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Abstract

Web services generalize the idea of the Web beyond the exchange of simple Web
pages in order to enable the provision of a broad range of different services. By com-
posing Web services, cross-organizational and collaborative business processes can
be realized in a highly dynamic and flexible way, which is particularly important if
services have to be automatically procured at runtime. However, achieving a higher
degree of automation is obstructed by the informal nature of legal, contractual and
organizational regulations, the numerous and complex service descriptions includ-
ing manifold customization possibilities, and the open and heterogeneous nature of
the Web service market.

In this thesis, semantic technologies that provide more explicit meaning of in-
formation are employed to address these problems. These technologies facilitate
the exchange of information in heterogeneous systems and increase the share of
machine-understandable data accessible for automated decision-making. We intro-
duce the Core Policy Ontology in order to capture regulations as well as preferences
by means of goal and utility function policies, respectively. Furthermore, we in-
troduce the Core Ontology of Bids that facilitates customization of Web services to
specific user needs by efficiently representing highly configurable Web service of-
fers and requests. Analogously, we derive the Core Contract Ontology from the
Core Policy Ontology to formally represent Web service contracts. Thereby, we pro-
vide an open, transparent and interoperable representation of contracts and enable
a tight integration of contractual information with the collaborative business inter-
actions they govern.

In order to show the applicability of the presented ontologies, we introduce an
automated contracting mechanism that includes algorithms for automated match-
ing, allocation, contract formation and contract monitoring. It exploits the semantic
descriptions provided by the ontology framework and thereby enables logic-based
matching between offers and requests and the specification of policies on hierarchi-
cal sets of service characteristics. Since declarative matching and allocation rules
are used to define the mechanism, it can be dynamically adapted to new domains
or settings. For the efficient allocation of Web services in heterogeneous environ-
ments, we present a novel approach that enables the integration of semantic match-
ing and efficient optimization techniques such as linear programming. Moreover,
the mechanism can be used to verify whether a Web service invocation adheres to
the obligations stated in the contract. The contracting mechanism is prototypically
implemented using WS-BPEL and the ontology reasoner KAON2. The evaluation
of the prototype indicates that Web service contracting is applicable in practice and
that semantic matching of requests and offers is particularly important for settings
with highly customizable services.
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Chapter 1

Introduction

1.1 Motivation

Service-oriented computing is a paradigm where applications are composed by ser-
vices. Services are business assets that are exposed by software components pro-
vided internally or by other businesses. Service-oriented architectures thus consti-
tute a distributed computing infrastructure for both intra- and inter-organizational
application integration and collaboration [PG03]. They abandon the prevailing soft-
ware paradigm, where applications are installed and executed on local machines.
Rather, applications contract other software modules to get certain subtasks com-
pleted.

In recent years, technologies for implementing service-oriented architectures
have matured into productive systems. Companies are implementing SOA-based
applications and hope to gain strategic benefits, such as increased application flex-
ibility, agility and reuse. Since major functionalities of software systems are pur-
chased from other companies, the contracting process in a service-oriented archi-
tecture can be seen as a special e-procurement process. According to [GB01], the
average procurement cycle in enterprises is of the order of three months. Of this
time, about 50% is spent in identifying the appropriate suppliers, about 20% of the
time in handling the RFQ (request for quotes) process, and an additional 10% is
spent in negotiating the terms and conditions of the contract.

The ability to increase automation in the contracting process could lead to sig-
nificant time savings and therefore also to cost reductions. In addition, automation
of the contracting process is indispensable in case services have to be procured “on
demand”, i.e. at the point of time when they are required. This is the case whenever
selection of a service depends on the execution context, e.g. on the time of invoca-
tion or on the current location of the customer. In addition, dynamic contracting
enables timely reactions and automatic reconfiguration of the application in case of
service failures or frequent changes in the set of available providers. This can lead
to more robust systems and to lower costs since erroneous and expensive services
can be automatically replaced.

However, automating the contracting process requires overcoming several seri-
ous obstacles: (i) legal regulations, e.g., involving restrictive data protection rules,
and organizational policies that regulate business transactions might have to be con-
sidered in the contracting process; (i) the size of the decision problem which might
involve a considerable number of providers with each of them offering differenti-
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ated services and extensive customization possibilities; (iii) the heterogeneity and
openness of the service market, which might involve many business partners dy-
namically joining and leaving the market, each of them with different procurement
systems, data formats and information models. The latter has also been recognized
by the Harvard Business Review (October 2001):

“Trying to engage with too many partners too fast is one of the main
reasons that so many online market makers have foundered. The trans-
actions they had viewed as simple and routine actually involved many
subtle distinctions in terminology and meaning.”

Our work addresses these issues by combining and extending technologies and
techniques from various fields of research in an original way:

* As a basic technology for implementing service-oriented architectures, Web
services emerged as the state of the art, providing a set of standard specifica-
tions and protocols. Our platform utilizes Web service technologies to realize
a Web compliant service-oriented infrastructure.

¢ Since the find-bind-execute-paradigm of service-oriented architectures is a
special kind of electronic procurement process, we rely on concepts known
from the area of electronic markets to design a Web service contracting process.

¢ The Semantic Web [BLHLO1] addresses the heterogeneity of the environment
by providing more explicit meaning of terms. One of the cornerstones of the
Semantic Web are ontologies as formal specifications of conceptual models
[Gru93]. By committing on common ontologies, different autonomous entities
on the Web can interoperate and by leveraging the formal definitions of the
ontology constructs, new knowledge can be inferred from existing informa-
tion. We formalize Web service offers, requests and contracts with ontologies.
This facilitates interoperability through a standardized syntax and semantics.
By means of the underlying logical calculus matching in the market can be
improved to handle heterogeneous offer as well as request descriptions. Aug-
menting electronic markets with ontologies enables the trading of complex
services and realizes a degree of automation which would not be possible oth-
erwise [MMWO06].

* As decisions automatically taken within the contracting process have to ad-
here to legal and organizational regulations, this work takes up the idea of
policy-based computing. In this context, regulations are declaratively captured
by policies expressed via ontologies. While featuring management tasks such
as consistency checking, ontology-based policy representation facilitates also
the exchange of policies contained in offers or requests, which is needed in
order to identify possible transactions in the market.

By grounding our work on these four pillars, we extend the state of the art in design-
ing a semantic Web services market that supports an automated contracting process
while addressing the heterogeneity that comes with open, Web-based markets. This
is realized by the development of an ontology framework that enables the expres-
sion of Web service offers, requests and contracts based on a formal policy model.
Policies enable us to automate tasks like finding a suitable business partner and
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verifying if a transaction has been executed correctly. By extending the traditional
policy view that captures only hard constraints to the concept of utility function
policies, this work enables preference-based selection of business partners and al-
lows a compact representation of requests and offers. This is particularly important
in situations where services need to be customized to the needs of a requester by
offering a wide range of different configurations. The formal specification of offers
and requests features improved matching functionality by addressing heterogeneity
issues in the Web. We are thereby able to overcome a common problem in electronic
markets which is caused by different entities using different levels of abstraction for
describing service functionality. By utilizing declarative matching and allocation
rules, the approach facilitates a high degree of flexibility as the vocabulary can be
extended during the runtime of the system and the allocation mechanism can be
changed seamlessly without changing the implementation.

Efforts in developing inter-organizational service-oriented infrastructures have
intensified considerably within the last years. For the area of automated Web ser-
vice contracting, this is evidenced by the substantial number of submissions to the
World Wide Web Consortium (W3C) proposing semantic descriptions for Web ser-
vices. Prominent examples are the proposal for Semantic Annotations for WSDL
(SAWSDL),! Semantic Markup for Web Services (OWL-S),? the Web Service Model-
ing Ontology (WSMO),? and the Semantic Web Services Framework (SWSF).# This
work complements the approaches above by focusing on important aspects in Web
service markets beyond pure Web service descriptions. Among others, these as-
pects include the modeling of customizable offers and requests as well as legally en-
forceable Web service contracts. We thus use an abstract service description where
services are described using a set of attributes. Such a general description of Web
services enables us to abstract from various existing Web service description frame-
works such as WSDL, OWL-S, SAWSDL, WSMO, while simultaneously allowing
us to leverage existing decision-theoretic algorithms for multi-attribute products.
However, our approach allows the representation of attributes using existing ser-
vice description ontologies and thereby enables the reuse of existing work.

1.2 Research Questions and Goals

Realization of an inter-organizational service-oriented computing infrastructure has
to address technical issues such as implementing and describing Web services, eco-
nomic questions like selecting the right service at an acceptable price, and legal
problems dealing with automated contract conclusion and interpretation. One of
the goals of this thesis is to provide a better insight into how an interdisciplinary
approach drawing from the fields of computer science, economics and law can be
used to build a service-oriented computing infrastructure. The following hypothesis
captures the main research question of this thesis.

Main Hypothesis: Contracting in Web service markets can be automated
using semantic policy descriptions.

IW3C Working Draft, April 2007, ht t p: / / www. w3. or g/ TR/ sawsdl /

2W3C Submission, November 2004, ht t p: / / www. w3. or g/ Submi ssi on/ OAL- S/
3W3C Submission, April 2005, ht t p: / / www. w3. or g/ Submi ssi on/ 2005/ 06/
4W3C Submission, September 2005, ht t p: / / www. W3. or g/ Submi ssi on/ SWsF/
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As discussed in the previous section, the major obstacles for a higher degree
of automation in the contracting process between Web service providers and re-
questers are legal and organizational regulations that are often specified in an in-
formal way, numerous and complex service descriptions including manifold cus-
tomization possibilities which makes manual selection cumbersome, and the open
and heterogeneous nature of the Web service market hinders collaboration between
different parties. Semantic technologies address these problems by providing more
explicit meaning of information. This facilities exchanging of information in het-
erogeneous systems and increases the amount of machine-understandable data re-
quired for automated decision-making.

In order to support our main hypothesis, we investigate in this thesis how on-
tologies can be applied in order to realize automated contracting between Web ser-
vice providers and their customers. Since electronic markets generally require the
design of two components — language and mechanism — we split our main hypoth-
esis into two subordinate hypotheses for each of which an approach how to support
the hypothesis is given.

Hypothesis 1: Semantic technologies can be used to express policies such
that they enable the specification of offers, requests and contracts in Web
service markets.

Approach: Develop an expressive Web service market ontology for repre-
senting Web service offers, requests and contracts in a formal machine-
interpretable way.

The first hypothesis postulates that semantic technologies can be applied to de-
sign a communication language for the exchange of knowledge about products and
prices in the market. This requires a language that allows capturing legal and orga-
nizational regulations as well as extensive customization possibilities in a machine-
understandable manner. To support this hypothesis, we develop an expressive Web
service market ontology and thereby show that semantic technologies are a suitable
technology for this purpose.

Hypothesis 2: The contracting process in the market can be automated
based on semantic descriptions.

Approach: Develop algorithms that automate the contracting process based
on the Web service market ontology and that provide the flexibility to
cope with environmental changes.

The second hypothesis postulates that semantic technologies can be used to auto-
mate the contracting process. We are going to support this hypothesis by designing
algorithms for automated matching, allocation, contract formation and validation
based on the previously defined ontology.

This means, in order to realize a semantic Web service infrastructure we first
have to develop an ontology that provides the expressivity to formalize all required
information in the market and second we have to design the contracting algorithms
in a way that they utilize the formalized knowledge and can be executed without
human intervention.
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1.3 Contributions

The main contribution of this work is the design and realization of a service-oriented
computing infrastructure that builds on existing Web service technology and en-
ables the automation of the contracting process. As indicated by our research ques-
tions, realizing such an infrastructure requires two main components which are pro-
vided in this thesis:

* We present a novel ontology framework for Web service markets that enables
the formal representation of market information. The framework thereby sup-
ports the interpretation of this information by machines and the exchange of
information between different market participants in the Web.

* We present a contracting mechanism based on this ontology framework that
automates the matching of Web service offers and requests, the determination
of optimal allocations between offers and requests, and the conclusion and
monitoring of Web service contracts.

The automation of these tasks allows the procurement of services “on demand”
and thus addresses several major shortcomings of today’s service-oriented architec-
tures, such as the inability to consider the execution context or to react on service
failures or a changing set providers. Moreover, the time for integrating a new ser-
vice into the architecture can be reduced, which may lead to major cost savings for
the service requester. In the following, the novel aspects of the ontology framework
and the contracting mechanism are discussed in more detail.

Web Service Market Ontology

To realize the goal of automation, we have developed a set of ontology modules
that enables the formal and unambiguous representation of market information. In
particular, the work contributes the Core Policy Ontology, the Core Ontology of
Bids and the Core Contract Ontology. The Core Policy Ontology is novel in that
it enables not only expressing hard constraints in a formal and declarative manner,
but also fine-grained preferences over alternatives captured by the concept of util-
ity function policies. By reusing these policies in the Core Ontology of Bids highly
configurable offers and requests can be expressed in a compact way which allows
us to communicate them efficiently within the market. The fact that services are
easily customizable, e.g., by differentiation of quality of service levels, is an issue
which has by far been neglected by existing approaches. Moreover, policies can be
specified depending on the context in which they are applicable, which also enables
automation in the presence of context-dependent preferences as observable particu-
larly in mobile scenarios. In extending the DOLCE foundational ontology library
and by utilizing ontology design patterns, the modules provide a high-quality on-
tology framework that circumvents typical shortcomings of naively built ontologies,

such as conceptual ambiguity, poor axiomatization, narrow scope and loose design
[Obe05].
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Contracting Mechanism

As a further contribution to the state of the art, we present a contracting mecha-
nism that exploits the declarative semantic descriptions provided by the ontology
framework in several ways: the heterogeneity that arises from a constantly chang-
ing number of autonomous market participants is addressed by logic-based match-
ing of offers and requests. This allows us to overcome the different levels of ab-
stractions in offer and request description that are usually observed in markets. In
contrast to other logic-based matching approaches, we additionally show how such
techniques enable defining policies on hierarchical sets of service characteristics.
This means, it is not required to specify preferences for all possible configurations,
but the valuation of a market participant for a certain configuration can be inferred
from general policies defined on a higher level. This simplifies the definition of
policies considerably. Another drawback of existing semantic approaches is that
they assume a fixed, predefined set of matching algorithms that is applied irrespec-
tive of the domain, application, or the characteristics of the underlying ontology
(cf. [PKPS02, LH03, NSDMO03, GMP04]). This is only sensible under the assump-
tion that all ontologies are specified with the corresponding matching algorithm in
mind. However, this contradicts the basic idea of the Semantic Web, where domain
ontologies are to be reused by several applications in order to reduce the modeling
efforts that have to be devoted to building ontologies. Therefore, this work relies
on the idea of customizable matching rules that can be declaratively defined for
each domain ontology. Based on these rules, the right matching approach is ap-
plied automatically. The declarative nature of the matching rules enables adding of
new service characteristics and required domain ontologies during runtime of the
system, which is essential for providing the required flexibility.

In order to allow for dynamic contracting at runtime the contracting algorithms
have to be executed within a short period of time. In this work we thus present
a computational tractable selection mechanism, which could be used as basis for
more complex allocation mechanisms such as auctions. Developing such mecha-
nisms essentially requires an algorithm that selects the optimal configuration for
a provider/requester pair. This has to involve semantic matching of services and
ranking according to utility function policies. To realize this in a computationally
tractable manner, we propose a novel approach that integrates semantic matching
and efficient optimization techniques such as linear programming. This allows us,
on the one hand, to benefit from existing efficient optimization tools developed over
the last decades in the field of operations research, and on the other hand, to gain
from the flexibility and expressivity provided by semantic technologies. Assuming
additive utility function policies, experimental results indicate that our algorithm
introduces an overhead of only around 2 sec. compared to random service selection,
while giving optimal results. The overhead, as percentage of total time, decreases as
the number of offers and configurations increase. Moreover, our experiments indi-
cate that applying semantic matching in Web-based markets increases the utility of
the participants.

In addition to the matching and allocation algorithm, this work presents a
method for semi-automated contract formation, execution and monitoring. Since
full automation is not achievable based on current (German) law, we propose a semi-
automated approach which originally combines a manually concluded umbrella
contract with an individual contract automatically closed for each invocation. Based
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on this formalization, the contract management tasks can be automated such as con-
tract execution or monitoring. This is especially important for configurable services
where each contract might be different. In order to address fuzzy interpretations of
contract clauses, interpretation rules are introduced to allow the monitoring of such
aspects.

As a proof of concept, we finally present a prototypical implementation that
shows how the developed techniques can be applied based on current Web service
infrastructure. Here we discuss how dynamic binding of Web services is realized
for a WS-BPEL process using conventional WS-BPEL engines.

1.4 Reader’s Guide

This thesis is structured as follows. In Part I: Foundations the fundamental ideas and
concepts are introduced. First, in Chapter 2 the four technologies that constitute
the cornerstones of our work are presented: service-oriented architectures, policy-
based computing, electronic markets and ontologies. In Chapter 3, we discuss how
these technologies can be integrated in terms of a design and engineering method-
ology. According to this methodology, the development of a semantic Web service
market infrastructure comprises the following steps: requirements analysis, design,
embodiment, implementation, and testing. The subsequent parts and chapters are
structured according to this engineering process.

In Part II: Designing a Semantic Web Service Market we describe the design process
of developing a semantic Web service market. As a first step, the requirements are
elicited from a set of typical scenarios for service-oriented architectures in Chapter
4. The scenarios cover enterprise, mobile and grid service applications. The require-
ments are clustered into language and mechanism-specific requirements. In Chapter
5 the conceptual design of the market model is introduced in an abstract way with-
out discussing concrete technologies or other implementation details. The market
model addresses the language-specific requirements by introducing an appropriate
conceptualization and formalization of the ontology and the mechanism-specific re-
quirements by specifying the Web service contracting algorithms. In the subsequent
embodiment phase this abstract conceptual model is explicitly specified: Chapter
6 presents an ontology framework which implements the conceptualization intro-
duced in the conceptual design. The framework introduces the novel modules Core
Policy Ontology, Core Ontology of Bids and the Core Contract Ontology. Based on
this framework concrete contracting algorithms are presented in Chapter 7, which
includes matching, allocation, contract formation as well as contract monitoring
functionality.

The implementation and testing steps of the engineering process are covered in
Part III: Realization and Evaluation. In Chapter 8 a prototypical implementation of
a semantic Web service market infrastructure is presented that features automated
contracting of Web services and supports dynamic binding of services in a busi-
ness process. In addition, two concrete applications of the prototype are given. In
Chapter 9, the design of the market is discussed with respect to the requirements
that have to be met. In this context, computational tractability and communication
efficiency are evaluated by means of a simulation.
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Part 1V: Finale consolidates the language- as well as mechanism-specific related
work in Chapter 10 by discussing how other approaches address the requirements.
Finally, Chapter 11 concludes the work by recapitulating the results with respect to
our research questions and gives an overview of problems that remain open and
have to be addressed in future work.

Throughout the work, relevant publications are given at the beginning of the
chapters. Bits and pieces of the thesis are based on conference and journal publica-
tions [LEO05, LML 105, LA05, LS06, LAO*06, OLG ™06, LA07, LAGS07].



Chapter 2

Basic Concepts and Technologies

In this chapter, we introduce the fundamental definitions and technologies required
throughout the thesis. We start with the notion of service-oriented architectures in
Section 2.1, which provides a powerful paradigm for developing flexible and in-
teroperable software systems. Due to their complexity and dynamics, the design,
management and administration of service-oriented architectures is difficult and
time-consuming. By introducing policies in Section 2.2, a higher degree of autonomy
can be realized and thus reduced human interaction is required. Recently, electronic
markets have been proposed as an efficient coordination mechanism between ser-
vice providers and service requesters. Therefore, Section 2.3 introduces the idea of
markets. Subsequently in Section 2.4, the concept of ontologies is introduced. On-
tologies provide a formal vocabulary for knowledge sharing in distributed systems.
Within service-oriented architectures they are typically used for service discovery
and mediation between different heterogeneous services. In addition, they enable
the use of market mechanisms for complex product.

2.1 Service-oriented Architectures

Service-oriented architectures (SOA) come in many different forms and are imple-
mented by means of various technologies. In Section 2.1.1, we first introduce our
notion of a service-oriented architecture independent of technologies and applica-
tion areas. In Section 2.1.2, two main concepts enabled by service-oriented archi-
tectures are presented: flexible binding of services and service customization. Since
Web services have become the predominant technology and a quasi-standard for im-
plementing service-oriented architectures in an inter-organizational context, we in-
troduce the technology behind Web services in Section 2.1.3.

2.1.1 Basic Principles

Service-oriented architectures have received considerable attention throughout the
last years which has led to several highly diverse definitions. In our work, we follow
the definitions of the OASIS Reference Model for Service Oriented Architectures
[MLM*06], which is an emerging standard clarifying the significant entities and
their relations in a service-oriented architecture.

Before we can define the term service-oriented architecture, the notion of service
used intuitively up to now has to be clarified. A service is defined as an “act or a



12 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

variety of work done for others”.! We call activities that solves someone’s problem
capabilities. According to this definition, a service might cover a wide range of ca-
pabilities ranging from constructing a house to trading stocks, each of them carried
out for someone else. An entity (people or organizations) offering a service is called
provider and an entity that initiates the service execution and profits from the service
ia called requester. Both — providers as well as requesters— define certain conditions
or regulations on the usage of the service.

In the context of service-oriented architectures, only a subset of services — called
software services — are relevant. Software services are software components that pro-
vide certain capabilities via electronic media such as the Internet. On the one hand,
these can be purely digital services where the capabilities are provided entirely in
electronic form. Examples are services that provide stock quote information via e-
mail or a route planning service on the Web. On the other hand, software services
can also cause real world effects, such as a travel booking service that sends an ac-
knowledgement of the booking by e-mail, but delivers the actual tickets by surface
mail. In order to be usable for requesters, a software service has to adhere to a pre-
scribed service interface that can be used to integrate the software service into the
requester’s application. For this work the following definition of software services
is adopted:

Definition 2.1 (Software Service) A software service is a mechanism to enable access to
one or more capabilities provided by an encapsulated software component via an electronic
medium. The provider installs, runs, maintains, and evolves hardware as well as software
infrastructure and provides all physical and organizational means. The access is provided
by a prescribed and well-defined programmatic service interface and is consistent with the
provider’s constraints and conditions.

Note that not every service available through an electronic medium is a software
service. A set of Web pages that allow, e.g., the reservation of a table in a restaurant
is a service, but usually not considered as a software service, according to Definition
2.1, since it does not provide a programmatic interface that can be used to invoke
the service from a software program [ACKMO04].

The technique of modularization and goal-oriented composition of software ser-
vices can be seen as a distinguishing aspect of service-oriented software develop-
ment compared to traditional software development [PG03]. Generally, a service
composition defines which software services are used in which order by an applica-
tion. Along this line, a service-oriented architecture can be defined as follows:

Definition 2.2 (Service-oriented Architecture) A service-oriented architecture is a soft-
ware design where a reusable set of interoperable and discoverable software services is
loosely-coupled in order to realize a distributed application.

We next describe the key principles of service-oriented architectures in more de-
tail:

Loose-coupling. Loosely-coupled relations between two services minimize the de-
pendencies between the two ends. This can be realized by using message-
oriented communication and encapsulation of implementation and business

http:/ /www.thefreedictionary.com/service
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Figure 2.1: Illustration of the Publish-Find-Bind-Execute Paradigm

logic details with clear interfaces. This allows a maximal degree of autonomy
for each service and leads to a separation of concerns.

Interoperability. Interoperability is the capability to communicate or transfer data
among the services in the system with little or no need for manual adaption.
Typically interoperability in service-oriented architectures is approached by
means of standardized communication protocols and languages.

Reusability. Each service is self-contained in a sense that capabilities can be used
in different business processes or for different purposes. In this situation, ap-
plications are built by composing existing modular services.

Discoverability. A prerequisite for the reuse of services is their discovery. Services
have to be discoverable either manually by the application developer or auto-
matically by the system. Discoverability is usually ensured by adding a service
repository component to the service-oriented architecture.

Additional principles such as service encapsulation or abstraction can be found
in the literature [Erl06]. However, these are direct consequences of the principles
discussed above.

These design principles enable an easy reorganization of services and flexible
implementations of business processes reflecting the fact that business processes are
often much more volatile than the information they manipulate, i.e. while process
typically change frequently, the service from which they are composed are rather
static and can be reused several times. This idea is captured by the following state-
ment [Bur05]:

“Design Services to Last, Design Systems to Change.”

To realize this flexibility, a service-oriented architecture is based on the publish-find-
bind-execute paradigm, which is illustrated in Figure 2.1. A service provider publishes
a service offer using a registry and makes the service discoverable and thus reusable
for requesters. The offer contains information about the interface of the service and
the constraints and conditions under which the service may be accessed. These
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constraints and conditions are usually called policies [MLM ™06, W3C06b]. When a
requester requires a service, a service request is sent to the registry. This request de-
scribes the requirements in terms of service interface and policies, which have to be
met by the service offers to be qualified as suitable service candidates. Depending
on the concrete implementation of the registry, either the set of suitable offers or a
concrete service contract is returned. A contract represents a concrete agreement be-
tween the requester and the provider fixing the agreed interface and service levels
in a well-defined and unambiguous manner. If the registry returns suitable offers
instead of contracts, a contract has to be closed in the binding process. A binding is
a unidirectional assignment of a task in a requester’s business process to a concrete
service. The flexibility of the business process and the ability to adapt to changing
requirements depend crucially on the binding mechanism used. Therefore, in Sec-
tion 2.1.2, different binding mechanisms are discussed in more detail. Once the best
binding is determined, the requester executes the service by sending the input data
required by the service interface. Requests, offers and contracts are key concepts in
our work and will be formally defined in Section 5.

2.1.2 Flexible Binding and Customization of Services

In today’s business environment there is an urgent need for flexible software sys-
tems that can be easily adapted to fast changing requirements. Consider the exam-
ple where a drastic increase in the number of users might require a quick increase
in the scalability of an application, or where a merger requires the fast integration
of two independent software systems. By leveraging the loose coupling of services
in a service-oriented architecture, this flexibility can be provided in two ways: first,
we can reconfigure a service and adapt it to our needs. We call this reconfiguration
of services service customization. Alternatively, we can dynamically replace a service
in the business process by another provider. We call this feature flexible binding of
services. These two alternatives are briefly discussed in the following.

Service Customization

A key concept in economics and management is product differentiation or versioning.
The idea behind product differentiation is to provide a certain product in such a
way that it differs from the products of the competitors in the market with the in-
tent to influence the demand. Thereby, suppliers can decrease the substitutability of
their product which increases their monopoly power [BKK'02], and they can pro-
vide a version customized to often very heterogeneous requirements of customers
which could significantly increase the revenue of the supplier [Var97]. Product dif-
ferentiation is usually realized by exploiting customer self-selection. For example, it
can be distinguished between feature-based and performance-based differentiation
[Ded02], where either a product is available with different features or with the same
features but different quality. All of these versions are offered to customers who
select the version most suitable to them. Thereby, the utility of the supplier and
customer can be increased.

The idea of product differentiation can be directly transferred to software ser-
vices in a service-oriented architecture. In fact, service differentiation is particularly
easy, since it can be realized simply by providing different quality-of-service guar-
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antees, by forwarding requests to different service implementations (e.g. each with
different performance characteristics), or by assigning different priority levels to
requests (e.g. requesters paying a higher price are served first). Examples of ser-
vice differentiation can be found in [ZWX06, CM02, WBCL02, DLP03]. In line with
[Bro98, BAGO3], we call these different versions of a certain service configurations
throughout our work. Initially, we will only provide an intuitive definition of the
term, which is then made concrete in Chapter 5 as part of our formal model.

Definition 2.3 (Service Configuration) A service configuration selects a value for each
attribute of a service and thereby unambiguously defines all relevant service characteristics.
The choice of configuration might affect the functional as well as non-functional aspects of a
service and is a major determinant of the price.

Obviously, providers as well as requesters have certain constraints and condi-
tions with regard to the allowed configurations. For instance, a requester might
have minimum requirements regarding quality of service. We represent such con-
straints by means of policies, which are introduced in Section 2.2. In the following,
we first discuss the case where reconfiguration of individual services is not sufficient
or possible.

Flexible Binding

If adaption of the business process is not possible through reconfiguration of indi-
vidual services, entire services have to be replaced. As defined in the Section 2.1.1,
a process sequences certain tasks which are executed by certain software services.
The assignment of tasks to the services that carry out this task is called a binding.
Bindings can be specified in three different ways [PAO5]:

Binding by Inclusion. In this case services are statically bound in the composition
by inclusion. That means a binding is explicitly set to the address of an service.
Such hard-wiring can be considered as the state-of-the-art in today’s service
oriented architectures.

Binding by Reference. In this case the composition is linked to an external service
description, which then in turn refers statically to a service. This approach
separates binding from composition and increases flexibility. For example, the
address of a service can be changed without changing the composition.

Binding by Constraint. While in case of “binding by reference” compositions still
uniquely identify services, “binding by constraint” abolish this static assign-
ments. In fact, this approach distinguishes between the composition and the
set of suitable services. The composition only defines which criteria (e.g. con-
ditions on the interface and policies) a suitable service has to meet.

If using the “binding-by-constraint” paradigm, an evaluation will be required that
determines the concrete binding. Based on requests and offers, the evaluation has
to calculate the set S of suitable services and select one service s € S. This evaluation
process might also require customization of the selected service.

A major advantage of this approach is that this evaluation can be done at differ-
ent stages in the software development. We distinguish between dynamic and static
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binding.> While static binding can be used for all three binding paradigm mentioned
above, dynamic binding is only possible if the “binding-by-constraint” paradigm is
used. Static and dynamic binding is defined as follows:

Static Binding. In case of static binding the evaluation is done at development time.
The development time comprises the composition, compilation and deploy-
ment of process. That term “static” arises from the fact that a deployed com-
position is executed always with the same services.

Dynamic Binding. In contrast, dynamic binding evaluates the constraints at run-
time of the composition, i.e. during execution of the application. Pautasso et
al. [PA05] distinguish further whether the binding is done at startup time, in-
vocation time or failed invocation time. If binding is done at startup time, all
services are bound before the composition is executed. In doing this, one can
make sure that for all tasks an appropriate service is available. Evaluation at
invocation time is the latest possible time before the service is invoked. Failed
invocation time refers to the strategy where new bindings are only determined
if the current binding fails, i.e. the binding refers to a service that does not react
or is not available any more. Consequently, only in this case is an evaluation
necessary. That means the dynamic binding is “dynamic” in the sense that
each time the composition is executed, other services might be used.

Conceptually, using dynamic binding in service-oriented architectures provides
considerable advantages: In many scenarios, the decision which service to invoke
depends on runtime-specific aspects such as the current location of the requester
or the time of execution. In such a context, binding at development time is simply
not possible. Moreover, the set of available services may change frequently after a
composition has been deployed. In this case dynamic binding is required to be able
to react to these changes. However, a major challenge to realize dynamic binding
remains open: modeling the constraints C that can be used to determine the most
suitable configuration and binding. Before we revisit the problem of constraint rep-
resentation in Section 2.2 by introducing the concept of policies, the current state-of-
the-art for implementing service-oriented architectures is introduced.

2.1.3 Web Service Technology

Web service are a new form of middleware that enable the integration of computer
programs across application and organization boundaries. The basic idea of conven-
tional middleware such as Remote Procedure Calls (RPC) or Object Brokers was to
reside between the applications to be integrated and to mediate their interactions
[ACKMO4]. While allowing distributed applications, these middleware systems
were (logically) centralized and controlled by a single company. For the imple-
mentation of service-oriented architectures in an inter-organizational setting such
solutions are not appropriate. They require agreements on a specific middleware
platform as well as on a “global workflow” for the entire business process. This is
very unlikely to happen due to the lack of trust between companies, the autonomy
each company wants to preserve, and the confidentiality of the business transactions
and processes.

2The term early and late binding are also used to refer to static and dynamic binding, respectively.
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Figure 2.2: Overview of Web service technologies

When moving from intra-enterprise application integration to inter-
organizational structures the Web aspect becomes important. Web technologies
provide the basic protocols such as HTTP and information encoding mechanism
like the eXtensible Markup Language (XML) [W3C04a]. Due to their standard-
ization, they provide a key ingredient for application integration in a B2B setting.
The first step towards “Web-enabled” middleware are application servers [Obe05].
However, they require tight integration of the distributed components and thus
do not support the loose-coupling aspect of service-oriented architectures. Web
services extend the concept of “Web-enabled” middleware by factorizing software
functionality in loosely-coupled services that communicate via the Web and provide
a well-defined programmatic interface. In line with the definition provided by the
World Wide Web consortium (W3C) [W3C04d], we adopt the following notion of
Web services.

Definition 2.4 (Web Service) A Web service is a software service identified by a Uniform
Resource Identifier (URI) [RFC05], whose public interfaces and bindings are defined and
described using XML. Its definition can be discovered by other software systems. These
systems may then interact with the Web service in a manner prescribed by its definition,
using XML based messages conveyed by Internet protocols.

This definition stresses the key aspects of implementing service-oriented archi-
tectures as manifested in Definition 2.2: for discoverability and reusability, a def-
inition prescribing the service’s interaction is required. To provide interoperabil-
ity in the Web URIs for identification and the usage of standardized XML and In-
ternet protocols is required. Loose-coupling is supported by requiring message-
orientation and encapsulation of functionality behind interfaces.

As standardization plays a major role, a great number of Web service specifica-
tions provide (often alternative) proposals for enabling interaction and description
of Web services. The specifications are arranged in six layers where each layer re-
quires (at least a partial) implementation of the subjacent layers. Figure 2.2 relates
the layers with the respective specification belonging to these layers. Note that for
each layer further specifications exist. However, since they are not relevant for the
understanding of the remainder of the thesis, we omit a detailed introduction at
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this point.3 In the following, we gradually introduce the layers starting with the
Transport layer.

Transport Layer

The Transport layer defines methods that are used to transfer or convey information
in the Internet. Although the Hypertext Transfer Protocol (HTTP) [RFC99] is by far
the most prominent protocol for communication between two Web services, other
protocols such as the Simple Mail Transfer Protocol (SMTP) are also used. Resources
to be accessed by HTTP are identified using Uniform Resource Identifiers (URIs) (or,
more specifically, URLs) using the “http:” or “https:” URI schemes.

Formatting Layer

As stated in Definition 2.4, messages exchanged between Web services and the de-
scriptions of Web services have to be encoded using XML documents, which can be
validated according to a schema expressed via XML Schema (or DTD).

Messaging Layer

Messaging specifications are intended to give a framework for exchanging informa-
tion in a decentralized, distributed environment. Messages that can be understood
by Web services have to be organized according to the Simple Object Access Pro-
tocol (SOAP) [W3C03]. SOAP describes how documents are encoded using XML,
provides conventions for the interactions between different peers, and defines how
messages should be transported on top of HTTP or SMTP. There are also alternative
protocols such as REST. However, they are rarely used in practise. With specifica-
tions such as WS-Security [OAS06b] additional functionality can be added to the
messaging layer. WS-Security is an extension to SOAP that allows implementing
integrity and confidentiality.

Service Description Layer

The focus of this layer is the definition of specifications that support the description
and discovery of Web service providers, the Web services they make available, and
the technical interfaces for accessing and using these services. In this context, the
Web Service Description Language (WSDL) [W3C01b] plays a central role. WSDL
are XML documents defined via a XML Schema consisting of an abstract and a con-
crete part. In the abstract part the service interface is described by means of port type
definitions which are logical collections of related operations. For each operation
the data types of the input and output messages are defined. Although WSDL al-
lows the specification of arbitrary data type systems, usually the XML Schema data
type system is used [W3CO04e]. In the concrete part this abstract port type definition
is bound to a concrete message encoding and protocol. In addition, a concrete end
point address (specified by a URI) is attached to each port type and end points are
grouped in a service element.

3For a comprehensive overview the interested reader is referred to htt p: //ww 128. i bm
coni devel oper wor ks/ vi ews/ webservi ces/ i braryvi ew. j sp?type_by=St andar ds .
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Since WSDL lacks expressiveness for describing requirements and conditions a
Web service or a requester has to fulfill for a successful interaction, additional spec-
ifications are needed. WS-Policy [W3C06b] provides a framework through which
requesters as well as providers can specify their policies. The framework is domain-
independent and requires further specification for providing domain-specific vo-
cabulary.

Coordination and Context Layer

Transactions are a fundamental concept in building reliable distributed applications.
A Web service environment requires coordination behavior provided by a tradi-
tional transaction mechanism to control the operations and outcome of an applica-
tion. Examples for specifications belonging to this layer are WS-Coordination and
its extension WS-Transaction.

