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‘Fascinating Markov Chains’ by Marek Bobrowski. In a different version of this
cartoon by W. Chojnacki, the role of the anonymous examiner is played by an

antagonist of A. A. Markov, that is, Pavel Niekrasov, who says, ‘Contrary to my
beliefs, these chains are really fascinating!’ See [50] for the entire story.
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To my dancing Beatka



I met a man once . . . to whom Heyst exclaimed, in no connection with anything in
particular (it was in the billiard-room of the club): ‘I am enchanted with these
islands!’ He shot it out suddenly, a propos des bottes, as the French say, and while
chalking his cue. And perhaps it was some sort of enchantment. There are more
spells than your commonplace magicians ever dreamed of.

J. Conrad (J. T. K. Korzeniowski), Victory

Nie sprawiłeś mi zawodu, synu. Przeciwnie, zadziwiłeś mnie. Zdołałeś dać z siebie
więcej, niżem od ciebie oczekiwał.

Teodor Parnicki, Srebrne orły

Markov chains merely walk in their regular state space, but on the cliffs of their
boundaries, they dance.

Johann Gottfried von Spacerniak
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Preface

Application to business is the root of prosperity, but those who ask questions that
do not concern them are steering the ship of folly towards the rock of indigence.

Arsheesh the greedy fisherman in C. S. Lewis’s The Horse and His Boy

The theory of Markov chains, whether time discrete or time continuous,
is one of the integral parts of the theory of stochastic processes. This book,
however, is not devoted to the popular part of this rich theory, so the reader
will not learn here about recurrent and transient states, ergodic theorems, or
convergence to equilibrium. (In Arsheesh’s words, thus, we will ask questions
that do not concern us, having no business in mind, in the hope that we will
somehow reach Narnia and the North.) Instead, we focus on the equally intrigu-
ing question of how a continuous-time Markov chain may be described by
means of its Kolmogorov (intensity) matrix or its generator, and we study the
interplay between the notions just named. We argue in particular that, despite
their popularity, Kolmogorov (intensity) matrices are less suitable for such
description than generators. Whereas, in their relative simplicity, they allow
an intuitive formulation of processes, in general, they fail to describe more
delicate phenomena.

Therefore, in Chapter 2, we compare these two notions in the light of two
examples due to Kolmogorov, Kendall, and Reuter. These examples show that
whereas the intensity matrix determines in a sense the way the generator acts,
it may not determine the generator’s domain, and without information on the
shape of the domain, a Markov chain is not completely specified. Furthermore,
in Chapters 3 and 4, devoted to boundary theory, we show that an explosive
intensity matrix characterizes the chain only locally, up to a time of explo-
sion. Put otherwise, the matrix characterizes merely the minimal chain, which

xi
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after explosion is undefined. There are, however, infinitely many postexplo-
sion processes that dominate the minimal chain. Their generators may differ
from the generator of the minimal chain by extra terms and may have differ-
ent domains; both the domain and the terms contain crucial information on
the postexplosion process; by nature, this information cannot be found in the
intensity matrix. Chapter 5 presents a similar view from the dual perspective.

∗ ∗ ∗

The way information on boundary behavior of a Markov chain is reflected in
its generator is a recurring subject in this book. It transpires that in l1, the exit
boundary introduces additional terms in the generator, whereas the entrance
boundary affects its domain. But in l∞, these things are turned upside down:
roughly, the exit boundary always perturbs the domain, but the entrance bound-
ary may either introduce new terms or perturb the domain. The fact that in
passing from a space to its dual a perturbation of the way a generator acts may
become a perturbation of the domain, and vice versa, has been observed also in
other contexts (see, e.g., [17] or Chapter 50 in [16]), but in the case of Markov
chains, this phenomenon seems to be particularly intriguing and spectacular.

∗ ∗ ∗

Another idea, perhaps borrowed from [39], that permeates the book is that
instead of describing extraordinary Markov chains by rigorous, but involved,
stochastic constructions, stochastic intuitions may be developed by approx-
imating this chain’s semigroup of transition probabilities by a sequence of
semigroups of transition probabilities related to some finite-space chains.
(The theory of semigroups of operators and suitable convergence theorems
are presented in Chapter 1.) Since the latter chains have considerably sim-
pler, well-understood structure, this idea works well. This is in particular how
an insight is gained into Blackwell’s and both Kolmogorov–Kendall–Reuter
examples. This is also how the discrete boundary for an explosive Markov
chain is introduced.

∗ ∗ ∗

Yet another characteristic of the book is that we (the reader and I) allow our-
selves the comfort of discovering new results gradually, step by step, not trying
to reach the mountain peak immediately via the most efficient route. The proof
of an introductory result may thus be more complicated than that of a general
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theorem, presented later; in proving the former, we are simply yet not so clear
about the general view. Neither are we afraid to spend some time looking at an
illustrative example, which perhaps involves more calculations than one could
wish to go through, before the idea of a general theorem following it dawns on
us.

For instance, it takes several pages of investigating a particular (pure birth)
Markov chain before formula (3.36) is discovered, and yet another couple of
pages before an analogous formula (3.39) is derived. It is only then that the
much more general formula (3.55), built by analogy to (3.36) and (3.39), is
discussed, and the proof that the operator in (3.55) is a Markov generator is
less than one page long (see also Section 3.5.5). Similarly, the two-pages-long
proof of the master theorem of Section 3.7.9 is preceded by the more than
four-pages-long discussion of a particular ‘two infinite ladder’ example of a
Markov chain (see Sections 3.5.6–3.5.9).

I still think the intuitive should go before the abstract and that discovering is
more fun than learning: Sections 3.5.5 and 3.7.9 occupy a special place in this
book and are worth being understood thoroughly. Besides, the general idea is
to enjoy ourselves as much as possible.

∗ ∗ ∗

A couple of words are due on the way boundary theory for Markov chains is
presented in this book. The primary sources of information on this theory are
W. Feller [41, 42] and K. L. Chung [22]. My presentation is closer to Feller’s,
and draws on his heavily, but the two still differ significantly. First of all, Feller
focuses on the Laplace transform of transition probabilities (of postexplosion
processes), that is, on the resolvents of generators, whereas – at least to my
taste – description of generators themselves is more appealing. In character-
izing the latter, certain functionals show up naturally as building blocks for
the generators, and thus it is the set of these functionals that is defined as the
boundary. It is only later, as a sort of afterthought, that I identify these func-
tionals as sojourn solutions for the related minimal chain. For Feller it was the
latter that were the starting point of his investigations.

∗ ∗ ∗

Besides one place in Chapter 5 (Section 5.8.4), the text is self-contained, but
some basic knowledge of real analysis (including Laplace transform), proba-
bility theory, and functional analysis is needed for its understanding. I assumed
the reader is familiar with random variables, Banach spaces, linear operators
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and their norms, and so on. Nevertheless, only elementary properties of these
objects are used without explanation: I have made a definite effort to make the
text as reader-friendly as possible.

∗ ∗ ∗

I would like to thank the members of the Lublin University of Technology
mathematical research seminar (Adam Gregosiewicz, Andrzej Łagodowski,
Iwona Malinowska, Małgorzata Murat, Ernest Nieznaj, Elżbieta Ratajczyk,
Renata Rososzczuk, Katarzyna Steliga, and Łukasz Stępień) for their careful
study of early drafts of this book, in their various forms, and for spotting a
number of places that needed smaller and greater corrections. Tomasz Szarek
also read through the entire manuscript, in just two months, and suggested
several improvements; I am grateful to him for this. A number of invaluable
corrections I owe, furthermore, to Marta Tyran–Kamińska. Special thanks go
to Jacek Banasiak, Wojciech Chojnacki, Ryszard Rudnicki, and Yuri Tomilov
for their encouragement and advice. It was by reading N. H. Bingham’s inter-
view with David Kendall [12], suggested to me by Yura, that I became aware
of Kendall and Reuter’s work on Markov chains, dots started to connect, and
the idea of the present book dawned on me. I am also indebted to my physi-
cians, in particular, to Drs. Andrzej Kwiecień, Krzysztof Paprota, and Justyna
Biegańska-Siczek for keeping me alive (and kicking) while I was writing this
book. Finally, I would like to thank Clare Dennison and Roger Astley from
Cambridge University Press for their professional support and advice before
and during the process of writing and producing this book.



A Nontechnical Introduction

Markov chains are one of the simplest stochastic processes. In the archetypical
example of a Markov chain, that is, in the (symmetric) simple random walk
on the set of integers, a traveler or a particle starting at i makes a step to the
right, to i + 1, with probability 1

2 or a step to the left, to i − 1, with the same
probability. At its new position (either i − 1 or i + 1), it continues in the same
fashion, forgetting the past and the way it reached this position.

Amazingly, many quantitative results may be proved about such apparently
completely chaotic movement. For example, a particle starting at any point will
surely reach 0 at a certain time in the future. What is probably less obvious
is that the same is true about an analogous random walk in two dimensions,
where a particle may go to the left, to the right, up, or down. However, in three
and more directions, the situation is quite different: the probability of reaching
0 from a nonzero state i is smaller than 1, and so is the probability of reaching
any state different from i (see, e.g., [35]).

What distinguishes Markov chains from other, more complex stochastic pro-
cesses is the state-space, that is, the set of possible states. For Markov chains,
the state-space is by definition denumerable: it is either finite or there is a
one-to-one correspondence between its elements and the elements of the set
of positive integers. For example, the set of integers may be arranged in a
sequence, and so may be the state-space of the simple random walk in any
dimension.

Of course, as a result of such a rearrangement, natural neighbors of a point
will probably lie quite a distance apart from each other and from the point, and
the description of the walk will become less intuitive. But we are naturally led
to a more general object: in a chain that is more general than the simple random
walk, a particle starting at i may go to any other point j of the state-space (or
stay in i), and it does that with probability characteristic to that point. In fact,
that probability, denoted pi, j (and termed ‘transition probability’), in general

xv
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depends on both i and j . The only restriction is that in the honest Markov
chains, the sum of pi, j over all j is 1 for all i .

In this much more general setting, still much may be said of the nature
of the process: for example, under reasonable assumptions on the probabil-
ities pi, j , existence of stationary distributions may be proved. (Informally
speaking, stationary distributions are arrangements of collections of a large
number of particles with the property that a random displacement of these
particles according to the rules provided by pi, j ’s, though changing posi-
tions of many or all individual particles, does not change the arrangement as
a whole.) Conditions are also known under which any other arrangement of
particles, with displacement rules hidden in pi, j , will in time become more
and more close to the stationary distribution, even to the point of being prac-
tically indistinguishable, and we can even estimate the speed with which this
happens [72, 78].

