] =

n∑

i=1

dim(Wi).

Proof. The proof is left to the reader as an exercise.

2.5 Linear Transformations

Let U and V be two vector spaces over R. Suppose that T is a function that
maps U into V. This fact is written symbolically as T : U → V. The function
T is said to be a linear transformation (or a linear map) on U into V if

T(α1u1 + α2u2) = α1T(u1) + α2T(u2)

for all u1, u2 in U and any scalars α1 and α2.
For example, let U = V = P(x), where P(x) is the vector space of all

polynomials in x over R (see Example 2.2). Define T : U → V such that
T

[
f (x)

] = f ′(x), where f (x) is a polynomial in P(x) and f ′(x) denotes its
derivative. Then T is a linear transformation.
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In general, if T : U → V, then T(U) is the image of U under T, or the range
of T. It consists of all elements in V of the form T(u) for u in U. If T is a linear
transformation, then T(U) is a vector subspace of V. This is true because if v1
and v2 are in T(U), then there exist u1 and u2 in U such that v1 = T(u1) and
v2 = T(u2). Hence, v1 + v2 = T(u1) + T(u2) = T(u1 + u2), which belongs to
T(U). Also, if α is a scalar and v is an element in T(U) such that v = T(u) for
some u in U, then αv = αT(u) = T(αu), which belongs to T(U). Thus, T(U) is
a vector subspace of V.

Definition 2.5 Let T : U → V be a linear transformation. The kernel of T, or
the null space of T, is the set of all elements u in U such that T(u) = 0, where
0 is the zero element in V. Such a set is denoted by ker T.

Example 2.9 Let T : R3 → R2 be defined such that T(x1, x2, x3) = (x1, x2) for
any x1, x2, x3 in R. Then, T is a linear transformation whose kernel consists of
all elements in R3 whose first two coordinates are equal to zero, that is, the
elements of the form (0, 0, x3) with arbitrary values for x3.

Example 2.10 Let T : R3 → R be defined such that T(x1, x2, x3) = 2x1 +
x2 − 3x3. The kernel of T consists of all elements (x1, x2, x3) in R3 such that
2x1 + x2 − 3x3 = 0. This represents a plane in R3 passing through the origin.

Theorem 2.2 Let T : U → V be a linear transformation. Then, ker T is a vector
subspace of U.

Proof. Let u1 and u2 be two elements in ker T. Then T(u1) = T(u2) = 0, and
u1 + u2 must therefore belong to ker T since T(u1 + u2) = T(u1) + T(u2) = 0.
Also, if α is a scalar and u is an element in ker T, then αu is an element in ker
T since T(αu) = αT(u) = 0. Hence, ker T is a vector subspace of U.

Theorem 2.3 Let T : U → V be a linear transformation. Then

dim(U) = dim(ker T) + dim[T(U)].

Proof. Let dim(U) = n, dim(ker T) = p, and dim[T(U)] = q. Let u1, u2, . . . , up be
a basis of ker T, and v1, v2, . . . , vq be a basis of T(U). Then there exist elements
w1, w2, . . . , wq in U such that T(wi) = vi, i = 1, 2, . . . , q. The objective here is
to show that u1, u2, . . . , up; w1, w2, . . . , wq form a basis of U, that is, they are
linearly independent and span U.

Suppose that there exist scalars α1, α2, . . . , αp; β1, β2, . . . , βq such that

p∑

i=1

αiui +
q∑

i=1

βiwi = 0u, (2.1)
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where 0u is the zero element in U. Then,

0v = T

( p∑

i=1

αiui +
q∑

i=1

βiwi

)

=
p∑

i=1

αiT(ui) +
q∑

i=1

βiT(wi)

=
q∑

i=1

βiT(wi)

=
q∑

i=1

βivi,

where 0v is the zero element in V. Since the vi’s are linearly independent,
βi = 0 for i = 1, 2, . . . , q. Furthermore, from (2.1) it can be concluded that
αi = 0 for i = 1, 2, . . . , p since the ui’s are linearly independent. It follows
from (2.1) that u1, u2, . . . , up; w1, w2, . . . , wq are linearly independent.

Let us now show that u1, u2, . . . , up; w1, w2, . . . , wq span U, that
is, if u is any element in U, then it belongs to the linear span
L(u1, u2, . . . , up; w1, w2, . . . , wq): Let v = T(u). Then there exist scalars
a1, a2, . . . , aq such that v = ∑q

i=1 aivi. Hence,

T(u) =
q∑

i=1

aiT(wi)

= T

( q∑

i=1

aiwi

)
.

Thus,

T

(
u −

q∑

i=1

aiwi

)
= 0v.

This indicates that u − ∑q
i=1 aiwi is an element in ker T. Therefore,

u −
q∑

i=1

aiwi =
p∑

i=1

biui (2.2)

for some scalars b1, b2, . . . , bp. From (2.2) it follows that

u =
p∑

i=1

biui +
q∑

i=1

aiwi.

This shows that u belongs to the linear span of u1, u2, . . . , up; w1, w2, . . . , wq.
Consequently, these elements form a basis of U. Hence, n = p + q.
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Corollary 2.1 T : U → V is a one-to-one linear transformation if and only if
dim(ker T) = 0, that is, ker T consists of just the zero element.

Proof. By definition, T : U → V is a one-to-one transformation if whenever
T(u1) = T(u2) for u1, u2 in U, then u1 = u2. Thus, if T is one-to-one, then
for any u in ker T, T(u) = T(0u) = 0v, which indicates that u = 0u. Hence,
ker T consists of just the zero element, and dim(ker T) = 0. Vice versa, suppose
that ker T consists of just the zero element. If u1 and u2 are elements in U
such that T(u1) = T(u2), then T(u1 − u2) = 0v, which implies that u1 − u2
belongs to ker T. Thus u1 − u2 = 0u, which indicates that T is a one-to-one
linear transformation.

Exercises

2.1 Let U and V be two vector spaces over R. The Cartesian product U × V is
defined as the set of all ordered pairs (u, v), where u and v are elements
in U and V, respectively. The sum of two elements, (u1, v1) and (u2, v2)

in U × V, is defined as (u1 + u2, v1 + v2), and if α is a scalar, then α(u, v)

is defined as (αu, αv), where (u, v) is an element in U × V. Show that
U × V is a vector space.

2.2 Show that if W1 and W2 are two subspaces of a vector space V, then
their intersection W1 ∩ W2 is a subspace of V.

2.3 Let V be the vector space consisting of all continuous functions on
[−1, 1]. Let W be the set of all continuous functions in V that have first
and second derivatives on [−1, 1]. Show that W is a vector subspace
of V.

2.4 Let u1, u2, u3, u4 be four elements in a vector space V. Show that L(u1, u2)

is a subspace of L(u1, u2, u3, u4) (see Definition 2.3).

2.5 Suppose that a vector space V has dimension n. Show that if
u1, u2, . . . , um are linearly independent elements in V, then m ≤ n.

2.6 Let u1, u2, . . . , un be linearly independent elements in a vector space V,
and let W be their linear span L(u1, u2, . . . , un). If v is any element in V
that is not in W, then show that u1, u2, . . . , un, v are linearly independent.

2.7 Let V be a vector space, and suppose that u1, u2, . . . , un are linearly
independent elements in V. Show that there exists a basis of V that
contains these n elements.

2.8 Prove Theorem 2.1.
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2.9 Let T : U → V be a linear transformation. Show that T is one-to-one if
and only if whenever u1, u2, . . . , un are linearly independent in U, then
T(u1), T(u2), . . . , T(un) are linearly independent in V.

2.10 Let T : U → V be a linear transformation. Suppose that U has a basis
consisting of the two elements u1 and u2. Show that either T(u1) and
T(u2) are linearly independent, or T(U) has dimension 1, or T(U) con-
sists of just the zero element in V.

2.11 Let V be the vector space consisting of functions having derivatives of
all orders in some neighborhood of a point x0 in R. Let T : V → V be
a linear transformation such that for any element f in V, T( f ) = f ′, the
derivative of f .

(a) What is the kernel of T?

(b) Let T∗ : V → V be defined such that T∗( f ) = T( f ) − 2 f for any f
in V. What is the kernel of T∗?

2.12 Let T : R3 → R be a linear transformation such that

T(x1, x2, x3) = x1 − 2x2 + 4x3.

What is the dimension of the kernel of T?

2.13 Let W be a subspace of the vector space V. If dim(W) = dim(V), then
W = V.

2.14 Let T : U → V be a linear transformation. Suppose that dim(U) =
dim(V). If dim(ker T) = 0, or if T(U) = V, then T is one-to-one and onto
(T is a transformation from U onto V if T(U) = V).

2.15 Let U and V be two vector spaces over R, and T be the function
T : U → V. Then, T is said to be an isomorphism of U onto V if it
satisfies the following conditions:

(i) T is linear

(ii) T is one-to-one

(iii) T is onto

In this case, U and V are said to be isomorphic.

Suppose now that U = W1 ⊕ W2, the direct sum, and V = W1 × W2,
the Cartesian product of W1 and W2 (see Exercise 2.1), where W1 and
W2 are vector spaces over R. Let T : U → V be defined such that
for any u ∈ U, T(u) = (u1, u2), where u1 and u2 provide a unique
representation of u as u = u1 + u2 with u1 ∈ W1, u2 ∈ W2. Show that T
is an isomorphism of U onto V.
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3
Basic Concepts in Matrix Algebra

Matrix algebra plays a vital role in the development of the theory of linear
models. There is hardly any aspect of linear models that does not utilize
some matrix notation or methodology. In fact, knowledge of matrix algebra
is nowadays considered to be quite indispensable to the understanding of the
fundamentals of linear models.

The purpose of this chapter is to provide an exposition of the basic con-
cepts and results in matrix algebra, particularly those that have widespread
applications in linear models. Given the expository nature of this chapter,
theorems will, for the most part, be stated without proofs since the emphasis
will be on using these theorems rather than proving them. The references
given at the end of this book can be consulted for a complete account of the
proofs.

3.1 Introduction and Notation

According to Eves (1969, p. 366), the English mathematician Arthur Cayley
(1821–1895) and other algebraists of his time were instrumental in the modern
development of matrix algebra. The term matrix was first applied in 1850.
Cayley was motivated by the need to have a contracted notation to represent
a set of linear equations of the form

n∑

j=1

aijxj = yi, i = 1, 2, . . . , m,

where the aij
′s are scalars that were detached from the variables xj to produce

the single matrix equation
⎡

⎢⎢⎣

a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .

am1 am2 . . . amn

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x1
x2
. . .

xn

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

y1
y2
. . .

ym

⎤

⎥⎥⎦ . (3.1)

Cayley regarded such a scheme as an operator acting upon the variables
x1, x2, . . ., xn. Farebrother (1997) and Grattan–Guiness (1994, p. 67) also give

23
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credit to other mathematicians in the eighteenth and nineteenth centuries
who may well have made greater, although indirect, contributions than did
Cayley. An interesting article concerning the origin of matrices and their
introduction into statistics was written by Searle (1999). He reported that the
year 1930 was “a good starting point for the entry of matrices into statistics.
That was the year of Volume 1 of the Annals of Mathematical Statistics with
its very first paper, Wicksell (1930), being Remarks on Regression.” This was
followed by Turnbull and Aitken’s (1932) book with several applications of
matrices to statistics.

3.1.1 Notation

The rectangular array consisting of the m rows and n columns, as shown on
the left-hand side of equation (3.1), is called a matrix of order m × n. The
matrix as a whole is denoted by a boldface capital letter, for example, A, and
the scalar aij is called its (i, j)th element (i = 1, 2, . . . , m; j = 1, 2, . . . , n). In some
cases, it is more convenient to represent A using the notation A = (aij).

It should be noted that equation (3.1) represents a linear transformation,
T : Rn → Rm. If u1, u2, . . . , un form a basis for Rn, and if v1, v2, . . . , vm form a
basis for Rm, then each T(uj), j = 1, 2, . . . , n, has a unique representation in
Rm as a linear combination of v1, v2, . . . , vm of the form

T(uj) =
m∑

i=1

aijvi, j = 1, 2, . . . , n.

Once the bases in Rn and Rm have been selected, the linear transformation T
is completely determined by the elements of A: if u is any element in Rn, then
u = ∑n

j=1 bjuj for some scalars, b1, b2, . . . , bn. Hence,

T(u) =
n∑

j=1

bjT(uj)

=
m∑

i=1

n∑

j=1

aijbjvi.

The matrix A is then said to be the matrix representation of T with respect to
the aforementioned bases.

3.2 Some Particular Types of Matrices

(a) Square matrix. If the number of rows of the matrix A in (3.1) is equal to
the number of columns, that is, m = n, then A is called a square matrix
of order n × n.
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(b) Diagonal matrix. If the off-diagonal elements of a square matrix A of
order n × n are all equal to zero, then A is called a diagonal matrix and
is written as

A = diag(a11, a22, . . . , ann).

(c) Identity matrix. If the diagonal elements of the matrix A in (b) are all
equal to 1, then A is called an identity matrix of order n × n, and is
denoted by In.

(d) Matrix of ones. If the elements of a matrix of order m × n are all equal
to 1, then it is called a matrix of ones of order m × n, and is denoted by
Jm×n. If m = n, then it is denoted by Jn.

(e) Zero matrix. If the elements of a matrix of order m × n are all equal to 0,
then it is called a zero matrix of order m × n, and is denoted by 0m×n, or
just 0.

(f) Triangular matrix. If the elements of a square matrix that are below its
diagonal are all equal to 0, then the matrix is called upper triangular. If,
however, the elements that are above the diagonal are equal to 0, then
the matrix is called lower triangular. A triangular matrix is a square
matrix that is either upper triangular or lower triangular.

(g) Row vector. A matrix of order 1 × n is called a row vector.

(h) Column vector. A matrix of order n × 1 is called a column vector.

3.3 Basic Matrix Operations

(a) Equality of matrices. Let A = (aij) and B = (bij) be two matrices of
the same order, m × n. Then, A = B if and only if aij = bij for all
i = 1, 2, . . . , m; j = 1, 2, . . . , n.

(b) Addition of matrices. Let A = (aij) and B = (bij) be two matrices of the
same order, m × n. Then, A + B is a matrix C = (cij) of order m × n such
that cij = aij + bij for i = 1, 2, . . . , m; j = 1, 2, . . . , n.

(c) Scalar multiplication. Let α be a scalar and let A = (aij) be a matrix of
order m × n. Then αA = (αaij).

(d) Product of matrices. Let A = (aij) and B = (bij) be matrices of orders
m × n and n × p, respectively. The product AB is a matrix C = (cij) of
order m × p such that cij = ∑n

k=1 aikbkj for i = 1, 2, . . . , m; j = 1, 2, . . . , p.
Note that this product requires that the number of columns of A be
equal to the number of rows of B.
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(e) The transpose of a matrix. Let A = (aij) be a matrix of order m × n. The
transpose of A, denoted by A′, is a matrix of order n×m whose rows are
the columns of A. Thus, the (i, j)th element of A′ is equal to the (j, i)th
element of A, i = 1, 2, . . . , n; j = 1, 2, . . . , m. For example, if

A =
[

1 5 −1
2 1 7

]
,

then

A′ =
⎡

⎣
1 2
5 1

−1 7

⎤

⎦ .

Note that (A′)′ = A.

Let us now consider the following special cases:

(i) If A′ = A, then A is said to be a symmetric matrix. Such a matrix
must necessarily be square.

(ii) If A′ = −A, then A is said to be a skew-symmetric matrix. This matrix
must also be square. Furthermore, its diagonal elements must all
be equal to zero.

(iii) If a is a column vector, then a′ is a row vector.

(f) The trace of a matrix. Let A = (aij) be a square matrix of order n × n.
The trace of A, denoted by tr(A), is the sum of its diagonal elements,
that is,

tr(A) =
n∑

i=1

aii.

It is easy to show that

(i) tr(A) = tr(A′).
(ii) If A is of order m×n, and B is of order n×m, then tr(AB) = tr(BA).

(iii) If A, B, C are matrices of orders m×n, n×p, and p×m, respectively,
then

tr(ABC) = tr(BCA) = tr(CAB).

Properties (ii) and (iii) indicate that the trace of a product of matri-
ces is invariant under a cyclic permutation of the matrices.

(iv) tr(αA) = α tr(A), where α is a scalar and A is a square matrix.

(v) tr(A + B) = tr(A) + tr(B), where A and B are square matrices of
order n × n.

(vi) tr(A′A) = 0 if and only if A = 0.
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3.4 Partitioned Matrices

Let A = (aij) be a matrix of order m × n. A submatrix B of A is a matrix which
can be obtained from A by deleting a certain number of rows and columns. In
particular, if A is a square matrix of order n × n, and if rows i1, i2, . . . , ip and
columns i1, i2, . . . , ip (p < n) are deleted from A, then the resulting submatrix
is called a principal submatrix of A. If the deleted rows and columns are the
last p rows and the last p columns, respectively, then the resulting submatrix
is called a leading principal submatrix of order (n − p) × (n − p).

Definition 3.1 A partitioned matrix is a matrix that consists of several subma-
trices obtained by drawing horizontal lines between its rows and/or vertical
lines between its columns.

If an m×n matrix A is partitioned into rc submatrices, Aij, i = 1, 2, . . . , r; j =
1, 2, . . . , c, by drawing lines between certain rows and columns, then A can be
expressed as

A =

⎡

⎢⎢⎣

A11 A12 . . . A1c
A21 A22 . . . A2c
. . . . . . . . . . . .

Ar1 Ar2 . . . Arc

⎤

⎥⎥⎦ .

The submatrix Aij is of order mi × nj, where the mi’s and nj’s are positive
integers such that

∑r
i=1 mi = m and

∑c
j=1 nj = n. The matrix A can also

be written as A = (Aij), where it is understood that i = 1, 2, . . . , r and j =
1, 2, . . . , c.

In particular, if r = c and Aij = 0 for i �= j, then A is called a block-diagonal
matrix, and is written as

A = diag(A11, A22, . . . , Arr).
Definition 3.2 Let A = (aij) and B = (bij) be matrices of orders m1 × n1 and
m2 × n2, respectively. The direct (Kronecker) product of A and B, denoted by
A ⊗ B, is a matrix of order m1m2 × n1n2 defined as a partitioned matrix of
the form

A ⊗ B =

⎡

⎢⎢⎣

a11B a12B . . . a1n1 B
a21B a22B . . . a2n1 B
. . . . . . . . . . . .

am11B am12B . . . am1n1B

⎤

⎥⎥⎦ ,

which can be written as A ⊗ B = (aijB).
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Properties of the direct product can be found in several matrix alge-
bra books and articles, for example, Searle (1982, Section 10.7), Graybill
(1983, Section 8.8), Magnus and Neudecker (1988, Chapter 2), Harville (1997,
Chapter 16), Henderson and Searle (1981), and Khuri (1982). The following
are some of these properties:

(a) (A ⊗ B)′ = A′ ⊗ B′.

(b) A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C.

(c) (A ⊗ B)(C ⊗ D) = AC ⊗ BD, if AC and BD are defined.

(d) tr(A ⊗ B) = tr(A)tr(B), if A and B are square matrices.

The article by Henderson, Pukelsheim, and Searle (1983) gives a detailed
account of the history of the direct product.

Definition 3.3 Let A1, A2, . . . , Ak be matrices of orders mi × ni(i = 1, 2, . . . , k).
The direct sum of these matrices, denoted by ⊕k

i=1Ai, is a block-diagonal
matrix of order m × n, where m = ∑k

i=1 mi and n = ∑k
i=1 ni, of the form

⊕k
i=1Ai = diag(A1, A2, . . . , Ak).

Direct sums are discussed in some matrix algebra books, for example, Searle
(1982, Section 10.6) and Graybill (1983, Section 8.8). Some properties of direct
sums are

(a) ⊕k
i=1Ai + ⊕k

i=1Bi = ⊕k
i=1(Ai + Bi), if Ai and Bi are of the same order for

i = 1, 2, . . . , k.

(b)
[
⊕k

i=1Ai

] [
⊕k

i=1Bi

]
= ⊕k

i=1AiBi, if AiBi is defined for i = 1, 2, . . . , k.

(c)
[
⊕k

i=1Ai

]′ = ⊕k
i=1A′

i.

(d) tr
[
⊕k

i=1Ai

]
= ∑k

i=1 tr(Ai), if Ai is a square matrix for i = 1, 2, . . . , k.

3.5 Determinants

Historically, determinants were considered before matrices. According to
Smith (1958, p. 273), the Chinese had some knowledge of determinants as
early as about AD 1300. In the West, the theory of determinants is believed
to have originated with the German mathematician Gottfried Leibniz
(1646–1716) in 1693. However, the actual development of the theory of deter-
minants did not begin until the publication of a book by Gabriel Cramer
(1704–1752) (see Price, 1947, p. 85) in 1750.
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Originally, a determinant was defined in terms of a system of linear
equations. The word “determinant” originated with reference to the fact that
a determinant “determines” whether the system has a unique solution, which
occurs when the determinant is not equal to zero. Alexandre Vandermonde
(1735–1796) was the first to recognize determinants independently from a sys-
tem of linear equations. Arthur Cayley (1821–1895) is credited with having
been the first to introduce the common present-day notation (of a determi-
nant) of vertical bars enclosing a square matrix. For more interesting facts
about the history of determinants, see the article by Price (1947).

Let A = (aij) be a square matrix of order n × n. The determinant of A,
denoted by det(A), is a scalar that can be computed iteratively as

det(A) =
n∑

j=1

(−1)i+j aij det(Aij), i = 1, 2, . . . , n, (3.2)

where Aij is a submatrix of A obtained by deleting row i and column j. The
determinant of Aij is obtained in terms of determinants of submatrices of
order (n − 2) × (n − 2) using a formula similar to the one for det(A). This
process is repeated several times until the submatrices on the right-hand side
of formula (3.2) become of order 2 × 2. By definition, the determinant of the
2 × 2 matrix,

B =
[

b11 b12
b21 b22

]
,

is given by det(B) = b11b22 − b12b21. Thus, by an iterative application of the
formula in (3.2), the value of det(A) can be determined. For example, if A is
the matrix

A =
⎡

⎣
2 −1 1
3 0 2
2 1 5,

⎤

⎦ , (3.3)

then, by expanding det(A) according to the elements of the first row of A,
we get

det(A) = 2 det
([

0 2
1 5

])
+ det

([
3 2
2 5

])
+ det

([
3 0
2 1

])

= 2(−2) + 11 + 3
= 10.

The determinant of Aij in formula (3.2) is called a minor of A of order n−1. The
quantity (−1)i+j det(Aij) is called a cofactor of the corresponding element, aij, of
A, and is denoted by ac

ij. The determinant of a principal submatrix of a square
matrix A is called a principal minor, and the determinant of a leading principal
submatrix is called a leading principal minor. Minors can also be defined for a



André I. Khuri/Linear Model Methodology C4819_C003 Finals Page 30 2009-9-2

30 Linear Model Methodology

general matrix A of order m × n: if we remove all but p rows and the same
number of columns from A, where p ≤ min(m, n), then the determinant of
the resulting submatrix is called a minor of A of order p.

Note that in formula (3.2), the expansion of det(A) is carried out by the
elements of any row of A, for example, row i (i = 1, 2, . . . , n). It can also be
carried out by the elements of any column of A. In the latter case, det(A) is
given by the equivalent formula

det(A) =
n∑

i=1

(−1)i+j aij det(Aij), j = 1, 2, . . . , n.

For example, expanding the determinant of the matrix A in (3.3) by the ele-
ments of the first column, we obtain

det(A) = 2 det
([

0 2
1 5

])
− 3 det

([−1 1
1 5

])
+ 2 det

([−1 1
0 2

])

= 2(−2) − 3(−6) + 2(−2)

= 10.

The following are some basic properties of determinants (see, for example,
Aitken, 1958, Chapter 2; Searle, 1982, Section 4.3; Harville, 1997, Section 13.2):

(a) det(AB) = det(A)det(B), if A and B are n × n matrices.

(b) det(A′) = det(A).

(c) det(αA) = αndet(A), if α is a scalar, and A is a matrix of order n × n.

(d) If any two rows (or columns) of A are identical, then det(A) = 0.

(e) If any two rows (or columns) of A are interchanged, then det(A) is
multiplied by −1.

(f) If det(A) = 0, then A is called a singular matrix; otherwise, if det(A) �= 0,
then A is called a nonsingular matrix.

(g) If A and B are matrices of orders m × m and n × n, respectively, then

det(A ⊗ B) = [det(A)]n [det(B)]m .

(h) det(A ⊕ B) = det(A)det(B).

(i) If an n×n matrix A is upper (or lower) triangular, then det(A) = ∏n
i=1 aii,

where aii is the ith diagonal element of A (i = 1, 2, . . . , n).

(j) If A is partitioned as

A =
[

A11 A12
A21 A22

]
,

where Aij is of order ni × nj (i, j = 1, 2), then



André I. Khuri/Linear Model Methodology C4819_C003 Finals Page 31 2009-9-2

Basic Concepts in Matrix Algebra 31

det(A) =
{

det(A11)det(A22 − A21A−1
11 A12), if A11 is nonsingular,

det(A22)det(A11 − A12A−1
22 A21), if A22 is nonsingular.

(k) If A is a block-diagonal matrix, A = diag(A1, A2, . . . , An), where Ai is a
square matrix, then det(A) = ∏n

i=1 det(Ai).

3.6 The Rank of a Matrix

The rank of a matrix A is the number of linearly independent rows (or
columns), and is denoted by rank(A).

Suppose that A is of order m × n. Let u′
1, u′

2, . . . , u′
m denote the row

vectors of A, and let v1, v2, . . . , vn denote its column vectors. The linear
spans associated with the rows and columns of A are V1 = L(u′

1, u′
2, . . . , u′

m),
V2 = L(v1, v2, . . . , vn), respectively. The dimensions of these two vector
spaces are equal and equal to rank(A).

Another equivalent definition for the rank of A, which does not use the
notion of vector spaces, is the following: if all the minors of A of order r + 1
and higher (if they exist) are zero while at least one minor of A of order r is
not zero, then A has rank equal to r (see, for example, Aitken, 1958, p. 60).
Note that there need not be minors of order r + 1 if the rank of A is r. For
example, the matrix

A =
[

1 0 2
3 4 7

]

has rank 2 since it has at least one nonzero minor or order 2, namely, the
determinant of the submatrix

B =
[

1 0
3 4

]
,

but there are no minors of order 3 in A since it has only two rows. Thus the
rank of A can be defined as the largest order of a nonzero minor of A.

Some properties associated with the rank of a matrix are (see, for example,
Graybill, 1983, Chapter 1; Harville, 1997, Section 4.4; Marsaglia and Styan,
1974):

(a) rank(A) = rank(A′).

(b) The rank of A is invariant under multiplication by a nonsingular matrix.
Thus, if A is an m × n matrix, and P and Q are nonsingular matrices
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of orders m × m and n × n, respectively, then rank(A) = rank(PA) =
rank(AQ).

(c) rank(A) = rank(AA′) = rank(A′A).

(d) For any matrices A1, A2, . . . , Ak having the same number of rows,

rank(A1 : A2 : . . . : Ak) ≤
k∑

i=1

rank(Ai).

In particular, if these matrices have also the same number of columns,
then

rank

⎛

⎝
k∑

i=1

Ai

⎞

⎠ ≤ rank(A1 : A2 : . . . : Ak).

We conclude that for any matrices, A1, A2, . . . , Ak, having the same
number of rows and columns,

rank

⎛

⎝
k∑

i=1

Ai

⎞

⎠ ≤
k∑

i=1

rank(Ai).

Equality is achieved if and only if there are nonsingular matrices, F and
G, such that Ai = FDiG, where Di is a diagonal matrix with diagonal
elements equal to zeros and ones (i = 1, 2, . . . , k) such that DiDj = 0, if
i �= j. This result can be found in Marsaglia and Styan (1974, Theorem 12,
p. 283).

(e) If A and B are matrices of orders m × n and n × q, respectively, then

rank(A) + rank(B) − n ≤ rank(AB) ≤ min{rank(A), rank(B)}
This is known as Sylvester’s law.

(f) rank(A ⊗ B) = rank(A)rank(B).

(g) rank(A ⊕ B) = rank(A) + rank(B).

Definition 3.4 Let A be a matrix of order m × n and rank r. Then,

(a) A is of full row rank if r = m < n.

(b) A is of full column rank if r = n < m.

(c) A is of full rank if r = m = n. In this case, the determinant of A is not
equal to zero, that is, A is a nonsingular matrix.
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3.7 The Inverse of a Matrix

Let A be a nonsingular matrix of order n × n. The inverse of A, denoted by
A−1, is an n × n matrix that satisfies the condition AA−1 = A−1A = In. Such
a matrix is unique.

The inverse of A can be computed as follows: let ac
ij denote the cofactor of

aij (see Section 3.5). Define the matrix C as C = (ac
ij). The inverse of A is given

by the formula,

A−1 = C′

det(A)
,

where C′ is the transpose of C. The matrix C′ is called the adjoint of A, and is
denoted by adj A. For example, if A is the matrix

A =
[

1 0
2 5

]
,

then

adj A =
[

5 0
−2 1

]
,

and

A−1 = 1
5

[
5 0

−2 1

]
.

The following are some properties associated with the inverse operation
(see, for example, Searle, 1982, Chapter 5; Harville, 1997, Chapter 8):

(a) (AB)−1 = B−1A−1.

(b) (A′)−1 = (A−1)′.

(c) det(A−1) = 1
det(A)

, if A is nonsingular.

(d) (A−1)−1 = A.

(e) (A ⊗ B)−1 = A−1 ⊗ B−1.

(f) (A ⊕ B)−1 = A−1 ⊕ B−1.

(g) If A is partitioned as

A =
[

A11 A12
A21 A22

]
,

where Aij is of order ni ×nj (i, j = 1, 2), then the inverse of A is given by
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A−1 =
[

B11 B12
B21 B22

]
,

where

B11 = (A11 − A12A−1
22 A21)

−1,

B12 = −B11A12A−1
22 ,

B21 = −A−1
22 A21B11,

B22 = A−1
22 + A−1

22 A21B11A12A−1
22 .

3.7.1 Generalized Inverse of a Matrix

A generalized inverse (or g-inverse) of an m × n matrix A is any n × m matrix
B such that ABA = A. We denote such a matrix by A−. Thus,

AA−A = A. (3.4)

Note that A− is defined even if A is not a square matrix. If A is a square matrix,
it does not have to be nonsingular. A generalized inverse is not unique. In
fact, condition (3.4) can be satisfied by infinitely many matrices (see, for
example, Searle, 1982, Chapter 8). Algorithms for computing generalized
inverses can be found in, for example, Searle (1982, Chapter 8) and Harville
(1997, Chapter 9).

If A is nonsingular, then condition (3.4) is satisfied by only the inverse A−1.
Thus, A−1 is a special case of A− when A is nonsingular. The following are
some properties concerning generalized inverses (see Searle, 1982, Section 8.6;
Harville, 1997, Sections 9.3 and 9.4):

(a) If A is symmetric, then A− can be chosen to be symmetric.

(b) A(A′A)−A′ is invariant to the choice of a generalized inverse of A′A.

(c) A(A′A)−A′A = A for any matrix A.

(d) rank(A−) ≥ rank(A) for any matrix A.

(e) rank(A−A) = rank(AA−) = rank(A) for any matrix A.

3.8 Eigenvalues and Eigenvectors

Let A be a square matrix of order n×n. A scalar λ is an eigenvalue (characteristic
root or latent root) of A if there exits a nonzero vector, x, such that

Ax = λx. (3.5)
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Such a vector is called an eigenvector (characteristic vector or latent vector) of
A corresponding to λ. Equation (3.5) can be written as

(A − λIn) x = 0, x �= 0. (3.6)

This equation indicates that x belongs to the kernel (null space) of A − λIn.
Equation (3.6) also indicates that the columns of A − λIn are linearly depen-
dent. Hence, the rank of A−λIn must be less than n, which implies that A−λIn
is a singular matrix and its determinant is therefore equal to zero. We thus
have

det(A − λIn) = 0.

This is called the characteristic equation of A. Note that the left-hand side of the
equation is a polynomial in λ of degree n called the characteristic polynomial,
and the set of all of its distinct roots forms the so-called spectrum of A. If a
particular root has multiplicity equal to m (≥ 1), then it is called an eigenvalue
of A of multiplicity m.

The following are some properties associated with eigenvalues and
eigenvectors (see, for example, Searle, 1982, Chapter 11; Marcus and Minc,
1964, Chapter 2; Graybill, 1983, Chapter 3; Magnus and Neudecker, 1988,
Chapter 1):

(a) The eigenvalues of a symmetric matrix are real.

(b) If A is a symmetric matrix, then its rank is equal to the number of
its nonzero eigenvalues. Thus, if λ1, λ2, . . . , λk are the distinct nonzero
eigenvalues of A, then rank(A) = ∑k

i=1 mi, where mi is the multiplicity
of λi (i = 1, 2, . . . , k).

(c) Suppose that λ1, λ2, . . . , λk are the distinct nonzero eigenvalues of A. If
v1, v2, . . . , vk are the eigenvectors of A corresponding to λ1, λ2, . . . , λk,
respectively, then v1, v2, . . . , vk are linearly independent. In particular,
if A is symmetric, then v1, v2, . . . , vk are orthogonal to one another, that
is, v′

ivj = 0 for i �= j (i, j = 1, 2, . . . , k).

(d) Let λ1, λ2, . . . , λn be the eigenvalues of A, then

(i) tr(A) = ∑n
i=1 λi.

(ii) det(A) = ∏n
i=1 λi.

(e) Let A and B be two matrices of orders m×m and n×n, respectively. Let
λ1, λ2, . . . , λm be the eigenvalues of A, and τ1, τ2, . . . , τn be the eigenval-
ues of B. Then,

(i) The eigenvalues of A ⊗ B are of the form λiτj (i = 1, 2, . . . , m; j =
1, 2, . . . , n).

(ii) The eigenvalues of A ⊕ B are λ1, λ2, . . . , λm; τ1, τ2, . . . , τn.
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(f) Let A and B be two matrices of orders m × n and n × m(n ≥ m), respec-
tively. The nonzero eigenvalues of AB are the same as the nonzero
eigenvalues of BA. In particular, if m = n, then all the eigenvalues of
AB (not just the nonzero ones) are the same as those of BA (see Magnus
and Neudecker, 1988, Theorem 9, p. 14).

(g) The eigenvalues of a triangular matrix A (lower or upper) are equal to
the diagonal elements of A.

3.9 Idempotent and Orthogonal Matrices

There are two particular types of matrices that play an important role in the
theory of linear models. They are called idempotent and orthogonal matrices.

A square matrix, A, is idempotent if A2 = A. For example, the matrix
A = In − 1

n Jn, where Jn is the matrix of ones of order n × n, is idempotent.
Idempotent matrices are used frequently in linear models, particularly

in connection with the distribution of quadratic forms in normal random
variables, as will be seen later in Chapter 5.

The following are some properties of idempotent matrices (see Graybill,
1983, Section 12.3; Harville, 1997, Chapter 10):

If A is idempotent, then

(a) The eigenvalues of A are equal to zeros and ones.

(b) rank(A) = tr(A).

(c) For any integer k greater than or equal to one, Ak = A.

In addition to the above properties, it can be easily shown, using property (c)
in Section 3.7.1, that for any matrix A, the matrix A(A′A)−A′ is idempotent of
rank equal to the rank of A.

A square matrix, A, of order n × n is orthogonal if A′A = In. Thus, if
A is orthogonal, then the absolute value of its determinant is equal to 1.
Furthermore, its inverse A−1 is equal to its transpose A′.

3.9.1 Parameterization of Orthogonal Matrices

Since A′A = In for an orthogonal matrix A of order n×n, the n2 elements of A
are subject to n(n+1)

2 equality constraints. These elements can therefore be rep-
resented by n2 − n(n+1)

2 = n(n−1)
2 independent parameters. There are several

methods to parameterize an orthogonal matrix (for a review of such methods,
see Khuri and Good, 1989). Two of these methods are described here.
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(I) Exponential representation. If A is an orthogonal matrix with determi-
nant equal to 1, then it can be represented as

A = exp(T), (3.7)

where T is a skew-symmetric matrix of order n × n (see Gantmacher,
1959, p. 288). The elements of T above its main diagonal can be used to
parameterize A. The exponential function in (3.7) is defined as the sum
of the infinite series of matrices,

exp(T) =
∞∑

i=0

1
i!T i, (3.8)

where T0 = In.

If A is given, to find T, we first find the eigenvalues of A. These are of the
form e±iφ1 , e±iφ2 , . . . , e±iφq , 1, where the eigenvalue 1 is of multiplicity
n − 2q, and i is the complex imaginary number

√−1. Note that e±iφj =
cos φj ± i sin φj (j = 1, 2, . . . , q). If we denote the matrix,

[
a b

−b a

]

by [a + bi], then A can be written (Gantmacher, 1959, p. 288) as the
product of three real matrices,

A = Q diag{[eiφ1], . . . , [eiφq], 1, . . . , 1} Q′,

where Q is an orthogonal matrix of the form

Q = [x1 : y1 : x2 : y2 : . . . : xq : yq : x2q+1 : . . . : xn]

such that xj + iyj is an eigenvector of A with eigenvalue eiφj ( j =
1, 2, . . . , q) and xk is an eigenvector with eigenvalue 1 (k = 2q+1, . . . , n).
The skew-symmetric matrix T can then be defined by the formula

T = Q diag{[iφ1], . . . , [iφq], 0, . . . , 0} Q′,

which gives A = exp(T) since e[iφj] = [eiφj] (j = 1, 2, . . . , q).

Example 3.1 Consider the orthogonal matrix

A = 1√
6

⎡

⎣

√
2

√
2

√
2√

3 −√
3 0

1 1 −2

⎤

⎦

whose determinant is det(A) = 1. The eigenvalues of A are eiφ1 , e−iφ1 , 1,
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where φ1 = 0.9265π. Let x1 + iy1 be an eigenvector of A with the eigenvalue
eiφ1 (x1 and y1 have each a length equal to 1). Then, we have the equation

A(x1 + iy1) = (cos φ1 + i sin φ1)(x1 + iy1),

which can be represented in the form

Ax1 = cos φ1 x1 − sin φ1 y1,
Ay1 = sin φ1 x1 + cos φ1 y1.

These equations imply that x′
1y1 = 0, as a result of A being orthogonal, hence,

(Ax1)
′(Ax1) = x′

1x1, (Ay1)
′(Ay1) = y′

1y1. There is no unique solution to these
equations. One solution is given by

x1 =
⎡

⎣
−0.358933
0.161094
0.919356

⎤

⎦ , y1 =
⎡

⎣
−0.292181
0.916094

−0.274595

⎤

⎦ .

Note that x′
1y1 = 0, and the length of each vector is chosen to be equal to 1.

Let us now find an eigenvector of A corresponding to the eigenvalue 1.
This vector satisfies the equation,

(A − I3) x3 = 0,

which also does not have a unique solution. A solution is given by

x3 =
⎡

⎣
0.886452
0.367180
0.281747

⎤

⎦ .

Note that x3 is orthogonal to x1 and y1, and is chosen to have a length equal
to 1. The matrix A can therefore be expressed as

A = Q

⎡

⎣
cos φ1 sin φ1 0
−sin φ1 cos φ1 0

0 0 1

⎤

⎦Q′,

where Q = [x1 : y1 : x3]. The skew-symmetric matrix T can then be written as

T = Q

⎡

⎣
0 φ1 0

−φ1 0 0
0 0 0

⎤

⎦Q′

= Q

⎡

⎣
0 0.9265π 0

−0.9265π 0 0
0 0 0

⎤

⎦Q′,

which satisfies equation (3.7).
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(II) Cayley’s representation (Arthur Cayley, 1821–1895). If A is an orthog-
onal matrix of order n × n that does not have the eigenvalue −1, then it
can be written in Cayley’s form (see Gantmacher, 1959, p. 289), namely,

A = (In − U)(In + U)−1,

where U is a skew-symmetric matrix of order n × n.

The need to parameterize orthogonal matrices arises in several situations.
For example, in some simulation experiments, parameterization is used to
generate random orthogonal matrices. Heiberger, Velleman, and Ypelaar
(1983) used this technique to construct test data with special properties for
multivariate linear models. See also Anderson, Olkin, and Underhill (1987),
and Olkin (1990).

3.10 Quadratic Forms

Let A = (aij) be a symmetric matrix of order n×n, and let x = (x1, x2, . . . , xn)′
be a column vector of order n × 1. The scalar function

Q(x) = x′Ax

=
n∑

i=1

n∑

j=1

aijxixj

is called a quadratic form in x.
Quadratic forms play an important role in linear models. For example, in

a typical analysis of variance (ANOVA) table associated with a given model
and a given data set, any sum of squares can be represented as a quadratic
form in the data vector.

A quadratic form is said to be

(a) Positive definite if x′Ax > 0 for all x �= 0, and is zero only when x = 0.

(b) Positive semidefinite if x′Ax ≥ 0 for all x, and x′Ax = 0 for some x �= 0.

(c) Nonnegative definite if x′Ax ≥ 0 for all x.

(d) Negative definite if x′(−A)x is positive definite.

(e) Negative semidefinite if x′(−A)x is positive semidefinite.

The above definitions also apply to the matrix A of the quadratic form. Thus,
A is said to be positive definite, positive semidefinite, nonnegative definite,
negative definite, or negative semidefinite if x′Ax is positive definite, positive
semidefinite, nonnegative definite, negative definite, or negative semidefi-
nite, respectively.
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Theorem 3.1 Let A be a symmetric matrix. Then, A is positive definite if and
only if either of the following two conditions is satisfied:

(a) The eigenvalues of A are all positive.

(b) The leading principal minors of A are all positive.

Proof. See Lancaster (1969, Theorem 2.14.4).

Theorem 3.2 Let A be a symmetric matrix. Then, A is positive semidefinite if
and only if its eigenvalues are nonnegative with at least one equal to zero.

Proof. See Basilevsky (1983, Theorem 5.10).

Theorem 3.3 Let A be a matrix of order m × n and rank r. Then,

(a) AA′ and A′A are both nonnegative definite.

(b) A′A is positive semidefinite if r < n.

(c) A′A is positive definite if r = n.

Proof. See Graybill (1983, Corollary 12.2.2).

3.11 Decomposition Theorems

The following theorems show how certain matrices can be reduced to partic-
ular forms. These theorems have many useful applications in the theory of
linear models.

Theorem 3.4 (The Spectral Decomposition Theorem) Let A be a symmetric
matrix of order n × n. There exits an orthogonal matrix P such that

A = PΛP′, (3.9)

where Λ = diag(λ1, λ2, . . . , λn) is a diagonal matrix with diagonal elements
equal to the eigenvalues of A. The columns of P are eigenvectors of A corre-
sponding to the λi’s. Thus, if P is partitioned as

P = [p1 : p2 : . . . : pn],
where pi is the ith column of P, then pi is an eigenvector of A corresponding
to the ith eigenvalue λi (i = 1, 2, . . . , n). Formula (3.9) can then be written as

A =
n∑

i=1

λipip
′
i. (3.10)

Proof. See Basilevsky (1983, Theorem 5.8, p. 200).
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Corollary 3.1 Let A be a symmetric matrix of order n × n and rank r. Then, A
can be written as A = BB′, where B is of order n × r and rank r (that is, B is
a full-column-rank matrix). The matrix B is real only when A is nonnegative
definite.

Proof. This follows directly from the Spectral Decomposition Theorem and
writing Λ as

Λ = diag(Λ1, 0),

where
Λ1 is a diagonal matrix of order r × r whose diagonal elements are the

nonzero eigenvalues of A
0 is a zero matrix of order (n − r) × (n − r)

Let us now decompose Λ as

Λ =
[
Λ

1/2
1
0

] [
Λ

1/2
1 0

]
.

Here, Λ1/2
1 is a diagonal matrix whose diagonal elements are the square roots

of those of Λ1. Note that the diagonal elements of Λ
1/2
1 are not necessarily

real numbers. The matrix B can then be chosen as

B = P
[
Λ

1/2
1
0

]
,

which is of order n × r and rank r (see Searle, 1971, Lemma 7, p. 37).

Theorem 3.5 (The Singular-Value Decomposition) Let A be a matrix of order
m × n (m ≤ n) and rank r. There exist orthogonal matrices P and Q such that

A = P[D 0]Q′,

where
D = diag(λ1, λ2, . . . , λm) is a diagonal matrix with nonnegative diagonal

elements
0 is a zero matrix of order m × (n − m)

The positive diagonal elements of D are the square roots of the positive
eigenvalues of AA′ (or, equivalently, of A′A), and are called the singular values
of A.

Proof. See, for example, Searle (1982, pp. 316–317), Harville (1997, Section
21.12).
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Theorem 3.6 (The Cholesky Decomposition) Let A be a symmetric matrix of
order n × n.

(a) If A is positive definite, then there exits a unique upper triangular matrix
T with positive diagonal elements such that A = T ′T.

(b) If A is nonnegative definite with rank equal to r, then there exits a
unique upper triangular matrix U with r positive diagonal elements
and with n − r zero rows such that A = U′U.

Proof. See Harville (1997, Theorem 14.5.16, p. 231).

The following three theorems are useful for the simultaneous diagonal-
ization of matrices.

Theorem 3.7 Let A and B be symmetric matrices of order n×n. If A is positive
definite, then there exits a nonsingular matrix Q such that

Q′AQ = In and Q′BQ = D,

where D is a diagonal matrix whose diagonal elements are the roots of the
polynomial equation det(B − λA) = 0.

Proof. See Graybill (1983, Theorem 12.2.13).

Theorem 3.8 Let A and B be nonnegative definite matrices (neither one has
to be positive definite). Then, there exits a nonsingular matrix Q such that
Q′AQ and Q′BQ are each diagonal.

Proof. See Graybill (1983, Theorem 12.2.13) and Newcomb (1960) for a
detailed proof.

Theorems 3.7 and 3.8 show the existence of a nonsingular matrix that
diagonalizes two particular matrices. In general, if A1, A2, . . . , Ak are n × n
matrices, then they are said to be simultaneously diagonalizable if there exists a
nonsingular matrix Q such that

Q−1A1Q = D1, Q−1A2Q = D2, . . . , Q−1AkQ = Dk,

where D1, D2, . . . , Dk are diagonal matrices.
The next theorem gives the condition for the existence of such a matrix

when A1, A2, . . . , Ak are symmetric.

Theorem 3.9 Let A1, A2, . . . , Ak be symmetric matrices of order n × n. Then,
there exits an orthogonal matrix P such that

Ai = PΛiP′, i = 1, 2, . . . , k,

where Λi is a diagonal matrix, if and only if

AiAj = AjAi, for all i �= j (i, j = 1, 2, . . . , k),

that is, the matrices commute in pairs.

Proof. See Harville (1997, Theorem 21.13.1).
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3.12 Some Matrix Inequalities

Several well-known inequalities, such as the Cauchy–Schwarz, Hölder’s,
Minkowski’s, and Jensen’s inequalities, have been effectively used in math-
ematical statistics. In this section, additional inequalities that pertain to
matrices are presented. These inequalities are useful in many aspects of
linear models ranging from computational considerations to theoretical
developments.

Let A be a symmetric matrix of order n × n. Suppose that its eigenvalues
are arranged in a descending order of magnitude. Let ei(A) denote the ith
eigenvalue of A so that e1(A) ≥ e2(A) ≥ · · · ≥ en(A). Thus, e1(A) and en(A)

are, respectively, the largest and the smallest of the eigenvalues. They are so
designated by writing emax(A) = e1(A), emin(A) = en(A).

Theorem 3.10 Consider the ratio x′Ax
x′x , which is called Rayleigh’s quotient for

A. Then,

emin(A) ≤ x′Ax
x′x

≤ emax(A).

The lower and upper bounds can be achieved by choosing x to be an eigen-
vector corresponding to emin(A) and emax(A), respectively. Thus,

inf
x�=0

[
x′Ax
x′x

]
= emin(A),

sup
x�=0

[
x′Ax
x′x

]
= emax(A).

Proof. This follows directly from applying the Spectral Decomposition
Theorem (Theorem 3.4).

Theorem 3.11 If A is a symmetric matrix and B is a positive definite matrix,
both of order n × n, then

emin(B−1A) ≤ x′Ax
x′Bx

≤ emax(B−1A).

Note that the eigenvalues of B−1A are real since they are the same as those of
the matrix C = B− 1

2 AB− 1
2 , which is symmetric. This follows from applying

property (f) in Section 3.8. Here, B− 1
2 is a matrix defined as follows: by the

Spectral Decomposition Theorem, B can be written as B = PΛP′, where
Λ = diag(λ1, λ2, . . . , λn) is a diagonal matrix whose diagonal elements are
the eigenvalues of B and P is an orthogonal matrix whose columns are the
corresponding eigenvectors of B. Then, B− 1

2 is defined as

B− 1
2 = PΛ− 1

2 P′,
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where

Λ− 1
2 = diag

(
λ

− 1
2

1 , λ
− 1

2
2 , . . . , λ

− 1
2

n

)
.

Theorem 3.12 Let A and B be matrices of the same order. Then,

[tr(A′B)]2 ≤ [tr(A′A)][tr(B′B)].
Equality holds if and only if one of these two matrices is a scalar multiple of
the other. This is the matrix analogue of the Cauchy–Schwarz inequality (see
Magnus and Neudecker, 1988, Theorem 2, p. 201).

Theorem 3.13

(a) Let A = (aij) be positive definite of order n × n. Then,

det(A) ≤
n∏

i=1

aii.

Equality holds if and only if A is diagonal.

(b) For any matrix A = (aij) of order n × n,

[det(A)]2 ≤
n∏

i=1

⎛

⎝
n∑

j=1

a2
ij

⎞

⎠ .

Equality holds if and only if AA′ is a diagonal matrix or A has a zero row.

Proof. See Magnus and Neudecker (1988, Theorems 28 and 18, pp. 23 and
214, respectively). The inequality in part (b) is called Hadamard’s inequality.

Theorem 3.14 For any two positive semidefinite matrices, A and B, of order
n × n such that A �= 0 and B �= 0,

[det(A + B)]
1
n ≥ [det(A)]

1
n + [det(B)]

1
n .

Equality holds if and only if det(A + B) = 0, or A = αB for some α > 0.

This is called Minkowski’s determinant inequality (see Magnus and Neudecker,
1988, Theorem 28, p. 227).

Theorem 3.15 If A is a positive semidefinite matrix and B is a positive definite
matrix, both of order n × n, then for any i (i = 1, 2, . . . , n),

ei(A)emin(B) ≤ ei(AB) ≤ ei(A)emax(B).

In particular,

emin(A)emin(B) ≤ ei(AB) ≤ emax(A)emax(B).
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Furthermore, if A is positive definite, then for any i (i = 1, 2, . . . , n),

e2
i (AB)

emax(A)emax(B)
≤ ei(A)ei(B) ≤ e2

i (AB)

emin(A)emin(B)
.

Proof. See Anderson and Gupta (1963, Corollary 2.2.1).

Theorem 3.16 Let A and B be symmetric matrices of order n × n. Then,

(a) ei(A) ≤ ei(A + B), i = 1, 2, . . . , n, if B is nonnegative definite.

(b) ei(A) < ei(A + B), i = 1, 2, . . . , n, if B is positive definite.

Proof. See Bellman (1997, Theorem 3, p. 117).

Corollary 3.2 Let A be a positive definite matrix and B be a positive semidef-
inite matrix, both of order n × n. Then,

det(A) ≤ det(A + B).

Equality holds if and only if B = 0.

Proof. See Magnus and Neudecker (1988, Theorem 22, p. 21).

Theorem 3.17 (Schur’s Theorem) Let A = (aij) be a symmetric matrix of order
n × n, and let ‖ A ‖2 denote its Euclidean norm, that is,

‖ A ‖2=
⎛

⎝
n∑

i=1

n∑

j=1

a2
ij

⎞

⎠

1
2

.

Then,

n∑

i=1

e2
i (A) =‖ A ‖2

2 .

Proof. See Lancaster (1969, Theorem 7.3.1).

Since ‖ A ‖2≤ n [maxi,j | aij |], then from Theorem 3.17 we conclude that

| emax(A) |≤ n
[

max
i,j

| aij |
]

.

Theorem 3.18 Let A be a symmetric matrix of order n × n, and let m and s be
scalars defined as

m = tr(A)

n
, s =

[
tr(A2)

n
− m2

] 1
2

.



André I. Khuri/Linear Model Methodology C4819_C003 Finals Page 46 2009-9-2

46 Linear Model Methodology

Then,

(a) m − s(n − 1)
1
2 ≤ emin(A) ≤ m − s

(n−1)
1
2

.

(b) m + s

(n−1)
1
2

≤ emax(A) ≤ m + s(n − 1)
1
2 .

(c) emax(A) − emin(A) ≤ s(2n)
1
2 .

Proof. See Wolkowicz and Styan (1980, Theorems 2.1 and 2.5).

3.13 Function of Matrices

Consider the function f (x) defined on R, the set of all real numbers. If in the
formula for f (x), x is replaced with a matrix A, then f (A) is said to be a matrix
function. We have already seen examples of such a function. For example,
the function f (A) = A− 1

2 defined in Section 3.12 is for a positive definite
matrix A. Another example is the exponential function exp(A), where A is an
n × n matrix, and, if we recall from Section 3.9.1, exp(A) is expressible as the
sum of the power series,

exp(A) = In +
∞∑

i=1

1
i!Ai. (3.11)

Obviously, this representation is meaningful provided that the infinite series
in (3.11) is convergent. In order to understand such convergence, the follow-
ing definitions are needed:

Definition 3.5 Let A be a matrix of order m × n. A norm of A, denoted by
‖ A ‖, is a scalar function with the following properties:

(a) ‖ A ‖≥ 0, and ‖ A ‖= 0 if and only if A = 0.

(b) ‖ c A ‖=| c | ‖ A ‖, where c is a scalar.

(c) ‖ A + B ‖≤‖ A ‖ + ‖ B ‖, where B is any matrix of order m × n.

(d) ‖ AC ‖≤‖ A ‖ ‖ C ‖, where C is any matrix for which the product AC is
defined.

An example of a matrix norm is the Euclidean norm ‖ A ‖2 defined as

‖ A ‖2 =
⎛

⎝
m∑

i=1

n∑

j=1

a2
ij

⎞

⎠

1
2

(3.12)
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for a matrix A = (aij) of order m × n. Another example of a matrix norm is

the spectral norm ‖ A ‖s=
[
emax(A′A)

] 1
2 , where, if we recall, emax(A′A) is the

largest eigenvalue of A′A.

Definition 3.6 Let {Ak}∞k=1 be an infinite sequence of matrices of order m × n.
The infinite series

∑∞
k=1 Ak is said to converge to the m × n matrix S = (sij) if

the series
∑∞

k=1 aijk converges for all i = 1, 2, . . . , m; j = 1, 2, . . . , n, where aijk
is the (i, j)th element of Ak, and

∞∑

k=1

aijk = sij, i = 1, 2, . . . , m; j = 1, 2, . . . , n. (3.13)

The series
∑∞

k=1 Ak is divergent if at least one of the series in (3.13) is divergent.

Theorem 3.19 Let A be a symmetric matrix of order n × n such that ‖ A ‖< 1,
where ‖ A ‖ is any matrix norm of A. Then,

∑∞
k=0 Ak converges to (In − A)−1,

where A0 = In.

Proof. See Khuri (2003, Corollary 5.5.1, p. 181).

Let us now consider a general method for determining convergence of a
power series in a square matrix A.

Theorem 3.20 Suppose that the n×n matrix A is diagonalizable, that is, there
exits a nonsingular matrix Q such that

Q−1AQ = diag(λ1, λ2, . . . , λn),

where λ1, λ2, . . . , λn are the eigenvalues of A, which are not necessarily real
valued. Let f (z) be an analytic function defined on an open set S containing
all the eigenvalues of A. Then,

(a) The function f (A) is defined as

f (A) = Q diag
[
f (λ1), f (λ2), . . . , f (λn)

]
Q−1.

(b) The function f (A) can be represented as the sum of a convergent power
series of the form

f (A) =
∞∑

k=0

ckAk,

if the power series
∑∞

k=0 ckλ
k
1,
∑∞

k=0 ckλ
k
2, . . . ,

∑∞
k=0 ckλ

k
n are all conver-

gent and represent f (λ1), f (λ2), . . . , f (λn), respectively.
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Proof. See Golub and Van Loan (1983) [part (a) is Corollary 11.1.2, p. 382 and
part (b) is Theorem 11.2.3, p. 390].

For example, for the matrix functions exp(A), sin(A), cos(A) we have the
following series representations:

exp(A) =
∞∑

k=0

1
k!Ak,

sin(A) =
∞∑

k=0

(−1)k 1
(2k + 1)!A2k+1,

cos(A) =
∞∑

k=0

(−1)k 1
(2k)!A2k.

Corollary 3.3 Let A be a symmetric matrix of order n × n such that | λi |< 1
for i = 1, 2, . . . , n, where λi is the ith eigenvalue of A. Then, the series

∑∞
k=0 Ak

converges to (In − A)−1.

Proof. The matrix A is diagonalizable by the Spectral Decomposition
Theorem (Theorem 3.4). Furthermore, since | λi |< 1, the power series

∑∞
k=0 λk

i
is absolutely convergent, hence convergent, and

∞∑

k=0

λk
i = 1

1 − λi
, i = 1, 2, . . . , n.

It follows from Theorem 3.20 that
∞∑

k=0

Ak = (In − A)−1.

Another series representation of a well-known matrix function is given by

log(In − A) =
∞∑

k=1

1
k

Ak,

where A is a symmetric matrix whose eigenvalues fall inside the open interval
(−1, 1).

3.14 Matrix Differentiation

In some cases, there may be a need to take the derivative of a matrix function.
The use of this derivative can greatly simplify certain computations such as
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the finding of the optimum of a particular matrix function, as is the case with
maximum likelihood and least-squares estimation techniques. Several theorems
on matrix differentiation are now stated. Further details can be found in,
for example, Dwyer (1967), Neudecker (1969), Nel (1980), Rogers (1980),
Graham (1981, Chapters 4 through 6), Searle (1982, Chapter 12), Graybill
(1983, Chapter 10), and Harville (1997, Chapter 15).

Definition 3.7 Derivative of a scalar function of X with respect to X.
Let X = (xij) be an m × n matrix whose elements are mathematically

independent real variables. Let f (X) be a real-valued matrix function that
depends on X. Then, the derivative of f (X) with respect to X, denoted
by ∂f (X)

∂X , is an m × n matrix whose (i, j)th element is the partial deriva-

tive ∂f
∂xij

, i = 1, 2, . . . , m; j = 1, 2, . . . , n. In particular, if X is a column

vector x = (x1, x2, . . . , xm)′ of m elements, then ∂f (x)

∂x is a column vector

whose ith element is ∂f (x)

∂xi
, i = 1, 2, . . . , m. Similarly, if X is a row vector

x′ = (x1, x2, . . . , xn) of n elements, then ∂f (x)

∂x′ is a row vector whose ith element

is ∂f (x)

∂xi
, i = 1, 2, . . . , n.

Definition 3.8 Derivative of a vector function of x with respect to x.
Let y(x) = [y1(x), y2(x), . . . , yn(x)]′ be a vector function whose elements

are scalar functions of x = (x1, x2, . . . , xm)′. Then, the derivative of y′ with
respect to x is the m × n matrix

∂y′(x)

∂x
=
[
∂y1(x)

∂x
:
∂y2(x)

∂x
: · · · :

∂yn(x)

∂x

]
.

The transpose of this matrix is denoted by ∂y(x)

∂x′ .
If y(x) is a vector-valued function of x and x is a vector-valued function of

z with q elements, then

∂y(x)

∂z′ = ∂y(x)

∂x′
∂x
∂z′ .

Here, ∂y(x)

∂x′ is an n × m matrix and ∂x
∂z′ is an m × q matrix resulting in ∂y(x)

∂z′
being an n × q matrix. This formula gives the so-called vector chain rule.

Definition 3.9 Derivative of a matrix with respect to a scalar.
Let Y = (yij) be an m × n matrix whose elements depend on p mathemati-

cally independent real variables, u1, u2, . . . , up. Then, the partial derivative of
Y with respect to uk (k = 1, 2, . . . , p) is the matrix ∂Y

∂uk
whose (i, j)th element

is
∂yij
∂uk

.
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Definition 3.10 Derivative of a matrix with respect to another matrix.
Let Y = (yij) be matrix of order m × n whose elements are functions of the

elements of a matrix X = (xij), which is of order p × q. Then, the derivative of
Y with respect to X, denoted by ∂Y

∂X , is given by the partitioned matrix

∂Y
∂X

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Y
∂x11

∂Y
∂x12

. . .
∂Y
∂x1q

∂Y
∂x21

∂Y
∂x22

. . .
∂Y
∂x2q

. . . . . . . . . . . .

∂Y
∂xp1

∂Y
∂xp2

. . .
∂Y
∂xpq

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where, as in Definition 3.9, ∂Y
∂xij

is the derivative of Y with respect to xij. Since
∂Y
∂xij

is of order m × n, the matrix ∂Y
∂X is of order mp × nq.

For example, if

X =
[

x11 x12
x21 x22

]
,

and

Y =
[

x11x12 x2
21

sin(x11 + x21) ex22

]
,

then,

∂Y
∂x11

=
[

x12 0
cos(x11 + x21) 0

]
,

∂Y
∂x12

=
[

x11 0
0 0

]
,

∂Y
∂x21

=
[

0 2x21
cos(x11 + x21) 0

]
,

∂Y
∂x22

=
[

0 0
0 ex22

]
.

Hence,

∂Y
∂X

=

⎡

⎢⎢⎣

x12 0 x11 0
cos(x11 + x21) 0 0 0

0 2x21 0 0
cos(x11 + x21) 0 0 ex22

⎤

⎥⎥⎦ .
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Theorem 3.21 Let f (x) = x′a, where a is a constant vector. Then,

∂(x′a)

∂x
= a.

Corollary 3.4 Let A be a constant matrix of order m × n. Then,

∂(x′A)

∂x
= A.

Theorem 3.22 Let f (x) = x′Ax, where A is a constant symmetric matrix. Then,

∂f (x)

∂x
= 2Ax.

Theorem 3.23 Let X = (xij) be an n × n matrix of real variables.

(a) If the elements of X are mathematically independent, then

∂[det(X)]
∂X

= (xc
ij),

where xc
ij is the cofactor of xij (i, j = 1, 2, . . . , n).

(b) If X is symmetric, and its elements are mathematically independent,
except for xij = xji, then

∂[det(X)]
∂X

= 2
(

xc
ij

)
− diag(xc

11, xc
22, . . . , xc

nn).

Corollary 3.5 Let X = (xij) be an n × n nonsingular matrix such that
det(X) > 0.

(a) If the elements of X are mathematically independent, then

∂
{
log[det(X)]}

∂X
= (X−1)′.

(b) If X is symmetric and its elements are mathematically independent,
except for xij = xji, i �= j, then

∂
{
log[det(X)]}

∂X
= 2X−1 − diag(x11, x22, . . . , xnn),

where xii is the ith diagonal element of X−1 (i = 1, 2, . . . , n).

Theorem 3.24 Let X be an n × n nonsingular matrix whose elements are
functions of a scalar t. Then,

∂X−1

∂t
= −X−1 ∂X

∂t
X−1.
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Corollary 3.6 Let X = (xij) be an n × n nonsingular matrix.

(a) If the elements of X are mathematically independent, then

∂X−1

∂xij
= −X−1ΔijX−1,

where Δij is an n × n matrix whose (i, j)th element is equal to 1 and the
remaining elements are equal to 0.

(b) If X is symmetric and its elements are mathematically independent,
except for xij = xji, i �= j, then

∂X−1

∂xij
= −X−1Δ∗

ijX
−1,

where Δ∗
ij is an n × n matrix whose (i, j)th and (j, i)th elements are equal

to 1 and the remaining elements are equal to 0.

Exercises

3.1 Let X be an n × p matrix of rank p (n ≥ p). What is the rank of X X′ X?

3.2 Let A and B be n × n symmetric matrices, and let C = AB − BA.

(a) Show that tr(CC′) = 2 tr(A2B2) − 2 tr[(AB)2].
(b) Deduce from (a) that

tr[(AB)2] ≤ tr(A2B2).

(c) Under what condition is the equality in (b) attained?

3.3 Let A be a positive definite matrix of order n × n. Show that

det(A) ≤
n∏

i=1

aii,

where aii is the ith diagonal element of A (i = 1, 2, . . . , n).

[Hint: Prove this inequality by mathematical induction.]

3.4 Let A be an n × n matrix that satisfies the equation

A2 + 2A + In = 0.
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(a) Show that A is nonsingular.
(b) How would you evaluate A−1?

3.5 Let A = (aij) be an n × n matrix and let adj A be its adjoint. Show that

A(adj A) = (adj A)A

= det(A)In.

3.6 Consider the characteristic equation for an n × n matrix, which can be
written as

det(A − λIn) = a0 + a1λ + a2λ
2 + · · · + anλn

= 0,

where a0, a1, . . . , an are known coefficients that depend on the elements
of A.

(a) Show that A satisfies its characteristic equation, that is,

a0In + a1A + a2A2 + · · · + anAn = 0.

This result is known as the Cayley–Hamilton Theorem.
[Hint: Let B = adj (A − λIn). The elements of B are polynomials of
degree n − 1 or less in λ. We can then express B as

B = B0 + λB1 + λ2B2 + · · · + λn−1Bn−1,

where B0, B1, . . . , Bn−1 are matrices of order n×n that do not depend
on λ. Applying now the result in Exercise 3.5 to B, we get

(A − λIn)B = det(A − λIn)In

= (a0 + a1λ + · · · + anλn)In.

By comparing the coefficients of the powers of λ on both sides of
this equation, we conclude that

a0In + a1A + a2A2 + · · · + anAn = 0].
(b) Deduce from (a) that if λ1, λ2, . . . , λn are the eigenvalues of A, then

(A − λ1In)(A − λ2In) . . . (A − λnIn) = 0.

(c) Show how to obtain the inverse of A, if A is nonsingular, using the
Cayley–Hamilton Theorem.

3.7 Verify the Cayley–Hamilton Theorem for the 3 × 3 matrix

A =
⎡

⎣
2 2 1
1 3 1
1 2 2

⎤

⎦ .
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3.8 Two n × n matrices, A and B, are said to be similar if there is a non-
singular n × n matrix P such that A = PBP−1. Show that an n × n
matrix A is similar to a diagonal matrix if and only if A has n linearly
independent eigenvectors.

3.9 Let A be an n × n matrix. Show that if the eigenvalues of A are distinct,
then A is similar to a diagonal matrix.

3.10 Let A and B be matrices of order n × n; B is similar to A and A = CD,
where C and D are symmetric. Show that B can be written as the product
of two symmetric matrices.

3.11 Let A be a nonsingular matrix of order n × n and a be an n × 1 vector.
Show that the matrix B is nonsingular, where

B = A − 1
c

aa′,

where c is a nonzero scalar such that c �= a′A−1a.

3.12 Let A be the 2 × 2 matrix

A =
[

0 −2
1 3

]
.

(a) Show that A can be written as

A = Q
[

1 0
0 2

]
Q−1,

where

Q =
[

2 1
−1 −1

]

(b) Show that

exp(A) =
[

2e − e2 2e − 2e2

e2 − e 2e2 − e

]
,

where e = exp(1).

3.13 Suppose that A is similar to a diagonal matrix (see Exercise 3.8).
Show that

det[exp(A)] = exp[tr(A)].
3.14 Let A be a positive semidefinite matrix of order n × n. Show that

[det(A)]1/n ≤ 1
n

tr(A).

Under what condition does equality hold?
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3.15 Let A be a positive definite matrix matrix of order n × n. Show that

tr(A)tr(A−1) ≥ n2.

Under what condition does equality hold?

3.16 Let A = (aij) be a symmetric matrix of order n × n. Show that

emin(A) ≤ aii ≤ emax(A), i = 1, 2, . . . , n.

3.17 Suppose that A is a skew-symmetric matrix such that A2 = −I. Show
that A must be an orthogonal matrix.

3.18 Let A and B be symmetric n × n matrices. Show that

tr(AB) ≤ 1
2

tr(A2 + B2).

Under what condition does equality hold?

3.19 Consider the orthogonal matrix

A = 1
3

⎡

⎣
1 2 2
2 1 −2

−2 2 −1

⎤

⎦ .

Find a skew-symmetric matrix, T, such that A = exp(T).

3.20 Let A and B be matrices of order m × n (m ≥ n).

(a) Show that if det(A′B) �= 0, then both A and B have full column ranks.

(b) Show that if the condition in (a) is valid, then

det(B′B) ≥ det[B′A(A′A)−1A′B].

(c) Show that whether the condition in (a) is satisfied or not,

[det(A′B)]2 ≤ det(A′A)det(B′B).

3.21 Let A and B be two symmetric matrices of order n × n. Show that for
any scalar α, 0 ≤ α ≤ 1,

emin[αA + (1 − α)B] ≥ α emin(A) + (1 − α) emin(B)

emax[αA + (1 − α)B] ≤ α emax(A) + (1 − α) emax(B)

The first and second inequalities indicate that the smallest eigenvalue
and the largest eigenvalue functions are concave and convex, respec-
tively, on the space of symmetric matrices.
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3.22 Let A be an n × n matrix. Show that

exp(A ⊗ Im) = exp(A) ⊗ Im.

3.23 Let A be a positive definite matrix of order n × n with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Show that

1 ≤ (x′Ax)(x′A−1x) ≤ 1
4

[(
λ1

λn

)1/2

+
(

λn

λ1

)1/2
]2

,

for any vector x of n elements and unit length. This inequality is known
as the Kantorovich inequality (see Marcus and Minc, 1964, p. 117).

3.24 Let a1, a2, . . . , an and b1, b2, . . . , bn be two sets of vectors of m elements
each. Prove the following identity:

( n∑

i=1

aia′
i

)⎛

⎝
n∑

j=1

bjb
′
j

⎞

⎠ =
( n∑

i=1

aib′
i

)2

+
∑

i<j

(a′
ibj − a′

jbi)(aib′
j − ajb

′
i).

This identity can also be expressed as

AA′BB′ = AB′AB′ +
∑

i<j

(a′
ibj − a′

jbi)(aib′
j − ajb

′
i),

where A = [a1 : a2 : · · · : an], B = [b1 : b2 : · · · : bn].
Note: This identity is a generalization of the so-called Lagrange identity
for real numbers, namely,

( n∑

i=1

αiβi

)2

=
( n∑

i=1

α2
i

)⎛

⎝
n∑

j=1

β2
j

⎞

⎠−
∑

i<j

(αiβj − αjβi)
2,

where α1, α2, . . . , αn and β1, β2, . . . , βn are two sets of real numbers.
Such an identity can be viewed as a generalization of the well-known
Cauchy–Schwarz inequality since it implies that

( n∑

i=1

αiβi

)2

≤
( n∑

i=1

α2
i

)⎛

⎝
n∑

j=1

β2
j

⎞

⎠ .

For more details, see Trenkler (2004).
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3.25 Let A and B be two symmetric idempotent matrices of order n×n. Show
that the following statements are equivalent:

(a) AB = B.
(b) A − B is idempotent.
(c) The column space of B is a vector subspace of the column space

of A.

3.26 Let A and B be two matrices of order n × n. Show that the following
conditions are equivalent:

(a) AA′BB′ = AB′AB′.
(b) tr(AA′BB′) = tr(AB′AB′).
(c) A′B = B′A.

3.27 Let A and B be n × n orthogonal matrices. Show that the following
conditions are equivalent:

(a) (AB)2 = In.
(b) tr[(AB)2] = n.
(c) BA = (BA)′.

3.28 (a) Show that ∂[tr(AX)]
∂X = A′, where A is of order n × m and X is of

order m × n.
(b) Show that ∂[tr(X′AX)]

∂X = (A′ + A)X, where A is of order m × m and
X is of order m × n.

(c) Show that ∂[tr(XAX′)]
∂X = X(A + A′), where A is of order n × n and X

is of order m × n.

3.29 Let X be a matrix of order m × n and let A be a symmetric matrix of
order n × n. Show that ∂det(C)

∂X X′ = 2 det(C)Im, where C = XAX′.
(See Wolkowicz, 1994, p. 658.)

3.30 Consider Definition 3.10.

(a) Let X and Y be matrices of orders p × q and m × n, respectively.
Show that ∂Y

∂X can be expressed as

∂Y
∂X

=
p∑

i=1

q∑

j=1

Eij ⊗ ∂Y
∂xij

,

where Eij is a matrix of order p × q whose elements are equal to 0,
except for the (i, j)th element, which is equal to 1.

(b) If X, Y, Z are matrices of orders p × q, q × r, and s × t, respectively,
then show that

∂(XY)

∂Z
= ∂X

∂Z
(It ⊗ Y) + (Is ⊗ X)

∂Y
∂Z

.
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4
The Multivariate Normal Distribution

This chapter provides an exposition concerning the normal distribution, its
properties and characterizing functions, in addition to other distributions that
are derived from it. The importance of this distribution stems in part from its
being the cornerstone upon which many theorems in classical linear model
methodology are based.

The reader is expected to be acquainted with the concepts of discrete and
continuous random variables, their independence, and probability distribu-
tions. In particular, a continuous random variable, X, is said to be absolutely
continuous if its cumulative distribution function, namely, F(x) = P(X ≤ x), is
differentiable for all x in a set A. In this case, the derivative of F(x) is called the
density function of X and is denoted by f (x). The function F(x) can therefore
be expressed as an integral of the form

F(x) =
x�

−∞
f (t)dt, x ∈ A.

In general, a continuous random variable is not necessarily absolutely con-
tinuous. For more information concerning random variables and their asso-
ciated distributions, the reader is referred to, for example, Casella and Berger
(2002), Hogg and Craig (1978), Lindgren (1976), and Mood, Graybill, and
Boes (1973).

4.1 History of the Normal Distribution

The normal distribution was first introduced by Abraham de Moivre
(1667–1754) in an article in 1733 in the context of approximating the bino-
mial distribution. His article was not discovered until 1924 by Karl Pearson
(1857–1936). Carl Friedrich Gauss (1777–1855) justified the method of least
squares rigorously in 1809 by assuming a normal distribution in connection
with the analysis of measurement errors. He also used it to analyze astronom-
ical data in 1809. The name “normal distribution” was coined independently
by Charles Peirce (1839–1914), Francis Galton (1822–1911), and Wilhelm Lexis
(1837–1914) around 1875 (see Stigler, 1986).

59
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4.2 The Univariate Normal Distribution

The normal distribution belongs to a family of absolutely continuous distri-
butions. Its density function, f (x), is given by

f (x) = 1√
2πσ2

exp
[
− 1

2σ2 (x − μ)2
]

, −∞ < x < ∞. (4.1)

A random variable, X, having this density function is said to be normally
distributed, and this fact is denoted by writing X ∼ N(μ, σ2). In formula (4.1),
μ = E(X) is the mean, or expected value, of X, and σ2 = Var(X) is the variance
of X. In particular, if μ = 0 and σ2 = 1, then X is said to have the standard
normal distribution, which is usually denoted by Z, that is, Z ∼ N(0, 1). Using
(4.1), Z has the density function,

g(z) = 1√
2π

exp

(
−z2

2

)
, −∞ < z < ∞. (4.2)

The moment generating function (abbreviated m.g.f.) of X ∼ N(μ, σ2) is of
the form

φX(t) = E(etX)

=
∞�

−∞
etx 1√

2πσ2
exp

[
− 1

2σ2 (x − μ)2
]

dx

= exp
(

μt + 1
2
σ2t2

)
, (4.3)

where t is a mathematical variable. This function is defined for all values of t
in R, the set of all real numbers. The m.g.f. provides a characterization of the
normal distribution. It can also be used to derive all the noncentral moments
of X, that is, values of μ′

n = E(Xn) for n = 1, 2, . . . .
To evaluate μ′

n, the nth derivative of φX(t) is evaluated at t = 0, that is,

μ′
n = dn[φX(t)]

dtn

∣∣∣∣
t=0

, n = 1, 2, . . . .

Note that φX(t) in (4.3) has derivatives of all orders in R. Equivalently, values
of μ′

n can be obtained by expanding the function φX(t) around t = 0 using
Maclaurin’s series. In this case, the coefficient of tn

n! in such an expression is
equal to μ′

n(n = 1, 2, . . .).
An alternative characterization of the normal distribution is given by the

cumulant generating function defined by the formula

ψX(t) = log[φX(t)], (4.4)
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where log(.) is the natural logarithmic function. The coefficient of tr

r! in
Maclaurin’s series expansion of ψX(t) around t = 0 is called the rth cumulant
and is denoted by κr(r = 1, 2, . . .). Hence, from (4.3) we have

ψX(t) = μt + 1
2
σ2t2. (4.5)

It follows that all the cumulants of the normal distribution are zero, except
for the first two, namely, κ1 = μ, κ2 = σ2.

4.3 The Multivariate Normal Distribution

Let Z = (Z1, Z2, . . . , Zn)′ be a vector of n mutually independent and identi-
cally distributed random variables having the standard normal distribution
N(0, 1). This vector is said to have the multivariate standard normal distribution
with a mean vector 0 and a variance–covariance matrix In, and is represented
symbolically by writing Z ∼ N(0, In). Since the Zi’s are independent, their
joint density function, or just the density function of Z, denoted by g(z), is
the product of their marginal density functions. These are of the form given
in (4.2). Hence,

g(z) =
n∏

i=1

[
1√
2π

exp

(
−z2

i

2

)]

= (2π)
−n
2 exp

(
−1

2
z′z

)
, (4.6)

where z ∈ Rn, the n-dimensional Euclidean space.
In general, let X = (X1, X2, . . . , Xn)′ be a random vector such that E(Xi) =

μi and Var(Xi) = σii(i = 1, 2, . . . , n), and Cov(Xi, Xj) = σij is the covariance of
Xi and Xj, i �= j. The mean vector and variance–covariance matrix of X are

E(X) = μ (4.7)
Var(X) = Σ, (4.8)

respectively, where μ = (μ1, μ2, . . . , μn)′, and Σ = (σij) is given by

Σ = E[(X − μ)(X − μ)′]
= E(XX′) − μμ′. (4.9)

In addition, the matrix

R = D−1ΣD−1,
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where D a diagonal matrix whose diagonal elements are the square roots
of σ11, σ22, . . . , σnn, is called the correlation matrix. Its (i, j)th element is
usually denoted by ρij, where ρij = σij√

σiiσjj
is the correlation of Xi and

Xj, i, j = 1, 2, . . . , n.
In general, the matrix Σ is nonnegative definite. Formula (4.9) is a special

case of a more general one giving the covariance matrix of two random
vectors, X1 and X2, namely,

Σ12 = E[(X1 − μ1)(X2 − μ2)
′]

= E(X1X′
2) − μ1μ

′
2, (4.10)

where μ1 and μ2 are the mean vectors of X1 and X2, respectively. If X1 has
n1 elements and X2 has n2 elements, then Σ12 is a matrix of order n1 × n2.

If A is a constant matrix, then it is easy to show that the mean vector and
variance–covariance matrix of Y = AX, assuming that this product is well
defined, are of the form

E(Y) = Aμ (4.11)
Var(Y) = E[A(X − μ)(X − μ)′A′]

= AΣA′. (4.12)

More generally, if X1 and X2 are two random vectors with mean vectors μ1
and μ2, respectively, and if A and B are constant matrices, then the covariance
matrix of AX1 and BX2 is given by

Cov(AX1, BX2) = E[A(X1 − μ1)(X2 − μ2)
′B′]

= AΣ12B′, (4.13)

where Σ12 is the covariance matrix of X1 and X2.
In particular, if Z ∼ N(0, In), μ is a vector of n elements, and Σ is a positive

definite matrix of order n × n, then the random vector

X = μ + Σ
1
2 Z (4.14)

has the multivariate normal distribution with a mean vector μ and a variance–
covariance matrix Σ. This is denoted by writing X ∼ N(μ, Σ). The matrix Σ

1
2

is obtained as in Section 3.12 by first applying the Spectral Decomposition
Theorem (Theorem 3.4) to Σ, which gives

Σ = PΛP′,

where
Λ is a diagonal matrix whose diagonal elements are the eigenvalues of Σ,

which are positive
P is an orthogonal matrix whose columns are the corresponding eigenvec-

tors of Σ
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The matrix Σ
1
2 is then given by

Σ
1
2 = PΛ

1
2 P′,

where Λ
1
2 is a diagonal matrix whose diagonal elements are the square roots

of the corresponding diagonal elements of Λ. Note that X in (4.14) is a linear
function of Z. Hence, its density functions is given by

f (x) = g(z) | det (J)|, (4.15)

where g(z) is the density functions of Z as in (4.6), and J is the Jacobian matrix

J = ∂z′

∂x

= ∂

∂x

[
(x − μ)′ Σ− 1

2

]

= Σ− 1
2 .

The justification for (4.15) can be found in Khuri (2003, Theorem 7.11.1). Thus,

|det(J)| = [det(Σ)]− 1
2 , (4.16)

since Σ is positive definite. Making now the proper substitution in (4.15)
gives the density function for a multivariate normal distribution with a mean
vector μ and a variance–covariance matrix Σ, namely,

f (x) = 1

(2π)
n
2 [det(Σ)] 1

2

exp
[
−1

2
(x − μ)′Σ−1(x − μ)

]
, (4.17)

where x ∈ Rn.

4.4 The Moment Generating Function

4.4.1 The General Case

In general, the moment generating function (m.g.f.) of a random vector X with
a density function h(x), where x ∈ Rn, is defined as

φX(t) = E
(

et′X
)

, (4.18)

where t = (t1, t2, . . . , tn)′ is a vector in Rn whose elements are mathematical
variables. The domain of φX(t) is assumed to contain the point t = 0. Thus,

φX(t) =
�
Rn

et′xh(x)dx, (4.19)
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where the integral in (4.19) is n-dimensional over Rn, x = (x1, x2, . . . , xn)′, and
dx denotes dx1dx2 . . . dxn.

The m.g.f. of X provides a characterization of the distribution of X. It can
also be used to derive the noncentral multivariate moments of X, which are
of the form

μ′
r1r2

. . .rn =
�
Rn

xr1
1 xr2

2 . . .xrn
n h(x)dx, (4.20)

where r1, r2, . . . , rn are nonnegative integers. If φX(t) has partial derivatives
of all orders with respect to t1, t2, . . . , tn in an open subset of Rn that contains
the point t = 0, then

μ′
r1r2

. . .rn = ∂r[φX(t)]
∂tr1

1 ∂tr1
2 . . .∂trn

n

∣∣∣∣
t=0

, (4.21)

where r = ∑n
i=1 ri.

Another advantage of the m.g.f. is its use in providing a check on the
independence of two random vectors, X1 and X2. More specifically, let φX(t)
be the m.g.f. of X = (X′

1, X′
2)

′. Then, X1 and X2 are independent if and only if

φX(t) = φX1(t1)φX2(t2) (4.22)

for all values of t in an open subset of Rn that contains the point t = 0 (see,
for example, Arnold, 1981, Lemma 3.4; Graybill, 1976, Section 2.4). In (4.22),
t1 and t2 partition t in a manner similar to that of X, and φX1(t1), φX2(t2) are
the corresponding moment generating functions of X1 and X2, respectively.
More generally, if X and t are partitioned as X = (X′

1 : X′
2 : . . . : X′

r)
′, t =

(t′
1 : t′

2 : . . . : t′
r)

′, r ≥ 2, then X1, X2, . . . , Xr are said to be mutually independent
if and only if

φX(t) =
r∏

i=1

φXi(ti) (4.23)

for all values of t in an open subset of Rn that includes the point t = 0, where
φXi(ti) is the m.g.f. of Xi(i = 1, 2, . . . , r). Unless otherwise stated, mutually
independent random vectors (or variables) are usually referred to as just
independent.

An alternative characterization of the distribution of X is through its
cumulant generating function (c.g.f.), which is defined as

ψX(t) = log[φX(t)], (4.24)

where log(·) is the natural logarithmic function. Cumulants of a multivariate
distribution can be defined as a generalization of the univariate case. For
simplicity, we shall consider a bivariate situation involving two random
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variables X1 and X2. Generalizations to more than two variables can be carried
out without any difficulty.

Let ψX1 ,X2 (t1, t2) denote the c.g.f. of X1 and X2. Maclaurin’s series expan-
sion of ψX1 ,X2 (t1, t2) around (t1, t2) = (0, 0) is of the form

ψX1 ,X1 (t1, t2) =
∞∑

n=1

1
n!

∑

r1+r2=n

n!
r1!r2! tr1

1 tr2
2

∂nψX1 ,X2 (0, 0)

∂tr1
1 ∂tr2

2

=
∞∑

n=1

∑

r1+r2=n

1
r1!r2! tr1

1 tr1
2

∂nψX1 ,X2 (0, 0)

∂tr1
1 ∂tr2

2
,

where
∂nψX1 ,X2 (0,0)

∂t
r1
1 ∂t

r2
2

is the value of the nth partial derivative
∂nψX1 ,X2 (t1,t2)

∂t
r1
1 ∂t

r2
2

at

(t1, t2) = (0, 0). The coefficient of t
r1
1 t

r2
2

r1!r2! in this expansion is denoted by κr1r2

and is called the cumulant of the bivariate distribution of X1 and X2 of order
(r1, r2), or just the (r1, r2)th cumulant of X1 and X2.

Using condition (4.22), it can be stated that X1 and X2 are independent if
and only if

ψX1 ,X2 (t1, t2) = ψX1(t1) + ψX2(t2)

for all values of (t1, t2) in an open subset of R2 that contains the point (0,0),
where ψX1(t1) and ψX2(t2) are the marginal cumulant generating functions
of X1 and X2, respectively.

4.4.2 The Case of the Multivariate Normal

The following theorem gives the m.g.f. of a multivariate normal distribution:

Theorem 4.1 The moment generating function of X ∼ N(μ, Σ) is given by

φX(t) = exp
(

t′μ + 1
2

t′Σt
)

. (4.25)

Proof. Substituting the normal density function in (4.17) into formula (4.19),
we get

φX(t) = 1

(2π)n/2[det(Σ)] 1
2

�
Rn

exp
[

t′x − 1
2
(x − μ)′Σ−1(x − μ)

]
dx. (4.26)

Let y = x − μ − Σt. The Jacobian matrix of this transformation is ∂x′
∂y = In.

Formula (4.26) can then be written as (see Khuri, 2003, Section 7.9.4)

φX(t) = 1

(2π)n/2[det(Σ)] 1
2

�
Rn

exp
(

t′μ + 1
2

t′Σt − 1
2

y′Σ−1y
)

dy

= 1

(2π)n/2[det(Σ)] 1
2

exp
(

t′μ + 1
2

t′Σt
) �

Rn

exp
(

−1
2

y′Σ−1y
)

dy (4.27)
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Now, let z = Σ− 1
2 y. The integral in (4.27) can be written as (see Khuri, 2003,

formula 7.67, p. 300)

�
Rn

exp
(

−1
2

y′Σ−1y
)

dy =
�
Rn

exp
(

−1
2

z′z
) ∣∣∣∣det

(
∂y′

∂z

)∣∣∣∣ dz

=
�
Rn

exp
(

−1
2

z′z
) ∣∣∣det

(
Σ1/2

)∣∣∣ dz

= [det(Σ)]1/2
n∏

i=1

( ∞�
−∞

e− 1
2 z2

i dzi

)
,

since Σ is positive definite. But,

∞�
−∞

exp
(

−1
2

z2
i

)
dzi = (2π)1/2, i = 1, 2, . . . , n.

Hence,

�
Rn

exp
(

−1
2

y′Σ−1y
)

dy = (2π)n/2[det(Σ)]1/2. (4.28)

Substituting the term on the right-hand side of (4.28) into formula (4.27)
produces the desired result, namely,

φX(t) = exp
(

t′μ + 1
2

t′Σt
)

.

Corollary 4.1 Suppose that X ∼ N(μ, Σ). Let A be a constant matrix of order
m × n and rank m(≤ n), where n is the number of elements of X. Then,

AX ∼ N(Aμ, AΣA
′
).

Proof. Let Y = AX. The m.g.f. of Y is

φY(t) = E(et′AX)

= φX(t′A)

= exp
(

t′Aμ + 1
2

t′AΣA′t
)

.

By comparing this m.g.f. with the one in (4.25), it can be seen that Y is nor-
mally distributed with a mean vector Aμ and a variance–covariance matrix
AΣA′.

From Corollary 4.1 we conclude that if X is normally distributed,
then any portion of it is also normally distributed. For example, if X is
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partitioned as X = (X′
1 : X′

2)
′, then both X1 and X2 are normally distributed

since they can be written as X1 = A1X, X2 = A2X, where A1 = [In1 : 0n1×n2],
A2 = [0n2×n1 : In2], with ni being the number of elements of Xi(i = 1, 2). If μ

and Σ are partitional accordingly as μ = (μ′
1 : μ′

2)
′, and

Σ =
[
Σ11 Σ12
Σ′

12 Σ22

]
, (4.29)

then X1 ∼ N(μ1, Σ11), X2 ∼ N(μ2, Σ22).
A slightly more general result gives the distribution of the random vector

Y = AX + b, where b is a constant vector. In this case, if X ∼ N(μ, Σ), then
Y ∼ N(Aμ + b, AΣA′).
Corollary 4.2 Suppose that X ∼ N(μ, Σ) is partitioned as X = (X′

1 : X′
2)

′.
Then, X1 and X2 are independent if and only if their covariance matrix Σ12
is zero.

Proof. Let the mean vector μ be partitioned as μ = (μ′
1 : μ′

2)
′, and Σ be

partitional as in (4.29). If X1 and X2 are independent, then it is obvious that
Σ12 = 0. Vice versa, if Σ12 = 0, then by Theorem 4.1, the m.g.f. of X is

φX(t) = exp
(

t′
1μ1 + t′

2μ2 + 1
2

t′
1Σ11t1 + 1

2
t′

2Σ22t2

)
, (4.30)

where t1 and t2 are the corresponding portions of t. Formula (4.30) results
from noting that

t′Σt = (t
′
1 : t

′
2)

[
Σ11 0
0

′
Σ22

](
t1
t2

)

= t
′
1Σ11t1 + t

′
22Σ22t2.

Hence, φX(t) can be written as

φX(t) = φX1(t1)φX2(t2), (4.31)

where φX1(t1) and φX2(t2) are the moment generating functions of X1 and
X2, respectively, which are normally distributed by Corollary 4.1. Formula
(4.31) indicates that X1 and X2 are independent.

Corollary 4.2 can be easily extended to include a partitioning of X of the
form X = (X′

1 : X′
2 : . . . : X′

r)
′, r ≥ 2. In this case, if X is normally distributed,

then X1, X2, . . . , Xr are mutually independent if and only if Σij = 0 for all
i �= j, where Σij is the covariance matrix of Xi and Xj(i, j = 1, 2, . . . , r).

4.5 Conditional Distribution

Let X ∼ N(μ, Σ) be partitioned as (X′
1 : X′

2)
′. The corresponding partitioning

of μ is (μ′
1 : μ′

2)
′, and Σ is partitioned as in (4.29). If Σ12 �= 0, then X1 and X2 are



André I. Khuri/Linear Model Methodology C4819_C004 Finals Page 68 2009-9-2

68 Linear Model Methodology

not independent by Corollary 4.2. By definition, the conditional distribution of
X1 given X2, written symbolically as X1|X2, is the distribution of X1 when X2
is held constant. Obviously, if X1 and X2 are dependent, such a distribution
is different from that of X1.

The dependence of X1 on X2 is now to be displayed. For this purpose,
let Y be defined as Y = X1 − AX2, where A is a constant matrix. The vector
Y is normally distributed by Corollary 4.1 since it is a linear function of X.
The matrix A is chosen so that Y and X2 are independent. Note that the joint
distribution of Y and X2 is a multivariate normal because it can be easily
shown that (Y ′ : X′

2)
′ is a nonsingular linear transformation of X. Hence, by

Corollary 4.2, Y and X2 are independent if and only if their covariance matrix
is zero. Thus, the matrix A can be determined by equating Cov(Y, X2) to
zero, where

Cov(Y, X2) = Σ12 − AΣ22.

It follows that Y and X2 are independent if A = Σ12Σ
−1
22 . The vector Y can

therefore be written as

Y = X1 − Σ12Σ
−1
22 X2. (4.32)

Hence,

X1 = Y + Σ12Σ
−1
22 X2.

This shows that X1 is the sum of two component vectors: Y, which is inde-
pendent of X2, and a linear function of X2. Consequently, X1|X2 is written as

X1|X2 = Y + Σ12Σ
−1
22 X2, (4.33)

where Σ12Σ
−1
22 X2 is treated as a constant vector. From (4.32), the mean of Y is

μ1 − Σ12Σ
−1
22 μ2, and its variance–covariance matrix is given by

Var(Y) = Var(X1) − 2 Cov(X1, Σ12Σ
−1
22 X2)

+ Var(Σ12Σ
−1
22 X2)

= Σ11 − 2Σ12Σ
−1
22 Σ21

+ Σ12Σ
−1
22 Σ22Σ

−1
22 Σ21

= Σ11 − Σ12Σ
−1
22 Σ21.

Using (4.33), we finally conclude that

X1|X2 ∼ N[μ1 + Σ12Σ
−1
22 (X2 − μ2), W],

where

W = Σ11 − Σ12Σ
−1
22 Σ21.
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4.6 The Singular Multivariate Normal Distribution

We recall from Corollary 4.1 that when X ∼ N(μ, Σ), AX ∼ N(Aμ, AΣA′)
provided that A is of full row rank. This condition is needed in order for
AΣA′ to be nonsingular. Note that AΣA′ is actually positive definite if A is of
full row rank, since Σ is positive definite.

Let us now consider the distribution of AX, where X ∼ N(μ, Σ) and A is
not of full row rank. Let A be of order m × n and rank r(<m). The elements
of AX are therefore linearly dependent. As a result, the variance–covariance
matrix of AX, namely AΣA′, is singular. Without any loss of generality, the
matrix A can be partitioned as A = [A′

1 : A′
2]′, where A1 is of order r × n and

rank r, and the remaining (m − r) rows of A that make up the matrix A2 are
linearly dependent on those of A1. Hence, A2 can be written as A2 = BA1 for
some matrix B. We then have

AX =
[

A1X
BA1X

]

=
[

Ir
B

]
A1X. (4.34)

Note that A1X ∼ N(A1μ, A1ΣA′
1) since A1 is of full row rank. This shows that

AX is a linear function of a multivariate normal random variable, namely
A1X, which is of a lower dimension than that of X. In this case, AX is said to
have the singular multivariate normal distribution.

For example, suppose that X = (X1, X2, X3)
′, where Y = (X1, X2)

′ has the
bivariate normal distribution and X3 = 2X1 − 3X2. Then X has the singular
multivariate normal distribution and is written as

X =
[

I2
b′

]
Y,

where b = (2, −3)′.
Situations that involve the use of the singular normal distribution arise in

connection with linear models that are less than full rank, as will be seen in
Chapter 7.

4.7 Related Distributions

Several well-known distributions in statistics can be derived from the mul-
tivariate normal distribution. These distributions are frequently used in the
study of linear models.
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4.7.1 The Central Chi-Squared Distribution

Let X ∼ N(0, In). Then U = X′X has the central chi-squared distribution with n
degrees of freedom, written symbolically as U ∼ χ2

n. It is customary to drop
the word “central” when referring to this distribution.

The chi-squared distribution is a special case of the gamma distribution. By
definition, a random variable W has the gamma distribution with parameters
α and β, written symbolically as W ∼ G(α, β), if its density function is of
the form

f (w) = 1
Γ(α)βα

wα−1e−w/β, 0 < w < ∞, (4.35)

where α and β are positive constants and Γ(α) is the so-called gamma function,
which is given by

Γ(α) =
∞�
0

e−xxα−1dx.

The gamma distribution is absolutely continuous; its mean is E(W) = αβ and
its variance is Var(W) = αβ2. It can be shown that its moment generating
function is

φW(t) = (1 − βt)−α, t <
1
β

. (4.36)

In particular, if α = n
2 and β = 2, where n is a positive integer, then W has

the chi-squared distribution with n degrees of freedom. Thus, if U ∼ χ2
n, then

from (4.35), its density function is

f (u) = 1
Γ(n

2 )2n/2 un/2−1e−u/2, 0 < u < ∞, (4.37)

and the corresponding mean, variance, and moment generating function of
U are, respectively, E(U) = n, Var(U) = 2n,

φU(t) = (1 − 2t)−n/2, t <
1
2

. (4.38)

4.7.2 The Noncentral Chi-Squared Distribution

If the mean of the normal random vector X in Section 4.7.1 is nonzero, that
is, X ∼ N(μ, In) with μ �= 0, then U = X′X has the noncentral chi-squared
distribution with n degrees of freedom and a noncentrality parameter λ = μ′μ.
This distribution is written symbolically as χ2

n(λ). Note that when λ = 0, the
distribution is reduced to the central chi-squared distribution χ2

n.
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The density function of U ∼ χ2
n(λ) is (see Johnson and Kotz, 1970,

Chapter 28)

g(u) = e− 1
2 (λ+u)

2
n
2

∞∑

i=0

(λ
2 )i

i!
u

n
2 +i−1

Γ(n
2 + i)2i , 0 < u < ∞. (4.39)

It can be seen that g(u) is expressible as the sum of an infinite series whose
ith term is of the form

hi(u, λ) = pi(λ)fi(u), i = 0, 1, . . ., (4.40)

where

pi(λ) = e−λ/2(λ/2)i

i!
is the probability that a Poisson random variable with a mean λ

2 attains the
value i, and fi(u) is the density function of a central chi-squared random
variable with (n + 2i) degrees of freedom (i = 0, 1, 2, . . .).

The infinite series in (4.39) is a power series in u. Its convergence depends
on the value of u. We now show that this series is actually uniformly conver-
gent with respect to u on (0, ∞). For a definition of uniform convergence of a
power series, see, for example, Khuri (2003, Chapter 5).

Theorem 4.2 The infinite series in (4.39) converges uniformly with respect to
u on (0, ∞).

Proof. It is sufficient to show uniform convergence of the series

S(λ) =
∞∑

i=0

(
λ
2

)i

i!
uie− u

2

2iΓ
(n

2 + i
) ,

since the series in (4.39) is a constant multiple of S(λ). We first note that for
i = 0, 1, 2, . . ., and for u > 0,

e
u
2 >

(u
2 )i

i! .

This follows from the fact that the right-hand side of the above inequality is
the ith term of Maclaurin’s series expansion of e

u
2 . Hence, for all u > 0,

(λ
2 )i

i!
uie− u

2

2iΓ(n
2 + i)

<
(λ

2 )i

Γ(n
2 + i)

, i = 0, 1, . . .

But, the right-hand side of this inequality is the ith term of a convergent
infinite series of constant terms. This can be easily shown by applying the
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ratio test of convergence of infinite series of positive terms (see, for example,
Khuri, 2003, p. 148):

(λ
2 )i+1

Γ(n
2 + i + 1)

Γ(n
2 + i)

(λ
2 )i

= λ

n + 2i
,

since Γ(n
2 + i + 1) = (n

2 + i)Γ(n
2 + i). It can be seen that as i goes to infinity,

the limit of this ratio is zero, which is less than 1. This proves convergence of
∑∞

i=0
( λ

2 )i

Γ ( n
2 +i) . It follows that the series S(λ) is uniformly convergent on (0, ∞)

by the Weierstrass M-test (see, for example, Khuri, 2003, Theorem 5.3.2).

Theorem 4.2 is needed for the derivation of the moment generating func-
tion of a noncentral chi-squared distribution, as will be shown in the next
theorem.

Theorem 4.3 Let U ∼ χ2
n(λ). The moment generating function (m.g.f.) of U,

denoted by φU(t, λ), is given by

φU(t, λ) = (1 − 2t)−
n
2 exp[λt(1 − 2t)−1], t <

1
2

. (4.41)

Proof. We have that

φU(t, λ) = E(etU).

Using the density function of U given in (4.39), we get

φU(t, λ) =
∞�
0

etu e− 1
2 (λ+u)

2
n
2

∞∑

i=0

(λ
2 )i

i!
u

n
2 +i−1

2iΓ(n
2 + i)

du. (4.42)

Since the infinite series in (4.42) is uniformly convergent, the integration and
summation operations can be interchanged without affecting the value of the
integral (see, for example, Fulks, 1978, Corollary 14.3f, p. 515). We then have

φU(t, λ) =
∞∑

i=0

e− λ
2 (λ

2 )i

i!
∞�
0

etu u
n
2 +i−1e− u

2

2
n
2 +iΓ(n

2 + i)
du. (4.43)

We note that the integral in (4.43) is the m.g.f. of a central chi-squared distri-
bution with (n + 2i) degrees of freedom. By formula (4.38), the latter m.g.f. is
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equal to (1 − 2t)−(n+2i)/2. It follows that

φU(t, λ) =
∞∑

i=0

e− λ
2 (λ

2 )i

i! (1 − 2t)−(n+2i)/2

= e− λ
2 (1 − 2t)−

n
2

∞∑

i=0

1
i!

(
λ/2

1 − 2t

)i

= e− λ
2 (1 − 2t)−

n
2 exp

(
λ/2

1 − 2t

)

= (1 − 2t)−
n
2 exp[λt(1 − 2t)−1].

Using the m.g.f. from Theorem 4.3, it can be shown that the mean and
variance of U ∼ χ2

n(λ) are E(U) = n + λ and Var(U) = 2n + 4λ.

Theorem 4.4 Let U1 and U2 be independently distributed as χ2
n1

(λ1) and
X2

n2
(λ2), respectively. Then,

U = U1 + U2 ∼ χ2
n1+n2

(λ1 + λ2).

Proof. From Theorem 4.3, the moment generating functions of U1 and U2
are, respectively,

φU1(t, λ1) = (1 − 2t)−
n1
2 exp[λ1t(1 − 2t)−1]

φU2(t, λ2) = (1 − 2t)−
n2
2 exp[λ2t(1 − 2t)−1]

Hence, the m.g.f. of U = U1 + U2 is

E(etU) = E(etU1)E(etU2)

= φU1(t, λ1)φU2(t, λ2),

since U1 and U1 are independent. It follows that

E(etU) = (1 − 2t)−(n1+n2)/2exp[(λ1 + λ2)t(1 − 2t)−1].
Thus, U ∼ χ2

n1+n2
(λ1 + λ2).

Theorem 4.4 can be generalized so that if U1, U2, . . . , Uk are mutu-
ally independent such that Ui ∼ χ2

ni
(λi), i = 1, 2, . . . , k, then

∑k
i=1 Ui ∼

χ2∑k
i=1 ni

(
∑k

i=1 λi).

4.7.3 The t-Distribution

Suppose that Z ∼ N(0, 1), U ∼ χ2
n, and Z and U are independent. Then,

V = Z
(U/n)1/2
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has the central t-distribution (or just the t-distribution) with n degrees of free-
dom, and is denoted symbolically by tn. The mean of V is zero and its variance
is equal to n/(n − 2), n > 2. The corresponding density function is given by

f (v) = Γ(n+1
2 )

(nπ)
1
2 Γ(n

2 )

(
1 + v2

n

)− n+1
2

, −∞ < v < ∞.

If the mean of Z is not equal to zero, that is, Z ∼ N(μ, 1), then V has the
so-called noncentral t-distribution with n degrees of freedom and a noncentral-
ity parameter μ. This distribution is denoted symbolically by tn(μ). More
details concerning the noncentral t-distribution can be found in Johnson
and Kotz (1970, Chapter 31). See also Evans, Hastings, and Peacock (2000,
Chapter 39).

4.7.4 The F-Distribution

Let U1 ∼ χ2
n1

, U2 ∼ χ2
n2

be independently distributed chi-squared vari-
ates, then,

Y = U1/n1

U2/n2

has the central F-distribution (or just the F-distribution) with n1 and n2 degrees
of freedom. This is written symbolically as Y ∼ Fn1,n2 . The mean of Y is
E(Y) = n2/(n2 − 2), n2 > 2, and its variance is

Var(Y) = 2n2
2(n1 + n2 − 2)

n1(n2 − 2)2(n2 − 4)
, n2 > 4.

The density function of Y is given by

f (y) = Γ(
n1+n2

2 )

Γ(
n1
2 )Γ(

n2
2 )

(
n1

n2

)n1
2
(

1 + n1

n2
y
)− n1+n2

2
y

n1
2 −1, 0 < y < ∞.

If, however, U1 has the noncentral chi-squared distribution χ2
n1

(λ1) with n1

degrees of freedom and a noncentrality parameter λ1, and U2 ∼ χ2
n2

inde-
pendently of U1, then Y has the so-called noncentral F-distribution with n1
and n2 degrees of freedom and a noncentrality parameter λ1. This is written
symbolically as Y ∼ Fn1,n2(λ1). Furthermore, if U1 ∼ χ2

n1
(λ1), U2 ∼ χ2

n2
(λ2),

and U1 is independent of U2, then Y has the doubly noncentral F-distribution
with n1 and n2 degrees of freedom and noncentrality parameters λ1 and λ2.
This distribution is denoted by Fn1,n2(λ1, λ2). More details concerning the
F-distribution can be found in Johnson and Kotz (1970, Chapters 26 and 30).
See also Evans, Hastings, and Peacock (2000, Chapters 17 and 18).
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4.7.5 The Wishart Distribution

Let X1, X2, . . . , Xn be mutually independent and identically distributed as
N(0, Σ) with each having m elements. Then, the m × m random matrix

A =
n∑

i=1

XiX′
i

has the (central) Wishart distribution with n degrees of freedom and a variance–
covariance matrix Σ, written symbolically as A ∼ Wm(n, Σ). If n ≥ m, then it
can be shown that A is positive definite with probability 1 (see Seber, 1984,
Section 2.3). This distribution represents a generalization of the chi-squared
distribution. If m = 1 and Σ = 1, then A reduces to χ2

n. It can also be shown
(see Exercise 4.7) that if c is a nonzero constant vector with m elements, then
c′Ac ∼ σ2

cχ
2
n, where σ2

c = c′Σc. In particular, if the elements of c are all equal
to zero, except for the ith element, which is equal to 1, then c′Ac gives the
ith diagonal element, aii, of A and therefore aii ∼ σiiχ

2
n, where σii is the ith

diagonal element of Σ.
If, in the aforementioned definition of the Wishart distribution, the mean

of Xi is μi rather than 0 (i = 1, 2, . . . , n), then A is said to have the noncentral
Wishart distribution with n degrees of freedom, a variance–covariance matrix
Σ, and a noncentratily parameter matrix defined to be

Ω = Σ− 1
2

( n∑

i=1

μiμ
′
i

)
Σ− 1

2 .

In this case, we write A ∼ Wm(n, Σ, Ω). This distribution generalizes the
noncentral chi-squared distribution. If m = 1, Σ = 1, then A has the noncen-
tral chi-squared distribution with n degrees of freedom and a noncentrality
parameter λ = ∑n

i=1 μ2
i . Additional properties concerning the Wishart dis-

tribution can be found in standard multivariate textbooks such as Muirhead
(1982) and Seber (1984).

4.8 Examples and Additional Results

Let X1, X2, . . . , Xn be mutually independent and normally distributed ran-
dom variables with means μ and variances σ2. These random variables
form a random sample of size n from the normal distribution N(μ, σ2). Let
X̄ = 1

n
∑n

i=1 Xi be the sample mean and s2 be the sample variance given by

s2 = 1
n − 1

n∑

i=1

(Xi − X̄)2.
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Under these conditions, X̄ and s2 have the following known properties (see,
for example, Casella and Berger, 2002, Section 5.3, p. 218):

(1) X̄ and s2 are independent random variables

(2) X̄ ∼ N(μ, σ2

n )

(3) (n−1)s2

σ2 ∼ χ2
n−1

For a proof of properties (1) and (3), see Exercise 4.18. The proof of property
(2) is straightforward on the basis of Corollary 4.1.

On the basis of these properties, it can be deduced that the random variable

V = X̄ − μ
s√
n

(4.44)

has the t-distribution with (n − 1) degrees of freedom. This follows from the

fact that V is obtained by dividing the standard normal variate, Z = X̄−μ

σ/
√

n ,

by the square root of U
n−1 , where U = (n−1)s2

σ2 , which is independent of X̄
and is distributed as χ2

n−1. Hence, by the definition of the t-distribution in
Section 4.7.3, V ∼ tn−1.

Properties (1) through (3) can be extended to samples from a multivariate
normal distribution. Their multivariate analogs are given by the following
theorem (see, for example, Seber, 1984, Section 3.2.2, p. 63).

Theorem 4.5 Let X1, X2, . . . , Xn be mutually independent and normally dis-
tributed as N(μ, Σ) with each having m elements. Let X̄ = 1

n
∑n

i=1 Xi and S be
the so-called sample variance–covariance matrix given by

S = 1
n − 1

n∑

i=1

(Xi − X̄)(Xi − X̄)′

If n − 1 ≥ m, then

(1) X̄ and S are independent

(2) X̄ ∼ N(μ, 1
nΣ)

(3) (n − 1)S has the central Wishart distribution Wm(n − 1, Σ) with (n − 1)

degrees of freedom

(4) T2 = n(X̄ − μ)′S−1(X̄ − μ) has the so-called Hotelling’s T2-distribution
with m and n − 1 degrees of freedom

For a proof of parts (1) and (3), see Exercise 4.19. The proof of part (2) is
straightforward. Note that T2 is the multivariate analog of the square of the
t-random variable given in (4.44). Properties of its distribution can be found
in standard multivariate textbooks (see, for example, Seber, 1984, Section 2.4,
p. 28).
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4.8.1 Some Misconceptions about the Normal Distribution

Some properties, associated with the normal distribution can be miscon-
ceived leading to incorrect statements about this distribution. Here are some
examples.

Example 4.1 We may recall from Corollary 4.1 that if X = (X1, X2, . . . , Xn)′
is normally distributed as N(μ, Σ), then any portion of X is also normally
distributed, including the individual elements of X (marginal distributions
of X). The reverse, however, is not necessarily true, that is, if the elements of a
random vector X are each normally distributed, X itself may not be normally
distributed. Kowalski (1973) provided several examples of bivariate (that is,
n = 2) nonnormal distributions with normal marginals. The following is a
description of one of his examples:

Let X = (X1, X2)
′ have the density function

g(x1, x2) = ω1f1(x1, x2) + ω2f2(x1, x2), (4.45)

where ω1 + ω2 = 1, ωi ≥ 0, i = 1, 2, and fi is the density function for the
bivariate normal N(0, Σi), where

Σi =
[

1 ρi
ρi 1

]
, i = 1, 2.

The moment generating function (m.g.f.) corresponding to the distribution
in (4.45) is

φ(t) = E[exp(t1X1 + t2X2)]

=
∞�

−∞

∞�
−∞

exp(t1x1 + t2x2)g(x1, x2)dx1dx2

= ω1φ1(t) + ω2φ2(t),

(4.46)

where t = (t1, t2)
′, and φ1(t) and φ2(t) are the m.g.f.’s corresponding to f1

and f2, respectively, that is,

φi(t) = exp
(

1
2

t′Σit
)

, i = 1, 2.

The m.g.f.’s for the marginal distributions of X1 and X2 are obtained from
φ(t) in (4.46) by replacing t with (t1, 0)′ and (0, t2)

′, respectively. Doing so
yields e

1
2 t2

1 and e
1
2 t2

2 as the m.g.f.’s for X1, X2, respectively. This implies that
the marginal distributions of X are normally distributed as N(0, 1). The vector
X, however, is not normally distributed unless ρ1 = ρ2. This can be seen from
the form of the m.g.f. φ(t), which, when ρ1 = ρ2, is equal to φ1(t) [or φ2(t)].
Hence, if ρ1 �= ρ2, X is not normally distributed, even though its marginal
distributions are normal.
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Example 4.2 On the basis of Corollary 4.2, if X = (X1, X2)
′ has the bivari-

ate normal distribution, then X1 and X2 are independent if and only if
Cov(X1, X2) = 0. It is not true, however, that any two normally distributed
random variables, X1 and X2, that have a zero covariance must also be inde-
pendent. In other words, if X does not have the bivariate normal distribution,
but X1 and X2 are normally distributed and Cov(X1, X2) = 0, then X1 and
X2 need not be independent. As a counterexample, let us again consider
Example 4.1. The normally distributed random variables X1 and X2 are not
independent since the m.g.f. φ(t) in (4.46) is not the product of their marginal
m.g.f.’s. But, the covariance of X1 and X2 can be zero if ρ1 �= ρ2 since

Cov(X1, X2) = ω1ρ1 + ω2ρ2. (4.47)

Formula (4.47) follows from the fact that

Cov(X1, X2) = E(X1X2) − E(X1)E(X2)

= E(X1X2)

= ∂2φ(t)
∂t1∂t2

∣∣∣∣
t=0

= ω1ρ1 + ω2ρ2,

since E(X1) = E(X2) = 0.

Melnick and Tenenbein (1982) discussed several incorrect statements about
the normal distribution and provided corresponding counter examples.

4.8.2 Characterization Results

There are several properties that characterize the normal distribution. By this
we mean properties that are true if and only if the distribution is normal.
Here are some examples of such properties.

Result 4.1 Independence of X̄ and s2.
We recall from a property stated earlier in this section that the sample

mean X̄ and the sample variance s2 of a random sample from a normal
distribution N(μ, σ2) are independent. The converse is also true, that is, inde-
pendence of X̄ and s2 implies normality of the parent population. This is
given by the following theorem:

Theorem 4.6 Let X1, X2, . . . , Xn be a random sample from a parent distribu-
tion (n ≥ 2), and let X̄ and s2 be their sample mean and sample variance,
respectively. A necessary and sufficient condition for the independence of X̄
and s2 is that the parent distribution be normal.

This result was first shown by Geary (1936) and later by Lukacs (1942)
who gave a simpler proof. See also Geisser (1956) and Kagan, Linnik, and
Rao (1973, Theorem 4.2.1, p. 103).
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Result 4.2 Normality of a Linear Combination of Random Variables
Let X = (X1, X2, . . . , Xn)′ be normally distributed as N(μ, Σ). From Corol-

lary 4.1, any linear combination,
∑n

i=1 aiXi, of the elements of X is normally
distributed, where the ai’s are constant coefficients. This property provides
another characterization of the normal distribution, which is based on the
following theorem:

Theorem 4.7 Let X1, X2, . . . , Xn be random variables. If the distribution of∑n
i=1 aiXi is normal for any set of real numbers, a1, a2, . . . , an, not all zero,

then the joint distribution of X1, X2, . . . , Xn must be a multivariate normal.

Proof. Let X = (X1, X2, . . . , Xn)′, a = (a1, a2, . . . , an)′. Suppose that the mean
of X is μ and the variance–covariance matrix is Σ. The mean and variance of
a′X(= ∑n

i=1 aiXi) are a′μ and a′Σa, respectively (see formulas 4.11 and 4.12).
If a′X is normally distributed, then its moment generating function is

E(et a′X) = exp
[
(a′μ)t + 1

2
(a′Σa)t2

]
.

Let u′ = ta′. Then,

E(eu′X) = exp
(

u′μ + 1
2

u′Σu
)

,

which is the moment generating function of a multivariate normal with a
mean vector μ and a variance–covariance matrix Σ. Thus, X ∼ N(μ, Σ).

Result 4.3 Independence of Two Linear Combinations of Random Variables.
Let X1, X2, . . . , Xn be mutually independent random variables, and let

V1 = ∑n
i=1 aiXi and V2 = ∑n

i=1 biXi be two linear combinations of the Xi’s.
If V1 and V2 are independent, then Xi must be normally distributed if aibi �=
0, i = 1, 2, . . . , n.

This result is known as the Darmois–Skitovic Theorem (see Kagan, Linnik,
and Rao, 1973, p. 89). The same result also holds if X1, X2, . . . , Xn are replaced
by X1, X2, . . . , Xn, which are mutually independent m × 1 random vectors
(see Rao, 1973a, p. 525). This is given in the next result.

Result 4.4 Independence of Two Linear Combinations of Random Vectors.
If X1, X2, . . . , Xn are n mutually independent m × 1 random vectors such

that V1 = ∑n
i=1 aiXi and V2 = ∑n

i=1 biXi are independent, then Xi is normally
distributed for any i such that aibi �= 0.

Another generalization of the Darmois–Skitovic Theorem is given by the
following result:

Result 4.5 Independence of Two Sums of Linear Transforms of Random
Vectors.

Let X1, X2, . . . , Xn be mutually independent m × 1 random vectors, and
let A1, A2, . . . , An; B1, B2, . . . , Bn be nonsingular m × m matrices. If

∑n
i=1 AiXi

is independent of
∑n

i=1 BiXi, then the Xi’s are normally distributed.
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This result was proved by Ghurye and Olkin (1962). See also Johnson and
Kotz (1972, p. 59).

Result 4.6 Normality of a Sum of Independent Random Variables.
If X and Y are two independent m × 1 random vectors such that X + Y is

normally distributed, then both X and Y are normally distributed.
This is a well-known result. Its proof can be found in several textbooks

(see, for example, Rao, 1973a, p. 525; Muirhead, 1982, p. 14).

Exercises

4.1 Suppose that X ∼ N(μ, Σ), where μ = (1, 0, −1)′ and Σ is given by

Σ = 1
13

⎡

⎣
8 −2 1

−2 7 3
1 3 5

⎤

⎦ .

Let Xi be the ith element of X(i = 1, 2, 3).

(a) Find the distribution of X1 + 2X2.
(b) Find the joint density function of X1 and X2.
(c) Find the conditional distribution of X1, given X2 and X3.
(d) Find the joint density function of Y1 = X1+X2+X3, Y2 = X1−2X3.
(e) Find the moment generating function of Y = (Y1, Y2)

′, where Y1
and Y2 are the same as in part (d).

4.2 The moment generating function of a random vector X = (X1, X2, X3)
′

is given by

φX(t) = exp
(

t1 + t2 + 2t3 + 2t2
1 + t2

2 + 3
2

t2
3 + t1t2 + t2t3

)
.

(a) Find the moment generating function of X1.
(b) Find the moment generating function of (X1, X2)

′.
(c) Find the value of P(X1 + X2 > X3).

4.3 Suppose that X ∼ N(μ, Σ), where μ = (5.6, 5.1)′ and Σ is given by

Σ =
[

0.04 0.024
0.024 0.04

]
.

Compute the value of the following probability:

P(5.20 < X2 < 5.85|X1 = 6.1),

where X1 and X2 are the elements of X.
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4.4 Show that the density function, f (x), for the normal distribution N(μ, σ2)

satisfies the differential equation,

df (x)

dx
= (μ − x)

σ2 f (x).

[Note: This shows that the normal distribution is a member of a general
family of distributions known as Pearson distributions defined by the
differential equation,

df (x)

dx
= (x − a)f (x)

b0 + b1x + b2x2 ,

where a, b0, b1, and b2 are constant scalars (see Kendall and Stuart, 1963,
Chapter 6, p. 148).]

4.5 Suppose that X = (X1, X2)
′ has the bivariate normal distribution

N(0, Σ), where

Σ =
[
σ11 σ12
σ12 σ22

]
.

Show that the conditional distribution of X1|X2 has mean = ρX2

√
σ11
σ22

and variance = σ11(1−ρ2), where ρ is the correlation coefficient between
X1 and X2 given by

ρ = σ12

(σ11σ22)1/2

4.6 Suppose that X = (X1, X2, X3)
′ has the multivariate normal distribution

such that μ1 = μ2 = −1, μ3 = 0, σ11 = 4, σ22 = 8, σ33 = 12, where μi is
the mean of Xi and σii is the variance of Xi(i = 1, 2, 3). Suppose also that
X1 is independent of X2 − X1, X1 is independent of X3 − X2, and X2 is
independent of X3 − X2.

(a) Find the variance–covariance matrix of X.
(b) Find P(X1 + X2 + 2X3 < 2).
(c) Find the conditional distribution of X1 given X2.
(d) Find the conditional distribution of X1 given X2 and X3

4.7 Let X1, X2, . . . , Xn be mutually independent and identically distributed
as N(0, Σ). Let A = ∑n

i=1 XiX′
i. Show that c′Ac ∼ σ2

cχ
2
n where c is a

constant vector and σ2
c = c′Σc.

4.8 Suppose that X = (X1, X2)
′ has the bivariate normal distribution with

a mean vector μ = λ12, and a variance–covariance matrix Σ = (σij),
where λ is the common mean of X1 and X2. Let ρ = σ12

(σ11σ22)1/2 be the
correlation coefficient between X1 and X2, and let r and θ be the polar
coordinates corresponding to X1 −λ and X2 −λ, that is, X1 − λ= r cos θ,
X2 − λ = r sin θ.
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(a) Find the joint density function of r and θ.
(b) Consider the probability value

p = P(|X1 − λ| < |X2 − λ|).
Use part (a) to find an expression for p as a double integral, and
show that it can be written as

p = 2

3π
4�

π
4

⎡

⎣
∞�
0

g(r, θ)dr

⎤

⎦ dθ,

where g(r, θ) is the joint density function of r and θ.
(c) Show that the value of p in part (b) is equal to

p = 1 − 1
π

arctan

{
2[σ11σ22(1 − ρ2)] 1

2

σ22 − σ11

}
,

if σ22 > σ11, where arctan(.) is the inverse of the tangent function
and has values inside the interval [−π

2 , π
2 ].

[Note: A large value of p indicates that X1 is closer to λ than X2, which
means that X1 is a better estimator of λ than X2.]

[Hint: See the article by Lowerre (1983).]

4.9 Suppose that f (x) is a density function of the form

f (x) = exp[τμx + s(x) + q(μ)], −∞ < x < ∞,

where
μ is the mean of the corresponding distribution,
s(x) and q(μ) are functions of x and μ, respectively
τ is a positive constant

(a) Show that μ = − 1
τ

dq(μ)

dμ
.

(b) Find the moment generating function for this distribution.
(c) Deduce from part (b) that this distribution must be normal with

mean μ and variance = 1
τ

.

[Note: This exercise is based on Theorem 1 by Anderson (1971)]

4.10 Let X = (X1, X2, . . . , Xn)′ be a random vector of n elements (n ≥ 3) with
the density function,

f (x) = 1
(2π)n/2 e− 1

2
∑n

i=1 x2
i

[
1 +

n∏

i=1

(xie− 1
2 x2

i )

]
.

It can be seen that X is not normally distributed.
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(a) Show that the marginal distributions of the elements of X are nor-
mally distributed as N(0, 1).

(b) Let X(j) be a vector of (n−1) elements obtained from X by just delet-
ing Xj(j = 1, 2, . . . , n). Show that X(j) has the multivariate normal
distribution, and that its elements are mutually independent N(0, 1)

random variables.

(c) Show that the elements of X are pairwise independent, that is,
any two elements of X are independent, but are not mutually
independent.

(d) Deduce that any proper subset of {X1, X2, . . . , Xn} consists of ran-
dom variables that are jointly normally distributed and mutually
independent.

[Note: This example demonstrates that pairwise independence does
not necessarily imply mutual independence, and that a proper subset
of a random vector X may be jointly normally distributed, yet X itself
does not have the multivariate normal distribution. For more details,
see Pierce and Dykstra (1969)].

4.11 Let X1, X2, . . . , Xn be a random sample from the N(μ, σ2) distribution.
Using properties (1) through (3) in Section 4.8, we can write

P

(
−a <

X̄ − μ
σ√

n

< a

)
= 1 − α1,

and

P

(
b <

1
σ2

n∑

i=1

(Xi − X̄)2 < c

)
= 1 − α2,

where a is the upper (α1/2)100th percentile of the standard normal
distribution, b and c are the lower and upper (α2/2)100th percentiles of
the χ2

n−1 distribution, and X̄ = 1
n

∑n
i=1 Xi.

(a) Show that

P

[
X̄ − a

σ√
n

< μ < X̄ + a
σ√
n

,
1
c

n∑

i=1

(Xi − X̄)2 < σ2 <
1
b

n∑

i=1

(Xi − X̄)2

]

= (1 − α1)(1 − α2).

This gives a so-called (1 − α1)(1 − α2)100% confidence region for
(μ, σ2).

(b) Draw the region in part (a).
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(c) Show that by projecting this confidence region onto the vertical
σ2-axis, we obtain a conservative (1 − α1)(1 − α2)100% confidence
interval on σ2, that is,

P(d1 < σ2 < d2) ≥ (1 − α1)(1 − α2),

where [d1, d2] is the projection of the confidence region on the σ2-
axis.

(d) Show that

n
σ2 (X̄ − μ)2 + 1

σ2

n∑

i=1

(Xi − X̄)2 ∼ χ2
n

(e) Use the result in part (d) to obtain another confidence region on
(μ, σ2).

[Note: For additional details concerning these results and others, see
Arnold and Shavelle (1998).]

4.12 It is known that if f (x1, x2) is the joint density function of X1 and X2,
where −∞ < X1 < ∞, −∞ < X2 < ∞, then the marginal density
function of X1 is given by

� ∞
−∞ f (x1, x2)dx2. Use this method to show

that if (X1, X2)
′ ∼ N(0, I2), then Y = X1 + X2 is distributed as N(0, 2).

[Hint: Use a particular change of variables.]

4.13 Let X1 and X2 be two independent normal variables with means, μ1, μ2,
and variances, σ2

1, σ2
2, respectively. Let Y = min(X1, X2).

(a) Show that the density function of Y is given by

f (y) = f1(y) + f2(y), −∞ < y < ∞,

where

f1(y) = 1
σ1

φ

(
y − μ1

σ1

)
Φ

(
−y − μ2

σ2

)
,

f2(y) = 1
σ2

φ

(
y − μ2

σ2

)
Φ

(
−y − μ1

σ1

)
,

and where φ(x) = 1√
2π

e− x2
2 , and Φ(x) = � x

−∞ φ(u)du.

(b) Find the moment generating function of Y and show that it is
equal to

φY(t) = φ1(t) + φ2(t),
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where

φ1(t) = exp
(

μ1t + 1
2
σ2

1t2
)

Φ

[
μ2 − μ1 − σ2

1t

(σ2
1 + σ2

2)
1/2

]

φ2(t) = exp
(

μ2t + 1
2
σ2

2t2
)

Φ

[
μ1 − μ2 − σ2

2t

(σ2
1 + σ2

2)
1/2

]
.

(c) Make use of the moment generating function in part (b) to find the
mean and variance of Y.

[Note: For more details, see Cain (1994) and Tong (1990, p. 147).]

4.14 Let X1 and X2 be distributed independently as N(0, 1).

(a) Find the joint density function of

Y1 = X2
1 + X2

2, Y2 = X1

X2
,

and show that it is equal to

f (y1, y2) = 1
2π

e− 1
2 y1(1 + y2

2)
−1.

(b) Find the marginal density functions of Y1 and Y2 and show that Y2
has the Canchy distribution with the density function

f2(y2) = 1

π(1 + y2
2)

.

(c) Deduce from part (b) that Y1 and Y2 are independent.

4.15 (a) Show that for every z > 0,
(

1
z

− 1
z3

)
φ(z) < 1 − Φ(z) <

φ(z)
z

,

where φ(z) = 1√
2π

e− 1
2 z2

, Φ(z) = � z
−∞ φ(x)dx.

(b) Deduce from part (a) that for a large z, 1 − Φ(z) is approximately
equal to φ(z)

z .

(c) Deduce from part (a) that if X ∼ N(μ, σ2), then

σ

(
1
z

− 1
z3

)
<

P(X > x)

f (x)
<

σ

z
,

where z = x−μ
σ

> 0, and f (x) is the density function of X.

[Note: The ratio 1
f (x)

P(X > x) is known as Mill’s ratio.]

[Hint: For a proof of part (a), see Lemma 2 in Feller (1957, p. 166).]
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4.16 Show that Mill’s ratio, described in Exercise 4.15, satisfies the following
inequality:

1 − Φ(z)
φ(z)

≥ (4 + z2)1/2 − z
2

for z > 0, where φ(z) and Φ(z) are the same as in Exercise 4.15.

[Hint: See the note by Birnbaum (1942).]

4.17 Let X1 and X2 be two independent random variables distributed as
N(μ, σ2). Let s2

2 be the corresponding sample variance

s2
2 =

2∑

i=1

(Xi − X̄2)
2,

where X̄2 = 1
2 (X1 + X2).

(a) Show that s2
2 = 1

2 (X1 − X2)
2.

(b) Show that X̄2 and s2
2 are independent.

(c) Show that s2
2

σ2 ∼ χ2
1.

[Note: Parts (b) and (c) provide a verification of properties (1) and (3),
respectively, in Section 4.8 when n = 2.]

4.18 Let X1, X2, . . . , Xn be mutually independent and identically distributed
as N(μ, σ2). Let X̄n and s2

n be the corresponding sample mean and sam-
ple variance, respectively. The objective here is to prove properties (1)
and (3) in Section 4.8 by mathematical induction on the sample size n.
Exercise 4.17 shows that these properties are true when n = 2. To show
now that the same properties hold for a sample of size n + 1, if it is
assumed that they hold for a sample of size n. For this purpose, the
validity of the following parts must be established:

(a) Show that X̄n+1 = 1
n+1 (nX̄n + Xn+1), and

ns2
n+1 = (n − 1)s2

n + n
n + 1

(Xn+1 − X̄n)2.

(b) Show that Xn+1 − X̄n is normally distributed with mean zero and
variance σ2(1 + 1

n ).

(c) Deduce from parts (a) and (b) that if X̄n and s2
n are independent and

(n−1)s2
n

σ2 ∼ χ2
n−1, then

ns2
n+1
σ2 ∼ χ2

n.

(d) Show that nX̄n + Xn+1 is independent of Xn+1 − X̄n.
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(e) Deduce from parts (a) and (d) that if X̄n and s2
n are independent,

then so are X̄n+1 and s2
n+1.

[Note: Parts (c) and (e) prove the validity of properties (1) and (3) for a
sample of size n+1. Hence, these properties should be valid for all n ≥ 2.
More details concerning this proof using the mathematical induction
argument can be found in Stigler (1984).]

4.19 Let X1, X2, . . . , Xn(n ≥ 2) be mutually independent and identically dis-
tributed as N(μ, Σ), each having m elements (m ≤ n − 1). Let X̄n =
1
n

∑n
i=1 Xi be the sample mean vector and

Sn = 1
n − 1

n∑

i=1

(Xi − X̄n)(Xi − X̄n)′

be the sample variance–covariance matrix.

(a) Show that X̄n and Sn are independently distributed for all n.

(b) Use the method of mathematical induction on the sample size n to
show that (n − 1)Sn has the Wishart distribution Wm(n − 1, Σ) with
n − 1 degrees of freedom.

[Hint: To prove part (a), show first that

Cov(Xi − X̄n, X̄n) = 0, i = 1, 2, . . ., n.

Then, [(X1 − X̄n)′, (X2 − X̄n)′, . . . , (Xn − X̄n)′]′ is uncorrelated with, and
hence independent of, X̄n. To prove part (b), show that

(1) (b) is true for n = 2, and

(2) if (b) is true for a sample of size n, then it must be true for a sample
of size n + 1.

To show (1), use the fact that

1√
2
(X1 − X2) ∼ N(0, Σ),

and that

S2 = 1
2
(X1 − X2)(X1 − X2)

′.

To prove (2), establish first the following identities:

X̄n+1 = 1
n + 1

(nX̄n + Xn+1)

nSn+1 = (n − 1)Sn + n
n + 1

(Xn+1 − X̄n)(Xn+1 − X̄n)′,
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then use the fact that (n−1)Sn ∼ Wm(n − 1, Σ) by the induction assump-
tion, X̄n and Sn are independent, and that

Xn+1 − X̄n ∼ N
[

0,
(

1 + 1
n

)
Σ

]

to show that nSn+1 ∼ Wm(n, Σ). Hence, part (b) is true for all n. For
more details concerning these results, see Ghosh (1996).]



André I. Khuri/Linear Model Methodology C4819_C005 Finals Page 89 2009-9-14

5
Quadratic Forms in Normal Variables

The subject of quadratic forms in normal random variables has received
a great deal of attention since the early development of the theory of lin-
ear models. This is mainly due to the important role quadratic forms play
in the statistical analysis of linear models. The sums of squares in a given
ANOVA (analysis of variance) table, for example, can each be represented as
a quadratic form in the corresponding data vector. These sums of squares are
used to develop appropriate test statistics.

The purpose of this chapter is to provide a detailed coverage of the basic
results pertaining to the distribution of quadratic forms in normally dis-
tributed random vectors. The coverage also includes results concerning the
independence of a linear form from a quadratic form as well as the indepen-
dence of two or more quadratic forms.

5.1 The Moment Generating Function

Let X′AX be a quadratic form in X, where A is a symmetric matrix of order
n × n and X is distributed as N(μ, Σ). The moment generating function of X′AX
is given by

φ(t) = E[exp (t X′AX)]
=
�
Rn

exp (t x′Ax) f (x) dx,

where f (x) is the density function of X as shown in formula (4.17). Hence,

φ(t) = 1
(2π)n/2[det(Σ)]1/2

�
Rn

exp [t x′Ax − 1
2
(x − μ)′Σ−1(x − μ)] dx

= exp (− 1
2μ′Σ−1μ)

(2π)n/2[det(Σ)]1/2

�
Rn

exp
(

−1
2

x′W−1
t x + x′Σ−1μ

)
dx, (5.1)

where Wt is a positive definite matrix whose inverse is

W−1
t = Σ−1/2(In − 2 t Σ1/2AΣ1/2)Σ−1/2, (5.2)

89
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and Σ−1/2 is the inverse of Σ1/2, the square root of Σ, which was defined in
Section 4.3. In Appendix 5.A, it is shown that there exists a positive number,
t0, such that W−1

t , and hence Wt, is positive definite if | t |< t0, where t0 is
given by

t0 = 1
2 maxi | λi | , (5.3)

and λi (i = 1, 2, . . . , n) is the ith eigenvalue of the matrix Σ1/2AΣ1/2. Making
now the following change of variables:

x = y + WtΣ
−1μ,

formula (5.1) can be written as

φ(t) = exp (− 1
2μ′Σ−1μ)

(2π)n/2[det(Σ)]1/2 exp
(

1
2
μ′Σ−1WtΣ

−1μ

) �
Rn

exp
(

−1
2

y′W−1
t y

)
dy.