Business Process Layer

A business process specifies the potential execution order of operations from a col-
lection of Web services, the data shared between these Web services, which partners
are involved and how they are involved in the business process, and other issues
involving how multiple services and organizations participate.

The Business Process Execution Language (WS-BPEL) [ACD'03] is a XML-based
language used to define business processes, where each task or operation is as-
sumed to be implemented as a Web service. The key objective of WS-BPEL is to
standardize the format of business process flow definitions so that companies can
work together seamlessly using Web services. The WS-BPEL notation includes flow
control, variables, concurrent execution, input and output, transaction scoping/-
compensation, and error handling. Processes written in WS-BPEL can orchestrate
interactions between Web services using XML documents in a standardized man-
ner. These processes can be executed on any platform or product that complies with
the WS-BPEL specification.

Listing 2.1 shows a simple loan approval business process specified using WS-
BPEL. Loan approval is a scenario commonly used in related literature on this topic
[Kha02, MMO03, Act06]. In line 1-6 the business process definition specifies the name
of the process and the namespaces required for the remaining document. The ac-
tual operations of the business process are defined between the flow-tags in line 7
and 20. The first operation called request is of type receive (lines 8-10) and initiates
a new process instance whenever a message from a customer is received. The input
of this customer is stored in a variable called request. This variable is then passed to
the subsequent invoke-operation (lines 11-15) which uses this information as input
for invoking the operation check of a Web service providing risk assessment func-
tionality. The result of the service invocation is passed to the next operation (line
16-18) using the variable riskAssessment. This operation is of type reply and returns
the result of the risk assessment to the customer.

BPEL supports two different types of business processes:

* Executable processes: Models the actual behavior of a participant in a business
interaction. They can be executed by an BPEL engine.
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1 <process name="loanApprovalProcess"

2 targetNamespace="http://ontoware.org/loanprocessing"

3 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business—process/"

4  xmlns:bpws="http:/ /schemas.xmlsoap.org/ws/2003/03/business—process/"
5 xmlns:Ins="http://ontoware.org/wsdl/loan—approval"

6 xmlns:xsd="http:/ /www.w3.0rg /2001 /XMLSchema">

7

8

<flow>
<receive createInstance="yes" operation="request"
9 partnerLink="customer" portType="Ins:loanServicePT"
10 variable="request">
11 </receive>
12 <invoke inputVariable="request" name="invokeAssessor"
13 operation="check" outputVariable="risk Assessment"
14 partnerLink="assessor" portType="asns:riskAssessmentPT">
15 <target linkName="receive—to—assess"/>
16 </invoke>
17 <reply operation="request" partnerLink="customer"
18 portType="Ins:loanServicePT" variable="approval">
19 </reply>
20  </flow>

21 </process>

Listing 2.1: WS-BPEL process.

* Abstract processes: Uses process descriptions that specify the mutually visible
message exchange behavior of each of the parties involved in the protocol,
without revealing their internal behavior.

2.2 Policy-based Computing

Generally, the notion of policy-based computing refers to a software model that incor-
porates a set of decision-making technologies into its management components in
order to simplify and automate the administration of computer systems” [Mur(05].
This is achieved by interpreting policies at runtime to make autonomous decisions
as desired by the policies” author. Policies represent the goals, constraints, require-
ments, or conditions of the system administrator that guide the decisions of a sys-
tem. Thereby, they state the objective/desired behavior, but they do not specify the
way how this should be accomplished. A major advantage of policy-based comput-
ing is the separation of the components responsible for managing the system and
the guidelines defining the desired system behavior. This facilitates manageability,
while providing a high degree of flexibility. In the area of computer science and
artificial intelligence various definitions of the term policy can be found in litera-
ture (e.g. [MLM 06, RFCO01, Slo94, KW04]). Most of them share the commonalities
captured by the following definition.

Definition 2.5 (Policy) A policy represents some constraint or condition on the use, de-
ployment or description of an owned entity and thereby guides the behavior of an au-
tonomous decision maker (agent). Policies are expressed with a declarative, machine-
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interpretable formalism that enables automated decisions, policy changes at runtime and
communication of policies to other decision makers.

Definition 2.5 captures a crucial property of a policy formalism: they have to be
automatically enforceable by the system each time a decision has to be made. Thus,
decision can be transferred from a human decision maker to the system level, while
ensuring conformance with the human counterpart. This is one of the core ideas
in the emerging field of autonomic computing, which is briefly introduced in Section
2.2.1. Subsequently, we discuss how these concepts can be transferred to service-
oriented architectures and then introduce the fundamental policy types that have
been suggested in literature.

2.2.1 Autonomic Computing

The final goal of autonomic computing is to introduce “computing systems that can
manage themselves given high-level objectives from administrators” [KC03]. By
enabling self-management functionality policy-based computing is therefore a core
technology for implementing such systems. Self-managing systems maintain and
adjust their operations in the face of changing environmental states (e.g. workload
changes) and in the face of hardware or software failure. Often four aspects of self-
management are distinguished: self-configuration, self-healing, self-optimization
and self-protection [KCO03]. We shortly introduce these aspects in the following.

Self-configuration. Self-configuration is a feature that enables a software system to
configure itself, e.g., to different platforms or vendors in accordance to high-
level policies. The goal is that the system will adjust itself automatically if new
components are incorporated or the system is transferred to another platform.
Since installing and updating major applications is very time-consuming, such
functionality can greatly facilitate system management.

Self-healing. Manual diagnosing and fixing of failures in large and complex com-
puter systems is very tedious and system support is required. Self-healing
addresses this problem by providing means for detecting, diagnosing and re-
pairing failures automatically. For example, this could comprise analyzing
monitoring information such as log files, recognize failures and install patches
or alert the human administrators.

Self-optimization. Large computer systems usually have hundreds of parameters
that have to be set correctly to enable the system to perform optimally. There-
fore, a self-optimization functionality is required that automatically seeks op-
portunities to improve system performance and efficiency. This could be for
example realized by simulating different settings and measuring their effi-
ciency and adapting the parameter values accordingly.

Self-protection. Since companies realize more and more vital business activities
with computer systems and attacks become more frequent, system security
becomes increasingly important and hard to guarantee. Self-protection mecha-
nisms can address this problem by taking automatic defense measures against
malicious attacks and issue early warnings to avoid system-wide cascading
erTors.
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In the next section, we discuss how the idea of autonomic computing carries
over to complex software system implemented using service-oriented architectures.
In particular, we discuss how service-orientation features the different aspects of
self-management.

2.2.2 Policies in Service-oriented Architectures

When applying the concept of policy-based computing to service-oriented archi-
tectures, the management and administration of the service-oriented architecture—
often referred to as SOA Governance — can be (at least partially) delegated to the
system itself and thus reduce management effort. This requires that administrators
define appropriate policies how the system should behave. Since the behavior of a
SOA-based system is mainly determined by the question which task of the business
process is executed by which service, the major problem in SOA Governance is the
management of these bindings. In this context, self-manageability can be realized
by assigning services automatically according to policies reflecting the companies’
business objectives, regulative norms, such as Sarbanes—Oxley4, or IT-Governance
standards (e.g. ISO 20000°). An explicit specification of such policies makes sure
that the overall behavior of the software system will be in line with the compa-
nies’ high-level objectives and regulations, while many low-level decisions can be
automatically done by the system without human intervention. Thereby, the man-
agement effort can be reduced considerably.

As introduced in Section 2.1.2, by featuring the binding-by-constraint paradigm,
service-oriented architectures support flexible assignments of business process
tasks to available services. This is an important property for implementing self-
manageable software systems, since it enables the system to discover or replace ser-
vices itself as required. To enable a flexible binding mechanism, the constraints that
have to be met by all services are the set of policies defined by the company. Con-
sequently, constraint evaluation can be directly realized by the policy enforcement
mechanisms. In this sense, the creation, communication and enforcement of policies
are a central part of SOA Governance.

For example, self-healing functionality can be realized by a dynamic binding
mechanism, where a faulty service is replaced by an alternative service comply-
ing with the administrator’s policies. In the same line, self-optimization and self-
configuration can be realized by replacing a service once a better service or a better
service configuration is available in the system. Thus, policy enforcement has to
feature compliance checking as well as rating of services for different degrees of op-
timality. Not all kinds of policy languages are expressive enough to support this.
In Section 2.2.3 we introduce a policy classification scheme providing a coherent
framework to distinguish the different types of policies suggested in literature.

2.2.3 Policy Classification Scheme

In recent years, several policy specification languages have been proposed address-
ing a wide range of different purposes. In this section, we introduce a policy classi-

“Sarbanes-Oxley Act 2002, available at ht t p: / / www. | egal ar chi ver . or g/ soa. htm
°ISO 20000 IT Service Management Standards, available at http://20000.
st andardsdirect. org/
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Figure 2.3: Policy classification scheme.

fication scheme that distinguishes policies on a conceptual level according to three
orthogonal dimensions: horizontally we distinguish between the type of the policy
that determines the information that is expressible; vertically we differentiate the
levels of abstraction on which a policy is defined; finally, each policy (type) can be
expressed with various languages ranging from pure syntactic specification to lan-
guages with a well-defined formal semantics. Figure 2.2.3 illustrates these different
dimensions. The classification provides the basis for the design of an appropriate
policy language later in this work.

Policy Type

The notion of policy type originates from the field of agent design. Russel and Norvig
[RNO03, Chapter 2.4] distinguish between simple reflex agents, goal-based agents and
utility-based agents. To illustrate the three different approaches we use a transition
system as a common framework for comparing the policies embodied in these kinds
of agents. An labeled transition system is based on the notion of states and actions as
specified in the following definition.

Definition 2.6 (Labeled Transition System) A labeled transition system is a tuple
(S,A,S) where S is a set of states, A is a set of actions and —C S x A x S is a ternary re-
lation between states and actions called transition. If s,s' € S and a € A, then (s,a,s') €—

represents a transition from state s to s triggered by action a and is written s - s'.

A state s € S characterizes a system or system component and is usually described
by a set of attributes (directly or indirectly) measured by a sensor. In a current state s
a certain set of actions A can be taken which results in transitions to new states S’ C
S. For simplicity we consider only one-shot decisions and assume a deterministic
environment without uncertain transitions, i.e. for a given s and a possible a there is
exactly one s’ such that (s,a,s') €—.

Action Policies. Simple reflex agents select actions based on the current percep-
tion of the sensors. The policies that encode the agents behavior have the form of
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condition-action rules, which can be written as

if service supports encryption then jnvoke service.
» —_————

condition action

In line with [KW04] we call these policies action policies. By comparing the cur-
rent state S of a system to the condition (denoted by ®) specified in the policy, pos-
sible actions A’ C A are determined. Thus, an action policy can be seen as a function
Fp:AxS—{0,1}and A’ ={a € A|3s € S: Fp(a,s) = 1}. In order to exhibit rational
behavior the action policy set must cover the entire state space and only one action
should be triggered in one state. Since this can be hardly guaranteed in complex
scenarios, explicit mechanisms for conflict handling between policies are required.
For example, this can be realized by prioritizing policies or by explicitly introducing
“meta-policies” that define which policy should be used in case of a conflict.

Goal Policies. However, action policies are often not sufficient to make a deci-
sion since they only regard the current state s when selecting an appropriate action
a and do not consider information about the desired state s’. Goal policies, in con-
trast, avoid specifying what to do in a current state s, but rather specify the set of
desired states S’, which is called a goal. Goal policies define the desired state by
declaratively specifying constraints ® on its characteristics and can thus be seen as
a function Gg : S — {0,1} mapping each state to a value of 0 or 1, where 1 charac-
terizes a desired state and 0 a not desired one (i.e. S’ = {s € §|Gg(s) = 1}). With this
approach rational behavior has not to be specified explicitly, but is generated by the
system itself. This provides greater flexibility and frees human administrators from
knowing detailed system information [KW04]. Since reaching a desired state re-
quires knowledge about the actions to be executed to reach this state, sophisticated
planning or modeling algorithms might be required. Due to the fact that actions can
be derived automatically from goals, goal policies can be considered as higher level
forms of policies [KW04].

Utility Function Policies. Goal policies as defined above are limited in a sense
that any member of the set S’ is equally desired and thus such policies cannot reflect
preferences between states. That means a decision maker is indifferent between the
different states that can be realized. Preferences can be expressed by generalizing
goal policies in a sense that the function G is replaced by a function U : S — R that
maps each state to a real-valued number. In line with [KW04] we call declarative
representations of such functions utility function policies. By explicitly specifying the
trade-off between different states, they allow for unambiguous and rational decision
making also in cases where goal policies would lead to a conflict. By means of an
optimization algorithm the most desired state can be determined and goal as well
as action policies can be derived from utility function policies.

Level of Abstraction

Each of the policy types introduced above can be expressed on different levels of ab-
straction forming a policy continuum [Str02]. Generally, at least two main levels can
be distinguished [AAFPO3]: (i) Low level policies that are defined directly based on
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detailed system information. We call them system or device-driven. Since profound
knowledge about the system is required such policies are typically defined by tech-
nical experts. For example, such policies might define that services supporting the
AES encryption protocol with a key of 1024 bit are preferred, or that system logs may
deleted after two weeks with acknowledgement of the administrator. (ii) High level
policies, in contrast, are formulated from a business perspective and regulate more
general aspects such as service levels an application has to meet or IT-governance
regulations. These policies are relatively independent of the underlying technology.
Hence, we say they are business-driven.

Instead of distinguishing between business- and device-driven policy definitions
one can also divide the policy continuum according to roles of people defining the
policies, which leads to a more fine-grain segmentation. Strassner [Str02] suggests
introducing different types of views optimized for a certain user group. The Business
View allows defining high-level policies using business terms and avoids technical
details. The System View translates business policies to the technical terminology but
generalizes from a specific technology. For example, a business policy specifying
that only premium customers are allowed to use a certain service is translated to
system policy specifying that users taking the role of premium customers can obtain
a special type of access rights; others cannot. In a next step, the policies defined in
the Administrator View map them to specific technologies, e.g. to the specific user
model or system architecture. Depending on the concrete application and system
implementation further views can be defined. What views are required depends on
the groups of people defining policies for the system.

Formal Nature of Policy Language

The third dimension captures the language aspect. In recent years, a vast amount of
policy languages have been developed for various purposes including security as
well as trust aspects and business rules. Each approach comes with a policy speci-
fication language that enables expressing, storing and interpreting polices. Policy
languages range from natural language descriptions (e.g. [MBG99, MORO01]) via
more structured languages with a standardized syntax (e.g. [W3C06b, MAPGO3,
IBMO03]) to formal languages based on an underlying logical calculus (e.g. [BSD 04,
KPKHO05, Kag04, TBJ*03]). Natural language policies are deemed to be the most
intuitive approach for human policy authors. However, automatic interpretation
and enforcement of policies is not completely achievable due to highly ambigu-
ous nature of natural languages statements. Controlled vocabularies and structured
policies expressions can improve the situation and enable automated processing of
polices through a special interpreter. Since this interpreter implicitly defines the
semantics of the language syntax, it is difficult to determine their expressivity and
computational properties. Moreover, a well-defined semantics which can be real-
ized by mapping the language constructs into a logic (e.g., some variant of first
order logic) provides improved interoperability. This is particularly true in scenar-
ios where policies have to be exchanged between different independent companies
as it is typically the case in service-oriented architectures.
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Figure 2.4: Influence of information technology on the applicability of markets
[MYBS7].

2.3 Electronic Markets

The infrastructure coordinating service supply and demand can be seen as a market
platform. Economic theory distinguishes between two extreme forms of coordina-
tion that enable transactions between different parities: (i) markets and (ii) hierar-
chies. (i) Markets coordinate the transactions through supply and demand forces,
which determine prices, quantities, quality, etc. Traditionally, markets have been
used in scenarios with many autonomous participants, where products are simple
and mostly standardized, and where the required interactions are rather simple. (ii)
In hierarchies transactions are planned by controlling and directing at a higher po-
sition in the hierarchy. In scenarios with more complex products and interactions
usually a hierarchical coordination mechanism has been used. While markets are
preferable in terms of transaction costs (e.g. they provide more efficient information
processing), they typically come with much higher coordination costs than hierar-
chical approaches (e.g. selecting suppliers, negotiating contracts, paying bills, etc.)
[MS84].

However, with the availability of markets based on more sophisticated informa-
tion and communication infrastructure a shift towards market-based coordination
can be realized [MYB87]. Such electronic markets are institutions that allow the ex-
change of goods and services between multiple participants through global commu-
nication networks, such as the Internet. In the process, they create economic value
for buyers, sellers, market intermediaries, and for the society at large [Bak98].

Electronic markets differ considerably from classical markets by being indepen-
dent from time and space [Sch93]. For example, they enable world-wide access and
trading all day and night which is not possible in most “off-line” markets. There-
fore, more information can be gathered in a shorter time and due to the electronic
nature additional market services can be provided, which reduce the transaction
costs in the market. For example, they may reduce search costs for products and
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information, enable companies to automate their transactions with business part-
ners all over the world, and facilitate product customization and aggregation. In
fact, improved information representation and handling within electronic markets
leads a much broader applicability of markets beyond simple uniform goods and
commodities. Figure 2.4 captures this idea by illustrating applicability of the coor-
dination mechanisms depending on:

* product complexity, i.e. the amount of information required for describing a
product in such detail that a meaningful matching and selection can be car-
ried out.

e asset specificity, which refers to the fact that certain products cannot be used
by other person or companies, because they are not easily transferable; for
example, a huge machine or internalized knowledge.

For example, even complex products can be traded via an auction if market infras-
tructure provides an adequate representation formalism (i.e. bidding language) and
matching algorithms. In this context, the concept of ontologies introduced in Section
2.4 plays a crucial role.

Before we come to the representational aspects, we look in more detail on the
market process. Section 2.3.1 introduces the different phases the market process can
be partitioned and Section 2.3.2 provides more insight into the contracting process
by discussing different market mechanisms.

2.3.1 Market Phases

The exchange of products and services between customers and suppliers is carried
out through business transactions, which can be seen as the process of initiating, ar-
ranging and completing a contractual agreement about the exchange of goods and
services [LS98]. Langenohl [Lan94, pp. 18-22] identifies three main transaction
phases of electronic markets — information, agreement and settlement phase — which
are discussed in the following.

Information Phase: In the information phase market participants gather all kinds
of information about the participants in the market and the products avail-
able. This could for example comprise information about the reputation or
credit rating of potential business partners or the concrete technical specifica-
tions of a product. Based on this information an offer (either to sell or buy)
is generated. With the submission of the offer to the market the information
phase for a certain market participant ends.

Agreement Phase: Starting with receiving the offers and requests from the market
participant, the agreement phase constitutes the core component of a market
infrastructure. Strobele and Weinhardt [SW03] distinguish between three steps
that have to be executed to transform requests and offers to legally binding
contracts:

* Matching: Matching (Matchmaking) is the process of comparing requests
and offers with the goal of finding suitable counterparts. Matching is
thus a core functionality of a market mechanism. The quality of a market
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crucially depends on the quality of the matching algorithms used. In fact,
the quality will be low if many ill-suited matches are realized as well as if
many suitable matches are not realized. This corresponds to the concepts
of precision and recall known from information retrieval [vR79].

 Allocation: An allocation is a function that maps the set of requests to a set
of offers. Note that this mapping does not have to be bijective in sense that
for all offers and requests a suitable counterpart is assigned. For example,
several requests might be assigned to an extremely competitive service
offer, or in case of excess demand some requests may not be assigned to
any offer. Determination of an allocation can be done by means of the
take-it-or-leave-it principle or it might involve negotiations or auctions
mechanisms to increase the efficiency of the market.

* Acceptance: After the allocation is determined, for each pair of customers
and providers allocated to each other a legally binding contract has to be
concluded. With closing a contract an agreement between a customer and
provider is reached and thus the agreement phase is completed.

Settlement Phase: Finally, in the settlement phase the transaction agreed upon is
carried out, which might involve the exchange of products or the invocation
of a service. With a proper execution a contract is fulfilled. The contractors
might further want to verify if a certain execution complies with the terms
agreed-upon. This involves monitoring of the execution.

In the following, we will have a closer look on the agreement phase, in which a
market mechanisms provides matching and allocation functionality.

2.3.2 Market Mechanisms

Market mechanisms can be seen as an institution according to the Neo-classical in-
stitution theory that define the set of admissible actions (e.g. available messages in
the communication protocol), and the rules that define how the outcome is deter-
mined based on these actions. According to [Par01, MMWO06], an outcome O refers
to an allocation of products to market participants i € {1,...,N}. A market mecha-
nism thus consists of two set of rules: those defining the set of admissible actions
(called strategies) which are denoted by X;...2Xy and those for selecting the alloca-
tion based on the actions which is represented by a function g: % x --- x Ty — XN,
In the following, we distinguish between between two basic forms of market
mechanisms: rather simple mechanisms based on fixed prices and more complex
mechanisms featuring dynamic pricing used in negotiations and auctions.

Fixed-price Mechanisms

In a fixed-price mechanism prices are statically defined by the market participants.
In particular, the price does not react to the bids and therefore does not adapt to
new information coming in the market. Such an approach is usually adopted in tra-
ditional retail markets, where the supplier dictates the price leaving no room for ne-
gotiations. A popular fixed-price mechanism is the hit-and-take mechanism described
below.
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Definition 2.7 (Hit-and-Take Mechanism) A hit-and-take mechanism (aka take-it-or-
leave-it mechanism or offer/accept mechanism) requires the provider (requester) to announce
its transaction proposal including detailed product description and fixed price. This price
represents the acceptable price for which the product can be sold/bought. Given this price
(together with the exact product description and trading conditions) the potential trading
partner either accepts this transaction proposal or declines it. Conflicts arising due to ex-
ceeding demand and supply are handled according to the first come first serve principle.

For example, if a price fixed by the provider is lower than the corresponding
reservation price of the requester, a potential transaction is found by the mechanism;
if the price fixed by provider is higher then the requester’s price, no transaction can
take place. In this context, the problem of a fix-price mechanism becomes evident. In
scenarios where prices of products are not known exactly (e.g. a product is unique
or extremely volatile) it is hard to fix a price in a way that the market performs
optimally, e.g. a maximum of transactions are carried out.

Dynamic-pricing Mechanisms

In order to address the problem of inefficient allocations, dynamic pricing mecha-
nisms can be used. Dynamic pricing refers to a mechanism where prices and other
transaction conditions are dynamically fixed based on the interplay between supply
and demand. According to [Hur73], such a coordination mechanism can be used to
allocate resources efficiently to requesters. They allow the determination of prices in
cases where the true value is not known and the market participants” estimate may
be imperfect. There are two main forms of dynamic-pricing mechanisms which are
discussed in the following.

As a first category of mechanisms featuring dynamic pricing we consider nego-
tiations. As defined by [LW]01, BKS03], in the following we use a rather general
definition that covers mechanisms ranging from highly individual bilateral negoti-
ations to mechanisms with very structured protocols.

Definition 2.8 (Negotiation) A negotiation is an iterative, progressive communication
and decision making process by which a group of agents communicate with one another
to try to reach an agreement on some matter of common interest. Usually the process starts
with a rather inefficient offer and leads to a compromise (or to a disagreement). A negotiation
between exactly one buyer and one seller is called a bilateral negotiation.

As a second category of dynamic-pricing mechanisms we introduce auctions.®

The most appealing properties of auctions are their process efficiency (e.g. simple
communication protocol, high rates of Pareto-efficient outcomes, fast convergence
to equilibrium) and ability to manage a large number of bidders. Therefore, auctions
have emerged as the primary market institution for electronic commerce.

Definition 2.9 (Auction) An auction is a market institution with an explicit set of rules
determining resource allocation and prices on the basis of bids submitted by the market par-
ticipants [MMS87]. Thus, auctioning is the form of negotiation with simple well-defined
rules, but it naturally includes multiple parties [Kar03].

®Note that auctions (and particularly on-line auctions) can be seen as a special kind of negotiation
mechanism having a distributive negotiation protocol and multiple parties. For a detail discussion
on the relation of negotiation and auction mechanisms the interested reader is referred to [KNTO0,
BKS03].
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Naturally, the design of negotiation systems requires a highly interdisciplinary
approach drawing from computer science and information systems, economic sci-
ences and management, and law and social sciences [BKS03, WHNO3]. In this con-
text, law and social sciences mainly contribute with qualitative studies of the mar-
ket participants” behavior and prescriptive as well as descriptive negotiation mod-
els. Computer science deals with designing electronic market platforms, decision
support systems, and agent-based simulation framework for markets. Economics,
finally, contribute to the field by providing techniques for constructing agent strate-
gies and formal negotiation models that can be used for predicting market out-
comes. This usually involves a game-theoretic analysis from which certain con-
clusions for the institutional design of market mechanisms can be drawn, i.e. how
should a social choice function look like that implements g(-) of the mechanism?
For example, in one of the first game-theoretic approaches to negotiations Nash
[Nas50, Nas53] describes a two-person multi-item negotiation problem and presents
a technique for determining equilibria that represent optimal strategies for the mar-
ket participants. Typically, the goal is to design market mechanisms with the fol-
lowing characteristics (compare e.g. [Par01, DJP03, BKS03, SNVW06]):

* Pareto-optimal outcomes, i.e. there is no outcome, where one agent is better-off
without other agents being worse-off.

¢ The pricing mechanism should be incentive compatible, i.e. each self-interested
agent has an incentive to bid its true valuation of the product.

e Allocative efficiency, i.e. the total utility across all market participants should be
maximal.

¢ The outcome should be budget balanced, which means that the sum of all pay-
ments in the market is zero. No money is removed from or injected into the
system.

¢ Individual rationality, which means all participants realize a nonnegative utility
in equilibrium.

A wide range of different electronic negotiation and auction mechanisms has
been proposed in literature and some of them have already been successfully im-
plemented in practice (e.g. eBay’, onSale®). For a more detailed overview of nego-
tiation and auction mechanisms refer to overview articles such as [OR05, LLSG04]
for (bilateral) negotiations and [MW82, dVV03, ADRO5] for auctions, respectively.

In addition, several classification schemas for dynamic-pricing mechanisms have
been proposed. [SWO03] provides a comprehensive classification of negotiation and
auction mechanisms according to endogenous and exogenous factors. Other classi-
fications have been presented, e.g., by [LW]J01] focusing on automated negotiations
between agents and [WWWO01] focusing purely on auctions.

For our work, a coarse classification along the main dimensions of a market
mechanism is sufficient. We adopt the view of [BKK"02], where a market mech-
anism is described by three dimensions:

"www.ebay.com

8http:/ /www.onsale.com/
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* Multi-attribute: In order to allow negotiations not only about price, there are
mechanisms that support multiple attributes, which capture additional char-
acteristics of the product such as quality aspects.

* Multi-unit: Often a buyer requires several units of a product at once. In this
case, often volume discounts are provided or one time costs such as regis-
tration fees have to be paid. Obviously, these aspects have to be explicitly
considered during negotiation.

* Multi-item: In some cases not only one product is required but a bundle of
products. In such cases, the value of a bundle containing both products might
be valued higher by a customer than the sum of the value for the single prod-
ucts. We call this superadditivity. Superadditive prices occur in case of comple-
mentary products that are usually used together, such as desktop computers
and computer monitors. Similarly, subadditivity describes substitutes where
products suit the same purpose, e.g. a laptop and a desktop computer. Mech-
anisms supporting multiple items are also called combinatorial market mecha-
nisms.

In the context of Web service markets, we will see later (Chapter 4) that such
multi-dimensional markets are required. As already discussed above, in order to
realize market mechanisms in a distributed environment with complex products
like Web services an expressive knowledge representation formalism with the cor-
responding matching algorithms is required. Therefore, in the next chapter we in-
troduce the concept of ontologies which provide expressive means for representing
market information and an executable calculus for handling this information in an
efficient way:.

2.4 Semantic Technologies

In this section, we present basic technologies for the formalization of knowledge
and its processing within machines. Knowledge representation and reasoning is
a branch of symbolic Artificial Intelligence that aims at designing computer sys-
tems that enable reasoning about a machine-interpretable representation of domain
knowledge. In this section, we show how ontologies as conceptual models enable for-
malizing the semantics of information in heterogeneous, distributed systems, such
as service-oriented architecture or Web-based markets. Thereby, an ontology for-
mally specifies the relationship between the data and its meaning, and thus pro-
vides an unambiguous language that can be interpreted by humans and machines
alike.

After defining the concept of ontologies in Section 2.4.1, we discuss languages for
the specification of ontologies in Section 2.4.2 focusing on the Web Ontology Lan-
guage (OWL), the Semantic Web Rule Language (SWRL) and the query language
SPARQL. We introduce a classification of ontologies according to their generality in
Section 2.4.3 and then present the foundational ontology DOLCE as a basis for the
ontologies developed throughout this work in Section 2.4.4.
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2.4.1 Ontologies

While originally the term ontology denotes a branch of metaphysics introduced by
Aristotle [Ari08] that addresses the philosophical investigation of existence, on-
tologies in computer science are computational artifacts that represents knowledge
about a domain of interest. In recent years, ontologies became an important tech-
nology for knowledge sharing in distributed, heterogeneous environments, partic-
ularly in the context of the Semantic Web [BLHLO1]. Within the Semantic Web com-
munity the following definition is predominantly used [SBF98].

Definition 2.10 (Ontology) An ontology is a formal explicit specification of a shared con-
ceptualization of a domain of interest.

Requiring an ontology to be an “explicit specification of a conceptualization”
was first introduced by Gruber [Gru93]. Conceptualization refers to the way knowl-
edge is represented. It is encoded in an abstract manner using concepts and rela-
tions between concepts. Abstractness refers to the fact that ontologies try to cover as
many situations as possible, instead of focusing on particular individuals [Gua98].
An “explicit specification” refers to the fact that the concepts and the constraints
on their use are explicitly defined in an ontology and thus accessible for machines.
This basic definition is extended by requiring a “formal specification” and a “shared
conceptualization” [Bor97]. In this context, formality refers to the type of knowledge
representation language used for specifying the ontology. This language has to pro-
vide formal semantics in a sense that the domain knowledge can be interpreted by
machines in an unambiguous and well-defined way. In addition, the vocabulary for-
mally defined by this language should represent a consensus between the members
of a community. By committing to such a common ontology, community members
(or more precisely their software agents) can make assertions or ask queries that
are understood by the other members. Finally, an ontology always covers knowl-
edge about a certain “domain of interest”. Therefore, many applications use a set of
ontology modules that model different aspects of the application.

There is a broad range of application areas where ontologies have been
successfully used within the last years. Examples are information integration
(e.g. [ABABT05]), matching of products or user profiles (e.g. [NSDMO03, CCC*04]),
and the search of textual or multimedia content (e.g. [SR03, PBS*06]). For the dif-
ferent applications different ontology languages with a different degree of formality
are required. For example, in many applications already a rather low degree of for-
malization can be sufficient to realize immediate benefits [Hen03].

Common to most languages are the principal constituents: concepts, relations
and instances. Depending on the concrete language, they are represented differ-
ently. For instance, they map to generic nodes in a semantic network, to unary
predicates in logic or to concepts in description logic [GHAOQ7]. Instead of introduc-
ing all of these different formalisms, we refer the reader to [SS04b] for an overview
of ontology languages. In the following, we introduce only formalisms that are
specifically required throughout this work.

2.4.2 Ontology Formalisms

In this section, we introduce the languages that are used for representing and query-
ing knowledge within the service-oriented architecture. We rely on the ontology
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language OWL which is standardized by the World Wide Web Consortium (W3C)°.
We first introduce the main ideas behind OWL as well as its logical foundations.
Then the rule language SWRL is presented that considerably increases expressive-
ness of OWL by supporting additional axioms. Finally, a query language for our
OWL and SWRL knowledge bases is introduced that provides means for retrieving
knowledge from the ontology.

Web Ontology Language (OWL)

In order to guarantee mutual understanding in distributed environments, the
underlying logic has to be standardized. The Web Ontology Language (OWL)
[W3C04c] is an expressive ontology language standardized by the World Wide Web
Consortium. Historically, OWL emerged from several former knowledge represen-
tation and description languages, like SHOE [Hef01] and DAML+OIL [W3C01a].
The development was mainly driven by the need to build one widely accepted
and backward compatible standard for knowledge sharing in the Web. The logical
foundation of OWL is a subset of first-order logic called description logic [BCM™03].
Subsequently, we first introduce the family of description logic languages and then
show how they can be used in a Web environment.

Description Logics. The development of description logic was influenced by ideas
stemming from the work on frame languages, such KL-ONE (see [BS85]), which
provided a logical basis for interpreting individuals, concepts (unary predicates)
and roles (binary predicates) between them. Concepts can be built by concept and
role constructers. In addition, terminological axioms can be used to define how
concepts or roles are related and assertional facts can be used to define statements
about the properties of individuals.

A major focus of research has been the trade-off between expressiveness of the
knowledge representation language and the difficulty of reasoning over this lan-
guage [BL84]. In practical applications it is particularly important that algorithms
exist, which allow for deriving logical consequences in a sound and complete man-
ner. If one can guarantee that these algorithms always terminate, the corresponding
logic is called decidable.

Decidability of a description logic depends on the provided constructors from
which concepts and relations can be composed. Table 2.4.2 gives a short overview
of the constructs available in a particular description logic. OWL comes in three
levels of expressiveness: OWL-Lite, OWL-DL and OWL-Full, reflecting different
degrees of expressiveness and in turn also different degrees of scalability (compare
[HPSvHO3]). OWL-Lite as well as OWL-DL directly map to a corresponding de-
scription logic dialect, whereas OWL-Full departs from the description logic seman-
tics.

According to [HPSvHO03], OWL-Lite is equivalent to the SHZF (D) descrip-
tion logic and it is in worst case decidable within deterministic exponential time
(EXPTIME complexity). OWL-DL extends SHZF (D) with nominals and allows un-
qualified number restrictions. Hence it is equivalent to the SHOZN (D) descrip-
tion logic which is in worst case decidable in non-deterministic exponential time
(NEXPTIME complexity) and for which no nearly optimal and complete inference

http:/ /w3c.org
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Symbol | Available Constructs

conjunction, universal value restriction

and limited existential quantification

disjunct and full existential quantification with full negation
transitive role (owl:TransitiveProperty)

shortcut for ALCR+

role hierarchy (rdfs:subPropertyOf)

inverse role (owl:inverseOf)

functional role (owl:FunctionalProperty)

nominals, i.e. enumeration of classes or data values
(owl:oneOf and owl:hasValue)

qualified number restrictions

unqualified number restrictions

concrete domains

OZ0 CNNIOTa &

Table 2.1: Description logic variants [BCM*03].

algorithm exists. In general, OWL-Full is shown to be undecidable [Mot05]. In the
following, we define the syntax and semantic of the most expressive decidable lan-
guage OWL-DL, which fully subsumes the OWL-Lite fragment and is used through-
out the work.

The syntax of SHOZN (D) is given by concept as well as role descriptions and
constructers for transforming them into complex concept and role descriptions. In
addition, individuals and datatypes are supported. The meaning of these modeling
constructs is formally defined via a model theoretic semantics, i.e. it is defined by re-
lating the language syntax to a model consisting of a non-empty set of objects AZ,
denoted by a domain, and an interpretation function Z, which maps entities of the
ontology (e.g. an atomic concept ¢) to concrete entities in the domain (e.g. the set
T C AT) [HPSVHO3]. Thereby, axioms define certain constraints on these interpre-
tations. Based on [BCM™03], the following list defines certain concept descriptions
and constructors with their abstract syntax and model theoretic semantic. Let A, R,
and I be pairwise disjoint finite non-empty sets of atomic concepts, roles and indi-
viduals, respectively.

e BOTTOM: the concept | represents a shortcut for ¢ [ —¢ with ¢ € Aand 17 =
@.

e TOP: the concept T represents a shortcut for ¢ Ll ~¢ with ¢ € A and TZ = AZ.

¢ Conjunction: the conjunction of concepts ¢ M ¢ (with ¢, € A) refers to the set
of individuals belonging to both concepts, i.e. (¢ )L = ¢Z N pZ.

* Disjunction: the disjunction of concepts ¢ L i (with ¢, ¢ € A) refers to the set
of individuals belonging to either ¢ or ¥, i.e. (¢ L)L = ¢* U 7.

* Negation: the complement —¢ with ¢ € A contains all individuals not con-
tained in ¢, i.e. =¢p* = AT\p?