Everything said above concerns Markov chains in discrete time: in a
discrete-time Markov chain, as described above, all changes occur at multi-
ples of a unit time. However, there are also time-continuous Markov chains.
Whereas in a discrete-time Markov chain, everything hinges on the probabili-
ties pi, j , to describe a continuous-time Markov chain, one needs intensities of
jumps. In the simplest case of right-continuous processes with lefthand limits,
if the intensity of a jump from a state i is qi > 0, the process stays at i for an
exponential time T so that P(T > t) = e−qi t , t ≥ 0. (If qi = 0, the process
stays at i forever.) Then, it jumps to a different state j , and the probability that
a particular j is chosen is pi, j = qi, j/qi , where qi, j is a (given) intensity of
jump from i to j . The condition that the sum of pi, j over all j should be 1 tells
us that we should have

∑
j �=i qi, j = qi . At j , the process forgets its past and

continues the same procedure, with qi replaced by q j .
Even from this picture, it is somewhat clear that continuous-time Markov

chains are in many aspects similar to discrete-time Markov chains. In the case
where the state-space is finite, they indeed are much the same, and the descrip-
tion in terms of intensities is both appealing and useful. If the state-space
is infinite (but denumerable), however, unexpected difficulties and curious
phenomena might occur. First of all, some and even all states might be instan-
taneous, which is to say that all intensities might be infinite. Upon arriving at
such a state, the process leaves ‘immediately,’ and the description given above
does not apply, or at least does not tell the entire story. Moreover, if worst
comes to worst and the times before consecutive jumps are dramatically shorter
and shorter, the definition in terms of jumps may turn out inadequate, leaving
the process undefined after a finite random time (being equal to the infinite
sum of shorter and shorter times before consecutive jumps). In other words,



A Nontechnical Introduction xvii

intensities of jumps do not contain the information on what happens with the
process after such ‘explosion.’ On top of that, there can be many ways such
explosion occurs and many, trivial and nontrivial, ways the process returns to
the state-space.1

In such cases, to describe the process in full, instead of the set, or a matrix, of
intensities, one needs a more complex object: a closed operator in the Banach
space of absolutely summable sequences, the generator of a related semigroup
of transition matrices in this space. In this book, we discuss when and in what
sense such generators may be identified with matrices of jump intensities and
how they can be constructed and employed when intensity matrices are seen to
be less useful. In particular, we explain how the information on postexplosion
behavior is built into the generators. Roughly speaking, this is done either by
modifying the way the generator of the minimal chain acts (the minimal chain
is the chain undefined after explosion) or by modifying the generator’s domain.

1 Each way explosion occurs is a set (or, better, an equivalence class of sets) where the process
‘sojourns,’ and each such sojourn set may be seen as an additional point of the state-space for
the process, a point of its exit boundary. Similarly, each nontrivial way the process may return
to the state-space is a point of its entry boundary.





1

A Guided Tour through the Land of Operator
Semigroups

1.1 Semigroups and Generators

This introductory chapter is meant as a gentle, short introduction to the the-
ory of operator semigroups. From the beginning, this theory has been devised
and seen, especially by W. Feller and E. B. Dynkin, as an efficient tool for
describing Markov processes. Today – notwithstanding advances of stochastic
analysis we have witnessed over the last several decades – its usefulness is still
undeniable.

We present all the relevant facts of the theory, needed for understanding the
main body of the book, but – for brevity – refrain from presenting detailed
proofs of the main theorems on generation, perturbation, approximation and
convergence of semigroups. (The almost self-contained Section 1.5, devoted
to sun-dual semigroups, is an exception to this rule.) Instead, we explain
all the needed notions and illustrate the theory with simple, but illuminat-
ing examples. We hope that the reader who has not come across the theory
of semigroups of operators yet, and decides to take this guided tour will be
well prepared for studying the rest of the book, and, if necessary, to study
more advanced books on semigroups. A list of monographs containing all the
missing proofs – and much more – is given in Section 1.7.

Here and there in this chapter, we will be guided by intuitions from stochas-
tic processes and Markov chains in particular, even though the latter will not
be defined before Chapter 2.

1.1.1 Strongly continuous semigroups of operators

A C0 semigroup or a strongly continuous semigroup in a Banach space X is a
family T = {T (t), t ≥ 0} (written also as (T (t))t≥0 or {Tt , t ≥ 0}) of bounded
linear operators such that

1



2 A Guided Tour through the Land of Operator Semigroups

(a) T (t)T (s) = T (t + s), t, s ≥ 0,
(b) T (0) = IX (the identity operator in X),
(c) limt→0 T (t)x = x, x ∈ X,

with the last limit in the norm of X. Condition (a) is termed the semigroup
property. If merely the first two conditions are satisfied, the family T is said
to be a semigroup.

The following intuition is hidden behind this notion. Throughout large parts
of this book, X will be the space

l1 = l1(I)

of absolutely summable sequences x = (ξi )i∈I indexed by elements of a count-
able set I. (Recall that the norm in this space is ‖x‖ =∑i∈I

|ξi |.) Nonnegative
elements of l1 with coordinates summing to 1 can be thought of as initial distri-
butions of an underlying Markov chain, and then, in many cases of interest to
us, T (t) can be interpreted as mapping an initial distribution of the chain to its
distribution at time t . Then point (a) expresses Markovian nature of the chain,
and points (b)–(c) are an assumption of continuous dependence on initial data
(see Chapter 2 for details).

1.1.2 An example of a strongly continuous semigroup

Let ri , i ≥ 2 be positive numbers. For any t ≥ 0, the formula

T (t) (ξi )i≥1 = (ξ1 +
∞∑
j=2

ξ j (1 − e−r j t ), ξ2e−r2t , ξ3e−r3t , . . . ) (1.1)

defines a linear operator in l1 := l1(N). This operator is bounded with norm
not exceeding 1, since

‖T (t)x‖ ≤ |ξ1| +
∞∑
j=2

|ξ j |(1 − e−r j t )+
∞∑

i=2

|ξi |e−ri t =
∞∑

i=1

|ξi | = ‖x‖.

This norm in fact equals 1, because for nonnegative x ∈ l1 the inequality in
the calculation presented above may be replaced by the equality. It is also easy
to see, and the reader should check it, that the semigroup property holds.

We claim that {T (t), t ≥ 0} is a strongly continuous semigroup. Indeed, for
any x ∈ l1,

‖T (t)x − x‖ ≤ 2
∞∑
j=2

|ξ j |(1 − e−r j t ),
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and the right-hand side converges to 0, as t → 0+ by the Lebesgue Dominated
Convergence Theorem (see, e.g., Section 1.6.1). Alternatively, for a nonzero
x , and given ε > 0, one may find i0 ∈ N such that

∑∞
i=i0+1 |ξi | < ε

4 , and
then a t0 > 0 such that supi=1,...,i0

(1 − e−ri t ) < ε
4‖x‖ for all t ∈ [0, t0]. For

such t,

2
∞∑
j=2

|ξ j |(1 − e−r j t ) ≤ 2
i0∑

j=2

|ξ j |(1 − e−r j t )+ 2
∞∑

j=i0+1

|ξ j |(1 − e−r j t )

≤ ε

2‖x‖
i0∑

j=2

|ξ j | + 2
∞∑

j=i0+1

|ξ j | ≤ ε

2
+ ε

2
= ε.

This proves the claim.
To gain some intuition about what the semigroup defined above describes,

consider the following stochastic movement with state-space N: a traveler start-
ing at an i ≥ 2 stays there for an exponential time with parameter ri (so that
the probability that the traveler is still at i at time t is e−ri t ) and then jumps to
the state 1 to stay there for ever. A traveler starting at 1 simply stays there for
ever. If ξi is the probability that a traveler starts at i , then the i th coordinate
of the vector T (t) (ξi )i≥1 is the probability that the traveler will be at i at time
t ≥ 0.

1.1.3 A semigroup that is not strongly continuous

Let (1.1) be modified so that the first coordinate of the vector on the
right-hand side is ξ1. Then, T (t) is again a linear operator with norm
1 (corresponding to stochastic movement in which a traveler starting at
i ≥ 2 after an exponential time with parameter ri disappears). The so-
modified family {T (t), t ≥ 0} may be checked to be a strongly continuous
semigroup.

The same (modified) formula defines also a semigroup of operators of norm
1 in the space l∞ of bounded sequences (ξi )i≥1. (Here, the norm is given by
‖x‖ = supi∈I |ξi |.) However, if supi≥2 ri = ∞, this semigroup is not strongly
continuous. To see this, consider the vector x = (1, 1, 1, . . . ). Then, for each
t > 0,

‖T (t)x − x‖ = ‖(0, 1 − e−r2t , 1 − e−r3t , . . . )‖ = sup
i≥2

|1 − e−ri t | = 1.

Hence, T (t)x cannot converge to x in the norm of l∞, as t → 0, showing that
{T (t), t ≥ 0} is not a strongly continuous semigroup in l∞.
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1.1.4 Continuity

A closer inspection of Example 1.1.2 shows that the map [0,∞) � t �→ T (t)x
is continuous in the sense of the norm in l1 for all x ∈ l1. This is not a
coincidence: it can be shown that this is the property of all C0 semigroups.
In other words, assumptions (a)–(c) of the definition of a strongly continuous
semigroup imply that the functions [0,∞) � t �→ T (t)x , sometimes termed
trajectories of the semigroup, are continuous for all x ∈ X.

1.1.5 The generator

Closed form expressions for semigroups of operators are seldom available.
But, fortunately, the semigroups can be fully described by their ‘derivates,’
that is, certain operators, called generators. The situation is somewhat similar
to the fact that even if we know initial position s(0) and an exact formula for
velocity v(t) of a moving object at any time t ≥ 0 in terms of elementary
functions, a closed form for its position s(t) at time t ≥ 0 in terms of such
functions may be hard to find, or in fact may not exist (take, e.g., v(t) = e−t2

).
This is despite the fact that the relation between velocity and position is very
well known and simple: s(t) = s(0)+ ∫ t

0 v(t
′) dt ′. In terms of Markov chains,

the semigroup contains all the information on transition probabilities, whereas
its generator gathers the information on transition rates (and more).

Formally, the infinitesimal generator (or simply: the generator) of (T (t))t≥0

is defined by

Ax = lim
t→0+ t−1(T (t)x − x)

for those x for which the limit exists in the sense of the norm in X.
The second part of the previous sentence is important: in situations of inter-

est, the limit presented above rarely exists for all x ∈ X. If it does, A turns out
to be bounded, and the semigroup {T (t), t ≥ 0} can be recovered from A by
means of the following formula:

T (t) =
∞∑

n=0

tn An

n! , t ≥ 0; (1.2)

the series here converges in the operator norm. The semigroup generated by
a bounded operator A will be denoted {et A, t ≥ 0}, and referred to as an
exponent of A.

Let’s look at some examples; we will come back to our discussion of
generators in Section 1.1.11.
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1.1.6 An example of a generator

Bounded linear operators in R
3 may be identified with 3 × 3 matrices. In this

sense, the formula

T (t) = 1

5

⎡⎣ 5 0 0
5 − 4e−t − e−6t 2e−t + 3e−6t 2e−t − 2e−6t

5 − 6e−t + e−6t 3e−t − 3e−6t 3e−t + 2e−6t

⎤⎦
defines a semigroup of operators in R

3; and this is regardless of whether T (t)x
is the product of the matrix T (t) and a three dimensional column vector x or
the product of a three dimensional row vector x and the matrix T (t). A direct
calculation shows that the limit limt→0+ t−1(T (t)x − x) exists and equals Ax ,
where

A =
⎡⎣0 0 0

2 −4 2
0 3 −3

⎤⎦ ,
for all x ∈ R

3. Therefore, the generator here may be identified with the matrix
A.

1.1.7 An example of application of (1.2)

Take a ≥ 0 and b ≥ 0 such that a + b > 0, and let X be R
2 equipped with

any of the equivalent norms. The space L(X) may be identified with the space

of 2 × 2 matrices. Let’s find et A for A =
(−a, a

b, −b

)
, using (1.2). We claim

that

et A = 1

a + b

(
b + ae−(a+b)t , a − ae−(a+b)t

b − be−(a+b)t , a + be−(a+b)t

)
. (1.3)

To prove this, we first introduce

B := A + (a + b)IX =
(

b, a
b, a

)
.