(5.4)

Note that

�
Rn

exp
(

−1
2

y′W−1
t y

)
dy = (2π)n/2[det(Wt)]1/2. (5.5)

The proof of (5.5) is the same as the one used to derive formula (4.28). From
(5.4) and (5.5) we then have

φ(t) = [det(Wt)]1/2

[det(Σ)]1/2 exp
{
−1

2
μ′Σ−1/2

[
In −

(
In − 2 t Σ1/2AΣ1/2

)−1
]

Σ−1/2μ

}
,

or equivalently,

φ(t) =
exp

{
− 1

2μ′Σ−1/2
[

In −
(

In − 2 t Σ1/2AΣ1/2
)−1

]
Σ−1/2μ

}

[
det

(
In − 2 t Σ1/2AΣ1/2

)]1/2 . (5.6)

This function is defined for | t |< t0, where t0 is given by (5.3).

Theorem 5.1 Let X ∼ N(μ, Σ). Then, the rth cumulant of X′AX is

κr(X′AX) = 2r−1(r − 1)!{tr[(AΣ)r] + r μ′(AΣ)r−1Aμ}, r = 1, 2, . . . (5.7)

Proof. We may recall from Section 4.2 that the rth cumulant of X′AX is
the coefficient of tr

r! (r = 1, 2, . . .) in Mclaurin’s series expansion of ψ(t), the
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cumulant generating function of X′AX, which is the natural logarithm of φ(t)
in (5.6), that is,

ψ(t) = −1
2

log
[
det

(
In − 2 t Σ1/2AΣ1/2

)]

− 1
2
μ′Σ−1/2

[
In −

(
In − 2 t Σ1/2AΣ1/2

)−1
]

Σ−1/2μ. (5.8)

Note that

det
(

In − 2 t Σ1/2AΣ1/2
)

=
n∏

i=1

(1 − 2 t λi), (5.9)

where λi is the ith eigenvalue of Σ1/2AΣ1/2 (i = 1, 2, . . . , n). Taking the loga-
rithm of both sides of (5.9), we get

log
[
det

(
In − 2 t Σ1/2AΣ1/2

)]
=

n∑

i=1

log(1 − 2 t λi).

If | 2t λi |< 1, then log(1 − 2 t λi) can be represented by the power series,

log(1 − 2 t λi) = −
∞∑

r=1

(2 t λi)
r

r
, i = 1, 2, . . . , n,

which is absolutely convergent for all t such that | 2 t λi | < 1, i = 1, 2, . . . , n.
This condition is satisfied if | t |< t0, where t0 is given by (5.3). In this case,

−1
2

log
[
det

(
In − 2 t Σ1/2AΣ1/2

)]
= 1

2

n∑

i=1

∞∑

r=1

(2 t λi)
r

r

=
∞∑

r=1

(2 t)r

2 r

n∑

i=1

λr
i

=
∞∑

r=1

(2 t)r

2 r
tr
[(

Σ1/2AΣ1/2
)r]

=
∞∑

r=1

tr

r!
{

2r−1 (r − 1)! tr
[(

Σ1/2AΣ1/2
)r]}

.

(5.10)

Furthermore,

(
In − 2 t Σ1/2AΣ1/2

)−1 =
∞∑

r=0

(
2 t Σ1/2AΣ1/2

)r

= In +
∞∑

r=1

(2 t)r
(
Σ1/2AΣ1/2

)r
. (5.11)
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The power series in the symmetric matrix 2 t Σ1/2AΣ1/2 on the right-hand
side of (5.11) converges to the matrix on the left-hand side if | 2 t λi |< 1 for
i = 1, 2, . . . , n (see Theorem 5.5.2 in Khuri, 2003, p. 180). As was seen earlier,
this condition is satisfied if | t |< t0. Hence,

−1
2
μ′Σ−1/2

[
In −

(
In − 2 t Σ1/2AΣ1/2

)−1
]

Σ−1/2μ

= 1
2

∞∑

r=1

(2 t)rμ′Σ−1/2
(
Σ1/2AΣ1/2

)r
Σ−1/2μ

=
∞∑

r=1

tr

r!
(

2r−1 r!
)

μ′Σ−1/2
(
Σ1/2AΣ1/2

)r
Σ−1/2μ. (5.12)

Substituting the right-hand sides of (5.10) and (5.12) in (5.8) yields a Maclau-
rin’s series expansion of ψ(t), which is convergent if | t |< t0, where t0 is
given by (5.3). The coefficient of tr

r! in this expansion gives κr(X′AX), which
is equal to

κr
(
X′AX

) = 2r−1 (r − 1)! tr
[(

Σ1/2AΣ1/2
)r]

+ 2r−1 r! μ′Σ−1/2
(
Σ1/2AΣ1/2

)r
Σ−1/2μ, r = 1, 2, . . . (5.13)

Note that

tr
[(

Σ1/2AΣ1/2
)r] = tr

[
(AΣ)r] ,

and

μ′Σ−1/2
(
Σ1/2AΣ1/2

)r
Σ−1/2μ = μ′(AΣ)r−1Aμ.

Making the proper substitution in (5.13) results in formula (5.7).

Corollary 5.1 If X ∼ N(μ, Σ), then the mean and variance of X′AX are

E
(
X′AX

) = μ′Aμ + tr(AΣ),

Var
(
X′AX

) = 4 μ′AΣAμ + 2 tr
[
(AΣ)2

]
.

Proof. The mean and variance of X′AX are, respectively, the first and second
cumulants of X′AX. Hence, from formula (5.7) we obtain

E(X′AX) = κ1(X′AX)

= μ′Aμ + tr(AΣ),
Var(X′AX) = κ2(X′AX)

= 4 μ′AΣAμ + 2 tr[(AΣ)2].
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It should be noted that the expression for E(X′AX) is valid even if X is not
normally distributed. This is shown in the next theorem.

Theorem 5.2 If X is any random vector with a mean μ and a variance–
covariance matrix Σ, then

E
(
X′AX

) = μ′Aμ + tr(AΣ).

Proof. Since X′AX is a scalar, it is equal to its trace. Hence,

E
(
X′AX

) = E
[
tr
(
X′AX

)]

= E
[
tr
(
AXX′)]

= tr
[
E
(
AXX′)]

= tr
[
AE

(
XX′)]

= tr
[
A
(
Σ + μμ′)] , by (4.9)

= tr
(
Aμμ′)+ tr (AΣ)

= μ′Aμ + tr(AΣ).

The next theorem describes the covariance of X′AX and a linear form BX,
where B is a constant matrix and X is normally distributed.

Theorem 5.3 Let X′AX be a quadratic form and BX be a linear form, where
B is a constant matrix of order m × n. If X ∼ N(μ, Σ), then

Cov
(
BX, X′AX

) = 2 BΣAμ. (5.14)

Proof. We have that

Cov
(
BX, X′AX

) = E
{
(BX − Bμ)

[
X′AX − E(X′AX)

]}

= E
{
(BX − Bμ)

[
X′AX − μ′Aμ − tr (AΣ)

]}

= E
[
(BX − Bμ)

(
X′AX − μ′Aμ

)]
, (5.15)

since the expected value of BX − Bμ is equal to the zero vector. By centering
X around its mean, we can write

(BX − Bμ)
(
X′AX − μ′Aμ

) = B(X − μ)[(X − μ)′A(X − μ) + 2 (X − μ)′Aμ].
Let X − μ = Y. Then, Y ∼ N(0, Σ), and

Cov
(
BX, X′AX

) = E
[
BY

(
Y ′AY + 2 Y ′Aμ

)]
. (5.16)

Now,

E
[
(BY) (2 Y ′Aμ)

] = 2 BE
(
YY ′)Aμ

= 2 BΣAμ, (5.17)
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and

E
[
(BY)

(
Y ′AY

)] = BE
[
(Y)

(
Y ′AY

)]
. (5.18)

Note that (Y)(Y ′AY) is a scalar multiple of the random vector Y. Its ith element
is equal to

Yi(Y ′AY) = Yi

n∑

j=1

n∑

k=1

ajkYjYk, i = 1, 2, . . . , n,

where Yi is the ith element of Y and ajk is the (j, k)th element of A (j, k =
1, 2, . . . , n). But, for any values of i, j, k (= 1, 2, . . . , n),

E(YiYjYk) = 0,

since by (4.17),

E(YiYjYk) = 1
(2π)n/2[det(Σ)]1/2

�
Rn

yiyjyk exp
(

−1
2

y′Σ−1y
)

dy,

and the integrand is an odd function over Rn. It follows that E[Yi(Y ′ AY)] = 0
for i = 1, 2, . . . , n. Hence, E[(Y)(Y ′ AY)] = 01, where 01 is a zero vector of
order n × 1. Substituting this value in (5.18), we get

E[(BY)(Y ′AY)] = 02, (5.19)

where 02 is a zero vector of order m × 1. From (5.16), (5.17), and (5.19), we
conclude (5.14).

5.2 Distribution of Quadratic Forms

In this section, we begin our study of the distribution of quadratic forms in
normal random vectors.

Lemma 5.1 Let A be a symmetric matrix of order n × n and X be normally
distributed as N(μ, Σ). Then, X′AX can be expressed as

X′AX =
k∑

i=1

γiWi, (5.20)

where γ1, γ2, . . . , γk are the distinct nonzero eigenvalues of Σ1/2AΣ1/2 (or,
equivalently, the matrix AΣ) with multiplicities ν1, ν2, . . . , νk, respectively,
and the W′

is are mutually independent such that Wi ∼ χ2
νi

(θi), where

θi = μ′Σ−1/2PiP′
iΣ

−1/2μ, (5.21)
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and Pi is a matrix of order n×νi whose columns are orthonormal eigenvectors
of Σ1/2AΣ1/2 corresponding to νi (i = 1, 2, . . . , k).

Proof. Let X∗ = Σ−1/2X. Then, X∗ ∼ N(Σ−1/2μ, In), and X′AX = (X∗)′Σ1/2

AΣ1/2X∗. Let γ1, γ2, . . . , γk be the distinct nonzero eigenvalues of Σ1/2AΣ1/2

with multiplicities ν1, ν2, . . . , νk, respectively. By applying the Spectral
Decomposition Theorem (Theorem 3.4) to the symmetric matrix Σ1/2AΣ1/2,
we obtain

Σ1/2AΣ1/2 = PΓP′, (5.22)

where
Γ is a diagonal matrix of eigenvalues of Σ1/2AΣ1/2

P is an orthogonal matrix whose columns are the corresponding eigenvec-
tors

The matrix Γ can be written as

Γ = diag(γ1Iν1 , γ2Iν2 , . . . , γkIνk , 0), (5.23)

where 0 is a diagonal matrix whose diagonal elements are the n − r zero
eigenvalues of Σ1/2AΣ1/2 and r = ∑k

i=1 νi, which is the rank of A.
Let now Z = P′X∗. Then, Z ∼ N(P′Σ−1/2μ, In). Let us also partition P

as P = [P1 : P2 : . . . : Pk : Pk+1], where Pi is a matrix of order n × νi
whose columns are orthonormal eigenvectors of Σ1/2AΣ1/2 corresponding
to γi (i = 1, 2, . . . , k), and the columns of Pk+1 are orthonormal eigenvectors
corresponding to the zero eigenvalue of multiplicity n − r. Using (5.22) we
can then write

X′AX = (X∗)′PΓP′X∗

= Z′ΓZ

=
k∑

i=1

γiZ′
iZi

=
k∑

i=1

γiWi,

where
Zi = P′

iX
∗

Wi = Z′
iZi (i = 1, 2, . . . , k)

Since Zi ∼ N(P′
iΣ

−1/2μ, Iνi), Wi ∼ χ2
νi

(θi), where θi = μ′Σ−1/2PiP′
iΣ

−1/2μ,
i = 1, 2, . . . , k (see Section 4.7.2). Furthermore, W1, W2, . . . , Wk are mutually
independent by the fact that Z1, Z2, . . . , Zk are mutually independent. The
latter assertion follows since Z is normally distributed and Cov(Zi, Zj) =
P′

iPj = 0 for i �= j, which implies mutual independence of the Zi’s by
Corollary 4.2. This completes the proof of the lemma.
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Lemma 5.1 gives a representation of the distribution of X′AX as a linear
combination of mutually independent chi-squared variates when X has the
multivariate normal distribution. This lemma wil be instrumental in proving
the following important result, which gives the condition for X′AX to have
the chi-squared distribution.

Theorem 5.4 Let A be a symmetric matrix of order n × n and X be normally
distributed as N(μ, Σ). A necessary and sufficient condition for X′AX to have
the noncentral chi-squared distribution χ2

r (θ), where θ = μ′Aμ, is that AΣ be
idempotent of rank r.

Proof. We shall first prove the sufficiency part, then prove the necessity part,
which is quite more involved.

Sufficiency. Suppose that AΣ is idempotent of rank r. To show that X′AX
is distributed as χ2

r (θ), where θ = μ′Aμ. It should first be noted that AΣ is
idempotent if and only if the symmetric matrix Σ1/2AΣ1/2 is idempotent. The
proof of this assertion is given in Appendix 5.B.

The proof of sufficiency can be easily established by invoking Lemma 5.1.
If AΣ is idempotent of rank r, then so is the matrix Σ1/2AΣ1/2. Hence,
Σ1/2AΣ1/2 must have r eigenvalues equal to 1 and n − r eigenvalues equal to
zero (see property (a) in Section 3.9 concerning the eigenvalues of an idempo-
tent matrix). Using the representation (5.20) in Lemma 5.1, it can be concluded
that X′AX = W1 ∼ χ2

r (θ1) since k = 1, γ1 = 1, and ν1 = r. The noncentrality
parameter θ1 in (5.21) is given by

θ1 = μ′Σ−1/2P1P′
1Σ

−1/2μ, (5.24)

where P1 is such that P = [P1 : P2] is the orthogonal matrix of orthonormal
eigenvectors of Σ1/2AΣ1/2 with P1 and P2 being the portions of P correspond-
ing to the eigenvalues 1 and 0, respectively. Hence, by formula (5.22),

Σ1/2AΣ1/2 = P1P′
1,

since from (5.23), Γ = diag(Ir, 0). By making the substitution in (5.24) we
conclude that θ1 = μ′Aμ. We shall drop subscript 1 and use just θ = μ′Aμ

since there is only one noncentrality parameter.
An alternative proof of sufficiency is based on showing that the moment

generating function of X′AX is the same as the one for χ2
r (θ) when AΣ is

idempotent of rank r (see Exercise 5.12).
Necessity. Suppose that X′AX ∼ χ2

r (θ). To show that AΣ is idempotent of
rank r. The proof was given by Khuri (1999) and is reproduced here.

Let us begin by considering the representation (5.20) of Lemma 5.1. If
X′ AX ∼ χ2

r (θ), then by Theorem 4.3, its moment generating function (m.g.f.),
denoted here by φ(t, θ), is
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φ(t, θ) = (1 − 2t)−r/2 exp [θt(1 − 2t)−1]
= (1 − 2t)−r/2 exp

[
−θ

2

(
1 − 1

1 − 2t

)]
, t <

1
2

. (5.25)

Similarly, since Wi ∼ χ2
νi

(θi), i = 1, 2, . . . , k, its m.g.f., which is denoted by
φi(t, θi), is

φi(t, θi) = (1 − 2t)−νi/2 exp
[
−θi

2

(
1 − 1

1 − 2t

)]
, t <

1
2

, i = 1, 2, . . . , k.

Furthermore, since the Wi’s in (5.20) are mutually independent, then the m.g.f.
of the right-hand side of (5.20), denoted by φs(t, θ1, θ2, . . . , θk), is of the form

φs(t, θ1, θ2, . . . , θk)

=
k∏

i=1

(1 − 2γit)−νi/2exp
[
−θi

2

(
1 − 1

1 − 2γit

)]
, | t | < 1

2 maxi | γi | .

(5.26)

Note that in (5.26), γi t must be less than 1
2 for i = 1, 2, . . . , k. This is satisfied

if | t |< 1
2 maxi|γi| . Equating the right-hand sides of (5.25) and (5.26), we get

(1 − 2t)−r/2 exp
[
−θ

2

(
1 − 1

1 − 2t

)]

=
k∏

i=1

(1 − 2γit)−νi/2exp
[
−θi

2

(
1 − 1

1 − 2γit

)]
, | t | < t∗, (5.27)

where

t∗ = min
(

1
2

,
1

2 maxi | γi |
)

.

Taking the natural logarithms of both sides of (5.27), we obtain

− r
2

log(1 − 2t) − θ

2

(
1 − 1

1 − 2t

)

=
k∑

i=1

[
−νi

2
log(1 − 2γit)] − θi

2

(
1 − 1

1 − 2γit

)]
, | t | < t∗. (5.28)
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Now, for | u |< 1, Maclaurin’s series expansions of the functions log(1 − u)

and 1 − 1
1−u are given by

log(1 − u) = −
∞∑

j=1

uj

j
, (5.29)

1 − 1
1 − u

= −
∞∑

j=1

uj, (5.30)

respectively. Applying these expressions to the appropriate terms in (5.28),
we get

r
2

∞∑

j=1

(2 t)j

j
+ θ

2

∞∑

j=1

(2 t) j =
k∑

i=1

⎡

⎣νi

2

∞∑

j=1

(2 γi t)j

j
+ θi

2

∞∑

j=1

(2 γi t)j

⎤

⎦ , | t | < t∗.

(5.31)

Let us now equate the coefficients of (2 t) j on both sides of (5.31). We obtain

r
2 j

+ θ

2
=

k∑

i=1

(
νi

2 j
+ θi

2

)
γ

j
i, j = 1, 2, . . . (5.32)

Formula (5.32) implies that | γi |≤ 1 for i = 1, 2, . . . , k, otherwise, if | γi |> 1,
then by letting j go to infinity, the right-hand side of (5.32) will tend to infinity.
This leads to a contradiction since, as j → ∞, the limit of the left-hand side
of (5.32) is equal to θ

2 < ∞.
The next step is to show that | γi |= 1 for i = 1, 2, . . . , k. If | γi |< 1, then

by taking the sum over j of the terms on both sides of (5.32), we obtain

∞∑

j=1

(
r

2 j
+ θ

2

)
=

k∑

i=1

νi

2

⎛

⎝
∞∑

j=1

γ
j
i

j

⎞

⎠+ 1
2

k∑

i=1

θi

∞∑

j=1

γ
j
i. (5.33)

Using formulas (5.29) and (5.30) in (5.33), we get

∞∑

j=1

(
r

2 j
+ θ

2

)
= −

k∑

i=1

νi

2
log(1 − γi) − 1

2

k∑

i=1

θi

(
1 − 1

1 − γi

)
. (5.34)

The equality in (5.34) is not possible since the left-hand side is infinite (both∑∞
j=1

1
j and

∑∞
j=1 θ are divergent series), whereas the right-hand side is finite.

This contradiction leads to the conclusion that | γi |= 1 for i = 1, 2, . . . , k.
We recall from Lemma 5.1 that k is the number of distinct nonzero eigen-

values of Σ1/2AΣ1/2 (or, equivalently, of the matrix AΣ). The next objective is
to show that k = 1 and γ1 = 1.
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Since | γi |= 1 for i = 1, 2, . . . , k, there can only be three cases to consider,
namely,

(a) k = 2, γ1 = 1, γ2 = −1.

(b) k = 1, γ1 = −1.

(c) k = 1, γ1 = 1.

We now show that Case (c) is the only valid one.

Case (a). Choosing j to be an even integer in (5.32), we obtain

r
2 j

+ θ

2
=

2∑

i=1

(
νi

2 j
+ θi

2

)
, j = 2, 4, . . . (5.35)

Letting j go to infinity (as an even integer) in (5.35), we get θ =
θ1 + θ2. Hence, (5.35) shows that r = ν1 + ν2 = rank(Σ1/2AΣ1/2) =
rank(AΣ). Choosing now j to be an odd integer in (5.32) yields the
following result:

r
2 j

+ θ

2
= ν1

2 j
+ θ1

2
− ν2

2 j
− θ2

2
, j = 1, 3, . . . (5.36)

Substituting θ = θ1 + θ2, r = ν1 + ν2 in (5.36), we obtain

ν2

2 j
+ θ2

2
= −ν2

2 j
− θ2

2
, j = 1, 3, . . .

This is not possible since νi > 0 and θi ≥ 0 for i = 1, 2. Case (a) is
therefore invalid.

Case (b). This case is also invalid. Choosing here j to be an odd integer in
(5.32), we get

r
2 j

+ θ

2
= −ν1

2 j
− θ1

2
, j = 1, 3, . . .

This equality is not possible since the left-hand side is positive
whereas the right-hand side is negative.

Having determined that Cases (a) and (b) are not valid, Case (c) must therefore
be the only valid one. In this case, (5.32) takes the form

r
2 j

+ θ

2
= ν1

2 j
+ θ1

2
, j = 1, 2, . . .

Letting j go to infinity, we find that θ1 = θ, and hence ν1 = r. It follows
that the matrix Σ1/2AΣ1/2 has only one nonzero eigenvalue equal to 1 of
multiplicity ν1 = r, and is therefore of rank r. Since this matrix is symmetric,
it is easy to show, using the Spectral Decomposition Theorem (Theorem 3.4),
that it must also be idempotent. This implies that AΣ is idempotent and of
rank r.
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Corollary 5.2 (Good, 1969) Let A and X be the same as in Theorem 5.4.
A necessary and sufficient condition for X′AX to have the χ2

r (θ) distribution

is that tr (AΣ) = tr
[
(AΣ)2

]
= r, and rank (AΣ) = r.

Proof.
Necessity. If X′AX ∼ χ2

r (θ), then from the proof of the necessity part of
Theorem 5.4, the matrix Σ1/2AΣ1/2 must be idempotent of rank r. Hence,
rank(AΣ) = rank(Σ1/2AΣ1/2) = r, and

tr
[(

Σ1/2AΣ1/2
)2
]

= tr
(
Σ1/2AΣ1/2

)

= rank
(
Σ1/2AΣ1/2

)

= r.

But, tr(Σ1/2AΣ1/2) = tr(AΣ), and tr[(Σ1/2AΣ1/2)2] = tr[(AΣ)2]. Thus,
tr(AΣ) = tr[(AΣ)2] = r.

Sufficiency. Suppose that the given condition is true. Then, tr(Σ1/2AΣ1/2) =
tr[(Σ1/2AΣ1/2)2] = r and rank(Σ1/2AΣ1/2) = r. This implies that Σ1/2AΣ1/2

has r nonzero eigenvalues λ1, λ2, . . . , λr, and
∑r

i=1 λi = ∑r
i=1 λ2

i = r (Note:
λ2

1, λ2
2, . . . , λ2

r are the nonzero eigenvalues of the square of Σ1/2AΣ1/2).
Therefore,

r∑

i=1

(λi − 1)2 =
r∑

i=1

λ2
i − 2

r∑

i=1

λi + r

=
r∑

i=1

λi − 2
r∑

i=1

λi + r

= 0.

Thus, Σ1/2AΣ1/2 has r nonzero eigenvalues equal to 1. It must therefore be
idempotent of rank r. Hence, AΣ is idempotent of rank r. Consequently,
X′AX ∼ χ2

r (θ) by Theorem 5.4.

The following corollaries can be easily proved.

Corollary 5.3 If X ∼ N(0, Σ), then X′AX ∼ χ2
r if and only if AΣ is idempotent

of rank r.

Corollary 5.4 If X ∼ N(μ, Σ), then X′Σ−1X has the noncentral chi-squared
distribution with n degrees of freedom (n is the number of elements of X)
and a noncentrality parameter μ′Σ−1μ.

Corollary 5.5 If X ∼ N(μ, σ2In), then 1
σ2 X′X has the noncentral chi-squared

distribution with n degrees of freedom and a noncentrality parameter μ′μ
σ2 .
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Example 5.1 Let X1, X2, . . . , Xn be mutually independent and normally
distributed random variables such that Xi ∼ N(μ, σ2), i = 1, 2, . . . , n. In
Section 4.8, it was stated that (n−1) s2

σ2 ∼ χ2
n−1, where s2 is the sample variance

given by

s2 = 1
n − 1

n∑

i=1

(Xi − X̄)2,

and X̄ = 1
n
∑n

i=1 Xi. This result can now be easily shown on the basis of
Theorem 5.4.

Let X = (X1, X2, . . . , Xn)′. Then, X ∼ N(μ1n, σ2In), and s2 can be written as

s2 = 1
n − 1

X′(In − 1
n

Jn)X,

where Jn is the matrix of ones of order n × n. Then, by Theorem 5.4,

(n − 1) s2

σ2 = 1
σ2 X′(In − 1

n
Jn)X

∼ χ2
n−1,

since

AΣ =
[

1
σ2

(
In − 1

n
Jn

)](
σ2In

)

= In − 1
n

Jn,

which is idempotent of rank n − 1. Furthermore, the noncentrality parameter
is zero since

θ = μ′Aμ

= 1
σ2 μ21′

n(In − 1
n

Jn)1n

= 0.

Example 5.2 Consider the balanced fixed-effects one-way model,

Yij = μ + αi + εij, i = 1, 2, . . . , a; j = 1, 2, . . . , m, (5.37)

where αi represents the effect of level i of a factor denoted by A (i = 1, 2, . . . , a)
and εij is a random experimental error. It is assumed that μ and αi are
fixed unknown parameters and that the εij’s are independently distributed
as N(0, σ2

ε), i = 1, 2, . . . , a; j = 1, 2, . . . , m. Model (5.37) can be written in
vector form as

Y = μ(1a ⊗ 1m) + (Ia ⊗ 1m)α + ε, (5.38)
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where α = (α1, α2, . . . , αa)
′, Y = (Y11, Y12, . . . , Y1m, . . . , Ya1, Ya2, . . . , Yam)′,

and ε = (ε11, ε12, . . . , ε1m, . . . , εa1, εa2, . . . , εam)′. Under the aforementioned
assumptions, Y ∼ N(μ, Σ), where

μ = E(Y) = μ(1a ⊗ 1m) + (Ia ⊗ 1m)α (5.39)

and

Σ = Var(Y) = σ2
ε(Ia ⊗ Im) = σ2

εIam. (5.40)

The sums of squares associated with factor A and the error term are

SSA = 1
m

a∑

i=1

Y2
i. −

1
am

Y2
..,

SSE =
a∑

i=1

m∑

j=1

Y2
ij − 1

m

a∑

i=1

Y2
i.,

respectively, where Yi. = ∑m
j=1 Yij, Y.. = ∑a

i=1
∑m

j=1 Yij. These sums of
squares can be expressed as quadratic forms, namely,

SSA = Y ′
[

1
m

(
Ia ⊗ Jm

)− 1
am

(
Ja ⊗ Jm

)]
Y, (5.41)

SSE = Y ′
[

Ia ⊗ Im − 1
m

(
Ia ⊗ Jm

)]
Y. (5.42)

Then, by Theorem 5.4,

SSA

σ2
ε

∼ χ2
a−1(θ), (5.43)

SSE

σ2
ε

∼ χ2
a(m−1). (5.44)

The distribution in (5.43) is a noncentral chi-squared since

1
σ2

ε

[
1
m

(
Ia ⊗ Jm

)− 1
am

(
Ja ⊗ Jm

)]
Σ = 1

m

(
Ia ⊗ Jm

)− 1
am

(
Ja ⊗ Jm

)
,

which is idempotent of rank a − 1. The corresponding noncentrality
parameter is

θ = 1
σ2

ε

[μ(1′
a ⊗ 1′

m) + α′(Ia ⊗ 1′
m)]

[
1
m

(
Ia ⊗ Jm

)− 1
am

(
Ja ⊗ Jm

)]

× [μ(1a ⊗ 1m) + (Ia ⊗ 1m)α]
= 1

σ2
ε

α′ (Ia ⊗ 1′
m
) [ 1

m

(
Ia ⊗ Jm

)− 1
am

(
Ja ⊗ Jm

)]
(Ia ⊗ 1m)α
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= m
σ2

ε

α′(Ia − 1
a

Ja)α

= m
σ2

ε

a∑

i=1

(αi − ᾱ.)
2,

where ᾱ. = 1
a
∑a

i=1 αi. Furthermore, the distribution in (5.44) is a central
chi-squared since

1
σ2

ε

[
Ia ⊗ Im − 1

m

(
Ia ⊗ Jm

)]
Σ = Ia ⊗ Im − 1

m

(
Ia ⊗ Jm

)
,

which is idempotent of rank a(m − 1). The noncentrality parameter is zero
since it can be easily verified that

[
μ
(
1′

a ⊗ 1′
m
)+ α′ (Ia ⊗ 1′

m
)] [

Ia ⊗ Im − 1
m

(
Ia ⊗ Jm

)]

× [μ (1a ⊗ 1m) + (Ia ⊗ 1m)α] = 0.

5.3 Independence of Quadratic Forms

This section covers another important area in the distribution theory of
quadratic forms, namely, that of independence of two quadratic forms. The
development of this area has had a long history starting with the work of
Craig (1943), Aitken (1950), Ogawa (1950), and Laha (1956). Several other
authors have subsequently contributed to that development. Craig (1943)
established a theorem giving the necessary and sufficient condition for the
independence of two quadratic forms in normal variates. A historical account
concerning the development of Craig’s theorem was given in Section 1.6. See
also Driscoll and Gundberg (1986).

Theorem 5.5 Let A and B be symmetric matrices of order n × n, and let X
be normally distributed as N(μ, Σ). A necessary and sufficient condition for
X′AX and X′BX to be independent is that

AΣB = 0. (5.45)

Proof. As in Theorem 5.4, the sufficiency part of the present theorem is
relatively easy, but the necessity part is more involved.

Sufficiency. Suppose that condition (5.45) is true. To show that X′AX and
X′BX are independent.

Condition (5.45) is equivalent to

(Σ1/2AΣ1/2)(Σ1/2BΣ1/2) = 0, (5.46)
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which implies that
(
Σ1/2AΣ1/2

) (
Σ1/2BΣ1/2

)
=
(
Σ1/2BΣ1/2

) (
Σ1/2AΣ1/2

)
.

This indicates that the two symmetric matrices, Σ1/2AΣ1/2 and Σ1/2BΣ1/2,
commute. By Theorem 3.9, there exists an orthogonal matrix P such that

Σ1/2AΣ1/2 = PΛ1P′,
Σ1/2BΣ1/2 = PΛ2P′,

where Λ1 and Λ2 are diagonal matrices. From (5.46) it follows that

Λ1Λ2 = 0. (5.47)

The columns of P can be arranged so that, in light of (5.47), Λ1 and Λ2 are
written as

Λ1 =
[

D1 0
0′ 0

]
,

Λ2 =
[

0 0
0′ D2

]
,

where D1 and D2 are diagonal matrices whose diagonal elements are not all
equal to zero.

Let Z = P′Σ−1/2X. Then, Z ∼ N(P′Σ−1/2μ, In). Note that the elements of
Z are mutually independent. Furthermore,

X′AX = Z′
[

D1 0
0′ 0

]
Z,

X′BX = Z′
[

0 0
0′ D2

]
Z.

If we partition Z as [Z′
1 : Z′

2]′, where the number of rows of Zi is the same as
the number of columns of Di (i = 1, 2), we get

X′AX = Z′
1D1Z1,

X′BX = Z′
2D2Z2.

We conclude that X′AX and X′BX must be independent because they depend
on Z1 and Z2, respectively, which are independent since the elements of Z
are mutually independent.

Necessity. This proof is adapted from an article by Reid and Driscoll
(1988).

Suppose that X′AX and X′BX are independently distributed. To show
that condition (5.45) is true.
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Let us consider the joint cumulant generating function (c.g.f.) of X′AX and
X′BX, which is given by

ψA,B(s, t) = log E
[
exp

(
s X′AX + t X′BX

)]

= log E
{
exp

[
X′(s A + t B)X

]}
.

Note that E{exp[X′(s A + t B)X]} can be derived using formula (5.6) after
replacing t A with s A + t B. We then have

ψA,B(s, t) = −1
2
μ′Σ−1/2

{
In −

[
In − Σ1/2(2 s A + 2 t B)Σ1/2

]−1
}

Σ−1/2μ

− 1
2

log
{

det
[
In − Σ1/2(2 s A + 2 t B)Σ1/2

]}
. (5.48)

Using formulas (5.10) and (5.12) in (5.48), we obtain

ψA,B(s, t) =
∞∑

r=1

[
2r−1 r!

r! μ′Σ−1/2
[
Σ1/2(s A + t B)Σ1/2

]r
Σ−1/2μ

+2r−1 (r − 1)!
r! tr

{[
Σ1/2(s A + t B)Σ1/2

]r}
]

. (5.49)

The infinite series in (5.49) is convergent provided that the point (s,t) falls
within a small region � around the origin (0, 0).

Now, X′AX and X′BX are independent if and only if ψA,B(s, t) is the sum
of the marginal c.g.f.’s of X′AX and X′BX. The latter two are denoted by
ψA(s), ψB(t), respectively, and are obtained by putting t = 0 then s = 0,
respectively, in ψA,B(s, t). We then have

ψA,B(s, t) = ψA(s) + ψB(t)

=
∞∑

r=1

{
2r−1 r!

r! μ′Σ−1/2
(

s Σ1/2AΣ1/2
)r

Σ−1/2μ

+2r−1 (r − 1)!
r! tr

[(
s Σ1/2AΣ1/2

)r]
}

+
∞∑

r=1

{
2r−1 r!

r! μ′Σ−1/2
(

t Σ1/2BΣ1/2
)r

Σ−1/2μ

+2r−1 (r − 1)!
r! tr

[(
tΣ1/2BΣ1/2

)r]
}

. (5.50)

Since s and t are arbitrary within the region �, the rth terms of the infinite
series on the right-hand sides of (5.49) and (5.50) must be equal for r = 1, 2, . . ..
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Dividing these terms by 2r−1 (r−1)!
r! , we get

r μ′Σ−1/2
[
Σ1/2 (s A + t B)Σ1/2

]r
Σ−1/2μ + tr

{[
Σ1/2(s A + t B)Σ1/2

]r}

= r μ′Σ−1/2
(

s Σ1/2AΣ1/2
)r

Σ−1/2μ + tr
[(

s Σ1/2AΣ1/2
)r]

+ r μ′Σ−1/2
(

t Σ1/2BΣ1/2
)r

Σ−1/2μ + tr
[(

t Σ1/2BΣ1/2
)r]

, r = 1, 2, . . .

(5.51)

For any fixed, but arbitrary, values of (s, t) within the region �, let us
consider the distinct nonzero eigenvalues of s Σ1/2AΣ1/2, t Σ1/2BΣ1/2, and
those of Σ1/2(s A + t B)Σ1/2. Let τ1, τ2, . . . , τk denote the totality of all
of these eigenvalues. If, for example, τi is an eigenvalue of s Σ1/2AΣ1/2,
let νi(s Σ1/2AΣ1/2) denote its multiplicity, and let Pi(s Σ1/2AΣ1/2) be the
matrix whose columns are the corresponding orthonormal eigenvectors of
s Σ1/2AΣ1/2 in the spectral decomposition of s Σ1/2AΣ1/2. If τi is not an eigen-
value of s Σ1/2AΣ1/2, νi(s Σ1/2AΣ1/2) is set equal to zero, and Pi(s Σ1/2AΣ1/2)

is taken to be a zero matrix. We can then write

μ′Σ−1/2
(

s Σ1/2AΣ1/2
)r

Σ−1/2μ =
k∑

i=1

τr
i μi

(
s Σ1/2AΣ1/2

)
,

where

μi

(
s Σ1/2AΣ1/2

)
= μ′Σ−1/2Pi

(
s Σ1/2AΣ1/2

)
Pi

′ (
s Σ1/2AΣ1/2

)
Σ−1/2μ,

and

tr
[(

s Σ1/2AΣ1/2
)r] =

k∑

i=1

τr
i νi

(
s Σ1/2AΣ1/2

)
.

Similar definitions of νi and Pi can be made with regard to t Σ1/2BΣ1/2 and
Σ1/2(s A + t B)Σ1/2. Formula (5.51) can then be expressed as

k∑

i=1

τr
i

{
νi

[
Σ1/2 (s A + t B) Σ1/2

]
− νi

(
s Σ1/2AΣ1/2

)
− νi

(
t Σ1/2BΣ1/2

)}

+
k∑

i=1

r τr
i

{
μi

[
Σ1/2 (s A + t B)Σ1/2

]
− μi

(
s Σ1/2AΣ1/2

)

−μi

(
t Σ1/2BΣ1/2

)}
= 0, r = 1, 2, . . . (5.52)

The first 2 k of these equations can be written in matrix form as

Mδ = 0, (5.53)
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where M = (mi,j) is a matrix of order 2 k × 2 k whose (i,j)th element is such
that mi,j = τi

j and mi,k+j = i τi
j for i = 1, 2, . . . , 2 k and j = 1, 2, . . . , k, and where

δ is a vector of order 2 k × 1 with the following elements

δi = νi

[
Σ1/2 (s A + t B)Σ1/2

]
− νi

(
s Σ1/2AΣ1/2

)

− νi

(
t Σ1/2BΣ1/2

)
, i = 1, 2, . . . , k,

and

δk+i = μi

[
Σ1/2 (s A + t B)Σ1/2

]
− μi

(
s Σ1/2AΣ1/2

)

− μi

(
t Σ1/2BΣ1/2

)
, i = 1, 2, . . . , k.

The matrix M in (5.53) can be shown to be nonsingular (for details, see Reid
and Driscoll, 1988). From (5.53) we can then conclude that

νi

[
Σ1/2 (s A + t B) Σ1/2

]
= νi

(
s Σ1/2AΣ1/2

)
+ νi

(
t Σ1/2BΣ1/2

)
,

i = 1, 2, . . . , k, (5.54)

μi

[
Σ1/2 (s A + t B) Σ1/2

]
= μi

(
s Σ1/2AΣ1/2

)
+ μi

(
t Σ1/2BΣ1/2

)
,

i = 1, 2, . . . , k. (5.55)

Multiplying the ith equation in (5.54) by τr
i (r = 1, 2, . . .) and summing the

resulting k equations over i, we obtain

tr
{[

Σ1/2 (s A + t B) Σ1/2
]r} = tr

[(
s Σ1/2AΣ1/2

)r]

+ tr
[(

t Σ1/2BΣ1/2
)r]

, r = 1, 2, . . .

In particular, for r = 4, we get

tr
{[

Σ1/2(s A + t B)Σ1/2
]4
}

= s4 tr
[(

Σ1/2AΣ1/2
)4
]

+ t4 tr
[(

Σ1/2BΣ1/2
)4
]

,

(5.56)

for all (s, t) in �. Differentiating the two sides of (5.56) four times, twice with
respect to s and twice with respect to t, we finally obtain

tr
{[(

Σ1/2AΣ1/2
) (

Σ1/2BΣ1/2
)

+
(
Σ1/2BΣ1/2

) (
Σ1/2AΣ1/2

)]2
}

+ 2 tr
[(

Σ1/2AΣ1/2
) (

Σ1/2BΣ1/2
)2 (

Σ1/2AΣ1/2
)]

= 0. (5.57)
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Each of the trace terms in (5.57) is of the form tr(C′C), and is therefore non-
negative. We can then conclude from (5.57) that each term must be zero. In
particular,

tr
[(

Σ1/2AΣ1/2
) (

Σ1/2BΣ1/2
)2 (

Σ1/2AΣ1/2
)]

= 0. (5.58)

Formula (5.58) implies that the matrix C = (Σ1/2 AΣ1/2)(Σ1/2 BΣ1/2) must be
zero. Hence, AΣB = 0. �

Example 5.3 Consider again Example 5.2, and in particular the sums of
squares, SSA and SSE, given in (5.41) and (5.42), respectively. We recall that
Y ∼ N(μ, Σ), where μ and Σ are described in (5.39) and (5.40), respectively.
The quadratic forms representing SSA and SSE are independent since
[

1
m

(
Ia ⊗ Jm

)− 1
a m

(
Ja ⊗ Jm

)] (
σ2

εIa m

) [
Ia ⊗ Im − 1

m

(
Ia ⊗ Jm

)]

= σ2
ε

[
1
m

(
Ia ⊗ Jm

)− 1
m

(
Ia ⊗ Jm

)− 1
a m

(
Ja ⊗ Jm

)+ 1
a m

(
Ja ⊗ Jm

)] = 0.

Example 5.4 This is a counterexample to demonstrate that if X is not normally
distributed, then independence of X′AX and X′BX does not necessarily imply
that AΣB = 0.

Let X = (X1, X2, . . . , Xn)′, where the Xi’s are mutually independent and
identically distributed discrete random variables such that Xi = −1, 1 with
probabilities equal to 1

2 (i = 1, 2, . . . , n). Thus E(X) = 0 and Var(X) = Σ = In.
Let A = B = In. Then, X′AX = X′BX = ∑n

i=1 X2
i = n with probability 1.

It follows that X′AX and X′BX are independent (the joint probability mass
function of X′AX and X′BX is the product of their marginal probability mass
functions since, in this example, each quadratic form assumes one single
value with probability 1). But, AΣB = In �= 0.

5.4 Independence of Linear and Quadratic Forms

In this section, we consider the condition under which a quadratic form,
X′AX, is independent of a linear form, BX, when X is normally distributed.

Theorem 5.6 Let A be a symmetric matrix of order n × n, B be a matrix of
order m × n, and let X ∼ N(μ, Σ). A necessary and sufficient condition for
X′AX and BX to be independent is that

BΣA = 0. (5.59)
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Proof.
Sufficiency. Suppose that condition (5.59) is true. To show that X′AX and

BX are independent.
Condition (5.59) is equivalent to

BΣ1/2Σ1/2AΣ1/2 = 0.

Using formula (5.22) in this equation, we obtain

BΣ1/2PΓP′ = 0,

where Γ is described in (5.23). Hence,

BΣ1/2
k∑

j=1

γjPjP′
j = 0, (5.60)

where, if we recall, γ1, γ2, . . . , γk are the distinct nonzero eigenvalues of
Σ1/2AΣ1/2, and Pi is the column portion of P corresponding to γi (i =
1, 2, . . . , k). Multiplying the two sides of (5.60) on the right by Pi (i = 1, 2, . . . , k)
and recalling that P′

iPi = Iνi , P′
jPi = 0, i �= j, we conclude that

BΣ1/2Pi = 0, i = 1, 2, . . . , k. (5.61)

Now, from Lemma 5.1,

X′AX =
k∑

i=1

γiZ′
iZi, (5.62)

where Zi = P′
iΣ

−1/2X, i = 1, 2, . . . , k. The covariance matrix of BX and Zi is
zero since

Cov(BX, P′
iΣ

−1/2X) = BΣΣ−1/2Pi

= BΣ1/2Pi

= 0, i = 1, 2, . . . , k. (5.63)

If B is of full row rank, then each of BX and Zi is a full row-rank linear
transformation of X, which is normally distributed. Furthermore, because
of (5.61), the rows of B are linearly independent of those of P′

iΣ
−1/2 (see

Exercise 5.21). Hence, the random vector
[

BX
Zi

]
=
[

B
P′

iΣ
−1/2

]
X, i = 1, 2, . . . , k,

is normally distributed. Since the covariance matrix of BX and Zi is zero, BX
and Zi must be independent by Corollary 4.2 (i = 1, 2, . . . , k). It follows that
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BX is independent of X′AX in light of (5.62). If, however, B is not of full row
rank, then B can be expressed as B = [B′

1 : B′
2]′, where B1 is a matrix of order

r1 × n and rank r1 (r1 is the rank of B), and B2 is a matrix of order (m − r1) × n
such that B2 = C2B1 for some matrix C2. Then, from (5.63) we conclude that
B1X and Zi have a zero covariance matrix. This implies independence of B1X
and Zi, and hence of BX and Zi(i = 1, 2, . . . , k) since

BX =
[

Ir1

C2

]
B1X.

Consequently, BX is independent of X′AX.

Necessity. Suppose that BX and X′AX are independent. To show that
condition (5.59) is true. We shall consider two cases depending on whether
or not B is of full row rank.

If B is of full row rank, then independence of BX and X′AX implies that
X′B′BX and X′AX are also independent. Hence, by Theorem 5.5,

B′BΣA = 0. (5.64)

Multiplying the two sides of (5.64) on the left by B, we get

(BB′)BΣA = 0. (5.65)

Since BB′ is nonsingular, we conclude from (5.65) that BΣA = 0.
If B is not of full row rank, then, as before in the proof of sufficiency, we

can write B = [B′
1 : B′

2]′, where B1 is of full row rank and B2 = C2B1. Let us
now express B1X as

B1X = [Ir1 : 01]BX,

where 01 is a zero matrix of order r1 × (m − r1). Independence of BX and
X′AX implies the same for B1X and X′AX. Hence, from the previous case, we
conclude that B1ΣA = 0. Furthermore, B2ΣA = C2B1ΣA = 0. Consequently,

BΣA =
[

B1
B2

]
ΣA

= 0.

Example 5.5 Consider again Example 5.1. In Section 4.8, it was stated that
X̄ and s2 are independent. We are now in a position to prove this very easily
on the basis of Theorem 5.6. We have that

X̄ = 1
n

n∑

i=1

Xi

= 1
n

1′
nX,

s2 = 1
n − 1

X′(In − 1
n

Jn)X,
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where X ∼ N(μ1n, σ2In). Letting B = 1
n 1′

n and A = 1
n−1 (In − 1

n Jn), and
noting that

BΣA = 1
n(n − 1)

1′
n(σ2In)(In − 1

n
Jn)

= 0,

we conclude that X̄ and s2 are independent.

5.5 Independence and Chi-Squaredness of Several
Quadratic Forms

Let X ∼ N(μ, σ2In). Suppose that X′X can be partitioned as

X′X =
p∑

i=1

X′AiX, (5.66)

that is,

In =
p∑

i=1

Ai, (5.67)

where Ai is a symmetric matrix of order n × n and rank ki (i = 1, 2, . . . , p). The
following theorem, which is due to Cochran (1934), has useful applications
in the analysis of variance for fixed-effects models, as will be seen later.

Theorem 5.7 Let X ∼ N(μ, σ2In) and Ai be a symmetric matrix of order n × n
and rank ki (i = 1, 2, . . . , p) such that In = ∑p

i=1 Ai. Then, any one of the
following three conditions implies the other two:

(a) n = ∑p
i=1 ki, that is, the ranks of A1, A2, . . . , Ap sum to the rank of In.

(b) 1
σ2 X′AiX ∼ χ2

ki
(θi), where θi = 1

σ2 μ′Aiμ, i = 1, 2, . . . , p.

(c) X′A1X, X′A2X, . . . , X′ApX are mutually independent.

Proof. The proof consists of the following parts:

I. (a) implies (b). If (a) holds, then by applying the result in property (d) of
Section 3.6, we can write Ai = FDiG, where F and G are nonsingular matrices
and Di is a diagonal matrix with diagonal elements equal to zeros and ones
such that DiDj = 0, i �= j (i, j = 1, 2, . . . , p). It follows that

∑p
i=1 Di is a diagonal

matrix of order n × n whose diagonal elements are also equal to zeros and
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ones. But, because of (5.67),
∑p

i=1 Di must be of rank n and therefore cannot
have zero diagonal elements. Hence,

∑p
i=1 Di = In. Using (5.67) we conclude

that FG = In, that is, G = F−1. We therefore have

Ai = FDiF−1, i = 1, 2, . . . , p. (5.68)

Thus, A2
i = F D2

i F−1 = F DiF−1 = Ai. This implies that Ai is an idempotent
matrix. By Theorem 5.4, 1

σ2 X′AiX ∼ χ2
ki
(θi) since ( Ai

σ2 )(σ2In) = Ai is idempo-

tent of rank ki, where θi = 1
σ2 μ′Aiμ, i = 1, 2, . . . , p.

II. (b) implies (c). If (b) is true, then Ai is idempotent by Theorem 5.4
(i = 1, 2, . . . , p). By squaring the two sides of (5.67), we get

In =
p∑

i=1

A2
i +

∑

i�=j

AiAj

=
p∑

i=1

Ai +
∑

i�=j

AiAj

= In +
∑

i�=j

AiAj.

Hence,
∑

i�=j

AiAj = 0,

or,
∑

i�=j

A2
i A2

j = 0.

Taking the traces on both sides, we get
∑

i�=j

tr(A2
i A2

j ) = 0,

or,
∑

i�=j

tr[(AjAi)(AiAj)] = 0. (5.69)

But, tr[(AjAi)(AiAj)] is of the form tr(C′C), where C = AiAj, and tr(C′C) ≥ 0.
From (5.69) it follows that tr[(AjAi)(AiAj)] = 0 and hence AjAi = 0, i �= j. This
establishes pairwise independence of the quadratic forms by Theorem 5.5.
We now proceed to show that the quadratic forms are in fact mutually inde-
pendent. This can be achieved by using the moment generating function
approach.
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Since AiAj = 0, we have that AiAj = AjAi, i �= j. By Theorem 3.9, there
exists an orthogonal matrix P such that

Ai = PΛiP′, i = 1, 2, . . . , p, (5.70)

where Λi is a diagonal matrix; its diagonal elements are equal to zeros and
ones since Ai is idempotent. Furthermore, ΛiΛj = 0 for i �= j. Thus, by
rearranging the columns of P, it is possible to express Λ1, Λ2, . . . , Λp as

Λ1 = diag(Ik1 , 0, . . . , 0)

Λ2 = diag(0, Ik2 , 0, . . . , 0)

.

.

.
Λp = diag(0, 0, . . . , Ikp),

where, if we recall, ki = rank(Ai), i = 1, 2, . . . , p.
Let us now consider the joint moment generating function of

X′A∗
1X, X′A∗

2X, . . . , X′A∗
pX, where A∗

i = 1
σ2 Ai, i = 1, 2, . . . , p, namely,

φ∗(t) = E[ exp (t1X′A∗
1X + t2X′A∗

2X + · · · + tpX′A∗
pX)]

= E

{
exp

[
X′
( p∑

i=1

tiA∗
i

)
X

]}
,

where t = (t1, t2, . . . , tp)
′. Using (5.6) after replacing tA with

∑p
i=1 tiA∗

i and Σ

with σ2In, φ∗(t) can be written as

φ∗(t) =
exp

{
− 1

2 σ2 μ′[In − (In − 2 σ2 ∑p
i=1 tiA∗

i )
−1]μ

}

[ det(In − 2 σ2
∑p

i=1 tiA∗
i )]1/2

. (5.71)

Note that

In −
(

In − 2 σ2
p∑

i=1

tiA∗
i

)−1

= In −
[
In − 2 P

( p∑

i=1

tiΛi

)
P′
]−1

= In −
[
In − 2 P diag

(
t1Ik1 , t2Ik2 , . . . , tpIkp

)
P′]−1

= In − P diag
[
(1 − 2 t1)

−1 Ik1 , (1 − 2 t2)
−1 Ik2 , . . . ,

(1 − 2 tp)
−1Ikp

]
P′

=−P diag
(

2 t1

1−2 t1
Ik1 ,

2 t2

1−2 t2
Ik2 , . . . ,

2 tp

1−2 tp
Ikp

)
P′

= −
p∑

i=1

Pi

(
2 ti

1 − 2 ti

)
P′

i,
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where P1, P2, . . . , Pp are the portions of P corresponding to Ik1 , Ik2 , . . . , Ikp ,
respectively, such that P = [P1 : P2 : . . . : Pp]. Hence, the numerator of (5.71)
can be written as

exp

⎧
⎨

⎩− 1
2 σ2 μ′

⎡

⎣In −
(

In − 2 σ2
p∑

i=1

tiA∗
i

)−1⎤

⎦μ

⎫
⎬

⎭

= exp

{
1

2 σ2

p∑

i=1

μ′Pi

(
2 ti

1 − 2 ti

)
P′

iμ

}
= exp

[ p∑

i=1

θi ti(1 − 2 ti)
−1

]
, (5.72)

where θi = μ′PiP′
iμ/σ2, i = 1, 2, . . . , p. Furthermore, the denominator of

(5.71) can be expressed as

[
det

(
In − 2 σ2

p∑

i=1

tiA∗
i

)]1/2

=
[
det

{
P diag

[
(1 − 2 t1) Ik1 , (1 − 2 t2) Ik2 , . . . ,

(
1 − 2 tp

)
Ikp

]
P′}]1/2

=
p∏

i=1

(1 − 2 ti)
ki/2 . (5.73)

From (5.71) through (5.73) we finally conclude that

φ∗(t) =
p∏

i=1

φi(ti, θi), (5.74)

where

φi (ti, θi) = (1 − 2 ti)
−ki/2 exp

[
θi ti(1 − 2 ti)

−1
]

, i = 1, 2, . . . , p.

Note that φi(ti, θi) is the moment generating function of X′A∗
i X, which,

according to (b), is distributed as χ2
ki
(θi) (see formula (4.41) for the moment

generating function of a noncentral chi-squared distribution). From (5.74)
it follows that X′A∗

1X, X′A∗
2X, . . . , X′A∗

pX, and hence, X′A1X, X′A2X, . . . ,
X′ApX, are mutually independent.

III. (b) implies (a). If (b) holds, then Ai is idempotent by Theorem 5.4
(i = 1, 2, . . . , p). Taking the trace of both sides of (5.67) and recalling that
tr(Ai) = rank(Ai) = ki, we get n = ∑p

i=1 ki, which establishes (a).
IV. (c) implies (b). If (c) is true, then by Theorem 5.5, AiAj = 0, i �= j.

Using the same argument as before in II, Ai (i = 1, 2, . . . , p) can be written
as in (5.70), where Λ1 = diag(Δ1, 0, . . . , 0), Λ2 = diag(0, Δ2, . . . , 0), . . . , Λp =
diag(0, 0, . . . , Δp), and Δi is a diagonal matrix of order ki × ki whose diagonal
elements are the nonzero eigenvalues of Ai (i = 1, 2, . . . , p). From (5.67) we
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conclude that

In =
p∑

i=1

Λi

= diag(Δ1, Δ2, . . . , Δp).

This indicates that Δi = Iki , i = 1, 2, . . . , p. It follows that Ai must be idempo-
tent. Hence, 1

σ2 X′AiX ∼ χ2
ki
(θi), i = 1, 2, . . . , p.

Having shown that (a) implies (b) and conversely in I and III, and that
(b) implies (c) and conversely in II and IV, we conclude that (a), (b), and (c)
are equivalent.

Example 5.6 Consider the following ANOVA table (Table 5.1) from a fixed-
effects linear model,

Y = Xβ + ε, (5.75)

where Y is a response vector of order n × 1 with a mean vector μ = Xβ and
a variance–covariance matrix Σ = σ2In, X is a known matrix, not necessarily
of full column rank, β is a vector of fixed unknown parameters, and ε is a
random experimental error vector such that ε ∼ N(0, σ2In). In Table 5.1, q
is the number of effects in the model, T0 represents the null effect associated
with the grand mean in the model (or intercept for a regression model) with
k0 = 1, and Tq represents the experimental error (or residual) effect. Each
sum of squares can be written as a quadratic form, namely, SSi = Y ′AiY, i =
0, 1, . . . , q, and SSTotal is the uncorrected (uncorrected for the mean) sum of
squares, Y ′Y. Thus,

Y ′Y =
q∑

i=0

SSi

=
q∑

i=0

Y ′AiY,

TABLE 5.1
ANOVA Table for a Fixed-Effects Model
Source DF SS MS E(MS) F

T0 k0 SS0 MS0
σ2

k0
θ0 + σ2

T1 k1 SS1 MS1
σ2

k1
θ1 + σ2 MS1

MSE
. . . . . .
. . . . . .
. . . . . .
Tq−1 kq−1 SSq−1 MSq−1

σ2

kq−1
θq−1 + σ2 MSq−1

MSE

Tq(Error) kq SSq(SSE) MSq(MSE) σ2

Total n SSTotal
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that is,

In =
q∑

i=0

Ai,

and

n =
q∑

i=0

ki. (5.76)

Note that SSq is the residual (or error) sum of squares, which is denoted by
SSE. In addition, the number of degrees of freedom for the ith source (effect),
namely ki, is the same as the rank of Ai (i = 0, 1, 2, . . . , q). This follows from the
fact that ki actually represents the number of linearly independent elements of
A1/2

i Y (A1/2
i is well defined here since Ai is nonnegative definite because SSi =

Y ′AiY is a sum of squares, which is also equal to the square of the Euclidean
norm of A1/2

i Y, that is, SSi =‖ A1/2
i Y ‖2

2, i = 0, 1, . . . , q). Furthermore, the
rank of A1/2

i is the same as the rank of Ai. Hence, from condition (5.76) and
Theorem 5.7 we conclude that SS0, SS1, . . . , SSq are mutually independent
and 1

σ2 SSi ∼ χ2
ki
(θi), where θi = 1

σ2 β′X′AiXβ, i = 0, 1, . . . , q. Note that for

i = q, θi = 0, and therefore 1
σ2 SSq ∼ χ2

kq
since (see Chapter 7)

SSq = SSE

= Y ′[In − X(X′X)−X′]Y.

Hence,

θq = 1
σ2 β′X′[In − X(X′X)−X′]Xβ

= 0.

The expected value of the ith mean square, MSi = 1
ki

SSi, i = 0, 1, . . . , q, is
therefore given by

E(MSi) = σ2

ki
E
(

1
σ2 SSi

)

= σ2

ki
E[χ2

ki
(θi)]

= σ2

ki
(ki + θi)

= σ2 + σ2

ki
θi, i = 0, 1, . . . , q − 1,
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E(MSq) = E(MSE)

= σ2

kq
E
(

1
σ2 SSE

)

= σ2

kq
E(χ2

kq
)

= σ2.

It follows that Fi = MSi
MSE

is a test statistic for testing the null hypothesis,
H0i : θi = 0, against the alternative hypothesis, Hai : θi �= 0, i = 1, 2, . . . ,
q − 1. Under H0i, Fi has the F-distribution with ki and kq degrees of freedom
(i = 1, 2, . . . , q−1). Given the form of E(MSi), H0i can be rejected at the α-level
of significance if Fi > Fα,ki,kq , where Fα,ki,kq denotes the upper α-quantile of
the F-distribution with ki and kq degrees of freedom (i = 1, 2, . . . , q − 1).

A particular case of model (5.75) is the balanced fixed-effects one-
way model described in Example 5.2. In this case, q = 2, n = am, and
the corresponding ANOVA table is displayed as Table 5.2, where SS0 =

1
am Y ′(Ja ⊗ Jm)Y, SSA and SSE are given in (5.41) and (5.42), respectively, and

θ0 = 1
σ2

[
μ(1′

a ⊗ 1′
m) + α′ (Ia ⊗ 1′

m
)]

×
[

1
am

(
Ja ⊗ Jm

)]
[μ (1a ⊗ 1m) + (Ia ⊗ 1m)α]

= 1
σ2

⎡

⎣a m μ2 + 2 m n

( a∑

i=1

αi

)
+ m

a

( a∑

i=1

αi

)2
⎤

⎦ ,

θ1 = m
σ2

a∑

i=1

(αi − ᾱ.)
2,

where ᾱ. = 1
a
∑a

i=1 αi, as was shown in Example 5.2. All sums of squares
are mutually independent with 1

σ2 SS0 ∼ χ2
1(θ0), 1

σ2 SSA ∼ χ2
a−1(θ1), and

1
σ2 SSE ∼ χ2

a(m−1)
. This confirms the results established in Examples 5.2 and 5.3

TABLE 5.2
ANOVA Table for the One-Way Model
Source DF SS MS E(MS) F
Null effect 1 SS0 MS0 σ2 θ0 + σ2

A a − 1 SSA MSA
σ2

a−1 θ1 + σ2 MSA
MSE

Error a(m − 1) SSE MSE σ2

Total am SSTotal
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with regard to the distribution and independence of SSA and SSE. Note that
the null hypothesis H01 : θ1 = 0 is equivalent to H01 : α1 = α2 = · · · = αa, or
that the means of the a levels of factor A are equal.

5.6 Computing the Distribution of Quadratic Forms

Quite often, it may be of interest to evaluate the cumulative distribution
function of X′AX, where A is a symmetric matrix of order n × n and
X ∼ N(μ, Σ), that is,

F(u) = P(X′AX ≤ u), (5.77)

for a given value of u. Alternatively, one may compute the value of u corre-
sponding to a given value of p, where p = F(u). Such a value of u is called the
pth quantile of X′AX, which we denote by up.

To evaluate F(u) in (5.77), it is convenient to use the representation
(5.20) expressing X′AX as a linear combination of mutually independent
chi-squared variates. Formula (5.77) can then be written as

F(u) = P

⎛

⎝
k∑

i=1

γi Wi ≤ u

⎞

⎠ , (5.78)

where, if we recall, γ1, γ2, . . . , γk are the distinct nonzero eigenvalues of
Σ1/2AΣ1/2 (or, equivalently, the matrix AΣ) with multiplicities ν1, ν2, . . . , νk,
and the Wi’s are mutually independent such that Wi ∼ χ2

νi
(θi), i = 1, 2, . . . , k.

In this case, the value of F(u) can be easily calculated using a computer algo-
rithm given by Davies (1980), which is based on a method proposed by Davies
(1973). This algorithm is described in Davies (1980) as Algorithm AS 155, and
can be easily accessed through STATLIB, which is an e-mail and file transfer
protocol (FTP)-based retrieval system for statistical software.

For example, suppose that X ∼ N(0, Σ), where

Σ =
⎡

⎣
3 5 1
5 13 0
1 0 1

⎤

⎦ . (5.79)

Let A be the symmetric matrix

A =
⎡

⎣
1 1 2
1 2 3
2 3 1

⎤

⎦ .

The eigenvalues of Σ1/2AΣ1/2 (or AΣ) are −2.5473, 0.0338, 46.5135. Formula
(5.78) takes the form,

F(u) = P(−2.5473 W1 + 0.0338 W2 + 46.5135 W3 ≤ u),
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TABLE 5.3
Quantiles of −2.5473 W1 + 0.0338 W2 + 46.5135 W3

p pth Quantile (up)
0.25 2.680 (first quartile)
0.50 18.835 (median)
0.75 59.155 (third quartile)
0.90 123.490 (90th percentile)
0.95 176.198 (95th percentile)

where W1, W2, and W3 are mutually independent variates, each distributed
as χ2

1. Using Davies’ (1980) algorithm, quantiles of −2.5473 W1 + 0.0338 W2 +
46.5135 W3 can be obtained. Some of these quantiles are displayed in Table 5.3.

5.6.1 Distribution of a Ratio of Quadratic Forms

One interesting application of Davies’ algorithm is in providing a tabula-
tion of the values of the cumulative distribution function of a ratio of two
quadratic forms, namely,

h(X) = X′A1X
X′A2X

, (5.80)

where X ∼ N(μ, Σ), and A1 and A2 are symmetric matrices with A2 assumed
to be positive semidefinite. Ratios such as h(X) are frequently encountered
in statistics, particularly in analysis of variance as well as in econometrics.
The exact distribution of h(X) is known only in some special cases, but is
mathematically intractable, in general. Several methods were proposed to
approximate this distribution. Gurland (1955) approximated the density func-
tion of h(X) using an infinite series of Laguerre polynomials. Lugannani and
Rice (1984) used numerical techniques to evaluate this density function. More
recently, Lieberman (1994) used the saddlepoint method, which was introduced
by Daniels (1954), to approximate the distribution of h(X).

Let G(u) denote the cumulative distribution function of h(X). Then,

G(u) = P
(

X′A1X
X′A2X

≤ u
)

, (5.81)

which can be written as

G(u) = P(X′AuX ≤ 0), (5.82)

where Au = A1 −u A2. Expressing X′AuX as a linear combination of mutually
independent chi-squared variates, as was done earlier in (5.78), we get

G(u) = P

⎛

⎝
l∑

i=1

γui Wui ≤ 0

⎞

⎠ , (5.83)



André I. Khuri/Linear Model Methodology C4819_C005 Finals Page 120 2009-9-14

120 Linear Model Methodology

TABLE 5.4
Values of G(u) Using Formula (5.83)
u G(u)
1.0 0.0
1.25 0.01516
1.50 0.01848
2.0 0.69573
2.75 0.99414
3.0 1.0

where γu1, γu2, . . . , γul are the distinct nonzero eigenvalues of Σ1/2AuΣ1/2

with multiplicities νu1, νu2, . . . , νul, and the Wui’s are mutually independent
such that Wui ∼ χ2

νui
(θui), i = 1, 2, . . . , l. Thus, for a given value of u, G(u) can

be easily computed on the basis of Davies’ algorithm.
As an example, let us consider the distribution of

h(X) = X2
1 + 2 X2

2 + 3 X2
3

X2
1 + X2

2 + X2
3

,

where X = (X1, X2, X3)
′ ∼ N(0, Σ) and Σ is the same as in (5.79). In this case,

A1 = diag(1, 2, 3) and A2 = I3. Hence, Au = A1−u A2 = diag(1−u, 2−u, 3−u).
For a given value of u, the eigenvalues of Σ1/2AuΣ1/2 are obtained and used
in formula (5.83). The corresponding values of G(u) can be computed using
Davies’ algorithm. Some of these values are shown in Table 5.4.

Appendix 5.A: Positive Definiteness of the Matrix
W−1

t in (5.2)

To show that there exists a positive number t0 such that W−1
t is positive

definite if |t| < t0, where

t0 = 1
2 maxi | λi | , (5.A.1)

and λi is the ith eigenvalue of the matrix Σ1/2AΣ1/2 (i = 1, 2, . . . , n).
It is clear that W−1

t in (5.2) is positive definite if and only if the matrix
(In − 2 t Σ1/2AΣ1/2) is positive definite. The latter matrix is positive definite
if and only if its eigenvalues, namely, 1 − 2 t λi, i = 1, 2, . . . , n, are positive.
Note that

2 t λi ≤ 2 | t | max
i

| λi |, i = 1, 2, . . . , n.
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Hence, in order for 1 − 2 t λi to be positive, it is sufficient to choose t such that

2 | t | max
i

| λi |< 1.

Thus, choosing |t| < t0, where t0 is as shown in (5.A.1), guarantees that
1−2 t λi > 0 for i = 1, 2, . . . , n. Note that the denominator in (5.A.1) cannot be
zero since if maxi |λi| = 0, then λi = 0 for all i, which implies that A = 0.

Appendix 5.B: AΣ Is Idempotent If and Only If Σ1/2AΣ1/2

Is Idempotent

Suppose that AΣ is idempotent. Then,

AΣAΣ = AΣ. (5.B.1)

Multiplying (5.B.1) on the left by Σ1/2 and on the right by Σ−1/2, we get

Σ1/2AΣ1/2Σ1/2AΣ1/2 = Σ1/2AΣ1/2. (5.B.2)

This shows that Σ1/2AΣ1/2 is idempotent.
Vice versa, if Σ1/2AΣ1/2 is idempotent, then by multiplying (5.B.2) on the

left by Σ−1/2 and on the right by Σ1/2, we obtain (5.B.1). Therefore, AΣ is
idempotent.

Exercises

5.1 Suppose that X = (X1, X2, X3)
′ is distributed as N(μ, Σ) such that

Q = (X − μ)′Σ−1(X − μ)

= 2 X2
1 + 3 X2

2 + 4 X2
3 + 2 X1X2 − 2 X1X3 − 4 X2X3

− 6 X1 − 6 X2 + 10 X3 + 8.

(a) Find μ and Σ.

(b) Find the moment generating function of Q.

(c) Find the moment generating function for the conditional distribu-
tion of X1 given X2 and X3.



André I. Khuri/Linear Model Methodology C4819_C005 Finals Page 122 2009-9-14

122 Linear Model Methodology

5.2 Let X = (X′
1 : X′

2)
′ be normally distributed. The corresponding mean

vector μ and variance–covariance matrix Σ are partitioned as μ = (μ′
1 :

μ′
2)

′, and

Σ =
[
Σ11 Σ12
Σ′

12 Σ22

]
.

The numbers of elements in X1 and X2 are n1 and n2, respectively. Let
A be a constant matrix of order n1 × n2.

(a) Show that

E(X′
1AX2) = μ′

1Aμ2 + tr(AΣ′
12).

(b) Find Var(X′
1AX2).

[Note: The expression X′
1AX2 is called a bilinear form.]

5.3 Consider the quadratic forms X′AX, X′BX, where X ∼ N(μ, Σ). Show
that

Cov(X′AX, X′BX) = 2 tr(AΣBΣ) + 4 μ′AΣBμ.

5.4 Let X = (X1, X2)
′ ∼ N(0, Σ), where

Σ =
[
σ11 σ12
σ12 σ22

]
.

Find Cov(X2
1 + 3 X1 − 2, 2 X2

2 + 5 X2 + 3).

5.5 Let Q1 = X′A1X and Q2 = X′A2X be two quadratic forms, where
X ∼ N(μ, Σ) and A1 and A2 are nonnegative definite matrices. Show
that a quadratic form, X′BX, is distributed independently of Q1 + Q2 if
and only if it is distributed independently of Q1 and of Q2.

[Hint: See Bhat (1962)].

5.6 Consider Exercise 5.5 again. Show that a linear form, CX, where C is a
matrix of full row rank, is distributed independently of Q1 + Q2 if and
only if it is distributed independently of Q1 and of Q2.

5.7 Let Qi = X′AiX, where X ∼ N(μ, Σ), and Ai is nonnegative definite,
i = 1, 2, . . . , n. Show that a linear form, CX, is distributed independently
of

∑n
i=1 Qi if and only if it is distributed independently of Qi for all

i = 1, 2, . . . , n.

[Note: This is an extension of the result in Exercise 5.6, and can be
proved by mathematical induction.]
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5.8 Let X ∼ N(μ, Σ), and let Xi be the ith element of X (i = 1, 2, . . . , n) and
σij be the (i, j)th element of Σ (i, j = 1, 2, . . . , n). Show that X̄ = 1

n
∑n

i=1 Xi

is distributed independently of
∑n

i=1(Xi − X̄)2 if and only if σ̄i. = σ̄..

for all i = 1, 2, . . . , n, where σ̄i. = 1
n
∑n

j=1 σij (i = 1, 2, . . . , n), and σ̄.. =
1
n
∑n

i=1 σ̄i..

[Hint: Make use of the result in Exercise 5.7.]

5.9 Consider Exercise 5.8 again. Show that if X̄ and
∑n

i=1(Xi − X̄)2 are
independent, then X̄ is independent of the sample range, that is,
maxi�=i′(Xi − Xi′).

5.10 Let X ∼ N(μ, Σ). Show that the quadratic form X′AX has the chi-
squared distribution with n degrees of freedom if and only if A = Σ−1.

5.11 Let X = (X1, X2, . . . , Xn)′ be distributed as N(μ, Σ). Let X̄ = 1
n
∑n

i=1 Xi.
Show that n X̄2 and

∑n
i=1(Xi − X̄)2 are distributed independently as

c1 χ2
1(λ1) and c2 χ2

n−1(λ2), respectively, where c1 and c2 are nonnegative
constants, if and only if

Σ = c2 In + c1 − c2

n
Jn,

where In is the identity matrix and Jn is the matrix of ones, both of order
n × n.

[Note: This result implies that, for a correlated data set from a normal
population, the square of the sample mean and the sample variance are
distributed independently as c χ2 variates if and only if the Xi’s have a
common variance and a common covariance.]

5.12 Prove the sufficiency part of Theorem 5.4 by showing that if AΣ is
idempotent of rank r, then the moment generating function of X′AX is
the same as the one for χ2

r (θ).

5.13 Consider Example 5.2. Suppose here that αi ∼ N(0, σ2
α) and that the

αi’s and εij’s are independently distributed with εij ∼ N(0, σ2
ε), i =

1, 2, . . . , a; j = 1, 2, . . . , m. Let SSA and SSE be the same sum of squares
associated with factor A and the error term, respectively.

(a) Show that SSA
m σ2

α+σ2
ε

∼ χ2
a−1 and SSE

σ2
ε

∼ χ2
a(m−1)

.

(b) Show that SSA and SSE are independent.

5.14 Consider again Exercise 5.13. Let σ̂2
α = 1

m

[
SSA
a−1 − SSE

a(m−1)

]
be the analysis

of variance (ANOVA) estimator of σ2
α.
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(a) Find Var(σ̂2
α).

(b) Find the probability of a negative σ̂2
α. Can the values of a and m be

chosen so that the value of this probability is reduced?

5.15 Consider the so-called unbalanced random one-way model,

Yij = μ + αi + εij, i = 1, 2, . . . , a; j = 1, 2, . . . , ni,

where αi ∼ N(0, σ2
α), εij ∼ N(0, σ2

ε), and the αi’s and εij’s are inde-
pendently distributed. Note that n1, n2, . . . , na are not necessarily equal.
Let SSA and SSE be the sums of squares associated with αi and εij,
respectively, namely,

SSA =
a∑

i=1

Y2
i.

ni
− Y2

..
n.

,

SSE =
a∑

i=1

ni∑

j=1

Y2
ij −

a∑

i=1

Y2
i.

ni
,

where Yi. = ∑ni
j=1 Yij, Y.. = ∑a

i=1
∑ni

j=1 Yij, n. = ∑a
i=1 ni.

(a) Show that SSA and SSE are independent.

(b) Show that SSE
σ2

ε
∼ χ2

n.−a.

(c) What distribution does SSA have?

(d) Show that if σ2
α = 0, then SSA

σ2
ε

∼ χ2
a−1.

5.16 Let σ̂2
α be the ANOVA estimator of σ2

α in Exercise 5.15, which is given by

σ̂2
α = 1

d

[
SSA

a − 1
− SSE

n. − a

]
,

where

d = 1
a − 1

(
n. − 1

n.

a∑

i=1

n2
i

)
.

(a) Show that E(SSA) = d(a − 1)σ2
α + (a − 1)σ2

ε, and verify that E(σ̂2
α) =

σ2
α.

(b) Find Var(σ̂2
α).

(c) Show that for a fixed value of n., Var(σ̂2
α) attains a minimum for

all σ2
α, σ2

ε if and only if the data set is balanced, that is, n1 = n2 =
. . . = na.
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5.17 Consider again Exercise 5.16. Show how to compute the exact probabil-
ity of a negative σ̂2

α.

[Hint: Express SSA as a linear combination of independent central chi-
squared variates, then apply the methodology described in Section 5.6.]

5.18 Give an expression for the moment generating function of σ̂2
α in

Exercise 5.16.

[Hint: Use the same hint given in Exercise 5.17 with regard to SSA.]

5.19 Consider the sums of squares, SSA and SSE, described in Exercise 5.15.
Show that

E
{

1
d

[(
n. − a − 2

a − 1

)
SSA

SSE
− 1

]}
= σ2

α

σ2
ε

,

where d is the same as in Exercise 5.16.

5.20 Consider the quadratic forms, Q1 = X′AX, Q2 = X′BX, where X ∼
N(0, Σ) and A and B are nonnegative definite matrices of order n × n.

(a) Show that if Q1 and Q2 are uncorrelated, then they are also inde-
pendent.

(b) Let Σ = In. Show that Q1 and Q2 are independent if and only if
tr(AB) = 0.
[Note: Part (a) was proved by Matérn (1949).]

5.21 Consider the proof of sufficiency for Theorem 5.6. Show that condition
(5.61) implies that the rows of B are linearly independent of the rows of
P′

i Σ
−1/2, i = 1, 2, . . . , k.

5.22 Let X ∼ N(0, In). Show that X′AX and X′BX are independent if and
only if det(In − s A − t B) = [det(In − s A)][det(In − t B)] for all values of
s and t.

5.23 Consider Exercise 5.22. Show that if X′AX and X′BX are independent,
then the rank of A + B is the sum of the ranks of A and B.

[Hint: Choose s = t in Exercise 5.22.]

5.24 (Kawada, 1950) Let Q1 = X′AX, Q2 = X′BX, where X ∼ N(0, In). Let
Tij be defined as

Tij = E(Qi
1 Qj

2) − E(Qi
1) E(Qj

2), i, j = 1, 2.

Show that

(a) T11 = 2 tr(AB).

(b) T12 = 8 tr(AB2) + 4 tr(AB) tr(B).
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(c) T21 = 8 tr(A2B) + 4 tr(AB) tr(A).
(d) T22 = 32 tr(A2B2)+16 tr[(AB)2]+16 tr(AB2) tr(A)+16 tr(A2B) tr(B)+

8 tr(AB) tr(A) tr(B) + 8 tr[(AB)2].
5.25 (Kawada, 1950) Deduce from Exercise 5.24 that if Tij = 0 for i, j = 1, 2,

then Q1 and Q2 are independent.

5.26 Let X = (X1, X2)
′ ∼ N(μ, Σ), where μ = (1.25, 1.75)′, and Σ is given by

Σ =
[

1 0.5
0.5 1

]
.

Let G(u) be defined as

G(u) = P

(
2 X1X2

2 X2
1 + X2

2

≤ u

)
.

Find the values of G(u) at u = 1
2 , 1

3 , 1
4 using Davies’ (1980) algorithm.

5.27 Consider the one-way model in Exercise 5.15 under the following
assumptions:

(i) The αi’s are independently distributed as N(0, σ2
α).

(ii) The εij’s are independently distributed as N(0, σ2
i ), i = 1, 2, . . . , a;

j = 1, 2, . . . , ni.
(iii) The αi’s and εij’s are independent.

(a) Under assumptions (i), (ii), and (iii), what distributions do SSA
and SSE have, where SSA and SSE are the same sums of squares
as in Exercise 5.15?

(b) Are SSA and SSE independent under assumptions (i), (ii),
and (iii)?

(c) If σ̂2
α is the ANOVA estimator of σ2

α in Exercise 5.16, show that

E(σ̂2
α) = σ2

α + 1
d

[
1

a − 1

a∑

i=1

(
1 − ni

n.

)
σ2

i − 1
n. − a

a∑

i=1

(ni − 1)σ2
i

]
,

and hence σ̂2
α is a biased estimator of σ2

α under assumptions
(i), (ii), and (iii).

5.28 Consider again the same model and the same assumptions as in
Exercise 5.15.

(a) Show that F = n.−a
a−1

SSA
SSE

is a test statistic for testing the null hypoth-
esis H0 : σ2

α = 0.
(b) Find the power of the test in (a) at the 5% level of significance, given

that σ2
α

σ2
ε

= 1.5, and that a = 4, n1 = 8, n2 = 10, n3 = 6, n4 = 12.

[Hint: Use Davies’ (1980) algorithm.]
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One of the objectives of an experimental investigation is the empirical deter-
mination of the functional relationship that may exist between a response
variable, Y, and a set of control (or input) variables denoted by x1, x2, . . . , xk.
The response Y is assumed to have a continuous distribution, and the xi’s
are nonstochastic variables whose settings can be controlled, or determined,
by the experimenter. These settings are measured on a continuous scale.
For example, the yield, Y, of peanuts, in pounds per acre, is influenced by
two control variables, x1 and x2, representing the amounts of two different
fertilizers.

In general, the relationship between Y and x1, x2, . . . , xk is unknown. It is
therefore customary to start out the experimental investigation by postulating
a simple relationship of the form

Y = β0 +
k∑

i=1

βi xi + ε, (6.1)

where ε is an experimental error term associated with the measured, or
observed, response at a point x = (x1, x2, . . . , xk)

′ in a region of interest,
�, and β0, β1, . . . , βk are fixed unknown parameters. Model (6.1) is called a
multiple linear regression model. In particular, when k = 1, it is called a simple
linear regression model. A more general model than the one in (6.1) is given by

Y = f ′(x)β + ε, (6.2)

where β = (β1, β2, . . . , βp)
′ is a vector of p unknown parameters and f (x) is

a p × 1 vector whose first element is equal to one and its remaining p − 1
elements are polynomial functions of x1, x2, . . . , xk. These functions are in the
form of powers and cross products of powers of the xi’s up to degree d (≥ 1).
Thus (6.2) represents a complete polynomial model of degree d. For example,
the model in (6.1) is of degree 1 with f (x) = (1, x1, x2, . . . , xk)

′, and the model

Y = β0 +
k∑

i=1

βi xi +
∑

i<j

βij xi xj +
k∑

i=1

βii x2
i + ε

is of degree 2 with

f (x) = (1, x1, x2, . . . , xk, x1 x2, x1 x3, . . . , xk−1 xk, x2
1, x2

2, . . . , x2
k)

′.

127
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Model (6.2) is referred to as a linear model due to the fact that the elements
of β appear linearly in the model. All linear regression models can be rep-
resented by such a model. The error term ε in (6.2) is assumed to have a
continuous distribution whose mean, or expected value, is E(ε) = 0. Since
the elements of x are nonstochastic, the mean of Y at x, denoted by μ(x) and
called the mean response at x, is

μ(x) = f ′(x)β. (6.3)

Model (6.2) is said to be inadequate, or to suffer from lack of fit, if the true
mean response μ(x) is not equal to the expression on the right-hand side of
(6.3), that is, when E(ε) in (6.2) is not equal to zero. This occurs when μ(x)

depends on some unknown function of x1, x2, . . . , xk besides f ′(x)β, or on
other variables not accounted for by the model.

6.1 Least-Squares Estimation

In order to estimate β in model (6.2), a series of n experiments (n > p) are
carried out, in each of which the response Y is observed at different settings
of the control variables, x1, x2, . . . , xk. Let Yu denote the observed response
value at xu, where xu = (xu1, xu2, . . . , xuk)

′ with xui denoting the uth setting of
xi at the uth experimental run (i = 1, 2, . . . , k; u = 1, 2, . . . , n). From (6.2) we
then have

Yu = f ′(xu)β + εu, u = 1, 2, . . . , n, (6.4)

where εu is the experimental error associated with Yu (u = 1, 2, . . . , n). Model
(6.4) can be expressed in matrix form as

Y = Xβ + ε, (6.5)

where Y = (Y1, Y2, . . . , Yn)′, X is an n × p matrix whose uth row is f ′(xu) and
ε = (ε1, ε2, . . . , εn)′. The matrix X is assumed to be of full column rank,
that is, rank(X) = p. In this case, model (6.5) is said to be of full rank.
In addition, it is assumed that E(ε) = 0, and Var(ε) = σ2 In, where σ2 is
unknown and In is the identity matrix of order n × n. This implies that the
response values, Y1, Y2, . . . , Yn, are uncorrelated and have variances equal to
σ2. Thus the expected value of Y is E(Y) = Xβ and its variance–covariance
matrix is Var(Y) = σ2 In. We refer to E(Y) as the mean response vector and is
denoted by μ.

Under the above assumptions, estimation of β in model (6.5) can be
achieved by using the method of ordinary least squares (OLS). By definition,
the OLS estimator of β, denoted by β̂, is the vector that minimizes the square
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of the Euclidean norm of Y − Xβ, that is,

S(β) = ‖ Y − Xβ ‖2

= (Y − Xβ)′ (Y − Xβ)

= Y ′ Y − 2 β′X′Y + β′X′Xβ, (6.6)

with respect to β. Since S(β) has first-order partial derivatives with respect
to the elements of β, a necessary condition for S(β) to have a minimum at
β = β̂ is that ∂[S(β)]

∂β
= 0 at β = β̂, that is,

[
∂

∂β

(
Y ′Y − 2 β′X′Y + β′X′Xβ

)]

β=β̂

= 0. (6.7)

Applying Theorems 3.21 and 3.22, we can write

∂

∂β
(β′X′Y) = X′Y

∂

∂β
(β′X′Xβ) = 2 X′Xβ.

Making the substitution in (6.7), we obtain

−2 X′Y + 2 X′Xβ̂ = 0. (6.8)

Solving (6.8) for β̂, after noting that X′ X is a nonsingular matrix by the fact
that X is of full column rank (see property (c) in Section 3.6), we get

β̂ = (X′X)−1 X′Y. (6.9)

Note that S(β) achieves its absolute minimum over the parameter space of
β at β̂ since (6.8) has a unique solution given by β̂, and the Hessian matrix
of second-order partial derivatives of S(β) with respect to the elements of β,
namely the matrix,

∂

∂β′
[

∂

∂β
S(β)

]
= ∂

∂β′
[−2 X′Y + 2 X′Xβ

]

= 2 X′X,

is positive definite [see Theorem 3.3(c) in Chapter 3 and Corollary 7.7.1 in
Khuri (2003)]. Alternatively, S(β) can be shown to have an absolute minimum
at β̂ by simply writing S(β) in (6.6) as

S(β) =‖ Y − Xβ̂ ‖2 + ‖ Xβ̂ − Xβ ‖2 . (6.10)
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Equality (6.10) follows from writing Y − Xβ as Y − Xβ̂ + Xβ̂ − Xβ and
noting that

(
Y − Xβ̂ + Xβ̂ − Xβ

)′(
Y − Xβ̂ + Xβ̂ − Xβ

)

=
(
Y − Xβ̂

)′(
Y − Xβ̂

)
+ 2

(
Y − Xβ̂

)′(
Xβ̂ − Xβ

)

+
(
Xβ̂ − Xβ

)′(
Xβ̂ − Xβ

)
. (6.11)

The middle term on the right-hand side of (6.11) is zero because β̂ satisfies
Equation (6.8). From (6.10) we conclude that for all β in the parameter space,

‖ Y − Xβ ‖2 ≥ ‖ Y − Xβ̂ ‖2 .

Equality is achieved if and only if β = β̂. This is true because

‖ Xβ̂ − Xβ ‖2 =
(
β̂ − β

)′
X′X

(
β̂ − β

)
,

and the right-hand side is zero if and only if β̂ − β = 0 since X′X is positive
definite, as was pointed out earlier. It follows that the absolute minimum of
S(β) is

S
(
β̂

)
= ‖ Y − Xβ̂ ‖2

=
(

Y − Xβ̂
)′ (

Y − Xβ̂
)

=
[
Y − X

(
X′X

)−1 X′Y
]′ [

Y − X
(
X′X

)−1 X′Y
]

= Y ′ [In − X
(
X′X

)−1 X′] Y, (6.12)

since In−X(X′X)−1X′ is an idempotent matrix. The right-hand side of (6.12) is
called the error (or residual) sum of squares, and is denoted by SSE. We thus have

SSE = Y ′ [In − X
(
X′X

)−1 X′] Y, (6.13)

which has n − p degrees of freedom since In − X(X′X)−1X′ is of rank n − p.

6.1.1 Estimation of the Mean Response

An estimator of the mean response, μ(x), in (6.3) is given by

μ̂(x) = f ′(x)β̂.

This is also called the predicted response at x, which is denoted by Ŷ(x). Hence,

Ŷ (x) = f ′
(x) β̂

= f ′(x)
(
X′X

)−1 X′Y. (6.14)



André I. Khuri/Linear Model Methodology C4819_C006 Finals Page 131 2009-9-2

Full-Rank Linear Models 131

The n × 1 vector Ŷ whose uth element is Ŷ(xu), where xu is the setting of x at
the uth experimental run (u = 1, 2, . . . , n), is the vector of predicted responses.
From (6.14) we then have

Ŷ = Xβ̂

= X
(
X′X

)−1 X′Y. (6.15)

The vector

Y − Ŷ =
[
In − X

(
X′X

)−1 X′] Y (6.16)

is called the residual vector. Thus Y can be written as

Y = Ŷ +
(

Y − Ŷ
)

.

Note that Ŷ is orthogonal to Y − Ŷ since

Ŷ
′ (

Y − Ŷ
)

= Y ′X
(
X′X

)−1 X′ [In − X
(
X′X

)−1 X′] Y

= 0.

We also note from (6.15) that Ŷ belongs to the column space of X, which is the
linear span of the columns of X (see Definition 2.3). Let us denote this linear
span by C(X). Furthermore, the mean response vector, namely μ = Xβ, also
belongs to C(X). It is easy to see that Y − Ŷ is orthogonal to all vectors in C(X).
The vector Ŷ can therefore be regarded as the orthogonal projection of Y on
C(X) through the matrix X(X′X)−1X′ in (6.15).

The square of the Euclidean norm of Ŷ, namely ‖Xβ̂‖2, is called the regres-
sion sum of squares and is denoted by SSReg. We thus have

SSReg = ‖ Xβ̂ ‖2

= β̂
′
X′Xβ̂

= Y ′X
(
X′X

)−1 X′Y. (6.17)

This sum of squares has p degrees of freedom since the matrix X(X′X)−1X′,
which is idempotent, is of rank p. Note that SSReg and SSE [see (6.13)] provide
a partitioning of ‖ Y ‖2= Y ′Y since

Y ′Y = Y ′X
(
X′X

)−1 X′Y + Y ′ [In − X
(
X′X

)−1 X′] Y. (6.18)

Such a partitioning is usually displayed in an analysis of variance (ANOVA)
table of the form (Table 6.1).

A historical note
The method of least squares was first published in 1805 by the French

mathematician Adrien-Marie Legendre (1752–1833). However, in 1809, Carl
Friedrich Gauss (1777–1855) claimed that he had been using the method since
1795, but ended up publishing it in 1809. More details concerning the origin
of this method were given in Section 1.1.
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TABLE 6.1
An ANOVA Table for a Regression Model
Source DF SS MS
Regression p SSReg SSReg/p
Error n − p SSE SSE/(n − p)

Total n Y ′Y

6.2 Properties of Ordinary Least-Squares Estimation

Let us again consider model (6.5) under the assumption that E(ε) = 0 and
Var(ε) = σ2In. Thus, E(Y) = Xβ and Var(Y) = σ2In. The least-squares
estimator of β is given by β̂ as in (6.9).

A number of results and properties associated with β̂ will be discussed
in this section. Some of these results are easy to show, others are derived in
more detail.

6.2.1 Distributional Properties

(a) E(β̂) = β, that is, β̂ is an unbiased estimator of β.

This is true since

E(β̂) = (X′X)−1X′E(Y)

= (X′X)−1X′Xβ

= β.

(b) Var(β̂) = σ2 (X′X)−1.

This follows from the fact that

Var
(
β̂

)
= (

X′X
)−1 X′Var(Y)X(X′X)−1

= (
X′X

)−1 X′(σ2 In)X(X′X)−1

= σ2 (
X′X

)−1 .

(c) E(MSE) = σ2, where MSE is the error (residual) mean square defined by

MSE = SSE

n − p
, (6.19)

and SSE is the error (residual) sum of squares in (6.13), which has
n − p degrees of freedom. This result follows directly from applying
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Theorem 5.2 to SSE:

E(MSE) = 1
n − p

E(SSE)

= 1
n − p

{
β′X′ [In − X

(
X′X

)−1 X′] Xβ

+σ2 tr
[
In − X

(
X′X

)−1 X′]}

= 1
n − p

[
σ2 (n − p)

]

= σ2.

Hence, MSE is an unbiased estimator of σ2. We denote such an estima-
tor by σ̂2.

(d) E(MSReg) = 1
pβ′X′Xβ + σ2, where MSReg is the regression mean square

defined by

MSReg = 1
p

SSReg, (6.20)

and SSReg is the regression sum of squares given in (6.17), which has p
degrees of freedom. This result also follows from applying Theorem 5.2
to SSReg:

E(MSReg) = 1
p

E(SSReg)

= 1
p

{
β′X′ [X

(
X′X

)−1 X′] Xβ + σ2 tr
[
X

(
X′X

)−1 X′]}

= 1
p

(
β′X′Xβ + p σ2

)

= 1
p

β′X′Xβ + σ2.

6.2.1.1 Properties under the Normality Assumption

In addition to the aforementioned assumptions concerning ε, let ε be now
assumed to have the normal distribution N(0, σ2In). This results in a number
of added properties concerning β̂. In particular, we have

(e) β̂ ∼ N[β, σ2(X′X)−1].
This follows from applying Corollary 4.1 to β̂ = (X′X)−1X′Y, which is
a linear function of Y, and Y is distributed as N(Xβ, σ2In). Hence, by
using properties (a) and (b) in Section 6.2.1, we conclude that β̂ ∼ N
[β, σ2(X′X)−1].
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The next four results give additional properties concerning the distributions
of SSE and SSReg, their independence, and the independence of β̂ from MSE.

(f) 1
σ2 SSE ∼ χ2

n−p.

This can be shown by applying Theorem 5.4 to SSE in (6.13) and noting
that 1

σ2 [In − X(X′X)−1X′](σ2In) is idempotent of rank n − p. Further-
more, the corresponding noncentrality parameter is zero since

β′X′ [In − X
(
X′X

)−1 X′] Xβ = 0.

(g) 1
σ2 SSReg ∼ χ2

p(θ), where θ = 1
σ2 β′X′Xβ.

Here, application of Theorem 5.4 to SSReg in (6.17) yields the desired
result since 1

σ2 [X(X′X)−1X′](σ2In) is idempotent of rank p, and the
noncentrality parameter is

θ = β′X′
[

1
σ2 X

(
X′X

)−1 X′
]

Xβ

= 1
σ2 β′X′Xβ.

(h) SSReg and SSE are independent.

This results from applying Theorem 5.5 to SSReg and SSE. More specifi-
cally, using condition (5.45), we get

[
X

(
X′X

)−1 X′] (
σ2In

) [
In − X

(
X′X

)−1 X′] = 0.

(i) β̂ and MSE are independent.

The proof of this result is based on an application of Theorem 5.6 to
the linear form, β̂ = (X′X)−1X′Y, and the quadratic form, MSE =

1
n−p Y ′[In −X(X′X)−1X′]Y. In this case, using condition (5.59), we obtain

(
X′X

)−1 X′ (σ2In

) {
1

n − p

[
In − X

(
X′X

)−1 X′]
}

= 0.

6.2.2 The Gauss–Markov Theorem

This well-known theorem gives an optimal property concerning least-squares
estimation.

Theorem 6.1 Let c′β be a linear function of β, where c is a given nonzero
constant vector. If E(ε) = 0 and Var(ε) = σ2In, where ε is the experimental
error vector in (6.5), then c′β̂ = c′(X′X)−1X′Y is the best linear unbiased esti-
mator (BLUE) of c′β. By best, it is meant that c′β̂ has the smallest variance
among all linear unbiased estimators of c′β.
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Proof. It is clear that c′β̂ is a linear function of Y and that it is unbiased for
c′β [see property 6.2.1(a)]. Let us now show that c′β̂ has the smallest variance
among all linear unbiased estimators of c′β.

Let λ′Y be any linear unbiased estimator of c′β, that is, E(λ′Y) = c′β. This
implies that

λ′Xβ = c′β (6.21)

for all β in Rp, the p-dimensional Euclidean space. It follows that

λ′X = c′. (6.22)

Now, the variance of λ′Y is

Var
(
λ′Y

) = λ′λ σ2. (6.23)

Furthermore, from property 6.2.1(b), we have

Var
(

c′β̂
)

= σ2 c′ (X′X
)−1 c. (6.24)

Using (6.22) in (6.24), we get

Var
(

c′β̂
)

= σ2 λ′X
(
X′X

)−1 X′λ. (6.25)

From (6.23) and (6.25) we can then write

Var
(
λ′Y

) − Var
(

c′β̂
)

= σ2 λ′ [In − X
(
X′X

)−1 X′] λ

≥ 0. (6.26)

The inequality in (6.26) follows from the fact that the matrix In − X(X′X)−1X′
is idempotent, hence positive semidefinite. This shows that

Var
(

c′β̂
)

≤ Var
(
λ′Y

)
. (6.27)

Equality in (6.27) is achieved if and only if c′β̂ = λ′Y. This follows from (6.26)
and noting that Var(λ′Y) = Var(c′β̂) if and only if

[
In − X

(
X′X

)−1 X′] λ = 0,

or, equivalently, if and only if

λ′ = λ′X
(
X′X

)−1 X′.

Hence,

λ′Y = λ′X
(
X′X

)−1 X′Y
= c′β̂.
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Theorem 6.1 can be generalized so that it applies to a vector linear function
of β, Cβ, where C is a given constant matrix of order q × p and rank q (≤ p).
This is given by the following corollary:

Corollary 6.1 Let C be a given matrix of order q × p and rank q (≤ p). Then,
Cβ̂ is the best linear unbiased estimator (BLUE) of Cβ. By best, it is meant
that the matrix,

B = Var(ΛY) − Var
(

Cβ̂
)

is positive semidefinite, where ΛY is any vector linear function of Y that is
unbiased for Cβ.

Proof. The unbiasedness of ΛY for Cβ implies that ΛX = C. The q×n matrix
Λ must therefore be of rank q since C is of rank q. Now, the matrix B is positive
semidefinite if and only if

t′Bt ≥ 0, (6.28)

for all t ∈ Rq with t′Bt = 0 for some t 	= 0. But,

t′Bt = Var
(
t′ΛY

) − Var
(

t′Cβ̂
)

= Var
(
λ′

tY
) − Var

(
c′

tβ̂
)

, (6.29)

where λ′
t = t′Λ and c′

t = t′C. Note that λ′
tY is a linear function of Y, which is

unbiased for c′
tβ. The latter assertion is true because

E(λ′
tY) = λ′

tXβ

= t′ΛXβ

= t′Cβ

= c′
tβ. (6.30)

From Theorem 6.1 we conclude that Var(λ′
tY) ≥ Var(c′

tβ̂) for all t ∈ Rq, which
implies (6.28). It remains to show that t′Bt = 0 for some t 	= 0.

Suppose that t′Bt = 0. Then, from (6.29) we have

σ2
[
λ′

tλt − c′
t
(
X′X

)−1 ct

]
= 0. (6.31)

Since λ′
t = t′Λ, c′

t = t′C = t′ΛX, (6.31) can be written as

σ2t′Λ
[
In − X

(
X′X

)−1 X′] Λ′t = 0. (6.32)

From (6.32) we conclude that there is some nonzero vector u = Λ′t for which
the equality in (6.32) is true, since the matrix In − X(X′X)−1X′ is positive
semidefinite. For such a vector, t = (ΛΛ′)−1Λu 	= 0, which implies that
t′Bt = 0 for some nonzero t.

A special case of Corollary 6.1 when C = Ip shows that β̂ is the BLUE of β.



André I. Khuri/Linear Model Methodology C4819_C006 Finals Page 137 2009-9-2

Full-Rank Linear Models 137

6.3 Generalized Least-Squares Estimation

In this section, we discuss again the estimation of β in model (6.5), but under
a more general setup concerning the variance–covariance matrix of ε. Here,
we consider that Var(ε) = σ2V , where V is a known positive definite matrix.
Estimation of β in this case can be easily reduced to the case discussed in
Section 6.1. Multiplying both sides of (6.5) on the left by V−1/2, we get

Yv = Xvβ + εv, (6.33)

where Yv = V−1/2Y, Xv = V−1/2X, and εv = V−1/2ε. Note that Xv is of full
column rank and that E(εv) = 0, Var(εv) = V−1/2(σ2V)V−1/2 = σ2In. The
OLS estimator of β in model (6.33) is therefore given by

β̂v = (
X′

vXv
)−1 X′

vYv

=
(

X′V−1X
)−1

X′V−1Y. (6.34)

We call β̂v the generalized least-squares estimator (GLSE) of β for model (6.5).
This estimator is unbiased for β and its variance–covariance matrix is

Var
(
β̂v

)
=

(
X′V−1X

)−1
X′V−1

(
σ2V

)
V−1X

(
X′V−1X

)−1

= σ2
(

X′V−1X
)−1

. (6.35)

Applying the Gauss–Markov Theorem (Theorem 6.1) to model (6.33) we
conclude that c′β̂v = c′(X′V−1X)−1X′V−1Y is the BLUE of c′β, where c is
a given nonzero constant vector. In addition, using Corollary 6.1, if Cβ is a
vector linear function of β, where C is a given matrix of order q × p and rank
q (≤ p), then Cβ̂v is the BLUE of Cβ. In particular, β̂v is the BLUE of β.

6.4 Least-Squares Estimation under Linear
Restrictions on β

The parameter vector β in model (6.5) may be subject to some linear restric-
tions of the form

Aβ = m, (6.36)

where
A is a known matrix of order r × p and rank r (≤ p)

m is a known vector
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For example, in a simple linear regression model, Y = β0 + β1x + ε,
estimation of the slope β1 may be needed when β0 = 0, that is, for a model
with a zero Y-intercept. Also, in a multiple linear regression model, such as
Y = β0 + β1x1 + β2x2 + ε, the mean response, μ(x) = β0 + β1x1 + β2x2, may
be set equal to zero when x1 = 1, x2 = 3. In this case, β0, β1, β2 are subject
to the linear restriction, β0 + β1 + 3β2 = 0.

In this section, we consider least-squares estimation of β when β is subject
to linear restrictions of the form given in (6.36). We make the same assump-
tions on ε as in Section 6.1, namely, E(ε) = 0 and Var(ε) = σ2In.

This particular type of estimation can be derived by minimizing S(β)

in (6.6) under the equality restrictions (6.36). A convenient way to do this
is to use the method of Lagrange multipliers (see, for example, Khuri, 2003,
Section 7.8). Consider the function,

T(β, κ) = S(β) + κ′(Aβ − m), (6.37)

where κ is a vector of r Lagrange multipliers. Differentiating T(β, κ) with
respect to β and equating the derivative to zero, we obtain

−2 X′Y + 2 X′Xβ + A′κ = 0. (6.38)

Solving (6.38) with respect to β and denoting this solution by β̂r, we get

β̂r = (
X′X

)−1
[

X′Y − 1
2

A′κ
]

. (6.39)

Substituting β̂r for β in (6.36), we obtain

A
(
X′X

)−1
[

X′Y − 1
2

A′κ
]

= m.

Solving this equation for κ, we get

κ = 2
[
A

(
X′X

)−1 A′]−1 [
A

(
X′X

)−1 X′Y − m
]

. (6.40)

From (6.39) and (6.40) we then have the solution

β̂r = (
X′X

)−1 X′Y − (
X′X

)−1 A′ [A
(
X′X

)−1 A′]−1 [
A

(
X′X

)−1 X′Y − m
]

= β̂ − (
X′X

)−1 A′ [A
(
X′X

)−1 A′]−1 (
Aβ̂ − m

)
, (6.41)

where β̂ is the OLS estimator given in (6.9). This solution is called the restricted
least-squares estimator of β. It is easy to see that β̂r satisfies the equality



André I. Khuri/Linear Model Methodology C4819_C006 Finals Page 139 2009-9-2

Full-Rank Linear Models 139

restrictions in (6.36). Furthermore, S(β) attains its minimum value, S(β̂r),
over the parameter space constrained by (6.36) when β = β̂r. It can also be
verified that

S
(
β̂r

)
=

(
Y − Xβ̂

)′ (
Y − Xβ̂

)
+

(
β̂ − β̂r

)′
X′X

(
β̂ − β̂r

)

= SSE +
(
β̂ − β̂r

)′
X′X

(
β̂ − β̂r

)
. (6.42)

Hence, S(β̂r) > SSE since equality is attained if and only if β̂ = β̂r, which is
not possible. Using (6.41), formula (6.42) can also be written as

S
(
β̂r

)
= SSE +

(
Aβ̂ − m

)′ [
A

(
X′X

)−1 A′]−1 (
Aβ̂ − m

)
.

The assertion that S(β) attains its minimum value at β̂r in the constrained
parameter space can be verified as follows: Let β be any vector in the con-
strained parameter space. Then, Aβ = m = Aβ̂r. Hence, A(β̂r − β) = 0.
Therefore,

S(β) = (Y − Xβ)′(Y − Xβ)

=
(

Y − Xβ̂r + Xβ̂r − Xβ
)′ (

Y − Xβ̂r + Xβ̂r − Xβ
)

=
(

Y − Xβ̂r

)′ (
Y − Xβ̂r

)
+ 2

(
Y − Xβ̂r

)′ (
Xβ̂r − Xβ

)

+
(

Xβ̂r − Xβ
)′ (

Xβ̂r − Xβ
)

.

But, from (6.41) we have

(
Y − Xβ̂r

)′ (
Xβ̂r − Xβ

)
=

{
Y − Xβ̂ + X

(
X′X

)−1 A′ [A
(
X′X

)−1 A′]−1

×
(

Aβ̂ − m
)}′

X
(
β̂r − β

)

=
(

Aβ̂ − m
)′ [

A
(
X′X

)−1 A′]−1
A

(
X′X

)−1 X′X

×
(
β̂r − β

)

= 0, since A
(
β̂r − β

)
= 0.

It follows that

S (β) = S
(
β̂r

)
+

(
β̂r − β

)′
X′X

(
β̂r − β

)
.

Hence, S(β) ≥ S(β̂r), and equality is attained if and only if β = β̂r.
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6.5 Maximum Likelihood Estimation

This type of estimation requires that particular assumptions be made con-
cerning the distribution of the error term in model (6.5). In this section, we
assume that ε is normally distributed as N(0, σ2In). Hence, Y ∼ N(Xβ, σ2In).
Then, the corresponding likelihood function, which, for a given value, y, of
Y, is the same as the density function of Y, but is treated as a function of
β and σ2 and is therefore given by

L(β, σ2, y) = 1
(2 πσ2)n/2 exp

[
− 1

2 σ2 (y − Xβ)′(y − Xβ)

]
. (6.43)

By definition, the maximum likelihood estimates (MLE) of β and σ2 are those
values of β and σ2 that maximize the likelihood function, or equivalently, the
natural logarithm of L, namely

l
(
β, σ2, y

)
= −n

2
log(2 π) − n

2
log

(
σ2

)
− 1

2 σ2 (y − Xβ)′(y − Xβ).

To find the MLE of β and σ2, we proceed as follows: We first find the sta-
tionary values of β and σ2 for which the partial derivatives of l(β, σ2, y) with
respect to β and σ2 are equal to zero. The next step is to verify that these
values maximize l(β, σ2, y). Setting the partial derivatives of l(β, σ2, y) with
respect to β and σ2 to zero, we get

∂l
(
β, σ2, y

)

∂β
= − 1

2 σ2

(−2 X′y + 2 X′Xβ
)

= 0 (6.44)
∂l

(
β, σ2, y

)

∂σ2 = − n
2 σ2 + 1

2 σ4 (y − Xβ)′(y − Xβ)

= 0. (6.45)

Let β̃ and σ̃2 denote the solution of equations 6.44 and 6.45 for β and σ2,
respectively. From (6.44) we find that

β̃ = (X′X)−1X′Y, (6.46)

which is the same as β̂, the OLS estimator of β in (6.9). Note that Y was used
in place of y in (6.46) since the latter originated from the likelihood function
in (6.43) where it was treated as a mathematical variable. In formula (6.46),
however, Y is treated as a random vector since it is data dependent. From
(6.45) we get

σ̃2 = 1
n

(
Y − Xβ̃

)′ (
Y − Xβ̃

)
. (6.47)



André I. Khuri/Linear Model Methodology C4819_C006 Finals Page 141 2009-9-2

Full-Rank Linear Models 141

We recall that σ̂2 = MSE is an unbiased estimator of σ2 [see property 6.2.1(c)].
The estimator σ̃2, however, is not unbiased for σ2.

Let us now verify that β̃ and σ̃2 are indeed maximal values for l(β, σ2, y)

with respect to β and σ2. For this purpose, we consider the matrix of second-
order partial derivatives of l(β, σ2, y) with respect to β and σ2. This is the
Hessian matrix and is given by

M =

⎡

⎢⎢⎢⎢⎣

∂

∂β
′

[
∂l

(
β,σ2,y

)

∂β

]
∂

∂σ2

[
∂l

(
β,σ2,y

)

∂β

]

∂

∂β
′

[
∂l

(
β,σ2,y

)

∂σ2

]
∂

∂σ2

[
∂l

(
β,σ2,y

)

∂σ2

]

⎤

⎥⎥⎥⎥⎦
.

Evaluating the matrix M at β = β̃, and σ2 = σ̃2, we get

M =
⎡

⎣
− 1

σ̃2 X′X 1
2 σ̃4

(
−2 X′y + 2 X′Xβ̃

)

1
2 σ̃4

(
−2 y′X + 2 β̃

′
X′X

)
n

2 σ̃4 − 1
σ̃6

(
y − Xβ̃

)′ (
y − Xβ̃

)

⎤

⎦ . (6.48)

Making use of (6.44) and (6.47) in (6.48), we obtain

M =
[
− 1

σ̃2 X′X 0
0′ − n

2 σ̃4

]
, (6.49)

which is clearly negative definite. Hence, l(β, σ2, y) has a local maximum at
β = β̃, σ2 = σ̃2 (see, for example, Khuri, 2003, Corollary 7.7.1). Since this is
the only local maximum, it must also be the absolute maximum. Hence, β̃ and
σ̃2 are the MLE of β and σ2, respectively. The maximum value of L(β, σ2, y)

in (6.43) is

max
β,σ2

L
(
β, σ2, y

)
= 1

(
2 πσ̃2

)n/2 e−n/2. (6.50)

6.5.1 Properties of Maximum Likelihood Estimators

We have that β̃ = β̂ and σ̃2 = SSE
n = n−p

n MSE. On the basis of the properties

given in Section 6.2.1.1, β̃ ∼ N(β, σ2(X′X)−1), σ̃2 ∼ σ2

n χ2
n−p, and β̃ and σ̃2 are

independent. In addition, β̃ and σ̃2 have two more properties, namely, suffi-
ciency and completeness. In order to understand these properties, the following
definitions are needed:

Definition 6.1 Let Y be a random vector whose distribution depends on a
parameter vector, φ ∈ Ω, where Ω is some parameter space. A statistic U(Y)
is a sufficient statistic for φ if the conditional distribution of Y given the value
of U(Y) does not depend on φ.
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In practice, the determination of sufficiency is more easily accom-
plished by using the following well-known theorem in statistical inference,
namely, the Factorization Theorem (see, for example, Casella and Berger, 2002,
Theorem 6.2.6).

Theorem 6.2 (Factorization Theorem) Let g(y, φ) denote the density function
of the random vector Y. A statistic U(Y) is a sufficient statistic for φ ∈ Ω if
and only if g(y, φ) can be written as

g(y, φ) = g1(y) g2(u(y), φ)

for all φ ∈ Ω, where g1 is a function of y only and g2 is a function of u(y)
and φ.

Definition 6.2 Let Y be a random vector with the density function g(y, φ),
which depends on a parameter vector, φ ∈ Ω. Let F denote the family of
distributions {g(y, φ), φ ∈ Ω}. This family is said to be complete if for every
function h(Y) for which

E[h(Y)] = 0, for all φ ∈ Ω,

then h(Y) = 0 with probability equal to 1 for all φ ∈ Ω.
Note that completeness is a property of a family of distributions, not of a

particular distribution. For example, let Y ∼ N(μ, 1), then

g(y, μ) = 1√
2 π

exp
[
−1

2
(y − μ)2

]
, −∞ < y < ∞, (6.51)

where −∞ < μ < ∞. Let h(Y) be a function such that E[h(Y)] = 0 for all μ.
Then,

1√
2 π

∞�
−∞

h(y)exp
[
−1

2
(y − μ)2

]
dy = 0, −∞ < μ < ∞,

which implies that

∞�
−∞

h(y)e−y2/2ey μdy = 0, −∞ < μ < ∞. (6.52)

The left-hand side of (6.52) is the two-sided Laplace transformation of the
function h(y)e−y2/2 [see Chapter III in Zemanian (1987)]. Since the two-sided
Laplace transformation of the zero function is also equal to zero, we con-
clude that

h(y)e−y2/2 = 0, (6.53)

and hence h(y) = 0 almost everywhere (with respect to Lebesgue measure).
This assertion is based on the uniqueness property of the two-sided Laplace
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transformation [see Theorem 3.5.2 in Zemanian (1987, p. 69)]. We thus have
P[h(Y) = 0] = 1, which indicates that the family of normal distributions,
N(μ, 1), is complete.

We can clearly see that we would not have been able to conclude from
(6.52) that h(y) = 0 if μ had just a fixed value. This explains our earlier
remark that completeness is a property of a family of distributions, but not
of a particular distribution. For example, if h(Y) = Y and Y ∼ N(0, 1), then
having E[h(Y)] = E(Y) = 0 does not imply that h(Y) = 0.

Definition 6.3 Let U(Y) be a statistic whose distribution belongs to a family
of distributions that is complete. Then, U(Y) is said to be a complete statistic.

For example, if Ȳ is the sample mean of a sample of size n from a normal
distribution N(μ, 1), −∞ < μ < ∞, then Ȳ ∼ N(μ, 1

n ). Since this family of
distributions is complete, as was seen earlier, we conclude that Ȳ is a complete
statistic.

The completeness of the family of normal distributions N(μ, 1) can be
derived as a special case using a more general family of distributions called
the exponential family.

Definition 6.4 Let F = {g(y, φ), φ ∈ Ω} be a family of density functions (or
probability mass functions) such that

g(y, φ) = ϕ(y) c(φ) exp

⎡

⎣
k∑

i=1

ωi(φ)ti(y)

⎤

⎦ , (6.54)

where ϕ(y) ≥ 0 and t1(y), t2(y), . . . , tk(y) are real-valued functions of y only,
and c(φ) ≥ 0 and ω1(φ), ω2(φ), . . . , ωk(φ) are real-valued functions of φ

only. Then, F is called an exponential family.
Several well-known distributions belong to the exponential family. These

include the normal, gamma, and beta distributions, among the continuous
distributions; and the binomial, Poisson, and negative binomial, among the
discrete distributions. For example, for the family of normal distributions,
N(μ, σ2), we have

g(y, φ) = 1√
2 πσ2

exp
[
− 1

2 σ2 (y − μ)2
]

, −∞ < μ < ∞, σ > 0, (6.55)

= 1√
2 πσ2

exp

(
− μ2

2 σ2

)
exp

(
− y2

2 σ2 + μ y
σ2

)
.

Comparing this with the expression in (6.54), we see that φ = (μ, σ2)′, ϕ(y)= 1,

c(φ) = 1√
2 πσ2

exp
(
− μ2

2 σ2

)
, ω1(φ) = − 1

2 σ2 , t1(y) = y2, ω2(φ) = μ

σ2 , and
t2(y) = y.
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The exponential family has several nice properties. One of these
properties is given by the following well-known theorem (see, for exam-
ple, Arnold, 1981, Theorem 1.2, p. 2; Graybill, 1976, Theorem 2.7.8, p. 79;
Wasan, 1970, Theorem 2, p. 64):

Theorem 6.3 Consider the exponential family defined in formula (6.54).
Let ω(φ) = [ω1(φ), ω2(φ), . . . , ωk(φ)]′ and t(y) = [t1(y), t2(y), . . . , tk(y)]′.
Then, t(Y) is a complete and sufficient statistic provided that the set
{ω(φ), φ ∈ Ω} contains a nondegenerate k-dimensional rectangle (i.e., has a
nonempty interior).

After this series of definitions and theorems, we are now ready to show
that the maximum likelihood estimators, β̃ and σ̃2, have the properties of
sufficiency and completeness.

Theorem 6.4 Let Y ∼ N(Xβ, σ2In). Then, the maximum likelihood estimators
of β and σ2, namely, β̃ = (X′X)−1X′Y, and

σ̃2 = 1
n

Y ′ [In − X
(
X′X

)−1 X′] Y, (6.56)

are complete and sufficient statistics for β and σ2.

Proof. The density function, g(y, φ), of Y is the same as the likelihood func-
tion in (6.43), where φ = (β′, σ2)′. We can then write

g(y, φ) = 1
(
2 πσ2

)n/2 exp
[
− 1

2 σ2 (y − Xβ)′(y − Xβ)

]

= 1
(
2 πσ2

)n/2 exp
{
− 1

2 σ2

[(
y − Xβ̃

)′ (
y − Xβ̃

)

+
(
β̃ − β

)′
X′X

(
β̃ − β

)]}

= 1
(
2 πσ2

)n/2 exp
{
− 1

2 σ2

[
nσ̃2+

(
β̃−β

)′
X′X

(
β̃−β

)]}
. (6.57)

We note that the right-hand side of (6.57) is a function of σ̃2, β̃, and the ele-
ments of φ. Hence, by the Factorization Theorem (Theorem 6.2), the statistic
(β̃

′
, σ̃2)′ is sufficient for φ [the function g1 in Theorem 6.2, in this case, is

identically equal to one, and the function g2 is equal to the right-hand side
of (6.57)].

Now, to show completeness, let us rewrite (6.57) as

g(y, φ) = 1
(
2 πσ2

)n/2 exp
(

− 1
2 σ2 β′X′Xβ

)

× exp
{
− 1

2 σ2

[
nσ̃2 + β̃

′
X′Xβ̃

]
+ 1

σ2 β′X′Xβ̃

}
. (6.58)
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By comparing (6.58) with (6.54) we find that g(y, φ) belongs to the exponential
family with k = p + 1,

ϕ(y) = 1,

c(φ) = 1
(
2 πσ2

)n/2 exp
(

− 1
2 σ2 β′X′Xβ

)
,

ω1(φ) = − 1
2 σ2 ,

t1(y) = nσ̃2 + β̃
′
X′Xβ̃, (6.59)

ω′
2(φ) = 1

σ2 β′,

t2(y) = X′Xβ̃. (6.60)

Furthermore, the set

ω(φ) = [
ω1(φ), ω′

2(φ)
]′

=
(

− 1
2 σ2 ,

1
σ2 β′

)′
,

is a subset of a (p + 1)-dimensional Euclidean space with a negative first
coordinate, and this subset has a nonempty interior. Hence, by Theorem 6.3,
t(Y) = [t1(Y), t′

2(Y)]′ is a complete statistic. But, from (6.59) and (6.60) we can
solve for β̃ and σ̃2 in terms of t1(Y) and t2(Y), and we obtain,

β̃ = (
X′X

)−1 t2(Y),

σ̃2 = 1
n

[
t1(Y) − t′

2(Y)
(
X′X

)−1 (
X′X

) (
X′X

)−1 t2(Y)
]

= 1
n

[
t1(Y) − t′

2(Y)
(
X′X

)−1 t2(Y)
]

.

It follows that (β̃
′
, σ̃2)′ is a complete statistic (any invertible function of a

statistic with a complete family has a complete family; see Arnold, 1981,
Lemma 1.3, p. 3). We finally conclude that (β̃

′
, σ̃2)′ is a complete and sufficient

statistic for (β′, σ2)′.

Corollary 6.2 Let Y ∼ N(Xβ, σ2In), where X is of order n×p and rank p (< n).
Then, β̂ = (X′X)−1X′Y, and

MSE = 1
n − p

Y ′ [In − X
(
X′X

)−1 X′] Y,

are complete and sufficient statistics for β and σ2.
The completeness and sufficiency of β̂ and MSE in Corollary 6.2, combined

with their being unbiased for β and σ2, give these estimators a certain optimal
property, which is described in the next theorem.
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Theorem 6.5 Let Y = Xβ + ε, where ε ∼ N(0, σ2In). Then, β̂ and MSE are
the unique unbiased estimators of β and σ2 with the smallest variance in the
class of all unbiased estimators of β and σ2, that is, for all β and σ2,

Var
(
β̂

)
≤ Var

(
β∗) (6.61)

Var(MSE) ≤ Var
(
σ∗ 2

)
, (6.62)

where β∗ and σ∗ 2 are estimators that belong to the class of all unbiased
estimators of β and σ2, respectively, and the inequality in (6.61) means that
the matrix Var(β∗) − Var(β̂) is positive semidefinite.

This theorem is based on the so-called Lehmann–Scheffé Theorem (see, for
example, Casella and Berger, 2002, p. 369). It gives β̂ and MSE the distinction
of being uniformly minimum variance unbiased estimators (UMVUE) of β and σ2

(see also Graybill, 1976, Theorem 6.2.2, p. 176).
It should be noted that the earlier optimal property concerning β̂, given

by the Gauss–Markov Theorem in Section 6.2.2, states that β̂ has the smallest
variance among all linear unbiased estimators, that is, β̂ is the best estimator in
the class of all linear unbiased estimators of β. Theorem 6.5, however, gives a
stronger result, namely, that β̂ is the best estimator in the class of all unbiased
estimators, including those estimators that are linear. This stronger result is
due to the normality assumption made earlier concerning ε in Theorem 6.5.
The Gauss–Markov Theorem does not require such an assumption.

6.6 Inference Concerning β

Consider model (6.5) where it is assumed that ε ∼ N(0, σ2In). In this section,
a test statistic is derived concerning the general linear hypothesis,

H0 : Aβ = m, (6.63)

against the alternative hypothesis,

Ha : Aβ 	= m, (6.64)

where A is a known matrix of order r × p and rank r (≤ p), and m is a known
vector of r elements.

It is easy to see that under H0,

Aβ̂ ∼ N
[
m, σ2A

(
X′X

)−1 A′] ,

where β̂ is the OLS estimator of β given in (6.9). Hence, under H0,

1
σ2

(
Aβ̂ − m

)′ [
A

(
X′X

)−1 A′]−1 (
Aβ̂ − m

)
∼ χ2

r .
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Furthermore, β̂ is independent of MSE according to property (i) in
Section 6.2.1.1, and n−p

σ2 MSE ∼ χ2
n−p by property (f) in Section 6.2.1.1. It

follows that under H0, the statistic,

F =
(

Aβ̂ − m
)′ [

A
(
X′X

)−1 A′
]−1 (

Aβ̂ − m
)

rMSE
, (6.65)

has the F-distribution with r and n − p degrees of freedom. Under the alter-
native hypothesis Ha,

E
{(

Aβ̂ − m
)′ [

A
(
X′X

)−1 A′]−1 (
Aβ̂ − m

)}

= (ma − m)′
[
A

(
X′X

)−1 A′]−1
(ma − m)

+ tr
{[

A
(
X′X

)−1 A′]−1 [
A

(
X′X

)−1 A′] σ2
}

= (ma − m)′
[
A

(
X′X

)−1 A′]−1
(ma − m) + rσ2, (6.66)

as can be seen from applying Theorem 5.2, where ma is an alternative value
of Aβ under Ha (ma 	= m). Note that

(ma − m)′
[
A

(
X′X

)−1 A′]−1
(ma − m) > 0,

since A(X′X)−1A′ is a positive definite matrix. Consequently, a large value of
the test statistic F in (6.65) leads to a rejection of H0. Thus, H0 is rejected at
the α-level if F ≥ Fα,r,n−p.

Under the alternative value, Aβ = ma, the test statistic F in (6.65) has
the noncentral F-distribution with r and n − p degrees of freedom and a
noncentrality parameter given by

θ = 1
σ2 (ma − m)′

[
A

(
X′X

)−1 A′]−1
(ma − m) .

Hence, the corresponding power of the test is

Power = P
[
F > Fα,r,n−p | F ∼ Fr,n−p(θ)

]
.

A special case of the hypothesis in (6.63) is

H0 : β = β0,
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where A = Ip and m = β0. In this case, the statistic F in (6.65) reduces to

F =
(
β̂ − β0

)′
X′X

(
β̂ − β0

)

pMSE
, (6.67)

which has the F-distribution with p and n − p degrees of freedom under H0.

6.6.1 Confidence Regions and Confidence Intervals

Given that ε ∼ N(0, σ2In), it is easy to derive a confidence region on a vector
linear function of β such as λ = Aβ, where A is the same matrix as in (6.63).
A (1 − α)100% confidence region on λ is given by

(
Aβ̂ − λ

)′ [
A

(
X′X

)−1 A′]−1 (
Aβ̂ − λ

)
≤ r MSE Fα,r,n−p. (6.68)

In the event λ = a′β, where a′ is a known vector of p elements, it would be
more convenient to use the t-distribution to derive a (1 − α)100% confidence
interval on a′β of the form

a′β̂ ∓ t α
2 ,n−p

[
a′ (X′X

)−1 a MSE

]1/2
. (6.69)

This is based on the fact that

a′β̂ − a′β
[
a′ (X′X

)−1 a MSE

]1/2

has the t-distribution with n − p degrees of freedom.

6.6.1.1 Simultaneous Confidence Intervals

The confidence interval in (6.69) provides a coverage probability of 1 − α for
a particular linear function, a′β, of β. In some cases, it may be desired to have
confidence intervals on all linear functions of β of the form l′β, where l ∈ Rp,
the p- dimensional Euclidean space, with a joint coverage probability of 1−α.
More specifically, if Cl denotes such a confidence interval on l′β, then

P{
⋂

l∈Rp

[
l′β ∈ Cl

]} = 1 − α,

or, equivalently,
P

[
l′β ∈ Cl , ∀ l ∈ Rp] = 1 − α.

Such intervals are referred to as simultaneous confidence intervals. To construct
these intervals, the following lemma is needed.

Lemma 6.1 The inequality, | b′x |≤ c(b′b)1/2, holds for all b if and only if
x′x ≤ c2 (c > 0).
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Proof. If x′x ≤ c2, then by the Cauchy–Schwarz inequality,

| b′x | ≤ c
(
b′b

)1/2 . (6.70)

Vice versa, if (6.70) is true for all b, then, in particular for b = x, we have

| x′x | ≤ c
(
x′x

)1/2 . (6.71)

Whenever x 	= 0, we conclude from (6.71) that x′x ≤ c2. If x = 0, then x′x ≤ c2

is already satisfied.

Theorem 6.6 (1 − α)100% simultaneous confidence intervals on all linear
functions of β of the form l′β, l ∈ Rp, are given by

l′β̂ ∓
[
p MSE Fα,p,n−p l′

(
X′X

)−1 l
]1/2

.

Proof. Using formula (6.68), a (1 − α)100% confidence region on β can be
written as (

β̂ − β
)′

X′X
(
β̂ − β

)
≤ p MSE Fα,p,n−p. (6.72)

Let x = (X′X)1/2(β̂ − β), c2 = p MSE Fα,p,n−p. Using Lemma 6.1, inequality
(6.72) is equivalent to

| b′ (X′X
)1/2

(
β̂ − β

)
| ≤ (

b′b
)1/2

(p MSE Fα,p,n−p)
1/2, ∀ b ∈ Rp. (6.73)

Let now l′ = b′(X′X)1/2. Thus, b′ = l′(X′X)−1/2. Substituting in (6.73), we get

| l′
(
β̂ − β

)
| ≤

[
l′

(
X′X

)−1 l
]1/2 (

p MSE Fα,p,n−p
)1/2 , (6.74)

for all l ∈ Rp with a joint probability of 1 − α. From (6.74) we conclude that

P
{

l′β ∈ l′β̂ ∓
[
p MSE Fα,p,n−p l′

(
X′X

)−1 l
]1/2

, ∀ l ∈ Rp
}

= 1 − α. (6.75)

The intervals in (6.75) are called Scheffé’s simultaneous confidence intervals on
all linear functions of β.

6.6.2 The Likelihood Ratio Approach to Hypothesis Testing

An alternative method for deriving the test statistic for the null hypothesis H0
in (6.63) is based on the likelihood ratio principle (see, for example, Casella and
Berger, 2002, Section 8.2.1). This is related to the maximum likelihood estimation
discussed in Section 6.5. By definition, the likelihood ratio test statistic, λ, for
testing H0 is given by

λ = maxH0 L
(
β, σ2, y

)

maxβ, σ2 L
(
β, σ2, y

) , (6.76)
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where maxβ,σ2 L(β, σ2, y) is the maximum of the likelihood function in (6.43)
maximized over the entire parameter space of β ∈ Rp and σ2 (0 < σ2 < ∞),
and maxH0 L(β, σ2, y) denotes the maximum value of the likelihood function
maximized over a restricted parameter space of β defined by Aβ = m. Note
that λ ≤ 1 and small values of λ lead to the rejection of H0.

Recall that maxβ,σ2 L(β, σ2, y) is given by the right-hand side of (6.50). It
can also be shown (see Exercise 6.7) that

max
H0

L
(
β, σ2, y

)
=

[
2 π

n

(
y − Xβ̂r

)′ (
y − Xβ̂r

)]−n/2

e−n/2, (6.77)

where β̂r is the restricted least-squares estimator of β,

β̂r = β̂ − (
X′X

)−1 A′ [A
(
X′X

)−1 A′]−1 (
Aβ̂ − m

)
, (6.78)

as was seen earlier in Section 6.4. Using formulas (6.50) and (6.77), the expres-
sion in (6.76) can be written as

λ =
⎡

⎢⎣

(
y − Xβ̂

)′ (
y − Xβ̂

)

(
y − Xβ̂r

)′ (
y − Xβ̂r

)

⎤

⎥⎦

n/2

. (6.79)

But,
(

y − Xβ̂
)′ (

y − Xβ̂
)

= SSE,

as can be seen from (6.13) for a realized value, y, of Y. In addition, from (6.41)
and (6.42), we have

(
y − Xβ̂r

)′ (
y − Xβ̂r

)
= SSE +

(
β̂ − β̂r

)′
X′X

(
β̂ − β̂r

)

= SSE +
(

Aβ̂ − m
)′ [

A
(
X′X

)−1 A′]−1 (
Aβ̂ − m

)
.

We then have,

λ =
[

SSE

SSE + Q

]n/2

, (6.80)

where

Q =
(

Aβ̂ − m
)′ [

A
(
X′X

)−1 A′]−1 (
Aβ̂ − m

)
.

Thus, the ratio λ is a monotone decreasing function of Q
SSE

. Since a small value

of λ leads to the rejection of H0, a large value of Q
SSE

, or equivalently, of Q
r MSE

,

where MSE = SSE
n−p , will have the same effect. But, Q

r MSE
is equal to the test

statistic F in (6.65). We conclude that the likelihood ratio principle results
in the same test statistic as the one based on the distributional properties
associated with β̂ under the assumption of normality.
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6.7 Examples and Applications

In this section, several applications of the methodology described in the
present chapter will be discussed. In addition, a number of numerical exam-
ples will be presented to illustrate the implementation of this methodology.

6.7.1 Confidence Region for the Location of the Optimum

One of the objectives of response surface methodology is the adequate estima-
tion of the optimum mean response within a certain region of interest. The
precision of the estimated optimum is often indicated via a confidence region
on the optimum. Such an optimum is usually considered within a certain
constrained region.

Let μ(x) denote the mean response at a point x = (x1, x2, . . . , xk)
′ in a

region of interest, �. Suppose that μ(x) is represented by a second-degree
model of the form

μ(x) = β0 + x′β∗ + x′Bx, (6.81)

where β∗ = (β1, β2, . . . , βk)
′, B is a symmetric matrix of order k × k whose

ith diagonal element is βii and (i, j)th off-diagonal element is 1
2βij (i 	= j); β0

and the elements of β∗ and B are fixed unknown parameters. Suppose that
the region � is constrained by the functions g1(x), g2(x), . . . , gm(x) such that

gi(x) = ci, i = 1, 2, . . . , m, (6.82)

where c1, c2, . . . , cm are given constants and gi(x) is a quadratic function in x
of the form

gi(x) = γ0i + x′γi + x′Γix, i = 1, 2, . . . , m, (6.83)

where γ0i and the elements of γi and Γi are known parameters. We need to
optimize μ(x) subject to the constraints given in (6.82). This can be accom-
plished by applying the method of Lagrange multipliers to the function

M(x) = μ(x) −
m∑

i=1

λi
[
gi(x) − ci

]
, (6.84)

where λ1, λ2, . . . , λm are Lagrange multipliers. Taking the partial derivative
of M(x) with respect to x for fixed λi, we get

∂M(x)

∂x
= 2

(
B −

m∑

i=1

λiΓi

)
x + β∗ −

m∑

i=1

λiγi. (6.85)

Let ξ be the location of the true constrained optimum. If the model in (6.81)
is correct, then ξ must satisfy the equation

2

(
B −

m∑

i=1

λiΓi

)
ξ +

(
β∗ −

m∑

i=1

λiγi

)
= 0. (6.86)
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Let δ̂ denote the estimator of the quantity on the left-hand side of (6.86),
which is formed by replacing the unknown parameters of the model in (6.81)
with their unbiased least-squares estimators, that is,

δ̂ = 2

(
B̂ −

m∑

i=1

λiΓi

)
ξ + β̂

∗ −
m∑

i=1

λiγi. (6.87)

Assuming that the response variable Y(x) at x ∈ � is normally distributed
with mean μ(x) and variance σ2, and the response data are uncorrelated,
the least-squares estimators in (6.87) are normally distributed. Hence, δ̂ ∼
N(0, V), where the elements of V are obtained from appropriate functions of
the elements of the variance–covariance matrix of the parameter estimators
in (6.87). Consequently, a (1−α)100% confidence region on ξ for fixed λi (i =
1, 2, . . . , m) is defined by the inequality

δ̂
′
V−1δ̂ ≤ χ2

α,k, (6.88)

where χ2
α,k is the upper α-quantile of the chi-squared distribution with k

degrees of freedom.
In a typical response surface investigation, the unconstrained optimum

may fall outside the region where the data are collected. Such an optimum is
undesirable because it can only be extrapolated and is therefore unreliable.
In this case, certain constraints are considered in order to restrict optimiza-
tion within the experimental region to a fixed distance from the region’s
center.

Example 6.1 In some biomedical studies, the fitted model may not be
linear as in (6.81), but can be expressed as an exponential function of
μ(x) = β0+x′β∗+x′Bx, which is monotone increasing. Hence, any constrained
optimization of this function is equivalent to a constrained optimization of
μ(x). Stablein, Carter, and Wampler (1983) used such a model in their deter-
mination of the optimum combination and its confidence bounds in a murine
cancer chemotherapy experiment. Different combinations of the levels of two
drugs, namely, 5-Fluorouracil (5FU) and Teniposide (VM26) were used. In
this experiment, leukemia cells were injected intraperitoneally into each of
127 mice on Day 0 and the treatment, consisting of an injection of the combi-
nation of the two drugs, was administered on Day 7. The data set consisting
of the treatment combination levels and resulting survival times, in days, is
given in Stablein, Carter, and Wampler (1983, Table 1). The same data set
is reproduced in Table 6.2. A proportional-hazards analysis was performed
using the model

L∗(t) = L0(t) exp
(
x′β∗ + x′Bx

)
, (6.89)
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TABLE 6.2
Data from the Murine Cancer Chemotherapy Experiment

Treatment Levels

5FU (mg/kg) VM26 (mg/kg) Days of Survival
0.00 0.00 8, 9(2), 10(5)
0.00 9.71 10, 13(5), 14(2)
0.00 19.40 8, 10, 13, 14(4), 15
0.00 25.90 9, 14(4), 15(3)

35.60 9.71 13, 14(3), 15(3), 17
48.50 4.85 9, 13(2), 14(3), 15(2)
48.50 19.40 14(2), 15(2), 16(4)
97.10 0.00 8(2), 10, 11, 12(2), 14, 16
97.10 3.56 8, 9(2), 11(2), 13(2), 16
97.10 9.71 8, 10, 11, 16(2), 17(2), 18
97.10 25.90 16(3), 17, 18(3), 19

194.00 0.00 10, 13(6), 14
194.00 4.85 11(2), 14(3), 16, 17
194.00 19.40 8, 14, 16, 20(4), 21
259.00 0.00 9, 11, 12(3), 13(3)
259.00 9.71 16(2), 17, 18(2), 19(2), 20

Source: Reprinted from Stablein, D.M. et al., Biometrics, 39, 759, 1983. With
permission.