* Existential restriction: an existential restriction IR.¢ denotes that only indi-
viduals with a relation R belong to the concept ¢, where R € R and ¢ € A,
ie. (GR.¢). = {a c AT|Fb.(a,b) € RT Ab € ¢}



2.4 Semantic Technologies 35

* Universal restriction: an universal restriction VR.¢ denotes individuals, for
which all roles R point to the concept ¢, where R € R and ¢ € A. The in-
terpretation is given by (VR.¢)? = {a € A?|Vb.(a,b) € R — b € ¢*}.

* Unqualified number restrictions: an unqualified number restriction >, R, <, R,
or = nR defines concepts of individuals having at least, at most, or exactly n
relations R € R, respectively. The semantics for >, R is given by (>, R)I =
{a € AT||{b € A*}|(a,b) € RT}| >,}. The definitions for <, R and =, R are
analogous.

* Nominals: nominals I are individuals used in concept expressions and they are
interpreted as singleton sets that consist exactly of one element of the domain,
ie I C AT and |IF| =1.

In the following, we introduce an additional concept constructor originally not
contained in OWL-DL, but planned for the next version of OWL (Version 1.1).
Namely, this constructor is a qualified number restriction, which extents unquali-
fied number restrictions in that a range concept can be defined. Qualified number
restriction are already supported by most OWL-DL reasoners. The semantics of
qualified number restrictions is given as follows:

* Qualified number restrictions: an qualified number restriction > nR.¢, < nR.¢,
or = nR.¢ defines concepts of individuals having at least, at most, or exactly n
relations R € R to a concept ¢. The semantics for > 1R is given by (> nR)? =
{a € AT||{b € AT}|(a,b) € R Ab € ¢*}| > n}. The definitions for < nR.¢ and
= nR.¢ are analogous.

The description logic concept constructers are augmented by role constructers
that combine role and/or concept descriptions to more complex role descriptions.
SHOIN (D) supports transitive closure as well as inverse roles:

e Transitive closure: The transitive closure R with R € R allows modeling the
transitive characteristic of roles, i.e. (R*)? is the transitive closure of RZ.

* Inverse roles: An inverse role R~ with R € R has inverted domain and range
descriptions, i.e. (R™)? = {(b,a) € AT x A|(a,b) € RT}.

Based on the concept and role definitions introduced above, terminological and
assertional axioms can be defined, which constrain the allowed interpretations.
These axioms cover concept (role) inclusion, equality and assertion are defined as
follows.

* Inclusion: If a concept ¢ € A is a subconcept of another concept i € A, we write
¢ C 1. In this case ¢ C * holds. The same is true for roles and is defined
analogously for the inverse inclusion “21”. A set of concept inclusions is called
concept hierarchy, a set of role inclusions role hierarchy.

* Equality: Concept equality ¢ = ¢ is given if the two concepts classify the same
individuals ¢ = ¢ (role equality is defined analogously).

* Assertion: A concept assertion defines that an individual 2 belongs to a concept
¢. Concept assertions are denoted by ¢(a) and the semantics is defined by
a® € ¢*. Similarly, role assertions R(a,b) are defined as (a”,b?) € R”.
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By means of the underlying model theoretic semantics that describes models that
are valid according to a certain description logic theory, logical consequences can be
drawn from the set of axioms defined in the ontology — a process usually referred to
as deduction or inferencing. Thereby, knowledge can be derived that is not explicitly
stated but that is implicitly given by the logical theory [GHAO07]. When an axiom F
satisfies an interpretation Z (or if 7 is a model of F), we write Z = F. Incase Z = F
holds for all axioms F in the knowledge base KB, we say the KB is satisfiable. A
logical consequence is denoted by KB = F. To illustrate this consider the following
example.

Example 2.1 Assume a service registry where a description logic knowledge base is used
to describe, classify and store Web service offers. For example, consider the description of a
route planning Web service. We define that (A1) a Service'® has at least one input (indicated
by relation hasInput) and output (indicated by relation hasOutput), (A3) a RoutePlan-
ningService is a Service has exactly one role hasStart as well as hasDestination and at
least one role hasRoute, which (A4/A5) are specializations of hasInput and hasOutput,
respectively. In addition, (A6) assume a concrete Service that (A7) provide a route AS)
between two places within Germany.

(A1) Service C JhasInput. T M dhasOutput. T
(A2) RoutePlanningService T Service [l =1 hasStart [ =1 hasDestination I
(A3) JhasRoute. T
(A4) hasStart T hasInput;, hasDestination C hasInput
(A5) hasRoute C hasOutput
(A6)  Service(ServiceCompA)
(A7) hasRoute(ServiceCompA, calculatedRoute)
(A8) hasStart(ServiceComp A, Germany),
hasDestination(ServiceComp A, Germany )

From a set of such axioms conclusions can be derived that are not explicitly stated in the
ontology, e.g. a subsumption hierarchy between concepts in the ontology can be constructed.
For example, consider the case where a requester is looking for a RoutePlanningService in
the knowledge base described above (A1)-(A8). In this case the instance ServiceCompA
is also returned as a result. Although it is not explicitly state that ServiceCompA is an
instance of RoutePlanningService, we can infer this from the knowledge base, viz., KB |=
RoutePlanningService(ServiceCompA).

This is particularly important for matchmaking in heterogeneous markets, where offers
and requests are usually described on different levels of abstraction, e.g. when looking for a
route planning service for Germany also route planning service for entire Europe are rele-
vant.

An Ontology Language for the Web. In order to represent ontologies in a com-
pact and convenient way, we have described ontologies up to now using the ab-
stract description logic syntax presented in [BCM™03]. However, in order to make

19Throughout the work entities from an ontology are formatted using the slanted style. Sometimes
concept names in the text are used in plural to improve the readability.
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1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

<rdf:RDF xmlIns="http:/ /www.ontoware.org/service#"

xml:base="http:/ /www.ontoware.org/service"
xmlns:xsd="http:/ /www.w3.org/2001/XMLSchema#"
xmlns:rdfs="http:/ /www.w3.0rg/2000/01/rdf—schema#"
xmlns:rdf="http:/ /www.w3.0rg/1999/02 /22 —rdf —syntax—ns#"
xmlns:owl="http:/ /www.w3.org/2002/07 / owl#">
<owl:Ontology rdf:about=""/>
<owl:Class rdf:ID="RoutePlanningService">
<rdfs:subClassOf rdf:resource="#Service"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#supports"/>
<owl:someValuesFrom rdf:resource="#Navigation"/>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#start"/>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#destination"/>

<owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>
<owl:Class rdf:ID="Service" />

32 </rdf:RDF>

Listing 2.2: OWL ontology in XML/RDF serialization.

the description logic applicable for a heterogeneous, distributed environment such
as the Web, resources (e.g. ontology elements) have to be uniquely identifiable in
the system, support for extensive modularization has to be provided and compli-
ance with existing Web languages and protocols has to be guaranteed. Thus, OWL
uses Uniform Resource Identifiers (URI) for defining the vocabulary and provides
a serialization using XML [W3C04a], which comes with support for datatypes and
data values [W3C04e]. In addition, OWL provides an import mechanism for reusing
other ontologies and therefore enables modularization, where different ontologies
can be created and updated by different parties and still be shared within a dis-
tributed environment. Listing 2.2 shows an excerpt from the XML/RDF serializa-
tion of Example 2.1.
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Built-in Name Functionality
swrilb:equal(x,y) trueiff x =y
swrlb:notEqual(x,y) true iff x # y

swrib:lessThanOrEqual(x,y) true iff x <y
swrib:greaterThanOrEqual(x,y) trueiff x >y

swrilb:add(z,x,y) trueiffz=x+y
swrib:subtract(z, x,y) trueiffz=x—y
swrlb:multiply(z,x,y) trueiff z =x*y
swrib:divide(z,x,V) trueiffz=x/y
swrlb:max(z,x,y) true iff z = max(x,vy)

Table 2.2: Subset of SWRL built-ins. A full list is available in [HPSB™04].

Semantic Web Rule Language (SWRL)

In order to define our ontology, we require additional modeling primitives not pro-
vided by OWL-DL. For example, due to the restriction to tree structures [GHVDO03]
OWL-DL does not support triangle relations between concepts, such as the role suit-
ableFor saying that a Service is suitable for a certain Country if the starting point
of a route is in this Country. Obviously, this rule leads to non-tree models and
the description logic becomes undecidable. In contrast to description logics, rule
languages can be used to express such triangle relation. Intuitively, the head (conse-
quent) of rule holds if the condition specified in the body (antecedent) holds. Thus,
the example above can be formalized as follows:!!

(R1) suitableFor(x,y) «—Country(y), start(x,z),locatedIn(z,y)

However, compared to description logics, rule-based approaches have also
drawbacks, e.g. they are restricted to universal quantification. The Semantic Web
Rule Language (SWRL) [HPS04, HPSB*04] allows us to extend OWL with Horn-
like rules that are interpreted according to first-order semantics. In addition, SWRL
provides a XML-based syntax for encoding rules within an ontology, an extension
to the OWL semantics which provides formal meaning for SWRL constructs, and an
extensible set of built-in predicates'? that can be used for implementing operations
such as arithmetic calculation, string comparisons or manipulations, etc. The SWRL
built-ins used in this work are introduced in Table 2.2.

Unfortunately, reasoning with knowledge bases that contain arbitrary SWRL ex-
pression usually becomes undecidable [HPS04]. Thus, we restrict ourself to DL-safe
rules [MSS05]. DL-safe rules keep the reasoning decidable by placing constraints on
the format of the rule, namely each variable occurring in the rule must also occur in
a non-DL-atom in the body of the rule. This means that the identity of all objects re-
ferred to in the rule has to be known explicitly (i.e. they have to be explicitly named
in the knowledge base). For example, Rule R1 is not DL-safe, since x,y, and z occur

HFor the notation of rules we rely on the standard first-order implication syntax. In the following,
rules are labeled by R1,...,Rn.
12Whenever built-ins are used within a rule, they are identified by the prefix “swrlb”.
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only in DL-atoms. However, the rule can be made DL-safe by adding the non-DL-
atoms O(x),O(y), and O(z) to the body, which ensure that the variables refer only
to known objects, i.e. individuals in the knowledge base. Since we deal only with
known instances in our application and the terms O(x) are automatically added by
the reasoner, we do not explicitly mention the non-DL-atoms O(x) in the following.

SPARQL

In order to access information stored in a knowledge base, a query language is re-
quired. Queries can be seen as “intentional” denotations [LL87] of individuals in
the knowledge base representing required characteristics without referring to an
concrete individual. The emerging standard for querying RDF and OWL ontolo-
gies is the query language SPARQL [W3C06a] currently being standardized by the
W3C. In addition to a SQL-like query syntax, SPARQL provides a data access pro-
tocol based upon HTTP as well as SOAP, and a XML format in which query re-
sult are returned. Although originally a query language for RDF graphs or triples,
SPARQL can be also used to express conjunctive queries over description logic knowl-
edge bases. A detailed discussion how the SPARQL syntax can be used to encode
conjunctive queries is presented in [Haa06]. Listing 2.3 shows the language syntax
of SPARQL.

1 PREFIX ns:<uri of namespace>

SELECT [DISTINCT] <projection>

FROM <uri of dataset>

WHERE({<graph pattern> [FILTER <expression>]}

[ORDER BY <attribute> [ASC | DESC] | LIMIT <n> | OFFSET <m>]

Listing 2.3: SPARQL syntax.

Keywords like SELECT, FROM WHERE, FI LTER, etc. are interpreted in line with
their meaning in SQL. The meaning of <pr oj ecti on>, <gr aph pattern> and
<expr essi ons>is given as follows [W3C06a]:

Q= W DN

e <projection>: A Projection p(QS,VS) is the solution {(v,QS(v))|vinVS}
over a query solution (QS) and a set of wildcard variables (VS). In other
words it is a selected subset of the variables defined in the <gr aph pattern>
section.

e <graph pattern>: There are four OWL relevant types of graph patterns that
can be used in a query:

- basic: A subject-predicate-object  pattern  binding OWL
Classes and (or) properties to variables. For example,
?x <http://exanpl e. de/ a. oW #hasVal ue> ?z. Here ?x is

an variable representing an OWL individual whereas ?z is an variable
representing either an OWL individual or an data literal depending on
the range of property <ht t p: / / exanpl e. de/ a. oM #hasVal ue>.

- group: One graph pattern containing a conjunction of other graph pat-
terns that must all match.

- optional: A graph pattern that may fail to match but the query is still
executed against the data without failing entirely.
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Figure 2.5: Categorization of Ontologies. Arrows represent specialization relation-
ships.

— union: A combination of two graph patterns that bind the same variables
and may match.

* <expression>: A regular expression that is supplemented by a subset of

the built-in functions and operators defined by XQuery [W3C07b]. To get an
overview about the applicable unary, binary and trinary operators as well
as the regular expression grammar the interested reader is referred to the
[W3CO6al].

After having defined the language for expressing knowledge bases including

rules and queries for accessing the data stored in this knowledge bases, we discuss
the different types of ontologies that can be built based on this languages in the next
section.

2.4.3 Categorization of Ontologies

One of the central ideas behind ontologies is the possibility of reusing existing on-
tologies and thus reducing the modeling effort. However, it has turned out that
different types of ontologies are more suitable for reuse than others. In this context,
the generality of the ontologies is important: general ontologies can be reused in
many different contexts, whereas very specific ontologies are rarely reused. Thus,
the following categorization of ontologies can be applied [Gua97, Obe05]:'3

Top-level Ontology: Top-level ontologies describe general concepts, such as object,

event, action, etc. that may be present or occur in many (or even all) dif-
ferent domains and applications. Therefore, these concepts are independent
from a concrete usage scenario and can be shared by a large community of
users. Top-level ontologies are also often called foundational, generic or upper
level ontologies. Since they are easily reused, it is worth devoting effort into
building philosophically sound and highly axiomatized top-level ontologies,
which unambiguously describe the vocabulary. Prominent examples of top-
level ontologies are DOLCE [MBG™02b] and SUMO [NPO01].

130f course, also other categorization dimensions have been proposed in literature. For exam-
ple, ontologies can be classified according to the level of formality or with respect to the ontology
language used.
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Core Ontology: Core ontologies are situated between the two extremes of top-level
and domain/task/application ontologies. They are still application indepen-
dent and generic over a set of domains, but serve a specific purpose required
in different domains. For example, Oberle [Obe05] presents a Core Ontology
of Software Components and Services which describe certain aspects of com-
puter systems independent from a certain application. Core ontologies reuse
the vocabulary defined in the top-level ontology.

Domain or Task Ontology: These ontologies describe vocabulary specific to a cer-
tain domain, such as financial instruments or location information, or specific
to a certain task such as selling or diagnosing. Much work has already been
devoted to domain ontologies in the area of medicine, genetics, geography, etc.
and to task ontologies focusing on scheduling and planning tasks, intelligent
tutoring, etc.

Application Ontology: An application ontology, finally, introduces vocabulary to
adapt the ontologies above to a concrete application. Usually they can be
rarely reused for other application contexts.

In this work, we mainly focus on developing appropriate core ontologies, e.g.,
for expressing service offers, requests and contracts in a Web service market. Since
core ontologies are grounded in a top-level ontology, we introduce the foundational
ontology DOLCE that provides the modeling basis for our work in the next section.
The entire ontology framework for electronic markets is presented in chapter 6.

2.4.4 The Foundational Ontology DOLCE

While for some applications low quality ontologies with ambiguous vocabulary def-
initions might be sufficient (e.g. for ontology-based text classification [BCHS05] or
information retrieval [Sto04]), exact definitions of the term are required for estab-
lishing consensus in a community (especially for persons joining the community).
In order to explicitly capture the ontological commitment in a community, a rich ax-
iomatization that eliminates terminological and conceptual ambiguities is required.
However, building common ontologies in a bottom-up manner, where different on-
tologies of participants are integrated, might not be possible, since the intended
models of the ontologies do not overlap [BGG'02]. By grounding the different do-
main ontologies on a common basis, a certain overlap can be ensured and reaching
consensus becomes considerably easier. As introduced in Section 2.4.3, we call such
a common basis foundational (or top-level) ontology.

Foundational ontologies are high-quality formalizations of domain independent
concepts and associations that contain a rich axiomatization of their vocabulary.
Such formal principles are required to allow a comparison and integration of dif-
ferent conceptualizations [GMO3]. To enable high axiomatization, foundational on-
tologies are usually formalized with a rather expressive logic, e.g. full first order
logic or modal logic. While this expressivity enables exact definitions of the vocab-
ulary, it also leads to a high reasoning complexity and undecidability, which ob-
structs the direct practical applicability of foundational ontologies. Therefore, most
foundational ontologies come also in a lightweight version that enables reasoning at
runtime. Nevertheless, the heavyweight version is still useful, since it can be used
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as reference, e.g., for determining a consensus and meaning negotiation. Another
major advantage of foundational ontologies is the fact that by reusing generic con-
cepts, relations and larger ontology structures the modeling effort can be reduced.
We call such reusable structures ontology design patterns [Gan04]. Typical design pat-
terns are location in space and time, which can be used in many different domains
and applications.

In literature, several foundational ontologies have been presented over the last
years, including the Basic Formal Ontology (BFO) [MBG'03], the Descriptive On-
tology for Linguistic and Cognitive Engineering (DOLCE) [MBG*02b], the Object-
Centered High-level Reference Ontology (OCHRE) [Sch03], OpenCyc'#4, and the
Suggested Upper Merged Ontology (SUMO) [NPO1]. Oberle [Obe05] compares
these ontologies with respect to a set of requirements stemming from the design
and management of middleware. These requirements are thus also applicable for
this work. He concludes that only DOLCE supports all required features. In partic-
ular, only DOLCE provides a theory of contextualization and a theory of informa-
tion objects which will be crucial for representing policies, bids and contracts in an
electronic market. Moreover, DOLCE comes in a heavyweight as well as lightweight
version and the modular structure of DOLCE reduces the risk of over-commitment,
i.e. agents have to reach consensus only about certain domains (individual mod-
ules), not about their entire conceptualization. We, therefore, select DOLCE as mod-
eling basis for our work. In the following, the part of DOLCE relevant for the sub-
sequent chapters is introduces in more detail.

DOLCE

The foundational ontology DOLCE (Descriptive Ontology for Linguistic and Cog-
nitive Engineering) provides a philosophically well-founded basis for developing
core, domain, task and application ontologies. It has already been successfully ap-
plied in different domains, such as software engineering [Obe(05], law [GST05], and
biomedicine [GCB04]. Central to the structure of DOLCE is the distinction between
Endurants (i.e. objects or substances), Perdurants (i.e. events or processes), Quali-
ties and Abstracts. According to [MBG™02a], Endurants exist in time without having
temporal parts, whereas Perdurants happen in time and may have temporal parts.
That means, while Endurants may change in time, Perdurants cannot change, since
they have no unique identity in time. The ability to model 4D entities, such as Per-
durants, is a major advantage of DOLCE. Qualities inhere in Perdurants as well as
in Endurants and represented entities that can be perceived or measured. Qualities
are located in abstract entities called Regions. They encode Qualities in some metric
or conceptual space, e.g. a color space or speed range. Each of the presented DOLCE
entities features a hierarchy of specializations. A detailed description of DOLCE can
be found in [MBG™02a].

Based on this backbone, further ontology modules are defined. These include
ontological theories about contextualization, information objects and plans. They
are provided by the DOLCE modules Descriptions & Situations (DnS), Ontology of
Information Objects (OIO) and Ontology of Plans (OoP). The concepts of DOLCE
and its modules required in our work are briefly described in Table 2.3.

4www.opencyc.org
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Module Concept label Usage
DOLCE Endurant Static entities such as objects or substances
Perdurant Dynamic entities such as events or processes
NonAgentive- Non-physical Endurant that does not actively
SocialObject participate in Perdurants
NonAgentive- Physical Endurant that does not actively
PhysicalObject participate in Perdurants
Quality Basic entities that can be perceived or measured
Region Quality space such as colors, speed ranges, etc.
DnS SituationDescription ~Non-physical objects like plans, regulations,
defining Roles, Courses and Parameters
Role Descriptive entities that are played by Endurants
(e.g. a customer that is played by a certain person)
Course Descriptive entities that sequence Perdurants
(e.g. a service invocation which sequences concrete
communication activities)
Parameter Descriptive entities that are valued by Regions
like the age of customer
Situation Concrete real world state of affaires using
ground entities from DOLCE
OoP Task Course that sequences Activities
Activity Perdurant that represents a complex action
Plan describes a SituationDescription that sequences Activities
OI10 InformationObject Entities of abstract information like the content

of a book or a story

Table 2.3: Upper level concepts from DOLCE, Descriptions and Situations (DnS),
Ontology of Plans (OoP) and Ontology of Information Objects (OIO) that are used
as modeling basis.

Descriptions & Situations

The intent of Descriptions & Situations is the representation of non-physical objects,
such as social institutions, regulations, plans or mental contents [GMO3]. Therefore,
Descriptions & Situations introduces the distinction between a Situation and a Sit-
uationDescription. A Situation is constituted by entities of the ground ontology (in
our case DOLCE) and defines a state of affair (e.g. real settings in the world such
as facts or legal cases). A SituationDescription (or in short Description) is a con-
ceptualization, which encompasses non-physical social objects such as laws, plans,
policies, etc. and it (partly) represents a theory that is perceived by an Agent. The
fact that a Situation is a model of this theory is reflected by the satisfies relation be-
tween a SituationDescription and Situation which reifies the satisfiability relation,
=, of the underlying logic. A SituationDescription contains descriptive entities,
such as Roles, Course of Events, and Parameters. By means of the satisfies relation
they allow the definition of views on concrete Situations, i.e. depending on the con-
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straints specified in the SituationDescription a concrete Situations satisfies or does
not satisfy the SituationDescription.

The ground entities in Descriptions & Situations are derived from DOLCE:
Functional Roles are played-by DOLCE:Endurants'®, Courses of Events sequences
DOLCE:Perdurants, Parameters are valued-by DOLCE:Regions.

Ontology of Plans

The Ontology of Plans (OoP) uses the design pattern Descriptions & Situations and
formalizes a theory of plans in a generic way, i.e. independent from concrete logical
calculi. It specializes DOLCE and DnS by adding concepts for modeling planning
concepts, such as Tasks and Goals, and by concretizing the DnS:satisfies relation.

A Plan represents a DnS:SituationDescription that DnS:defines a
DnS:FunctionalRole and a Task. A Task DnS:sequences Activities, which specialize
DOLCE:Perdurants. By refining the DnS:satisfies relation the Ontology of Plans
can be used to decide whether a certain Plan will be (has been) fulfilled by a certain
plan execution (e.g. workflow). For a detailed description of the Ontology of Plans
the interested reader is referred to [GST04].

Ontology of Information Objects

The notion of information is a crucial concept in the area of computer science. How-
ever, it is often hard to grasp in a conceptual model. For example, one might distin-
guish between the content of information, the physical representation in a computer
system, and encoding used for representation. Disregarding this distinction may
easily lead to a conceptual ambiguity. This problem is, e.g., discussed in [MOGS04]
for the service description ontology OWL-S. In order to avoid such problems, the
Ontology of Information Objects (OIO) provides a design pattern for modeling ab-
stract Information Objects, the encoding of these objects and the conceptualization
expressed by an Information Object. A detailed description of the Ontology of In-
formation Objects can be found in [GST04].

2.5 Conclusion

In this chapter, the basic technologies for realizing a semantic Web service market
infrastructure have been presented. Therefore, we have first discussed the basic
principles of service-oriented architectures and the technologies for implementing
such architectures in a heterogeneous environment. In this context, mechanisms for
dynamic binding of services at deployment or runtime are required. These mech-
anisms have to support the fact that Web services can be easily configured to cus-
tomers’ needs. To express and enforce such requirements autonomously at run-
time, we have presented the idea of policy-based computing, where policies capture
guidelines how the system should behave. Since the find-bind-execute-paradigm of
a service-oriented architecture can be seen as a specialization of market process,

15For all concepts that are not contained in the ontology discussed in the current section, the names-
pace of the ontology module is added where the concept is derived from.
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electronic markets have been introduced as a third technology. Finally, we have pre-
sented ontologies as a means for representing information that provide a high de-
gree of interoperability and enable powerful matching algorithms. This is required
to facilitate the use of market mechanisms for complex goods and services. In chap-
ter 3, we show from a methodological as well as from a conceptual point of view,
how these technologies can be seamlessly combined in order to realize a semantic
Web service market infrastructure.
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Chapter 3

Towards a Semantic Web Service
Market

We approach the goal of this thesis systematically by first defining a methodol-
ogy which is used for deriving requirements from typical scenarios, for coming up
with a conceptual design, for implementing this design, and for evaluating whether
the realized infrastructure meets the postulated requirements. Since engineering a
service-oriented architecture that enables the automation of the contracting process
requires the integration of various technologies, we propose an integrated method-
ology in this chapter, which is used to structure the remaining thesis. In addition, we
define in this chapter the expected results of the engineering process which is a Web
service market infrastructure that enables providers as well as customers to automate
the contracting process.

In many aspects service-oriented architectures are fundamentally different from
traditional distributed component- or object-based frameworks. Most notably they
introduce the roles of providers and requesters as first class citizens in the architec-
ture. This is an important step towards truly inter-organizational business processes
since it allows us to directly apply concepts and ideas traditionally developed for
electronic commerce. Moreover, the concept of dynamic service binding is intro-
duced that requires automated discovery, selection and invocation of new services.
In contrast to an object in object-oriented systems, which represents a (physical or
non-physical) real world “thing”, a service instead represents a business activity and
thus is directly usable within a business process. These fundamental distinctions
lead to three types of components required for implementing a service-oriented ar-
chitecture [GBO01]:

1. A hosting platform. This is where service providers can deploy and operate
their service. The hosting platform also has to provide means for requesters to
invoke the service.

2. A hub that connects service providers and requesters. This hub should en-
able dynamic discovery of suitable services. Therefore, means for describing
services hosted on different platforms in an interoperable way have to be pro-
vided.

3. Standard conventions that ensure that services can interoperate with each other
irrespective of their implementations. This involves communication and inter-
action protocol aspects.



48 CHAPTER 3: TOWARDS A SEMANTIC WEB SERVICE MARKET

Policy
describes constitutes
exchalimged in
describes constitutes
Ontology Market SOA
exchanged in
describes constitutes
Web
Service

Figure 3.1: The semantic Web service market diamond illustrating the relation be-
tween the involved technologies that constitute a SOA.

In order to realize these components, we propose to combine different technolo-
gies captured by the diamond structure in Figure 3.1: (i) As introduced in Section
2.1.3, Web service technologies provide a hosting platform and a set of standardized
protocols, formats and language specifications that enable interoperation between
services hosted on different platforms. Therefore, they partly cover component
No. 1 and 2 introduced above. (ii) In this context, it is important that each party
is able to exactly define the capabilities and characteristics of the services that are
provided or required. For example, a provider might state that her service is only
accessible after a certain authentication method has been carried out. Such con-
straints and conditions are defined using policies. This is important to find out which
providers and requesters can be connected by the hub. Thus, policies partly cover
component No. 2. (i) Markets — as the place where service providers, requesters
and intermediaries come together to advertise their services and requests — are the
cornerstone of service-oriented architectures [EL04]. Thus, results from the area of
market theory should be considered when designing a hub that provides technolo-
gies for mechanism to dynamically determine suitable bindings and methods for
closing legally enforceable and manageable contracts. Determining suitable bind-
ings may involve locales for negotiating with and selecting among many potential
providers. Since markets bring together requesters and providers they are required
to realize component No. 2. (iv) In order to enable automated discovery, selection
and negotiations, metadata about services has to be specified in a formal, machine-
understandable way. Our technology of choice for formally describing services and
their policies are ontologies. They come with a standardized logical foundation pro-
viding well-defined semantics that is required for matching of descriptions and for
realizing a high degree of interoperability. In addition, ontologies can be used to de-
scribe market mechanisms allowing a flexible and adaptive market implementation.
Therefore, they are important for component No. 2 and 3.

Realizing a seamless integration of the different technologies is essential for de-
signing a Web service market. For this purpose we introduce the methodologies
required for designing service-oriented architectures, electronic markets and ontolo-
gies and identify relations between them (Section 3.1). Subsequently in Section 3.2,
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Figure 3.2: Integration of service, market and ontology engineering for developing
semantic Web service markets.

we discuss the desired results of the methodology. In this context, we identify the
main building blocks of a Web service market including a set of ontologies providing
the communication primitives in the market and a market process bringing together
the different phases that can be identified in the market with the publish-find-bind-
execute paradigm of service-oriented architectures.

3.1 Methodology

In order to obtain a system that seamlessly integrates different technologies, the
integration has usually to happen already at design time. As discussed in the previ-
ous section, developing a SOA infrastructure also requires developing an electronic
market bringing together requesters and providers. Each market requires a commu-
nication language for exchanging offers, requests and contracts. In our case, this is
realized by introducing appropriate ontologies. Although each of these components
comes with an individual development methodology, the corresponding develop-
ment processes cannot be executed independently, since there are several interde-
pendencies in terms of time and required information. These interdependencies are
captured by Figure 3.2. For example, one cannot finish the environmental analysis
in the market engineering process, before the specification phase of the ontology en-
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gineering has not been concluded. In fact, the requirements gathering phases have
to be finished, before the design and realization phases can be approached, and the
design and realization phases have to be finished, before the evaluation phases can
be started. However, note that each engineering process itself does not have to be
executed sequentially.

In order to identify and cope with the interdependencies that occur in the Web
service market development process, we introduce the design methodologies for
service-oriented architectures (Section 3.1.1), markets (Section 3.1.2) and ontologies
(Section 3.1.3) and identify overlapping areas where the different processes have to
be aligned and synchronized. We aim thereby at a coherent development process
for semantic Web service markets as sketched in Figure 3.2.

3.1.1 SOA and Web Service Engineering

First, we address the question of how a Web service and service-oriented architec-
tures as a whole are built. Generally, there is an enormous amount of literature
dealing with engineering software systems ranging from sequential methods such
as the influential waterfall model [Roy70] to iterative models which combine top
down and bottom up approaches such as the spiral model [Boe88] or the Rational
Unified Process (RUP) [Kru03]. However, although service engineering can be seen
as a special case of software engineering!, when moving to a service-oriented archi-
tecture these methodologies have several shortcomings neither addressed by object-
oriented analysis and design nor by business process management techniques:

¢ First, the question of how services can be identified has to be answered. In or-
der to identify the different aspects required for developing a service-oriented
architecture, business process aspects as well as the enterprise-scale applica-
tion architecture have to be taken into account. Obviously, object-oriented
analysis is a good starting point, but it does not address how to discover the
functional units of work from a business perspective required for identifying
a reusable set of services.

* Second, a paradigm shift towards explicitly appreciating the key roles found
in service-oriented systems is required. As shown in Figure 2.1 on page 13, the
key roles are service provider, service requester and service broker (a passive
broker is called a registry).

¢ Third, the methodology should reflect the fact that services are not built for
one single business line or company, but are potentially exposed to other de-
partments or companies.

With these ideas in mind, several methodologies have been defined that are ex-
plicitly tailored towards Web service engineering. In the following, we look more
closely at the service-oriented analysis and design methodology (SOAD) propa-
gated by IBM [ZKG04] and the service-oriented design and development method-
ology proposed in [PH06]. While the overall process strongly conforms with the

Note that our focus is engineering of software services. For the broader field of service engineer-
ing beyond software services several mature approaches exist, which are beyond our discussion. For
an overview refer to [SDBWO03].
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Figure 3.3: SOA layers and Web service engineering process

standard software engineering process [AMBDO04] comprising the steps requirement
analysis, design, construction, testing and maintenance, the design phase in particular
has been refined.

Figure 3.3 relates the steps that have to be conducted in the design phase with
the layers of a typical service-oriented architecture. From a software engineering
perspective a service-oriented architecture can be broken down into four layers:

1. The operational system providing the basic hardware and software for run-
ning an application, such as servers, operating systems, Java virtual machines,
etc.

2. The application logic within software components implementing the actual
functionality, e.g., by means of an object-oriented programming language.

3. Services encapsulating functionality in self-contained activities and providing
a well-defined interface to internal or external requesters.

4. Business processes combining the activities accessible via services. Often, the
functionality of a business process is exposed again by a service to customers.
Therefore, further business process and service layers can be added on top
(Figure 3.3 abstracts from this fact).

The design process (represented by the arrows in Figure 3.3) combines a
business-driven top-down approach with a bottom-up approach leveraging legacy
assets, while considering the different roles in the system. The service infrastructure
(layers 1 and 2) is set up by the provider, whereas layer 4 resides on the requester’s
side. In layer 3 the interaction between the provider’s and the customer’s system
takes place. In the following, the design process is described in more detail:

System Analysis

The bottom-up technique starts with an analysis of the existing system. The goal is to
find resources that could serve as a basis for providing service functionality. System
analysis is typically executed by the provider.
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Domain Decomposition

The top-down approach starts with the domain decomposition step. Here the busi-
ness process is decomposed into its subprocesses using high-level business use cases
that enable identifying the functionality required as service. Domain decomposition
therefore requires extensive knowledge about the requester’s business models and
use cases.

Component Design

In the next step, viable components that implement the application logic required for
a service are identified. In the component specification, the messaging and event speci-
fication, the internal flow and structure of the identified components and other com-
ponent dependencies are described. Missing components have to be custom built in
the component realization step. After realizing the application logic, its functionality
can be exposed by providing an appropriate service. Defining the component that
implements a certain service is called component allocation. In Figure 3.2, the compo-
nent identification, specification, realization and allocation is captured by the term
component design.

Service Design

Similarly, service design can be broken down to service identification, specification
and realization. The service identification step deals with deciding which operations
of the component should be accessible via a Web service. Since this is difficult with-
out knowledge of the business domain, a top-down approach is needed, in which
the results of the domain decomposition step is utilized. After identification of the
services their characteristics have to be documented to enable their implementation
and later reuse. This is done in the service specification step. In order to make services
discoverable in a service-oriented architecture (e.g. required for dynamic binding),
the service specification has to be machine-interpretable. For this purpose WSDL
and ontology-based specifications are used that allow, e.g., defining quality of ser-
vice policies or information about the business process implemented by the service.
Typically domain-specific ontologies are required in this step. If such ontologies are
not available for a certain service they have to be built. Thus, an ontology engineer-
ing phase has to be initiated, which is discussed in Section 3.1.3.

Service Binding

Once services are realized and exposed by the provider on a service market (offer
specification), requesters can integrate them into their business process. Therefore,
they have to decide in a top-down manner by means of domain decomposition,
which services are required and which task of the process should be done by which
service (request specification). In Section 2.1.2, we introduced the term binding for the
assignment of service requests to offers. As discussed, these bindings can be speci-
fied explicitly by the developer or determined dynamically by the system using the
request and offer specification. In either case, the mechanisms bringing together ser-
vice demand and supply have to be carefully designed, which is the main purpose
of the field market engineering discussed in Section 3.1.2.
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Evaluation

Finally, the constructed architecture is evaluated in terms of functionality, robustness,
efficiency, etc. While these step mainly corresponds to the traditional software en-
gineering methods, some additional criteria are important, such as reusability of
services, efficiency of provider selection, etc.

Since service-oriented architectures require mechanisms that bring together ser-
vice requesters and providers, we discuss in the next section, how such mechanisms
can be developed in a structured manner.

3.1.2 Market Engineering

Building an electronic market that meets certain requirements, such as welfare opti-
mization or maximizing the transaction volume in the market, is a complex process.
Therefore, the market engineering process breaks down this complex process into less
complex sub-phases very much as software engineering does it for the implementa-
tion of complex software systems. Although structured according to similar phases
as software engineering, market engineering focuses on different aspects and goals.
In this section, we briefly introduce the different phases. A more fine-grained pro-
cess accompanied with a detailed discussion for each phase can be found in [Neu04].

Environmental Analysis

The environmental analysis deals with gathering information about the concrete set-
ting for which the market is designed, including information about the participants,
about the products to be traded, about possible intermediaries, etc. This first step
is called environment definition and directly makes use of information derived from
domain decomposition of the service engineering process (Figure 3.2). In Section
4.1, we perform this step for Web service markets by analyzing different concrete
scenarios. Based on the environmental definition, requirements can be derived that
should be met by the market. For example, due to the easy differentiability of Web
services, we will need multi-attribute product descriptions as part of offers and re-
quests. Such language-specific requirements in the market engineering process are
also direct requirements for the expressivity and the vocabulary of the ontology as
shown in Figure 3.2.