Since B2 = (a + b)B, we have, by induction, Bn = (a + b)n−1 B. It follows
that

et B = IX + 1

a + b

∞∑
n=1

tn(a + b)n

n! B = IX + 1

a + b
(e(a+b)t − 1)B.

Next, we note that, similarly as for complex numbers, et (B+C) = et BetC pro-
vided BC = C B. Since IX commutes with any operator (matrix), by the
definition of B, we obtain
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et A = e−(a+b)t et B = e−(a+b)t IX + 1

a + b
(1 − e−(a+b)t )B

= 1

a + b
(B − e−(a+b)t A),

completing the proof.

1.1.8 Another example of application of (1.2)

Let X = C[0,∞] be the space of continuous functions on [0,∞) with limits
at ∞. Equipped with the supremum norm, X is a Banach space, and for any
a > 0, the operator defined by Ax(p) = a[x(p+1)−x(p)], p ≥ 0 is bounded,
since ‖Ax‖ ≤ 2a‖x‖. To compute et A for t ≥ 0, we use the definition and the
fact that B := A + aIX is a scalar multiple of the shift operator: Bx(p) =
ax(p + 1), p ≥ 0 so that Bn x(p) = an x(p + n), p ≥ 0. Therefore,

et Ax(p) = e−at et (A+aIX)x(p) =
∞∑

n=0

e−at antn

n! x(p + n)

= E x(p + N (t)), t ≥ 0,

where E denotes expected value. In the last line N (t) is a Poisson-distributed
random variable with parameter at :

P(N (t) = k) = e−at (at)k

k! .

In other words, the exponent {et A, t ≥ 0} describes a Poisson process. In
this process, if the starting point is p then after time t ≥ 0 with probability
P(N (t) = k) the process is at p + k.

1.1.9 Example: The generator of the semigroup of Section 1.1.2

Let us come back to Example 1.1.2, and, to focus our attention, let’s agree that
ri = i, i ≥ 2. To find the generator of the semigroup (1.1), we note first that
convergence in the sense of l1 norm implies convergence of all coordinates.
Therefore, if x = (ξi )i≥1 is in the domain D(A) of the generator, then the i th

coordinate of Ax must be limt→0+ e−i t −1
t ξi = −iξi , i ≥ 2. Since Ax , being

the limit of elements of l1, belongs to l1, we see that a necessary condition for
x to belong to D(A) is that

∞∑
i=2

i |ξi | < ∞. (1.4)
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We will show that all x’s satisfying this condition belong to D(A) and that for
such x , Ax is equal to

y := (

∞∑
i=2

iξi ,−2ξ2,−3ξ3, · · · ).

For, under assumption (1.4), y belongs to l1. Moreover, the i th coordinate
of t−1(T (t)x − x)− y is⎧⎨⎩

[
e−i t −1

t + i
]
ξi , i ≥ 2,

−∑∞
j=2 ξ j

[
e− j t −1

t + j
]
, i = 1,

and we have e−i t −1
t + i = i

t

∫ t
0 (1 − e−is) ds. Therefore,

‖t−1(T (t)x − x)− y‖ ≤ 2
∞∑

i=2

i |ξi |1

t

∫ t

0
(1 − e−is) ds.

Since limt→0+ 1
t

∫ t
0 (1 − e−is) ds = 0 and 0 ≤ 1

t

∫ t
0 (1 − e−is) ds ≤ 1,

i ≥ 2, the right-hand side above converges to 0 by assumption (1.4) and the
Lebesgue Dominated Convergence Theorem. (Alternatively, one may argue as
in Example 1.1.2.) This shows that x ∈ D(A) and Ax = y.

1.1.10 Example: Isomorphic semigroups

Suppose that Banach spaces X and Y are isomorphic: there is a bounded linear
map I : Y → X with bounded left and right inverse I −1 : X → Y so that
I I −1 = IX and I −1 I = IY. Suppose also that {T (t), t ≥ 0} is a strongly
continuous semigroup in X with generator A. Then the operators

I −1T (t)I, t ≥ 0

form a strongly continuous semigroup in Y. Since the limit

lim
t→0+

I −1T (t)I y − y

t

exists iff so does

lim
t→0+

T (t)I y − I y

t
,

a y belongs to the domain of the infinitesimal generator, say, A�, of{
I −1T (t)I, t ≥ 0

}
iff I y belongs to D(A), and then

A�y = I −1 AI y.
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The semigroups
{

I −1T (t)I, t ≥ 0
}

and {T (t), t ≥ 0}, which of course play
symmetric roles, are said to be isomorphic to each other, and so are said to be
the generators A and A�; other authors prefer to speak of similar semigroups.
Sometimes, one of the isomorphic semigroups/generators is easier to handle
and knowing the isomorphism involved aids the analysis of the other. See, for
example, Exercise 1.1.18 or Section 3.3.7.

1.1.11 Generators are densely defined

As already stated, the limit defining the generator rarely exists for all x ∈ X;
D(A) is rarely equal to the entire X. In fact, D(A) = X iff the generator is
bounded, and this happens iff

lim
t→0+ ‖T (t)− IX‖ = 0,

which is a much stronger condition than assumption (c) of the definition of
Section 1.1.1.

All we can say at the first inspection of D(A) is that it is a linear subset of
X. Fortunately, D(A) turns out to be always dense in X: any x ∈ X may be
approximated by elements of D(A). In particular, for generators of semigroups
we need to search in the class of densely defined operators.

The reason for D(A) to be dense is as follows. Since the trajectories t �→
T (t)x are continuous functions of t , one may think of Riemann-type integrals∫ b

a T (t)x dt for any 0 ≤ a < b. These are defined in the same way as integrals
of real-valued functions, as limits of approximating Riemann sums, and pos-
sess similar properties. For example, continuity of a function f : [a, b] → X

guarantees that the integral
∫ b

a f (t) dt is well defined, provided X is a Banach
space (see, e.g., [14], pp. 60–63), and∥∥∥∥∫ b

a
f (t) dt

∥∥∥∥ ≤
∫ b

a
‖ f (t)‖ dt. (1.5)

(This estimate will be found useful later.) Therefore, one may think of∫ h
0 T (t)x dt for any h > 0 and x ∈ X, and it can be seen that such elements

belong to D(A) (with A
∫ h

0 T (t)x dt = T (t)x − x). Moreover, it is a well-
known property of Riemann integrals that for a continuous function f on an
interval [a, b],

lim
h→0+ h−1

∫ s+h

s
f (t) dt = f (s), s ∈ [a, b),

and Riemann integrals of vector-valued functions also possess this property.
Applying this to f (t) = T (t)x and s = 0, we obtain
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lim
h→0+ h−1

∫ h

0
T (t)x dt = x .

This however means that any x ∈ X may be approximated by elements of
D(A).

1.1.12 Generators are closed

Generators of semigroups, though generally unbounded, are closed. By defini-
tion this means that conditions

xn ∈ D(A), n ≥ 1, lim
n→∞ xn = x and lim

n→∞ Axn = y

imply that x belongs to D(A) and Ax = y. In other words, the graph of A,
defined as the following subset of the Banach space X × X:

GA = {(x, y) ∈ X × X; x ∈ D(A), y = Ax}
is closed in X × X.

For example, it may be checked directly that the generator we calculated in
Section 1.1.9 is closed. That the latter operator is not bounded (in the sense
that there is no M such that ‖Ax‖ ≤ M‖x‖ for x ∈ D(A)) may be seen by
considering the vectors ei ∈ l1 which at the i th coordinate have 1 and are
composed of 0’s otherwise: since Aei = −iei , which implies ‖Aei‖ = i‖ei‖,
the hypothetical constant M would need to be larger than all i ∈ N.

Even though the notion of closedness is very important, in searching for
generators of semigroups one rarely needs to prove directly that a candidate
for a generator is closed. This is because, even if A is already proved to be
densely defined and closed, before one can claim that A is a generator, another
condition, discussed in the next section (Section 1.2), needs to be checked, and
operators satisfying this condition are automatically closed.

1.1.13 Closability

Analysis of generators of Markov chains often involves closable operators.
To recall, a linear operator A in a Banach space X is said to be closable if
conditions

xn ∈ D(A), n ≥ 1 lim
n→∞ xn = 0 and lim

n→∞ Axn = y

imply y = 0. When combined with linearity this condition means that the
closure of the graph of A in the norm of X × X is still a graph (of another
operator). The latter, ‘larger’ operator, termed the closure of A and denoted A,
is defined by
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Ax = lim
n→∞ Axn

on the domain composed of x ∈ X for which there are xn ∈ D(A) such that
limn→∞ xn = x and the limit limn→∞ Axn exists; the definition of Ax does
not depend on the choice of (xn)n≥1 precisely because A is closable (cf. point
2 of the proof presented in Section 5.4.7).

For example, suppose that there is a closed operator B such that

GA ⊂ GB .

Then A is automatically closable, and A is simply the restriction of B to D(A).
In fact, A (if it exists) is the smallest (in the sense of inclusion of graphs) closed
operator extending A.

1.1.14 Cores

Sometimes one faces a situation that is in a sense ‘inverse’ to the one discussed
above: a closed operator A and a subset D of its domain are given, and the
question is whether for each x ∈ D(A) there is a sequence (xn)n≥1 of elements
of D such that limn→∞ xn = x and limn→∞ Axn = Ax . If this is the case, D is
said to be a core for A. Since the graph of A|D (of the operator A restricted to
D) is a subset of GA, closability of A|D is not an issue here: instead, we would
like to know whether D is ‘large enough’ so that A may be ‘recovered’ from
A|D. Such information is vital in the situations in which it is hard to describe
the entire D(A) but a manageable description of D is available. As an easy
exercise, the reader may check to see that the set of linear combinations of
basis vectors is a core for the generator A of Section 1.1.9.

Before closing this section, we need to say a word about connection between
semigroups and Cauchy problems.

1.1.15 Semigroups and Cauchy problems

As commented in 1.1.4, the assumption of continuity of t �→ T (t)x , at t = 0
for all x ∈ X implies, via the semigroup property, that t �→ T (t)x is continuous
at all t ≥ 0. Similarly, if x belongs to D(A) then, by definition, t �→ T (t)x is
differentiable at t = 0 with (right-hand) derivative equal Ax . The semigroup
property allows extending this attribute of t �→ T (t)x to the entire half-line:
it can be shown that this map is continuously differentiable there, that T (t)x
belongs to D(A) for all t ≥ 0, and that

d

dt
(T (t)x) = AT (t)x = T (t)Ax, t ≥ 0.
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In other words, for x ∈ D(A), the abstract Cauchy problem

u′(t) = Au(t), t ≥ 0, u(0) = x

is well posed with solution u(t) = T (t)x which, furthermore, may be proved
to be unique.

For example, for any (ξ1, ξ2) ∈ R
2, the pair

(u1(t), u2(t)) := (ξ1, ξ2) · et A,

where et A is defined in (1.3), solves the Cauchy problem

u′
1(t) = −au1(t)+ bu2(t),

u′
2(t) = au1(t)− bu2(t), t ≥ 0,

with initial condition u1(0) = ξ1, u2(0) = ξ2. Similarly, see 1.1.8, for any
x ∈ C[0,∞], u(t, p) := E x(p + N (t)) solves

∂u(t, p)

∂t
= a[u(t, p + 1)− u(t, p)], p, t ≥ 0

with initial condition u(0, p) = x(p).

1.1.16 Exercise

Check directly that the generator calculated in Section 1.1.9 is closed.