Note: The number in parentheses indicates the number of animals failing on
the day in question.

where L∗(t)
L0(t)

is the hazard at time t of the treatment group relative to that of
the untreated control group, and x = (x1, x2)

′ is the vector of coded dosage
levels for the two drugs given by

x1 = 5FU dose (mg/kg) − 130
130

x2 = VM26 dose (mg/kg) − 13
13

.

Of interest here is the minimization of the natural logarithm of the relative
hazard function, that is, minimizing x′β∗ + x′Bx within a circle of radius r
centered at (0,0).

Estimates of the parameters in model (6.89) were obtained on the basis of
maximum likelihood using the data in Table 6.2. These estimates are shown
in Table 6.3. Note that the asymptotic properties of the maximum likelihood
estimates, including the estimated asymptotic variance–covariance matrix of
the estimates, were used here.

A constrained minimum within a distance, r, of the experimental region’s
center can be determined by requiring x′x ≤ r2 and minimizing the function
x′β∗ + x′Bx −λ(x′x − r2). To determine the treatment with minimum value of
the logarithm of the relative hazard on a circle of radius r, the value of λ must
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TABLE 6.3
Parameter Estimates for Model (6.89)
Parameter Estimate p-Value
β1 −1.2312 <0.001
β2 −1.5084 <0.001
β11 0.5467 0.046
β22 0.8850 <0.001
β12 0.7186 0.026

Source: Reprinted from Stablein, D.M. et al., Biometrics, 39, 759, 1983.
With permission.

be chosen smaller than the smallest eigenvalue of B (see Khuri and Cornell,
1996, p. 192), where from Table 6.3, B is the 2 × 2 matrix

B =
[

0.5467 0.3593
0.3593 0.8850

]
.

Its eigenvalues are 1.1130 and 0.3187. Hence, λ should be chosen less than
0.3187 in order to achieve a minimum. For example, for λ = −0.6, the con-
strained minimum is estimated to be on a circle of radius 1 with dosages
of 5FU = 227.9 mg/kg, and of VM26 = 22.0 mg/kg (see Stablein, Carter,
and Wampler, 1983, p. 762). An estimated asymptotic confidence region
was placed around the location of the true minimum by using asymptot-
ically unbiased maximum likelihood estimates of the parameters and set-
ting λ= − 0.6. This region was obtained by identifying all the points in
the two-dimensional experimental region that satisfy the inequality in (6.88)
(see Figure 6.1). The experimental region excluded dosage values that were
believed from clinical knowledge to be toxic. This includes the location of the
unconstrained minimum. More details about this can be found in Stablein,
Carter, and Wampler (1983).

6.7.2 Confidence Interval on the True Optimum

In this section, a confidence interval on the value of the true optimum of
the mean response is developed. For simplicity reasons, an unconstrained
optimum is considered here.

Consider again model (6.81). The stationary point of μ(x), that is, the point
at which ∂μ(x)

∂x is equal to the zero vector, is given by

x0 = −1
2

B−1β∗. (6.90)

Then, at x0, μ(x) has a minimum value if B is positive definite, and a
maximum value if B is negative definite. If B is neither positive definite
nor negative definite, then x0 is a saddle point.
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FIGURE 6.1
Constrained and unconstrained confidence regions for the 5FU-VM26 exper-
iment. (Reprinted from Stablein, D.M. et al., Biometrics, 39, 759, 1983. With
permission.)

Let β denote the vector consisting of all the unknown parameters in model
(6.81). If Y is the vector of observed response values at n design settings of x,
then Y is represented by model (6.5). Assuming that the random error vector
ε in this model is distributed as N(0, σ2In), the (1−α)100% confidence region
on β is given by

C =
{
γ :

(
β̂ − γ

)′
X′X

(
β̂ − γ

)
≤ p MSE Fα,p,n−p

}
, (6.91)

where β̂ = (X′X)−1X′Y and MSE is the error mean square. The objective here
is to use the confidence region in (6.91) in order to obtain a confidence interval
on the mean response at x0 in (6.90).

It is known that if g(β) is any continuous function of β, then

P
{

min
γ∈C

[
g(γ)

] ≤ g(β) ≤ max
γ∈C

[
g(γ)

]} ≥ 1 − α. (6.92)

This inequality follows from the fact that if β ∈ C, then g(β) ∈ g(C) and
therefore

P
[
g(β) ∈ g(C)

] ≥ P[β ∈ C]
= 1 − α.

Note that because of the continuity of the function g,

g(C) =
{

min
γ∈C

[
g (γ)

]
, max

γ∈C
[
g(γ)

]}
. (6.93)
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Thus the interval {minγ∈C [g(γ)], maxγ∈C [g(γ)]} represents a conservative
confidence interval on g(β) with a confidence coefficient greater than or
equal to 1 − α.

From (6.81), the value of μ(x) at x = x0, as given by (6.90), is

μ(x0) = β0 − 1
4
β∗′

B−1β∗. (6.94)

The right-hand side of (6.94) represents a particular function of β. We can
then write μ(x0) = g(β) and apply (6.92) to obtain a conservative confidence
interval on the true optimum of the mean response (assuming that B is either
positive definite or negative definite). Such an interval is therefore of the form

[
min
β∈C

{
β0 − 1

4
β∗′

B−1β∗
}

, max
β∈C

{
β0 − 1

4
β∗′

B−1β∗
}]

, (6.95)

which has a coverage probability greater than or equal to 1 − α. This confi-
dence interval was used by Carter et al. (1984) in their analysis of survival
data from a preclinical cancer chemotherapy experiment involving the com-
bination of two drugs.

The computation of the bounds of the confidence interval in (6.95) requires
first the identification of points in the confidence region C in (6.91). To accom-
plish this, Carter et al. (1984) used the following linear transformation in
order to reduce C to a hypersphere: Let P be an orthogonal matrix such that
X′X = PΛP′, where Λ is a diagonal matrix whose diagonal elements are the
eigenvalues of X′X, which are positive. Then,

(
β̂ − γ

)′
X′X

(
β̂ − γ

)
=

(
β̂ − γ

)′
PΛP′ (β̂ − γ

)
.

Let z = Λ1/2P′(β̂ − γ). The inequality in (6.91) can be written as

z′z ≤ p MSE Fα,p,n−p,

which represents a hypersphere centered at the origin of radius =
(p MSE Fα,p,n−p)

1/2. Polar coordinates can then be easily used to select points
z in this hypersphere and hence points γ in C of the form

γ = β̂ − PΛ−1/2z.

On this basis, a large number of points can be chosen in C, and the corre-
sponding values of β0 − 1

4β∗′
B−1β∗ can be computed and used to determine

the bounds in (6.95).
Carter et al. (1984) used the proportional-hazards model (6.89) in their

analysis of survival data from a cancer chemotherapy experiment, as was
mentioned earlier. In this case,

[
min
β∈C

(
−1

4
β∗′

B−1β∗
)

, max
β∈C

(
−1

4
β∗′

B−1β∗
)]
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gives a conservative confidence interval on log
[

L∗(t)
L0(t)

]
at the location of the

optimum. Note that the confidence region C used by Carter et al. (1984) was in
fact not the same as in (6.91), but was rather constructed using the asymptotic
properties of the maximum likelihood estimates of the model parameters in
(6.89). For more details, see Carter et al. (1984, p. 1128).

6.7.3 Confidence Interval for a Ratio

In some situations, it may be of interest to obtain a confidence interval on
a ratio of linear combinations of the parameters in model (6.5), where it is
assumed that ε∼ N(0, σ2In). Let us therefore consider finding confidence

limits for the ratio ψ = a′
1β

a′
2β

, where a1 and a2 are vectors of known constants.

Let Δ be defined as Δ = a′
1β − ψ a′

2β. An unbiased estimate of Δ is Δ̂ =
a′

1β̂ − ψ a′
2β̂. Hence,

E(Δ̂) = 0,

Var(Δ̂) = a′
1
(
X′X

)−1 a1σ
2 − 2 ψ a′

1
(
X′X

)−1 a2σ
2 + ψ2 a′

2
(
X′X

)−1 a2σ
2

=
(

d11 − 2 ψ d12 + ψ2 d22

)
σ2,

where d11 = a′
1(X

′X)−1a1, d12 = a′
1(X

′X)−1a2, and d22 = a′
2(X

′X)−1a2. It
follows that

Δ̂2
(
d11 − 2 ψd12 + ψ2d22

)
MSE

∼ F1,n−p.

Consequently,

P
[(

a′
1β̂ − ψa′

2β̂
)2 −

(
d11 − 2 ψd12 + ψ2d22

)
MSEFα,1,n−p ≤ 0

]
= 1 − α.

(6.96)
The probability statement in (6.96) can be rewritten as

P
[
Aψ2 − 2 Bψ + C ≤ 0

]
= 1 − α, (6.97)

where,

A =
(

a′
2β̂

)2 − d22MSEFα,1,n−p

B =
(

a′
1β̂

) (
a′

2β̂
)

− d12MSEFα,1,n−p

C =
(

a′
1β̂

)2 − d11MSEFα,1,n−p.

In order to obtain confidence limits on ψ from (6.97), the equation, Aψ2 −
2 Bψ + C = 0, must have two distinct real roots, ψ1 and ψ2 (ψ1 < ψ2), and
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the inequality Aψ2 − 2 Bψ + C ≤ 0 must be satisfied by all those values of ψ

such that ψ1 ≤ ψ ≤ ψ2. This occurs whenever B2 − AC > 0 and A > 0. Under
these conditions, the probability statement in (6.97) is equivalent to

P [ψ1 ≤ ψ ≤ ψ2] = 1 − α, (6.98)

where

ψ1 = B − (B2 − AC)1/2

A
(6.99)

ψ2 = B + (B2 − AC)1/2

A
. (6.100)

Hence, a confidence interval [ψ1, ψ2] on ψ exists provided that B2 − AC > 0
and A > 0. If these conditions are not satisfied, then the probability statement
in (6.97) can only provide a so-called confidence set on ψ, which consists of all
values of ψ that satisfy Aψ2 − 2 Bψ + C ≤ 0.

Example 6.2 An experiment was conducted in order to determine if there
is a relationship between arterial oxygen tension, x (millimeters of mercury)
and cerebral blood flow, Y, in human beings. Fifteen patients were used in
the study and the resulting data are given in Table 6.4.

The data set in Table 6.4 was used to fit the quadratic model

Y = β0 + β1x + β2x2 + ε. (6.101)

TABLE 6.4
Data for Example 6.2
Arterial Oxygen Cerebral Blood
Tension, x Flow, Y
603.4 80.33
582.5 79.80
556.2 77.20
594.6 79.21
558.9 77.44
575.2 78.01
580.1 79.53
451.2 74.46
404.0 75.22
484.0 74.58
452.4 75.90
448.4 75.80
334.8 80.67
320.3 82.60
350.3 78.20

Note: The background information concerning
this data set is described in Walpole and
Myers (1985, p. 364).
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TABLE 6.5
Parameter Estimates for Model (6.101)
Parameter Estimate Standard Error t-Value p-Value
β0 144.3982 5.7380 25.17 <0.0001
β1 −0.2971 0.0254 −11.70 <0.0001
β2 0.00032 0.000027 11.72 <0.0001

TABLE 6.6
ANOVA Table for Model (6.101)
Source DF SS MS F p-Value
Regression 2 76.2360 38.1180 68.75 <0.0001
Error 12 6.6534 0.5544

Total 14 82.8894

The least-squares estimates of the model parameters are shown in Table 6.5,
and the corresponding ANOVA table is given in Table 6.6.

We note that model (6.101) provides a good fit to the data, and all the
t-statistic values for the parameters are highly significant.

Let x0 denote the location of the stationary point of the mean response
μ(x). If the quadratic model in (6.101) is correct, then x0 must satisfy the
equation β1 + 2β2x0 = 0. Hence, x0 = − β1

2 β2
, which can be written as

x0 = a′
1β

a′
2β

, (6.102)

where β = (β0, β1, β2)
′, a′

1 = (0, −1, 0), a′
2 = (0, 0, 2). In this case, A =

3.89 × 10−7 > 0 and B2 − AC = 7.25 × 10−12 > 0. We have an absolute
(unconstrained) minimum at x0 if β2 > 0. Replacing β1 and β2 with their
least-squares estimates from Table 6.5, we get the following estimate of x0:

x̂0 = − β̂1

2 β̂2
= 464.219,

which falls within the experimental region. Using formulas (6.99) and (6.100),
the 95% confidence bounds on ψ = x0 = − β1

2 β2
are ψ1 = 461.372, ψ2 =

475.234. Thus, with a 0.95 probability, the interval [461.372, 475.234] contains
the arterial oxygen tension value that minimizes the mean cerebral blood flow.

6.7.4 Demonstrating the Gauss–Markov Theorem

The Gauss–Markov Theorem (Theorem 6.1) guarantees optimality of the
least-squares estimator, β̂ = (X′X)−1X′Y, for model (6.5) under the conditions
E(ε) = 0, Var(ε) = σ2In. In particular, any element of β̂ has a variance smaller
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than or equal to that of any other linear unbiased estimator of the correspond-
ing element of β. In this section, the Gauss–Markov Theorem is demonstrated
by presenting an example of such alternative unbiased linear estimators and
verifying that they are less efficient than the corresponding least-squares
estimators. The following example was described in Jeske (1994):

Consider the simple linear regression model,

Yu = β0 + β1xu + εu, u = 1, 2, . . . , n, (6.103)

where the εu’s are mutually independent with zero mean and variance σ2.
The best linear unbiased estimators (BLUE) of β0 and β1 are

β̂1 = SxY

Sxx
(6.104)

β̂0 = Ȳ − β̂1x̄, (6.105)

where Ȳ = 1
n

∑n
u=1 Yu, x̄ = 1

n
∑n

u=1 xu, SxY = ∑n
u=1(xu − x̄)(Yu − Ȳ), and

Sxx = ∑n
u=1(xu − x̄)2. The variances of β̂0 and β̂1 are

Var(β̂1) = σ2

Sxx
(6.106)

Var(β̂0) = σ2 ∑n
u=1 x2

u

n Sxx
. (6.107)

Jeske (1994) introduced the following estimators of β0 and β1:

β̃1 = Sx−1Y

Sxx−1
(6.108)

β̃0 = Ȳω − β̃1x̄h, (6.109)

where x̄h =
(

1
n

∑n
u=1

1
xu

)−1
is the harmonic mean of x1, x2, . . . , xn (assum-

ing that xu > 0 for u = 1, 2, . . . , n), Ȳω =
(∑n

u=1
1

xu

)−1 ∑n
u=1

Yu
xu

is the

weighted sample mean of Y1, Y2, . . . , Yn with 1
xu

(u = 1, 2, . . . , n) as weights,

Sx−1Y = ∑n
u=1

(
1

xu
− 1

x̄h

)
(Yu − Ȳ), Sxx−1 = ∑n

u=1(xu − x̄)
(

1
xu

− 1
x̄h

)
. It is clear

that β̃0 and β̃1 are linear estimators that are also unbiased for β0 and β1,
respectively, since

E
(
β̃1

)
= 1

Sxx−1

n∑

u=1

(
1
xu

− 1
x̄h

)
[β1 (xu − x̄)]

= β1,

E(β̃0) =
( n∑

u=1

1
xu

)−1 n∑

u=1

1
xu

(β0 + β1xu) − β1x̄h

= β0 + β1x̄h − β1x̄h

= β0.
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Furthermore, the variance of β̃1 is given by

Var
(
β̃1

)
= 1

S2
xx−1

Var

[ n∑

u=1

(
1
xu

− 1
x̄h

)
Yu

]

= σ2 Sx−1x−1

S2
xx−1

, (6.110)

where Sx−1x−1 = ∑n
u=1

(
1

xu
− 1

x̄h

)2
. Formula (6.110) can be written as

Var
(
β̃1

)
=

Var
(
β̂1

)

r2
xx−1

, (6.111)

where

r2
xx−1 = S2

xx−1

Sxx Sx−1x−1
(6.112)

is the square of the sample correlation coefficient between xu and 1
xu

, u =
1, 2, . . . , n. Since 0 < r2

xx−1 < 1, it is clear from (6.111) that Var(β̃1) > Var(β̂1),

and hence β̃1 is less efficient than β̂1. In addition, using (6.109), the variance
of β̃0 is obtained as follows:

Var
(
β̃0

)
= Var

(
Ȳω

) − 2 x̄h Cov
(

Ȳω, β̃1

)
+ x̄2

h Var
(
β̃1

)
. (6.113)

Note that

Var(Ȳω) = x̄2
h

n2

( n∑

u=1

1
x2

u

)
σ2

= x̄2
h

n2

(
Sx−1x−1 + n

x̄2
h

)
σ2

= σ2

n
+ x̄2

h Sx−1x−1

n2 σ2, (6.114)

and

Cov(Ȳω , β̃1) = Cov

⎡

⎣
( n∑

u=1

1
xu

)−1 n∑

u=1

Yu

xu
,

1
Sxx−1

n∑

u=1

(
1
xu

− 1
x̄h

)
Yu

⎤

⎦

= x̄h

n Sxx−1

[ n∑

u=1

1
xu

(
1
xu

− 1
x̄h

)]
σ2

= x̄h

n
Sx−1x−1

Sxx−1
σ2. (6.115)
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Using (6.110), (6.114), and (6.115) in (6.113), we get

Var(β̃0) =
(

σ2

n
+ σ2

n2 x̄2
h Sx−1x−1

)

− 2 x̄h

(
x̄h Sx−1x−1

n Sxx−1
σ2

)
+ x̄2

h

(
Sx−1x−1

S2
xx−1

σ2

)

= σ2

n
+ σ2 x̄2

hSx−1x−1

[
1
n2 − 2

n Sxx−1
+ 1

S2
xx−1

]

= σ2

n
+ σ2 x̄2

hSx−1x−1

(
1
n

− 1
Sxx−1

)2

= σ2

n
+ σ2 x̄2

hSx−1x−1

(
− x̄

x̄hSxx−1

)2

= σ2

n
+ x̄2Sx−1x−1

S2
xx−1

σ2. (6.116)

It can be verified that formula (6.116) can be expressed as (see Exercise 6.10)

Var
(
β̃0

)
=

Var
(
β̂0

)

r2
xx−1

− 1 − r2
xx−1

nr2
xx−1

σ2. (6.117)

Note that

Var
(
β̂0

)

r2
xx−1

− 1 − r2
xx−1

nr2
xx−1

σ2 > Var
(
β̂0

)
,

since

Var
(
β̂0

) [
1 − r2

xx−1

r2
xx−1

]
− 1 − r2

xx−1

n r2
xx−1

σ2 > 0. (6.118)

Inequality (6.118) is true because Var(β̂0) > σ2

n , which results from using
formula (6.107) and the fact that

∑n
u=1 x2

u > Sxx. It follows that β̃0 is less
efficient than β̂0. It can also be seen from (6.118) that the smaller r2

xx−1

is, the larger the term on the left-hand side of (6.118). Thus, the loss of
efficiency in using β̃0, as measured by the size of the difference Var(β̃0) −
Var(β̂0), is a strictly decreasing function of r2

xx−1 . The same remark can be

made regarding using β̃1 [see formula (6.111)].

6.7.5 Comparison of Two Linear Models

In this section, a comparison is made of the parameter vectors for two linear
models. The need for such a comparison arises in situations where the mod-
eling of a response of interest is carried out under two different experimental
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conditions. In this case, it would be of interest to determine whether or not
the parameters of the associated models are different.

Consider the two models

Y1 = X1β1 + ε1 (6.119)
Y2 = X2β2 + ε2, (6.120)

where
X1 and X2 are of orders n1 × p and n2 × p, both of rank p
ε1 and ε2 are normally distributed as N(0, σ2

1In1) and N(0, σ2
2In2), respec-

tively

Suppose that it is of interest to test the hypothesis

H0 : β1 = β2 (6.121)

against the alternative hypothesis

Ha : β1 	= β2.

The hypothesis (6.121) is called the hypothesis of concurrence. Other hypotheses
can also be considered, for example, equalities involving only portions of β1
and β2.

Two cases will be considered, depending on whether or not ε1 and ε2 are
independent.

Case 1. ε1 and ε2 are independently distributed.
Models (6.119) and (6.120) can be combined into a single linear model of

the form
Y = Xβ + ε, (6.122)

where Y = (Y ′
1 : Y ′

2)
′, X = diag(X1, X2), β = (β′

1 : β′
2)

′, and ε = (ε′
1 : ε′

2)
′.

Since ε1 and ε2 are independent and normally distributed, ε is also normally
distributed as N(0, Δ), where Δ = diag(σ2

1In1 , σ2
2In2). The hypothesis (6.121)

can then be written as
H0 : Aβ = 0, (6.123)

where A = [Ip : −Ip]. Hence, under H0,

(
Aβ̂

)′ [
A

(
X′Δ−1X

)−1
A′

]−1

Aβ̂ ∼ χ2
p, (6.124)

where

β̂ =
(

X′Δ−1X
)−1

X′Δ−1Y

=
[
β̂

′
1 : β̂

′
2

]′
,
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and β̂i = (X′
iXi)

−1X′
iY i (i = 1, 2). The chi-squared random variable in (6.124)

can be written as
(
β̂1 − β̂2

)′ [
σ2

1
(
X′

1X1
)−1 + σ2

2
(
X′

2X2
)−1

]−1 (
β̂1 − β̂2

)
∼ χ2

p. (6.125)

Furthermore, (ni−1)MSEi
σ 2

i
∼ χ2

ni−p independently for i = 1, 2, where

MSEi = 1
ni − p

Y ′
i[In − Xi(X′

iXi)
−1X′

i]Y i, i = 1, 2,

is the residual mean square for the ith model (i = 1, 2). Since MSEi (i = 1, 2)

is independent of both β̂1 and β̂2, and hence of the chi-squared distribution
in (6.125), the F-ratio,

F =
(

n1 + n2 − 2 p
p

)
(
β̂1 − β̂2

)′ [
σ2

1

(
X′

1X1
)−1 + σ2

2

(
X′

2X2
)−1

]−1 (
β̂1 − β̂2

)

(
n1 − p

)
MSE1/σ

2
1 + (

n2 − p
)

MSE2/σ
2
2

has the F-distribution with p and n1 + n2 − 2 p degrees of freedom under

H0. It can be noted that this F-ratio depends on the unknown value of σ2
1

σ2
2

and cannot therefore be used as a test statistic for testing H0. If, however,
σ2

1
σ2

2
= c, where c is a known positive constant, then

F =
(

n1 + n2 − 2 p
p

)
(
β̂1 − β̂2

)′ [
c
(
X′

1X1
)−1 + (

X′
2X2

)−1
]−1 (

β̂1 − β̂2

)

(
n1 − p

)
MSE1/c + (

n2 − p
)

MSE2

is the test statistic, which, under H0, has the F-distribution with p and n1 +
n2 −2 p degrees of freedom. The hypothesis H0 can be rejected at the α-level if

F ≥ Fα, p, n1+n2−2 p. In general, when σ2
1 and σ2

2 are unknown and the ratio σ2
1

σ2
2

is also unknown, σ2
1 and σ2

2 in the formula for F can be replaced by MSE1 and
MSE2 , respectively. In this case, Fp, n1+n2−2 p is considered an approximation
to the distribution of the resulting F-statistic under H0 (see Ali and Silver,
1985).

Case 2. ε1 and ε2 are correlated.
This case arises when, for example, the data used to fit the two models

are obtained from the same experimental units at two different treatment
conditions.

Consider again the models in (6.119) and (6.120). Assume that X1 and X2
have the same number of rows, n. The models can be written as

Y1 = γ101n + Z1γ1 + ε1 (6.126)
Y2 = γ201n + Z2γ2 + ε2, (6.127)



André I. Khuri/Linear Model Methodology C4819_C006 Finals Page 165 2009-9-2

Full-Rank Linear Models 165

where Zi is a matrix of order n × (p − 1) such that [1n : Zi] = Xi, and
(γi0 : γ′

i) = β′
i, i = 1, 2. Suppose that Cov(ε1, ε2) = ρσ1σ2In, where ρ is an

unknown correlation coefficient. Two hypotheses can be tested, namely,

H0p : γ1 = γ2, (6.128)

which is called the hypothesis of parallelism, and

H0c : γ10 = γ20; γ1 = γ2, (6.129)

which is called the hypothesis of concurrence. If we were to use the same
approach as in Case 1, which utilized weighted least squares, we would
obtain an F-ratio that depends on the variance–covariance matrix Γ for the
combined error vector ε, that is,

Γ =
[

σ2
1In ρσ1σ2In

ρσ1σ2In σ2
2In

]
.

Since Γ is unknown, it would be necessary to estimate it and use the estimate
in the F-ratio. This, however, would result in an approximate asymptotic test
(see Zellner, 1962). The approach considered in this section uses instead an
exact test which was developed by Smith and Choi (1982). This test does not
require estimating Γ. The following is a description of this approach.

Let d = Y1 − Y2. Then, from models (6.126) and (6.127), we get

d = C1δ1 + η, (6.130)

where C1 = [1n : Z1 : −Z2], δ1 = (γ10 − γ20 : γ′
1 : γ′

2)
′, and η = ε1 − ε2.

Hence, η ∼ N(0, σ2
dIn), where σ2

d = σ2
1 + σ2

2 − 2 ρσ1σ2.
The tests for parallelism and concurrence consider 3 cases according to

the number, q, of the p − 1 covariates in the models that have been measured
at the same levels for both treatment conditions. These cases are (i) q = 0,
(ii) 0 < q < p − 1, (iii) q = p − 1, where p is the number of parameters in each
model, including the intercept.

Case (i). q = 0.
If the columns of C1 in (6.130) are linearly independent, then C1 is of full

column rank, which is equal to 2 p−1. The hypothesis of parallelism in (6.128)
can be written as

H0p : Apδ1 = 0,

where Ap = [0 : Ip−1 : −Ip−1] is of order (p − 1)× (2 p − 1) and rank p − 1. The
corresponding test statistic is

Fp =
(

Apδ̂1

)′ [
Ap

(
C′

1C1
)−1 A′

p

]−1 (
Apδ̂1

)

(p − 1)MS(1)
E

, (6.131)
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where δ̂1 = (C′
1C1)

−1C′
1d and

MS(1)
E = 1

n − 2 p + 1
d′ [In − C1

(
C′

1C1
)−1 C′

1

]
d.

Under H0p, Fp has the F-distribution with p − 1 and n − 2 p + 1 degrees of
freedom.

The hypothesis of concurrence, H0c, in (6.129) can be expressed as

H0c : Acδ1 = 0,

where

Ac =
[

1 0 0
0 Ip−1 −Ip−1

]

is a matrix of order p × (2 p − 1) and rank p. The corresponding test statistic is

Fc =
(

Acδ̂1

)′ [
Ac

(
C′

1C1
)−1 A′

c

]−1 (
Acδ̂1

)

pMS(1)
E

.

Under H0c, Fc has the F-distribution with p and n−2 p+1 degrees of freedom.

Case (ii). 0 < q < p − 1.
In this case, the matrices Z1 and Z2 in (6.126) and (6.127) can be written as

Z1 = [Z0 : Z11]
Z2 = [Z0 : Z22],

where Z0 is of order n × q whose rows represent the settings of the covariates
in both models that have been measured at the same levels for both treatment
conditions (assuming that these covariates were written first in the models).
The matrices, Z11 and Z22 in Z1 and Z2 are different. In this case, the model
for d = Y1 − Y2 is

d = C2δ2 + η,

where

C2 = [1n : Z0 : Z11 : −Z22]

δ2 =
[
γ10 − γ20 : γ

(0)′
1 − γ

(0)′
2 : γ

(1)′
1 : γ

(1)′
2

]′
,

where γ
(0)
i , γ

(1)
i are the portions of γi that correspond to Z0 and Zii, respec-

tively (i = 1, 2). In this case, C2 is of full column rank, which is equal to
2 p − q − 1.

The hypothesis of parallelism takes the form

H0p : Bpδ2 = 0,
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where

Bp = diag(M1, M2)

is a matrix of order (p − 1) × (2 p − q − 1) and rank p − 1, M1 = [0 : Iq] is a
q × (q + 1) matrix, and M2 = [Ip−1−q : −Ip−1−q] is a (p − 1 − q) × (2 p − 2 − 2 q)
matrix. The corresponding test statistic is

Fp =
(

Bpδ̂2

)′ [
Bp

(
C′

2C2
)−1 B′

p

]−1 (
Bpδ̂2

)

(p − 1)MS(2)
E

,

where δ̂2 = (C′
2C2)

−1C2d and

MS(2)
E = 1

n − 2 p + q + 1
d′ [In − C2

(
C′

2C2
)−1 C′

2

]
d.

Under H0p, Fp has the F-distribution with p − 1 and n − 2 p + q + 1 degrees of
freedom.

As for the hypothesis of concurrence, it can be written as

H0c : Bcδ2 = 0,

where

Bc =
[

1 0′
0 Bp

]

is a p × (2 p − q) matrix of rank p. The relevant test statistic is given by

Fc =
(

Bcδ̂2

)′ [
Bc

(
C′

2C2
)−1 B′

c

]−1 (
Bcδ̂2

)

pMS(2)
E

,

which has the F-distribution with p and n − 2 p + q + 1 degrees of freedom
under H0c.

Case (iii). q = p − 1.
In this case, Z1 = Z2, that is, all p − 1 covariates are measured at the same

levels for both treatment conditions. The model for d = Y1 − Y2 can then be
written as

d = C3δ3 + η,

where

C3 = [1n : Z1]

δ3 = [
γ10 − γ20 : γ′

1 − γ′
2
]′ .

The matrix C3 is of full column rank, which is equal to p.
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The hypothesis of parallelism is

H0p : Dpδ3 = 0,

where Dp = [0 : Ip−1] is of order (p − 1) × p and rank p − 1. The relevant test
statistic is

Fp =
(

Dpδ̂3

)′ [
Dp

(
C′

3C3
)−1 D′

p

]−1 (
Dpδ̂3

)

(p − 1)MS(3)
E

,

where δ̂3 = (C′
3C3)

−1C′
3d and

MS(3)
E = 1

n − p
d′ [In − C3

(
C′

3C3
)−1 C′

3

]
d.

Under H0p, Fp has the F-distribution with p − 1 and n − p degrees of freedom.
Finally, for the hypothesis of concurrence, we have

H0c : δ3 = 0,

and the corresponding test statistic is

Fc = δ̂
′
3C′

3C3δ̂3

pMS(3)
E

,

which has the F-distribution with p and n − p degrees of freedom under H0c.

Example 6.3 This example, which was given by Smith and Choi (1982), is
concerned with the effect of body weight, x, on glucose tolerance, Y, for an
individual. Twenty six healthy males ingested a standard glucose solution
and the plasma glucose level of each individual was measured at 1 and 3 h
after ingestion. The resulting data are given in Table 6.7.

First-degree models were fitted to the glucose values at 1 and 3 h, respec-
tively. These were found to be

Ŷ1 = −9.07 + 0.72 x

Ŷ2 = 103.29 − 0.18 x.

In this case, p = 2 and q = 1. The hypothesis of parallelism has the test statistic
value Fp = 12.8164 with 1 and 24 degrees of freedom. The corresponding
p-value is 0.0015, which gives little support for the hypothesis. Thus, the rates
of change of glucose level with respect to weight at 1 and 3 h are not the same.
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TABLE 6.7
Weight (in lb) and Glucose Values (mg/100 ml)

Glucose Value Glucose Value

Weight 1 h 3 h Weight 1 h 3 h
175 103 76 185 110 50
140 108 50 160 118 91
165 98 76 150 70 66
187 123 50 185 90 116
202 158 48 165 98 108
140 93 106 177 116 64
212 150 61 140 108 68
206 139 44 128 98 48
169 110 62 165 92 89
155 76 96 180 134 86
178 148 79 215 157 85
185 135 49 225 136 66
205 141 45 181 134 102

Source: Reprinted from Smith, P.J. and Choi, S.C., Technometrics, 24,
123, 1982. With permission.

Exercises

6.1 Let X1, X2, . . . , Xn be random variables with mean μ and variance σ2,
but are not necessarily mutually independent. Let s2 be the sample
variance.

(a) Show that

E(s2) ≤ nσ2

n − 1
.

(b) Can the upper bound in (a) be attained?

6.2 Let Y = Xβ+ε, where X is of order n×p and rank p(<n). Suppose that
E(ε) = 0 and Var(ε) = Σ = (σij). Let

MSE = 1
n − p

Y ′[In − X(X′X)−1X′]Y.

(a) Show that

E(MSE) ≤ 1
n − p

n∑

i=1

σii.

(b) Can the upper bound in (a) be attained?
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(c) Deduce from (a) that if σii = σ2 for i = 1, 2, . . . , n, then

| E(MSE) − σ2 | ≤ σ2 max
{

1,
p

n − p

}
.

The quantity E(MSE) − σ2 represents the bias of MSE.

[Note: For more details about this exercise, see Dufour (1986)].

6.3 Consider the linear model,

Y = Xβ + ε,

where X is n × p of rank p (< n), and ε ∼ N(0, σ2In).

(a) Show that

E
(

1
MSE

)
= n − p

σ2(n − p − 2)
,

provided that n > p + 2, where MSE is the error mean square.

(b) Find the uniformly minimum variance unbiased estimator of a′β
σ2 ,

where a is a constant vector.

6.4 Consider the simple linear regression model,

Yu = β0 + β1xu + εu, u = 1, 2, . . . , n,

where ε1, ε2, . . . , εn are mutually independent and distributed as
N(0, σ2) (n > 2).

(a) Show that n−4
(n−2)MSE

is an unbiased estimator of 1
σ2 , where MSE is

the error mean square.

(b) Find the uniformly minimum variance unbiased estimator
(UMVUE) of 2 σ2 + 5 β1.

(c) Find the UMVUE of β0
σ2 .

(d) Show that Var(β̂0) achieves its minimum value if x1, x2, . . . , xn are
chosen such that

∑n
u=1 xu = 0, where β̂0 is the least-squares estima-

tor of β0.

6.5 Consider again the simple linear regression model in Exercise 6.4. Let
μ(x) = β0 + β1x denote the mean response at a point x in the exper-
imental region. Let x0 be the value of x at which μ = 0. Under what
conditions is it possible to obtain a 95% confidence interval on x0?

6.6 Consider the same linear model as in Exercise 6.3. Make use of the
confidence region on β, given by the inequality in (6.72), to obtain
simultaneous confidence intervals on the elements of β with a joint
confidence coefficient greater than or equal to 1 − α.
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6.7 Prove formula (6.77).

6.8 Consider the full-rank model

Y = Xβ + ε,

where X is an n × p matrix of rank p. Suppose that the mean and
variance–covariance matrix of Y are given by

E(Y) = Xβ + Zγ,

Var(Y) = σ2In,

where Z is an n × q matrix such that W = [X : Z] is of full column rank,
and γ is a vector of unknown parameters.

(a) Show that β̂ = (X′X)−1X′Y is a biased estimator of β.

(b) Show that, in general, MSE, is a biased estimator of σ2, where

MSE = 1
n − p

Y ′[In − X(X′X)−1X′]Y,

and that E(MSE) ≥ σ2.

(c) Under what conditions can MSE be unbiased for σ2?

(d) Show that S̃SE ≤ SSE, where SSE = (n − p)MSE and S̃SE = Y ′[In −
W(W ′W)−1W ′]Y.

6.9 Let e = Y − Ŷ be the vector of residuals given in formula (6.16). Show
that Var(ei) < σ2, i = 1, 2, . . . , n, where ei is the ith element of e (i =
1, 2, . . . , n), and σ2 is the error variance.

6.10 Prove formula (6.117).

6.11 Consider the full-rank model

Y = Xβ + ε,

where E(ε) = 0 and Var(ε) = Σ. Show that the BLUE of β, namely,
(X′Σ−1X)−1X′Σ−1Y, is equal to the ordinary least-squares estimator,
(X′X)−1X′Y, if and only if there exists a nonsingular matrix, F, such
that ΣX = XF.

[Hint: See Theorem 6.8.1 in Graybill (1976)].

6.12 Consider again the same model as in Exercise 6.11. Show that the ordi-
nary least-squares estimator of β is BLUE if and only if

X′Σ−1(In − W) = 0,

where W = X(X′X)−1X′.
[Hint: See Milliken and Albohali (1984)].
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6.13 Consider fitting the second-degree model,

Y = β0 +
k∑

i=1

βixi +
k∑

i<j

βijxixj + ε (6.132)

to a given data set. Let z1, z2, . . . , zk denote the coded variables corre-
sponding to x1, x2, . . . , xk, respectively, such that

zi = xi − ai

bi
, i = 1, 2, . . . , k,

where ai and bi are known constants. Applying this transformation to
model (6.132), we obtain

Y = γ0 +
k∑

i=1

γizi +
k∑

i<j

γijzizj + ε, (6.133)

where the γi’s and γij’s are unknown parameters. Using the given data,
models (6.132) and (6.133) can be expressed as

Y = Xβ + ε (6.134)
Y = Zγ + ε. (6.135)

(a) Show that the column spaces of X and Z are identical [in this case,
models (6.134) and (6.135) are said to be equivalent].

(b) Show that Xβ̂ = Zγ̂, where β̂ = (X′X)−1X′Y, γ̂ = (Z′Z)−1Z′Y.

(c) Show that the regression sum of squares and the error sum of
squares are the same for models (6.134) and (6.135).

6.14 Let Y = Xβ + ε be partitioned as Y = X1β1 + X2β2 + ε, where X is
n × p of rank p and ε ∼ N(0, σ2In). Let R(β2|β1) be defined as

R
(
β2|β1

) = Y ′X
(
X′X

)−1 X′Y − Y ′X1
(
X′

1X1
)−1 X′

1Y.

This represents the increase in the regression sum of squares due to the
addition of X2β2 to a model that contains only X1β1.

(a) Show that 1
σ2 R(β2|β1) has the noncentral chi-squared distribution.

(b) Show that R(β2|β1) is independent of both R(β1) and SSE, where
R(β1) = Y ′X1(X′

1X1)
−1X′

1Y and SSE is the error sum of squares for
the full model, that is, Y = Xβ + ε.

(c) Find the expected value of R(β2|β1).
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(d) Deduce from (b) and (c) the hypothesis that can be tested by the
F-ratio,

F = R
(
β2|β1

)

p2MSE
,

where p2 is the number of columns of X2 and MSE = SSE
n−p .

6.15 Consider the model,

Yu = β0 +
k∑

i=1

βixui + εu, u = 1, 2, . . . , n,

which can be written as Y = Xβ + ε. The matrix X is partitioned as
X = [1n : D], where D is n × k of rank k whose uth row consists of the
settings xu1, xu2, . . . , xuk, u = 1, 2, . . . , n.

(a) Show that dii ≥ 1
dii

, where dii is the ith diagonal element of D′D and
dii is the ith diagonal element of (D′D)−1.

(b) Under what conditions can the equality in (a) be attained?

(c) What is the advantage of having a design (i.e., the matrix D) that
satisfies the conditions in (b)?

6.16 Consider the model,
Y(x) = f ′(x)β + ε,

where ε ∼ N(0, σ2), f ′(x)β represents a polynomial of degree d in the
elements of x. The response Y is observed at n settings of x, namely,
x1, x2, . . . , xn. The resulting data set is used to fit the model and obtain
β̂, the ordinary least-squares estimate of β. The usual assumption of
independence of the error terms is considered valid.

Suppose that Y is to be predicted at k “new” points, xn+1, xn+2, . . . ,
xn+k. Let Y∗ = [Y(xn+1), Y(xn+2), . . . , Y(xn+k)]′, and let X∗ be the cor-
responding matrix of order k × p whose uth row is f ′(xu), u =
n + 1, n + 2, . . . , n + k, where p is the number of elements of β.

(a) Find the variance–covariance matrix of Y∗ − X∗β̂.

(b) Use (a) to obtain a region that contains Y∗ with probability 1 − α.
[Note: Such a region is called a prediction region on Y∗. In particular,
if k = 1, we get the well-known prediction interval on a “new”
response value.]

(c) Use (b) to obtain simultaneous prediction intervals on the elements
of Y∗ with a joint coverage probability greater than or equal to 1−α.
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6.17 Consider models (6.119) and (6.120) and the null hypothesis H0 : β1 =
β2 (see Section 6.7.5). Suppose that ε1 and ε2 are independently dis-
tributed. Using the likelihood ratio test, show that a test statistic for
testing H0, when the error variances are equal, is given by the ratio

T = (SSE − SSE1 − SSE2)/p
(SSE1 + SSE2)/(n1 + n2 − 2 p)

,

where SSEi = Y ′
i[In − Xi(X′

iXi)
−1X′

i]Y i, i = 1, 2, and SSE = Y ′[In −
X0(X′

0X0)
−1X′

0]Y, where Y = (Y ′
1 : Y ′

2)
′ and X0 = [X′

1 : X′
2]′.

6.18 Suppose that the full-rank model, Y = Xβ + ε, is partitioned as Y =
X1β1 + X2β2 + ε, where X1 is n × p1, X2 is n × p2, and ε ∼ N(0, σ2In).

(a) Show that the least-squares estimate of β2 can be written as β̂2 =
C′Y, where C = X1C12 + X2C22, C12 and C22 are matrices of orders
p1 ×p2 and p2 ×p2, respectively, that depend on X1 and X2, and C22
is positive definite.

(b) Let SSE1 be the residual sum of squares for the regression of Y on
X1 alone. Show that SSE1 and β̂2 are not independent.

(c) Show that [In − X1(X′
1X1)

−1X′
1]C is of rank p2.

6.19 An experiment was conducted to investigate the effect of five control
variables on the selective H2SO4 hydrolysis of waxy maize starch gran-
ules. These variables were x1 = temperature, x2 = acid concentration,
x3 = starch concentration, x4 = hydrolysis duration (time), and x5 =
stirring speed. The measured response, Y = hydrolysis yield (wt%), was
calculated as the ratio between the weight of freeze-dried hydrolyzed
particles and the initial weight of native granules for an aliquot of 50 mL
taken in the 250 mL of hydrolyzed suspensions. The original and coded
settings of x1, x2, x3, x4, x5 are given in the following table:

Low Level Medium Level High Level
Variable Unit (xi = − 1) (xi = 0) (xi = 1)
x1

◦C 35 37.5 40
x2 mol/L 2.2 2.8 3.4
x3 g/100 mL 5 10 15
x4 day 1 5 9
x5 rpm 0 50 100

Source: Reprinted from Angellier., H. et al., Biomacromolecules, 5, 1545, 2004. With
permission.

Note that the coded settings of the three equally-spaced levels of each
variable are −1, 0, and 1. A central composite design (see Chapter 4 in
Khuri and Cornell, 1996) consisting of a one-half fraction of a 25 factorial
design (runs 1–16), 10 axial points (runs 17–26), and five center-point
replications (runs 27–31) was used to measure the response Y at the
specified combinations of the levels of the five factors. This particular
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design is also known as a face-centered cube because the axial points are
at a distance equal to 1 from the origin. The resulting data set (using
the coded settings of the control variables) was given by Angellier et al.
(2004) and is reproduced in Table 6.8.

(a) Use the data in Table 6.8 to fit the model,

Y = β0 +
5∑

i=1

βixi + β35x3x5 + β44x2
4 + ε,

where ε ∼ N(0, σ2).

TABLE 6.8
Design Settings and Hydrolysis Yield Data
Experimental Run x1 x2 x3 x4 x5 Y (%)

1 −1 −1 −1 −1 1 76.3
2 1 −1 −1 −1 −1 68.1
3 −1 1 −1 −1 −1 47.6
4 1 1 −1 −1 1 26.3
5 −1 −1 1 −1 −1 70.7
6 1 −1 1 −1 1 54.8
7 −1 1 1 −1 1 57.8
8 1 1 1 −1 −1 35.9
9 −1 −1 −1 1 −1 43.9

10 1 −1 −1 1 1 20.3
11 −1 1 −1 1 1 5.4
12 1 1 −1 1 −1 2.8
13 −1 −1 1 1 1 44.8
14 1 −1 1 1 −1 29.3
15 −1 1 1 1 −1 16.7
16 1 1 1 1 1 2.1
17 −1 0 0 0 0 42.3
18 1 0 0 0 0 26.5
19 0 −1 0 0 0 30.4
20 0 1 0 0 0 21.3
21 0 0 −1 0 0 24.1
22 0 0 1 0 0 34.9
23 0 0 0 −1 0 56.4
24 0 0 0 1 0 20.6
25 0 0 0 0 −1 36.0
26 0 0 0 0 1 20.3
27 0 0 0 0 0 37.6
28 0 0 0 0 0 31.8
29 0 0 0 0 0 28.3
30 0 0 0 0 0 29.7
31 0 0 0 0 0 28.9

Source: Reprinted from Angellier, H. et al., Biomacromolecules, 5,
1545, 2004. With permission.
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(b) Give values of the least-squares estimates of the model’s parameters
and their standard errors.

(c) Find the values of SSReg and SSE, then determine whether or not
the model provides a good fit to the data by examining the value of
R2 = SSReg

SSReg+SSE
, the so-called coefficient of determination.

(d) Obtain individual confidence intervals on the model’s parameters
using a 95% confidence coefficient for each interval.

(e) Obtain Scheffé’s simultaneous 95% confidence intervals on the
model’s parameters.

(f) Test the hypothesis

H0 : β1 + β2 + β4 = 0
β2 + 3 β44 = 2

against the alternative hypothesis, Ha:H0 is not true, and state your
conclusion at the α = 0.05 level.

(g) For the hypothesis in part (f), compute the power of the test under
the alternative hypothesis,

Ha : β1 + β2 + β4 = 1,
β2 + 3 β44 = 4

given that σ2 = 1.

6.20 A study was conducted to predict optimum conditions for microwave-
assisted extraction of saponin components from ginseng roots. A central
composite design consisting of a 22 factorial design, four axial points,
and two center-point replications was used to monitor the effects of x1 =
ethanol concentration and x2 = extraction time on Y = total extract
yield. The original and coded settings of x1 and x2 are given in the
following table:

Coded Values of Concentration and Time

Variable Unit xi = −2 xi = −1 xi = 0 xi = 1 xi = 2
Concentration % 30 45 60 75 90
Time S 30 90 150 210 270

The data set was given by Kwon et al. (2003) using the coded settings
of concentration and time and is reproduced in Table 6.9.

(a) Use the data to fit the model

Y = β0 + β1x1 + β2x2 + β11x2
1 + β22x2

2 + β12x1x2 + ε,

where ε ∼ N(0, σ2).
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TABLE 6.9
Design Settings and Extract Yield Data
Experimental Run x1 x2 Y (%)
1 1 1 21.8
2 1 −1 20.8
3 −1 1 26.3
4 −1 −1 25.2
5 2 0 14.6
6 −2 0 22.2
7 0 2 27.1
8 0 −2 23.6
9 0 0 26.8

10 0 0 26.8
Source: Reprinted from Kwon, J.H. et al., J. Agric. Food Chem.,

51, 1807, 2003. With permission.

(b) Find the uniformly minimum variance unbiased estimates of the
model’s parameters.

(c) Find the uniformly minimum variance unbiased estimate of
β1+β2+β12

σ2 .

(d) Obtain a 95% confidence interval on the mean response at (1, 1.5).

(e) Obtain a 95% confidence region on β = (β0, β1, β2, β11, β22, β12)
′.

(f) Find the principal axes of the ellipsoid representing the confidence
region in part (e).

6.21 Enamines are useful intermediates in organic synthesis. They are usu-
ally prepared by condensing the corresponding carbonyl compound
(aldehyde or ketone) with a secondary amine under elimination of
water. The effects of x1 = amount of TiCL4/ketone (mol/mol) and x2 =
amount of morpholine/ketone (mol/mol) on Y, the yield of enamine was
investigated. A central composite design consisting of a 22 factorial
design, four axial points, and five center-point replications was used.
The original and coded settings of x1 and x2 are given in the follow-
ing table:

Coded Settings

Variable xi = −1.414 xi = −1 xi = 0 xi = 1 xi = 1.414
TiCL4/ketone 0.50 0.57 0.75 0.93 1.00
Morpholine/ketone 3.00 3.70 5.50 7.30 8.00

The corresponding data set was given by Carlson and Carlson (2005)
using the coded settings of x1 and x2 and is reproduced in Table 6.10.
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TABLE 6.10
Design Settings and the Yields of Enamine
Experimental Run x1 x2 Yield (%)

1 −1 −1 73.4
2 1 −1 69.7
3 −1 1 88.7
4 1 1 98.7
5 −1.414 0 76.8
6 1.414 0 84.9
7 0 −1.414 56.6
8 0 1.414 81.3
9 0 0 96.8

10 0 0 96.4
11 0 0 87.5
12 0 0 96.1
13 0 0 90.5

Source: Reprinted from Carlson, R. and Carlson, J.E., Organ.
Process Res. Dev., 9, 321, 2005. With permission.

(a) Fit the model

Y = β0 + β1x1 + β2x2 + β11x2
1 + β22x2

2 + β12x1x2 + ε,

where ε ∼ N(0, σ2).

(b) Find the prediction variance Var[Ŷ(x)], where Ŷ(x) is the predicted
response at a point x = (x1, x2)

′ in the experimental region.

(c) Show that Var[Ŷ(x)] is constant at all points that are equidistant from
the design center. Thus contours of constant prediction variance are
concentric circles centered at the origin within the experimental
region.

(d) Find the value of the maximum yield within the experimental
region.

(e) Obtain a 95% confidence region on the location of the true maximum
yield in part (d).
[Note: A central composite design having the property described
in part (c) is said to be rotatable. See Khuri and Cornell (1996,
Chapter 4).]
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In this chapter, the matrix X in the model,

Y = Xβ + ε, (7.1)

does not have a full column rank, as was the case in Chapter 6. Accordingly,
(7.1) is labeled as a less-than-full-rank model. The analysis of this model in terms
of parameter estimation and hypothesis testing is now revisited under the
present label.

As in Chapter 6, X is a known matrix of order n × p. Its rank, however, is
r, where r < p. Consequently, the matrix X′X is no longer nonsingular and
formula (6.9) is therefore invalid here. Hence, it cannot be used to estimate β.
This result should not be surprising since the number of linearly independent
equations in (6.8) is only r whereas the number of unknown parameters is
p, which exceeds r. It is therefore not possible to uniquely estimate all of the
elements of β.

Typical examples of models that are not of full rank include ANOVA
(analysis of variance) models, such as crossed (or nested) classification mod-
els. For example, the one-way model,

Yij = μ + αi + εij, i = 1, 2, . . . , k; j = 1, 2, . . . , ni,

is not of full rank since, in this case, the matrix X is
[
1n. : ⊕k

i=11ni

]
, which is

of order n. × (k + 1) and rank k (n. =∑k
i=1 ni), and β = (μ, α1, α2, . . . , αk)

′.

7.1 Parameter Estimation

Consider model (7.1), where the error term ε is assumed to have a zero mean
vector and a variance–covariance matrix σ2In. Using the method of least
squares, as was seen earlier in Section 6.1, we obtain the equation

X′Xβ̂ = X′Y. (7.2)

Since X′X is a singular matrix, this equation does not have a unique solution
for β̂. In this case, β̂ is considered to be just a solution to (7.2), but not

179
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an estimator of β because of its nonuniqueness. A solution to (7.2) can be
expressed as

β̂ = (X′X)−X′Y, (7.3)

where (X′X)− is a generalized inverse of X′X. Hence, for a given Y, (7.3) gives
infinitely many solutions for (7.2) depending on the choice of (X′X)−. For a
particular (X′X)−, the mean vector and variance–covariance matrix of β̂ are
given by

E(β̂) = (X′X)−X′Xβ, (7.4)

Var(β̂) = σ2(X′X)−X′X(X′X)−. (7.5)

It should be noted that even though (X′X)− is not unique, the least-
squares estimate of the mean response vector, namely, E(Y) = Xβ, which is
Xβ̂ = X(X′X)−X′Y, does not depend on the choice of the generalized inverse
of X′X. The same is true with regard to the error (residual) sum of squares,

SSE = Y ′[In − X(X′X)−X′]Y, (7.6)

and the regression sum of squares,

SSReg = Y ′X(X′X)−X′Y. (7.7)

This is true because the matrix X(X′X)−X′, which is idempotent of rank r, is
invariant to the choice of (X′X)− (see property (b) in Section 3.7.1).

7.2 Some Distributional Properties

The following properties concerning the distributions of SSE and SSReg are
similar to those in Section 6.2.1:

(a) If ε in model (7.1) has a zero mean vector and a variance–covariance
matrix σ2In, then E(MSE) = σ2, where MSE = SSE

n−r is the error mean
square, and r is the rank of X. This follows from the fact that

E(SSE) = β′X′[In − X(X′X)−X′]Xβ

+ tr
{
[In − X(X′X)−X′]

(
σ2In

)}

= (n − r)σ2.

(b) If ε ∼ N(0, σ2In), then

(i) 1
σ2 SSE ∼ χ2

n−r.
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(ii) 1
σ2 SSReg ∼ χ2

r (θ), where θ = 1
σ2 β′X′Xβ.

(iii) SSE and SSReg are independent.

Properties (i) and (ii) follow from applying Theorem 5.4 and noting that the
matrices In − X(X′X)−X′ and X(X′X)−X′ are idempotent of ranks n − r and
r, respectively. Furthermore, the noncentrality parameter for 1

σ2 SSE is zero,
whereas for 1

σ2 SSReg it is equal to

θ = 1
σ2 β′X′[X(X′X)−X′]Xβ

= 1
σ2 β′X′Xβ.

Property (iii) is true on the basis of Theorem 5.5 and the fact that

[X(X′X)−X′](σ2In)[In − X(X′X)−X′] = 0.

7.3 Reparameterized Model

The model in (7.1) can be replaced by another equivalent model that has a
full rank. This can be shown as follows:
Using the Spectral Decomposition Theorem (Theorem 3.4), the matrix X′X
can be decomposed as

X′X = P diag(Λ, 0) P′, (7.8)

where
Λ is a diagonal matrix of order r × r whose diagonal elements are the

nonzero eigenvalues of X′X
0 is a zero matrix of order (p − r) × (p − r)
P is an orthogonal matrix of orthonormal eigenvectors of X′X

Let P be partitioned as P = [P1 : P2], where P1 is of order p × r whose
columns are orthonormal eigenvectors of X′X corresponding to the diagonal
elements of Λ, and P2 is of order p × (p − r) whose columns are orthonor-
mal eigenvectors of X′X corresponding to the zero eigenvalue, which is of
multiplicity p − r. From (7.8) we get

[
P′

1
P′

2

]
X′X[P1 : P2] = diag(Λ, 0).

Hence,

P′
1X′XP1 = Λ, (7.9)

P′
2X′XP2 = 0. (7.10)
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From (7.9) and (7.10) we conclude that XP1, which is of order n × r, is of rank
r
[
rank(XP1) = rank

(
P′

1X′XP1
) = r

]
, and that XP2 = 0. Now, model (7.1) can

be written as

Y = XPP′β + ε

= [XP1 : XP2]
[

P′
1

P′
2

]
β + ε

= [XP1 : 0]
[

P′
1β

P′
2β

]
+ ε

= XP1P′
1β + ε.

Let X̃ = XP1 and β̃ = P′
1β. We then have

Y = X̃β̃ + ε. (7.11)

We note that (7.11) is a full-rank model since X̃ is of full column rank. In
addition, we have the following results which are given by the next three
theorems.

Theorem 7.1 The column spaces of X and X̃ are the same.

Proof. From X̃ = XP1, every column of X̃ is a linear combination of the
columns of X. Vice versa, X = X̃P′

1 (why?). Hence, every column of X is a
linear combination of the columns of X̃.

Since the column spaces of X and X̃ are identical, models (7.1) and (7.11)
are said to be equivalent.

Theorem 7.2 The row space of X is identical to the row space of P′
1.

Proof. Formula (7.8) can be written as

X′X = P1ΛP′
1. (7.12)

Multiplying (7.12) on the left by P′
1 and noting that P′

1P1 = Ir, we get

P′
1X′X = ΛP′

1,

which implies that P′
1 = Λ−1P′

1X′X. Hence, every row of P′
1 is a linear

combination of the rows of X. Vice versa, since

X = X(X′X)−X′X
= X(X′X)−P1Λ1P′

1,

we conclude that every row of X is a linear combination of the rows of P′
1.

Hence, the row spaces of X and P′
1 are identical.
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As a consequence of the equivalence of models (7.1) and (7.11), we have
the following results given by the following theorem.

Theorem 7.3

(a) The regression and residual sums of squares for models (7.1) and (7.11)
are identical.

(b) The least-squares estimates of the mean response vector E(Y) from
models (7.1) and (7.11) are identical.

Proof.

(a) For model (7.1), SSReg = Y ′X(X′X)−X′Y, and for model (7.11), the
regression sum of squares is

S̃SReg = Y ′X̃(X̃
′
X̃)−1X̃

′
Y. (7.13)

Since X̃ = XP1, then by using (7.9),

X̃(X̃
′
X̃)−1X̃

′ = XP1
(
P′

1X′XP1
)−1 P′

1X′

= XP1Λ
−1P′

1X′.

But, P1Λ
−1P′

1 is a generalized inverse of X′X because by (7.12) and the
fact that P′

1P1 = Ir,

X′X
(

P1Λ
−1P′

1

)
X′X = P1ΛP′

1

(
P1Λ

−1P′
1

)
P1ΛP′

1

= P1ΛP′
1

= X′X.

Hence,

X̃(X̃
′
X̃)−1X̃

′ = X(X′X)−X′. (7.14)

Therefore, SSReg = S̃SReg. We can also conclude that the residual sums
of squares for models (7.1) and (7.11) are equal since SSE = Y ′Y −SSReg.

(b) Let μ = E(Y). Then, from (7.1) and (7.11), μ = Xβ = X̃β̃. The corre-
sponding least-squares estimators are

Xβ̂ = X(X′X)−X′Y,

X̃ ˆ̃
β = X̃(X̃

′
X̃)−1X̃

′
Y,

respectively. These estimators are equal by (7.14). Note that ˆ̃
β can be

expressed as

ˆ̃
β = (X̃

′
X̃)−1X̃

′
Y

= Λ−1X̃
′
Y, (7.15)
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since by (7.9),

X̃
′
X̃ = P′

1X′XP1

= Λ. (7.16)

7.4 Estimable Linear Functions

It was stated earlier in this chapter that the parameter vector β in model (7.1),
which has p elements, cannot be estimated in its entirety. Hence, not every
linear function of β of the form a′β can be estimated. There are, however,
certain conditions on a under which a′β can be estimated.

Definition 7.1 The linear function, a′β, where a is a constant vector, is said
to be estimable if there exists a linear function of Y, the vector of observations
in (7.1), of the form b′Y such that E(b′Y) = a′β.

The next theorem gives a necessary and sufficient condition for the estima-
bility of a′β.

Theorem 7.4 The linear function a′β is estimable if and only if a′ belongs to
the row space of X in (7.1), that is, a′ = b′X for some vector b.

Proof. If a′β is estimable, then by Definition 7.1 there exists a vector b such
that E(b′Y) = a′β. Consequently,

b′Xβ = a′β, (7.17)

which must be true for all β ∈ Rp. It follows that

a′ = b′X. (7.18)

Hence, a′ is a linear combination of the rows of X and therefore belongs to the
row space of X. Vice versa, if a′ = b′X, for some b, then E(b′Y) = b′Xβ = a′β,
which makes a′β estimable.

The following corollary provides a practical method for checking
estimability.

Corollary 7.1 The linear function a′β is estimable if and only if the matrix

Xa =
[

X
a′
]

has the same rank as that of X, or equivalently, if and only if the numbers of
nonzero eigenvalues of X′X and Xa

′
Xa are the same.
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Since X is of rank r, then from Theorem 7.4 we can conclude that the
number of linearly independent estimable functions of β is equal to r. Fur-
thermore, since the row spaces of X and P′

1 are the same, as was seen in
Theorem 7.2, a′β is estimable if and only if a′ belongs to the row space of P′

1,
that is,

a′ = ζ′P′
1, (7.19)

for some vector ζ. Recall that P1 is the matrix used in (7.9) whose columns are
orthonormal eigenvectors of X′X corresponding to the nonzero eigenvalues
of X′X. We conclude that the elements of the vector P′

1β form a basis for the
vector space of all estimable linear functions of β.

7.4.1 Properties of Estimable Functions

Estimable linear functions have several interesting features in the sense that
their estimation and tests of significance are carried out in much the same
way as in the case of full-rank models in Chapter 6. Their properties are given
by the following theorems.

Theorem 7.5 If a′β is estimable, then a′β̂, where β̂ = (X′X)−X′Y, is invariant
to the choice of (X′X)−.

Proof. If a′β is estimable, then by Theorem 7.4, a′ = b′X for some vector b.
Hence,

a′β̂ = a′(X′X)−X′Y
= b′X(X′X)−X′Y.

Invariance of a′β̂ follows from the fact that X(X′X)−X is invariant to the
choice of the generalized inverse of X′X (see property (b) in Section 3.7.1).

The uniqueness of a′β̂ for a given Y, when a′β is estimable, makes a′β̂ a
full-fledged estimator of a′β, which was not the case with β̂. Furthermore,
a′β and a′β̂ can be expressed as

a′β = ζ′β̃, (7.20)

a′β̂ = ζ′ ˆ̃β, (7.21)

where
β̃ is the parameter vector in (7.11)
ˆ̃
β is the least-squares estimator of β̃ given by (7.15)
ζ′ is the vector used in (7.19)
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Formula (7.20) is true because from (7.19), a′β = ζ′P′
1β = ζ′β̃. As for

(7.21), we have

a′β̂ = ζ′P′
1(X

′X)−X′Y
= ζ′Λ−1P′

1X′X(X′X)−X′Y,

since from the proof of Theorem 7.2, P′
1 = Λ−1P′

1X′X. Hence,

a′β̂ = ζ′Λ−1P′
1X′Y

= ζ′Λ−1X̃
′
Y, since X̃ = XP1,

= ζ′ ˆ̃β, by using (7.15).

Theorem 7.6 (The Gauss–Markov Theorem) Suppose that ε in model (7.1)
has a zero mean vector and a variance–covariance matrix given by σ2In. If a′β
is estimable, then a′β̂ = a′(X′X)−X′Y is the best linear unbiased estimator
(BLUE) of a′β.

Proof. This follows directly from using (7.20) and (7.21) and by applying the
Gauss–Markov Theorem (Theorem 6.1) to model (7.11). More specifically,

we have that a′β̂ = ζ′ ˆ̃β and ζ′ ˆ̃β is the BLUE of ζ′β̃, which is equal to a′β
by (7.20).

Theorem 7.7 Suppose that ε in model (7.1) is distributed as N(0, σ2In), and
that a′β is estimable. Then,

(a) a′β̂ is normally distributed with mean a′β and variance a′(X′X)−a σ2,
where β̂ is given by (7.3).

(b) a′β̂ and MSE are independently distributed, where MSE is the error
mean square,

MSE = 1
n − r

Y ′[In − X(X′X)−X′]Y (7.22)

(c) a′β̂ and MSE are uniformly minimum variance unbiased estimators
(UMVUE) of a′β and σ2.

Proof.

(a) a′β̂ = a′(X′X)−X′Y = b′X(X′X)−X′Y for some vector b. Since Y is
normally distributed, then so is a′β̂. Its mean is

E(a′β̂) = b′X(X′X)−X′Xβ

= b′Xβ

= a′β,
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and its variance is

Var(a′β̂) = b′X(X′X)−X′(σ2In)X(X′X)−X′b
= b′X(X′X)−X′b σ2

= a′(X′X)−a σ2.

(b) a′β̂ and MSE are independent by applying Theorem 5.6 and the
fact that

a′(X′X)−X′(σ2In)[In − X(X′X)−X′] = 0′.

(c) By applying Corollary 6.2 to model (7.11), we can assert that ˆ̃
β in

(7.15) and

M̃SE = 1
n − r

Y ′ [In − X̃(X̃
′
X̃)−1X̃

′]
Y

are complete and sufficient statistics for β̃ and σ2. But, by (7.21),

a′β̂ = ζ′ ˆ̃β, and by (7.14), MSE = M̃SE. Furthermore, ζ′ ˆ̃β is unbiased
for ζ′β̃, and hence for a′β by (7.20), and M̃SE is unbiased for σ2. By
the Lehmann–Scheffé Theorem (see Casella and Berger, 2002, p. 369), it
follows that a′β̂ and MSE are UMVUE of a′β and σ2.

7.4.2 Testable Hypotheses

The properties described in Section 7.4.1 are now applied to derive tests and
confidence intervals concerning estimable linear functions.

Definition 7.2 The hypothesis H0 : Aβ = m is said to be testable if the
elements of Aβ are estimable, where A is a matrix of order s × p and rank s
(≤ r, the rank of X in model (7.1)), and m is a constant vector.

Lemma 7.1 The hypothesis H0 : Aβ = m is testable if and only if there exists
a matrix S of order s × p such that A = SX′X.

Proof. If Aβ is testable, then the rows of A must belong to the row space of X.
Thus, there exists a matrix T such that A = TX. Hence, A = TX(X′X)−X′X =
SX′X, where S = TX(X′X)−. Vice versa, if A = SX′X for some matrix S, then
any row of A is a linear combination of the rows of X implying estimability
of Aβ and hence testability of H0.

Let us now suppose that Aβ is estimable, where A is s × p of rank s (≤ r).
The best linear unbiased estimator of Aβ is Aβ̂ = A(X′X)−X′Y, assuming
that ε in (7.1) has a zero mean and a variance–covariance matrix σ2In. The
variance–covariance matrix of Aβ̂ is

Var(Aβ̂) = A(X′X)−X′X(X′X)−A′ σ2

= SX′X(X′X)−X′X(X′X)−X′XS′ σ2

= SX′X(X′X)−X′XS′ σ2

= SX′XS′ σ2, (7.23)



André I. Khuri/Linear Model Methodology C4819_C007 Finals Page 188 2009-9-14

188 Linear Model Methodology

where S is the matrix described in Lemma 7.1. Note that Var(Aβ̂) can also be
expressed as

Var(Aβ̂) = TX(X′X)−X′X(X′X)−X′T ′ σ2

= TX(X′X)−X′T ′ σ2

= A(X′X)−A′ σ2, (7.24)

where T is a matrix such that A = TX. It is easy to see that Var(Aβ̂) is invariant
to the choice of (X′X)− and is a nonsingular matrix. The latter assertion is
true because A is of full row rank s and

s = rank(A) ≤ rank(SX′) ≤ rank(S) ≤ s,

since S has s rows. It follows that rank(SX′) = s. Hence, the matrix SX′XS′ is
of full rank, which implies that Var(Aβ̂) is nonsingular by (7.23).

A test statistic concerning H0 : Aβ = m versus Ha : Aβ �= m can now be
obtained, assuming that Aβ is estimable and ε in model (7.1) is distributed
as N(0, σ2In). We have that

Aβ̂ ∼ N[Aβ, A(X′X)−A′ σ2]
Hence, under H0,

F = (Aβ̂ − m)′[A(X′X)−A′]−1(Aβ̂ − m)

s MSE
(7.25)

has the F-distribution with s and n − r degrees of freedom, where MSE is the
error mean square in (7.22). This follows from the fact that Aβ̂ is independent
of MSE by Theorem 7.7 and 1

σ2 SSE ∼ χ2
n−r. The null hypothesis can be rejected

at the α-level if F ≥ Fα,s,n−r. The power of this test under the alternative
hypothesis Ha : Aβ = ma, where ma is a given constant vector different from
m, is

Power = P[F ≥ Fα,s,n−r|Ha : Aβ = ma].
Under Ha, F has the noncentral F-distribution Fs,n−r(θ) with the noncentrality
parameter

θ = 1
σ2 (ma − m)′[A(X′X)−A′]−1(ma − m). (7.26)

Hence, the power is given by

Power = P[Fs,n−r(θ) ≥ Fα,s,n−r].
A confidence region on Aβ can also be obtained on the basis of the aforemen-
tioned F-distribution. In this case,

(Aβ̂ − Aβ)′[A(X′X)−A′]−1(Aβ̂ − Aβ)

s MSE
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has the F-distribution with s and n − r degrees of freedom. Hence, the
(1 − α)100% confidence region on Aβ is given by

(Aβ̂ − Aβ)′[A(X′X)−A′]−1(Aβ̂ − Aβ)

s MSE
≤ Fα,s,n−r. (7.27)

In the special case when A = a′, a test statistic concerning H0 : a′β = m
versus Ha : a′β �= m is

t = a′β̂ − m
[a′(X′X)−a MSE]1/2 , (7.28)

which, under H0, has the t-distribution with n−r degrees of freedom. Accord-
ingly, the (1 − α)100% confidence interval on a′β is given by

a′β̂ ± [a′(X′X)−a MSE]1/2 t α
2 ,n−r. (7.29)

Example 7.1 Consider the one-way model,

Yij = μ + αi + εij, i = 1, 2, . . . , k; j = 1, 2, . . . , ni,

where
αi is a fixed unknown parameter
the εij’s are independently distributed as N(0, σ2)

This model can be written as in (7.1) with β = (μ, α1, α2, . . . , αk)
′ and

X =
[
1n. : ⊕k

i=11ni

]
,

where n. = ∑k
i=1 ni and 1ni is a vector of ones of order ni × 1 (i = 1, 2, . . . , k).

The matrix X is of rank k and its row space is spanned by the k vectors,

(1, 1, 0, . . . , 0), (1, 0, 1, . . . , 0), . . . , (1, 0, 0, . . . , 0, 1),

which are linearly independent. On this basis we have the following results:

Result 1. μ + αi (i = 1, 2, . . . , k) form a basis for all estimable linear functions
of β. Hence, αi1 − αi2 is estimable for i1 �= i2.

Result 2. μ is nonestimable.
To show this result, let us write μ as a′β, where a′ = (1, 0, 0, . . . , 0). If μ

is estimable, then a′ must belong to the row space of X, that is, a′ = b′X, for
some vector b. In this case, we have

b′1n. = 1, (7.30)

b′ ⊕k
i=1 1ni = 0′. (7.31)
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Equality (7.31) indicates that b is orthogonal to the columns of ⊕k
i=11ni . Hence,

it must be orthogonal to 1n. , which is the sum of the columns of ⊕k
i=11ni . This

contradicts equality (7.30). We therefore conclude that μ is nonestimable.

Result 3. The best linear unbiased estimator (BLUE) of αi1 − αi2 , i1 �= i2, is
Ȳi1. − Ȳi2., where Ȳi. = 1

ni

∑ni
j=1 Yij, i = 1, 2, . . . , k.

To show this, let us first write μ+αi as a
′
iβ, where a

′
i is a vector with k + 1

elements; its first element is 1 and the element corresponding to αi is also 1.
Since μ + αi is estimable, its BLUE is a

′
iβ̂, where

β̂ = (X′X)−X′Y

=
[

0 0′
0 D

]

⎡

⎢⎢⎢⎢⎢⎢⎣

Y..
Y1.

.

.

.
Yk.

⎤

⎥⎥⎥⎥⎥⎥⎦
, (7.32)

where Y.. = ∑k
i=1
∑ni

j=1 Yij, Yi. = niȲi., and D = diag(n−1
1 , n−1

2 , . . . , n−1
k ).

From (7.32) it follows that μ̂ = 0, α̂i = Ȳi., i = 1, 2, . . . , k. Hence, a′
iβ̂ = Ȳi..

Consequently, the BLUE of αi1 − αi2 is Ȳi1. − Ȳi2., i1 �= i2. Its variance is

Var(Ȳi1. − Ȳi2.) = (
1

ni1
+ 1

ni2
)σ2.

The (1 − α)100% confidence interval on αi1 − αi2 is then given by

Ȳi1. − Ȳi2. ±
[(

1
ni1

+ 1
ni2

)
MSE

]1/2

tα/2,n.−k

Example 7.2 Consider the following two-way crossed classification without
interaction model

Yijk = μ + αi + βj + εijk,

where αi and βj are fixed unknown parameters. The response values are
given in the following table:

B

1 2 3
A 1 17 15 20

20
2 12 — 11

14
3 6 — 17
4 9 4 19

6
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Writing this model as in (7.1), we have β = (μ, α1, α2, α3, α4, β1, β2, β3)
′, and

the X matrix is of order 13 × 8 and rank r = 6. The error mean square is
MSE = 10.0736 with 7 degrees of freedom.

Suppose that it is desired to test the hypothesis

H0 : β1 = β2 = β3,

which is testable since β1 − β2 and β1 − β3 are estimable. This can be shown
in two ways:

(1) The first row of the data contains no missing cells. Hence,

E(Yijk) = μ + αi + βj

is estimable for i = 1, j = 1, 2, 3. Hence, β1−β2 and β1−β3 are estimable.

(2) The hypothesis H0 can be written as H0 : Aβ = 0, where

A =
[

0 0 0 0 0 1 −1 0
0 0 0 0 0 1 0 −1

]
. (7.33)

Let XA be the matrix X augmented vertically with A, that is,

XA =
[

X
A

]
.

It can be verified that the nonzero eigenvalues of X
′
AXA are 1.945, 2.425,

3.742, 5.885, 7.941, 21.063. Hence, the rank of X
′
AXA , and therefore

the rank of XA, is 6, which is the same as the rank of X. By Corollary
7.1, the elements of Aβ are estimable. The BLUE of Aβ is then given by
Aβ̂ = (4.6294, −5.1980)′. Using formula (7.25) with m = (0, 0)′ and s = 2,
we find that the value of the corresponding test statistic is F = 7.229
with 2 and 7 degrees of freedom. The corresponding p-value is 0.0198.
The power of the test for the alternative hypothesis,

Ha : Aβ = (0, 3)′,

given that σ2 = 1 and the level of significance is α = 0.05, is given by

Power = P[F2,7(θ) ≥ F0.05,2,7]
= P[F2,7(θ) ≥ 4.74],

where from (7.26) with σ2 = 1 and ma = (0, 3)′, θ = 24. Hence, the
power value is 0.9422. Note that this value can be easily obtained using
the PROBF function in SAS’s (2000) PROC IML.

Using now (7.29), the 95% confidence intervals on β1 − β2 and β1 − β3
are, respectively,

a′
1β̂ ± [a′

1(X
′X)−a1MSE]1/2t0.025,7, (7.34)

a′
2β̂ ± [a′

2(X
′X)−a2MSE]1/2t0.025,7, (7.35)
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where a′
i is the ith row of the matrix A in (7.33), i = 1, 2. Making the

proper substitutions in (7.34) and (7.35), we get 4.6294 ± 2.5584(2.365)

or (−1.4212, 10.680); −5.1980 ± 2.0725(2.365) or (−10.0995, −0.2965).

7.5 Simultaneous Confidence Intervals on Estimable
Linear Functions

Simultaneous confidence intervals on estimable linear functions of β can be
derived as follows:
Let Aβ be an estimable linear function of β, where A is s×p of rank s (≤ r, r is
the rank of X). Thus, the rows of A belong to the row space of X. Furthermore,

P{[A(β̂ − β)]′[A(X′X)−A′]−1[A(β̂ − β)] ≤ s MSEFα,s,n−r} = 1 − α. (7.36)

Let c2 = s MSEFα,s,n−r and x = [A(X′X)−A′]−1/2[A(β̂ − β)]. Formula (7.36)
can be written as

P[x′x ≤ c2] = 1 − α. (7.37)

Using Lemma 6.1, (7.37) is equivalent to

P[ | v′x | ≤ c (v′v)1/2, ∀ v ∈ Rs] = 1 − α,

which can be expressed as

P[ | d′[A(β̂ − β)] | ≤ c {d′[A(X′X)−A′]d}1/2, ∀ d ∈ Rs] = 1 − α, (7.38)

where v′[A(X′X)−A′]−1/2 = d′. Letting �′ = d′A in (7.38), we get

P[ | �′(β̂ − β) | ≤ c [�′(X′X)−�]1/2, ∀ �′ ∈ row space of A ] = 1 − α. (7.39)

Formula (7.39) defines simultaneous (1 − α) 100% confidence intervals on all
estimable linear functions �′β, where �′ belongs to the row space of A, which
are given by

�′β̂ ± [s MSEFα,s,n−r �′(X′X)−�]1/2. (7.40)

These intervals are known as Scheffé’s simultaneous confidence intervals. In
particular, if s = r, then the elements of Aβ form a basis for all estimable
linear functions of β, and (7.40) becomes

�′β̂ ± [r MSEFα,r,n−r �′(X′X)−�]1/2, (7.41)

where �′ belongs to the row space of X. In this case, the row space of A is
identical to the row space of X, and (7.41) provides simultaneous (1−α) 100%
confidence intervals on all estimable linear functions of β.
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Example 7.3 Consider the one-way model,

Yij = μ + αi + εij, i = 1, 2, . . . , k; j = 1, 2, . . . , ni,

where
αi is a fixed unknown parameter
the εij’s are independently distributed as N(0, σ2)

As before in Example 7.1, the associated X matrix is

X =
[
1n. : ⊕k

i=11ni

]
,

where
n. =∑k

i=1 ni
β = (μ, α1, α2, . . . , αk)

′

Let A be a (k − 1) × (k + 1) matrix of rank k − 1 of the form A = [0 :
1k−1 : −Ik−1], where Ik−1 is the identity matrix of order (k − 1) × (k − 1). If
β = (μ, α1, α2, . . . , αk)

′, then Aβ is given by

Aβ = (α1 − α2, α1 − α3, . . . , α1 − αk)
′. (7.42)

The vector Aβ is estimable, as was seen in Example 7.1. Hence, the rows of
A must belong to the row space of X. If �′ represents any vector in the row
space of A, then by (7.40), simultaneous (1 − α)100% confidence intervals on
all estimable linear functions of the form �′β are given by

�′β̂ ± [(k − 1)MSEFα,k−1,n.−k �′(X′X)−�]1/2. (7.43)

Writing �′ as (�0, �1, . . . , �k), we get �′β̂ = ∑k
i=1 �iȲi., and it is easy to

show that

�′(X′X)−� =
k∑

i=1

�2
i

ni
.

Substituting in (7.43), we get

k∑

i=1

�iȲi. ±
⎡

⎣(k − 1)MSEFα,k−1,n.−k

k∑

i=1

�2
i

ni

⎤

⎦
1/2

. (7.44)

Note that the elements of Aβ in (7.42) are differences between two αi’s,
and hence between two treatment means. We now show that the row space
of A generates all contrasts among the αi’s (or the k treatment means). By
definition, a contrast among α1, α2, . . . , αk is a linear combination of the form∑k

i=1 λiαi such that
∑k

i=1 λi = 0. This can also be written as a contrast among
the means of the k treatments, namely, μi = μ + αi (i = 1, 2, . . . , k) since∑k

i=1 λiαi =∑k
i=1 λiμi.
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Lemma 7.2 The linear combination
∑k

i=1 λiαi is a contrast among α1, α2, . . . ,
αk if and only if �′ = (0, λ1, λ2, . . . , λk) belongs to the row space of A in (7.42).

Proof. If �′ belongs to the row space of A, then �′ = u′A for some vector
u = (u1, u2, . . . , uk−1)

′. Then,

�′ 1k+1 = u′A1k+1

= 0. (7.45)

From (7.45) it follows that
∑k

i=1 λi = 0.
Vice versa, if

∑k
i=1 λiαi is a contrast among the αi’s, then

(λ1, λ2, . . . , λk)1k = 0. (7.46)

Let A1 be a matrix of order (k − 1) × k obtained by removing the first column
of A. Then, A11k = 0. Since the rows of A1 are linearly independent, they
must form a basis for the orthogonal complement of 1k in a k-dimensional
Euclidean space. From (7.46) we conclude that (λ1, λ2, . . . , λk) must be in such
an orthogonal complement, that is,

(λ1, λ2, . . . , λk) = h′A1,

for some vector h. Hence,

�′ = (0, λ1, λ2, . . . , λk)

= h′A,

which indicates that �′ belongs to the row space of A.

Corollary 7.2 Any contrast,
∑k

i=1 λiαi, among the αi’s is estimable.

Proof.
∑k

i=1 λiαi = �′β, where �′ = (0, λ1, λ2, . . . , λk). By Lemma 7.2, �′
belongs to the row space of A, and hence to the row space of X. Thus, �′β is
estimable.

Using (7.44), Scheffé’s simultaneous (1 − α)100% confidence intervals on
all contrasts among the αi’s are then given by

k∑

i=1

λiȲi. ±
⎡

⎣(k − 1)MSEFα,k−1,n.−k

k∑

i=1

λ2
i

ni

⎤

⎦
1/2

. (7.47)

7.5.1 The Relationship between Scheffé’s Simultaneous Confidence
Intervals and the F-Test Concerning H0 : Aβ = 0

There is an interesting relationship between Scheffé’s simultaneous confi-
dence intervals in (7.40) and the F-test concerning the null hypothesis

H0 : Aβ = 0, (7.48)
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where A is s×p of rank s (≤ r, the rank of X in model (7.1)) whose rows belong
to the row space of X. This relationship is given by the following lemma.

Lemma 7.3 The test statistic,

F = (Aβ̂)′[A(X′X)−A′]−1Aβ̂

s MSE
,

concerning the hypothesis H0 : Aβ = 0, is significant at the α-level if and
only if there exists an estimable linear function �′

0β, where �′
0 belongs to the

row space of A, for which the confidence interval in (7.40) does not cover the
value zero, that is,

| �′
0β̂ | > [s MSEFα,s,n−r�

′
0(X

′X)−�0]1/2. (7.49)

Proof. This follows directly from the fact that formula (7.36) under H0 is
equivalent to

P[ | �′β̂ | ≤ [s MSEFα,s,n−r�
′(X′X)−�]1/2, ∀ �′ ∈ row space of A ] = 1 − α,

(7.50)

which results from using (7.39) with Aβ replaced by the zero vector. In other
words,

F = (Aβ̂)′[A(X′X)−A′]−1Aβ̂

s MSE
≤ Fα,s,n−r, (7.51)

if and only if

| �′β̂ | ≤ [s MSEFα,s,n−r�
′(X′X)−�]1/2, (7.52)

for all �′ in the row space of A. Equivalently, the F-test statistic in (7.51) is
significant at the α-level, that is,

(Aβ̂)′[A(X′X)−A′]−1Aβ̂

s MSE
> Fα,s,n−r, (7.53)

if and only if

| �′
0β̂ | > [s MSEFα,s,n−r�

′
0(X

′X)−�0]1/2 (7.54)

for some �′
0 in the row space of A. In this case, �′

0β̂ is said to be significantly
different from zero at the α-level.

Corollary 7.3 Consider the one-way model in Example 7.3. The F-test con-
cerning the hypothesis, H0 : α1 = α2 = · · · = αk, is significant at the α-level
if and only if there exists at least one contrast among the αi’s for which the
confidence interval in (7.47) does not contain zero.
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Proof. Using (7.42), the null hypothesis is equivalent to H0 : Aβ = 0, where
A is the same matrix used in Example 7.3. By Lemma 7.2, for any �′ in the
row space of A, �′β represents a contrast among the αi’s. Hence, by Lemma
7.3, the F-test concerning H0 is significant at the α-level if and only if there
exists a contrast,

∑k
i=1 λ0

i αi, for which the confidence interval in (7.47) does
not contain zero, that is,

∣∣∣∣∣∣

k∑

i=1

λ0
i Ȳi.

∣∣∣∣∣∣
>

⎡

⎣(k − 1)MSEFα,k−1,n.−k

k∑

i=1

λ02

i

ni

⎤

⎦
1/2

. (7.55)

In this case,
∑k

i=1 λ0
i Ȳi. is said to be significantly different from zero.

7.5.2 Determination of an Influential Set of Estimable
Linear Functions

The existence of a significant estimable linear function, whenever the F-test
concerning the hypothesis in (7.48) is significant, was established in Section
7.5.1. In the present section, we show how such a linear function can be found.
This was initially demonstrated by Khuri (1993).

Consider again the inequality in (7.49). Since �′
0 belongs to the row space of

A, �′
0β can be written as t′

0Aβ, where t0 is some vector in Rs, the s-dimensional
Euclidean space. It is easy to see that inequality (7.49) is equivalent to

sup
t∈Rs, t �=0

{
| t′Aβ̂ |

[t′A(X′X)−A′t]1/2

}
> (s MSEFα,s,n−r)

1/2. (7.56)

Note that | t′Aβ̂ |= (t′Aβ̂β̂
′
A′t)1/2. Hence, (7.56) can be expressed as

sup
t∈Rs, t �=0

{
t′G1t
t′G2t

}
> s MSEFα,s,n−r, (7.57)

where
G1 = Aβ̂β̂

′
A′

G2 = A(X′X)−A′

Since G2 is positive definite, then by Theorem 3.11,

sup
t∈Rs, t �=0

{
t′G1t
t′G2t

}
= emax

(
G−1

2 G1

)
, (7.58)

where emax

(
G−1

2 G1

)
is the largest eigenvalue of G−1

2 G1. By a cyclic

permutation of the matrices in G−1
2 G1, this eigenvalue is equal to

β̂
′
A′[A(X′X)−A′]−1Aβ̂ (see property (f) in Section 3.8), which is the numerator

sum of squares of the F-test statistic in (7.53) for testing H0 : Aβ = 0.
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Now, let t∗ be an eigenvector of G−1
2 G1 corresponding to emax

(
G−1

2 G1

)
.

Then,

t∗′
G1t∗

t∗′
G2t∗ = emax

(
G−1

2 G1

)
, (7.59)

which follows from the fact that t∗ satisfies the equation
[
G1 − emax

(
G−1

2 G1

)
G2

]
t∗ = 0.

From (7.58) and (7.59) we conclude that t′G1t
t′G2t attains its supremum when

t = t∗. The vector t∗ can be chosen equal to G−1
2 Aβ̂ since

G−1
2 G1

(
G−1

2 Aβ̂
)

= G−1
2 (Aβ̂β̂

′
A′)
(

G−1
2 Aβ̂

)

=
(
β̂

′
A′G−1

2 Aβ̂
)

G−1
2 Aβ̂

= emax

(
G−1

2 G1

)
G−1

2 Aβ̂,

which indicates that G−1
2 Aβ̂ is an eigenvector of G−1

2 G1 for the eigenvalue

emax

(
G−1

2 G1

)
.

From (7.56) it can be concluded that if the F-test is significant at the
α-level, then

| t∗′
Aβ̂ | > (s MSEFα,s,n−r)

1/2[t∗′
A(X′X)−A′t∗]1/2.

This shows that �∗′
β̂ = t∗′

Aβ̂ is significantly different from zero. We have

therefore identified an estimable linear function, �∗′
β, that satisfies inequal-

ity (7.49).
Let us now determine the elements of Aβ̂ which contribute sizably to the

significance of the F-test. For this purpose, let us express t∗′
Aβ̂ as

t∗′
Aβ̂ =

s∑

i=1

t∗i γ̂i, (7.60)

where t∗i and γ̂i are the ith elements of t∗ and γ̂ = Aβ̂, respectively (i =
1, 2, . . . , s). Dividing γ̂i by its estimated standard error κ̂i, which is equal to
the square root of the ith diagonal element of A(X′X)−A′MSE, formula (7.60)
can be written as

t∗′
Aβ̂ =

s∑

i=1

ωiτ̂i, (7.61)
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where
τ̂i = γ̂i/κ̂i
ωi = t∗i κ̂i, i = 1, 2, . . . , s

Large values of | ωi | identify those elements of Aβ̂ that are influential
contributors to the significance of the F-test.

Example 7.4 Consider once more the one-way model of Example 7.3. By
Corollary 7.3, if the F-test concerning the hypothesis Aβ = 0, where Aβ is
given in (7.42), is significant at the α-level, then there exists a contrast among
Ȳ1., Ȳ2., . . . , Ȳk. that is significantly different from zero [see inequality (7.55)].
Using the procedure described earlier in Section 7.5.2, it is now possible to
find such a contrast. It can be verified that in this example,

G2 = A(X′X)−A′

= [0 : 1k−1 : −Ik−1](X′X)−[0 : 1k−1 : −Ik−1]′

= 1
n1

Jk−1 + diag
(

1
n2

,
1
n3

, . . . ,
1
nk

)
.

Hence,

G−1
2 = diag(n2, n3, . . . , nk) − 1

n.
(n2, n3, . . . , nk)

′(n2, n3, . . . , nk),

where n. = ∑k
i=1 ni. In addition, we have that γ̂ = Aβ̂ = (Ȳ1. − Ȳ2.,

Ȳ1. − Ȳ3., . . . , Ȳ1. − Ȳk.)
′. Hence, the ith element, t∗i , of t∗ = G−1

2 Aβ̂ is given by

t∗i = ni+1(Ȳ1. − Ȳi+1.) − ni+1

n.

k∑

j=2

nj(Ȳ1. − Ȳj.), i = 1, 2, . . . , k − 1.

The variance–covariance matrix of γ̂ is estimated by

ˆVar(γ̂) = A(X′X)−A′ MSE

= G2 MSE

=
[

1
n1

Jk−1 + diag
(

1
n2

,
1
n3

, . . . ,
1
nk

)]
MSE.

Hence, the estimated standard error, κ̂i, of the ith element of γ̂ is of the form

κ̂i =
[(

1
n1

+ 1
ni+1

)
MSE

]1/2

, i = 1, 2, . . . , k − 1.

Thus, by (7.61), large values of | ωi | = | t∗i | κ̂i (i = 1, 2, . . . , k − 1) identify
those elements of γ̂ = (Ȳ1.−Ȳ2., Ȳ1.−Ȳ3., . . . , Ȳ1.−Ȳk.)

′ that contribute sizably
to the rejection of H0 : α1 = α2 = · · · = αk when the F-test is significant. In
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particular, if the data set is balanced, that is, ni = m for i = 1, 2, . . . , k, then it
can be shown that

| ωi |= (2 mMSE)1/2 | Ȳi+1. − Ȳ.. |, i = 1, 2, . . . , k − 1,

where Ȳ.. = 1
k
∑k

i=1 Ȳi..

Note that the elements of γ̂ = Aβ̂ in this example are pairwise differences
among the Ȳi.’s. None of these differences may be significantly different
from zero, even if the F-test is significant. However, a combination of such
differences, particularly those that correspond to large values of | ωi |, will
have a significant effect, if the F-test results in the rejection of H0 : α1 = α2 =
· · · = αk.

7.5.3 Bonferroni’s Intervals

So far, emphasis has been placed on getting simultaneous confidence intervals
on all contrasts (or linear functions) involving the treatment means in the case
of the one-way model. In some situations, however, simultaneous confidence
intervals on only a fixed number, ν, of contrasts may be of interest. Let
φj = ∑k

i=1 λijμi (j = 1, 2, . . . , ν) be such contrasts. An unbiased estimator of
φj is φ̂j =∑k

i=1 λijȲi. whose variance is

Var(φ̂j) = σ2
k∑

i=1

λ2
ij

ni
, j = 1, 2, . . . , ν.

The (1 − α) 100% confidence interval on φj is then given by

φ̂j ±
⎛

⎝MSE

k∑

i=1

λ2
ij

ni

⎞

⎠
1/2

t α
2 ,n.−k, j = 1, 2, . . . , ν.

Let Aj denote the event that occurs when this interval contains φj (j =
1, 2, . . . , ν). The so-called Bonferroni inequality can be used to obtain a lower

bound on the probability P
(⋂ν

j=1 Aj

)
, namely,

P

⎛

⎝
ν⋂

j=1

Aj

⎞

⎠ ≥ 1 − να.
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This inequality results from noting that

P

⎛

⎝
ν⋂

j=1

Aj

⎞

⎠ = 1 − P

⎛

⎝
ν⋃

j=1

Ac
j

⎞

⎠

≥ 1 −
ν∑

j=1

P
(

Ac
j

)

= 1 − να.

Thus, the aforementioned intervals provide simultaneous coverage of
φ1, φ2, . . . , φν with a joint coverage probability greater than or equal to 1− α̃,
where α̃ = να. Such intervals are called Bonferroni’s intervals. It should be
noted that the consideration of too many contrasts causes the corresponding
intervals to be long and therefore not very desirable.

7.5.4 Šidák’s Intervals

An alternative set of intervals for a fixed number, ν, of contrasts for the one-
way model case can be obtained on the basis of the following result by Šidák
(1967, Corollary 2):

Theorem 7.8 Let Z = (Z1, Z2, . . . , Zκ)′ have a multivariate normal distribu-
tion with a zero mean vector and a variance–covariance matrix, Σ. Let ψ be a
positive random variable independent of Z. Then, for any positive constants,
δ1, δ2, . . . , δκ,

P
[ | Z1 |

ψ
≤ δ1,

| Z2 |
ψ

≤ δ2, . . . ,
| Zκ |

ψ
≤ δκ

]
≥

κ∏

j=1

P
[ | Zj |

ψ
≤ δj

]
.

Consider now the contrasts, φj = ∑k
i=1 λijμi, j = 1, 2, . . . , ν. We assume that

these contrasts are linearly independent in the sense that the matrix,

Λφ = [λ1 : λ2 : . . . : λν]′

is of full row rank, where λj = (λ1j, λ2j, . . . , λkj)
′, j = 1, 2, . . . , ν. Then, the

random vector ΛφȲ, where Ȳ = (Ȳ1., Ȳ2., . . . , Ȳk.)
′ is normally distributed

with a variance–covariance matrix, σ2 Λφ diag( 1
n1

, 1
n2

, . . . , 1
nk

)Λ′
φ. Let us now

proceed to apply Theorem 7.8 to

Z = Δ−1/2Λφ(Ȳ − μ),

where
μ = (μ1, μ2, . . . , μk)

′
Δ = diag(Δ11, Δ22, . . . , Δνν)

Δjj is the jth diagonal element of Λφ diag
(

1
n1

, 1
n2

, . . . , 1
nk

)
Λ′

φ, j = 1, 2, . . . , ν
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Note that Z is normally distributed with a zero mean vector and a
variance–covariance matrix,

Σ = σ2Δ−1/2Λφ diag
(

1
n1

,
1
n2

, . . . ,
1
nk

)
Λ′

φ Δ−1/2.

Choosing ψ = √
MSE, where MSE is the error (residual) mean square with

n. − k degrees of freedom, we find that

Zj

ψ
= φ̂j − φj

[∑k
i=1 λ2

ij/ni MSE]1/2
, j = 1, 2, . . . , ν,

has the t-distribution with n. − k degrees of freedom, where φ̂j =∑k
i=1 λijȲi..

Thus, by choosing δj = tα/2, n.−k, we get

P
( | Zj |

ψ
≤ δj

)
= 1 − α, j = 1, 2, . . . , ν.

Hence, on the basis of Theorem 7.8, we can write

P
[ | Z1 |

ψ
≤ δ1,

| Z2 |
ψ

≤ δ2, . . . ,
| Zν |

ψ
≤ δν

]
≥ (1 − α)ν.

Consequently, the intervals,

φ̂j ±
⎛

⎝
k∑

i=1

λ2
ij

ni
MSE

⎞

⎠
1/2

tα/2, n.−k, j = 1, 2, . . . , ν,

provide a joint coverage of φ1, φ2, . . . , φν with a probability greater than or
equal to 1−αs, where αs is such that 1−αs = (1−α)ν. These are called Šidák’s
intervals. We note that these intervals are of the same form as Bonferroni’s
intervals, except that in the Bonferroni case, the joint probability of coverage
is greater than or equal to 1− α̃ (α̃ = να) instead of (1−α)ν in the Šidák case.
Since when α̃ = αs, and for 0 < α̃ < 1 and ν ≥ 1, we must have

α̃

ν
≤ 1 − (1 − α̃)1/ν,

we conclude that
t[1−(1−α̃)1/ν]/2, n.−k ≤ t α̃

2 ν
, n.−k.

Thus, when the lower bound on the joint coverage probability using Bonfer-
roni’s inequality (that is, 1−α̃) is the same as in the Šidák case, Šidák’s intervals
are shorter than Bonferroni’s intervals. A comparison of Scheffé’s intervals
with Bonferroni’s and Šidák’s intervals was made by Fuchs and Sampson
(1987).
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7.6 Simultaneous Confidence Intervals on All Contrasts
among the Means with Heterogeneous Group Variances

Consider again the one-way model,

Yij = μ + αi + εij, i = 1, 2, . . . , k; j = 1, 2, . . . , ni, (7.62)

used earlier in Example 7.3. Here, the εij’s are assumed to be independently
distributed as N

(
0, σ2

i
)
, i = 1, 2, . . . , k. Note that the error variances are not

necessarily equal for all the k groups. The purpose of this section is to develop
simultaneous confidence intervals on all contrasts of the form

∑k
i=1 λiμi,

where
∑k

i=1 λi = 0 and μi = μ + αi, i = 1, 2, . . . , k. Scheffé’s intervals given
in (7.47) are not applicable here because they were developed under the
assumption that the error variances were equal. Several methods are now
given for the derivation of simultaneous confidence intervals on all contrasts
under the assumption of heterogeneous error variances.

7.6.1 The Brown–Forsythe Intervals

According to Brown and Forsythe (1974a), approximate (1 − α)100% simul-
taneous confidence intervals on all contrasts,

∑k
i=1 λiμi, are given by

k∑

i=1

λiȲi. ±
[
(k − 1)Fα,k−1,η

]1/2

⎡

⎣
k∑

i=1

λ2
i s2

i

ni

⎤

⎦
1/2

, (7.63)

where Ȳi. = 1
ni

∑ni
j=1 Yij, s2

i is the sample variance for the sample data from
the ith group (treatment), i = 1, 2, . . . , k, and

η =
⎛

⎝
k∑

i=1

λ2
i s2

i

ni

⎞

⎠
2⎡

⎣
k∑

i=1

λ4
i s4

i

n2
i (ni − 1)

⎤

⎦
−1

. (7.64)

Formula (7.63) was also given in Tamhane (1979, p. 473). Note that the
Brown–Forsythe procedure gives the following approximate conservative
and simultaneous (1 − α)100% confidence intervals for all pairwise differ-
ences, μi − μj (i, j = 1, 2, . . . , k; i < j):

Ȳi. − Ȳj. ± [(k − 1)Fα,k−1,ηij ]1/2

(
s2

i

ni
+

s2
j

nj

)1/2

,



André I. Khuri/Linear Model Methodology C4819_C007 Finals Page 203 2009-9-14

Less-Than-Full-Rank Linear Models 203

where ηij is given by

ηij =
(s2

i /ni + s2
j /nj)

2

s4
i /n2

i
ni−1 + s4

j /n2
j

nj−1

. (7.65)

(See Tamhane, 1979, p. 473.)

7.6.2 Spjøtvoll’s Intervals

Spjøvoll (1972) proposed simultaneous confidence intervals on all linear func-
tions,

∑k
i=1 ciμi, of the means. The derivation of these intervals is based on

the following lemma.

Lemma 7.4 Let A be a positive constant. Then,

k∑

i=1

(Ȳi. − μi)
2ni

s2
i

≤ A2 (7.66)

if and only if
∣∣∣∣∣∣

k∑

i=1

vi(Ȳi. − μi)n
1/2
i

si

∣∣∣∣∣∣
≤ A (v′v)1/2, ∀ v ∈ Rk, (7.67)

where v = (v1, v2, . . . , vk)
′.

Proof. This can be easily proved by letting x = (x1, x2, . . . , xk)
′, where

xi = (Ȳi.−μi)n
1/2
i

si
, i = 1, 2, . . . , k, and then using Lemma 6.1 with c2 replaced

by A2.

Letting vin
1/2
i

si
= ci, i = 1, 2, . . . , k, inequality (7.67) can be written as

∣∣∣∣∣∣

k∑

i=1

ci(Ȳi. − μi)

∣∣∣∣∣∣
< A

⎛

⎝
k∑

i=1

c2
i s2

i

ni

⎞

⎠
1/2

, ∀ c ∈ Rk, (7.68)

where c = (c1, c2, . . . , ck)
′. Note that

∑k
i=1 c2

i s2
i /ni is an unbiased estimate of∑k

i=1 c2
i σ

2
i /ni, which gives the variance of

∑k
i=1 ciȲi., the unbiased estimator

of
∑k

i=1 ciμi. It can also be noted that since (Ȳi.−μi)n
1/2
i

si
has the t-distribution

with ni − 1 degrees of freedom, Fi = (Ȳi.−μi)
2ni

s2
i

has the F-distribution with 1

and ni − 1 degrees of freedom, i = 1, 2, . . . , k. Furthermore, these F variates
are independently distributed. Hence, the left-hand side of (7.66) is the sum
of k mutually independent F-distributed random variables, the ith of which
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has one degree of freedom for the numerator and ni − 1 degrees of freedom
for the denominator (i = 1, 2, . . . , k). If A2 is chosen as the upper α-quantile
of the distribution of

∑k
i=1 Fi, then by Lemma 7.4,

P

⎛

⎝
k∑

i=1

Fi ≤ A2

⎞

⎠ = 1 − α, (7.69)

if and only if

P

⎛

⎜⎝

∣∣∣∣∣∣

k∑

i=1

ci(Ȳi. − μi)

∣∣∣∣∣∣
≤ A

⎛

⎝
k∑

i=1

c2
i s2

i

ni

⎞

⎠
1/2

, ∀c ∈ Rk

⎞

⎟⎠ = 1 − α.

It follows that simultaneous (1 − α)100% confidence intervals on all linear
functions,

∑k
i=1 ciμi, of μ1, μ2, . . . , μk are given by

k∑

i=1

ciȲi. ± A

⎛

⎝
k∑

i=1

c2
i s2

i

ni

⎞

⎠
1/2

. (7.70)

The constant A depends on α and the degrees of freedom, ni−1 (i = 1, 2, . . . , k),
but not on any unknown parameters. Spjøtvoll approximated the distribution
of
∑k

i=1 Fi by that of a scaled F-variate of the form ν1Fk, ν2 , where ν1 and ν2

are determined by equating the mean and variance of
∑k

i=1 Fi to those of
ν1Fk, ν2 . Since the Fi’s are independent, the mean and variance of

∑k
i=1 Fi are

E

⎛

⎝
k∑

i=1

Fi

⎞

⎠ =
k∑

i=1

E(Fi)

=
k∑

i=1

ni − 1
ni − 3

,

Var

⎛

⎝
k∑

i=1

Fi

⎞

⎠ =
k∑

i=1

Var(Fi)

=
k∑

i=1

2 (ni − 1)2(ni − 2)

(ni − 3)2(ni − 5)
.

These formulas are valid provided that ni > 5 for i = 1, 2, . . . , k. Also, the
mean and variance of ν1Fk, ν2 are

E(ν1Fk, ν2) = ν1ν2

ν2 − 2
,

Var(ν1Fk, ν2) = 2 ν2
1(k + ν2 − 2)ν2

2
k(ν2 − 2)2(ν2 − 4)

.
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By equating the corresponding means and variances and solving the resulting
equations, we get

ν2 =
(k − 2)

(∑k
i=1

ni−1
ni−3

)2 + 4 k
∑k

i=1
(ni−1)2(ni−2)

(ni−3)2(ni−5)

k
∑k

i=1
(ni−1)2(ni−2)

(ni−3)2(ni−5)
−
(∑k

i=1
ni−1
ni−3

)2 , (7.71)

ν1 =
(

1 − 2
ν2

) k∑

i=1

ni − 1
ni − 3

. (7.72)

Hence, an approximate value of A is given by

A ≈ [ν1Fα,k, ν2 ]1/2. (7.73)

The performance of the Brown–Forsythe and Spjøtvoll intervals was
evaluated by Tamhane (1979) and Kaiser and Bowden (1983) using com-
puter simulation. It was found that Spjøvoll’s intervals are conservative. The
Brown–Forsythe intervals, on the other hand, are liberal, that is, the coverage
probability of the intervals is less than the nominal value.

7.6.2.1 The Special Case of Contrasts

Suppose that
∑k

i=1 ciμi is a contrast among treatment means, that is,∑k
i=1 ci = 0. In this case, the vector c = (c1, c2, . . . , ck)

′ must belong to a subset,
Sc, of Rk, namely, the orthogonal complement of 1k in Rk, and is therefore of
dimension k − 1. It is easy to see that

P

⎡

⎢⎣

∣∣∣∣∣∣

k∑

i=1

ci(Ȳi. − μi)

∣∣∣∣∣∣
≤ A

⎛

⎝
k∑

i=1

c2
i s2

i

ni

⎞

⎠
1/2

, ∀ c ∈ Sc

⎤

⎥⎦≥

P

⎡

⎢⎣

∣∣∣∣∣∣

k∑

i=1

ci(Ȳi.−μi)

∣∣∣∣∣∣
≤A

⎛

⎝
k∑

i=1

c2
i s2

i

ni

⎞

⎠
1/2

, ∀ c ∈ Rk

⎤

⎥⎦= P

⎡

⎣
k∑

i=1

(Ȳi.−μi)
2ni

s2
i

≤A2

⎤

⎦

= 1 − α.

Hence, in this special case, Spjøtvoll’s intervals in (7.70) become more conser-
vative with a joint coverage probability greater than or equal to 1 − α. This
was noted in the simulation study by Kaiser and Bowden (1983, p. 81).
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7.6.3 Exact Conservative Intervals

Let
∑k

i=1 ciμi be any linear function of the means. An exact (1 − α)100%
confidence interval on μi is (U1i, U2i), where

U1i = Ȳi. −
(

s2
i

ni

)1/2

tα/2, ni−1, i = 1, 2, . . . , k, (7.74)

U2i = Ȳi. +
(

s2
i

ni

)1/2

tα/2, ni−1, i = 1, 2, . . . , k, (7.75)

where s2
i is the sample variance for the ith group (i = 1, 2, . . . , k). These

intervals are independent. Hence, their Cartesian product, namely,

C = ⊗k
i=1[U1i, U2i], (7.76)

gives an exact rectangular confidence region on μ = (μ1, μ2, . . . , μk)
′ with a

confidence coefficient = (1 − α)k = 1 − α∗, where α∗ = 1 − (1 − α)k.
Let f (.) be any continuous function defined on Rk. If μ ∈ C, then f (μ) ∈

f (C) and hence

min
x ∈ C

f (x) ≤ f (μ) ≤ max
x ∈ C

f (x). (7.77)

It follows that

P
(

min
x ∈ C

f (x) ≤ f (μ) ≤ max
x ∈ C

f (x), ∀ continuous f
)

≥ P (μ ∈ C)

= 1 − α∗.

Thus, the double inequality in (7.77) provides simultaneous confidence inter-
vals on the values of f (μ) for all continuous functions on Rk with a joint
confidence coefficient greater than or equal to 1 − α∗. Recall that a simi-
lar argument was used in Section 6.7.2 (see the double inequality in (6.92)).
Note that since f (.) is continuous, it must attain its maximum and minimum
values at points in C. In particular, if f (μ) = ∑k

i=1 ciμi is a linear function
of μ1, μ2, . . . , μk, then simultaneous confidence intervals on all such linear
functions are given by

min
x ∈ C

k∑

i=1

cixi ≤
k∑

i=1

ciμi ≤ max
x ∈ C

k∑

i=1

cixi, (7.78)

where x = (x1, x2, . . . , xk)
′. The joint coverage probability is therefore greater

than or equal to 1 − α∗. Since f (x) = ∑k
i=1 cixi is a linear function and the

region C is bounded by a finite number of hyperplanes (convex polyhedron),
the optimization of f (x) over C can be easily carried out by using the following
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result from linear programming: There exists at least one vertex of C at which
f (x) attains an absolute maximum, and at least one vertex at which f (x)

attains an absolute minimum (see Theorem 1.4 in Simonnard, 1966, p. 19).
Furthermore, since C is a rectangular region, the absolute minimum and
maximum of f (x) can actually be obtained as follows: Let Tk be a subset of
{1, 2, . . . , k} such that ci �= 0 for i ∈ Tk, and let Tk1 and Tk2 be two disjoint
subsets of Tk such that Tk = Tk1

⋃
Tk2 with ci > 0 for i ∈ Tk1 and ci < 0 for

i ∈ Tk2 . Then,

k∑

i=1

cixi =
∑

i ∈ Tk

cixi

=
∑

i ∈ Tk1

cixi +
∑

i ∈ Tk2

cixi.

Hence,

min
x ∈ C

k∑

i=1

cixi =
∑

i ∈ Tk1

ciU1i +
∑

i ∈ Tk2

ciU2i, (7.79)

max
x ∈ C

k∑

i=1

cixi =
∑

i ∈ Tk1

ciU2i +
∑

i ∈ Tk2

ciU1i, (7.80)

where U1i and Ui2 are defined in (7.74) and (7.75), respectively. Formulas
(7.79) and (7.80) can then be used to obtain simultaneous confidence intervals
on all linear functions

∑k
i=1 ciμi with a joint probability of coverage greater

than or equal to 1 − α∗. In particular, if these linear functions are contrasts
among the means, then formulas (7.79) and (7.80) can still be used to obtain
conservative confidence intervals on all contrasts.

Example 7.5 An experiment was conducted to study the effect of tempera-
ture on the shear strength of an adhesive. Four different temperature settings
were applied using a completely randomized design. The data are shown in
Table 7.1. Testing equality of the population variances for the four temper-
atures by using Levene’s (1960) test gives a significant result with a p-value
= 0.0216. We can therefore conclude that the population variances are not
all equal (for a description of Levene’s test, which is known to be robust to
possible nonnormality, see, for example, Ott and Longnecker, 2004, p. 314).
This test can be easily carried out in PROC GLM of SAS (2000) by using the
statement, MEANS TEMPERATURE/HOVTEST = LEVENE, after the model
statement, MODEL Y = TEMPERATURE.

Since temperature is a quantitative factor with four equally-spaced levels,
it would be of interest to consider its linear, quadratic, and cubic effects, which
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TABLE 7.1
Shear Strength Values

Temperature (◦F)

200 220 240 260
7.99 11.03 9.18 8.59
8.35 10.87 9.55 7.97
8.73 11.63 9.94 8.13
8.87 10.31 9.54 8.51
8.55 11.04 9.02 8.03
9.04 11.13 9.17 7.88
9.86 11.30 9.11 8.01
9.63 10.51 9.53 8.23
9.86 10.72 8.63 8.45
8.90 10.65 8.99 8.30

Ȳ 8.978 10.919 9.266 8.210
s2 0.402 0.153 0.140 0.061

can be represented by the contrasts, φ1, φ2, φ3, respectively, of the form

φ1 = −3μ1 − μ2 + μ3 + 3μ4,
φ2 = μ1 − μ2 − μ3 + μ4,

φ3 = −μ1 + 3μ2 − 3μ3 + μ4,

where μi is the shear strength mean for the ith level of temperature. These
contrasts are said to be orthogonal because, since the data set is balanced
and the temperature levels are equally-spaced, the sum of the cross prod-
ucts of the coefficients of the corresponding means in any two contrasts is
equal to zero. In this case, φ1, φ2, φ3 provide a partitioning of the tempera-
ture effect, which has 3 degrees of freedom. Note that the coefficients of the
means in φ1, φ2, φ3 can be obtained from standard experimental design books
(see, for example, Montgomery, 2005, Table IX, p. 625). If the temperature lev-
els were not equally-spaced, or if the sample sizes were unequal, orthogonal
linear, quadratic, and cubic contrasts still exist, but are more difficult to find.

Using the Brown–Forsythe intervals in (7.63) with 1 − α = 0.95, we get

−6.085 < φ1 < −1.829,
−3.821 < φ2 < −2.173,

2.517 < φ3 < 5.865.

Applying now Spjøtvoll’s intervals in (7.70) with 1 − α = 0.95, where by
(7.73), A ≈ [ν1F0.05,k,ν2 ]1/2 = [4.408F0.05,4,14]1/2 = 3.704 (see formulas (7.71)
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and (7.72)), we get

−6.430 < φ1 < −1.484,
−4.015 < φ2 < −1.979,

2.129 < φ3 < 6.253.

Finally, applying the methodology in Section 7.6.3, we find that the individual
(1−α)100% confidence intervals on μi (i = 1, 2, 3, 4), where 1−α = (0.95)1/4 =
0.987259 are

8.357 < μ1 < 9.599,
10.536 < μ2 < 11.302,

8.899 < μ3 < 9.633,
7.969 < μ4 < 8.451.

Using now formulas (7.79) and (7.80), the simultaneous confidence intervals
on φ1, φ2, φ3 are given by

−7.295 < φ1 < −0.619,
−4.610 < φ2 < −1.384,

1.078 < φ3 < 7.304.

The joint coverage probability is greater than or equal to 0.95.
As expected, the Brown–Forsythe intervals, being liberal, are shorter than

the confidence intervals for the other two methods. Both the Spjøtvoll inter-
vals and those obtained from formulas (7.79) and (7.80) are conservative.
The difference is that the former are approximate while the latter are exact.
We note that the intervals from all three methods do not contain zero. This
indicates that the linear, quadratic, and cubic effects of temperature are all
significant.

7.7 Further Results Concerning Contrasts and Estimable
Linear Functions

In this section, we provide a geometrical approach for the representation of
contrasts, and the interpretation of their orthogonality in the context of the
one-way model. In addition, we consider the problem of finding simultaneous
confidence intervals for two estimable linear functions and their ratio.

7.7.1 A Geometrical Representation of Contrasts

Schey (1985) used geometrical arguments to explain certain features of con-
trasts for the one-way model. Consider, for example, the balanced one-way
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model

Yij = μ + αi + εij, i = 1, 2, . . . , k; j = 1, 2, . . . , n0,

where
αi is a fixed unknown parameter
the εij’s are independently distributed as N(0, σ2)

Let μi = μ + αi (i = 1, 2, . . . , k). Consider the matrix

W = Ik − 1
k

Jk,

where Jk is the matrix of ones of order k × k. It is easy to see that W is
idempotent of rank k − 1 and has therefore k − 1 eigenvalues equal to 1 and
one eigenvalue equal to 0. Using the Spectral Decomposition Theorem (see
Theorem 3.4), we can write

W =
k−1∑

i=1

pip
′
i, (7.81)

where p1, p2, . . . , pk−1 are orthonormal eigenvectors of W corresponding to
the eigenvalue 1. Hence,

Wpi = pi, i = 1, 2, . . . , k − 1. (7.82)

Let pk = 1√
k

1k. This is an eigenvector of W corresponding to the eigenvalue
0 since Wpk = 0. Furthermore, pk is orthogonal to p1, p2, . . . , pk−1 since by
(7.82), p′

ipk = p′
iWpk = 0, i = 1, 2, . . . , k − 1. Consequently, p1, p2, . . . , pk−1, pk

form an orthonormal basis in a k-dimensional Euclidean space. It follows that
if Ȳ = (Ȳ1., Ȳ2., . . . , Ȳk.)

′, where Ȳi. = 1
n0

∑n0
j=1 Yij, i = 1, 2, . . . , k, then Ȳ can be

expressed as a linear combination of p1, p2, . . . , pk of the form

Ȳ =
k∑

i=1

�̂i pi. (7.83)

Hence, by (7.82) and the fact that Wpk = 0,

WȲ =
k−1∑

i=1

�̂i pi. (7.84)

Thus, WȲ belongs to the (k − 1)-dimensional Euclidean space spanned by
p1, p2, . . . , pk−1, which is the orthogonal complement of pk. From (7.83) we
note that

p′
jȲ = �̂j, j = 1, 2, . . . , k − 1. (7.85)
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Thus, �̂j is a contrast in Ȳ1., Ȳ2., . . . , Ȳk. since p′
j1k = √

kp′
jpk = 0 for

j = 1, 2, . . . , k − 1. Furthermore, �̂j is an unbiased estimate of �j = p′
jμ, which

is a contrast in μ1, μ2, . . . , μk (j = 1, 2, . . . , k − 1), where μ = (μ1, μ2, . . . , μk)
′.

It is easy to see that �1, �2, . . . , �k−1 form a basis for all contrasts among
μ1, μ2, . . . , μk. This follows from the fact that if c′μ is such a contrast with
c′1k = 0, then c = ∑k−1

i=1 di pi for some constants d1, d2, . . . , dk−1. Hence,
c′μ = ∑k−1

i=1 di p′
iμ = ∑k−1

i=1 di �i. Also, if c′
1 μ and c′

2 μ are two orthogonal
contrasts, that is, c′

1c2 = 0, then we can write

c′
1 μ =

⎛

⎝
k−1∑

i=1

d1i pi

⎞

⎠
′
μ =

k−1∑

i=1

d1i �i

c′
2 μ =

⎛

⎝
k−1∑

i=1

d2i pi

⎞

⎠
′
μ =

k−1∑

i=1

d2i �i

for some constants d1i, d2i (i = 1, 2, . . . , k − 1). Note that
∑k−1

i=1 d1id2i = 0 due
to the fact that

c′
1c2 =

⎛

⎝
k−1∑

i=1

d1i p′
i

⎞

⎠

⎛

⎝
k−1∑

i=1

d2i pi

⎞

⎠

=
k−1∑

i=1

d1i d2i.

In particular, �i and �j are orthogonal contrasts for i �= j (i, j = 1, 2, . . . , k − 1).
The above arguments show that p1, p2, . . . , pk−1 generate all contrasts

among μ1, μ2, . . . , μk and that �1 = p′
1 μ, �2 = p′

2 μ, . . . , �k−1 = p′
k−1 μ are

orthogonal contrasts. Formula (7.84) provides a representation of WȲ as a
linear combination of p1, p2, . . . , pk−1 whose coefficients form orthogonal con-
trasts. In addition, the sum of squares for the treatment effect in the one-way
model, that is,

SSα = n0

k∑

i=1

(Ȳi. − Ȳ..)
2,

where Ȳ.. = 1
k
∑k

i=1 Ȳi., can be expressed as

SSα = n0 Ȳ ′WȲ. (7.86)
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ℓ3 p3
~

ℓ2 p2
~

ℓ 1 p 1~

z

Wz

FIGURE 7.1
Orthogonal decomposition of z = √

n0Ȳ in the case of three treatment groups.
(From Schey, H.M., Am. Statist., 39, 104, 1985. With permission.)

Using formula (7.84) and the fact that W is idempotent, (7.86) can be written as

SSα = n0

⎛

⎝
k−1∑

i=1

�̂i p′
i

⎞

⎠

⎛

⎝
k−1∑

i=1

�̂i pi

⎞

⎠

= n0

k−1∑

i=1

�̂2
i . (7.87)

Note that by (7.85),
n0 �̂2

i = (
√

n0 Ȳ ′
)pi p′

i(
√

n0 Ȳ).

Since
√

n0 Ȳ ∼ N(
√

n0 μ, σ2Ik), n0 �̂2
i is distributed as σ2 χ2

1(θi), where θi =
n0 μ′ pi p′

i μ/σ2, i = 1, 2, . . . , k−1. Thus, formula (7.87) provides a partitioning
of SSα into k − 1 independent sums of squares, each having a single degree
of freedom, that are associated with the orthogonal contrasts, �1, �2, . . . , �k−1.
A graphical depiction of these geometric arguments for k = 3 is given in
Figure 7.1, which shows the orthogonal decomposition of

z = √
n0 Ȳ

=
3∑

i=1

�̃i pi,
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where �̃i = √
n0 �̂i, i = 1, 2, 3 [see formula (7.83)]. Note that the sum of �̃1 p1

and �̃2 p2 is Wz, and from (7.86), SSα is the square of the Euclidean norm of
Wz. Furthermore,

�̃ 2
3 = z′z − z′Wz

= z′
(

1
3

J3

)
z

= n0

3

( 3∑

i=1

Ȳi.

)2

= 3 n0Ȳ2
...

7.7.2 Simultaneous Confidence Intervals for Two Estimable Linear
Functions and Their Ratio

In some experimental situations, one may be interested in estimating two
means as well as their ratio. For example, the equivalence of two drugs may be
assessed on the basis of the ratio of two treatment means. Also, in quantitative
genetics, the dominance ratio is to be estimated from dominance and additive
gene effects. These examples, along with others, were reported in Piepho and
Emrich (2005) who presented several methods for constructing simultaneous
confidence intervals for two means and their ratio. A description of some
of these methods is given in Sections 7.7.2.1 through 7.7.2.3. Model (7.1) is
considered for this purpose where it is assumed that ε ∼ N(0, σ2In).

Let γ1 = h′
1β and γ2 = h′

2β be two estimable linear functions whose ratio,
γ1
γ2

, is denoted by ρ. The objective here is to obtain simultaneous confidence
intervals on γ1, γ2, and ρ.

7.7.2.1 Simultaneous Confidence Intervals Based on Scheffé’s Method

Let γ = (γ1, γ2)
′. Using the methodology outlined in Section 7.4.2, a (1 − α)

100% confidence region on γ = H′β, where H = [h1 : h2], is given by

(γ̂ − γ)′[H′(X′X)−H]−1(γ̂ − γ) ≤ 2 MSE Fα,2,n−r. (7.88)

Then, as in (7.38), Scheffé’s simultaneous (1 − α)100% confidence intervals
on estimable linear functions of the form k′γ, for all k in a two-dimensional
Euclidean space, are obtained from

| k′(γ̂ − γ) | ≤ [2 MSE Fα,2,n−r k′H′(X′X)−Hk]1/2, ∀ k ∈ R2. (7.89)

The confidence intervals for γ1 and γ2 are derived by setting k = (1, 0)′ and
(0, 1)′, respectively. As for the interval for ρ, setting k = (1, −ρ)′ in (7.89) and
noting that k′γ = γ1 − ρ γ2 = 0, we get

| γ̂1 − ρ γ̂2 | ≤ [2 MSE Fα,2,n−r (1, −ρ)H′(X′X)−H(1, −ρ)′]1/2,
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which is equivalent to

(γ̂1 − ρ γ̂2)
2 ≤ 2 MSE Fα,2,n−r (1, −ρ)H′(X′X)−H(1, −ρ)′. (7.90)

The equality in (7.90) represents a quadratic equation in ρ. Under certain con-
ditions (see Section 6.7.3), this equation yields two real roots for ρ, namely, ρ1
and ρ2. In this case, (7.90) provides a confidence interval on ρ given by [ρ1, ρ2].
This interval, along with the ones for γ1 and γ2 will have a joint coverage
probability greater than or equal to 1 − α. If, however, the aforementioned
conditions are not satisfied, then no confidence interval on ρ can be obtained
from (7.90).

7.7.2.2 Simultaneous Confidence Intervals Based on the Bonferroni
Inequality

Using the Bonferroni inequality (see Section 7.5.3), simultaneous confidence
intervals on γ1, γ2, and ρ can be obtained from the inequalities,

[(1, 0)(γ̂ − γ)]2 ≤
[
MSE F α

3 ,1,n−r (1, 0)H′(X′X)−H(1, 0)′
]

, (7.91)

[(0, 1)(γ̂ − γ)]2 ≤
[
MSE F α

3 ,1,n−r (0, 1)H′(X′X)−H(0, 1)′
]

, (7.92)

[(1, −ρ)(γ̂ − γ)]2 ≤
[
MSE F α

3 ,1,n−r (1, −ρ)H′(X′X)−H(1, −ρ)′
]

, (7.93)

respectively. Note that in (7.93), (1, −ρ)γ = 0. The joint coverage probability
for the intervals derived from (7.91) through (7.93) is greater than or equal
to 1 − α. Note also that, as in (7.90), the equality in (7.93) can, under certain
conditions, yield two real roots for ρ, which provide a confidence interval
for ρ.

The Scheffé and Bonferroni intervals differ only in the values of 2 Fα,2,n−r
and F α

3 ,1,n−r, respectively. Piepho and Emrich (2005) made a comparison
between such values. They noted that the Bonferroni intervals may be shorter
than Scheffé’s intervals in some cases, particularly when n − r is large and α

is small.

7.7.2.3 Conservative Simultaneous Confidence Intervals

The method described in Section 7.6.3 can be used to obtain simultaneous
confidence intervals on γ1, γ2, and ρ. This is accomplished by considering
the confidence region in (7.88) for γ, which we denote by C. Then, for any
continuous function f (.) defined on C, we have

P[ min
x∈C

f (x) ≤ f (γ) ≤ max
x∈C

f (x), ∀ continuous f ] ≥ P(γ ∈ C)

= 1 − α.

Choosing f (γ) = γi for i = 1, 2 gives confidence intervals for γ1 and γ2.
These intervals are in fact the projections of C on the x1 and x2 axes, which
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correspond to γ1 and γ2, respectively. As for ρ = γ1
γ2

, choosing f (γ) = γ1
γ2

gives the interval

min
x∈C

(
x1

x2

)
≤ ρ ≤ max

x∈C

(
x1

x2

)
, (7.94)

provided that C does not include points on the x1 axis. The joint coverage
probability for all three intervals is greater than or equal to 1 − α. Note that
the end points in (7.94), denoted by ρ� and ρu, respectively, are the slopes of
the two tangent lines to C as shown in Figure 7.2.

One numerical example presented by Piepho and Emrich (2005) to illus-
trate their methods (of deriving the simultaneous confidence intervals) con-
cerned the birth weight data discussed by Nolan, and Speed (2000). The data
were obtained by studying the effect of smoking status of mothers on the birth
weights of their babies. The weight of the mother was used as a covariate in
the following analysis of covariance model,

Yij = μi + β(xij − x̄..) + εij,

where
Yij denotes the birth weight of the jth baby in the ith group (i takes the value

1 if the mother is a nonsmoker, and the value 2 if she is a smoker)
xij is the weight of the mother of the jth baby in the ith group
μi is the mean of the ith group
β is a slope parameter for the covariate
x̄.. is the average of the xij’s
εij ∼ N(0, σ2)

x1

x2

x1 = ρu x2

C x1 = ρℓ x2

FIGURE 7.2
Lower (ρ�) and upper (ρu) bounds on ρ derived from the confidence region C.
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Simultaneous confidence intervals for μ1, μ2, and ρ = μ1
μ2

using the afore-
mentioned data were given in Piepho and Emrich (2005, Table 7).

Exercises

7.1 Consider the following data set:

B

1 2 3 4

A 1 16.1 20.5 23.7 —
2 14.6 — 21.8 —
3 10.9 12.3 19.7 18.1
4 — — — 6.4

The corresponding model is

Yijk = μ + αi + βj + εijk,

where αi represents the effect of the ith level of factor A, βj represents
the effect of the jth level of factor B, and εijk ∼ N(0, σ2).

(a) Show that the hypothesis H0 : α1 = α2 = α3 = α4 is testable. Test
H0 at the 5% level.

(b) Show that the hypothesis H0 : β1 = β2 = β3 = β4 is testable. Test
H0 at the 5% level.

(c) Show that μ + α2 + 1
4
∑4

j=1 βj is estimable and find its BLUE.

(d) Show that φ = ∑4
i=1 λiαi is estimable if

∑4
i=1 λi = 0. What is its

BLUE?

7.2 Find the power of the test in part (a) of Exercise 7.1 assuming that σ2 = 1
and that under the alternative hypothesis, α1 − α2 = 2, α1 − α3 = 0.50,
α1 − α4 = 0.

7.3 Consider again Exercise 7.1. Write the model in the general form,
Y = Xβ + ε.

(a) Provide a reparameterization of this model, as was done in Section
7.3, so that it is written as a full-rank model.

(b) Verify that the two models have the same regression and residual
sums of squares.
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7.4 Consider the model

Yijk = μ + αi + βj + εijk,

where εijk ∼ N(0, σ2). This model is analyzed using the following
data set:

B

1 2 3 4

A 1 12 — 24 30
2 — — 6 11
3 21 15 16 —

(a) What is the number of basic linearly independent estimable linear
functions for this data set? Specify a set of estimable linear functions
that form a basis for the space of all estimable linear functions for
this model.

(b) Is μ12 = μ + α1 + β2 estimable? Why or why not?

(c) Show that 1
4
∑4

j=1(μ + αi + βj) is estimable for i = 1, 2, 3 and find its
BLUE.

(d) Let φj = 1
3
∑3

i=1(μ+αi +βj). Is the hypothesis H0 : φ1 = φ2 = φ3 =
φ4 testable? Why or why not? If testable, what is the corresponding
test statistic?

7.5 Consider the one-way model,

Yij = μ + αi + εij, i = 1, 2, 3; j = 1, 2, . . . , ni,

where the εij’s are independently distributed as N(0, σ2).

(a) Derive a test statistic for testing the hypothesis,

H0 :
1
5
(μ + α1) = 1

10
(μ + α2) = 1

15
(μ + α3)

at the α = 0.05 level.

(b) Give an expression for the power of the test in part (a) under the
alternative hypothesis

Ha :
1
5
(μ + α1) − 1

10
(μ + α2) = 1.0,

1
5
(μ + α1) − 1

15
(μ + α3) = 2.5,

assuming that σ2 = 1.0.
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7.6 Consider the one-way model,

Yij = μ + αi + εij, i = 1, 2, . . . , k; j = 1, 2, . . . , ni.

Let ε be the error vector whose elements are the εij’s. Suppose that
ε ∼ N(0, Σ), where

Σ = σ2(1 − ρ)In. + σ2ρ Jn. ,

where 0 < | ρ | < 1, n. = ∑k
i=1 ni, In. and Jn. are, respectively, the

identity matrix and matrix of ones of order n. × n..

(a) Show that SSα and SSE are independent, where SSα and SSE are
the usual sums of squares for the αi’s and the residual, respectively,
from the ANOVA table for this one-way model.

(b) Show that 1
σ2(1−ρ)

SSα has the noncentral chi-squared distribution
with k − 1 degrees of freedom.

(c) Show that 1
σ2(1−ρ)

SSE has the central chi-squared distribution with
n. − k degrees of freedom.

(d) Develop a test statistic for the hypothesis H0 : α1 = α2 = . . . = αk.

7.7 Consider the same model as in Exercise 7.6, except that the εij’s are now
assumed to be independently distributed as normal variables with zero
means and variances σ2

i (i = 1, 2, . . . , k). It is assumed that the σ2
i ’s are

known, but are not equal. Let ψ = ∑k
i=1 ciμi, where μi = μ + αi and

c1, c2, . . . , ck are constants.

(a) Show that the (1 −α)100% simultaneous confidence intervals on all
linear functions of the μi’s of the form ψ are given by

k∑

i=1

ciȲi. ±
⎡

⎣χ2
α,k

k∑

i=1

c2
i σ

2
i

ni

⎤

⎦
1/2

,

where Ȳi. = 1
ni

∑ni
j=1 Yij (i = 1, 2, . . . , k) and χ2

α,k is the upper
α-quantile of the chi-squared distribution with k degrees of
freedom.

(b) Suppose now that the σ2
i ’s are unknown. Show how you can obtain

an exact (1−α)100% confidence region on the vector
(
σ2

1, σ2
2, . . . , σ2

k

)′
.

7.8 Consider model (7.1) with the following restrictions on the elements
of β:

TXβ = d,
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where

T is a known matrix such that TX is of full row rank

d is a known vector in the column space of TX

(a) Find a matrix A and a vector c such that AY + c is an unbiased
estimator of Xβ.

(b) Does it follow from part (a) that AX = X and c = 0? Why or
why not?
[Note: Numerical examples concerning parts (a) and (b) can be
found in McCulloch and Searle (1995).]

7.9 Twenty four batteries of a particular brand were used in an experiment
to determine the effect of temperature on the life span of a battery. Four
temperature settings were selected and six batteries were tested at each
setting. The measured response was the life of a battery (in hours). The
following data were obtained:

Temperature (◦F)

20 50 80 110
130 120 100 90
150 110 95 85
145 105 115 80
120 113 112 92
160 109 92 79
155 114 88 82

(a) Test the polynomial effects (linear, quadratic, and cubic) of temper-
ature at the α = 0.05 level.

(b) Let φ1, φ2, φ3 denote the contrasts representing the linear,
quadratic, and cubic effects of temperature, respectively. Obtain
95% simultaneous confidence intervals on φ1, φ2, φ3 using Scheffé’s
procedure. What is the joint coverage probability of these intervals?

7.10 Three repeated measurements were taken from each of n patients under-
going a certain treatment. One measurement was taken after 1 week of
administering the treatment, the second measurement was taken after
2 weeks, and the third measurement was taken after 3 weeks. Let Y i
denote the vector of observations obtained from the n patients in week
i (= 1, 2, 3). Consider the models,

Y i = βi01n + Xiβi + εi, i = 1, 2, 3,
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where

Xi is of order n × p and rank p

εi is a random error vector

These models can be written as a single multivariate linear model of the
form,

Y = 1nβ′
0 + XB + ε,

where

Y = [y1 : y2 : y3]
β′

0 = (β10, β20, β30)

X = [X1 : X2 : X3]

B =
3⊕

i=1

βi

ε = [ε1 : ε2 : ε3].
It is assumed that the rows of ε are independently distributed as N(0, Σ),
where Σ is an unknown variance–covariance matrix of order 3 × 3. The
matrix X is of rank ρ, p ≤ ρ ≤ 3 p. It is also assumed that n − ρ ≥ 3.

Consider testing the hypothesis

H0 : β1 = β2 = β3

against the alternative hypothesis

Ha : at least two βi
′s are not equal.

Show that a test statistic for testing H0 is given by emax
(
ShS−1

e
)
, the

largest eigenvalue of ShS−1
e , where

Sh = C′Y ′Z(Z′Z)−G′[G(Z′Z)−G′]−1G(Z′Z)−Z′YC,

Se = C′Y ′[In − Z(Z′Z)−Z′]YC,

where

C =
⎡

⎣
1 1

−1 0
0 −1

⎤

⎦ ,

Z = [1n : X],
G = [0 : W].