Design and Implementation

After identifying the requirements, the market algorithms and infrastructure can be
defined and implemented. First, in the conceptual design phase, the market is set up
in an abstract way;, i.e. the institutional rules are defined without specifying the way
they are implemented. In our case, this mainly requires the design of a bidding
language and market mechanism that provide matching, allocation and contract
formation functionality. We will introduce the conceptual design for Web service
markets in Chapter 5 using an abstract, implementation-independent mathematical
notation. As depicted in Figure 3.2, the design and implementation phase can be
done in parallel to the component and service design. However, since at the end of
these phases, service offers and requests have to be specified and the market bidding
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language (e.g. including the formal ontology model) has to be present before the
service design phase can be finished.

Based on this conceptual design, the market can be implemented. In this con-
text, one can distinguish between the embodiment phase and the actual implementation
phase. During the embodiment phase, the abstract conceptual design is concretized,
but still remains platform independent. For example, the bidding language is con-
cretized by formalizing the appropriate core, domain and application ontologies
using a concrete ontology language. Thus, the market design and implementation
phase has to be accompanied by the conceptualization, formalization and imple-
mentation of the appropriate ontologies (Figure 3.2). As mentioned before, ontolo-
gies are independent of a concrete implementation platform and therefore they can
be implemented in the embodiment phase. In this work, the embodiment phase is
realized in Chapters 6 and 7.

Finally, in the implementation phase the market platform is realized. This in-
volves, for instance, the implementation of the required matching and allocation al-
gorithms, integration of an appropriate ontology reasoner, the installation of a Web
server for deploying the market, etc. The implementation of our Web service market
is presented mainly in Chapter 8.

Evaluation

Once the market infrastructure is set up, it can be evaluated whether the desired
market outcome can be realized. Usually these evaluations are done with respect
to the requirements specified in the environmental analysis and include technical
aspects (e.g. performance, system reliability) and economic aspects (e.g. efficiency).
Of course, evaluation of the market as well as of the service-oriented architecture
may reveal problems which have to be corrected by going back to the correspond-
ing engineering phase. In this context, also major revision of the ontologies could
be necessary. For the Web service market presented in this thesis evaluation is per-
formed in Chapter 9.

Since the expression of offers, requests and contracts in a market typically in-
cludes complex description of goods or services that may involve broad domain
knowledge as well as a wide-range of different parties, defining an appropriate mar-
ket language easily becomes a cumbersome task. Therefore, ontology engineering
provides structured means that support this task. The ontology engineering process
in sketched in the following section.

3.1.3 Ontology Engineering

Several ontology engineering methodologies have been proposed in literature serv-
ing different purposes or addressing different domains [CFLGP03, PM04]. For ex-
ample, for ontology building from scratch TOVE [GF95], ENTERPRISE [UK95],
METHONTOLOGY [LGPJ97, LGPSS99], the OTK-methodology [SSA*01] and DILI-
GENT [TPS06] have been proposed. Pinto and Martins [PM04] compare ontology
engineering methodologies using a general process containing the stages specifica-
tion, conceptualization, formalization, implementation, and maintenance. Although the
tasks classified within a certain stage differ slightly from one methodology to the
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next, these stages are most suitable as a brief introduction to ontology engineering,
since they abstract from a specific methodology.

Specification

The objective of the specification stage is to identify the scope of the ontology. In this
context, the domain that has to be captured and the intended users have to be spec-
ified. This also involves to determine requirements regarding the expressivity of
the ontology language. For application and task ontologies also application-specific
and task-specific requirements have to be considered.

Conceptualization

In a second step, the identified specification is described with a conceptual model.
As shown in Figure 3.2, ontology conceptualization is part of the conceptual design
phase of the market engineering process and done during component and service
design. Depending on the concrete methodology used, different conceptualization
models ranging from informal models, such as mind mapsTM, to semi-formal mod-
els, like binary relations diagrams, might be used. These conceptualizations de-
scribe the basic concepts and relations relevant in a domain. Moreover, vocabulary
is clustered into groups for modularization purposes. This is essential for later reuse
of ontologies and for avoiding the problem of over-commitment [Obe05].

Formalization

After describing the required vocabulary and the relations between the vocabulary
terms in a conceptualization, the conceptualization has to be formalized in order to
get an unambiguous definition of the terms. The formalization stage involves defin-
ing concepts by restricting their interpretation to certain individuals in the domain
(see Section 2.4.2). Thus, concepts and relations are mathematically well-defined,
but are not yet serialized in a computer-interpretable format. Since the result of the
conceptual market design should be a formal model, ontology formalization is also
a part of the conceptual design phase of the market engineering processes (shown
in Figure 3.2).

Implementation

In the implementation stage, the formalized and semantically well-defined model of
the ontology is represented by means of a machine-interpretable syntax, as provided
by OWL, for instance. Since the ontology is still platform- and implementation-
independent, this implementation of the ontology is usually part of the embodi-
ment phase of the market engineering process. Furthermore, a fully implemented
ontology is already required when entering the implementation phase of the market
engineering process.

Evaluation

In this stage, the quality of the ontology is technically judged by a knowledge en-
gineer. According to [PMO04], this includes verification (i.e. is the ontology correct
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according to the accepted understanding of the domain), validation (i.e. does the
ontology meet the specified requirements), and user assessment (i.e. judging the us-
ability and usefulness of the ontology and its documentation). Since up to now there
are no mature ontology evaluation methods available, this area requires major re-
search efforts. For a detailed discussion of ontology evaluation methodologies refer
to [GP04, VSFGS06, OCM*07].

Maintenance

During testing of the service-oriented architecture as well as of the market mecha-
nism, updating and correcting of ontology modules might be required. Each update
or correction should be verified carefully and the implemented ontology should be
checked for consistency.

After introducing the process for development of semantic Web service markets
that integrates service, market and ontology engineering into one coherent process,
in the next section we discuss the results of this design process in more detail. In
particular, we answer the question: what are the artifacts that should be constructed
and how can these artifacts be used to realize dynamic service contracting and mon-
itoring in service-oriented architectures? Afterwards in Part II and III of this thesis,
we then apply the methodology introduced above to design, implement and evalu-
ate a semantic Web service market infrastructure.

3.2 Core Building Blocks of Web Service Markets

In this section, we view semantic Web service markets from two orthogonal per-
spectives reflecting the two main building blocks of electronic markets [Neu04]:
first, we discuss the communication primitives that constitute the market informa-
tion model in Section 3.2.1. Essentially this breaks down to a discussion about the
role ontologies can play in such markets. Second, in Section 3.2.2 we consider the
market mechanisms required for contracting and monitoring of Web services. This
involves an exact definition of a Web service market process implementing this func-
tionality. We realize this by specializing the general market process (e.g. defined in
[TBP03, SW03]) to a process capturing the find-bind-execute paradigm of a service-
oriented architecture. To put it simply, in the following we introduce the result of
the engineering process distinguishing between the static aspects of a market that is
modeled using ontologies and the dynamic aspects implementing the market pro-
cess.

3.2.1 The Role of Ontologies

As defined in Section 2.1.1, the three main communication primitives required in
a service-oriented architecture are offers, requests and contracts. Since a detailed
requirements analysis regarding the desired expressiveness and properties of these
primitives is done within the market engineering process in Part II of this work
(Chapter 4), this section is limited to a brief discussion of the benefits that can be
realized using ontologies for representing the primitives. This discussion is accom-
panied by a short introduction to the ontologies available in this context.



3.2 Core Building Blocks of Web Service Markets 57

In Section 2.4, we introduced the concept of ontologies as a means for achiev-
ing interoperability through the specification of standard syntax and semantics, and
through their well-defined grounding in logics which enables improved matchmak-
ing of offers and requests in the market. Several proposals for using ontologies in
electronic markets have been put forward that exploiting these features. The goal is
to reach a degree of openness, flexibility and dynamism not achievable with traditional
technologies for B2B integration such as RosettaNet?, UNSPSC3, etc. [DFKT04].

One major aspect in this context is the unambiguous description of the products
exchanged in the market. Product descriptions have to be part of offers, requests
and contracts. Such product information is subject to continuous changes due to the
introduction of new products, evolution of products, changes in the organization
due to internal reorganization or fusion-acquisition (e.g. fusion of product lines, re-
organization of hierarchies or policies) and therefore product information is often
difficult to capture in traditional relational databases [BMW™07]. In this context,
OWL ontologies provide important advantages, since they allow class inheritances
that feature product categories and logical classes that enable automatic classifica-
tion of products according to OWL restrictions. In [BMW™07], this is illustrated
using the following examples:

* The class “Outdated Products” can be introduced that dynamically clas-
sifies all products that are replaced by at least one other product,
i.e. OutdatedProducts C Products [ dreplacedBy.T.

* The class “Metallic Products” capture all products the are made purely using
metal, i.e. MetallicProducts C Products [l VmadeBy.Metal.

As we will see later, these are advantages that carry over to descriptions of Web ser-
vices, which naturally are the products dealt with in a Web service market. The term
Semantic Web Services captures the idea of describing Web services using ontologies
for improving discoverability, composition, mediation, etc.

Semantic Web Services

The goal of semantic Web services research is the automation of certain manage-
ment tasks within a service-oriented architecture, such as discovery of suitable Web
services, the composition, interoperation and execution of Web services [MSZ01]. In
[SGAO7] the following definition is given:

“The Semantic Web Services vision is to semantically annotate Web Ser-
vices with machine interpretable meta data, such that computer pro-
grams are enabled to reason about their functionality. In this way, var-
ious kinds of services, such as book selling, shipment of goods or pro-
vision of stock market information, can be advertised and discovered
on the Internet in an automated way, and their functionalities can be
combined in composite services at run-time in order to achieve higher
level goals. Semantic Web Services particularly aim at realizing smooth
information integration through flexible architectures within and across
organization boundaries.”

Zhttp:/ /www.rosettanet.org/
3http: / /www.unspsc.org/
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For semantic annotation of Web services, ontologies are the technology of choice
and several ontologies providing appropriate vocabularies have been proposed.
The most prominent approaches are OWL-S [SPAS03], SAWSDL [W3C(07a] and
WSMO [DKL*05]. More specific ontologies (or extensions to the previous) are pro-
vided for topics such as quality of service modeling [TFJ06] or specification of the
temporal behavior of a Web service [ASO6, BFMO06].4

As discussed in Section 2.2, policies are required within communication primi-
tives to specify constraints and preferences on service properties. However, since
policies are also relevant in other domains they are usually modeled in their own
ontology module.

Policy Ontology

In recent years, a set of policy ontologies have been proposed that enable the rep-
resentation of constraints. The most influential approaches are KAoS [UBJ*04], REI
[Kag04] and an ontology that formalizes WS-Policy [KPKHO05]. The advantage of us-
ing ontologies is that they provide a high degree of formalization with respect to the
classification introduced in Section 2.2.3. This provides features, such as automated
consistency checking as well as conflict handling, and improves interoperability in
heterogeneous systems. As we will see later on, by means of policies, highly config-
urable service offers or requests can be efficiently represented and exchanged.

Market Ontology

Market mechanisms represent a set of rules that determine how the market process
(e.g. service contracting) has to be carried out. Ontologies can be used to declara-
tively specify these market rules and thus enable a high degree of flexibility. For
example, rules can be easily added and changed at runtime of the market, the mar-
ket behavior can be adapted to different contexts, and the market participants can
download and understand these rules, since they have a standardized syntax and
well-defined formal semantics. Several approaches that declaratively represent mar-
ket mechanisms can be found in literature [WWWO01, RWGO01, ETJ04, TPDWO05].
However, only [RWG01, TPDW05] make direct use of ontologies.

After having introduced the building blocks that constitute the information
model of a Web service market, the following section focuses on the other main
design object: the Web service market process which comprises algorithms for con-
tracting and monitoring of Web services.

3.2.2 The Contracting Process

To develop a mechanism for contracting in Web service markets, the find-bind-
execute-paradigm of service-oriented architectures (see Section 2.1.1) has to be
aligned with the general market process introduced in Section 3.2.2. In fact, the
find-bind-execute-paradigm on which service-oriented architectures are based can
be seen as a specialization of the general market process introduced in Section 2.3.1.

* A more thorough discussion of the ontologies discussed in this section can be found in Chapter
10.
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Figure 3.4: Market phases and the Web Service usage process

This means, when moving from systems operating within one company to systems
that involve different, independent companies, the find-bind-execute-paradigm de-
scribes nothing other than a B2B procurement process, where digital services such
as information delivery or execution of calculations are purchased. Thus, service-
oriented architecture requires an infrastructure that provides an institution for co-
ordinating between service requestors and providers. This coordination mecha-
nism has to provide a platform where potential business partners can be discov-
ered, prices can be ascertained, and contracts can be closed. As discussed in Section
2.3, a market, where prices are determined by the interplay between supply and de-
mand, can be regarded as a coordination mechanism that efficiently provides these
functionalities [Hur73].

Figure 3.4 brings together the agreement phases that can be identified in an elec-
tronic market (see Section 2.3) and the typical Web service usage process which
comprises the steps discovery, composition, negotiation, and finally contract formation.
In the Matching Phase suitable services are discovered. For discovery of Web ser-
vices, we consider only attributes that are mandatory for invocation of a service
and for integrating the results. This usually includes attributes such as the input
and output of a service or attributes describing the behavioral characteristics of the
service process.” Typically these attributes are constrained by goal policies, which
are evaluated within the matchmaking process. Whether a certain attribute has to be
considered within matchmaking process depends on the concrete domain and offer-
/request description. Since a certain goal can not be accomplished only by a single
service but also by a combination of services, this phase also includes composition.

After having determined services that are able to achieve a certain goal, an opti-
mal assignment of service requests and offers with respect to the individual utility
of the participants or to the overall welfare has to be found in the Allocation Phase.
To achieve this, an allocation mechanism is required that determines the concrete
terms of the transaction. Mechanisms featuring a fixed-price mechanism, such as a
Hit-and-Take, or dynamic pricing mechanisms that involve negotiations or auctions

°In literature, such attributes are often called functional properties of a Web service. Correspond-
ingly, attributes not required in the matching process are denoted by non-functional properties. How-
ever, since there is no clear definition (depending on the domain attributes might be functional or
non-functional), we refrain from adopting this nomenclature.
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could be used. In this phase, attributes are considered that represent decisive factors
for service selection and price determination. This could also include attributes al-
ready used in the matching phase. Typical attributes are payment methods, security
as well as trust characteristics, and most notably quality of service attributes.

After determining the allocation, legally binding contracts are closed between
the corresponding business partners in the Contract Formation Phase. Especially dy-
namic contract formation at runtime is a big issue, since in this case the contract
formation has to be done by agents without human intervention. Contracts have to
be formalized in a machine-understandable way in order to enable automated con-
tract management in the settlement phase (e.g. automated execution and monitoring
of contracts).

3.3 Conclusion

In this chapter, we have aligned different technologies, namely service-oriented
architectures, electronic markets and ontologies, in order to develop a coherent
methodology and architectural view for establishing a semantic Web service mar-
ket. In Part II and III of this work, the methodology introduced in Section 3.1 is
applied: in Chapter 4, the requirements for the market are elicited using concrete
scenarios. Based on the derived requirements, in Chapter 5 the conceptual design of
the market is presented, which involves defining algorithms for all market phases
as well as the conceptualization and formalization of the required ontologies. Chap-
ter 6 and 7 covers the embodiment phase where the ontologies are serialized using
a concrete ontology language. The market is then implemented in Chapter 8 and
finally tested in Chapter 9. Applying this methodology consequently results in an
ontology framework for expressing Web service offers, requests and contracts, and a
set of market mechanisms for trading Web services in an open, Web-based market.
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Chapter 4

Scenarios and Requirements

This chapter presents scenarios for service markets and derives requirements from
these scenarios. This represents the first stage of the market engineering process.
We analyze three scenarios, which represent typical use cases for applying service-
oriented architectures. According to our research statement presented in Section 1.2,
the requirements have to cover two main aspects of a market: language-specific and
mechanism-specific aspects.

This chapter is structured as follows: Section 4.1 introduces three scenarios rep-
resenting the major use cases of service-oriented architectures in current businesses.
Based on these scenarios Section 4.2 addresses the requirements a market for ser-
vices has to meet. In Section 4.3, we discuss the importance of the requirements for
the different scenarios and outline our approach to meet the identified requirements.

Parts of this chapter are published in conference proceedings. The scenario and
the corresponding requirements for enterprise services are discussed in [LEOO5,
LAO™06], for grid services in [LS06] and for mobile services in [LAGS07].

4,1 Scenarios

The scenarios introduced is this section are meant as a starting point for determin-
ing the requirements for a semantic Web service market. The scenarios capture the
main application areas of service-oriented architectures and Web service technolo-
gies, namely enterprise service architectures, mobile services, and grid /utility com-
puting [SHO05, Pap03]. In order to show their broad applicability, we first describe
them in a domain-independent way and later augment them with a concrete ex-
ample. The scenarios differ in the type of services they provide as well as in the
environment of the architecture. However, they also exhibit important commonali-
ties:

* aset of providers is available offering functionally equivalent services;

* services are configurable (e.g. they can provide different quality of service lev-
els);

* different participants in the market have different policies;
* these policies could depend on the execution context;

¢ automation of the market process is at least partially required;
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Figure 4.1: Service Bus Architecture [LEO05, LAOT06].

* and the environment is open, which refers to information systems that involve
components from different organizations that are autonomic, typically highly
heterogeneous and may change dynamically [SHO5].

4.1.1 Enterprise Services

One of the driving forces behind the development of service-oriented architectures
has been the need for adaptive software solutions that enable a seamless integra-
tion of software components from different vendors. The envisioned benefits are a
faster redesign of a company’s business processes and applications, facilitated out-
sourcing of functionality, and smooth application integration. The different building
blocks that constitute a company’s application are called enterprise services. Exam-
ples for enterprise services are billing services, stock quote services or order pro-
cessing services. Such enterprise services are provided by companies such as SAP,
Google or Amazon. For example, consider the supply chain management appli-
cation mySAP™ SCM, which is composed of different enterprise services such as
Order Processing, Transportation Planning, Billing and Invoicing, and Parts Moni-
toring.

The infrastructure that enables the combination of different enterprise services
for an application is called an enterprise service bus [Sch02, Rob04, Cha04, Ley05].
Depending on the concrete definition, an enterprise services bus comprises func-
tionality such as (dynamic) service discovery, selection, composition and execution,
data integration and mediation, monitoring of executions, and wrapping of legacy
software components and protocols.

Figure 4.1 sketches a simplified architecture of a service bus architecture. On the
left side, a company’s business process is visualized as a workflow of tasks that have
to be accomplished by an enterprise service. The company further defines general
policies about how the business process should behave. For example, these policies
directly influence the selection of an appropriate service. They might include the
company’s preferences about Web service characteristics. Figure 4.1 exemplifies the
automated integration of a Web service at runtime. This means, in order to enable
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such dynamic binding of services using the enterprise service bus, the following
steps have to be carried out, once a Web service is required within the business
process (step D in Figure 4.1):

1. In order to automate the selection process, relevant policies are sent with the
first service request to the service bus and are stored there locally. Note that
this initialization step only has to happen once for the initialization of the ser-
vice bus. Based on the policies, the service bus is able to take over the re-
sponsibility of selecting between potential providers, such as A and B. In this
sense the service bus can be seen as a simple Hit-and-Take market mechanism
(see Definition 2.7). Since the decision for a certain service might depend on
runtime information, different policies might have to be specified for different
contexts (current location, time, etc.).

2. Once a request from an application arrives, the service bus first queries a ser-
vice repository (such as a UDDI repository) for suitable providers. Here only
a very simple matching of the service functionality is carried out. This means
only the addresses of services are returned that provide the required function-
ality.

3. In a next step, offers from the providers are collected in parallel. These offers
contain a list of provided configurations together with the service policies of
the corresponding provider. These are also stored in the knowledge base of
the service bus.

4. Finally, the service bus queries the knowledge base for all service offers and
configurations that fulfill the required functionality. A list of services ranked
according to the difference between score and price is returned. Based on the
ranking, the best provider is selected and the respective service invoked. In
case this invocation fails, the second best service is chosen. This is repeated
until the required task is accomplished or no acceptable service remains.

The service bus scenario described above provides the benefits that come with
dynamic binding mechanisms (see Section 2.1.2). To realize these benefits, reliable
automated contracting of enterprise services is required, since many enterprise ap-
plications are business-critical and thus the contracted services have to be chosen
carefully. In addition, legally enforceable contracts between service requesters and
providers are required to provide security in case of problems during service execu-
tion (e.g. contracts have to regulate what happens if the service is not provided as
agreed). In this context, it is essential that the contracts capture all important, price-
relevant attributes of a Web service. A list of such Web service attributes that are
independent across domains are presented in [OEH02, Ran03, CSM*04]. Thereby,
service differentiation as described in Section 2.1.2 is enabled. Especially for service
providers such differentiation is essential in order to compete with other providers.
For example, this could be realized by providing better quality of service guaran-
tees for the same price or services that more closely meet the requirements of the
customer.

In the following, we exemplify the usage of enterprise services using an example
from the financial domain.



66 CHAPTER 4: SCENARIOS AND REQUIREMENTS

Credit Information

-type DDIO:InformationObject

Quality of Company Information 23 Business Background Information
-In Depth Information | _— -Ownership
-Situation of Company in Market -Company History
-Senior Management -Company Principles
-Operations
Credit Limit Calculation -Locations
-Individual Credit Limit Information
Credit Score Information
Warning Information -Risk of Insolvency
-Deterioration of Creditworthiness

Figure 4.2: Hierarchy of financial information [LML*05].

Example 4.1 In order to reduce credit risk and to select profitable customers, companies
rely upon credit information. The latest legal developments around risk management such
as Sarbanes Oxley have forced companies to have a closer look at the management of financial
risk. Financial information relating to the creditworthiness of companies, the profitability of
their business or the quality of their senior management helps companies to assess the risk
of doing business with each other and respond to increased or decreased risk. Such financial
information is sold by companies such as Dun & Bradstreet or Creditreform. Based on
credit information, companies will decide whether to start business with another company
or determine and adapt lines of credit. In the past, such lines of credit have often been
considered too late as the buying of credit information was done manually and not always
on a continuous basis. By providing this critical credit information via Web services the
credit information can be integrated into existing enterprise applications facilitating risk
decisions based on externally provided and permanently updated data. Often the integration
of the services has to be done dynamically based on transaction specific information, such as
the origin of the business partner, type of transaction, etc.

From a technical point of view, such financial services are functions that typically take the
name of a company as input and return certain financial information that can be classified
according to the hierarchy shown in Figure 4.2. In addition, service levels guaranteed by
the Web service providers are an essential decision criteria for the provider selection. Wrong
financial information could lead to a wrong decision and thus to a huge financial loss. In the
case of financial information services, the typical quality of service attributes are update time
of the delivered information, delivery time (response time), warranties about the accuracy of
the information, etc. In addition, other relevant attributes have to be considered during
service selection such as the payment terms. A customer’s IT management infrastructure
has to include execution monitoring of the service usage and checking for conformance with
the contract [CSDSO03].

4.1.2 Grid Computing

As defined by [Fos02], a grid is a distributed computing infrastructure that coor-
dinates resources without central control, that is based on open, general-purpose,
standard protocols and interfaces, and delivers services under various, nontrivial
quality of service guarantees. With the Open Grid Services Architecture (OGSA)
there is an increasing trend towards providing grid resources via Web services tech-
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nologies. This is realized by enabling stateful Web services through the WS Resource
Framework [FMS06], which enables a service manage numerous parallel session
with requesters. Although from a technical point of view, they are very similar to
enterprise services (e.g. based on Web service protocols and languages, open en-
vironment, distributed control), in contrast to enterprise services, grid services are
directly connected to the underlying resources. While the provision of enterprise
services takes a working computing infrastructure for granted, grid services deal
with providing this computing infrastructure in a flexible way. Similar to enterprise
services they can be combined on demand in order to react on changing application
needs (e.g. to deal with peak demand). This also requires a dynamic contracting
process as is the case for enterprise services. Typical examples for grid services are
services which provide CPU processing time to applications or where data can be
stored for a certain time period. One of the first major commercial providers of such
services via a Web service interface are Amazon, SUN and Google.

As already mentioned in the definition above, an important aspect of grid sys-
tems are the quality of service attributes of the capabilities they provide. This
usually includes response time, throughput, availability, and security, and/or co-
allocation of multiple resource types to meet complex user demands. Allocation of
grid services also has to consider possible resource limitations of providers. This is
usually not considered in the case of enterprise services, since they are not directly
related to specific resources and thus resource limitation can be handled at provider
side (e.g. by assigning more computational power to a service). Moreover, most en-
terprise services are pure information services that can easily handle a considerable
amount of requests and therefore resource limitations are not a problem.

Example 4.2 Increasing demand for high-performance computational resources in aca-
demic as well as commercial organizations has lead to numerous initiatives such as UK’S
e-Science, Germany'’s D-Grid or IBM’s utility computing program aiming at the provision
of on-demand computing resources. Recently the first commercial grid services have been
released that can be used by customers “on demand” and are paid for by use. Examples
are the Amazon Elastic Compute Cloud (Amazon EC2)! services which provide a virtual
computing environment. They provide the following quality of service guarantees:

* Guaranteed performance: power equivalent to a system with a 1.7Ghz x86 pro-
cessot, 1.75GB of RAM, 160GB of local disk, and 250Mb/s of network bandwidth is
provided.

* Reliability: replacement of system instances provides a high degree of reliability, for
stored data availability of 99.99% is guaranteed

* Security: Web service interfaces to control network security (customizable)

Prices are calculated according to the time for which the system is required: $0.10 per
instance-hour consumed (or part of an hour consumed), $0.20 per GB of data transferred
into/out of Amazon (i.e., Internet traffic). In addition, the services has to be bundled with
the Amazon Simple Storage Service (Amazon S3)? for which a price of $0.15 per GB-Month

Ihtt p: / / www. amazon. cont gp/ br owse. ht m ?node=201590011
2ht t p: / / www. amazon. conl S3- AWS- home- page- Money/ b/ ref=sc_fe | 2/
002- 0629126- 47016227?i e=UTF8&n0de=16427261&n0=3435361&Mme=A36L942TSI2AJA
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Figure 4.3: Example for mobile service usage [LAGS07].
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is charged. Amazon does not provide any formal description of this information beyond
a WSDL file for accessing the Web service. Since competitors provide similar grid ser-
vices such as Sun’s One-Dollar-Per-CPU-Hour?, having formal descriptions would allow
requester to dynamically contract the best service currently available.

4.1.3 Mobile Services

In recent years, there is a strong proliferation of mobile devices like mobile phones
and PDAs with increasing computational power as well as broadband Internet ac-
cess. Such devices clear the way for more sophisticated and demanding mobile
applications. Usually these applications do not involve solely local computation,
but also require information from external services. In general, the type of services
required by such mobile application are similar to enterprise or grid services. How-
ever, the importance of the applications and the way they are accessed is fundamen-
tal differently. In contrast to the previous scenarios, services in a mobile environ-
ment are typically less business critical since they are mostly required in a personal
context (e.g. calculating a route, agreeing on appointments, receiving sport news),
but the environment is more dynamic and the resources, such as bandwidth, are
limited. For example, if a mobile phone user travels across a border, automatically,
an equivalent service to a previous one has to be discovered in this new context.
Of course, such advanced personalization and localization features are additional
issues that have to be addressed by the service-oriented architecture.

Example 4.3 As an example for the Web service usage in a mobile environment, we con-
sider the project SmartWeb.* The goal of the project is to enable mobile multi-modal access
(e.g. speech input or browsing) to the knowledge available in the Web. This also involves the
usage of Web services provided by one of the project partners.® The set of available services
comprises route planning, weather, event and address services. Obuviously, the invocation
of these services has to happen in a context sensitive way. This means that service selection

3htt p: // www. sun. coml servi ce/ sungri d/ overvi ew. j sp

4SmartWeb is a resarch project financed by the German Federal Ministry of Education and Re-
search (BMBF). More information is available at ht t p: / / srmar t web. df ki . de.

Shttp://services.t-info.del soap
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Servicelype | Response | Coverage Indicated | Traffic Weather Price
Time Attraction Info | Consideration
A | RoutePlanning 10sec. Ger Non no no $.2
B | RoutePlanning 12sec. EU Attractions yes no $.5
C | RoutePlanning 5sec. EU HistoricSites no no $.8
D | RoutePlanning 18sec. World-Wide Non yes yes $.5

Table 4.1: Possible route planning service configurations.

could depend on the current location of a mobile phone user, the current time, or the cur-
rent role of the user, e.g., users acting as car drivers, sports spectators, etc. Thus, dynamic
contracting is required in such a scenario to deliver relevant information to the user.

To exemplify this approach, assume the route planning example shown in Figure 4.3.
Consider Annika, a mobile phone user, who is currently in the city of Karlsruhe in Germany
and wants to know the driving directions to Munich as soon as possible. Annika’s mobile
network operator, Mobifhon, provides route planning services for several countries to its
customers, dynamically outsourced from third party route planning services on the Web, as
sketched in Figure 4.3. Thus, the service selection takes place at Mobifhon’s end. The ser-
vice selection is therefore not constrained by the limited resources and partial connectivity
of Annika’s mobile phone, while allowing Mobifhon to aggregate demands and thus procure
better discounts for services than if each customer were to transact individually. Mobifhon
only sends the final route to Annika’s mobile phone. Mobifhon might implement the process
depicted in Figure 4.3, where first the customers’ requests are received and the current lo-
cation of the customer is determined. Based on this context information a suitable service
is discovered in a repository. A possible candidate for route planning in Germany is the t-
info Route Service.® For other countries other services are available that can be used in case
Annika travels abroad, e.g. the Yahoo! Maps Web Services” or the Google Maps API®.

Since often route planning services provide various kinds of routes (the fastest, the short-
est etc.) with or without highways, identifying different kinds of attractions on the way and
different levels of service quality, the requester has also to decide on a concrete configuration
of the service. A more complex route planning, for example, will cost more than a simple
route and similarly a quick response will cost more than a slower one. The various route
planning services need to be able to describe their capabilities and configurations to Mob-
ifhon, such that it can choose the appropriate one at the desired QoS level. Examples for
different configurations of a route planning service are given in Table 4.1. Configurations
may differ in the guaranteed ‘ResponseTime’, the country for which the service can be used
(‘Coverage’), the attractions that can be indicated along the route (‘Indicated Attractions’),
and whether traffic information (‘TrafficInfo’) or weather information (“WeatherInforma-
tion”) is considered for calculating the route. Naturally for each configuration a different
price is charged depending on the provided functionality and quality.

In order to find out which configuration is most suitable for a given requester the re-
quester’s preferences have to be considered. Typically there is a trade-off between price and

®http://services.t-info.de/ soap/routeservicel/index.|sp
“http://devel oper. yahoo. conl
8htt p: // code. googl e. cont
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functionality/quality leading to the problem that no absolutely dominant configurations can
be identified.

In this section we have introduced the main inter-organizational application sce-
narios for service-oriented architectures. In order to realize these scenarios the ser-
vice infrastructure has to provide a set of features to support service contracting and
execution. In the next section we discuss these required features in more detail.

4.2 Requirements Analysis

The goal of this work is to develop an infrastructure for the specification of Web ser-
vice offers, requests and contracts, and for efficient handling these communication
primitives in the contracting and settlement process of a Web service market. In line
with our research methodology outline in Section 1.2, we first discuss the require-
ments regarding the market communication language (Section 4.2.1) and regarding
the market mechanism (Section 4.2.2). The requirements that can be derived from
the scenarios presented in the previous section are listed in the table below:

Label Requirement

(R1) Web-compliance

1%

o=

S (R2)  Multi-attribute Descriptions

% (R3) Combinatorial Requests and Offers

g (R4) Context Dependency

s (R5) Communication Efficiency
(R6)  Interoperability

% (R7)  Automation

v T

.%' (R8)  Flexibility

g (R9)  Optimality

E (R10) Computational Tractability

é (R11) Legal Reliability

After introducing these requirements in detail, we summarize the chapter in Sec-
tion 4.3 by relating the requirements to the scenarios introduced above and discuss
how they are addressed in our work.

4.2.1 Language-specific Requirements
(R1) Web-compliance

One of the central requirements when considering the adoption of new technolo-
gies is the compliance to existing standards. For designing languages usable within
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service-oriented architectures this means that communication has to conform to ex-
isting Web as well as Web service languages and protocols. Thus, messages should
be serialized using XML, which is the basis of most Web languages. In addition, Web
service technologies like SOAP and WSDL should be supported. In this context,
Web resources should be identified by Uniform Resource Identifiers (URI). Another
important feature for languages to be used in a heavily decentralized environments
such as the Web is the support of modularization, i.e. the vocabulary can be specified
in a decentralized way. In addition, modularization enables reducing the problem
of over-committing which arises if people have to agree on an extensive set of terms
although a small subset would already be sufficient for a certain purpose.

Although Web-compliance is generally an important topic and a sine qua non
for Web-based service-oriented architectures, in many mobile scenarios the require-
ments are bypassed by introducing an intermediary (such as the network operator in
Example 4.3) who spares the mobile device from directly handling service-oriented
aspects (like SOAP messages). Such an approach has been widely adopted to re-
duce the required bandwidth and computational power of the mobile component
(e.g. [gri05]). However, the trend towards more powerful devices has also led to
a paradigm shift towards pure service-oriented architectures in the mobile domain
[KKS06].

(R2) Multi-attribute Descriptions

An important way to enable service differentiation are multi-attribute descriptions of
service offers, requests and contracts. Attributes are inherent to configurable products,
i.e. there are usually important aspects beyond just the price. Often these attributes
considerably influence the price of a product in the market. As discussed in Sec-
tion 2.1.2, Web services are products which can be easily differentiated — often even
without changing the implementation. In particular, Web services quality of ser-
vice attributes are an essential part of the service description although they do not
address the service functionality itself. Since service differentiation is generally an
important instrument for competing in service markets, expressing service configu-
rations is essential in all of our scenarios mentioned above.

(R3) Combinatorial Requests and Offers

When considering grid applications such as the one presented in Example 4.2, rarely
are single services required by the application, but rather a combination of services
which exhibit utility only when combined. For example, typically computational
power is usable only when bundled with storage capacity. To a lesser extent this
is also true for mobile and enterprise service scenarios. However, especially in the
mobile scenario usually individual services are acquired that already provide the
full required functionality.

In general, when specifying combinations of services, one could define either
complements or substitutes. In case of complements, participants have super-
additive valuations for the services, as the sum of the valuations for the single ser-
vices is less than the valuation for the whole bundle of services. In this case bundles
can be used to ensure that either all services or non is acquired. In case of substi-
tutes, participants have sub-additive valuations and thus the valuation of the bundle
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is lower than the valuations of the individual services. In this case offers or requests
excluding each other might be required.

(R4) Context Dependency

Often customers do not have absolute preferences about the services they need.
Their preferences rather depend on their current context, which could include their
location, current activities or time, etc. This is particularly true for mobile scenar-
ios, where typically a lot of different context dimensions influence the preferences.
Considering Example 4.3, Annika might typically prefer to travel on highways, but
she is currently on vacation and wants to travel through scenic country roads, pos-
sibly making several stops at attractions on the way. Annika’s preferences may also
depend on her implicit context. For example, if she has an upcoming appointment
in Munich the next day, she is more likely to prefer a short route than a long scenic
route. In fact, her context-dependent preferences may be predefined, allowing her to
define general policies that are automatically considered by her device. This enables
the dynamic application of the right preferences in a certain context. Therefore, we
need a way to describe preferences for particular service configurations declaratively in
terms of the customer’s context.

(R5) Communication Efficiency

The possibility of customizing services to the customers’ needs tremendously in-
creases the complexity of expressing services offers and requests. This arises from
the exponential size of the configuration space defined by service attributes and
prohibits us from enumerating all possible configurations as proposed by related
literature (e.g. [TPP02]). For instance, a service described by five attributes, each
with five attribute values, already involves over 3000 configurations. In addition,
some attributes might be described on a continues scale which makes enumeration
of configurations impossible.

Thus, a critical requirement — especially for resource-constrained environments
such as mobile services —is that the chosen representation of information in the Web
service market has to be designed for communication efficiency. This requires not only
that the amount of data that has to be communicated between the market partici-
pants is minimized, but also that the amount of data that has to be locally stored by
the participants and intermediaries in the market should be minimal. The commu-
nication overhead can be determined in terms of the bytes required for expressing
offers, requests and contracts and we thus use it as a measure of communication
efficiency.

(R6) Interoperability

Depending on the market mechanism used, either offers have to be communicated
to the buyer, requests to the seller or both to an intermediary. Thus, interoperability
becomes an important issue. This is particularly crucial in open markets on the Web,
where participants may use highly heterogeneous data formats, and participants
as well as vocabulary may change frequently. Therefore, a standardized syntax and
semantics is essential that ensures valid matching in the market although requests
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and offers are often specified differently (e.g. using a different level of abstraction or
alternative term definitions).