1.1.17 Exercise

Let {T (t), t ≥ 0} be a strongly continuous semigroup with generator A. For a
given number a > 0, let S(t) = T (at). Check that {S(t), t ≥ 0} is a strongly
continuous semigroup, and that its generator, say, B, is related to A as follows:
x ∈ D(B) iff x ∈ D(A) and Bx = a Ax . For a far-reaching generalization of
this result see the Volkonskii Formula (Sections 5.5.6–5.5.9).

1.1.18 Exercise

(Example of isomorphic semigroups.)

(a) Let X = C[0,∞] be the space of continuous functions on [0,∞) with
limits at infinity, equipped with the usual supremum norm. Check that

T (t)x(τ ) = x(τ + t)
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defines a strongly continuous semigroup of operators in X, that the domain
of its generator A is composed of continuously differentiable functions x
such that x ′ ∈ X (deduce that limτ→∞ x ′(τ ) = 0) and that Ax = x ′.

(b) Check that the space Y = C[0, 1] of continuous functions on [0, 1],
equipped with the usual supremum norm is isomorphic to C[0,∞] with
I : C[0, 1] → C[0,∞] given by

I x(τ ) = x(e−τ ), τ ≥ 0.

Check also that the isomorphic image of the semigroup of point (a) is

I −1T (t)I x(τ ) = x(τe−t )

and characterize the generator of this image.

1.1.19 Exercise

Suppose that X1 is a subspace of a Banach space X. Let {Tt , t ≥ 0} be a
strongly continuous semigroup of linear operators with generator A, such that
TtX1 ⊂ X1 (this is to say that X1 is invariant for {Tt , t ≥ 0}: Tt x ∈ X1

provided x ∈ X1). Prove that {St , t ≥ 0} where St = (Tt )|X1 is the restriction
of {Tt , t ≥ 0} to X1 is a strongly continuous semigroup of operators in the
Banach space X1, with the generator B given by

D(B) = D(A) ∩ X1, Bx = Ax, x ∈ D(B).
(The so-defined B is called the part of A in X1.)

1.2 The Hille–Yosida Theorem

1.2.1 Resolvent equation

It can be shown that for a strongly continuous semigroup {T (t), t ≥ 0} there
are constants ω ∈ R and M ≥ 1 such that ‖T (t)‖ ≤ Meωt , t ≥ 0. Since nearly
all semigroups considered in this book are composed of contractions:

‖T (t)‖ ≤ 1, t ≥ 0, (1.6)

from that time on we focus on such semigroups. This will allow us to avoid
unnecessary technical complications.

The condition that really decides whether a densely defined operator A is a
generator, is related to the so-called resolvent equation (for A):

λx − Ax = y. (1.7)
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In this equation, λ > 0 and y ∈ X are given, whereas x ∈ D(A) is to be found.
It can be shown that, if A is the generator of a contraction semigroup then the
resolvent equation has precisely one solution x ∈ D(A) for any y ∈ X and
λ > 0.

If {T (t), t ≥ 0} is known, the solution may be found explicitly:

x =
∫ ∞

0
e−λt T (t)y dt, (1.8)

that is, x is the Laplace transform of the trajectory of the semigroup. Tech-
nically, on the right-hand side we have an improper Riemann integral. Since
trajectories of the semigroup are continuous, so are the maps t �→ e−λt T (t)y,
and thus the integrals

∫ τ
0 e−λt T (t)y dt are well defined for all τ > 0. Then, for

τ < σ ,∥∥∥∥∫ σ

0
e−λt T (t)y dt −

∫ τ

0
e−λt T (t)y dt

∥∥∥∥ =
∥∥∥∥∫ σ

τ

e−λt T (t)y dt

∥∥∥∥
and this, by (1.5) and (1.6), does not exceed

∫ σ
τ

e−λt dt‖y‖. Since

lim
σ,τ→∞

∫ σ

τ

e−λt dt = 0,

the limit limτ→∞
∫ τ

0 e−λt T (t)y dt exists and this is precisely how the right-
hand side of (1.8) is defined.

As a by-product of (1.8), we obtain also

‖λx‖ =
∥∥∥∥λ lim

τ→∞

∫ τ

0
e−λt T (t)y dt

∥∥∥∥ = λ lim
τ→∞

∥∥∥∥∫ τ

0
e−λt T (t)y dt

∥∥∥∥
≤ lim
τ→∞

∫ τ

0
λe−λt dt‖y‖ = ‖y‖.

This is a crucial discovery: λ‖x‖ ≤ ‖y‖, that is,

the map y �→ λx is a contraction.

1.2.2 The Hille–Yosida Theorem (version I)

The Hille–Yosida Theorem is in a sense a converse to the findings of the pre-
vious section: it says that if A is a densely defined operator such that for all
λ > 0 and all y ∈ X the resolvent equation has a unique solution x , and for all
λ > 0 the map y �→ λx is a contraction, then A is the generator of a semigroup
of contractions.

Thus, the question of generation is reduced to that of studying solutions of
(1.7).
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1.2.3 Resolvent operators

It is often convenient to have the Hille–Yosida Theorem expressed in slightly
different terms.

To this end, fix a λ > 0 and think of the operator λ − A : x �→ λx − Ax
with domain D(A) and the range in X. The fact that the resolvent equation has
a solution for each y ∈ X means that the range of λ − A is the entire X. In
other words, λ−A has a right inverse. Moreover, the fact that the solution to the
resolvent equation is unique means that λ− A has a left inverse. These inverses
then must coincide and thus we may think of x as the value of (λ− A)−1

on y.
The operator (λ− A)−1, often denoted Rλ, is known as the resolvent oper-

ator (we also frequently say simply ‘the resolvent’ and usually this does not
lead to misunderstandings). To repeat, by definition, (λ− A)−1 is the inverse
of λ− A, both a right and the left inverse.

1.2.4 The Hille–Yosida Theorem (version II)

In terms of inverses of λ − A, the Hille–Yosida Theorem may be phrased as
follows.

A densely defined operator A is the generator of a strongly continuous
contraction semigroup {T (t), t ≥ 0} iff

● for all λ > 0, λ− A has a left and right inverse (λ− A)−1,
● ‖λ(λ− A)−1‖ ≤ 1, λ > 0.

1.2.5 Comments and notation

(a) Since Rλ = (λ− A)−1, the family Rλ, λ > 0 satisfies the Hilbert
equation:

Rλ − Rμ = (μ− λ)RμRλ, λ, μ > 0, (1.9)

which could also be obtained from the fact that Rλ is the Laplace transform
of the semigroup.

(b) In terms of (λ− A)−1, relation (1.8) takes the form (λ − A)−1 =∫∞
0 e−λt T (t) dt ; the resolvent of the generator is the Laplace transform

of the semigroup. A uniqueness theorem for the Laplace transform then
implies in particular that an operator must not generate two different
semigroups. We will write

{et A, t ≥ 0} or {TA(t), t ≥ 0}
for the semigroup generated by A.
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(c) Yosida’s and Hille’s proofs of the Hille–Yosida Theorem provide two dif-
ferent approximations of the semigroup generated by an operator A. The
Hille approximation is

et Ax = lim
n→∞

(n

t
R n

t

)n
x, x ∈ X. (1.10)

The Yosida approximation involves the operators Aλ := λ2 Rλ − λIX.
These are bounded linear operators, and it turns out that their exponents
et Aλ are composed of contractions. Moreover, for x ∈ X,

et Ax = lim
λ→∞ et Aλx = lim

λ→∞

∞∑
n=0

(t Aλ)n

n! = lim
λ→∞ e−λt

∞∑
n=0

(λ2 Rλ)n

n! .

(1.11)
(d) As a by-product of the approximations described above, it may be shown

that to check that A generates a contraction semigroup it suffices to check
that (λ − A)−1 exists for all sufficiently large λ > 0 and that for such λ,
‖λ (λ− A)−1 ‖ ≤ 1.

We complete this section with two examples of application of the Hille–
Yosida Theorem. For these, we need to recall the notion of a Markov operator.

1.2.6 Markov operators

Suppose L1 := L1(�,F , μ) is the space of (equivalence classes of) absolutely
integrable functions on a measure space (�,F , μ).A linear map P : L1 → L1

such that

(a) Px ≥ 0 for x ≥ 0,
(b)
∫
�

Px dμ = ∫
�

x dμ for x ≥ 0

is called a Markov operator. If condition (b) is replaced by
∫
�

Px dμ ≤∫
�

x dμ for x ≥ 0, P is said to be a sub-Markov operator.
We claim that each sub-Markov operator is a contraction: to show this,

for x ∈ L1, let us write x = x+ − x−, where x+ = max(x, 0) and
x− = max(−x, 0). We have P(x+)− Px ≥ 0, since x+ − x ≥ 0. Thus,

(Px)+ = max(Px, 0) ≤ P(x+).

Since x− = (−x)+, we also have

(Px)− = (−Px)+ = [P(−x)]+ ≤ P[(−x)+] = P(x−).
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Therefore,∫
�

|Px | dμ =
∫
�

[(Px)+ + (Px)−] dμ ≤
∫
�

[P(x+)+ P(x−)] dμ

≤
∫
�

[x+ + x−] dμ =
∫
�

|x | dμ.

This shows that ‖Px‖ ≤ ‖x‖, as claimed.
We also note that Markov operators preserve integral: this means that∫

�
Px dμ = ∫

�
x dμ for all x ∈ L1. For,∫

�

Px dμ =
∫
�

P(x+ − x−) dμ =
∫
�

Px+ dμ−
∫
�

Px− dμ

=
∫
�

x+ dμ−
∫
�

x− dμ =
∫
�

x dμ.

Finally, referring to the Hille–Yosida Theorem, we note that if λRλ =
λ (λ− A)−1 , λ > 0 are Markov operators, then so are et A, t ≥ 0. This can
be seen directly either from Hille’s or Yosida’s approximations, because the
limit of a sequence of Markov operators is clearly a Markov operator. (In
Section 2.4.3 we provide a detailed proof of this statement based on Yosida’s
approximation. An argument based on Hille’s approximation is even simpler.)

1.2.7 Definition

The generator of a semigroup of Markov operators will be said to be a Markov
generator.

1.2.8 Example

If P is a Markov operator in L1, then, as we have just seen, ‖Px‖ ≤ ‖x‖, x ∈
L1. Moreover, for nonnegative x , ‖Px‖ = ∫

�
Px dμ = ∫

�
x dμ = ‖x‖.

Hence, ‖P‖ = 1. Is it true that a linear map P : L1 → L1 of norm 1 such that
x ≥ 0 implies Px ≥ 0 is automatically a Markov operator?

To see that the answer is in the negative (see also Exercise 1.2.12), con-
sider L1 := L1[0, 1], the space of (equivalence classes of) Lebesgue integrable
functions on the unit interval [0, 1], and let Px(s) = sx(s), s ∈ [0, 1], x ∈ L1.

Clearly, Px ≥ 0 provided x ≥ 0, but P is not a Markov operator because for
x(s) = s, s ∈ [0, 1], we have x ≥ 0,

∫ 1
0 x(s) ds = 1

2 and
∫ 1

0 Px(s) ds = 1
3 .

Nevertheless, ‖P‖ = 1. Indeed, the calculation

‖Px‖ =
∫ 1

0
s|x(s)| ds ≤

∫ 1

0
|x(s)| ds = ‖x‖
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shows that ‖P‖ ≤ 1. Also, defining, for n ≥ 1, xn(s) to be equal α−1
n s for

s between 1 − n−1 and 1, and 0 otherwise, where αn = ∫ 1
1−n−1 s ds, we see

that ‖xn‖ = 1. Since limn→∞ α−1
n

∫ 1
1−n−1 s2 ds = 1, it follows that ‖P‖ ≥

supn≥1 ‖Pxn‖ = 1, completing the argument.