The zero vector in G has p elements and W = 1′
3 ⊗ Ip.
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[Hint: Multiply the two sides of the multivariate linear model on the
right by C to get YC = 1nβ′

0C + XBC +εC. The rows of εC are indepen-
dently distributed as N(0, Σc), where Σc = C′ΣC. The null hypothesis
can then be written as H0 : WBC = 0. This hypothesis is testable if
the rows of G are spanned by the rows of [1n : X]. Multiply now the
above model on the right by an arbitrary vector a = (a1, a2)

′ to get the
univariate model Ya = Zζa + εa, where Ya = YCa, ζa = [C′β0 : C′B′]′a,
εa = εCa. Note that εa ∼ N(0, σ2

aIn), where σ2
a = a′C′ΣCa, and the null

hypothesis H0 is equivalent to H0(a) : WBCa = 0, for all a �= 0, which
can be expressed as H0(a) : Gζa = 0, for all a �= 0. Note that G is of rank
p and is therefore of full row rank. Use now the univariate model to get
the following test statistic for testing H0(a):

R(a) = Ya
′
Z(Z′Z)−G′[G(Z′Z)−G′]−1G(Z′Z)−Z′Ya

Ya
′ [In − Z(Z′Z)−Z′]Ya

= a′Sha
a′Sea

,

where large values of R(a) are significant. Deduce from this information
that emax

(
ShS−1

e
)

is a test statistic for H0.]

[Note: More details concerning this exercise and other related issues
can be found in Khuri (1986).]

7.11 Consider the one-way model given in (7.62), where Var(εij) = σ2λ2
i ,

i = 1, 2, . . . , k; j = 1, 2, . . . , ni, where σ2 is unknown and the λ2
i ’s are

known.

(a) Show that the ordinary least-squares and the best linear unbiased
estimates of μ + αi are identical (i = 1, 2, . . . , k).

(b) Find an unbiased estimate of σ2.

7.12 Consider model (7.1) where ε ∼ N(0, σ2In). Let ψ1, ψ2, . . . , ψq be a set
of linearly independent estimable functions of β. The vector ψ̂ denotes
the BLUE of ψ = (ψ1, ψ2, . . . , ψq)

′. Its variance–covariance matrix is
σ2Q−1.

(a) Give an expression for the (1 − α)100% confidence region on ψ.
(b) Suppose that ψ is partitioned as ψ = [ψ′

A : ψ′
B]′, where ψA consists

of the first h elements of ψ (h < q) and ψB consists of the remaining
elements. Suppose that Q is partitioned accordingly as

Q =
[

Q11 Q12
Q′

12 Q22

]
.

Show that

(ψA − ψ̂A)′
(

Q11 − Q12Q−1
22 Q′

12

)
(ψA − ψ̂A) ≤ (ψ − ψ̂)′Q(ψ − ψ̂),



André I. Khuri/Linear Model Methodology C4819_C007 Finals Page 222 2009-9-14

222 Linear Model Methodology

where ψ̂A is the BLUE of ψA.
[Hint: Show that the left-hand side of the above inequality is the
minimum value of the right-hand side when the latter is minimized
with respect to ψB.]

(c) What can be said about the probability that

(ψA − ψ̂A)′
(

Q11 − Q12Q−1
22 Q′

12

)
(ψA − ψ̂A) ≤ q MSE Fα,q,n−r,

where MSE is the error (residual) mean square for model (7.1) and
r is the rank of X?
[Hint: Use parts (a) and (b).]

7.13 Let β in model (7.1) be partitioned as β = [β′
1 : β′

2]′, where β1 is a
vector of q elements (q < p). By definition, β1 is testable if there exists
a linear function a′β1 that is estimable for some vector a. Thus β1 is
testable if and only if [a′ : 0′] = ν′P′

1 for some vector ν, where 0 is
a zero vector of dimension p − q and P1 is a matrix of order p × r
whose columns are orthonormal eigenvectors of X′X corresponding to
its nonzero eigenvalues, with r being the rank of X [see Section 7.4 and in
particular equality (7.19)]. Now, let us partition P′

1 as P′
1 = [P′

11 : P′
12],

where P′
11 and P′

12 are submatrices of orders r × q and r × (p − q),
respectively.

(a) Show that β1 is testable if and only if ν is an eigenvector of P′
12P12

with a zero eigenvalue such that P11ν �= 0.

(b) Consider the corresponding reparameterized model in (7.11). Let
ˆ̃
β be the BLUE of β̃ in this model. Show that ν′ ˆ̃β is an unbiased
estimator of a′β1.

7.14 Consider the null hypothesis H0 : Aβ = 0 in Section 7.5.1. Let W
denote the set consisting of all vectors � in the row space of A such that
�′(X′X)−� = 1. Hence, Var(�′β̂) = σ2, where σ2 is the error variance.

(a) Show that W is a nonempty set.

(b) Suppose that �′β̂ is significantly different from zero for some � ∈ W.
Thus, by inequality (7.54),

| �′β̂ | > (s MSE Fα,s,n−r)
1/2.

Show that there exists a vector � ∈ W for which �′β̂ is significantly
different from zero if and only if

sup
u ∈ W

| u′β̂ | > (s MSE Fα,s,n−r)
1/2.
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(c) Show that

sup
u ∈ W

| u′β̂ | ≤ {β̂′
A′[A(X′X)−A′]−1Aβ̂}1/2.

7.15 Consider the hypothesis H0 : Aβ = m, where A is s × p of rank s, but
Aβ is nonestimable. Hence, H0 is not testable.

(a) Obtain the equations that result from minimizing (Y−Xβ)′(Y−Xβ),
subject to the restrictions Aβ = m, using the method of Lagrange
multipliers.

(b) Show that these equations are inconsistent, that is, they produce no
solution for β̂.

(c) Conclude from part (b) that there is no test of the hypothesis H0.

[Note: This demonstrates that when Aβ is not estimable, no test exists
for H0, which explains the need for estimability in testable hypotheses.]

7.16 Consider the one-way model, Yij = μ + αi + εij. The hypothesis H0 :
μ = 0 is not testable since μ is nonestimable (see Result 2, Example 7.1).
Let SSE be the residual sum of squares for the model, and let SS0

E be the
residual sum of squares under H0. Show that SS0

E = SSE.

[Note: This also demonstrates that no test exists for a nontestable
hypothesis.]

7.17 Consider model (7.1), where it is assumed that E(ε) = 0 and Var(ε) =
Σ = (σij). Let

MSE = 1
n − r

Y ′[In − X(X′X)−X′]Y.

(a) Show that

E(MSE) ≤ 1
n − r

n∑

i=1

σii.

(b) Show that the upper bound in part (a) cannot be attained unless
X = 0.

7.18 The yield of a certain grain crop depends on the rate of a particu-
lar fertilizer. Four equally-spaced levels of the fertilizer factor were
used in a completely randomized design experiment. The yield data (in
bushels/acre) are given in the following table:
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Level of Fertilizer (lb/plot)

15 25 35 45
18 39 41 41
12 28 37 42
25 40 30 38
27 33 41 48
26 30 45 45

Let φ1, φ2, φ3 denote the contrasts representing the linear, quadratic,
and cubic effects of the fertilizer factor (see Example 7.5). Obtain 95%
simultaneous confidence intervals on φ1, φ2, φ3 using

(a) The Brown–Forsythe procedure.

(b) The method by Spjøtvoll.

(c) The exact method described in Section 7.6.3.



André I. Khuri/Linear Model Methodology C4819_C008 Finals Page 225 2009-9-2

8
Balanced Linear Models

The purpose of this chapter is to provide a comprehensive coverage of the
properties associated with a balanced linear model. In particular, expressions
for the expected mean squares and the distributions of the sums of squares in
the corresponding analysis of variance (ANOVA) table are developed using
these properties under the usual ANOVA assumptions. Tests of hypothe-
sis and confidence intervals concerning certain unknown parameters of the
model can then be derived.

8.1 Notation and Definitions

Suppose that in a given experimental situation, several factors are known to
affect a certain response variable denoted by Y. The levels of these factors
are indexed by subscripts such as i, j, k, . . .. A typical value of the response
can then be identified by attaching these subscripts to Y. For example, in a
two-factor experiment involving factors A and B, Yijk denotes the kth value
of the response obtained under level i of A and level j of B.

Definition 8.1 (Balanced data and models). A data set is said to be balanced
if the range of any one subscript of the response Y does not depend on the
values of the other subscripts of Y. A linear model used to analyze a balanced
data set is referred to as a balanced linear model.

For example, the two-way crossed classification model, which is given by

Yijk = μ + αi + βj + (αβ)ij + εijk, (8.1)

where i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , n, is balanced since the range
of any of the three subscripts of Y does not depend on the values of the
other two subscripts. Accordingly, the corresponding data set consisting of
the values of Yijk is said to be balanced. Note that in model (8.1), if A and B are
the factors under consideration, then αi denotes the effect of level i of factor
A, βj denotes the effect of level j of factor B, (αβ)ij denotes their interaction
effect, and εijk is a random experimental error.

225
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Definition 8.2 (Crossed and nested factors). Factors A and B are said to be
crossed if every level of one factor is used in combination with every level of
the other factor.

For example, five rates of a potassium fertilizer (factor A) and four rates of
a phosphorus fertilizer (factor B) are combined to produce 5×4 = 20 treatment
combinations. The treatments are allocated at random to 60 identical plots
(experimental units) such that each treatment is assigned to each of three
plots. In this case, the corresponding model is the one given in (8.1), where
Yijk denotes, for example, the yield of a vegetable crop from the kth plot that
receives level i of A and level j of B, i = 1, 2, 3, 4, 5; j = 1, 2, 3, 4; k = 1, 2, 3.

On the other hand, factor B is said to be nested within factor A if the
levels of B used with a given level of A are different from those used with
other levels of A. In this case, B is called the nested factor and A is referred
to as the nesting factor. There is therefore a strict hierarchy in a given nesting
relationship. This is not the case when A and B are crossed, and hence no
nesting relationship exists between the two factors. A nested classification is
sometimes referred to as a hierarchical classification.

For example, in an industrial experiment, 12 batches (factor B) of raw
material are randomly selected from the warehouse of each of three sup-
pliers (factor A), and three determinations of purity of the raw material are
obtained from each batch. In this experiment, B is nested within A, and the
corresponding model is written as

Yijk = μ + αi + βij + εijk, (8.2)

where
αi denotes the effect of the ith supplier (i = 1, 2, 3)

βij denotes the effect of the jth batch ( j = 1, 2, . . . , 12) obtained from the ith
supplier

εijk is a random experimental error associated with the kth (k = 1, 2, 3)

measurement from the jth batch nested within the ith supplier

We note that the identification of the nested effect of B requires two
subscripts, i and j, since a particular level of B (for example, the second batch)
is only defined after identifying the level of A nesting it. Thus, we can refer, for
example, to the second batch obtained from the third supplier. Consequently,
if B is nested within A, then whenever j appears as a subscript to an effect in
the model, subscript i must also appear.

Let us now consider another example which involves both nested and
crossed factors. It concerns a clinical study where three patients are assigned
at random to each of three clinics. Three measurements (blood pressure read-
ings) were obtained from each patient on each of four consecutive days. In
this case, if A, B, C denote the clinics, patients, and days factors, respectively,
then B is obviously nested within A, but A (and hence B) is crossed with C.
The corresponding model is therefore of the form

Yijkl = μ + αi + βij + γk + (αγ)ik + (βγ)ijk + εijkl, (8.3)
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where
αi denotes the effect of the ith clinic (i = 1, 2, 3)

βij denotes the effect of the jth patient ( j = 1, 2, 3), which is nested within
the ith clinic

γk denotes the effect of the kth day (k = 1, 2, 3, 4)

(αγ)ik is the interaction effect between clinics and days
(βγ)ijk represents the interaction effect between days and patients within

clinics
εijkl is a random experimental error associated with the lth measurement

obtained from the jth patient in clinic i on day k (l = 1, 2, 3)

Definition 8.3 (Crossed and nested subscripts). Let A and B be two given
factors indexed by i and j, respectively. If A and B are crossed, then i and j are
said to be crossed subscripts. This fact is denoted by writing (i)( j) where i and
j are separated by two pairs of parentheses. If, however, B is nested within
A, then j is said to be nested within i, and this fact is denoted by writing i : j
where a colon separates i and j with j appearing to the right of the colon.

Definition 8.4 (Population structure). The population structure associated
with a given experiment is a complete description of the nesting and nonnest-
ing (crossed) relationships that exist among the factors considered in the
experiment.

For example, for model (8.1), the population structure is [(i)( j)] : k, where
subscripts i and j are crossed and subscript k is nested within both i and j.
Note that a pair of square brackets is used to separate k from the combination
(i)( j). The population structure for model (8.2) is (i : j : k), which indicates
that k is nested within j and the latter is nested within i. As for model (8.3),
the corresponding population structure is [(i : j)(k)] : l. This clearly shows
that j is nested within i and k is crossed with i, and hence with j. Subscript l is
nested within i, j, and k.

As will be seen later, the population structure plays an important role in
setting up the complete model and the corresponding ANOVA table for the
experiment under investigation.

Definition 8.5 (Partial mean). A partial mean of a response Y is obtained by
averaging Y over the entire range of values of a particular subset of its set of
subscripts. A partial mean is denoted by the same symbol as the one used
for the response, except that the subscripts that have been averaged out are
omitted.

Definition 8.6 (Admissible mean). A partial mean is admissible if whenever
a nested subscript appears, all the subscripts that nest it appear also.

Definition 8.7 (Rightmost-bracket subscripts). The subscripts of an admissi-
ble mean which nest no other subscripts of that mean are said to constitute
the set of subscripts belonging to the rightmost bracket of the admissible mean.
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TABLE 8.1
Population Structures and Admissible Means
Population Structure Admissible Means
[(i)( j)] : k Y, Y(i), Y( j), Y(ij), Yij(k)
(i : j : k) Y, Y(i), Yi( j), Yij(k)
[(i : j)(k)] : l Y, Y(i), Y(k), Yi( j), Y(ik), Yi( jk), Yijk(l)

The grouping of these subscripts is indicated by using a pair of parenthe-
ses. The remaining subscripts, if any, of the admissible mean are called
nonrightmost-bracket subscripts and are placed before the rightmost bracket.
If the sets of rightmost- and nonrightmost-bracket subscripts are both empty,
as is case with the overall mean of the response, then the corresponding
admissible mean is denoted by just Y.

For example, the admissible means corresponding to the three population
structures, [(i)( j)] : k, (i : j : k), and [(i : j)(k)] : l are given in Table 8.1. The
identification of the rightmost bracket can also be extended from the admis-
sible means to their corresponding effects in a given model. For example,
models (8.1), (8.2), and (8.3) can now be expressed as

Yijk = μ + α(i) + β( j) + (αβ)(ij) + εij(k) (8.4)

Yijk = μ + α(i) + βi( j) + εij(k) (8.5)

Yijkl = μ + α(i) + βi( j) + γ(k) + (αγ)(ik) + (βγ)i( jk) + εijk(l). (8.6)

As will be seen later, such identification is instrumental in determining the
degrees of freedom, sums of squares, and the expected mean squares in
the corresponding ANOVA table. We shall therefore use this identification
scheme in future balanced ANOVA models.

Definition 8.8 (Component). A component associated with an admissible
mean is a linear combination of admissible means obtained by selecting all
those admissible means that are yielded by the mean under consideration
when some, all, or none of its rightmost-bracket subscripts are omitted in all
possible ways. Whenever an odd number of subscripts is omitted, the result-
ing admissible mean is given a negative sign, and whenever an even number
of subscripts is omitted, the mean is given a positive sign (the number zero
is considered even).

For example, the components corresponding to the admissible means for
each of the three population structures in Table 8.1 are displayed in Table 8.2.
It is easy to see that if the rightmost bracket of an admissible mean has k
subscripts, then the number of admissible means in the corresponding com-
ponent is equal to 2k. Furthermore, it can be noted that for any population
structure, the sum of all components associated with its admissible means
is identical to the response Y. For example, in Table 8.2, the sum of all the
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TABLE 8.2
Admissible Means and Corresponding Components
Population Structure Admissible Mean Component
[(i)( j)] : k Y Y

Y(i) Y(i) − Y
Y( j) Y( j) − Y
Y(ij) Y(ij) − Y(i) − Y( j) + Y
Yij(k) Yij(k) − Y(ij)

(i : j : k) Y Y
Y(i) Y(i) − Y
Yi( j) Yi( j) − Y(i)
Yij(k) Yij(k) − Yi( j)

[(i : j)(k)] : l Y Y
Y(i) Y(i) − Y
Y(k) Y(k) − Y
Yi( j) Yi( j) − Y(i)
Y(ik) Y(ik) − Y(i) − Y(k) + Y
Yi( jk) Yi( jk) − Yi( j) − Y(ik) + Y(i)
Yijk(l) Yijk(l) − Yi( jk)

components for each of the first two population structures is equal to Yijk, and
for the third population structure, the sum of the components is equal to Yijkl.
Such a relationship leads to a complete linear model for the response under
consideration in terms of all the effects which can be derived from the corre-
sponding population structure. For example, for each population structure,
the components shown in Table 8.2 are in a one-to-one correspondence with
the corresponding effects in models (8.4), (8.5), and (8.6), respectively. Thus,
knowledge of the population structure in a given experimental situation is
instrumental in identifying the complete model. A general representation of
such a model is given in the next section.

8.2 The General Balanced Linear Model

Let θ = {k1, k2, . . . , ks} be a complete set of subscripts that identify a typ-
ical response Y, where kj = 1, 2, . . . , aj ( j = 1, 2, . . . , s). We note that the
corresponding data set is balanced since the range of any one subscript,
for example kj, does not depend on the values of the remaining subscripts
( j = 1, 2, . . . , s). The total number of observations in the data set, denoted by
N, is N =∏s

j=1 aj.
Suppose that for a given population structure, the number of admissible

means is ν + 2. The ith admissible mean is denoted by Yθi(θ̄i)
, where θ̄i is the
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set of rightmost-bracket subscripts and θi is the set of nonrightmost-bracket
subscripts (i = 0, 1, 2, . . . , ν+ 1). For i = 0, both θi and θ̄i are empty. For some
other admissible means, θi may also be empty, as was seen earlier in Table 8.1.
The set consisting of all subscripts belonging to both θi and θ̄i is denoted by ψi.
The complement of ψi with respect to θ is denoted by ψc

i (i = 0, 1, . . . , ν + 1).
Note that ψi = θ when i = ν + 1. The ith component corresponding to the ith
admissible mean is denoted by Cθi(θ̄i)

(Y) (i = 0, 1, . . . , ν + 1).
The general form of a balanced linear model can be expressed as

Yθ =
ν+1∑

i=0

gθi(θ̄i)
, (8.7)

where gθi(θ̄i)
denotes the ith effect in the model. Note that for i = 0, gθi(θ̄i)

is the grand mean μ and for i = ν + 1, gθi(θ̄i)
is the experimental error term.

A general expression for the ith component, Cθi(θ̄i)
, is given by

Cθi(θ̄i)
(Y) =

ν+1∑

j=0

λijYθj(θ̄j)
, i = 0, 1, . . . , ν + 1, (8.8)

where λij = −1, 0, 1. The values −1 and 1 are obtained whenever an odd
number or an even number of subscripts are omitted from θ̄i, respectively.
The value λij = 0 is used for those admissible means that are not obtained by
deleting subscripts from θ̄i.

Model (8.7) can be written in vector form as

Y =
ν+1∑

i=0

Hiβi, (8.9)

where
Y denotes the vector of N observations
βi is a vector consisting of the elements of gθi(θ̄i)

(i = 0, 1, . . . , ν + 1)

The matrix Hi is expressible as a direct (Kronecker) product of matrices
of the form

Hi = ⊗s
j=1Lij, i = 0, 1, . . . , ν + 1, (8.10)

where for each i (= 0, 1, . . . , ν+1), a one-to-one correspondence exists between
the matrices Lij ( j = 1, 2, . . . , s) and the elements of θ = {k1, k2, . . . , ks} such that

Lij =
{

Iaj , kj ∈ ψi

1aj , kj ∈ ψc
i

; i = 0, 1, . . . , ν + 1; j = 1, 2, . . . , s, (8.11)

where, if we recall, ψi is the set of subscripts associated with the ith effect, ψc
i

is its complement with respect to θ (i = 0, 1, . . . , ν + 1), and Iaj and 1aj are,
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respectively, the identity matrix of order aj × aj and the aj × 1 vector of ones
( j = 1, 2, . . . , s). Thus, whenever a subscript of θ = {k1, k2, . . . , ks} belongs to
ψi, the corresponding Lij matrix in (8.10) is equal to Iaj , otherwise, it is equal
to 1aj ( j = 1, 2, . . . , s). Note that

H′
iHi = biIci , i = 0, 1, . . . , ν + 1, (8.12)

where

bi =
{∏

kj∈ψc
i

aj, if ψc
i �= ∅

1, if ψc
i = ∅ ; i = 0, 1, . . . , ν + 1

ci =
{∏

kj∈ψi
aj, if ψi �= ∅

1, if ψi = ∅ ; i = 0, 1, . . . , ν + 1 (8.13)

Here
ci is the number of columns of Hi
bi is the number of ones in a typical column of Hi (i = 0, 1, . . . , ν + 1)

∅ denotes the empty set

Thus, bici = N for i = 0, 1, . . . , ν + 1.

Example 8.1 Consider model (8.4), where i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2. In
vector form, the model is written as

Y = H0μ + H1α + H2β + H3(αβ) + H4ε,

where α, β, (αβ) contain the elements of α(i), β( j), (αβ)(ij), respectively, and
H0, H1, H2, H3, H4 are given by

H0 = 14 ⊗ 13 ⊗ 12

H1 = I4 ⊗ 13 ⊗ 12

H2 = 14 ⊗ I3 ⊗ 12

H3 = I4 ⊗ I3 ⊗ 12

H4 = I4 ⊗ I3 ⊗ I2.

Example 8.2 Consider model (8.3), which now can be written in a manner
that displays the sets of rightmost-bracket subscripts,

Yijkl = μ + α(i) + βi( j) + γ(k) + (αγ)(ik) + (βγ)i( jk) + εijk(l),

where i = 1, 2, 3; j = 1, 2, 3; k = 1, 2, 3, 4; and l = 1, 2, 3. Its vector form is

Y = H0μ + H1α + H2β + H3γ + H4(αγ) + H5(βγ) + H6ε,
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where α, β, γ, (αγ), and (βγ) contain the elements of α(i), βi( j), γ(k), (αγ)(ik),
(βγ)i( jk), respectively, and

H0 = 13 ⊗ 13 ⊗ 14 ⊗ 13

H1 = I3 ⊗ 13 ⊗ 14 ⊗ 13

H2 = I3 ⊗ I3 ⊗ 14 ⊗ 13

H3 = 13 ⊗ 13 ⊗ I4 ⊗ 13

H4 = I3 ⊗ 13 ⊗ I4 ⊗ 13

H5 = I3 ⊗ I3 ⊗ I4 ⊗ 13

H6 = I3 ⊗ I3 ⊗ I4 ⊗ I3.

8.3 Properties of Balanced Models

Linear models associated with balanced data have very interesting proper-
ties. Some of these properties are listed here as lemmas without proofs (see
Zyskind, 1962; Khuri, 1982 for more details).

Lemma 8.1 For any component associated with model (8.7), the sum of values
of the component is zero when the summation is taken over any subset of
subscripts in its rightmost bracket. Thus, if Cθi(θ̄i)

(Y) is the ith component,
and if θ̄i �= ∅, then

∑

τi⊂θ̄i

Cθi(θ̄i)
(Y) = 0,

where τi denotes a subset of subscripts in θ̄i.

Definition 8.9 The sum of squares associated with the ith effect in model
(8.7) is expressed as a quadratic form Y ′PiY(i = 0, 1, . . . , ν + 1) defined as

Y ′PiY =
∑

θ

[Cθi(θ̄i)
(Y)]2, i = 0, 1, . . . , ν + 1. (8.14)

For example, for the two-way model in Example 8.1, the sums of squares for
the various effects in the model are (see Table 8.2)

Y ′P0Y =
4∑

i=1

3∑

j=1

2∑

k=1

Y2

= 24 Y2
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Y ′P1Y =
4∑

i=1

3∑

j=1

2∑

k=1

[Y(i) − Y]2

= 6
4∑

i=1

[Y(i) − Y]2

Y ′P2Y =
4∑

i=1

3∑

j=1

2∑

k=1

[Y( j) − Y]2

= 8
3∑

j=1

[Y( j) − Y]2

Y ′P3Y =
4∑

i=1

3∑

j=1

2∑

k=1

[Y(ij) − Y(i) − Y( j) + Y]2

= 2
4∑

i=1

3∑

j=1

[Y(ij) − Y(i) − Y( j) + Y]2

Y ′P4Y =
4∑

i=1

3∑

j=1

2∑

k=1

[Yij(k) − Y(ij)]2.

Lemma 8.2 The sum of squares associated with the ith effect in model (8.7)
can be written as

Y ′PiY =
ν+1∑

j=0

λij
∑

θ

Y2
θj(θ̄j)

, i = 0, 1, . . . , ν + 1, (8.15)

where λij is the coefficient of Yθj(θ̄j)
in the expression given by (8.8) which

defines the ith component (i, j = 0, 1, . . . , ν + 1). Thus, the ith sum of squares
is a linear combination of the sums of squares (over the set of all subscripts, θ)
of the admissible means that make up the ith component. This linear combi-
nation has the same coefficients (that is, the λij’s) as those used to define the
ith component in terms of its admissible means.

For example, the sums of squares shown earlier for the two-way model
can be expressed as

Y ′P0Y = 24 Y2

Y ′P1Y = 6
4∑

i=1

Y2
(i) − 24 Y2

Y ′P2Y = 8
3∑

j=1

Y2
( j) − 24 Y2



André I. Khuri/Linear Model Methodology C4819_C008 Finals Page 234 2009-9-2

234 Linear Model Methodology

Y ′P3Y = 2
4∑

i=1

3∑

j=1

Y2
(ij) − 6

4∑

i=1

Y2
(i) − 8

3∑

j=1

Y2
( j) + 24 Y2

Y ′P4Y =
4∑

i=1

3∑

j=1

2∑

k=1

Y2
ij(k) − 2

4∑

i=1

3∑

j=1

Y2
(ij).

Lemma 8.3 The matrix Pi in formula (8.14) satisfies the following properties:

(a) Pi is idempotent (i = 0, 1, . . . , ν + 1)

(b) PiPj = 0 for i �= j (i, j = 0, 1, . . . , ν + 1)

(c)
∑ν+1

i=0 Pi = IN.

Lemma 8.4 The matrix Pi in formula (8.14) is expressible as

Pi =
ν+1∑

j=0

λij
Aj

bj
, i = 0, 1, . . . , ν + 1, (8.16)

where Aj = HjHj
′ ( j = 0, 1, . . . , ν + 1), the λij’s are the same coefficients as in

(8.8), and bj is the number defined in (8.13).

Proof. Let Y i denote the vector consisting of all the values of the ith admissible
mean, Yθi(θ̄i)

(i = 0, 1, . . . , ν + 1). Then,

Y i = 1
bi

Hi
′
Y, i = 0, 1, . . . , ν + 1. (8.17)

Using formulas (8.15) and (8.17) we can write

Y ′PiY =
ν+1∑

j=0

λij
∑

θ

Y2
θj(θ̄j)

=
ν+1∑

j=0

λij bj
∑

ψj

Y2
θj(θ̄j)

=
ν+1∑

j=0

λij bj

(
Y ′AjY

b2
j

)

= Y ′
⎛

⎝
ν+1∑

j=0

λij
Aj

bj

⎞

⎠Y. (8.18)

From (8.18) we conclude (8.16).
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Lemma 8.5 Consider formula (8.16). Then,

Aj

bj
=
∑

ψi⊂ψj

Pi, j = 0, 1, . . . , ν + 1, (8.19)

where the summation in (8.19) extends over all those i for which ψi ⊂ ψj for
a given j (i, j = 0, 1, . . . , ν + 1).

Proof. Formula (8.16) is derived from formula (8.8) by replacing Cθi(θ̄i)
(Y)

with Pi and Yθj(θ̄j)
with Aj/bj. It is easy to see that the sum of all components

whose sets of subscripts are contained inside ψj is equal to Yθj(θ̄j)
, that is,

Yθj(θ̄j)
=
∑

ψi⊂ψj

Cθi(θ̄i)
(Y), j = 0, 1, . . . , ν + 1.

If we replace Yθj(θ̄j)
by Aj/bj and Cθi(θ̄i)

(Y) by Pi, we get (8.19).

Lemma 8.6 If Aj = HjHj
′, then

AjPi = κijPi, i, j = 0, 1, . . . , ν + 1, (8.20)

where

κij =
{

bj, ψi ⊂ ψj
0, ψi �⊂ ψj

; i, j = 0, 1, . . . , ν + 1. (8.21)

Proof. Multiplying the two sides of (8.19) on the right by Pi, we get

AjPi = bj

⎛

⎝
∑

ψ�⊂ψj

P�

⎞

⎠Pi, i, j = 0, 1, . . . , ν + 1.

If ψi ⊂ ψj, then
⎛

⎝
∑

ψ�⊂ψj

P�

⎞

⎠Pi = Pi,

since Pi is idempotent and PiP� = 0 if i �= �. If, however, ψi �⊂ ψj, then

⎛

⎝
∑

ψ�⊂ψj

P�

⎞

⎠Pi = 0,
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by the orthogonality of the Pi’s. We conclude that AjPi = κijPi, where κij is
defined by (8.21).

Lemma 8.7 Let mi be the rank of Pi in (8.14). Then, mi is the same as the
number of degrees of freedom for the ith effect in model (8.7), and is equal to

mi =
⎡

⎣
∏

kj∈θi

aj

⎤

⎦

⎡

⎢⎣
∏

kj∈θ̄i

(aj − 1)

⎤

⎥⎦ , i = 0, 1, . . . , ν + 1, (8.22)

where θ̄i and θi are, respectively, the rightmost- and nonrightmost-bracket
subscripts for the ith effect (i = 0, 1, . . . , ν + 1).

Example 8.3 Consider again the model used in Example 8.2. If Pi is the matrix
associated with the ith sum of squares for this model (i = 0, 1, . . . , 6), then
using formula (8.16) and the fact that a1 = 3, a2 = 3, a3 = 4, a4 = 3, we have
(see the corresponding components in Table 8.2)

P0 = 1
108

A0

P1 = 1
36

A1 − 1
108

A0

P2 = 1
12

A2 − 1
36

A1

P3 = 1
27

A3 − 1
108

A0

P4 = 1
9

A4 − 1
36

A1 − 1
27

A3 + 1
108

A0

P5 = 1
3

A5 − 1
12

A2 − 1
9

A4 + 1
36

A1

P6 = A6 − 1
3

A5,

where

A0 = H0H
′
0 = J3 ⊗ J3 ⊗ J4 ⊗ J3

A1 = H1H
′
1 = I3 ⊗ J3 ⊗ J4 ⊗ J3

A2 = H2H
′
2 = I3 ⊗ I3 ⊗ J4 ⊗ J3

A3 = H3H
′
3 = J3 ⊗ J3 ⊗ I4 ⊗ J3

A4 = H4H
′
4 = I3 ⊗ J3 ⊗ I4 ⊗ J3

A5 = H5H
′
5 = I3 ⊗ I3 ⊗ I4 ⊗ J3

A6 = H6H
′
6 = I3 ⊗ I3 ⊗ I4 ⊗ I3.
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Solving for A0, A1, . . . , A6 in terms of P0, P1, . . . , P6, we get

A0 = 108 P0

A1 = 36(P0 + P1)

A2 = 12(P0 + P1 + P2)

A3 = 27(P0 + P3)

A4 = 9(P0 + P1 + P3 + P4)

A5 = 3(P0 + P1 + P2 + P3 + P4 + P5)

A6 =
6∑

i=0

Pi.

These equalities provide a verification of formula (8.19). Using formula (8.20),
it can be verified that, for example,

A1P1 = 36 P1, A1P2 = 0, A2P1 = 12 P1

A2P2 = 12 P2, A3P3 = 27 P3, A3P4 = 0

A4P5 = 0, A4P1 = 9 P1, A4P2 = 0

A4P3 = 9 P3, A5P1 = 3 P1, A5P2 = 3 P2

A5P6 = 0, A6P5 = P5.

8.4 Balanced Mixed Models

Model (8.7) may contain some random effects besides the experimental error.
If all the effects in the model are randomly distributed, except for the term
corresponding to i = 0, then the model is called a random-effects model (or
just a random model). If all the effects in the model are represented by fixed
unknown parameters, except for the experimental error term corresponding
to i = ν + 1, then the model is called a fixed-effects model (or just a fixed model).
If, however, the model has fixed effects (besides the term corresponding to
i = 0) and at least one random effect (besides the experimental error), then it
is called a mixed-effects model (or just a mixed model).

The purpose of this section is to discuss the distribution of the sums of
squares in the ANOVA table corresponding to a general balanced model, as
in (8.7), when the model can be fixed, random, or mixed. Without loss of
generality, we consider that the effects associated with i = 0, 1, . . . , ν − p are
fixed and those corresponding to i = ν−p+1, ν−p+2, . . . , ν+1 are random,
where p is a nonnegative integer not exceeding ν. The model is fixed if p = 0;
random if p = ν, otherwise, it is mixed if 0 < p < ν. Model (8.9) can then be
written as

Y = Xg + Zh, (8.23)
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where
Xg =∑ν−p

i=0 Hiβi is the fixed portion of the model
Zh =∑ν+1

i=ν−p+1 Hiβi is its random portion

Thus, for i = 0, 1, . . . , ν − p, βi is a vector of fixed unknown parameters,
and for i = ν − p + 1, ν − p + 2, . . . , ν + 1, βi is a random vector. We assume
that βν−p+1, βν−p+2, . . . , βν+1 are mutually independent and normally dis-
tributed such that

βi ∼ N(0, σ2
i Ici), i = ν − p + 1, ν − p + 2, . . . , ν + 1, (8.24)

where ci is given in (8.13) and represents the number of columns of Hi. Under
these assumptions, E(Y) = Xg, and the variance–covariance matrix, Σ, of Y
is of the form

Σ =
ν+1∑

i=ν−p+1

σ2
i Ai, (8.25)

where Ai = HiH
′
i (i = ν − p + 1, ν − p + 2, . . . , ν + 1).

8.4.1 Distribution of Sums of Squares

The distribution of the sums of squares associated with the various effects
in the balanced mixed model defined earlier can be easily derived using the
properties outlined in Section 8.3. This is based on the following theorem.

Theorem 8.1 Let Y ′PiY be the sum of squares associated with the ith effect
for model (8.23), i = 0, 1, . . . , ν + 1. Then, under the assumptions mentioned
earlier concerning the model’s random effects,

(a) Y ′P0Y, Y ′P1Y, . . . , Y ′Pν+1Y are mutually independent.

(b)
Y ′PiY

δi
∼ χ2

mi
(λi), i = 0, 1, . . . , ν + 1, (8.26)

where mi is the number of degrees of freedom for the ith effect (which
is the same as the rank of Pi), λi is the noncentrality parameter given by

λi = g′X′PiXg
δi

, i = 0, 1, . . . , ν + 1, (8.27)

and
δi =

∑

j∈Wi

bjσ
2
j , i = 0, 1, . . . , ν + 1, (8.28)

where bj is defined in formula (8.13) and Wi is the set

Wi = {j : ν − p + 1 ≤ j ≤ ν + 1 | ψi ⊂ ψj}, i = 0, 1, . . . , ν + 1, (8.29)
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where, if we recall, ψi is the set of subscripts that identifies the ith effect
(see Section 8.2).

(c) E(Y ′PiY) = g′X′PiXg + mi δi, i = 0, 1, . . . , ν + 1. (8.30)

(d) The noncentrality parameter λi in (b) is equal to zero if the ith effect is
random, that is, for i = ν − p + 1, ν − p + 2, . . . , ν + 1. Thus, for such an
effect, 1

δi
Y ′PiY has the central chi-squared distribution with mi degrees

of freedom and E(Y ′PiY) = miδi.

Proof.

(a) Using formulas (8.20) and (8.25), we can write

ΣPi =
⎛

⎝
ν+1∑

j=ν−p+1

σ2
j Aj

⎞

⎠Pi

=
⎛

⎝
ν+1∑

j=ν−p+1

κij σ
2
j

⎞

⎠Pi, i = 0, 1, . . . , ν + 1.

But, by (8.21),
ν+1∑

j=ν−p+1

κij σ
2
j =

∑

j∈Wi

bjσ
2
j ,

where Wi is the set defined in (8.29). Hence,

ΣPi = δiPi, i = 0, 1, . . . , ν + 1. (8.31)

From (8.31) and Lemma 8.3 (b), it follows that

Pi1ΣPi2 = Pi1(δi2 Pi2)

= 0, i1 �= i2; i1, i2 = 0, 1, . . . , ν + 1. (8.32)

Now, since Pi is symmetric of rank mi, there exists a matrix Li of
order N × mi and rank mi such that Pi = LiL′

i (i = 0, 1, . . . , ν + 1) (see
Corollary 3.1). Hence, from (8.32) we obtain

L′
i1ΣLi2 = 0, i1 �= i2; i1, i2 = 0, 1, . . . , ν + 1, (8.33)

since Li is of full column rank (i = 0, 1, . . . , ν + 1). Let L = [L0 : L1 : . . . :
Lν+1]′. This matrix is of full row rank because each L′

i (i = 0, 1, . . . , ν+1)

is of full row rank and the rows of L′
i1 are linearly independent of the

rows of L′
i2 (i1 �= i2; i1, i2 = 0, 1, . . . , ν + 1). The latter assertion follows

from the fact that if the rows of L′
i1 are not linearly independent of the

rows of L′
i2 , then there exists a matrix M such that L′

i1 = ML′
i2 , which, by

(8.33), implies that M = 0 since L′
i2ΣLi2 is nonsingular. This results in
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L′
i1 = 0, which is a contradiction. We conclude that L′

0Y, L′
1Y, . . . , L′

ν+1Y
form a partitioning of the multivariate normal vector LY and are there-
fore normally distributed. Furthermore, they are uncorrelated because
of (8.33). Hence, by Corollary 4.2, they are also mutually independent.
We conclude that Y ′P0Y, Y ′P1Y, . . . , Y ′Pν+1Y are mutually independent
since Pi = LiL′

i (i = 0, 1, . . . , ν + 1).

(b) From (8.31) we have that

Pi

δi
Σ = Pi, i = 0, 1, . . . , ν + 1.

Since Pi is idempotent [see Lemma 8.3 (a)] of rank mi, 1
δi

Y ′PiY ∼ χ2
mi

(λi)

by Theorem 5.4. The noncentrality parameter λi is given by (8.27) since
E(Y) = Xg.

(c) Applying Theorem 5.2 to Y ′PiY, we obtain

E(Y ′PiY) = g′X′PiXg + tr(PiΣ)

= g′X′PiXg + tr(δiPi), by (8.31),
= g′X′PiXg + miδi.

(d) From model (8.23) we have

PiX = Pi[H0 : H1 : . . . : Hν−p], i = 0, 1, . . . , ν + 1. (8.34)

If the ith effect is random (i.e., for i = ν−p+1, ν−p+2, . . . , ν+1), then
PiAj = 0 for j = 0, 1, . . . , ν − p. This follows from (8.20) and (8.21) since
ψi is not a subset of ψj (a set of subscripts, ψi, associated with a random
effect cannot be a subset of ψj for a fixed effect). Hence, PiHj = 0
by the fact that PiHjH′

j = 0 and H′
jHj = bj Icj [see formula (8.12)],

j = 0, 1, . . . , ν − p. From (8.34) we conclude that PiX = 0. Thus, the
noncentrality parameter in (8.27) must be equal to zero if the ith effect
is random (i = ν − p + 1, ν − p + 2, . . . , ν + 1).

8.4.2 Estimation of Fixed Effects

In this section, we show how to derive estimates of estimable linear func-
tions of g, the vector of fixed effects in model (8.23). The following theorem
identifies a basis for all such functions.

Theorem 8.2 Let Pi be the same matrix as in Theorem 8.1 (i = 0, 1, . . . , ν+ 1).
Then,

(a) For the ith fixed effect in model (8.23), rank(PiX) = mi, where mi =
rank(Pi), i = 0, 1, . . . , ν − p.

(b) rank(X) =∑ν−p
i=0 mi.
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(c) P0Xg, P1Xg, . . . , Pν−pXg are linearly independent.

(d) Any estimable linear function of g can be written as the sum of linear
functions of P0Xg, P1Xg, . . . , Pν−pXg.

Proof.

(a) Recall from the proof of part (d) of Theorem 8.1 that if the ith effect is
random, that is, for i = ν − p + 1, ν − p + 2, . . . , ν + 1, then PiX = 0.
Let us now consider PiX for the ith fixed effect (i = 0, 1, . . . , ν − p). We
have that

rank(PiX) = rank{Pi[H0 : H1 : . . . : Hν−p]}
= rank{Pi[H0 : H1 : . . . : Hν−p][H0 : H1 : . . . : Hν−p]′Pi}

= rank

⎡

⎣Pi

⎛

⎝
ν−p∑

j=0

Aj

⎞

⎠Pi

⎤

⎦

= rank

⎡

⎣Pi

ν−p∑

j=0

κijPi

⎤

⎦ , using formula (8.20)

= rank

⎡

⎣

⎛

⎝
ν−p∑

j=0

κij

⎞

⎠Pi

⎤

⎦ , since Pi is idempotent,

= rank(Pi) = mi, i = 0, 1, . . . , ν − p.

Note that
∑ν−p

j=0 κij > 0 since
∑ν−p

j=0 κij ≥ κii for i = 0, 1, . . . , ν − p, and
κii = bi > 0 by formula (8.21).

(b) Recall from Lemma 8.3 (c) that
∑ν+1

i=0 Pi = IN. Hence,

X =
(

ν+1∑

i=0

Pi

)
X

=
ν−p∑

i=0

PiX, since PiX = 0, for i = ν − p + 1, ν − p + 2, . . . , ν + 1.

Therefore,

rank(X) = rank

⎛

⎝
ν−p∑

i=0

PiX

⎞

⎠

= rank

⎛

⎝
ν−p∑

i=0

PiXX′
ν−p∑

i=0

Pi

⎞

⎠
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= rank

⎡

⎣

⎛

⎝
ν−p∑

i=0

Pi

⎞

⎠

⎛

⎝
ν−p∑

j=0

Aj

⎞

⎠

⎛

⎝
ν−p∑

k=0

Pk

⎞

⎠

⎤

⎦

= rank

⎡

⎣

⎛

⎝
ν−p∑

i=0

Pi

⎞

⎠
ν−p∑

j=0

ν−p∑

k=0

AjPk

⎤

⎦

= rank

⎡

⎣

⎛

⎝
ν−p∑

i=0

Pi

⎞

⎠
ν−p∑

j=0

ν−p∑

k=0

κkjPk

⎤

⎦ , by (8.20)

= rank

⎛

⎝
ν−p∑

i=0

ν−p∑

j=0

ν−p∑

k=0

κkjPiPk

⎞

⎠

= rank

⎛

⎝
ν−p∑

i=0

ν−p∑

j=0

κijPi

⎞

⎠

= rank

⎡

⎣
ν−p∑

i=0

⎛

⎝
ν−p∑

j=0

κij

⎞

⎠Pi

⎤

⎦ .

Let κi. = ∑ν−p
j=0 κij. Then, κi. > 0 for i = 0, 1, . . . , ν − p, as was seen

earlier. We therefore have

rank(X) = rank

⎛

⎝
ν−p∑

i=0

κi.Pi

⎞

⎠

= rank
(
κ

1/2
0. P0 : κ

1/2
1. P1 : . . . : κ

1/2
ν−p.Pν−p

)

=
ν−p∑

i=0

mi,

since rank(Pi) = mi (i = 0, 1, . . . , ν−p) and the columns of Pi are linearly
independent of the columns of Pi′ (i �= i′). The latter assertion follows
from Lemma 8.3.

(c) Suppose that P0Xg, P1Xg, . . . , Pν−pXg are linearly dependent. Then,
there exist constants ζ0, ζ1, . . . , ζν−p, not all equal to zero, such that

ν−p∑

i=0

ζiPiXg = 0, ∀g.

Hence,
ν−p∑

i=0

ζiPiX = 0.
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Multiplying both sides on the right by X′, we get

ν−p∑

i=0

ζiPiXX′ = 0.

This implies that
ν−p∑

i=0

ζiPi

ν−p∑

j=0

Aj = 0,

that is,
ν−p∑

i=0

ν−p∑

j=0

ζiPiAj = 0,

or equivalently,

ν−p∑

i=0

ν−p∑

j=0

ζi κij Pi = 0, by (8.20).

Thus,
ν−p∑

i=0

ζi κi. Pi = 0.

Multiplying now both sides of this equation on the right by Pj ( j =
0, 1, . . . , ν − p), we get (using Lemma 8.3)

ζj κj. Pj = 0, j = 0, 1, . . . , ν − p.

We conclude that ζj = 0 for j = 0, 1, . . . , ν−p, a contradiction. Therefore,
P0Xg, P1Xg, . . . , Pν−pXg must be linearly independent.

(d) We recall from the proof of part (b) that X =∑ν−p
i=0 PiX. Thus,

Xg =
ν−p∑

i=0

PiXg.

Hence, E(Y) = Xg is the sum of P0Xg, P1Xg, . . . , Pν−pXg. If Q′g is a
vector of estimable linear functions of g, then there exists a matrix T ′
such that Q′ = T ′X (see Section 7.4). Consequently,

Q′g = T ′Xg

=
ν−p∑

i=0

T ′PiXg.
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Thus, Q′g is the sum of linear functions of P0Xg, P1Xg, . . . , Pν−pXg.
Note that an unbiased estimator of Q′g is given by

Q̂′g =
ν−p∑

i=0

T ′PiY.

Theorem 8.3 Let Q′g be a vector of estimable linear functions of g. Then, the
best linear unbiased estimator of Q′g is given by Q′(X′X)−X′Y.

The proof of this theorem requires the following lemmas:

Lemma 8.8 PiΣ = ΣPi for i = 0, 1, . . . , ν + 1, where Σ is the variance-
covariance matrix in (8.25).

Proof. This follows directly from formula (8.31), where ΣPi = δiPi (i =
0, 1, . . . , ν + 1). Hence, ΣPi = PiΣ.

Lemma 8.9 AiΣ = ΣAi for i = 0, 1, . . . , ν + 1, where Ai = HiH′
i and Σ is the

same as in Lemma 8.8.

Proof. Using Lemma 8.5, we can write

Ai = bi
∑

ψj⊂ψi

Pj, i = 0, 1, . . . , ν + 1.

Hence,

AiΣ = bi

⎛

⎝
∑

ψj⊂ψi

Pj

⎞

⎠Σ

= bi
∑

ψj⊂ψi

(ΣPj), by Lemma 8.8,

= Σ

⎛

⎝bi
∑

ψj⊂ψi

Pj

⎞

⎠

= ΣAi.

Lemma 8.10 There exists a nonsingular matrix F such that ΣX = XF.

Proof. ΣX = Σ[H0 : H1 : . . . : Hν−p]. From Lemma 8.9, AiΣ = ΣAi,
i = 0, 1, . . . , ν + 1. Then,

HiH
′
iΣ = ΣHiH

′
i, i = 0, 1, . . . , ν + 1.

Multiplying both sides on the right by Hi and recalling from (8.12) that
H′

iHi = biIci (i = 0, 1, . . . , ν + 1), we get

HiH
′
iΣHi = biΣHi, i = 0, 1, . . . , ν + 1.
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Hence,

ΣHi = 1
bi

HiH
′
iΣHi

= HiGi, i = 0, 1, . . . , ν + 1,

where Gi = 1
bi

H′
iΣHi. Note that Gi is a ci × ci matrix of rank ci and is therefore

nonsingular. It follows that

ΣX = [ΣH0 : ΣH1 : . . . : ΣHν−p]
= [H0G0 : H1G1 : . . . : Hν−pGν−p]

= [H0 : H1 : . . . : Hν−p]
ν−p⊕

i=0

Gi

= XF,

where F =⊕ν−p
i=0 Gi, which is nonsingular.

Proof of Theorem 8.3 The best linear unbiased estimator (BLUE) of Q′g is
Q′(X′Σ−1X)−X′Σ−1Y. By Lemma 8.10, ΣX = XF for some nonsingular matrix
F. Hence,

X = ΣXF−1

X′Σ−1 = (F−1)
′
X′.

Consequently,

(X′Σ−1X)−X′Σ−1Y = [(F−1)
′
X′X]−(F−1)

′
X′Y. (8.35)

Note that [(F−1)′X′X]− can be chosen equal to (X′X)−F′ since

(F−1)
′
X′X(X′X)−F′(F−1)

′
X′X = (F−1)′X′X.

From (8.35) it follows that

(X′Σ−1X)−X′Σ−1Y = (X′X)−F′(F−1)
′
X′Y

= (X′X)−X′Y.

This implies that the BLUE of Q′g is Q′(X′X)−X′Y.

Theorem 8.3 shows that the BLUE of Q′g can be obtained without the
need to know Σ, which is usually unknown. Furthermore, this estimator is
the same as the ordinary least-squares estimator of Q′g.

Theorem 8.4 The variance–covariance matrix of the best linear unbiased
estimator of Q′g in Theorem 8.3 is given by

Var[Q′(X′X)−X′Y] = T ′
⎛

⎝
ν−p∑

i=0

δiPi

⎞

⎠T,

where T is such that Q′ = T ′X, and δi is given in (8.28) (i = 0, 1, . . . , ν − p).



André I. Khuri/Linear Model Methodology C4819_C008 Finals Page 246 2009-9-2

246 Linear Model Methodology

The proof of this theorem depends on the following lemma.

Lemma 8.11 X(X′X)−X′ =∑ν−p
i=0 Pi.

Proof. From the proof of part (b) of Theorem 8.2, we have that X =(∑ν−p
i=0 Pi

)
X.

Furthermore, X(X′X)−X′X = X. Hence,
⎡

⎣X(X′X)−X′ −
ν−p∑

i=0

Pi

⎤

⎦X = 0. (8.36)

We may also recall that PiX = 0 for i = ν − p + 1, ν − p + 2, . . . , ν + 1. On this
basis and using the orthogonality of the Pi

′s, we can write
⎡

⎣X(X′X)−X′ −
ν−p∑

i=0

Pi

⎤

⎦
ν+1∑

j=ν−p+1

Pj = 0. (8.37)

Note that the column space of
∑ν+1

j=ν−p+1 Pj, which is of dimension =
∑ν+1

j=ν−p+1 mj, is the orthogonal complement in RN of the column space of

X, which is of dimension = rank(X) = ∑ν−p
i=0 mi. From (8.36) and (8.37) we

therefore conclude that

X(X′X)−X′ −
ν−p∑

i=0

Pi = 0.

Proof of Theorem 8.4 We have that Q′ = T ′X. Hence,

Var[Q′(X′X)−X′Y] = Var[T ′X(X′X)−X′Y]

= T ′X(X′X)−X′
⎛

⎝
ν+1∑

j=ν−p+1

σ2
j Aj

⎞

⎠X(X′X)−X′T, using (8.25),

= T ′
⎛

⎝
ν−p∑

i=0

Pi

⎞

⎠

⎛

⎝
ν+1∑

j=ν−p+1

σ2
j Aj

⎞

⎠

⎛

⎝
ν−p∑

i=0

Pi

⎞

⎠T, by Lemma 8.11,

= T ′
⎛

⎝
ν−p∑

i=0

ν+1∑

j=ν−p+1

σ2
j PiAj

⎞

⎠

⎛

⎝
ν−p∑

i=0

Pi

⎞

⎠T

= T ′
⎛

⎝
ν−p∑

i=0

ν+1∑

j=ν−p+1

κij σ
2
j Pi

⎞

⎠

⎛

⎝
ν−p∑

i=0

Pi

⎞

⎠T, by Lemma 8.6,

= T ′
⎛

⎝
ν−p∑

i=0

δi Pi

⎞

⎠

⎛

⎝
ν−p∑

i=0

Pi

⎞

⎠T, by (8.28). (8.38)



André I. Khuri/Linear Model Methodology C4819_C008 Finals Page 247 2009-9-2

Balanced Linear Models 247

Note that (8.38) follows from the fact that

ν+1∑

j=ν−p+1

κij σ
2
j =

∑

j∈Wi

bj σ
2
j

= δi.

Using (8.38) and Lemma 8.3, we get

Var[Q′(X′X)−X′Y] = T ′
⎛

⎝
ν−p∑

i=0

δi Pi

⎞

⎠T. (8.39)

�
Example 8.4 Consider the balanced mixed two-way crossed classifica-
tion model

Yijk = μ + α(i) + β( j) + (αβ)(ij) + εij(k), (8.40)

where α(i) is a fixed unknown parameter and β( j), (αβ)(ij), and εij(k) are
randomly distributed as N(0, σ2

β), N(0, σ2
αβ), and N(0, σ2

ε), respectively. All
random effects are independent. The data set used with model (8.40) is given
in Table 8.3. The corresponding ANOVA table is shown in Table 8.4. Note
that the expected mean squares were obtained by applying formula (8.30).
More specifically, if we number the effects in model (8.40) as 0, 1, 2, 3, and 4,
respectively, then

E(MSA) = g′X′P1Xg + δ1

E(MSB) = δ2

E(MSAB) = δ3

E(MSE) = δ4,

where δ1 = 3 σ2
αβ+σ2

ε, δ2 = 6 σ2
β+3 σ2

αβ+σ2
ε, δ3 = 3 σ2

αβ+σ2
ε, and δ4 = σ2

ε,
as can be seen from applying formula (8.28). Furthermore, X = [H0 : H1],

TABLE 8.3
Data Set for Model (8.40)

B

A 1 2 3

1 74 71 99
64 68 104
60 75 93

2 99 108 114
98 110 111

107 99 108
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TABLE 8.4
ANOVA Table for Model (8.40)
Source DF SS MS E(MS) F p-Value

A 1 3362.00 3362.00 9
∑2

i=1 α2
(i) + 3 σ2

αβ + σ2
ε 13.26 0.0678

B 2 1476.33 738.17 6 σ2
β + 3 σ2

αβ + σ2
ε 2.91 0.2556

A ∗ B 2 507.00 253.50 3 σ2
αβ + σ2

ε 9.37 0.0035
Error 12 324.67 27.06 σ2

ε

where H0 = 12 ⊗ 13 ⊗ 13 = 118, H1 = I2 ⊗ 13 ⊗ 13, g = [μ, α(1), α(2)]′, and
from (8.16), P1 is given by

P1 = 1
9

I2 ⊗ J3 ⊗ J3 − 1
18

J2 ⊗ J3 ⊗ J3. (8.41)

A more direct way to compute g′X′P1Xg is described as follows:
We note that g′X′P1Xg is the same as SSA = Y ′P1Y, except that Y is

replaced by Xg, which is the mean of Y. Therefore, to compute g′X′P1Xg, it
is sufficient to use the formula for SSA, namely,

SSA = 9
2∑

i=1

[Y(i) − Y]2, (8.42)

and then replace Y(i) and Y with their expected values, respectively. Using
model (8.40), these expected values are

E[Y(i)] = μ + α(i)

E(Y) = μ,

since
∑2

i=1 α(i) = 0. Hence,

g′X′P1Xg = 9
2∑

i=1

α2
(i).

This short-cut to computing g′X′P1Xg can be applied in general to any fixed
effect in a balanced mixed linear model: If the ith effect is fixed, then

g′X′PiXg =
∑

θ

g2
θi(θ̄i)

, (8.43)

where, if we recall from Section 8.2, θ is the complete set of subscripts that
identify the response Y in the model under consideration, and gθi(θ̄i)

denotes
the ith effect in the model [see model (8.7)].

Now, suppose that it is of interest to estimate α(1)−α(2), which is estimable
since α(1) − α(2) = (μ + α(1)) − (μ + α(2)) and both μ + α(1) and μ + α(2) are
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estimable. Using Theorem 8.3, the BLUE of α(1) − α(2) is given by α̂(1) − α̂(2),
where α̂(1) and α̂(2) are obtained from

ĝ = [μ̂, α̂(1), α̂(2)]′
= (X′X)−X′Y
= [0, Y(1), Y(2)]′
= (0, 78.667, 106.00)′.

Thus, α̂(1) − α̂(2) = Y(1) − Y(2) = −27.333. Furthermore, since

Y(i) = μ + α(i) + 1
3

3∑

j=1

β( j) + 1
3

3∑

j=1

(αβ)(ij) + 1
9

3∑

k=1

3∑

j=1

εij(k),

then

Var[Y(1) − Y(2)] = 2
9
(3 σ2

αβ + σ2
ε). (8.44)

Hence, the 95% confidence interval on α(1) − α(2) is given by

Y(1) − Y(2) ±
(

2
9

MSAB

)1/2

t0.025,2 = −27.33 ±
[

2
9
(253.50)

]1/2

(4.303)

= −27.33 ± 32.296,

which yields the interval (−59.626, 4.966). This indicates that, at the 5% level,
no significant difference can be detected between the two means of factor A.
This coincides with the outcome of the F-test for A from Table 8.4 (p-value =
0.0678).

Note that (8.44) could have been derived using formula (8.39) as follows:
Let us write α(1)−α(2) as q′g, where q′ = (0, 1, −1), q′ = t′X, and the elements
of t are all zero, except for the first and the 10th elements, which are equal to
1 and −1, respectively. Applying formula (8.39), we get

Var[Y(1) − Y(2)] = t′(δ0P0 + δ1P1)t,

where δ0 = 6 σ2
β + 3 σ2

αβ + σ2
ε, δ1 = 3 σ2

αβ + σ2
ε, P0 = 1

18 J2 ⊗ J3 ⊗ J3, and P1

is given in (8.41). It follows that t′P0 = 0′ and t′P1t = 2
9 . Hence,

Var[Y(1) − Y(2)] = 2
9
(3 σ2

αβ + σ2
ε).

This gives the same result as in (8.44).

8.5 Complete and Sufficient Statistics

Consider model (8.23) under the same assumptions made earlier in Section 8.4
concerning the random effects in the model. The density function of Y is
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given by

f (y, Δ) = 1
(2 π)n/2 [det(Σ)]1/2 exp

[
−1

2
(y − Xg)′Σ−1(y − Xg)

]
, (8.45)

where Σ is the variance–covariance matrix in (8.25), and Δ denotes the vector
of all model’s unknown parameters, including the elements of Σ. The purpose
of this section is to find complete and sufficient statistics for model (8.23).

Lemma 8.12 Let Pi be the matrix associated with the ith sum of squares for
model (8.23) (i = 0, 1, . . . , ν + 1). Then, Pi can be written as Pi = QiQ

′
i, where

Qi is an N × mi matrix of rank mi such that Q′
iQi = Imi . Furthermore, if

Q∗ = [Q0 : Q1 : . . . : Qν+1], (8.46)

then, Q∗ is an orthogonal matrix that diagonalizes Σ, that is,

Q∗′ Σ Q∗ = Λ, (8.47)

where Λ is a diagonal matrix of the form

Λ =
ν+1⊕

i=0

(δi Imi),

and δi is given in (8.28).

Proof. The matrix Pi is idempotent of order N × N and rank mi (i =
0, 1, . . . , ν + 1). Hence, by applying the Spectral Decomposition Theorem
(Theorem 3.4), Pi can be expressed as

Pi = QiQ
′
i, i = 0, 1, . . . , ν + 1,

where Qi is of order N × mi whose columns are orthonormal eigenvectors of
Pi corresponding to the eigenvalue 1. Thus, Q′

iQi = Imi . Define the matrix
Q∗ as in (8.46). Then, it is easy to verify that Q∗Q∗′ = ∑ν+1

i=0 Pi = IN, and
Q∗′Q∗ = ⊕ν+1

i=0 Imi = IN. Hence, Q∗ is orthogonal. Furthermore, Q∗′ Σ Q∗
can be partitioned as

Q∗′
Σ Q∗ = (Λij),

where Λij = Q′
i Σ Qj, i, j = 0, 1, . . . , ν + 1. We now show that Λij = 0 for i �= j

and Λii = δiImi , i = 0, 1, . . . , ν + 1.
We have that for i �= j,

Pi Σ Pj = Σ Pi Pj, by Lemma 8.8
= 0, by Lemma 8.3(b).

Hence,
QiQ

′
i Σ QjQ

′
j = 0, i �= j. (8.48)
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Upon multiplying the two sides of (8.48) by Q′
i on the left and by Qj on the

right, we get
Q

′
iΣQj = 0, i �= j. (8.49)

Also, from (8.31), we have

PiΣPi = Pi (δi Pi)

= δi Pi, i = 0, 1, . . . , ν + 1.

Hence,
QiQ

′
i Σ QiQ

′
i = δi QiQ

′
i,

which implies that

Q
′
i Σ Qi = δi Imi , i = 0, 1, . . . , ν + 1. (8.50)

From (8.49) and (8.50) we conclude that

Λij = 0, i �= j

Λii = δi Imi , i = 0, 1, . . . , ν + 1.

Thus,

Q∗′
Σ Q∗ = (Λij)

=
ν+1⊕

i=0

Λii

= Λ,

where

Λ =
ν+1⊕

i=0

(δi Imi). (8.51)

Lemma 8.13 Consider the density function in (8.45). Then,

(y − Xg)′Σ−1(y − Xg) =
ν−p∑

i=0

1
δi

y′Piy − 2
ν−p∑

i=0

1
δi

y′PiXg

+ g′X′
⎛

⎝
ν−p∑

i=0

1
δi

Pi

⎞

⎠Xg +
ν+1∑

i=ν−p+1

1
δi

y′Piy.

Proof. Using formulas (8.47) and (8.51), Σ−1 can be expressed as

Σ−1 = Q∗
[

ν+1⊕

i=0

(
1
δi

Imi

)]
Q∗′

.
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Hence,

(y − Xg)′Σ−1(y − Xg) = (y − Xg)′Q∗
[

ν+1⊕

i=0

(
1
δi

Imi

)]
Q∗′

(y − Xg)

= (y − Xg)′
[

ν+1∑

i=0

(
1
δi

QiQi
′
)]

(y − Xg)

= (y − Xg)′
(

ν+1∑

i=0

1
δi

Pi

)
(y − Xg)

= (y − Xg)′
⎛

⎝
ν−p∑

i=0

1
δi

Pi

⎞

⎠ (y − Xg)

+ (y − Xg)′
⎛

⎝
ν+1∑

i=ν−p+1

1
δi

Pi

⎞

⎠ (y − Xg).

Since PiX = 0 for i = ν − p + 1, . . . , ν + 1, then

(y − Xg)′Σ−1(y − Xg) =
ν−p∑

i=0

1
δi

y′Piy − 2
ν−p∑

i=0

1
δi

y′PiXg + g′X′
⎛

⎝
ν−p∑

i=0

1
δi

Pi

⎞

⎠Xg

+
ν+1∑

i=ν−p+1

1
δi

y′Piy. (8.52)

Theorem 8.5 Consider model (8.23) with the associated density function in
(8.45). Then, Q′

0Y, Q′
1Y, . . . , Q′

ν−pY; Y ′Pν−p+1Y, Y ′Pν−p+2Y, . . . , Y ′Pν+1Y
are complete and sufficient statistics for model (8.23), where Qi and Pj are
the same matrices as in Lemma 8.12 (i = 0, 1, . . . , ν − p; j = ν − p + 1, ν − p +
2, . . . , ν + 1).

Proof. Using formulas (8.47) and (8.52), the density function in (8.45) can be
expressed as

f (y, Δ) = 1

(2 π)n/2
∏ν+1

i=0 δ
mi/2
i

exp

⎧
⎨

⎩−1
2

ν−p∑

i=0

1
δi

[y′Piy − 2 y′PiXg

+ g′X′PiXg] − 1
2

ν+1∑

i=ν−p+1

1
δi

y′Piy

⎫
⎬

⎭ . (8.53)

Since Pi = QiQ
′
i, i = 0, 1, . . . , ν + 1, then by the Factorization Theorem

(Theorem 6.2), Q′
iY (i = 0, 1, . . . , ν − p) and Y ′PiY(i = ν − p + 1, ν − p +
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2, . . . , ν + 1) form a set of sufficient statistics. These statistics are also com-
plete. The last assertion is true by Theorem 15.16 in Arnold (1981, p. 271),
which states that if

(a) Q̃
′
Y, where Q̃ = [Q0 : Q1 : . . . : Qν−p], and Y ′PiY(i = ν − p + 1, ν −

p + 2, . . . , ν + 1) are mutually independent (which they are here since
PiΣPj = PiPjΣ = 0 for i �= j, hence, Q′

iΣPj = 0 for i = 0, 1, . . . , ν− p; j =
ν − p + 1, ν − p + 2, . . . , ν + 1),

(b) Q̃
′
Y ∼ N(Q̃

′
Xg, Q̃

′
ΣQ̃), and 1

δi
Y ′PiY ∼ χ2

mi
, i = ν − p + 1, ν − p +

2, . . . , ν + 1, which is true by Theorem 8.1, where Q̃
′
ΣQ̃ is a function of

δν−p+1, δν−p+2, . . . , δν+1, and

(c) the elements of Q̃
′
Xg and δν−p+1, δν−p+2, . . . , δν+1 are unrelated and

their ranges contain open rectangles,

then Q̃
′
Y and Y ′PiY (i = ν−p+1, ν−p+2, . . . , ν+1) are complete statistics.

Example 8.5 Consider a general mixed two-way model as the one used in
Example 8.4, where α(i) is fixed and β( j) is random (i = 1, 2, . . . , a; j =
1, 2, . . . , b; k = 1, 2, . . . , n). In this case, Q′

0Y, Q′
1Y, Y ′P2Y, Y ′P3Y, Y ′P4Y

are complete and sufficient statistics, where Q0 and Q1 are such that P0 =
Q0Q′

0, P1 = Q1Q′
1. Here, P0 = 1

a b n H0H′
0, P1 = 1

b n H1H′
1 − 1

a b n H0H′
0, where

H0 = 1a ⊗1b ⊗1n, H1 = Ia ⊗1b ⊗1n, and P1, P2, P3, P4 are the matrices giving
the sums of squares for factors A, B, the interaction A ∗ B, and the error term,
respectively, in the model. Consider the following lemma.

Lemma 8.14 The row space of Q̃
′ = [Q0 : Q1]′ is the same as the row space

of H′
1.

Proof. We have that

Q′
0 = Q′

0P0, since Q′
0Q0 = 1,

= 1
abn

Q′
0H0H′

0

= 1
abn

Q′
0H01′

aH′
1, since H′

0 = 1′
aH′

1, (8.54)

and

Q′
1 = Q′

1P1, since Q′
1Q1 = Ia−1,

= Q′
1

[
1

bn
H1H′

1 − 1
abn

H0H′
0

]

= Q′
1

[
1

bn
H1 − 1

abn
H01′

a

]
H′

1. (8.55)

Formulas (8.54) and (8.55) indicate that the row space of Q̃
′

is contained
within the row space of H′

1.
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Vice versa, we have that

Q1Q′
1 + Q0Q′

0 = 1
b n

H1H′
1.

Hence, since H′
1H1 = bnIa,

H′
1 = H′

1[Q1Q′
1 + Q0Q′

0] = H′
1Q̃Q̃

′
,

which indicates that the row space of H′
1 is contained within the row space

of Q̃
′
. We can therefore conclude that the row spaces of Q̃

′
and H′

1 are
identical.

On the basis of Lemma 8.14, there exists a nonsingular matrix U such
that H′

1 = UQ̃
′
. Since the elements of Q̃

′
Y together with Y ′P2Y, Y ′P3Y, and

Y ′P4Y are complete and sufficient statistics for the model by Theorem 8.5,
then so are the elements of H′

1Y and Y ′P2Y, Y ′P3Y, Y ′P4Y. But, H′
1Y =

b n[Y(1), Y(2), . . . , Y(a)], where Y(i) is the sample mean of level i of factor
A (i = 1, 2, . . . , a). We finally conclude that Y(1), Y(2), . . . , Y(a); Y ′P2Y, Y ′P3Y,
and Y ′P4Y are complete and sufficient statistics for the mixed two-way
model.

8.6 ANOVA Estimation of Variance Components

Analysis of variance (ANOVA) estimates of the variance components for
model (8.23) are obtained by equating the mean squares of the random
effects to their corresponding expected values, then solving the resulting
equations. Such estimates are obviously unbiased. Furthermore, under the
same assumptions made earlier in Section 8.4 concerning the distribution
of the random effects, these unbiased estimates are functions of the mean
squares of the random effects, which along with Q′

0Y, Q′
1Y, . . . , Q′

ν−pY are
complete and sufficient statistics for the model by Theorem 8.5. Consequently,
and on the basis of the Lehmann–Scheffé Theorem (see, for example, Casella
and Berger, 2002, p. 369; Graybill, 1976, Theorem 2.7.7, p. 78), we conclude
that the ANOVA estimators are uniformly minimum variance unbiased estimators
(UMVUE) of the variance components.

8.6.1 The Probability of a Negative ANOVA Estimator

One of the undesirable features of the ANOVA estimators of variance com-
ponents is the possibility that they can be negative. We now show how to
compute the probability that such estimators can be negative.
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Let σ̂2
ν−p+1, σ̂2

ν−p+2, . . . , σ̂2
ν+1 denote the ANOVA estimators of σ2

ν−p+1,

σ2
ν−p+2, . . . , σ2

ν+1. Then, σ̂2
i can be written as

σ̂2
i =

ν+1∑

j=ν−p+1

ηij MSj, i = ν − p + 1, ν − p + 2, . . . , ν + 1, (8.56)

where MSj = 1
mj

Y ′PjY and the ηij’s are known constants. Under the assump-
tions made earlier in Section 8.4 concerning the distribution of the random
effects, 1

δj
Y ′PjY ∼ χ2

mj
( j = ν − p + 1, ν − p + 2, . . . , ν + 1). Hence, σ̂2

i can be
written as

σ̂2
i =

ν+1∑

j=ν−p+1

ηij
δj

mj
χ2

mj
, i = ν − p + 1, ν − p + 2, . . . , ν + 1. (8.57)

Some of the ηij coefficients may be equal to zero. Let κi be the number of

nonzero ηij in (8.57), and let the nonzero values of ηij
δj
mj

be denoted by η∗
ij (i =

ν − p + 1, ν − p + 2, . . . , ν + 1; j = 1, 2, . . . , κi). If the corresponding values of
mj in (8.57) are denoted by m∗

i1, m∗
i2, . . . , m∗

iκi
, then (8.57) can be expressed as

σ̂2
i =

κi∑

j=1

η∗
ij χ

2
m∗

ij
, i = ν − p + 1, ν − p + 2, . . . , ν + 1. (8.58)

The exact probability of a negative σ̂2
i can then be obtained by applying a

formula given by Imhof [1961, formula (3.2)], namely,

P(σ̂2
i < 0) = 1

2
− 1

π

∞�
0

sin[τi(u)]
u ρi(u)

du,

where

τi(u) = 1
2

κi∑

j=1

m∗
ij arctan(η∗

ij u)

ρi(u) =
κi∏

j=1

(1 + η∗
ij

2 u2)
m∗

ij/4.

(see also Khuri, 1994, p. 903). A computer program written in FORTRAN
was given by Koerts and Abrahamse (1969) to implement Imhof’s (1961)
procedure.

Alternatively, by using the representation of σ̂2
i in (8.57) as a linear com-

bination of mutually independent chi-squared variates, the exact value of
P(σ̂2

i < 0) can be more easily obtained by utilizing Davies’ (1980) algorithm
(see Section 5.6).
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Example 8.6 Consider the random model

Yijkl = μ + α(i) + β( j) + (αβ)(ij) + γj(k) + (αγ)j(ik) + εijk(l),

i = 1, 2, 3; j = 1, 2, . . . , 5; k = 1, 2, 3, 4; and l = 1, 2, where α(i) ∼ N(0, σ2
α),

β( j) ∼ N(0, σ2
β), (αβ)(ij) ∼ N(0, σ2

αβ), γj(k) ∼ N(0, σ2
γ(β)

), (αγ)j(ik) ∼
N(0, σ2

αγ(β)
), εijk(l) ∼ N(0, σ2

ε). In this case,

δ1 = E(MS1) = 40 σ2
α + 8 σ2

αβ + 2 σ2
αγ(β) + σ2

ε

δ2 = E(MS2) = 24 σ2
β + 8 σ2

αβ + 6 σ2
γ(β) + 2 σ2

αγ(β) + σ2
ε

δ3 = E(MS3) = 8 σ2
αβ + 2 σ2

αγ(β) + σ2
ε

δ4 = E(MS4) = 6 σ2
γ(β) + 2 σ2

αγ(β) + σ2
ε

δ5 = E(MS5) = 2 σ2
αγ(β) + σ2

ε

δ6 = E(MS6) = σ2
ε,

where MS1, MS2, . . . , MS6 are the mean squares associated with α(i), β( j), (αβ)(ij),
γj(k), (αγ)j(ik), and εijk(l), respectively, with m1 = 2, m2 = 4, m3 = 8, m4 =
15, m5 = 30, and m6 = 60 degrees of freedom.

Consider now the ANOVA estimator of σ2
β, which is given by

σ̂2
β = 1

24
(MS2 + MS5 − MS3 − MS4).

In this case, β( j) is the second random effect in the model, and the values of
η∗

2j and m∗
2j in formula (8.58) are given by

η∗
21 = 1

24
δ2

4
, m∗

21 = 4

η∗
22 = 1

24
δ5

30
, m∗

22 = 30

η∗
23 = − 1

24
δ3

8
, m∗

23 = 8

η∗
24 = − 1

24
δ4

15
, m∗

24 = 15.

Note that the values of P(σ̂2
β < 0) depend on the following ratios of variance

components:
σ2

β

σ2
ε

,
σ2

γ(β)

σ2
ε

,
σ2

αβ

σ2
ε

, and
σ2

αγ(β)

σ2
ε

. By assigning specific values to these

ratios, we can compute the probability that σ̂2
β < 0 with the help of Davies’

(1980) algorithm. Table 8.5 gives some of such values.
We note that large values of P(σ̂2

β < 0) are associated with small values
of σ2

β/σ2
ε, which is an expected result.
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TABLE 8.5
Values of P(σ̂2

β < 0)

σ2
β

/σ2
ε σ2

γ(β)
/σ2

ε σ2
αβ

/σ2
ε σ2

αγ(β)
/σ2

ε P(σ̂2
β

< 0)

0.1 0.5 0.5 0.5 0.447830
0.1 0.5 0.5 2.0 0.466313
0.1 0.5 2.5 2.0 0.509234
0.1 3.0 2.5 2.0 0.537932
0.5 0.5 2.5 0.5 0.375784
0.5 3.0 0.5 0.5 0.376904
0.5 3.0 2.5 0.5 0.441052
2.0 0.5 0.5 0.5 0.044171
2.0 3.0 0.5 0.5 0.148058
5.0 0.5 0.5 2.0 0.016957
5.0 0.5 2.5 0.5 0.052385

8.7 Confidence Intervals on Continuous Functions of the
Variance Components

In this section, we discuss a procedure for constructing exact, but conserva-
tive, simultaneous confidence intervals on all continuous functions of the
variance components in a balanced mixed model situation.

Consider model (8.23) under the same assumptions regarding the dis-
tribution of the random effects as was described in Section 8.4. Let ϕ(.) be
a continuous function of the expected mean squares of the random effects,
namely, δν−p+1, δν−p+2, . . . , δν+1, and hence of the variance components,
σ2

ν−p+1, σ2
ν−p+2, . . . , σ2

ν+1. Recall that for such mean squares, mi MSi/δi ∼ χ2
mi

.
Hence, a (1 − α) 100% confidence interval on δi is given by

Bi =
[

mi MSi

χ2
α/2, mi

,
mi MSi

χ2
1−α/2, mi

]
, i = ν − p + 1, ν − p + 2, . . . , ν + 1. (8.59)

Since the MSi’s are mutually independent, a rectangular confidence region
on the values of δi (i = ν − p + 1, ν − p + 2, . . . , ν + 1) with a confidence
coefficient 1 − α∗ can be written as

B∗ = ×ν+1
i=ν−p+1Bi, (8.60)

where B∗ is the Cartesian product of the Bi’s and 1 − α∗ = (1 − α)p+1.
Note that some of the δi’s may be subject to certain linear inequality

constraints. For example, in a balanced nested random model, we have that
δ1 ≥ δ2 ≥ . . . ≥ δν+1. Let R be a subset of the (ν + 1)-dimensional Euclidean
space which consists of all points whose coordinates are subject to the same
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linear inequality constraints as those among the corresponding δi’s. This
subset is called the region of definition for functions of the δi’s. Let δ be a
vector whose elements consist of the δi’s. Since δ ∈ R, the confidence region
B∗ in (8.60) is considered meaningful only if it intersects with R, that is, if
R ∩ B∗ �= ∅, the empty set. Let H∗ be the family of 1 − α∗ confidence regions
as defined by (8.60), and let H̃∗ ⊂ H∗ be defined as

H̃∗ = {B∗ ∈ H∗ |R ∩ B∗ �= ∅}.
Then, the probability of coverage for H̃∗ is greater than or equal to 1 − α∗.
This is true because

P[δ ∈ B∗ | B∗ ∈ H̃∗ ] = P[δ ∈ B∗ ]
P[ B∗ ∈ H̃∗ ]

≥ P[δ ∈ B∗ ]
= 1 − α∗.

Furthermore, δ ∈ B∗ if and only if δ ∈ B̃∗, where B̃∗ = R ∩ B∗ since δ ∈ R. It
follows that

P[δ ∈ B̃∗ | B∗ ∈ H̃∗ ] ≥ 1 − α∗.

Thus, by truncating each B∗ ∈ H̃∗ to B̃∗ we obtain a family of confidence
regions for δ, each member of which is contained inside R. This is called the
truncated H̃∗ family. The confidence region B̃∗ will be used to obtain simulta-
neous confidence intervals on all continuous functions of the variance com-
ponents. This is shown in the next lemma.

Lemma 8.15 Let F be a family of continuous functions of δν−p+1, δν−p+2, . . . ,
δν+1, and hence of the variance components. Then, the probability, P[ϕ(δ) ∈
ϕ(B̃∗), ∀ϕ ∈ F], is greater than or equal to 1 − α∗

Proof. Let ϕ be any continuous function in F . If δ ∈ B̃∗, where B∗ ∈ H̃∗, then
ϕ(δ) ∈ ϕ(B̃∗). Hence,

P[ϕ(δ) ∈ ϕ(B̃∗) ] ≥ P[δ ∈ B̃∗ ]
≥ 1 − α∗. (8.61)

Since inequality (8.61) is true for all ϕ ∈ F , we conclude that

P[ϕ(δ) ∈ ϕ(B̃∗), ∀ϕ ∈ F ] (8.62)

is greater than or equal to 1 − α∗.

From Lemma 8.15 it follows that for any ϕ ∈ F , a confidence interval for
ϕ(δ) with a confidence coefficient of at least 1 − α∗ is given by the range of
values of the function ϕ over B̃∗, that is,

[ min
x∈B̃∗

ϕ(x), max
x∈B̃∗

ϕ(x) ]. (8.63)
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Note that since ϕ is continuous and B̃∗ is a closed and bounded set in the
(p + 1)-dimensional Euclidean space, ϕ must attain its maximum and mini-
mum values in B̃∗. Thus, the family of intervals in (8.63) provides simultane-
ous confidence intervals on all continuous functions of the δi’s and hence on
the variance components. These intervals are conservative since according to
(8.62), the actual coverage probability is greater than or equal to 1 − α∗.

8.7.1 Confidence Intervals on Linear Functions of the Variance
Components

Let Φ be a linear function of the variance components, which can be expressed
in terms of the δi’s as

Φ =
ν+1∑

i=ν−p+1

hiδi, (8.64)

where the hi’s are known constants. Such a function is obviously contin-
uous and can be regarded as a special case of the functions considered
earlier. The interval in (8.63) can then be applied to obtain simultane-
ous confidence intervals on all linear functions of the form (8.64). In this
case, the function ϕ(x) in (8.63) is of the form ϕ(x)= ∑ν+1

i=ν−p+1 hixi, where
x = (xν−p+1, xν−p+2, . . . , xν+1)

′. Thus, the intervals,
⎡

⎣min
x∈B̃∗

ν+1∑

i=ν−p+1

hixi, max
x∈B̃∗

ν+1∑

i=ν−p+1

hixi

⎤

⎦ , (8.65)

provide simultaneous confidence intervals on all linear functions of the
form shown in (8.64) with a joint confidence coefficient greater than or equal
to 1 −α∗ = (1 −α)p+1. Such intervals can be very conservative, especially for
large values of p.

In some cases, we may be interested in a particular linear function Φ of
the form in (8.64) where some of the hi coefficients may be equal to zero. Let
S be a subset of {ν − p + 1, ν − p + 2, . . . , ν + 1} consisting of n(S) elements
such that hi �= 0 for i ∈ S. Thus,

∑ν+1
i=ν−p+1 hiδi = ∑i∈S hiδi. Let Rs and B∗s be

the counterparts of R and B∗, respectively, based only on the elements of S.
Then, the interval

[
min
x∈B̃∗s

∑

i∈S

hixi, max
x∈B̃∗s

∑

i∈S

hixi

]
(8.66)

contains Φ with a coverage probability greater than or equal to 1 −α∗
s , where

x = {xi; i ∈ S}, B̃∗s = Rs ∩ B∗s, and α∗
s = 1 − (1 − α)n(S).

Since
∑

i∈S hixi is a linear function and the region B̃∗s is bounded by a
finite number of hyperplanes (convex polyhedron) in the n(S)-dimensional
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Euclidean space, the optimization of
∑

i∈S hixi over B̃∗s can be conducted by
using the simplex method of linear programming (see, for example, Simonnard,
1966). In particular, we have the following result from Simonnard (1966, p. 19):

Lemma 8.16 Let B̃∗s be a convex polyhedron on which the linear function
ϕ(x) = ∑

i∈S hixi is defined. Then, there exists at least one vertex of B̃∗s at
which ϕ attains an absolute maximum, and at least one vertex at which ϕ

attains an absolute minimum.
Thus, by evaluating ϕ(x) = ∑

i∈S hixi at the vertices of B̃∗s we can arrive
at the values of the optima of ϕ needed to obtain the interval in (8.66). In
particular, if B∗s ⊂ Rs, that is, B̃∗s = B∗s, then such optima are given by

min
x∈B∗s

∑

i∈S

hixi =
∑

i∈S1

hiui +
∑

i∈S2

hivi (8.67)

max
x∈B∗s

∑

i∈S

hixi =
∑

i∈S1

hivi +
∑

i∈S2

hiui, (8.68)

where, from (8.59),

ui = miMSi

χ2
α/2, mi

, i ∈ S (8.69)

vi = miMSi

χ2
1−α/2, mi

, i ∈ S, (8.70)

S1 and S2 are two disjoint subsets of S such that S = S1 ∪ S2 with hi > 0 for
i ∈ S1 and hi < 0 for i ∈ S2, and α = 1 − (1 − α∗

s )
1/n(S). Thus, in this case,∑

i∈S hixi attains its maximum value at the vertex of B∗s whose coordinates
are determined by vi for i ∈ S1 and ui for i ∈ S2; and its minimum value is
attained at the vertex whose coordinates are determined by ui for i ∈ S1 and
vi for i ∈ S2.

Further details concerning simultaneous confidence intervals on func-
tions of variance components can be found in Khuri (1981).

Example 8.7 Anderson and Bancroft (1952, p. 323) reported an example given
by Crump (1946) of a series of genetic experiments on the number of eggs
laid by each of 12 females from 25 races (factor B) of the common fruitfly
(Drosophila melanogaster) on the fourth day of laying. The whole exsperiment
was carried out four times (factor A). The corresponding ANOVA table for a
random two-way model with interaction is given in Table 8.6 (see also Khuri,
1981, Section 2.3).

Let us consider setting up a 90% confidence interval on σ2
α. From the

ANOVA table we have σ2
α = 1

300 (δ1−δ3), where δ1 = E(MSA), δ3 = E(MSAB).
Thus,

Φ = 1
300

(δ1 − δ3). (8.71)
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TABLE 8.6
ANOVA Table for Example 8.7
Source DF MS E(MS)

A (experiments) 3 46,659 δ1 = 300 σ2
α + 12 σ2

αβ + σ2
ε

B (races) 24 3243 δ2 = 48 σ2
β + 12 σ2

αβ + σ2
ε

A∗B 72 459 δ3 = 12σ2
αβ + σ2

ε

Error 1100 231 δ4 = σ2
ε

In this case, we need to construct a 90% confidence region on (δ1, δ3)
′, namely,

the Cartesian product, B∗s = B1 × B3, where from (8.59) and Table 8.6,

B1 =
[

3 (46, 659)

χ2
α/2, 3

,
3 (46, 659)

χ2
1−α/2, 3

]
(8.72)

B3 =
[

72 (459)

χ2
α/2, 72

,
72 (459)

χ2
1−α/2, 72

]
. (8.73)

Here, (1 − α)2 = 0.90, that is, α = 0.0513. Substituting in (8.72) and (8.73),
we get

B1 = [15053.0945, 637048.4606]
B3 = [340.0268, 654.0737].

In this example, the region, Rs, of definition for functions of only δ1 and δ3 is

Rs = {(x1, x3)|x1 ≥ x3 ≥ 0}.
We note that B∗s = B1 × B3 is contained inside Rs. Thus, B̃∗s = B∗s. Conse-
quently, the confidence interval on σ2

α is obtained by optimizing the function
ϕ(x) = 1

300 (x1 − x3) over B∗s, where x = (x1, x3)
′. By applying formulas (8.67)

and (8.68), this interval is given by

[min
x∈B∗s

ϕ(x), max
x∈B∗s

ϕ(x)] = [(u1 − v3)/300, (v1 − u3)/300], (8.74)

where from (8.69) and (8.70),

u1 = 3 MSA

χ2
α/2, 3

v1 = 3 MSA

χ2
1−α/2, 3

u3 = 72 MSAB

χ2
α/2, 72

v3 = 72 MSAB

χ2
1−α/2, 72

.
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The confidence coefficient for this interval is therefore greater than or equal
to 0.90, that is,

P
[

u1 − v3

300
< σ2

α <
v1 − u3

300

]
≥ 0.90. (8.75)

Using the corresponding entries in Table 8.6, the interval in (8.74) is equal to
[47.9967, 2122.3614].

Since 3 MSA
δ1

∼ χ2
3 independently of 72 MSAB

δ3
∼ χ2

72, the exact coverage
probability for the interval in (8.74) can be written as (see formula (8.75))

P[u1 − v3 < δ1 − δ3 < v1 − u3]

= P

[
δ1 F1

χ2
α/2, 3

− δ3 F3

χ2
1−α/2, 72

< δ1 − δ3 <
δ1 F1

χ2
1−α/2, 3

− δ3 F3

χ2
α/2, 72

]

= P

[
F1

χ2
α/2, 3

− δ3

δ1

F3

χ2
1−α/2, 72

< 1 − δ3

δ1
<

F1

χ2
1−α/2, 3

− δ3

δ1

F3

χ2
α/2, 72

]
,

(8.76)

where F1 = 3 MSA/δ1, F3 = 72 MSAB/δ3 are independently distributed such
that F1 ∼ χ2

3 and F3 ∼ χ2
72. Hence, for a given value of δ3/δ1, the exact

probability in (8.76) can be evaluated by using a double integration computer
program, or by applying Davies’ (1980) algorithm mentioned in Section 5.6.
Table 8.7 gives values of this probability for several values of δ3/δ1. We note
that for large values of δ3/δ1 (≤1), the exact probability is sizably larger than
0.90. To remedy this situation, we can consider reducing the 90% confidence
coefficient.

TABLE 8.7
Exact Coverage Probability in (8.76)
with a Minimum 90% Coverage
δ3/δ1 Exact Coverage Probability
0.05 0.9537
0.10 0.9561
0.20 0.9603
0.30 0.9639
0.40 0.9670
0.50 0.9696
0.60 0.9719
0.70 0.9740
0.80 0.9758
0.90 0.9774
1.00 0.9789
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8.8 Confidence Intervals on Ratios of
Variance Components

In some experimental situations, certain functions of the variance compo-
nents, particularly ratios thereof, may be of greater interest than the compo-
nents themselves. For example, in animal breeding experiments, estimation of
functions, such as heritability, which is a ratio involving several variance com-
ponents, is of paramount interest to breeders in order to assess the potential
for genetic improvement of a certain breed of animals. Confidence intervals
on such functions can therefore be very useful in making statistical inferences
about these functions.

Harville and Fenech (1985) obtained an exact confidence interval on a
heritability parameter, which is used in animal and plant breeding problems.
Burdick and Graybill (1992, Section 3.4) provided a review of methods for
constructing confidence intervals on ratios of variance components. Broemel-
ing (1969) proposed simultaneous confidence intervals on particular forms of
such ratios. The latter intervals are helpful in assessing the relative measures
of variability of various effects with respect to the experimental error variance
in the model. In this section, we describe the development of Broemeling’s
(1969) confidence intervals.

Consider model (8.23) under the same assumptions made earlier in Sec-
tion 8.4 with regard to the the distribution of the random effects. Of inter-
est here is the derivation of simultaneous confidence intervals on the ratios
σ2

i /σ
2
ε (i = ν − p + 1, ν − p + 2, . . . , ν), where σ2

ε = σ2
ν+1 is designated as the

experimental error variance component.
Let MSi be the mean square associated with the ith random effect (i =

ν − p + 1, . . . , ν) and let MSE be the error mean square. On the basis of
Theorem 8.1, we have

P
[

δi

σ2
ε

MSE

MSi
≤ Fαi, me, mi

]
= 1 − αi, i = ν − p + 1, ν − p + 2, . . . , ν, (8.77)

where, if we recall, δi = E(MSi), mi and me are the degrees of freedom for
MSi and MSE, respectively. The following lemma, which is due to Kimball
(1951), is now needed.

Lemma 8.17 Let X1, X2, . . . , Xr, Xr+1 be random variables, mutually inde-
pendent and distributed as chi-squared variates with n1, n2, . . . , nr, nr+1
degrees of freedom, respectively, then

P
[

Xr+1/nr+1

Xi/ni
≤ Fαi, nr+1, ni ; i = 1, 2, . . . , r

]

≥
r∏

i=1

P
[

Xr+1/nr+1

Xi/ni
≤ Fαi, nr+1, ni

]
=

r∏

i=1

(1 − αi). (8.78)
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Applying Lemma 8.17 to (8.77) and recalling mi MSi/δi ∼ χ2
mi

indepen-
dently from me MSE/σ2

ε ∼ χ2
me

(i = ν − p + 1, ν − p + 2, . . . , ν), we obtain

P
[

δi

σ2
ε

MSE

MSi
≤ Fαi, me, mi ; i = ν − p + 1, ν − p + 2, . . . , ν

]
≥ 1 − α, (8.79)

where 1 − α = ∏ν
i=ν−p+1(1 − αi). This inequality determines a conservative

confidence region with a confidence coefficient greater than or equal to 1 − α

for the ratios δi/σ
2
ε, i = ν−p+1, ν−p+2, . . . , ν. Recall from Theorem 8.1 that

δi =
ν+1∑

j=ν−p+1

κij σ
2
j

= σ2
ε +

ν∑

j=ν−p+1

κij σ
2
j , i = ν − p + 1, ν − p + 2, . . . , ν.

Hence, the inequality in (8.79) defines a conservative confidence region on
the variance ratios, γν−p+1, γν−p+2, . . . , γν, where γi = σ2

i /σ
2
ε, i = ν− p + 1,

ν − p + 2, . . . , ν, of the form

K =
⎧
⎨

⎩γ : 1 +
ν∑

j=ν− p + 1

κij γj ≤ MSi

MSE
Fαi, me, mi ; i = ν− p + 1, ν− p + 2, . . . , ν

⎫
⎬

⎭,

(8.80)

where γ = (γν−p+1, γν−p+2, . . . , γν)′. The confidence coefficient for the
region K is greater than or equal to 1 −α. Note that K is a region bounded by
the hyperplanes,

1 +
ν∑

j=ν−p+1

κij γj = MSi

MSE
Fαi, me, mi , i = ν − p + 1, ν − p + 2, . . . , ν.

Broemeling’s (1969) simultaneous confidence intervals on the γi’s are
obtained by taking the orthogonal projections of K on the coordinate axes
corresponding to γν−p+1, γν−p+2, . . . , γν. This follows from the fact that

P[γi ∈ Pri(K); i = ν − p + 1, ν − p + 2, . . . , ν] ≥ P[γ ∈ K] ≥ 1 − α,

where Pri(K) denotes the orthogonal projection ofK on the γi-axis. Hence, the
joint coverage probability of the intervals Pri(K), i = ν−p+1, ν−p+2, . . . , ν,
is greater than or equal to 1−α. Broemeling’s confidence intervals on the γi’s
are therefore conservative. The exact confidence coefficient associated with
the confidence region K in (8.80) was derived by Sahai and Anderson (1973)
in terms of a fairly complicated multidimensional integral.
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TABLE 8.8
ANOVA Table for Example 8.8
Source DF SS MS E(MS)

A a − 1 SSA MSA δ1 = b n σ2
α + n σ2

β(α)
+ σ2

ε

B(A) a(b − 1) SSB(A) MSB(A) δ2 = n σ2
β(α)

+ σ2
ε

Error ab(n − 1) SSE MSE δ3 = σ2
ε

Note that since the coefficients of γj in (8.80) are nonnegative, the orthog-
onal projections of K on the γi axes are bounded from below by zero. Hence,
Broemeling’s intervals are one sided.

Example 8.8 Consider the two-fold nested random model

Yijk = μ + α(i) + βi( j) + εij(k), i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , n,

where α(i) ∼ N(0, σ2
α), βi( j) ∼ N(0, σ2

β(α)
), εij(k) ∼ N(0, σ2

ε). All random
effects are independent. The corresponding ANOVA table is Table 8.8.

In this case, the confidence region K in (8.80) is of the form

K =
{
γ : 1 + b n γ1 + n γ2 ≤ MSA

MSE
Fα1, ab(n−1), a−1, 1 + n γ2

≤ MSB(A)

MSE
Fα2, ab(n−1), a(b−1)

}
, (8.81)

where γ1 = σ2
α/σ2

ε, γ2 = σ2
β(α)

/σ2
ε, and 1 −α = (1 −α1)(1 −α2). This region

is shown in Figure 8.1.

γ2

γ1

Pr2 (   )

Pr1 (   )

FIGURE 8.1
The confidence region, K, in (8.81).
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The projections of K on the γ1 and γ2 axes are given by [0, Pr1(K)],
[0, Pr2(K)], respectively, where

Pr1(K) = 1
bn

[
MSA

MSE
Fα1, ab(n−1), a−1 − 1

]

Pr2(K) = min
{

1
n

[
MSA

MSE
Fα1, ab(n−1), a−1 − 1

]
,

1
n

[
MSB(A)

MSE
Fα2, ab(n−1), a(b−1) − 1

]}
.

Hence, simultaneous confidence intervals on σ2
α/σ2

ε, σ2
β(α)

/σ2
ε with a confi-

dence coefficient greater than or equal to 1 − α are given by

0 <
σ2

α

σ2
ε

< Pr1(K)

0 <
σ2

β(α)

σ2
ε

< Pr2(K).

Note that the procedure outlined in Section 8.7 can also be applied to obtain
simultaneous confidence intervals on ratios of variance components (see
Khuri, 1981, pp. 880–882). In particular, it can be used to derive confidence
intervals on σ2

α/σ2
ε, σ2

β(α)
/σ2

ε in Example 8.8.

Exercises

8.1 Consider the following model

Yijkl = μ + α(i) + βi( j) + γij(k) + εijk(l),

i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , c; l = 1, 2, . . . , n,
where α(i) is fixed and βi( j) and γij(k) are normally distributed as
N(0, σ2

β(α)
), N(0, σ2

γ(αβ)
), respectively. All random effects are mutu-

ally independent and independent of εijk(l) ∼ N(0, σ2
ε).

(a) Write down the corresponding population structure.

(b) Give the expected mean squares for all the effects in the correspond-
ing ANOVA table.

(c) Let SSA be the sum of squares associated with the fixed effect. What
distribution does SSA have?

(d) Let σ̂2
β(α)

denote the ANOVA estimator of σ2
β(α)

. Give an expression
for computing the probability that σ̂2

β(α)
< 0.
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(e) Set up a (1 − α)100% confidence interval on μ1 − μ2, where μ1 and
μ2 are the means of levels 1 and 2 of the fixed-effects factor (assume
that a ≥ 2).

8.2 Consider the population structure {[(i)( j)] : k} : l, where i = 1, 2, 3,
j = 1, 2, 3, 4; k = 1, 2, 3; l = 1, 2. Let α, β, and γ denote the effects
associated with subscripts i,j, and k, respectively. It is assumed that α(i)
is fixed, but all the remaining effects in the model are random. The usual
assumptions made earlier in Section 8.4 regarding the random effects
can be considered to be valid here.

(a) Obtain the complete ANOVA table, including the expected mean
squares.

(b) Give test statistics for testing the significance of all the effects in the
ANOVA table.

(c) Give an expression for the power of the test concerning the α-effect
corresponding to a 5% level of significance (assume a particular
alternative hypothesis).

8.3 Two drugs were compared in a multi-center study at 53 research centers.
At each center, the two drugs were assigned to 14 subjects. One of the
objectives of this study was to assess the side effects of the drugs. At
tri-weekly intervals following treatment, subjects returned to the clinics
for measurement of several critical signs, including sitting heart rate.

(a) Determine the appropriate population structure for this experiment.

(b) Give the complete model and set up the ANOVA table.

8.4 A manufacturer wants to investigate the variation of the quality of
a product with regard to type A pre-production processes and type B
pre-production processes. Factor A has 4 levels and each level has 5
sublevels. Factor B has 4 levels and each level has 6 sublevels. Each
sublevel of each level of the A-factor is combined with each sublevel
of each level of the B-factor. The same number of replications (3) is
available for each sublevel combination.

(a) Write the complete model for this experiment.

(b) Give expressions for the expected mean squares assuming that the
effects of A and B are fixed, while the remaining effects are random
(the sublevels are chosen at random).

8.5 In an investigation of the can-making properties of tin plate, two meth-
ods of annealing were studied. Three coils were selected at random out
of a supposedly very large population of coils made by each of these
two methods. From each coil, samples were taken from two particular
locations, namely, the head and tail of each coil. From each sample, two
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sets of cans were made up independently and from each set an estimate
of the can life was obtained. The data are given in the following table.

Annealing Method (i)

1 2
Coil (j) Coil (j)

Location (k) Replication (l) 1 2 3 4 5 6
1 1 288 355 329 310 303 299

2 295 369 343 282 321 328
2 1 278 336 320 288 302 289

2 272 342 315 287 297 284

(a) Write down the complete model.

(b) Obtain the expected mean square values and the degrees of freedom
for all the effects in the model.

(c) Compute all sums of squares in the ANOVA table and provide
appropriate test statistics (assuming that the assumptions made
with regard to the random effects, as outlined in Section 8.4, are
valid here).

8.6 Consider again Exercise 8.5.

(a) Obtain a 95% confidence interval on μ1–μ2, where μ1 and μ2 are the
means of annealing methods 1 and 2, respectively.

(b) Let σ2
β(α)

, σ2
δβ(α)

, σ2
ε denote the variance components for

coil(method), location∗coil(method), and the error term, respec-
tively. Obtain a 95% confidence interval on σ2

β(α)
/(2 σ2

δβ(α)
+ σ2

ε).

(c) If the hypothesis concerning the location effect is tested at the α =
0.05 level, find the power of the F-test given that

∑2
k=1 δ2

(k)

2 σ2
δβ(α)

+ σ2
ε

= 0.10,

where δ(k) denotes the effect of location k (= 1, 2).

(d) Let σ̂2
β(α)

denote the ANOVA estimator of σ2
β(α)

, that is,

σ̂2
β(α) = 1

4
[MScoil(method) − MSlocation∗coil(method)].

Find the probability that σ̂2
β(α)

< 0.
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8.7 Consider the balanced one-way model,

Yij = μ + α(i) + εi( j), i = 1, 2, . . . , k; j = 1, 2, . . . , n,

where α(i) is a fixed unknown parameter and the εi( j)’s are indepen-
dently distributed as N(0, σ2

ε). Let SSA = n
∑k

i=1(Y(i) − Y)2 be the sum
of squares associated with α(i) (for the treatment effect).

(a) Express SSA as a quadratic form in Ȳ = (Y(1), Y(2), . . . , Y(k))
′.

(b) Partition SSA into k−1 mutually independent sums of squares with
one degree of freedom each.

(c) Deduce that the one-degree-of-freedom sums of squares in part (b)
represent sums of squares of orthogonal contrasts among the true
means of the treatment effect.

8.8 An experiment was conducted to monitor the chemical content of a large
tank. Eight liquid samples (factor A) were randomly selected from the
tank over time. A random sample of four operators (factor B) was used to
measure the chemical content of each sample. Each operator measured
the acid concentration of each sample n = 2 times [A description of this
experiment was given in Burdick and Larsen (1997)]. The corresponding
ANOVA table is shown below (the usual assumptions concerning the
random effects are the same as in Section 8.4)

Source DF SS MS
A 7 356.769 50.967
B 3 38.157 12.719
A ∗ B 21 17.052 0.812
Error 32 13.280 0.415

(a) Test the significance of A, B, and their interaction A ∗ B at the α =
0.05 level.

(b) Obtain a 95% confidence interval on (σ2
ε + σ2

αβ)/σ2
ε, where σ2

ε and
σ2

αβ are the variance components for the experimental error term
and the interaction A ∗ B, respectively.

(c) Obtain simultaneous confidence intervals on σ2
α/σ2

ε, σ2
β/σ2

ε, and
σ2

αβ/σ2
ε, where σ2

α and σ2
β are the variance components for A and

B, respectively, with a joint coverage probability greater than or
equal to 0.95.

8.9 Consider the same one-way model as in Exercise 8.7, except that α(i) is
now considered to be randomly distributed as N(0, σ2

α) independently
of εi( j), which has the normal distribution N(0, σ2

ε).
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(a) Obtain individual confidence intervals on θ1 = n σ2
α + σ2

ε and θ2 =
σ2

α/σ2
ε.

(b) Use Bonferroni’s inequality and the intervals in part (a) to obtain
simultaneous confidence intervals on θ1 and θ2 with a joint coverage
probability greater than or equal to 0.90.

(c) Use part (b) to obtain a confidence region on (σ2
ε, σ2

α) with a confi-
dence coefficient greater than or equal to 0.90.

(d) Use part (c) to obtain simultaneous confidence intervals on σ2
ε, σ2

α

with a joint coverage probability greater than or equal to 0.90.

8.10 Consider the following ANOVA table for a balanced random two-fold
nested model (the assumptions concerning the random effects are the
same as in Section 8.4).

Source DF MS E(MS)

A 11 3.5629 15 σ2
α + 3 σ2

β(α)
+ σ2

ε

B(A) 48 1.2055 3 σ2
β(α)

+ σ2
ε

Error 120 0.6113 σ2
ε

(a) Use the methodology described in Section 8.7.1 to obtain an exact
confidence interval on σ2

α with a confidence coefficient greater than
or equal to 0.90.

(b) Use the methodology described in Section 8.8 to obtain simulta-
neous confidence intervals on σ2

α/σ2
ε, σ2

β(α)
/σ2

ε with a confidence
coefficient greater than or equal to 0.90.
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The Adequacy of Satterthwaite’s
Approximation

In the analysis of a balanced mixed model, it may not be possible to obtain an
exact F-test concerning a certain hypothesis from the corresponding ANOVA
table. This occurs when no single mean square exists that can serve as an
“error term” in the denominator of the test’s F-ratio. A common approach
to this problem is to concoct a “synthetic error term” which consists of a
linear combination of mean squares of random effects. It is also possible to
construct an alternative test statistic by synthesizing both the numerator and
the denominator of the F-ratio, that is, by creating two linear combinations
of mean squares, one for the numerator and the other for the denominator.
The choice of these linear combinations is based on requiring the numerator
and denominator to have the same expected value under the null hypothesis
to be tested. Under the alternative hypothesis, the expected value of the
numerator exceeds that of the denominator by a positive constant. Each linear
combination of mean squares of random effects is usually approximately
represented as a scalar multiple of a chi-squared random variable whose
number of degrees of freedom is estimated using the so-called Satterthwaite’s
formula. This yields an F- ratio which has an approximate F-distribution. The
whole process leading up to this approximation is referred to as Satterthwaite’s
approximation.

In this chapter, we investigate the adequacy of the approximation of
such linear combinations of mean squares with the chi-squared distribu-
tion. In addition, a measure will be developed to quantify the closeness of
this approximation.

9.1 Satterthwaite’s Approximation

Consider the balanced mixed model given in Section 8.4 [model (8.23)] under
the same assumptions made earlier concerning the model’s random effects.
Let MS1, MS2, . . . , MSk denote the mean squares for a set of random effects.
For the sake of simplicity, the random effects have been renumbered so
that MS1, MS2, . . . , MSk form a subset of the entire set of random effects

271
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in the model. We recall that the MSi’s are mutually independent and that
mi MSi/δi ∼ χ2

mi
, where mi is the number of degrees of freedom for MSi with

δi = E(MSi), i = 1, 2, . . . , k (see Theorem 8.1).
Let MS∗ be defined as the linear combination,

MS∗ =
k∑

i=1

ai MSi, (9.1)

where a1, a2, . . . , ak are known nonzero constants. Satterthwaite (1941,1946)
suggested that MS∗ can be distributed approximately as (δ∗/ν)χ2

ν, where
δ∗ = E(MS∗) and ν is given by the formula

ν =
(∑k

i=1 ai δi

)2

∑k
i=1(ai δi)2/mi

. (9.2)

This formula is derived in the following theorem.

Theorem 9.1 Let MS1, MS2, . . . , MSk be mutually independent mean squares
such that mi MSi/δi ∼ χ2

mi
, where δi = E(MSi), i = 1, 2, . . . , k. Let MS∗ be

defined as in (9.1). Then, ν MS∗/δ∗ has the approximate chi-squared distri-
bution with ν degrees of freedom, where δ∗ = E(MS∗) and ν is given by
formula (9.2).

Proof. Let us represent MS∗ approximately as a scalar multiple of a chi-
squared random variable of the form

MS∗ ≈ a χ2
ν, (9.3)

where a and ν are constants to be determined so that the two sides in (9.3)
have identical means and variances. Of course, this is feasible only if MS∗ is
positive. Note that

δ∗ = E(MS∗) =
k∑

i=1

ai δi, (9.4)

and

Var

⎛

⎝
k∑

i=1

ai MSi

⎞

⎠ = Var

⎛

⎝
k∑

i=1

ai
δi

mi
χ2

mi

⎞

⎠

=
k∑

i=1

(
ai δi

mi

)2

Var
(
χ2

mi

)

=
k∑

i=1

(
ai δi

mi

)2

(2 mi)

= 2
k∑

i=1

a2
i δ2

i

mi
. (9.5)
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Equating the means and variances of the two sides of formula (9.3), we obtain

k∑

i=1

ai δi = a ν, (9.6)

2
k∑

i=1

a2
i δ2

i

mi
= 2 a2 ν. (9.7)

Solving (9.6) and (9.7) for a and ν, we get

a =
∑k

i=1 a2
i δ2

i /mi
∑k

i=1 ai δi
, (9.8)

ν =
(∑k

i=1 ai δi

)2

∑k
i=1 a2

i δ2
i /mi

. (9.9)

From (9.3) and (9.6) we then have

MS∗ ≈ 1
ν

⎛

⎝
k∑

i=1

ai δi

⎞

⎠χ2
ν, (9.10)

that is,

ν MS∗
∑k

i=1 ai δi

∼
approx. χ2

ν.

In practice, δ1, δ2, . . . , δk are unknown and are usually estimated by their
unbiased estimates, namely, MS1, MS2, . . . , MSk, respectively. Substituting
these estimates in formula (9.9), we get

ν̂ =
(∑k

i=1 ai MSi

)2

∑k
i=1 a2

i MS2
i /mi

, (9.11)

which serves as an estimate of ν. Formula (9.11) is known as Satterthwaite’s
formula. We then have

ν̂ MS∗

δ∗
∼

approx. χ2
ν̂

. (9.12)

Satterthwaite (1946) cautioned about using his formula when one or more of
the ai’s in (9.1) are negative. In this case, MS∗ can be negative with a possibly
large probability, and the approximate distribution in (9.12) will therefore
become rather poor.

Satterthwaite’s approximation will be used to obtain an approximate
F-statistic for testing a hypothesis concerning a fixed or random effect in
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a given balanced mixed model when no single mean square exists in the cor-
responding ANOVA table that can be used as an “error term.” This approach
was adopted by Cochran (1951).

9.1.1 A Special Case: The Behrens–Fisher Problem

The Behrens–Fisher problem concerns the comparison of two means from nor-
mal populations with unknown variances, which are assumed to be unequal.
If Ȳ1 and Ȳ2 are two independent sample means based on n1 and n2 obser-
vations from normal populations, N(μ1, σ2

1), N(μ2, σ2
2), respectively, σ2

1 �= σ2
2,

then an approximate t-test for the equality of the population means, μ1 and
μ2, is given by

t = Ȳ1 − Ȳ2
(

s2
1

n1
+ s2

2
n2

)1/2 , (9.13)

where s2
1 and s2

2 are the corresponding sample variances. Note that the denom-
inator in (9.13) is an estimate of the standard deviation of Ȳ1 − Ȳ2, namely,(

σ2
1

n1
+ σ2

2
n2

)1/2

since E(s2
i ) = σ2

i (i = 1, 2). Using Satterthwaite’s formula (9.11),

the number of degrees of freedom associated with s2
1

n1
+ s2

2
n2

is approximately
given by

ν̂ =

(
s2
1

n1
+ s2

2
n2

)2

(
s2
1

n1

)2

n1−1 +
(

s2
2

n2

)2

n2−1

. (9.14)

It can be shown (see Gaylor and Hopper, 1969, p. 693) that

min(n1 − 1, n2 − 1) ≤ ν̂ ≤ n1 + n2 − 2.

On the basis of formula (9.12) we can then write

ν̂

σ2
1

n1
+ σ2

2
n2

(
s2

1
n1

+ s2
2

n2

)
∼

approx. χ2
ν̂

. (9.15)

From (9.13) and (9.15) we conclude that the test statistic t in (9.13) has, under
the null hypothesis H0 : μ1 = μ2, the approximate t-distribution with ν̂

degrees of freedom. Using this fact, an approximate (1 − α) 100% confidence
interval on μ1 − μ2 is given by

Ȳ1 − Ȳ2 ±
(

s2
1

n1
+ s2

2
n2

)1/2

t α
2 ,ν̂.
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Example 9.1 A consumer group was interested in examining consistency
of prices of a variety of food items sold in large supermarkets. The study
was conducted in a random sample of four standard metropolitan areas
(factor A). Three supermarkets (factor B) were randomly selected in each of
the four areas. Four food items (factor C) were randomly chosen for the study.
The prices of these items (in dollars) were recorded for a random sample of
3 months. One record was obtained per month from each supermarket for
each food item. The resulting data set is shown in Table 9.1, which is a
modification of the original unbalanced data given in Khuri, Mathew, and
Sinha (1998, p. 139). The population structure is [(i : j)(k)] : l, where i, j, k, l are
subscripts associated with factors A, B, C, and the replications, respectively.
The corresponding complete model is therefore of the form

Yijkl = μ + α(i) + βi(j) + γ(k) + (αγ)(ik) + (βγ)i(jk) + εijk(l), (9.16)

where
α(i) is the effect of the ith metropolitan area (i = 1, 2, 3, 4)
βi(j) is the effect of the jth supermarket within the ith metropolitan area

(j = 1, 2, 3)
γ(k) is the effect of the kth food item (k = 1, 2, 3, 4)

All the effects in model (9.16) are random and are assumed to be mutually
independent and normally distributed with zero means and variances σ2

α,
σ2

β(α)
, σ2

γ, σ2
αγ, σ2

β(α)γ, σ2
ε, respectively. The corresponding ANOVA table is

given in Table 9.2. We note that the F-test statistics for testing H0 : σ2
β(α)

= 0,

H0 : σ2
γ = 0, H0 : σ2

αγ = 0, and H0 : σ2
β(α)γ = 0 are F = MSB(A)

MSC∗B(A)
, F =

MSC
MSA∗C

, F = MSA∗C
MSC∗B(A)

, and F = MSC∗B(A)

MSE
, respectively. However, for testing

the hypothesis, H0 : σ2
α = 0, no single mean square exists in the ANOVA

table that can be used as an “error term.” This follows from the fact that
under H0,

E(MSA) = 12 σ2
β(α) + 9 σ2

αγ + 3 σ2
β(α)γ + σ2

ε, (9.17)

and no mean square (for any of the remaining random effects) has such an
expected value. One approach to this problem is to consider the test statistic,

F1 = MSA

MSB(A) + MSA∗C − MSC∗B(A)

, (9.18)

since both numerator and denominator have the same expected value under
H0 : σ2

α = 0 and differ only by 36 σ2
α when σ2

α �= 0. The denominator in
(9.18), being a linear combination of several mean squares, is referred to as
a synthetic (artificial) “error term” for testing H0. Its number of degrees of
freedom can be approximately obtained by applying Satterthwaite’s formula
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TABLE 9.1
Prices of Food Items in Large Supermarkets
A B Food Item (C)

Area Supermarket 1 2 3 4
1 1 3.15 5.70 1.30 6.12

3.15 5.68 1.29 6.14
3.18 5.70 1.29 6.16

2 3.28 5.75 1.27 6.18
3.24 5.72 1.25 6.16
3.26 5.71 1.26 6.15

3 3.19 5.65 1.21 6.10
3.18 5.61 1.21 6.11
3.16 5.59 1.20 6.12

2 1 3.30 5.80 1.51 6.20
3.28 5.82 1.51 6.20
3.27 5.80 1.52 6.21

2 3.25 5.82 1.49 6.24
3.23 5.79 1.47 6.22
3.21 5.78 1.45 6.20

3 3.32 5.72 1.46 6.26
3.30 5.74 1.45 6.23
3.30 5.71 1.43 6.20

3 1 3.29 5.79 1.57 6.30
3.28 5.79 1.56 6.28
3.31 5.78 1.58 6.31

2 3.35 5.81 1.50 6.29
3.32 5.80 1.49 6.28
3.31 5.80 1.49 6.27

3 3.24 5.72 1.58 6.32
3.26 5.69 1.55 6.32
3.23 5.70 1.54 6.30

4 1 3.14 5.50 1.20 6.08
3.14 5.49 1.22 6.08
3.12 5.48 1.22 6.07

2 3.18 5.55 1.18 6.06
3.18 5.55 1.18 6.04
3.17 5.53 1.17 6.02

3 3.20 5.59 1.21 6.12
3.18 5.56 1.22 6.11
3.16 5.53 1.21 6.11
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TABLE 9.2
ANOVA Table for Model (9.16)
Source DF MS E(MS) F p-Value

A 3 0.4038 36 σ2
α+12 σ2

β(α)
+9 σ2

αγ+
3 σ2

β(α)γ + σ2
ε

13.15 0.00023

B(A) 8 0.0069 12 σ2
β(α)

+ 3 σ2
β(α)γ + σ2

ε 1.88 0.1111

C 3 180.9015 36 σ2
γ+9 σ2

αγ+3 σ2
β(α)γ+

σ2
ε

7505.04 <0.0001

A ∗ C 9 0.0241 9 σ2
αγ + 3 σ2

β(α)γ + σ2
ε 6.53 0.0001

C ∗ B(A) 24 0.0037 3 σ2
β(α)γ + σ2

ε 15.41 <0.0001

Error 96 0.0002 σ2
ε

(9.11), which, on the basis of Table 9.2, gives the value

ν̂ = [MSB(A) + MSA∗C − MSC∗B(A)]2

[MSB(A)]2

8 + [MSA∗C]2

9 + [−MSC∗B(A)]2

24
= 10.513 ≈ 11. (9.19)

The test statistic F1 in (9.18) has the value F1 = 14.77. The corresponding
p-value (based on 3 and ν̂ degrees of freedom) is 0.0004.

One disadvantage of using F1 is that the linear combination of mean
squares in the denominator contains a negative coefficient. It can therefore
have a positive probability of being negative, which, of course, is undesirable
(see Section 8.6.1). It may be recalled that Satterthwaite (1946) cautioned about
the use of his formula under these circumstances.

An alternative approach to testing H0 : σ2
α = 0 is to choose another F-ratio

whose numerator and denominator can both be synthesized (that is, each
consists of a positive linear combination of mean squares) and have equal
expected values under H0. For example, we can consider the test statistic,

F2 = MSA + MSC∗B(A)

MSB(A) + MSA∗C
. (9.20)

Under H0, the expected values of the numerator and denominator are equal
to 12 σ2

β(α)
+ 9 σ2

αγ + 6 σ2
β(α)γ + 2 σ2

ε, but, under Ha : σ2
α �= 0, the expected

value of the numerator exceeds that of the denominator by 36 σ2
α. In addition,

F2 avoids the problem of having negative coefficients in the linear combina-
tions of mean squares. Note that the numerator and denominator of F2 are
independent, and on the basis of Theorem 9.1, F2 is distributed approximately
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as Fν̂1,ν̂2 , where by formula (9.11),

ν̂1 = [MSA + MSC∗B(A)]2

[MSA]2

3 + [MSC∗B(A)]2

24
= 3.055 ≈ 3,

ν̂2 = [MSB(A) + MSA∗C]2

[MSB(A)]2

8 + [MSA∗C]2

9
= 13.63 ≈ 14.

The value of F2 in (9.20) is F2 = 13.15 and the corresponding p-value (with
3 and 14 degrees of freedom) is approximately equal to 0.00023. This value
along with F2 = 13.15 are the entries corresponding to A in Table 9.2.

Statistics similar to F1 and F2 were compared, using computer simulation
and on the basis of the probability of Type I error and power values, by
Hudson and Krutchkoff (1968) and Davenport and Webster (1973). They
noted that the statistics do about equally well for testing H0 : σ2

α = 0 if the
degrees of freedom of the mean squares in F1 and F2 are not too small and the
nuisance parameters (the variance components for the other random effects)
are not all negligible. In the remaining cases neither statistic does well, but F2
is better than F1 in its approximation to the nominal level of significance and
in terms of power.

Estimators other than the one in (9.11) for the degrees of freedom ν were
suggested by Ames and Webster (1991). Myers and Howe (1971) adopted a
different approach to the standard practice of assigning approximate degrees
of freedom (based on Satterthwaite’s formula) to the ratio of synthetic mean
squares, where the numerator and denominator are treated separately as
approximate chi-squared statistics (as in the case of F2). Their approach
was to approximate the distribution of the ratio directly as an F-statistic.
Davenport (1975) compared the two approaches. His empirical studies indi-
cated that the probability of Type I error using the the Myers–Howe procedure
was greater than that using the standard approach based on Satterthwaite’s
approximation. Hence, the Myers–Howe procedure was not believed to be
an overall improvement over the Satterthwaite procedure.

9.2 Adequacy of Satterthwaite’s Approximation

In this section, we examine Satterthwaite’s approximation of the distribu-
tion of a nonnegative linear combination of independent mean squares.
A necessary and sufficient condition for this approximation to be exact will
be presented for the case of a general balanced mixed model. The initial
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work leading up to the development of the methodology in this section was
established in Khuri (1995a).

Consider the balanced mixed model (8.23) under the same assumptions
concerning the distributions of the random effects as in Section 8.4. Let MS∗
be a linear combination of mean squares as in (9.1), and it is here assumed
that ai > 0 for i = 1, 2, . . . , k. Recall that

MSi = 1
mi

Y ′PiY, (9.21)

where
Pi is the idempotent matrix described in Lemma 8.4
mi is the corresponding number of degrees of freedom (i = 1, 2, . . . , k)

Formula (9.1) can then be written as

MS∗ = Y ′BY, (9.22)

where

B =
k∑

i=1

ai

mi
Pi. (9.23)

We note that B is positive semidefinite since ai > 0 for i = 1, 2, . . . , k. Thus,
according to Theorem 9.1,

νMS∗

δ∗
∼

approx. χ2
ν, (9.24)

where δ∗ and ν are given by formulas (9.4) and (9.9), respectively. Using
(9.22) in (9.24), we obtain

νMS∗

δ∗ = Y ′CY, (9.25)

where
C = ν

δ∗ B.

Consider now the following theorem.

Theorem 9.2 A necessary and sufficient condition for νMS∗
δ∗ in (9.25) to have

a central chi-squared distribution is

aiδi

mi
= δ∗

ν
, i = 1, 2, . . . , k, (9.26)

where δi = E(MSi), i = 1, 2, . . . , k.
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Proof. Following Theorem 5.4,

νMS∗

δ∗ = Y ′CY,

has the chi-squared distribution if and only if

CΣCΣ = CΣ, (9.27)

where Σ is the variance–covariance matrix of Y given by

Σ =
ν+1∑

i=ν−p+1

σ2
i Ai, (9.28)

and Ai = HiH
′
i [see formula (8.25)]. Equality (9.27) is identical to

CΣC = C (9.29)

since Σ is nonsingular. Recall from Section 8.4 that

E(Y) = Xg =
ν−p∑

i=0

Hiβi, (9.30)

and from Theorem 8.1(d), the noncentrality parameter for a random effect is
equal to zero. Thus,

g′X′CXg = 0, (9.31)

which indicates that the noncentrality parameter for Y ′CY is also equal to zero.
Condition (9.29) is then necessary and sufficient for Y ′PY to have the central
chi-squared distribution. Furthermore, CΣC in (9.29) can be expressed as

CΣC =
⎛

⎝ ν

δ∗
k∑

i=1

ai

mi
Pi

⎞

⎠Σ

⎛

⎝ ν

δ∗
k∑

j=1

aj

mj
Pj

⎞

⎠

= ν2

δ∗2

k∑

i=1

a2
i

m2
i

δi Pi. (9.32)

This is true because

PiΣPj = Pi

⎛

⎝
ν+1∑

l=ν−p+1

σ2
l Al

⎞

⎠Pj

=
⎛

⎝
ν+1∑

l=ν−p+1

κil σ
2
l Pi

⎞

⎠Pj, [see formula (8.20)]

= (δi Pi)Pj, by formulas (8.21) and (8.28).
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Hence,

PiΣPj =
{

δi Pi, i = j
0, i �= j i, j = 1, 2, . . . , k. (9.33)

Now, if condition (9.26) is true, then

CΣC = ν

δ∗
k∑

i=1

ai

mi
Pi

= C.

Vice versa, if condition (9.29) is valid, then from (9.32),

ν2

δ∗2

k∑

i=1

a2
i

m2
i

δi Pi = ν

δ∗
k∑

i=1

ai

mi
Pi,

which implies that

ν2

δ∗2
a2

i

m2
i

δi = ν

δ∗
ai

mi
, i = 1, 2, . . . , k, (9.34)

by the linear independence of P1, P2, . . . , Pk. Equality (9.34) gives rise to
condition (9.26).

Corollary 9.1 A necessary and sufficient condition for νMS∗
δ∗ in (9.25) to have

a central chi-squared distribution is

a1 δ1

m1
= a2 δ2

m2
= . . . = ak δk

mk
(9.35)

Proof. Obviously, (9.35) follows from (9.26). Let us now suppose that (9.35)
is true. Let ρ denote the common value of ai δi

mi
(i = 1, 2, . . . , k). Then,

a2
i δ2

i

m2
i

= ρ2, i = 1, 2, . . . , k.

This can be expressed as

a2
i δ2

i

mi
= ρ2 mi, i = 1, 2, . . . , k

= ρ (ai δi), i = 1, 2, . . . , k.

Thus,
k∑

i=1

a2
i δ2

i

mi
= ρ

k∑

i=1

ai δi.
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We conclude that

ρ =
∑k

i=1
a2

i δ2
i

mi∑k
i=1 ai δi

= δ∗

ν
, by applying (9.4) and (9.9).

Hence,
ai δi

mi
= δ∗

ν
, i = 1, 2, . . . , k.

which establishes the validity of (9.26).

9.2.1 Testing Departure from Condition (9.35)

Since δ1, δ2, . . . , δk are unknown, it is not possible to determine if the necessary
and sufficient condition in (9.35) is true or not. We can, however, use the data
vector Y to determine if there is a significant departure from this condition.
This amounts to finding a statistic for testing the hypothesis

H0 :
a1 δ1

m1
= a2 δ2

m2
= . . . = ak δk

mk
(9.36)

against the alternative hypothesis that at least one of the above equalities is
not valid. For this purpose, we define zi as

zi = 1√
mi

PiY, i = 1, 2, . . . , k.

It is easy to see that zi has the singular normal distribution with a zero mean
vector and a variance–covariance matrix given by

Var(zi) = δi

mi
Pi, i = 1, 2, . . . , k. (9.37)

This is true because

E(zi) = 1√
mi

PiXg, i = 1, 2, . . . , k

= 1√
mi

Pi

ν−p∑

j=0

Hjβj

= 0, i = 1, 2, . . . , k,

since PiHj = 0 (i = 1, 2, . . . , k; j = 0, 1, . . . , ν − p), as was seen earlier [see the
proof of Theorem 8.1(d)]. Furthermore, using (9.33), we have

Var(zi) = 1
mi

PiΣPi

= δi

mi
Pi, i = 1, 2, . . . , k.



André I. Khuri/Linear Model Methodology C4819_C009 Finals Page 283 2009-9-14

The Adequacy of Satterthwaite’s Approximation 283

Now, let ζi be defined as ζi = Gzi (i = 1, 2, . . . , k), where G is an orthogonal
matrix that simultaneously diagonalizes P0, P1, . . . , Pν+1. Such a matrix exists
by the fact that PiPj = 0, i �= j, thus PiPj = PjPi for i, j = 1, 2, . . . , k (see
Theorem 3.9). The actual determination of the matrix G is shown in Appendix
9.A. Note that ζi has the singular normal distribution with a zero mean vector
and a variance–covariance matrix of the form

Var(ζi) = G
δi

mi
PiG′

= δi

mi
Λi, i = 1, 2, . . . , k, (9.38)

where Λi is a diagonal matrix whose diagonal elements are the eigenvalues
of Pi, which is idempotent of rank mi. Hence, Λi has mi diagonal elements
equal to 1 and the remaining elements are equal to 0. Furthermore, the ζi’s
are uncorrelated because for i �= j,

Cov(ζi, ζj) = G Cov(zi, zj) G′

= 1√mi mj
GPiΣPjG′

= 0, by (9.33).

Let us now define ζ∗
i to be the vector consisting of the mi elements of ζi

that have variance δi
mi

, i = 1, 2, . . . , k [see formula (9.38)]. Then, the vectors

ζ∗
1, ζ∗

2, . . . , ζ∗
k are normally distributed as N(0, δi

mi
Imi), i = 1, 2, . . . , k, and are

also uncorrelated. Since these vectors form a partitioning of a linear transfor-
mation of Y that has the multivariate normal distribution, they must be mutu-
ally independent by Corollary 4.2. Let vi = √

ai ζ
∗
i (i = 1, 2, . . . , k). Then, vi has

the normal distribution with a zero mean vector and a variance–covariance
matrix ai δi

mi
Imi , i = 1, 2, . . . , k. It follows that the elements of v1, v2, . . . , vk

form independent random samples of sizes m1, m2, . . . , mk, respectively, from
k normally distributed populations with variances given by the values of
ai δi
mi

(i = 1, 2, . . . , k). The hypothesis H0 in (9.36) is therefore equivalent to a
hypothesis concerning homogeneity of variances of k normally distributed
populations.

There are several procedures for testing homogeneity of population vari-
ances. Two such procedures are mentioned here

(a) Bartlett’s test (Bartlett, 1937)

Bartlett’s test statistic is given by (see, for example, Brownlee, 1965,
Section 9.5)

T1 = 1
d

⎡

⎣(m. − k)log
(

s2
)

−
k∑

i=1

(mi − 1)log
(

s2
i

)
⎤

⎦ , (9.39)
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where m. = ∑k
i=1 mi, s2

i is the sample variance for the elements in vi
(i = 1, 2, . . . , k), s2 is the pooled sample variance,

s2 = 1
m. − k

k∑

i=1

(mi − 1)s2
i ,

and d is given by

d = 1 + 1
3(k − 1)

⎡

⎣

⎛

⎝
k∑

i=1

1
mi − 1

⎞

⎠− 1
m. − k

⎤

⎦ .

Under H0, T1 has approximately the chi-squared distribution with k −
1 degrees of freedom. This hypothesis is rejected at the approximate
α-level if T1 ≥ χ2

α,k−1.

Note that in our particular application, the means of v1, v2, . . . , vk are
known since they are equal to zero. In this case, it would be more
appropriate to test H0 using the following statistic:

T2 = −
k∑

i=1

mi log

(
θ̂2

i

θ̂2

)
,

where θ̂2
i = 1

mi
v′

ivi, i = 1, 2, . . . , k, θ̂2 = 1
m.

∑k
i=1 miθ̂

2
i . This statistic is

derived by applying the likelihood ratio procedure on which Bartlett’s
test is based. Under H0, T2 has approximately the chi-squared distribu-
tion with k−1 degrees of freedom. The exact null distribution of T2 was
obtained by Nagarsenker (1984).

Bartlett’s test is adequate when the underlying distribution of the data
is normal. However, this test can be quite sensitive to nonnormality of
the data. In this case, Levene’s (1960) test is preferred.

(b) Levene’s (1960) test

This test is a widely used homogeneity of variance test because it is
much more robust to nonnormality. Levene (1960) suggested using the
one-way analysis of variance on a transformation on the elements of
v1, v2, . . . , vk. Several transformations were proposed by him, including
| vij − v̄i. |, (vij − v̄i.)

2, log | vij − v̄i. |, where vij is the jth element
of vi and v̄i. = 1

mi

∑mi
j=1 vij (i = 1, 2, . . . , k; j = 1, 2, . . . , mi). Another

variation suggested by Brown and Forsythe (1974b) is to replace v̄i. in
| vij − v̄i. | with the median of the ith group. (For more details, see
Conover, Johnson and Johnson, 1981, p. 355.) For example, using the
square transformation, we get the test statistic,

L =
∑k

i=1 mi(ūi. − ū..)
2/(k − 1)

∑k
i=1
∑mi

j=1(uij − ūi.)2/(m. − k)
,
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where uij = (vij − v̄i.)
2, ūi. = 1

mi

∑mi
j=1 uij, ū.. = 1

m.

∑k
i=1 mi ūi.. Under H0,

L has approximately the F-distribution with k − 1 and m. − k degrees
of freedom. The test is significant at the approximate α-level if L ≥
Fα,k−1,m.−k.

Levene’s test can be easily implemented in SAS (2000) by using the
statement “MEANS GROUP/HOVTEST = LEVENE” in PROC GLM,
where “GROUP” represents a k-level factor in a one-way model.
The associated design is completely randomized consisting of k sam-
ples where the elements in the ith sample make up the vector vi
(i = 1, 2, . . . , k). It should be noted that in SAS, groups with fewer
than three observations are dropped from Levene’s test. This occurs
whenever mi = 2 for some i.

The rejection of the null hypothesis H0 at a small level of signif-
icance gives an indication of a possibly inadequate Satterthwaite’s
approximation.

Example 9.2 Consider the balanced random two-way model,

Yijk = μ + α(i) + β(j) + (αβ)(ij) + εij(k), i = 1, 2, 3; j = 1, 2, 3, 4; k = 1, 2, 3,
(9.40)

where α(i) ∼ N(0, σ2
α), β(j) ∼ N(0, σ2

β), (αβ)(ij) ∼ N(0, σ2
αβ), and εij(k) ∼

N(0, σ2
ε); all random effects are independent. The corresponding ANOVA

table is shown in Table 9.3.
Let φ denote the total variation, that is, φ = σ2

α + σ2
β + σ2

αβ + σ2
ε, which

can be expressed in terms of the δi’s (i = 1, 2, 3, 4) as

φ = 1
12

δ1 + 1
9

δ2 + 5
36

δ3 + 2
3

δ4.

An unbiased estimate of φ is given by

φ̂ = 1
12

MSA + 1
9

MSB + 5
36

MSAB + 2
3

MSE. (9.41)

The null hypothesis H0 in (9.36) has the form,

H0 :
δ1

24
= δ2

27
= 5 δ3

216
= δ4

36
. (9.42)

TABLE 9.3
ANOVA Table for Model (9.40)
Source DF SS MS E(MS)

A m1 = 2 SSA MSA δ1 = 12 σ2
α + 3 σ2

αβ + σ2
ε

B m2 = 3 SSB MSB δ2 = 9 σ2
β + 3 σ2

αβ + σ2
ε

A ∗ B m3 = 6 SSAB MSA∗B δ3 = 3 σ2
αβ + σ2

ε

Error m4 = 24 SSE MSE δ4 = σ2
ε
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Since SSA
δ1

∼ χ2
2, SSB

δ2
∼ χ2

3, SSAB
δ3

∼ χ2
6, SSE

δ4
∼ χ2

24, φ̂ in (9.41) can be expressed
as a linear combination of mutually independent central chi-squared variates
of the form

φ̂ = δ1

24
χ2

2 + δ2

27
χ2

3 + 5 δ3

216
χ2

6 + δ4

36
χ2

24. (9.43)

By Theorem 9.1, the approximate distribution of νφ̂
φ

is χ2
ν, that is, φ̂ ∼

approx.
φ
ν

χ2
ν, where ν is given by [see formula (9.2)]

ν =
(

1
12 δ1 + 1

9 δ2 + 5
36 δ3 + 2

3 δ4

)2

(
1
12 δ1

)2

2 +
(

1
9 δ2

)2

3 +
(

5
36 δ3

)2

6 +
(

2
3 δ4

)2

24

. (9.44)

It would be of interest here to contrast the result of the test concerning H0

in (9.42) with deviations of the quantiles of the exact distribution of φ̂ in
(9.43) from those of φ

ν
χ2

ν. For this purpose, certain values are selected for the
variance components and μ in model (9.40). For example, the following values
are selected: σ2

α = 30, σ2
β = 20, σ2

αβ = 10, σ2
ε = 1, and μ = 20.5. A random

vector Y of order 36 × 1 can then be generated from N(μ136, Σ), where

Σ = σ2
α(I3 ⊗ J4 ⊗ J3) + σ2

β(J3 ⊗ I4 ⊗ J3) + σ2
αβ(I3 ⊗ I4 ⊗ J3) + σ2

ε(I3 ⊗ I4 ⊗ I3).