In Example 4.3, a service provider might specify that routes between all cities
in Europe are supported, while a customer might look for a route between exactly
two cities Karlsruhe and Munich. To bridge these different levels of abstraction, so-
phisticated logical inferencing mechanisms are required which, in this case, utilize the
knowledge about cities being in countries and countries belonging to continents. In
order to apply such inferencing mechanisms Web service offers and requests have
to be described using a formal logic-based language. Different levels of abstractions
occur due to the different kind of information available for providers and requests.
For instance in Example 4.3, when defining her preferences Annika may not know
which attributes are used by the providers to describe their services and even if she
did, it would be too tedious to define preferences for all attribute values. She may
rather want to say that she generally prefers historical sites to museums without
specifying which particular types of each she prefers and by how much. Therefore,
in our description approach, attribute hierarchies that allow some degree of abstrac-
tion have to supported.

The difficulty of guaranteeing interoperability increases with the openness and
the heterogeneity of the system. It is thus a major problem for enterprise and grid
service markets, since here usually no restriction on openness and heterogeneity is
assumed. In mobile scenarios often the network operators have a market power that
allows them to ensure a certain homogeneity, e.g., regarding the vocabulary or the
language syntax used. Thus, interoperability can be considered a minor problem in
mobile scenarios. However, there is also a trend towards more openness in mobile
environments, for instance, involving P2P communication between mobile devices
where interoperability becomes increasingly important.

4.2.2 Mechanism-specific Requirements
(R7) Automation

As already discussed in the scenario descriptions in Section 4.1, automation of the con-
tracting process is required in each scenario. Generally, automation refers to decision
making without or with minimal human intervention. In the context of contracting,
this requires discovering, selecting and closing a contract in an automated fashion.

In addition, the concept of service differentiation may lead to highly diverse Web
service contracts. For example, some contracts might guarantee high service qual-
ity, whereas others may allow for slow answers and bad quality (e.g. in turn for
a cheap price). To cope with this diversity, additional automation within the set-
tlement phase is required: the infrastructure should support automated verification
whether a service execution meets the obligations of the other party specified in the
contract. Due to the high diversity of contracts, manual verification would be very
time-consuming or even impossible.

(R8) Flexibility

All scenarios defined in Section 4.1 assume an open environment that comes with
a high degree of dynamism. For example, as new providers or requesters join the
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market, new types of services emerge. This might introduce additional, new vocab-
ulary and could require new forms of market mechanisms. Therefore, we need a
flexible infrastructure that is easily adaptable to a changing environment. The infras-
tructure should support changing and adding vocabulary terms and market mecha-
nism functionality (e.g. matching and allocation rules) during runtime of the system.
This is essential to provide the required freedom for market participants to compete
by offering novel services.

(R9) Optimality

The contracting process requires the determination of an allocation between the set
of offers and the set of requests. As outlined in Section 2.3 and 3.1.3, an alloca-
tion should meet the goal of the market designer. No matter which mechanism is
used the goal should be addressed optimally. Possible goals range from mecha-
nisms maximizing the sum of requesters” and/or providers’ utility to mechanisms
maximizing market volume or mechanisms with the goal of load balancing. From
an economic perspective the goal might also include design criteria stemming from
the theory of mechanism design [Par01]. However, in a heterogeneous environ-
ment, it is not sufficient to provide an optimal allocation algorithm, but one has
also to make sure that all relevant offers and requests are considered. For example,
when requesting a financial service, credit as well as loan services might provide the
desired information and thus both have to be considered in the optimization algo-
rithm. Even an optimal allocation algorithm does not lead to optimal results if only
a subset of relevant matches are considered.

(R10) Computational Tractability

Although the market mechanism used should be able of dealing with complex
(e.g. multi-attribute, combinatorial) offers and request descriptions, the contracting
process also has to be computationally tractable, i.e. the time for Web service discov-
ery, determining the allocation and closing the contract, has to be short enough to be
applicable in our scenarios. However, the duration of the contracting process is not
always crucial: its importance depends on the concrete application scenario. For
example, in the case of grid and enterprise services, the contracting is often done
at deployment time of the business process, once for several invocations, or once
in a certain time period. Thus, in such use cases, enough time for the contracting
process can be scheduled. The contracting process is therefore less time-critical here
compared to the mobile environment, where services are usually contracted on de-
mand, i.e. at the time they are required. Nevertheless, there are also applications of
enterprise and grid services that require individual contracting at runtime.

(R11) Legal Reliability

As already discussed in Section 4.1, the contract closed between providers and requesters
must be reliable in a sense that all duties defined in the contract have to be exercised
as promised, or the legal consequences that are caused by an infringement of the
contract are applicable. This is especially important for the enterprise and grid sce-
narios since the failure of crucial applications might lead to a considerable financial
loss for the requester.
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Requirement Enterprise Grid Mobile

Services Computing Computing

Web-compliance ) o L)
Multi-attribute Descriptions ) o o
Combinatorial Requests/Offers () o O
Context Dependency () 0 o
Communication Efficiency () () o
Interoperability ) o L)
Automation o o ®
Flexibility o o L)
Optimality ) o o
Computational Tractability () () ®
Legal Reliability o o O

Table 4.2: Relevance of requirements with respect to scenarios.

4.3 Discussion

In this chapter, the environmental analysis of the market engineering process has
been conducted. Recapitulating, by analyzing three major scenarios for service-
oriented architectures we derived 11 requirements. Table 4.2 summarizes these re-
sults by relating the requirements and the scenarios they are derived from. The table
entries are interpreted as follows:

@ : very important feature for the considered scenario

© : feature is not necessarily required, could be helpful in some specific set-
tings

O : rather unimportant feature for the considered scenario

The table shows that the different scenarios are rather similar with respect to
their requirements for the service market infrastructure. This is particularly true
for grid and enterprise services, where the only major difference is the importance
of combinatorial offers and requests in the grid scenario. More differences can be
found between the enterpise/grid and the mobile scenario. These differences are
due to three major observations: (i) In the mobile scenario the openness can be
restricted by the network operators, which may lead to less importance of Web-
compliance, interoperability and flexibility. (ii) Services in the mobile scenario are
combined less often with other services and typically provide personal services
which are less business crucial. Thus, combinatorial requests and offers as well
as legal reliability are less important than in the enterprise and grid scenario. (iif)
Another important finding is that computational tractability and communication ef-
ficiency is more important in the mobile scenario due to the resource-restrictions in
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terms of computational power and bandwidth. However, as outlined above we ex-
pect all these differences to vanish or at least to become less important within the
next years.

As already discussed in Chapter 3, we realize a Web service market by combining
different technologies:

Web service technology: Web service technologies provide us with the basic tech-
nology for implementing a service-oriented architecture in an open and het-
erogeneous environment. By providing standardized protocols and lan-
guages, a first step towards interoperability (R6) can be achieved, while ad-
hering to existing Web standards (R1).

Semantic technologies: This effort is further reinforced by introducing ontologies.
Ontologies facilitate interoperability (R6) beyond the pure syntactic level by
means of standardized logics that provide reasoning capabilities. Reasoning is
required in open environments to match requests and offers in a meaningful
and complete manner, which is also important to derive optimal results (R9).

Policy-based computing: By expressing policies with ontologies, we are able to
specify multi-attribute requests and offers (R2) in an efficient (R5) and context-
sensitive (R4) way. In addition, the ontology enables expressing combinatorial
requests and offers (R3) and legal contracts between requesters and providers
(R11).

Market mechanisms: Based on the vocabulary defined in the ontology a set of mar-
ket mechanisms are declaratively defined via rules, which leads to a very flex-
ible systems (R8) that enables automated contracting of Web services (R7). In-
spired by optimization techniques from operations research these rules seam-
lessly integrate efficient optimization techniques for determining the alloca-
tion with semantic matching approaches in order to realize computationally
tractable mechanisms (R10) that lead to optimal results (R9).

In Chapter 5, we present the conceptual design of the contracting mechanism.
After the conceptual design phase, the embodiment phase of the market engineer-
ing process is carried out in Chapter 6 and 7. In this context, the abstract conceptual
model is concretized and implemented using an appropriate ontology language.
The ontological implementation of the conceptual model finally meets the require-
ments defined above.



Chapter 5
Abstract Web Service Market Model

In this chapter, we introduce a conceptual market model for trading Web services
and thereby implement the conceptual design phase of the market engineering pro-
cess. The model is formalized using an abstract mathematical notation, which is in-
dependent from the concrete representation language used in the market. We thus
refer to the model as abstract model. The notation we use throughout the chapter is
shortly summarized in Table 5.1.

In Section 5.1, we first define a policy model that enables the definition of con-
straints and preferences over attribute values. In doing so, we concretize the con-
cepts of goal and utility function policies introduced in Section 2.2.3. Subsequently,
a policy-based model for specifying multi-attribute, combinatorial requests and of-
fers is presented in Section 5.2. Based on the request and offer specification the
contracting process is outlined in Section 5.3. Section 5.3.1 introduces the matching
algorithms that are used in Section 5.3.2 for determining the allocation between of-
fers and requests. Finally, a policy-based contract representation is introduced in
Section 5.3.3 that enables automated compliance checking of Web service invoca-
tions.

This chapter partly assembles results from several publications: A model for
goal policies is intuitively introduced in [GLAT04, LEOO5]. The motivation and the
model for utility function policies is given in [LA05, LASW06, LAOT06]. [LA07]
presents first versions of the matching and selection algorithms, which are further
developed in [LAGS07]. An informal discussion of the contract compliance moni-
toring algorithm can be found in [LLMO7].

5.1 Policies Specification

As illustrated in the policy classification schema presented in Section 2.2.3, the di-
mensions for classifying polices are their type, their level of formalization and their
level of abstraction. Since automation is needed according to Requirement (R7), a
high level of formalization is necessary (e.g., for matching offers and requests or for
compliance checking of contracts). Further, we want to express abstract business-
oriented as well as low-level system-specific policies. The policy model should thus
allow the expression of both variants. Concerning the policy types, we are mainly
interested in policies that allow us to specify the desired outcome of a decision. Since
this is not possible with action policies, we only consider goal and utility function
policies in the following.
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Notation = Meaning Example
L set of attribute identifiers L = {Iy,...,I,} L = {'ResponseTime’, ‘Coverage’, ... }
A set of attributes with A = {Aq,..., A, } A = {’ResponseTimeValues’,‘Countries’, ... }
aj, € A;  attribute value of A with 0 < e < |A/] ay = "1sec.’, ap = "2sec. etc.
C set of configurations C = {cy, .. e, i ¢ = (“1sec’,’GER,...)
G(+) function representing a goal policy G((“1sec’,'GER’,...)) =1
O] set of constraints ® = {¢1,..., P}
ped represents a constraint ¢ = (scpy,rely) ¢1 = ((‘ResponseTime’), { ("1sec.’), (“2sec.’) })
scpy scope of a constraint ¢ scpp = (‘ResponseTime’,'Coverage’)
rely tuple of allowed values for [ € scpy rely = {("1sec.’,'Ger’),(‘2sec.’,'Ger") }
u(-) function representing a utility function policy U((“4sec’,'GER,...)) =04
US/UP  represent scoring and pricing policies, respectively
ri €R arequest r; = (C;,U?) of requester i € I specifies ri = ({(“1sec’,"GER’,...),... },
a set of desired configurations C; and a (s (c1) +u5(c2)))
scoring policy U7 defining the willingness to pay
I set of Web service requester in the market
0, €0 an offer o; = (C;j, U]P) of provider j € | specifies 0j = ({(“4sec’,’EU’,...),...},
a set of provided configurations C; and a pricing %(4uf(cl) +uf(c2)) +3)
policy U]P defining the reservation price
] set of Web service provider in the market
t;y €T the trade t;; = (c, ) between a provider j and a T ={("1sec.’,"GER’,4),
requester i of a service with configuration ¢ (‘2 sec’,"GER’,3),...}
to a price 7
T, T trades acceptable for requester i and provider j
bEAN represents a context dimension A = {'Time’,‘Location’, ... }
ke K represents an execution context k= ("12:00', Karlsruhe’,...)
beB the set of bids B = (C, p) with B= 0 U R repre-
sents requests or offers, B comprises atomic bids
B4, AND-bids B", OR-bids BY and XOR-bids B®
g set of service types defined via disjoint subsets Cy = {(“1sec’,’France’), (“3sec.’,'France’) }
of configurations Cy,...,Cy C C Cy = {(“1sec.’,'GER’), (‘3sec.’,'GER’) }
S a bundle of service types S € p(G)
yeT a contract I' is a set of obligations v = (y, Go) I'={(‘CompA’,Gg,),("CompB’,Go,)}
withyeIU]J
o(+) An evaluation function ¢(T,c) determines whether

a configuration c fulfills a contract I’

Table 5.1: Summary of notation
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5.1.1 Goal Policies

As defined in Section 2.2.3, goal policies define the desired states of a decision maker.
In our case states represent concrete configurations of Web services and goal policies
are used to define whether a certain configuration is admissible for the decision
maker. Thus, we can adapt the goal policy definition (as introduced in Section 2.2.3)
as follows: a goal policy G : C — {0,1} assigns a value of 0 or 1 to each configura-
tion ¢ € C, where 0 represents a forbidden configuration and 1 an admissible one.
Configurations are described by a set of attributes identifiers L = {Iy,...,1,}. This set
might not only comprise attributes of Web services, but also other attributes rele-
vant to the decision, such as attributes of the service provider. The corresponding
domain of the attributes are given by A = {A1,...,A,}. Attribute values a; of an
attribute Ay can be discrete and continuous. The potential configuration space C
is defined as the cartesian product A1 x --- X A,. A configuration c € C is a n-ary
tuple containing exactly one attribute value of each attribute.

The function G is defined by specifying a set of constraints ® on the attributes that
describe the configuration. We denote a policy G that is defined via the constraints ®
by Go. Under the assumption that the a constraint is defined on the first k attributes,
let the scope of a constraint scp be a k-tuple of attribute labels (I3,...,Iy) € LT (e.g. I1 =
‘ResponseTime’ and I, = ‘Coverage’) and the relation rel of a constraint the set of k-
tuples defining the allowed attribute values rel C A x --- X Ay for the scope. Then
the k-ary constraint ¢ € ® is a tuple (scpy,rely) with scpy representing the k labels
of constrained attributes and rely representing the k-tuples of allowed values. A
constraint involving one attribute only is called unary constraint and a constraint
with two attributes binary constraint. For example, a 2-ary constraint that restricts the
attribute ‘ResponseTime’ to 1 sec. or 2 sec. and the attribute ‘Coverage’ to Germany
is written as follows: ((‘ResponseTime’,’Coverage’), {(‘1sec.’,'Ger’),("2sec.”,'Ger’)}).

Given a k-ary constraint with scpy = (Ii,...,Ix) and rely =
{(aﬁl,...,afll),..., (a{i]l,...,azzl)}, and a configuration ¢ = (af,...,a5,), a goal
policy can be defined as follows:

ij 771

1 iff 3j € [1,q],Vi € [1,k] : match(a’®,a¢) = true
(5.1) G¢(C):{ j € [1,q],i € [LK] (aif",a7)

0 else

The Equation 5.1 is evaluated to 1 for a given constraint ¢ and a given configura-
tion c if there is a tuple in the relation rely, for which each attribute value a’¢ matches
the corresponding attribute value 4f in the configuration. The predicate match is
used to compare two attribute values. In the most simple case, where attribute val-
ues represent “flat” datatypes, such as integers or strings, this could be realized by

a simple syntactic comparison, e.g. match(a/¢!,a¢) = true iff alf]‘?l = a. However, as

ij 77
discussed in Section 5.3.1 and in Chapter 7 sp]ecifically for our representation mech-
anism, we do not restrict our approach to simple datatypes. In particular, set based
attribute values (e.g. ‘Cities in Germany’) and hierarchical structures (e.g. the set
‘Cities in Germany’ is included by ‘Cities in Europe’) are required in order to pro-
vide the interoperability postulated by Requirement (R6).

In order to judge a configuration c € C as admissible, Equation 5.1 has to hold

for all constraints ¢ € ®. This is ensured by the following formula:
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(52) Go(c) = [ Gylc)

ped

A more detailed discussion about the combination of policies can be found in
Section 5.1.3. The constraint specification above is only applicable for a discrete do-
main. Extending the constraint language to an infinite domain using mathematical
operators such as +,—, etc., boolean operators like A, V, =, etc., and constants is
described, e.g., in [LF04, BdVS02].

In this work, goal policies provide the following important features:

* Policies can be used to define guidelines how a service can be configured. In
doing so, they enable automation of the selection processes postulated by Re-
quirement (R?7).

¢ Goal policies can be used to define indifference classes, i.e. classes of config-
urations which are equally desired by the decision maker. Since minimal and
maximal prices can be defined for the entire class, rather than for each member
of the class individually, they avoid enumerating all possible configurations in
case of coarse preferences and therefore reduce the communication overhead
as required by Requirement (R5).

The following example illustrates how goal policies can be used to describe ad-
missible Web service configurations.

Example 5.1 Consider the route planning service introduced in Example 4.3. In
this context, route planning service offers are described by the attributes L =
{’Category’, 'ResponseTime’,’Coverage’,” Attraction’, Price’}. Assume a provider of a route
planning service wants to announce that the service only provides routes in Germany. This
can be realized by expressing a goal policy for the attribute ‘Coverage’. The domain of the
attribute is given by Acoverage = {’Germany’, France’,"UK’}. In this case an unary con-
straint ¢ € O can be defined with scpy = {'Coverage’} and rely = {'Germany’}. Conse-
quently, the constraint can be used to define a goal policy Gy which enables only configura-
tions that support routes in Germany:

1 iff match(’Germany’,a$ )
Gq;(C) — {0 e Coverage

5.1.2 Utility Function Policies

Although goal policies are a first step towards automation and more compact offer
and request representation, they are not sufficient in scenarios, where preferences
over alternatives are fine-grained, e.g. each alternative might have a different price
attached or might be desired to a different degree. In this case, goal policies do
not improve representational compactness, since an own indifference class would
be required for each alternative. Rather than having policies that classify an alter-
native as acceptable or not acceptable, we require policies that lead to a degree of
satisfaction.
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To address this problem, a functional relation between alternatives and their
value for the decision maker can be used, which is referred to as utility function.!
Over the last decades, there has been a broad stream of work about modeling util-
ity functions [VNM47, Fis70, KR76, WD92, BG95]. The goal is to provide sufficient
expressivity for modeling complex decisions, while keeping the elicitation and com-
putation effort at an admissible level. In our specific case, a utility function is de-
fined as a function U : C — R mapping each configuration to a real-valued measure
reflecting the value a decision maker attaches to a certain alternative. The utility is
measured on a cardinal scale, which allows making statements about the relative as
well as absolute suitability of a configuration. They thus generalize the concept of
goal policies by allowing not only two levels ‘admissible” and ‘not admissible’, but
make all configurations comparable by introducing a preference structure over the
configurations.

Definition 5.1 (Preference Structure) A preference structure is defined by the complete,
transitive, and reflexive relation . For example, the configuration c1 € C is preferred to
cp € Cif c; > cp. The preference structure can be derived from the utility function U(c) by
means of the following condition:

(5.3) Vea,cp € Cicq = cp = Ul(cg) > U(cy)

Preferences often have an underlying structure which is introduced by the inde-
pendency of the attributes. Relying on this structure substantially improves their
compactness and analytic manipulability [WD92]. The most prominent approach in
this context are additive models, where the utility function U is decomposed into
several lower-dimensional functions. There are several well known approaches for
doing this decomposition based on different structural assumptions. In the follow-
ing, we shortly introduce the additive utility model which has favorable computa-
tional properties, but also imposes restrictive assumptions.

Definition 5.2 (Additive Utility Function) An additive utility function is a utility
function where an individual utility function u;(a;) with a; € Ay is defined for each attribute
I € L separately. The overall utility measure U for a configuration c is then calculated by
the sum of all individual utility measures. Equation (5.4) below exemplifies an additive
function. The vector A is used to define the relative importance of attributes.

(5.4) U(c) = ZAlul(al),wichAl =1
leL leL

The additive form of utility functions as defined above can only be used if at-
tributes are mutually preferential independent [KR76].

Definition 5.3 (Mutual Preferential Independence) The attributes L are considered
mutually preferential independent if every proper subset X C L of these attributes is prefer-
entially independent of its complement Y = L\ X. The set of attributes X is preferentially
independent from the set Y if and only if, for all assignments x,x’ € X and y,y' € Y the

In economic literature, often a distinction between utility functions and value functions can be
found referring to decisions under uncertainty and certainty, respectively. As in related computer
science literature [WTKDO04, KW04], we abstract from such a distinction in our work and focus on
the general concepts suitable for both cases.
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following condition holds: [(x,y") = (x",y")] = [(x,y) = (x,y)]. Under this assumption,
we can decompose the utility function U(c) into the individual functions u;(a;) of the in-
dependent attributes | € L. The overall value can be calculated by Equation (5.4), where
A; > 1 represents the weighting factor of an attribute normalized in the range [0,1].

However, in real markets the preferential independency often does not hold. For
example, a decision maker might assign a high utility value to ‘Historic Sites” in
case ‘Coverage’ is not valued with her native country. Otherwise with a low util-
ity value, since attractions in her native country might be already well-known and
thus indication of attractions is not important. In such a scenario, the attributes
‘Coverage’ and ‘Indicated Attraction” are not preferential independent. In order to
at least partly capture this, dependent attributes A, ..., Ay € A can be treated as one
single attribute A; in our model, where the utility function is modeled as a com-
plex (higher dimensional) function u«(aj,...,a;). Since this approach allows one
attribute A; to influence several of the aggregated attributes A}, we support the
family of generalized additive utility functions [Fis70, BG95]. While the generalized
model requires expressing high dimensional functions for the entire service, the ad-
ditive model requires attaching an one dimensional function to each attribute of the
service. Since in general determining utility functions of an agent is rather difficult,
we assume extensive methodology and tool support in the preference elicitation
process (cf. [CP04]).

In the context of electronic markets, utility functions policies can be used on
buyer-side to specify preferences, assess the suitability of trading objects and derive
a ranking of trading objects based on these preferences. Since the functional form
avoids the enumeration of all configurations in order to attach prices, utility function
policies can be used to capture the reservation price of the provider and the maxi-
mal willingness to pay of the requester. Therefore, they provide an efficient way of
communicating pricing information to the customers and preference information to
providers (e.g. in a reverse auction). In the remainder of this work, we denote rules
that specify the functional relation between configurations and prices defined by a
seller as pricing policies (denoted by U’) and rules that define how much a buyer is
willing to pay for a certain configuration as scoring policies (denoted by U®).

Example 5.2 We take up Example 5.1 and assume a provider who specifies prices for the
service by means of the following pricing policy. This function has been suggested in [BK05]
for configurable products and augments a base price u®** with an additional surcharge de-
pending on the configuration chosen by the requester. The surcharge is calculated by an
additive function as defined in Equation 5.4. This enables the provider to define price in-
crease on per attribute bases. Often this information can be derived from the provider’s
internal cost structure.

(5.5) U(c) = u" + Y Ajuy(ap)
leL

Independent of the chosen configuration, the provider charges a base price of ub¢ =1.2. In
addition, there is a configuration dependent price component which is defined via functions
for each of the independent attributes u;(a;) as follows:

e Attribute ‘Response Time’: uy(ay) =1 — 11—0011 with ay measured in seconds.
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o Attribute ‘Attraction’: up(ap) is defined by the points P(”Historic Sites”,1),
P(“Events”,0.5), and P(“No Attraction Indication”,0).

Furthermore, we assume weights of Ay = 0.5 and Ay = 0.5. The attributes ‘Category” and
‘Coverage’ are not configurable or do not influence the price and are thus omitted. For
example, the price for a service indicating historic sites and guaranteeing a response time of
2 seconds is specified as 2.1.

Since policies can be specified by many different parties (e.g. different depart-
ments in a company), methods for aggregating policies to one consistent decision
rule are required. We therefore discuss policy aggregation in the next section.

5.1.3 Policy Aggregation

Since policy-based decision making approaches are usually applied in large-scale
applications, typically more than one policy is specified in order to regulate a cer-
tain decision. For example, a Web service selection process of a company might
be regulated by several scoring policies coming from different departments of the
company. The information systems department, for instance, might prefer a highly
secure service, while the management might prioritize cheap services. Of course,
different scoring policies lead to different valuations as well as rankings and thus to
different selections of services. In the remainder of this section, we present a method
to derive a coherent decision from such diverse policies. Therefore, policies are first
evaluated and the results of this evaluation step are then aggregated.

In traditional policy languages there are two major operators that can be used
to combine policies [LEO05, W3C06b]: we can use either a logical and-operator in
order to define a conjunction of policies (i.e. the aggregated policy is admissible if
all contained policies are admissible) or a logical or-operator to derive a disjunction
of policies (i.e. the aggregated policy is admissible if at least one contained policy is
admissible).

However, since our utility function policies result in degrees of satisfaction, this
traditional interpretation of the logical operators is not sufficient. In order to define
the semantics of the logical operators for multi-valued logics, we borrow ideas from
fuzzy logic where the semantics of conjunction and disjunction is defined via T-
norms and T-conorms. In the following, we use the T-norm/T-conorm defined by
[Zad65] as follows:

(5.6) T(a,b) =min(a,b) for and-operators
(5.7) 1(a,b) =max(a,b) for or-operators

Not that the above semantics is suitable for both types of polices, i.e. goal and
utility function policies. It ensures that if one of the policies is evaluated to 0, the
overall valuation of the conjunction of policies is also 0. This guarantees that if
one policy in a conjunction is violated, the entire conjunction is violated. In case
of disjunctions only one policy has to be fulfilled and thus we take the maximal
valuation, which is always 1 in case of goal policies.

In the following, we show how policies can be used within electronic markets to
specify requests, offers and contracts.
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5.2 Communication Primitives

In this section, we formally define the notion of Web services offers, Web service
requests and Web service contracts. For our work, we adapt general bidding lan-
guages for multi-attribute products developed in [EWL06, BK05]. This requires spe-
cializing the language to the Web service domain and to incorporate the policies
defined above. In doing this, we simplify the models in some areas while extending
them in others. We start with formally defining our notion of a Web service and then
specify how Web service offers, requests and contracts can be expressed.

5.2.1 Generic Web Service Specification

In order to be independent of concrete service description approaches, we take a
fairly abstract view of a Web service in our model and consider it to be fully de-
scribed by the attributes Ay,...,A,. Such properties might comprise service input
and output, behavioural aspects of a service, QoS attributes, etc., thus covering ex-
isting Web service description approaches as well as fulfilling Requirement (R2).
Such a general description of a Web service allows us to abstract from various exist-
ing Web service description frameworks, such as WSDL, OWL-S, SAWSDL, WSMO,
while simultaneously allowing us to utilize existing decision-theoretic algorithms
for multi-attribute products.

As defined above, the set C = Ay x --- x A, of Web service configurations com-
prises all possible combinations of attribute values. For example, considering the
attributes Attractions, Highways and Response Time of a route planning service, a con-
crete configuration would be a service that provides routes including highways and
information about nearby attractions within 10 seconds.

A Web service trade t;; is defined as a tuple (c, 7r), where agent j provides a Web
service with configuration ¢ € C to a customer i at a price of 77 € R. Furthermore,
let T; denote the set of all contracts involving provider j, and T; the set of contracts
involving customer i. Not all possible contracts are acceptable by an agent, and thus,
only subsets T]-’ CT; and Ti' C T; are offered or requested, respectively.

Based on these definitions, we discuss in the next section how utility function
policies can be used to define offers and requests in terms of suitability of trades.

5.2.2 Bid Specification

A bid is a communication primitive that allows market participants to convey their
offers or requests to the market mechanism. As discussed in Requirement (R2) and
(R3), bids within a Web service market have to cover multiple attributes as well as
combinations of different service types. Moreover, bids may depend on the context
of an issuer (Requirement (R4)). These issues are addressed in the following:

Multi-attribute Bids

A major problem in designing bidding languages for multi-attribute products is the
combinatorial explosion that results from adding price markups to each configu-
ration. For instance in Example 4.3, for each configuration a row in the table is
required which already leads to thousands of rows for relatively small scenarios.
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Assume, for example, a scenario with 5 attributes that each have 5 attribute values.
This leads already to 3125 possible configurations and increases exponentially with
the number of attributes. A technique to efficiently encode preference and pricing
information (Requirement (R6)) is the use of utility function policies that represent
the relationship between Web service configurations and their prices. In the follow-
ing definition pricing policies are used to define the acceptable price 7t implicitly in
a functional form.

Definition 5.4 (Web Service Offer) An offer by a provider j is defined as a pair o; =
(Cj, U]P ) of a set C; C C of configurations and a pricing policy U]P : Cj — R mapping
each configuration ¢ € C; to a real number that represents the price 7t of invoking service
configuration c. The set of all offers in the market is denoted by O = {oj|j € J}. Due to
payment monotonicity [EWL06], i.e. Vit < 7' : (c,7r) € Tj = (c,7') € Tj, we interpret
LI]P (c) as the minimal price for which a provider is willing to accept a trade with T]-’ =
{(c,m) € Tj|r > U]P(c)} As suggested by [BKO5], the pricing function U]P(C) can be
described by a base price p}mse and an additive function that agqregates pricing functions for
individual attributes:

(58) Uf(c) — p]base + Z/\]luﬁ (Ell) with Z)\]l =1
leL lel

where uﬁ represents the pricing function of provider j for a particular attribute identified by
I € L. The weights A;; are used to adjust the influence of different attributes on the price.

Thus, an offer assigns an additive pricing function to a Web service description,
mapping the configurations of the offer to a certain price. In Definition 5.4, an ad-
ditive function is used for the specification of the pricing policy. While additivity
improves compactness of the representation and analytic manipulation (e.g. imple-
menting an efficient market mechanism), it also constrains the pricing models avail-
able for the provider.

Analogously, we introduce a functional form for representing Web service re-
quests. One major difference though is that a requester’s willingness to pay might
depend on a runtime specific context (R4).> Therefore, we introduce a set K =
d1 X -+ X &y, of execution contexts, where J; represents different context dimensions,
such as current location of a mobile device, time of service execution, history of past
transactions. Any k € K denotes a concrete execution context.

Definition 5.5 (Web Service Request) A Web service request by requester i is defined
as a pair r; = (C;,U?) of a set C; C C of acceptable configurations and a scoring policy
U? : C; x K — R that maps each configuration to a real number score depending on the
execution context k. The set of all requests in the market is denoted by R = {r;j|i € I}. Due to
payment monotonicity, i.e. Vit > 7’ : (c, ) € T! = (¢, ') € T/, we interpret U? (c,k) as
the maximal price for which a customer is willing to carry out the trade, i.e. T/ = {(c, ) €
Ti|mt < U?(c,k)}. U? is an additive scoring function composed of the attribute-specific

2In general, also context-dependent reservation prices in an offer are possible, but rarely used in
practice.
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functions ul.sl and their relative weights Aj:

s : |
(5.9) US (¢ k) = § DierMmalank) e e Gy vy g
—00 otherwise. el

A configuration which is not requested is scored as minus infinity.

As discussed in the previous section, due to the additive form of the scoring func-
tion U7, we have to assume mutual preferential independency [KR76] between the
attributes in the scoring function. This holds if the utility of an attribute A; does not
depend on the value of another attribute. For example, the score for a certain guar-
anteed response time will not change if the type of indicated attractions changes.
Technically, dependent attributes can be implemented by using higher-dimensional
functions [LAOT06]. However, the added value of this is questionable, given that
it is also much harder for requesters to specify preferences with inter-dependent at-
tributes. Context dimensions can be seen as preferential dependent attributes in a
sense that they directly influence the preferences for the other attributes and are rep-
resented by an additional dimension in the function. However, we assume a rather
modest increase in complexity for the requester by introducing contexts, since most
scenarios have a relatively small number of contexts k and most context changes do
not influence the preferences.

Combinatorial Bids

In order to model requests and offers that exhibit a complex structure with respect
to complementarity and substitutability (Requirement (R3)), we introduce primi-
tives for modeling OR/XOR-formulae [Nis00] that can be used to combine bids. In
order to do so, we first have to introduce the notion of AND-bids, OR-bids and XOR-
bids. Generally, a bid b € B with B = O U R represents either a request or offer. For
simplicity, we use a generic notation b = (C,p), where we assume that all possible
configurations C are provided /requested and where it is not distinguished between
offers and request. The variable p represents the maximal (e.g. p = U°(c)) or min-
imal price (e.g. p = U"(c)) for requests and offers, respectively. The set of atomic
bids (C, p) is denoted by B4.

Combinatorial bids allow bidding on combinations of products, i.e. in our case on
combinations of Web services. We thus distinguish between different types of Web
services according to the configurations they provide. Let G = {Cy,...,Cg|} be the
set of service types containing pair-wise disjoint set of configurations, viz. VX,Y €
G : XNY = @. This rather general approach avoids explicitly introducing different
types of products/items into the model as it is usually the case in related literature.
We belief that especially when dealing with services it is often unclear whether we
talk about different service types or about different configurations of the same type.
For instance, consider our route planning service scenario. One might view a route
planning service for Germany and France as two different service types where oth-
ers might view that as different configurations of a route planning service. There-
fore, our modeling approach enables defining service types based on configurations.
By explicitly introducing an attribute ‘ServiceType” and adding a separate set of con-
figurations C € G for each attribute value of ‘Service Type’, our approach directly
maps to the standard formulation of combinatorial bidding languages in literature
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(e.g. compare [BHO1, San02, dVVO03]). A service type is thus defined via a set of
viable configurations.
Given the set of service types G we introduce the notion of AND-bids (aka bun-

dles).

Definition 5.6 (AND-Bid/Bundle) AND-bids represent items that are required together
and are therefore considered as complements. AND-bids are expressed via a pair b = (S, p),
where S C G and p is the overall price for all required or provided service types C € S. The
price can be defined explicitly or as a function of the contained configuration as outlined
above. Let Ty = {(c, ) € T|c € Cg} with Cg € {Cy,...,Cs|}. Then the set of acceptable
trades for a requester i and provider j is given as T, = {(t1,...,t|5)) € Ty X -+ X Tyg)|711 +
o+ s < ptoand T].’ ={(t1,...,.{|5) €T1 x -+ x Tyg||7m1 + -+ + 7115| = p}, respec-
tively. The set of AND-bids b" is denoted by B" with B C B.

Based on these definitions, OR/XOR-formulae can be specified, which enable
the expression of arbitrary combinations of OR- and XOR-bids and thus enable the
specification of complementarity as well as substitutability. An OR-bid represents a
combination of bids, where a valid allocation has to fulfill any number of the con-
tained bids for a price equal to the sum of the individual prices of the contained
bids [Nis00]. In particular, it is possible to get all services contained in the bid or no
service at all.

Definition 5.7 (OR-Bid) Let b¥ = (by V -+ V by, p) represent an OR-Bid with by € B
referring to an arbitrary bid and with b" € BY. The semantics of the disjunction V is defined
as a set of separate, not-related bids {b,..., by, } and the overall price as the sum of the
individuaé bid prices p = p1 + -+ + pm. Thus, the acceptable trades are given by T x

This means that OR-bids can only represent valuation without substitutabilities
[Nis00, Proposition 3.1], e.g. it is not expressible that either a HD-storage service
or CD-storage service are required, but not both together. This can be done with
XOR-bids. We define XOR-bids as follows:

Definition 5.8 (XOR-Bid) Let b® = (by & --- @ by, p) represent an XOR-bid with arbi-
trary bids by € B and with b® € B®. The connective @ makes sure that exactly one of the
specified service types is allocated to the bid, i.e. exactly one of the contained bids b, ...,by,
is fulfilled. The set of acceptable trades is given by T' ={t € T|t € T{ V --- V t € T}, }, where
Ty withq=1,...,m is the set of acceptable trades for an atomic bid by € BA.

XOR-bids can represent all possible valuations [Nis00, Proposition 3.2]; how-
ever, not always in an efficient manner. Additive valuations of m service types re-
quire a XOR-bid of size 2™ (OR-bids require only a size of m in this case).* There-
fore, Definition 5.7 and 5.8 are recursively defined. The recursive nature of the OR-
and XOR-bid definition enables us to express arbitrary OR/XOR-formulae and thus
to represent XOR-of-OR-bids and OR-0f-XOR-bids [San99]. As shown in [Nis00],

3Note that for each set T;,...,T,, we have to add an null-element referring to ‘No Trade’, which
indicates that no trade to a price of zero is also acceptable. This is required since fulfilling an OR-bid
does not necessarily mean all service types are required.