1.2.9 Example: Hille’s and Yosida’s approximations
of the semigroup (1.1)

Let us use the Hille–Yosida Theorem to see that the operator of Section 1.1.9
is a generator and recover formula (1.1) for the semigroup it generates from
Hille’s and Yosida’s approximations.

So, let D(A) ⊂ l1 be composed of x = (ξi )i≥1 such that
∑∞

i=2 i |ξi | <
∞, and let Ax = (

∑∞
i=2 iξi ,−2ξ2,−3ξ3, . . . ). In coordinates, the resolvent

equation for A reads

λξ1 −
∞∑

i=2

iξi = η1,

λξi + iξi = ηi , i ≥ 2,

where y = (ηi )i≥1. Thus, its only possible solution is

ξ1 = λ−1

(
η1 +

∞∑
i=2

iηi

λ+ i

)
, (1.12)

ξi = ηi

λ+ i
, i ≥ 2.

It is easy to see that the so-defined (ξi )i≥1 belongs to D(A):
∞∑

i=2

i |ξi | =
∞∑

i=2

i |ηi |
λ+ i

≤
∞∑

i=2

|ηi | < ∞.

Moreover, (ηi )i≥1 �→ λ (ξi )i≥1 is a Markov operator. For, ξi’s are clearly
nonnegative provided so are ηi’s, and then

λ

∞∑
i=1

iξi = η1 +
∞∑

i=2

iηi

λ+ i
+

∞∑
i=2

ληi

λ+ i
=

∞∑
i=1

ηi .

Since Markov operators are contractions, and A is obviously densely defined,
the Hille–Yosida Theorem shows that A is the generator of a contraction semi-
group. Moreover, since λ (λ− A)−1 , λ > 0 are Markov operators, so are the
et A, t ≥ 0.
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It remains to find et A. Let’s use the Hille approximation first. Relation (1.12)
says that the i th coordinate of λRλ (ηi )i≥1 is λ

λ+i ηi , i ≥ 2. It follows that the

i th coordinate of (λRλ)n (ηi )i≥1 is
(

λ
λ+i

)n
ηi . We know that

(
n
t R n

t

)n
(ηi )i≥1

converges to et A (ηi )i≥1. On the other hand

lim
n→∞

( n
t

n
t + i

)n

ηi = lim
n→∞

ηi

(1 + i t
n )

n
= e−i tηi .

Since convergence in the norm of l1 implies convergence in coordinates, the
i th coordinate of et A (ηi )i≥1 is e−i tηi , i ≥ 2.

A closed form of the first coordinate of (λRλ)n (ηi )i≥1 is available (and the
reader who wants to check his skills in using induction arguments is encour-
aged to find it), but complicated, and thus we will take an easier route. We
know that et A is a Markov operator. Since Markov operators preserve the
integral, the sum of coordinates of et A (ηi )i≥1 is the same as the sum of
coordinates of (ηi )i≥1. It follows that the first coordinate of et A (ηi )i≥1 is
η1 +∑∞

j=2 η j (1 − e−i t ), as in (1.1).
An argument based on Yosida’s approximation is similar. Since, as

already remarked, the i th coordinate of (λRλ)n (ηi )i≥1 is
(

λ
λ+i

)n
ηi , the

i th coordinate of etλ2 Rλ (ηi )i≥1 is et λ
2

λ+i ηi , and the i th coordinate of

et Aλ (ηi )i≥1 = e−λt etλ2 Rλ (ηi )i≥1 is et ( λ
2

λ+i −λ)ηi = e− λi
λ+i tηi , i ≥ 2. Since

limλ→∞ et Aλ (ηi )i≥1 = et A (ηi )i≥1 in the l1 norm (and this convergence
implies convergence in coordinates), it follows that the i th coordinate of
et A (ηi )i≥1 is e−i tηi , i ≥ 2. The first coordinate is calculated as with the Hille
approximation.

It should perhaps be stressed here again that, despite (1.10) and (1.11),
closed forms for semigroups are rarely given. Our example was not meant
to suggest otherwise; its sole goal is to illustrate, in a simple case, how Hille’s
and Yosida’s approximations work in practice.

1.2.10 Example: The generator of uniform motion to the right with
jump from the boundary

Let X = L1([0, 1], μ) be the space of (equivalence classes) of functions
x : [0, 1] → R which are absolutely integrable with respect to the Borel
measure

μ := leb + δ1,
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where δ1 is the Dirac delta measure at τ = 1, and leb is the Lebesgue measure
on [0, 1]. In other words, a class in X is composed of absolutely integrable
functions that differ on a set of Lebesgue measure but at τ = 1 have the same
finite value. The norm in X is, as customary,

‖x‖ =
∫ 1

0
|x | d leb + |x(1)|.

A class x belongs to the domain of the operator of interest to us if one of
its representatives, also denoted x , is absolutely continuous on [0, 1) with x ′
absolutely integrable with respect to the Lebesgue measure, and such that

ax(1) = x(0), (1.13)

where a > 0 is a given parameter. This is to say that for such a representative,
there is an absolutely integrable z(= x ′) on [0, 1] such that

x(τ ) = ax(1)+
∫ τ

0
z(σ ) dσ, τ ∈ [0, 1).

In particular, it is meaningful to speak of x(1−) := ax(1) + ∫ 1
0 z(σ ) dσ ; this

value, however, may differ from x(1). For such x , Ax ∈ X is defined by
specifying one of its representatives, also denoted Ax , by

Ax(τ ) =
{

−x ′(τ ), τ ∈ [0, 1),

x(1−)− ax(1), τ = 1.

We claim that A is a Markov generator in X. For the first step of the proof, we
note that the resolvent equation for A may be written as the following system:

λx(τ )+ x ′(τ ) = y(τ ), τ ∈ [0, 1),

λx(1)+ ax(1)− x(1−) = y(1), (1.14)

where λ > 0 and y ∈ X are given whereas x ∈ D(A) is searched-for (in fact,
here we think of representatives of x and y). An x satisfies the first of these
two equations if x1(τ ) := eλt x(τ ) satisfies x ′

1(τ ) = eλτ y(τ ), and so x1 must
be absolutely continuous with x1(τ ) = x1(0) + ∫ τ0 eλσ y(σ ) dσ, τ ∈ [0, 1);
hence, so must x and

x(τ ) = x(0)e−λτ + e−λτ
∫ τ

0
eλσ y(σ ) dσ, τ ∈ [0, 1). (1.15)

The second equation in (1.14) yields x(1) = y(1)+x(1−)
λ+a and thus the necessary

condition (1.13) for x to belong to D(A) forces

x(0) = a
y(1)+ x(0)e−λ + Cλ(y)

λ+ a
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where Cλ(y) = e−λ ∫ 1
0 eλσ y(σ ) dσ. It follows that there is precisely one

solution to (1.14), and it is given by (1.15) supplemented with

x(0) = a
y(1)+ Cλ(y)

λ+ a(1 − e−λ)
, x(1) = y(1)+ Cλ(y)

λ+ a(1 − e−λ)
. (1.16)

We have established that the resolvent equation has a unique solution. It is
also clear from the analysis that x ≥ 0 provided y ≥ 0. We claim next that for
such y

λ

∫
[0,1]

x dμ =
∫

[0,1]
y dμ.

To see this, observe that for x ∈ D(A), we have∫
[0,1]

Ax dμ = −
∫ 1

0
x ′(τ ) dτ + x(1−)− ax(1) = x(0)− ax(1) = 0

because x , being a member of D(A) (more precisely: its class belongs to
D(A)), satisfies (1.13). Thus, the claim may be obtained by integrating both
sides of the resolvent equation λx − Ax = y.

Our analysis shows that the map

λRλ := λ (λ− A)−1

is a Markov operator, and because such operators have norm equal to one,
we obtain ‖λRλ‖ = 1. Since D(A) may be seen to be dense in X, by the
Hille–Yosida Theorem, A is the generator of a contraction semigroup. More-
over, as discussed at the end of Section 1.2.6, the semigroup generated by A is
composed of Markov operators.

This semigroup governs the evolution of distributions of the following
Markov process with state-space [0, 1]. A particle starting at τ ∈ [0, 1) moves
to the right with constant velocity v = 1. Once it reaches τ = 1, it stays there
for an exponential time with parameter a > 0, and later jumps to τ = 0, where
it starts moving to the right again. If the initial distribution x of this process
is absolutely continuous with respect to the Lebesgue measure, except perhaps
for a probability mass at τ = 1, then at time t > 0 the distribution has the
same property and is given by et Ax . It is somewhat clear that a closed form for
et A will be rather hard to find for large t.

1.2.11 Exercise

Let X = c0, the space of sequences (ξi )i≥1 converging to zero. Use the Hille–
Yosida Theorem to show that the operator A defined by A (ξi )i≥1 = (−iξi )i≥1
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on sequences (ξi )i≥1 ∈ c0 such that (iξi )i≥1 ∈ c0 is the generator of a
contraction semigroup. Check to see that et A (ξi )i≥1 = (e−i tξi

)
i≥1 , t ≥ 0.

1.2.12 Exercise

Let l1 := l1(N) be the space of absolutely summable sequences (ξi )i≥1. Check
to see that P mapping (ξi )i≥1 to (ηi )i≥1 where ηi = (1− 1

i )ξi , i ≥ 1, has norm
1 and is strictly sub-Markov in the sense that ηi ≥ 0 and

∑∞
i=1 ηi <

∑∞
i=1 ξi

provided (ξi )i≥1 ≥ 0 is nonzero.

1.2.13 Exercise

Let P be a Markov operator in a space L1. Check to see that the semigroup
generated by Q = P − IL1 is composed of Markov operators. If P is sub-
Markov, Q generates a semigroup of sub-Markov operators.

1.3 Perturbation Theorems

1.3.1 Phillips’s Perturbation Theorem

Even with the help of the Hille–Yosida Theorem, proving that a given operator
A is a contraction semigroup generator is often not an easy task. One of the
tricks of the trade is to write A as the sum of two operators

A = A0 + B

where A0 is usually ‘simpler’ than A (but has the same domain), and B
is bounded. The Phillips Perturbation Theorem says, then, that if A0 is the
generator of a strongly continuous semigroup, then so is A. Moreover,

et A =
∞∑

n=0

Sn(t), (1.17)

where S0(t) = et A0 and Sn+1(t) = ∫ t
0 e(t−s)A BSn(s) ds, n ≥ 0. The series

(1.17) is known as the Dyson–Phillips series.

1.3.2 Trotter’s Product Formula

It should be noted that the semigroup {et A, t ≥ 0} given by (1.17) need not be
composed of contractions even if {et A0 , t ≥ 0} is. However, if both {et A0 , t ≥
0} and {et B, t ≥ 0} (the latter existing as an exponent of B) are composed of
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contractions then so is {et A, t ≥ 0}. This is a direct consequence of Trotter’s
Product Formula, which says that (even under less restrictive assumptions than
those given above)

et Ax = lim
n→∞

(
e

t
n A0 e

t
n B
)n

x;

as a limit of contractions, et A is a contraction. Similarly, if {et A0 , t ≥ 0} and
{et B, t ≥ 0} are both composed of Markov operators then so is the semigroup
{et A, t ≥ 0}.