The elements of the generated response vector, Y, are given in Table 9.4.
Using the data in Table 9.4, the corresponding value of Bartlett’s test statistic
is T1 = 43.952 with 3 degrees of freedom and an approximate p-value less
than 0.0001 (the value of the test statistic T2 is 91.158). In addition, the value
of Levene’s test statistic is L = 14.98 with an approximate p-value less than
0.0001. Thus all tests concerning H0 in (9.42) are highly significant. This gives a

TABLE 9.4
Generated Data for Model (9.40)

B

A 1 2 3 4
1 11.729 19.369 6.107 8.190

11.910 19.356 4.086 9.835
14.460 20.772 5.451 9.547

2 30.374 24.983 18.423 19.366
28.007 27.573 19.196 18.148
26.612 27.205 19.236 17.840

3 14.874 7.360 4.560 15.947
13.964 9.163 2.610 15.829
17.203 6.879 3.827 16.222
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TABLE 9.5
Exact and Approximate Quantiles of φ̂

p Exact pth Quantile Approximate pth Quantile
0.0040 8.0 4.892
0.0093 10.0 6.968
0.0356 15.0 12.436
0.0791 20.0 18.011
0.2000 30.0 29.100
0.3371 40.0 39.996
0.4046 45.0 45.366
0.5290 55.0 55.951
0.6800 70.0 71.464
0.7566 80.0 81.579
0.8411 95.0 96.436
0.8975 110.0 110.951
0.9344 125.0 125.158
0.9692 150.0 148.247
0.9805 165.0 161.793
0.9876 180.0 175.142
0.9933 200.0 192.674

strong indication of an inadequate Satterthwaite’s approximation concerning
the distribution of φ̂ in (9.41).

Let us now compare some quantiles of the exact distribution of φ̂ in (9.43)
with those of the approximate φ

ν
χ2

ν distribution, where ν is given by (9.44).
Using the values of the variance components mentioned earlier, we get ν =
5.18853 and φ = 61. Note that the quantiles of the exact distribution of φ̂ can
be obtained by using the representation in (9.43) and then applying Davies’
(1980) algorithm, which was mentioned in Section 5.6. Table 9.5 gives some
exact and approximate quantiles of φ̂ corresponding to several probability
values.

We note that there is a pronounced difference between the exact and
approximate quantiles for small values of p (< 0.04) as well as large values
(> 0.98), that is, in the the lower and upper tail areas of the distribution of φ̂

[ p = P(φ̂ < qp), where qp is the pth quantile of φ̂ ].

9.3 Measuring the Closeness of Satterthwaite’s
Approximation

In the previous section, the adequacy of Satterthwaite’s approximation
was formulated as a test of hypothesis using the data vector Y. In the
present section, a measure is provided to quantify the closeness of this
approximation. The measure was initially developed by Khuri (1995b). As
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before, Satterthwaite’s approximation is considered in conjunction with the
distribution of MS∗, the linear combination of mean squares in (9.1), where
ai > 0 for i = 1, 2, . . . , k. Furthermore, the mean squares are associated with
the balanced mixed model (8.23) under the same distributional assumptions
concerning the random effects as was described earlier in Section 8.4.

As will be seen later in this section, the purpose of the aforementioned
measure is to provide an index that can be effectively used in theoretical
investigations to determine the experimental conditions under which Sat-
terthwaite’s approximation will be inadequate. This leads to a better under-
standing of the causes that contribute to such inadequacy. Thus, through this
measure, it will be possible to select a design that can enhance the adequacy
of the approximation before collecting any data on the response, Y.

The following theorem is instrumental in the development of this measure.

Theorem 9.3 Let MS∗ be expressed as in (9.22), that is, MS∗ = Y ′BY, where
Y ∼ N(Xg, Σ); Xg is the mean of Y according to model (8.23) and Σ is the
variance–covariance matrix of Y given by formula (9.28). If r is the rank of B,
then

(a)
r
∑r

i=1 τ2
i(∑r

i=1 τi
)2 ≥ 1,

where τ1, τ2, . . . , τr are the nonzero eigenvalues of BΣ.

(b) Y ′BY is distributed as a scaled chi-squared variate if and only if

r
∑r

i=1 τ2
i(∑r

i=1 τi
)2 = 1. (9.45)

Proof.

(a) This is obvious by the Cauchy–Schwarz inequality,
( r∑

i=1

τi

)2

≤ r
r∑

i=1

τ2
i . (9.46)

(b) If Y ′BY is distributed as a scaled chi-squared variate, then BΣ must
be a scalar multiple of an idempotent matrix by Theorem 5.4. Hence,
τ1, τ2, . . . , τr must be equal which implies (9.45). Vice versa, suppose
now that condition (9.45) is valid. In general, it is known that equality in
the Cauchy–Schwarz inequality,

(∑n
i=1 ai bi

)2 ≤ ∑n
i=1 a2

i
∑n

i=1 b2
i , holds

if and only if ai = k bi, i = 1, 2, . . . , n, where k is a constant. Applying
this fact to the inequality in (9.46), we conclude that equality holds if
and only if τ1 = τ2 = . . . = τr (in this case, ai = 1, bi = τi, i = 1, 2, . . . , r).
Thus, if condition (9.45) is true, then BΣ must be a scalar multiple of an
idempotent matrix, which indicates that Y ′BY is distributed as a scalar
multiple of a chi-squared variate.
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From Theorem 9.3 we conclude that Satterthwaite’s approximation is
exact if and only if condition (9.45) is true. Thus, the size of the ratio,
r
(∑r

i=1 τ2
i
)
/
(∑r

i=1 τi
)2, as compared to 1, is the determining factor in evalu-

ating the closeness of Satterthwaite’s approximation. Let us therefore define
the function λ(τ) as

λ(τ) = r
∑r

i=1 τ2
i(∑r

i=1 τi
)2 , (9.47)

where τ = (τ1, τ2, . . . , τr)
′. Then, by Theorem 9.3, λ(τ) ≥ 1 and equality is

achieved if and only if the τi’s are equal, that is, if and only if Satterthwaite’s
approximation is exact. Note that λ(τ) ≤ r. This is true by the fact that the τi’s
are positive since B is positive semidefinite and hence the nonzero eigenval-
ues of BΣ must be positive (they are the same as the nonzero eigenvalues of
Σ1/2BΣ1/2, which is positive semidefinite). The function λ(τ) will therefore
be utilized to develop a measure for the adequacy of this approximation.

Without any loss of generality, we consider that τ1 and τr are the largest
and the smallest of the τi’s, respectively. The function λ(τ) in (9.47) can then
be expressed as

λ(τ) =
r
(

1 + κ2 +∑r−2
i=1 κ2

i

)

(
1 + κ +∑r−2

i=1 κi

)2 , (9.48)

where κ = τr
τ1

and κi = τi+1
τ1

, i = 1, 2, . . . , r − 2. Note that 0 < κ ≤ κi ≤ 1,
i = 1, 2, . . . , r − 2. For a fixed κ, λ(τ) is defined over the rectangular region,

Rκ = {(κ1, κ2, . . . , κr−2) | 0 < κ ≤ κi ≤ 1, i = 1, 2, . . . , r − 2}, (9.49)

which is a closed and bounded subset of the (r − 2)-dimensional Euclidean
space. Since λ(τ) is a continuous function of κ1, κ2, . . . , κr−2 over Rκ, it must
attain its minimum and maximum values over Rκ at some points in Rκ. Let
us denote the maximum of λ(τ) by λmax(κ). Thus, 1 ≤ λmax(κ) ≤ r. It is easy
to see that λmax(κ) is a monotone decreasing function of κ over the interval
0 < κ ≤ 1. Consequently, the supremum of λmax(κ) over 0 < κ ≤ 1, denoted
by λsup, is the limit of λmax(κ) as κ → 0, that is,

λsup = lim
κ→0

λmax(κ). (9.50)

Note that 1 ≤ λsup ≤ r.

Lemma 9.1 λsup = 1 if and only if Satterthwaite’s approximation is exact.

Proof. If Satterthwaite’s approximation is exact, then λ(τ) = 1, as was seen
earlier. Hence, λsup = 1. Vice versa, if λsup = 1, then by the fact that 1 ≤ λ(τ),
we have 1 ≤ λ(τ) ≤ λmax(κ) ≤ λsup = 1. Thus, λ(τ) = 1, which implies that
Satterthwaite’s approximation is exact.
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On the basis of the above arguments, the value of λsup can be used as a
measure of closeness of Satterthwaite’s approximation. Since 1 ≤ λsup ≤ r, a
value of λsup close to its lower bound, 1, indicates a close approximation.

9.3.1 Determination of λsup

Let us first obtain an expression for λmax(κ), the maximum of λ(τ) in (9.48)
over the region Rκ in (9.49) for a fixed κ. The development of this expression
is based on the following two theorems established by Thibaudeau and Styan
(1985, Theorems 2.2 and 2.3) (see also Khuri, 1995b, Theorems 3.1 and 3.2).

Theorem 9.4 For a fixed κ, the maximum of the function λ(τ) in (9.48)
over the region Rκ in (9.49) always occurs at one or more of the extreme
points of Rκ.

Theorem 9.5 For a fixed κ, the function λ(τ), restricted to the region Rκ,
attains its maximum if and only if u − 1 of the κi’s in (9.48), i = 1, 2, . . . , r − 2,
are equal to κ and the remaining r − u − 1 of the κi’s are equal to 1, where
u denotes the value of t = 1, 2, . . . , r − 1 that minimizes the function f (t)
defined by

f (t) = r − t + κ t
(r − t + κ2 t)1/2 , t = 1, 2, . . . , r − 1. (9.51)

In this case, the maximum of λ(τ) over the region Rκ is given by

λmax(κ) = r (r − u + κ2 u)

(r − u + κ u)2 . (9.52)

The value of u depends on the values of κ and r as shown in Table 9.6. Note
that in this table, ah is defined as

ah = h(1 + h)

(r − h)(r − 1 − h)
, h = 1, 2, . . . ,

[
r − 1

2

]
, (9.53)

where [ r−1
2 ] denotes the greatest integer less than or equal to r−1

2 . Note also
that 0 < ah−1 < ah ≤ 1; h = 2, 3, . . . , [ r−1

2 ], and a[ r−1
2 ] = 1 if and only if r is odd.

Having established λmax(κ) as in (9.52), λsup is obtained by taking the limit
of λmax(κ) as κ tends to zero.

9.4 Examples

Three examples are presented in this section to demonstrate the utility of the
measure described in the previous section.
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TABLE 9.6
Values of u That Minimize f (t) in (9.51)

κ u(
0, a1/2

1

]
r − 1

(
a1/2

1 , a1/2
2

]
r − 2

(
a1/2

2 , a1/2
3

]
r − 3

. .

. .

. .(
a1/2[

1
2 (r−1)−1

], a1/2[
1
2 (r−1)

]

]
[ r

2

]+ 1
(

a1/2[
1
2 (r−1)

], 1

]
[ r

2

] = r
2

ah = [h(1+h)]/[(r−h)(r−1−h)], h = 1, 2, . . . ,
[

r−1
2

]
.

The last line holds only when r is even; when r is
odd then a[ 1

2 (r−1)
] = 1. This is an adaptation of

Thibaudeau and Styan (1985, Table 1).

9.4.1 The Behrens–Fisher Problem

This problem was mentioned in Section 9.1.1. It concerns testing the null
hypothesis H0 : μ1 = μ2 against the alternative hypothesis Ha : μ1 �= μ2,
where, if we recall, μ1 and μ2 are the means of two normal populations
whose variances, σ2

1 and σ2
2, are unknown, but are assumed to be unequal.

The corresponding test statistic is given in (9.13), which, under H0, has the
approximate t-distribution with ν degrees of freedom, where ν is given by

ν =

(
σ2

1
n1

+ σ2
2

n2

)2

(
σ2

1
n1

)2

n1−1 +
(

σ2
2

n2

)2

n2−1

,

which is a special case of the general formula given in (9.9). An estimate of ν

is ν̂ which is given in (9.14).

In this example, MS∗ = s2
1

n1
+ s2

2
n2

. Hence, the vector Y and the matrix B in

formula (9.22) are Y = (Y
′
1 : Y

′
2)

′ and B = diag
(

1
n1

B1, 1
n2

B2

)
, where Y i is

the vector of ni observations in the ith sample and Bi =
(

Ini − 1
ni

Jni

)
/(ni − 1),

i = 1, 2. Thus, the variance–covariance matrix of Y is given by

Σ = diag
(
σ2

1In1 , σ2
2In2

)
. (9.54)
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Hence, the matrix BΣ is of the form

BΣ = diag
(

1
n1

σ2
1 B1,

1
n2

σ2
2 B2

)
. (9.55)

Note that the rank of BΣ, which is the same as the rank of B, is equal to
r = n1+n2−2. The nonzero eigenvalues of BΣ are σ2

i /[ni(ni−1)] of multiplicity
ni − 1 since (ni − 1)Bi is idempotent of rank ni − 1 (i = 1, 2). The largest and
the smallest of these eigenvalues are

τ1 = max

[
σ2

1
n1(n1 − 1)

,
σ2

2
n2(n2 − 1)

]

τr = min

[
σ2

1
n1(n1 − 1)

,
σ2

2
n2(n2 − 1)

]
.

Hence, κ = τr
τ1

can be written as

κ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n2(n2 − 1)

n1(n1 − 1)

σ2
1

σ2
2

, if
σ2

1
n1(n1 − 1)

<
σ2

2
n2(n2 − 1)

n1(n1 − 1)

n2(n2 − 1)

σ2
2

σ2
1

, if
σ2

2
n2(n2 − 1)

<
σ2

1
n1(n1 − 1)

.

It is easy to show that λ(τ) in (9.47) can be expressed as

λ(τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(n1 + n2 − 2) [n2 − 1 + (n1 − 1)κ2]
[n2 − 1 + (n1 − 1)κ]2 , if

σ2
1

n1(n1 − 1)
<

σ2
2

n2(n2 − 1)

(n1 + n2 − 2) [n1 − 1 + (n2 − 1)κ2]
[n1 − 1 + (n2 − 1)κ]2 , if

σ2
2

n2(n2 − 1)
<

σ2
1

n1(n1 − 1)
.

In this case, λmax(κ) = λ(τ). We note that λ(τ) is a monotone decreasing
function of κ over the interval 0 < κ ≤ 1. Since small values of λmax(κ) are
needed for an adequate approximation, a large value of κ (close to 1) will
therefore be desirable. Thus, the adequacy of the approximation depends on
how close σ2

1/[n1(n1 − 1)] is to σ2
2/[n2(n2 − 1)]. Furthermore, the supremum

of λ(τ) over the interval 0 < κ ≤ 1 is equal to its limit as κ → 0, that is,

λsup = max
[

n1 + n2 − 2
n2 − 1

,
n1 + n2 − 2

n1 − 1

]

= 1 + max
[

n1 − 1
n2 − 1

,
n2 − 1
n1 − 1

]
. (9.56)

Formula (9.56) indicates that λsup increases, resulting in a worsening of Sat-
terthwaite’s approximation, as the discrepancy in the degrees of freedom for
the two samples increases. This conclusion is consistent with the simulation
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results given by Burdick and Graybill (1984, p. 133), Davenport and Webster
(1972, p. 556), and Hudson and Krutchkoff (1968, p. 433). It can also be noted
from (9.56) that λsup ≥ 2, and equality is attained if and only if n1 = n2.
This implies that Satterthwaite’s approximation cannot be exact [that is, the
statistic in (9.13) cannot have the exact t-distribution], even if n1 = n2.

9.4.2 A Confidence Interval on the Total Variation

Consider the balanced random two-way without interaction model,

Yij = μ + α(i) + β(j) + ε(ij), i = 1, 2, 3, 4; j = 1, 2, 3, 4,

where α(i) ∼ N(0, σ2
α) is independent of β(j) ∼ N(0, σ2

β) and both are inde-
pendent of ε(ij) ∼ N(0, σ2

ε). The corresponding ANOVA table is

Source DF MS E(MS)

A 3 MSA δ1 = 4 σ2
α + σ2

ε

B 3 MSB δ2 = 4 σ2
β + σ2

ε

Error 9 MSE δ3 = σ2
ε

The total variation is
φ = σ2

α + σ2
β + σ2

ε,

which can be expressed as

φ = 1
4
(δ1 + δ2 + 2 δ3).

Using Satterthwaite’s approximation, an approximate (1 − α) 100% confi-
dence interval on φ is given by

[
ν̂ φ̂

χ2
α/2, ν̂

,
ν̂ φ̂

χ2
1−α/2, ν̂

]
,

where

φ̂ = 1
4
(MSA + MSB + 2 MSE), (9.57)

and

ν̂ = (MSA + MSB + 2 MSE)2

(MSA)2

3 + (MSB)2

3 + 4 (MSE)2

9

.

To determine the closeness of Satterthwaite’s approximation in this example,
let us express formula (9.57) as

φ̂ = Y ′BY,
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where Y is the data vector (consisting of 16 observations), and B is given by

B = 1
4

[
1
3

P1 + 1
3

P2 + 2
9

P3

]
.

Here, P1, P2, and P3 are the idempotent matrices associated with the sums
of squares corresponding to α(i), β(j), and the error term, respectively [see
formula (9.21)]. Using (9.28), the variance–covariance matrix of Y is

Σ = σ2
α A1 + σ2

β A2 + σ2
ε A3,

where A1 = I4 ⊗ J4, A2 = J4 ⊗ I4, A3 = I4 ⊗ I4. Thus,

BΣ = 4 σ2
α

12
P1 + σ2

ε

12
P1 + 4 σ2

β

12
P2 + σ2

ε

12
P2 + σ2

ε

18
P3

= δ1

12
P1 + δ2

12
P2 + δ3

18
P3.

This follows from an application of formula (8.20). Since P1, P2, P3 are simul-
taneously diagonalizable and are idempotent of ranks 3, 3, 9, respectively,
we conclude that the nonzero eigenvalues of BΣ are δ1

12 of multiplicity 3,
δ2
12 of multiplicity 3, and δ3

18 of multiplicity 9. Thus, the rank of BΣ is
r = 3 + 3 + 9 = 15. The largest and the smallest of these eigenvalues are

τ1 = max
[

δ1

12
,

δ2

12
,

δ3

18

]

= 1
12

max (δ1, δ2), (9.58)

τ15 = min
[

δ1

12
,

δ2

12
,

δ3

18

]

= δ3

18
. (9.59)

The value of λmax(κ) is determined by applying formula (9.52) with r = 15,
κ = τ15/τ1, and u is obtained from Table 9.6. Note that in this table, a1/2

1 =
0.105, a1/2

2 = 0.196, a1/2
3 = 0.302, a1/2

4 = 0.426, a1/2
5 = 0.577, a1/2

6 = 0.764,
a1/2

7 = 1, as can be seen from applying formula (9.53). Consequently, using
formula (9.52) and Table 9.6, we get the following expression for λmax(κ):

λmax(κ) = 15(1 + 14 κ2)

(1 + 14 κ)2 , 0 < κ ≤ 0.105

= 15(2 + 13 κ2)

(2 + 13 κ)2 , 0.105 < κ ≤ 0.196

= 15(3 + 12 κ2)

(3 + 12 κ)2 , 0.196 < κ ≤ 0.302

= 15(4 + 11κ2)

(4 + 11 κ)2 , 0.302 < κ ≤ 0.426



André I. Khuri/Linear Model Methodology C4819_C009 Finals Page 295 2009-9-14

The Adequacy of Satterthwaite’s Approximation 295

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

12

14

κ

λ m
ax

FIGURE 9.1
The graph of λmax(κ).

= 15(5 + 10 κ2)

(5 + 10 κ)2 , 0.426 < κ ≤ 0.577

= 15(6 + 9 κ2)

(6 + 9 κ)2 , 0.577 < κ ≤ 0.764

= 15(7 + 8 κ2)

(7 + 8 κ)2 , 0.764 < κ ≤ 1.

The graph of λmax(κ) is given in Figure 9.1. The value of λsup is the limit of
λmax(κ) as κ → 0, that is, λsup = 15. Note that since κ = τ15/τ1, then from
(9.58) and (9.59),

κ = 2
3

[
max

(
δ1

δ3
,

δ2

δ3

)]−1

= 2
3

[
1 + 4 max

(
σ2

α

σ2
ε

,
σ2

β

σ2
ε

)]−1

(9.60)

<
2
3

.

Since λmax(κ) is a monotone decreasing function of κ, and small values of
λmax(κ) are desirable for an adequate approximation, we conclude from (9.60)
that large values of σ2

α or σ2
β (as compared to σ2

ε) can worsen Satterthwaite’s
approximation. This agrees with the simulation results reported by Burrdick
and Graybill (1984, p. 134).
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9.4.3 A Linear Combination of Mean Squares

This section gives an extension of the results in Section 9.4.2. Let us again
consider the linear combination, MS∗, of mean squares in formula (9.1), in
conjunction with a balanced random model. All the random effects satisfy
the same assumptions regarding normality, independence, and equality of
variances, as was described in Section 8.4. Let us also express MS∗ as a
quadratic form, Y ′BY, where B is given by formula (9.23). The variance–
covariance matrix of Y is

Σ =
ν+1∑

j=1

σ2
j Aj. (9.61)

Then, by an application of formula (8.20), it is easy to show that

BΣ =
⎛

⎝
k∑

i=1

ai

mi
Pi

⎞

⎠

⎛

⎝
ν+1∑

j=1

σ2
j Aj

⎞

⎠

=
k∑

i=1

ai

mi

⎛

⎝
ν+1∑

j=1

κijσ
2
j

⎞

⎠ Pi

=
k∑

i=1

ai

mi

⎛

⎝
∑

j∈Wi

bj σ
2
j

⎞

⎠ Pi

=
k∑

i=1

ai δi

mi
Pi. [see (8.28)]

Since Pi is idempotent of rank mi, and the Pi’s are simultaneously diago-
nalizable, the nonzero eigenvalues of BΣ are given by ai δi

mi
with multiplicity

mi (i = 1, 2, . . . , k). Hence,

κ =
mini

{
ai δi
mi

}

maxi

{
ai δi
mi

} .

If the values of ai δi
mi

are highly variable, then κ will be small, which results in
a large value of λmax(κ) leading to unsatisfactory Satterthwaite’s approxima-
tion. This conclusion agrees with the results given in Section 9.2, where the
equality of aiδi

mi
, for i = 1, 2, . . . , k, was a necessary and sufficient condition for

Satterthwaite’s approximation to be exact, that is, for MS∗ to have a scaled
chi-squared distribution (see Corollary 9.1).
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Appendix 9.A: Determination of the Matrix G
in Section 9.2.1

From Lemma 8.12, we have the orthogonal matrix

Q∗ = [Q0 : Q1 : . . . : Qν+1],
which is defined in formula (8.46). The mi columns of Qi are orthonormal
eigenvectors of Pi corresponding to the eigenvalue 1 such that Pi = QiQ

′
i and

Q
′
iQi = Imi (i = 0, 1, . . . , ν + 1). Let G = Q∗′

. It is easy to see that

GPiG′ = Q∗′
QiQi

′
Q∗

= Λi, i = 0, 1, . . . , ν + 1,

where Λi is a block-diagonal matrix whose diagonal blocks are all zero, except
for the ith block, which is equal to Imi (i = 0, 1, . . . , ν + 1). It follows that G
diagonalizes P0, P1, . . . , Pν+1 simultaneously. �

Exercises

9.1 Davenport and Webster (1973) reported an experiment where three
uncalibrated thermometers (factor A) were randomly drawn from a
large stock and three analysts (factor B) were randomly chosen from
a large number of analysts. Each analyst used each thermometer to
determine the melting point of a homogeneous sample of hydroquinone
following a specified procedure. This was repeated on three separate
weeks (factor C). The results are given in the following table. The same
data set was initially given in Johnson and Leone (1964, pp. 239–240).

Thermometer (A)

Analyst (B) Week (C) I II III
1 1 174.0 173.0 171.5

2 173.5 173.5 172.5
3 174.5 173.0 173.0

2 1 173.0 172.0 171.0
2 173.0 173.0 172.0
3 173.5 173.5 171.5

3 1 173.5 173.0 173.0
2 173.0 173.5 173.0
3 173.0 172.5 172.5

Source: Davenport, J.M. and Webster, J.T., Technometrics,
15, 779, 1973. With permission.
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The model considered for this experiment is

Yijk = μ + α(i) + β(j) + γ(k) + (αβ)(ij) + (βγ)(jk) + ε(ijk),

where α(i), β(j), and γ(k) denote the effects associated with factors A,
B, and C, respectively. All effects are considered random under the
usual assumptions of normality, independence, and equal variances.
Note that the interaction (αγ)(ik) was not considered here because the
characteristic of a thermometer was not expected to vary from one week
to another.

(a) Test the significance of σ2
αβ and σ2

βγ, the two interaction variance
components. Let α = 0.05.

(b) Apply Satterthwaite’s procedure to test the significance of σ2
β, the

variance component associated with factor B. Let α = 0.05.

(c) Obtain an approximate 95% confidence interval on σ2
β using Sat-

terthwaite’s approximation.

(d) Compute the actual level of significance of the approximate F-test
concerning the hypothesis H0 : σ2

β = 0 versus Ha : σ2
β > 0 at the

nominal 5% level, given that σ2
αβ = 0.05, σ2

βγ = 0.10, and σ2
ε = 0.01.

9.2 Consider the ANOVA table for Exercise 8.10.

(a) Use the methodology described in Section 8.7.1 to obtain an exact,
but conservative, confidence interval on σ2

β(α)
with a coverage prob-

ability greater than or equal to 0.90.

(b) Obtain an approximate 90% confidence interval on σ2
β(α)

using Sat-
terthwaite’s approximation.

(c) Compare the actual coverage probabilities for the intervals in parts
(a) and (b) given that σ2

β(α)
= 0.35 and σ2

ε = 0.25.

9.3 Consider the expression for ν̂ in formula (9.14).

(a) Show that min (n1 − 1, n2 − 1) ≤ ν̂ ≤ n1 + n2 − 2.

(b) Under what condition would the upper bound in the double
inequality in part (a) be attained?
[Hint: See Gaylor and Hopper (1969, p. 693).]

9.4 Consider the ANOVA table for Example 9.1 (Table 9.2) and the corre-
sponding test statistics, F1 and F2, given by formulas (9.18) and (9.20),
respectively, for testing H0 : σ2

α = 0 versus Ha : σ2
α > 0. Let α = 0.05 be

the nominal level of significance for both tests.

Compare the actual Type I error rates for both tests given that σ2
β(α)

=
0.10, σ2

αγ = 1.5, σ2
β(α)γ = 1.7, and σ2

ε = 1.
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9.5 Consider again the data set for Example 9.1 and the test statistic F2
in (9.20).

Use the methodology described in Section 9.2.1 to determine the ade-
quacy of Satterthwaite’s approximation of the distributions of both
numerator and denominator of F2 (give the values of Bartlett’s and
Levene’s test statistics in each case).

9.6 Let X1, X2, . . . , Xn be mutually independent random variables such that
Xi ∼ χ2

1 (i = 1, 2, . . . , n). Let a1, a2, . . . , an be positive constants. Show
that

P

( n∑

i=1

ai Xi < c

)
≤ P(a X < c),

where c is any positive constant, a = (
∏n

i=1 ai)
1/n, and X ∼ χ2

n.

9.7 Let X1, X2, . . . , Xk be mutually independent random variables such that
Xi ∼ χ2

ni
(i = 1, 2, . . . , k). Let a1, a2, . . . , ak be positive constants. Show

that

P

⎛

⎝
k∑

i=1

ai Xi < c

⎞

⎠ ≤ P(aX < c),

where c is any positive constant, a =
(∏k

i=1 ani
i

)1/n
, n = ∑k

i=1 ni, and

X ∼ χ2
n.

[Hint: This is an extension of Exercise 9.6. It can be reduced to the
previous case by decomposing Xi (i = 1, 2, . . . , k) into ni mutually inde-
pendent χ2 variates with one degree of freedom each.]

9.8 Consider a special case of Exercise 9.7 where k = 3 and X1 ∼ χ2
3, X2 ∼ χ2

2,
X3 ∼ χ2

5.

(a) Approximate the distribution of X1 + 5 X2 + 3 X3 using the method
of Satterthwaite.

(b) Use part (a) to find an approximate value of P (X1 + 5 X2 + 3 X3 <

46.8).

(c) Compare the result from part (b) with the upper bound, P (a X < c),
in Exercise 9.7, where c = 46.8.

9.9 Consider the two-way model and corresponding ANOVA table
(Table 9.3) for Example 9.2. Let φ̂ be the linear combination of mean
squares given in (9.41), that is,

φ̂ = 1
12

MSA + 1
9

MSB + 5
36

MSAB + 2
3

MSE.
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(a) Use the methodology described in Section 9.3 to develop a mea-
sure to assess the closeness of Satterthwaite’s approximation of the
distribution of φ̂.

(b) Provide a plot of λmax(κ), 0 < κ ≤ 1.

[Hint: Use formula (9.52) and Table 9.6.]
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10
Unbalanced Fixed-Effects Models

We recall from Chapter 8 that a data set consisting of the values of some
response, Y, is said to be balanced if the range of any one subscript of Y does
not depend on the values of the other subscripts. If this condition is not
satisfied by the data set, then it is said to be unbalanced. Thus, we may have
unequal numbers of observations in the subclasses of the data, with possibly
some subclasses containing no observations at all. In the latter case, we say
that we have empty subclasses or empty cells. For example, in Table 9.1 which
gives the prices of a variety of food items sold in large supermarkets (see
Example 9.1), we have a total of 48 cells each containing three observations
(prices recorded for a total of three months). If, for example, for supermarket
2 in area 1, the price of food item 2 was recorded only twice, then we end
up with a data set that violates the condition stated earlier. It is also possible
that no information at all was recorded regarding the price of such an item
in that supermarket. In this case, the cell (1, 2, 2) corresponding to area 1,
supermarket 2, and food item 2 will be empty.

In contrast to balanced data, the analysis of unbalanced data is much
more involved. The main difficulty stems from the fact that in the case of
unbalanced data, the partitioning of the total sum of squares can be made in a
variety of ways; hence there is no unique way to write the ANOVA table as is
the case with balanced data. Furthermore, the nice properties we saw earlier
for balanced data in Chapter 8 are no longer applicable to unbalanced data.
This makes it very difficult to develop a unified approach for the treatment of
unbalanced data. It is therefore not surprising that such data are sometimes
labeled as messy. Linear models representing unbalanced data are referred to
as unbalanced models.

In this chapter, we consider the analysis of some unbalanced fixed-effects
models, that is, models having only fixed effects except for the error term.
The methodology described here depends on a particular notation called the
R-Notation, which will be defined in the next section.

10.1 The R-Notation

Consider the model

Y = Xβ + ε, (10.1)

301
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where
X is a matrix of order n × p
β is a vector of fixed unknown parameters
ε is an experimental error vector assumed to have a zero mean and a

variance–covariance matrix σ2 In

Suppose that X is partitioned as X = [X1 : X2], where X1 and X2 are of
orders n×p1 and n×p2, respectively. The vector β is partitioned accordingly
as β = (β

′
1 : β

′
2)

′. Model (10.1) can then be written as

Y = X1β1 + X2β2 + ε. (10.2)

The regression sum of squares for the full model, that is, model (10.1) is
SSReg = Y ′X(X′X)−X′Y, as was seen in formula (7.7). Let this sum of squares
be denoted by R(β), or, equivalently, R(β1, β2). We thus have

R(β1, β2) = Y ′X(X′X)−X′Y. (10.3)

Let us now consider the reduced model,

Y = X1β1 + ε. (10.4)

Its regression sum of squares is likewise denoted by R(β1) and is given by

R(β1) = Y ′X1(X
′
1X1)

−X
′
1Y. (10.5)

The difference between the regression sums of squares in (10.3) and (10.5) is
denoted by R(β2 | β1). We thus have

R(β2 | β1) = R(β1, β2) − R(β1)

= Y ′[X(X′X)−X′ − X1(X
′
1X1)

−X
′
1]Y. (10.6)

We note that R(β2 | β1) represents the increase in the regression sum of
squares which results from adding β2 to a model that contains only β1. In
this case, β2 is said to be adjusted for β1, or that β2 is added after β1. Thus,
the equality,

R(β1, β2) = R(β1) + R(β2 | β1), (10.7)

provides a partitioning of the regression sum of squares for the full model
into R(β1) and R(β2 | β1).

Formula (10.7) can be easily generalized whenever β is partitioned into k
subvectors β1, β2, . . . , βk so that

R(β) = R(β1) + R(β2 | β1) + · · · + R(βk | β1, β2, . . . , βk−1),

where for i = 3, 4, . . . , k, the ith R-expression on the right-hand side represents
the increase in the regression sum of squares which results from adding βi to
a model that includes β1, . . . , βi−1.
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For example, for the model

Yij = μ + α(i) + β( j) + ε(ij),

the regression sum of squares for the full model, denoted by R(μ, α, β), can
be partitioned as

R(μ, α, β) = R(μ) + R(α | μ) + R(β | μ, α),

where R(μ) is the regression sum of squares for a model that contains only μ,
R(α | μ) = R(μ, α) − R(μ), with R(μ, α) being the regression sum of squares
for a model that contains only μ and α, and R(β | μ, α) = R(μ, α, β)− R(μ, α).

The following theorem can be easily proved on the basis of the general
principles outlined in Chapter 5 (see Exercise 10.1).

Theorem 10.1 Consider model (10.2) where it is assumed that ε ∼ N(0, σ2In).
Let r = rank(X) and r1 = rank(X1). Then,

(a) 1
σ2 R(β2 | β1) has the noncentral chi-squared distribution with r − r1

degrees of freedom and a noncentrality parameter given by

λ = 1
σ2 β

′
2[X

′
2X2 − X

′
2X1(X

′
1X1)

−X
′
1X2]β2.

(b) R(β1), R(β2 | β1), and SSE are mutually independent, where SSE is the
error (residual) sum of squares for model (10.2).

(c) E[R(β2 | β1)] = σ2 λ+σ2 (r−r1), where λ is the noncentrality parameter
in (a).

It can be seen on the basis of Theorem 10.1 that the F-statistic,

F = R(β2 | β1)/(r − r1)

SSE/(n − r)
, (10.8)

with r−r1 and n−r degrees of freedom, can be used to test the null hypothesis

H0 : [In − X1(X
′
1X1)

−X
′
1]X2β2 = 0. (10.9)

(see Exercise 10.2). In particular, if X is of full column rank, then this null
hypothesis is reduced to H0 : β2 = 0.

There are particular R-expressions used in testing certain hypotheses for
model (10.1). These expressions represent sums of squares known as Type I,
Type II, and Type III sums of squares.

Definition 10.1 A Type I sum of squares (S.S.) for an effect, u, in the model is
R(u | vu), where vu represents all the effects preceding u in the model. Type I
sums of squares are obtained by adding one effect at a time to the model
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until all effects have been added. For this reason, such sums of squares are
described as being sequential.

For example, Type I sums of squares for the α- and β-effects in the model,
Yij = μ + α(i) + β( j) + ε(ij), i = 1, 2, . . . a; j = 1, 2, . . . , b are R(α | μ) and
R(β | μ, α), respectively. If, however, the same model is written as Yij =
μ + β( j) + α(i) + ε(ij), then the corresponding Type I sums of squares for β

and α are R(β | μ) and R(α | μ, β), respectively. Thus, Type I sums of squares
depend on the ordering of the effects in the model. Note that the Type I S.S. for
μ is R(μ) = (

∑a
i=1

∑b
j=1 Yij)

2/(ab), which is usually referred to as the correction
term. We also note that R(μ), R(α | μ), and R(β | μ, α) provide a partitioning
of the regression sum of squares, R(μ, α, β), for the model.

Definition 10.2 A Type II sum of squares (S.S.) for an effect, u, in the
model is adjusted for all the other effects in the model, except for those
that contain u (i.e., not adjusted for interactions involving u, or effects nested
within u).

For example, for the model, Yij = μ+α(i) +β( j) +ε(ij), the Type II sums of
squares for the α- and β-effects are R(α | μ, β), R(β | μ, α), respectively. Also,
for the model, Yijk = μ+α(i)+β( j)+(αβ)(ij)+εij(k) (i = 1, 2, . . . , a; j = 1, 2, . . . , b;
k = 1, 2, . . . , nij), the Type II sums of squares for the α- and β-effects, and the
(αβ) interaction are R(α | μ, β), R(β | μ, α), and R(αβ | μ, α, β), respectively.
Note that Type II sums of squares do not necessarily add up to the total
regression sum of squares for the model, but are invariant to the ordering of
the effects in the model.

Definition 10.3 A Type III sum of squares (S.S.) for an effect, u, is, in principle,
obtained by adjusting u for all the other effects in the model.

This definition makes sense when the model in (10.1) is of full rank (as
in a regression model). However, for a less-than-full-rank model and in the
absence of any constraints on the model parameters, this definition may
produce a value equal to zero for some of the effects in the model, as will be
seen later in Section 10.3. Type III sums of squares are also called partial sums
of squares.

10.2 Two-Way Models without Interaction

Consider the two-way without interaction model,

Yijk = μ + α(i) + β( j) + εij(k), i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 0, 1, . . . , nij,
(10.10)
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where μ, α(i), and β( j) are unknown parameters with the latter two
representing the effects of the levels of two factors, denoted by A and B,
respectively, and the elements of εij(k) are independently distributed as
N(0, σ2). We assume that n.. > a + b − 1, where n.. is the total number of
observations. Note that nij can be zero for some (i, j) indicating the possibility
of some empty (or missing) cells. This model can be written in vector form
as in (10.1). In this case, the matrix X is of order n.. × (a + b + 1) of the form,
X = [1n.. : H1 : H2], where H1 = ⊕a

i=11ni. , H2 = [⊕b
j=11

′
n1j

: ⊕b
j=11

′
n2j

: . . . :

⊕b
j=11

′
naj

]′, and ni. = ∑b
j=1 nij. Note that X is of rank a+b−1. This results from

the fact that the a columns of X corresponding to the α(i)’s add up to the first
column of X, which is the column of ones. The same applies to the b columns
of X corresponding to the β( j)’s. Furthermore, the vector β in (10.1) consists
of μ, the α(i)’s, and the β( j)’s in model (10.10).

10.2.1 Estimable Linear Functions for Model (10.10)

Let μij = μ + α(i) + β( j) be the mean of the (i, j)th cell. If cell (i, j) is nonempty,
then μij is estimable. Since the rank of X is a + b − 1, the number of linearly
independent estimable linear functions of the parameter vector in the model
must be equal to a + b − 1. Furthermore, if for a given j, μij − μi′j is estimable
for some i �= i′, then so is α(i) − α(i′). Likewise, if for a given i, μij − μij′ is
estimable for some j �= j′, then β( j) − β( j′) is also estimable.

Lemma 10.1 Suppose that the pattern of the two-way data is such that α(i) −
α(i′) and β( j) − β( j′) are estimable for all i �= i′ and j �= j′ for model (10.10). If
(i0, j0) is a nonempty cell, then

(a) All cell means, μij, in the model are estimable.

(b) μi0j0 , α(i) − α(i′), and β( j) − β( j′), for all i �= i′ and j �= j′, form a basis
for the space of all estimable linear functions of the parameters in the
model.

Proof.

(a) For any (i, j) �= (i0, j0), μij can be written as

μij = μ + α(i) + β( j)

= μ + α(i0) + β( j0) + α(i) − α(i0) + β( j) − β( j0)

= μi0j0 + α(i) − α(i0) + β( j) − β( j0).

The right-hand side is the sum of estimable functions, hence μij is
estimable for all (i, j).

(b) This is true since all these functions are estimable in addition to being
linearly independent, and their number is equal to a + b − 1, the rank
of X.
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In general, if Aβ is an estimable linear function of the parameter vector
β, where A is a known matrix of order s × p and rank s (s ≤ a + b − 1 and
p = a + b + 1), then by the Gauss–Markov Theorem (Theorem 7.6), its best
linear unbiased estimator (BLUE) is given by Aβ̂, where β̂ = (X′X)−X′Y and
Y is the vector of n.. observations from model (10.10). It follows that under
the estimability condition of Lemma 10.1, the BLUE of μij is

μ̂ij = μ̂ + α̂(i) + β̂( j), i = 1, 2, . . . , a; j = 1, 2, . . . , b, (10.11)

where μ̂, α̂(i) (i = 1, 2, . . . , a) and β̂( j) (j = 1, 2, . . . , b) are the 1 + a + b elements
of β̂. Furthermore, α̂(i) − α̂(i′) and β̂( j) − β̂( j′) are the BLUEs of α(i) − α(i′)
and β( j) − β( j′), respectively. In particular, the following linear functions are
estimable:

1
b

b∑

j=1

μij = μ + α(i) + 1
b

b∑

j=1

β( j) (10.12)

1
a

a∑

i=1

μij = μ + 1
a

a∑

i=1

α(i) + β( j), (10.13)

and their BLUEs are 1
b
∑b

j=1 μ̂ij and 1
a
∑a

i=1 μ̂ij, respectively. By definition,
1
b
∑b

j=1 μij is the least-squares mean for row i (i = 1, 2, . . . , a), denoted by

LSM(α(i)), and 1
a
∑a

i=1 μij is the least-squares mean for column j, denoted by
LSM(β( j)). These means are also called population marginal means (see Searle,
Speed, and Milliken, 1980).

The least-squares means should not be confused with the weighted means of
the cell means in row i and column j, namely, 1

ni.

∑b
j=1 nijμij and 1

n.j

∑a
i=1 nijμij,

respectively, where n.j = ∑a
i=1 nij (i = 1, 2, . . . , a; j = 1, 2, . . . , b). If the data

set is balanced, then the least-squares means are equal to the corresponding
weighted means.

10.2.2 Testable Hypotheses for Model (10.10)

In general, if Aβ is an estimable linear function of β, where, as before, A is a
known matrix of order s × p and rank s (≤ a + b − 1), then the hypothesis,

H0 : Aβ = m, (10.14)

is testable (see Definition 7.2), where m is a known constant vector. Using the
methodology in Section 7.4.2 and under the assumption that ε in model (10.1)
is distributed as N(0, σ2In..), the test statistic for H0 is given by the F-ratio

F = (Aβ̂ − m)′[A(X′X)−A′]−1(Aβ̂ − m)

s MSE
, (10.15)
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where MSE = SSE/(n.. − a − b + 1) is the error (residual) mean square. Under
H0, F has the F-distribution with s and n.. − a − b + 1 degrees of freedom, and
H0 is rejected at the α-level if F ≥ Fα, s, n..−a−b+1.

Let us now consider model (10.10) under the assumption that the εij(k)’s
are independently distributed as N(0, σ2). If the estimability condition stated
in Lemma 10.1 is valid for a given data set, then all the cell means, namely
μij, for i = 1, 2, . . . , a; j = 1, 2, . . . , b, are estimable. There are two types of
hypotheses that can be tested concerning the levels of factors A and B. The
development of these hypotheses is based on the following lemmas.

Lemma 10.2 R(μ), R(α | μ), and R(β | μ, α) are mutually independent and
are independent of MSE = SSE/(n.. − a − b + 1), the error mean square for
model (10.10). Furthermore, R(α | μ)/σ2 and R(β | μ, α)/σ2 are distributed
as chi-squared variates with a − 1 and b − 1 degrees of freedom, respectively,
and SSE/σ2 ∼ χ2

n..−a−b+1.

Proof. This follows directly from applying Example 5.6 since

R(μ) + R(α | μ) + R(β | μ, α) + SSE = Y ′Y.

It can similarly be shown that R(β | μ), R(α | μ, β), and SSE are mutually
independent, and that R(β | μ)/σ2 and R(α | μ, β)/σ2 are distributed as chi-
squared variates with b − 1 and a − 1 degrees of freedom, respectively [Here,
R(μ), R(β | μ), R(α | μ, β), and SSE provide a partitioning of Y ′Y].

Lemma 10.3 The noncentrality parameter of R(α | μ)/σ2 is equal to zero if
and only if the values of

λi = α(i) + 1
ni.

b∑

j=1

nij β( j), i = 1, 2, . . . , a, (10.16)

are equal for all i.

Proof. We have that

R(α | μ) = R(μ, α) − R(μ)

= Y ′
[ a⊕

i=1

(
1

ni.
Jni.

)
− 1

n..
Jn..

]
Y.

The matrix,
⊕a

i=1

(
1

ni.
Jni.

)
− 1

n..
Jn.. , is idempotent of rank a − 1. The noncen-

trality parameter, θ, of R(α | μ)/σ2 is

θ = 1
σ2 μ′

[ a⊕

i=1

(
1

ni.
Jni.

)
− 1

n..
Jn..

]
μ, (10.17)
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where μ is the expected value of Y given by

μ = μ1n.. + H1(α1, α2, . . . , αa)
′ + H2(β1, β2, . . . , βb)

′,

and H1 and H2 are the matrices defined in the beginning of Section 10.2.
Now, θ = 0 if and only if

[ a⊕

i=1

(
1

ni.
Jni.

)
− 1

n..
Jn..

]
μ = 0.

It is easy to show that
[ a⊕

i=1

(
1

ni.
Jni.

)
− 1

n..
Jn..

]
μ = [u1

′
: u2

′
: . . . : ua

′ ]′, (10.18)

where ui is a column vector of ni. elements (i = 1, 2, . . . , a) of the form

ui =
⎡

⎣α(i) − 1
n..

a∑

j=1

nj. α( j) + 1
ni.

b∑

k=1

nik β(k) − 1
n..

b∑

l=1

n.l β(l)

⎤

⎦ 1ni. , i = 1, 2, . . . , a.

From (10.18) we conclude that θ = 0 if and only if ui = 0 for i = 1, 2, . . . , a,
that is, if and only if the values of λi in (10.16) are equal for all i.

It can similarly be shown that the noncentrality parameter of R(β | μ)/σ2

is equal to zero if and only if the values of

β( j) + 1
n.j

a∑

i=1

nij α(i), j = 1, 2, . . . , b, (10.19)

are equal for all j.

Lemma 10.4 The noncentrality parameter of R(β | μ, α)/σ2 is equal to zero if
and only if β(1) = β(2) = . . . = β(b).

Proof. Let us apply Theorem 10.1 to model (10.10). In this case, X1 = [1n.. :
H1], X2 = H2, β2 = (β1, β2, . . . , βb)

′, and the noncentrality parameter of
R(β | μ, α)/σ2 is equal to λ, which is given in part (a) of Theorem 10.1. Since
the matrix In.. − X1(X

′
1X1)

−X
′
1 is idempotent, λ = 0 if and only if

[In.. − X1(X
′
1X1)

−X
′
1]X2β2 = 0. (10.20)

It is easy to show that

[In.. − X1(X
′
1X1)

−X
′
1]X2β2 = [v′

1 : v
′
2 : . . . : v

′
a]′, (10.21)



André I. Khuri/Linear Model Methodology C4819_C010 Finals Page 309 2009-9-14

Unbalanced Fixed-Effects Models 309

where vi is a column vector of ni. elements (i = 1, 2, . . . , a) of the form

vi =

⎡

⎢⎢⎢⎢⎢⎢⎣

β(1)1ni1

β(2)1ni2

.

.

.
β(b)1nib

⎤

⎥⎥⎥⎥⎥⎥⎦
−

⎛

⎝ 1
ni.

b∑

j=1

nij β( j)

⎞

⎠ 1ni. , i = 1, 2, . . . , a. (10.22)

From formulas (10.20)–(10.22) it follows that λ= 0 if and only if β(1) = β(2) =
. . . = β(b).

In a similar manner, it can be shown that the noncentrality parameter of
R(α | μ, β)/σ2 is equal to zero if and only if α(1) = α(2) = · · · = α(a).

10.2.2.1 Type I Testable Hypotheses

Type I testable hypotheses for model (10.10) are those hypotheses tested by
F-ratios that use Type I sums of squares in their numerators. If the model
is written so that α(i) appears first followed by β( j), then Type I sums of
squares for factors A and B are R(α | μ) and R(β | μ, α), respectively. The
corresponding F-ratios, are

F(α | μ) = R(α | μ)

(a − 1) MSE
(10.23)

F(β | μ, α) = R(β | μ, α)

(b − 1) MSE
. (10.24)

If, however, the model is written with β( j) appearing first followed by
α(i), then Type I sums of squares for factors B and A are R(β | μ) and
R(α | μ, β), respectively, as was seen in Section 10.1, and the corresponding
F-ratios are

F(β | μ) = R(β | μ)

(b − 1) MSE
(10.25)

F(α | μ, β) = R(α | μ, β)

(a − 1) MSE
. (10.26)

Now, F(α | μ) and F(β | μ) test the hypotheses that their corresponding
noncentrality parameters are equal to zero. On the basis of Lemmas 10.2 and
10.3, the hypothesis tested by F(α | μ) is

H0 : α(i) + 1
ni.

b∑

j=1

nij β( j) equal for all i = 1, 2, . . . , a. (10.27)

Similarly, the hypothesis tested by F(β | μ) is

H0 : β( j) + 1
n.j

a∑

i=1

nij α(i) equal for all j = 1, 2, . . . , b. (10.28)
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Using the cell means, μij, (10.27) and (10.28) can be written as

H0 :
1

ni.

b∑

j=1

nij μij equal for all i = 1, 2, . . . , a (10.29)

H0 :
1

n.j

a∑

i=1

nij μij equal for all j = 1, 2, . . . , b. (10.30)

The hypothesis in (10.29) indicates equality of the weighted means of the
cell means in rows 1, 2, . . . , a, and the one in (10.30) indicates equality of the
weighted means of the cell means in columns 1, 2, . . . , b. These hypotheses
are not desirable for testing the effects of factors A and B since they are data
dependent (they depend on the cell frequencies). A hypothesis is supposed
to be set up before collecting the data in a given experimental situation. Thus,
F(α | μ) and F(β | μ) are not recommended F-ratios for testing the effects of A
and B. Let us therefore consider the other two F-ratios, namely, F(α | μ, β) and
F(β | μ, α), whose corresponding hypotheses are described in the next section.

10.2.2.2 Type II Testable Hypotheses

Type II testable hypotheses for factors A and B are hypotheses tested by the
F-ratios shown in formulas (10.26) and (10.24), respectively. Given that these
ratios test that their corresponding noncentrality parameters are equal to zero,
we conclude, on the basis of Lemmas 10.2 and 10.4, that these hypotheses are
of the form

H0 : α(1) = α(2) = · · · = α(a) (10.31)

H0 : β(1) = β(2) = · · · = β(b). (10.32)

Using the cell means, μij, (10.31) and (10.32) can be written as

H0 :
1
b

b∑

j=1

μij equal for all i = 1, 2, . . . , a (10.33)

H0 :
1
a

a∑

i=1

μij equal for all j = 1, 2, . . . , b. (10.34)

We recall from Section 10.2.1 that the expressions in (10.33) and (10.34) are
the least-squares means for row i and column j, respectively (i = 1, 2, . . . , a;
j = 1, 2, . . . , b). Thus, the F-ratios, F(α | μ, β) and F(β | μ, α), test equality of
the α(i)’s and of the β( j)’s, respectively, or equivalently, equality of the least-
squares means for the a rows and b columns, respectively. These hypotheses
do not depend on the data and, unlike Type I hypotheses, are invariant to the
ordering of the effects in model (10.10). Furthermore, such hypotheses are of
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the same form as the ones tested in a balanced data situation. Consequently,
the F-ratios in (10.26) and (10.24) are the recommended test statistics for
testing the effects of factors A and B, respectively. The hypothesis in (10.33) is
rejected at the α-level if F(α | μ, β) ≥ Fα,a−1,n..−a−b+1. Similarly, the hypothesis
in (10.34) is rejected at the α-level if F(β | μ, α) ≥ Fα,b−1,n..−a−b+1.

Note that the Type I hypothesis for the last effect in the model is identical
to its Type II hypothesis, and the corresponding F-ratios are identical. In
particular, if the data set is balanced, then Type I and Type II hypotheses and
F-ratios are the same.

It should also be noted that, as a follow-up to the Type II tests, if a par-
ticular F-test is significant, then any multiple comparisons among the levels
of the corresponding factor should be made using the least-squares means
of that factor. Thus, multiple comparisons among the weighted means of the
cell means (for the a rows and b columns) should not be considered since
this amounts to testing using the F-ratios, F(α | μ) and F(β | μ), which is
undesirable. For example, to compare the least-squares means for rows i and
i′ (i �= i′), we can consider the null hypothesis, H0 : a

′
iβ = a

′
i′β, where ai and

ai′ are known constant vectors so that a
′
iβ = LSM(α(i)) and a

′
i′β = LSM(α(i′)).

The corresponding test statistic is

t = (ai − ai′)′ β̂
[(ai − ai′)′(X′X)−(ai − ai′) MSE]1/2 , (10.35)

where β̂ = (X′X)−X′Y. Under H0, this statistic has the t-distribution with
n.. −a−b+1 degrees of freedom. The two least-squares means are considered
to be significantly different at the α-level if | t | ≥ tα/2, n..−a−b+1. A similar
t-test can be used to compare the least-squares means for columns j and j′
(j �= j′).

Example 10.1 An experiment was conducted to study the effects of three
different fats (factor A) and three different additives (factor B) on the specific
volume of bread loaves. The resulting data are given in Table 10.1. We note
that we have two empty cells, but the estimability condition of Lemma 10.1
is clearly satisfied. Thus all nine cell means are estimable. The error mean
squares is MSE = 0.7459 with n.. − a − b + 1 = 17 − 3 − 3 + 1 = 12 degrees
of freedom. Tables 10.2 and 10.3 give the results of the Type I and Type II
analyses.

It may be recalled that testing the significance of the effects of factors A
and B should be made on the basis of the Type II analysis. Using Table 10.3,
we find that the F-ratios for factors A and B are F(α | μ, β) = 2.09 (p-value =
0.1665) and F(β | μ, α) = 14.73 (p-value = 0.0006), respectively. Thus, the
effect of B is significant, but the one for A is not. This means that we have
significant differences among the least-squares means for the three additives,
but no significant differences can be detected among the least-squares means
for the three fats. The values in Tables 10.2 and 10.3 were obtained by using
the SAS software (SAS, 2000, PROC GLM) (see Sections 10.4 and 10.5).
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TABLE 10.1
Volume of Bread Loaves Data

B = Additive

A = Fat 1 2 3
1 6.4 7.3 —

6.2 7.1
6.5

2 5.9 — 7.1
5.1 7.5

6.9
3 4.1 7.3 9.2

4.2 6.5 8.9
8.1

TABLE 10.2
Type I Analysis for Model (10.10)
Source DF Type I SS MS F p-Value
A 2 0.4706 0.2353 0.32 0.7353
B 2 21.9689 10.9844 14.73 0.0006

TABLE 10.3
Type II Analysis for Model (10.10)
Source DF Type II SS MS F p-Value
A 2 3.1175 1.5587 2.09 0.1665
B 2 21.9689 10.9844 14.73 0.0006

Note that from Table 10.2, the Type I F-ratios for A and B according to
model (10.10) are F(α | μ) = 0.32 and F(β | μ, α) = 14.73, respectively.
Table 10.2 does not give the value of F(β | μ), which is actually equal to
12.95. To get this value, the SAS model has to be rewritten with the effect of
B appearing first followed by the one for A. In any case, F(β | μ) and F(α | μ)

should not be used to test the effects of B and A, as was mentioned earlier.
The best linear unbiased estimates of the least-squares means for the levels

of factors A and B are given by [see also formulas (10.12) and (10.13)]

̂LSM(α(i)) = μ̂ + α̂(i) + 1
3

3∑

j=1

β̂( j), i = 1, 2, 3,

̂LSM(β( j)) = μ̂ + 1
3

3∑

i=1

α̂(i) + β̂( j), j = 1, 2, 3,
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TABLE 10.4
Estimates of the Least-Squares Means

A ̂LSM(α(i)) B ̂LSM(β(j))

1 7.5668 1 5.3910
2 6.2587 2 7.0057
3 6.8854 3 8.3142

TABLE 10.5
Pairwise Comparisons among the Least-Squares
Means of B

B

B 1 2 3
1 • −3.0347a −5.2178

(0.0104) (0.0002)
2 3.0347 • −2.0378

(0.0104) (0.0642)
3 5.2178 2.0378 •

(0.0002) (0.0642)
a t-value for the difference, ̂LSM(β(1))− ̂LSM(β(2)). The quantity

inside parentheses is the p-value.

where μ̂, α̂(i) (i = 1, 2, 3), and β̂( j) (j = 1, 2, 3) are the elements of β̂ =
(X′X)−X′Y. Using Table 10.1, the actual values of ̂LSM(α(i)) and ̂LSM(β( j))

are shown in Table 10.4. Since the test for factor B is significant, it would be
of interest to compare its least-squares means using the t-test described in
Section 10.2.2.2. Table 10.5 gives the t-values for the pairwise comparisons
among the three levels of B along with their corresponding p-values.

The entries in Tables 10.4 and 10.5 were obtained by using the following
statements in SAS’s (2000) PROC GLM:

PROC GLM;
CLASS A B;

MODEL Y = A B;
LSMEANS A B/TDIFF;

RUN;

where “LSMEANS A B” stands for the least-squares means for the levels
of factors A and B, and “TDIFF” is an option that requests the t-values for
the pairwise comparisons of the least-squares means along with their corre-
sponding p-values.
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10.3 Two-Way Models with Interaction

Let us now consider the complete two-way model,

Yijk = μ + α(i) + β( j) + (αβ)(ij) + εij(k), (10.36)

i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , nij. Note that nij > 0 for all i, j
indicating that the data set contains no empty cells. This is an extension of
model (10.10) with the addition of the interaction effect, (αβ)(ij), i = 1, 2, . . . , a;
j = 1, 2, . . . , b. Thus all the cell means, μij, are estimable for all i, j. As before,
the εij(k)’s are assumed to be independently distributed as N(0, σ2).

For this model, the matrix X in (10.1) is of order n.. × (1 + a + b + ab) of
the form

X = [1n.. : H1 : H2 : H3], (10.37)

where H1 and H2 are the same as in Section 10.2 and H3 = ⊕a
i=1 ⊕b

j=1 1nij . We
note that the rank of X is equal to ab, which is the rank of H3. We assume that
n.. > ab. The vector, β, of unknown parameters in (10.1) consists in this case
of μ, the α(i)’s (i = 1, 2, . . . , a), the β( j)’s (j = 1, 2, . . . , b), and the (αβ)(ij)’s.

Since μij is estimable for all i and j, all linear functions of μij are also

estimable. The BLUE of μij is Ȳij. = 1
nij

∑nij

k=1 Yijk (i = 1, 2, . . . , a; j = 1, 2, . . . , b).

This follows from the fact that β̂ = (X′X)−X′Y gives μ̂ = 0, α̂(i) = 0 (i =
1, 2, . . . , a), β̂( j) = 0 (j = 1, 2, . . . , b), and ̂(αβ)(ij) = Ȳij. (i = 1, 2, . . . , a; j =
1, 2, . . . , b). In particular, the following linear functions are estimable:

LSM(α(i)) = 1
b

b∑

j=1

μij

= μ + α(i) + 1
b

b∑

j=1

β( j) + 1
b

b∑

j=1

(αβ)(ij), i = 1, 2, . . . , a, (10.38)

LSM(β( j)) = 1
a

a∑

i=1

μij

= μ + 1
a

a∑

i=1

α(i) + β( j) + 1
a

a∑

i=1

(αβ)(ij), j = 1, 2, . . . , b, (10.39)

Θij, i′j′ = μij − μij′ − μi′j + μi′j′

= (αβ)(ij) − (αβ)(ij′) − (αβ)(i′j) + (αβ)(i′j′),

i �= i′ = 1, 2, . . . , a; j �= j′ = 1, 2, . . . , b, (10.40)
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WM(α(i)) = 1
ni.

b∑

j=1

nijμij,

= μ + α(i) + 1
ni.

b∑

j=1

nijβ( j) + 1
ni.

b∑

j=1

nij (αβ)(ij),

i = 1, 2, . . . , a, (10.41)

WM(β( j)) = 1
n.j

a∑

i=1

nijμij,

= μ + 1
n.j

a∑

i=1

nijα(i) + β( j) + 1
n.j

a∑

i=1

nij (αβ)(ij),

j = 1, 2, . . . , b. (10.42)

Here, LSM(α(i)) and LSM(β( j)) are the least-squares means for row i and
column j, respectively (i = 1, 2, . . . , a; j = 1, 2, . . . , b), Θij,i′j′ is an interaction
contrast to be defined later in Section 10.3.1 (i �= i′, j �= j′); WM(α(i)) and
WM(β( j)) are the weighted means of the cell means in row i and column j,
respectively (i = 1, 2, . . . , a; j = 1, 2, . . . , b).

10.3.1 Tests of Hypotheses

The analysis of model (10.36) with regard to the testing of the main effects
of A and B can be carried out using the so-called method of weighted squares
of means (MWSM), which was introduced by Yates (1934). The following is a
description of this method.

Let Xij = Ȳij. = 1
nij

∑nij

k=1 Yijk. The MWSM is based on using the Xij’s in
setting up the following sums of squares for A and B:

SSAω =
a∑

i=1

ω1i(X̄i. − X̄1ω)2 (10.43)

SSBω =
b∑

j=1

ω2j(X̄.j − X̄2ω)2, (10.44)

where X̄i. = 1
b
∑b

j=1 Xij, X̄.j = 1
a
∑a

i=1 Xij, ω1i =
(

1
b2

∑b
j=1

1
nij

)−1
, ω2j =

(
1
a2

∑a
i=1

1
nij

)−1
, X̄1ω = ∑a

i=1 ω1i X̄i./
∑a

i=1 ω1i, and X̄2ω = ∑b
j=1 ω2j

X̄.j/
∑b

j=1 ω2j. Note that
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Var(X̄i.) = σ2

b2

b∑

j=1

1
nij

, i = 1, 2, . . . , a,

Var(X̄.j) = σ2

a2

a∑

i=1

1
nij

, j = 1, 2, . . . , b.

Thus, the weights, ω1i and ω2j, used in the sums of squares in (10.43) and
(10.44) are equal to σ2/Var(X̄i.) and σ2/Var(X̄.j), respectively. Furthermore,
X̄1ω and X̄2ω are the weighted averages of the X̄i.’s and the X̄.j’s, weighted
by the ω1i’s and the ω2j’s, respectively.

Theorem 10.2 If the εij(k)’s in model (10.36) are mutually independent such
that εij(k) ∼ N(0, σ2), then

(a) SSAω/σ2 ∼ χ2
a−1(λ1ω).

(b) SSBω/σ2 ∼ χ2
b−1(λ2ω).

(c) The error sum of squares for model (10.36), namely,

SSE =
a∑

i=1

b∑

j=1

nij∑

k=1

(Yijk − Ȳij.)
2, (10.45)

is independent of SSAω and SSBω.

(d) SSE/σ2 ∼ χ2
n..−ab,

where λ1ω and λ2ω are the noncentrality parameters associated with factors
A and B, respectively.

Proof.

(a) The X̄i.’s are mutually independent and normally distributed such that

E(X̄i.) = 1
b

b∑

j=1

μij

= LSM(α(i)), i = 1, 2, . . . , a,

which is the least-squares mean for level i of A [ see (10.38)], and

Var(X̄i.) = σ2

ω1i
, i = 1, 2, . . . , a.

Let X̄ = (X̄1., X̄2., . . . , X̄a.)
′. Then, X̄ is normally distributed with mean

E(X̄) = [LSM(α(1)), LSM(α(2)), . . . , LSM(α(a))]′, (10.46)
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and a variance–covariance matrix,

Var(X̄) = σ2 diag
(
ω−1

11 , ω−1
12 , . . . , ω−1

1a

)
. (10.47)

Let ω1 = (ω11, ω12, . . . , ω1a)
′. Then, SSAω in (10.43) can be written as

SSAω =
a∑

i=1

ω1iX̄2
i. −

1∑a
i=1 ω1i

( a∑

i=1

ω1iX̄i.

)2

= X̄′
[

diag(ω11, ω12, . . . , ω1a) − 1∑a
i=1 ω1i

ω1ω
′
1

]
X̄. (10.48)

Given the fact that X̄ is normally distributed with the variance–
covariance matrix in (10.47), then by Theorem 5.4, SSAω/σ2 ∼
χ2

a−1(λ1ω). This is true because the matrix,

1
σ2

[
diag(ω11, ω12, . . . , ω1a) − 1∑a

i=1 ω1i
ω1ω

′
1

]

×σ2diag
(
ω−1

11 , ω−1
12 , . . . , ω−1

1a

)
= Ia − 1∑a

i=1 ω1i
ω11

′
a,

is idempotent of rank a − 1. The noncentrality parameter λ1ω is

λ1ω = 1
σ2

[
E(X̄)

]′ [
diag(ω11, ω12, . . . , ω1a) − 1∑a

i=1 ω1i
ω1ω

′
1

]
E(X̄).

(10.49)

(b) This is similar to (a).

(c) This follows from the fact that SSE is independent of the Xij’s and is
therefore independent of both SSAω and SSBω.

(d) SSE = Y ′
[
In.. − ⊕a

i=1 ⊕b
j=1

1
nij

Jnij

]
Y, where Y ∼ N(Xβ, σ2In..). The

matrix, In.. − ⊕a
i=1 ⊕b

j=1
1

nij
Jnij

, is idempotent of rank n.. − ab. Hence,

SSE/σ2 is a chi-squared variate with n.. − ab degrees of freedom. Its
noncentrality parameter is zero since

⎡

⎣In.. −
a⊕

i=1

b⊕

j=1

1
nij

Jnij

⎤

⎦ H3 = 0.

Hence, the products of In.. − ⊕a
i=1 ⊕b

j=1
1

nij
Jnij

with 1n.. , H1, and H2 [see
(10.37)] are also zero. Consequently,

β′X′
⎡

⎣In.. −
a⊕

i=1

b⊕

j=1

1
nij

Jnij

⎤

⎦ Xβ = 0.
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Lemma 10.5

(a) The ratio, FA = SSAω
(a−1)MSE

tests the hypothesis,

H0 : LSM(α(i)) equal for all i = 1, 2, . . . , a. (10.50)

Under H0, FA has the F-distribution with a − 1 and n.. − ab degrees of
freedom.

(b) The ratio, FB = SSBω

(b−1)MSE
tests the hypothesis,

H0 : LSM(β( j)) equal for all j = 1, 2, . . . , b. (10.51)

Under H0, FB has the F-distribution with b − 1 and n.. − ab degrees of
freedom.

Proof.

(a) The noncentrality parameter of SSAω/σ2 is λ1ω, which is given in
(10.49). Note that σ2λ1ω is the same quadratic form as the one in (10.48),
except that the mean of X̄ is used instead of X̄. Using (10.43), λ1ω can
be written as

λ1ω = 1
σ2

a∑

i=1

ω1i

[
LSM(α(i)) − 1∑a

l=1 ω1l

a∑

l=1

ω1lLSM(α(l))

]2

.

Thus, λ1ω = 0 if and only if

LSM(α(1)) = LSM(α(2)) = . . . = LSM(α(a)).

Under H0, FA has the central F-distribution with a−1 and n..−ab degrees
of freedom by Theorem 10.2 (a, c, d).

(b) This is similar to (a).

10.3.1.1 Testing the Interaction Effect

Consider the ratio,

F(αβ | μ, α, β) = R(αβ | μ, α, β)

(a − 1)(b − 1)MSE
, (10.52)

where

R(αβ | μ, α, β) = R(μ, α, β, αβ) − R(μ, α, β), (10.53)

is the increase in the regression sum of squares which results from adding
(αβ)(ij) to model (10.10) giving rise to model (10.36). According to Definition
10.3, R(αβ | μ, α, β) is Type III sum of squares for the interaction effect.
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Applying Theorem 10.1 with X1 = [1n.. : H1 : H2], X2 = H3, r = ab, r1 =
a + b − 1, we find that

1
σ2 R(αβ | μ, α, β) ∼ χ2

ab−a−b+1(λ12),

where

λ12 = 1
σ2 (αβ)′X ′

2[In.. − X1(X
′
1X1)

−X
′
1]X2(αβ), (10.54)

and (αβ) = [(αβ)(11), (αβ)(12), . . . , (αβ)(ab)]′. Furthermore, R(αβ | μ, α, β) is
independent of SSE, the error sum of squares in (10.45). Hence, F(αβ | μ, α, β)

has the noncentral F-distribution with (a − 1)(b − 1) and n.. − ab degrees of
freedom and a noncentrality parameter λ12. By (10.9), λ12 = 0 if and only if

[In.. − X1(X
′
1X1)

−X
′
1]X2(αβ) = 0. (10.55)

Let us now consider the following lemma:

Lemma 10.6 The noncentrality parameter, λ12, in (10.54) is equal to zero if
and only if

(αβ)(ij) = γ1i + γ2j, i = 1, 2, . . . , a; j = 1, 2, . . . , b, (10.56)

where γ1i and γ2j are constants.

Proof. We have that X2 = H3. Also, the matrix, X1(X
′
1X1)

−X
′
1 can be

written as

X1(X
′
1X1)

−X
′
1 = (H1 : H2)[(H1 : H2)

′(H1 : H2)]−(H1 : H2)
′,

since the column vector 1n.. in X1 is the sum of the columns of H1 (also of
H2) and is therefore linearly dependent on the columns of (H1 : H2). Formula
(10.55) can then be expressed as

H3 (αβ) = (H1 : H2)γ, (10.57)

where γ = [(H1 : H2)
′(H1 : H2)]−(H1 : H2)

′H3 (αβ). Let γ be partitioned as
γ = [γ′

1 : γ
′
2]′, where γ1 and γ2 are vectors of a and b elements, respectively.

Recall that H1 = ⊕a
i=11ni. , H2 = [⊕b

j=11′
n1j

: ⊕b
j=11′

n2j
: . . . : ⊕b

j=11′
naj

]′, H3 =
⊕a

i=1 ⊕b
j=1 1nij . From (10.57) we then have

⎡

⎣
a⊕

i=1

b⊕

j=1

1nij

⎤

⎦ (αβ) =
[ a⊕

i=1

1ni.

]
γ1 + H2 γ2. (10.58)

Each term in (10.58) is a vector of n.. elements consisting of a string of a vectors,
the ith of which consists of ni. elements (i = 1, 2, . . . , a). Equating the ith of
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such vectors on the left-hand side to the sum of the corresponding vectors on
the right-hand side, we get

⎡

⎣
b⊕

j=1

1nij

⎤

⎦ (αβ)i = γ1i1ni. +
⎡

⎣
b⊕

j=1

1nij

⎤

⎦γ2, i = 1, 2, . . . , a, (10.59)

where (αβ)i is the corresponding ith portion of (αβ) such that

(αβ)i = [(αβ)(i1), (αβ)(i2), . . . , (αβ)(ib)]′,
and γ1i is the ith element of γ1 (i = 1, 2, . . . , a). Equating the coefficients of 1nij

on both sides of (10.59), we get

(αβ)(ij) = γ1i + γ2j, i = 1, 2, . . . , a; j = 1, 2, . . . , b,

where γ2j is the jth element of γ2 (j = 1, 2, . . . , b). Formula (10.56) is then
proved.

Lemma 10.6 indicates that λ12 = 0 if and only if model (10.36) is additive,
that is, contains no interaction effect. This follows from the fact that (10.56)
implies that

μij = μ + α(i) + β( j) + (αβ)(ij)

= μ + (α(i) + γ1i) + (β( j) + γ2j), i = 1, 2, . . . , a; j = 1, 2, . . . , b.

Thus, in this case, μij is the sum of μ, a constant depending on i only, and
another constant depending on j only. Consequently, the F-ratio, F(αβ | μ,
α, β), in (10.52) tests the hypothesis that the model is additive. If Θij, i′j′ is
defined as

Θij, i′j′ = (αβ)(ij) − (αβ)(ij′) − (αβ)(i′j) + (αβ)(i′j′), for all i �= i′; j �= j′, (10.60)

then, Θij, i′j′ = 0 if (10.56) is true. Note that Θij, i′j′ can also be written as

Θij, i′j′ = μij − μij′ − μi′j + μi′j′ , for all i �= i′; j �= j′. (10.61)

This is a contrast in the means of the cells (i, j), (i, j′), (i′, j), (i′, j′), and is referred
to as an interaction contrast. We can therefore conclude that F(αβ | μ, α, β) tests
the hypothesis

H0 : Θij, i′j′ = (αβ)(ij) − (αβ)(ij′) − (αβ)(i′j) + (αβ)(i′j′)

= μij − μij′ − μi′j + μi′j′

= 0, for all i �= i′, j �= j′. (10.62)

This is called the no-interaction hypothesis. Note that the number of linearly
independent contrasts of the form Θij, i′j′ is equal to (a − 1)(b − 1). The test
is significant at the α-level if F(αβ | μ, α, β) ≥ Fα, (a−1)(b−1), n..−ab. Since this
test statistic utilizes a Type III sum of squares in its numerator, namely,
R(αβ | μ, α, β), it is considered a Type III F-ratio for the interaction.

Note that when (10.62) is true,

μij − μi′j = μij′ − μi′j′ , for all i �= i′; j �= j′.
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This means that the change in the mean response under one factor (using, for
example, levels i and i′ of A) is the same for all levels of the other factor (for
example, B). In this case, we say that factors A and B do not interact, or that
the A ∗ B interaction is zero.

In the event the A∗B interaction is significant, testing the main effects of A
and B using FA and FB, respectively, from Lemma 10.5 may not be meaningful.
This is true because comparisons among the least-squares means for A (or B)
can be masked (or obscured) by the interaction. More specifically, suppose
that we were to compare, for example, LSM(α(i)) against LSM(α(i′)), i �= i′,
when A ∗ B is present. Then,

LSM(α(i)) − LSM(α(i′)) = 1
b

b∑

j=1

(μij − μi′j), i �= i′.

Since μij − μi′j depends on j, some of these differences may be positive for
certain values of j and some may be negative for other values of j. As a result,
LSM(α(i)) − LSM(α(i′)) may be small giving the false indication that the two
least-squares means are not different, which may not be the case. In this
situation, to determine if A has an effect, it would be more meaningful to
compare the cell means, μ1j, μ2j, . . . , μaj, for a fixed j (=1, 2, . . . , b). Similarly,
the cell means of B can be compared for a fixed i (=1, 2, . . . , a). Such compar-
isons can be made by using, for example, Tukey’s Studentized range test, which
controls the experimentwise Type I error rate, if the factor under consideration
is qualitative [Tukey’s test requires the means to have equal sample sizes.
See, for example, Ott and Longnecker (2004, Section 8.6). For unequal sample
sizes, a modified version of Tukey’s test, due to Kramer (1956), can be used.].
If, however, the factor is quantitative, then it would be more informative
to test the significance of certain orthogonal contrasts among the means of
the factor for fixed levels of the other factor. These contrasts represent the
so-called polynomial effects of the factor (see, for example, Christensen, 1996,
Section 7.12).

In case A ∗ B is not significant, it will be meaningful to compare the least-
squares means for the levels of A and B, if their effects are significant. If
the data set contains no empty cells, as was assumed earlier, then all least-
squares means are estimable. Their best linear unbiased estimates (BLUE)
are obtained by replacing the parameters in a given least-squares mean by
the corresponding elements of β̂ = (X′X)−X′Y, where X is the matrix given
in (10.37) and β is the vector of all model parameters. Hence, the BLUE of
LSM(α(i)) and LSM(β( j)) in (10.38) and (10.39), respectively, are

̂LSM(α(i)) = μ̂ + α̂(i) + 1
b

b∑

j=1

[β̂( j) + α̂β(ij)], i = 1, 2, . . . , a,

̂LSM(β( j)) = μ̂ + β̂( j) + 1
a

a∑

i=1

[α̂(i) + α̂β(ij)], j = 1, 2, . . . , b,
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where μ̂, the α̂(i)’s, β̂( j)’s, and α̂β(ij)’s are the elements of β̂ = (X′X)−X′Y.
Since the columns of the matrix H3 = ⊕a

i=1 ⊕b
j=1 1nij span the column space

of X [see (10.37)], then μ̂ = 0, α̂(i) = 0 (i = 1, 2, . . . , a), β̂( j) = 0 (j = 1, 2, . . . , b),
α̂β(ij) = Ȳij. (i = 1, 2, . . . , a; j = 1, 2, . . . , b), as was seen earlier. Hence,

̂LSM(α(i)) = 1
b

b∑

j=1

Ȳij., i = 1, 2, . . . , a,

̂LSM(β( j)) = 1
a

a∑

i=1

Ȳij., j = 1, 2, . . . , b.

The test statistic for comparing, for example, LSM(α(i)) against LSM(α(i′)),
i �= i′, is given by the same t-statistic shown in (10.35), except that, in this case,
the error mean square, MSE, has n.. − ab degrees of freedom.

10.3.2 Type III Analysis in SAS

We have seen that the testing of the no-interaction hypothesis in (10.62) was
done using the Type III F-ratio, F(αβ | μ, α, β), which can be easily obtained
by invoking PROC GLM in SAS. In addition to this ratio, SAS also provides
Type III F-ratios for factors A and B. The latter ratios, however, are derived
after imposing certain restrictions on the parameters of model (10.36), namely,

a∑

i=1

α(i) = 0,

b∑

j=1

β( j) = 0,

a∑

i=1

(αβ)(ij) = 0, for all j = 1, 2, . . . , b,

b∑

j=1

(αβ)(ij) = 0, for all i = 1, 2, . . . , a. (10.63)

The need for such restrictions stems from the fact that the Type III sums of
squares for factors A and B for model (10.36) are actually identically equal
to zero. This model is said to be overparameterized because the number of its
unknown parameters, namely 1 + a + b + ab, exceeds the rank of X in (10.37),
which is equal to ab. For such a model, the Type III sum of squares for A is,
by definition,

R(α | μ, β, αβ) = R(μ, α, β, αβ) − R(μ, β, αβ).
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But,

R(μ, α, β, αβ) = Y ′X(X′X)−X′Y

= Y ′H3(H3
′
H3)

−1H3
′
Y, (10.64)

since the column space of X is spanned by the columns of H3 = ⊕a
i=1 ⊕b

j=1 1nij .
Furthermore,

R(μ, β, αβ) = Y ′Xα(Xα
′
Xα)−Xα

′
Y, (10.65)

where Xα = [1n.. : H2 : H3] is obtained from X by removing the a columns
corresponding to α(i) in the model. Since the column space of Xα is also
spanned by the columns of H3, then

Y ′Xα(Xα
′
Xα)−Xα

′
Y = Y ′H3(H3

′
H3)

−1H3
′
Y. (10.66)

From (10.64)–(10.66) we conclude that

R(α | μ, β, αβ) = 0. (10.67)

Similarly, it can be shown that

R(β | μ, α, αβ) = 0. (10.68)

Now, let us reparameterize model (10.36) using the restrictions in (10.63).
Since the number of linearly independent equations in (10.63) is equal to 1 +
a + b, the number of linearly independent parameters in model (10.36) under
these restrictions is ab, which is equal to the rank of X. Model (10.36) can then
be reparameterized and expressed in terms of only ab linearly independent
parameters to get the model,

Y = X∗β∗ + ε, (10.69)

where the elements of β∗ consist of ab linearly independent parameters and
X∗ is a matrix of order n.. × ab and rank ab. Thus, X∗ is of full column
rank and (10.69) is therefore a full-rank model. Using this model, the Type
III sums of squares for A and B are expressed as R(α∗ | μ∗, β∗, αβ∗) and
R(β∗ | μ∗, α∗, αβ∗), respectively, and are obviously not identically equal to
zero. These R-expressions are the Type III sums of squares given by SAS for
A and B, respectively.

It can be shown that R(α∗ | μ∗, β∗, αβ∗) and R(β∗ | μ∗, α∗, αβ∗) are the
same as SSAω and SSBω, the sums of squares for A and B in (10.43) and (10.44),
respectively, which were derived using the method of weighted squares of
means (see, for example, Speed and Hocking, 1976, p. 32; Searle, Speed, and
Henderson, 1981, Section 5.2; Searle, 1994, Section 3.1). We can therefore
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conclude that on the basis of the reparameterized model in (10.69), the Type
III F-ratios for A and B, namely,

F(α∗ | μ∗, β∗, αβ∗) = R(α∗ | μ∗, β∗, αβ∗)
(a − 1)MSE

F(β∗ | μ∗, α∗, αβ∗) = R(β∗ | μ∗, α∗, αβ∗)
(b − 1)MSE

,

are identical to the F-ratios, FA and FB, given in Lemma 10.5. The correspond-
ing hypotheses are the ones described in (10.50) and (10.51) which equate the
least-squares means for A and B, respectively.

Thus, in conclusion, the Type III analysis given in SAS can be used to
test the significance of factors A, B, and their interaction A ∗ B. Note that the
Type III F-ratio for A ∗ B, which is based on the overparameterized model
(10.36), is identical to the one obtained under the reparameterized model
(10.69), that is, F(αβ | μ, α, β) = F(αβ∗ | μ∗, α∗, β∗). This is true because
R(αβ | μ, α, β) = R(αβ∗ | μ∗, α∗, β∗).

10.3.3 Other Testable Hypotheses

There are other testable hypotheses concerning the parameters of model
(10.36). The values of their test statistics can be obtained through the use
of PROC GLM in SAS. These hypotheses, however, are not desirable because
they are data dependent. We now give a brief account of these hypotheses
and their corresponding test statistics. More details can be found in Searle
(1971, Chapter 7) and Speed and Hocking (1976).

(a) Hypotheses tested by F(α | μ) and F(β | μ)

By definition,

F(α | μ) = R(α | μ)

(a − 1)MSE
(10.70)

F(β | μ) = R(β | μ)

(b − 1)MSE
, (10.71)

where R(α | μ) = R(μ, α) − R(μ) is Type I sum of squares for factor
A, if A appears first in the SAS model, Y = A B A ∗ B. Similarly,
R(β | μ) = R(μ, β) − R(μ) is Type I sum of squares for factor B, if
B appears first in the SAS model. Hence, F(α | μ) and F(β | μ) are
considered Type I F-ratios.

The statistic, F(α | μ), tests the hypothesis,

H0 : WM(α(i)) equal for all i = 1, 2, . . . , a,
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where WM(α(i)) is the weighted mean of the cell means in row i
(= 1, 2, . . . , a) as shown in formula (10.41). This hypothesis can be writ-
ten as

H0 : α(i) + 1
ni.

b∑

j=1

nij
[
β( j) + (αβ)(ij)

]
equal for all i = 1, 2, . . . , a.

(10.72)

The proof of the testability of this hypothesis by F(α | μ) is similar to
the one given in Section 10.2.2.1. Similarly, the ratio, F(β | μ), tests the
hypothesis,

H0 : WM(β( j)) equal for all j = 1, 2, . . . , b,

or equivalently, the hypothesis,

H0 : β( j) + 1
n.j

a∑

i=1

nij[α(i) + (αβ)(ij)] equal for all j = 1, 2, . . . , b, (10.73)

where WM(β( j)) is the weighted mean of the cell means in column j
(= 1, 2, . . . , b) as shown in formula (10.42).

The hypotheses stated in (10.72) and (10.73) concern factors A and B,
respectively, but are not desirable because they depend on the cell
frequencies and are therefore data dependent.

(b) Hypotheses tested By F(α | μ, β) and F(β | μ, α)

By definition,

F(α | μ, β) = R(α | μ, β)

(a − 1)MSE
(10.74)

F(β | μ, α) = R(β | μ, α)

(b − 1)MSE
, (10.75)

where R(α | μ, β) = R(μ, α, β) − R(μ, β) and R(β | μ, α) = R(μ, α, β) −
R(μ, α) are Type II sums of squares for factors A and B, respectively.
Thus, F(α | μ, β) and F(β | μ, α) are considered Type II F-ratios for A
and B, respectively.

The hypotheses tested by the Type II F-ratios are very complicated.
According to Searle (1971, pp. 308–310), F(α | μ, β) tests the hypothesis,

H0 : φi = 0 for all i = 1, 2, . . . , a, (10.76)

where

φi =
b∑

j=1

(
nij μij − nij

n.j

a∑

k=1

nkj μkj

)
, i = 1, 2, . . . , a,
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and F(β | μ, α) tests the hypothesis,

H0 : ψj = 0 for all j = 1, 2, . . . , b, (10.77)

where

ψj =
a∑

i=1

⎛

⎝nij μij − nij

ni.

b∑

k=1

nik μik

⎞

⎠ , j = 1, 2, . . . , b.

Note that
∑a

i=1 φi = 0 and
∑b

j=1 ψj = 0.

The hypotheses in (10.76) and (10.77), which concern factors A and B,
respectively, are also undesirable because they are data dependent by
being dependent on the cell frequencies. Furthermore, they are not easy
to interpret. Perhaps a more palatable formulation of these hypotheses
is the following:

H0 : WM(α(i)) = 1
ni.

b∑

j=1

nij WM(β( j)), i = 1, 2, . . . , a, (10.78)

H0 : WM(β( j)) = 1
n.j

a∑

i=1

nij WM(α(i)), j = 1, 2, . . . , b, (10.79)

where, if we recall, WM(α(i)) and WM(β( j)) are the weighted means
of the cell means in row i and column j, respectively [see (10.41) and
(10.42)]. The hypothesis in (10.78) states that WM(α(i)) is the weighted
mean of the WM(β( j))’s (i = 1, 2, . . . , a), and the one in (10.79) states that
WM(β( j)) is the weighted mean of the WM(α(i))’s (j = 1, 2, . . . , b).

In conclusion, Type III analysis concerning model (10.36) is preferred over
Types I and II analyses because its hypotheses for A, B, and A ∗ B are not data
dependent. Furthermore, they are of the same form as the ones tested when
the data set is balanced.

It should be noted that SAS also provides Type IV F-ratios for A, B, and
A ∗ B. If the data set contains no empty cells, as is the case with model
(10.36), then Type III and Type IV F-ratios and hypotheses are identical. The
difference between the two can only occur when the data set contains some
empty cells. In general, a Type IV hypothesis for an effect, u, is a hypothesis
obtained by setting up linearly independent contrasts among the levels of
u derived from subsets of nonempty cells. These subsets can be chosen in a
variety of ways. Thus, a Type IV hypothesis is not unique when the data set
contains some empty cells. By expressing a Type IV hypothesis in the general
form given in (10.14), a test statistic can then be obtained by using the F-ratio
in (10.15), where, in this case, MSE is the error mean square for model (10.36)
with n.. − q degrees of freedom, where q is the number of nonempty cells.
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In any case, the analysis of data containing some empty cells is not satis-
factory since even the Type III hypotheses become dependent on the pattern
of nonempty cells. More specifically, Type III hypotheses for factors A and
B, which equate all the least-squares means for A as well as those for B,
respectively, cannot be tested since some of the least-squares means will be
nonestimable. For example, if row i (= 1, 2, . . . , a) contains at least one empty
cell, then LSM(α(i)) is nonsetimable. Similarly, if column j (= 1, 2, . . . , b) con-
tains at least one empty cell, then LSM(β( j)) is nonestimable. Consequently, it
is not possible to test equality of all the least-squares means for A and B in this
case. In addition, the hypothesis tested by F(αβ | μ, α, β) is no longer the no-
interaction hypothesis as in (10.62). This is because the interaction contrasts,
Θij, i′j′ , in (10.60) are not all estimable when some cells are empty (see Searle,
1971, p. 311). In fact, F(αβ | μ, α, β) has, in this case, only q − a − b + 1 degrees
of freedom for the numerator instead of ab − a − b + 1. Hence, a complete
analysis of the data cannot be carried out in this case. For this reason, we have
not considered the analysis of model (10.36) in situations involving missing
data. The interested reader is referred to Searle (1971, 1987), Speed, Hocking,
and Hackney (1978), and Milliken and Johnson (1984) for additional details
concerning this topic.

10.4 Higher-Order Models

The analysis of a fixed-effects model in the general unbalanced case, with
no missing data in the subclasses, can be done by first identifying certain
hypotheses of interest concerning the model’s parameters. Any of these
hypotheses is then tested using an appropriate F-ratio as in (10.15) (the usual
assumptions of normality, independence, and equality of error variances are
considered valid). A more convenient way to accomplish this is to do the anal-
ysis by relying on PROC GLM in SAS. The following is a brief overview of
what can be gleaned from the SAS output that may be helpful in the analysis
of the model.

(a) The E option

The E option in the model statement of PROC GLM gives the general
form of all estimable linear functions of β for a general model as the
one shown in (10.1). More specifically, if L denotes any given constant
vector, the linear function, L′(X′X)−X′Xβ, is estimable. In fact, it is
easy to show that any linear function of β is estimable if and only if it
can be expressed as L′(X′X)−X′Xβ for some vector L. The elements of
L′(X′X)−X′X are given in the SAS output as a result of invoking the E
option. It is interesting to note here that the number of elements of L
that appear in L′(X′X)−X′Xβ is actually equal to the rank of X. Fur-
thermore, the coefficients of the elements of L in this linear combination
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TABLE 10.6
General Form of Estimable Functions
Effect Coefficients
μ L1
α(1) L2
α(2) L3
α(3) L1 − L2 − L3
β(1) L5
β(2) L6
β(3) L1 − L5 − L6

are all estimable and form a basis for the space of all estimable linear
functions of β.

For example, consider model (10.10) along with the data set from
Example 10.1. In this case, β = (μ, α(1), α(2), α(3), β(1), β(2), β(3))

′, L =
(L1, L2, . . . , L7)

′. The information resulting from the use of the E option
in the SAS statement, MODEL Y = A B/E, is displayed in Table 10.6.

On the basis of Table 10.6, we get the linear function,

L′(X′X)−X′Xβ = (μ + α(3) + β(3))L1 + (α(1) − α(3))L2 + (α(2) − α(3))L3

+ (β(1) − β(3))L5 + (β(2) − β(3))L6, (10.80)

which is obtained by multiplying the entries under “coefficients” by
the corresponding effects and then adding up the results. We note that
the number of Li’s in (10.80) is 5, which is equal to the rank of X as it
should be (in this case, the rank of X is a + b − 1 = 5). These Li’s are
arbitrary constants and can therefore be assigned any values. Hence,
the coefficients of the Li’s in (10.80), namely, μ + α(3) + β(3), α(1) − α(3),
α(2) − α(3), β(1) − β(3), β(2) − β(3) are all estimable and should form a
basis for the space of all estimable linear functions of β according to
Lemma 10.1(b).

(b) The E1, E2, and E3 options

These are options that are also available in the model statement of
PROC GLM. They give Type I, Type II, and Type III estimable functions,
which give rise to Type I, Type II, and Type III hypotheses, respectively,
for each effect in the model. In addition, SAS provides the corresponding
Type I, Type II, and Type III sums of squares and F-ratios. For example,
using model (10.10) and the data set from Example 10.1, the Types I, II,
and III estimable functions for A and B can be derived from Tables 10.7
through 10.9, respectively.

Using Table 10.7, Type I estimable functions for A and B are obtained
by multiplying the entries under A and B by the corresponding effects
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TABLE 10.7
Type I Estimable Functions
Effect A B
μ 0 0
α(1) L2 0
α(2) L3 0
α(3) −L2 − L3 0
β(1) 0.3143 ∗ L2 + 0.1143 ∗ L3 L5
β(2) −0.0286 ∗ L2 − 0.4286 ∗ L3 L6
β(3) −0.2857 ∗ L2 + 0.3143 ∗ L3 −L5 − L6

TABLE 10.8
Type II Estimable Functions
Effect A B
μ 0 0
α(1) L2 0
α(2) L3 0
α(3) −L2 − L3 0
β(1) 0 L5
β(2) 0 L6
β(3) 0 −L5 − L6

TABLE 10.9
Type III Estimable Functions
Effect A B
μ 0 0
α(1) L2 0
α(2) L3 0
α(3) −L2 − L3 0
β(1) 0 L5
β(2) 0 L6
β(3) 0 −L5 − L6

and then adding up the results. Thus, for factor A, its Type I estimable
function is of the form

(α(1) − α(3) + 0.3143 β(1) − 0.0286 β(2) − 0.2857 β(3)) L2 +
(α(2) − α(3) + 0.1143 β(1) − 0.4286 β(2) + 0.3143 β(3)) L3

Note that the number of Li’s in this combination is 2, which should be
equal to the number of degrees of freedom for A. Type I hypothesis for
A is obtained by equating the coefficients of L2 and L3 to zero. Doing
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so, we get

α(1) − α(3) + 0.3143 β(1) − 0.0286 β(2) − 0.2857 β(3) = 0 (10.81)

α(2) − α(3) + 0.1143 β(1) − 0.4286 β(2) + 0.3143 β(3) = 0. (10.82)

Note that (10.81) and (10.82) can be written as

α(1) + 1
5
(3 β(1) + 2 β(2)) = α(3) + 1

7
(2 β(1) + 3 β(2) + 2 β(3)) (10.83)

α(2) + 1
5
(2 β(1) + 3 β(3)) = α(3) + 1

7
(2 β(1) + 3 β(2) + 2 β(3)). (10.84)

We recognize (10.83) and (10.84) as forming the Type I hypothesis for
A given in (10.27) whose test statistic value is F(α | μ) = 0.32 (see
Table 10.2). The Type I estimable function for B from Table 10.7 is
(β(1) − β(3)) L5 + (β(2) − β(3)) L6, which yields the hypothesis

H0 : β(1) = β(2) = β(3).

This is the same as the Type II hypothesis for B in (10.32) whose test
statistic value is F(β | μ, α) = 14.73 (see Table 10.2 or Table 10.3). Note
that since the SAS model here is written as Y = A B with A appearing
first and B second, Type I and Type II hypotheses and F-ratios for B are
identical. In order to get the Type I hypothesis for B as shown in (10.28)
and its corresponding F-ratio, F(β | μ), a second SAS model should be
added to the SAS code in which B appears first and A second. In doing
so, we get F(β | μ) = 12.95.

Similarly, using Table 10.8 we get, after setting up the Type II estimable
functions and equating the coefficients of the Li’s to zero, the Type II
hypotheses shown in (10.31) and (10.32), respectively. The correspond-
ing test statistics values are F(α | μ, β) = 2.09 and F(β | μ, α) = 14.73
(see Table 10.3). Table 10.9 gives the same information as Table 10.8
since for the two-way model without interaction, Type II and Type III
hypotheses and F-ratios are identical.

As was pointed out earlier in Section 10.3.3, Type III analysis is
preferred in general for testing hypotheses concerning all the effects
in the model. This is based on the assumption that the data set under
consideration contains no empty cells.

(c) Least-squares means

The least-squares means (LSMEANS) statement in PROC GLM com-
putes for each effect listed in this statement estimated values of its
least-squares means. This was demonstrated earlier in Example 10.1 for
the case of the two-way model without interaction (see Table 10.4). As
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was mentioned in Example 10.1, one useful option in the LSMEANS
statement is “TDIFF” which gives the t-values for the pairwise com-
parisons of the least-squares means for a given factor along with the
corresponding p-values. If, however, it is desired to make multiple com-
parisons among all the least-squares means, for example, the ones for
factor A, then the option “ADJUST = TUKEY” should be used in the
LSMEANS statement as follows:

LSMEANS A / PDIFF ADJUST = TUKEY;

This provides a multiple comparison adjustment for the p-values for
the differences of least-squares means in a manner that controls the
experimentwise Type I error rate according to Tukey’s Studentized range
test. Note that “PDIFF” stands for “p-value for the difference.”

10.5 A Numerical Example

An experiment was conducted on laboratory rats to study the effects of a
hunger-reducing drug (factor A) and the length of time (factor B), between
administration of the drug and feeding, on the amount of food ingested by
the rats. Two dosage levels were applied, namely, 0.3 and 0.7 mg/kg, and
three levels of time were chosen, namely, 1, 5, and 9 h. A total of 18 rats of
uniform size and age were initially selected for the experiment with three
rats assigned to each of the six A × B treatment combinations. At the start
of the experiment, the rats were deprived of food for a certain period of
time. Each rat was then inoculated with a certain dosage level of the drug
and after a specific length of time, it was fed. The weight (in grams) of the
food ingested by the rat was measured. However, during the course of the
experiment, several rats became sick and were subsequently eliminated from
the experiment. This resulted in the unbalanced data given in Table 10.10.
A plot of the data points is shown in Figure 10.1. The model considered is the
one in (10.36).

The error mean square for this data set is MSE = 0.1904 with 7 degrees of
freedom. Table 10.11 gives the Type III analysis for A, B, and A ∗ B.

The corresponding hypotheses for A, B, and A ∗ B are the ones listed in
(10.50), (10.51), and (10.62), respectively. We note that all three tests are highly
significant.

Let us now apply formulas (10.43) and (10.44) to get the sums of squares
for A and B using the method of weighted squares of means. We find that
SSAω = 90.6558, SSBω = 115.4312, which are identical to the corresponding
Type III sums of squares for A and B, respectively, in Table 10.11, as they
should be.
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TABLE 10.10
Weights of Food Ingested (g)

B (time, h)

A (Drug Dosage, mg/kg) 1 5 9
0.3 5.65 11.62 13.98

5.89 12.38
6.14

0.7 1.37 4.71 7.74
1.65 5.82 8.29
1.93

2 4 6 8

2

4

6

8

10

12

14

Time

W
eig

ht

0.3 mg/kg
0.7 mg/kg

FIGURE 10.1
Table 10.10 data points.

TABLE 10.11
Type III Sums of Squares and F-Values
Source DF Type III SS MS F p-Value
A 1 90.6558 90.6558 476.07 <0.0001
B 2 115.4312 57.7156 303.09 <0.0001
A ∗ B 2 4.0017 2.0008 10.51 0.0078

Since the interaction is significant, it would be of interest to do some
further analysis by testing each factor at fixed levels of the other factor. As
was recommended in Section 10.3.1, since both factors are quantitative, we
can consider testing the polynomial effects of each factor at fixed levels of the
other factor. Taking into consideration that factor A has two levels and factor
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B has three levels, the polynomial effects of A consist of just the linear effect,
and those of B consist of the linear and quadratic effects.

In general, the testing of polynomial effects can be conveniently done
using PROC GLM in SAS. For example, to get the sums of squares for the
linear and quadratic effects of B at the fixed ith level of A (i = 1, 2), which we
denote by BL(i), BQ(i), we can use the following SAS statements:

PROC GLM;
CLASS A B;

MODEL Y = A B A ∗ B;
PROC SORT;

BY A;
PROC GLM;

BY A;
MODEL Y = B B ∗ B;

RUN;

The SORT procedure sorts observations in the data set in Table 10.10 by the
levels of A. The first model statement provides information for setting up
Table 10.11. The second model statement is needed in order to get the sums
of squares for BL(i) and BQ(i) (i = 1, 2). For this purpose, we only need to
consider the Type I sums of squares for B and B ∗ B in the second model
statement which correspond to BL(i) and BQ(i), respectively. These sums
of squares are additive, and therefore statistically independent. They mea-
sure the contributions of the orthogonal contrasts which represent these effects
(see, for example, Christensen, 1996, Section 7.12). It should be noted here
that the second model statement was not preceded by the “CLASS” state-
ment. The reason for this is that in the absence of the CLASS statement,
SAS treats the model as a regression model, rather than an ANOVA model,
where the model’s independent variables (B and B∗B in this case) are treated
as continuous regression variables with one degree of freedom each. The
relevant Type I sums of squares are given in Table 10.12 along with the corre-
sponding F-values. Note that these F-values were obtained by dividing each
sum of squares by MSE = 0.1904 for the full two-way model (the F-values
obtained from using PROC SORT should not be considered since the error
mean squares used in their denominators are not based on the entire data set,
and are therefore different from 0.1904).

Similarly, to test the linear effect of A at the fixed jth level of B, which we
denote by AL( j) ( j = 1, 2, 3), we can use the following SAS statements:

PROC SORT;
BY B;

PROC GLM;
BY B;

MODEL Y = A;
RUN;
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TABLE 10.12
Polynomial Effects of B at Fixed Levels of A

Source DF Type I SS F p-Value
A=0.3
B 1 66.1865 347.6182 <0.0001
B ∗ B 1 5.1088 26.8319 0.0013
A= 0.7
B 1 49.9843 262.5226 <0.0001
B ∗ B 1 0.2641 1.3871 0.2774

TABLE 10.13
Polynomial Effects of A at Fixed Levels of B

Source DF Type I SS F p-Value
B=1
A 1 27.0088 141.8529 <0.0001
B=5
A 1 45.3602 238.2363 <0.0001
B=9
A 1 23.7208 124.5840 <0.0001

In this case, since factor A has one degree of freedom, A in the above model
statement represents the linear effect of A, which is the only polynomial effect
for A, at fixed levels of B. The results are given in Table 10.13.

As in Table 10.12, the error mean square, MSE = 0.1904, was used to
produce the F-values in Table 10.13. From Table 10.12 we can see that the
linear and quadratic effects of B are significant for level 0.3 of A. However,
only the linear effect of B is significant for level 0.7 of A. This can be clearly
seen from examining Figure 10.2 which is obtained by plotting the estimated
cell means (values of Ȳij.) against the three levels of B. Points with the same
level of A are connected. Figure 10.2 depicts the effect of the interaction and
is therefore considered an interaction plot. It shows a quadratic trend in the
mean weight under B for the low dosage, 0.3, but only a linear trend for
the high dosage, 0.7. On the other hand, we note from Table 10.13 that all
the linear effects of A are significant for any level of B. This is equivalent
to saying that the cell means of A are significantly different for any fixed
level of B.

In general, if one of the factors is qualitative, for example, factor B, and
if the interaction is significant, comparisons among the cell means of B can
be made using Tukey’s Studentized range test at fixed levels of A, as was
mentioned in Section 10.3.1. Alternatively, we can consider using PROC GLM
to get an F-ratio for testing B for fixed levels of A. This can be accomplished
by making use of the following SAS statements:
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FIGURE 10.2
Interaction plot for the data in Table 10.10.

TABLE 10.14
A ∗ B Effect Sliced by A

A DF SS MS F p-Value
0.3 2 71.2953 35.6476 187.22 <0.0001
0.7 2 50.2484 25.1242 131.95 <0.0001

PROC GLM;
CLASS A B;

MODEL Y = A B A ∗ B;
LSMEANS A ∗ B/ SLICE = A;

RUN:

The use of the “SLICE = A” option in the LSMEANS statement amounts
to partitioning (slicing) the data according to the levels of A. For each of
the “sliced” portions of the data, an F-ratio is obtained which tests equality
of the least-squares means of B for the corresponding fixed level of A. The
denominator of this F-ratio is MSE, the same error mean square for the full
two-way model. The SAS output from applying the above statements to
the data set in Table 10.10 is shown in Table 10.14. We note that all tests are
significant, which indicates that there are differences among the least-squares
means of B for each level of A. Of course, in our case, B is quantitative and
it would be more informative to use Table 10.12 to test its polynomial effects
for each level of A.
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10.6 The Method of Unweighted Means

One alternative to the method of weighted squares of means is the method
of unweighted means (MUM), which was also introduced by Yates (1934). It
provides an approximate, but computationally simple method of analysis.
The MUM defines sums of squares that are analogous to those obtained for
balanced data situations with one observation per treatment combination,
namely, the sample mean of the corresponding cell. We shall demonstrate
this method in the case of a two-way model with interaction as in (10.36).
As before, we assume that the error terms in the model are independently
distributed as N(0, σ2). In addition, we require that nij > 0 for all i and j, that
is, the data contain no empty cells.

Using the same notation as in Section 10.3.1, let Xij be defined as Xij =
Ȳij. = 1

nij

∑nij

k=1 Yijk. Let X̄i. = 1
b

∑b
j=1 Xij, X̄.j = 1

a
∑a

i=1 Xij, X̄.. = 1
a b

∑a
i=1

∑b
j=1

Xij. The unweighted sums of squares corresponding to factors A, B, and their
interaction, A ∗ B, are

SSAu = n̄h b
a∑

i=1

(X̄i. − X̄..)
2 (10.85)

SSBu = n̄h a
b∑

j=1

(X̄.j − X̄..)
2 (10.86)

SSABu = n̄h

a∑

i=1

b∑

j=1

(Xij − X̄i. − X̄.j + X̄..)
2, (10.87)

where n̄h is the harmonic mean of the cell frequencies given by

n̄h = a b

⎡

⎣
a∑

i=1

b∑

j=1

1
nij

⎤

⎦
−1

. (10.88)

The rationale for the use of n̄h in the above sums of squares is the following:
the variance of Xij is σ2

nij
. The average of this variance over all the ab cells is

σ2

a b

a∑

i=1

b∑

j=1

1
nij

= σ2

n̄h
.

Thus, n̄h acts like n, the common cell frequency, if the data set were balanced.
Now, let X̄ = (X11, X12, . . . , Xab)

′. Then,

Var(X̄) = σ2K, (10.89)
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where K = diag(n−1
11 , n−1

12 , . . . , n−1
ab ). If the data set is balanced, then nij = n for

all i, j and K = 1
n Iab. The following lemma provides an added justification for

the use of the harmonic mean.

Lemma 10.7 The best approximation of K in (10.89) with a diagonal matrix
of the form cIab is achieved when c = 1

n̄h
.

Proof. By “best approximation” of K with cIab we mean finding the value of
c which minimizes the Euclidean norm ‖ K − cIab ‖, where

‖ K − c Iab ‖2 = tr
[
(K − c Iab)

2
]

=
a∑

i=1

b∑

j=1

(
1

nij
− c

)2

. (10.90)

Differentiating (10.90) with respect to c and equating the derivative to zero,
we get

−2
a∑

i=1

b∑

j=1

1
nij

+ 2abc = 0. (10.91)

Hence,

c = 1
ab

a∑

i=1

b∑

j=1

1
nij

= 1
n̄h

.

Since the derivative of the left-hand side of (10.91) with respect to c is 2ab,
which is positive, we conclude that ‖ K − c Iab ‖ attains its absolute minimum
when c = 1

n̄h
.

The approximation of K with 1
n̄h

Iab amounts to replacing the cell frequen-
cies by their harmonic mean. Thus, if we were to pretend that n̄h is a positive
integer, and if in the (i, j)th cell we were to have n̄h observations, all equal to
Xij, then SSAu, SSBu, and SSABu in (10.85), (10.86), and (10.87) would represent
the sums of squares for A, B, and A ∗ B, respectively, based on this artificial
balanced data set.
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10.6.1 Distributions of SSAu, SSBu, and SSABu

The sums of squares in (10.85), (10.86), and (10.87) can be written as

SSAu = n̄hX̄′
(

1
b

Ia ⊗ Jb − 1
ab

Ja ⊗ Jb

)
X̄ (10.92)

SSBu = n̄hX̄′
(

1
a

Ja ⊗ Ib − 1
ab

Ja ⊗ Jb

)
X̄ (10.93)

SSABu = n̄hX̄′
(

Ia ⊗ Ib − 1
b

Ia ⊗ Jb − 1
a

Ja ⊗ Ib + 1
ab

Ja ⊗ Jb

)
X̄, (10.94)

where, if we recall, X̄ = (X11, X12, . . . , Xab)
′. Under the assumption of nor-

mality, independence, and equality of error variances, it can be seen that
X̄ ∼ N(μ, σ2K), where μ = (μ11, μ12, . . . , μab)

′ and K is the diagonal matrix
used in (10.89).

Unlike the case of balanced data, none of the sums of squares in (10.92),
(10.93), and (10.94) have scaled chi-squared distributions. For example, if we
consider 1

σ2 SSAu, we find that the matrix,

n̄h

(
1
b

Ia ⊗ Jb − 1
ab

Ja ⊗ Jb

)
K, (10.95)

is not idempotent, which implies that 1
σ2 SSAu does not have the chi-squared

distribution (see Theorem 5.4). Furthermore, SSAu, SSBu, and SSABu are not
mutually independent. For, example, SSAu and SSBu are not independent
since

(
1
b

Ia ⊗ Jb − 1
ab

Ja ⊗ Jb

)
K

(
1
a

Ja ⊗ Ib − 1
ab

Ja ⊗ Jb

)
�= 0

(see Theorem 5.5). However, all three sums of squares are independent of the
error sum of squares, SSE, in (10.45) since the Xij’s (= Ȳij.) are independent of
SSE (see Example 5.5).

Let us now apply Lemma 5.1 to 1
σ2 SSAu. In doing so, we can express

1
σ2 SSAu as a linear combination of mutually independent chi-squared variates
of the form

1
σ2 SSAu =

k1∑

i=1

τ1i χ
2
ν1i

(η1i), (10.96)

where k1 denotes the number of distinct nonzero eigenvalues of the matrix
in (10.95), τ1i is the ith of such eigenvalues with multiplicity ν1i, and η1i is
the corresponding noncentrality parameter (i = 1, 2, . . . , k1). Similarly, for
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1
σ2 SSBu, 1

σ2 SSABu, we have

1
σ2 SSBu =

k2∑

i=1

τ2i χ
2
ν2i

(η2i) (10.97)

1
σ2 SSABu =

k3∑

i=1

τ3i χ
2
ν3i

(η3i), (10.98)

where kj, τji, νji, and ηji (j = 2, 3) are quantities comparable to k1, τ1i, ν1i, η1i in
(10.96) and are obtained by replacing the matrix 1

b Ia ⊗ Jb − 1
ab Ja ⊗ Jb with the

matrices of the other two quadratic forms in (10.93) and (10.94), respectively.

Lemma 10.8

(a) E(SSAu) = n̄h b
∑a

i=1(μ̄i. − μ̄..)
2 + σ2(a − 1)

(b) E(SSBu) = n̄h a
∑b

j=1(μ̄.j − μ̄..)
2 + σ2(b − 1)

(c) E(SSABu) = n̄h
∑a

i=1
∑b

j=1(μij − μ̄i. − μ̄.j + μ̄..)
2 + σ2(a − 1)(b − 1),

where μ̄i. = 1
b
∑b

j=1 μij, μ̄.j = 1
a
∑a

i=1 μij, μ̄.. = 1
ab

∑a
i=1

∑b
j=1 μij.

Proof. We shall only prove part (a) since the proofs of parts (b) and (c) will
be similar.

Using Theorem 5.2, the expected value of SSAu in (10.92) is given by

E(SSAu) = n̄h μ′
(

1
b

Ia ⊗ Jb − 1
ab

Ja ⊗ Jb

)
μ

+ tr
[

n̄h

(
1
b

Ia ⊗ Jb − 1
ab

Ja ⊗ Jb

)(
σ2K

)]
,

where μ = (μ11, μ12, . . . , μab)
′. Hence,

E(SSAu) = n̄h b
a∑

i=1

(μ̄i. − μ̄..)
2 + σ2 n̄h tr

[(
1
b

Ia ⊗ Jb − 1
ab

Ja ⊗ Jb

)
K

]
. (10.99)

It can be verified that

tr
[(

1
b

Ia ⊗ Jb − 1
ab

Ja ⊗ Jb

)
K

]
= 1

b

a∑

i=1

b∑

j=1

1
nij

− 1
ab

a∑

i=1

b∑

j=1

1
nij

= 1
n̄h

(a − 1).

By making the substitution in (10.99), we get

E(SSAu) = n̄h b
a∑

i=1

(μ̄i. − μ̄..)
2 + σ2(a − 1).
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10.6.2 Approximate Distributions of SSAu, SSBu, and SSABu

Let us again consider formulas (10.96), (10.97), and (10.98). The nonzero eigen-
values, τ1i (i = 1, 2, . . . , k1), τ2i (i = 1, 2, . . . , k2), and τ3i (i = 1, 2, . . . , k3), are
all positive. This is true because, for example, the nonzero eigenvalues of the
matrix in (10.95) are the same as those of

n̄h K1/2
(

1
b

Ia ⊗ Jb − 1
ab

Ja ⊗ Jb

)
K1/2,

which is positive semidefinite. If the nij’s are close to one another, then n̄hK ≈
Iab and τji is approximately equal to one (i = 1, 2, . . . , kj; j = 1, 2, 3). In this
case,

1
σ2 SSAu ∼

approx.
χ2

a−1(η1), (10.100)

where

η1 = n̄h

σ2 μ′
[

1
b

Ia ⊗ Jb − 1
ab

Ja ⊗ Jb

]
μ

= n̄h b
σ2

a∑

i=1

(μ̄i. − μ̄..)
2.

(see the proof of the sufficiency part of Theorem 5.4). Similarly, we have

1
σ2 SSBu ∼

approx.
χ2

b−1(η2) (10.101)

1
σ2 SSABu ∼

approx.
χ2

(a−1)(b−1)(η3), (10.102)

where

η2 = n̄h

σ2 μ′
[

1
a

Ja ⊗ Ib − 1
ab

Ja ⊗ Jb

]
μ

= n̄h a
σ2

b∑

j=1

(μ̄.j − μ̄..)
2,

and

η3 = n̄h

σ2 μ′
[

Ia ⊗ Ib − 1
b

Ia ⊗ Jb − 1
a

Ja ⊗ Ib + 1
ab

Ja ⊗ Jb

]
μ

= n̄h

σ2

a∑

i=1

b∑

j=1

(μij − μ̄i. − μ̄.j + μ̄..)
2.
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Consequently, the F-ratio

F̃A = SSAu

(a − 1)MSE
(10.103)

tests the hypothesis that η1 = 0, that is,

H0 : μ̄1. = μ̄2. = . . . = μ̄a..

This is the same as the hypothesis in (10.50), which equates the least-squares
means for factor A. Under H0, F̃A has approximately the F-distribution with
a − 1 and n.. − ab degrees of freedom. Similarly, the F-ratios,

F̃B = SSBu

(b − 1)MSE
, (10.104)

F̃AB = SSABu

(a − 1)(b − 1)MSE
, (10.105)

test hypotheses for B and A ∗ B that are identical to those described in Section
10.3.1.

Recall that the adequacy of the chi-squared approximations in (10.100),
(10.101), and (10.102) depend on the closeness of the eigenvalues, τji, to one
(i = 1, 2, . . . , kj, j = 1, 2, 3), that is, when the nij’s are close to one another, as
was mentioned earlier. This is equivalent to requiring that the values of

λA = (a − 1)
∑k1

i=1 ν1i τ
2
1i(∑k1

i=1 ν1i τ1i

)2 (10.106)

λB = (b − 1)
∑k2

i=1 ν2i τ
2
2i(∑k2

i=1 ν2i τ2i

)2 (10.107)

λAB = (a − 1)(b − 1)
∑k3

i=1 ν3i τ
2
3i(∑k3

i=1 ν3i τ3i

)2 (10.108)

be each close to one (see Theorem 9.3). Note that, in general, λA ≥ 1, λB ≥ 1,
λAB ≥ 1. Thus, the use of the method of unweighted means (MUM) under
these approximations may be inappropriate if the data set is severely unbal-
anced. Snedecor and Cochran (1980) stated that the MUM is appropriate only
if the ratio of the largest nij to the smallest nij is less than two.

Gosslee and Lucas (1965) suggested an improvement on the chi-squared
approximations by amending the degrees of freedom for the numerator mean
squares in (10.103), (10.104), and (10.105) (see also Searle, 1971, pp. 365–367;
Rankin, 1974). In the special case of a factorial experiment with two levels
for each factor and unequal numbers of observations in the various cells,
Speed and Monlezun (1979) showed that all sums of squares generated by
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TABLE 10.15
Unweighted Analysis of the Data in Table 10.10
Source DF SS MS F p-Value
A 1 90.6558 90.6558 476.1334 <0.0001
B 2 102.8635 51.4318 270.125 <0.0001
A ∗ B 2 3.0838 1.5419 8.0982 0.0151
Error 7 1.3330 0.1904

the MUM for A, B, and the interaction A ∗ B are distributed exactly as σ2 χ2
1.

Hence, in this case, the MUM’s F-ratios follow the exact F-distribution and
the hypotheses tested are the same as in a balanced data situation.

Example 10.2 Let us again consider the same data set as in Table 10.10.
Applying the unweighted sums of squares formulas in (10.85), (10.86), and
(10.87), we get the values listed in Table 10.15 along with their F-ratios and
approximate p-values. These F-ratios were computed on the basis of formulas
(10.103), (10.104), and (10.105).

We note that all tests are significant. This agrees with the results obtained
from Table 10.11. The difference here is that the F-tests and corresponding
p-values are approximate.

Exercises

10.1 Prove parts (a) and (b) of Theorem 10.1.

[Hint: To establish the formula for λ, show that

β′X′[X(X′X)−X′ − X1(X
′
1X1)

−X
′
1]Xβ

= β′[X′X − X′X1(X
′
1X1)

−X
′
1X]β

= β
′
2[X

′
2X2 − X

′
2X1(X

′
1X1)

−X
′
1X2]β2.]

10.2 (a) Prove formula (10.9).

(b) Show that if X = [X1 : X2] is of full column rank, then the hypoth-
esis in (10.9) is equivalent to H0 : β2 = 0.

[Hint: The matrix [In − X1(X
′
1X1)

−X
′
1]X2 is of full column

rank since its rank is equal to the rank of the matrix X
′
2[In −

X1(X
′
1X1)

−X
′
1]X2, which can be shown to be nonsingular.]

10.3 Consider model (10.10) with the following data set:
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B

A 1 2 3 4

1 9 — 8 11
11 6

2 12 — — —
3 — 4 16 —

1
8

4 11 12 14 22
15 10

(a) Show that α(i) − α(i′) and β( j) − β( j′) are estimable for i �= i′, j �= j′.
(b) State the hypotheses tested by F(α | μ) and give the value of this

test statistic.

(c) Give a complete Type II analysis concerning factors A and B.

(d) Find estimates of the least-squares means for the levels of factors
A and B.

(e) Apply formula (10.35) to give a test statistic for testing the hypoth-
esis, H0 : LSM(α(1)) = LSM(α(3)). State your conclusion at the 5%
level of significance.

10.4 Consider again the data set in Exercise 10.3.

(a) Let φ = μ11 − 2 μ12 + μ13, where μij is the mean of the (i, j)th cell.
Is φ estimable? If so, give the value of its BLUE.

(b) Test the hypothesis, H0 : φ = 0, and state your conclusion at the
5% level of significance.

(c) Obtain a 95% confidence interval on φ.

10.5 Consider the data set in Exercise 7.4.

(a) State the hypothesis tested by F(β | μ) and give the value of this
test statistic.

(b) Test the hypothesis,

H0 : β(1) = β(2) = β(3),

at the 5% level of significance.

10.6 A certain corporation developed a new wood glue and compared its
performance to the company’s standard product. Ten pieces of each
of eight types of wood were split and glued back together, five with
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the old glue and five with the new. The glue was allowed to dry, then
the pieces of wood were subjected to a test to measure the amount
of stress, in pounds per square inch (psi), required to break the glue
bond. However, some pieces of wood broke before the glue bond
broke, resulting in no measurement. The following table shows the
average stress and number of observations for each glue and wood
type:

Wood Type

Glue A B C D E F G H
New 22.65 27.43 21.06 25.98 29.73 30.80 22.62 21.03

(5) (3) (3) (4) (5) (2) (5) (3)
Old 24.15 31.85 21.73 26.45 26.04 33.85 25.99 22.70

(4) (3) (5) (4) (4) (5) (5) (5)

The error mean square is MSE = 6.93.

(a) Use the method of weighted squares of means to test the signif-
icance of the wood type and glue factors at the 5% level of sig-
nificance. State the null hypothesis and your conclusion in each
case.

(b) Compare the least-squares means for the new and old glues and
state your conclusion at the 5% level of significance.

(c) Compare the least-squares means for wood types E and H and
state your conclusion at the 5% level of significance.

10.7 Consider again the data set in Exercise 10.6.

(a) Use the method of unweighted means to test the significance of the
wood type and glue factors, and their interaction . Let α = 0.05.

(b) Obtain a 95% confidence interval on the difference between the
least-squares means for the new and old glues.

10.8 An experiment was conducted to compare responses to different doses
of two drugs, denoted by A and B. Each drug was to be administered
at the three doses, 5, 10, and 15 mg. A total of 18 subjects were ini-
tially selected to participate in this experiment after going through
a screening procedure to eliminate any possible extraneous effects.
Three subjects were assigned to each of the six drug × dose combina-
tions. The response of interest was the reaction time of a subject to a
drug dosage. However, during the course of the experiment, several
subjects decided to drop out. The data from the remaining subjects are
given in the following table:
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Dose (mg)

Drug 5 10 15
A 15 18 22

16 19 20
16

B 16 19 24
17 22
19

(a) There is a significant effect due to

(i) The drug factor
(ii) The dose factor

(iii) The drug × dose interaction

In each case, state the null hypothesis and your conclusion at the
5% level of significance.
[Hint: Use Type III analysis.]

(b) Give the values of the Type II F-ratios and corresponding hypothe-
ses for the drug and dose factors.

(c) Test the significance of the linear and quadratic effects of dose on
reaction time for

(i) Drug A
(ii) Drug B

State your conclusion at the 5% level of significance in each case.

(d) Compare the means of drugs A and B for each of the three doses.
Let α = 0.05.

(e) Suppose that the one observation in cell B-15 is missing. Which
least-squares means for the drug and dose factors would be
estimable in this case?

10.9 Consider the following data set for a two-way model with interaction:

B

A 1 2 3

1 10 9 —
8 7

2 13 — 8
3 — 3 14

2
7

4 12 13 14
16 10
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Use SAS to answer the following questions:

(a) Give a basis for the space of all estimable linear functions corre-
sponding to this data set.

(b) What hypotheses are tested by F(α | μ) and F(β | μ)?

(c) What hypotheses are tested by F(α | μ, β) and F(β | μ, α)?

(d) Is there a test for the hypothesis H0 : LSM(α(1)) = LSM(α(2))?

(e) Explain why the hypothesis

H0 :
1
2
(μ32 + μ33) = 1

2
(μ42 + μ43)

is testable, where μij is the mean of the (i, j)th cell. Give the value
of a t-test statistic for testing H0, then state your conclusion at the
5% level of significance.

(f) Is the no-interaction hypothesis stated in (10.62) testable in this
case?

10.10 Consider a nested experiment involving factors A and B with B nested
within A. Factor A has two levels and factor B has two levels for level
1 of A and three levels for level 2 of A. The model is

Yijk = μ + α(i) + βi( j) + εij(k),

where α(i) denotes the fixed effect of level i of A and βi( j) denotes the
fixed effect of level j of B nested within the ith level of A, and the εij(k)’s
are independently distributed as N(0, σ2). The data set corresponding
to this model is given in the table below.

(a) Show that βi( j) − βi( j′) is estimable for i = 1, 2, j �= j′, and find its
BLUE.

(b) Test the hypothesis, H0 : β1(1) = β1(2), at the 5% level of signifi-
cance.

(c) Is the hypothesis

H0 : β2(1) = β2(2) = β2(3)

testable? If so, test H0 at the 5% level of significance. If not, explain
why not.

(d) Obtain simultaneous (1−α)100% confidence intervals on all linear
functions of the elements of (θ12, θ13)

′, where

θ12 = β2(1) − β2(2)

θ13 = β2(1) − β2(3).
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[Hint: Use the methodology described in Section 7.5.]

A

1 2

B 1 2 1 2 3
5 8 8 6 3

10 10 2 7
9 1

3
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11
Unbalanced Random and Mixed Models

The purpose of this chapter is to provide a coverage of the analysis of unbal-
anced linear models which include random effects. As we may recall from
Section 8.4, if all the effects in a model are randomly distributed, except for
the overall mean, μ, then the model is called a random-effects model, or just a
random model. If, however, some effects are fixed (besides the overall mean)
and some are random (besides the experimental error), then the model is
called a mixed-effects model, or just a mixed model. The determination of which
factors in a given experimental situation have fixed effects and which have
random effects depends on the nature of the factors and how their levels are
selected in the experiment. A factor whose levels are of particular interest to
the experimenter, and are therefore the only ones to be considered, is said
to have fixed effects and is labeled as a fixed factor. If, however, the levels of
the factor, which are actually used in the experiment, are selected at random
from a typically large population (hypothetically infinite), P, of possible lev-
els, then it is said to have random effects and is labeled as a random factor.
In the latter case, the levels of the factor used in the experiment constitute a
random sample chosen from P.

Such labeling of factors determines the type of analysis to be used for
the associated model. More specifically, if a factor is fixed, then its effects are
represented by fixed unknown parameters in the model. In this case, it would
be of interest to compare the means of the levels of the factor (these levels
are usually referred to as treatments), or possibly investigate its polynomial
effects, if the factor is quantitative. On the other hand, if a factor is random,
then it would be necessary to determine if a significant variation exists among
its levels, that is, if the variance of the population P (from which the levels
of the factor were selected) is different from zero. Thus, in this situation,
inference is made with regard to the population P itself rather than the actual
levels used in the experiment, as would be the case with fixed factors. For
example, in a paper manufacturing process, an experimenter is interested
in studying the effects of four different cooking temperatures of the pulp
on the tensile strength of the paper. Five batches of pulp were prepared
and three samples were taken from each batch and then cooked at one of
the four temperatures. In this example, temperature is considered a fixed
factor since the experimenter is interested in comparing the means of the four
specific temperatures in order to perhaps determine the temperature setting
that yields maximum tensile strength. The batch factor, however, should be

349
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considered as random since the batches used in the experiment represent
only a sample from many other batches that could have been prepared. In
this case, the experimenter would be interested in knowing if a significant
variation exists among the batches, which may be quite different with regard
to quality. The presence of such batch-to-batch variability should be taken
into account before making any comparisons among the means of the four
temperatures.

It should be noted that in a mixed model situation, the primary interest is in
the estimation and testing of its fixed effects. The model’s random effects play
a secondary role, but are still considered important because their variances
can affect any inferences made with regard to the fixed effects, as will be seen
later. In the next section, methods for estimating the variances of the random
effects will be discussed. These variances, which, in general, are unknown,
are called variance components.

11.1 Estimation of Variance Components

The presence of random effects in a given model induces added variability in
the response variable under consideration. It is therefore important that the
model’s variance components be properly estimated. Section 8.6 dealt with
ANOVA (analysis of variance) estimation of variance components for bal-
anced data. In the case of unbalanced data, estimating variance components
is a more difficult task. This is due to several reasons that will be described
later in this chapter. In the present section, several methods for estimating
variance components, as applicable to unbalanced data, will be discussed.
These include ANOVA estimation in addition to two other methods based
on the principles of maximum likelihood and restricted maximum likelihood.

11.1.1 ANOVA Estimation—Henderson’s Methods

We may recall from Section 8.6 that ANOVA estimates of the variance com-
ponents in the balanced data case are obtained from a given ANOVA table
by equating the mean squares of the random effects to their corresponding
expected values, then solving the resulting equations for the estimates. The
same procedure can be applied whenever the data set is unbalanced, except
that we no longer have a unique ANOVA table, as is the case with balanced
data. Instead, there can be several ANOVA tables depending on how the
total sum of squares is partitioned (see Chapter 10). Consequently, ANOVA
estimates of the variance components are not unique for a general random
or mixed model in the unbalanced data case. Furthermore, they lack the nice
optimal properties (such as minimum variance) that their counterparts have
in a balanced data situation, as was mentioned earlier in Section 8.6.
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The early development of ANOVA estimation of variance components
for unbalanced data is mainly attributed to the pioneering work of Charles R.
Henderson (see Henderson, 1953). He introduced three methods for estimat-
ing variance components which came to be known as Henderson’s Methods I,
II, and III. These methods are similar in the sense that each method uses a
set of quadratic forms which are equated to their expected values in order to
derive the variance components estimates. In Method I, the quadratic forms
are analogous to those used in models for balanced data. These quadratic
forms can be negative since some of them are not actually sums of squares.
This method is computationally simple, but is not suitable for mixed models
since it yields biased estimates of the variance components in the presence of
fixed effects in the model (apart from μ). It is only suitable for random mod-
els, in which case the variance components estimates are unbiased. Method II
was designed to correct the deficiency of Method I for mixed models. The
data are first adjusted by using some estimate of the fixed effects based on
the observed data. Method I is then applied to estimate the variance com-
ponents from the adjusted data. This method produces unbiased estimates
of the variance components. However, it cannot be applied when the mixed
model contains interactions between the fixed and random effects (see Searle,
1968). If the data set is balanced, then Methods I and II are identical, and are
the same as the ANOVA method for balanced data.

Due to the stated shortcomings of both Methods I and II, no further
discussion of these methods will be given here. More details concerning the
two methods can be found in Searle (1968), Searle (1971, Chapter 10), and
Searle, Casella, and McCulloch (1992, Chapter 5).

11.1.1.1 Henderson’s Method III

This method is applicable to both random and mixed models, even when
interactions exist between fixed and random effects. It is therefore preferred
over Methods I and II. The procedure on which Method III is based uses a
sufficient number of reductions in sums of squares due to fitting submodels
of the model under consideration. These reductions are expressed using the
R-notation, as defined in Section 10.1, and are chosen so that their expected
values are free from any fixed effects. Estimates of the variance components
are obtained by equating these reductions to their expected values and then
solving the resulting equations. Thus, Method III differs from Methods I and
II in using positive R-expressions instead of quadratic forms that may not be
positive.

Before demonstrating how Method III can be applied, we need to estab-
lish a certain result that is needed for the development of this method. Let
us therefore consider, in general, the following model, which can be either
random or mixed:

Y = Xβ + ε, (11.1)
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where
X is a matrix or order n × q
β is a vector that contains fixed and random effects
ε is an experimental error vector assumed to be independent of β and has

a zero mean and a variance-covariance matrix, σ2
εIn

Suppose that β is partitioned as β = (
β′

1 : β′
2
)′ and X is partitioned

accordingly as X = [X1 : X2], where Xi is of order n × qi (i = 1, 2). Model
(11.1) can then be written as

Y = X1β1 + X2β2 + ε. (11.2)

From (11.2) we can have the reduced model,

Y = X1β1 + ε. (11.3)

The development of Method III is based on the following lemma.

Lemma 11.1 Let R(β2 | β1) = R(β) − R(β1), where R(β) and R(β1) denote
the regression sums of squares for the full model in (11.1) and the reduced
model in (11.3), respectively, that is,

R(β) = Y ′X(X′X)−X′Y (11.4)

R(β1) = Y ′X1
(
X′

1X1
)− X′

1Y. (11.5)

Then,

E[R(β2 | β1)] = tr
{[

X′
2X2 − X′

2X1
(
X′

1X1
)− X′

1X2

]
E
(
β2β

′
2
)}

+ σ2
ε [rank(X) − rank(X1)]. (11.6)

Proof. The mean and variance–covariance matrix of Y in (11.1) can be
expressed as

E(Y) = XE(β) (11.7)

Var(Y) = XVar(β)X′ + σ2
εIn. (11.8)

Applying Theorem 5.2 to (11.4) in the light of (11.7) and (11.8), we get

E[R(β)] = E(β′)X′X(X′X)−X′XE(β)

+ tr
{

X(X′X)−X′ [XVar(β)X′ + σ2
εIn

]}

= E(β′)X′XE(β) + tr[XVar(β)X′] + σ2
ε rank(X). (11.9)

Formula (11.9) is true because X(X′X)−X′X = X by property (c) in Section
3.7.1, and tr[X(X′X)−X′] = rank[X(X′X)−X′] = rank(X) by property (b) in
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Section 3.9 since X(X′X)−X′ is idempotent with rank equal to the rank of X.
Formula (11.9) can then be written as

E[R(β)] = tr[X′XE(β)E(β′) + X′XVar(β)] + σ2
ε rank(X)

= tr[X′XE(ββ′)] + σ2
ε rank(X), (11.10)

since Var(β) = E(ββ′) − E(β)E(β′). Similarly, by applying Theorem 5.2 to
(11.5), we get

E[R(β1)] = E(β′)X′X1
(
X′

1X1
)− X′

1XE(β)

+ tr
{

X1
(
X′

1X1
)− X′

1

[
XVar(β)X′ + σ2

εIn

]}

= tr
[
X′X1

(
X′

1X1
)− X′

1XE(ββ′)
]

+ σ2
ε rank(X1)

= tr
{[

X′
1X1

X′
2X1

] (
X′

1X1
)− [X′

1X1 : X′
1X2

]
E(ββ′)

}
+ σ2

ε rank(X1)

= tr
{[

X′
1X1 X′

1X2

X′
2X1 X′

2X1
(
X′

1X1
)− X′

1X2

]
E(ββ′)

}

+ σ2
ε rank(X1). (11.11)

From (11.10) and (11.11) we then have

E[R(β2 | β1)] = E[R(β)] − E[(β1)]
= tr

{[
X′

2X2 − X′
2X1

(
X′

1X1
)− X′

1X2

]
E
(
β2β

′
2
)}

+ σ2
ε[rank(X) − rank(X1)].

From Lemma 11.1, we note that if the elements of β2 consist of just random
effects, then E[R(β2 | β1)] depends only on σ2

ε and the variance components
that pertain to the random effects that make up the vector β2. In addition, if β1
contains fixed effects, then E[R(β2 | β1)] has no terms due to those effects. This
is necessary if we were to use R(β2 | β1) to derive ANOVA estimates that are
not dependent on the fixed effects and are therefore unbiased. Furthermore,
if β1 contains elements that are random, then E[R(β2 | β1)] does not depend
on Var(β1) or any covariances that may exist between the elements of β1 and
β2. Also, note that the application of Lemma 11.1 requires that β1 and β2
make up the entire β vector for the full model.

With the help of Lemma 11.1 we can select as many R-expressions, of the
form considered in this lemma, as there are variance components (excluding
σ2

ε) for the full model. Such expressions have no fixed effects in their expected
values. Equating the selected R-expressions to their expected values and solv-
ing the resulting equations along with the equation, E(SSE) = [n−rank(X)]σ2

ε,
we get unbiased estimates of the variance components, which we refer to as
Method III estimates. These estimates are not unique since the number of
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TABLE 11.1
Expected Values of R-Expressions for a Random Two-Way Model
R-Expression Expected Value

R(α, β, αβ | μ) h11 σ2
α + h12 σ2

β + h13 σ2
αβ + (ab − 1)σ2

ε

R(β, αβ | μ, α) h22 σ2
β + h23 σ2

αβ + (ab − a)σ2
ε

R(αβ | μ, α, β) h33 σ2
αβ + (ab − a − b + 1)σ2

ε

SSE (n.. − ab)σ2
ε

eligible R-expressions that can be used exceeds the number of variance com-
ponents for the full model.