4The size of a bid is the number of atomic or AND-bids contained in the OR/XOR-bid.
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OR/XOR-formulae are suitable for all kinds of combinatorial valuations and addi-
tionally can be transformed to the bidding language L% [FBS99]. It can be shown
that this language allows an efficient representation of all kinds of combinatorial
bids [Nis00]. Merits and problems of the different formulations — in particular with
respect to the family of £ languages — are discussed in Chapter 10.

The overall set of bids that can be specified in our Web service market is given as
B=BAUB"UBYUB®.

After an allocation between offers and requests has been determined, an auto-
matically enforceable and legally reliable contract has to be generated. Therefore,
in the next section a contract model is presented that relies on goal policies for the
specification of the contractual obligations.

5.2.3 Contract Specification

In service-oriented architectures, applications are assembled as required by pulling
together various services offered by different service providers. So as to make sure
that a service meets the requirements, customers and providers have to agree on
terms of a contract. According to the market phases introduced in Section 2.3.1,
these terms are determined in the agreement phase and unambiguously specified in
a contract. In the later settlement phase, this contract represents normative relations
between the contracting parties that specify, e.g., what must be done, should be done
or can be done. There is a vast amount of literature on different normative relations
that can be used in this context. The starting point for most work in this area is the
seminal work of Hohfeld [Hoh13], which introduces the legal relations duty, right,
power and liability. A formal, more fine-grained analysis of Kangar [Kan72] already
yield 26 different “normative positions” and a further development of the theory by
Lindahl [Lin77] 35 different positions.5 However, within the Web service settlement
phase we are only interested whether the obligations in the contract are met by the
Web service execution. A Web service execution can be seen as the execution of a
concrete configuration ¢ from the set of possible configurations C. Obligations in
our Web service model are constraints on Web service attributes that classify the set
of configurations C into acceptable and not acceptable ones. We can thus use goal
policies to specify obligations as captured by the following definition.

Definition 5.9 (Web Service Contract) A Web service contract I is a bilateral agreement
specifying a set of obligations y. Obligations are represented as goal policies that have to be
met by a contracting party. An obligation vy is a tuple (y, Ge) specifying the contracting
party that is obliged to execute a certain task (y € | U I) and one or several goal policies Gg
mapping each possible alternative to the set {0,1}. Moreover, let o(T,c) be a function that
evaluates a contract T = {7y1,...,7yn} with respect to an observed configuration. o(T,c) is
defined as follows:

(5.10)

oT,c) = 1 iff Go,(c) A+ A G, (c) =1, with y1 = (¥,Ga,),---, 79 = (¥, Go,)

0 else.

5For a good overview of normative positions the interested reader is referred to [Ser01]. Moreover,
some relevant approaches based on deontic logic (i.e. the logic of permissions and obligations) are
presented in Chapter 10.
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The semantics of a contract conjunction is given by o(I'y A--- ATg,c) = o(I'1,¢) A--- A
0(Ty,c) and of a contract disjunction by o(I'y,V--- VTy,c) = 0(I'1,c) V --- V o(I'y,c).

According to this definition, goal polices are used to define whether or not a
certain configuration is admissible. This is, of course, a very restricted view on
legal contracts which is specific to our Web service model, since it requires that all
essential properties of a service are described by attributes.

Example 5.3 Consider a contract T = {1,772} specifying that a Web service provider j
has to grant access to a route planning service which returns a route within 2 seconds.
The route has to contain information about historic sites along the way and route calcu-
lations should be possible for starting points and destinations within Germany. This can
be captured by the provider obligation v1 = (j, G, ), where ®1 contains a 3-ary con-
straint ¢ = (("ResponseTime’,’ Attraction’,’Coverage’), ({(‘Isec.’,’HistoricSite’,’Ger’),
(“2sec.’,’HistoricSite’,'Ger’)})). A second obligation 7y, = (i,Ga,) captures the duty of
the requester i that requires paying the agreed amount of money for the service. ®, contains
the unary constraint ¢ = ((‘Amount’),{("3)}).

Although this approach does not allow a full specification of all possible con-
tracts, it is sufficient to capture the information relevant for Web service contracting
and monitoring. This issue is further discussed in Section 6.4.

5.3 Web service Contracting and Contract Monitoring

Having defined the communication primitives available in the market, the concep-
tual design of the market process is specified. Our focus in this context is the con-
tracting and monitoring phase. As discussed in Section 3.2.2, the contracting process
comprises three main phases: the matching phase is discussed in Section 5.3.1, the
allocation phase in Section 5.3.2 and the contract formation phase in Section 5.3.3. In
the latter, we also discuss the monitoring of Web service contracts with respect to a
concrete service invocation, which can also be considered as a part of the settlement
phase.

5.3.1 Matching of Bids

Depending on the market mechanism used (e.g. hit-and-take-mechanisms, negoti-
ations or auctions), offers and requests have to be compared with respect to their
suitability for the other parties in the market. In case of configurable services, this
involves matching of all attributes described in the offer as well as in the request
in order to make sure that at least one provided configuration is suitable for the
requester. Generally, an offer matches a request if the intersection of the set of pro-
vided trades T; and the set of requested trades T; is not empty, i.e. T/ N T} # @.
Given the policy-based definition of multi-attribute offers (Definition 5.4) and re-
quests (Definition 5.5), we can phrase this condition as follows:

(5.11) T/ NT = {(c,m) € GNT|US (c) < < UF(c,k)}

This means we can determine if there is a match between an offer and request by
evaluating if the condition U? (c,k) — U]P (c) > 0 holds for at least one configuration
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¢ € G;NC;. However, in many situations it is not sufficient to know if there is a
match, but also which of the trades t € Tj’ N Tl-’ is the best match, i.e. the trade max-
imizing the surplus u that can be realized. Finding this best match is denoted by
Multi-attribute Matching Problem (MMP) [EWL06]. Assuming no knowledge about
the providers internal cost function and therefore indifference between the different
configurations on provider side, we define the surplus simply as the difference be-
tween score and price U? (¢, k) — U]P (¢). In this case the MMP is defined as follows:

Definition 5.10 (MMP) Given an atomic request r; = (C;,U}), an atomic offer oj =
(Cj, U]P ) and an execution context k, we solve the MMP by maximizing the requester’s

utility per service configuration. The solution of the MMP for a given request r; € B and
provider 0; € B4 is referred to as u;j(r;,0;) and is defined as follows:

(5.12) ui]-(ri,o]') = célg?ﬂxcj Uls (C,k) — U]P(C)

When assuming additive pricing and scoring functions as done in Definition 5.4
and 5.5, we can considerably simplify the MMP. In particular, we can decompose the
calculation into individual subproblems which can be solved independently. The
following formulae (5.13-5.15) use this property to solve Formula 5.12 efficiently by
reducing the the search space from O(|]]; A;|) to O(Y;|A;|). The binary decision
variable x;, is associated with each attribute value and denotes whether the value is
part of the best configuration. Equation 5.14 ensures that exactly one attribute value
is selected for each attribute. Since the following integer programming formula-
tion has a totally unimodular constraint matrix and only integers on the constraints’
right-hand sides, the problem can be solved efficiently using the simplex algorithm
[PS82].

n Al

(5.13) max Z Z(wﬂfi(ale,k) - wﬂp]'(ale))xle - p;mse
I=1e=1
Al

(5.14) st Y xe=1 for0<I<n,
e=1

(5.15) xe € {0,1} for 0<1<mn, 0<e<|A]

The MMP formulation introduced above efficiently determines the optimal con-
figuration given an atomic request and offer. Combinatorial bids are not addressed,
since they become not relevant until several requests and offers are considered,
which is discussed in the next section.

5.3.2 Web Service Allocation

As introduced in Section 2.3.2, determining the allocation between offers and re-
quests in a market can be done by means of a wide range of different allocation
mechanisms. In this section, we consider the problem of designing a suitable mech-
anism for Web service markets. A general problem in this context is the trade-off
between the expressivity of the bidding language that can be handled by a mecha-
nism and the computational tractability of determining the allocation.
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As the requirement analysis in Section 4.2 has shown, an allocation mecha-
nism suitable for all different scenarios has to support multi-attribute, combinato-
rial bids. Moreover, especially in the grid scenario, we usually have serious re-
source restrictions at provider side that should be handled by the mechanism. To
address this resource allocation problem market mechanisms with dynamic pric-
ing — in particular different types of auctions — have been suggested in literature
[WPBB01, BAGS02, LZR03, SNVWO06]. While using such mechanisms enables re-
alizing efficient allocations from an economical point of view (Requirement (R9)),
they are often computationally very demanding and thus are not suitable for all set-
tings (e.g. scenarios that require selecting the most suitable services from hundreds
of Web service offers).

In this section, our intention is therefore not to propose an allocation mechanism
generally applicable for all kinds of Web service scenarios, but rather to show how
the MMP formulation introduced in Section 5.3.1 can be applied in different alloca-
tion algorithms. In doing this, we seamlessly realize semantic matching of attribute
values. In the remainder of this section, we first introduce a lightweight allocation
algorithm that selects the most suitable service provider and the best available Web
service configuration for a given request. This mechanism is referred to as Web ser-
vice selection and addresses the requirements in an enterprise and mobile service
setting, where we usually do not have any resource limitations or the limitations
can be easily handled by the provider. As a second mechanism, we present an
auction-based approach featuring dynamic pricing based on supply and demand.
Particularly in the grid scenario this mechanism leads to economically more effi-
cient allocations.

Web Service Selection

In general, a selection is defined as a decision for the best available alternative. That
means in our case the goal is to find the Web service that is most appropriate to
fulfill a certain goal specified by the requester. Web services selection corresponds
to a Hit-and-Take-mechanism, where a requester selects an offer according to her
preferences. It provides the basic functionality for determining suitable Web service
bindings (see Section 2.1.2). For flexible binding at runtime the Web service selection
has to be done automatically by the system.

Finding the best service involves the decision for a certain provider as well as for
a certain configuration of the Web service. Therefore, we have to solve two maxi-
mization problems: First, the best contract for a given provider has to be identified
which corresponds to the Multi Attribute Matching Problem (MMP) defined in Sec-
tion 5.3.1. Based on the solution of the MMP, we can determine the best provider
by solving Local Selection Problem (LSP). This is to find the best provider for a given
request from the set of all offers. Obviously this implies that the best contract for
each provider is known, i.e. the MMP is solved for each pair of request and offer.
For formulating the LSP, we assume that all requesters get the service they want
if they fulfill the providers’ policies (e.g. pay the required price). This assumption
is realistic especially for information services such as a route planning service, be-
cause of their low operational demands with respect to the required resources. Since
each requester gets the chosen service, no combinatorial bids are needed in such a
scenario. The LSP is formally defined as follows:
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Definition 5.11 (LSP) Given a single atomic request v and a set of atomic offers O, the
Local Selection Problem can be solved by iterating over all offers o; € O and determining
the offer which leads to a maximal solution for MMP. We thus have to solve the following
optimization problem:

5.16 max u;i(r;,0;
( ) i=1,.|0| 1](1 ])

Given the solution of all possible MMPs, solving LSP is linear with respect to the
number of offers and requires O(]|O|) steps, since we have to calculate the surplus
exactly once for each offer. However, as already mentioned the LSP formulation
above is based on several simplifying assumption and thus there are several scenar-
ios where LSP is not sufficient for service selection:

* First, the problem can be relaxed to the multi-unit case where a request might
require more than one invocation of a service. This might be the case if the
binding of services is done once at deployment time of the business process.
If we further do not assume quasi-linearity of the utility functions, e.g. by al-
lowing one time costs, the problem will get considerably more complex. It
can be shown by reduction of the Uncapacitated Facility Location Problem that
computing the optimal service in such scenarios is in FPNP [BFO05].

* Second, the LSP is formulated for the selection of a single service required in
a business process. However, often several services might be required within
such a process. These services might depend on each other in a sense that
not all are compatible to each other (and thus cannot be used within one pro-
cess instance) or that service prices change if several services are bought from
one provider. When the LSP is generalized to an entire service compositions,
the problem is called Global Selection Problem (GSP). The GSP is addressed in
[ZBN104, SBMT04, AVMMO04, YL05, JMGO5]. The goal of GSP is to optimize
attributes for the entire business process of a requester, such as the overall
runtime of the process, the overall costs, etc.

¢ Third, for the problem formulation of LSP we have assumed that offered ser-
vices are always available for all requesters and that possible resource limita-
tions are handled at the provider side, e.g. by adapting the guaranteed service
levels or by increasing server capacity. Of course, handling resource limitation
at provider side is not always possible (especially in grid or utility computing
scenarios). Therefore, the allocation mechanism has to handle the problem.
In case of LSP this can be done simply by applying the first-come-first-serve
principle. However, this may lead to economically inefficient outcomes, since
a requester with the highest valuation of a service might not get the service.
More efficient solutions can be realized by means of dynamic pricing mecha-
nisms such as auctions, as done in [SNVWO06] for computational grids, or by
sophisticated scheduling algorithms as done in [BKO6b].

As the Local Allocation Problem introduced in this section is mainly applicable
to the enterprise and mobile scenarios where the assumption of no resource limi-
tation is usually valid, in the next section we address the grid services scenario by
relaxing this assumption.



5.3 Web service Contracting and Contract Monitoring 93

Web Service Auction

Each provider of a grid system has only limited resources that can be offered to cus-
tomers. For example, a provider of a storage service is restricted by the capacity
of its hard discs and a computing service provider by the power of the available
processors. In this context, the providers also have to make sure that the quality of
service guaranteed to the customers is maintained. Therefore, it is sensible for ser-
vice providers to restrict access to their resources as the maximal load is approached.
This leads to the problem that not always the requester who value a certain service
most can invoke this service, since the maximal load might be already reached. In
such situations, the overall surplus realized by the system is not optimal and thus
the allocation is not efficient in an economic sense. This obviously contradicts Re-
quirement R9.

Introducing an auction mechanism where prices are dynamically determined by
the interplay of supply and demand could improve the situation. Consider a simple
so-called English auction, where an auctioneer announces a Web service offer on
behalf of the provider and the requesters interested in using the service submit their
bids iteratively in an open-cry manner. In this case, the requester with the highest
bid wins the auction and acquires the right to invoke the services. In subsequent
auctions, the service can be allocated to the requester with the second, third, fourth,
etc. highest bid. Thus, the allocation realizes a higher degree of efficiency compared
to the Web service selection mechanism, where a first-come-first-serve-principle is
applied.

A major problem with traditional single-item auctions as the English auction
described above is that the outcome depends on the behavior of other market par-
ticipants and is therefore unknown. For example, a requester that needs two Web
services for her business process might end up with only one service and a process
which is not executable. This is an example for services complementing each other.
As already discussed, bids on complements can be expressed via AND-bids. In or-
der to minimize the risk of a requester to end up without a required service, parallel
bidding on the same service might be necessary. This introduces the risk of purchas-
ing both services although only one is required. Such sub-additive valuations refer
to substitutability, which can be expressed via XOR-bids. It is therefore easy to see
that a combinatorial auction that supports AND- and XOR-bids further increases the
efficiency for the market participants [dVVO03]. In addition, combinatorial auctions
provide lower transaction costs and higher transparency [Sch05].

In order to illustrate how we can use the MMP formulation defined in Section
5.3.1 within an auction, we consider a simple combinatorial auction that allows us
to allocate a set of AND-bids containing service types & C G to a set of requesters
i € I. Before defining the corresponding optimization problem, we generalize the
MMP to handle arbitrary AND-bids of the form b = (S,p) with b € B". In doing
so, the price p; a requester i is willing to pay for a service can be determined as a
function p;(S) = p(U? (c}), ..., U? (CTS‘ )), where ¢} represents the utility maximizing
configuration of a service type C; € S. Based on this definition, the Combinatorial
Auction Problem [RPH98] can be formulated as an integer program (Equation 5.17-
5.20), where x;(S) represents a binary decision variable indicating whether a bundle
S is allocated to requester i. Equations 5.18 ensures that no overlapping sets of
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service types are allocated to a requester. Constraint 5.19 ensure that no requester
gets more than one subset of G.

(5.17) max Y Y xi(S)pi(S)
ielISCg

(5.18) st YY) x(S)<1vieg
Soliel

(5.19) Y x(S)<1viel
8Cg

(5.20) xi(S8)€{0,1}VSCG,iel

However, the conceptual advantage of the combinatorial auctions compared to
traditional auctions is partially offset by the computational hardness of the algo-
rithms for determining winners and prices. Most instances of integer programm
formulation for the winner determination problems above are not efficiently solv-
able, since the problem is reducible to the set packing problem [RPH98], which is
shown to be NP-complete [Kar72]. In literature, a vast amount of (exact as well as
approximate) algorithms have been suggested to solve the winner determination
problem in combinatorial mechanisms under wide range of different assumptions
and in different settings. A detailed discussion of this problem can be found in
[RPH98, FBS99, Nis00, ATY00, BHO1, San02, dVV03].

Although computationally very demanding, the combinatorial auction model
presented above features only basic functionality which is not sufficient in many
scenarios. There are approaches to extend the model in several directions. For
example, MACE [SNVWO06] introduces competition on both sides by providing a
double-sided mechanism, where requesters as well as providers simultaneously
submit bids to the auctioneer. In addition, XOR-bids B?, co-allocation constraints
and time-issues can be handled. Other extensions allow exchanging multiple-units
of a service as suggested by [dVV03, BK05]. This is especially important if service
bindings are determined at deployment time of a process for several executions at
once.

While these extensions further improve market efficiency, such additional fea-
ture often increase the complexity of the auction and limit the computational
tractability (Requirement R10). Thus, complex combinatorial auctions are typically
not applied for runtime-selection of services. However, they can be used for small
scenarios with a moderate number of providers or for selecting services at develop-
ment or deployment time.

5.3.3 Contract Formation and Monitoring

After allocating offers to requests a contract is needed that unambiguously speci-
fies the involved parties, agreed service levels and prices. As introduced in Section
5.2.3, a contract I' is formally defined as a set of obligations v = (v, G ), where Gg
represents a goal policy with constraints ® and y the party obliged to meet the con-
straints. In the allocation phase, the set of admissible trades is determined by the
intersection of the acceptable sets of requester i and provider j: T/ N Tj’ . The obliga-

tions in the contract have to identify exactly these acceptable trades t = (c, 7r) with
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t € T; N T;. Thus, each trade f defines a contract with a provider obligation <y; and

a customer obligation 7; as illustrated in Example 5.3 on page 89. In case several
trades tq,...,t; € Ti’ N T]’ are admissible, for each of the trades a separate contract is
closed. The individual contracts are aggregated via disjunctions, i.e. I'y V --- VI,
since only one of the trades has to be executed.

Once a contract has been executed, both parties evaluate whether the other
party’s obligations stated in the contract have been fulfilled. This requires moni-
toring the execution of the Web service. The requester is interested in the properties
exposed by the service. Therefore, monitoring methods are required that enable
the collection of execution information for each attribute within the configuration.
For example, this might include measuring ‘Response Time’, “Availability” or other
quality of service guarantees, evaluation of error messages returned by the service,
judging quality of the data returned, etc. Metrics and methods for measuring such
quality of attributes are presented in [SMS*02, Lud03], for instance. The result of the
monitoring is thus exactly one configuration c£ € C that has been executed by the
service. Consequently, a contract I' is interpreted simply by evaluating the function
o(T,cF) defined in Equation 5.10.

However, some service characteristics are hardly observable by the other party
and thus cannot be verified automatically. For example, consider the obligation
which requires the provider to not disclose private data of the customer to third
parties. Although this is an important regulation in the contract, it cannot be directly
monitored by the customer. Nevertheless, the clause has to be part of the contract in
order to provide a legal instrument for the customer to sanction illegal disclosure of
her private data. In order to enable automated evaluation of contracts in presence
of not observable attributes the following methods is applied: before evaluating the
contract we remove all constraints defined on attributes that cannot be observed.
The attribute values of these attributes can be set to any value within the attribute
range. After this manipulation the function ¢(T,cF) is evaluated as usual.

5.4 Conclusion

In this chapter, we have presented the conceptual design of a Web service market
model using an abstract mathematical notation. Since this notation is not directly
processable by computers (Requirement (R7)) and there is no standardized serializa-
tion for exchanging the communication primitives in the Web (Requirement (R6)), in
the embodiment phase of the market engineering process the model is implemented
by means of ontologies. Ontologies are powerful enough to provide the required ex-
pressivity, while fostering interoperability in the Web through a standardized syntax
and semantics. In Chapter 6, the policy model as well as the communication primi-
tives introduced in Section 5.1 and 5.2 are formalized by means of ontologies. Based
on these ontologies, in Chapter 7 an implementation of the Web service contracting
and contract monitoring mechanisms presented in Section 5.3 is introduced.
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Chapter 6

An Ontology Framework for Web
Service Markets

One of the main contributions of this work is an ontology framework that unam-
biguously defines the vocabulary for communication in Web service markets. The
key modules of the ontology framework are ontologies for representing policies,
bids and contracts. In this chapter, we first give a short overview of the entire frame-
work (Section 6.1). This includes a discussion about the foundational ontology that
is used as modeling basis and clarifies the relation and interdependencies between
the different ontology modules. Subsequently, we introduce the ontologies for ex-
pressing policies, bids and contracts in Section 6.2, 6.3 and 6.4, respectively.

6.1 Overview

As discussed in Section 2.4.3, ontologies can be categorized into four major classes:
top-level ontologies, core ontologies, domain/task ontologies and application on-
tologies. The ontology framework is structured according to these categories by
providing a stack of ontology modules. This structure is illustrated in Figure 6.1
and comprises the following three layers:

* The framework is based on a philosophically sound formalization of domain-
independent concepts and relations that are captured by the top-level ontol-
ogy DOLCE (see Section 2.4.4). By capturing typical ontology design patterns
(e.g. location in space and time), foundational ontologies provide the basic vo-
cabulary for structuring and formalization of application ontologies. Reusing
these building blocks considerably reduces modeling effort. Furthermore, they
provide precise concept definitions through a high degree of axiomatization.
Thereby, foundational ontologies facilitate the conceptual integration of dif-
ferent ontologies and thus ensure interoperability in heterogeneous environ-
ments. DOLCE provides important ontology design patterns such as contextu-
alization and is available in the ontology language we use (i.e. OWL-DL). The
ontology DOLCE together with its modules Ontology of Description and Sit-
uations (DnS), Ontology of Information Objects (OIO) and Ontology of Plans
(OoP) has been introduced in Section 2.4.4. The concepts that are directly used
for alignment of our ontology are introduced in Table 2.3 on page 43.
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Inherits
from

Top-Level Ontology
(domain-independent)
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alignmen!

Core Ontology
(specific domain independent)

Figure 6.1: Ontology framework for Web service markets.

Domain/Application
Ontology
(domain dependent)

* By means of the DOLCE vocabulary, additional ontology modules can be de-
fined that capture information within a Web service market. This includes
generally applicable ontology modules that formalize the notion of policies,
Web services, bids and contracts. The Core Policy Ontology (CPO) formalizes
the notion of goal and utility function policies defined in Section 5.1. This
module is used to define two additional ontology modules that formalize the
communication in electronic markets: The Core Ontology of Bids (COB) that
uses utility function policies to efficiently encode configurable Web service of-
fers and requests; and the Core Contract Ontology (CCO) the relies on goal poli-
cies to represent requester and provider obligations. In addition, an ontology
for representing services is required. The Core Ontology of Services (COS) is an
ontology module based on DOLCE for modeling the technical aspects of ser-
vices as presented in [Obe05, OLG06]. Other ontologies that can be used to
describe services — such as OWL-S or WSMO - are not directly aligned with
DOLCE.! The ontology modules Core Policy Ontology, Core Ontology of Bids,
Core Contract Ontology and Core Ontology of Services are classified as core
ontologies since they can be used for different purposes, in different domains
and for different applications.

* While the first two layers contain domain-independent off-the-shelf ontolo-
gies, the third layer comprises ontologies for customizing the framework to

For OWL-S a DOLCE alignment exists which is presented in [MOGS04]. However, due to some
problematic aspects of OWL-S, such as conceptual ambiguity, poor axiomatization, loose design and
narrow scope, the alignment to DOLCE requires a major restructuring of OWL-S.
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specific domains (e.g. an ontology for modeling information that is returned
by a service such as credit or route information).

In the following, we focus on the second layer of our ontology framework. We intro-
duce the Core Policy Ontology in Section 6.2, the Core Bidding Ontology in Section
6.3 and the Core Contract Ontology in Section 6.4. The Core Web Service Ontology
has already been developed in [Obe05, OLG " 06] and is therefore not addressed. For
the formalization of the core ontologies, we use the ontology formalisms introduced
in Section 2.4.2.

Ontology modules of the first layer are reused and published in [MBG'02a,
GBCLO04]. They can be downloaded from http://ww. | oa-cnr. it/ DOLCE
ht m . Regarding the second layer, we reuse the Core Software Ontology and
the Core Ontology of Services published in [Obe05, OLGT06]. They are avail-
able at http://cos. ontoware. org. Parts of our contributed ontology mod-
ules originate from prior publications. The Core Policy Ontology is partly intro-
duced in [LEO05, OLG*06, LAOT06, LASW06] and the Core Contract Ontology in
[LML*05, LLM07]. The latter ontology modules as well as the Core Ontology of
Bids are available from htt p: / / enp. ont owar e. or g.

6.2 Core Policy Ontology (CPO)

The Core Policy Ontology (CPO) provides primitives for specifying goal and util-
ity function policies that have been introduced in Section 5.1. As outlined in the
following, expressing policies by means of ontologies provides several important
advantages [GLA 104, UBJ 04, Kag04, KPKHO05]:

¢ Since the semantics of ontology languages is defined using a formal calcu-
lus, they provide logical inferencing mechanisms, which allow us to reason
about policy containment, i.e. whether the requirements for supporting one
policy are a subset of the requirements for another. For example, a provider
with a policy A restricting the coverage of a route planning service to routes
within Europe matches a requester stating a policy B, which requires a service
to support routes within Germany. We thus have to determine whether policy
A contains policy B. This is particularly important to address Requirements
(RI), (R6) and (R9). Beyond policy containment, the following reasoning task
for policy evaluation can be identified [KPKHO5]:

- policy inclusion: if x meets policy A then it also meets policy B

- policy equivalence: if policy A is evaluated to a measure u then also pol-
icy B is evaluated to u and vice versa.

- policy incompatibility: if x meets policy A it cannot meet policy B
- policy incoherence: policy A cannot be met
- policy conformance: x meets policy A
¢ Since ontologies come with standard languages and pre-existing reasoners

they are easily exchangeable in the Web, and policy editing and processing
can be done with standard tools, i.e. no separate policy engine is required. In
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Ontology entity DOLCE alignment Abstract model
Attribute DnS:Parameter L
AttributeValue DOLCE:Region A
Configuration DnS:Situation C

Utility Value DOLCE:Region {0,...,1}
satisfiesPolicy DnS:satisfies {(®,0)|Go(c) =1}
overallDegree DnS:satisfies {(f,c)[Fo: Uf(c) = v}
Context DnS:FunctionalRole K
ContextDimension DnS:Parameter {61,...,0m}

Table 6.1: Correspondence of Core Policy Ontology and Abstract Policy Model. A
row in the table with the ontology entity ¢, the DOLCE concept 1 and a set of the ab-
stract model E should be understood as follows: ¢ C ¢ and there is an interpretation
7 such that ¢ = E holds.

addition, existing policy languages can be mapped into the same background
formalism, which makes the different policy specifications interoperable (Re-
quirement (R6)).

* Ontologies feature declarative policy specification, which provides the possi-
bility to change policies at runtime (Requirement (R8)) and to exchange them
with other parties in the system (e.g. share them with other market partici-
pants) as required in Figure 3.1 on page 48. Moreover, representing policies as
part of the knowledge base provides the ability to state knowledge about poli-
cies. For example, one could define the application area of a policy, the author
or the context in which the policy should be applied (Requirement (R4)).

In the remainder of this section, we implement the abstract policy model intro-
duced in Section 5.1 as follows: Since policies require the expression of the functions
G(-) and U(-), we first extend the DOLCE ground ontology by modeling primitives
required for representing functions (Section 6.2.1). Second, based on these functions,
we show how the DOLCE ontology module Descriptions & Situations is applied to
model Web service configurations and policies over these configurations (Section
6.2.2). In addition, we discuss in this section how configurations are evaluated ac-
cording to the specified policies, i.e. how the functions G(-) and U(-) are evaluated.
Finally, a mechanism to specify and evaluate combinations of policies is introduced
in Section 6.2.3. Table 6.1 illustrates the mapping between the core policy ontology
and the abstract policy model introduced in Section 5.1. Since the ontological model
is more comprehensive and fine-grained than the abstract model, only a subset of
the concepts and relations are mapped to the abstract model. While the abstract
model is geared specifically towards Web service markets, the core policy ontology
is applicable in a much broader context.?

ZNote that although in the following we focus on applying the policy ontology for specifying
scoring and pricing functions in electronic markets, due to its generality it is not restricted to this
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Function OlO:InformationObject
PatternBasedFunction PiecewiselLinearFunction PointBasedFunction
patternidentifer constitutedBy constitutedBy
patternParameter1 ¢ \L J/
IdentifierValue ParameterValue nex Point
patternParameterN ‘ | .
valuationq/ \D policyValue
DOLCE:Region UtilityValue AttributeValue

JAN | l

Figure 6.2: Representation of value functions. For the reader’s convenience, we
define DL axioms informally via UML class diagrams, where UML classes corre-
spond to OWL concepts, UML associations to object properties, UML inheritance to
subconcept-relations and UML objects to OWL individuals [BVEL04].

6.2.1 Valuation Functions

As discussed in Section 5.1, utility function policies are expressed via functions
V : C — R that map each configuration c € C to a corresponding valuation between
0 and 1 (or —o0), where a valuation of —oo refers to forbidden alternatives and a
valuation of 1 to the optimal alternative [LEOO05].2> We now show how the funda-
mental concepts formalized in DOLCE can be extended to allow expressing utility
functions.

As depicted in Figure 6.2, a Function is a specialization of
OIO:InformationObject which represents abstract information that exists in
time and is realized by some entity [GBCL04]. Currently our framework supports
three ways of defining Functions: (i) Functions can be modeled by specifying sets
of points that explicitly map attribute values to valuations. This is particularly
relevant for nominal attributes. (i) We allow to extend these points to piecewise
linear value functions, which is important when dealing with continuous attribute
values, such as the response time of a service. (iii) Thirdly, we allow reusing typical
function patterns, which are mapped to predefined, parameterized valuation rules.
Note that such patterns are not restricted to piecewise linear functions since all
mathematical operators provided by the rule language can be used. The different
ways of declarative modeling functions are discussed next in more detail.

domain. In fact, it can be used for a wide range of multi-attribute decision problems, e.g. to define
preferences over agent strategies or penalties in electronic contracts.

3Note that normalization to the range [0,1] is not required. For example, for specifying scoring
and pricing policies a range Rj might be more convenient.
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Figure 6.3: Example of a point-based value function

Point-based Functions

As depicted in Figure 6.2, PointBasedFunctions are Functions that are constitutedBy
a set of Points (Axiom (A9)). Each Point has a property policyValue referring to an
AttributeValue a € A and a property valuation that assigns exactly one Utility Value
to this attribute value (Axiom (A10)).* For the reader’s convenience we will often
use the syntax (x,y) to refer to a Point instance with policyValue x and valuation y.
An AttributeValue is a specialization of DOLCE:Region that defines which attribute
values a certain attribute may adopt (Axiom (A11)). It thus corresponds to the set
A in the abstract model. For example, the attribute WeatherConsideration in the
route planning example (Example 4.3) requires the DOLCE:Region WeatherConsid-
erationValue containing the elements “yes” and “no”. Similarly, the DOLCE:Region
Utility Value comprises the range [0,1] and —oo. The following axioms formally cap-
ture these relations:

(A9) PointBasedFunction C Function I JconstitutedBy.Point

(A10) Point C =, policyValue.AttributeValue 'l
=1 valuation.Utility Value

(A11) AttributeValue CDOLCE:Region

(A12) Utility Value = DOLCE:Region

Example 6.1 In our route planing example, a requester might specify her preferences with
respect to the service attribute WeatherConsideration by a PointBasedFunction, which
is constitutedBy two instances of Point with (“yes”,1) and (“no”,0.2). Thus, the re-
quester would highly prefer weather information to be taken into account, but has some
small use for routes calculated without weather information. Similarly, the preferences for
the attribute RouteType calculation can be defined with Points (“quickest”,1) and cheap-
est (“cheapest”,0.4). These mappings are illustrated in Figure 6.3.

In order to evaluate this function, additional axioms are required that more
closely define the semantics of the concepts PointBasedFunction and Point as well

“Note that in case we have dependent attributes and thus complex value functions
Ojs (Xgy -, x7)  (cf. Section 5.1) each Point might have several policyValue relations,
i.e. policyValuey,...,policyValue,.
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as their relations. Rule (R2) below defines how the UtilityValue v of a Attribute-
Value x can be determined based on the specification of the PointBasedFunction f.
For this purpose, we iterate over all Points constituting the function and compare
their property policy Value to the desired attribute value x.

(R2) degree(f,x,v) < PointBasedFunction(f), constitutedBy(f,p),
policyValue(p, pv), match(x, pv), valuation(p,v)

The comparison of attribute values is realized by the match-predicate. This pred-
icate has to be customizable since the way attributes are compared depends on the
domain of interest, i.e. on the concrete attribute. In order to keep Rule (R2) appli-
cable for all attributes, we specify this in a separate matching rule. For example,
considering the attribute WeatherConsideration, for matching the attribute values a
simple string matching predicate as provided with the built-in swrilb:equal is suffi-
cient. Rule (R3) illustrates this by defining the matching rule for the attribute Weath-
erConsideration.

(R3) match(x,y) < WeatherConsiderationValue(x),
WeatherConsiderationValue(y),swrlb:equal(x,y)

Unfortunately, in many cases attribute values have to be described in a more
complex way beyond simple strings or numbers, e.g. to express subclass relations
between attribute values. In such cases, it might be required to model attribute
values as concepts in OWL. Since in our ontology they are modeled as individuals,
a meta-modeling approach is required where a URI can be treated as concept as well
as instance.” This allows us to specify preferences on a more abstract level and thus
avoids enumerating all possible attribute values.

Example 6.2 Consider an attribute Indicated Attraction that specifies which types of at-
tractions along the route can be suggested by a certain service. In this case, the corresponding
value space IndicatedAttractionValue might comprise the alternatives Cultural Attrac-
tion, HistoricSite, Museum and Castle which are all related to each other. In particular,
CulturalAttraction can be seen as a class containing all other values. HistoricSite, in
turn, comprises Castles but not Museums. Consequently, a scoring function mapping
HistoricSites to a valuation of 0.8 has to assign the same value to information about Cas-
tles along the route (although this might not be specified explicitly). Such a behavior can
be realized by defining a Point that maps the AttributeValue HistoricSite to a Utility-
Value of 0.8 and another Point that maps everything else to 0 using the concept definition
Attraction M —HistoricSite. Similar to the attributes above, we can define a matching
rule for the attribute IndicatedAttraction by replacing the built-in implementing string
matching with the built-in subsumes that features DL subsumption checking between two
concepts.

5 Although such an approach is outside of the ontology formalism at hand and part of OWL-Full,
many reasoners such as KAON2 can handle meta-modeling to some extent [Mot05].
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(R4) match(x,y) «IndicatedAttractionValue(x), Indicated AttractionValue(y),
subsumes(y, x)

Beyond subsumption several other notions of matching description logic con-
cepts have been proposed in literature (e.g. [LH03, NSDMO03, GMP04, BKO6a]). We
support these different notions of match by providing a flexible framework that can
be customized via declarative matching rules.

Piecewise Linear Functions

In order to support defining Functions also on continuous properties, we introduce
PiecewiseLinearFunctions as shown in Figure 6.2. Continuous attributes exhibit a
natural ordering between the attribute values A which can be utilized for specifying
the function. We utilize the property next which connects two Points with adjacent
attribute values in order to interpret Points as continuous functions. A Piecewise-
LinearFunction is defined by at least two points. This is captured by the following
axiom:

(A13) PiecewiseLinearFunction C Function [l >, constitutedBy.Point

Such adjacent Points can be connected by straight lines forming a piecewise
linear value function as depicted in Figure 6.4. For every line between the Points
(x1,y1) and (x2,y2) as well as a given AttributeValue x, we calculate the valuation v
as follows.