1.3.3 Example

Here is a typical example of application of Trotter’s Product Formula. Let
qi, j , i, j ≥ 1 be given numbers with the following properties (a)

∑∞
j=1 qi, j =

0, for all i ≥ 1, (b) qi, j ≥ 0, i �= j , and (c) supi≥1(−qii ) < ∞ (we thus
assume that qi, j ’s form a bounded Kolmogorov matrix; see Section 2.2.8).

In the space l1 of absolutely converging sequences (ξi )i≥1, we define an
operator A by

A (ξi )i≥1 =
⎛⎝ ∞∑

j=2

jξ j +
∞∑
j=1

q j,1ξ j ,−2ξ2 +
∞∑
j=1

q j,2ξ j ,−3ξ3 +
∞∑
j=1

q j,3ξ j , · · ·
⎞⎠

on the domain D(A) composed of (ξi )i≥1 such that
∑∞

j=1 j |ξ j | < ∞. We
claim that A is a Markov generator.

To this end, we write

A (ξi )i≥1 = A0 (ξi )i≥1 + B (ξi )i≥1

where

A0 (ξi )i≥1 =
⎛⎝ ∞∑

j=2

jξ j ,−2ξ2,−3ξ3, · · ·
⎞⎠ and

B (ξi )i≥1 =
⎛⎝ ∞∑

j=1

q j,iξ j

⎞⎠
i≥1

.

Then, we note that whereas the formula for A0 (ξi )i≥1 makes sense only for
(ξi )i≥1 ∈ D(A), the formula for B (ξi )i≥1 makes sense for all (ξi )i≥1 ∈ l1.
Moreover, for x = (ξi )i≥1,
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‖B (ξi )i≥1 ‖ ≤
∞∑

i=1

∣∣∣∣∣∣
∞∑
j=1

q j,iξ j

∣∣∣∣∣∣ ≤
∞∑

i=1

⎛⎝ ∞∑
j �=i

q j,i |ξ j | − qi,i |ξi |
⎞⎠

≤ q‖x‖ +
∞∑
j=1

|ξ j |
∞∑

i �= j

q j,i ≤ q‖x‖ +
∞∑
j=1

(−q j, j )|ξ j |

≤ 2q‖x‖,

where

q = sup
i≥1
(−qi,i ),

proving that B is a bounded operator. Since in A0 we recognize the generator of
the semigroup of Section 1.1.2 (see Section 1.1.9), this shows, by the Phillips
Perturbation Theorem, that A is a generator. Furthermore, since the semigroup
generated by A0 is composed of Markov operators, we will be able to conclude,
by Trotter’s Product Formula, that A is a Markov generator once we show that
B is.

Let B0 := B + q Il1 and P := q−1 B0. Since

B0 (ξi )i≥1 =
⎛⎝(q + qi,i )ξi +

∑
j �=i

q j,iξ j

⎞⎠
i≥1

and q +qi,i ≥ 0, it is clear that B (ξi )i≥1 is nonnegative provided so is (ξi )i≥1.
Moreover, for such (ξi )i≥1, the sum of coordinates of B0 (ξi )i≥1 equals

∞∑
i=1

qξi +
∞∑

i=1

∞∑
j=1

q j,iξ j = q
∞∑

i=1

ξi +
∞∑
j=1

ξ j

∞∑
i=1

q j,i = q
∞∑

i=1

ξi .

It follows that P is a Markov operator, and thus B = q(P − Il1) is a Markov
generator by combined Exercises 1.2.13 and 1.1.17.

1.4 Approximation and Convergence Theorems

In this section we discuss Trotter–Kato and Sova–Kurtz Approximation and
Convergence Theorems for semigroups of operators. Even though these theo-
rems occupy a special place in this book, we refrain from giving examples of
their applications here: they will be found throughout the book. Plenty of other
examples may be found in [16].
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1.4.1 Approximation theorems

The Trotter–Kato Approximation Theorem says that for a sequence {et An , t ≥
0}, n ≥ 1 of contraction semigroups in a Banach space X to converge to a
semigroup {et A, t ≥ 0} in the sense that

lim
n→∞ et An x = et Ax, t ≥ 0, x ∈ X, (1.18)

it is necessary and sufficient that

lim
n→∞ (λ− An)

−1 x = (λ− A)−1 x, λ > 0, x ∈ X. (1.19)

Moreover, if the latter condition is satisfied, the limit in (1.18) is uniform in
compact subsets of [0,∞): for any t0 > 0,

lim
n→∞ max

t∈[0,t0]
‖et An x − et Ax‖ = 0, t ≥ 0, x ∈ X. (1.20)

The Sova–Kurtz version of this theorem [61, 81] says that (1.20) (or, equiv-
alently, (1.18)) holds iff for any x ∈ D(A) there is a sequence (xn)n≥1 of
elements of X such that

(a) xn ∈ D(An), n ≥ 1,
(b) limn→∞ xn = x , and
(c) limn→∞ An xn = Ax .

The latter version is often easier to use since it does not require knowledge of
the resolvents (λ− An)

−1, which may not be available in a manageable form.

1.4.2 Convergence theorems

Often the limit semigroup (i.e., {et A, t ≥ 0}) is not a priori given, and even
its existence is not granted: we have a sequence of contraction semigroups
{et An , t ≥ 0}, n ≥ 1, and we want to know whether the limit

lim
n→∞ et An x (1.21)

exists for all t ≥ 0 and x ∈ X. Perhaps surprisingly, in this case the sole
existence of

Rλx := lim
n→∞ (λ− An)

−1 x (1.22)

does not guarantee convergence (1.21). There are examples showing that resol-
vents may converge whereas the semigroups converge only for the null vector
x = 0. As it transpires, nevertheless, using Rλ, λ > 0 one may characterize
the subspace, say,

X0,
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sometimes termed the regularity space, of x’s in X such that the limit

lim
n→∞ et An x

exists uniformly in compact subsets of [0,∞).
To explain, the operators λRλ, λ > 0 are contractions because so are

λ (λ− An)
−1 , λ > 0 for each n. Similarly, Rλ, λ > 0 satisfy the Hilbert equa-

tion (1.9), since so do (λ− An)
−1 , λ > 0 for each n. It follows that Rλ, λ > 0

have a common kernel and range. It can be proved that

X0 is the closure of the common range of Rλ, λ > 0, (1.23)

and this is the first part of the Trotter–Kato version of convergence theorem.
The other part says that on X0 there is a strongly continuous semigroup of
operators {T (t), t ≥ 0} such that

T (t)x = lim
n→∞ et An x, t ≥ 0, x ∈ X0,

and the convergence is again uniform on compact subsets of [0,∞).
The generator of {T (t), t ≥ 0} can also be characterized: when restricted to

X0, the operators Rλ, λ > 0 have trivial kernel (i.e., the kernel is composed
merely of the null vector x = 0), and thus there exists inverses (Rλ)

−1
|X0
, λ > 0.

By the Hilbert equation

A := λIX0 − (Rλ)
−1
|X0

(1.24)

defined on the common range of (Rλ)|X0 , does not depend on λ > 0; this
operator is the generator of {T (t), t ≥ 0}.

In particular, if X0 = X, that is, if the range of Rλ, λ > 0 is dense in X,

D(A) is the range of Rλ, λ > 0. (1.25)

1.4.3 Sova–Kurtz version

In practice, formula (1.24) is rarely useful in characterizing the generator of
the limit semigroup: inverting (Rλ)|X0 is not an easy task. The Sova–Kurtz
version is more informative. It says that A can be characterized by means of
the so-called extended limit of An, n ≥ 1.

The domain D(Aex ) of this extended limit is composed of x ∈ X such that
there is a sequence (xn)n≥1 with the following properties (cf. Section 1.4.1):

(a) xn ∈ D(An), n ≥ 1,
(b) limn→∞ xn = x , and
(c) limn→∞ An xn exists.
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Unless we want to deal with multi-valued operators, Aex x cannot be simply
defined as limn→∞ An xn , because this limit may depend on the choice of
(xn)n≥1. This notwithstanding, if the limit (1.22) exists,

X0 is the closure of D(Aex ).

Consider also the subset, say, D, of x ∈ D(Aex ) such that for some (xn)n≥1

of the definition of Aex , limn→∞ An xn belongs to X0. It can be seen that for
any other

(
x ′

n

)
n≥1 of the definition, limn→∞ An x ′

n = limn→∞ An xn . In other
words, Aex as restricted to D is single-valued: it has only one possible value in
X0. Moreover,

(Aex )|D is the generator of the limit semigroup.

Finally, we note that existence of the limit (1.22) may be checked in terms of
Aex : this limit exists for all λ > 0 iff there is a λ > 0 such that for all y ∈ X

there is an x ∈ D(Aex ) such that y = λx − Aex x .

1.4.4 Kurtz’s Singular Perturbation Theorem

The Trotter–Kato and Sova–Kurtz Convergence Theorems settle the question
of convergence that is uniform in compact subintervals of [0,∞). However,
there are examples of semigroups that converge in a less regular way; it often
happens, especially in singular perturbation theory, that the semigroups con-
verge also outside of the regularity space X0. By nature (and definition of
X0) this convergence is not uniform around t = 0: it is uniform in compact
subintervals of (0,∞).

For a simple, somewhat typical instance, think of a Markov generator A0 in
a certain space X of absolutely integrable functions, and of a bounded operator
B that is also a Markov generator, and let (rn)n≥1 be a sequence of positive
numbers converging to ∞. Since rn B, n ≥ 1 are bounded and are Markov
generators,

An := A0 + rn B, n ≥ 1 (1.26)

are also Markov generators (by the combined Phillips Perturbation Theorem
and Trotter’s Product Formula). The latter operators form a singular perturba-
tion of A0, since the influence of the operator B in the limit is ‘much stronger’
than that of A0.

A simple case of Kurtz’s Singular Perturbation Theorem says that the
semigroups generated by An, n ≥ 1 converge provided the following two
conditions are met:

(i) limt→∞ et B x =: Px exists for all x ∈ X.
(ii) P A0 with domain D(A0)∩X

′ is a generator in X
′, where X

′ := Range P .
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Then X
′ is the regularity space for the semigroups {et An , t ≥ 0}, n ≥ 1:

lim
n→∞ et An x = et P A0 x, x ∈ X

′, t ≥ 0

and the limit is uniform in compact subintervals of [0,∞). Moreover,

lim
n→∞ et An x = et P A0 Px, x �∈ X

′, t > 0

and the limit is uniform in compact subintervals of (0,∞).
See our Section 4.2.5 for an illustrative example of this theorem (this section

is also the only place where this theorem is used in this book).

1.5 Dual and Sun-Dual Semigroups

The material presented in this section will be needed only in Chapter 5, and
thus may be omitted at the first reading. We start by recalling the definition of
the dual for an operator.

1.5.1 The dual of an operator

Let X and Y be Banach spaces, and let A : X → Y be a bounded linear
operator. For any functional f on Y, the map f ◦ A is a linear functional on X.

Since ‖ f ◦ A‖X∗ ≤ ‖ f ‖Y∗‖A‖L(X,Y), the map f �→ f ◦ A, denoted A∗, is a
bounded linear map from Y

∗ to X
∗ and ‖A∗‖ ≤ ‖A‖. The operator A∗ is called

the dual operator or the adjoint operator of A. Since, as a consequence of
the Hahn–Banach Theorem, for any x ∈ X,

‖Ax‖ = sup
f ∈Y∗,‖ f ‖=1

| f (Ax)| = sup
f ∈Y∗,‖ f ‖=1

|(A∗ f )x | ≤ ‖A∗‖‖x‖,

we see that ‖A‖ ≤ ‖A∗‖, and so ‖A‖ = ‖A∗‖.