All Henderson’s methods can give negative estimates of the variance
components. Other than being unbiased, ANOVA estimators have no known
optimal properties, even under normality, if the data set under consideration
is unbalanced.

Let us now demonstrate the application of Lemma 11.1 and Method III by
considering the following example.

Example 11.1 Consider the random two-way model,

Yijk = μ + α(i) + β(j) + (αβ)(ij) + εij(k), i = 1, 2, . . . , a; j = 1, 2, . . . , b;

k = 1, 2, . . . , nij.

The variance components for the model are therefore σ2
α, σ2

β, σ2
αβ, and σ2

ε.
In this case, we can consider the R-expressions whose expected values are
given in Table 11.1, where n.. is the total number of observations, and h11, h12,
h13, h22, h23, and h33 are known constants that result from expanding the trace
portion of the expected value in formula (11.6). Equating SSE and the three
R-expressions in Table 11.1 to their respective expected values and solving
the resulting four equations produce Method III estimates of σ2

α, σ2
β, σ2

αβ,
and σ2

ε.

An alternative set of R-expressions can be chosen to derive Method III
estimates, as can be seen from Table 11.2, where h

′
23 is a constant possibly

different from h23 in Table 11.1. This demonstrates the nonuniqueness of
Method III estimates of the variance components.

Let us now consider the same model as before, except that α(i) is con-
sidered fixed. Thus, the variance components are σ2

β, σ2
αβ, and σ2

ε. In this
case, to obtain Method III estimates of these variance components, we should
only consider R-expressions that are adjusted for at least μ and α since μ and
α(i) (i = 1, 2, . . . , a) are the fixed effects in the full two-way model. We can
therefore consider the R-expressions, R(αβ | μ, α, β), R(β, αβ | μ, α), which
along with SSE can produce Method III estimates of σ2

β, σ2
αβ, and σ2

ε.
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TABLE 11.2
An Alternative Set of R-Expressions
R-Expression Expected Value

R(α, β, αβ | μ) h11σ
2
α + h12σ

2
β + h13σ

2
αβ + (ab − 1)σ2

ε

R(α, αβ | μ, β) h21σ
2
α + h

′
23σ

2
αβ + (ab − b)σ2

ε

R(αβ | μ, α, β) h33σ
2
αβ + (ab − a − b + 1)σ2

ε

SSE (n.. − ab)σ2
ε

It should be noted that, in this example, Lemma 11.1 cannot be applied
directly to R-expressions of the form R(α | μ) and R(β | μ, α) or R(β | μ) and
R(α | μ, β), which are Type I sums of squares for factors A and B (depending
on how the model is written). This is so because the requirement of having
β1 and β2 make up the entire β vector for the full model, as in Lemma 11.1,
is not satisfied in any of these expressions. However, it is possible to apply
Lemma 11.1 indirectly to such expressions. This is done as follows: suppose,
for example, that all the effects in the full model are random. We can use the
fact that

R(α, β, αβ | μ) = R(α | μ) + R(β | μ, α) + R(αβ | μ, α, β) (11.12)

R(β, αβ | μ, α) = R(β | μ, α) + R(αβ | μ, α, β). (11.13)

Solving Equations (11.12) and (11.13) for R(α | μ) and R(β | μ, α), we get

R(α | μ) = R(α, β, αβ | μ) − R(β, αβ | μ, α) (11.14)

R(β | μ, α) = R(β, αβ | μ, α) − R(αβ | μ, α, β). (11.15)

The R-expressions on the right-hand sides of (11.14) and (11.15) are of the
type considered in Lemma 11.1. We can therefore obtain the expected values
of R(α | μ) and R(β | μ, α) in terms of those of R(αβ | μ, α, β), R(β, αβ | μ, α),
and R(α, β, αβ | μ). Using Table 11.1, we get

E[R(α | μ)] =
[
h11σ

2
α + h12σ

2
β + h13σ

2
αβ + (ab − 1)σ2

ε

]

−
[
h22σ

2
β + h23σ

2
αβ + (ab − a)σ2

ε

]

= h11σ
2
α + (h12 − h22)σ

2
β + (h13 − h23)σ

2
αβ

+ (a − 1)σ2
ε (11.16)

E[R(β | μ, α)] =
[
h22σ

2
β + h23σ

2
αβ + (ab − a)σ2

ε

]

−
[
h33σ

2
αβ + (ab − a − b + 1)σ2

ε

]

= h22σ
2
β + (h23 − h33)σ

2
αβ + (b − 1)σ2

ε. (11.17)
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Equating R(α | μ) and R(β | μ, α) to their expected values and combining the
resulting equations with the equations, E[R(αβ | μ, α, β)] = R(αβ | μ, α, β)

and E(SSE) = (n.. − ab)σ2
ε, produce Method III estimates of σ2

α, σ2
β, σ2

αβ, and
σ2

ε. We can similarly get other estimates by considering the expected values
of R(β | μ) and R(α | μ, β).

Since R(α | μ), R(β | μ, α), and R(αβ | μ, α, β) are Type I sums of squares
for factors A, B, and their interaction, A∗B, if the corresponding SAS model is
written as, Y = A B A ∗ B, we conclude that, in general, Method III estimates
of the variance components can be obtained from equating Type I sums
of squares of all the random effects in the model, along with SSE, to their
expected values and then solving the resulting system of equations. Such
estimates can be easily computed using PROC VARCOMP in SAS (2000)
with the option “METHOD = TYPE1” included in the PROC VARCOMP
statement. For example, suppose that the two-way model in Example 11.1 is
random. Then, the SAS statements needed to get Method III estimates of σ2

α,
σ2

β, σ2
αβ, and σ2

ε are

DATA;
INPUT A B Y;

CARDS;
(enter the data here)

PROC VARCOMP METHOD = TYPE1;
CLASS A B;

MODEL Y = A B A ∗ B;
RUN;

If only α(i) is fixed, then to get Method III estimates of σ2
β, σ2

αβ, σ2
ε, we

can use the same statements as before, except that the MODEL statement
should be modified by adding the option “FIXED = 1,” that is, by using the
statement, MODEL Y = A B A ∗ B/FIXED = 1;. In general, the MODEL option
“FIXED = m” tells PROC VARCOMP that the first m effects in the MODEL
statement are fixed. The remaining effects are assumed to be random. If this
option is left out, then all the effects in the model are assumed random. Thus,
when α(i) is fixed in our two-way model, A should be placed first in the
MODEL statement and m set equal to 1. It is therefore important that all the
fixed effects, if any, be placed first in the MODEL statement.

Example 11.2 Consider the mixed two-way model,

Yijk = μ + α(i) + β(j) + (αβ)(ij) + εij(k),

where α(i) is fixed and β(j) is random. The data set used with this model is
given in Table 11.3. Since α(i) is fixed, the needed Type I R-expressions are
R(β | μ, α) and R(αβ | μ, α, β). The corresponding expected values are given
in Table 11.4. The expected values in Table 11.4 can be obtained from the out-
put of PROC VARCOMP, which also gives directly the solution of the system
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TABLE 11.3
Data Set for Example 11.2

B (Random)

A (Fixed) 1 2 3 4
1 20.9 25.0 23.8 70.1

25.2 30.1 26.9 102.1
28.9 23.6 101.2

25.3
2 28.9 30.9 39.8 65.3

44.3 28.6 41.5 62.1
33.9 31.0

30.9
3 30.1 32.1 41.8 50.9

28.9 35.9 44.3 50.8
34.5 28.9 39.2

38.1

TABLE 11.4
Expected Values of Type I R-Expressions

Value of
R-Expression DF R-Expression Expected Value

R(β | μ, α) 3 8884.2827 25.6668 σ2
β + 8.8017 σ2

αβ + 3 σ2
ε

R(αβ | μ, α, β) 6 2970.3412 16.8648 σ2
αβ + 6 σ2

ε

Error 23 908.8150 23 σ2
ε

of three equations resulting from equating the values of the R-expressions
in Table 11.4 to their expected values. We thus have the following ANOVA
estimates of σ2

β, σ2
αβ, σ2

ε: σ̂2
β = 285.9459, σ̂2

αβ = 162.0671, and σ̂2
ε = 39.5137,

which are considered Method III estimates of the three variance components.

11.1.2 Maximum Likelihood Estimation

An alternative approach to variance components estimation is that of maxi-
mum likelihood (ML). The ML approach is based on assuming normality of the
data under consideration. The likelihood function is then maximized over the
parameter space under nonnegative constraints on the variance components.
Hence, ML estimates must be nonnegative.

Let us consider model (11.1), which can be either random or mixed. Using
the same notation as in Section 8.4, this model is expressed as

Y =
ν−p∑

i=0

Hiβi +
ν+1∑

i=ν−p+1

Hiβi, (11.18)
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where
ν is the number of effects (excluding the experimental error term and the

grand mean) in the model
p is a positive integer such that p ≤ ν,

∑ν−p
i=0 Hiβi is the fixed portion of the

model (βi is a fixed unknown parameter vector for i = 0, 1, . . . , ν − p)∑ν+1
i=ν−p+1 Hiβi is its random portion

Hi is a known matrix of order n × ci consisting of zeros and ones for
i = 1, 2, . . . , ν + 1 (H0 = 1n)

If the data set is unbalanced, then Hi is no longer expressible as a direct
product of identity matrices and vector of ones, as was the case in Section 8.2.
For the sake of simplicity, we shall represent the fixed portion as X∗ g, where
X∗ = [H0 : H1 : . . . : Hν−p], and g is a vector containing all the fixed effects
in the model. Thus, model (11.18) is written as

Y = X∗ g +
ν+1∑

i=ν−p+1

Hiβi. (11.19)

The βi’s are assumed to be independently distributed such that βi ∼
N
(
0, σ2

i Ici

)
for i = ν− p + 1, ν− p + 2, . . . , ν+ 1. The data vector Y is therefore

normally distributed as N(X∗g, Σ), where

Σ =
ν+1∑

i=ν−p+1

σ2
i Ai, (11.20)

and Ai = HiH′
i (i = ν − p + 1, ν − p + 2, . . . , ν + 1). On the basis of formula

(4.17), the likelihood function associated with Y is

L = 1
(2π)n/2[det(Σ)]1/2 exp

[
−1

2
(y − X∗ g)′Σ−1(y − X∗ g)

]
. (11.21)

By definition, the maximum likelihood estimates (MLEs) of g and the variance
components, σ2

ν−p+1, σ2
ν−p+2, . . . , σ2

ν+1, are those that maximize L subject to

the constraints, σ2
i ≥ 0, i = ν − p + 1, ν − p + 2, . . . , ν + 1. Equivalently, we

can consider maximizing the natural logarithm of L, called the log-likelihood
function, namely,

log(L) = −n
2

log(2 π) − 1
2

log[det(Σ)] − 1
2
(y − X∗ g)′Σ−1(y − X∗ g). (11.22)

To maximize log(L), we differentiate the two sides of (11.22), first with respect
to g, using Corollary 3.4 and Theorem 3.22, to get

∂[log(L)]
∂g

= X′∗Σ−1y − X′∗Σ−1X∗ g. (11.23)
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Differentiating now log(L) with respect to σ2
i (i = ν−p+1, ν−p+2, . . . , ν+1)

and making use of the fact that,

∂log[det(Σ)]
∂σ2

i
= tr

(
Σ−1 ∂Σ

∂σ2
i

)

= tr(Σ−1Ai), i = ν − p + 1, ν − p + 2, . . . , ν + 1,

∂Σ−1

∂σ2
i

= −Σ−1 ∂Σ

∂σ2
i
Σ−1 (see Theorem 3.24),

= −Σ−1AiΣ
−1, i = ν − p + 1, ν − p + 2, . . . , ν + 1,

we get

∂[log(L)]
σ2

i
= −1

2
tr(Σ−1Ai) + 1

2
(y − X∗ g)′Σ−1AiΣ

−1(y − X∗ g), (11.24)

for i = ν − p + 1, ν − p + 2, . . . , ν + 1. Equating (11.23) and (11.24) to zero and
changing y to the random data vector, Y, we get the equations,

X′∗Σ̃
−1

X∗ g̃ = X′∗Σ̃
−1

Y (11.25)

tr[Σ̃−1
Ai] = (Y − X∗ g̃)′Σ̃−1

AiΣ̃
−1

(Y − X∗ g̃)

= Y ′P̃AiP̃Y, i = ν − p + 1, ν − p + 2, . . . , ν + 1, (11.26)

where

P̃ = Σ̃
−1 − Σ̃

−1
X∗
(

X′∗Σ̃
−1

X∗
)−

X′∗Σ̃
−1

(11.27)

Σ̃ =
ν+1∑

i=ν−p+1

σ̃2
i Ai, (11.28)

and g̃ and σ̃2
i are, respectively, the MLEs of g and σ2

i (i = ν − p + 1, ν − p +
2, . . . , ν + 1). Equation 11.26 follows from the fact that

Y − X∗ g̃ =
[

In − X∗
(

X′∗Σ̃
−1

X∗
)−

X′∗Σ̃
−1
]

Y

= Σ̃P̃Y.

Note that the left-hand side of (11.26) can be expressed as

tr(Σ̃
−1

Ai) = tr(Σ̃
−1

AiΣ̃
−1

Σ̃)

= tr

⎡

⎣Σ̃
−1

AiΣ̃
−1

⎛

⎝
ν+1∑

j=ν−p+1

σ̃2
j Aj

⎞

⎠

⎤

⎦

=
ν+1∑

j=ν−p+1

tr(Σ̃
−1

AiΣ̃
−1

Aj)σ̃
2
j , i = ν − p + 1, ν − p + 2, . . . , ν + 1.
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Formula (11.26) can then be written as

ν+1∑

j=ν−p+1

tr(Σ̃
−1

AiΣ̃
−1

Aj)σ̃
2
j = Y ′P̃AiP̃Y, i = ν − p + 1, ν − p + 2, . . . , ν + 1.

(11.29)

Equations (11.25) and (11.29) are to be solved by iteration for g̃ and σ̃2
j . Only

nonnegative values of σ̃2
j (j = ν−p+1, ν−p+2, . . . , ν+1) are to be retained.

A method for solving the maximum likelihood equations was developed
by Hartley and Rao (1967). It should be recognized that the solution of
these equations can be computationally formidable because of the need to
invert a variance–covariance matrix of large order. Computational aspects
of maximum likelihood estimation were discussed by several authors; see,
for example, Hemmerle and Hartley (1973), Jennrich and Sampson (1976),
Miller (1979), and Searle, Casella, and McCulloch (1992). Harville (1977) pre-
sented a comprehensive critique of the maximum likelihood approach to the
estimation of variance components and related topics.

In SAS, PROC VARCOMP can be used to compute maximum likelihood
estimates of variance components using the W-transformation developed by
Hemmerle and Hartley (1973). The option “METHOD = ML” must be spec-
ified in the PROC VARCOMP statement. Furthermore, the option “FIXED =
m” in the MODEL statement tells PROC VARCOMP that the first m effects in
the model are fixed. The remaining effects are assumed to be random. If this
option is left out, then all the effects in the model are assumed random. For
example, for the mixed two-way model, Yijk = μ+α(i) +β(j) + (αβ)(ij) +εij(k),
with α(i) fixed and β(j) random, the statements needed to get the MLEs of σ2

β,
σ2

αβ, and σ2
ε are

DATA;
INPUT A B Y;

CARDS;
(enter the data here)

PROC VARCOMP METHOD = ML;
CLASS A B;

MODEL Y = A B A*B/FIXED=1;
RUN;

PROC VARCOMP, however, does not provide maximum likelihood esti-
mates of the fixed effects in a mixed model. Furthermore, no continuous
effects are allowed since the model’s effects are limited to main effects, inter-
actions, and nested effects. This restricts the use of PROC VARCOMP to just
ANOVA models, but not, for example, response surface models with random
effects (see Chapter 12). Because of these limitations, the more recent PROC
MIXED in SAS is preferred for maximum likelihood computations.
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PROC MIXED accepts a variety of mixed linear models, including those
with continuous effects. It provides, among other things, maximum likeli-
hood estimates of the variance components as well as approximate tests
concerning the model’s fixed effects. In addition, a variety of covariance
structures can be specified for the data under consideration. The option
“METHOD = ML” should be specified in the PROC MIXED statement. The
MODEL statement (in PROC MIXED) includes only the fixed effects in the
model. If there are none, then the MODEL statement is written as MODEL
Y = ;. In this case, the model includes only random effects, in addition to μ,
the overall mean. The RANDOM statement (in PROC MIXED) lists all the
random effects in the model. These effects can be classification or continu-
ous. Also, the REPEATED statement specifies the variance–covariance struc-
ture for the experimental error vector, ε (see Section 11.9). If no REPEATED
statement is specified, then the variance–covariance matrix for ε is assumed
to be σ2

εIn.
Unlike ANOVA estimators, maximum likelihood estimators (MLEs) of

variance components have interesting asymptotic properties. Under certain
regularity conditions, MLEs of variance components are consistent (i.e., they
converge in probability to the true values of the variance components as the
sample size tends to infinity), asymptotically efficient (in the sense of attaining
the Cramér–Rao lower bound), and asymptotically normal. These properties were
investigated by Miller (1977). Searle (1970) and Rudan and Searle (1971)
derived large-sample variances of the MLEs of the variance components.

More specifically, if σ̃2 denotes the MLE of σ2 =
(
σ2

ν−p+1, σ2
ν−p+2, . . . , σ2

ν+1

)′
,

then, as n → ∞,
Var(σ̃2

) → 2 Γ−1, (11.30)

where Γ = (γij) and γij is given by

γij = tr
(
Σ−1AiΣ

−1Aj

)
, i, j = ν − p + 1, ν − p + 2, . . . , ν + 1. (11.31)

Example 11.3 Consider again the same model and data set as in Example 11.2.
The following is a listing of the SAS statements needed to get the maximum
likelihood estimates of σ2

β, σ2
αβ, σ2

ε using PROC MIXED:

DATA;
INPUT A B Y;

CARDS;
(enter the data here)

PROC MIXED METHOD = ML;
CLASS A B;

MODEL Y = A;
RANDOM B A*B;

RUN;

On the basis of the data set in Table 11.3, the following maximum likelihood
estimates were obtained: σ̃2

β = 210.65, σ̃2
αβ = 123.74, σ̃2

ε = 39.445.
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11.1.3 Restricted Maximum Likelihood Estimation

This method is an adaptation of ML estimation of variance components
brought about by maximizing only that portion of the likelihood function
that is location invariant (i.e., does not depend on any fixed effects). It was
first proposed for unbalanced data by Patterson and Thompson (1971). They
called it modified maximum likelihood, but has come to be known as restricted
(or residual) maximum likelihood (REML).

In order to understand the development of REML estimation of variance
components, the following definition is needed.

Definition 11.1 An error contrast is a linear function, k′Y, of the data vector,
Y, that has zero expectation, that is, E(k′Y) = 0.

Based on this definition, if Y is represented by the model in (11.19),
then E(k′Y) = k′X∗ g = 0 for all g. Hence, k′Y is an error contrast if
and only if k′X∗ = 0′, that is, k is orthogonal to the column space of X∗.

Since
[
In − X∗

(
X′∗X∗

)− X′∗
]

X∗ = 0 and the rank of In − X∗
(
X′∗X∗

)− X′∗ is

equal to n − r∗, where r∗ = rank(X∗), k′ must belong to the row space of
In − X∗

(
X′∗X∗

)− X′∗. Thus,

k′ = c′ [In − X∗
(
X′∗X∗

)− X′∗
]

, (11.32)

for some vector c. It follows that the number of linearly independent error
contrasts is equal to n − r∗.

Now, let us confine our attention to the vector K′Y, where K′ is a matrix
of order (n − r∗) × n and rank n − r∗ such that K′X∗ = 0. Thus, the n − r∗
elements of K′Y are linearly independent error contrasts that form a basis
for all such error contrasts. Under the assumptions made earlier in Section
11.1.2 concerning normality of the distribution of Y, K′Y ∼ N(0, K′ΣK), since
K′X∗ g = 0.

Instead of maximizing the log-likelihood function of Y, as was done earlier
in Section 11.1.2 for ML estimation, we can now maximize the log-likelihood
function of K′Y, denoted by log (Lr), which is given by

log (Lr) = −n − r∗
2

log (2π) − 1
2

log[det(K′ΣK)] − 1
2

Y ′K(K′ΣK)−1K′Y.

(11.33)

Formula (11.33) can be derived from (11.22) by replacing n, Σ, Y, X∗ g with
n − r∗, K′ΣK, K′Y, and K′X∗g = 0, respectively. Note that this log likelihood
depends only on the variance components. By definition, the REML estimates
of the variance components, σ2

ν−p+1, σ2
ν−p+2, . . . , σ2

ν+1, are those that maxi-

mize log(Lr) subject to the constraints σ2
i ≥ 0, i = ν−p+1, ν−p+2, . . . , ν+1.

It is interesting here to remark that log(Lr) is invariant to the choice of
K′ as long as K′ has full row rank. To show this, suppose that we were
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to choose another full row-rank matrix, K′
1, such that K′

1X∗ = 0. Then,
there exists a nonsingular matrix M such that K′ = MK′

1. Consequently,
det(K′ΣK) = det

(
MK′

1ΣK1M′) = [det(M)]2det
(
K′

1ΣK1
)

and

Y ′K(K′ΣK)−1K′Y = Y ′K1M′ (MK′
1ΣK1M′)−1 MK′

1Y

= Y ′K1
(
K′

1ΣK1
)−1 K′

1Y.

Making the substitution in (11.33), we get

log(Lr) = −n − r∗
2

log(2π) − log[det(M)] − 1
2

log
[
det(K′

1ΣK1)
]

− 1
2

Y ′K1
(
K′

1ΣK1
)−1 K′

1Y.

Since the matrix M does not depend on the variance components, the maxi-
mization of log(Lr) with respect to the variance components is equivalent to
the maximization of

−n − r∗
2

log(2π) − 1
2

log
[
det
(
K′

1ΣK1
)]− 1

2
Y ′K1

(
K′

1ΣK1
)−1 K′

1Y,

which is of the same form as the right-hand side of (11.33), but with the
replacement of K with K′

1. Thus, whether K or K′
1 are used, the REML esti-

mates remain unchanged.
To obtain the REML estimates of the variance components we can modify

the ML equations in (11.26) by replacing Y with K′Y, Ai with K′AiK, X∗ with
K′X∗ = 0, and Σ with K′ΣK. We therefore get the REML equations,

tr
[
(K′Σ̃rK)−1(K′AiK)

]
= Y ′K(K′Σ̃rK)−1(K′AiK)(K′Σ̃rK)−1K′Y,

i = ν − p + 1, ν − p + 2, . . . , ν + 1, (11.34)

where

Σ̃r =
ν+1∑

i=ν−p+1

σ̃2
riAi, (11.35)

and the σ̃2
ri’s are the REML estimates of σ2

i (i = ν − p + 1, ν − p + 2, . . . , ν + 1).

Lemma 11.2

K(K′ΣK)−1K′ = P, (11.36)

where

P = Σ−1 − Σ−1X∗
(

X′∗Σ−1X∗
)−

X′∗Σ−1. (11.37)
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Proof. The rows of K′ span the orthogonal complement of the column space
of X∗ because K′X∗ = 0 and K′ is of full row rank equal to n − r∗. Since the
rows of the matrix In − X∗

(
X′∗X∗

)− X′∗ are also orthogonal to the columns of
X∗, we conclude that

In − X∗
(
X′∗X∗

)− X′∗ = TK′, (11.38)

for some matrix T. Taking the transpose of both sides of (11.38), we get

In − X∗
(
X′∗X∗

)− X′∗ = KT ′. (11.39)

Multiplying both sides of (11.39) by (K′K)−1K′, we get (K′K)−1K′ = T ′. For-
mula (11.39) can then be written as

In − X∗
(
X′∗X∗

)− X′∗ = K(K′K)−1K′. (11.40)

Formula (11.40) also holds true if we were to replace X∗ and K by Σ−1/2X∗ and
Σ1/2K, respectively. This is so because (Σ1/2K)′(Σ−1/2X∗) = K′X∗ = 0, and
Σ−1/2X∗ and Σ1/2K have the same ranks as those of X∗ and K, respectively
(Σ1/2 is a well-defined and positive definite matrix since Σ is positive definite).
From (11.40) we therefore have

In − Σ−1/2X∗
(

X′∗Σ−1X∗
)−

X′∗Σ−1/2 = Σ1/2K(K′ΣK)−1K′Σ1/2. (11.41)

Formula (11.41) is equivalent to (11.36).

Using the result of Lemma 11.2, formula (11.34) can now be expressed as

tr[P̃r Ai] = Y ′ P̃r Ai P̃r Y, i = ν − p + 1, ν − p + 2, . . . , ν + 1, (11.42)

where,

P̃r = Σ̃
−1
r − Σ̃

−1
r X∗

(
X′∗Σ̃

−1
r X∗

)−
X′∗Σ̃

−1
r . (11.43)

We note that (11.42) is of the same form as the ML equations in (11.26), except

that Σ̃
−1

on the left-hand side of (11.26) has been replaced by P̃r.
An alternative form to formula (11.42) can be derived as follows: it is easy

to show that PΣP = P. Using this fact in (11.42), we get

tr(P̃r Σ̃r P̃r Ai) = Y ′ P̃r Ai P̃r Y, i = ν − p + 1, ν − p + 2, . . . , ν + 1,

which can be written as

tr

⎛

⎝P̃r Ai P̃r

ν+1∑

j=ν−p+1

σ̃2
rj Aj

⎞

⎠ = Y ′ P̃r Ai P̃r Y,

i = ν − p + 1, ν − p + 2, . . . , ν + 1.
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We therefore have the equations,

ν+1∑

j=ν−p+1

tr(P̃r Ai P̃r Aj)σ̃
2
rj = Y ′ P̃r Ai P̃r Y,

i = ν − p + 1, ν − p + 2, . . . , ν + 1, (11.44)

which should be solved by using iterative procedures to obtain the REML
estimates of σ2

ν−p+1, σ2
ν−p+2, . . . , σ2

ν+1. We note that (11.44) is of the same form

as (11.29) for ML estimation, except that P̃r on the left-hand side of (11.44)

replaces Σ̃
−1

in formula (11.29). An algorithm for simplifying the computation
of REML estimates was developed by Corbeil and Searle (1976a).

Let us now show that the REML estimates maximize that portion of the
likelihood function that does not depend on the fixed effects. To do so, let Z∗
be an n × r∗ matrix of rank r∗ whose columns form a basis for the column
space of X∗. Let us also consider the following linear transformation of the
data vector, Y:

Y∗ =
[

Z′∗
K′
]

Y

= QY.

Since K′ is of rank n − r∗ and its rows span the orthogonal complement of
the column space of X∗, the matrix Q must be nonsingular. It follows that the
density function of Y∗ is equal to the density function of Y, namely L, divided
by | det(Q) |. Now, let us write Y∗ as

Y∗ =
[

Y1
∗

Y2
∗
]

,

where Y1
∗ = Z′∗Y and Y2

∗ = K′Y. Then, the density function of Y∗ can be
expressed as

g(y∗) = g1
(
y1

∗ | y2
∗) g2

(
y∗

2
)

,

where g2
(
y2

∗) is the density function of Y2
∗, which is the same as Lr whose

natural logarithm was given earlier in (11.33), that is,

g2
(
y2

∗) = Lr

= 1

(2π)
n−r∗

2 [det(K′ΣK)]1/2
exp

[
−1

2
y2

∗′
(K′ΣK)−1y2

∗
]

,

and g1
(
y1

∗ | y2
∗) is the conditional density of Y1

∗ given Y2
∗ = y2

∗. Hence,
the likelihood function of Y can be written as

L =| det(Q) | g1
(
y1

∗ | y2
∗) g2

(
y2

∗) . (11.45)

Formula (11.45) shows that the REML estimates maximize only the portion
of the likelihood function of Y, namely, g2

(
y2

∗), which does not depend on
the fixed effects.
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11.1.3.1 Properties of REML Estimators

REML estimators of variance components have properties similar to those of
ML. Under certain conditions, REML estimators are asymptotically normal
and asymptotically equivalent to ML estimators in the sense that the normal-
ized differences of the corresponding estimators converge in probability to
zero. These asymptotic properties were studied by Das (1979).

One interesting feature of REML estimation is that for balanced data,
the solutions of the REML equations in (11.44) are identical to the ANOVA
estimates (see Searle, Casella, and McCulloch, 1992, p. 253). Because of this
feature, some users favor REML over ML. Comparisons between REML and
ML estimators were made by Hocking and Kutner (1975), Corbeil and Searle
(1976 b), and Swallow and Monahan (1984).

Furthermore, if σ̃
2
r denotes the REML estimator of σ2 =

(
σ2

ν−p+1 ,

σ2
ν−p+2, . . . , σ2

ν+1

)′
, then as n → ∞,

Var
(
σ̃2

r

)
→ 2 Γ−1

r , (11.46)

where Γr is a matrix whose (i, j)th element is equal to

γrij = tr(PAiPAj), i, j = ν − p + 1, ν − p + 2, . . . , ν + 1, (11.47)

and P is given in (11.37). This result was reported in Searle, Casella, and
McCulloch (1992, p. 253). We note that formula (11.47) is similar to formula
(11.31) for ML estimation, except that P is used here in place of Σ−1 in (11.31).

Example 11.4 REML estimates can be easily obtained by using PROC MIXED
in SAS. The statements needed to activate REML are the same as those for
ML, except that the option “METHOD = ML” in the PROC MIXED statement
should be changed to “METHOD = REML,” or dropped altogether since
REML is the default estimation method in PROC MIXED.

Using, for example, the model and data set for Example 11.2, along with
the SAS code shown in Example 11.3 (with “METHOD = ML” changed to
“METHOD = REML,” or removed completely), we get the following REML
estimates of σ2

β, σ2
αβ, and σ2

ε: σ̃2
rβ = 279.76, σ̃2

rαβ = 169.60, σ̃2
rε = 39.477.

Example 11.5 A data set consisting of the weights at birth of 62 single-birth
male lambs was reported in Harville and Fenech (1985). The data originated
from five distinct population lines. Each lamb was the progeny of one of 23
rams, and each lamb had a different dam. The age of dam was recorded as
belonging to one of three categories, numbered 1 (1–2 years), 2 (2–3 years),
and 3 (over 3 years). The data are reproduced in Table 11.5, and the model
considered for this experiment is given by

Yijkl = μ + α(i) + β(j) + δj(k) + εijk(l), (11.48)
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TABLE 11.5
Birth Weights (in Pounds) of Lambs
Dam Age (i) Line (j)

1 2

1 Sire (k) Sire (k)

1 2 3 4 1 2 3 4

6.2 13.0 9.5 10.4 — — 12.0 11.5
10.1
11.4

2 Sire (k) Sire (k)

1 2 3 4 1 2 3 4

— — 11.8 8.5 — 10.1 — —

3 Sire (k) Sire (k)

1 2 3 4 1 2 3 4

— — 12.9 — 13.5 11.0 — 10.8
13.1 14.0

15.5

3 4

1 Sire (k) Sire (k)

1 2 3 4 1 2 3

— 11.0 11.6 — 9.2 10.2 11.7
10.6 10.9
10.6

2 Sire (k) Sire (k)

1 2 3 4 1 2 3

9.0 10.1 — 12.0 — — —
11.7

3 Sire (k) Sire (k)

1 2 3 4 1 2 3

9.5 8.5 13.0 — 7.7 — 9.9
12.6 8.8 10.0

9.9 11.2
10.9
11.0
13.9

(continued)
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TABLE 11.5 (continued)
Birth Weights (in Pounds) of Lambs
Dam Age (i) Line (j)

5
1 Sire (k)

1 2 3 4 5 6 7 8

11.7 9.0 — — — — — 10.7
12.6 11.0

12.5

2 Sire (k)
1 2 3 4 5 6 7 8

— — — — 13.5 10.9 10.0 —
12.7

3 Sire (k)
1 2 3 4 5 6 7 8

— 11.0 9.0 9.9 — 5.9 13.2 9.0
12.0 13.3 10.2

Source: Reprinted from Harville, D.A. and Fenech, A.P., Biometrics, 41, 137, 1985. With
permission.

i = 1, 2, 3; j = 1, 2, 3, 4, 5; k = 1, 2, . . . , cj; l = 0, 1, . . . , nijk (cj is the number of
rams in the jth line, and nijk is the number of lambs that are the offspring
of the kth sire in the jth population line of a dam belonging to the ith age
category), where α(i) is the effect of the ith age, β(j) is the effect of the jth line,
δj(k) is the effect of the kth sire within the jth population line, and Yijkl denotes
the weight at birth of the lth of those lambs that are the offspring of the kth
sire in the jth population line and of a dam belonging to the ith age category.

Note that (11.48) represents a submodel of the full model for the popula-
tion structure [(i)(j : k)] : l. The age and line effects are considered fixed, but
the sire effect (nested within population line) is assumed to be random and

distributed as N
(

0, σ2
δ(β)

)
, independently of the εijk(l)’s, which are assumed

to be mutually independent and have the N
(
0, σ2

ε

)
distribution. The SAS

statements needed to obtain the ML and REML estimates of σ2
δ(β)

and σ2
ε are

DATA;
INPUT A B C Y;

CARDS;
(enter here the data from Table 11.5)

PROC MIXED METHOD = ML;
CLASS A B C;

MODEL Y = A B;
RANDOM C(B);

RUN;
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TABLE 11.6
ML and REML Estimates
Variance Component ML REML

σ2
δ(β)

0 0.5171
σ2

ε 2.9441 2.9616

Recall that for REML estimation, “METHOD = ML” can be either dropped
or changed to “METHOD = REML.” The corresponding ML and REML esti-
mates of σ2

δ(β)
and σ2

ε are displayed in Table 11.6.
By comparison, ANOVA’s Method III estimates of σ2

δ(β)
and σ2

ε are
σ̂2

δ(β)
= 0.7676 and σ̂2

ε = 2.7631.

11.2 Estimation of Estimable Linear Functions

Using model (11.19), the mean response vector is
E(Y) = X∗ g, (11.49)

and the variance–covariance matrix, Σ, of Y is given by (11.20). Let λ′g be an
estimable linear function of g. Its best linear unbiased estimator (BLUE) is

λ′ĝ = λ′ (X′∗Σ−1X∗
)−

X′∗Σ−1Y. (11.50)

This is called the generalized least-squares estimator (GLSE) of λ′g (see Section
6.3). It is easy to show that the variance of λ′ĝ is of the form

Var(λ′ĝ) = λ′ (X′∗Σ−1X∗
)−

λ. (11.51)

Formulas (11.50) and (11.51) require knowledge of Σ. In general, however,
Σ is unknown since it depends on the unknown variance components,
σ2

ν−p+1, σ2
ν−p+2, . . . , σ2

ν+1. It is therefore necessary to first estimate the vari-
ance components using either their ML or REML estimators. For example,
if in (11.50) we were to replace the variance components with their REML
estimators, σ̃2

ri (i = ν−p+1, ν−p+2, . . . , ν+1), we get the so-called estimated
generalized least-squares estimator (EGLSE) of λ′g, denoted by λ′g̃r, which is of
the form,

λ′g̃r = λ′ (X′∗Σ̃
−1
r X∗

)−
X′∗Σ̃

−1
r Y, (11.52)

where Σ̃r is given by (11.35). A comparable estimator of λ′g can be obtained by
using ML estimators of σ2

ν−p+1, σ2
ν−p+2, . . . , σ2

ν+1 in place of their REML esti-
mators in (11.50). Using (11.51), an approximate expression for the variance
of λ′g̃r is

Var(λ′g̃r) ≈ λ′ (X′∗Σ̃
−1
r X∗

)−
λ. (11.53)
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It should be noted that λ′g̃r is no longer the BLUE of λ′g since Σ̃r is random
and is therefore not equal to the true fixed value of Σ. Furthermore, the right-
hand side of (11.53) is an estimate of Var(λ′ĝ) in (11.51), but is not an estimate
of the true value of Var(λ′g̃r).

Kackar and Harville (1981) proved an interesting result concerning unbi-
asedness of the EGLSE of λ′g. Before giving details of the proof of this result,
let λ′g∗ denote an estimator of λ′g derived by replacing the variance com-
ponents in (11.50) by their corresponding estimators, which can be of the
ANOVA, ML, or REML types, or any other “suitable” estimators. By a “suit-
able estimator” we mean an estimator that is even and translation invariant.
By definition, a statistic S(Y) is an even function of Y if S(−Y) = S(Y) for all Y.
Also, S(Y) is said to be translation invariant if S(Y − X∗ ξ) = S(Y) for all Y and
any constant vector ξ.

Theorem 11.1 (Kackar and Harville, 1981) Let σ2 =
(
σ2

ν−p+1, σ2
ν−p+2, . . . ,

σ2
ν+1

)′
, and σ∗2(Y) be an estimator of σ2 whose elements are translation

invariant and even functions of Y. Suppose that λ′g∗ is an estimator of λ′g
obtained by using σ∗2(Y) in place of σ2 in (11.50). Then, λ′g∗ is an unbiased
estimator of λ′g provided that the expected value of λ′g∗ is finite.

The proof of Theorem 11.1 depends on the following lemma.

Lemma 11.3 (Kackar and Harville, 1981) If Z is a random vector with a
symmetric distribution around zero in the sense that Z and −Z are identically
distributed, and if f (Z) is a random variable that is an odd function of Z, that
is, f (−Z) = −f (Z), then f (Z) has a symmetric distribution around zero.

Proof. Let x be any real number. Then,

P[f (Z) ≥ x] = P[−f (Z) ≤ −x]
= P[f (−Z) ≤ −x]. (11.54)

Since Z and −Z are identically distributed, f (Z) and f (−Z) are also identically
distributed. Hence,

P[f (−Z) ≤ −x] = P[f (Z) ≤ −x]
= P[f (−Z) ≥ x]. (11.55)

From (11.54) and (11.55) we conclude that

P[f (Z) ≥ x] = P[f (−Z) ≥ x]
= P[−f (Z) ≥ x].

This means that f (Z) and −f (Z) are identically distributed.

Proof of Theorem 11.1 We need to show that E(λ′g∗) = λ′g. Since λ′g is
estimable, we can write λ′ = r′X∗ for some vector r. We have that

λ′g∗ − λ′g = r′X∗
(

X′∗Σ∗−1X∗
)−

X′∗Σ∗−1Y − r′X∗ g,
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where Σ∗ is obtained from (11.20) by replacing σ2 with σ∗2(Y). But,

X∗
(

X′∗Σ∗−1X∗
)−

X′∗Σ∗−1X∗ = X∗,

since it is known that

Σ∗−1/2X∗
(

X′∗Σ∗−1X∗
)−

X′∗Σ∗−1X∗ = Σ∗−1/2X∗.

Hence,

λ′g∗ − λ′g = r′X∗
(

X′∗Σ∗−1X∗
)−

X′∗Σ∗−1(Y − X∗ g)

= r′X∗
(

X′∗Σ∗−1X∗
)−

X′∗Σ∗−1(H∗ β∗), (11.56)

where H∗ β∗ = ∑ν+1
i=ν−p+1 Hiβi. Now, since σ∗2(Y) is even and translation

invariant, then

σ∗2(Y) = σ∗2(Y − X∗ g)

= σ∗2(H∗ β∗)
= σ∗2(−H∗ β∗).

From (11.56) it follows that λ′g∗ − λ′g is an odd function of β∗. But, by
assumption, β∗ is normally distributed with a zero mean vector, hence it
is symmetrically distributed around zero. Consequently, by Lemma 11.3,
λ′g∗ − λ′g has a distribution that is symmetrically distributed around zero.
Hence, if E(λ′g∗) is finite, then E(λ′g∗ − λ′g) = 0, that is, E(λ′g∗) = λ′g.

All three procedures for estimating variance components (Henderson’s
Method III, ML, and REML), as described in Section 11.1, yield even and
translation invariant estimators (see Kackar and Harville, 1981). Thus, the
EGLSE, λ′g̃r, in (11.52) is an unbiased estimator of λ′g. The same is true if ML
is used instead of REML.

Recall that the expression in (11.53) is just an approximation that pro-
vides a measure of precision for λ′g̃r. More specifically, it is an estimate of

λ′ (X′∗Σ−1X∗
)−

λ, which is regarded as the variance–covariance matrix of

the asymptotic limiting distribution of λ′g̃r as the number of observations,
n, goes to infinity. In small samples, however, the expression in (11.53) may
not provide a good approximation for Var(λ′g̃r). Kackar and Harville (1984)
proposed an alternative, and a generally more satisfactory, approximation
for Var(λ′g̃r) given by

Var(λ′g̃r) ≈ λ′ (X′∗Σ−1X∗
)−

λ + λ′T∗λ, (11.57)
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where

T∗ =
(

X′∗Σ−1X∗
)−
⎧
⎨

⎩

ν+1∑

i=ν−p+1

ν+1∑

j=ν−p+1

ωij

[
Gij − Fi

(
X′∗Σ−1X∗

)−
Fj

]⎫⎬

⎭

×
(

X′∗Σ−1X∗
)−

(11.58)

Gij = X′∗Σ−1AiΣ
−1AjΣ

−1X∗, i, j = ν − p + 1, ν − p + 2, . . . , ν + 1 (11.59)

Fi = −X′∗Σ−1AiΣ
−1X∗, i = ν − p + 1, ν − p + 2, . . . , ν + 1, (11.60)

and ωij is the (i, j)th element of the asymptotic variance–covariance matrix of
σ̃2

r , the vector of REML estimators of the σ2
i ’s (i = ν−p+1, ν−p+2, . . . , ν+1),

which is given in (11.46). [If σ̃2, the vector of ML estimators of the variance
components, is used in place of σ̃2

r to obtain the EGLSE of λ′g, then the
asymptotic variance - covariance matrix of σ̃2 given in formula (11.30) should
be used instead of (11.46)]. The expression in (11.57) was also reported in
McCulloch and Searle (2001, p. 165).

An alternative expression for λ′T∗λ in (11.57) is obtained as follows: let

τ′ = λ′ (X′∗Σ−1X∗
)−

X′∗Σ−1. Using (11.59) and (11.60) in (11.58) we get

λ′T∗λ =
ν+1∑

i=ν−p+1

ν+1∑

j=ν−p+1

ωij τ
′[AiΣ

−1Aj

− AiΣ
−1X∗

(
X′∗Σ−1X∗

)−
X′∗Σ−1Aj]τ

=
ν+1∑

i=ν−p+1

ν+1∑

j=ν−p+1

ωij τ
′AiPAjτ

= tr(ΩV), (11.61)

where P is the matrix defined in (11.37), Ω = (ωij), and V is the matrix whose
(i, j)th element is τ′AiPAjτ. Using (11.61) in (11.57) we get the expression

Var(λ′g̃r) ≈ λ′ (X′∗Σ−1X∗
)−

λ + tr(ΩV). (11.62)

This approximation of Var(λ′g̃r) is the one derived by Kackar and Harville
(1984, p. 854) and is also reported in McCulloch and Searle (2001, p. 166).
Obviously, an estimate of Σ must be used in (11.62) in order to obtain
an approximate computable expression for Var(λ′g̃r). Kackar and Harville
(1984) indicated that tr(ΩV) in (11.62) is nonnegative, which implies

that λ′ (X′∗Σ−1X∗
)−

λ represents a lower bound for Var(λ′g̃r), that is,

λ′ (X′∗Σ−1X∗
)−

λ underestimates the variance of λ′g̃r.
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Kenward and Roger (1997, Section 2) noted that λ′ (X′∗Σ̃
−1
r X∗

)−
λ, where

Σ̃r is given in (11.35), is a biased estimator of λ′ (X′∗Σ−1X∗
)−

λ. Using a

second-order Taylor’s series expansion of λ′ (X′∗Σ̃
−1
r X∗

)−
λ around σ2, the

vector of true variance components, it was established that

E
[
λ′ (X′∗Σ̃

−1
r X∗

)−
λ

]
≈ λ′ (X′∗Σ−1X∗

)−
λ − λ′T∗λ. (11.63)

Hence, an approximate unbiased estimator for the right-hand side of (11.57)

is given by λ′ (X′∗Σ̃
−1
r X∗

)−
λ + 2λ′T∗λ. An estimate of Σ can then be used in

T∗ in order to obtain a computable expression for this estimator.
In Sections 11.3 through 11.8, we concentrate on the study of tests and

confidence intervals concerning the parameters of some unbalanced random
or mixed models. Unlike balanced models, the analysis of unbalanced models
can be quite complicated. This is due to the lack of a unique ANOVA table
in the unbalanced case, as was stated earlier in Chapter 10. Furthermore,
the sums of squares in an unbalanced ANOVA table are not, in general,
independent or distributed as scaled chi-squared variates under the usual
assumptions of normality, independence, and equality of variances of the
individual random effects. As a result, there are no general procedures for
deriving, for example, exact tests or confidence intervals concerning variance
components or estimable linear functions of the fixed effects in an unbalanced
mixed model situation. There are, however, certain techniques that apply to
particular models. For example, the analysis of the random one-way model
is discussed in Section 11.3. The random and mixed two-way models are
considered in Sections 11.4 and 11.6, respectively. Sections 11.7 and 11.8 deal
with the random and mixed two-fold nested models, respectively. These are
not the only models for which tests and confidence intervals can be derived.
However, they do provide good examples that illustrate how inference mak-
ing is carried out in the case of unbalanced models with random effects.
Extensions to higher-order random models are discussed in Section 11.5, and
in Section 11.9, a review is given of some approximate tests for the general
mixed model.

11.3 Inference Concerning the Random One-Way Model

Consider the unbalanced random one-way model,

Yij = μ + α(i) + εi(j), i = 1, 2, . . . , k; j = 1, 2, . . . , ni, (11.64)

where α(i) and εi(j) are independently distributed as normal variates with
zero means and variances σ2

α and σ2
ε, respectively. The objective here is to
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derive a test concerning the hypothesis, H0 : σ2
α = 0, and to obtain confidence

intervals on σ2
α and σ2

α/σ2
ε.

Taking the average of Yij over j, we get

Ȳi. = μ + α(i) + ε̄i., i = 1, 2, . . . , k, (11.65)

where Ȳi. = 1
ni

∑ni
j=1 Yij, ε̄i. = 1

ni

∑ni
j=1 εi(j). Formula (11.65) can be written in

vector form as

Ȳ = μ1k + α + ε̄, (11.66)

where Ȳ, α, and ε̄ are vectors whose elements are Ȳi., α(i), and ε̄i. (i =
1, 2, . . . , k), respectively. The variance–covariance matrix of Ȳ is

Var(Ȳ) = σ2
αIk + σ2

εB, (11.67)

where

B = diag
(

1
n1

,
1
n2

, . . . ,
1
nk

)
.

Let now P1 be a matrix of order (k − 1) × k such that
[

1√
k
1k : P′

1

]′
is an

orthogonal matrix of order k × k (the choice of P1 is not unique). Hence,
the rows of P1 form an orthonormal basis for the orthogonal complement
of 1k in the k-dimensional Euclidean space. Let U = P1Ȳ. Then, U is nor-
mally distributed with a mean equal to 0 and a variance–covariance matrix
given by

Var(U) = P1

(
σ2

αIk + σ2
εB
)

P′
1

= σ2
αIk−1 + σ2

εL1, (11.68)

where L1 = P1BP′
1. The unweighted sum of squares, SSu, corresponding to α(i)

in model (11.64) is defined as

SSu = n̄h

k∑

i=1

(Ȳi. − Ȳ∗)2, (11.69)

where Ȳ∗ = 1
k
∑k

i=1 Ȳi. and n̄h is the harmonic mean of the ni’s, namely,

n̄h = k

⎛

⎝
k∑

i=1

1
ni

⎞

⎠
−1

.

Using (11.69), SSu can be written as

SSu = n̄hȲ ′
(

Ik − 1
k

Jk

)
Ȳ

= n̄hU′U, (11.70)
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since Ik − 1
k Jk = P′

1P1, where Jk is the matrix of ones of order k × k. Thus, U′U
is invariant to the choice of P1. Since U ∼ N

(
0, σ2

αIk−1 + σ2
εL1

)
, the random

variable,

Xu = U′ (σ2
αIk−1 + σ2

εL1

)−1
U, (11.71)

has the chi-squared distribution with k − 1 degrees of freedom.
Thomas and Hultquist (1978) introduced an approximation to Xu in (11.71)

given by

X̃u =
(

σ2
α + 1

n̄h
σ2

ε

)−1

U′U. (11.72)

This approximation results from replacing B with 1
n̄h

Ik, and hence L1 in

(11.71) with 1
n̄h

Ik−1. This causes Var(U) in (11.68) to be approximately equal

to
(
σ2

α + σ2
ε

n̄h

)
Ik−1. It follows that X̃u in (11.72) is distributed approximately

as χ2
k−1. From (11.70) and (11.72) we therefore have

SSu = n̄hU′U
=

(
n̄hσ

2
α + σ2

ε

)
X̃u

∼
approx.

(
n̄hσ

2
α + σ2

ε

)
χ2

k−1.

Under H0 : σ2
α = 0, SSu

σ2
ε

is then distributed approximately as χ2
k−1. Since SSu

is also independent of the error sum of squares, SSE =∑k
i=1
∑ni

j=1(Yij − Ȳi.)
2,

then under H0,

Fu = SSu/(k − 1)

MSE
(11.73)

has approximately the F-distribution with k−1 and n. −k degrees of freedom,
where MSE = SSE/(n. − k) and n. =∑k

i=1 ni. The statistic Fu can then be used

to provide an approximate F-test for H0. Under Ha : σ2
α > 0, σ2

ε

n̄hσ
2
α+σ2

ε
Fu is

distributed approximately as Fk−1,n.−k. The power of the test statistic Fu can
therefore be obtained approximately for a given value of σ2

α/σ2
ε on the basis

of this F-distribution. The following lemma provides some justification for
using n̄h in setting up the approximate chi-squared distribution in (11.72).

Lemma 11.4 Let ‖ . ‖2 denote the Euclidean norm of a matrix (see Section
3.12). The best approximation of the matrix L1 in (11.68) with a diagonal
matrix of the form c0 Ik−1 (c0 is a positive constant), in the sense of minimizing
‖ L1 − c0 Ik−1 ‖2 with respect to c0, is achieved when c0 = 1

n̄h
.
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Proof. We have that

‖ L1 − c0 Ik−1 ‖2
2 = ‖ P1(B − c0 Ik)P

′
1 ‖2

2

= tr
[
P1(B − c0 Ik)P

′
1P1(B − c0 Ik)P

′
1
]

= tr
[
P′

1P1(B − c0 Ik)P
′
1P1(B − c0 Ik)

]

= tr
[(

Ik − 1
k

Jk

)
(B − c0 Ik)

(
Ik − 1

k
Jk

)
(B − c0 Ik)

]
.

Differentiating the right-hand side with respect to c0 and equating the deriva-
tive to zero, we get

d
dc0

‖ L1 − c0 Ik−1 ‖2
2 = −2(k − 1)

k

k∑

i=1

1
ni

+ 2c0 (k − 1)

= 0.

The solution of this equation is

c0 = 1
k

k∑

i=1

1
ni

= 1
n̄h

.

Since ‖ L1 − c0 Ik−1 ‖2
2 is a quadratic function of c0 and its second derivative

with respect to c0 is positive, the solution, c0 = 1
n̄h

, must be a point of absolute

minimum for ‖ L1 − c0 Ik−1 ‖2
2.

11.3.1 Adequacy of the Approximation

In this section, we examine the adequacy of the approximation of the dis-
tribution of X̃u in (11.72) with the chi-squared distribution. Since U ∼
N
(
0, σ2

αIk−1 + σ2
εL1

)
, the exact distribution of X̃u can be determined by using

Davies’ (1980) algorithm (see Section 5.6). More specifically, X̃u can be written
as a linear combination of independent central chi-squared random variables
of the form

X̃u =
s∑

i=1

θ̃i χ
2
νi

, (11.74)
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where the θ̃i’s are the distinct nonzero eigenvalues of

1

σ2
α + σ2

ε
n̄h

Var(U) = 1

σ2
α + σ2

ε
n̄h

(
σ2

αIk−1 + σ2
εL1

)

= 1

σ2
α + σ2

ε
n̄h

[(
σ2

α + σ2
ε

n̄h

)
Ik−1 + σ2

ε

(
L1 − 1

n̄h
Ik−1

)]

= Ik−1 + σ2
ε

σ2
α + σ2

ε
n̄h

(
L1 − 1

n̄h
Ik−1

)
, (11.75)

and νi is the multiplicity of θ̃i (i = 1, 2, . . . , s) such that
∑s

i=1 νi = k − 1.
Note that θ̃i > 0 for i = 1, 2, . . . , s. Let τ̃i denote the ith eigenvalue of
(
σ2

α + σ2
ε

n̄h

)−1
(L1 − 1

n̄h
Ik−1). Then,

τ̃i =
(

σ2
α + σ2

ε

n̄h

)−1 (
λ̃i − 1

n̄h

)
, i = 1, 2, . . . , k − 1, (11.76)

where λ̃i = ith eigenvalue of L1 (i = 1, 2, . . . , k − 1). Since L1 = P1BP′
1

is positive definite, λ̃i > 0 for all i. Note that the λ̃i’s are invariant to
the choice of the matrix P1 since they are equal to the nonzero eigen-
values of BP′

1P1 = B(Ik − 1
k Jk), or, equivalently, the symmetric matrix

(Ik− 1
k Jk)B(Ik− 1

k Jk). Furthermore, from (11.75), if κ̃i denotes the ith eigenvalue

of
(
σ2

α + σ2
ε

n̄h

)−1
Var(U), then

κ̃i = 1 + σ2
ε τ̃i, i = 1, 2, . . . , k − 1. (11.77)

Thus, the θ̃i’s in (11.74) are the distinct values of the κ̃i’s whose average value
is equal to one. This follows from Equations 11.76 and 11.77, namely,

1
k − 1

k−1∑

i=1

κ̃i = 1 + σ2
ε

σ2
α + σ2

ε
n̄h

⎛

⎝ 1
k − 1

k−1∑

i=1

λ̃i − 1
n̄h

⎞

⎠

= 1, (11.78)

since

1
k − 1

k−1∑

i=1

λ̃i = 1
k − 1

tr[B(Ik − 1
k

Jk)]

= 1
k − 1

[
tr(B) − 1

k
1′

kB1k

]
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= 1
k − 1

⎡

⎣
k∑

i=1

1
ni

− 1
k

k∑

i=1

1
ni

⎤

⎦

= 1
k

k∑

i=1

1
ni

= 1
n̄h

.

From (11.78) it follows that the approximation of the distribution of X̃u with
χ2

k−1, as proposed by Thomas and Hultquist (1978), results from formula

(11.74) by replacing all the θ̃i’s by their weighted average, 1
k−1

∑k−1
i=1 κ̃i, which

is equal to one. Thus, the closer the τ̃i’s in (11.77) are to zero, that is, the closer
the λ̃i’s are to 1

n̄h
[see formula (11.76)], the better the approximation. Note that

for all values of i,

min
j

{κ̃j} ≤ θ̃i ≤ max
j

{κ̃j}, (11.79)

where from (11.76) and (11.77),

min
j

{κ̃j} = 1 + σ2
ε

σ2
α + σ2

ε
n̄h

[
λ̃(k−1) − 1

n̄h

]

= σ2
α + λ̃(k−1)σ

2
ε

σ2
α + σ2

ε
n̄h

max
j

{κ̃j} = 1 + σ2
ε

σ2
α + σ2

ε
n̄h

[
λ̃(1) − 1

n̄h

]

= σ2
α + λ̃(1)σ

2
ε

σ2
α + σ2

ε
n̄h

,

and λ̃(1) and λ̃(k−1) are, respectively, the largest and the smallest of the λ̃i’s
(i = 1, 2, . . . , k − 1). From (11.79) and the fact that the weighted average of the
θ̃i’s is one, we get

σ2
α + λ̃(k−1)σ

2
ε

σ2
α + σ2

ε
n̄h

≤ 1 ≤ σ2
α + λ̃(1)σ

2
ε

σ2
α + σ2

ε
n̄h

. (11.80)

Since λ̃(1) ≤ 1
n(k)

and λ̃(k−1) ≥ 1
n(1)

, where n(1) and n(k) are, respectively, the
largest and the smallest of the ni’s (i = 1, 2, . . . , k), we conclude that

σ2
α + σ2

ε
n(1)

σ2
α + σ2

ε
n̄h

≤ 1 ≤
σ2

α + σ2
ε

n(k)

σ2
α + σ2

ε
n̄h

. (11.81)
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Thus, the closer the upper and lower bounds in (11.80) are to each other,
the better the approximation of the distribution of X̃u with χ2

k−1. On the
basis of (11.81), this occurs when the data set is nearly balanced (in this
case, n(1) ≈ n(k) ≈ n̄h), or when σ2

α/σ2
ε is large. The same observation was

made by Thomas and Hultquist (1978). The adequacy of this approximation
was assessed by Khuri (2002) using graphical techniques based on the ideas
presented in this section.

11.3.2 Confidence Intervals on σ2
α and σ2

α/σ2
ε

An approximate confidence interval on σ2
α/σ2

ε can be easily obtained by using

the fact that σ2
ε

n̄hσ
2
α+σ2

ε
Fu is approximately distributed as Fk−1,n.−k, where Fu is

given by (11.73). We thus have

F1− α
2 ,k−1,n.−k ≤

(
n̄h

σ2
α

σ2
ε

+ 1

)−1

Fu ≤ F α
2 ,k−1,n.−k

with a probability approximately equal to 1 − α. Hence, an approximate
(1 − α)100% confidence interval on σ2

α/σ2
ε is given by

1
n̄h

[
Fu

F α
2

− 1

]
≤ σ2

α

σ2
ε

≤ 1
n̄h

[
Fu

F1− α
2

− 1

]
. (11.82)

A confidence interval for σ2
α can be formed by modifying the interval for

σ2
α in the balanced case. Using this approach, Thomas and Hultquist (1978)

developed the following approximate (1 −α)100% confidence interval on σ2
α

on the basis of the so-called Williams–Tukey formula [see Williams (1962) and
Boardman (1974 )]:

1

n̄hχ
2
α
2 ,k−1

[
SSu − (k − 1)MSEF α

2 ,k−1,n.−k

]
≤ σ2

α

≤ 1

n̄hχ
2
1− α

2 ,k−1

[
SSu − (k − 1)MSEF1− α

2 ,k−1,n.−k

]
.

(11.83)

Other approximate confidence intervals on σ2
α are also available. A compar-

ison of the coverage probabilities of these intervals was made by Lee and
Khuri (2002) using Monte Carlo simulation. It was reported that the approx-
imation associated with the interval in (11.83) was adequate, except in cases
where σ2

α/σ2
ε was small (less than 0.25) and the design was extremely unbal-

anced. With the exclusion of these cases, the interval in (11.83) maintained its
coverage probabilities at levels close to the nominal value.
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11.4 Inference Concerning the Random Two-Way Model

In this section, we discuss the analysis concerning a random two-way model
with interaction of the form

Yijk = μ + α(i) + β(j) + (αβ)(ij) + εij(k),

i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , nij, (11.84)

where α(i), β(j), (αβ)(ij), and εij(k) are independently distributed as N(0, σ2
α),

N
(

0, σ2
β

)
, N(0, σ2

αβ), and N
(
0, σ2

ε

)
, respectively. Note that the data set is

assumed to contain no empty cells. Of interest here is the testing of hypotheses
concerning σ2

α, σ2
β, and σ2

αβ, in addition to setting up confidence intervals
concerning these variance components.

11.4.1 Approximate Tests Based on the Method
of Unweighted Means

We recall that the method of unweighted means (MUM) was used in Section
10.6 to provide approximate tests concerning the parameters of a fixed-effects
two-way model. We now consider applying this method to the same model,
but with the added assumption that the model’s effects are all assumed to be
randomly distributed.

Consider again the unweighted sums of squares (USSs) described in
(10.85), (10.86), (10.87) corresponding to factors A, B, and their interaction
A ∗ B, respectively. A display of these expressions is shown again for conve-
nience.

SSAu = n̄h b
a∑

i=1

(X̄i. − X̄..)
2 (11.85)

SSBu = n̄h a
b∑

j=1

(X̄.j − X̄..)
2 (11.86)

SSABu = n̄h

a∑

i=1

b∑

j=1

(Xij − X̄i. − X̄.j + X̄..)
2, (11.87)

where Xij = Ȳij. and n̄h is the harmonic mean of the cell frequencies, namely,

n̄h = ab

⎡

⎣
a∑

i=1

b∑

j=1

1
nij

⎤

⎦
−1

. (11.88)
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Let X̄ = (X11, X12, . . . , Xab)
′ be the vector of cell means. The variance–

covariance matrix of X̄ is given by

Var(X̄) = A1 σ2
α + A2 σ2

β + Iab σ2
αβ + K̃ σ2

ε, (11.89)

where A1 = Ia ⊗ Jb , A2 = Ja ⊗ Ib, and

K̃ = diag
(

1
n11

,
1

n12
, . . . ,

1
nab

)
. (11.90)

Note that the model,

Xij = μ + α(i) + β(j) + (αβ)(ij) + ε̄ij., i = 1, 2, . . . , a; j = 1, 2, . . . , b, (11.91)

is considered balanced with one observation, namely Xij, in the (i, j)th cell
(i = 1, 2, . . . , a; j = 1, 2, . . . , b). Hence, the rules of balanced data, as seen in
Chapter 8, can apply to model (11.91). In particular, formulas (11.85), (11.86),
and (11.87) are now expressible as

SSAu = n̄h X̄′P̃1X̄ (11.92)

SSBu = n̄h X̄′P̃2X̄ (11.93)

SSABu = n̄h X̄′P̃3X̄, (11.94)

where

P̃1 = 1
b

A1 − 1
ab

A0 (11.95)

P̃2 = 1
a

A2 − 1
ab

A0 (11.96)

P̃3 = A3 − 1
b

A1 − 1
a

A2 + 1
ab

A0, (11.97)

and A0 = Ja ⊗ Jb, A3 = Ia ⊗ Ib. An application of formula (8.20) in this
case gives

AjP̃i = κ̃ij P̃i, i, j = 0, 1, 2, 3, (11.98)

where P̃0 = 1
ab A0 and κ̃ij is a scalar [see formula (8.21)]. Note that P̃i is

idempotent for i = 0, 1, 2, 3 and P̃iP̃j = 0 for all i = j.
Let Q̃ be an orthogonal matrix that simultaneously diagonalizes both

A1 and A2 (this matrix exists by Theorem 3.9 since A1A2 = A2A1). The
actual construction of Q̃ is given in Appendix 11.A where it is shown that
Q̃ = [Q̃′

10 : Q̃
′
11 : Q̃

′
12 : Q̃

′
13]′

so that Q̃10 = 1√
ab

1′
ab and the rows of Q̃1i are

orthonormal and span the row space of P̃i (i = 1, 2, 3). Now let Z̃ = Q̃X̄,

which correspondingly can be partitioned as
(

Z1, Z′
α, Z′

β, Z′
αβ

)′
, where



André I. Khuri/Linear Model Methodology C4819_C011 Finals Page 382 2009-9-14

382 Linear Model Methodology

Z1 = Q̃10X̄, Zα = Q̃11X̄, Zβ = Q̃12X̄, Zαβ = Q̃13X̄. In addition, let Ũ = Q̃1X̄,

where Q̃1 =
[
Q̃

′
11 : Q̃

′
12 : Q̃

′
13

]′
. Thus, Ũ =

(
Z′

α, Z′
β, Z′

αβ

)′
, which is normally

distributed with a zero mean and a variance–covariance matrix given by

Var(Ũ) = Q̃1

[
A1 σ2

α + A2 σ2
β + Iab σ2

αβ + K̃ σ2
ε

]
Q̃

′
1

= σ2
α Q̃1

[
A1Q̃

′
11 : A1Q̃

′
12 : A1Q̃

′
13

]
+ σ2

β Q̃1

[
A2Q̃

′
11 : A2Q̃

′
12 : A2Q̃

′
13

]

+ σ2
αβ Iab−1 + σ2

ε Q̃1K̃Q̃
′
1

= σ2
α Q̃1

[
κ̃11 Q̃

′
11 : κ̃21 Q̃

′
12 : κ̃31 Q̃

′
13

]

+ σ2
β Q̃1

[
κ̃12 Q̃

′
11 : κ̃22 Q̃

′
12 : κ̃32 Q̃

′
13

]

+ σ2
αβ Iab−1 + σ2

ε L̃ (see Appendix 11.A)

= σ2
α Q̃1

[
b Q̃

′
11 : 0 : 0

]
+ σ2

β Q̃1

[
0 : a Q̃

′
12 : 0

]
+ σ2

αβ Iab−1 + σ2
ε L̃

= diag
(
δ1 Ia−1, δ2 Ib−1, δ3 I(a−1)(b−1)

)+ σ2
ε L̃, (11.99)

as can be seen from applying properties (i), (ii), and (iii) in Appendix 11.A
and the fact that κ̃11 = b, κ̃21 = κ̃31 = 0, κ̃12 = 0, κ̃22 = a, κ̃32 = 0 [see formula
(8.21)], where L̃ = Q̃1K̃Q̃

′
1, δ1 = b σ2

α +σ2
αβ, δ2 = a σ2

β +σ2
αβ, δ3 = σ2

αβ. Note

that L̃ is not diagonal unless the diagonal elements of K̃ are equal. This only
occurs when the data set is balanced.

As in Lemma 11.4, it can be shown that the best approximation (in terms
of the Euclidean norm) of L̃ with a diagonal matrix of the form c̃ Iab−1 is
achieved when c̃ = 1

n̄h
, where n̄h is the harmonic mean in (11.88). Using this

fact, Var(Ũ) in (11.99) is approximately equal to

Var(Ũ) ≈ diag(δ1 Ia−1, δ2 Ib−1, δ3 I(a−1)(b−1)) + σ2
ε

n̄h
Iab−1. (11.100)

This implies that Zα, Zβ, Zαβ are approximately mutually independent
and that

Var(Zα) ≈ δ1 + σ2
ε

n̄h
(11.101)

Var(Zβ) ≈ δ2 + σ2
ε

n̄h
(11.102)

Var(Zαβ) ≈ δ3 + σ2
ε

n̄h
. (11.103)

Lemma 11.5 The USSs in (11.85), (11.86), and (11.87) are equal to n̄h Z′
αZα,

n̄h Z′
βZβ, and n̄hZ′

αβZαβ, respectively.
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Proof. From Appendix 11.A we have Q̃1i = V iP̃i for some matrix V i, i =
0, 1, 2, 3. Hence, P̃iQ̃

′
1i = P̃iP̃iV ′

i = P̃iV ′
i = Q̃

′
1i since P̃i is idempotent

(i = 0, 1, 2, 3). It follows that the columns of Q̃
′
1i (or the rows of Q̃1i) are

orthonormal eigenvectors of P̃i corresponding to the eigenvalue 1. Hence, we
can write

P̃i = Q̃
′
1iQ̃1i, i = 0, 1, 2, 3. (11.104)

It follows from (11.92), (11.93), and (11.94) that

n̄h Z′
αZα = n̄h X̄′Q̃′

11Q̃11X̄

= n̄h X̄′P̃1X̄

= SSAu.

We can similarly show that n̄h Z′
βZβ = SSBu, n̄h Z′

αβZαβ = SSABu.

On the basis of Lemma 11.5 and formulas (11.101), (11.102), and (11.103),
we conclude that

Z′
αZα

δ1 + σ2
ε

n̄h

= SSAu

n̄h δ1 + σ2
ε

Z′
βZβ

δ2 + σ2
ε

n̄h

= SSBu

n̄h δ2 + σ2
ε

Z′
αβZαβ

δ3 + σ2
ε

n̄h

= SSABu

n̄h δ3 + σ2
ε

are approximately distributed as mutually independent chi-squared variates
with a − 1, b − 1, and (a − 1)(b − 1) degrees of freedom, respectively. This
is similar to a balanced data situation with SSAu, SSBu, and SSABu acting as
balanced ANOVA sums of squares and n̄h being treated like n, the common
cell frequency for a balanced data set. It follows that

Fα = SSAu/(a − 1)

SSABu/(a − 1)(b − 1)
(11.105)

can be used to test the hypothesis, H0 : σ2
α = 0. Under H0, Fα has an approxi-

mate F-distribution with a−1 and (a−1)(b−1) degrees of freedom. Similarly,
to test H0 : σ2

β = 0, we can use

Fβ = SSBu/(b − 1)

SSABu/(a − 1)(b − 1)
, (11.106)
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which under H0 has the approximate F-distribution with b−1 and (a−1)(b−1)

degrees of freedom. In addition, the interaction hypothesis, H0 : σ2
αβ = 0,

can be tested by using the statistic

Fαβ = SSABu/(a − 1)(b − 1)

SSE/(n.. − ab)
, (11.107)

where SSE is the error sum of squares,

SSE =
a∑

i=1

b∑

j=1

nij∑

k=1

(Yijk − Ȳij.)
2.

Under H0, Fαβ has the approximate F-distribution with (a − 1)(b − 1) and
n.. − ab degrees of freedom.

Approximate confidence intervals on continuous functions of σ2
α, σ2

β,
σ2

αβ, and σ2
ε can be easily derived by modifying the methodology presented in

Section 8.7 for balanced models. Here, we treat SSAu, SSBu, SSABu as mutually
independent scaled chi-squared variates, which are independent of SSE, and
use n̄h in place of n, the common cell frequency in a balanced data situation.

11.4.1.1 Adequacy of the Approximation

As was done earlier in Section 11.3.1, the adequacy of the approximate dis-
tributional properties concerning the USSs is examined here.

Let the right-hand side of the expression in (11.100) be denoted by W.
Thus,

W = diag(δ1 Ia−1, δ2 Ib−1, δ3 I(a−1)(b−1)) + σ2
ε

n̄h
Iab−1. (11.108)

The properties of approximate mutual independence and chi-squaredness of
SSAu, SSBu, and SSABu hold exactly if and only if Ũ

′
W−1Ũ, which is equal to

Ũ
′
W−1Ũ = SSAu

n̄h δ1 + σ2
ε

+ SSBu

n̄h δ2 + σ2
ε

+ SSABu

n̄h δ3 + σ2
ε

,

is distributed as a chi-squared variate (see Exercise 11.4). This amounts to
requiring that Γw = W−1Var(Ũ) be idempotent, that is, its nonzero eigenval-
ues be equal to 1 (recall Theorem 5.4). Using (11.99) and (11.108), Γw can be
written as

Γw = W−1
[

W + (L̃ − 1
n̄h

Iab−1)σ2
ε

]
.

The nonzero eigenvalues of Γw are the same as those of the matrix

Γ∗
w = W−1/2

[
W + (L̃ − 1

n̄h
Iab−1)σ2

ε

]
W−1/2

= Iab−1 + Δ σ2
ε, (11.109)
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where

Δ = W−1/2(L̃ − 1
n̄h

Iab−1)W
−1/2. (11.110)

Hence, for an adequate approximation, the eigenvalues of Δ must be close
to zero. We therefore require maxi | τ∗

i | to be small, where τ∗
i is the ith

eigenvalue of Δ (i = 1, 2, . . . , ab − 1). The following lemma gives an upper
bound on maxi | τ∗

i |. The proof of this lemma can be found in Khuri (1998,
Lemma 3).

Lemma 11.6

max
i

| τ∗
i | ≤ n̄h

n̄h σ2
αβ + σ2

ε

max
{∣∣∣∣

1
nmax

− 1
n̄h

∣∣∣∣ ,
(

1
nmin

− 1
n̄h

)}
, (11.111)

where nmin and nmax are, respectively, the smallest and the largest of the nij’s.

The upper bound in (11.111) serves as a measure to assess the adequacy of
the approximation associated with the distributions of the USSs. Small values
of this upper bound indicate an adequate approximation. This occurs when
σ2

αβ

σ2
ε

is large, or when the data set is nearly balanced, since when nij = n,
nmax = nmin = n̄h = n, and the upper bound is equal to zero. It is interesting
to note that the upper bound depends on σ2

αβ and σ2
ε, but does not depend

on σ2
α and σ2

β.
The closeness of the upper bound in (11.111) to the actual value of maxi

| τ∗
i | was evaluated numerically by Khuri (1998). The following observations

were noted concerning maxi | τ∗
i |:

(a) It is sensitive to changes in the values of σ2
αβ. It decreases as σ2

αβ

increases. However, it is less sensitive to changes in σ2
α and σ2

β.

(b) It remains fairly stable across a wide spectrum of unbalanced data
situations. Its value drops significantly when the data set is nearly
balanced.

(c) It is small when
σ2

αβ

σ2
ε

is large under varying degrees of data imbalance.

(d) It is fairly close to the upper bound value in (11.111), especially when the
data set is nearly balanced. This upper bound is therefore an efficient
measure of adequacy of the USSs as approximate balanced ANOVA
sums of squares.

11.4.2 Exact Tests

We now show how to obtain exact tests concerning the variance components,
σ2

α, σ2
β, σ2

αβ. The test regarding σ2
αβ was developed by Thomsen (1975), and

earlier by Spjøtvoll (1968) using a similar approach. The tests concerning σ2
α

and σ2
β were developed by Khuri and Littell (1987).
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Let us again consider X̄ = (X11, X12, . . . , Xab)
′, the vector of cell means, and

the vector Ũ =
(

Z′
α, Z′

β, Z′
αβ

)′
whose variance–covariance matrix is given

in (11.99). The vectors, Zα, Zβ, and Zαβ are normally distributed with zero
means and variance–covariance matrices of the form

Var(Zα) =
(

b σ2
α + σ2

αβ

)
Ia−1 + σ2

ε L̃1 (11.112)

Var(Zβ) =
(

a σ2
β + σ2

αβ

)
Ib−1 + σ2

ε L̃2 (11.113)

Var(Zαβ) = σ2
αβ I(a−1)(b−1) + σ2

ε L̃3, (11.114)

where L̃1 = Q̃11K̃Q̃
′
11, L̃2 = Q̃12K̃Q̃

′
12, and L̃3 = Q̃13K̃Q̃

′
13.

11.4.2.1 Exact Test Concerning H0 : σ2
αβ = 0 (Thomsen, 1975)

Using (11.114) we can write

1
σ2

ε

Z′
αβ(Δαβ I(a−1)(b−1) + L̃3)

−1Zαβ ∼ χ2
(a−1)(b−1),

where Δαβ = σ2
αβ

σ2
ε

. It follows that

F(Δαβ) = Z′
αβ(Δαβ I(a−1)(b−1) + L̃3)

−1Zαβ/[(a − 1)(b − 1)]
SSE/(n.. − ab)

(11.115)

has the F-distribution with (a − 1)(b − 1) and n.. − ab degrees of freedom,
where SSE is the error sum of squares for model (11.84). Under H0 : Δαβ = 0
(i.e., σ2

αβ = 0),

F(0) = Z′
αβL̃

−1
3 Zαβ/[(a − 1)(b − 1)]

SSE/(n.. − ab)
(11.116)

has the F-distribution with (a−1)(b−1) and n.. −ab degrees of freedom. Since

E
[

1
(a − 1)(b − 1)

Z′
αβL̃

−1
3 Zαβ

]

= 1
(a − 1)(b − 1)

tr
[
L̃

−1
3

(
σ2

αβ I(a−1)(b−1) + σ2
ε L̃3

)]

= σ2
ε + σ2

αβ

(a − 1)(b − 1)
tr
(

L̃
−1
3

)
,

we can reject H0 : Δαβ = 0 in favor of Ha : Δαβ > 0 at the α-level if
F(0) ≥ Fα,(a−1)(b−1),n..−ab.
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It should be noted that F(0) is invariant to the choice of the matrix Q̃13
whose rows, if we recall, are orthonormal and span the row space of P̃3 [see
formula (11.104)]. To show this, let Q∗

13 be another matrix whose rows are also
orthonormal and span the row space of P̃3. Then, there exists a nonsingular
matrix, A13, such that Q̃13 = A13 Q∗

13. It follows that

Z′
αβL̃

−1
3 Zαβ = X̄′Q̃′

13

[
Q̃13 K̃ Q̃

′
13

]−1
Q̃13X̄

= X̄′Q∗′
13 A′

13[A13 Q∗
13 K̃ Q∗′

13 A′
13]−1A13 Q∗

13X̄

= X̄′Q∗′
13

[
Q∗

13 K̃ Q∗′
13

]−1
Q∗

13X̄.

It is also interesting to note that F(0) is identical to the Type III F-ratio,

F(αβ | μ, α, β) = R(αβ | μ, α, β)

(a − 1)(b − 1)MSE
, (11.117)

which was used in Section 10.3.1 [see formula (10.52)] to test the no-interaction
hypothesis shown in (10.62) when all the effects were considered as fixed in
the model. This fact was proved in Thomsen (1975). The F-test in (11.117) is
known as a Wald’s test and is described in Seely, and El-Bassiouni (1983).

Let us now consider the power of the above test. For the alter-

native value, Δαβ = Δo
αβ (= 0), 1

σ2
ε

Z′
αβL̃

−1
3 Zαβ is distributed as

∑s∗
i=1 κ∗

i χ
2
ν∗

i
, where κ∗

1, κ∗
2, . . . , κ∗

s∗ are the distinct nonzero eigenvalues of

L̃
−1
3

(
Δo

αβ I(a−1)(b−1) + L̃3

)
with muliplicities ν∗

i (i = 1, 2, . . . , s∗) such that
∑s∗

i=1 ν∗
i = (a−1)(b−1), and the χ2

ν∗
i
’s are mutually independent chi-squared

variates (see Lemma 5.1). It follows that under Ha : Δαβ = Δo
αβ, F(0) is

distributed as ∑s∗
i=1 κ∗

i χ
2
ν∗

i
/[(a − 1)(b − 1)]

χ2
n..−ab/(n.. − ab)

,

which is basically a linear combination of F-distributed random variables. Its
power function for an α-level of significance is

P

⎡

⎣ n.. − ab

(a − 1)(b − 1)χ2
n..−ab

s∗∑

i=1

κ∗
i χ

2
ν∗

i
≥ Fα,(a−1)(b−1),n..−ab

⎤

⎦

= P

⎡

⎣ n.. − ab
(a − 1)(b − 1)

s∗∑

i=1

κ∗
i χ

2
ν∗

i
− Fα,(a−1)(b−1),n..−ab χ2

n..−ab ≥ 0

⎤

⎦, (11.118)

which can be computed using Davies’ (1980) algorithm since all the chi-
squared variates in (11.118) are mutually independent (see Section 5.6).
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Formula (11.115) can be used to obtain an exact confidence interval on

Δαβ = σ2
αβ

σ2
ε

. More specifically, we have

P[F1− α
2 ,(a−1)(b−1),n..−ab ≤ F(Δαβ) ≤ F α

2 ,(a−1)(b−1),n..−ab] = 1 − α. (11.119)

Since F(Δαβ) is a decreasing function of Δαβ, the double inequality in (11.119)
can be solved to obtain an exact (1 − α)100% confidence interval on Δαβ.

11.4.2.2 Exact Tests Concerning σ2
α and σ2

β (Khuri and Littell, 1987)

Let us write model (11.84) in matrix form as

Y = μ 1n.. + H1 α + H2 β + H3(αβ) + ε, (11.120)

where H1 = ⊕a
i=11ni. , H2 =

[
⊕b

j=11′
n1j

: ⊕b
j=11′

n2j
: . . . : ⊕b

j=11′
naj

]′
, H3 =

⊕a
i=1 ⊕b

j=1 1nij , α = (α1, α2, . . . , αa)
′, β = (β1, β2, . . . , βb)

′, and (αβ) =
[(αβ)11, (αβ)12, . . . , (αβ)ab]′. The variance–covariance matrix of Y, namely
Σ, is therefore of the form

Σ = σ2
α H1H′

1 + σ2
β H2H′

2 + σ2
αβ H3H′

3 + σ2
ε In.. . (11.121)

Furthermore, the error sum of squares, SSE, can be expressed as a quadratic
form in Y,

SSE = Y ′RY, (11.122)

where R is the matrix,

R = In.. −
a⊕

i=1

b⊕

j=1

1
nij

Jnij
, (11.123)

which is idempotent of rank n.. − ab. It can be verified that

DR = 0, RH1 = 0, RH2 = 0, RH3 = 0, (11.124)

where D = ⊕a
i=1 ⊕b

j=1
1

nij
1′

nij
. From (11.121) and (11.124) it follows that

DΣR = 0. Consequently, the vector of cell means, X̄, which can be writ-
ten as X̄ = DY, is independent of SSE (see Theorem 5.6). Since Ũ = Q̃1X̄, Ũ
is also independent of SSE.

By the Spectral Decomposition Theorem (Theorem 3.4), the matrix R in
(11.123) can be expressed as

R = CΛC′, (11.125)
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where
C is an orthogonal matrix
Λ is a diagonal matrix of eigenvalues of R which consist of n.. − ab ones and

ab zeros

We shall assume that

n.. > 2 ab − 1. (11.126)

Under condition (11.126), Λ and C can be partitioned as

Λ = diag(Ia1 , Ia2 , 0) (11.127)

C = [C1 : C2 : C3], (11.128)

where a1 = ab−1, a2 = n.. −2 ab+1, 0 is a zero matrix of order ab×ab, and C1,
C2, C3 are the corresponding matrices of orthonormal eigenvectors of orders
n.. × a1, n.. × a2, and n.. × ab, respectively. The integer a2 is positive because
of condition (11.126). It should be noted that the choice of C1 depends on
which a1 columns are selected from the first n.. − ab columns of C. The latter
columns are orthonormal eigenvectors of C corresponding to the eigenvalue
1. The matrices, C1 and C2, are therefore not unique. Formula (11.125) can
then be written as

R = C1C′
1 + C2C′

2. (11.129)

This results in a partitioning of SSE in (11.122) as

SSE = SSE1 + SSE2, (11.130)

where SSE1 = Y ′C1C′
1Y, SSE2 = Y ′C2C′

2Y. Note that SSE1 and SSE2 are inde-
pendently distributed such that 1

σ2
ε

SSE1 ∼ χ2
a1

, 1
σ2

ε
SSE2 ∼ χ2

a2
.

Now, let the random vector ω be defined as

ω = Ũ + (λmax Ia1 − L̃)1/2 C′
1Y, (11.131)

where L̃ is the matrix used in (11.99) and λmax is its largest eigenvalue. In
(11.131), (λmax Ia1 − L̃)1/2 is a symmetric matrix with eigenvalues equal to the
square roots of the eigenvalues of λmaxIa1 − L̃, which are nonnegative, and its
eigenvectors are the same as those of L̃ (this results from applying the Spectral

Decomposition Theorem to L̃). Since Ũ =
(

Z′
α, Z′

β, Z′
αβ

)′
, ω can likewise be

partitioned as ω =
(
ω′

α, ω′
β, ω′

αβ

)′
. The distributional properties of ωα,

ωβ, and ωαβ are given in the next lemma.
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Lemma 11.7

(i) ωα, ωβ, and ωαβ are mutually independent and normally distributed
with zero means and variance–covariance matrices given by

Var(ωα) =
(

b σ2
α + σ2

αβ + λmax σ2
ε

)
Ia−1

Var(ωβ) =
(

a σ2
β + σ2

αβ + λmax σ2
ε

)
Ib−1

Var(ωαβ) =
(
σ2

αβ + λmax σ2
ε

)
I(a−1)(b−1).

(ii) ωα, ωβ, and ωαβ are independent of SSE2.

Proof.

(i) From (11.123) we have that R1n.. = 0. Thus,
(
C1C′

1 + C2C′
2
)

1n.. = 0, by
virtue of (11.129). Hence, C′

11n.. = 0 (since C′
1C1 = Ia1 and C′

1C2 = 0)
and E

(
C′

1Y
) = μ C′

11n.. = 0. Since Ũ has a zero mean, the mean of ω in
(11.131) is then equal to 0. The means of ωα, ωβ, and ωαβ are therefore
equal to zero.

Now, it is obvious that ω is normally distributed. Furthermore, Ũ is
independent of C′

1Y since DΣR = 0, and therefore DΣC1 = 0. This
implies that X̄, and hence Ũ, are independent of C′

1Y. From (11.131) we
then have

Var(ω) = Var(Ũ) + (λmax Ia1 − L̃)1/2C′
1ΣC1(λmax Ia1 − L̃)1/2. (11.132)

But,

C′
1ΣC1 = C′

1(σ
2
α H1H′

1 + σ2
β H2H′

2 + σ2
αβ H3H′

3 + σ2
ε In..)C1

= σ2
ε Ia1 , (11.133)

since C′
1C1 = Ia1 , and C′

1Hi = 0, i = 1, 2, 3, by virtue of RHi = 0 for
i = 1, 2, 3 [see (11.124) and (11.129)]. From (11.99), (11.132), and (11.133),
we get

Var(ω) = diag(δ1 Ia−1, δ2 Ib−1, δ3 I(a−1)(b−1)) + σ2
ε L̃ + σ2

ε (λmax Ia1 − L̃)

= diag[(δ1 + λmax σ2
ε)Ia−1, (δ2 + λmax σ2

ε)Ib−1,
(
δ3 + λmax σ2

ε

)
I(a−1)(b−1)], (11.134)

where, if we recall, δ1 = b σ2
α + σ2

αβ, δ2 = a σ2
β + σ2

αβ, and δ3 = σ2
αβ.

From (11.134) we conclude that ωα, ωβ, and ωαβ are mutually inde-
pendent and their variance–covariance matrices are as described in (i).
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(ii) It is easy to see that Ũ is independent of C′
2Y (since DΣC2 = 0), and

hence of SSE2 = Y ′C2C′
2Y. It is also true that C′

1Y is independent
of C′

2Y, and hence of SSE2 (since C′
1ΣC2 = 0 because of C′

1Hi = 0,
i = 1, 2, 3, and C′

1C2 = 0). This implies independence of ω

from SSE2.

From Lemma 11.7 we conclude that the sums of squares, Sα = ω′
αωα,

Sβ = ω′
βωβ, Sαβ = ω′

αβωαβ, and SSE2 are mutually independent and

Sα

/(
b σ2

α + σ2
αβ + λmax σ2

ε

)
∼ χ2

a−1

Sβ

/(
a σ2

β + σ2
αβ + λmax σ2

ε

)
∼ χ2

b−1

Sαβ

/(
σ2

αβ + λmax σ2
ε

)
∼ χ2

(a−1)(b−1)

SSE2/σ
2
ε ∼ χ2

a2
,

where, if we recall, a2 = n.. − 2 a b + 1. A test statistic for testing H0 : σ2
α = 0

is therefore given by

F = Sα/(a − 1)

Sαβ/[(a − 1)(b − 1)] , (11.135)

which under H0 has the F-distribution with a − 1 and (a − 1)(b − 1) degrees of
freedom. The null hypothesis is rejected at the α-level if F ≥ Fα,a−1,(a−1)(b−1).
Similarly, the hypothesis H0 : σ2

β = 0 can be tested by

F = Sβ/(b − 1)

Sαβ/[(a − 1)(b − 1)] , (11.136)

which under H0 has the F-distribution with b − 1 and (a − 1)(b − 1) degrees
of freedom. Note that the statistic,

F = Sαβ/[(a − 1)(b − 1)]
λmaxSSE2/a2

can be used to test H0 : σ2
αβ = 0, but is not recommended since it has fewer

denominator degrees of freedom than the test given in (11.116).
Note that since the matrix C1 is not chosen uniquely, the actual value of ω

in (11.131), and hence the test statistic values in (11.135) and (11.136), depend
on the choice of C1. However, the distributions of these statistics (under the
null and alternative hypotheses) are invariant to that choice.

If the data set is balanced, then K̃ in (11.90) becomes 1
n Iab, where n is

the common cell frequency. Hence, L̃ = Q̃1K̃Q̃
′
1 = 1

n Iab−1. Consequently,
λmax = 1

n and the vectors, ω and Ũ in (11.131) become identical. In addition,
n Sα, n Sβ, and n Sαβ reduce to the balanced ANOVA sums of squares for
factors A, B, and their interaction A ∗ B, respectively.
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Power values concerning the test statistics in (11.135) and (11.136) can be
easily derived. For example, the power of the test for σ2

α is given by

P
[

Sα/(a − 1)

Sαβ/[(a − 1)(b − 1)] ≥ Fα,a−1,(a−1)(b−1) | σ2
α > 0

]

= P

[
Fa−1,(a−1)(b−1) ≥ σ2

αβ + λmax σ2
ε

b σ2
α + σ2

αβ + λmax σ2
ε

Fα,a−1,(a−1)(b−1)

]
, (11.137)

since under Ha : σ2
α > 0,

Sα/(a − 1)

b σ2
α + σ2

αβ + λmax σ2
ε

× σ2
αβ + λmax σ2

ε

Sαβ/[(a − 1)(b − 1)] ∼ Fa−1,(a−1)(b−1).

From (11.137) it can be seen that the power is a function of α, λmax, which
depends on the design used, and the variance ratios, σ2

α/σ2
ε, σ2

αβ/σ2
ε, through

the value of σ2
α

/(
σ2

αβ + λmax σ2
ε

)
. We note that the power in (11.137) is a

(i) Monotone increasing function of σ2
α/σ2

ε for a fixed value of σ2
αβ/σ2

ε

and a given design.

(ii) Monotone decreasing function of σ2
αβ/σ2

ε for a fixed value of σ2
α/σ2

ε

and a given design.

(iii) Monotone decreasing function of λmax for fixed values of σ2
α/σ2

ε and
σ2

αβ/σ2
ε. Hence, small values of λmax are desirable. Lemma 11.8 gives

lower and upper bounds on λmax.

A similar power study can be made with regard to the test for σ2
β in (11.136).

Lemma 11.8
1
n̄h

≤ λmax ≤ 1
nmin

,

where nmin is the smallest cell frequency and n̄h is the harmonic mean
in (11.88).

Proof. We have that L̃ = Q̃1K̃Q̃
′
1. Hence,

L̃ ≤ 1
nmin

Q̃1Q̃
′
1

= 1
nmin

Iab−1,

where L̃ ≤ 1
nmin

Q̃1Q̃
′
1 means that the matrix 1

nmin
Q̃1Q̃

′
1 −L̃ is positive semidef-

inite. It follows that λmax ≤ 1
nmin

.
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On the other hand, λmax is greater than or equal to tr
(

Q̃1K̃Q̃
′
1

)/
(ab − 1),

which is the average of the eigenvalues of L̃. But,

tr
(

Q̃1K̃Q̃
′
1

)
= tr

(
Q̃

′
1Q̃1K̃

)

= tr[(Iab − 1
ab

Jab)K̃],

since 1
ab Jab + Q̃

′
1Q̃1 = Iab. Hence,

λmax ≥ 1
ab − 1

[
tr(K̃) − 1

ab
1′

abK̃1ab

]

= 1
ab − 1

⎡

⎣
a∑

i=1

b∑

j=1

1
nij

− 1
ab

a∑

i=1

b∑

j=1

1
nij

⎤

⎦

= 1
ab

a∑

i=1

b∑

j=1

1
nij

= 1
n̄h

.

11.4.2.2.1 Simultaneous Confidence Intervals
Simultaneous confidence intervals on all continuous functions of σ2

α, σ2
β,

σ2
αβ, and σ2

ε can be easily obtained on the basis of Lemma 11.7, just like in a
balanced data situation (see Section 8.7). To accomplish this, we first need to
set up individual (1−α) 100% confidence intervals on the following expected
values:

E
(

Sα

a − 1

)
= b σ2

α + σ2
αβ + λmax σ2

ε

E
(

Sβ

b − 1

)
= a σ2

β + σ2
αβ + λmax σ2

ε

E
(

Sαβ

(a − 1)(b − 1)

)
= σ2

αβ + λmax σ2
ε

E
(

SSE2

a2

)
= σ2

ε.

Such intervals are given by

Cα :
Sα

χ2
α/2,a−1

≤ b σ2
α + σ2

αβ + λmax σ2
ε ≤ Sα

χ2
1−α/2,a−1

Cβ :
Sβ

χ2
α/2,b−1

≤ a σ2
β + σ2

αβ + λmax σ2
ε ≤ Sβ

χ2
1−α/2,b−1
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Cαβ :
Sαβ

χ2
α/2,(a−1)(b−1)

≤ σ2
αβ + λmax σ2

ε ≤ Sαβ

χ2
1−α/2,(a−1)(b−1)

Cε :
SSE2

χα/2,a2

≤ σ2
ε ≤ SSE2

χ1−α/2,a2

.

Since Sα, Sβ, Sαβ, and SSE2 are mutually independent, the Cartesian product,

Cαβε = Cα × Cβ × Cαβ × Cε

represents a rectangular confidence region on the vector of the four expected
values with a confidence coefficient equal to 1 − α∗ = (1 − α)4.

Now, if f ∗
(
σ2

α, σ2
β, σ2

αβ, σ2
ε

)
is any continuous function of the variance

components, then it can be expressed as a continuous function, f , of E(Sα/

(a − 1)), E(Sβ/(b − 1)), E(Sαβ/[(a − 1)(b − 1)]), and E(SSE2/a2). Then, by the
method described in Section 8.7, the intervals, [minx∈Cαβε

f (x), maxx∈Cαβε
f (x)],

for all continuous functions f (x), x∈Cαβε, provide simultaneous confidence
intervals on all such functions with a joint confidence coefficient greater than
or equal to 1 − α∗.

Example 11.6 Khuri and Littell (1987) reported an example that dealt with
a study of the variation in fusiform rust in Southern pine tree plantations.
Trees with female parents from different families (factor B) were evaluated
in several test locations (factor A). The number of plots in each family × test
combination ranged from 1 to 4. The proportions of symptomatic trees in
each plot are reproduced in Table 11.7.

Since the data are proportions, the arcsin (square root) transformation was
applied before doing the analysis. Thus, in this case, Yijk is the transformed
observation from the kth plot at the ith location for the trees coming from the
jth family.

Let us first do the analysis using the approximate tests based on the
method of unweighted means. The values of the USSs in (11.85), (11.86),
(11.87), and the error sum of squares, SSE, in addition to the corresponding
F-ratios are given in Table 11.8.

Note that the F-values for A, B, and A ∗ B were obtained by applying
formulas (11.105), (11.106), and (11.107), respectively. It can be seen that the
test concerning H0 : σ2

αβ = 0 is not significant, but the tests for H0 : σ2
α = 0

and H0 : σ2
β = 0 are significant with p-values, 0.0025 and 0.0234, respectively.

In this example, n̄h = 1.9835, nmin = 1, nmax = 4. By applying formula
(11.111), we get

max
i

| τ∗
i | ≤ 1.9835

1.9835 σ2
αβ + σ2

ε

× 0.4958

≈ 1

2 σ2
αβ + σ2

ε

.
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TABLE 11.7
Proportions of Symptomatic Trees

Family Number

Test Number 288 352 19 141 60
34 0.804 0.734 0.967 0.917 0.850

0.967 0.817 0.930
0.970 0.833 0.889

0.304
35 0.867 0.407 0.896 0.952 0.486

0.667 0.511 0.717 0.467
0.793 0.274
0.458 0.428

40 0.409 0.411 0.919 0.408 0.275
0.569 0.646 0.669 0.435 0.256
0.715 0.310 0.669 0.500
0.487 0.450

41 0.587 0.304 0.928 0.367 0.525
0.538 0.428 0.855
0.961 0.655
0.300 0.800

Source: Reprinted from Khuri, A.I. and Littell, R.C., Biometrics, 43, 545, 1987. With permission.

TABLE 11.8
F-Tests Based on the Method of Unweighted Means
Source DF SS MS F p-Value
A 3 1.13967 0.37989 8.654 0.0025
B 4 0.73925 0.18481 4.210 0.0234
A ∗ B 12 0.52676 0.04390 1.284 0.2738
Error 33 1.12869 0.03420

Thus, a large value of 2 σ2
αβ +σ2

ε results in a good approximation concerning
the distribution of the USSs.

Now, let us apply the exact testing procedure outlined in Sections 11.4.2.1
and 11.4.2.2. To accomplish this, the following steps are needed:

(a) The matrices P̃1, P̃2, and P̃3 are obtained using the expressions in (11.95),
(11.96), and (11.97), respectively, where a = 4, b = 5, A0 = J4 ⊗ J5,
A1 = I4 ⊗ J5, A2 = J4 ⊗ I5, and A3 = I4 ⊗ I5.

(b) The orthonormal eigenvectors of P̃i corresponding to the eigenvalue 1
are obtained (i = 1, 2, 3). This can be easily done by using, for example,
the “CALL EIGEN” subroutine from PROC IML in SAS (1999). These
eigenvectors form the rows of Q̃11, Q̃12, and Q̃13, which are of orders
3 × 20, 4 × 20, and 12 × 20, respectively.
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(c) The vectors, X̄, Zα, Zβ, Zαβ, and Ũ are computed, where X̄ is the 20×1
vector of cell means, Zα = Q̃11X̄, Zβ = Q̃12X̄, Zαβ = Q̃13X̄, Ũ = Q̃1X̄,

and Q̃1 =
[
Q̃

′
11 : Q̃

′
12 : Q̃

′
13

]′
.

(d) The matrices L̃3 = Q̃13K̃Q̃
′
13 and L̃ = Q̃1K̃Q̃

′
1 are computed, where K̃ is

given in (11.90).

(e) Formula (11.116) is applied to produce the value of F(0) for testing
H0 : σ2

αβ = 0. Recall that from Table 11.8, SSE/(n.. − ab) = 0.03420.

(f) The matrix R in SSE = Y ′RY is decomposed as in (11.129). In this case,
C1 and C2 are of orders 53 × 19 and 53 × 14, respectively. This can also
be carried out by using the “CALL EIGEN” subroutine as mentioned
earlier. Recall that the columns of [C1 : C2] are orthonormal eigenvectors
of R corresponding to the eigenvalue 1 of R, but the choice of C1 is not
unique.

(g) The vector ω =
(
ω′

α, ω′
β, ω′

αβ

)′
in (11.131), and hence Sα = ω′

αωα,

Sβ = ω′
βωβ, Sαβ = ω′

αβωαβ, are computed. Note that, in this

example, λmax = 1, and upon decomposing L̃ as L̃ = P�Λ�P′
�, where

Λ� is a diagonal matrix of eigenvalues of L̃ and P� is an orthogonal
matrix of corresponding eigenvectors, the matrix (λmax Ia1 −L̃)1/2 can be
written as

(λmax Ia1 − L̃)1/2 = (I19 − P�Λ�P′
�

)1/2

= P� diag
[
(1−λ�1)

1/2, (1−λ�2)
1/2, . . . , (1−λ�19)

1/2
]

P′
�,

where λ�i is the ith diagonal element of Λ� (i = 1, 2, . . . , 19).

(h) Formulas (11.116), (11.135), and (11.136) are then applied to compute the
F-statistics for testing the significance of σ2

αβ, σ2
α, and σ2

β, respectively.

On the basis of the above outline and the data set in Table 11.7, we find
that Sα = 0.78495 with 3 degrees of freedom, Sβ = 0.68653 with 4 degrees of
freedom, and Sαβ = 0.35762 with 12 degrees of freedom. The corresponding
test statistics values concerning σ2

α, σ2
β, and σ2

αβ are given in Table 11.9.

TABLE 11.9
Exact Test Statistics Values
Source DF F p-Value
A 3 8.780 [formula(11.135)] 0.0024
B 4 5.759 [formula (11.136)] 0.0080
A ∗ B 12 0.982 [formula (11.116)] 0.4852
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The test for H0 : σ2
αβ = 0 is not significant, but the tests for H0 : σ2

α = 0 and
H0 : σ2

β = 0 are significant. This agrees to a certain extent with the results
from Table 11.8. Note that the F-statistic value for A ∗ B, namely 0.982, is
identical to the value of the Type III F-ratio in (11.117), which can be obtained
directly from the main ANOVA table for a fixed-effects two-way model.

11.5 Exact Tests for Random Higher-Order Models

The exact testing procedure outlined in Section 11.4.2 can be easily extended
to higher-order random models. This extension applies to any unbalanced
random model provided that the data contain no empty cells and that the
imbalance occurs only in the last stage of the associated design. Such a model
can be written as

Yθ =
ν∑

i=0

gθi(θ̄i)
+ εθ, (11.138)

where θ = {k1, k2, . . . , ks} is a complete set of subscripts that identify a typical
response Y. The ith effect in the model is denoted by gθi(θ̄i)

, where θ̄i and θi
denote the corresponding sets of rightmost and nonrightmost bracket sub-
scripts (i = 0, 1, . . . , ν), and εθ is the experimental error term. This notation
is the same as the one used in Chapter 8 for balanced data (see Section 8.2).
The only difference here is that the range of subscript ks is not constant as it
depends on k1, k2, . . . , ks−1, which have constant ranges, that is,

kj =
{

1, 2, . . . , aj for j = 1, 2, . . . , s − 1
1, 2, . . . , nζ for j = s,

where ζ = {k1, k2, . . . , ks−1}. For example, we can have the three-way model,

Yijkl = μ + α(i) + β(j) + γ(k) + (αβ)(ij) + (αγ)(ik) + (βγ)(jk) + (αβγ)(ijk) + εijk(l),

where i = 1, 2, 3, j = 1, 2, 3, 4, k = 1, 2, 3, and l = 1, 2, . . . , nijk.
In general, it is assumed that

N > 2
s−1∏

i=1

ai − 1, (11.139)

where N = ∑
ζ nζ is the total number of observations, and the summation,∑

ζ, extends over all (s − 1)-tuples of the form (k1, k2, . . . , ks−1). Condition
(11.139) is a generalization of condition (11.126). By averaging Yθ over ks,
we get

Ȳζ =
ν∑

i=0

gθi(θ̄i)
+ ε̄ζ, (11.140)
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where Ȳζ = 1
nζ

∑nζ

ks=1 Yθ, ε̄ζ = 1
nζ

∑nζ

ks=1 εθ. Model (11.140) is considered

balanced with one observation, namely Ȳζ, at the (s − 1)-tuple, ζ.
The model in (11.138) can be written in matrix form as

Y =
ν∑

i=0

Hiβi + ε,

where
Hi is a matrix of zeros and ones of order N × ei
βi is a vector consisting of the elements of gθi(θ̄i)

(i = 0, 1, . . . , ν)

We assume that β1, β2, . . . , βν, and ε are mutually independent such that
βi ∼ N

(
0, σ2

i Iei

)
for i = 1, 2, . . . , ν, and ε ∼ N

(
0, σ2

εIN
)
.

Khuri (1990) used the above setup to derive exact F-tests concerning the
hypotheses, H0 : σ2

i = 0 (i = 1, 2, . . . , ν), by combining the use of balanced
models properties, as applied to model (11.140), with an extension of the
methodology described in Section 11.4.2.2 for the two-way model. We shall
not provide here details of this extension. The interested reader is referred
to Khuri (1990) for a more thorough discussion of this topic [see also Khuri,
Mathew, and Sinha (1998, Chapter 5)].

11.6 Inference Concerning the Mixed Two-Way Model
(Gallo and Khuri, 1990)

Let us again consider the two-way model in (11.84) under the assumption
that α(i) is fixed, but β(j), (αβ)(ij), and εij(k) remain independently distributed

random variables such that β(j) ∼ N
(

0, σ2
β

)
, (αβ)(ij) ∼ N(0, σ2

αβ), εij(k) ∼
N(0, σ2

ε), i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , nij. The matrix form of this
model is given in (11.120). In this case, the variance–covariance matrix of Y is
of the form

Σ = σ2
β H2H′

2 + σ2
αβ H3H′

3 + σ2
ε In.. . (11.141)

The purpose of this section is to derive exact tests concerning the variance
components, σ2

β and σ2
αβ, and estimable linear functions of the fixed effects.

These tests were initially developed by Gallo and Khuri (1990) using an
approach similar to the one described in Section 11.4.2.2.

11.6.1 Exact Tests Concerning σ2
β

and σ2
αβ

As before, let X̄ = (X11, X12, . . . , Xab)
′ denote the vector of cell means, where

Xij = Ȳij. (i = 1, 2, . . . , a; j = 1, 2, . . . , b). The mean of X̄ is



André I. Khuri/Linear Model Methodology C4819_C011 Finals Page 399 2009-9-14

Unbalanced Random and Mixed Models 399

E(X̄) = μ 1ab + (Ia ⊗ 1b)α, (11.142)

and its variance–covariance matrix is given by

Var(X̄) = σ2
β A2 + σ2

αβIab + σ2
ε K̃, (11.143)

where A2 and K̃ are the same as in (11.89). Since E(X̄) contains the fixed
parameter vector α, a linear transformation is first needed to eliminate α in
order to obtain exact tests for the variance components. This is accomplished
by considering the following transformation:

Z∗ = T1X̄, (11.144)

where T1 = Ia ⊗ T2 and T2 is a matrix of order (b − 1) × b defined as

T2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

− 1√
2

0 . . . 0
1√
6

1√
6

− 2√
6

. . . 0
. . . . . . .
. . . . . . .
. . . . . . .
1√

b(b−1)

1√
b(b−1)

. . . . . . − b−1√
b(b−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix T1 has a(b − 1) rows and ab columns. Its rows define orthogonal
contrasts in the elements of X̄. Hence, E(Z∗) = 0, and the variance–covariance
matrix of Z∗ is

Var(Z∗) = T1Var(X̄)T ′
1

= σ2
β T1A2T ′

1 + σ2
αβ T1T ′

1 + σ2
ε T1K̃T ′

1

= σ2
β Ja ⊗ Ib−1 + σ2

αβ Ia(b−1) + σ2
ε T1K̃T ′

1, (11.145)

since T2T ′
2 = Ib−1, and hence, T1A2T ′

1 = (Ia ⊗ T2)(Ja ⊗ Ib)
(
Ia ⊗ T ′

2
) = Ja ⊗

T2T ′
2 = Ja ⊗ Ib−1. In addition, T1T ′

1 = Ia ⊗ T2T ′
2 = Ia ⊗ Ib−1 = Ia(b−1).

Note that the matrix Ja ⊗ Ib−1 has eigenvalues a and 0 with multiplicities
b − 1 and (a − 1)(b − 1), respectively. Since this matrix is symmetric, there
exists an orthogonal matrix, P∗, of order (ab − a) × (ab − a) such that P∗(Ja ⊗
Ib−1)P∗′ = D∗, where D∗ is a diagonal matrix whose diagonal elements are
the aforementioned eigenvalues of Ja ⊗ Ib−1.

In the remainder of this section, the development of the exact tests con-
cerning σ2

β and σ2
αβ will be similar to the one used in Section 11.4.2.2.

Let U∗ = P∗Z∗. Then, E(U∗) = 0, and by using (11.145), we get

Var(U∗) = P∗(σ2
β Ja ⊗ Ib−1)P

∗′ + σ2
αβ P∗P∗′ + σ2

ε P∗T1K̃T ′
1P∗′

= σ2
β D∗ + σ2

αβ Ia(b−1) + σ2
ε L∗,
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where L∗ = P∗T1K̃T ′
1P∗′

. Thus, Var(U∗) can be written as

Var(U∗) = diag
[(

a σ2
β + σ2

αβ

)
Ib−1, σ2

αβ I(a−1)(b−1)

]
+ σ2

ε L∗. (11.146)

Let us now consider the matrix R in (11.125) (recall that SSE = Y ′RY).
Since R is symmetric and idempotent of rank n.. −ab, it can be decomposed as

R = C∗Λ∗C′∗,

where C∗ is an orthogonal matrix and Λ∗ is a diagonal matrix whose eigen-
values are 1 of multiplicity n.. − ab and 0 of multiplicity ab. Assuming that n..
satisfies the condition,

n.. > 2 ab − a, (11.147)

the matrix Λ∗ can be partitioned as

Λ∗ = diag(Ia(b−1), In..−2ab+a, 0),

where 0 is a zero matrix of order ab × ab. Likewise, the matrix C∗ is parti-
tioned as

C∗ = [C∗1 : C∗2 : C∗3],
where C∗1, C∗2, C∗3 are matrices of orders n.. × [a(b − 1)], n.. × (n.. − 2ab +
a), and n.. × ab, respectively. The columns of [C∗1 : C∗2] are orthonormal
eigenvectors of R corresponding to the eigenvalue 1, whereas those of C∗3
are orthonormal eigenvectors corresponding to the eigenvalue 0. Note that,
as in Section 11.4.2.2, the choice of C∗1 is not unique. We can then write R as

R = C∗1C′
∗1 + C∗2C′

∗2,

and, consequently, the error sum of squares is partitioned as

SSE = SS∗
E1 + SS∗

E2, (11.148)

where SS∗
E1 = Y ′C∗1C′

∗1Y and SS∗
E2 = Y ′C∗2C′

∗2Y.
Let us now define the random vector, ω∗, as

ω∗ = U∗ + (λ∗
max Ia(b−1) − L∗)1/2 C′

∗1Y, (11.149)

λ∗
max is the largest eigenvalue of L∗.

The following lemma is analogous to Lemma 11.7 and its proof is therefore
similar.

Lemma 11.9 Let ω∗ in (11.149) be partitioned as ω∗ =
(
ω∗′

β, ω∗′
αβ

)′
, where

ω∗
β consists of the first b−1 elements of ω∗ and ω∗

αβ consists of the remaining
(a − 1)(b − 1) elements. Then,
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(i) ω∗
β and ω∗

αβ are independent and normally distributed with zero
means and variance–covariance matrices given by

Var
(
ω∗

β

)
= (a σ2

β + σ2
αβ + λ∗

max σ2
ε)Ib−1

Var
(
ω∗

αβ

)
=
(
σ2

αβ + λ∗
max σ2

ε

)
I(a−1)(b−1)

(ii) ω∗
β and ω∗

αβ are independent of SS∗
E2 in (11.148).

From Lemma 11.9 we conclude that S∗
β = ω∗′

β ω∗
β and S∗

αβ = ω∗′
αβ ω∗

αβ

are independently distributed such that

S∗
β

/(
a σ2

β + σ2
αβ + λ∗

max σ2
ε

)
∼ χ2

b−1

S∗
αβ

/(
σ2

αβ + λ∗
max σ2

ε

)
∼ χ2

(a−1)(b−1)

Furthermore, S∗
β and S∗

αβ are independent of SS∗
E2, which is distributed as

σ2
ε χ2

n..−2ab+a. Therefore, for testing H0 : σ2
β = 0, we can use the test statistic,

F = S∗
β/(b − 1)

S∗
αβ/[(a − 1)(b − 1)] ,

which has the F-distribution with b − 1 and (a − 1)(b − 1) degrees of freedom
under H0. Similarly, to test H0 : σ2

αβ = 0, we can use the test statistic

F = S∗
αβ/[(a − 1)(b − 1)]

λ∗
max SS∗

E2/(n.. − 2ab + a)
, (11.150)

which has the F-distribution with (a − 1)(b − 1) and n.. − 2ab + a degrees of
freedom under H0.

An alternative test statistic for testing H0 : σ2
αβ = 0 is given by the Type

III F-ratio, F(αβ | μ, α, β) in (11.117) (see Exercise 11.7). The advantage of this
test over the one in (11.150) is that it has more degrees of freedom for the
denominator.

11.6.2 An Exact Test for the Fixed Effects

In this section, we give an exact test for the hypothesis H0 : Aα = a0, where
A is a matrix of order t × a and rank t (≤a − 1) such that the t elements of Aα

are linearly independent contrasts among the means, μ + α(i) (i = 1, 2, . . . , a),
of the fixed factor, and a0 is a constant vector.

Let us again consider the random vector, Ũ = Q̃1X̄, which was defined

in Section 11.4.1, where Q̃1 =
[
Q̃

′
11 : Q̃

′
12 : Q̃

′
13

]′
. We recall that Zα = Q̃11X̄,
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Zαβ = Q̃13X̄. Let Φ be defined as Φ =
(

Z′
α, Z′

αβ

)′
. Then, from (11.142), the

mean of Φ is

E(Φ) =
[

Q̃11
Q̃13

]
[μ 1ab + (Ia ⊗ 1b)α]

=
[

Q̃11
Q̃13

]
(Ia ⊗ 1b)α

=
[

Q̃11(Ia ⊗ 1b)α

0

]
, (11.151)

since Q̃111ab = 0, Q̃131ab = 0, and Q̃13(Ia × 1b) = 0 by virtue of Q̃13A1 = 0,
where A1 = Ia ⊗ Jb (see Appendix 11.A). The variance–covariance matrix of
Φ is given by

Var(Φ) =
[

Q̃11
Q̃13

] (
σ2

β A2 + σ2
αβ Iab + σ2

ε K̃
) [

Q̃
′
11 : Q̃

′
13

]

= σ2
αβ Ib(a−1) + σ2

ε Lo, (11.152)

by the fact that Q̃11A2 = 0, Q̃13A2 = 0, and
[
Q̃

′
11 : Q̃

′
13

]′ [
Q̃

′
11 : Q̃

′
13

]
= Ib(a−1)

(see Appendix 11.A), where Lo is defined by

Lo =
[

Q̃11
Q̃13

]
K̃
[
Q̃

′
11 : Q̃

′
13

]
. (11.153)

In addition, the idempotent matrix R of rank n..−ab, which was used earlier to
define the error sum of squares in (11.122), can be decomposed as in (11.129),
but with different C1 and C2 matrices. Here, R is decomposed as

R = C̃1C̃
′
1 + C̃2C̃

′
2, (11.154)

where C̃1 and C̃2 are of orders n.. × [b(a − 1)], and n.. × (n.. − 2ab + b),
respectively, such that the columns of [C̃1 : C̃2] are orthonormal eigenvectors
of R corresponding to the eigenvalue 1. Here, again the choice of C̃1 is not
unique. Note that this partitioning is possible provided that

n.. > 2ab − b (11.155)

In order to satisfy both (11.147) and (11.155), n.. must satisfy the condition

n.. > max (2ab − a, 2ab − b).

Now, let us define the random vector Ψ as

Ψ = Φ + (λo
max Ib(a−1) − Lo)1/2 C̃

′
1Y, (11.156)
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where λo
max is the largest eigenvalue of Lo. It is easy to verify that E

(
C̃

′
1Y
)

= 0,

Φ and C̃
′
1Y are independent, Ψ is normally distributed, and that

Var
(

C̃
′
1Y
)

= σ2
ε Ib(a−1). (11.157)

It follows from (11.151), (11.152), (11.156), and (11.157) that Ψ has the normal
distribution with mean

E(Ψ) =
[

Q̃11(Ia ⊗ 1b)α

0

]
,

and a variance–covariance matrix given by

Var(Ψ) = σ2
αβ Ib(a−1) + σ2

ε Lo + (λo
max Ib(a−1) − Lo)σ2

ε

=
(
σ2

αβ + λo
max σ2

ε

)
Ib(a−1). (11.158)

We can therefore represent the observable random vector, Ψ, by the linear
model

Ψ = X∗α + ε∗. (11.159)

where X∗ is the [b(a − 1)] × a matrix

X∗ =
[

Q̃11(Ia × 1b)

0

]
,

and ε∗ is distributed as N
[
0,
(
σ2

αβ + λo
maxσ

2
ε

)
Ib(a−1)

]
. The model in (11.159)

satisfies the usual assumptions of normality, independence, and equality of
error variances.

Note that the matrix X∗ is of rank a − 1 since

X∗X∗′ =
[

Q̃11
0

]
A1

[
Q̃

′
11 : 0′]

= diag(b Ia−1, 0), (11.160)

which is of rank a − 1 [formula (11.160) is true because Q̃11A1Q̃
′
11 = b Ia−1,

where A1 = Ia ⊗ Jb (see Appendix 11.A)]. Thus, the submatrix, Q̃11(Ia ⊗ 1b),
of X∗ is of full row rank equal to a − 1. Furthermore, the nonzero elements of
X∗α, namely the elements of Q̃11(Ia⊗1b)α, are linearly independent contrasts
among the elements of α due to the fact that Q̃11(Ia ⊗ 1b)1a = Q̃111ab = 0 (see
Appendix 11.A). Since the number of such contrasts is a − 1, they must form
a basis for all contrasts among the elements of α, or equivalently, among the
means μ + α(i) (i = 1, 2, . . . , a) of the fixed factor.
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Now since the rows of A for the hypothesis H0 : Aα = a0 are such that the
elements of Aα are t linearly independent contrasts among the means, μ+α(i)
(i = 1, 2, . . . , a), the rows of A must belong to the row space of X∗ in model
(11.159). Hence, Aα is an estimable linear function of α under model (11.159).
It follows that a test statistic for the hypothesis H0 : Aα = a0 is given by

F = (Aα̂ − a0)
′[A(X∗′

X∗)−A′]−1(Aα̂ − a0)

t MS∗
E

, (11.161)

where
MS∗

E = Ψ′[Ib(a−1) − X∗(X∗′
X∗)−X∗′ ]Ψ/[(a − 1)(b − 1)],

and α̂ = (X∗′
X∗)−X∗′

Ψ (see Section 7.4.2). Under H0, F has the F-distribution
with t and (a − 1)(b − 1) degrees of freedom. In particular, if A and a0 are
chosen so that

Aα = (α(1) − α(2), α(1) − α(3), . . . , α(1) − α(a))
′,

and a0 = 0, then F serves as a test statistic for the hypothesis

H0 : α(1) = α(2) = . . . = α(a).

Example 11.7 This example is taken from Gallo and Khuri (1990) and deals
with the average daily gains (in pounds) of 67 steers from 9 sires (factor B) and
3 ages of dam (factor A). The data are given in Table 11.10. The age-of-dam
effect, α(i), is fixed and the sire effect, β(j), is random.

(i) Tests concerning the variance components

These tests are based on formula (11.149). Here, a = 3, b = 9, λ∗
max = 1, and

U∗ = P∗Z∗, where P∗ is an orthogonal matrix of order 24 × 24 whose rows
are orthonormal eigenvectors of J3 ⊗ I8, and Z∗ = T1X̄, T1 = I3 ⊗T2 (T2 is the
8 × 9 matrix defined in Section 11.6.1). Also, L∗ = P∗T1K̃T ′

1P∗′
, where K̃ is a

diagonal matrix with diagonal elements equal to the reciprocals of the 27 cell
frequencies, and C∗1 is the matrix that consists of the first a(b−1) = 24 columns
of the 67 × 67 matrix, C∗ = [C∗1 : C∗2 : C∗3], of orthonormal eigenvectors of
R [recall that SSE = Y ′RY in (11.122)].

Using formula (11.149) and the data set in Table 11.10, the vector ω∗ is
computed and then partitioned into ω∗

β and ω∗
αβ of orders 8 × 1 and 16 × 1,

respectively, as in Lemma 11.9. It follows that the test statistic for testing
H0 : σ2

β = 0, namely,

F = S∗
β/(b − 1)

S∗
αβ/[(a − 1)(b − 1)] ,

has the value 0.871 with 8 and 16 degrees of freedom (p-value = 0.559). This
gives no indication of a significant sire effect. Also, from (11.150), the value of
the test statistic for testing H0 : σ2

αβ = 0 is F = 1.3398 with 16 and 16 degrees
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TABLE 11.10
Average Daily Gains (in Pounds) for 67 Steers

Age of Dam (Years) Age of Dam (Years)

Sire 3 4 5-Up Sire 3 4 5-Up
1 2.24 2.41 2.58 6 2.30 3.00 2.25

2.65 2.25 2.67 2.49 2.49
2.71 2.02
2.47 2.31

2 2.15 2.29 1.97 7 2.57 2.64 2.37
2.26 2.14 2.37 2.22

2.44 1.90
2.52 2.61
1.72 2.13
2.75

3 2.38 2.46 2.29 8 2.16 2.45 1.44
2.30 2.33 1.72
2.94 2.52 2.17

4 2.50 2.44 2.54 9 2.68 2.43 2.66
2.44 2.15 2.74 2.36 2.46

2.50 2.44 2.52
2.54 2.42

5 2.65 2.52 2.79
2.67 2.33

2.67
2.69

Source: Reprinted from Gallo, J. and Khuri, A.I., Biometrics, 46, 1087, 1990. With permission.

of freedom (p-value = 0.283). Hence, no significant interaction effect can be
detected.

(ii) Testing the fixed effects

Let us now consider the hypothesis, H0 : α(1) = α(2) = α(3). The test for

this hypothesis depends on formula (11.156). In this case, Φ =
(

Z′
α, Z′

αβ

)′
,

where Zα = Q̃11X̄, Zαβ = Q̃13X̄. Furthermore, the matrix Lo is described in
(11.153) and its largest eigenvalue, λo

max, is equal to 1; the matrix C̃1 consists
of the first b(a − 1) = 18 columns of the matrix [C̃1 : C̃2] of orthonormal
eigenvectors of R for the eigenvalue 1 [see (11.154)]. Using these quantities
in (11.156), we get the value of the vector Ψ, which is then used in model
(11.159) to obtain α̂ = (X∗′

X∗)−X∗′
Ψ, where X∗ is the 18 × 3 matrix, X∗ =[

Q̃
′
11 : 0′

]′
(I3 ⊗ 19). Finally, from (11.161) we get the test statistic value, F =

0.3132, with 2 and 16 degrees of freedom (p-value = 0.735). Hence, there is no
significant effect due to the age of dam.
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11.7 Inference Concerning the Random Two-Fold
Nested Model

In this section, we address the analysis of a random two-fold nested model
of the form

Yijk = μ + α(i) + βi(j) + εij(k),

i = 1, 2, . . . , a; j = 1, 2, . . . , bi; k = 1, 2, . . . , nij, (11.162)

where
α(i) and βi(j) are random effects associated with the nesting factor, A, and

the nested factor, B, respectively
εij(k) is a random error term

It is assumed that α(i), βi(j), and εij(k) are independently distributed as

N
(
0, σ2

α

)
, N

(
0, σ2

β(α)

)
, and N

(
0, σ2

ε

)
, respectively. Of interest here is the

testing of hypotheses concerning σ2
α and σ2

β(α)
.

Model (11.162) can be written in matrix form as

Y = μ 1n.. + [⊕a
i=11ni.

]
α +

[
⊕a

i=1 ⊕bi
j=1 1nij

]
β(α) + ε, (11.163)

where α = (α(1), α(2), . . . , α(a))
′, β(α) = (β1(1), β1(2), . . . , β1(b1), . . . , βa(1),

βa(2), . . . , βa(ba))
′, ni. = ∑bi

j=1 nij, i = 1, 2, . . . , a; n.. = ∑a
i=1
∑bi

j=1 nij. The
variance–covariance matrix, Σ, of Y is

Σ = σ2
α

[⊕a
i=1Jni.

]+ σ2
β(α)

[
⊕a

i=1 ⊕bi
j=1 Jnij

]
+ σ2

ε In.. .

An exact F-test concerning the hypothesis H0 : σ2
β(α)

= 0 can be easily
obtained as it is equal to the Type III F-ratio for the nested factor, namely,

F = R(β(α) | μ, α)/(b. − a)
SSE/(n.. − b.)

, (11.164)

where b. = ∑a
i=1 bi, R(β(α) | μ, α) is the Type III sum of squares for factor B

which is nested within factor A, and SSE is the error sum of squares,

SSE =
a∑

i=1

bi∑

j=1

nij∑

k=1

(Yijk − Ȳij.)
2

= Y ′RY, (11.165)

where Ȳij. = 1
nij

∑nij

k=1 Yijk, R is the matrix

R = In.. −
a⊕

i=1

bi⊕

j=1

1
nij

Jnij
, (11.166)
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which is idempotent of rank n.. − b.. It can be verified that R(β(α) | μ, α)

is independent of SSE, SSE/σ2
ε ∼ χ2

n..−b.
, and under H0 : σ2

β(α)
= 0,

R(β(α) | μ, α)/σ2
ε ∼ χ2

b.−a. Hence, under H0, the statistic in (11.164) has
the F-distribution with b. − a and n.. − b. degrees of freedom. The test is sig-
nificant at the α-level if F ≥ Fα,b.−a,n..−b. . Note that this test is similar to the
one used in Section 11.4.2.1 to test the interaction variance component, σ2

αβ

[see formula (11.117)]. Hence, as was the case in (11.117), the F-test in (11.164)
is also referred to as a Wald’s test.

The test concerning H0 : σ2
α = 0 is more involved. Tietjen (1974) used the

conventional F-ratio,

F =
∑a

i=1 ni.(Ȳi.. − Ȳ...)
2/(a − 1)

∑a
i=1
∑bi

j=1 nij
(
Ȳij. − Ȳi..

)2
/(b. − a)

, (11.167)

to test H0. This test, however, does not have the exact F-distribution since
neither the numerator nor the denominator in (11.167) are, in general, dis-
tributed as multiples of chi-squared variates, even under H0. Furthermore,
they are not necessarily independent. Note that if the data set is balanced,
then (11.167) reduces to the usual F-test concerning σ2

α, which has the exact
F-distribution as was seen in Chapter 8. Cummings and Gaylor (1974) rec-
ommended an alternative approximate F-test that can be obtained by using a
linear combination of mean squares for the error term and the nested factor
in place of the denominator of the statistic in (11.167). The linear combination
was chosen so that its expected value coincides with the expected value of
the numerator when σ2

α = 0. Satterthwaites’s approximation was then used
to approximate the distribution of the denominator as a multiple of a chi-
squared variate. Cummings and Gaylor (1974) also investigated the size of
the resulting approximate F-test under certain unbalanced nested designs.

11.7.1 An Exact Test Concerning σ2
α (Khuri, 1987)

The derivation of an exact F-test for H0 : σ2
α = 0 is similar to the one used

in Section 11.4.2.2 for testing the main effects’ variance components for a
random two-way model.

From (11.162) we get by averaging over k,

Ȳij. = μ + α(i) + βi(j) + ε̄ij., i = 1, 2, . . . , a; j = 1, 2, . . . , bi, (11.168)

where ε̄ij. = 1
nij

∑nij

k=1 εijk. We then have

Ȳ = μ1b. + B1α + Ib.β(α) + ε̄, (11.169)

where Ȳ and ε̄ are vectors consisting of the Ȳij.’s and ε̄ij.’s, respectively, and
B1 = ⊕a

i=11bi . The variance–covariance matrix of Ȳ is

Var(Ȳ) = σ2
α A1 + σ2

β(α) Ib. + σ2
ε K, (11.170)
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where A1 = B1B′
1 = ⊕a

i=1Jbi
, and K is the diagonal matrix

K = diag
(

1
n11

,
1

n12
, . . . ,

1
naba

)
.

By the Spectral Decomposition Theorem, the matrix R in (11.166) can be
expressed as

R = CΥC′, (11.171)

where C is an orthogonal matrix of eigenvectors of R and Υ is a diagonal
matrix of eigenvalues of R. Since R is idempotent of rank n.. − b., Υ and C
can be correspondingly partitioned as

Υ = diag(Ib.−1, In..−2b.+1, 0)

C = [C1 : C2 : C3],

where C1, C2, and C3 are of orders n.. × (b. − 1), n.. × (n.. − 2b. + 1), n.. × b.,
respectively. The columns of [C1 : C2] are orthonormal eigenvectors of R cor-
responding to the eigenvalue 1, and those of C3 correspond to the eigenvalue
0. This partitioning is possible under the assumption that

n.. > 2b. − 1. (11.172)

Note that the choice of C1 is not unique. Formulas (11.165) and (11.171) can
then be written as

R = C1 C′
1 + C2 C′

2 (11.173)
SSE = SSo

E1 + SSo
E2, (11.174)

where SSo
E1 = Y ′C1 C′

1Y, SSo
E2 = Y ′C2 C′

2Y.
Let us now consider the matrix A1 = ⊕a

i=1Jbi
, which is of order b. × b. and

rank a. Its nonzero eigenvalues are equal to b1, b2, . . . , ba. Then, there exists
an orthogonal matrix, P , of order b. × b. such that

PA1P ′ = Λa, (11.175)

where Λa = diag(b1, b2, . . . , ba, 0) and 0 is a zero matrix of order (b.−a)×(b.−a).
The first a rows of P are orthonormal eigenvectors of A1 corresponding to
the eigenvalues b1, b2, . . . , ba. These eigenvectors should therefore be the same
as the rows of the a × b. matrix, P1, where

P1 =
a⊕

i=1

(
1√
bi

1′
bi

)
.
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Let P2 be the (b. − a) × b. matrix consisting of the remaining b. − a rows of
P . Thus, P = [

P ′
1 : P ′

2
]′. Let U1 = PȲ. Then, from (11.169) and (11.170) we

have E(U1) = μP1b. , and

Var(U1) = PVar(Ȳ)P ′

= σ2
α Λa + σ2

β(α) Ib. + σ2
ε PKP ′. (11.176)

Note that the mean of U1 is not equal to zero, so another linear transformation
is needed to get a zero mean.

There exists an orthogonal matrix, Q, of order b. ×b. such that the first row
of QP is 1√

b.
1′

b.
(see Appendix 11.B). Let U2 be defined as U2 = Q′

1U1, where
Q1 is such that Q = [e1 : Q1]′. Here, e1 is a vector of order b. × 1 such that
e1 = (c′

1, 0′)′, where c′
1 = 1√

b.
(
√

b1,
√

b2, . . . ,
√

ba). Then, E(U2) = Q′
1E(U1) =

μQ′
1P1b. = 0, since QP is orthogonal and its first row is 1√

b.
1′

b.
. In addition,

from (11.176) we have

Var(U2) = Q′
1Var(U1)Q1

= Q′
1

[
σ2

α Λa + σ2
β(α) Ib. + σ2

ε PKP ′]Q1

= σ2
α Q′

1ΛaQ1 + σ2
β(α) Ib.−1 + σ2

ε Q′
1PKP ′Q1. (11.177)

We now show that the matrix Q′
1ΛaQ1 is of rank a − 1. For this purpose, let

Q′
1 be partitioned as

[
Q′

11 : Q′
12
]
, where Q′

11 is (b. −1)× a and Q′
12 is of order

(b. − 1) × (b. − a). Then,

Q′
1ΛaQ1 = Q′

11diag(b1, b2, . . . , ba)Q11.

Hence, the rank of Q′
1ΛaQ1 is the same as the rank of Q11, or the rank of

Q11Q′
11. But, from Appendix 11.B, c1c′

1 + Q11Q′
11 = Ia, by the fact that the a

columns of [c1 : Q11]′ are orthonormal. Thus, Q11Q′
11 = Ia − c1c′

1, which is
idempotent of rank a−1. Consequently, the rank of Q11Q′

11 is a−1. It follows
that there exists an orthogonal matrix, S, of order (b. − 1) × (b. − 1) such that

Q′
1ΛaQ1 = S diag(D, 0) S ′,

where D is an (a − 1) × (a − 1) diagonal matrix of nonzero eigenvalues of
Q′

1ΛaQ1 and 0 is a zero matrix of order (b. − a) × (b. − a).
Now, let Φ∗ = S ′U2. Then, Φ∗ has a zero mean, and by (11.177), its

variance–covariance matrix is

Var(Φ∗) = S ′[σ2
α Q′

1ΛaQ1 + σ2
β(α) Ib.−1 + σ2

ε Q′
1PKP ′Q1]S

= σ2
α diag(D, 0) + σ2

β(α) Ib.−1 + σ2
ε L,
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where L = S ′Q′
1PKP ′Q1S. Furthermore, let Ω∗ be defined as

Ω∗ = Φ∗ + (τmaxIb.−1 − L)1/2C′
1Y, (11.178)

where τmax is the largest eigenvalue of L and C1 is the n.. × (b. − 1) matrix in

(11.173). Finally, let Ω∗ be partitioned as Ω∗ =
[
Ω∗′

α : Ω∗′
β

]′
, where Ω∗

α and

Ω∗
β are vectors of a − 1 and b. − a elements, respectively. Using arguments

similar to those in the proof of Lemma 11.7, the following lemma can be
established [a detailed proof is given in Khuri (1987)].

Lemma 11.10 Ω∗
α and Ω∗

β are independent and normally distributed random
vectors with zero means and variance–covariance matrices given by

Var
(
Ω∗

α

) = σ2
α D +

(
σ2

β(α) + τmax σ2
ε

)
Ia−1

Var
(
Ω∗

β

)
=
(
σ2

β(α) + τmax σ2
ε

)
Ib.−a

Using Lemma 11.10, we can state that

Ω∗′
α[σ2

α D + (σ2
β(α) + τmax σ2

ε)Ia−1]−1Ω∗
α ∼ χ2

a−1

1

σ2
β(α)

+ τmax σ2
ε

Ω∗′
βΩ∗

β ∼ χ2
b.−a.

It follows that under H0 : σ2
α = 0,

F = Ω∗′
αΩ∗

α/(a − 1)

Ω∗′
βΩ∗

β/(b. − a)
(11.179)

has the F-distribution with a − 1 and b. − a degrees of freedom. The test is
significant at the α-level if F ≥ Fα,a−1,b.−a.

Under the alternative hypothesis, Ha : σ2
α > 0, Ω∗′

αΩ∗
α is distributed as∑a−1

i=1 λ∗
i Wi, where the Wi’s are independently distributed such that Wi ∼ χ2

1,
i = 1, 2, . . . , a−1, and λ∗

i is the ith eigenvalue of Var
(
Ω∗

α

)
, that is, λ∗

i = di σ
2
α+

σ2
β(α)

+ τmax σ2
ε, where di is the ith diagonal element of D, i = 1, 2, . . . , a − 1.