X2—X1

B 27N (x —x1) +y1, if 11 < x < xp
0, otherwise

This equation is formalized by a predicate cal(v,x,x1,y1,X2,y2). This predicate
can be realized either directly by means of a built-in or by exploiting the math as
well as the comparison built-in predicates provided by the rule language.®

Using this predicate, Rule (R5) defines the valuation of a certain attribute value x
(as Rule R2 does for PointBasedFunctions). The rule makes sure that only adjacent
Points are considered in the calculation.”

6 Although predicates with arity higher than two cannot be modeled with the formalism at hand
directly, many reasoning tools support them. Moreover, techniques for reifying higher arity predi-
cates are well known [HSTTO00].

For the readers convenience, throughout the work we avoid repetition of predicates by us-
ing the A-operator. For example, the term ‘A;c(q)(policyValue(p; pv;))’ is written instead of

‘policyValue(p1, pv1), policyValue(p,, pva)’.
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Figure 6.4: Example of a piecewise linear value function

(R5) degree(f,x,v) <« PiecewiseLinearFunction(f),

/\ (constitutedBy(f, p;), policy Value(p;, pv;),
ie{1,2}

valuation(p;,v;)), next(p1, p2), swrlb:lessThan(x, py)
swrlb:greaterThanOrEqual(x, p1),cal(v, x, pv1,v1, pv2,v2)

Example 6.3 As an example, let us assume that the Function for the attribute Response
Time of the route planing service is given by a PiecewiseLinearFunction with the
Points (0,1), (10,0.8), (30,0.3), (60,0) as depicted in Figure 6.4. Now, we can easily
find out which UtilityValue v a certain AttributeValue x is assigned to. The predicate
caly(v,x,x1,Y1,X2,Y2) is true iff the policy Value x is between two adjacent Points (x1,y1)
and (x,y2) and the UtilityValue of x equals v. For instance, for a Response Time of 20
sec. cal, evaluates the straight line connecting the adjacent Points (10,0.8) and (30,0.3),
which results in a Utility Value 0.675.

Pattern-based Functions

Alternatively, value functions for continuous attributes can be modeled by means of
PatternBasedFunctions. This type refers to functions like up, p,(x) = p1eF2*, where
p1 and po represent parameters that can be used to adapt the function. In the
Core Policy Ontology, these Functions are specified through parameterized pred-
icates which are identified by patternldentifiers. A patternldentifier points to a
DOLCE:Region IdentitierValue that uniquely refers to a specific rule predicate.

(Al4) PatternBasedFunction C Function [ =; patternldentifier.IdentifierValue

This predicate is denoted pattern. A patternParameter defines how a specific
parameter of the pattern-predicate has to be set. For allowing an arbitrary number
of parameters in a rule, universal quantification over instances of patternParameter
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Figure 6.5: Example of a pattern-based valuation function

would be necessary in the body of the rule. Since this is not expressible with the rule
language at hand, the different parameters are modeled as separate properties in
the ontology, viz. patternParameter],. .., patternParameterN. Although this restricts
the modeling approach as the maximal number of parameters has to be fixed at
ontology design time, for most applications this is sufficient and we believe that
keeping the logic decidable justifies this limitation.

As shown in the example below (Rule (R6)), each pattern is identified by a hard-
coded internal string. This is required to specify, which pattern is assigned to a
certain attribute in the ontology. Thus, in order to find out which pattern-predicate
is applicable, the patternldentitier specified in the policy is handed over to the pred-
icate and then it is compared to the internal identifier. If the two strings are identical,
the predicate is applied to calculate the UtilityValue that is assigned to a Attribute-
Value.

(R6) pattern(v,id, x,p1,...,pn) <
String(id), AttributeValue(x), Utility Value(v),
swrlb:equal(id,“id:exp” ), swrlb:multiply(x,t1, p2),
swrlb:pow(t,,“2.70481”,t1),swrlb:multiply (v, p1, t2)

Example 6.4 We again focus on the attribute ResponseTime of the route planning ser-
vice. Assume the preferences for Response Time are given by the exponential function
Up,,p, (X) = p1eP?* with the patternParameter py = 1.03 and p, = —0.04 (Figure 6.5).
Rule (R6) formalizes the pattern. The internal identifier in this example is ‘id:exp’. The
corresponding comparison is done by the built-in equal, which is satisfied if the first argu-
ment is the same as the second argument.

SWRL supports a wide range of mathematical built-in predicates (cf. [HPSB™04])
and thus nearly all functions can be supported. As in our example, these functions
are typically parameterized only by a rather small number of parameters. Therefore,
we believe that constraining the number of parameters at ontology design time has
only few practical implications.

Based on the definition of the pattern-predicate, we can calculate the Utility Value
of an AttributeValue according to a PatternBasedFunction using the following rule.
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Figure 6.6: Policy description framework. To improve the readability we illus-
trate certain relations by plotting UML classes within other UML classes: The
class PolicyDescription has a DnS:defines-relation and the class Configuration a
DnS:settingFor-relation to each contained class.

(R7) degree(f,x,v) «—PatternBasedFunction( f ), patternldentifier(f,id),
patternParameter(f,p1),..., patternParameter(f, p,),
pattern(v,id,x, p1,...,pn)

Based on the notion of Functions introduced above, we show in the following
how they are used to define and reason about policies.

6.2.2 Modeling Policies and Configurations

As discussed in Chapter 5, we formalize preferences of a user as well as pricing in-
formation of a provider in a functional form by means of utility function policies.
For instance, a price-conscious user might prefer a cheap service although the ser-
vice has a rather slow response time, whereas a time-conscious user might accept
any costs for a fast service. Hence, policies can be seen as different views on a cer-
tain configuration. For modeling such views, we use and specialize the DOLCE
module Descriptions & Situations (DnS) which provides a basic theory of contex-
tualization [GBCL04]. Hence, a certain configuration can be considered as more or
less desirable depending on the scoring policies of a buyer or a configuration can be
priced differently depending on the pricing policies of a seller.

As depicted in Figure 6.6, when using DnS with DOLCE, we distinguish be-
tween DOLCE ground entities that form a DnS:Situation and descriptive entities com-
posed in a DnS:SituationDescription, i.e. the view in which DnS:Situations are in-
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terpreted. We specialize the DnS:SituationDescription to a PolicyDescription that
can be used to evaluate concrete Configurations which are modeled as special kind
of DnS:Situations. This distinction enables us, for example, to talk about products
as roles on an abstract level, i.e. independent from the concrete entities that play the
role. For instance, a certain product configuration can be evaluated in the light of
either a pricing policy of the seller or the preferences of a user depending on the
point of view.

In the following, we describe how such Configurations and PolicyDescriptions
are modeled and then show how the evaluation of policies is carried out.

Configuration

In a first step, we define the ground entities that constitute a DnS:Situation. In our
context, such DnS:Situations reflect multi-attribute descriptions of decision alterna-
tives (e.g. real-world objects or activities). In a concrete DnS:Situation these prod-
ucts have one distinct configuration. Recall that in Section 5.1 we defined the set
of configurations C as the cartesian product of the attributes C = A x --- X A,.
Hence, we model Configuration as a subclass of DnS:Situation that exactly defines
one configuration ¢ € C of a product (Axiom (A15)). Since there are various dif-
ferent ways of describing products, a generic approach is used in this work, where
concrete objects and activities are represented by instances of DOLCE:Endurant and
OoP:Activity, respectively. Attributes of DOLCE:Endurants and OoP:Activities are
modeled via the locatedIn property that points to a value range represented by the
DOLCE:Region AttributeValue [GST05].® This approach is illustrated in the lower
part of Figure 6.6.

The following axioms capture this notion by ensuring that each Configura-
tion comprises at least one multi-attribute object (Axiom (A15)). Axiom (A16)
ensures that each AttributeValue belongs to exactly one DOLCE:Endurant or
OoP:Activity. Moreover, we can define a context for each DOLCE:Perdurant and
DOLCE:Endurant. This is realized by means of the concept ContextRegion (Ax-
iom (A17)) which contains the allowed values for a context dimension ¢, i.e. for the
context dimension “Location” ContextRegion might represent a list of countries.

(A15)  Configuration CDnS:Situation M 3DnS:settingFor.(DOLCE:Endurant L
OoP:Activity) M 3DnS:settingFor. Attribute Value
(Ale) AttributeValue CTDOLCE:Region Il
=1 DOLCE:locatedIn™ .(OoP:Activity LI
DOLCE:Endurant)
(A17)  ContextRegion " DOLCE:Region I
JDOLCE:locatedIn™ .(DOLCE:Endurant L
DOLCE:Perdurant)

8Note that this approach is more general than our abstract model, where a Web service is fully
described by a set of attributes.
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Example 6.5 A configurable Web service can be modeled by a combination of
CSO:ComputationalObjects and CSO:ComputationalActivities, which specialize
DOLCE:Endurants and OoP:Activities, respectively [Obe05]. Hereby, specializations
of CSO:ComputationalActivities capture ServiceActivities like RoutePlanningActiv-
ity. Specializations of CSO:ComputationalObjects represent the objects involved in such
a ServiceActivity (e.g. inputs and outputs). A RoutePlanningActivity might have several
DOLCE:Qualities that are located in specializations of AttributeValue such as Weather-
ConsiderationValue, Indicated AttractionValue, ResponseTimeValue or Availability-
Value. In addition, the RoutePlanningActivity involves a ServiceOutput which special-
izes CSO:ComputationalObject. ServiceOutput is associated to a RouteTypeValue that
defines whether the output is the cheapest or the fastest route.

Policy Description

In a second step, we define views on the ground entities defined in Section
6.2.2. This is realized by specializing the descriptive entities DnS:FunctionalRoles,
DnS:Courses, DnS:Parameters, and DnS:SituationDescriptions as introduced in Ta-
ble 2.3. Policies are modeled as specialization of DnS:SituationDescription (Axiom
(A18)). They are called PolicyDescriptions and have to DnS:define a PolicyObject’
or PolicyTask that represent the entity on which the policy is defined, e.g. this could
be a certain type of good or a service. Since PolicyObjects and PolicyTasks are mod-
eled as specialization of DnS:FunctionalRoles and OoP:Tasks (Axiom (A19) and Ax-
iom (A20)), policies can be defined on an abstract level without referring to a con-
crete DOLCE:Endurant or OoP:Activity. For instance, policies can be defined for a
certain service category (specialization of OoP:Task) such as route planning services
in general. Then all OoP:Activities that fulfill the task of route planning in a certain
DnS:Situation are evaluated according to the policy. Axiom (A18) formally defines
a PolicyDescription. It ensures that at least one entity is constrained by means of
the DnS:Parameter Attribute. Moreover, each Attribute that is introduced has to
constrain exactly one PolicyObject or PolicyTask which can be realized by means of
the DnS:requisiteFor-relation (Axiom (A21)).

(A18) PolicyDescription & DnS:SituationDescription I
dDnS:defines.(PolicyObject LI PolicyTask) [T

dDnS:defines. Attribute

(A19) PolicyObject & DnS:FunctionalRole I'
DnS:definedBy.PolicyDescription

(A20) PolicyTask COoP:Task ' DnS:definedBy.PolicyDescription

(A21) Attribute C DnS:Parameter I =1 DnS:requisiteFor.(PolicyObject
Ll PolicyTask)

9 PolicyObjects can represent entities that are passively or actively involved in a certain OoP:Task.
For example, a PolicyObject could represent a user that actively executes an service invocation as
well as a Web service, which is passively involved in an invocation. Sometimes these two aspects are
distinguished using two separate concepts. For instance in [LEO05, OLG"06], an additional concept
PolicySubject is introduced that refers to the active entities.
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Up to now, a PolicyDescription can be used to define constraints ¢ € ® on cer-
tain properties of an entity. This is exactly what we consider as goal policies. A
similar approach is used in [OLG'06] for expressing policies such as access rights.
As discussed in Section 5.1, utility function policies generalize goal policies by ad-
dressing the fact that configurations are preferred to varying degrees depending on
the concrete attribute values. Therefore, some extensions to the basic model are
required. The DnS:FunctionalRole Preference is introduced which assigns Prefer-
ences to an Attribute (via the isAssignedlo-relation). This enables modeling ad-
ditive preference functions. Thus, preference structures on attributes are imposed
by Functions. As discussed in Section 6.2.1, Functions are OIO:InformationObjects.
They play the role of Preferences in a PolicyDescription and define how Attribute-
Values are mapped to Utility Values (Axiom (A22)). Preferences might be applicable
only in a certain context. That means that a policy defines which Function should
be used for which attribute and in which context. The set of contexts K are cap-
tured by the DnS:FunctionalRole Context, which comprises an instance for each
ke K=01 X -+ X by (Axiom (A24)). The set {d1,...,0,} is modeled by ContextDi-
mension (Axiom (A25)).

(A22) Preterence T DnS:FunctionalRolel 1 =1 DnS:playedBy.Function I
=1 DnS:requisites. Weight M VapplicableIn.Context

(A23) applicableIn C” DOLCE:part

(A24) Context CDnS:FunctionalRole '

dDnS:requisiteFor ™~ .ContextDimension

(A25) ContextDimension T DnS:Parameter [ 3DnS:requisiteFor.Context
VDnS:requisiteFor.Context '
VDnS:valuedBy.ContextRegion

Besides defining Functions, Preferences also define the relative importance of
the given Attribute via the DnS:Parameter Weight and the DOLCE:Region Weight-
Value (omitted in Figure 6.6), which corresponds to factor A in the abstract model.

Example 6.6 As an example, consider the scoring policy for the property response time of
a Web service. To express this, we introduce in Axiom (A26) a new instance of OoP:Task,
called WebServiceTask . In addition, Axiom (A27) introduces an Attribute Response-
Time that represents a constraint (DnS:requisiteFor) that has to be fulfilled by WebSer-
viceTask (Axiom (A28)). In order to define preferences over all possible attribute values,
ResponseTime is DnS:valuedBy a AttributeValue ResponseTimeValue comprising the
entire value space (e.g. represented by a subclass of DOLCE:Temporal-Region) as spec-
ified in Axioms (A29) and (A30). Moreover, the instance RTPreference of the concept
Preference is assigned to ResponseTime and is played by an instance of a PatternBased-
Function or PiecewiseLinearFunction (Axioms (A32)— (A34)). These Functions map
AttributeValues to Utility Values as discussed in Section 6.2.1.

(A26) OoP:Task( WebServiceTask)
(A27) Attribute(ResponseTime)
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(A28) DnS:requisiteFor(ResponseTime, WebServiceTask)
(A29) AttributeValue(ResponseTimeValue)

(A30) DnS:valuedBy(ResponseTime, ResponseTime Value)
(A31) Preference( RTPreference)

(A32) isAssignedTo(RTPreference, ResponseTime)

(A33) PatternBasedFunction(RTFunction)

(A34) DnS:playedBy(RTPreference, RTFunction)

After presenting how Configurations as well as PolicyDescriptions are modeled,
we introduce the rules for evaluating concrete Configurations with respect to given
PolicyDescriptions. We show how pricing policies are applied to determine the
price of a configuration or scoring policies to determine the willingness to pay.

Policy Evaluation

With our approach, policies that define Preferences no longer lead only to a pure
boolean statement about the conformity of a Configuration, but rather to a degree
of conformity of the Configuration. Therefore, the original DnS:satisfies-relation be-
tween a DnS:Situation and DnS:SituationDescription is not sufficient any more since
additional information about the degree of conformity has to be captured. However,
since checking for satisfaction can be interpreted as the evaluation of the goal policy
aspect in the PolicyDescription, meeting the constraints in the the goal policy can be
seen as a necessary prequisite. This is captured by the following rule which refines
the DnS:satisfies-relation. The reader familiar with DOLCE will notice that Rule
(R8) largely corresponds to the completely-satistfies relation described in [GST04].
Since the formalism at hand is not expressive enough to capture this relation di-
rectly, we provide a workaround that explicitly enumerates the attributes A;,..., A,
and checks for classification of an appropriate ground entity, thus implementing
qualified satisfaction (cf. [GST04]). Note that we assume an own AttributeValue con-
cept for each Attribute.

(R8) satisfiesPolicy(c, p) < Configuration(c), PolicyDescription(p),
DnS:satisfies(c,p), [\ (Attribute;(a;),

i€l..,n
DnS:defines(p,a;), DnS:valuedBy(a;,av;),
DnS:settingFor(c, cv; ), match(av;, cv;))

Ontologically, modeling utility function policies requires putting in relation the
PolicyDescription, a concrete Configuration and an overallDegree that represents
the value to which the latter satisfies the former. For the sake of simplicity and
compact representation, we use predicates of higher arity in the following. If satis-
tiesPolicy does not hold no further evaluation will be necessary and a value of —co
is assigned by Rule (R9).

(R9) overallDegree(c,p,v) < —satisfiesPolicy(c, p), assign(v,” — 00”)
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In line with the additive utility model defined in Equation (5.4), we first cal-
culate the valuation for each independent set of attributes individually and then
aggregate the individual valuations to get the overall degree of a configuration. The
local utility values can be calculated by Rules (R2), (R5) and (R7) depending on the
type of function used. The valuation derived from these rules can be interpreted as
the valuation a single attribute contributes to the overall valuation. Note that the
non-additive case is a simplification of this approach, where the local utility value
corresponds to the overall value.

(R10)  overallDegree(c, p,v) < satisfiesPolicy(c,p), /\ (DnS:defines(p,a;),
i=1,.

DnS:defines(p, pfi), isAssignedTo(pf;,a;), DnS valuedBy(a;,av;),
DnS:settingFor (¢, cv; ), match(av;, cv;), DnS:playedBy(pfi, fi),
degree(f;,cv;,v;)),sum(v,vy,...,0y)

Rule (R10) is simplified in a sense that predicates for weighting of attributes ac-
cording to their relative importance A; are omitted. However, adding the relevant
terms for executing this calculation using SWRL built-in predicates is straightfor-
ward.

Example 6.7 To illustrate this approach, we assume a customer with the scoring policies
p based on the example Functions defined in Examples 6.1, 6.3, and 6.4. We can query
the knowledge base to compare the overallDegree for Configuration c with respect to the
PolicyDescription p. As an example, we assume a Configuration of a route planning
service, which returns the cheapest route that includes information about historical sites
while considering weather information. Further, a response time of 20 sec. is guaranteed.
Evaluating the (local) degree -predicates for each Attribute leads to a score of 1 for the
Attribute WeatherConsideration, 0.4 for RouteType, 0.8 for Indicated Attraction and
0.47 for Response Time, respectively. Provided that all Attributes are equally important
this Configuration results in a overallDegree of 0.67.

The policy evaluation rules (R8) - (R10) defined above are all context indepen-
dent, i.e. the context in which PolicyTask are executed is not considered in the eval-
uation. In order to extend our approach to allow context dependent policies, we
introduce the predicate isValidIn(p,c) that is true if a PolicyDescription p should be
applied in a Configuration c.

(R11) isValidIn(p,c) < PolicyDescription(p), Configuration(c)
DnS:defines(p,k), /\ (DnS:requisiteFor(d,,k)
1=1,....m

DnS:valuedBy(d;, vy ), DnS:settingFor(c,vs),
ContextRegion(vs), match(vp,vs))
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DnS:SituationDescription

Zﬁ \gmemberPolicy

PolicyCollection Policy Description
—memberPolicy—

T |

DisjunctivePolicyCollection ConjunctivePolicyCollection

Figure 6.7: Representation of a PolicyCollection.

Similar to the matching of attribute values, for comparing context dimension
values we also rely on the match-predicate, which can be easily adapted to new
context ontologies. For evaluation of context dependent policies, we simply have to
add the predicate isValidIn to the corresponding evaluation rules (R8) - (R10).

6.2.3 Policy Aggregation

Up to now we focused on scenarios where only one policy was used by a buyer or
seller. However, as discussed in Section 5.1.3, policies can be combined by either a
logical and-operator referring to a conjunction of policies (i.e. the aggregated policy
is admissible if all contained policies are admissible) or a logical or-operator to de-
rive a disjunction of policies (i.e. the aggregated policy is admissible if at least one
contained policy is admissible). Equation 5.6 and 5.7 define the T-norm and T-conorm
to combine policy conjunctions and disjunctions, respectively.

We introduce the modeling primitives required for representing conjunctions
and disjunctions of policies, as shown in Figure 6.7. To be able to evaluate a certain
Configuration with respect to a set of policies, we adapt Rule R10 in a way that it
can be used not only for a single PolicyDescription, but also for a PolicyCollection.
A PolicyCollection is defined as a DnS:SituationDescription that has exactly two
memberPolicy-relations pointing to PolicyDescriptions or PolicyCollections. This
is formalized using the following DL axioms:

(A35) PolicyCollection T DnS:SituationDescription(]
=1 memberPolicy1.(PolicyDescription
LI PolicyCollection)I
=1 memberPolicy2.(PolicyDescription
LI PolicyCollection)

(A36) memberPolicyl T DnS:expands

(A37) memberPolicy2 T DnS:expands
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The reason why we restrict a PolicyCollection to exactly two memberPolicy-
relations is the fact that SWRL does not support universal quantification in the rule
body. Hence, we cannot iterate over an arbitrary number of PolicyDescriptions con-
tained in the collection (e.g. the first order logic term ‘Vy.memberPolicy(x,y)” is not
expressible in SWRL). However, restricting a PolicyCollection to exactly two mem-
berPolicy-relations is in fact no limitation, since an arbitrary number of PolicyCol-
lections with two memberPolicy-relations can be nested. This has the same effect as
multiple memberPolicy-relations within one PolicyCollection.

In order to define a relation between the members of a PolicyCollection, we intro-
duce two subclasses of PolicyCollection, namely ConjunctivePolicyCollection and
DisjunctivePolicyCollection. Then, for each of these subclasses a rule is introduced
that calculates the overallDegree of the collection based on the overallDegrees of the
elements contained. The following rule does the calculation for a ConjunctivePoli-
cyCollection where the individual elements are connected by a logical and-relation
based on the T-norm defined in Equation (5.6).

(R12) overallDegree(c, p,v) < ConjunctivePolicyCollection(p),

/\ (memberPolicy;(p,p;), overallDegree(c, p;,v;)),
ie{1,2}
min(v,v1,v7)

Note that Rule (R12) recursively calculates the overallDegree of the elements
contained in the collection. Rule (R12) will only be used if a ConjunctivePolicyCol-
lection is passed to the overallDegree-predicate. If it refers to a single PolicyDe-
scription, Rule (R10) will be applied as before.

Analogously, we can define the Rule (R13) for DisjunctivePolicyCollections
where the T-conorm (Equation (5.7)) is used to calculate the overallDegree.

(R13) overallDegree(c, p,v) < DisjunctivePolicyCollection(p),

/\ (memberPolicy;(p,p;),overallDegree(c, p;,v;)),
ie{1,2}
max(v,v1,07)

DisjunctivePolicyCollections and ConjunctivePolicyCollections can be nested
within each other provided that the leafs of the emerging tree structure are always
primitive PolicyDescriptions.

6.3 Core Ontology of Bids (COB)

After having introduced a policy ontology for specifying valuation functions over
multi-attribute objects or activities, we show how such policies are used for effi-
ciently attaching price information to Web services in the following. As introduced
in Chapter 5, a statement that captures such information is called a bid. It repre-
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Ontology entity DOLCE alignment Abstract model

TradeSituation DnS:Situation T

Issuer DnS:FunctionalRole Iuj

Offer DnS:SituationDescription O

Request DnS:SituationDescription R

PriceValue DOLCE:Region R

Price DnS:Parameter {meR|FC:(C,m) T}

price DnS:satisfies {(bt, 1) eBxTxR|IceC,U:
t=(c,mt)Nb=(C,U)AU(c)=m}

AtomicBid DnS:SituationDescription BA

ANDBid DnS:SituationDescription BN

XORBid DnS:SituationDescription B®

BundleBid DnS:SituationDescription B

satisfiesBid DnS:satisfies {(b,t) e BxT'}

Table 6.2: Correspondence of Core Ontology of Bids and the Abstract Market Model.
A row in the table with the ontology entity ¢, the DOLCE concept 1 and a set of the
abstract model E should be understood as follows: ¢ C i and there exists an inter-
pretation Z such that ¢Z = E holds.

sents a set of trades that are acceptable to a requester or provider. For modeling
bids we apply the pattern Descriptions & Situations again. In line with the structure
of the previous section, we first define how to specify trades as DnS:Situations in
Section 6.3.1. A trade captures one possible transaction in the market and defines
exactly the objects and services to be exchanged and their concrete configuration.
Based on this definition, we introduce the specification of Bids, which can be seen
as DnS:SituationDescriptions that provide views on the set of trades (Section 6.3.2).
Finally in Section 6.3.3, a method for evaluating bids is presented. The correspon-
dence between abstract model and the ontology introduced in the following is illus-
trated in Table 6.2.

6.3.1 Specification of Trades

As defined in Section 5.2, a (bilateral) trade t;; = (c, ) is a potential transaction be-
tween two parties i and j where agent i buys a concrete configuration ¢ of an object or
service from agent j for a certain amount of money 77. We model this by introducing
a special DnS:Situation called TradeSituation which extends the CPO: Configuration
(Axiom (A40)). Trades might contain two classes of products: the class of Goods
as specialization of DOLCE:Endurant and the class Service as specialization of
OoP:Activity (Axiom (A38) and (A39)). Since these Services or Goods are multi-
attributive they have to refer to a CPO:Configuration that defines the values of the
different properties of these products. A concrete TradeSituation should refer to ex-
actly one CPO:Configuration and could specify the corresponding price 7t which is
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AtomicBid

definesPolicy
[ d V:

Request_Annika : AtomicBid [—DnS:defines> RouteRequester : Issuer RouteServicePolicy : CPO:PolicyDescription

~
! |
! |
! |
! |
! |
| | |
! |
DnS:defines :
: N DnS:defines DnS:playedBy :
: PriceLimit : Price L RoutePlanning : TradingTask I
I DnS DnS:defines !
| requisiteFor |
|
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| I
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|
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| i ) | — ¥ |
| [$3:Pricevalue| ! ? i | $2:PriceVal |DO|;CdFT John'sService : RouteService i | |Annika:DnS:Agent|
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---------------------------------- - DnS: DOLCE: DnS:
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L
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DnS:settingFor
‘ DOLCE:properPart 4\

§x._'I' radeSituation

Figure 6.8: Example for a TradeSituation and AtomicBid. The parts of the diagram
are successively introduced in Sections 6.3.1-6.3.3.

modeled via the DOLCE:Region PriceValue (Axiom (A41)). Moreover, at least one
DnS:Agent has to be part of the TradeSituation (Axiom (A40)). Note that this for-
malization does not require to specify both participants —i and j — of a trade, since
this information is usually not needed in the bid evaluation process.

(A38) Service COoP:Activity I dDnS:defined By. CPO:Configuration
(A39) Good CDOLCE:Endurant 1 dDnS:definedBy.CPO:Configuration
(A40) TradeSituation CDnS:Situation N 3DnS:settingFor.(Service LI
Good)N =1 DOLCE:part.CPO:Configuration 'l
=1 DnS:settingFor.PriceValue I'
dDnS:settingFor.DnS:Agent '
<5 DnS:settingFor.DnS:Agent
(A41) PriceValue CTDOLCE:Region

The lower part of Figure 6.8 illustrates the specification of a TradeSituation—
called John’sTrade — by means of an example: John provides the route planning
service John’sService to a price of $2 per invocation. Moreover, John provides a cer-
tain configuration Confl. The specification of Confl is omitted in Figure 6.8, since
an example for modeling Configurations is already given in Section 6.2. Since the
price is explicitly modeled as a property of the service, for each additional configu-
ration John wants to provide, a new TradeSituation instance has to be introduced.
Therefore, enumeration based approaches are only feasible for very low number of
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configurations.!? In order to avoid such enumerations, the concept of Bid is pre-
sented in the following section.

6.3.2 Specification of Bids

Not all trades T that are possible in a market are favorable for an agent. Accord-
ing to Engel et al. [EWLO06], a bid expresses the willingness to participate in trades.
We thus model a bid as DnS:SituationDescription that DnS:classities exactly those
TradeSituations T’ C T in which the Issuer of a bid is willing to participate. In such
BidDescriptions Goods and Services of a concrete TradeSituation play the role of
TradingObjects and TradingTask, respectively. In order to implement matching in a
market, one has to define what entities can be DnS:classifiedBy a TradingObject or
TradingTask, e.g. that a RoutePlanningTask DnS:sequences only RoutePlanningSer-
vices. Moreover, the description defines a DnS:Parameter Price that constrains these
TradingObjects and TradingTasks. This Price can be defined explicitly for each ser-
vice configuration or implicitly by means of CPO:PolicyDescriptions as introduced
in Section 6.2.2. In the Core Ontology of Bids, we reuse the same idea by introducing
the concept AtomicBid as follows:

(A42) AtomicBid T DnS:SituationDescription I'
dDnS:defines.(TradingObject LI TradingTask) I
=1 DnS:defines.Price 'l
VCPO:definesPolicy.(CPO:PolicyDescription '
CPO:PolicyCollection)

(A43)  definesPolicy T DnS:expandedBy

(A44) TradingObject CCPO:PolicyObject 1 dDnS:playedBy. DOLCE:Endurant

(A45) Tradinglask = CPO:Policylask M 3DnS:sequences. DOLCE:Perdurant

(A46) Price C DnS:Parameter M =1 DnS:requisiteFor.( TradingObject L
TradingTask) MV DnS:valuedBy.Price Value
(A47) Issuer C DnS:FunctionalRole I 3DnS:playedBy.DnS:Agent

According to Axiom (A48), a Price could represent a maximal price (MaxPrice)
or a minimal price (MinPrice). As formalized in Axiom (A49) and (A50), we de-
note an AtomicBid with minimal price as Offer (Definition 5.4) and an AtomicBid
with maximal price as Request (Definition 5.5). That means Offers classify Trade-
Situations where the property PriceValue is above a certain threshold defined via a
pricing policy, and thus they implement T; = {(c, ) € Tj|m > U]P (c)}. Analogously,
Requests classify TradeSituations where PriceValue is below a threshold defined by
a scoring policy, i.e. T/ = {(c, ) € Ty|r < U?(c,k)}.

19Tn addition, this approach is imprecise from an ontological point of view, since a price is not
an inherent quality of a product that can be observed, but might depend on the context and other
factors.
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(A48) Price JMinPrice L) MaxPrice
(A49) Offer C AtomicBid ' 3DnS:detines.MinPrice
(A50) Request C AtomicBid M dDnS:defines.MaxPrice

Some market mechanisms support more complex bid specifications beyond the
simple case of AtomicBids. In Section 5.2, combinatorial bids that enable expressing
superadditive as well as subadditive prices for a bundle of products have been intro-
duced. Superadditivity is modeled by introducing ANDBids and subadditivity by
means of XORBids. ORBids are not necessarily required in terms of expressivity,!!
but in many cases enable more compact bids representation. Intuitively, ANDBids
are bids on several products where one would like to have all of them or none. In
case of XORBids, exactly one product should be allocated, whereas ORBids corre-
spond to a set of independent bids. As formalized in Axiom (A53), (A54) and (A53),
ANDBids, XORBids and ORBids are specialization of BundleBid which are all Bids
that consist of exactly two other Bids (Axiom (A51)). A Bid represents the super-
concept of AtomicBids and BundleBids. While ANDBids have to contain a Price
attached to each bundle, no Prices can be attached to XORBids and ORBids, since
in this context only the Prices of the AtomicBids are relevant. Note that since each
BundleBid has to contain exactly two Bids, all BundleBids have to terminate solely
with AtomicBids in a consistent knowledge base (possibly after an arbitrary number
of nested BundleBids). The axioms below formalize combinatorial bids.

(A51) BundleBid C DnS:SituationDescription [ =, consistsOf.Bid

(A52) consistsOf T DnS:expandedBy

(A53) ANDBId C BundleBid N =1 andRelated1.(AtomicBid Ll ANDBid) N
=1 andRelated2.( AtomicBid LI ANDBid) "

dDnS:defines.Price 'l
VdefinesPolicy.(CPO:PolicyDescription I
CPO:PolicyCollection)
(A54) XORBid CBundleBid N =1 xorRelated1.Bid 'l =1 xorRelated2.Bid
(A55) ORBid C BundleBid ' =7 orRelated1.Bid 1 =1 orRelated2.Bid
(A56) Bid =AtomicBid LI BundleBid

The relations andRelated] and andRelated2 as well as xorRelated1 and xorRe-
lated?2 are all modeled as subproperties of consistsOf. As done in Section 6.2.3 for
the concept PolicyCollection, we fix the number of Bids in a BundleBid by explicitly
introducing two consistsOf-relations. This technique allows us to avoid universal
quantification in rule bodies which is not supported by our rule language. Due to
the fact that bundles can be nested, an arbitrary number of AtomicBids can be com-
bined.

HRecall that all possible valuations can be represented by XOR-bids [Nis00, Prop. 3.2].
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A simple AtomicBid is exemplified in the upper part of Figure 6.8. Annika
needs a service for a route planning task. Therefore, she instantiates AtomicBid and
DnS:detines a TradingTask called RoutePlanning. Her willingness to pay is spec-
ified implicitly via her policy RouteServicePolicy. That means the DnS:Parameter
Price is DnS:valuedBy a PriceValue that has to be calculated with respect to a con-
crete TradeSituation. This evaluation of a bid is discussed in Section 6.3.3.

6.3.3 Bid evaluation

Bids are DnS:SituationDescriptions that select TradeSituations that fulfill the spec-
ified requirements. Requirements are expressed via PolicyDescriptions. Therefore,
evaluation of Bids can be largely reduced to policy evaluation. Rule (R14) deter-
mines the PriceValue p of a AtomicBid b with respect to a concrete TradeSituation t
using the predicate overallDegree which has been introduced in Section 6.2.2. Since
in the case goal policies are violated the overallDegree-predicate is evaluated to —co,
we need to distinguish two cases: If the Bid represents a Request, a score of ‘—oco’
is correct as this leads to a final rejection (Axiom (R14)). If we deal with an Offer, a
price of —co is obviously not what we want to express. We rather want to express
a price of oo in order to make sure that a certain TradeSituation is not acceptable
(Axiom (R15) and (R16)).

(R14) price(b,t,p) < Request(b), CPO:PolicyDescription(d),
definesPolicy(b,d), TradeSituation(t), DnS:settingFor(t,c),
CPO:Configuration(c), overallDegree(c,d, p)

(R15) price(b,t,p) < Offer(b), CPO:PolicyDescription(d),
definesPolicy(b,d), TradeSituation(t), DnS:settingFor(t,c),
CPO:Configuration(c), overallDegree(c,d, p),
swrilb:notEqual(p,” — ")

(R16) price(b,t,p) < Offer(b), CPO:PolicyDescription(d),
definesPolicy(b,d), TradeSituation(t), DnS:settingFor(t,c),
CPO:Configuration(c), overallDegree(c,d,r),

swrlb:equal(pr,” — c"), assign(p, ")

For BundleBids, we apply Rule (R14) for each AtomicBid contained in the bun-
dle. In case of XORBids only one Bid in the bundle has to be fulfilled. We thus
evaluate the TradeSituation with each contained Bid separately and then determine
the price of the AtomicBid that is most suitable. Rule (R17) captures this in a recur-
sive manner.

(R17) price(b,t,p) < XORBid(b), xorRelated1(b,bl), price(b1,t, p1),
xorRelated2(b,b2), price(b2,t, p2),swrlb:max(p, p1, p2)
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Similarly, we define the evaluation rule for ORBids. In Definition 5.7 the price of
an OR-bid is defined as the sum of the contained Bids.

(R18) price(b,t,p) < ORBid(b), orRelated1(b,b1), price(b1,t,p1),
orRelated2(b,b2), price(b2,t,p2),swrlb:add(p, p1, p2)

For calculating the price of an ANDBid only policies attached to the ANDBid
itself are considered. This is realized by adapting Rule (R14) as follows:

(R19) price(b,t,p) <— ANDBIid(b), CPO:PolicyDescription(d),
definesPolicy(b,d), TradeSituation(t), DnS:settingFor(t,c),
CPO:Configuration(c), overallDegree(c,d, p)

After introducing the calculation of a bid’s PriceValue, we can define the satis-
tiesBid-relation that determines if a certain TradeSituation is acceptable according to
a Bid. For the case where Services are traded, the following rule checks whether the
right service is provided in the TradeSituation and whether the price is in an accept-
able range (which is defined by the policy). For comparing the TradingTask, we use
the built-in subsumes, which has already been used in Rule (R4). Thereby, we make
sure that the provided Service fulfills the same purpose as the Service sequenced by
the TradingTask. As already discussed in Section 6.2.1, a meta-modeling approach
is required where Services are seen as concepts as well as individuals. Moreover,
due to price monotonicity requests also include trades with prices that are cheaper
as desired and offers include trades with a higher price. Rules (R20)-(R21) ensure
that the TradeSituation provides the right TradingTask and the price is in a valid
range.