1.5.2 Trouble with continuity of the dual semigroup

Let {Tt , t ≥ 0} be a strongly continuous semigroup in a Banach space X. Then
the family

{
T ∗

t , t ≥ 0
}

is also a semigroup since

T ∗
t T ∗

s = [Ts Tt ]∗ = T ∗
s+t ;

we refer to
{
T ∗

t , t ≥ 0
}

as the dual semigroup. By 1.5.1, if {Tt , t ≥ 0} is
composed of contractions, then so is

{
T ∗

t , t ≥ 0
}
.

Interestingly, though,
{
T ∗

t , t ≥ 0
}

need not be strongly continuous. For
example, if X is the space C0(R) of continuous functions x on R that vanish at
both −∞ and ∞, and Tt x(τ ) = x(τ + t), τ ∈ R, t ≥ 0, then X

∗ is the space
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of Borel signed measures, and T ∗
t maps a measure μ to its translate μt given

by

μt (B) = μ(B−t )

where, for a Borel set B, B−t := {τ |τ + t ∈ B}. In particular, for Dirac delta
measures we have T ∗

t δa = δa+t , a ∈ R, and, since ‖δa − δb‖ = 2 provided
a �= b, there is no hope for limt→0 ‖T ∗

t δa − δa‖ = 0.
On the other hand, if X = c0 and

Tt (ξi )i≥1 =
(

e−i tξi

)
i≥1

, (ξi )i≥1 ∈ c0

(see Exercise 1.2.11) then X
∗
0 = l1 and

T ∗
t (ηi )i≥1 =

(
e−i tηi

)
i≥1

, (ηi )i≥1 ∈ l1,

and this is a strongly continuous semigroup.

1.5.3 The sun-dual semigroup

The two seemingly contradicting examples from the previous section may be
reconciled by noting that there is always a subspace of X

∗ where the dual
semigroup is strongly continuous; if worst comes to worst, this subspace may
be trivial, that is, composed of the zero functional. We denote this subspace by
X

�:

X
� := { f ∈ X

∗| lim
t→0+ ‖T ∗

t f − f ‖ = 0}.

In the second example, X
� just happens to be equal to the entire X

∗. In the
first example, it contains the subspace of measures that are absolutely con-
tinuous with respect to the Lebesgue measure, which may be identified with
L1(R). For, in the latter space the dual semigroup is the familiar semigroup of
translations to the right:

T ∗
t φ(τ) = φ(τ − t), t ≥ 0, almost all τ ∈ R.

It is quite easy to see that X
� is closed and invariant for the dual semigroup,

that is, x ∈ X
� implies T ∗

t x ∈ X
� for all t ≥ 0. It follows that (cf. Exercise

1.1.19) {T ∗
t , t ≥ 0} as restricted to X

� is a strongly continuous semigroup in
the Banach space X

�. This semigroup is termed the sun-dual of {Tt , t ≥ 0}
and denoted

{
T �

t , t ≥ 0
}
. Thus, by definition,

T �
t = (T ∗

t )|X�, t ≥ 0.
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The remainder of this section is devoted to characterizing X
� and the

generator of the sun-dual semigroup. As we shall see, a natural path to such
a characterization leads through the notion of a dual of the generator of the
original semigroup.

1.5.4 The dual of a densely defined operator

Let X be a Banach space and A : X ⊃ D(A) → X be a densely defined
operator (think of A as of a generator). We define D(A∗) as the set of f ∈ X

∗
such that

| f (Ax)| ≤ C‖x‖, x ∈ D(A) (1.27)

for some constant C = C( f ). Then, D(A) being dense in X, the map

x �→ f (Ax), x ∈ D(A)
may be uniquely extended to a continuous functional on X. In other words,
(1.27) is equivalent to assuming that there is a (uniquely determined) functional
g ∈ X

∗ such that

g(x) = f (Ax), x ∈ D(A).
Thus, for f ∈ D(A∗) it makes sense to agree that A∗ f = g.

The so-defined operator A∗, with domain D(A∗) is termed the dual of A.
It is clear that in the case where A is a bounded linear operator, the definition
just given is consistent with the one introduced in 1.5.1.

1.5.5 Lemma

Suppose A is a densely defined operator and λ ∈ ρ(A). Then λ ∈ ρ(A∗) and(
λ− A∗)−1 = R∗

λ

where Rλ is the usual shorthand for (λ− A)−1.

Proof To clarify, we assume that there is Rλ ∈ L(X) (where X is the space
where A is defined) such that

(a) for any x ∈ X, Rλx belongs to D(A) and λRλx − ARλx = x ,
(b) for x ∈ D(A), λRλx − RλAx = x,

and claim that R∗
λ plays a similar role for A∗.

The calculation

R∗
λ[λ f − A∗ f ](x) = (λ f − A∗ f )(Rλx) = f (λRλx)− f (ARλx) = f (x),
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which makes sense for f ∈ D(A∗) and x ∈ X, where we used assumption (a),
shows that the map f �→ λ f − A∗ f is injective, and that R∗

λ is the left inverse
for this map. Also, for any f ∈ X

∗ we have

R∗
λ f (Ax) = f (RλAx) = f (λRλx)− f (x), x ∈ D(A).

This reveals that x �→ R∗
λ f (Ax) coincides on D(A) with the bounded linear

functional λR∗
λ f − f. It follows that R∗

λ f is a member of D(A∗) and A∗ R∗
λ f =

λR∗
λ f − f. Thus, R∗

λ is seen to be a right inverse for λ− A∗. Since R∗
λ is both

the left and right inverse for λ− A∗, we are done.

When combined with 1.5.1, the lemma presented above says that if A is a
generator then A∗ is a so-called Hille–Yosida operator; by definition, a Hille–
Yosida operator is short of being a generator only because it is perhaps not
densely defined. However, it can be proved (see, e.g., [14], Section 8.2.3) that
the part of A∗ in clD(A∗), which we denote A∗

p, generates a semigroup in
clD(A∗). (To recall, the domain of A∗

p is the set of f ∈ D(A∗) such that A∗ f
belongs to clD(A∗), and A∗

p f = A∗ f for f in this domain.) As we shall see
next, clD(A∗) coincides with X

� and the semigroup generated by A∗
p is the

sun-dual of {Tt , t ≥ 0}.

1.5.6 Theorem

We have

X
� = cl D(A∗),

where cl denotes closure in the norm of X
∗. Moreover, for the semigroup

{et A∗
p , t ≥ 0} in X

� generated by A∗
p we have

et A∗
p = T �

t , t ≥ 0.

Proof For f ∈ clD(A∗), the function t �→ et A∗
p f is continuous and∫ ∞

0
e−λt et A∗

p f dt =
(
λ− A∗

p

)−1
f = (λ− A∗)−1

f = R∗
λ f, λ > 0.

In particular, for any x ∈ X,∫ ∞

0
e−λt et A∗

p f (x) dt =
(∫ ∞

0
e−λt et A∗

p f dt

)
(x) = f (Rλx).

On the other hand, for any x ∈ X, t �→ (T ∗
t f )(x) = f (Tt x) is also continuous,

and ∫ ∞

0
e−λt (T ∗

t f )(x) dt =
∫ ∞

0
e−λt f (Tt x) dt = f

(∫ ∞

0
e−λt Tt x dt

)
= f (Rλx).
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Since the Laplace transform, restricted to continuous functions, is injective

et A∗
p f (x) = T ∗

t f (x)

for all t ≥ 0 and x ∈ X, that is,

et A∗
p f = T ∗

t f, t ≥ 0.

In particular, {et A∗
p , t ≥ 0} being a strongly continuous semigroup, t �→ T ∗

t f
is continuous. This means that f ∈ X

�. We have thus proved that

clD(A∗) ⊂ X
�

and that on clD(A∗), et A∗
p coincides with T ∗

t .
It remains to show that X

� ⊂ clD(A∗). Let, for the sake of this argument,
B be the generator of the sun-dual semigroup. Clearly, D(B) ⊂ X

� is dense in
X

� and so it suffices to show that D(B) ⊂ D(A∗). To this end, let f ∈ D(B),
so that the limit limt→0+ t−1(T ∗

t f − f ) exists in the norm of X
∗. In particular,

there is a C = C( f ) such that

‖t−1(T ∗
t f − f )‖ ≤ C( f ), t ∈ (0, 1].

Therefore, for x ∈ D(A),
| f (Ax)| = | lim

t→0+ t−1 f (Tt x − x)| = | lim
t→0+ t−1(T ∗

t f − f )(x)| ≤ C( f )‖x‖.

This shows that f ∈ D(A∗), and completes the proof.

1.5.7 Example

Consider the semigroup
{
Tt = et A, t ≥ 0

}
of Example 1.2.10; we seek a

characterization of X
� and A∗

p (see the neighborhood of (1.29)).
By the theorem of Steinhaus (see, e.g., [14], Section 5.2.16), members of

X
∗ have a dual status: they may be treated as functionals on X and as (classes

of) essentially bounded measurable functions on [0, 1]. Note that, because of
the Dirac measure featuring in the definition of μ, a class in X

∗ is composed
of essentially bounded functions on [0, 1] that differ from each other on sets of
Lebesgue measure zero, but at τ = 1 have the same finite value.

By 1.5.6, X
� is the closure of D(A∗) (in X

∗) and, by 1.5.5, D(A∗) is the
range of R∗

λ = [(λ− A)−1]∗. Thus we will take a closer look at this range.
Recall from 1.2.10 (see (1.15) and (1.16) in particular) that, for y ∈ X,

Rλy(τ ) =
⎧⎨⎩a y(1)+Cλ(y)

λ+a(1−e−λ)e
−λτ + e−λτ ∫ τ

0 eλσ y(σ ) dσ, τ ∈ [0, 1),
y(1)+Cλ(y)
λ+a(1−e−λ) , τ = 1,
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where Cλ(y) = e−λ ∫ 1
0 eλσ y(σ ) dσ. Therefore, for any (representative of a)

g ∈ X
∗,

g(Rλy) =
∫

[0,1]
g Rλy dμ =

∫ 1

0
g(τ )Rλy(τ ) dτ + g(1)Rλy(1)

= a
y(1)+ Cλ(y)

λ+ a(1 − e−λ)
Dλ(g)+

∫ 1

0
e−λτ

∫ τ

0
eλσ y(σ ) dσg(τ ) dτ

+ y(1)+ Cλ(y)

λ+ a(1 − e−λ)
g(1),

where Dλ : X
∗ → R is given by

Dλ(g) =
∫ 1

0
e−λτ g(τ ) dτ, g ∈ X

∗.

Rearranging and changing the order of integration in the second term yields

g(Rλy) = y(1)
aDλ(g)+ g(1)

λ+ a(1 − e−λ)
+ Cλ(y)

aDλ(g)+ g(1)

λ+ a(1 − e−λ)

+
∫ 1

0
eλσ
∫ 1

σ

e−λτ g(τ ) dτ y(σ ) dσ. (1.28)

By definition of Cλ(y), the last two terms add up to
∫ 1

0 f (σ )y(σ ) dσ , where

f (σ ) = aDλ(g)+ g(1)

λ+ a(1 − e−λ)
eλ(σ−1)+eλσ

∫ 1

σ

e−λτ g(τ ) dτ, σ ∈ [0, 1]. (1.29)

The latter function is manifestly continuous on the entire interval [0, 1] and
f (1) = a Dλ(g)+g(1)

λ+a(1−e−λ) . Hence, (1.28) takes the form

g(Rλy) =
∫

[0,1]
f y dμ = f (y).