Thus, under Ha, the test statistics, F, in (11.179) can be written as

F = b. − a

(a − 1)
(
σ2

β(α)
+ τmax σ2

ε

) ×
∑a−1

i=1 λ∗
i Wi

Ω∗′
βΩ∗

β

/(
σ2

β(α)
+ τmax σ2

ε

) ,

where Ω∗′
βΩ∗

β

/(
σ2

β(α)
+ τmax σ2

ε

)
∼ χ2

b.−a. Consequently, at the α-level, the
power of the test in (11.179) is given by

P
[
F ≥ Fα,a−1,b.−a | σ2

α > 0
]

= P

⎡

⎣ b. − a

(a − 1)
(
σ2

β(α)
+ τmax σ2

ε

)
a−1∑

i=1

λ∗
i Wi − Fα,a−1,b.−a χ2

b.−a ≥ 0

⎤

⎦ .
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This probability value can be computed by using Davies’ algorithm (see
Section 5.6) for given values of σ2

α/σ2
ε and σ2

β(α)
/σ2

ε.

11.8 Inference Concerning the Mixed Two-Fold
Nested Model

In this section, we consider again the two-fold nested model in (11.162),

where α(i) is now fixed and βi(j) is random such that βi(j) ∼ N
(

0, σ2
β(α)

)

independently of εij(k), which is distributed as N
(
0, σ2

ε

)
. Hence, the variance–

covariance matrix of Y in (11.163) is of the form

Σ = σ2
β(α)

[
⊕a

i=1 ⊕bi
j=1 Jnij

]
+ σ2

ε In.. . (11.180)

The purpose here is to derive exact F-tests concerning σ2
β(α)

and estimable
linear functions of the fixed effects. This is done in a manner similar to the
one used in Section 11.6.

11.8.1 An Exact Test Concerning σ2
β(α)

From (11.169) , the mean and variance–covariance matrix of Ȳ are

E(Ȳ) = μ 1b. + B1α (11.181)

Var(Ȳ) = σ2
β(α) Ib. + σ2

ε K. (11.182)

As before in Section 11.6.1, a linear transformation of Ȳ is needed in order
to eliminate the dependence of the mean of Ȳ on α. For this purpose, we
consider the following linear transformation:

Ȳ∗ = T∗Ȳ, (11.183)

where T∗ = ⊕a
i=1T∗

i and T∗
i is the matrix

T∗
i =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
2

− 1√
2

0 . . . 0
1√
6

1√
6

− 2√
6

. . . 0
. . . . . . .
. . . . . . .
. . . . . . .
1√

bi(bi−1)

1√
bi(bi−1)

. . . . . . − bi−1√
bi(bi−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which has bi − 1 rows and bi columns, i = 1, 2, . . . , a. Thus, the
∑a

i=1(bi − 1) =
b. − a rows of T∗ define orthogonal contrasts in the elements of Ȳ. Hence,
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E(Ȳ∗
) = 0 and from (11.182) and (11.183) we get

Var(Ȳ∗
) = σ2

β(α) Ib.−a + σ2
ε T∗KT∗′

.

It follows that
1

σ2
ε

Ȳ∗′
(δ Ib.−a + T∗KT∗′

)−1Ȳ∗ ∼ χ2
b.−a,

where δ = σ2
β(α)

/σ2
ε. Since the error sum of squares , SSE = Y ′RY, in (11.165)

is independent of Ȳ, and hence of Ȳ∗, and SSE/σ2
ε ∼ χ2

n..−b.
, we conclude that

F(δ) = Ȳ∗′
(δ Ib.−a + T∗KT∗′

)−1Ȳ∗
/(b. − a)

SSE/(n.. − b.)
(11.184)

has the F-distribution with b. − a and n.. − b. degrees of freedom. We can
therefore utilize F(δ) to obtain a confidence interval on δ, and use F(δ0) to test
the hypothesis

H0 : δ ≤ δ0 against Ha : δ > δ0,

where δ0 is some known quantity. Since F(δ) is a decreasing function of δ, we
can reject H0 at the α-level if F(δ0) ≥ Fα,b.−a,n..−b. . In particular, if the data set
is balanced and if δ0 = 0, then it can be shown that (11.184) reduces to the
conventional F-test used in Chapter 8 to test H0 : σ2

β(α)
= 0.

11.8.2 An Exact Test for the Fixed Effects

Consider again the matrix R in (11.171). Let us partition C and Υ as C = [C∗
1 :

C∗
2 : C∗

3] and Υ = diag(Ib. , In..−2b. , 0), where C∗
1, C∗

2, and C∗
3 are of orders n.. ×b.,

n.. × (n.. − 2b.), and n.. × b., respectively, and 0 is a zero matrix of order b. × b..
The columns of

[
C∗

1 : C∗
2
]

are orthonormal eigenvectors of R corresponding
to the eigenvalue 1. This partitioning is possible under the condition

n.. > 2 b.

Formula (11.171)can then be written as

R = C∗
1 C∗′

1 + C∗
2 C∗′

2 . (11.185)

Let us now define the random vector Ωo as

Ωo = Ȳ + (τo
max Ib. − K)1/2C∗′

1 Y, (11.186)

where τo
max is the largest diagonal element of K. It is easy to see that Ȳ and

C∗′
1 Y are independent and Ωo has the normal distribution. Furthermore,

Var(Ωo) = Var(Ȳ) + σ2
ε

(
τo

max Ib. − K
)

= σ2
β(α) Ib. + σ2

ε K + σ2
ε (τo

max Ib. − K)

=
(
σ2

β(α) + τo
max σ2

ε

)
Ib. . (11.187)
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The first formula in (11.187) is true because

Var[(τo
max Ib. − K)1/2C∗′

1 Y] = (τo
max Ib. − K)1/2C∗′

1 ΣC∗
1(τ

o
max Ib. − K)1/2,

where Σ is given in (11.180). But,

C∗′
1 ΣC∗

1 = C∗′
1

{
σ2

β(α)

[
⊕a

i=1 ⊕bi
j=1 Jnij

]
+ σ2

ε In..

}
C∗

1

= σ2
ε C∗′

1 C∗
1

= σ2
ε Ib. .

This follows from the fact that
[
⊕a

i=1 ⊕bi
j=1 Jnij

]
R = 0. Consequently,

[
⊕a

i=1 ⊕bi
j=1 Jnij

] [
C∗

1 C∗′
1 + C∗

2 C∗′
2

]
= 0.

Multiplying both sides on the right by C∗
1, we get

[
⊕a

i=1 ⊕bi
j=1 Jnij

]
C∗

1 = 0,

since C∗′
1 C∗

1 = Ib. and C∗′
2 C∗

1 = 0.
Now, from (11.163), (11.181), and (11.186), the mean of Ωo is written as

E(Ωo) = E(Ȳ) + (τo
max Ib. − K

)1/2 C∗′
1 E(Y)

= μ1b. + B1 α + (τo
max Ib. − K

)1/2 C∗′
1 {μ1n.. + [⊕a

i=11ni.

]
α}
(11.188)

But,

C∗′
1
[⊕a

i=11ni.

] = 0 (11.189)

C∗′
1 1n.. = 0. (11.190)

Formula (11.189) is true because

R
[⊕a

i=11ni.

] = R
{
⊕a

i=1

[(
⊕bi

j=11nij

)
1bi

]}

= ⊕a
i=11ni. − ⊕a

i=1

{[
⊕bi

j=1(Jnij
/nij) 1nij

]
1bi

}

= ⊕a
i=11ni. − ⊕a

i=1

[(
⊕bi

j=11nij

)
1bi

]

= ⊕a
i=11ni. − ⊕a

i=11ni.

= 0. (11.191)

From (11.185) and (11.191) we conclude (11.189). Formula (11.190) follows
directly from (11.189) since 1n.. is the sum of the columns of ⊕a

i=11ni. . From
(11.188) we then have

E(Ωo) = μ 1b. + B1 α. (11.192)
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Using (11.187) and (11.192), we conclude that Ωo can be represented by the
linear model

Ωo = X0β + εo, (11.193)

where X0 = [1b. : B1], β = (μ, α′)′, and εo ∼ N[0, (σ2
β(α)

+ τo
max σ2

ε)Ib.].
Now, suppose that we are interested in testing the hypothesis

H0 : A β = b0,

where b0 is a known constant vector and A is a full row-rank matrix of rank
r0 (≤ a) such that Aβ is estimable. Then, the corresponding test statistic is

F =
(A β̂ − b0)

′
[
A
(
X′

0X0
)− A′

]−1
(A β̂ − b0)/r0

Ωo′ [
Ib. − X0

(
X′

0X0
)− X′

0

]
Ωo/(b. − a)

, (11.194)

which, under H0, has the F-distribution with r0 and b. −a degrees of freedom,
where β̂ = (X′

0X0
)− X′

0Ω
o. The test is significant at the α-level if F ≥ Fα,r0,b.−a.

In particular, we can test the hypothesis that α(1) = α(2) = . . . = α(a).

Example 11.8 Consider the following example where a manufacturer is inter-
ested in studying the burning rate of a rocket propellant from three produc-
tion processes (factor A). Three batches of propellant were randomly selected
from each of processes 1 and 2, but only two batches were selected from
process 3. The batch effect is random. Several determinations of burning
rate (in minutes) were made on each batch. The data set, which is given in
Table 11.11, is a modification of the data given in Montgomery (2005, Problem
14-1, p. 554) where some of the data were deleted to illustrate the analysis of
an unbalanced nested design.

TABLE 11.11
Burning Rate Data
Process Batch Burning Rate (in Minutes)
1 1 25, 30

2 19
3 15, 17, 14

2 1 19, 17, 14
2 23, 24, 21
3 35, 27, 25

3 1 20
2 25, 33
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On the basis of this data set, we find that for testing H0 : δ = 0 against
Ha : δ > 0, the test statistic, F(0), from (11.184) has the value F(0) = 7.53 with
5 and 10 degrees of freedom (p-value = 0.004). There is therefore a significant
variation due to batches.

For testing H0 : α(1) = α(2) = α(3), we find that the test statistic in (11.194),
with b0 = 0 and

A =
[

0 1 −1 0
0 1 0 −1

]
,

has the value F = 0.288 with 2 and 5 degrees of freedom (p-value = 0.762).
Thus, no significant differences can be detected among the means of the three
processes.

11.9 Inference Concerning the General Mixed
Linear Model

A more general version of a mixed linear model than what has been consid-
ered thus far is written as

Y = Xβ + Zγ + ε, (11.195)

where
β is a fixed parameter vector
γ is a vector that contains all the random effects
X and Z are known matrices associated with the fixed and random effects,

respectively
ε is a random error vector

It is assumed that γ and ε are independent and have the normal dis-
tributions such that E(γ) = 0, Var(γ) = G, E(ε) = 0, Var(ε) = �. The
variance–covariance matrix of Y is therefore of the form

Σ = ZGZ ′ + �. (11.196)

Model (11.195) is more general than the previously considered mixed models
in the sense that G does not have to be a diagonal matrix containing variance
components along its diagonal, as was the case in Sections 11.4–11.8. Further-
more, � does not have to be of the traditional form, σ2

ε In. Such a model can
therefore apply to many experimental situations that could not have been
accommodated by the traditional mixed model under the standard assump-
tions. Examples of such situations can be found in a variety of articles and
books (see, for example, Stram and Lee, 1994; Verbeke and Lesaffre, 1996;
Littell, 2002; Littell et al., 1996; Verbeke, 1997; Verbeke and Molenberghs,
1997, 2000, 2003; McCulloch and Searle, 2001).
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The statistical analysis for model (11.195) can be conveniently performed
by using PROC MIXED in SAS (2000). It allows the specification of particular
structures for G and � through the use of the “RANDOM” and “REPEATED”
statements in PROC MIXED. The first statement is used to define the random
effects in the model and the structure of the G matrix. The second statement is
used to specify the matrix �. Littell et al. (1996) provide a general discussion
on the use of PROC MIXED.

The purpose of this section is to review some basic tests for the general
mixed linear model using PROC MIXED.

11.9.1 Estimation and Testing of Fixed Effects

Let Hβ be a vector of estimable linear functions of β, where H is a full row-
rank matrix of rank r. Then, the generalized least-squares estimator (GLSE) of
Hβ is

Hβ̂ = H(X ′Σ−1X )−X ′Σ−1Y, (11.197)

whose variance–covariance matrix is of the form

Var(Hβ̂) = H(X ′Σ−1X )−H′. (11.198)

Since Σ is unknown in general, it should be replaced by an estimator, Σ̂. PROC
MIXED estimates Σ by using either maximum likelihood (ML) or restricted
maximum likelihood (REML) estimates of the unknown parameters in G and
� [see (11.196)]. For this purpose, “METHOD = ML” or “METHOD = REML”
can be used as options in the PROC MIXED statement. REML is the default
option. Using Σ̂ in place of Σ in (11.197) results in the so-called estimated
generalized least-squares estimator (EGLSE) of Hβ, which is denoted by Hβ̃.
Thus,

Hβ̃ = H(X ′Σ̂−1X )−X ′Σ̂−1
Y. (11.199)

Kackar and Harville (1984) showed that Hβ̃ is unbiased for Hβ. Using
(11.198), the variance–covariance matrix of Hβ̃ is approximately given by

Var(Hβ̃) ≈ H(X ′Σ̂−1X )−H′. (11.200)

A better approximation than the one in (11.200) was given by Kenward
and Roger (1997). The latter approximation is preferred in small-sample
settings.

In particular, if H consists of a single row vector, h′, then a statistic for
testing the hypothesis,

H0 : h′β = a0,
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where a0 is a known constant, is given by

t = h′β̃ − a0

[h′(X ′Σ̂−1X )−h]1/2
, (11.201)

which, under H0, has approximately the t-distribution with η degrees of
freedom. There are five methods available in PROC MIXED for estimating
η. These include the method based on Satterthwaite’s approximation and
the one introduced by Kenward and Roger (1997), which is based on their
improved procedure for approximating Var(h′β̃), as was mentioned earlier.
Guerin and Stroup (2000) conducted a simulation study that demonstrated
that the Kenward–Roger method substantially improved the degrees of free-
dom approximation (see also Littell, 2002). These two methods can be imple-
mented in PROC MIXED by using the options, “DDFM = SATTERTH” and
“DDFM = KENWARDROGER,” respectively, in the MODEL statement. On
the basis of (11.201), an approximate (1 − α) 100% confidence interval on h′β
is then given by

h′β̃ ± [h′(X ′Σ̂−1X )−h]1/2 tα/2, η. (11.202)

In general , for testing the hypothesis, H0 : Hβ = 0, PROC MIXED constructs
the statistic,

F = (Hβ̃)′[H(X ′Σ̂−1X )−H′]−1(Hβ̃)

r
, (11.203)

where, if we recall, r is the rank of H. Under H0, F has an approximate
F-distribution with r and η degrees of freedom.

It should be noted that the output from PROC MIXED includes the so-
called “TESTS OF FIXED EFFECTS” table which contains hypothesis tests for
the significance of each of the fixed effects specified in the MODEL statement.
By default, PROC MIXED computes these tests by constructing a particular
H matrix for each fixed effect, which is then used in (11.203) to compute a
Type III F-ratio for the effect under consideration.

11.9.2 Tests Concerning the Random Effects

Tests of significance concerning the random effects’ variance components
are usually performed using the likelihood ratio test. The corresponding test
statistic is

λn = maxH0 Ln(θ)

maxΩ Ln(θ)
, (11.204)
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where
Ln(θ) denotes the likelihood function for model (11.195) for a sample of

size n
θ is the vector containing the unknown parameters of the model (including

the variance components of the random effects)
maxH0 Ln(θ) denotes the maximum of Ln(θ) under a null hypothesis, H0,

for a given variance component
maxΩ Ln(θ) denotes the maximum ofLn(θ) over the entire parameter space

for θ

Usually, the null distribution of −2 log (λn) is approximated with that of a
chi-squared variate. The asymptotic behavior of the likelihood ratio test was
discussed by Stram and Lee (1994). Using results by Self and Liang (1987),
they showed that for testing a single variance component, the asymptotic null
distribution of −2 log (λn) is a mixture of χ2

1 and χ2
0 with weights equal to 0.5

(see also Verbeke, 1997, Section 3.9.1). Here, χ2
0 denotes a discrete distribution

that takes the value 0 with probability 1. Thus, if F(x) denotes the asymptotic
cumulative null distribution of −2 log (λn), then

F(x) = 1
2
[F1(x) + 1], (11.205)

where F1(x) is the cumulative distribution function of χ2
1. For example, the

5% critical value for such a combination is obtained by solving the equation,

1
2
[F1(x) + 1] = 0.95,

for x, or equivalently, F1(x) = 0.90, which gives the value, x = χ2
0.10, 1 = 2.71.

In general, it can be easily shown on the basis of formula (11.205) that the
p-value for the likelihood ratio statistic is one half of the p-value that could
have been obtained from a chi-squared distribution with one degree of
freedom.

The actual value of −2 log(λn) can be easily obtained from the PROC
MIXED output by fitting the model twice, with and without the random effect
being tested, then subtracting the corresponding values of −2 log (likelihood)
since by (11.204),

−2 log (λn) = −2 log [max
H0

Ln(θ)] + 2 log [max
Ω

Ln(θ)].

The −2 log (likelihood) value can be found in the PROC MIXED output under
a table entitled “FIT STATISTICS”. To do so, “METHOD = ML” should be
included as an option in the PROC MIXED statement.

Example 11.9 Let us again consider the data set of Example 11.7 concerning
the average daily gains (in pounds) of 67 steers. The corresponding model is
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TABLE 11.12
Type III Test Concerning Factor A

Effect Numerator DF Denominator DF F p-Value
A 2 19.60 0.38 0.6870

the one given in (11.84) where α(i), the effect of level i of factor A (age of dam),
is fixed (i = 1, 2, 3) and β(j), the effect of level j of factor B (sire), is random
(j = 1, 2, . . . , 9). The assumptions concerning the random effects are the same
as in Section 11.6.

The F-test concerning the fixed effect of A is obtained from the output
of PROC MIXED under “TYPE III TESTS OF FIXED EFFECTS” as shown in
Table 11.12.

On the basis of this table, no significant differences can be detected among
the three means of the age-of-dam factor. This agrees with the conclusion in
Example 11.7 (part (ii)) regarding the same factor. Note that the value of the
denominator degrees of freedom in Table 11.12 is based on the Kenward–
Roger method.

The tests concerning the random effects of B and A ∗ B are based on the
likelihood ratio log statistic, −2 log (λn). Thus, for testing H0 : σ2

β = 0, we
have the test statistic value,

−2 log (λn) = −2 log
[

max
H0

Ln(θ)
]

−
{
− 2 log

[
max

Ω
Ln(θ)

]}

= 10.2 − 9.8
= 0.4. (11.206)

The first entry on the right-hand side of (11.206) is obtained from the PROC
MIXED output concerning “- 2 LOG LIKELIHOOD” under the “FIT STATIS-
TICS” table for model (11.84), but without the effect of B. The second entry in
(11.206) represents the same quantity, but for the full model with the effect of
B included. In both models, “METHOD = ML” should be used in the PROC
MIXED statement. The corresponding p-value for the test statistic value in
(11.206) is 0.2635, which is half the p-value for a chi-squared test with one
degree of freedom (=0.5270). Thus, no significant variation can be detected
among sires. This also agrees with the conclusion in Example 11.7 (part (i))
regarding factor B. Similarly, by repeating the same steps, we find that the
test statistic value for H0 : σ2

αβ = 0 is

−2 log (λn) = 11.8 − 9.8
= 2.0.

The corresponding p-value is 0.0786, which indicates some significant vari-
ation due to A ∗ B (the p-value for a chi-squared test with one degree of
freedom is 2 × 0.0786 = 0.1572). We may recall that the test concerning the
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same hypothesis in Example 11.7 (part (i)) was not significant according to
the exact test described in Section 11.6.1.

The SAS statements needed to do the aforementioned computations are
given below:

DATA;
INPUT A B Y @@;

CARDS;
(enter here the data from Table 11.10)

PROC MIXED METHOD = ML;
CLASS A B;

MODEL Y = A/DDFM = KENWARDROGER;
RANDOM B A*B;

PROC MIXED METHOD = ML;
CLASS A B;

MODEL Y = A;
RANDOM A*B;

PROC MIXED METHOD = ML;
CLASS A B;

MODEL Y = A;
RANDOM B;

RUN;

Note that the “MODEL” statement in PROC MIXED contains only the fixed
effects. The “RANDOM” statement includes all the random effects. The first
PROC MIXED statement is needed to get the test results concerning the fixed
effects (as shown in Table 11.12) as well as the value of −2 log (likelihood) for
the full two-way model. The second PROC MIXED statement is needed to get
the value of −2 log (likelihood) for a model without B, and the third PROC
MIXED statement gives the same quantity, but for a model without A ∗ B.

Example 11.10 Consider the data set of Example 11.8 concerning the burn-
ing rate of a rocket propellant from three production processes (factor A).
Batches (factor B) are nested within A. Here, A is fixed and B is random. The
assumptions concerning the random effects in the two-fold nested model in
(11.162) are the same as in Section 11.8.

By repeating the same steps as in Example 11.9, we find that the test for
A can be obtained from the following table:

Effect Numerator DF Denominator DF F p-Value
A 2 8.61 0.43 0.6644

Hence, no significant differences can be detected among the means of the
three processes. This agrees with the conclusion in Example 11.8 regarding
the hypothesis, H0 : α(1) = α(2) = α(3).
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The test for H0 : σ2
β(α)

= 0 has the test statistic value

−2 log(λn) = 113.7 − 107.7
= 6.0.

The corresponding p-value is 0.0072, which indicates a significant variation
among batches. This also agrees with the conclusion in Example 11.8 regard-
ing the nested effect of B.

The corresponding SAS statements needed for this example are:

DATA;
INPUT A B Y @@;

CARDS;
(enter here the data from Table 11.11)

PROC MIXED METHOD = ML;
CLASS A B;

MODEL Y = A/DDFM = KENWARDROGER;
RANDOM B(A);

PROC MIXED METHOD = ML;
CLASS A B;

MODEL Y = A;
RUN;

Appendix 11.A: The Construction of the Matrix Q̃ in
Section 11.4.1

Let mi denote the rank of P̃i [i = 0, 1, 2, 3 with m0 = 1, m1 = a − 1, m2 = b − 1,
m3 = (a − 1)(b − 1)]. Let Q̃1i be a full row-rank matrix of rank mi whose rows
are orthonormal and span the row space of P̃i (i = 0, 1, 2, 3). Then, it is easy
to see that

(i) Q̃10 = 1√
ab

1′
ab

(ii) Q̃1i Q̃
′
1i = Imi , i = 0, 1, 2, 3, and Q̃1i Q̃

′
1j = 0, i = j.

(iii) Aj Q̃
′
1i = κ̃ij Q̃

′
1i, i, j = 0, 1, 2, 3.

Properties (ii) and (iii) follow from writing Q̃1i = V iP̃i for some matrix V i,
i = 0, 1, 2, 3, and using formula (11.98) and the fact that P̃iP̃j = 0, i = j. Now,
let Q̃ be defined as

Q̃ =
[
Q̃

′
10 : Q̃

′
11 : Q̃

′
12 : Q̃

′
13

]′
. (11.A.1)
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Then, on the basis of properties (i), (ii), and (iii), the matrices Q̃ Aj Q̃
′
, must

be diagonal for j = 0, 1, 2, and 3 since

Q̃ Aj Q̃
′ = Q̃ Aj

[
Q̃

′
10 : Q̃

′
11 : Q̃

′
12 : Q̃

′
13

]

= Q̃ [κ̃0jQ̃
′
10 : κ̃1jQ̃

′
11 : κ̃2jQ̃

′
12 : κ̃3jQ̃

′
13], j = 0, 1, 2, 3. (11.A.2)

The right-hand side of (11.A.2) is obviously diagonal. In particular, Q̃ diago-
nalizes A1 and A2 simultaneously. �

Appendix 11.B: The Construction of the Matrix Q in
Section 11.7.1

Let e1 be the b. × 1 vector, e1 = (
c′

1, 0′)′, where c′
1 = 1√

b.
(
√

b1,
√

b2, . . . ,
√

ba),

and 0 is a zero vector of order (b. − a)× 1. Then,
(
Ib. − e1e′

1
)
e1 = 0. The matrix

Ib. − e1e′
1 is idempotent of rank b. − 1 and e1 is an eigenvector of unit length

of this matrix corresponding to its zero eigenvalue. Let Q = [e1 : Q1]′, where
Q1 is of order b. × (b. − 1) and rank b. − 1 whose columns are orthonormal
eigenvectors of Ib. − e1e′

1 corresponding to its eigenvalue one. Hence, Q is an
orthogonal matrix and the first row of Q P is

e′
1P = c′

1P1

= 1√
b.

(√
b1,
√

b2, . . . ,
√

ba

) a⊕

i=1

(
1√
bi

1′
bi

)

= 1√
b.

1′
b.

.

Exercises

11.1 Consider the data set of Example 11.5.

(a) Obtain Henderson’s Method III estimates of σ2
δ(β)

and σ2
ε and

verify the values given at the end of Section 11.1.

(b) Give a test statistic for testing the hypothesis H0 : σ2
δ(β)

= 0. What
distribution does this statistic have under H0?

(c) What distribution would the test statistic in part (b) have if H0
were false?

11.2 Five batches of raw material were randomly selected. Several samples
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were randomly taken from each batch and the purity of the material
was determined from each sample. The following data were obtained:

Batch

1 2 3 4 5
10.93 14.72 9.97 21.51 18.45
12.71 15.91 10.78 20.75 17.25
11.35 17.10 19.69 16.95
13.50

The corresponding model is the one-way model in (11.64), where α(i)
denotes the effect of the ith batch (i = 1, 2, 3, 4, 5) such that α(i) ∼
N
(
0, σ2

α

)
independently of εi(j).

(a) Use R(α | μ) to construct a test statistic for H0 : σ2
α = 0.

(b) What distribution does the statistic in part (a) have if H0 is false?

(c) Show how you can compute the power of the test in part (a) for an

α-level of significance and a specific value of σ2
α

σ2
ε

.

11.3 Consider again the data set in Exercise 11.2.

(a) Test the hypothesis H0 : σ2
α = 0 using the statistic described in

(11.73).

(b) Give an approximate value of the power of the test in part (a) for

an α-level of significance and a specific value of σ2
α

σ2
ε

.

(c) Obtain an approximate (1 − α) 100% confidence interval on σ2
α

σ2
ε

.

(d) Obtain an approximate (1−α)100% confidence interval on σ2
α [see

the double inequality in (11.83)].

11.4 Consider Section 11.4.1.1. Show that the sums of squares, SSAu, SSBu,
and SSABu are mutually independent and distributed as multiples of
chi-squared variates if and only if Ũ

′
W−1Ũ is distributed as a chi-

squared variate.

11.5 Consider the data set in Table 11.3. Suppose that the effects of factors
A and B are random.

(a) Test the significance of A, B, and A∗B at the 5% level of significance
using the method of unweighted means in Section 11.4.1.

(b) Apply Lemma 11.6 to assess the adequacy of the approximate
distributional properties concerning the USSs in this data situation[
compute the upper bound in (11.111) for several values of

σ2
αβ

σ2
ε

]
.
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(c) Use the method of unweighted means to obtain an approximate

95% confidence interval on σ2
α

/(
σ2

α + σ2
β + σ2

αβ + σ2
ε

)
.

11.6 Consider again the data set used in Exercise 11.5.

(a) Test the interaction hypothesis, H0: σ2
αβ = 0, using F(0) in (11.116).

State your conclusion at the α = 0.05 level.

(b) Obtain a 95% confidence interval on Δαβ = σ2
αβ

σ2
ε

using the double
inequality in (11.119).

(c) Find the value of an exact test statistic for testing H0 : σ2
α = 0. State

your conclusion at the α = 0.05 level.
(d) Redo part (c) for H0 : σ2

β = 0.

(e) Obtain an expression for the power function of the test in part (c).

11.7 Consider the mixed two-way model discussed in Section 11.6. Show
that F(αβ | μ, α, β) can be used as an exact F-test statistic for testing
H0 : σ2

αβ = 0.

11.8 Consider the data set in Table 11.3 where factor A is fixed and factor
B is random.

(a) Test the hypothesis H0 : σ2
αβ = 0 in two ways:

(i) Using the test in (11.150).
(ii) Using F(αβ | μ, α, β).
Give the p-value for each test.

(b) Test the hypothesis H0 : σ2
β = 0 and state your conclusion at the

5% level.
(c) Determine if there is a significant difference among the means of

A. Let α = 0.05.

(d) Obtain a 95% confidence interval on
σ2

αβ

σ2
ε

.

11.9 Consider Section 11.7. Verify that the F-ratio in (11.164) has the F-
distribution under the null hypothesis, H0 : σ2

β(α)
= 0.

11.10 Consider the F-test statistic in (11.179) concerning the hypothesis, H0 :
σ2

α = 0, for the random two-fold nested model. Show that if the data
set is balanced (i.e., the nij’s are equal and the bi’s are also equal), then
this statistic reduces to the ANOVA-based F-test statistic used in the
balanced case to test H0.

11.11 Consider a random two-fold nested model (see Section 11.7), where
a = 4; b1 = 1, b2 = 2, b3 = 3, b4 = 4; n11 = 4, n21 = n22 = 3,
n31 = n32 = n33 = 2, n41 = n42 = n43 = n44 = 1. The following
ANOVA table is obtained:
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Source DF SS MS
A a − 1 = 3 R(α | μ) R(α | μ)/3
B(A) b. − a = 6 R(β(α) | μ, α) R(β(α) | μ, α)/6
Error n.. − b. = 10 SSE MSE

(a) Find the expected values of the mean squares in this ANOVA table.

(b) Find an approximate F-test for testing the hypothesis, H0 : σ2
α = 0,

using R(α | μ)/3 in the numerator and an appropriate linear com-
bination of mean squares in the denominator. Use Satterthwaite’s
approximation to compute the denominator degrees of freedom,
then state your conclusion at the approximate 5% level.

(c) Suppose that the test statistic in part (b) is written as F = Y′Q1Y
Y′Q2Y ,

where Q1 is such that Y ′Q1Y = R(α | μ)/3 and Q2 is the matrix
associated with the linear combination of mean squares in the
denominator. The actual size of the test for a nominal α = 0.05
level is

P
[

Y ′Q1Y
Y ′Q2Y

≥ F0.05,3,ν | σ2
α = 0

]
,

where ν is the denominator degrees of freedom. This probability
can be expressed as

P
[
Y ′(Q1 − F0.05,3,ν Q2)Y ≥ 0 | σ2

α = 0
]

.

Compute the value of this probability given that
σ2

β(α)

σ2
ε

= 4, then
compare the result with α = 0.05. [Hint: Use Davies’ algorithm
(see Section 5.6)].

11.12 Consider Section 11.7.1. Show how to construct an exact (1 − α) 100%

confidence region for
(

σ2
α

σ2
ε

,
σ2

β(α)

σ2
ε

)
. Can you use this region to obtain

simultaneous confidence intervals on σ2
α

σ2
ε

and
σ2

β(α)

σ2
ε

with a joint confi-
dence coefficient greater than or equal to 1 − α?

11.13 A certain manufacturing firm purchases its raw material from three
different suppliers. Four batches of the material were randomly
selected from each supplier. Several samples were randomly taken
from each batch and the purity of the material was determined from
each sample. The resulting data are given in the following table:
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Batch

Supplier 1 2 3 4
1 18.60 21.01 26.96 23.45

19.50 22.72 20.68 21.86
19.95

2 24.57 20.80 19.55 16.05
23.70 16.57 18.01 18.11
20.85 21.59 21.50 20.90

3 28.65 22.58 19.03 18.25
23.80 21.55 22.30 21.22

19.30

(a) Is there a significant variation due to batches? State your conclu-
sion at the 5% level.

(b) Determine if there is a significant difference among the means of
the three suppliers with regard to purity of the material. State your
conclusion at the 5% level.

(c) Obtain a 95% confidence interval on
σ2

β(α)

σ2
ε

, where σ2
β(α)

is the vari-

ance associated with the batch effect and σ2
ε is the error variance.

(d) Obtain a 95% confidence interval on the difference between the
mean purities for suppliers 1 and 3. Can we conclude that these
means differ at the 5% level?

11.14 Consider again Exercise 11.8.

(a) Test the hypothesis H0 : σ2
αβ = 0 using the likelihood ratio test in

Section 11.9.2. Let α = 0.05.

(b) Determine if there is a significant variation due to factor B using
the likelihood ratio test. Give the corresponding p-value.

(c) Redo part (c) of Exercise 11.8 using PROC MIXED.

11.15 Consider again Exercise 11.13.

(a) Redo part (a) using the likelihood ratio test.

(b) Redo part (b) using PROC MIXED.

(c) Obtain an approximate 95% confidence interval on the difference
between the mean purities for suppliers 1 and 3 using formula
(11.202) (obtain first the maximum likelihood estimates of σ2

β(α)

and σ2
ε).
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Additional Topics in Linear Models

This chapter covers a variety of more recent topics in linear models. These
include a study of heteroscedastic linear models, where the error vari-
ances and/or variances of some random effects are not necessarily constant,
response surface models with random effects, and the analysis of linear mul-
tiresponse models.

12.1 Heteroscedastic Linear Models

Inference-making procedures concerning the fixed and random effects in a
mixed linear model are often based on the assumption that the error variances
are equal. However, in many experimental situations, such an assumption
may not be valid. For example, in a production process, the quality of a
product may be subject to some variation caused by occasional machine
malfunction or human error. It would therefore be unreasonable to assume
that the variance attributed to the error term in the model remains constant
over the course of the experiment. Furthermore, variances attributed to some
random effects in the model may also be subject to change. For example, in
an industrial experiment, batches of raw material are obtained from different
suppliers. The measured response is the purity of the raw material. In this
case, the variation of purity among batches may be different for the different
suppliers.

Interlaboratory studies performed to test, for example, a certain drug
provide another example where heterogeneous variances can be expected.
Measurements taken from several laboratories are made by different tech-
nicians using different equipment. It is therefore very possible that the
within-laboratory variances differ substantially (see, for example, Vangel and
Rukhin, 1999).

In all the above situations, lack of homogeneity of variances pertaining to
the error term, or to some random effects in the model, can seriously affect
the testing of the various effects in the model. A variety of models subject to
such experimental conditions will be considered in this chapter.

427
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12.2 The Random One-Way Model with Heterogeneous
Error Variances

The analysis of a random one-way model with heterogeneous error variances
was first studied by Cochran (1937). The analysis of the same model, but with
fixed effects, is not considered in this chapter. Unlike the former model, the
latter has for many years been given a great deal of attention by researchers.
Welch (1947), James (1951), and Box (1954) were among the first to address
the problem of heterogeneous error variances. It has long been established
that the standard F-test for testing equality of the treatment means is sensitive
to a failure in the assumption of equal error variances, especially if the data
set is unbalanced. Several test procedures were proposed to compare the
treatment means in such a situation. See, for example, Brown and Forsythe
(1974c), Bishop and Dudewicz (1978), Krutchkoff (1988), Draper and Guttman
(1966), and Smith and Peddada (1998).

Let us now consider the random one-way model,

Yij = μ + α(i) + εi(j), i = 1, 2, . . . , k; j = 1, 2, . . . , ni, (12.1)

where α(i) ∼ N(0, σ2
α), εi(j) ∼ N(0, σ2

i ), and the α(i)’s and εi(j)’s are mutually
independent. Note that the error variances are equal within groups, that is,
for a fixed i, but are unequal among groups, that is, for different values of i
(i = 1, 2, . . . , k). Model (12.1) can be written in vector form as

Y = μ1n. +
[
⊕k

i=11ni

]
α + ε, (12.2)

where
n. = ∑k

i=1 ni, α = (α(1), α(2), . . . , α(k))
′

ε = (ε1(1), ε1(2), . . . , ε1(n1), . . . , εk(1), . . . , εk(nk))
′

Y is the vector of observations

Then, Y is distributed as N(μ1n. , Σ), where

Σ = σ2
α ⊕k

i=1 Jni
+ ⊕k

i=1

(
σ2

i Ini

)
. (12.3)

The standard F-test statistic for testing H0 : σ2
α = 0 is given by

F =
(

n. − k
k − 1

)
Y ′AY
Y ′BY

, (12.4)
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where

A =
k⊕

i=1

(
1
ni

Jni

)
− 1

n.
Jn. , (12.5)

B = In. −
k⊕

i=1

(
1
ni

Jni

)
. (12.6)

If the error variances are homogeneous, that is, σ2
1 = σ2

2 = . . . = σ2
k , then

under H0, F has the F-distribution with k − 1 and n. − k degrees of freedom.
However, if the error variances are heterogeneous, then Y ′AY and Y ′BY are
not independent and neither one is distributed as a multiple of a chi-squared
variate (see Exercise 12.1). As a result, Fα,k−1,n.−k cannot be used as the true
α-critical value of the test statistic in (12.4). In this case, the probability, αf ,
given by

αf = P[F ≥ Fα,k−1,n.−k | σ2
α = 0] (12.7)

is not necessarily equal to the nominal level of significance, α. It is possible
to get an actual value for αf and compare it with α. This is done as follows:
The right-hand side of (12.7) can be written as

P[F ≥ Fα,k−1,n.−k | σ2
α = 0] = P[Y ′(A − cB)Y ≥ 0 | σ2

α = 0], (12.8)

where c = k−1
n.−k Fα,k−1,n.−k. Under H0 : σ2

α = 0, Y ′(A − cB)Y can be repre-
sented as

Y ′(A − cB)Y =
s∑

i=1

λi χ
2
νi

, (12.9)

where λ1, λ2, . . . , λs are the distinct nonzero eigenvalues of (A − cB)Σ0 with
multiplicities ν1, ν2, . . . , νs, where Σ0 = ⊕k

i=1

(
σ2

i Ini

)
, which is obtained by

putting σ2
α = 0 in (12.3), and χ2

ν1
, χ2

ν2
, . . . , χ2

νs
are mutually independent

chi-squared variates (see Lemma 5.1). From (12.7) and (12.8) we then have

αf = P

[ s∑

i=1

λi χ
2
νi

≥ 0

]
. (12.10)

Davies’ (1980) algorithm mentioned in Section 5.6 can then be used to compute
αf for given values of n1, n2, . . . , nk and σ2

1, σ2
2, . . . , σ2

k . This was carried out
in Lee et al. (2007, Table 2) who reported the values of αf for several values
of k, σ2

1, σ2
2, . . . , σ2

k and different degrees of imbalance affecting the sample
sizes, n1, n2, . . . , nk. It was found that for α = 0.05, for example, αf ranged
from 0.0001 to 0.8244 for k = 3; from 0.0003 to 0.9610 for k = 5, and from
0.0008 to 0.9981 for k = 7. This clearly shows that heterogeneity in the error
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variances combined with data imbalance can have a substantial effect on the
level of significance of the F-test in (12.4). Lee et al. (2007) also noted that
data imbalance had a larger effect on αf than did heterogeneity in the error
variances.

Even though the exact distribution of F in (12.4) is unknown under H0, it is
possible to determine its true critical value with the help of Davies’ algorithm
for given values of ni and σ2

i (i = 1, 2, . . . , k). If F∗
α denotes the α-critical value

of F, then

P(F ≥ F∗
α) = α, (12.11)

which can be written as in formula (12.10) in the form

P

( r∑

i=1

λ∗
i χ2

ν∗
i

≥ 0

)
= α,

where λ∗
1, λ∗

2, . . . , λ∗
r are the distinct nonzero eigenvalues of (A−c∗B)Σ0, where

c∗ = k−1
n.−k F∗

α, with multiplicities ν∗
1, ν∗

2, . . . , ν∗
r , respectively. To compute the

value of F∗
α using Davies’ algorithm, we can proceed as follows: For a given α

and specific values of n1, n2, . . . , nk; σ2
1, σ2

2, . . . , σ2
k , Davies’ algorithm is used to

calculate αf from (12.10). If the ensuing value of αf is larger, or smaller, than
the nominal level, α, the value of Fα,k−1,n.−k is increased, or decreased, several
times until the difference between αf and α is small enough. This results in
the value of F∗

α as in (12.11). This process was illustrated in Lee et al. (2007,
Table 2) who reported that the effect of heterogeneous error variances on the
true α-critical value can be quite considerable.

12.2.1 An Approximate Test Concerning H0 : σ2
α = 0

Let us again consider model (12.1) under the same assumptions concern-
ing the distributions of α(i) and εi(j) as was stated earlier. An approximate
test concerning the hypothesis, H0 : σ2

α = 0, was given by Jeyaratnam and
Othman (1985). They proposed the following test statistic:

F = SSB

SSW
, (12.12)

where

SSB = 1
k − 1

k∑

i=1

(Ȳi. − Ȳ∗)2, (12.13)

SSW = 1
k

k∑

i=1

s2
i

ni
, (12.14)

and Ȳi. = 1
ni

∑ni
j=1 Yij, Ȳ∗ = 1

k
∑k

i=1 Ȳi., s2
i = 1

ni−1
∑ni

j=1(Yij−Ȳi.)
2, i = 1, 2, . . . , k.

The numerator of SSB represents the unweighted sum of squares for the factor
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associated with α(i) in model (12.1). It is easy to verify that

(a) SSB and SSW are independent.

(b) E(SSB) = σ2
α + 1

k
∑k

i=1
σ2

i
ni

.

(c) E(SSW) = 1
k
∑k

i=1
σ2

i
ni

.

Furthermore, (ni−1)s2
i

σ2
i

∼ χ2
ni−1 for i = 1, 2, . . . , k. Hence, SSW in (12.14) is

distributed as

SSW =
k∑

i=1

θiVi, (12.15)

where θi = σ2
i

k ni (ni−1)
, and the Vi’s are mutually independent random variables

such that Vi ∼ χ2
ni−1 (i = 1, 2, . . . , k). In addition, by applying Lemma 5.1, we

can state that U = (k − 1)SSB is distributed as

U = Ȳ ′
(

Ik − 1
k

Jk

)
Ȳ

=
t∑

i=1

τi Ui, (12.16)

where Ȳ = (Ȳ1., Ȳ2., . . . , Ȳk.)
′, τ1, τ2, . . . , τt are the distinct nonzero eigen-

values of (Ik − 1
k Jk)[σ2

αIk + ⊕k
i=1(σ

2
i /ni)] with multiplicities η1, η2, . . . , ηt,

and U1, U2, . . . , Ut are mutually independent random variables such that

Ui ∼ χ2
ηi

(i = 1, 2, . . . , t). Note that σ2
αIk+⊕k

i=1

(
σ2

i
ni

)
is the variance–covariance

matrix of Ȳ.
Applying Satterthwaite’s approximation (see Section 9.1) to SSW and U

in (12.15) and (12.16), respectively, we can write

N1 U
∑t

i=1 τi ηi
∼

approx.
χ2

N1
, (12.17)

N2 SSW
∑k

i=1 θi (ni − 1)
∼

approx.
χ2

N2
, (12.18)

where

N1 =
(∑t

i=1 τi ηi

)2

∑t
i=1 τ2

i ηi
, (12.19)
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N2 =
[∑k

i=1 θi (ni − 1)
]2

∑k
i=1 θ2

i (ni − 1)
. (12.20)

Note that

t∑

i=1

τi ηi = tr

⎧
⎨

⎩

(
Ik − 1

k
Jk

)⎡

⎣σ2
α Ik +

k⊕

i=1

(
σ2

i

ni

)⎤

⎦

⎫
⎬

⎭

= σ2
α(k − 1) + k − 1

k

k∑

i=1

σ2
i

ni
, (12.21)

t∑

i=1

τ2
i ηi = tr

⎧
⎪⎨

⎪⎩

⎡

⎣
(

Ik − 1
k

Jk

)⎛

⎝σ2
α Ik +

k⊕

i=1

(
σ2

i

ni

)⎞

⎠

⎤

⎦
2
⎫
⎪⎬

⎪⎭

= 1
k2

⎡

⎣
k∑

i=1

(
σ2

α + σ2
i

ni

)⎤

⎦
2

+ k − 2
k

k∑

i=1

(
σ2

α + σ2
i

ni

)2

. (12.22)

Using formulas (12.21) and (12.22) in (12.17) and (12.19), we conclude that

N1 U

σ2
α(k − 1) + k−1

k
∑k

i=1
σ2

i
ni

∼
approx.

χ2
N1

or, equivalently,

N1 SSB

σ2
α + 1

k
∑k

i=1
σ2

i
ni

∼
approx.

χ2
N1

, (12.23)

where

N1 =
[
σ2

α(k − 1) + k−1
k

∑k
i=1

σ2
i

ni

]2

1
k2

[∑k
i=1(σ

2
α + σ2

i
ni

)
]2 + k−2

k
∑k

i=1

(
σ2

α + σ2
i

ni

)2 . (12.24)

Also, since θi = σ2
i

k ni (ni−1)
, i = 1, 2, . . . , k, we get from (12.18),

N2 SSW

1
k
∑k

i=1
σ2

i
ni

∼
approx.

χ2
N2

, (12.25)

where from (12.20),

N2 =
[∑k

i=1
σ2

i
ni

]2

∑k
i=1

σ4
i

n2
i (ni−1)

. (12.26)
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Using properties (a) through (c), and the approximate chi-squared distribu-
tions in (12.23) and (12.25), we conclude that the statistic F in (12.12) can
be used to test H0 : σ2

α = 0. Under this hypothesis, F has the approximate
F-distribution with N1 and N2 degrees of freedom. The test is significant at
the approximate α-level if F ≥ Fα,N1,N2 . Since N1 and N2 depend on the
unknown values of σ2

1, σ2
2, . . . , σ2

k , it will be necessary to replace σ2
i by s2

i , the
sample variance for the ith group data (i = 1, 2, . . . , k), in the expressions in
(12.24) and (12.26) for N1 and N2, respectively. This gives rise to N̂1 and N̂2.
Thus, under H0, N̂1 and N̂2 are of the form

N̂1 =
[
(k − 1)

∑k
i=1

s2
i

ni

]2

(∑k
i=1

s2
i

ni

)2 + k (k − 2)
∑k

i=1
s4
i

n2
i

, (12.27)

N̂2 =
(∑k

i=1
s2
i

ni

)2

∑k
i=1

s4
i

n2
i (ni−1)

. (12.28)

Simulation studies were conducted by Jeyaratnam and Othman (1985) and
by Argac, Makambi, and Hartung (2001) to evaluate the performance of the
test statistic in (12.12). The latter authors noted that the actual simulated sig-
nificance levels of the test were somewhat close to the nominal significance
level for small values of k, but the test tended to be too conservative for large
k (≥ 6) and small sample sizes.

12.2.2 Point and Interval Estimation of σ2
α

An ANOVA-type estimator of σ2
α was given by Rao, Kaplan, and Cochran

(1981), namely,

σ̂2
α =

⎛

⎝n. − 1
n.

k∑

i=1

n2
i

⎞

⎠
−1 ⎡

⎣
k∑

i=1

ni(Ȳi. − Ȳ..)
2 −

k∑

i=1

(
1 − ni

n.

)
s2

i

⎤

⎦ ,

where Ȳ.. = 1
n.

∑k
i=1 ni Ȳi.. This estimator is unbiased, but can take on negative

values. Another estimator that yields nonnegative estimates of σ2
α was also

given by Rao, Kaplan, and Cochran (1981) and is of the form

σ̃2
α = 1

k

k∑

i=1

m2
i (Ȳi. − Ỹ..)

2,

where mi = ni
ni+1 , i = 1, 2, . . . , k, and Ỹ.. =

∑k
i=1 miȲi.∑k

i=1 mi
. This estimator is biased

and is called the average of the squared residuals (ASR)-type estimator.
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Confidence intervals on σ2
α were proposed by several authors. The fol-

lowing confidence interval was proposed by Wimmer and Witkovsky (2003):
Replacing the τi’s in (12.16) by their weighted average,

τ̄ =
∑t

i=1 τi ηi∑t
i=1 ηi

= σ2
α(k − 1) + k−1

k
∑k

i=1
σ2

i
ni

k − 1

= σ2
α + 1

k

k∑

i=1

σ2
i

ni
,

which results from applying formula (12.21) and the fact that
∑t

i=1 ηi =
rank(Ik − 1

k Jk) = k − 1, we get

U ∼
approx.

τ̄

t∑

i=1

Ui

= τ̄ χ2
k−1.

Thus,
U

σ2
α + 1

k
∑k

i=1
σ2

i
ni

∼
approx.

χ2
k−1. (12.29)

From (12.29), an approximate (1 − α
2 )100% confidence interval on σ2

α is
obtained as

U

χ2
α/4,k−1

− 1
k

k∑

i=1

σ2
i

ni
< σ2

α <
U

χ2
1−α/4,k−1

− 1
k

k∑

i=1

σ2
i

ni
. (12.30)

But, (12.30) cannot be used since it depends on the unknown values of

σ2
1, σ2

2, . . . , σ2
k . Using the fact that (ni−1)s2

i
σ2

i
∼ χ2

ni−1 independently for i =
1, 2, . . . , k, the intervals,

(ni − 1)s2
i

χ2
β/2,ni−1

< σ2
i <

(ni − 1)s2
i

χ2
1−β/2,ni−1

, i = 1, 2, . . . , k (12.31)

represent simultaneous confidence intervals on σ2
1, σ2

2, . . . , σ2
k with a joint

coverage probability equal to (1 − β)k, where β is defined so that (1 − β)k =
1 − α

2 . From (12.31) we conclude that

1
k

k∑

i=1

(ni − 1)s2
i

ni χ
2
β/2,ni−1

<
1
k

k∑

i=1

σ2
i

ni
<

1
k

k∑

i=1

(ni − 1)s2
i

ni χ
2
1−β/2,ni−1

, (12.32)

with a probability greater than or equal to 1 − α
2 .
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Applying Bonferroni’s inequality to (12.30) and (12.32), we get

U

χ2
α/4,k−1

− 1
k

k∑

i=1

(ni − 1)s2
i

ni χ
2
1−β/2,ni−1

< σ2
α <

U

χ2
1−α/4,k−1

− 1
k

k∑

i=1

(ni − 1)s2
i

ni χ
2
β/2,ni−1

,

(12.33)

with an approximate coverage probability greater than or equal to 1−α. If the
lower bound of this confidence interval is negative, then it can be truncated at
zero. This action produces intervals with a coverage probability greater than
or equal to that for the intervals in (12.33). From (12.33) we finally conclude
that an approximate confidence interval on σ2

α with a confidence coefficient
greater than or equal to 1 − α is given by

L1 < σ2
α < L2, (12.34)

where L1 = max(0, �1), L2 = max(0, �2), and

�1 = U

χ2
α/4,k−1

− 1
k

k∑

i=1

(ni − 1)s2
i

ni χ
2
1−β/2,ni−1

�2 = U

χ2
1−α/4,k−1

− 1
k

k∑

i=1

(ni − 1)s2
i

ni χ
2
β/2,ni−1

.

12.2.3 Detecting Heterogeneity in Error Variances

The analysis concerning model (12.1) depends on whether or not the error
variances are equal. Thus, there is a need to test the hypothesis

H0 : σ2
1 = σ2

2 = . . . = σ2
k . (12.35)

There are several procedures for testing H0. The traditional ones, such as
Bartlett’s (1937) and Hartley’s (1950) tests, are not recommended since they
are sensitive to nonnormality of the data. By contrast, Levene’s (1960) test
is much more robust to nonnormality and is therefore recommended for
testing H0. Levene’s test statistic has a complex form, and under H0 has an
approximate F-distribution. Large values of the test statistic are significant.
A convenient way to compute the value of this statistic is to use the option,
“HOVTEST = LEVENE,” in the SAS statement, MEANS A, which is available
in PROC GLM. Here, A denotes the factor associated with α(i) in model (12.1).
Another related and widely used homogeneity of variance test is the one by
O’Brien (1978, 1979). This is a modification of Levene’s test and can also be
implemented using PROC GLM by changing “LEVENE” to “OBRIEN” in the
statement, MEANS A/HOVTEST = LEVENE.

The following example illustrates the application of Levene’s test in
PROC GLM.
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Example 12.1 Batches of raw material were tested for their calcium content.
Several samples were taken from each of six randomly selected batches. The
data are given in Table 12.1.

To test the homogeneity of variance hypothesis in (12.35) (with k = 6) on
the basis of Levene’s (1960) test, the following SAS statements can be used:

DATA;
INPUT BATCH Y @@;

CARDS;
(enter here the data from Table 12.1)

PROC GLM;
CLASS BATCH;

MODEL Y = BATCH;
MEANS BATCH/HOVTEST = LEVENE;

RUN;

From the resulting SAS output, we get Table 12.2.
Levene’s test statistic has an approximate F-distribution with 5 and 30

degrees of freedom. The test statistic value is 2.39 with an approximate p-value
equal to 0.0612. There is therefore some evidence of heterogeneity in the
error variances among batches. We can then proceed to apply the analysis
concerning σ2

α as was described earlier in Section 12.2.1.
The value of the test statistic in (12.12) for the hypothesis H0 : σ2

α = 0
is F = SSB

SSW
= 23.4543

9.2254 = 2.54. The estimated degrees of freedom based on

TABLE 12.1
Calcium Content Data
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6
23.21 35.02 26.12 23.50 21.10 17.50
23.51 29.50 22.30 6.50 32.00 34.10
22.93 27.52 28.50 37.31 25.30 29.50
23.57 19.88 22.90 34.50 19.11
23.90 33.50 11.08 38.50 28.50

32.05 40.50 38.00
35.30 43.50 28.50

14.50
29.90

TABLE 12.2
Levene’s Test for Homogeneity of Variances
Source DF SS MS F p-Value
Batch 5 42748.1 8549.6 2.39 0.0612
Error 30 107221 3574.0
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formulas (12.27) and (12.28) are N̂1 = 2.75 ≈ 3, N̂2 = 12.30 ≈ 12, and the
corresponding approximate p-value is 0.107. There is therefore an indication
of a mild variability among batches with regard to calcium content. Using now
formula (12.34), a confidence interval on σ2

α with an approximate confidence
coefficient greater than or equal to 0.95 is given by 0 < σ2

α < 189.61. Note
that the ANOVA-type and ASR-type estimates of σ2

α (see Section 12.2.2) are
σ̂2

α = 12.981 and σ̃2
α = 13.816, respectively.

12.3 A Mixed Two-Fold Nested Model with Heteroscedastic
Random Effects

Consider the mixed two-fold nested model,

Yijk = μ + α(i) + βi(j) + εij(k), i = 1, 2, . . . , a; j = 1, 2, . . . , bi; k = 1, 2, . . . , n,
(12.36)

where α(i) is a fixed unknown parameter, βi(j) and εij(k) are distributed inde-
pendently such that βi(j) ∼ N(0, κ2

i ) and εij(k) ∼ N(0, σ2
ε). We note that the

variances of βi(j) are different for different i, but are constant for a given i.
Furthermore, the range of subscript j depends on i, but the range of subscript
k is the same for all i, j. Thus, data imbalance in this case affects only the
second stage, but not the third stage of the nested design. Such a design is
said to have the so-called last-stage uniformity.

An example to which model (12.36) can be applied concerns the testing of
purity of batches of raw material obtained from different suppliers where the
variation of purity among batches can be different for the different suppliers,
as was mentioned earlier in Section 12.1. In another situation, the composition
of soils from randomly selected plots in different agricultural areas may vary
differently from one area to another.

In this section, tests are presented concerning the fixed and random effects
for model (12.36). These tests were initially developed by Khuri (1992a).

Let us first define Yij as Y ij = (Yij1, Yij2, . . . , Yijn)′. Then,

E(Y ij) = (μ + α(i))1n, (12.37)

Var(Y ij) = κ2
i Jn + σ2

ε In. (12.38)

Using the Spectral Decomposition Theorem, the matrix Jn can be repre-
sented as

Jn = P diag(n, 0) P′,
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where P is an orthogonal matrix of order n × n of orthonormal eigenvectors

of Jn. Since Jn

(
1√
n 1n

)
= n

(
1√
n 1n

)
, 1√

n 1n is a unit eigenvector of Jn with the
eigenvalue n. We can therefore express P as

P =
[

1√
n

1n : Q
]

,

where the n − 1 columns of Q are orthonormal eigenvectors of Jn for the
eigenvalue zero. Let Zij = P′Y ij. Then,

E(Zij) = P′(μ + α(i))1n

= [√n(μ + α(i)), 0′]′,
Var(Zij) = P′(κ2

i Jn + σ2
ε In)P

= κ2
i diag(n, 0) + σ2

ε In

= diag(nκ2
i + σ2

ε, σ2
ε In−1).

Furthermore, let vij and ωij be defined as

vij = 1
n

1
′
nY ij, (12.39)

ωij = Q′ Y ij. (12.40)

Then, for j = 1, 2, . . . , bi and i = 1, 2, . . . , a, the vij’s and ωij’s are independently
and normally distributed with means and variances given by

E(vij) = μ + α(i), (12.41)

Var(vij) = κ2
i + σ2

ε

n
, (12.42)

E(ωij) = 0, (12.43)

Var(ωij) = σ2
ε In−1. (12.44)

12.3.1 Tests Concerning the Fixed Effects

The hypothesis of interest here is

H0 : α(1) = α(2) = . . . = α(a). (12.45)

The following two cases are considered:

Case 1. The data set is balanced, that is, b1 = b2 = . . . = ba = b.
Let vj be defined as

vj = (v1j, v2j, . . . , vaj)
′, j = 1, 2, . . . , b,
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where vij is defined in (12.39). This vector is normally distributed, and by
(12.41) and (12.42), has a mean and a variance–covariance matrix given by

E(vj) = (μ + α(1), μ + α(2), . . . , μ + α(a))
′, j = 1, 2, . . . , b,

Var(vj) =
a⊕

i=1

(
κ2

i + σ2
ε

n

)
, j = 1, 2, . . . , b.

Let now Δj be defined as

Δj = C vj, j = 1, 2, . . . , b,

where C is an (a − 1) × a matrix of a − 1 orthogonal contrasts. Then,

E(Δj) = C α, j = 1, 2, . . . , b,

where α = (α(1), α(2), . . . , α(a))
′ and

Var(Δj) = C

[ a⊕

i=1

(
κ2

i + σ2
ε

n

)]
C′, j = 1, 2, . . . , b. (12.46)

The Δj’s are mutually independent and identically distributed as normal ran-
dom vectors with zero means under H0 and a common variance–covariance
matrix given by (12.46). The hypothesis H0 in (12.45) can then be tested by
using Hotelling’s T2-statistic (see, for example, Seber, 1984, p. 63), which is
given by

T2 = b Δ̄
′
S−1Δ̄, (12.47)

where Δ̄ = 1
b
∑b

j=1 Δj and S is the sample variance–covariance matrix,

S = 1
b − 1

b∑

j=1

(Δj − Δ̄)(Δj − Δ̄)′.

Under H0 and assuming that b ≥ a,

F = b − a + 1
(a − 1)(b − 1)

T2 ∼ Fa−1,b−a+1. (12.48)

The test is significant at the α-level if F ≥ Fα,a−1,b−a+1. Note that F is invariant
to the choice of the orthogonal contrasts that make up the rows of C. This
is true because the T2-statistic in (12.47) is invariant with respect to linear
transformations of the vj’s of the type described earlier (see Anderson, 1963).
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Case 2. The values of bi are not necessarily equal.
This is the more general case as it applies whether the bi’s are equal or not.

Let ζi = v̄i. − v̄a. (i = 1, 2, . . . , a − 1), where v̄i. = 1
bi

∑bi
j=1 vij (i = 1, 2, . . . , a)

and vij is defined in (12.39). From (12.42), the variance–covariance structure
for the ζi’s is given by

Var(ζi) = 1
bi

(
κ2

i + σ2
ε

n

)
+ 1

ba

(
κ2

a + σ2
ε

n

)
, i = 1, 2, . . . , a − 1,

Cov(ζi, ζ�) = Var(v̄a.)

= 1
ba

(
κ2

a + σ2
ε

n

)
, i 	= �.

Let ζ = (ζ1, ζ2, . . . , ζa−1)
′. Then, the variance–covariance matrix of ζ, denoted

by V , is of the form

V =
a−1⊕

i=1

[
1
bi

(
κ2

i + σ2
ε

n

)]
+ 1

ba

(
κ2

a + σ2
ε

n

)
Ja−1. (12.49)

Since E(ζ) = 0 under H0, ζ′V−1ζ ∼ χ2
a−1. Furthermore, from (12.41) and

(12.42), an unbiased estimate of κ2
i + σ2

ε
n is given by t2

i , where

t2
i = 1

bi − 1

bi∑

j=1

(vij − v̄i.)
2, i = 1, 2, . . . , a. (12.50)

Hence, an estimate, V̂ , of V is obtained from (12.49) by replacing κ2
i + σ2

ε
n by

t2
i (i = 1, 2, . . . , a). Thus,

V̂ =
a−1⊕

i=1

(
t2
i

bi

)
+ t2

a

ba
Ja−1. (12.51)

Consequently, a test statistic for testing H0 in (12.45) can be obtained by using

ζ′V̂−1
ζ, which under H0 has approximately the chi-squared distribution.

Large values of this test statistic are significant. James (1954) showed that the

upper α-quantile of ζ′V̂−1
ζ is approximately given by (γ1 +γ2 χ2

α,a−1)χ
2
α,a−1,

where

γ1 = 1 + 1
2(a − 1)

a∑

i=1

1
bi − 1

(
1 − bi

θ t2
i

)2

,

γ2 = 3
2(a − 1)(a + 1)

a∑

i=1

1
bi − 1

(
1 − bi

θ t2
i

)2

.

where θ = ∑a
i=1

bi
t2
i

(see also, Seber, 1984, p. 446).
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Note that the exact F-test described in Case 1 can be applied to Case 2
by using vj = (v1j, v2j, . . . , vaj)

′, j = 1, 2, . . . , b0, where b0 = min(b1, b2, . . . , ba)

provided that b0 ≥ a. This amounts to discarding some of the data, which
causes the test to be inefficient.

The exact and approximate tests (in Cases 1 and 2, respectively) were dis-
cussed by several authors. Ito (1969) showed that the approximate test tends
to result in a slight overestimation of significance. It is, however, preferred to
the exact test due to the low efficiency of the latter.

12.3.2 Tests Concerning the Random Effects

Recall that βi(j) ∼ N(0, κ2
i ), i = 1, 2, . . . , a; j = 1, 2, . . . , bi. In this section, a

test is given concerning the hypothesis, H0 : κ2
i = 0, i = 1, 2, . . . , a. We also

recall that the vij’s and ωij’s defined in (12.39) and (12.40), respectively, are
independently and normally distributed with means and variances given in
(12.41) through (12.44). Hence,

(bi − 1)t2
i

κ2
i + σ2

ε
n

∼ χ2
bi−1, i = 1, 2, . . . , a, (12.52)

ω
′
ijωij

σ2
ε

∼ χ2
n−1, i = 1, 2, . . . , a; j = 1, 2, . . . , bi, (12.53)

where t2
i is the sample variance in (12.50). The random variables in (12.52)

and (12.53) are mutually independent for i = 1, 2, . . . , a; j = 1, 2, . . . , bi. It
follows that

a∑

i=1

(bi − 1)t2
i

κ2
i + σ2

ε
n

∼ χ2
b.−a, (12.54)

a∑

i=1

bi∑

j=1

ω
′
ijωij

σ2
ε

∼ χ2
b.(n−1), (12.55)

where b. = ∑a
i=1 bi. Note that n

∑a
i=1(bi − 1)t2

i is the sum of squares for the
nested effect, denoted by SSB(A), and that

∑a
i=1

∑bi
j=1 ω

′
ijωij is the residual

sum of squares, SSE. This follows from the fact that

n
a∑

i=1

(bi − 1)t2
i = n

a∑

i=1

bi∑

j=1

(vij − v̄i.)
2

= n
a∑

i=1

bi∑

j=1

(Ȳij. − Ȳi..)
2

= SSB(A),
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since vij is the sample mean for the (i, j)th cell, and hence v̄i. = Ȳi...
Furthermore,

a∑

i=1

bi∑

j=1

ω
′
ijωij =

a∑

i=1

bi∑

j=1

Y
′
ij

(
In − 1

n
Jn

)
Y ij

= SSE.

Now, under H0 : κ2
i = 0, i = 1, 2, . . . , a, the statistic,

F = MSB(A)

MSE
, (12.56)

has the F-distribution with b. − a and b.(n − 1) degrees of freedom, where
MSB(A) = SSB(A)/(b. − a), MSE = SSE/[b.(n − 1)]. The test is significant at the
α-level if F ≥ Fα,b.−a,b.(n−1).

Rejecting H0 indicates that at least one κ2
i is not equal to zero. In this case,

it would be of interest to find out which of the κ2
i ’s are different from zero. For

this purpose, the hypotheses, H0i : κ2
i = 0, can be tested individually using

the ratios,

Fi = n t2
i

MSE
, i = 1, 2, . . . , a (12.57)

which under H0i has the F-distribution with bi − 1 and b.(n − 1) degrees of
freedom. If α is the level of significance for this individual test, then the
experimentwise Type I error rate for all such tests will not exceed the value
α∗ = 1 − (1 − α)a. This is true because

P

[
n t2

i

MSE
≤ Fα,bi−1,b.(n−1), for all i = 1, 2, . . . , a

]
≥ 1 − α∗. (12.58)

Inequality (12.58) is based on a result by Kimball (1951).

Example 12.2 This example was given in Khuri (1992a). A certain firm pur-
chases its raw material from three different suppliers. Four batches of the
material were randomly selected from each supplier. Three samples were
randomly taken from each batch and the purity of the raw material was
determined from each sample. The data are presented in Table 12.3.

To test equality of the means of the three suppliers (that is, testing H0 : α(1) =
α(2) = α(3)), we can apply the F-test in (12.48) since b1 = b2 = b3 = 4.
This gives F = 2.618 with 2 and 2 degrees of freedom. The corresponding
p-value is 0.276, which is not significant. On the other hand, by applying the
approximate chi-squared test described in Case 2 of Section 12.3.1, we get

ζ′V̂−1
ζ = 10.519, which is significant at a level > 0.06.
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TABLE 12.3
Purity Data

Batch

Supplier 1 2 3 4
1 8.60 11.01 9.97 9.45

13.08 10.56 10.78 10.22
9.50 11.72 10.01 8.86

2 24.57 14.83 9.75 16.05
23.70 15.58 12.08 19.51
20.87 12.28 10.51 13.30

3 29.62 23.58 19.03 8.25
23.89 21.56 17.66 9.76
30.16 19.34 18.34 11.22

Source: Khuri, A.I., J. Statist. Plann. Inference, 30,
33, 1992a. With permission.

The test statistic in (12.56) concerning H0 : κ2
i = 0 for i = 1, 2, 3 has

the value F = MSB(A)

MSE
= 23.079 with 9 and 24 degrees of freedom (p-value

< 0.0001). This is a highly significant result. By applying the individual F-
tests in (12.57), we get F1 = 0.348, F2 = 21.989, and F3 = 46.90. Using an
experimentwise Type I error rate not exceeding α∗ = 0.01, we find that F2
and F3 are highly significant since Fα,3,24 = 6.004, where α = 1−(1−α∗)1/3 =
0.003. We conclude that batch-to-batch purity variation within suppliers is
most apparent in the material from suppliers 2 and 3.

12.4 Response Surface Models

Response surface methodology (RSM) is an area concerned with the modeling
of a response variable of interest, Y, against a number of control variables that
are believed to affect it. The development of a response model requires a
careful choice of design that can provide adequate and reliable predictions
concerning Y within a certain region of interest. By a design, it is meant the
specification of the settings of the control variables to be used in a given
experimental situation. Once a design is chosen and the model is fitted to the
data generated by the design, regression techniques can then be implemented
to assess the goodness of fit of the model and do hypothesis testing concerning
the model’s unknown parameters. The next stage is to use the fitted model to
determine optimum operating conditions on the control variables that result
in a maximum (or minimum) response within the region of experimentation.
Thus, the basic components in any response surface investigation consist



André I. Khuri/Linear Model Methodology C4819_C012 Finals Page 444 2009-9-14

444 Linear Model Methodology

of (1) design selection, (2) model fitting, and (3) determination of optimum
conditions.

Since the early development of RSM by Box and his co-workers in the
1950s and 1960s (see Box and Wilson, 1951; Box and Draper, 1959, 1963), it
has become a very useful and effective tool for experimental research work
in many diverse fields. These include, for example, chemical engineering,
industrial development and process improvement, agricultural and biologi-
cal research, clinical and biomedical sciences, to name just a few. For a review
of RSM and its applications, see Myers, Khuri, and Carter (1989).

In a typical response surface investigation, it is quite common to fit a
model of the form

Y = β0 + f ′(x)β + ε, (12.59)

where
β0 and the elements of β are fixed unknown parameters
x = (x1, x2, . . . , xk)

′ is a vector of k control variables that affect the response
variable, Y

f (x) is a vector function of x such that β0 + f ′(x)β is a polynomial in the
elements of x of degree d (≥ 1)

ε is a random experimental error

The control variables are fixed (that is, nonstochastic) whose values are
measured on a continuous scale. Such a model is called a polynomial model of
degree d. It basically represents an approximation of the true, but unknown,
functional relationship between the response and its control variables. The
most frequently used polynomial models are of degree 1 or degree 2. Thus,

Y = β0 +
k∑

i=1

βi xi + ε (12.60)

is called a first-degree model, and

Y = β0 +
k∑

i=1

βi xi +
∑∑

i<j

βij xi xj +
k∑

i=1

βii x2
i + ε (12.61)

is called a full second-degree model.
Fitting a model such as the one in (12.59) requires running a series of n

experiments in each of which the settings of x1, x2, . . . , xk are specified and
the corresponding response variable is measured, or observed. Thus, at the
uth experimental run, we have from using model (12.59),

Yu = β0 + f ′(xu)β + εu, u = 1, 2, . . . , n, (12.62)
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where
xu = (xu1, xu2, . . . , xuk)

′ and xui denotes the uth setting of xi
Yu is the observed response value at the uth run
εu is the corresponding experimental error (u = 1, 2, . . . , n)

In a classical response surface investigation, the εu’s are assumed to be
mutually independent with each having a zero mean and a common variance,
σ2

ε. In this case, the quantity, β0 + f ′(xu)β in (12.62) is the mean of Yu and is
therefore called the mean response at xu and is denoted by ηu = η(xu), where

η(x) = β0 + f ′(x)β

= g′(x)τ (12.63)

is the mean response at a point, x, in a region of interest, where g′(x) = (1, f ′(x))

and τ = (β0, β′)′.
The design matrix, or just design, is an n × k matrix, D, of the form

D =

⎡

⎢⎢⎢⎢⎢⎢⎣

x11 x12 . . . x1k
x21 x22 . . . x2k

. . . . . .

. . . . . .

. . . . . .
xn1 xn2 . . . xnk

⎤

⎥⎥⎥⎥⎥⎥⎦
. (12.64)

Thus, the uth row of D describes the settings of x1, x2, . . . , xk used in the uth
experimental run (u = 1, 2, . . . , n). Usually, the values of xui displayed in
(12.64) (u = 1, 2, . . . , n; i = 1, 2, . . . , k) are coded settings of the actual levels of
the control variables used in the experiment. The use of coded variables helps
in simplifying the numerical calculations associated with fitting the response
surface model. It also facilitates the construction of the design D. In addition,
coding removes the units of measurement of the control variables making
them scale free (see, for example, Section 2.8 in Khuri and Cornell, 1996).

The model in (12.62) can be written in vector form as

Y = β01n + Xβ + ε, (12.65)

where
Y = (Y1, Y2, . . . , Yn)′
ε = (ε1, ε2, . . . , εn)′
X is an n × p matrix of rank p (< n) whose uth row consists of the elements

of f ′(xu), u = 1, 2, . . . , n

Model (12.65) can also be written as

Y = X̃τ + ε, (12.66)
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where X̃ = [1n : X]. Under the assumptions made earlier concerning the error
term, ε has a zero mean vector and a variance–covariance matrix, σ2

εIn. In
this case, the BLUE of τ in (12.66) is given by

τ̂ = (X̃
′
X̃)−1X̃

′
Y. (12.67)

Its variance–covariance matrix is of the form

Var(τ̂) = σ2
ε (X̃

′
X̃)−1.

Using (12.67), we obtain the so-called predicted response, Ŷ(x), at a point x by
replacing τ in (12.63) by τ̂. We thus have

Ŷ(x) = g′(x)τ̂. (12.68)

Note that Ŷ(x) is unbiased for η(x) and its variance is given by

Var[Ŷ(x)] = σ2
ε g′(x)(X̃

′
X̃)−1g(x). (12.69)

This is called the prediction variance at x. Formulas (12.68) and (12.69) should
only be used for values of x within the experimental region, that is, the
region in the space of the control variables within which experimentation is
carried out.

12.5 Response Surface Models with Random Block Effects

Model fitting in RSM is usually based on the assumption that the experimen-
tal runs are carried out under homogeneous conditions. However, in some
experimental situations, this may not be possible or is difficult to achieve. For
example, batches of raw material used in a production process may be dif-
ferent with regard to source, composition, or other characteristics. In another
situation, experimental conditions may change over time due to certain extra-
neous sources of variation. In all such circumstances, the experimental runs
should be carried out in groups, or blocks, within each of which homogeneity
of conditions can be maintained. As a result, a block effect should be added to
model (12.59). Unlike the control variables, which are fixed and measured on
a continuous scale, the block effect is discrete and can be either fixed or ran-
dom, depending on how the blocks are set up. In this chapter, we assume that
the block effect is random, which is typically the case in many experimental
situations.

Consider model (12.62) with the added condition that the experimen-
tal runs are arranged in b blocks of sizes n1, n2, . . . , nb. Thus, n = ∑b

j=1 nj.
Consequently, in place of model (12.62), we can now consider the model

Yu = β0 + f ′(xu)β + z
′
uγ + f ′(xu)Λzu + εu, u = 1, 2, . . . , n, (12.70)
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where zu = (zu1, zu2, . . . , zub)
′ and zuj is a “dummy” variable that takes

the value 1 if the uth run is in the jth block and is zero otherwise (j =
1, 2, . . . , b; u = 1, 2, . . . , n), γ = (γ1, γ2, . . . , γb)

′, where γj denotes the effect of
the jth block (j = 1, 2, . . . , b). The matrix Λ contains interaction coefficients
between the blocks and the polynomial terms in the model. Model (12.70) can
be expressed in vector form as

Y = β01n + Xβ + Zγ +
p∑

i=1

W iδi + ε, (12.71)

where X and β are the same as in (12.65), Z = ⊕b
j=11nj , and W i is a matrix

of order n × b whose jth column is obtained by multiplying the elements of
the ith column of X with the corresponding elements of the jth column of
Z (i = 1, 2, . . . , p; j = 1, 2, . . . , b). Furthermore, δi is a vector of interaction
coefficients between the blocks and the ith polynomial term (i = 1, 2, . . . , p).
Its elements are the same as those in the ith row of Λ in (12.70). Putting
X̃ = [1 : X] and τ = (β0, β′)′ in (12.71), we get the model

Y = X̃τ + Zγ +
p∑

i=1

W iδi + ε. (12.72)

We assume that γ and δ1, δ2, . . . , δp are normally distributed with zero means
and variance–covariance matrices, σ2

γ Ib, σ2
1 Ib, σ2

2 Ib, . . . , σ2
p Ib, respectively.

Furthermore, all random effects are assumed to be mutually independent
of one another and of the error vector, ε, which has the N(0, σ2

ε In) distri-
bution. Model (12.72) is therefore a mixed model since τ is fixed and γ,
δ1, δ2, . . . , δp are random. On the basis of (12.72), the mean, η, of Y and its
variance–covariance matrix, denoted by Γ, are given by

η = X̃τ, (12.73)

Γ = σ2
γ ZZ′ +

p∑

i=1

σ2
i W iW

′
i + σ2

ε In. (12.74)

We note that Γ depends on the design settings of x1, x2, . . . , xk through
W1, W2, . . . , Wp. This is quite different from the structure of Var(Y), namely
σ2

ε In, for a response surface model without a random block effect, as was the
case in Section 12.4.

On the basis of (12.73) and (12.74), the BLUE of τ is the generalized least-
squares estimator,

τ̃ = (X̃
′
Γ−1X̃)−1X̃

′
Γ−1Y, (12.75)

and its variance–covariance matrix is

Var(τ̃) = (X̃
′
Γ−1X̃)−1. (12.76)
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In practice, τ̃ cannot be computed using (12.75) since the variance com-
ponents, σ2

γ, σ2
1, σ2

2, . . . , σ2
p, and σ2

ε are unknown and should therefore be
estimated. Using REML (or ML) estimates of these variance components,
we get the so-called estimated generalized least-squares estimate (EGLSE) of τ,
namely

τ̃e = (X̃
′
Γ̂

−1
X̃)−1X̃

′
Γ̂

−1
Y, (12.77)

where Γ̂ is obtained from Γ in (12.74) by replacing the variance components
by their REML estimates, which can be computed by using PROC MIXED in
SAS, as was seen earlier in Chapter 11. Note that τ̃e is no longer the BLUE of
τ, but is still unbiased by Theorem 11.1. From (12.76), the estimated variance–
covariance matrix of τ̃e is approximately equal to

V̂ar(τ̃e) ≈ (X̃
′
Γ̂

−1
X̃)−1. (12.78)

Since the mean response, η(x), at a point x in a region of interest, denoted
by R, is still given by (12.63), the predicted response at x ∈ R, denoted here
by Ŷe(x), is

Ŷe(x) = g′(x)τ̃e. (12.79)

Using (12.78), the estimated prediction variance is approximately of the form

V̂ar [Ŷe(x)] ≈ g′(x)(X̃
′
Γ̂

−1
X̃)−1g(x). (12.80)

12.5.1 Analysis Concerning the Fixed Effects

Consider the following hypothesis concerning a linear combination of τ, the
vector of unknown parameters in model (12.72):

H0 : λ′τ = 0, (12.81)

where λ is known constant vector. Using formulas (12.77) and (12.78), a
statistic for testing H0 is given by

t = λ′τ̃e
[
λ′(X̃′

Γ̂
−1

X̃)−1λ
]1/2 . (12.82)

Under H0, t has approximately the t-distribution with ν degrees of freedom,
which can be obtained from using PROC MIXED in SAS, as was described
in Section 11.9.1 (see formula 11.201). In particular, the Kenward and Roger
(1997) method is recommended for computing ν. A special case of (12.82)
is a statistic for testing the significance of the individual elements of τ. In
addition, an approximate (1 − α) 100% confidence interval on λ′τ can be
obtained from

λ′τ̃e ± [λ′(X̃′
Γ̂

−1
X̃)−1λ]1/2tα/2,ν. (12.83)
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12.5.2 Analysis Concerning the Random Effects

Of interest here is the testing of hypotheses concerning the variance compo-
nents: σ2

γ, for the block effect, and σ2
i (i = 1, 2, . . . , p), the variance components

for the interaction effects in model (12.72). All such tests can be carried out
using Type III F-distributed ratios as shown below.

To test H0 : σ2
γ = 0, we consider the Type III F-ratio,

Fγ = R(γ | τ, δ1, δ2, . . . , δp)

(b − 1)MSE
, (12.84)

where R(γ | τ, δ1, δ2, . . . , δp) is the Type III sum of squares for γ in model
(12.72) and MSE is the residual (error) mean square for the same model.
Under H0, Fγ has the F-distribution with b − 1 and n − b − pb degrees of
freedom, where, if we recall, p is the number of columns of X, or the number
of parameters in β, in model (12.71), and b is the number of blocks. This is
true on the basis of the following facts:

(a) R(γ | τ, δ1, δ2, . . . , δp)/σ
2
ε is distributed as χ2

b−1 under H0.

To see this, we have that

1
σ2

ε

R(γ | τ, δ1, δ2, . . . , δp) = 1
σ2

ε

Y ′[G(G′G)−G′ − Gγ(G
′
γGγ)−G

′
γ]Y,

where G = [X̃ : Z : W1 : W2 : . . . : Wp] and Gγ = [X̃ : W1 : W2 :
. . . : Wp]. Noting that the variance–covariance matrix of Y in (12.74) is
Γ = ∑p

i=1 σ2
i W iW

′
i + σ2

ε In under H0 and the fact that

1
σ2

ε

[G(G′G)−G′ − Gγ(G
′
γGγ)−G

′
γ]Γ = G(G′G)−G′ − Gγ(G

′
γGγ)−G

′
γ,

(12.85)

which is idempotent of rank (b+pb)− (1+pb) = b−1, we conclude that
under H0, R(γ | τ, δ1, δ2, . . . , δp)/σ

2
ε ∼ χ2

b−1 by Theorem 5.4. [(12.85) is
true because W i is a submatrix of both G and Gγ, i = 1, 2, . . . , p.]

(b) SSE/σ2
ε ∼ χ2

n−b−pb, where SSE is the residual (error) sum of squares for
model (12.72).

As in (a), we have that

1
σ2

ε

SSE = 1
σ2

ε

Y ′[In − G(G′G)−G′]Y,

and from (12.74), we can write

1
σ2

ε

[In − G(G′G)−G′]Γ = In − G(G′G)−G′, (12.86)
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due to the fact that Z, W1, W2, . . . , Wp are submatrices of G. Since the
right-hand side of (12.86) is idempotent of rank n − b − pb, it follows
that SSE/σ2

ε ∼ χ2
n−b−pb.

(c) R(γ | τ, δ1, δ2, . . . , δp) and SSE are independent.

On the basis of (a), (b), and (c), we conclude that Fγ in (12.84) has the
F-distribution with b − 1 and n − b − pb degrees of freedom. The hypoth-
esis H0 is rejected at the α-level if Fγ ≥ Fα,b−1,n−b−pb.

Similarly, to test the hypothesis, H0i : σ2
i = 0, we can use the statistic,

Fi = R(δi | τ, γ, δ1, . . . , δi−1, δi+1, . . . , δp)

(b − 1)MSE
, (12.87)

which under H0i has the F-distribution with b − 1 and n − b − pb degrees of
freedom. The test is significant at the α-level if Fi ≥ Fα,b−1,n−b−pb.

The tests concerning the interaction effects in (12.72) are important. This
is true because these effects play a major role in determining the form of
the prediction equation in (12.79) through the estimation of τ as well as
the structure of the prediction variance in (12.80). The predicted response,
Ŷe(x) and its prediction variance are directly involved in the determination
of optimum conditions on x1, x2, . . . , xk that maximize (or minimize) Ŷe(x)

over the region of experimentation. This was demonstrated in Khuri (1996a)
where it was shown how to optimize Ŷe(x) subject to certain constraints on
the size of the prediction variance.

More recently, Khuri (2006) provided an extension of the methodology
presented in this section by considering heterogeneous error variances among
the blocks. Thus, the error vector, ε, in model (12.71) is considered here to have
the normal distribution with a mean 0 and a variance–covariance matrix of the
form, ⊕b

j=1σ
2
εj Inj , where σ2

ε1, σ2
ε2, . . . , σ2

εb are unknown variance components
that are not necessarily equal. Procedures are described for testing the fixed
and random effects in this case. The test for the fixed effects is similar to
what was given in Section 12.5.1, except that REML (or ML) estimates of
σ2

ε1, σ2
ε2, . . . , σ2

εb are to be incorporated into the variance–covariance matrix
of Y (see Section 5 in Khuri, 2006). The tests concerning the random effects
are different from those given in Section 12.5.2 since the Type III F-ratios
are no longer valid as test statistics under heterogeneous error variances.
In this case, tests are conducted by using the likelihood ratio approach. An
alternative ANOVA test based on using Satterthwaite’s approximation (see
Chapter 9) is also given (see Section 6 in Khuri, 2006).

Example 12.3 This example was presented in Khuri (1992b). It concerns an
experiment for studying the effects of two factors, curing time and tempera-
ture, on the shear strength of the bonding of galvanized steel bars with a cer-
tain adhesive. Three levels were chosen for each factor, namely, 375 ◦F, 400 ◦F,
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and 450 ◦F for temperature, and 30, 35, 40 s for time. The treatment com-
binations were obtained according to a 3 × 3 factorial design. Aliquots of
galvanized steel were selected on each of 12 dates from the warehouse sup-
ply. The same factorial arrangement was used on all the 12 dates, except that
replicates were taken at the middle set of conditions (400, 35) at the very start
of the experiment (July 11), and then on August 7, September 11, and October
3. The latter three dates were chosen because each one of them represented
the first time of sampling in the corresponding month. The purpose of taking
such replicates was to obtain an estimate of the pure error variation to use
for testing lack of fit (see, for example, Section 2.6 on lack of fit testing in Khuri
and Cornell, 1996). The resulting date are given in Table 12.4. Note that the
coded settings of temperature and time are given by

x1 = Temperature − 400
25

,

x2 = Time − 35
5

.

TABLE 12.4
Design Settings and Response Values (Shear Strength in psi)

x1 x2 July 11 July 16 July 20 Aug. 7 Aug. 8 Aug. 14
−1 −1 1226 1075 1172 1213 1282 1142

0 −1 1898 1790 1804 1961 1940 1699
2 −1 2142 1843 2061 2184 2095 1935

−1 0 1472 1121 1506 1606 1572 1608
0 0 2010, 1882 2175 2279 2450, 2355 2291 2374

1915, 2106 2420, 2240
2 0 2352 2274 2168 2298 2147 2413

−1 1 1491 1691 1707 1882 1741 1846
0 1 2078 2513 2392 2531 2366 2392
2 1 2531 2588 2617 2609 2431 2408

x1 x2 Aug. 20 Aug. 22 Sep. 11 Sep. 24 Oct. 3 Oct. 10
−1 −1 1281 1305 1091 1281 1305 1207

0 −1 1833 1774 1588 1992 2011 1742
2 −1 2116 2133 1913 2213 2192 1995

−1 0 1502 1580 1343 1691 1584 1486
0 0 2471 2393 2205, 2268 2142 2052, 2032 2339

2103 2190
2 0 2430 2440 2093 2208 2201 2216

−1 1 1645 1688 1582 1692 1744 1751
0 1 2392 2413 2392 2488 2392 2390
2 1 2517 2604 2477 2601 2588 2572

Source: Khuri, A.I., Technometrics, 34, 26, 1992b. With permission.
Note: The original design settings of x1 corresponding to −1, 0, 2 are 375 ◦F, 400 ◦F, and 450 ◦F,

respectively; those for x2 corresponding to −1, 0, 1 are 30, 35, and 40 s, respectively.
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Thus, the coded design settings are −1, 0, and 2 for x1 and −1, 0, and 1 for x2.

A complete second-degree model in x1 and x2 is assumed for the mean
response. Thus,

η(x) = β0 + β1x1 + β2x2 + β12x1x2 + β11x2
1 + β22x2

2. (12.88)

The observed response, Yu, at the uth experimental run is given by model
(12.70). In this example, the blocks are the batches of steel aliqouts with each
batch being selected at random on a given date from the warehouse supply.
In addition to σ2

γ, the variance component for the block effect, and the error
variance, σ2

ε, there are five other variance components for the random inter-
actions between the blocks and the polynomial terms, x1, x2, x1x2, x2

1, x2
2, in the

model for Yu. These variance components are denoted by σ2
1, σ2

2, σ2
12, σ2

11, σ2
22,

respectively.
The REML estimates of σ2

1 and σ2
12 from using PROC MIXED are equal

to zero. This can be explained by the fact that the corresponding Type III
F-ratios in (12.87) are nonsignificant with p-values equal to 0.6872 and 0.9705,
respectively. The p-values for σ2

γ, σ2
2, σ2

11, and σ2
22 are 0.0016, 0.0701, 0.4020,

and 0.1397, respectively. Thus, the batch effect, and the interaction effect
associated with x2 are significant. In addition, we have a mild interaction with
x2

2. The REML estimates of σ2
γ, σ2

2, σ2
11, σ2

22, and σ2
ε are 4124.37, 1764.00, 74.07,

1023.39, and 10709.00, respectively. Using only these estimates in (12.74), we
obtain

Γ̂ = 4124.37ZZ′ + 1764.00W2W
′
2 + 74.07W11W

′
11

+ 1023.39W22W
′
22 + 10709.00In, (12.89)

where n = 118 and W2, W11, and W22 are the W i matrices in (12.74) corre-
sponding to σ2

2, σ2
11, and σ2

22, respectively.
The EGLSE estimates of the parameters in (12.88) and their corresponding

estimated standard errors are computed using formulas (12.77) and (12.78).
The corresponding approximate t-statistics are evaluated using (12.82). The
results are given in Table 12.5.

TABLE 12.5
The EGLSE of the Parameters in Model (12.88)
Parameter Estimate Standard Error t p-Value
β0 2187.950 26.655 82.08 <0.0001
β1 477.770 14.256 33.51 <0.0001
β2 255.890 17.503 14.62 <0.0001
β12 −4.827 9.778 −0.49 0.6234
β11 −204.670 10.500 −19.49 <0.0001
β22 −45.301 22.024 −2.06 0.0562
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From Table 12.5 we note that the parameters β1, β2, β11, and β22 are
significantly different from zero, but β12 is a nonsignificant parameter. Using
the parameter estimates from Table 12.5, we get the following expression for
the predicted response, Ŷe(x):

Ŷe(x)= 2187.950 + 477.770x1 + 255.890x2 − 4.827x1x2 − 204.670x2
1 − 45.301x2

2.
(12.90)

The equation in (12.90) can be used to determine the conditions on x1 and x2
that maximize the shear strength response within the region, −1 ≤ x1 ≤ 2,
−1 ≤ x2 ≤ 1. This was demonstrated in Khuri (1996a) where the maxi-
mization of Ŷe(x) was done subject to certain constraints on the size of the
prediction variance.

The following is a listing of the SAS statements used to generate the
various results in this example:

DATA;
INPUT BATCH X1 X2 Y @@;

CARDS;
(enter here the data from Table 12.4)

PROC GLM;
CLASS BATCH;

MODEL Y = X1 X2 X1 ∗ X2 X1 ∗ X1 X2 ∗ X2 BATCH X1 ∗ BATCH
X2 ∗ BATCH X1 ∗ X2 ∗ BATCH X1 ∗ X1 ∗ BATCH X2 ∗ X2 ∗ BATCH;

PROC MIXED METHOD = REML;
CLASS BATCH;

MODEL Y = X1 X2 X1 ∗ X2 X1 ∗ X1 X2 ∗ X2/S DDFM =
KENWARDROGER;

RANDOM BATCH X1 ∗ BATCH X2 ∗ BATCH X1 ∗ X2 ∗ BATCH
X1 ∗ X1 ∗ BATCH X2 ∗ X2 ∗ BATCH;

RUN;

Note that the three statements in PROC GLM are needed to obtain the Type III
F-ratios for testing the significance of the random effects in the MODEL state-
ment. The “S” option in the MODEL statement in PROC MIXED is needed
to obtain the estimated generalized least-squares estimates of the parame-
ters given in Table 12.5. The corresponding p-values are based on using the
Kenward and Roger (1997) method (see Section 11.9.1).

12.6 Linear Multiresponse Models

In many experimental situations, a number of response variables can be mea-
sured for each setting of a group of control variables. For example, a certain
food product may be evaluated on the basis of acceptability, nutritional value,
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taste, fat content, cost, and other considerations. In this case, each attribute
of the product is represented by a response variable and all the relevant
responses can be measured at each run of the experiment. Such an experi-
ment is called a multiresponse experiment.

The analysis of data from a multiresponse experiment requires a care-
ful recognition of the multivariate nature of the data. This means that the
response variables considered in the experiment should not be treated indi-
vidually or independently of one another. Instead, multivariate techniques
should be used in order to combine all the relevant information from the total-
ity of the response variables in the experiment. For example, the optimization
of several response variables should take into account any interrelationships
that may exist among the responses. Failure to do so can lead to meaningless
results since optimal conditions for one response, optimized individually and
separately from the remaining responses, may be far from optimal or even
physically impractical for the other responses.

In this section, methods for the analysis of a linear multiresponse model
are discussed. These include estimation and inference-making procedures
concerning the unknown parameters of the model, in addition to a test for
lack of fit.

12.6.1 Parameter Estimation

Suppose that m response variables, denoted by Y1, Y2, . . . , Ym, are measured
for each setting of a group of k control variables, x1, x2, . . . , xk. We assume that
the response variables are represented by polynomial models in x1, x2, . . . , xk
within a certain region,R. If n sets of observations are taken on Y1, Y2, . . . , Ym,
then the model for the ith response can be written as

Y i = Xiβi + εi, i = 1, 2, . . . , m, (12.91)

where
Y i is the vector of observations on the ith response
Xi is a known matrix of order n × pi and rank pi
βi is a vector of pi unknown parameters
εi is a random error vector associated with the ith response (i = 1, 2, . . . , m)

We assume that

E(εi) = 0, i = 1, 2, . . . , m, (12.92)
Var(εi) = σii In, i = 1, 2, . . . , m, (12.93)

Cov(εi, εj) = σij In, i, j = 1, 2, . . . , m; i 	= j. (12.94)

We note that the response variables in a given experimental run can be
correlated and possibly have heteroscedastic variances. More specifically, if
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Υ is the matrix of random error vectors, namely,

Υ = [ε1 : ε2 : . . . : εm], (12.95)

then the rows of Υ are mutually independent with each having a zero mean
vector and a variance–covariance matrix, Σm, whose (i, j)th element is σij
(i, j = 1, 2, . . . , m). Furthermore, we assume that each row of Υ has the normal
distribution, N(0, Σm).

The m models in (12.91) can be combined into a single model of the form

Y = XΦ + ε̃, (12.96)

where
Y = [Y ′

1 : Y
′
2 : . . . : Y

′
m]′

X = ⊕m
i=1Xi

Φ = [β′
1 : β

′
2 : . . . : β

′
m]′

ε̃ = [ε′
1 : ε

′
2 : . . . : ε

′
m]′

Model (12.96) is called a linear multiresponse model. Under the assumptions
made earlier concerning the distribution of the rows of the error matrix, Υ, in
(12.95), the error vector, ε̃, in (12.96) has the normal distribution N(0, Σm⊗In).
Thus, the BLUE of Φ is the generalized least-squares estimator,

Φ̂ = [X ′(Σ−1
m ⊗ In)X ]−1X ′(Σ−1

m ⊗ In)Y . (12.97)

The corresponding variance–covariance matrix of Φ̂ is

Var(Φ̂) = [X ′(Σ−1
m ⊗ In)X ]−1. (12.98)

Note that equations (12.97) and (12.98) depend on Σm, which is unknown. It
is therefore necessary to estimate it provided that the estimate is nonsingular.
One such estimate was proposed by Zellner (1962) and is given by Σ̂m = (σ̂ij),
where

σ̂ij = 1
n

Y
′
i[In − Xi(X

′
iXi)

−1X
′
i][In − Xj(X

′
jXj)

−1X
′
j]Yj. (12.99)

This estimate is computed from the residual vectors that result from fitting
each response model individually by the method of ordinary least squares.
Replacing Σm by Σ̂m in (12.97) and (12.98), we get

Φ̂e = [X ′(Σ̂−1
m ⊗ In)X ]−1X ′(Σ̂−1

m ⊗ In)Y . (12.100)
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This is an estimated generalized least-squares estimate (EGLSE) of Φ, and
we approximately have

V̂ar(Φ̂e) ≈ [X ′(Σ̂−1
m ⊗ In)X ]−1. (12.101)

The estimate Φ̂e is no longer the BLUE of Φ. It does, however, have certain
asymptotic properties as was shown in Zellner (1962).

In particular, if in models (12.91), Xi = X0 for i = 1, 2, . . . , m, then it can
be easily shown that Φ̂ in (12.97) reduces to

Φ̂ = [Im ⊗ (X
′
0X0)

−1X
′
0]Y .

Thus, in this case, the BLUE of Φ does not depend on Σm and is therefore
the same as the ordinary least-squares estimator obtained from fitting the m
models in (12.91) individually.

The predicted response value for the ith response (i = 1, 2, . . . , m) at a
point, x, in the region R is given by

Ŷi(x) = f i
′(x)β̂ie, i = 1, 2, . . . , m, (12.102)

where f
′
i(x) is a row vector function that has the same form as a row of Xi in

(12.91), but is evaluated at x, β̂ie is the ith portion of Φ̂e = (β̂
′
1e, β̂

′
2e, . . . , β̂

′
me)

′

in (12.100). Note that f
′
i(x)β̂ie is a polynomial in the elements of x of degree di

(≥ 1), i = 1, 2, . . . , m. By combining the m equations in (12.102), we get

Ŷ(x) = [⊕m
i=1 f

′
i(x)]Φ̂e, (12.103)

where Ŷ(x) = (Ŷ1(x), Ŷ2(x), . . . , Ŷm(x))
′
. Using (12.101), the estimated

variance–covariance matrix of Ŷ(x) is approximately given by

V̂ar[Ŷ(x)] ≈ [⊕m
i=1 f

′
i(x)] [X ′(Σ̂−1

m ⊗ In)X ]−1 [⊕m
i=1 f i(x)]. (12.104)

12.6.2 Hypothesis Testing

We recall that the models in (12.91) were combined into a single linear mul-
tiresponse model of the form given in (12.96). Alternatively, these models can
be combined using the model

Ỹ = X̃Ψ + Υ, (12.105)

where
Ỹ = [Y1 : Y2 : . . . : Ym]
X̃ = [X1 : X2 : . . . : Xm]
Ψ = ⊕m

i=1βi
Υ is given in (12.95)
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Consider now testing the hypothesis,

H0 : GΨ = C0, (12.106)

where G and C0 are known matrices with G being of full row rank, q. The
rows of G are spanned by the rows of X̃ . Thus, GΨ is estimable and, conse-
quently, the hypothesis in (12.106) is testable. A test statistic for testing H0
is given by emax(ShS−1

e ), the largest eigenvalue of the matrix ShS−1
e (see Roy,

Gnanadesikan, and Srivastava, 1971), where

Sh = [G(X̃ ′X̃ )−X̃ ′Ỹ − C0]′ [G(X̃ ′X̃ )−G′]−1 [G(X̃
′
X̃ )−X̃

′
Ỹ − C0],

(12.107)

Se = Ỹ ′[In − X̃ (X̃
′
X̃ )−X̃

′
]Ỹ . (12.108)

The matrices Sh and Se are called the matrix due to the hypothesis and the matrix
due to the error, respectively. The matrix Se is positive definite with probability
1 if n − ρ ≥ m, where ρ is the rank of X̃ (see Roy, Gnanadesikan, and
Srivastava, 1971, p. 35), and has the so-called central Wishart distribution with
n − ρ degrees of freedom. Furthermore, Sh is independent of Se and has the
noncentral Wishart distribution with q degrees of freedom and a noncentrality
parameter matrix, Ω, given by ( see, for example, Seber, 1984, p. 414)

Ω = Σ
−1/2
m (GΨ − C0)

′ [G(X̃ ′X̃ )−G′]−1 (GΨ − C0)Σ
−1/2
m , (12.109)

where, if we recall, Σm is the variance–covariance matrix of the m responses
corresponding to any row of Υ in (12.95).

The statistic, emax(ShS−1
e ), is called Roy’s largest root, and the hypothesis

H0 in (12.106) is rejected at the α-level if emax(ShS−1
e ) exceeds the α-critical

value of this statistic. Such a critical value can be found in, for example, Roy,
Gnanadesikan, and Srivastava (1971, Appendix B) and Seber (1984, Appendix
D14).

Other test statistics for testing H0 include Wilks’ likelihood ratio,
det(Se)/det(Se + Sh), Hotelling-Lawley’s trace, tr(ShS−1

e ), and Pillai’s trace,
tr[Sh(Se + Sh)

−1]. Small values of det(Se)/det(Se + Sh) are significant, but large
values of the remaining two test statistics are significant. These tests, along
with Roy’s largest root, are referred to as multivariate tests.

In particular, if the βi vectors in (12.91) are of the same length, consisting
of p elements each, then we can test two particular hypotheses, namely, the
hypothesis of concurrence and the hypothesis of parallelism.

12.6.2.1 Hypothesis of Concurrence

This hypothesis is of the form

H0c : β1 = β2 = . . . = βm. (12.110)
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To test H0c, let us first multiply the two sides of model (12.105) on the right
by the m × (m − 1) matrix,

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
−1 0 0 . . . 0
0 −1 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12.111)

which is of rank m − 1. Doing so, we get

ỸK = X̃ΨK + ΥK. (12.112)

The rows of ΥK are independent and identically distributed as N(0, K′ΣmK).
The matrix ΨK has the form

ΨK =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1 β1 β1 . . . β1
−β2 0 0 . . . 0

0 −β3 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . −βm

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12.113)

The hypothesis in (12.110) can now be expressed as

H0c : GcΨK = 0, (12.114)

where Gc is a matrix of order p × (pm) of the form

Gc = [Ip : Ip : . . . : Ip]. (12.115)

The hypothesis in (12.114) is testable provided that the rows of Gc are spanned
by the rows of X̃ in (12.112). In this case, we can test H0c by applying Roy’s
largest root test statistic, emax(ShS−1

e ), where Sh and Se are obtained from
(12.107) and (12.108), respectively, after replacing Ỹ by ỸK, G by Gc, and
C0 by 0.

A numerical example, in which the investment models for three corpora-
tions that operate in the same branch of industry are compared, is given in
Khuri (1986, Section 4).

12.6.2.2 Hypothesis of Parallelism

This hypothesis is of the form

H0p : β∗
1 = β∗

2 = . . . = β∗
m, (12.116)
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where β∗
i is equal to βi, except that the first element (intercept) of βi has

been removed. In this case, the hypothesis in (12.114) can be modified so as
to produce (12.116) as follows:

H0p : GpΨK = 0,

where Gp is a matrix of order (p − 1) × (pm) of the form

Gp = [I∗
p : I∗

p : . . . : I∗
p],

where I∗
p = [0 : Ip−1], which is of order (p−1)×p. Thus, the testing of (12.116)

can proceed as in Section 12.6.2.1 after replacing Gc by Gp.
More details concerning the testing of the hypotheses H0c and H0p, includ-

ing a discussion concerning the power of the multivariate tests, can be
obtained from Khuri (1986). Furthermore, other aspects of the analysis of
linear multiresponse models can be found in Chapter 7 in Khuri and Cornell
(1996), and in the general review article by Khuri (1996b).

12.6.3 Testing for Lack of Fit

We may recall from Section 12.4 that a response surface model represents
a polynomial approximation of the true functional relationship between a
response of interest and a set of control variables. It is therefore possible that
the fitted model may fail to adequately explain the behavior of the response. In
this case, the model is said to suffer from lack of fit (LOF). This can be attributed
to the omission of higher-order terms that involve the control variables in the
model. For example, a first-degree model will be inadequate if in reality the
response is better explained by a complete second-degree model, or perhaps
a cubic model. Lack of fit can also be caused by the omission of control
variables, other than those in the fitted model, which may have some effect
on the response.

Testing for LOF of a single response surface model is a well-known proce-
dure in response surface methodology (see, for example, Section 2.6 in Khuri
and Cornell, 1996). A postulated model should pass the LOF test before it
can be adopted and used in a given experimental situation. Such a test is
therefore quite important and is considered an integral part of the repertoire
of a response surface investigation.

In a multiresponse experiment, testing for LOF is more complex due to the
interrelationships that may exist among the response variables. Lack of fit in
one response may influence the fit of the other responses. Thus, the response
models (in a multiresponse system) should not be tested individually for
LOF. In this section, we show how to test for LOF of a linear multiresponse
model. The development of this test is based on Khuri (1985).

Let us again consider model (12.105), assuming as before that the rows
of the error matrix Υ are mutually independent and distributed as N(0, Σm).
This model is said to suffer from LOF if it fails to provide an adequate
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representation of the true means of the m responses over the experimental
region. By definition, a multivariate lack of fit test is a test used to check the
adequacy of model (12.105). The development of this test begins with the
reduction of the m responses into a single response through the creation of
an arbitrary linear combination of the responses. Its corresponding model is
then tested for LOF. For this purpose, let c = (c1, c2, . . . , cm)′ be an arbitrary
nonzero m × 1 vector. Multiplying both sides of (12.105) on the right by c,
we get

Ỹc = X̃Ψc + Υc, (12.117)

where
Ỹc = Ỹc = ∑m

i=1 ciY i
Ψc = Ψc
Υc = Υc

The vector Ỹc consists of n observations on the univariate response
Ỹc = ∑m

i=1 ciYi. Note that Υc has the normal distribution N(0, σ2
c In), where

σ2
c = c′Σmc.

The multiresponse model in (12.105) is adequate if and only if the single-
response models in (12.117) are adequate for all c 	= 0. Equivalently, if for
some c 	= 0, model (12.117) is inadequate, then model (12.105) can be declared
inadequate to represent the totality of the m response variables. We can then
proceed to test model (12.117) for LOF for c 	= 0 using the standard procedure
for LOF for a single-response variable. This procedure requires the availability
of replicate observations on the response variable under consideration (see
Section 2.6 in Khuri and Cornell, 1996). For this purpose, we assume that the
design used to fit the multiresponse model contains repeated runs on all the
m responses at some points in the experimental region. This means that some
rows in the matrix X̃ in model (12.105) will be repeated. For convenience,
we shall consider that the repeated runs are taken at each of the first n0
(1 ≤ n0 < n) points of the design matrix.

Since the error term in the single-response model in (12.117) has the normal
distribution N(0, σ2

c In), then the corresponding LOF test for this model is
given by (see formula (2.30) in Khuri and Cornell, 1996)

FLOF(c) = SSLOF(c)/νLOF

SSPE(c)/νPE
, (12.118)

where

SSPE(c) = Ỹ
′
c M Ỹc,

SSLOF(c) = Ỹ
′
c [In − X̃ (X̃ ′X̃ )−X̃ ′ − M] Ỹc,

M is the block-diagonal matrix,

M = diag(M1, M2, . . . , Mn0 , 0), (12.119)
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and

Mi = In0i − 1
n0i

Jn0i
, i = 1, 2, . . . , n0. (12.120)

In (12.120), n0i denotes the number of repeated observations on all the m
responses at the ith repeat-runs site (i = 1, 2, . . . , n0). The sums of squares,
SSPE(c) and SSLOF(c), are called the pure error and lack of fit sums of squares,
respectively, and νPE and νLOF are their corresponding degrees of freedom
given by

νPE =
n0∑

i=1

(n0i − 1)

νLOF = n − ρ −
n0∑

i=1

(n0i − 1),

where, if we recall, ρ is the rank of the matrix X̃ .
The lack of fit and pure error sums of squares can be written as

SSLOF(c) = c′ H1 c, (12.121)
SSPE(c) = c′ H2 c, (12.122)

where

H1 = Ỹ ′ [In − X̃ (X̃ ′X̃ )−X̃ ′ − M] Ỹ , (12.123)

H2 = Ỹ ′
M Ỹ . (12.124)

Thus, FLOF(c) in (12.118) can be expressed as

FLOF(c) = νPE

νLOF

c′ H1 c
c′ H2 c

. (12.125)

A large value of FLOF(c) casts doubt on the adequacy of model (12.117) for
c 	= 0. Since model (12.105) is inadequate if and only if at least one of the
models in (12.117) is inadequate for some c 	= 0, we conclude that model
(12.105) has a significant LOF if

max
c	=0

[
c′ H1 c
c′ H2 c

]

exceeds a certain critical value. But, by using Theorems 3.10 and 3.11, it is
easy to show that

max
c	=0

[
c′ H1 c
c′ H2 c

]
= emax(H−1

2 H1), (12.126)
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where emax(H−1
2 H1) is the largest eigenvalue of H−1

2 H1, which is the same as
Roy’s largest root test statistic. If λα denotes the upper 100α% point of the
distribution of emax(H−1

2 H1) when model (12.105) is the true model, then a
significant LOF for model (12.105) can be detected at the α level if

emax(H−1
2 H1) ≥ λα. (12.127)

This test is referred to as a multivariate lack of fit test. Note that the matrix H2 is
positive definite with probability 1 if νPE ≥ m (see Roy, Gnanadesikan, and
Srivastava, 1971, p. 35). Tables for the critical value λα are available in Roy,
Gnanadesikan, and Srivastava (1971) and Morrison (1976); those for two and
three responses are in Foster and Rees (1957) and Foster (1957), respectively.

12.6.3.1 Responses Contributing to LOF

In the event the multivariate LOF test is significant, it would be of interest to
determine which of the m responses, or combinations thereof, are contributing
to LOF. A significant value of emax(H−1

2 H1) indicates that there exists at least
one linear combination of the responses, given by some nonzero value of
c, for which model (12.117) is inadequate. In particular, the vector c∗ which
maximizes c′H1c/c′H2c is such a vector. We thus have

max
c	=0

c′H1c
c′H2c

= emax(H−1
2 H1)

= c∗′
H1c∗

c∗′H2c∗ . (12.128)

From (12.128) we conclude that

c∗′ [H1 − emax(H−1
2 H1)H2] c∗ = 0,

or equivalently,

c∗′
H1/2

2

[
emax(H−1

2 H1)Im − H−1/2
2 H1H−1/2

2

]
H1/2

2 c∗ = 0. (12.129)

Since the matrix

emax(H−1
2 H1)Im − H−1/2

2 H1H−1/2
2

is positive semidefinite, the equality in (12.129) is true if and only if

[
emax(H−1

2 H1)Im − H−1/2
2 H1H−1/2

2

]
H1/2

2 c∗ = 0.
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Multiplying both sides on the left by −H1/2
2 , we get

[H1 − emax(H−1
2 H1)H2] c∗ = 0,

or equivalently,

H−1
2 H1c∗ = emax(H−1

2 H1) c∗. (12.130)

Formula (12.130) indicates that c∗ is an eigenvector of H−1
2 H1 corresponding

to its largest eigenvalue, emax(H−1
2 H1). Using c∗, we get the following linear

combination of the responses representing the univariate response Ỹc∗ ,

Ỹc∗ =
m∑

i=1

c∗
i Yi, (12.131)

where c∗
i is the ith element of c∗ (i = 1, 2, . . . , m). The responses that corre-

spond to nonzero values of c∗
i in (12.131) are believed to contribute to LOF.

Since the response variables may be measured in different units, they must
be standardized. We can therefore rewrite (12.131) as

Ỹc∗ =
m∑

i=1

d∗
i Zi, (12.132)

where Zi = 1
‖Yi‖Yi, d∗

i = c∗
i ‖ Y i ‖, and ‖ Y i ‖ is the Euclidean norm of

Y i (i = 1, 2, . . . , m). Large values of | d∗
i | correspond to responses that are

influential contributors to LOF of model (12.105). In addition, we can consider
subsets of the m responses and determine if the responses in each subset
contribute significantly to LOF. For this purpose, let S = {Yi1 , Yi2 , . . . , Yis}
denote a nonempty subset of the m responses (1 ≤ i1 < i2 < . . . < is ≤ m).
We can then compute emax(H−1

2 H1) based on only the elements of S. Let such
a value be denoted by emax(H−1

2 H1)S . This is the maximum of c′H1c/c′H2c
constrained by putting ci = 0 for all the responses that do not belong to S.
Thus,

emax(H−1
2 H1)S ≤ emax(H−1

2 H1), (12.133)

for all nonempty subsets of the m responses. A subset S suffices to produce a
significant LOF if

emax(H−1
2 H1)S ≥ λα, (12.134)

where λα is the α-critical value of emax(H−1
2 H1). We can see from (12.133) and

(12.134) that whenever (12.134) holds for a nonempty subset S, the inequality
in (12.127) must also hold. It follows that if E and ES are the events

E = {emax(H−1
2 H1) ≥ λα},

ES = {emax(H−1
2 H1)S ≥ λα},
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then

P

(
⋃

S
ES

)
≤ P(E) = α. (12.135)

The inequality in (12.135) implies that when all nonempty subsets of the
m responses are examined for LOF, the probability of falsely detecting a
significant subset cannot exceed the value α. Thus, the use of the same critical
value, λα, in these simultaneous tests helps control the experimentwise Type
I error rate at a level not exceeding α.

In summary, a multiresponse model should be tested for LOF before it can
be used in the analysis of a multiresponse experiment. If LOF is detected, then
a subsequent investigation should be made to determine which responses
contribute significantly to LOF. This can be achieved by an examination of the
elements of the eigenvector of H−1

2 H1 corresponding to its largest eigenvalue,
followed by an inspection of the values of emax(H−1

2 H1)S for all nonempty
subsets of the responses. The information gained from this investigation can
then be used to upgrade the models for only those responses deemed to be
influential contributors to LOF. This is contingent on the ability of the design
(the one used for model 12.105) to support the fit of the upgraded models.
If this is not possible, then the design should be augmented with additional
experimental runs. Such model upgrades can be helpful in eliminating LOF,
hence improving model adequacy for the entire multiresponse system.

Example 12.4 This example is given in Khuri (1985). It concerns an experiment
in food science in which three researchers (Richert, Morr, and Cooney, 1974)
investigated the effects of five control variables, namely, heating temperature
(x1), pH level (x2), redox potential (x3), sodium oxalate (x4), and sodium lauryl
sulfate (x5) on the foaming properties of whey protein concentrates (WPC),
which are of considerable interest to the food industry. Measurements were
made on the following three responses: Y1 = whipping time (the total elapsed
time required to produce peaks of foam formed during whipping of a liquid
sample), Y2 = maximum overrun [determined by weighing 5-oz. paper cups
of foam and unwhipped liquid sample and calculating the expression, 100
(weight of liquid − weight of foam)/weight of foam], and Y3 = percent
soluble protein. The design used consisted of a one-half fraction of a 25

factorial design in addition to five pairs of symmetric (with respect to the
origin) axial points at the same distance from the origin, and five center
point replications. Such a design is called a central composite design (see Khuri
and Cornell, 1996, Section 4.5.3), and is suitable for fitting second-degree
models. The original and coded levels of the five control variables are given in
Table 12.6.

A listing of the points of the central composite design (in coded form) and
the corresponding multiresponse data (values of Y1, Y2, and Y3) is given in
Table 12.7.
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TABLE 12.6
The Original and Coded Levels of the Control Variables

Coded Levels

Variable −2 −1 0 1 2
Heating temperature (◦C) x1 65.0 70.0 75.0 80.0 85.0
pH x2 4.0 5.0 6.0 7.0 8.0
Redox potential (volt) x3 −0.025 0.075 0.175 0.275 0.375
Sodium oxalate (molar) x4 0.0 0.0125 0.025 0.0375 0.05
Sodium lauryl sulfate (%) x5 0.0 0.05 0.10 0.15 0.20

Source: Khuri, A.I., Technometrics, 27, 213, 1985. With permission.

TABLE 12.7
Central Composite Design Points and the Multiresponse Data
x1 x2 x3 x4 x5 Y1 (min) Y2 (%) Y3 (%)

0 0 0 0 0 3.5 1179 104
0 0 0 0 0 3.5 1183 107
0 0 0 0 0 4.0 1120 104
0 0 0 0 0 3.5 1180 101
0 0 0 0 0 3.0 1195 103

−1 −1 −1 −1 1 4.75 1082 81.4
1 −1 −1 −1 −1 4.0 824 69.6

−1 1 −1 −1 −1 5.0 953 105
1 1 −1 −1 1 9.5 759 81.2

−1 −1 1 −1 −1 4.0 1163 80.8
1 −1 1 −1 1 5.0 839 76.3

−1 1 1 −1 1 3.0 1343 103
1 1 1 −1 −1 7.0 736 76.9

−1 −1 −1 1 −1 5.25 1027 87.2
1 −1 −1 1 1 5.0 836 74.0

−1 1 −1 1 1 3.0 1272 98.5
1 1 −1 1 −1 6.5 825 94.1

−1 −1 1 1 1 3.25 1363 95.9
1 −1 1 1 −1 5.0 855 76.8

−1 1 1 1 −1 2.75 1284 100
1 1 1 1 1 5.0 851 104

−2 0 0 0 0 3.75 1283 100
2 0 0 0 0 11.0 651 50.5
0 −2 0 0 0 4.5 1217 71.2
0 2 0 0 0 4.0 982 101
0 0 −2 0 0 5.0 884 85.8
0 0 2 0 0 3.75 1147 103
0 0 0 −2 0 3.75 1081 104
0 0 0 2 0 4.75 1036 89.4
0 0 0 0 −2 4.0 1213 105
0 0 0 0 2 3.5 1103 113

Source: Khuri, A.I., Technometrics, 27, 213, 1985. With permission.
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The fitted model for each of the three responses is a full quadratic model
in x1, . . . , x5 of the form:

Y = β0 +
5∑

i=1

βixi +
∑∑

i<j

βijxixj +
5∑

i=1

βiix2
i + ε.

In this case, the matrix X̃ = [X1 : X2 : X3] in model (12.105) is of order
31 × 63 and rank ρ = 21 since X1 = X2 = X3. The matrix M in (12.119) is
equal to M = diag(M1, 0), where M1 = I5 − 1

5 J5 since the center point is the
only replicated design point. Hence, the pure error and lack of fit degrees of
freedom are νPE = 4 and νLOF = 6. The corresponding matrices, H2 and H1,
can be computed using formulas (12.124) and (12.123), respectively.

The value of Roy’s largest test statistic in (12.127) is emax(H−1
2 H1) =

245.518. The corresponding critical value at the 10% level is λ0.10 = 85.21.
Hence, a significant lack of fit can be detected at the 10% level.

Let us now assess the contribution of the three responses to lack of fit
as was discussed in Section 12.6.3.1. The eigenvector, c∗, of H−1

2 H1 corre-
sponding to its largest eigenvalue, 245.518, is c∗ = (3.2659, 0.0385, −0.0904)′.
The Euclidean norms of the response data vectors are ‖ Y1 ‖= 27.60,
‖ Y2 ‖= 5929.27, ‖ Y3 ‖= 517.49. Thus, the linear combination of standard-
ized responses in (12.132) is written as

Ỹc∗ = 90.139Z1 + 228.277Z2 − 46.781Z3.

The right-hand side is proportional to

0.395Z1 + Z2 − 0.205Z3. (12.136)

Using the size of the absolute values of the coefficients of Z1, Z2, and Z3 in
(12.136), we conclude that the response Y2 is most influential with respect to
lack of fit, followed by the response Y1. The next step is to consider values of
emax(H−1

2 H1)S for all nonempty subsets, S, of Y1, Y2, and Y3. These values
are given in Table 12.8.

From Table 12.8 we can see that in addition to the subset of all three
responses, the only other significant subset at the α = 0.10 level is {Y1, Y2}.
This is consistent with our earlier finding about Y1 and Y2.

On the basis of the above analysis, we can state that the responses Y1 and
Y2 together produce a significant lack of fit. Hence, any future upgrade of the
models should target these two responses in order to improve the adequacy
of the multiresponse system.

Note that the value of emax(H−1
2 H1)S for each individual response in Table

12.8 is the ratio of the lack of fit sum of squares to the pure error sum of squares
resulting from the analysis of each of the three individually-fitted response
models. If each such ratio is multiplied by νPE/νLOF = 2/3, we obtain the
value of the F-statistic that would result from applying the univariate lack of
fit test to each of the three responses.
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TABLE 12.8
Values of emax(H−1

2 H1)S for All Nonempty Subsets
of the Responses

Subset, S emax(H−1
2 H1)S Critical Value (λ0.10)

Y1, Y2, Y3 245.518∗ 85.21
Y1, Y2 214.307∗ 85.21
Y1, Y3 45.532 85.21
Y2, Y3 32.107 85.21
Y1 14.936 85.21
Y2 19.573 85.21
Y3 28.495 85.21

Source: Khuri, A.I., Technometrics, 27, 213, 1985. With permission.
∗ Significant at the 10% level.

Exercises

12.1 Consider Section 12.2. Show that if the error variances, namely,
σ2

1, σ2
2, . . . , σ2

k , are heterogeneous, then Y ′AY and Y ′BY are not indepen-
dent and not distributed as scaled chi-squared variates, where A and
B are given by (12.5) and (12.6), respectively. The normality assump-
tions concerning the distributions of α(i) and εi(j) in model (12.1) are
considered valid.

12.2 Consider model (12.1), where k = 5, n1 = 14, n2 = 21, n3 = 6, n4 = 4,
n5 = 5, σ2

1 = 0.10, σ2
2 = 0.10, σ2

3 = 10.00, σ2
4 = 0.10, σ2

5 = 1.00. Use
formula (12.10) to compute the probability,

αf = P[F ≥ F0.05,4,45 | σ2
α = 0],

where F is given by (12.4).

12.3 Consider the confidence interval on σ2
α given in (12.34). Suppose that

k = 10, α = 0.05, n1 = 2, n2 = 2, n3 = 10, n4 = 20, n5 = 30, n6 = 40,
n7 = 50, n8 = 60, n9 = 70, n10 = 80; σ2

1 = 0.001, σ2
2 = 0.01, σ2

3 = 0.10,
σ2

4 = 1.0, σ2
5 = 5.0, σ2

6 = 10.0, σ2
7 = 20.0, σ2

8 = 30.0, σ2
9 = 50.0,

σ2
10 = 100.0.

Use computer simulation to estimate the coverage probability for this
confidence interval given that σ2

α = 0.50 [without loss of generality,
assign μ the value 0 in model (12.1)].

12.4 Consider the data set given below from a completely randomized
design associated with model (12.1) with k = 6.
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(a) Test the homogeneity of variances hypothesis in (12.35) (with
k = 6). Let α = 0.05.

(b) Test the hypothesis H0 : σ2
α = 0 at the 5% level using the test

statistic in (12.12).

(c) Use the interval in (12.34) to obtain a confidence interval on σ2
α

with an approximate confidence coefficient greater than or equal
to 0.95.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6
44 65 50 45 40 32
35 55 40 18 66 66
38 59 75 49 55
59 40 41 68 35
29 62 12 76 50

68 84 78
72 86 52

22
68

12.5 The scores on a certain achievement test were compared for three spe-
cific metropolitan areas in a certain state. Four schools were randomly
selected in each area and the average scores for three classes in each
school were obtained. The results are shown in the following table:

Metropolitan Area School

1 2 3 4
1 80.6 82.9 79.5 90.5

85.2 87.1 78.1 85.8
79.1 81.5 75.3 95.1

2 80.1 65.1 77.2 80.9
70.3 59.7 75.3 82.3
65.7 50.3 68.7 70.5

3 91.8 78.8 84.4 90.3
82.5 61.3 81.3 66.5
80.8 65.5 76.6 55.1

(a) Test equality of the mean scores for the three metropolitan areas.
Let α = 0.05.

(b) Test the hypothesis H0 : κ2
i = 0, i = 1, 2, 3, where κ2

i denotes
the variability associated with schools in metropolitan area
i (i = 1, 2, 3). Let α = 0.05.
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(c) If the test in part (b) is significant, determine which metropolitan
areas have significant variations in the test scores among their
schools. Let α∗ = 0.05, where α∗ is the experimentwise Type I
error rate.

12.6 An experiment was conducted to compare the effects of four fertilizer
treatments, denoted by FT1, FT2, FT3, and FT4, on the yield of a
variety of corn. Each treatment was assigned to three farms selected
at random in some agricultural area. The corn yields (in kg) obtained
from three plots chosen in each farm were recorded (all chosen plots
had equal areas and similar soil compositions). The data are given in
the following table:

Treatment Farm

1 2 3
FT1 43.5 59.7 49.9

65.5 52.8 54.3
47.0 63.5 54.1

FT2 122.9 74.2 48.8
118.5 77.9 60.4
104.4 61.4 52.6

FT3 148.1 117.9 95.2
119.5 107.8 88.3
150.8 96.7 91.7

FT4 81.5 64.2 49.3
91.7 65.4 57.2
76.3 60.5 51.9

(a) Test equality of the means of the four fertilizer treatments. Let
α = 0.05.

(b) Test the hypothesis H0 : κ2
i = 0, i = 1, 2, 3, 4, where κ2

i is the
variability associated with farms within treatment i (i = 1, 2, 3, 4).
Let α = 0.05.

(c) If the test in part (b) is significant, determine which of the κ2
i ’s are

different from zero. Let α∗ = 0.05, where α∗ is the experimentwise
Type I error rate.

12.7 Two types of fertilizers were applied to experimental plots to assess
their effects on the yield of peanuts measured in pounds per plot. The
amount (in lb) of each fertilizer applied to a plot was determined by
the coordinate settings of a central composite design. The data in the
following table consist of the original and coded settings (denoted by
x1 and x2) of the two fertilizers and the corresponding yield values:
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Fertilizer 1 Fertilizer 2 x1 x2 Yield
60 20 −1 −1 7.59

110 20 1 −1 13.31
60 30 −1 1 14.55

110 30 1 1 17.48

49.64 25 −√
2 0 8.66

120.36 25
√

2 0 14.97
85 17.93 0 −√

2 8.10
85 32.07 0

√
2 16.49

85 25 0 0 15.71

(a) Fit a second-degree model to the peanut yields in the coded vari-
ables, x1 = (Fertilizer 1 − 85)/25, x2 = (Fertilizer 2 − 25)/5.

(b) Give an estimate of the error variance, σ2
ε, using MSE, the error

(residual) mean square from the corresponding ANOVA table.

(c) Use the estimate of σ2
ε in part (b) to obtain estimates of the variances

of the least-squares estimates of the parameters in the fitted model
in part (a).

(d) Find the predicted response values at the points, x1 = −0.5, x2 =
0.5; x1 = 0, x2 = −0.5. What are the estimated prediction variance
values at these locations?

12.8 Verify the entries in Table 12.5 by using PROC MIXED.

12.9 An experiment was performed to determine the effects of storage
conditions on the quality of freshly harvested “Delicious” apples. The
apples were harvested on the same date from four different orchards,
which were selected at random from a certain agricultural district. Two
control variables were considered, namely, X1 = number of weeks in
storage after harvest and X2 = storage temperature (◦C) after harvest.
The quality of apples was measured by Y = amount of extractable
juice (mL/100 g fluid weight). The same 4 × 4 factorial design was
used to run the experiment in all four orchards. The design settings
in the original levels of the control variables and the corresponding
response values are given in the table below.

Suppose that the following second-degree model in x1 and x2 is
fitted to the responses data:

η(x) = β0 + β1x1 + β2x2 + β12x1x2 + β11x2
1 + β22x2

2,
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X1 X2 Y

Orchard 1 Orchard 2 Orchard 3 Orchard 4
1 0 75.3 74.1 74.5 75.2
2 0 72.9 74.9 75.4 70.0
3 0 74.8 74.5 73.2 76.1
4 0 74.0 73.4 72.4 76.0
1 4.4 75.1 73.5 74.1 76.0
2 4.4 73.4 73.3 75.4 72.6
3 4.4 71.9 74.0 74.5 75.4
4 4.4 73.0 73.8 74.1 76.4
1 12.8 73.1 74.0 72.2 72.1
2 12.8 72.0 71.6 72.5 70.4
3 12.8 71.0 72.5 71.0 70.0
4 12.8 70.2 72.0 70.2 69.6
1 20.0 74.6 72.5 72.4 70.1
2 20.0 71.1 73.1 71.3 68.5
3 20.0 69.8 68.3 69.0 71.3
4 20.0 68.1 69.0 69.9 69.0

where x1 and x2 are the coded variables,

x1 = X1 − 2.5
1.12

,

x2 = X2 − 9.3
7.70

.

(a) Obtain the estimated generalized least-squares estimates of the
model’s parameters. Then, test the significance of these parameters
at the 5% level (use PROC MIXED).

(b) Test the significance of the variance components, σ2
γ, σ2

1, σ2
2, σ2

12,
σ2

11, and σ2
22 at the 5% level, where σ2

γ is the variance component
associated with the orchard effect, and the remaining variance
components correspond to interactions between the orchards and
the polynomial terms x1, x2, x1x2, x2

1, and x2
2, respectively.

(c) Obtain an expression for the predicted response, Ŷe(x).

(d) Use part (c) to find the maximum value of Ŷe(x) over the region,
−1.34 ≤ x1 ≤ 1.34, −1.21 ≤ x2 ≤ 1.39.
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12.10 Consider the multiresponse data given in the table below.

x1 x2 x3 x4 Y1 Y2 Y3

0 0 0 0 61.21 44.77 24.01
0 0 0 0 62.36 46.70 26.30
0 0 0 0 62.90 44.99 27.50
0 0 0 0 61.55 47.00 30.11
0 0 0 0 63.61 48.09 30.98

−1 −1 −1 −1 58.89 57.95 34.40
1 −1 −1 −1 79.30 54.16 41.60

−1 1 −1 −1 46.71 52.79 25.51
1 1 −1 −1 72.60 35.09 25.29

−1 −1 1 −1 46.29 58.81 27.31
1 −1 1 −1 65.61 53.81 33.10

−1 1 1 −1 34.11 57.81 20.01
1 1 1 −1 58.21 47.10 28.66

−1 −1 −1 1 70.62 41.12 29.89
1 −1 −1 1 85.59 30.41 24.12

−1 1 −1 1 62.06 36.66 24.90
1 1 −1 1 76.11 34.85 29.01

−1 −1 1 1 61.02 64.18 38.56
1 −1 1 1 75.36 44.30 34.29

−1 1 1 1 51.96 65.34 36.12
1 1 1 1 65.61 37.92 27.25

The fitted models are of the form

Y1 = β10 +
4∑

i=1

β1ixi + β114x1x4 + ε1,

Y2 = β20 + β21x1 + β23x3 + β24x4 + β234x3x4 + ε2,
Y3 = β30 + β31x1 + β32x2 + β34x4 + β314x1x4 + β324x2x4 + ε3.

(a) Test for lack of fit of the multiresponse model at the 10% level.
[Note: Here, νPE = 4, νLOF = n − ρ − νPE = 9, where ρ is the rank
of X̃ , which is equal to 8. Using Foster’s (1957) tables, the 10%
critical value for Roy’s largest root test statistic is λ0.10 = 127.205.]

(b) Assess the contributions of the three responses to lack of fit, if any.
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Generalized Linear Models

The purpose of this chapter is to provide an introduction to the subject of
generalized linear models. This is a relatively new area in the field of statisti-
cal modeling that was originally developed to establish a unified framework
for the modeling of discrete as well as continuous data. The topics covered
in this chapter include an introduction to the exponential family of distri-
butions, estimation of parameters for a generalized linear model using the
method of maximum likelihood, measures of goodness of fit, hypothesis test-
ing, confidence intervals, and gamma-distributed responses.

13.1 Introduction

The models discussed in the previous chapters were of the linear type repre-
senting a response variable, Y, which can be measured on a continuous scale.
Its distribution was, for the most part, assumed to be normal. There are, how-
ever, many experimental situations where linearity of the postulated model
and/or normality of the response Y may not be quite valid. For example, Y
may be a discrete random variable, that is, it has values that can be counted, or
put in a one-to-one correspondence with the set of positive integers. A binary
response having two possible outcomes, labeled as success or failure, is one
example of a discrete random variable. In this case, one is usually interested
in modeling the probability of success. In another situation, the response may
have values in the form of counts (number of defects in a given lot, or the
number of traffic accidents at a busy intersection in a given time period).
Other examples of response variables that are not normally distributed can
be found in biomedical applications, clinical trials, and quality engineering,
to name just a few.

Generalized linear models (GLMs) were introduced as an extension of the
class of linear models. Under the framework of GLMs, discrete as well as con-
tinuous response variables can be accommodated, and the usual assumptions
of normality and constant variance are not necessarily made on the response
under consideration. Thus, GLMs provide a unified representation for a large
class of models for discrete and continuous response variables. They have
therefore proved to be very effective in several areas of application. For

473
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example, in biological assays, reliability and quality engineering, survival
analysis, and a variety of applied biomedical fields, the use of GLMs has
become quite prevalent.

Generalized linear models were first introduced by Nelder and Wedder-
burn (1972). A classic book on the topic is the one by McCullagh and Nelder
(1989). In addition, the more recent books by Lindsey (1997), McCulloch and
Searle (2001), Dobson (2008), and Myers, Montgomery, and Vining (2002)
provide added insights into the application and usefulness of GLMs.

13.2 The Exponential Family

There are three components that define GLMs, they are

(a) The elements of a response vector, Y, are distributed independently
according to a certain probability distribution considered to belong to
the exponential family with a probability mass function (or a density
function for a continuous distribution) given by

f (y, θ, φ) = exp
[
θ y − b(θ)

a(φ)
+ c(y, φ)

]
, (13.1)

where

a(.), b(.), and c(.) are known functions

θ is called the canonical parameter, which is a function of the mean, μ,
of the distribution

φ is a dispersion parameter (see, for example, McCullagh and Nelder,
1989, p. 28).

(b) A linear model of the form

η(x) = f ′(x)β, (13.2)

which relates the so-called linear predictor, η, to a set of k control vari-
ables, x1, x2, . . . , xk, where x = (x1, x2, . . . , xk)

′ and f (x) is a known
q-component vector function of x, and β is a vector of q unknown
parameters.

(c) A link function g(.) which relates η(x) in (13.2) to the mean response at
x, denoted by μ(x), so that

η(x) = g[μ(x)], (13.3)
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where g(.) is a monotone differentiable function whose inverse function
is h(.), that is,

μ(x) = h[η(x)]. (13.4)

Thus, in a generalized linear model, a particular transformation of the
mean response, namely g[μ(x)], is represented as a linear model in terms
of x1, x2, . . . , xk. Since h(.) can be a nonlinear function, formula (13.4) indicates
that the mean response μ(x) is, in general, represented by a nonlinear model.

In particular, if g(.) is the identity function and the response Y has the
normal distribution, we obtain the special class of linear models. Also, if
g(μ) = θ, where θ is the canonical parameter in (13.1), then g(.) is called the
canonical link.

The most commonly used link functions are

(i) The logit function,

η(x) = log
[

μ(x)

1 − μ(x)

]
.

(ii) The probit function,
η(x) = F−1[μ(x)],

where F−1(.) is the inverse of the cumulative distribution function of
the standard normal distribution.

(iii) The logarithmic function,

η(x) = log[μ(x)].

(iv) The inverse polynomial function,

η(x) = 1
μ(x)

.

This is also called the reciprocal link.

A listing of other link functions can be found in McCullagh and Nelder (1989,
Table 2.1).

Several distributions can be classified as belonging to the exponential
family. Here are some examples.

(a) The normal distribution

This is a well-known member of the exponential family. The density
function for a normal random variable Y with mean μ and variance σ2 is

f (y, μ, σ2) = 1√
2πσ2

exp
[
− 1

2σ2 (y − μ)2
]

,
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which can be written as

f (y, μ, σ2) = exp

⎧
⎨

⎩
μy − μ2

2
σ2 − 1

2

[
y2

σ2 + log(2πσ2)

]⎫⎬

⎭ .