(R20) satisfiesBid(b,t) < Request(b), TradeSituation(t), DnS:defines(b,0),
TradingTask(o0), DnS:sequences(o,e), Service(e),
DnS:settingFor(t,d), Service(d), subsumes(d, e),
price(b,t, pb), MaxPrice(pb), DnS:settingFor(t, pt),
swrlb:lessThanOrEqual(pt,pb)

(R21) satisfiesBid(b,t) < Offer(b), TradeSituation(t), DnS:defines(b,0),
TradingTask(0), DnS:sequences(o,e), Service(e),
DnS:settingFor(t,d), Service(d), subsumes(d, e),
price(b,t, pb), MinPrice(pb), DnS:settingFor (¢, pt),
swrlb:greaterThanOrEqual(pt,pb)

To illustrate this approach, we come back to the example in Figure 6.8.
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Example 6.8 We are interested if the TradeSituation John’sTrade illustrated in Figure
6.8 is relevant for Annika’s bid (Request_Annika). In order to determine the maximal
price Annika is willing to pay for the Configuration Confl provided by John, we use
Rule (R14). Assume the result of this evaluation step is a MaxPrice of $3. For checking
if John provides the right service, we assume the following definition: RoutePlanning T
OoP:Task 11 VDnS:sequences.RouteService. Since John provides exactly this type of ser-
vice for $2, the subsumes-predicate as well as the swrlb:lessThanOrEqual-predicate in
Rule (R20) evaluate to true and the TradeSituation satisfies the Bid.

How the Core Ontology of Bids can be used in the contracting process is outlined
in Section 7.1.

6.4 Core Contract Ontology (CCO)

As outlined in Section 2.1.2, the concept of service customization enables the same
service to be offered at different service levels for different prices. Usually a spec-
ification of the service levels agreed upon is called a service level agreement (SLA)
[LKD'03]. According to Definition 5.9, we call a legally binding specification of
such service level agreements together with additional obligations that result from
the contracting process (such as paying a certain price as compensation) a Web ser-
vice contract [HFO5]. This corresponds to the definition given by Reinecke [RDS89],
where “a contract is a legally enforceable agreement, in which two or more parties
commit to certain obligations in return for certain rights.”

Due to the cross-organizational and collaborative nature of business processes,
which are supported by today’s service-oriented architectures, contracts have be-
come a key governance mechanism regulating business interactions. In spite of
their importance, today’s enterprises still treat contracts merely as paper documents
regulating the case where something goes wrong and without linking them to the
cross-organizational interactions that they govern. Dealing with contract manage-
ment task such as contract execution and monitoring is very cumbersome, time-
consuming, inefficient and thus expensive. Therefore, a more holistic approach to
contract handling is required that supports the following features [MGO05]:

¢ formal contract languages that provide open, transparent and up-to-date in-
formation about contract data and the status of a contract;

* mechanisms that use information from contracts as a basis for monitoring of
contract compliance and subsequent notifications and enforcement measures;

* mechanisms and tools that support management of the entire contract life cy-
cle, including contract formation, contract execution and contract monitoring;

* tools that support personnel in meeting their obligations that arise from the
contract.

That means, formal representation of contracts is crucial for enabling more ef-
ficient contract management. In a service-oriented architecture, a formalized Web
service contract can be directly used to govern the business interactions executed
via Web service invocations. As specified in Requirements (R7) and (R11), Web ser-
vice contracts have to be found automatically and have to be legally reliable. This
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requires, on the one hand, a formal machine-interpretable language that enables au-
tomated contract formation, execution and compliance checking; and on the other
hand, the expressivity to specify all legally required clauses. This ensures that any
violation of pre-agreed service levels results in a penalty for the party that is respon-
sible for the violation.

Over the last decades a lot of work has been devoted to the formalization of con-
tracts and legal norms in general — mainly in the areas Artificial Intelligence, Com-
puter Science and Philosophical Logic [DS97]. However, up to now formalization of
legal contracts has been restricted either to relatively simple contractual clauses ex-
pressed via a standard syntax [Mil95, GBW 198, CM01, GP03, AG03, Glo06, Gov05]
which lack standardized declarative semantics required to ensure interoperabil-
ity, or they rely on very complex logical formalism [Hag96, TT98, Ser01] which
are not computational tractable (Requirement (R10)) or lack any support for inter-
organizational interactions (Requirement (R6)). Since the trade-off between expres-
sivity and tractability cannot be easily resolved, we focus on semi-automated ap-
proach where a natural language umbrella contract is manually closed with differ-
ent service providers and only some of the terms are fully formalized. In fact, to
meet Requirement (R7) only obligations that have to be dynamically settled dur-
ing the contracting process or that should be monitored automatically after contract
execution have to be formalized. This eases the formalization task and allows the
usage of more simple, computationally tractable logical formalisms.

In this section, we propose the use of ontology languages for formally represent-
ing Web service contracts. As already outlined in Section 2.4 and 6.2, ontologies
come with a logical calculus that enables representing information in a formal and
standardized way. Thereby, ontologies provide interoperability (Requirement (R6)),
flexibility (Requirement (R8)) and extensive tool support. These advantages carry
over to contract specification and management. By providing an open, transparent
and interoperable view on contractual data, ontology-based contract representation
enables a tight integration of up-to-date contractual information with the collab-
orative business interactions they govern. This means, the machine-interpretable
contractual information can be easily accessed by contracting and contract monitor-
ing tools, and it can be easily shared with business partners. In addition, standard
tools supporting the logical formalisms of the ontology can be used to perform so-
phisticated contract monitoring that involves logical inferencing.

The different parts of the Core Contract Ontology are introduced in this section
as follows: In Section 6.4.1, the idea of a semi-automated approach to contracting
and contract monitoring is presented. In this context, an informal umbrella contract
is closed, which constitutes the environment that enables automated contracting of
formal individual contracts on a per-invocation-basis. The formalization of these in-
dividual contracts as specializations of DnS:SituationDescriptions is then presented
in Section 6.4.2. In order to support the settlement phase, Web service monitoring
information has to be formally represented. How this can be realized by means of
a DnS:Situation is outlined in Section 6.4.3. Finally, in Section 6.4.4 modeling prim-
itives for evaluating contracts are presented. This requires knowledge how specific
contractual clauses have to be interpreted. Since this knowledge is usually available
only as tacit knowledge of legally educated persons, it also has to be externalized
into a machine readable and executable form.
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6.4.1 Semi-Automated Contracting and Monitoring

Full automation of the contracting lifecycle has so far been investigated only for very
simple contracts. Semi-automated contracting can be seen as an approach, in which
a contract is composed of two separate parts: an umbrella agreement which is directly
negotiated by human beings and an individual contract automatically negotiated and
closed by software agents.

Umbrella Contract

The umbrella agreement is presently necessary to define the legal conditions under
which software agents can enter into binding agreements as not all jurisdictions ac-
knowledge negotiating and contracting by software agents. The service requestors
agree on an umbrella agreement with several Web service providers. The umbrella
agreement will therefore define the framework for several software agents to ne-
gotiate the individual contracts. The umbrella agreement regulates the following
issues:

¢ the beginning of the contractual relations between all parties, how long the
umbrella agreement is valid and how and when it can be terminated;

* the types of Web services to be negotiated;
¢ the timeframe for negotiations (preferably 24/7);

* auxiliary duties of the parties such as maintenance or the obligation to treat
customer information confidentially;

These clauses form the continuous contractual relations between the parties and
span more than one Web service invocation. In particular, they are not customizable
and not negotiable. Often each umbrella contract closed by a requester with dif-
ferent providers contains the same clauses. Differentiation between the providers
is realized in the individual contract, which captures content such as price, license
type, payment terms, response time guarantees, etc.

Individual Contract

In an individual contract most aspects are customizable. Requests and offers speci-
fied during the contracting phase can be seen as contract templates, where for each
attribute several values are possible. Formally, offers O and requests R define the
sets of acceptable trades Tj’ and Tl-’ (see Definition 5.4 and 5.5), which correspond to
contract templates. In the matching and allocation phase, one value has to be chosen
for each attribute and a contract can be concluded. That means a trade t € T; N T;
acceptable to both parties has to be chosen. The configuration identified in the trade
t = (c, ) is then used in the contract formation process that generates the appropri-
ate provider and customer obligations of the contract.

In the following, we illustrate the general content of an individual contract for
a typical information service, such as a route planning service or credit information
service. In this context, we discuss for different content categories whether certain
clauses should be in the individual contract.
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Scope of Agreement (§1). Although the general type of trading object might be de-
fined in the umbrella agreement, it is important that the agents have some
flexibility to find agreements. For example, let an umbrella agreement define
the scope of the agreement as Web services providing ‘Credit Information” or
‘Route Information’. Then in the individual contract the exact type of informa-
tion (e.g. ‘Business Background Information” or ‘German Route Information’)
can be automatically determined in the matching process.

Provider Obligation (§2). In this category obligations of the provider are defined
that can be customized for each invocation of the service. This is thus the
main category where service level agreements are contained. For example,
it is usually price relevant how old the credit or route information is. The
software agents might therefore negotiate the update periods of the provided
information. Of course, also other quality of service guarantees, such as max-
imal response time or the period in which errors have to be corrected, can be
specified here.

Use of Information (§3). The individual contract will specify how the customer
may use the information. This category may also involve obligations that
restrict the use of information. For example, a contract clause specifying
such use may grant a transferable license to use the information or a non-
transferable license and define further to what extent the customer may use
the credit information within its company or towards third parties.

Warranties and Liabilities (§4). Since warranties and liabilities directly influence
the costs of a provider, they are highly price relevant. We let the software
agents negotiate about the warranty level but not about the legal obligations
resulting from a breach of warranty. The legal complexity, including the re-
strictions by law to contract out certain statutory warranties and liabilities,
does not allow full automation at present. For example when customizing
warranty levels following scheme can be applied: (1) The service provider
does not give any warranty as to the accuracy of the information. (2) The ser-
vice provider does not warrant the accuracy of the information, but warrants
that it has put the information together with utmost care and state-of-the-art-
methods. (3) The service provider guarantees that the information is 100%
correct.

Delivery Time (§5). The delivery of the information can be automatically cus-
tomized in a way that the service has to be provided immediately after the
individual contract is concluded or at a later, negotiated time. The legal con-
sequences of non- or late delivery however are set forth in the umbrella agree-
ment.

Prices and Payment Terms (§6). Finally, the prices and payment terms have to be
specified, which can be mostly seen as customer obligations. While the parties
define the details of invoicing in the umbrella agreement, some parameters,
such as price for the individual Web service or the due date of the payment,
can be dynamically fixed.

After closing a contract, in the settlement phase the participants monitor whether
the contractual duties are fulfilled. However, full automation of the monitoring
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Ontology entity DOLCE alignment Abstract model
ContractDescription — DnS:SituationDescription r
Obligation DnS:SituationDescription %
ContractParty DnS:FunctionalRole Iu]j
Customer DnS:FunctionalRole I

CustomerObligation = DnS:SituationDescription {y €T'|y = (i,Go) Ni € I}
Provider DnS:FunctionalRole i
ProviderObligation =~ DnS:SituationDescription {y € T|y = (j,Go) Nj € J}
satisfiesContract DnS:satisfies {(c¢,T)]o(T,c) =1}

Table 6.3: Correspondence of Core Contract Ontology and Abstract Contract Model.
A row in the table with the ontology entity ¢, the DOLCE concept i and a set of the ab-
stract model E should be understood as follows: ¢ C ¢ and there is an interpretation
7 such that ¢ = E holds.

step is impossible since assessing the quality of a Web service can only be done
by taking external and not quantifiable factors into account. Nevertheless, some
aspects can be monitored by the system automatically. For instance, it can be assured
that a contracted service is provided at all and in the negotiated timeframe. For this
purpose, all clauses that are relevant to evaluate whether the contract is met also
have to be represented formally (even if they are not customizable).

6.4.2 Contract Representation

In this section, we show how contract information can be represented by reusing
the Core Policy Ontology. In doing so, goal policies are used to represent obliga-
tions and permissions in a contract. The correspondence between the abstract model
introduced in Section 5.3.3 and the Core Contract Ontology is illustrated by Table
6.3. After introducing this general contract ontology, we exemplify their usage by
modeling the content of the individual contract identified in Section 6.4.1.

General Contract Ontology

As defined above, a contract can be seen as a set of obligations and rights that
are binding for all parties. In the case of Web services we restrict ourselves
to contracts between exactly two parties, namely Provider and Customer. We
model this by introducing a ContractDescription as a DnS:SituationDescription
containing only Obligations and Permissions (Axiom (A57)). Obligations and
Permissions are CPO:PolicyDescriptions that represents obligations and permis-
sion for ContractParties. An Obligation is a CPO:PolicyDescription where the
DnS:attitudeTowards-relation is refined to DnS:obligedTo (Rule (R22)) and a Per-
mission a CPO:PolicyDescription where it is refined to DnS:rightTo (Rule (R23)). A
ContractParty is an active PolicyObject that is played by DnS:Agents. This can be
formalized using the following axioms and rules:
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Provider Obligation
ContractDescription Provider ServiceTask InformationGood
DnS: DnS:anakastic
obligedTo DutyTowards
DnS: DnS: T T DnS:
requisiteFor ‘requisiteFor requisiteFor ‘
DOLCE:part ResponseTime WarrantyLevel UpdatePeriod
OoP:
successor
DOLCE:part Customer Obligation
Customer CompensationTask CompensationObject c
DnS: nS:anakastic urrency
obligedTo DutyTowards
L} 4 DnS:
requisiteFor
PaymentTerm MonetaryCompensation MonetaryUnits Amount
DnS:
requisiteFo DnS:
equisiteFor

Figure 6.9: Representation of the Core Contract Ontology. Note that plotting UML
classes within an Obligation-class illustrates a DnS:defines-relation between the Obli-
gation and the contained classes.

(A57) ContractDescription =DnS:SituationDescription I
VDOLCE:part.(Obligation LI Permission)
(A58) ContractParty T PolicyObject MV DnS:playedBy.DnS:Agent

(R22) Obligation(x) «PolicyDescription(x), DnS:defines(x,y), ContractParty(y),
DnS:defines(x,z), PolicyTask(z), DnS:obligedTo(y, z)

(R23) Permission(x) «PolicyDescription(x), DnS:defines(x,y), ContractParty(y),
DnS:defines(x,z), PolicyTask(z), DnS:rightTo(y, z)

The definition of ContractDescription and Obligation corresponds exactly to
Definition 5.9 in the abstract model.!?> A ContractDescription T defines a set of Obli-
gations y (Axiom (A57)), where each Obligation specifies a ContractParty y € IU |
and a PolicyDescription Gg.

Consequently, as depicted in Figure 6.9, the most elementary contract about pur-
chasing Web services in exchange for money results in two simple Obligations:

12In contrast to the Core Contract Ontology, permissions are not contained in the abstract model
since they are currently not used in the contract monitoring process.
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Provider Obligation. A ProviderObligation specifies that the provider is obliged
to make certain functionality accessible to the customer (Axiom (A59)). This
functionality is represented by a CPO:PolicyTask ServiceTask, which is played
by a COS:WebService in a DnS:Situation (Axiom (A61)). In addition, an (ac-
tive) CPO:PolicyObject Provider is introduced that is DnS:obligedTo provide
the ServiceTask (Axiom (A60)). A second (passive) CPO:PolicyObject Infor-
mationGood is used to represent the information that has to be returned by the
COS:WebService playing the ServiceTask (Axiom A62). Note that the distinc-
tion between Servicelasks and InformationGood allows modeling the func-
tionality of a service using either explicit or implicit capability representation
[SPAS03]. This enables our contract ontology to support major efforts striv-
ing for semantic Web service descriptions such as WSMO [DKL*05], OWL-S
[SPAS03] and WSDL-S [POSV04].

(A59) ProviderObligation CObligation ' 3DnS:defines.Provider

(A60) Provider C ContractParty ' 3DnS:obligedTo.ServiceTask

(A61) ServiceTask T PolicyTask 1V DnS:sequences.COS:WebService

(A62)  InformationGood T PolicyObject I
VDnS:playedBy.OIO:InformationObject

Customer Obligation. A CustomerObligation specifies that the customer is obliged
to compensate the provider for using the Web service (Axiom (A63)). This ac-
tivity is called CompensationTask and mostly involves the transfer of a cer-
tain amount of money. To define a CompensationTask the CPO:PolicyTask
is specialized to a CompensationTask (Axiom A65). A Customer is a
ContractParty that is obliged to carry out a CompensationTask (Axiom
A64). Moreover, a CompensationTask may involve a CPO:PolicyObject
CompensationObject, which refers to a passive physical or social entity
(DOLCE:NonAgentiveSocialObject or DOLCE:NonAgentivePhysicalObject)
such as money or a patent (Axiom (A66)).

(A63) CustomerObligation CObligation I 3DnS:defines.Customer Il
DnS:detines.CompensationTask

(A64) Customer C ContractParty I'
dDnS:obligedTo.CompensationTask

(A65)  CompensationTask CCPO:PolicyTask I'

VDnS:anakasticDutyTowards™ .CompensationObject

(A66) CompensationObject C CPO:PolicyTask '
d.DnS:anakasticDuty Towards.CompensationTask '
VDnS:playedBy.(DOLCE:NonAgentiveSocialObject L
DOLCE:NonAgentivePhysicalObject)

Usually contracts also specify in which sequence obligations have to be fulfilled
and rights are obtained. In the basic contract outlined above, the ServiceTask has
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to be executed before the CompensationTask. Hence, means for representing se-
quences of OoP:Tasks are required. We reuse the Ontology of Plans which provides
primitives for modeling complex processes, e.g. Sequential Tasks, Parallel Tasks,
Loop Tasks, etc. In this context, the primary ordering relation for OoP:Tasks are
OoP:directSuccessor and its transitive version OoP:successor.

As illustrated in Figure 6.9, concrete obligations are expressed via policies spec-
ifying CPO:Attribute for ServiceTask and InformationGood or CompensationTask
and MonetaryUnit, respectively. How this can be realized for the individual con-
tract clauses identified in Section 6.4.1 is shown in the next section.

Individual Contract Clauses

As discussed above, a contract imposes further obligations and permissions that
have to be fulfilled by the contractors. These obligations and permissions are mod-
eled within a CPO:PolicyDescription by introducing specialized CPO:Attribute
concepts and specifying the allowed CPO:AttributeValue for this CPO:Attribute.
In the following, we briefly discuss some examples how the obligations that have to
be defined in an individual contract can be formalized. Methodologically this is re-
alized by transforming a natural language contractual clause into a formalized goal
policy. However, note that this not an exhaustive enumeration. Depending on the
service types and scenarios a wide range of different Attributes are possible.

Provider Obligation (§2) As discussed on page 124, in this category service levels
can be specified a provider has to meet. We exemplify this by considering the
CPO: Attribute UpdatePeriod which is warranted by the provider. A legal text
negotiated by human beings could read as follows:

“The Provider warrants that it reviews and, if necessary, updates Route
Planning Information/Credit Information every month.”

Since the timeliness is a property of the provided InformationGood, we intro-
duce UpdatePeriod as a subclass of CPO: Attribute. UpdatePeriod constraints
the set of allowed CPO:AttributeValues UpdatePeriod Value. This is captured
by the following axiom:

(A67) UpdatePeriod CCPO:Attribute '
dDnS:requisiteFor.InformationGood I'

VDnS:requisiteFor.InformationGood I
dDnS:valuedBy.UpdatePeriod Value

The CPO:Attribute UpdatePeriod is illustrated in Figure 6.9.

Use of information (§3) This category specifies how the customer may use the in-
formation. For example, consider licenses that typically regulate how certain
information can be used. An agreed legal text could read as follows:
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“The Provider grants the customer a non-transferable license to use the
Credit Information delivered under the terms of this contract. The Cus-
tomer may freely copy or forward Credit Information within its company.
The Customer may not disclose or make the Credit Information otherwise
available to third parties without prior consent of the Provider.”

The license specifies if the right to use a certain InformationGood is trans-
ferable, if the customer may disclose the InformationGood within the com-
pany (‘Disclose within Company’) or to external third parties (‘Disclose to 3rd
Party’). In order to facilitate contract monitoring, we model the right as an
Obligation that specifies which alternatives are not allowed. This is realized
by introducing an additional CustomerObligation DisclosureObligation (Ax-
iom (A68)) with the CompensationTask TransferInformation (Axiom (A69))
and the CPO:Attribute AdmissibleParty. AdmissibleParty may take the val-
ues ‘Not Transferable’, ‘Disclose within Company” and ‘Disclose to 3rd Party’
(Axiom (A70)). The following axioms capture this information. Note that the
corresponding Obligation is omitted in Figure 6.9.

(A68)  DisclosureObligation CCustomerObligation 1
dDnS:defines. TransferInformation I
dDnS:defines. AdmissibleParty

(A69) TransterInformation C CompensationTask 'l
DnS:requisites. AdmissibleParty

(A70) AdmissibleParty CCPO:Attribute '
dDnS:requisiteFor. TransterInformation I'
VDnS:requisiteFor. TransferInformation I
=1 DnS:valuedBy.{‘Not Transferable’,
‘Disclose within Company’,
‘Disclose to 3rd Party’}

Warranties and Liabilities (§4) In this category warranty and liability levels can be
defined. In legal practice a wide range of different warranty and liability reg-
ulations are used. In this example, we consider a very simple approach, where
automatically one level from a predefined set of warranty levels can be cho-
sen. The predefined warranty levels are defined in the umbrella contract. In a
natural language contract a level can be defined as follows:

“The Provider warrants that the credit information is 100% accurate.”

As shown in Figure 6.9, this can be realized by adding a CPO: Attribute War-
rantyLevel to the ProviderObligation which is valued by a DOLCE:Region
reflecting the three different warranty levels: ‘No Warranty’, ‘Uttermost Care’,
and ‘Full Warranty’. Since the warranty can be considered as a fundamental
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property of a InformationGood, we model WarrantyLevel as a Attribute of
InformationGood.

(A71) WarrantyLevel CCPO:Attribute '
dDnS:requisiteFor.InformationGood I
V DnS:requisiteFor.InformationGood I
=1 DnS:valuedBy.{ NoWarranty',’UttermostCare’,
‘FullWarranty'}

In general, defining standard quality levels in the umbrella contract is a vi-
able way to reduce the complexity of the individual contract, while avoiding
complex, undecidable logics.

Delivery Time (§5) In many applications delivery time is a crucial property that
heavily influences the prices. It is also a property that often has to be cus-
tomized dynamically, e.g., in order to adapt the contract to changing Web
server load. A natural language clause could be formulated as follows:

“The Provider shall deliver the Route Planning/Credit Information
within five seconds after conclusion of the contract.”

In the context of Web services, delivery time usually refers to the response
time, in which the result is return by the service. The CPO:Attribute Re-
sponseTime specifies the period in which the Service Task has to be executed.
Hence, it is modeled as a constraint of Servicelask which is DnS:valuedBy an
CPO: AttributeValue ResponseTimeValue. The approach is illustrated in Fig-
ure 6.9 and captured by the following axiom:

(A72) ResponseTime CCPO:Attribute ' 3DnS:requisiteFor.ServiceTask I
VDnS:requisiteFor.ServiceTask 'l
=1 DnS:valuedBy.ResponseTimeValue

Prices and Payment Terms (§6) Usually the most important aspect regulated in a
contract is the price that has to be paid by the customer for invoking the ser-
vice. Prices of services may change frequently or are even determined dynam-
ically in a negotiation or an auction process (see dynamic pricing mechanisms
outlined in Section 2.3.2). For example, a corresponding clause could be sim-
ply specified as follows:

“The price for the provided route/credit information is EUR 15.”

We have defined a Customer as a ContractParty that is obliged to an execut-
ing a CompensationTask (Axiom (A64)). The nature of this compensation is
left open and can be defined by constraining the allowed alternatives using
policies. For the case in which no compensation is required (e.g. service usage
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is free of charge), simply no policies are defined for the CompensationTask.
For the usual case where a certain amount of money has to be paid, we have
specialized CompensationTask to MonetaryCompensation which requires the
specification of the MonetaryUnits that have to be transferred from the cus-
tomer to the provider (Axiom (A73)). MonetaryUnits are CompensationOb-
jects which specify a certain Amount of money in a given Currency (Axiom
(A74)). The CPO:Attribute Amount is valued by exactly one floating point
number representing the AmountValue (Axiom (A75)) and the CPO: Attribute
Currency is valued by exactly one CurrencyValue (Axiom (A76)). Thus, Cur-
rencyValue comprises Euro, Dollar, Yen, etc. This is formalized by the follow-
ing axioms.

(A73) MonetaryCompensation T CompensationTask 'l
VDnS:anakasticDutyTowards™ .MonetaryUnit 'l
dDnS:anakasticDutyTowards™ .MonetaryUnit

(A74) MonetaryUnits C CompensationObject '

dDnS:requisites. Amount I'
dDnS:requisites.Currency

(A75) Amount CCPO:Attribute '
=1 DnS:valuedBy.AmountValue
(A76) Currency CCPO:Attribute I'

=1 DnS:valuedBy.Currency Value

Furthermore, a contract usually contains a PaymentTerm that specifies in
which timeframe a MonetaryCompensation has to take place. We model the
PaymentTerms as a CPO:Attribute constraining MonetaryCompensation as
shown in Figure 6.9.

(A77) PaymentTerm CCPO:Attribute '
dDnS:requisiteFor.MonetaryCompensation Il
VDnS:requisiteFor.CompensationTask I
=1 DnS:valuedBy.DOLCE:Temporal-Region

All regulations specified above can be extended either by introducing new
CPO: Attributes within an existing CPO:PolicyDescription or by adding further
Obligations or Permissions to the ContractDescription. In the following, we ex-
emplify how a simple ProviderObligation could be expressed.

Example 6.9 Assume a credit information service which is obliged to deliver business back-
ground information about the company SAP to a requester. The provider guarantees deliv-
ery within 30 seconds. This simple ProviderObligation can be expressed with the Core
Contract Ontology as shown in Figure 6.10. We introduce an instance of ProviderObliga-
tion called ProviderObligationX that DnS:defines a Provider X, the InformationGood
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DnS:defines BBInformation/SAP : InformationGood

ProviderObligationX : Obligation [—DnS:defines—> X : Provider

DnS:obligedTo

DnS:defines

Deliver : ServiceTask DnS:anakasticDutyTowards

<30seconds : ResponseTimeValue

DnS:requisiteFor

DnS:vaIuedByj\

DnS:defines———{ ResponseTimeX : ResponseTime

Figure 6.10: Example for representing a ProviderObligation.

BBInformation/SAP, a Servicelask Deliver, and the Attribute ResponseTimeX that
has to be valued by a ResponseTimeValue. In our example, this ResponseTimeValue is
a DOLCE:Region capturing all time periods below 30 seconds. Since ResponseTime is
a constraint on the Servicelask, we thereby make sure that the delivery has to take place
within the 30 second time period.

6.4.3 Representing Monitoring Information

In the previous section, we presented contract information as a collection of Pol-
icyDescriptions which are modeled by refining DnS:SituationDescriptions. In
this section, we extend this approach in order to represent information about
the execution of a contract. We call such information monitoring information
and represent it by means of the DnS:Situation MonitoringInformation (Axiom
(A78)). MonitoringInformation is modeled as specialization of CPO:Configuration
and represents values of CPO:Attributes used in the Web service execution.
As defined in Axiom (A15), a CPO:Configuration identifies the value of an
CPO: Attribute belonging to an DOLCE:Endurant or DOLCE:Perdurant. Since
we are dealing only with monitoring Web service invocations, we can spe-
cialize our modeling approach. The Core Software Ontology (CSO) and the
Core Ontology of Service (COS) [Obe(5] introduce the fundamental concepts re-
quired for describing software systems. According to [Obe(05], the main en-
tities living in the computational domain are CSO:ComputationalObjects and
CSO:ComputationalActivities. CSO:ComputationalObjects can be regarded as con-
crete realization of CSO:Software or CSO:Data.!® The execution of CSO:Software
triggers CSO:ComputationalActivities and these CSO:ComputationalActivities
may involve CSO:Data. Rule (R24) and (R25) capture this active and passive as-
pect by introducing the relations executes and involvedIn, respectively. Each Mon-
itoringInformation instance has to contain at least one CSO:Computational Activity
that is monitored (Axiom (A78)). As for CPO:Configurations in general, each
CSO:ComputationalActivity and CSO:ComputationalObject may exhibit certain
properties that are captured by DOLCE:Qualities.

I3Note that CSO:Software can be seen as a special form of CSO:Data, viz., CSO:Software C
CSO:Data.



6.4 Core Contract Ontology (CCO) 133

MonitoringInformation
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executes

Figure 6.11: Representing MonitoringInformation as DnS:Situation. Note that plot-
ting UML classes within a DnS:Situation-class illustrates a DnS:settingFor-relation
between the DnS:Situation and the contained classes.

(A78) MonitoringInformation T CPO:Configuration I
dDnS:settingFor.CSO:Computational Activity 'l
VDnS:settingFor.(CSO:Computational Activity L
CSO:ComputationalObject L
DOLCE:Quality LI DOLCE:Region)

(R24)  executes(x,y) < CSO:Software(x), OIO:expresses(x,z),
OoP:Plan(z), DnS:defines(z, t), CSO:Computational Task
DnS:sequences(t,yy) CSO:Computational Activity (y)
(R25) involvedIn(x,y) <—CSO:Data(x), OIO:realizedBy(x,z),
DOLCE:participantIn(z,y),
CSO:Computational Activity(y)

Providing information via a Web service leads to a CSO:Computational Activity
where one party transfers a CSO:ComputationalObject, e.g. credit or route infor-
mation, to another party. In executing this activity various types of monitoring in-
formation about the activity itself as well as about participating objects can be mea-



134 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

sured or perceived, which are represented as DOLCE:Qualities of the corresponding
CSO:Computational Activity or CSO:ComputationalObject.

Example 6.10 Figure 6.11 introduces a concrete example which represents information
about a specific Web service invocation as an instance of MonitoringInformation. Consider
the execution of a CSO:Computational Activity ‘Send’ carried out on February 27th, 2006
at 8 AM. The activity was executed by a Web service with the IP-address 163:12:23:1 and in-
volved the digital representation of credit information of the company SAP. According to the
Core Ontology of Services [Obe05], a COS:WebService is a specialization of CSO:Software
and thus we model “WebService/163:12:23:1" as an instance of the concept CSO:Software,
while ‘Credit Information/SAP’ is modeled as CSO:Data. Moreover, the DOLCE:Quality
ResponseTime of the Send-activity is measured and represented by the DOLCE:Region
25ms’. Of course, other DOLCE:Qualities of the CSO:Computational Activity as well as
the CSO:ComputationalObject beyond ‘ResponseTime’ can be measured and represented
in a similar way.

6.4.4 Contract Monitoring

Having introduced the CPO:ContractDescription in Section 6.4.2 and Monitoring-
Information capturing information about contract execution in Section 6.4.3, we in-
troduce in this section how the compliance of MonitoringInformation with respect
to concrete ContractDescription can be verified. This corresponds to the evaluation
of function ¢(T, c) specified in the abstract model.

Since  ContractDescriptions  are modeled as a  collection of
CPO:PolicyDescriptions and MonitoringInformation as specialization of
CPO:Configuration, the satisfiesPolicy-relation (Rule (R8)) that holds between
PolicyDescriptions and DnS:Situations can be reused in order to check whether the
MonitoringInformation meets the contractual obligations.

(R26)  satisfiesObligation(m, p) < MonitoringInformation(m), Obligation(p),
satisfiesPolicy(m, p)

In order to validate the entire contract, each Obligation 7y € I specified in the
ContractDescription has to be satisfied by the MonitoringInformation. If all Obli-
gations are valid, the ContractDescription is met by the contract execution. The
following rule encodes the compliance check for a contract I'.

(R27) satisfiesContract(m,c) < MonitoringInformation(m),
ContractDescription(c),
/\ (DOLCE:part(c,p;),
i={1,...|T|}
satisfiesObligation(m, p;))
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As already discussed in Section 6.2.1, universal quantification would be required
to formulate the rule in a way that it supports an arbitrary number of obligations of
the contract. Since DL-safe SWRL does not support this construct, maximal number
of obligations that have to be verified has to be specified at design time. Although
for the most applications this might not be a problem since the obligations can be
usually expressed with one customer and one provider obligation, there might be
scenarios where predefining the number of obligations is not possible. In this case
either a more expressive rule language is required (e.g. CIF/SWRL proposed by
[MGPO04]) or a contract monitoring tool implementing an iterative algorithm that
evaluates the satisfiesPolicy-rule for each obligation contained in the contract.

Example 6.11 In order to illustrate how contracts are evaluated we come back to the
ProviderObligation introduced in Example 6.9 and to the MonitoringInformation out-
line in Example 6.10. We are now interested whether the MonitoringInformation fulfills
the ProviderObligation. Therefore, the satisfiesObligation-predicate can be applied. In
doing this, the satisfiesPolicy-predicate is used in order to determine if the constraints
specified in the contract are meet. This is realized by invoking the corresponding matching-
rules for each Attribute in the ProviderObligation. In our concrete example, we compare
the observed 25 seconds with the allowed 30 seconds using a matching rule that defines
DOLCE:TemporalRegions to be matched with swrib:lessThanOrEqual. We thus get a
match and no policy violation in our example.

In Section 7.2, we provide a more detailed discussion on how the satistiesCon-
tract can be applied and adapted.

6.5 Conclusion

In this chapter, we have introduced an ontology framework for Web service mar-
kets. In particular, we have presented three novel core ontology modules based on
the foundational ontology DOLCE: the Core Policy Ontology, the Core Ontology of
Bids and the Core Contract Ontology. Together with the Core Ontology of Services
[OLG™"06] they constitute the second layer of the ontology framework (see Figure
6.1 on page 98). The framework provides the communication primitives which are
required in the market and addresses the language-specific requirements listed in
Section 4.2.1. Contracting algorithms that rely on these communication primitives
are introduced in the next chapter.
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Chapter 7

Ontology-based Contracting and
Contract Monitoring

After having introduced a formal, interoperable language for expressing market in-
formation in Chapter 6, in this chapter we come back to the Web service contracting
and contract monitoring process abstractly introduced in Section 5.3. The goal is to
implement algorithms based on the presented ontology framework that meet the
mechanism-specific Requirements stated in Section 4.2.2.

The chapter is structured as follows: First, a contracting mechanism is intro-
duced in Section 7.1 featuring semantics-based matching of offers and requests,
optimal allocation algorithms, and a contract formation algorithm. After the con-
tracting phase, we move on to the settlement phase in Section 7.2 and introduce a
mechanism for contract monitoring based on the Core Contract Ontology.

Most results presented in this chapter are published in conference proceedings
and journals. Bits and pieces of the contracting process including the Web service se-
lection algorithm are obtained from [LAGS07], the auction-based allocation is partly
covered in [LS06], and the contract monitoring approach is presented in [LLMO7].

7.1 Automated Contracting of Web Services

Web service contracting can be seen as the process which transforms given Web
service offers and requests to Web service contracts. As outlined in Section 3.2.2,
this process can be broken down into three phases: the matching phase in which
possible transactions are discovered (Section 7.1.1), the allocation phase in which the
final assignment between offers and requests is determined (Section 7.1.2), and the
contract formation phase in which a legally binding contract is closed (Section 7.1.3).
How these three phases of Web service contracting can be implemented based on
the presented ontology framework is introduced throughout this section.

7.1.1 Matchmaking Mechanism

The goal of the matching phase is to determine if a given offer o meets the require-
ments stated in a request r and vice versa. In Definition 5.10 of the abstract model,
this issue has been denoted by Multi-attribute Matching Problem (MMP). Concep-
tually, solving MMP requires determining the intersection of the acceptable trades
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Tj’ N T/. This breaks down to the comparison of the attribute values that character-
ize the trades. Since in our approach attribute values can be described by complex
ontological structures (see Example 6.2), sophisticated matching mechanisms are re-
quired. These mechanism are described in the next section, before we discuss the
matching of entire bids.

Matching of Attribute Values

The comparison between a requested attribute value and an offered attribute value
is a fundamental functionality. As discussed in Section 6.2.1, the Core Policy On-
tology supports primitive attributes where values are directly expressible with an
OWL 