Comparing this with (13.1), we find that θ = μ, b(θ) = μ2

2 , a(φ) = φ =
σ2, and

c(y, φ) = −1
2

[
y2

σ2 + log(2πσ2)

]
.

Note that the canonical parameter θ is equal to μ, which is a location
parameter, and the dispersion parameter is σ2 (the canonical link func-
tion here is the identity).

(b) The Poisson distribution

This is a discrete distribution concerning a random variable Y that takes
the values 0, 1, 2, . . . according to the probability mass function,

f (y, λ) = exp(−λ) λy

y! , y = 0, 1, 2, . . . ,

where λ is the mean, μ, of Y. This probability mass function can be
expressed as

f (y, λ) = exp[ y log λ − λ − log(y!)]. (13.5)

By comparing (13.5) with (13.1) we find that θ = log λ, b(θ) = λ =
exp(θ), a(φ) = 1, and c(y, φ) = − log(y!). Hence, the canonical param-
eter is log λ and the dispersion parameter is φ = 1. The corresponding
canonical link function is

g(μ) = θ

= log λ

= log μ,

which is the logarithmic link function mentioned earlier.

The Poisson distribution is used to model count data such as the number
of occurrences of some event in a particular time period, or in a given
space such as the number of defects in a production process.

(c) The binary distribution

Consider a series of independent trials in each of which we have two
possible outcomes, success or failure. The probability of success on
a single trial is denoted by p. Let Y be a random variable that takes
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the value 1 if success is attained on a given trial, otherwise, it takes the
value 0. In this case, the mean, μ, of Y is equal to p, and the corresponding
probability mass function is

f (y, p) = py (1 − p)1−y, y = 0, 1.

This can be expressed as

f (y, p) = exp{y [ log p − log(1 − p)] + log(1 − p)}, y = 0, 1, (13.6)

which has the same form as (13.1) with θ = log p−log(1−p) = log
(

p
1−p

)
,

b(θ) = − log(1 − p) = log[1 + exp(θ)], a(φ) = φ = 1, c(y, φ) = 0. The
corresponding canonical link function is

g(μ) = θ

= log
(

p
1 − p

)

= log
(

μ

1 − μ

)
, (13.7)

which is the logit function mentioned earlier. It is also called the
logistic link function. Using the linear predictor in (13.2) at a point
x = (x1, x2, . . . , xk)

′, namely η(x), it is possible to use (13.7) to express the
probability of success, p = μ, as a function of x, namely p(x), of the form

p(x) = exp[f ′(x)β]
1 + exp[f ′(x)β] . (13.8)

This is a nonlinear model for p(x) called the logistic regression model. It is
used with data that are observed in the form of proportions.
Other possible link functions for the binary distribution include the
probit function, F−1(p), that was mentioned earlier, and the complementary
log-log function, log[−log(1 − p)].
A closely related distribution to the binary distribution is the binomial
distribution. In the latter case, if Y denotes the number of successes in the
series of n independent trials mentioned earlier, where the probability
of success, p, on a single trial is the same in all trials, then Y is called a
binomial random variable. Its probability mass function is

f (y, p) =
(

n
y

)
py(1 − p)n−y, y = 0, 1, 2, . . . , n.

This distribution belongs to the exponential family with θ = log
(

p
1−p

)
,

b(θ) = n log(1 + exp(θ)), a(φ) = φ = 1, c(y, φ) = log
(n

y

)
. Its mean and

variance are given by μ = np and σ2 = np(1 − p), and the canonical

link function is g(μ) = θ = log
(

p
1−p

)
= log

(
μ

n−μ

)
. Note that the binary

distribution is a special case of this distribution with n = 1.
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13.2.1 Likelihood Function

In formula (13.1), f (y, θ, φ) is considered a function of y for fixed θ and φ,
where y is a value of the random variable Y. By definition, the likelihood
function associated with Y is a function, L(θ, φ, Y), of θ and φ such that for an
observed value, y, of Y,

L(θ, φ, y) = f (y, θ, φ). (13.9)

The placement of the arguments θ and φ first is to emphasize thatL is basically
a function of θ and φ. Since this function is determined by the outcome of
Y, L(θ, φ, Y) is therefore a random variable. The log-likelihood function is the
logarithm of L(θ, φ, Y) and is denoted by �(θ, φ, Y). Thus,

�(θ, φ, Y) = logL(θ, φ, Y). (13.10)

Under certain conditions on the likelihood function (which are true for
the exponential family), it can be shown that (see, for example, Bickel and
Doksum, 1977, p. 139)

E
[

∂�(θ, φ, Y)

∂θ

]
= 0, (13.11)

E

[
∂2�(θ, φ, Y)

∂θ2

]
+ E

{[
∂�(θ, φ, Y)

∂θ

]2
}

= 0. (13.12)

Using the expression in (13.1), we have

�(θ, φ, Y) = θ Y − b(θ)

a(θ)
+ c(Y, φ). (13.13)

Differentiating both sides of (13.13) with respect to θ once then twice, we get

∂�(θ, φ, Y)

∂θ
= Y − b

′
(θ)

a(φ)
, (13.14)

∂2�(θ, φ, Y)

∂θ2 = −b
′′
(θ)

a(φ)
, (13.15)

where b
′
(θ) and b

′′
(θ) denote the first and second derivatives of b(θ), respec-

tively. From (13.11) and (13.14) we then have

μ = b
′
(θ), (13.16)

where μ = E(Y). Furthermore, from (13.12), (13.14) through (13.16), we obtain

−b
′′
(θ)

a(φ)
+ Var(Y)

a2(φ)
= 0. (13.17)
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Hence, the variance of Y is given by

Var(Y) = a(φ) b
′′
(θ). (13.18)

Note that Var(Y) is the product of a(φ), which depends only on the dispersion
parameter φ, and b

′′
(θ), which depends only on the canonical parameter θ,

and hence on the mean μ of the distribution of Y. The latter quantity is called
the variance function and is denoted by V(μ).

To verify the above results, we can apply formulas (13.16) and (13.18)
to the normal, Poisson, and binary distributions. In the normal case, θ = μ,
b(θ) = 1

2μ2, a(φ) = φ = σ2. Hence, b(θ) = 1
2θ2 and b

′
(θ) = μ. Also, a(φ)b

′′
(θ)

gives the variance σ2. For the Poisson distribution, θ = log λ, b(θ) = exp(θ),
a(φ) = 1. Hence, b

′
(θ) = exp(θ) = λ, which is the mean of this distribution.

In addition, a(φ)b
′′
(θ) = exp(θ) = λ, which is the variance of the Poisson

distribution. As for the binary distribution, we have that θ = log[p/(1 − p)],
b(θ) = log[1 + exp(θ)], a(φ) = 1. In this case, b

′
(θ) = exp(θ)/[1 + exp(θ)] = p,

which is the mean. Also, a(φ)b
′′
(θ) = exp(θ)/[1 + exp(θ)]2 = p(1 − p), which

is equal to the variance of the binary distribution.

13.3 Estimation of Parameters

In this section, we show how to estimate the parameter vector, β, in the model
for the linear predictor, η, in (13.2). The method of maximum likelihood is
used for this purpose.

Suppose that we have n independent random variables, Y1, Y2, . . . , Yn,
each of which has the probability distribution described in (13.1) such that
the mean of Yi is μi and the corresponding canonical parameter is θi (i =
1, 2, . . . , n). The Yi’s constitute a sample of n observations on some response Y.
Let ηi = g(μi), where g is an appropriate link function such that by (13.2),
ηi = η(xi) = f ′(xi)β; xi is the value of x at which Y = Yi (i = 1, 2, . . . , n). From
(13.1) we then have

f (yi, θi, φ) = exp
[
θi yi − b(θi)

a(φ)
+ c(yi, φ)

]
, i = 1, 2, . . . , n, (13.19)

where the dispersion parameter φ is considered to have a fixed value (that
is, it does not change over the values of yi). The corresponding log-likelihood
function associated with Y1, Y2, . . . , Yn is therefore of the form

�(θ, φ, Y) =
n∑

i=1

[
θi Yi − b(θi)

a(φ)
+ c(Yi, φ)

]
, (13.20)
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where θ = (θ1, θ2, . . . , θn)′, Y = (Y1, Y2, . . . , Yn)′. Since the linear predictor η

depends on β and the mean response is a function of η by (13.4), the means
μ1, μ2, . . . , μn are therefore functions of β. The maximum likelihood estimates
of the elements of β are obtained by solving the equations

∂�

∂βj
= 0, j = 1, 2, . . . , q, (13.21)

where βj is the jth element of β and ∂�
∂βj

is the partial derivative of �(θ, φ, Y)

in (13.20) with respect to βj (j = 1, 2, . . . , q). From (13.20) we have

∂�

∂βj
=

n∑

i=1

∂�i

∂βj
, j = 1, 2, . . . , q, (13.22)

where

�i = θi Yi − b(θi)

a(φ)
+ c(Yi, φ), i = 1, 2, . . . , n. (13.23)

But,

∂�i

∂βj
= ∂�i

∂θi

∂θi

∂μi

∂μi

∂ηi

∂ηi

∂βj
,

∂�i

∂θi
= Yi − b

′
(θi)

a(φ)

= Yi − μi

a(φ)
,

since μi = b
′
(θi) by (13.16), i = 1, 2, . . . , n, and

∂θi

∂μi
=
[
∂μi

∂θi

]−1

= 1
b′′

(θi)
,

∂μi

∂ηi
=
[

∂ηi

∂μi

]−1

= 1
g′

(μi)
,

∂ηi

∂βj
= fj(xi),
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where, if we recall, ηi = f ′(xi)β and fj(xi) is the jth element of f ′(xi), i =
1, 2, . . . , n; j = 1, 2, . . . , q. We conclude that

∂�i

∂βj
= Yi − μi

a(φ)

1
b′′

(θi)

1
g′

(μi)
fj(xi)

= Yi − μi

Var(Yi)

fj(xi)

g′
(μi)

, i = 1, 2, . . . , n,

since Var(Yi) = a(φ) b
′′
(θi). From (13.22) we then have

∂�

∂βj
=

n∑

i=1

Yi − μi

Var(Yi)

fj(xi)

g′
(μi)

, j = 1, 2, . . . , q,

which can be written as

∂�

∂βj
=

n∑

i=1

Yi − μi

ωi
g′(μi) fj(xi), j = 1, 2, . . . , q, (13.24)

where

ωi = Var(Yi) [g′(μi)]2, i = 1, 2, . . . , n. (13.25)

Thus, the maximum likelihood equations in (13.21) can be written as

n∑

i=1

Yi − μi

ωi
g′(μi) fj(xi) = 0, j = 1, 2, . . . , q. (13.26)

The maximum likelihood (ML) estimate of β, denoted by β̂, is obtained as
the solution of equations (13.26). Note that these equations are nonlinear
in β1, β2, . . . , βq since μ1, μ2, . . . , μn are, in general, nonlinear functions of
β1, β2, . . . , βq. Therefore, equations (13.26) may not have a closed-form solu-
tion. However, the equations can be solved iteratively by using Fisher’s method
of scoring, which is based on the Newton–Raphson method (see Section 8.8 in
Khuri, 2003). This is done as follows.

Let β(0) be an initial estimate of β, and let β(m) be the estimate of β at the
mth iteration (m ≥ 1). Then,

β(m+1) = β(m) −
{

E [H�(β)]
∣∣∣
β=β

(m)

}−1
∂�

∂β

∣∣∣
β=β

(m) , m = 0, 1, . . . , (13.27)

where ∂�

∂β

∣∣∣
β=β

(m) is the vector whose jth element is ∂�
∂βj

(j = 1, 2, . . . , q),

evaluated using β(m) in place of β, and H�(β) is the Hessian matrix of �

given by

H�(β) = ∂

∂β

[
∂�

∂β
′

]
. (13.28)
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Note that H� is a symmetric q × q matrix whose (j, k)th element is ∂2�
∂βj∂βk

, and
the expected value in (13.27) is taken with respect to the given distribution,
then evaluated using β(m) in place of β (see formula (8.77) in Khuri, 2003).
Making use of (13.24), ∂�

∂β
can be written as

∂�

∂β
= X′W−1D(Y − μ), (13.29)

where X is an n × q matrix whose ith row is f ′(xi) [this is called the model
matrix for the linear predictor in (13.2)], W = ⊕n

i=1ωi, D = ⊕n
i=1[g′(μi)],

Y = (Y1, Y2, . . . , Yn)′, and μ = (μ1, μ2, . . . , μn)′. Furthermore, using (13.24),
the (j, k)th element of the Hessian matrix H�(β) is

∂2�

∂βj∂βk
=

n∑

i=1

(Yi − μi)
∂

∂βk

[
g′(μi)

ωi
fj(xi)

]
+

n∑

i=1

g′(μi)

ωi
fj(xi)

∂

∂βk
(Yi − μi).

But,

∂

∂βk
(Yi − μi) = −∂μi

∂ηi

∂ηi

∂βk

= − 1
g′

(μi)
fk(xi),

since, if we recall, ∂μi
∂ηi

= 1
g′

(μi)
and ∂ηi

∂βk
= fk(xi). Hence,

∂2�

∂βj∂βk
=

n∑

i=1

(Yi − μi)
∂

∂βk

[
g′(μi)

ωi
fj(xi)

]
−

n∑

i=1

fj(xi)

ωi
fk(xi). (13.30)

Taking the expected values of both sides of (13.30), we get

E

[
∂2�

∂βj∂βk

]
= −

n∑

i=1

1
ωi

fj(xi)fk(xi).

Consequently, the expected value of H�(β) is of the form

E[H�(β)] = −X′W−1X. (13.31)

Using (13.29) and (13.31), formula (13.27) is then expressed as

β(m+1) = β(m) + [(X′W−1X)−1X′W−1D(Y − μ)]
β=β

(m)

= [(X′W−1X)−1X′W−1]
β=β

(m)

{
Xβ(m) + [D(Y − μ)]

β=β
(m)

}
,

m = 0, 1, . . . (13.32)
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The expression on the right-hand side of (13.32) has an interesting interpre-
tation as we now show:

Suppose that a first-order Taylor’s series approximation of g(Y) is taken
in a neighborhood of μ, that is, g(Y) ≈ Z, where

Z = g(μ) + (Y − μ) g′(μ)

= η + (Y − μ) g′(μ)

= f ′(x)β + (Y − μ) g′(μ). (13.33)

Thus, the mean of Z is η and its variance is Var(Y) [g′(μ)]2. Evaluating (13.33)
at x1, x2, . . . , xn, we get

Zi = f ′(xi)β + (Yi − μi) g′(μi), i = 1, 2, . . . , n. (13.34)

Equations (13.34) can be written in matrix form as

Z = Xβ + D(Y − μ), (13.35)

where Z = (Z1, Z2, . . . , Zn)′. The variance–covariance matrix of Z is

Var(Z) = D

{ n⊕

i=1

[Var(Yi)]
}

D

=
n⊕

i=1

[g′(μi)]2 Var(Yi)

= W. (13.36)

The value of Z at the mth iteration is denoted by Z(m). From (13.32), (13.35), and
(13.36) we conclude that β(m+1) in (13.32) has the same form as a generalized
(or weighted) least-squares estimator of β in a linear model whose response
vector is Z(m), rather than Y, with a variance–covariance matrix given by
W(m), the value of W at the mth iteration. Several iterations of formula (13.32)
can then be carried out until some convergence is achieved in the resulting
values. We can therefore state that the solution of the maximum likelihood
equations in (13.26) is obtained by performing an iterative weighted least-
squares procedure using a linearized form of the link function applied to Y.
The data vector y can be used as a first estimate of μ from which we get a
first estimate of η, namely η0, whose ith element is g(yi) (yi is the ith element
of y, i = 1, 2, . . . , n). From this we obtain initial values for g′(μi), V(μi), the
variance function at μi (i = 1, 2, . . . , n), and Z, the latter is chosen as η0. These
are sufficient to get the iterative procedure started (see Exercise 13.7).

13.3.1 Estimation of the Mean Response

An estimate of the linear predictor, η(x), in (13.2) is given by

η̂(x) = f ′(x)β̂, (13.37)
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where β̂ is the ML estimate of β obtained as a result of the iterative process
as described earlier. Using formula (13.4), an estimate of the mean response,
μ(x), at a given point x is obtained from the following expression:

μ̂(x) = h[η̂(x)]
= h[f ′(x)β̂], (13.38)

where h(.) is the inverse of the link function g(.). This estimate is also referred
to as the predicted response at x.

13.3.2 Asymptotic Distribution of β̂

The precision associated with the ML estimation of β can be assessed asymp-
totically by using the so-called Fisher’s information matrix for β, which is
denoted by I(β) and is defined as

I(β) = −E[H�(β)], (13.39)

where E [H�(β)] is the expected value of the Hessian matrix in (13.28). Using
formula (13.31), I(β) can be expressed as

I(β) = X′W−1X. (13.40)

It is known that as n → ∞, where n is the sample size, the ML estimator of β is
asymptotically normally distributed with mean β and a variance–covariance
matrix given by [I(β)]−1. We can then write

β̂ ≈ AN[β, (X′W−1X)−1], (13.41)

where “AN” denotes asymptotic normality. This result can be found in,
for example, McCulloch and Searle (2001, p. 306) (see also Searle, Casella,
and McCulloch, 1992, p. 473). Thus, for a given sample size, the variance–
covariance matrix of β̂ is approximately equal to

Var(β̂) ≈ (X′W−1X)−1. (13.42)

Using (13.37) and (13.42), the variance of η̂(x) is approximately equal to

Var[η̂(x)] ≈ f ′(x)(X′W−1X)−1f (x). (13.43)

Now, in order to obtain an approximate expression for the variance of μ̂(x) in
(13.38), we first obtain a first-order Taylor’s series approximation of h[η̂(x)]
in a neighborhood of η(x) of the form

h[η̂(x)] ≈ h[η(x)] + [η̂(x) − η(x)]h′ [η(x)], (13.44)
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where h
′ [η(x)] is the derivative of h(.) with respect to η. Using formulas

(13.38), (13.43), and (13.44), we obtain

Var[μ̂(x)] ≈ {h′ [η(x)]}2 Var[η̂(x)]
= {h′ [η(x)]}2f ′(x)(X′W−1X)−1f (x). (13.45)

The variance of μ̂(x) is called the prediction variance at x, and the right-hand
side of (13.45) provides an approximate expression for this variance.

13.3.3 Computation of β̂ in SAS

The actual computation of β̂ on the basis of the iterative process described
earlier in Section 13.3 can be conveniently done using PROC GENMOD in
SAS. A number of link functions (logit, probit, log, complementary log-log)
and probability distributions (normal, binomial, Poisson, gamma) can be
specified in the MODEL statement in PROC GENMOD. The default initial
parameter values are weighted least-squares estimates based on using y,
the data vector, as an initial estimate of μ, as was seen in Section 13.3. For
example, to fit a generalized linear model for a Poisson-distributed response,
Y, using a logarithmic link function and a linear predictor of the form, η =
β0 +β1x1 +β2x2 +β12x1x2 +β11x2

1 +β22x2
2, the following SAS statements are

needed:

DATA;
INPUT X1 X2 Y;

CARDS;
(data are entered here)

PROC GENMOD;
MODEL Y = X1 X2 X1 ∗ X2 X1 ∗ X1 X2 ∗ X2/DIST=POISSON LINK=LOG;

RUN;

In case of binomial data, the response Y in the MODEL statement is replaced
by “S/N,” where N is the number of trials in a given experimental run and
S is the number of successes. In addition, S and N must be specified in the
INPUT statement in place of Y. For the corresponding “DIST” and “LINK”,
we can use “DIST=BINOMIAL” and “LINK=LOGIT,” respectively. Note that
“LOG” and “LOGIT” are the default link functions for the Poisson and bino-
mial distributions, respectively, since they are the canonical links for their
respective distributions. Among other things, the SAS output provides ML
estimates of the elements of the parameter vector β for the linear predictor
η and their corresponding standard errors, which are the square roots of the
diagonal elements of the matrix (X′W−1X)−1 given in formula (13.42), where
W is replaced by an estimate. This is demonstrated in the next example.

Example 13.1 An experiment was conducted to determine the effects of the
control variables, x1 = burner setting, x2 = amount of vegetable oil (in table
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TABLE 13.1
Coded Design Settings and Response Values
x1 x2 x3 Y (Number of Inedible Kernels)

1 1 0 20
−1 0 1 21

1 0 1 42
1 −1 0 36
0 1 1 11

−1 0 −1 120
0 −1 1 33

−1 1 0 36
0 −1 −1 32

−1 −1 0 38
1 0 −1 20
0 0 0 17
0 1 −1 49

spoons), x3 = popping time (in seconds) on the number, Y, of inedible kernels
of popcorn. Each run of the experiment used 1/4 cup of unpopped popcorns.
A description of this experiment is given in Vining and Khuri (1991). The
actual levels of x1, x2, and x3 used in the experiment are 5, 6, 7 for x1; 2, 3, 4
for x2; and 75, 90, 105 for x3. The three levels for each variable are coded as
−1, 0, 1, respectively. The design settings (in coded form) and corresponding
response values are given in Table 13.1.

Note that the design used is of the Box-Behnken type (see Khuri and Cornell,
1996, Section 4.5.2, for a general description of the Box-Behnken design). This
design is suitable for fitting a second-degree response surface model in x1,
x2, and x3 of the form

η = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3

+ β23x2x3 + β11x2
1 + β22x2

2 + β33x2
3. (13.46)

Assuming a Poisson distribution for Y and a log link, the following SAS code
was used to obtain the ML estimates of the parameters in model (13.46):

DATA;
INPUT X1 X2 X3 Y;

CARDS;
(enter here the data from Table 13.1)

PROC GENMOD;
MODEL Y = X1 X2 X3 X1 ∗ X2 X1 ∗ X3 X2 ∗ X3 X1 ∗ X1 X2 ∗ X2 X3 ∗ X3

/DIST=POISSON LINK=LOG;
RUN;

The resulting parameter ML estimates and corresponding standard errors are
given in Table 13.2.
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TABLE 13.2
ML Estimates and Standard Errors
Parameter Estimate Standard Error

β0 2.8332 0.2425
β1 −0.2066 0.0617
β2 −0.1585 0.0660
β3 −0.3160 0.0634
β12 −0.1401 0.0897
β13 0.6246 0.0894
β23 −0.3709 0.0969
β11 0.4589 0.1446
β22 0.1501 0.1445
β33 0.3470 0.1454

Since the inverse, h(.), of the link function is the exponential function, we
get from (13.38) and Table 13.2 the following expression for the predicted
response μ̂(x):

μ̂(x) = exp (2.8332−0.2066x1 −0.1585x2 −0.3160x3 −0.1401x1x2 +0.6246x1x3

−0.3709x2x3 +0.4589x2
1 +0.1501x2

2 +0.3470x2
3). (13.47)

Model (13.47) can be utilized to determine the optimal settings of x1, x2, and
x3 that result in the minimization of the number of inedible kernels within
the experimental region (in the coded space), x2

1 + x2
2 + x2

3 ≤ 2. This was
demonstrated in Paul and Khuri (2000).

13.4 Goodness of Fit

In this section, two measures are presented for assessing the goodness of
fit of a given generalized linear model. These measures are the deviance and
Pearson’s chi-square statistic.

13.4.1 The Deviance

The fitting of a model amounts to deriving estimates of its parameters that
can be used to provide information about the mean response at various loca-
tions inside the region of experimentation, which we denote by R. If the
number of observations used to fit the model is equal to n, and if these obser-
vations are attained at distinct locations inside R, then the maximum number
of parameters that can be estimated in the model is equal to n. (If at some
locations in R, replicate observations on the response Y are obtained, then
the maximum number of parameters that can be estimated in the model is
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equal to the number of distinct locations used to collect all the response data.
Such locations, or points, make up the associated response surface design.) A
model having as many parameters as there are points in the corresponding
response surface design is called a saturated (or full) model. Such a model is
not informative since it does not summarize the response data. However, the
likelihood function for the saturated model is larger than any other likelihood
function (for the same data with the same distribution and link function), if
the latter function is based on a model with fewer parameters than the satu-
rated model. Let Lmax(φ, Y) denote the likelihood function for the saturated
model, and let L(φ, β̂) denote the likelihood function, maximized over β, for
a given generalized linear model with q parameters (q < n), where β̂ is the ML
estimate of β. Then, for a given data vector, y, Lmax(φ, y)>L(φ, β̂). Thus, the
likelihood ratio,

Λ = L(φ, β̂)

Lmax(φ, y)
, (13.48)

provides a measure of goodness of fit for the given (or assumed) model.
A small value of Λ (close to 0) indicates that the assumed model does not
provide a good fit to the data. Alternatively, we can consider the quantity,

−2 log Λ = 2 [ logLmax(φ, y) − logL(φ, β̂)], (13.49)

as a measure of goodness of fit for the assumed model. In this case, a large
value of −2 log Λ is an indication of a bad fit. If we denote the estimates of
the canonical parameters under the assumed and the saturated models by θ̂

and θ̃, respectively, then by formulas (13.20) and (13.49),

−2 log Λ = 2
n∑

i=1

(θ̃i − θ̂i)yi − b(θ̃i) + b(θ̂i)

a(φ)

= D(β̂, y)

a(φ)
, (13.50)

where

D(β̂, y) = 2
n∑

i=1

[(θ̃i − θ̂i)yi − b(θ̃i) + b(θ̂i)] (13.51)

is called the deviance for the assumed model. When a(φ) = φ, the expression
in (13.50) equals

D∗(β̂, y) = D(β̂, y)

φ

= −2 log Λ, (13.52)
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which is called the scaled deviance. A small value of D∗ is desirable for a
good fit.

It is known that D∗ = −2 log Λ is asymptotically distributed as χ2
n−q for

large n, where q is the number of parameters in the linear predictor η(x) in
(13.2). Since the expected value of χ2

n−q is n−q, then a value ofD∗/(n−q) much
larger than 1 gives an indication of a bad fit for the assumed model. This is
of course contingent on the assumption that the asymptotic approximation
with the chi-squared distribution is satisfactory for small samples.

Examples of deviance expressions are given below using the normal,
Poisson, and binomial distributions that were mentioned earlier.

(a) The normal distribution

Consider the log-likelihood function for a given response vector, Y =
(Y1, Y2, . . . , Yn)′, such that Y1, Y2, . . . , Yn are mutually independent and
Yi ∼ N(μi, σ2), i = 1, 2, . . . , n. Then, for a realized value, y, of Y, this
function is

−n
2

log(2πσ2) − 1
2σ2

n∑

i=1

(yi − μi)
2, (13.53)

where the dispersion parameter, φ, is equal to σ2. For the saturated
model, μi is estimated by yi. Hence,

logLmax(σ
2, y) = −n

2
log (2πσ2).

For a given model with q parameters (q < n), μi is estimated by μ̂i, its
ML estimate. Using μ̂i in place of μi in (13.53), we get

−n
2

log(2πσ2) − 1
2σ2

n∑

i=1

(yi − μ̂i)
2.

From (13.49) we then have

−2 log Λ = 1
σ2

n∑

i=1

(yi − μ̂i)
2.

Hence, the deviance D is equal to
∑n

i=1(yi −μ̂i)
2 and the scaled deviance

is D∗ = D/σ2. In this case, D is just the residual sum of squares.

(b) The Poisson distribution

For the data vector, Y = (Y1, Y2, . . . , Yn)′, where the Yi’s are mutually
independent and have the Poisson distributions with parameters λi
(i = 1, 2, . . . , n), the log-likelihood function is

n∑

i=1

[ Yi log λi − λi − log (Yi!)],
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where φ = 1. For the saturated model and a realized value, y, of Y, λi
is estimated by yi, but for a less-than-saturated model, λi is estimated
by λ̂i, its ML estimate. Hence, the deviance and scaled deviance are
equal to

−2 log Λ = 2
n∑

i=1

[
yi log

(
yi

λ̂i

)
−
(

yi − λ̂i

)]
.

(c) The binomial distribution
In this case, Y = (Y1, Y2, . . . , Yn)′ whose elements are mutually inde-
pendent such that Yi ∼ binomial with parameters ni and pi. The log-
likelihood function for a realized value, y, of Y is

n∑

i=1

[
yi log

(
pi

1 − pi

)
+ ni log

(
1 − pi

)+ log
(

ni

yi

)]
,

where φ = 1. For the saturated model, the mean of Yi, namely μi = nipi,
is estimated by yi, where yi is the ith element of y (i = 1, 2, . . . , n). Hence,
pi is estimated by yi/ni. Consequently,

logLmax(φ, y) =
n∑

i=1

yi log
(

yi

ni − yi

)
+ ni log

(
1 − yi

ni

)
+ log

(
ni

yi

)
.

For a less-than-saturated model, pi is estimated by μ̂i
ni

, where μ̂i is the
ML estimate of μi (i = 1, 2, . . . , n). Thus,

logL(φ, β̂) =
n∑

i=1

yi log
(

μ̂i

ni − μ̂i

)
+ ni log

(
1 − μ̂i

ni

)
+ log

(
ni

yi

)
.

It follows that

−2 log Λ = 2
n∑

i=1

{
yi

[
log

(
yi

ni − yi

)
− log

(
μ̂i

ni − μ̂i

)]

+ ni

[
log

(
1 − yi

ni

)
− log

(
1 − μ̂i

ni

)]}
. (13.54)

Both the deviance and scaled deviance are equal to the right-hand side
of (13.54).

13.4.2 Pearson’s Chi-Square Statistic

Another measure of goodness of fit for a data vector Y = (Y1, Y2, . . . , Yn)′ is

χ2
s =

n∑

i=1

(Yi − μ̂i)
2

V̂ar(Yi)

= 1
a(φ)

n∑

i=1

(Yi − μ̂i)
2

V(μ̂i)
,
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where, if we recall from formula (13.18), Var(Yi) = a(φ)b
′′
(θi) = a(φ)V(μi),

V(μi) is the variance function for the ith mean, and μ̂i is the ML estimate of
μi (i = 1, 2, . . . , n). For a realized value, y, of Y and when a(φ) = φ, χ2

s is
written as

χ2
s = 1

φ

n∑

i=1

(yi − μ̂i)
2

V(μ̂i)
. (13.55)

The quantity in (13.55) is called the scaled Pearson’s chi-square, and the expres-
sion

χ2 =
n∑

i=1

(yi − μ̂i)
2

V(μ̂i)
(13.56)

is called Pearson’s chi-square statistic. For large n, χ2
s is asymptotically dis-

tributed as χ2
n−q. A large value of χ2 is an indication of a bad fit.

In situations where the dispersion parameter φ is not known, an estimate
can be used in the expressions for the scaled deviance and the scaled Pear-
son’s chi-square, as is the case when using PROC GENMOD. These scaled
values should then be used instead of their corresponding unscaled values
in assessing the model’s goodness of fit.

13.4.3 Residuals

Residuals are used to assess the fit of the model at individual points in
a region R where the data values are obtained. For a given data vector,
y = (y1, y2, . . . , yn)′, the ith raw residual is defined as yi − μ̂i, where μ̂i is the
ML estimate of μi. Since in a generalized linear model situation, Var(Yi) is
not constant, the use of raw residuals is not appropriate. For this reason, two
other types of residuals are considered in parts (a) and (b) below.

(a) Pearson’s residuals

These are given by

ri,p = yi − μ̂i√
V(μ̂i)

, i = 1, 2, . . . , n. (13.57)

Note that
∑n

i=1 r2
i,p is equal to χ2 in (13.56). When a(φ) = φ, the quantity

ri,p/
√

φ is called the ith scaled Pearson’s chi-square residual (i = 1, 2, . . . , n).
In this case, 1

φ

∑n
i=1 r2

i,p = χ2
s , which is the scaled Pearson’s chi-square

in (13.55).

(b) Deviance residuals

These are defined as

ri,d = [sign(yi − μ̂i)]
√

di, i = 1, 2, . . . , n, (13.58)
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where di ≥ 0 so that
∑n

i=1 r2
i,d = D(β̂, y), the deviance for the fitted

model as given in (13.51). Thus,
√

di represents the square root of the
contribution of the ith observation to the deviance D and sign(yi − μ̂i) is
the sign of the ith raw residual (i = 1, 2, . . . , n). When a(φ) = φ, dividing
ri,d by

√
φ yields the ith scaled deviance residual (i = 1, 2, . . . , n). In this

case, 1
φ

∑n
i=1 r2

i,d = D∗ is the scaled deviance in (13.52).

(c) Studentized residuals

In classical linear models, residuals are usually standardized so that
they become scale free and have the same precision. This makes it more
convenient to compare residuals at various locations in the region of
experimentation, R. If Y = Xβ + ε is a given linear model where it
is assumed that the error vector ε has a zero mean and a variance-
covariance matrix given by σ2In, then the ith raw residual, denoted
here by ei, is standardized by dividing it by

√
Var(ei) =

√
σ2(1 − hii),

where hii is the ith diagonal element of the so-called hat matrix, denoted
by H and is given by H = X(X′X)−1X′ (i = 1, 2, . . . , n). In this case,
ei/
√

σ2(1 − hii) has a zero mean and a variance equal to 1. Since σ2 is
unknown, it can be replaced by MSE, the error mean square. Doing
so leads to the Studentized ith residual, namely, ei/

√
MSE(1 − hii), i =

1, 2, . . . , n. The Studentized residuals are scale free and are very useful
in checking model adequacy and the assumptions concerning the error
distribution. This can be accomplished by using various plots of the
Stundentized residuals against the corresponding predicted response
values and against the control variables in the fitted model. Other types
of residual plots can also be used (see, for example, Atkinson, 1985;
Draper and Smith, 1998).

For a generalized linear model, the X matrix for the linear model men-
tioned earlier is replaced by W−1/2X, where W = ⊕n

i=1 ωi and ωi is
defined in (13.25), i = 1, 2, . . . , n, and X is the model matrix for the
linear predictor. Consequently, the “hat” matrix H is replaced by

H = W−1/2X(X′W−1X)−1X′W−1/2. (13.59)

Let h̃ii denote the ith diagonal element of H (i = 1, 2, . . . , n). Then, the

ith Studentized Pearson’s residual is defined as ri,p/

√
φ (1 − h̃ii), where ri,p

is given in (13.57). Hence,

ri,p√
φ (1 − h̃ii)

= yi − μ̂i√
φ V(μ̂i)(1 − h̃ii)

, i = 1, 2, . . . , n, (13.60)

where φ is considered known, otherwise, an estimate of φ can be used.
Note that this Studentized residual has a unit asymptotic variance.
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As for the deviance residual, its Studentized version is defined as

ri,d√
φ (1 − h̃ii)

= sign(yi − μ̂i)
√

di√
φ (1 − h̃ii)

, i = 1, 2, . . . , n, (13.61)

where ri,d is given in (13.58). This Studentized residual has also a unit
asymptotic variance.

The Studentized residuals in (13.60) and (13.61) can be plotted against η̂i
[see formula (13.37)] or against μ̂i (i = 1, 2, . . . , n), as well as against each of
the control variables in the linear predictor model. These plots are analogous
to the common residual plots used in a classical linear model and have similar
interpretations.

Example 13.2 Let us again consider Example 13.1. Using the SAS code given
earlier in that example, we get the following information concerning the
deviance and Pearson’s chi-square statistic for model (13.46):

Criteria for Assessing Goodness of Fit
Criterion DF Value Value/DF
Deviance 3 1.2471 0.4157
Scaled deviance 3 1.2471 0.4157
Pearson’s chi-square 3 1.2506 0.4169
Scaled Pearson’s chi-square 3 1.2506 0.4169

We note that the values of the scaled deviance and the scaled Pearson’s chi-
square statistic are small relative to the degrees of freedom. This indicates that
the model fits the data well. We also note that the deviance and Pearson’s chi-
square values are identical to their scaled counterparts. This follows from the
fact that the dispersion parameter φ is equal to 1 for the Poisson distribution.

In order to get information concerning Pearson’s residuals [as in for-
mula (13.57)] and the deviance residuals [as in formula (13.58)], the option
“OBSTATS” should be added to the MODEL statement in PROC GENMOD.
This option also provides values of the predicted response, that is, values of
μ̂(xi) for i = 1, 2, . . . , n, where n = 13 in this example, in addition to several
other items. As for the information concerning the Studentized values of the
deviance and Pearson’s residuals [as in (13.61) and (13.60), respectively], the
option “RESIDUALS” should also be added to the MODEL statement. Thus,
this statement can now be rewritten as

MODEL Y = X1 X2 X3 X1 ∗ X2 X1 ∗ X3 X2 ∗ X3 X1 ∗ X1 X2 ∗ X2 X3 ∗ X3
/DIST = POISSON LINK = LOG OBSTATS RESIDUALS;

The corresponding SAS output is given in Table 13.3.
From Table 13.3 we note the close agreement between Y and the predicted

response values. This is reflected in the small values of the deviance and
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TABLE 13.3
Observation Statistics
Y Pred Resraw Resdev Reschi StResdev StReschi

20 18.8589 1.14107 0.26017 0.26276 0.41869 0.42285
21 18.2663 2.73372 0.62460 0.63963 1.09076 1.11702
42 42.1402 −0.14018 −0.02161 −0.02159 −0.04553 −0.04551
36 34.2672 1.73284 0.29357 0.29602 0.61776 0.62290
11 12.0009 −1.00089 −0.29308 −0.28892 −0.42365 −0.41763

120 119.8598 0.14018 0.01280 0.01280 0.04550 0.04551
33 34.5927 −1.59266 −0.27291 −0.27079 −0.54276 −0.53855
36 37.7328 −1.73284 −0.28430 −0.28210 −0.62776 −0.62290
32 30.9991 1.00089 0.17881 0.17977 0.41541 0.41763
38 39.1411 −1.14107 −0.18328 −0.18239 −0.42493 −0.42285
20 22.7337 −2.73372 −0.58546 −0.57335 −1.14061 −1.11702
17 17.0000 0.00000 0.00000 0.00000 0.00000 0.00000
49 47.4073 1.59266 0.23004 0.23131 0.53557 0.53855

Note: Pred, predicted response; Resraw, raw residual; Resdev, deviance residual; Reschi,
Pearson’s chi-square residual; StResdev, Studentized deviance residual; StReschi,
Studentized Pearson’s chi-square residual.

Pearson’s chi-square residuals. The residual plots are shown in Figures 13.1
through 13.6. Figure 13.1 gives a plot of Yi against the predicted response μ̂(xi)

(i = 1, 2, . . . , 13), which clearly shows the closeness of the corresponding
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FIGURE 13.1
Plot of the values of Y (number of inedible kernels) against the predicted
response values.
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values. Figures 13.2 and 13.3 give plots of the Studentized deviance and
Pearson’s chi-square residuals, respectively, against the predicted response
values. Both plots show no systematic changes in the residuals with respect to
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FIGURE 13.2
Plot of the Studentized deviance residuals against the predicted response
values.
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FIGURE 13.3
Plot of the Studentized Pearson’s residuals against the the predicted response
values.
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the predicted response. Note that the remoteness of the point corresponding
to x1 = −1, x2 = 0, x3 = −1, and Y = 120 is understandable since with
low temperature and short popping time, a large number of inedible kernels
is rather expected. Figures 13.4 through 13.6 give plots of the Studentized
deviance residuals against x1, x2, and x3, respectively. Here again, the plots
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FIGURE 13.4
Plot of the Studentized deviance residuals against x1.
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FIGURE 13.5
Plot of the Studentized deviance residuals against x2.
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FIGURE 13.6
Plot of the Studentized deviance residuals against x3.

reveal no systematic trends, which indicate no problems with the assumptions
concerning the fitted model. Since the Studentized deviance residuals are very
close to their corresponding Studentized Pearson’s chi-square residuals, plots
of the latter against x1, x2, and x3 were omitted.

13.5 Hypothesis Testing

Hypothesis testing in the case of generalized linear models can be carried out
using two types of inference, namely, the Wald inference and the likelihood ratio
inference.

13.5.1 Wald Inference

This type of inference is based on the asymptotic normality of the ML estima-
tor, β̂, of β as was seen in Section 13.3.2 [see (13.41)]. Consider, for example,
testing the hypothesis

H0 : Aβ = b, (13.62)

where
A is a known matrix of order s × q and rank s (≤q)
b is a known vector
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Then, for large n, Aβ̂ is asymptotically normal with mean Aβ and a
variance–covariance matrix A(X′W−1X)−1A′. It follows that under H0,

(Aβ̂ − b)′[A(X′Ŵ−1
X)−1A′]−1(Aβ̂ − b) (13.63)

has an approximate chi-squared distribution with s degrees of freedom,
where Ŵ is an estimate of W. The statistic given in (13.63) is called Wald’s
test statistic. The test is significant at the approximate α-level if this statistic
is greater than or equal to χ2

α,s. In particular, to test the significance of the
individual elements of β (that is, testing H0 : βi = 0, where βi is the ith
element of β, i = 1, 2, . . . , q), we can consider the random variable,

β̂i√
dii

, i = 1, 2, . . . , q, (13.64)

which is distributed asymptotically as N(0, 1) under H0 : βi = 0, where dii is
the ith diagonal element of (X′W−1X)−1. Hence, under H0,

β̂2
i

d̂ii
, i = 1, 2, . . . , q, (13.65)

has an approximate chi-squared distribution with one degree of freedom,

where d̂ii is the ith diagonal element of (X′Ŵ−1
X)−1.

13.5.2 Likelihood Ratio Inference

Suppose that the vector β is partitioned as β = (β
′
1 : β

′
2)

′
, where β1 and β2

have q1 and q2 elements, respectively. Consider the hypothesis, H0 : β1 = 0.

The ML estimate, β̂, is partitioned accordingly as (β̂
′
1 : β̂

′
2)

′
. We may recall

from Section 13.4.1 that L(φ, β̂) is the likelihood function maximized over β.
Let β̃2 denote the ML estimate of β2 under the restriction that β1 = 0. Then,
L(φ, β̃2) < L(φ, β̂), whereL(φ, β̃2) is the likelihood function maximized over
β2 while β1 is set equal to zero. If Λ1 is the likelihood ratio (LR),

Λ1 = L(φ, β̃2)

L(φ, β̂)
,

then the hypothesis H0 : β1 = 0 can be tested using the statistic

−2 log Λ1 = 2 [ logL(φ, β̂) − logL(φ, β̃2)], (13.66)

which represents the difference between the scaled deviance for the full model
(that contains all of β) and the scaled deviance for the reduced model (that
contains only β2). Under H0, this statistic has approximately the chi-squared
distribution whose number of degrees of freedom is equal to the difference
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between the degrees of freedom for the two scaled deviances, that is, (n−q2)−
(n − q) = q − q2 = q1, where qi is the number of elements of βi (i = 1, 2). The
hypothesis H0 can then be rejected at the approximate α-level if −2 log Λ1 ≥
χ2

α,q1
. Note that the same hypothesis can also be tested by Wald’s test.

The LR procedure can be used to test the significance of the individual
elements of β, just like Wald’s test. For large samples, both tests give similar
results, but can be different for small samples. In general, the LR test is pre-
ferred over Wald’s test because the former’s asymptotic distribution provides
a better approximation than the latter in case of small and moderate-sized
samples (see McCulloch and Searle, 2001, Section 5.5). However, Wald’s test
has a computational advantage over the LR test since it requires less comput-
ing time. This is true because the LR test requires fitting a submodel for each
parameter tested.

Testing of the individual elements of β is available in PROC GENMOD.
For example, to apply the LR test, “TYPE3” is selected as an option in the
MODEL statement. A Type 3 analysis is similar to Type III sum of squares
used in PROC GLM, except that likelihood ratios are used instead of sums
of squares (see SAS, 1997, Chapter 10). As a result, we get a table entitled
“LR Statistics for Type 3 Analysis,” which gives the LR statistics and the cor-
responding p-values (from the chi-squared approximation) for each param-
eter in the model. Alternatively, a Wald’s test statistic can be obtained for
each parameter along with the corresponding p-value (from the chi-squared
approximation) by adding the options “TYPE3” and “WALD” to the MODEL
statement. PROC GENMOD also gives a table entitled “Analysis of Parameter
Estimates,” which provides a listing of the parameters in the model, their ML
estimates and standard errors, chi-squared values [based on the test statistic
given in (13.65)], and the corresponding p-values. These tests are identical to
those obtained under Wald’s inference.

13.6 Confidence Intervals

Large-sample confidence intervals on the individual elements of β = (β1,
β2, . . . , βq)

′ can be constructed using either the likelihood ratio inference or
the Wald inference.

13.6.1 Wald’s Confidence Intervals

Using the information given in Section 13.5, we have that for large n,

β̂i − βi√
d̂ii

, i = 1, 2, . . . , q,
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is distributed approximately as N(0, 1), where β̂i is the ML estimate of βi and

d̂ii is the ith diagonal element of (X′Ŵ−1
X)−1. It follows that an approximate

(1 − α)100% confidence interval on βi is given by

β̂i ±
√

d̂ii zα/2, i = 1, 2, . . . , q. (13.67)

Such intervals can be obtained from PROC GENMOD by adding the option
“WALDCI” to the MODEL statement. The confidence coefficient can be
selected with the “ALPHA=” option. The default value is 0.95.

Wald’s confidence intervals can also be constructed for the mean response,
μ(x) = h[η(x)], at the points of the design under consideration, where η(x) =
f ′(x)β and h(.) is the inverse of the link function g(.) [see formulas (13.2)
and (13.4)]. An approximate (1 − α)100% confidence interval on η(x) is first
computed, namely,

f ′(x)β̂ ± [f ′(x)(X′Ŵ−1
X)−1f (x)]1/2 zα/2.

Then, an approximate (1 − α)100% confidence interval on μ(x) is given by

h
{

f ′(x)β̂ ± [f ′(x)(X′Ŵ−1
X)−1f (x)]1/2 zα/2

}
. (13.68)

The end points of this interval can be found in the output from PROC
GENMOD in a table entitled “Observation Statistics,” and are referred to
as “LOWER” and “UPPER.” For this purpose, the option “OBSTATS” must
be added to the MODEL statement. The printed values of “LOWER” and
“UPPER” correspond to each observation in the data set under considera-
tion. The confidence coefficient is specified with the “ALPHA=” option in
the same MODEL statement.

Another way to construct a Wald’s confidence interval on μ(x) is to make
use of formula (13.45) which gives an approximate expression for Var[μ̂(x)].
Using this expression, we obtain the following approximate (1 − α)100%
confidence interval on μ(x) = h[η(x)] = h[f ′(x)β]:

h[f ′(x)β̂] ± {[h′(f ′(x)β̂)]2f ′(x)(X′Ŵ−1
X)−1f (x)}1/2 zα/2, (13.69)

where h′(.) is the derivative of h[η(x)] with respect to η.

13.6.2 Likelihood Ratio-Based Confidence Intervals

Confidence intervals can be constructed for each element of β = (β1,
β2, . . . , βq)

′ using the likelihood ratio inference in Section 13.5.2. Suppose,
for example, we consider βi (i = 1, 2, . . . , q). Let L(φ, βi, β̂(i)) denote the like-
lihood function maximized with respect to all the elements of β, except for
βi, which is held fixed, that is,

L(φ, βi, β̂(i)) = max
β(i)

L(φ, βi, β(i)), i = 1, 2, . . . , q. (13.70)
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Here, β(i) denotes the vector β with βi removed, and β̂(i) is the ML estimate
of β(i) under the restriction that βi is fixed. Thus, L(φ, βi, β̂(i)) is a partially
maximized likelihood function and is called the profile likelihood function for
βi (i = 1, 2, . . . , q). Then, as in Section 13.5.2,

2 [logL(φ, β̂) − logL(φ, βi, β̂(i))]
has an asymptotic chi-squared distribution with one degree of freedom,
where β̂ is the usual ML estimate of β. Consequently, an approximate
(1 −α)100% confidence set on βi is defined by the values of βi that satisfy the
inequality

2 [logL(φ, β̂) − logL(φ, βi, β̂(i))] ≤ χ2
α,1. (13.71)

To obtain a confidence interval on βi using this method, (13.71) must be
solved numerically for all values of βi that satisfy the preceding inequality.
The resulting interval is called a profile likelihood confidence interval. This is done
in PROC GENMOD by adding the option “LRCI” to the MODEL statement.
The confidence coefficient can be chosen with the “ALPHA=” option. The
default value is 0.95. It should be noted here that the computation needed
to derive these intervals involves an iterative procedure and can therefore
be more time consuming than in the case of the Wald intervals. However,
the latter intervals are not thought to be as accurate as the likelihood ratio
intervals, especially for small sample sizes.

Example 13.3 In order to demonstrate the use of PROC GENMOD in deriving
tests and confidence intervals concerning the elements of β, let us consider
once more the same data set and model as in Example 13.1. Table 13.4 gives the
parameter ML estimates and corresponding chi-squared and p-values [based
on formula (13.65)]. These estimates were previously given in Table 13.2

TABLE 13.4
Analysis of Parameter Estimates
Parameter DF Estimate Chi-Squared p-Value

β0 1 2.8332 136.46 <0.0001
β1 1 −0.2066 11.20 0.0008
β2 1 −0.1585 5.77 0.0163
β3 1 −0.3160 24.84 <0.0001
β12 1 −0.1401 2.44 0.1183
β13 1 0.6246 48.85 <0.0001
β23 1 −0.3709 14.65 0.0001
β11 1 0.4589 10.07 0.0015
β22 1 0.1501 1.08 0.2987
β33 1 0.3470 5.70 0.0170
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TABLE 13.5
Wald’s Statistics for Type 3 Analysis
Source DF Chi-Squared p-Value
x1 1 11.20 0.0008
x2 1 5.77 0.0163
x3 1 24.84 <0.0001
x1x2 1 2.44 0.1183
x1x3 1 48.85 <0.0001
x2x3 1 14.65 0.0001

x2
1 1 10.07 0.0015

x2
2 1 1.08 0.2987

x2
3 1 5.70 0.0170

TABLE 13.6
Likelihood Ratio Statistics for Type 3 Analysis
Source DF Chi-Squared p-Value
x1 1 11.32 0.0008
x2 1 5.83 0.0157
x3 1 25.78 <0.0001
x1x2 1 2.46 0.1167
x1x3 1 58.08 <0.0001
x2x3 1 15.53 <0.0001

x2
1 1 11.53 0.0007

x2
2 1 1.13 0.2873

x2
3 1 6.29 0.0121

and are repeated here for convenience. We note that all parameters are sig-
nificantly different from zero, except for β12 and β22. Tables 13.5 and 13.6
show the results of Wald’s and LR tests, respectively, concerning the model’s
parameters, except for the intercept β0. Note that the chi-squared values in
Table 13.5 concerning β1, β2, β3, β12, β13, β23, β11, β22, and β33 are identical
to the corresponding values in Table 13.4. We also note that the results of the
Wald and LR tests are very similar concerning the significance of all the effects
in the model. Table 13.7 gives approximate 95% confidence intervals on all the
parameters on the basis of the Wald and LR inferences. Finally, approximate
95% confidence intervals on the mean responses, μ(xi), i = 1, 2, . . . , 13, that
correspond to the 13 observations in the data set, are presented in Table 13.8.
Note that the observed (Y) and predicted response values in this table are
repeated here (from Table 13.3) for convenience.
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TABLE 13.7
95% Confidence Intervals on the Parameters

Wald’s Confidence Likelihood Ratio Confidence
Parameter Limits Limits
β0 (2.3579, 3.3086) (2.3170, 3.2737)
β1 (−0.3276, −0.0856) (−0.3284, −0.0861)
β2 (−0.2878, −0.0292) (−0.2887, −0.0298)
β3 (−0.4403, −0.1917) (−0.4418, −0.1929)

β12 (−0.3160, 0.0357) (−0.3177, 0.0348)
β13 (0.4495, 0.7998) (0.4544, 0.8057)
β23 (−0.5608, −0.1809) (−0.5650, −0.1842)

β11 (0.1754, 0.7423) (0.1870, 0.7569)
β22 (−0.1330, 0.4333) (−0.1214, 0.4479)
β33 (0.0620, 0.6319) (0.0732, 0.6461)

TABLE 13.8
Wald’s 95% Confidence Intervals on the Mean Responses
Y Predicted Lower Limit Upper Limit

20 18.8589 13.2418 26.8589
21 18.2663 12.5422 26.6028
42 42.1402 32.3054 54.9689
36 34.2672 25.5233 46.0065
11 12.0009 7.9761 18.0567

120 119.8598 100.9405 142.3252
33 34.5927 25.9349 46.1405
36 37.7328 28.3905 50.1494
32 30.9991 22.5608 42.5935
38 39.1411 29.5042 51.9255
20 22.7337 15.9756 32.3507
17 17.0000 10.5682 27.3461
49 47.4073 36.6610 61.3038

A listing of the SAS statements needed to get all the results in Tables 13.2
through 13.8 is given below

DATA;
INPUT X1 X2 X3 Y;

CARDS;
(enter here the data from Table 13.1)

PROC GENMOD;
MODEL Y = X1 X2 X3 X1 ∗ X2 X1 ∗ X3 X2 ∗ X3 X1 ∗ X1 X2 ∗ X2 X3 ∗ X3

/DIST=POISSON LINK=LOG OBSTATS RESIDUALS TYPE3 WALD
WALDCI;

PROC GENMOD;
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MODEL Y = X1 X2 X3 X1 ∗ X2 X1 ∗ X3 X2 ∗ X3 X1 ∗ X1 X2 ∗ X2 X3 ∗ X3
/DIST=POISSON LINK=LOG TYPE3 LRCI;

RUN;

The first GENMOD statement generated the results in Tables 13.2
through 13.5 and 13.8. The options, “TYPE3” and “WALD,” should appear
together in the MODEL statement in order to get Wald’s chi-squared results.
The option, “WALDCI,” was used to obtain Wald’s approximate 95% (default
value) confidence intervals on the model’s parameters (as in Table 13.7).
Table 13.6 was obtained as a result of using the option “TYPE3” in the sec-
ond MODEL statement, but without including the “WALD” option. To get
approximate 95% (default value) likelihood ratio confidence intervals on the
model’s parameters (as in Table 13.7), the option “LRCI” should be added to
the second MODEL statement.

13.7 Gamma-Distributed Response

The gamma distribution is a member in the family of continuous distributions.
Its density function is of the form

f (y, α, β) = yα−1 exp(− y/β)

Γ(α)βα
, y ≥ 0, (13.72)

where α and β are positive constants. A random variable, Y, having this
distribution is said to be gamma distributed with parameters α and β. This fact
is denoted by writing Y ∼ G(α, β). The density function in (13.72) can also be
written as

f (y, α, β) = exp
[
− y

β
+ (α − 1) log y − α log β − log Γ(α)

]
. (13.73)

Comparing (13.73) with (13.1) we find that

θ = − 1
αβ

,

a(φ) = 1
α

,

b(θ) = log α + log β

= − log (−θ),
c(y, φ) = α log α − log Γ(α) + (α − 1) log y.

We conclude that the gamma distribution belongs to the exponential family.
Using formulas (13.16) and (13.18), we find that the mean and variance of this
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distribution are

E(Y) = μ

= b′(θ)

= − 1
θ

= αβ, (13.74)
Var(Y) = a(φ) b′′(θ)

= 1
αθ2

= αβ2. (13.75)

From (13.74) and (13.75) we note that the ratio,

Var(Y)

μ2 = 1
α

= a(φ),

is constant. This ratio, which is denoted by ρ2, is the square of the coefficient of
variation, ρ. It follows that the gamma distribution has a constant coefficient
of variation.

The canonical link for the gamma distribution is given by

η = g(μ)

= 1
μ

. (13.76)

This is the reciprocal link. Hence, the inverse link function is

μ = h(η)

= 1
η

.

If the linear predictor, η, is expressed as a linear model as in (13.2), then the
mean response at a point x is given by

μ(x) = 1
f ′(x)β

.

The predicted response μ̂(x) is then of the form

μ̂(x) = 1

f ′(x)β̂
, (13.77)

where β̂ is the ML estimate of β. Note that since μ(x) is positive, it would be
desirable for μ̂(x) to be also positive. But, f ′(x)β̂ may be negative for some
values of x, which is undesirable. Hence, care should be exercised in order to
avoid negative values of μ̂(x) when using the canonical link function. For this
reason, the log link may be considered in place of the reciprocal link since it
does not result in negative values of μ̂(x).
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13.7.1 Deviance for the Gamma Distribution

Consider a response vector, Y = (Y1, Y2, . . . , Yn)′, such that Y1, Y2, . . . , Yn are
mutually independent and Yi ∼ G(α, βi), i = 1, 2, . . . , n. Here, α is considered
to be a constant that does not depend on i. Let y1, y2, . . . , yn be realized values
of Y1, Y2, . . . , Yn, respectively. Then, by formula (13.51), the deviance for the
gamma distribution, on the basis of the sample y1, y2, . . . , yn, is given by

D = 2
n∑

i=1

[(θ̃i − θ̂i) yi − b(θ̃i) + b(θ̂i)], (13.78)

where, if we recall, θ̂i and θ̃i are the estimates of θi under the assumed
and saturated models, respectively, i = 1, 2, . . . , n. For the saturated model,
θ̃i = − 1

yi
since θ = − 1

μ
, and for the assumed model, θ̂i = − 1

μ̂i
, where μ̂i is

the ML estimate of μi (i = 1, 2, . . . , n). From (13.78) we then get

D = 2
n∑

i=1

[(
− 1

yi
+ 1

μ̂i

)
yi + log

(
1
yi

)
− log

(
1
μ̂i

)]

= 2
n∑

i=1

[
− log

(
yi

μ̂i

)
+ yi − μ̂i

μ̂i

]
.

13.7.2 Variance–Covariance Matrix of β̂

Using formula (13.42), the variance–covariance matrix of β̂, the ML estimator
of β for the linear predictor, is approximately equal to

Var(β̂) ≈ (X′W−1X)−1, (13.79)

where X is the model matrix for the linear predictor and W = ⊕n
i=1

[g′(μi)]2 Var(Yi) [see formula (13.36)]. The link function, g(.), for the gamma
distribution can be either the reciprocal link or the log link. Note that
by (13.75),

Var(Yi) = 1
α

b′′(θi)

= ρ2 V(μi), i = 1, 2, . . . , n,

where
ρ is the coefficient of variation
V(μi) is the variance function, which, if we recall, is equal to b′′(θi),

i = 1, 2, . . . , n

Making the substitution in (13.79), we get

Var(β̂) ≈ ρ2

{
X′
( n⊕

i=1

1
[g′(μi)]2 V(μi)

)
X

}−1

.
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In general, ρ2 is unknown and should be estimated. Since

ρ2 = Var(Yi)

μ2
i

, i = 1, 2, . . . , n,

an estimator of ρ2 can be obtained as follows:

ρ2 = E(Yi − μi)
2

μ2
i

= E
(

Yi − μi

μi

)2

, i = 1, 2, . . . , n.

Hence, a consistent estimator of ρ2 is given by

ρ̂2 = 1
n

n∑

i=1

(
Yi − μ̂i

μ̂i

)2

,

where μ̂i = h[f ′(xi)β̂] and h(.) is the inverse of the link function (i = 1, 2, . . . , n).
Thus, an estimate of Var(β̂) is approximately given by

V̂ar(β̂) ≈ ρ̂2

{
X′
( n⊕

i=1

1
[g′(μ̂i)]2 V(μ̂i)

)
X

}−1

.

Example 13.4 The gamma distribution has applications in a wide variety of
situations. For example, it is used to represent the distributions of lifetimes
(or failure times) in industrial experiments, reliability and survival data, the
resistivity of test wafers (see Myers, Montgomery, and Vining, 2002, Section
5.8), and daily rainfall data (see McCullagh and Nelder, 1989, Section 8.4.3).
Such distributions are known to have a heavy right tail where the variance is
proportional to the square of the mean (that is, have constant coefficients of
variation).

Consider, as an example, an experiment conducted to study the effect of
exterior temperature, x, on the life, Y, of a certain type of batteries to be used
in an electronic device. The plate materials for the batteries are the same.
Three batteries were tested at each of three levels of temperature, namely, 20,
70, 120◦F. These levels were coded as −1, 0, 1. The corresponding values of Y
(in h) are given in Table 13.9.

A generalized linear model was fitted using a reciprocal link and a gamma
distribution for the response. The model for the linear predictor is of the
second degree of the form

η(x) = β0 + β1x + β11x2. (13.80)
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TABLE 13.9
Lifetimes Data (in h)
Coded Temperature (◦F)a Y
−1 140.2, 165.9, 158.8

0 140.4, 127.3, 129.7
1 74.8, 68.1, 79.6

a The coded levels, −1, 0, and 1 correspond to 20, 70, and 120 ◦F,
respectively.

The following SAS statements were used

DATA;
INPUT X Y;

CARDS;
(enter here the data from Table 13.9)

PROC GENMOD;
MODEL Y = X X ∗ X/DIST = GAMMA LINK = POWER (-1) OBSTATS

RESIDUALS TYPE3 WALD;
PROC GENMOD;

MODEL Y = X X ∗ X/DIST = GAMMA LINK = POWER (-1) TYPE3;
RUN;

Note that the reciprocal link is denoted in SAS as “LINK = POWER (-1)”.
From the corresponding SAS output we find that the deviance and

Pearson’s chi-square statistic values are 0.0328 and 0.0323, respectively, with
6 degrees of freedom. Their scaled values divided by the degrees of freedom
are 1.5009 and 1.4808, respectively. Table 13.10 gives information concern-
ing the analysis of parameter estimates and the LR tests for model (13.80).
Values of the deviance and Pearson’s chi-square residuals are presented in
Table 13.11. All this information indicates that the model fits the data well
and that the model parameters are all significantly different from zero.

TABLE 13.10
Analysis of Model (13.80) Using the Reciprocal Link
Parameter DF Estimate Chi-Squared p-Value
Analysis of parameter estimates
β0 1 0.0075 824.09 <0.0001
β1 1 0.0035 182.28 <0.0001
β11 1 0.0024 42.73 <0.0001

Source DF Chi-Squared p-Value
Likelihood ratio statistics for Type 3 analysis
x 1 29.21 <0.0001
x ∗ x 1 15.60 <0.0001
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TABLE 13.11
Observation Statistics for Model (13.80) Using the Reciprocal
Link
Y x Pred Resdev Reschi StResdev StReschi
140.2 −1 154.967 −0.098 −0.095 −1.999 −1.934
158.8 −1 154.967 0.025 0.025 0.498 0.502
165.9 −1 154.967 0.069 0.071 1.400 1.432
127.3 0 132.467 −0.040 −0.039 −0.802 −0.792
129.7 0 132.467 −0.021 −0.021 −0.427 −0.424
140.4 0 132.467 0.059 0.060 1.192 1.216

68.1 1 74.167 −0.084 −0.082 −1.708 −1.660
74.8 1 74.167 0.009 0.009 0.173 0.173
79.6 1 74.167 0.072 0.073 1.452 1.487

TABLE 13.12
Analysis of Model (13.80) Using the Log Link
Parameter DF Estimate Chi-Squared p-Value
Analysis of parameter estimates
β0 1 4.8863 19676.10 <0.0001
β1 1 −0.3684 223.75 <0.0001
β11 1 −0.2116 24.59 <0.0001

Source DF Chi-Squared p-Value
Likelihood ratio statistics for Type 3 analysis
x 1 29.21 <0.0001
x ∗ x 1 12.01 0.0005

Using now the log link instead of the reciprocal link (the log link is often
used with the gamma distribution), we find that the results concerning the
deviance, Person’s chi-square statistic, and their scaled values are identical to
those obtained under the reciprocal link. The analysis of parameter estimates
and the LR tests are displayed in Table 13.12. We note that the conclusions
concerning the significance of the model parameters are consistent with the
reciprocal link case, but the actual parameter estimates are different. The
results concerning the deviance and Pearson’s chi-square residuals are iden-
tical to those shown in Table 13.11.

Exercises

13.1 Consider the likelihood function for the Poisson distribution. Verify
that formulas (13.11) and (13.12) are satisfied for this distribution.
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13.2 Establish the validity of formulas (13.11) and (13.12).[
Hint: Use the following relationship:

∂2�(θ, φ, Y)

∂θ2 =
[(

∂2L(θ, φ, Y)

∂θ2

)/
L(θ, φ, Y)

]
−
[
∂�(θ, φ, Y)

∂θ

]2 ]
.

13.3 Let τ(Y) be a transformation of a random variable Y whose mean is
μ. Assume that τ(.) is differentiable in a neighborhood of μ such that
τ′(μ) = 0, where τ′(μ) denotes the derivative of τ(μ) with respect to μ.

(a) Show that if Var[τ(Y)] = c, where c is a constant, then

Var(Y) ≈ c
[τ′(μ)]2 .

(b) Deduce that if log(Y) has a constant variance, then Var(Y) ≈ c μ2.

(c) If Y has the gamma distribution, what can you say about
Var[log(Y)]?

13.4 The negative binomial distribution has the probability mass function

f (y, p) =
(

r + y − 1
r − 1

)
pr(1 − p)y, y = 0, 1, . . . ,

where r is a known positive integer and 0 < p < 1.

(a) Show that this distribution belongs to the exponential family.

(b) Apply formulas (13.16) and (13.18) to show that if Y has this dis-
tribution, then

E(Y) = r(1 − p)

p
,

Var(Y) = r(1 − p)

p2 .

13.5 Consider again the negative binomial distribution in Exercise 13.4.

(a) Find the variance function for a given observation.

(b) Give an expression for the deviance on the basis of a sample of size
n from this distribution.

(c) Give an expression for Pearson’s chi-square statistic for a sample
of size n.

13.6 Consider the linear predictor in (13.2).

(a) Use the Wald inference to obtain an approximate (1 − α)100%
confidence region on β.
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(b) Let λ(β) be a scalar function of β which is assumed to be continu-
ous. Show how you can obtain an approximate confidence interval
on λ(β) with an approximate confidence coefficient greater than
or equal to 1 − α.
[Hint: Consider the maximum and minimum of λ(β) over the
confidence region in part (a)].

13.7 On the basis of formula (13.32), we can write

β(m+1) = [(X′W−1X)−1X′W−1]
β=β

(m) Z(m), m = 0, 1, . . . ,

where

Z(m) is the value of Z at the mth iteration

Z is given in (13.35)

Hence, for m = 0,

β(1) = [(X′W−1X)−1X′W−1]0 Z(0),

where [(X′W−1X)−1X′W−1]0 is the value of (X′W−1X)−1X′W−1 when
β = β0, that is, when η = η0 = Xβ0, or when μ = μ0, where μ0 is the
value of μ corresponding to η0. Choose μ0 = y, the data vector, and Z0

to be the vector whose ith element is g(yi), where yi is the ith element
of y (i = 1, 2, . . . , n). This results in a value of β(1), the first iterated
value of β. Subsequent iterated values of β can now be obtained by
applying formula (13.32).

Apply this procedure in case of Example 13.1 to obtain the first five
iterated values of the parameter estimates for model (13.46).

13.8 Consider the same model, response distribution, link function, and
data set as in Example 13.1.

(a) Obtain an expression for the profile likelihood function for β1.

(b) Use (13.71) directly to obtain an approximate 95% profile likeli-
hood confidence interval on β1 without using the “LRCI” model
option in PROC GENMOD.

13.9 A biomedical study was conducted to study the effects of two agents,
whose levels are denoted by X1 and X2, on the number, Y, of cells
that exhibit differentiation after exposure to the two agents. A 4 × 4
factorial experiment was carried out using the levels 0, 2, 8, and 80 for
X1 and 0, 6, 16, and 80 for X2. At each combination of X1 and X2, 100
cells were examined and the number, y, of cells differentiating was
recorded. The data are given in the following table.
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X1 X2 y
0 0 5
0 6 8
0 16 9
0 80 19
2 0 10
2 6 17
2 16 25
2 80 35
8 0 15
8 6 33
8 16 34
8 80 63
80 0 51
80 6 84
80 16 88
80 80 95

Assume a Poisson distribution on Y and consider using a log link.

(a) Obtain the ML estimates for the model

η = β0 + β1x1 + β2x2 + β12x1x2 + β11x2
1 + β22x2

2,

where x1 and x2 denote the coded values, xi = (Xi−40)/40, i = 1, 2.

(b) Find the deviance and Pearson’s chi-square statistic values for this
model. What can you say about the fit of the model?

(c) Obtain values of the deviance and Pearson’s chi-square residuals.

(d) Test the significance of the model parameters. Let α = 0.05.

(e) Obtain the 95% Wald and likelihood ratio confidence intervals on
the model parameters.

13.10 In a cancer research experiment, a logistic regression model was uti-
lized in a cytotoxicity study to investigate the dose-response curve for
a combination of two agents. Their respective concentration levels are
denoted by x1 and x2. Cell cytotoxicity for the combination of x1 and
x2 was evaluated by counting the number of viable and dead cells.
Of interest was the modeling of the probability, p, of dead cells as a
function of x1 and x2. The following data were obtained as a result of
running a 4 × 4 factorial experiment:
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x1 x2 Total Number of Cells, N Number of Dead Cells, S
0 0 95 18
0 3 86 22
0 15 92 55
0 100 86 67
3 0 90 14
3 3 93 18
3 15 91 42
3 100 94 80

15 0 89 16
15 3 82 11
15 15 88 37
15 100 84 63
35 0 90 17
35 3 91 35
35 15 95 57
35 100 88 75

The fitted linear predictor is

η(x) = β0 + β1x1 + β2x2 + β11x2
1 + β22x2

2,

where x = (x1, x2)
′.

(a) Obtain the ML estimates of the model parameters, then provide a
representation for p̂(x), the predicted value of p at x.

(b) Find the deviance and Pearson’s chi-square statistic values. Com-
ment on the goodness of fit.

(c) Obtain values of the Studentized deviance and Pearson’s residuals.

(d) Assess the significance of the model parameters. Let α = 0.05.

(e) Give the predicted values, p̂(xi), at the 16 design points, then obtain
Wald’s 95% confidence intervals on p(xi), i = 1, 2, . . . , 16.



André I. Khuri/Linear Model Methodology C4819_C013 Finals Page 514 2009-9-14



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 515 2009-9-2

Bibliography

Airy, G. B. (1861). On the Algebraical and Numerical Theory of Errors of Observa-
tions and the Combinations of Observations. MacMillan, London, U.K.

Aitken, A. C. (1935). On least squares and linear combinations of observations,
Proc. Roy. Soc. Edinb., 55, 42–48.

Aitken, A. C. (1950). On the statistical independence of quadratic forms in
normal variates, Biometrika, 37, 93–96.

Aitken, A. C. (1958). Determinants and Matrices, 9th ed. Oliver and Boyd,
London, U.K.

Aldrich, J. (1997). R. A. Fisher and the making of maximum likelihood
1912–1922, Statist. Sci., 12, 162–176.

Ali, M. M. and Silver, J. L. (1985). Tests for equality between sets of coefficients
in two linear regressions under heteroscedasticity, J. Am. Stat. Assoc., 80,
730–735.

Ames, M. H. and Webster, J. T. (1991). On estimating approximate degrees of
freedom, Am. Stat., 45, 45–50.

Anderson, M. R. (1971). A characterization of the multivariate normal distri-
bution, Ann. Math. Stat., 42, 824–827.

Anderson, T. W. (1963). A test for equality of means when covariance matrices
are unequal, Ann. Math. Stat., 34, 671–672.

Anderson, R. L. and Bancroft, T. A. (1952). Statistical Theory in Research.
McGraw-Hill, New York.

Anderson, T. W. and Gupta, S. D. (1963). Some inequalities on characteristic
roots of matrices, Biometrika, 50, 522–524.

Anderson, T. W., Olkin, I., and Underhill, L. G. (1987). Generation of random
orthogonal matrices, SIAM J. Sci. Stat. Comput., 8, 625–629.

Angellier, H., Choisnard, L., Molina-Boisseau, S., Ozil, P., and Dufresne,
A. (2004). Optimization of the preparation of aqueous suspensions of

515



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 516 2009-9-2

516 Bibliography

waxy maize starch nanocrystals using a response surface methodology,
Biomacromolecules, 5, 1545–1551.

Argac, D., Makambi, K. H., and Hartung, J. (2001). A note on testing the
nullity of the between group variance in the one-way random effects
model under variance heterogeneity, J. Appl. Stat., 28, 215–222.

Arnold, B. C. and Shavelle, R. M. (1998). Joint confidence sets for the mean
and variance of a normal distribution, Am. Stat., 52, 133–140.

Arnold, S. F. (1981). The Theory of Linear Models and Multivariate Analysis. Wiley,
New York.

Atkinson, A. C. (1985). Plots, Transformations, and Regression. Oxford Univer-
sity Press, Oxford.

Bargmann, R. E. and Nel, D. G. (1974). On the matrix differentiation of the
characteristic roots of matrices, S. Afr. Stat. J., 8, 135–144.

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests, Proc. Roy.
Soc. Ser. A, 160, 268–282.

Basilevsky, A. (1983). Applied Matrix Algebra in the Statistical Sciences. North-
Holland, New York.

Bellman, R. (1997). Introduction to Matrix Analysis, 2nd ed. SIAM, Philadelphia,
PA.

Bhat, B. R. (1962). On the distribution of certain quadratic forms in normal
variates, J. Roy. Stat. Soc. Ser. B, 24, 148–151.

Bickel, P. J. and Doksum, K. A. (1977). Mathematical Statistics. Holden-Day,
San Francisco, CA.

Birnbaum, Z. W. (1942). An inequality for Mill’s ratio, Ann. Math. Stat., 13,
245–246.

Bishop, T. A. and Dudewicz, E. J. (1978). Exact analysis of variance
with unequal variances: Test procedures and tables, Technometrics, 20,
419–430.

Boardman, T. J. (1974). Confidence intervals for variance components—A
comparative Monte Carlo study, Biometrics, 30, 251–262.

Bose, R. C. (1944). The fundamental problem of linear estimation, Proc. 31th
Indian Sci. Congress, Part III, 2–3.

Box, G. E. P. (1954). Some theorems on quadratic forms applied in the study
of analysis of variance problems, I. Effect of inequality of variances in the
one-way classification, Ann. Math. Stat., 25, 290–302.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 517 2009-9-2

Bibliography 517

Box, G. E. P. and Draper, N. R. (1959). A basis for the selection of a response
surface design, J. Am. Stat. Assoc., 54, 622–654.

Box, G. E. P. and Draper, N. R. (1963). The choice of a second order rotatable
design, Biometrika, 50, 335–352.

Box, G. E. P. and Wilson, K. B. (1951). On the experimental attainment of
optimum conditions (with discussion), J. Roy. Stat. Soc. Ser. B, 13, 1–45.

Broemeling, L. D. (1969). Confidence regions for variance ratios of random
models, J. Am. Stat. Assoc., 64, 660–664.

Brown, W. C. (1988). A Second Course in Linear Algebra. Wiley, New York.

Brown, M. B. and Forsythe, A. B. (1974a). The ANOVA and multiple compar-
isons for data with heterogeneous variances, Biometrics, 30, 719–724.

Brown, M. B. and Forsythe, A. B. (1974b). Robust tests for the equality of
variances, J. Am. Stat. Assoc., 69, 364–367.

Brown, M. B. and Forsythe, A. B. (1974c). The small sample behavior of some
statistics which test the equality of several means, Technometrics, 16,
129–132.

Brownlee, K. A. (1965). Statistical Theory and Methodology, 2nd ed. Wiley, New
York.

Burdick, R. K. and Graybill, F. A. (1984). Confidence intervals on linear combi-
nations of variance components in the unbalanced one-way classification,
Technometrics, 26, 131–136.

Burdick, R. K. and Graybill, F. A. (1992). Confidence Intervals on Variance
Components. Dekker, New York.

Burdick, R. K. and Larsen, G. A. (1997). Confidence intervals on measures of
variability in R & R studies, J. Qual. Technol., 29, 261–273.

Cain, M. (1994). The moment-generating function of the minimum of bivariate
normal random variables, Am. Stat., 48, 124–125.

Carlson, R. and Carlson, J. E. (2005). Canonical analysis of response surfaces: A
valuable tool for process development, Org. Process Res. Dev., 9, 321–330.

Carter, Jr., W. H., Chinchilli, V. M., Campbell, E. D., and Wampler, G. L.
(1984). Confidence interval about the response at the stationary point
of a response surface, with an application to preclinical cancer therapy,
Biometrics, 40, 1125–1130.

Casella, G. and Berger, R. L. (2002). Statistical Inference, 2nd ed. Duxbury,
Pacific Grove, CA.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 518 2009-9-2

518 Bibliography

Chauvenet, W. (1863). A Manual of Spherical and Practical Astronomy, 2: Theory
and Use of Astronomical Instruments. Lippincott, Philadelphia, PA.

Christensen, R. (1996). Analysis of Variance, Design and Regression. Chapman &
Hall/CRC, Boca Raton, FL.

Cochran, W. G. (1934). The distribution of quadratic forms in a normal system,
with applications to the analysis of covariance, Proc. Camb. Phil. Soc., 30,
178–191.

Cochran, W. G. (1937). Problems arising in the analysis of a series of similar
experiments, J. Roy. Stat. Soc., 4 (Suppl.), 102–118.

Cochran, W. G. (1951). Testing a linear relation among variances, Biometrics,
7, 17–32.

Conover, W. J., Johnson, M. E., and Johnson, M. M. (1981). A comparative
study of tests for homogeneity of variances, with applications to the outer
continental shelf bidding data, Technometrics, 23, 351–361.

Corbeil, R. R. and Searle, S. R. (1976a). Restricted maximum likelihood (REML)
estimation of variance components in the mixed model, Technometrics, 18,
31–38.

Corbeil, R. R. and Searle, S. R. (1976b). A comparison of variance component
estimators, Biometrics, 32, 779–791.

Craig, A. T. (1943). Note on the independence of certain quadratic forms, Ann.
Math. Stat., 14, 195–197.

Cramér, H. (1946). Mathematical Methods of Statistics. Princeton University
Press, Princeton, NJ.

Crump, S. L. (1946). The estimation of variance components in analysis of
variance, Biometrics Bull., 2, 7–11.

Crump, S. L. (1947). The estimation of components of variance in multiple
classification, PhD thesis, Iowa State University, Ames, IA.

Crump, S. L. (1951). The present status of variance components analysis,
Biometrics, 7, 1–16.

Cummings, W. B. and Gaylor, D. W. (1974). Variance component testing in
unbalanced nested designs, J. Am. Stat. Assoc., 69, 765–771.

Daniels, H. E. (1954). Saddlepoint approximations in statistics, Ann. Math.
Stat., 25, 631–650.

Das, K. (1979). Asymptotic optimality of restricted maximum likelihood esti-
mates for the mixed model, Calcutta Stat. Assoc. Bull., 28, 125–142.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 519 2009-9-2

Bibliography 519

Davenport, J. M. (1975). Two methods of estimating the degrees of freedom
of an approximate F, Biometrika, 62, 682–684.

Davenport, J. M. and Webster, J. T. (1972). Type-I error and power of a
test involving a Satterthwaite’s approximate F-statistic, Technometrics, 14,
555–569.

Davenport, J. M. and Webster, J. T. (1973). A comparison of some approximate
F-tests, Technometrics, 15, 779–789.

Davies, R. B. (1973). Numerical inversion of a chracteristic function, Bio-
metrika, 60, 415–417.

Davies, R. B. (1980). The distribution of a linear combination of χ2 random
variables, Appl. Stat., 29, 323–333.

Dey, A., Hande, S., and Tiku, M. L. (1994). Statistical proofs of some matrix
results, Linear Multilinear Algebra, 38, 109–116.

Dobson, A. J. (2008). An Introduction to Generalized Linear Models, 3rd ed.
Chapman & Hall/CRC, Boca Raton, FL.

Draper, N. R. and Guttman, I. (1966). Unequal group variances in the fixed-
effects one-way analysis of variance: A Bayesian sidelight, Biometrika, 53,
27–35.

Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, 3rd ed. Wiley,
New York.

Driscoll, M. F. and Gundberg, Jr., W. R. (1986). A history of the development
of Craig’s theorem, Am. Stat., 40, 65–70.

Driscoll, M. F. and Krasnicka, B. (1995). An accessible proof of Craig’s theorem
in the general case, Am. Stat., 49, 59–62.

Dufour, J. M. (1986). Bias of S2 in linear regressions with dependent errors,
Am. Stat., 40, 284–285.

Dwyer, P. S. (1967). Some applications of matrix derivatives in multivariate
analysis, J. Am. Stat. Assoc., 62, 607–625.

Eaton, M. L. (1970). Gauss–Markov estimation for multivariate linear models:
A coordinate-free approach, Ann. Math. Stat., 41, 528–538.

Edwards, A. W. F. (1974). The history of likelihood, Int. Stat. Rev., 42, 9–15.

Eisenhart, C. (1947). The assumptions underlying the analysis of variance,
Biometrics, 3, 1–21.

Evans, M., Hastings, N., and Peacock, B. (2000). Statistical Distributions, 3rd
ed. Wiley, New York.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 520 2009-9-2

520 Bibliography

Eves, H. (1969). An Introduction to the History of Mathematics, 3rd ed. Holt,
Rinehart, and Winston, New York.

Farebrother, R. W. (1997). A. C. Aitken and the consolidation of matrix theory,
Linear Algebra Appl., 43, 3–12.

Feller, W. (1957). An Introduction to Probability Theory and Its Application,
Vol. I, 2nd ed. Wiley, New York.

Fisher, R. A. (1915). Frequency distribution of the values of the correlation
coefficient in samples from an indefinitely large population, Biometrika,
10, 507–521.

Fisher, R. A. (1918). The correlation between relatives on the supposition of
Mendelian inheritance, Trans. Roy. Soc. Edinb., 52, 399–433.

Fisher, R. A. (1922). On the mathematical foundation of theoretical statistics,
Phil. Trans. Roy. Soc. A, 222, 308–358.

Fisher, R. A. (1925). Theory of statistical estimation, Proc. Camb. Phil. Soc., 22,
700–725.

Fisher, L. (1973). An alternative approach to Cochran’s theorem, Am. Stat.,
27, 109.

Foster, F. G. (1957). Upper percentage points of the generalized beta distribu-
tion II, Biometrika, 44, 441–453.

Foster, F. G. and Rees, D. H. (1957). Upper percentage points of the general-
ized beta distribution I, Biometrika, 44, 237–247.

Fuchs, C. and Sampson, A. R. (1987). Simultaneous confidence intervals for
the general linear model, Biometrics, 43, 457–469.

Fulks, W. (1978). Advanced Calculus, 3rd ed. Wiley, New York.

Gallo, J. and Khuri, A. I. (1990). Exact tests for the random and fixed effects
in an unbalanced mixed two-way cross-classification model, Biometrics,
46, 1087–1095.

Gantmacher, F. R. (1959). The Theory of Matrices, Vol. I. Chelsea, New York.

Gaylor, D. W. and Hopper, F. N. (1969). Estimating the degrees of freedom for
linear combinations of mean squares by Satterthwaite’s formula, Techno-
metrics, 11, 691–706.

Geary, R. C. (1936). The distribution of Student’s ratio for non-normal
samples, J. Roy. Stat. Soc. Suppl., 3, 178–184.

Geisser, S. (1956). A note on the normal distribution, Ann. Math. Stat., 27,
858–859.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 521 2009-9-2

Bibliography 521

Ghosh, M. (1996). Wishart distribution via induction, Am. Stat., 50,
243–246.

Ghurye, S. G. and Olkin, I. (1962). A characterization of the multivariate
normal distribution, Ann. Math. Stat., 33, 533–541.

Golub, G. H. and Van Loan, C. F. (1983). Matrix Computations. The Johns
Hopkins University Press, Baltimore, MD.

Good, I. J. (1963). On the independence of quadratic expressions, J. Roy. Stat.
Soc. Ser. B, 25, 377–382.

Good, I. J. (1969). Conditions for a quadratic form to have a chi-squared
distribution, Biometrika, 56, 215–216.

Gosslee, D. G. and Lucas, H. L. (1965). Analysis of variance of disproportion-
ate data when interaction is present, Biometrics, 21, 115–133.

Graham, A. (1981). Kronecker Products and Matrix Calculus: With Applications.
Wiley, New York.

Grattan–Guiness, I. (1994). A new type of question: On the pre-history of
linear and non-linear programming, 1770–1940. In: The History of Modern
Mathematics, Vol. III. Academic Press, Boston, MA, pp. 43–89.

Graybill, F. A. (1976). Theory and Application of the Linear Model. Duxbury, North
Scituate, MA.

Graybill, F. A. (1983). Matrices with Applications in Statistics, 2nd ed.
Wadsworth, Belmont, CA.

Guerin, L. and Stroup, W. W. (2000). A simulation study to evaluate PROC
MIXED analysis of repeated measures data. In: Proceedings of the 12th
Annual Conference on Applied Statistics in Agriculture. Kansas State Uni-
versity, Manhattan, KS, pp. 170–203.

Gurland, J. (1955). Distribution of definite and of indefinite quadratic forms,
Ann. Math. Stat., 26, 122–127.

Haberman, S. J. (1975). How much do Gauss–Markov and least squares esti-
mates differ? A coordinate-free approach, Ann. Stat., 3, 982–990.

Hartley, H. O. (1950). The maximum F-ratio as a short-cut test for heterogene-
ity of variance, Biometrika, 37, 308–312.

Hartley, H. O. and Rao, J. N. K. (1967). Maximum likelihood estimation for
the mixed analysis of variance model, Biometrika, 54, 93–108.

Harville, D. A. (1977). Maximum-likelihood approaches to variance compo-
nent estimation and to related problems, J. Amer. Stat. Assoc., 72, 320–338.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 522 2009-9-2

522 Bibliography

Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective. Springer,
New York.

Harville, D. A. and Fenech, A. P. (1985). Confidence intervals for a variance
ratio, or for heritability, in an unbalanced mixed linear model, Biometrics,
41, 137–152.

Heiberger, R. M., Velleman, P. F., and Ypelaar, M. A. (1983). Generating test
data with independently controllable features for multivariate general
linear forms, J. Am. Stat. Assoc., 78, 585–595.

Hemmerle, W. J. and Hartley, H. O. (1973). Computing maximum likelihood
estimates for the mixed A.O.V. model using the W-transformation, Tech-
nometrics, 15, 819–831.

Henderson, C. R. (1953). Estimation of variance and covariance components,
Biometrics, 9, 226–252.

Henderson, H. V. and Searle, S. R. (1981). The vec-permutation matrix, the
vec operator and Kronecker products: A review, Linear and Multilinear
Algebra, 9, 271–288.

Henderson, H. V., Pukelsheim, F., and Searle, S. R. (1983). On the history of
the Kronecker product, Linear and Multilinear Algebra, 14, 113–120.

Herr, D. G. (1980). On the history of the use of geometry in the general linear
model, Am. Stat., 34, 43–47.

Herr, D. G. (1986). On the history of ANOVA in unbalanced, factorial designs:
The first 30 years, Am. Stat., 40, 265–270.

Herstein, I. N. (1964). Topics in Algebra. Blaisdell, Waltham, MA.

Hocking, R. R. and Kutner, M. H. (1975). Some analytical and numerical
comparisons of estimators for the mixed A.O.V. model, Biometrics, 31,
19–28.

Hogg, R. V. and Craig, A. T. (1978). Introduction to Mathematical Statistics, 4th
ed. Macmillan, New York.

Hudson, J. D. and Krutchkoff, R. G. (1968). A Monte-Carlo investigation of
the size and power of tests employing Satterthwaite’s synthetic mean
squares, Biometrika, 55, 431–433.

Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal
variables, Biometrika, 48, 419–426.

Ito, K. (1969). On the effect of heteroscedasticity and nonnormality upon some
multivariate test procedures. In: Multivariate Analysis II, P. R. Krishnaiah
(ed.). Academic Press, New York, pp. 87–120.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 523 2009-9-2

Bibliography 523

Jain, M. C. (2001). Vector Spaces and Matrices in Physics. CRC, Boca Raton, FL.

James, G. S. (1951). The comparison of several groups of observations when
the ratios of the population variances are unknown, Biometrika, 38,
324–329.

James, G. S. (1954). Tests of linear hypotheses in univariate and multivari-
ate analysis when the ratios of the population variances are unknown,
Biometrika, 41, 19–43.

Jennrich, R. I. and Sampson, P. F. (1976). Newton–Raphson and related algo-
rithms for maximum likelihood variance component estimation, Techno-
metrics, 18, 11–17.

Jeske, D. R. (1994). Illustrating the Gauss–Markov theorem, Am. Stat., 48, 237.

Jeyaratnam, S. and Othman, A. R. (1985). Test of hypothesis in one-way ran-
dom effects model with unequal error variances, J. Stat. Comput. Simul.,
21, 51–57.

Johnson, N. L. and Kotz, S. (1970). Continuous Univariate Distributions-2. Wiley,
New York.

Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics: Continuous
Multivariate Distributions. Wiley, New York.

Johnson, N. L. and Leone, F. C. (1964). Statistics and Experimental Design,
Vol. II. Wiley, New York.

Kackar, R. N. and Harville, D. A. (1981). Unbiasedness of two-stage estimation
and prediction procedures for mixed linear models, Commun. Stat. Theor.
Meth., 10, 1249–1261.

Kackar, R. N. and Harville, D. A. (1984). Approximations for standard errors
of estimators of fixed and random effects in mixed linear models, J. Am.
Stat. Assoc., 79, 853–862.

Kagan, A. M., Linnik, Y. V., and Rao, C. R. (1973). Characterization Problems in
Mathematical Statistics. Wiley, New York.

Kaiser, L. D. and Bowden, D. C. (1983). Simultaneous confidence intervals
for all linear contrasts of means with heterogeneous variances, Commun.
Stat. Theor. Meth., 12, 73–88.

Kawada, Y. (1950). Independence of quadratic forms of normally correlated
variables, Ann. Math. Stat., 21, 614–615.

Kempthorne, O. (1952). The Design and Analysis of Experiments. Wiley, New
York.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 524 2009-9-2

524 Bibliography

Kendall, M. G. and Stuart, A. (1963). The Advanced Theory of Statistics, Vol. 1,
2nd ed. Hafner, New York.

Kenward, M. G. and Roger, J. H. (1997). Small sample inference for fixed
effects from restricted maximum likelihood, Biometrics, 53, 983–997.

Khuri, A. I. (1981). Simultaneous confidence intervals for functions of variance
components in random models, J. Am. Stat. Assoc., 76, 878–885.

Khuri, A. I. (1982). Direct products: A powerful tool for the analysis of bal-
anced data, Commun. Stat. Theor. Meth., 11, 2903–2920.

Khuri, A. I. (1985). A test for lack of fit of a linear multiresponse model,
Technometrics, 27, 213–218.

Khuri, A. I. (1986). Exact tests for the comparison of correlated response
models with an unknown dispersion matrix, Technometrics, 28,
347–357.

Khuri, A. I. (1987). An exact test for the nesting effect’s variance compo-
nent in an unbalanced random two-fold nested model, Stat. Prob. Lett., 5,
305–311.

Khuri, A. I. (1990). Exact tests for random models with unequal cell frequen-
cies in the last stage, J. Stat. Plan. Infer., 24, 177–193.

Khuri, A. I. (1992a). Tests concerning a nested mixed model with hetero-
scedastic random effects, J. Stat. Plan. Infer., 30, 33–44.

Khuri, A. I. (1992b). Response surface models with random block effects,
Technometrics, 34, 26–37.

Khuri, A. I. (1993). A note on Scheffé’s confidence intervals, Am. Stat., 47,
176–178.

Khuri, A. I. (1994). The probability of a negative linear combination of inde-
pendent mean squares, Biometrical J., 36, 899–910.

Khuri, A. I. (1995a). A test to detect inadequacy of Satterthwaite’s approxi-
mation in balanced mixed models, Statistics, 27, 45–54.

Khuri, A. I. (1995b). A measure to evaluate the closeness of Satterthwaite’s
approximation, Biometrical J., 37, 547–563.

Khuri, A. I. (1996a). Response surface models with mixed effects, J. Qual.
Technol., 28, 177–186.

Khuri, A. I. (1996b). Multiresponse surface methodology. In: Handbook of
Statistics, Vol. 13, S. Ghosh and C. R. Rao (eds.). Elsevier Science B. V.,
Amsterdam, pp. 377–406.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 525 2009-9-2

Bibliography 525

Khuri, A. I. (1998). On unweighted sums of squares in unbalanced analysis
of variance, J. Stat. Plan. Infer., 74, 135–147.

Khuri, A. I. (1999). A necessary condition for a quadratic form to have a chi-
squared distribution: an accessible proof, Int. J. Math. Educ. Sci. Technol.,
30, 335–339.

Khuri, A. I. (2002). Graphical evaluation of the adequacy of the method of
unweighted means, J. Appl. Stat., 29, 1107–1119.

Khuri, A. I. (2003). Advanced Calculus with Applications in Statistics, 2nd ed.
Wiley, New York.

Khuri, A. I. (2006). Mixed response surface models with heterogeneous within-
block error variances, Technometrics, 48, 206–218.

Khuri, A. I. and Cornell, J. A. (1996). Response Surfaces, 2nd ed. Dekker, New
York.

Khuri, A. I. and Good, I. J. (1989). The parameterization of orthogonal matri-
ces: A review mainly for statisticians, S. Afr. Stat. J., 23, 231–250.

Khuri, A. I. and Littell, R. C. (1987). Exact tests for the main effects variance
components in an unbalanced random two-way model, Biometrics, 43,
545–560.

Khuri, A. I. and Sahai, H. (1985). Variance components analysis: A selective
literature survey, Int. Stat. Rev., 53, 279–300.

Khuri, A. I., Mathew, T., and Sinha, B. K. (1998). Statistical Tests for Mixed
Linear Models. Wiley, New York.

Kimball, A. W. (1951). On dependent tests of significance in the analysis of
variance, Ann. Math. Stat., 22, 600–602.

Koerts, J. and Abrahamse, A. P. J. (1969). On the Theory and Application of the
General Linear Model. Rotterdam University Press, Rotterdam.

Kowalski, C. J. (1973). Non-normal bivariate distributions with normal
marginals, Am. Stat., 27, 103–105.

Kramer, C. Y. (1956). Extension of multiple range tests to group means with
unequal numbers of replications, Biometrics, 12, 307–310.

Kruskal, W. H. (1961). The coordinate-free approach to Gauss–Markov
estimation and its application to missing and extra observations. In:
4th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1.
Statistical Laboratory of the University of California, Berkeley, CA,
pp. 435–451.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 526 2009-9-2

526 Bibliography

Kruskal, W. H. (1968). When are Gauss–Markov and least-squares estimators
identical? A coordinate-free approach, Ann. Math. Stat., 39, 70–75.

Kruskal, W. H. (1975). The geometry of generalized inverses, J. Roy. Stat. Soc.
Ser. B, 37, 272–283.

Krutchkoff, R. G. (1988). One-way fixed effects analysis of variance when the
error variances may be unequal, J. Stat. Comput. Simul., 30, 259–271.

Kwon, J. H., Bélanger, J. M. R., and Paré, J. R. J. (2003). Optimization of
microwave-assistedextraction(MAP)forginsengcomponentsbyresponse
surface methodology, J. Agric. Food Chem., 51, 1807–1810.

Laha, R. G. (1956). On the stochastic independence of two second-degree
polynomial statistics in normally distributed variates, Ann. Math. Stat.,
27, 790–796.

Lancaster, P. (1969). Theory of Matrices. Academic Press, New York.

Lang, S. (1987). Linear Algebra, 3rd ed. Springer-Verlag, New York.

Lee, J. and Khuri, A. I. (2002). Comparison of confidence intervals on the
among-group variance component for the unbalanced one-way random
model, Commun. Stat. Simul., 31, 35–47.

Lee, J., Khuri, A. I., Kim, K. W., and Lee, S. (2007). On the size of the F-test for
the one-way random model with heterogeneous error variances, J. Stat.
Comput. Simul., 77, 443–455.

Levene, H. (1960). Robust tests for equality of variances. In: Contributions to
Probability and Statistics, I. Olkin (ed.). Stanford University Press, Palo
Alto, CA, pp. 278–292.

Lieberman, O. (1994). Saddlepoint approximation for the distribution of a
ratio of quadratic forms in normal variables, J. Am. Stat. Assoc., 89,
924–928.

Lindgren, B. W. (1976). Statistical Theory, 3rd ed. Macmillan, New York.

Lindsey, J. K. (1997). Applying Generalized Linear Models. Springer, New York.

Littell, R. C. (2002). Analysis of unbalanced mixed model data: A case study
comparison of ANOVA versus REML/GLS, J. Agric. Biol. Environ. Statist.,
7, 472–490.

Littell, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. (1996). SAS
System for Mixed Models. SAS Institute, Inc., Cary, NC.

Lowerre, J. M. (1983). An integral of the bivariate normal and an application,
Am. Stat., 37, 235–236.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 527 2009-9-2

Bibliography 527

Lugannani, R. and Rice, S. O. (1984). Distribution of the ratio of quadratic
forms in normal variables—Numerical methods, SIAM J. Sci. Stat. Com-
put., 5, 476–488.

Lukacs, E. (1942). A characterization of the normal distribution, Ann. Math.
Stat., 13, 91–93.

Lütkepohl, H. (1996). Handbook of Matrices. Wiley, New York.

Magnus, J. R. and Neudecker, H. (1988). Matrix Differential Calculus with Appli-
cations in Statistics and Econometrics. Wiley, New York.

Marcus, M. and Minc, H. (1964). A Survey of Matrix Theory and Matrix Inequal-
ities. Dover, New York.

Marcus, M. and Minc, H. (1965). Introduction to Linear Algebra. Dover, New
York.

Marsaglia, G. and Styan, G. P. H. (1974). Equalities and inequalities for ranks
of matrices, Linear and Multilinear Algebra, 2, 269–292.

Matérn, B. (1949). Independence of non-negative quadratic forms in normally
correlated variables, Ann. Math. Stat., 20, 119–120.

May, W. G. (1970). Linear Algebra. Scott, Foresman and Company, Glenview,
IL.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed.
Chapman & Hall, London, U.K.

McCulloch, C. E. and Searle, S. R. (1995). On an identity derived from unbi-
asedness in linear models, Am. Stat., 49, 39–42.

McCulloch, C. E. and Searle, S. R. (2001). Generalized, Linear, and Mixed Models.
Wiley, New York.

Melnick, E. L. and Tenenbein, A. (1982). Misspecifications of the normal
distribution, Am. Stat., 36, 372–373.

Miller, J. J. (1977). Asymptotic properties of maximum likelihood estimates
in the mixed model of the analysis of variance, Ann. Stat., 5, 746–762.

Miller, J. J. (1979). Maximum likelihood estimation of variance components—
A Monte Carlo study, J. Stat. Comput. Simul, 8, 175–190.

Milliken, G. A. and Albohali, M. (1984). On necessary and sufficient conditions
for ordinary least squares estimators to be best linear unbiased estimators,
Am. Stat., 38, 298–299.

Milliken, G. A. and Johnson, D. E. (1984). Analysis of Messy Data. Lifetime
Learning Publications, Belmont, CA.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 528 2009-9-2

528 Bibliography

Montgomery, D. C. (2005). Design and Analysis of Experiments, 6th ed. Wiley,
New York.

Mood, A. M., Grayhill, F. A., and Boes, D. C. (1973). Introduction to the Theory
of Statistics, 3rd ed. McGraw-Hill, New York.

Moore, E. H. (1920). On the reciprocal of the general algebraic matrix, Bull.,
Am. Math. Soc., 26, 394–395.

Morrison, D. F. (1976). Multivariate Statistical Methods, 2nd ed. McGraw-Hill,
New York.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New
York.

Myers, R. H. and Howe, R. B. (1971). On alternative approximate F tests for
hypotheses involving variance components, Biometrika, 58, 393–396.

Myers, R. H., Khuri, A. I., and Carter, W. H. (1989). Response surface method-
ology: 1966–1988, Technometrics, 31, 137–157.

Myers, R. H., Montgomery, D. C., and Vining, G. G. (2002). Generalized Linear
Models. Wiley, New York.

Nagarsenker, P. B. (1984). On Bartlett’s test for homogeneity of variances,
Biometrika, 71, 405–407.

Nel, D. G. (1980). On matrix differentiation in statistics, S. Afr. Stat. J., 14,
137–193.

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models,
J. Roy. Stat. Soc. Ser. A, 135, 370–384.

Neudecker, H. (1969). Some theorems on matrix differentiation with special
reference to Kronecker products, J. Am. Stat. Assoc., 64, 953–963.

Newcomb, R. W. (1960). On the simultaneous diagonalization of two semidef-
inite matrices, Quart. Appl. Math., 19, 144–146.

Neyman, J. (1934). On the two different aspects of the representative method:
The method of stratified sampling and the method of purposive selection,
J. Roy. Stat. Soc., 97, 558–625.

Nolan, D. and Speed, T. (2000). Stat Labs. Mathematical Statistics through Appli-
cations. Springer, Berlin.

Norden, R. H. (1972). A survey of maximum likelihood estimation, Int. Stat.
Rev., 40, 329–354.

O’Brien, R. G. (1978). Robust techniques for testing heterogeneity of variance
effects in factorial designs, Psychometrika, 43, 327–344.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 529 2009-9-2

Bibliography 529

O’Brien, R. G. (1979). A general ANOVA method for robust tests of additive
models for variances, J. Am. Stat. Assoc., 74, 877–880.

Ogawa, J. (1950). On the independence of quadratic forms in a non-central
normal system, Osaka Math. J., 2, 151–159.

Olkin, I. (1990). Interface between statistics and linear algebra. In: Matrix
Theory and Applications, Vol. 40, C. R. Johnson (ed.). Am. Math. Soc., Prov-
idence, RI, pp. 233–256.

Ott, R. L. and Longnecker, M. T. (2004). A First Course in Statistical Methods.
Brooks/Cole, Belmont, CA.

Patterson, H. D. and Thompson, R. (1971). Recovery of inter-block informa-
tion when block sizes are unequal, Biometrika, 58, 545–554.

Paul, S. and Khuri, A. I. (2000). Modified ridge analyses under nonstandard
conditions, Commun. Stat. Theor. Meth., 29, 2181–2200.

Penrose, R. A. (1955). A generalized inverse for matrices, Proc. Camb. Phil.
Soc., 51, 406–413.

Piepho, H. P. and Emrich, K. (2005). Simultaneous confidence intervals for
two estimable functions and their ratio under a linear model, Am. Stat.,
59, 292–300.

Pierce, D. A. and Dykstra, R. L. (1969). Independence and the normal distri-
bution, Am. Stat., 23, 39.

Plackett, R. L. (1972). Studies in the history of probability and statistics. XXIX
The discovery of the method of least squares, Biometrika, 59, 239–251.

Price, G. B. (1947). Some identities in the theory of determinants, Am. Math.
Month., 54, 75–90.

Rankin, N. O. (1974). The harmonic mean method for one-way and two-way
analyses of variance, Biometrika, 61, 117–122.

Rao, C. R. (1952). Advanced Statistical Methods in Biometric Research. Wiley,
New York.

Rao, C. R. (1962). A note on a generalized inverse of a matrix with applica-
tions to problems in mathematical statistics, J. Roy. Stat. Soc. Ser. B, 24,
152–158.

Rao, C. R. (1966). Generalized inverse for matrices and its applications
in mathematical statistics. In: Research Papers in Statistics: Festschrift for
J. Neyman, F. N. David (ed.). Wiley, London, pp. 263–279.

Rao, C. R. (1973a). Linear Statistical Inference and its Applications, 2nd ed. Wiley
New York.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 530 2009-9-2

530 Bibliography

Rao, C. R. (1973b). Unified theory of least squares, Commun. Stat. Theor. Meth.,
1, 1–8.

Rao, P. S. R. S., Kaplan, J., and Cochran, W. G. (1981). Estimators for the
one-way random effects model with unequal error variances, J. Am. Stat.
Assoc., 76, 89–97.

Reid, J. G. and Driscoll, M. F. (1988). An accessible proof of Craig’s theorem
in the noncentral case, Am. Stat., 42, 139–142.

Richert, S. H., Morr, C. V., and Cooney, C. M. (1974). Effect of heat and other
factors upon foaming properties of whey protein concentrates, J. Food
Sci., 39, 42–48.

Robinson, D. L. (1987). Estimation and use of variance components, The Statis-
tician, 36, 3–14.

Rogers, G. S. (1980). Matrix Derivatives. Dekker, New York.

Roy, S. N., Gnanadesikan, R., and Srivastava, J. N. (1971). Analysis and Design
of Certain Quantitative Multiresponse Experiments. Pergamon Press, Oxford.

Rudan, J. W. and Searle, S. R. (1971). Large sample variances of maxi-
mum likelihood estimators of variance components in the three-way
nested classification, random model, with unbalanced data, Biometrics, 27,
1087–1091.

Sahai, H. and Anderson, R. L. (1973). Confidence regions for variance ratios
of random models for balanced data, J. Am. Stat. Assoc., 68, 951–952.

SAS Institute, Inc. (1997). SAS/STAT Software: Changes and Enhancements
through Release 6.12. Author, Cary, NC.

SAS Institute, Inc. (1999). SAS/IML User’s Guide, Version 8. Author, Cary, NC.

SAS Institute, Inc. (2000). Online Doc, Version 8. Author, Cary, NC.

Satterthwaite, F. E. (1941). Synthesis of variance, Psychometrika, 6, 309–316.

Satterthwaite, F. E. (1946). An approximate distribution of estimates of vari-
ance components, Biometrics Bull., 2, 110–114.

Schey, H. M. (1985). A geometric description of orthogonal contrasts in one-
way analysis of variance, Am. Stat., 39, 104–106.

Seal, H. L. (1967). Studies in the history of probability and statistics. XV The
historical development of the Gauss linear model, Biometrika, 54, 1–24.

Searle, S. R. (1968). Another look at Henderson’s methods of estimating
variance components, Biometrics, 24, 749–778.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 531 2009-9-2

Bibliography 531

Searle, S. R. (1970). Large sample variances of maximum likelihood esti-
mators of variance components using unbalanced data, Biometrics, 26,
505–524.

Searle, S. R. (1971). Linear Models. Wiley, New York.

Searle, S. R. (1982). Matrix Algebra Useful for Statistics. Wiley, New York.

Searle, S. R. (1987). Linear Models for Unbalanced Data. Wiley, New York.

Searle, S. R. (1994). Analysis of variance computing package output for unbal-
anced data from fixed-effects models with nested factors, Am. Stat., 48,
148–153.

Searle, S. R. (1995). An overview of variance component estimation, Metrika,
42, 215–230.

Searle, S. R. (1999). The infusion of matrices into statistics. Technical Report
BU-1444-M, Department of Biometrics and Statistical Science, Cornell
University, Ithaca, NY.

Searle, S. R., Speed, F. M., and Milliken, G. A. (1980). Population marginal
means in the linear model: An alternative to least squares means, Am.
Stat., 34, 216–221.

Searle, S. R., Speed, F. M., and Henderson, H. V. (1981). Some computational
and model equivalences in analyses of variance of unequal-subclass-
numbers data, Am. Stat., 35, 16–33.

Searle, S. R., Casella, G., and McCulloch, C. E. (1992). Variance Components.
Wiley, New York.

Seber, G. A. F. (1984). Multivariate Observations. Wiley, New York.

Seely, J. (1977). Estimability and linear hypotheses, Am. Stat., 31, 121–123.

Seely, J. F. and El-Bassiouni, Y. (1983). Applying Wald’s variance component
test, Ann. Stat., 11, 197–201.

Self, S. G. and Liang, K. Y. (1987). Asymptotic properties of maximum likeli-
hood estimators and likelihood ratio tests under nonstandard conditions,
J. Am. Stat. Assoc., 82, 605–610.

Shanbhag, D. N. (1966). On the independence of quadratic forms, J. Roy. Stat.
Soc. Ser. B, 28, 582–583.

Šidák, Z. (1967). Rectangular confidence regions for the means of multivariate
normal distributions, J. Am. Stat. Assoc., 62, 626–633.

Simonnard, M. (1966). Linear Programming. Prentice-Hall, Englewood Cliffs,
NJ.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 532 2009-9-2

532 Bibliography

Smith, D. E. (1958). History of Mathematics, Vol. 1. Dover, New York.

Smith, P. J. and Choi, S. C. (1982). Simple tests to compare two dependent
regression lines, Technometrics, 24, 123–126.

Smith, T. and Peddada, S. D. (1998). Analysis of fixed effects linear models
under heteroscedastic errors, Stat. Prob. Lett., 37, 399–408.

Snedecor, G. W. (1934). Analysis of Variance and Covariance. Collegiate Press,
Ames, IA.

Snedecor, G. W. and Cochran, W. G. (1980). Statistical Methods, 7th ed. Iowa
State University Press, Ames, IA.

Speed, F. M. and Hocking, R. R. (1976). The use of the R()-notation with
unbalanced data, Am. Stat., 30, 30–33.

Speed, F. M. and Monlezun, C. J. (1979). Exact F tests for the method of
unweighted means in a 2k experiment, Am. Stat., 33, 15–18.

Speed, F. M., Hocking, R. R., and Hackney, O. P. (1978). Method of anal-
ysis of linear models with unbalanced data, J. Am. Stat. Assoc., 73,
105–112.

Spjøtvoll, E. (1968). Confidence intervals and tests for variance ratios in
unbalanced variance components models, Rev. Int. Stat. Inst., 36, 37–42.

Spjøtvoll, E. (1972). Joint confidence intervals for all linear functions of means
in the one-way layout with unknown group variances, Biometrika, 59,
683–685.

Stablein, D. M., Carter, Jr., W. H., and Wampler, G. L. (1983). Confidence
regions for constrained optima in response-surface experiments, Biomet-
rics, 39, 759–763.

Stigler, S. M. (1981). Gauss and the invention of least squares, Ann. Stat., 9,
465–474.

Stigler, S. M. (1984). Kruskal’s proof of the joint distribution of X̄ and s2, Am.
Stat., 38, 134–135.

Stigler, S. M. (1986). The History of Statistics. The Balknap Press of Harvard
University Press, Cambridge, MA.

Stram, D. O. and Lee, J. W. (1994). Variance components testing in the longi-
tudinal mixed effects model, Biometrics, 50, 1171–1177.

Styan, G. P. H. (1970). Notes on the distribution of quadratic forms in singular
normal variables, Biometrika, 57, 567–572.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 533 2009-9-2

Bibliography 533

Swallow, W. H. and Monahan, J. F. (1984). Monte-Carlo comparison of
ANOVA, MIVQUE, REML, and ML estimators of variance components,
Technometrics, 26, 47–57.

Tamhane, A. C. (1979). A comparison of procedures for multiple comparisons
of means with unequal variances, J. Am. Stat. Assoc., 74, 471–480.

Thibaudeau, Y. and Styan, G. P. H. (1985). Bounds for Chakrabarti’s mea-
sure of imbalance in experimental design. In: Proceedings of the First
International Tampere Seminar on Linear Statistical Models and Their Applica-
tions, T. Pukkila and S. Puntanen (eds.). University of Tampere, Tampere,
Finland, pp. 323–347.

Thomas, J. D. and Hultquist, R. A. (1978). Interval estimation for the unbal-
anced case of the one-way random effects model, Ann. Stat., 6, 582–587.

Thomsen, I. (1975). Testing hypotheses in unbalanced variance components
models for two-way layouts, Ann. Stat., 3, 257–265.

Tietjen, G. L. (1974). Exact and approximate tests for unbalanced random
effects designs, Biometrics, 30, 573–581.

Tong, Y. L. (1990). The Multivariate Normal Distribution. Springer-Verlag,
New York.

Trenkler, G. (2004). An extension of Lagrange’s identity to matrices, Int. J.
Math. Educ. Sci. Technol., 35, 245–315.

Turnbull, H. W. and Aitken, A. C. (1932). An Introduction to the Theory of
Canonical Matrices. Blackie & Sons, London, U.K.

Vangel, M. G. and Rukhin, A. L. (1999). Maximum likelihood analysis for het-
eroscedastic one-way random effects ANOVA in interlaboratory studies,
Biometrics, 55, 129–136.

Verbeke, G. (1997). Linear mixed models for longitudinal data. In: Linear
Mixed Models in Practice, G. Verbeke and G. Molenberghs (eds.). Springer,
New York, pp. 63–153.

Verbeke, G. and Lesaffre, E. (1996). A linear mixed-effects model with het-
erogeneity in the random-effects population, J. Am. Stat. Assoc., 91,
217–221.

Verbeke, G. and Molenberghs, G. (eds.) (1997). Linear Mixed Models in Practice.
Springer, New York.

Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal
Data. Springer, New York.



André I. Khuri/Linear Model Methodology C4819_C014 Finals Page 534 2009-9-2

534 Bibliography

Verbeke, G. and Molenberghs, G. (2003). The use of score tests for inference
on variance components, Biometrics, 59, 254–262.

Vining, G. G. and Khuri, A. I. (1991). A modified ridge analysis for exper-
iments with attribute data, Technical Report, Department of Statistics,
University of Florida, Gainesville, FL.

Wald, A. (1940). A note on the analysis of variance with unequal cell frequen-
cies, Ann. Math. Stat., 11, 96–100.

Wald, A. (1941). On the analysis of variance in case of multiple classifications
with unequal cell frequencies, Ann. Math. Stat., 12, 346–350.

Walpole, R. E. and Myers, R. H. (1985). Probability and Statistics for Engineers
and Scientists, 3rd ed. Macmillan, New York.

Wasan, M. T. (1970). Parameter Estimation. McGraw-Hill, New York.

Welch, B. L. (1947). The generalization of Student’s problem when several
different population variances are involved, Biometrika, 34, 28–35.

Wichura, M. J. (2006). The Coordinate-Free Approach to Linear Models. Cam-
bridge University Press, New York.

Wicksell, S. D. (1930). Remarks on regression, Ann. Math. Stat., 1, 3–13.

Williams, J. S. (1962). A confidence interval for variance components,
Biometrika, 49, 278–281.

Wimmer, G. and Witkovsky, V. (2003). Between group variance component
interval estimation for the unbalanced heteroscedastic one-way random
effects model, J. Stat. Comput. Simul., 73, 333–346.

Wolkowicz, H. (1994). Solution to Problem 93–17, SIAM Rev., 36, 658.

Wolkowicz, H. and Styan, G. P. H. (1980). Bounds for eigenvalues using
traces, Linear Algebra Appl., 29, 471–506.

Yates, F. (1934). The analysis of multiple classifications with unequal numbers
in the different classes, J. Am. Stat. Assoc., 29, 51–66.

Zellner, A. (1962). An efficient method of estimating seemingly unrelated
regressions and tests for aggregation bias, J. Am. Stat. Assoc., 57, 348–368.

Zemanian, A. H. (1987). Generalized Integral Transformations. Dover, New York.

Zyskind, G. (1962). On structure, relation, Σ, and expectation of mean squares,
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A
Admissible mean

and corresponding components, 229
definition of, 227
population structures and, 228

Algorithms
for computation of estimates, 4
for computing generalized

inverses, 34
Alternative hypotheses, 391
Analysis of variance (ANOVA) model,

2, 6–7, 39, 89, 123, 131, 225, 333
for balanced and unbalanced data,

7–8
estimability property, 4–5
estimation of variance components,

254–255
estimator, 433
for fixed-effects model, 115
Henderson’s methods, 350–357
identification scheme in, 228
for one-way model, 117
for regression model, 132
sums of squares, 383
table, 277, 285

Approximate tests, 441
ASR, see Average of the squared

residuals (ASR)
Average of the squared residuals

(ASR), 433

B
Balanced linear model, 225

general, 229–231
properties of, 232–236

Balanced mixed models, 237–238
distribution of sums of squares

associated with, 238–240
estimation of fixed effects, 240–247

Bartlett’s test, 283–284

Behrens–Fisher problem, 274, 291
Best linear unbiased estimator (BLUE),

4, 5, 134, 136, 160, 186, 190, 245,
306, 321

generalized least squares estimator,
447

least-squares estimator, 456
variance–covariance matrix, 447

Binary distribution, 476–477
Binomial distributions, 489, 490
Binomial random variable, 477
Block-diagonal matrix, 27
BLUE, see Best linear unbiased estimator

(BLUE)
Bonferroni’s inequality, 199, 435
Bonferroni’s intervals, 199–200
Box–Behnken design, 486
Brown–Forsythe intervals, 202–203, 208

C
Canchy distribution, 85
Cauchy–Schwarz inequality, 44, 56, 149,

288
Cayley–Hamilton theorem, 53
Cayley’s representation, 39
Central chi-squared distribution, 70
Central composite design, 464–465
Central t-distribution, 74
Central Wishart distribution, 75, 457
Characteristic polynomial, 35
Chi-squared approximations, 341
Chi-squared distribution, 8, 70, 96, 272,

279–281, 338, 375, 376, 440
Chi-squared random variable, 164
Chi-squared statistics, 278
Chi-squared variates, 317, 384, 407
Cholesky decomposition theorem, 42
CLASS statement, 333
Cochran’s theorem, 111
Coded levels, of control variables, 465

535
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Coefficient of determination, 176
Cofactor, 29
Column vector, 25
Component, definition of, 228
Computer simulation, 278
Concurrence, hypothesis of, 163, 165
Conditional distribution, 67–68
Confidence interval

on continuous functions of variance
components, 257–259

likelihood ratio-based confidence
intervals, 500–504

on linear functions of variance
components, 259–260

for ratio, 157–158
on ratios of variance components,

263–265
on true optimum, 154–157
Wald’s confidence intervals, 499–500

Confidence region, for location of
optimum, 151–154

Continuous random variable, 59
Correlation matrix, 62
Covariance matrix, of two random

vectors, 62
Craig’s theorem

development of, 103
quadratic forms and, 8–9

Cramér–Rao lower bound, 361
Crossed factor, definition of, 226
Crossed subscripts, 227
Cumulant generating function, 64,

91, 105
Cumulant of bivariate distribution, 65
Cumulative distribution function, 59, 418

D
Darmois–Skitovic theorem, 79
Davies’ algorithm, 118, 119, 126, 287,

411, 429
Decomposition theorems

Cholesky decomposition, 42
singular-value decomposition

theorem, 41
spectral decomposition theorem,

40–41
Degrees of freedom, 72, 74, 76, 100, 130
Density function, 59
Design matrix, 445

Design settings, response values, 451
Determinants, 28–31
Deviance residuals, 491
Diagonal matrix, 25
Discrete random variable, 473
Dominance ratio, 213

E
EGLSE, see Estimated generalized

least-squares estimate
(EGLSE)

Eigenvalues, 34–36, 62
Eigenvectors, 34–36
Empty cells, 301
Error contrast, 362
Error rate, 321
Error sum of squares, 130
Estimability, property of, 4–5
Estimable functions, forms of, 328
Estimable linear functions, 184–185, 404

determination of influential set of,
196–198

estimation of, 369–373
properties of, 185–187
results concerning contrasts and,

209–216
simultaneous confidence intervals on,

192
based on Bonferroni inequality,

214
based on Scheffé’s method,

213–214
Bonferroni’s intervals, 199–200
conservative simultaneous

confidence intervals, 214–216
Šidák’s intervals, 200–201

testable hypotheses, 187–189
Estimated generalized least-squares

estimate (EGLSE), 369, 416, 448
t-statistics, 452

Euclidean norms, 45, 382
of response data vectors, 466

Euclidean space, 61, 135, 257, 289, 374
Exact tests, 385–415
Exponential family, 474

canonical link, 475
canonical parameter, 474
dispersion parameter, 474
link function, 474
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F
Factorization theorem, 142, 144
F-distribution, 74, 147, 148, 203, 271, 318,

391, 401, 404
Fisher’s information matrix, 484
Fixed-effects model (Model I), 6, 237, 397
F-ratios, 271, 309
F-statistics, 6
F-test

null hypothesis, 194
statistic for testing H0 : Aβ = 0, 195
statistics, 275

Function of matrices, 46–48

G
Gamma-distributed response, 504

canonical link, 505
deviance for, 506
parameters, 504
reciprocal link, 505
variance–covariance matrix,

506–509
Gamma function, 70
Gauss–Markov theorem, 4, 5, 10,

134–137, 146, 159–162, 186
General balanced linear model,

229–231
Generalized inverse of a matrix, 34
Generalized least-squares estimator

(GLSE), 137, 369, 416, 447
Generalized linear models (GLMs),

473–474
estimation of parameters, 479–483

asymptotic distribution, 484–485
mean response, estimation of,

483–484
SAS, computation of, 485–487

exponential family, 474–478
goodness of fit

deviance, 487–490
Pearson’s chi-square statistic,

490–491
residuals, 491–497

likelihood function, 478–479
GENMOD statement, 485, 504
GLMs, see Generalized linear models

(GLMs)
GLSE, see Generalized least-squares

estimator (GLSE)

H
Hadamard’s inequality, 44
Hat matrix, 492
Henderson’s methods, 351, 354, 371
Hessian matrix, 129, 141, 481, 482
Heterogeneous error variances

random one-way model, analysis
of, 428

Heteroscedastic error variances
random one-way model, 428–430

approximate test, 430–433
error variances, detecting

heterogeneity, 435–437
Heteroscedastic linear models, 427
Heteroscedastic random effects

mixed two-fold nested model,
437–438

fixed effects, 438–441
random effects, 441–443

Heteroscedastic variances, 454
Hierarchical classification, 226
Hotelling–Lawley’s trace, 457
Hotelling’s T2-distribution, 76
Hypothesis of concurrence, 163, 165,

457–458
Hypothesis of parallelism, 165, 458–459
Hypothesis testing

likelihood ratio inference, 498–499
Wald inference, 497–498

I
Idempotent matrices, 36
Identity matrix, 25
Interaction contrast, 320
Interaction effects, 314, 450

testing, 318
Inverse of matrix, 33–34

J
Jacobian matrix, 63, 65

K
Kantorovich inequality, 56

L
Lack of fit (LOF), 459

multiresponse experiment, 459
responses contributing, 462–467
single-response variable, 460
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Lagrange identity, 56
Lagrange multipliers, 138, 151
Laplace transformation, 142
Last-stage uniformity, 437
Leading principal minor, 29
Leading principal submatrix, 27
Least-squares method, 128–130

of mean response, 130–132
under linear restrictions on β, 137–139
for unknown parameters in linear

models, 3
invention of, 3–4

Least-squares equations, 4
Least-squares estimators, 152, 455

of mean response vector, 183
Least-squares means (LSMEANS), 306

estimates of, 313
pairwise comparisons, 312, 313
SAS, 313

Lebesgue measure, 142
Lehmann–Scheffé Theorem, 146
Less-than-full-rank model, 179

distributional properties of, 180–181
for parameter estimation, 179–180
and reparameterized model, 181–184

Levene’s test, 284–285
statistic, 435
variances, homogeneity of, 436

Likelihood function, 5, 358, 478
Likelihood ratio-based confidence

intervals, 500–504
Likelihood ratio principle, for hypothesis

testing, 149–150
Likelihood ratio test, 417

asymptotic behavior of, 418
statistic, 149

Linear equations, 23
Linear function, 306

BLUE, 314
Linear map, 17
Linear models

comparison of, 162–168
development of theory of, 4
full-rank, 127
geometric approach for, 10–11
inference concerning β, 146–148

confidence regions and confidence
intervals, 148–149

likelihood ratio approach to
hypothesis testing, 149–150

less-than-full-rank, 179
method of least squares and, 3
origin of, 3
parameter estimates for, 128–129
related distributions for

studying, 69
central chi-squared distribution, 70
F-distribution, 74
noncentral chi-squared

distribution, 70–73
t-distribution, 73–74
Wishart distribution, 75

role in statistical experimental
research, 3

types of, 1
Linear multiresponse models, 427, 453,

455, 459
hypothesis testing, 456–459
lack of fit, testing, 459–462

multivariate, 462
responses contributing, 462–467

parameter estimation, 454–456
Linear programming, 207

simplex method of, 260
Linear transformations, 13, 17–20, 24,

409, 411
kernel of, 18
one-to-one, 20

Linear unbiased estimates, 312
LOF, see Lack of fit (LOF)
Logistic link function, 477
Log-likelihood function, 358, 362, 478,

479, 489
Logit function, 475
Log link, 475
LSMEANS, see Least-squares means

(LSMEANS)

M
Maclaurin’s series, 60, 61, 71, 90, 98
Matrix

functions of, 46–48
inequalities, 43–46
inverse (see Inverse of matrix)
minor of, 29
notation, 24
operations, 25–26
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quadratic forms of, 39–40
rank of, 31–32
trace of, 26
transpose of, 26

Matrix differentiation, 48–52
Matrix of ones, 25
Maximum likelihood estimates (MLEs),

5–6, 140–141, 144, 149, 358, 361,
366, 481

computational aspects of, 360
properties of, 141–145, 153
standard errors, 487

Maximum likelihood (ML), 357
Mean response vector, 128
Mean squares

nonnegative linear combination of,
278

positive linear combination of, 277
Messy data, 301
Method of unweighted means (MUM),

336, 380
approximations, 340–341
definition, 336
F-distribution, 342
harmonic mean, 336
two-way model, 336

Method of weighted squares of means
(MWSM), 315

Mill’s ratio, 86
Minkowski’s determinant inequality, 44
Minor, 29
Mixed-effects model (Model III), 7, 237,

349
Mixed linear model, 427

general version, 415–416
fixed effects, estimation/testing of,

416–417
random effects, 417–421

Mixed two-fold nested model
exact test, fixed effects, 412–415
exact test, random effects, 411–412

Mixed two-way model
inference concerning, exact tests

fixed effects, 401–405
random effects, 398–401

ML, see Maximum likelihood (ML)
MLEs, see Maximum likelihood

estimates (MLEs)

Model I, see Fixed-effects model
(Model I)

Model II, see Variance components
model (Model II)

Model III, see Mixed-effects model
(Model III)

MODEL statement, 356, 504
Modified maximum likelihood, 362
Moment generating function, 89–90

case of multivariate normal, 65–67
general case, 63–65

Monotone decreasing function, 392
Monotone increasing function, 392
Monte Carlo simulation, 379
Multiple linear regression model, 127
Multivariate normal distribution,

61–63
Multivariate tests, 457
MUM, see Method of unweighted means

(MUM)
MWSM, see Method of weighted squares

of means (MWSM)
Myers–Howe procedure, 278

N
Nested factor, definition of, 226
Nested random model, 265, 406
Nested subscripts, 227
Newton–Raphson method, 481
No-interaction hypothesis, 320
Noncentral chi-squared distribution,

70–73, 303
Noncentrality parameter, 70, 308, 309
Noncentral t-distribution, 74
Noncentral Wishart distribution,

75, 457
Nonrightmost-bracket subscripts, 228
Nonsingular matrix, 30, 387
Nonstochastic variables, 127
Nonzero eigenvalues, 94, 99, 185, 294,

384, 408
diagonal matrix of, 409

Normal distribution
history of, 59
multivariate, 61–63
singular multivariate, 69
univariate, 60–61
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Norm of a matrix, 46
Euclidean, 46
spectral, 47

Null effect, 115

O
Observation statistics, 500
One-to-one linear transformation, 20
One-way model, 179, 428
Ordinary least squares (OLS), 128,

138, 140
estimation

distributional properties, 132–134
Gauss–Markov theorem, 134–137

Orthogonal contrasts, 333
Orthogonal decomposition, 212
Orthogonal matrices, 36

parameterization of, 36–39
Orthonormal eigenvectors, 95, 185,

395, 408
Overparameterized model, 322, 324

P
Parallelism, hypothesis of, 165
Partial mean, 227
Partitioned matrices, 27
PDIFF, see P-value for the difference

(PDIFF)
Pearson distributions, 81
Pearson’s chi-square residuals, 491, 494,

508, 509
Pearson’s chi-square statistics, 487,

490–491
Poisson distributions, 476, 479, 485, 486,

489
Poisson random variable, 71
Polynomial effects, 321, 333

at fixed levels, 334
Polynomial functions, 127
Polynomial models, 2, 444

first-degree model, 444
full second-degree model, 444

Population marginal means, 306
Population structure, 227

and admissible means, 228
Postulated model, 1
Predicted response, 446
Principal minor, 29
Principal submatrix, 27

Probability mass function, 5
Probability value, Davies’ algorithm

for, 411
Product

Cartesian, 206, 257, 394
direct, 27

Profile likelihood confidence
interval, 501

Profile likelihood function, 501
P-value for the difference (PDIFF), 331

Q
Quadratic forms

computation of distribution of,
118–119

and Craig’s theorem, 8–9, 103
distribution of, 94–103
distribution of ratio of, 119–120
independence and chi-squaredness

of, 111–118
independence of, 103–108
independence of linear and, 108–111
matrices of, 39–40
in normal random variables, 89

R
Random-effects model, 7, 237, 349
Random higher-order models, exact tests

for, 397–398
Random one-way model, analysis of, 428
RANDOM statement, 361
Random two-fold nested model, 406–407

exact test, random effect, 407–411
Random two-way model, 354, 380
Raw residual, definition, 491
Rayleigh’s quotient, 43
Reciprocal link, 475
Regression mean square, 133
Regression model, 1, 3
Regression sum of squares, 131
REML, see Restricted/residual

maximum likelihood (REML)
Reparameterized model, 181–184, 324
Residual vector, 131
Response surface methodology (RSM),

443–446
for estimation of optimum mean

response, 151
Response surface models

model fitting, 446
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with random block effects, 446–448
fixed effects, 448
random effects, 449–453

Restricted least-squares estimator, 138
Restricted/residual maximum

likelihood (REML)
estimates, 369
PROC MIXED, 366
variance components, estimation

of, 362
variance–covariance matrix, 366

R-Expressions, 353
alternative set of, 355
Type I, expected values of, 357

Rightmost-bracket subscripts, 227
R-Notation, 301
Row vector, 25
Roy’s largest root test statistics, 457,

462, 466
RSM, see Response surface methodology

(RSM)

S
Sample variance–covariance matrix, 76
SAS software, 311

code, 486
computations, 420
PROC GENMOD, 485–486
PROC GLM, 324

LSMEANS statement, 330
PROC MIXED, 360, 361, 416, 448
PROC VARCOMP, 356
reciprocal link, 508
statements, 356
Type I, Type II, and Type III, 328, 329
Type IV F-ratios, 326

Satterthwaite procedure, 278
Satterthwaite’s approximation, 271–273,

285, 293, 407, 431, 450
adequacy of, 278–282
Behrens–Fisher problem, 274–278,

291–293
chi-squared distribution, 296

testing departure, 282–287
closeness measurement, 287–290
confidence interval, 293–295
hypothesis test, 287
λsup, determination of, 290

mean squares, linear combination
of, 296

nonnegative linear combination,
distribution of, 278

random effects, 271, 273
Satterthwaite’s formula, 271, 273,

274, 278
Saturated/full model, 488
Scaled deviance, 489

residual, 491–492
Scheffé’s simultaneous confidence

intervals, 149, 192
relation with F-test concerning

H0 : Aβ = 0, 194–196
Schur’s theorem, 45
Šidák’s intervals, 200–201
Simultaneous confidence intervals,

148–149
heterogeneous group variances

Brown–Forsythe intervals,
202–203

exact conservative intervals,
206–207

Spjøtvoll’s intervals, 203–205
estimable linear functions and their

ratio
based on Bonferroni inequality,

214
based on Scheffé’s method,

213–214
conservative simultaneous

confidence intervals, 214–216
Singular matrix, 30
Singular multivariate normal

distribution, 69
Singular-value decomposition

theorem, 41
Skew-symmetric matrix, 26, 38, 39
Spectral decomposition theorem, 40–41,

62, 95, 99, 181, 210, 388, 389,
408, 437

Spjøtvoll’s intervals, 203–205, 208
Square matrix, 24–25, 34
Statistic

complete, 143
complete and sufficient, 249
sufficient, 142

Studentized deviance residuals, plot of,
495–497
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Studentized Pearson’s residuals, 492
plot of, 495

Sum, direct, 28
Sums of squares

partial, 304
Type I, 303, 304
Type II, 304
Type III, 304

Symmetric matrix, 26, 48
Synthetic error term, 271

T
Taylor’s series approximation, 483, 484
Taylor’s series expansion, 373
Testable hypotheses

two-way without interaction model,
306–309

Type I, 309–310
Type II, 310–313

Tests of fixed effects, 417
Test statistic values, 391
Translation invariant, 370
Triangular matrix, 25
Tukey’s Studentized range test, 321, 331,

334
Two-fold nested model, 406–415
Two-way with interaction model, 314
Two-way without interaction model,

304

U
UMVUE, see Uniformly minimum

variance unbiased estimators
(UMVUE)

Unbalanced fixed-effects models, 301
higher-order models

E option, 327–330
least-squares means, 330–331

method of unweighted means,
336–337

SSAu/SSBu/SSABu, 338–339
SSAu/SSBu/SSABu, approximate

distributions, 340–342
R-notation, 301–304
two-way interaction model

hypotheses, tests of, 315–322
linear functions, 314–315
SAS, 322–324
testable hypotheses, 324–327

two-way without interaction model,
304

estimable linear functions, 305–306
testable hypotheses, 306–313

Unbalanced models, 301
Unbalanced random one-way model,

124, 373–376
approximation, adequacy of, 376–379
confidence interval, on variance

components, 379
random two-way model

exact tests, 385–397
method of unweighted means,

380–384
Uniformly minimum variance unbiased

estimators (UMVUE), 146, 170,
186, 254

Univariate normal distribution, 60–61
Unweighted means, F-tests method, 395
Unweighted sum of squares, 374, 380

V
Variance components, 350

estimation of
ANOVA estimation, Henderson’s

methods, 350–351
Henderson’s method III, 351–357
maximum likelihood, 357–361
restricted maximum likelihood

estimation, 362, 366–369
Variance components model

(Model II), 7
Variance–covariance matrix, 4, 8, 66, 115,

128, 137, 152, 153, 291, 446
Variance function, 479
Vector linear function, 136
Vector spaces, 13–14

bases and dimensions of, 16–17
Vector subspaces, 14–15

W
Wald inference, 499
Wald’s confidence intervals, 499, 500

on mean responses, 503
Wald’s statistics, 387, 498, 499

type 3 analysis, 502
Weierstrass M-test, 72
Weighted squares method, 323
Williams–Tukey formula, 379
Wishart distribution, 75, 87

Z
Zero matrix, 25
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