We see that, for any g, the class of R∗
λg contains a function that is continuous on

[0, 1], namely, f given by (1.29). Since the essential supremum of | f | = |R∗
λg|

coincides with the supremum norm of f , the range of R∗
λ may be identified

with a subspace of C[0, 1].
With this identification in mind, we claim that X

� = C[0, 1],
D(A∗

p) = { f ∈ C1[0, 1]; f ′(1) = a( f (0)− f (1))} (1.30)

and

A∗
p f = f ′.
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For the sake of this argument, let D be the right-hand side of equality (1.30).
If f ∈ D, then λ f − f ′ belongs to C[0, 1] ⊂ X

∗. Integrating by parts, we see
that∫ 1

σ

e−λτ (λ f (τ )− f ′(τ )
)

dτ = e−λσ f (σ )− e−λ f (1), σ ∈ [0, 1],

and in particular Dλ(λ f − f ′) = f (0) − e−λ f (1). Thus, looking at the
definition of D, we conclude that

aDλ(λ f − f ′)+ λ f (1)− f ′(1)
λ+ a(1 − e−λ)

= f (1)

and that the right-hand side of (1.29) with g replaced by λ f − f ′ returns f (σ ).
In other words, any f ∈ D is of the form (1.29) for g = λ f − f ′. It follows
that

D ⊂ D(A∗)

and since D is dense in C[0, 1], we obtain X
� = cl D(A∗) = C[0, 1], the first

part of our claim.

Since
(
λ− A∗

p

)−1
is (λ− A∗)−1 restricted to X

�, any member f of D(A∗
p)

is of the form (1.29) with g ∈ C[0, 1]. Such an f manifestly belongs to
C1[0, 1] and a bit of algebra, based on (1.29), shows that f ′(1) = a( f (0) −
f (1)). Thus

D(A∗
p) ⊂ D.

We have also seen that for f ∈ D, the right-hand side of (1.29) returns f (σ )
provided we take g = λ f − f ′. Since this g belongs to C[0, 1] = X

�,
this reveals that such an f belongs to D(A∗

p), implying D ⊂ D(A∗
p), and

completing the proof of (1.30).
Finally, differentiating (1.29) we see that f ′ = λ f − g or

(R∗
λg)′ = λR∗

λg − g, g ∈ C[0, 1].

On the other hand, since for such g, R∗
λg =

(
λ− A∗

p

)−1
, we have also

A∗
p R∗

λg = λR∗
λg − g, g ∈ C[0, 1].

Thus A∗
p R∗

λg = (R∗
λg)′ for all g ∈ C[0, 1], and this is the same as saying that

A∗
p f = f ′ for all f ∈ D(A∗

p).



34 A Guided Tour through the Land of Operator Semigroups

1.5.8 Exercise

Let X be a Banach space and let x0 ∈ X and f0 ∈ X
∗ be fixed. Find the dual

operator for A ∈ L(X) given by Ax = f0(x)x0.

1.5.9 Exercise

Let A be a densely defined, not necessarily closed linear operator. Show that
A∗ is closed.

1.6 Appendix: On Convergence in l1

A lion’s share of sequences of semigroups considered in this book will be com-
posed of Markov operators in l1 := l1(I), where I is a countable set. Hence,
in this section we gather some facts concerning convergence in l1. First we
recall Scheffé’s Theorem, which we will find useful in many places in this
book.

1.6.1 Convergence in l1 and Scheffé’s Theorem

We start by noting that for a sequence (xn)n≥1 of elements of l1, where, say,
xn = (ξn,i

)
i∈I

, to converge to an (ξi )i∈I it is necessary for numerical sequences(
ξn,i
)

n≥1 , i ∈ I to converge to ξi . This is easy to see since |ξn,i − ξi | ≤
‖xn − x‖. However, if I is not finite, the converse is not true. For example,
taking I = N and defining

en = (δn,i
)

i≥1 , (1.31)

where δn,i equals 1 if n = i and zero otherwise (δi,n is the Kronecker delta),
we see that limn→∞ δn,i = 0 for all i ∈ N and yet (en)n≥1 does not converge to
the zero vector since for all n ≥ 1, ‖en −0‖ = ‖en‖ = 1. Hence, convergence
in norm involves more than coordinate convergence.

A noteworthy exception is the case where all elements of the sequence
(xn)n≥1 and the limit x are distributions; an x ∈ l1 is said to be a dis-
tribution if it is nonnegative and its coordinates add up to 1. (The example
presented above makes it clear that the and in the previous sentence cannot
be omitted.) Then, coordinate-wise convergence is necessary and sufficient for
convergence in norm, the statement known as Scheffé’s Theorem. To see this,
let An = {i ∈ I, ξi ≥ ξn,i }. We have
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∑
i∈I

|ξn,i − ξi | =
∑
i∈An

|ξn,i − ξi | +
∑
i �∈An

(ξn,i − ξi )

=
∑
i∈An

|ξn,i − ξi | + 1 − 1 +
∑
i∈An

(ξi − ξn,i )

= 2
∑
i∈An

|ξn,i − ξi | =
∑
i∈I

ηn,i ,

where ηn,i equals 2|ξn,i − ξi | for i ∈ An and zero otherwise. Since ηn,i ≤
2ξi for all n ≥ 1 and i ∈ I, the claim follows by the Lebesgue Dominated
Convergence Theorem.

For completeness, let us also prove the latter theorem which, by the way,
may be seen as describing another case where convergence in coordinates
implies convergence in norm: it says that if a sequence (xn)n≥1 of elements
of l1 converges to an x = (ξi )i∈I ∈ l1 in coordinates and there is a y =
(ηi )i∈I ∈ l1 such that |xn| ≤ y (i.e., |ξn,i | ≤ ηi for all i ∈ I and n ∈ N) then
(xn)n≥1 converges to x also in the norm: limn→∞ ‖xn − x‖ = 0. For, given
ε > 0 we may find a finite subset A ⊂ N such that

∑
i∈I\A |ηi | < ε

4 . Since, by
assumption, |ξi | ≤ ηi for all i ∈ I, it follows that∑

i∈I\A

|ξn,i − ξi | <
∑

i∈I\A

2ηi <
ε

2
.

On the other hand, since A is finite, the sum∑
i∈A

|ξn,i − ξi |

may be made smaller than ε
2 by taking n sufficiently large. This means that, for

such n, ‖xn − x‖ < ε, and thus completes the proof.

1.6.2 Scheffé’s Theorem (continued)

It is convenient to have at our disposal an apparently more general version of
Scheffé’s Theorem: it says that a sequence (xn)n≥1 of nonnegative elements of
l1 converges in norm to a nonnegative element x �= 0 as long as it converges in
coordinates and limn→∞ ‖xn‖ = ‖x‖. To prove this version, we note that under
these assumptions, ‖xn‖ > 0 for all sufficiently large n, and it makes sense to
define x ′

n := xn‖xn‖ and x ′ = x
‖x‖ . These newly formed vectors are distributions

and the original statement of Scheffé’s Theorem tells us that limn→∞ x ′
n = x ′.

It follows that limn→∞ xn = limn→∞ ‖xn‖x ′
n = ‖x‖x ′ = x . �
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1.6.3 l1 as a Kantorovič–Banach space

Here is another characteristic of l1 which distinguishes it from other Banach
spaces. Suppose (xn)n≥1 is a sequence of elements of l1 such that 0 ≤ xn ≤
xn+1, n ≥ 1, and ‖xn‖ ≤ M, n ≥ 1, for some M > 0. We will show that these
conditions imply existence of the limit limn→∞ xn ; this, by definition, means
that l1 is a Kantorovič–Banach space.

To this end, let xn = (
ξn,i
)

i∈I
. By assumption, each of the numerical

sequences
(
ξn,i
)

n≥1 , i ∈ I is nonnegative, nondecreasing and bounded, and
therefore has a limit, say, ξi := limn→∞ ξn,i ≥ 0. I claim that x := (ξi )i∈I is
a member of l1. For, if

∑
i∈I
ξi = ∞, a finite subset I

′ ⊂ I may be chosen so
that
∑

i∈I′ ξi ≥ 2M. Moreover, an n0 can be chosen so that for all n ≥ n0, and
i ∈ I

′

|ξi − ξn,i | = ξi − ξn,i < Mk−1, i.e. ξn,i > ξi − Mk−1

where k is the number of elements of I
′. Then, for such n,

‖xn‖ ≥
∑
i∈I′

ξn,i > 2M − M = M,

contradicting our assumption. Once we know that x is a member of l1, how-
ever, convergence of (xn)n≥1 to x is a consequence of the Lebesgue Dominated
Convergence Theorem.

The space l1 is truly exceptional. On the one hand, all separable Banach
spaces are (isomorphic to) quotients of l1 (see, e.g., [20]); on the other it is
the only classical, infinite-dimensional Banach space where weak convergence
of sequences implies their strong convergence. We prove this fact, due to J.
Schur [79], in our next section.

1.6.4 Theorem of Schur: Weakly convergent sequences in l1

converge strongly

To recall, a sequence (xn)n≥1 of elements of a Banach space X is said to con-
verge to an x ∈ X weakly if for any continuous functional f on X we have
limn→∞ f (xn) = f (x). Clearly, all convergent sequences are weakly conver-
gent, but not vice versa. In l1, however, all weakly convergent sequences are
convergent.

For a proof of this surprising statement, we recall that, by the Banach–
Steinhaus Theorem (i.e., the Uniform Boundedness Principle), a weakly
convergent sequence is bounded in norm. Moreover, by linearity, it suffices
to show that if a sequence (xn)n≥1 of elements of l1 converges weakly to
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n1

n2

n3

1 k1

k1+ 1 k2

k2+ 1 k3

Figure 1.1 Choosing sequences (n j ) j≥1 and (k j ) j≥1.

0, then it converges strongly, as well. Suppose that it is not so. Then, ‖xn‖
does not converge to 0, as n → ∞. Any bounded sequence of nonnega-
tive numbers that does not converge to 0 contains a positive subsequence
converging to a positive number. Moreover, a subsequence of a weakly con-
vergent sequence converges weakly. Hence, without loss of generality, we may
assume that limn→∞ ‖xn‖ = r > 0, and that ‖xn‖ �= 0. Then the sequence
(yn)n≥1, where yn := 1

‖xn‖ xn =: (ηn,i
)

i≥1, converges weakly to zero, whereas

‖yn‖ =∑∞
i=1 |ηn,i | = 1. We will show that such a sequence may not exist.

To simplify the argument, but without loss of generality, in what follows we
assume that I = N. Since any bounded sequence (αi )i≥1 induces a bounded
linear functional on l1 (by the formula f (ξi )i≥1 =∑∞

i=1 αiξi ), by assumption
we have limn→∞

∑∞
i=1 αiηn,i = 0. In particular, for any � ≥ 1 we may take

αi = δ�,i , i ≥ 1. This shows that

lim
n→∞ ηn,� = 0, � ≥ 1. (1.32)

To complete the proof, we inductively define two sequences of integers:
(n j ) j≥1 and (k j ) j≥1 (see Figure 1.1). First we put n1 = 1 and choose k1

so large that
∑k1

i=1 |ηn1,i | ≥ 3
5 . By (1.32), having chosen n j and k j we may

choose n j+1 > n j large enough to have
∑k j

i=1 |ηn j+1,i | < 1
5 and then, since

‖yn‖ = 1 for all n ≥ 1, we may choose a k j+1 > k j + 1 so that

k j+1∑
i=k j +1

|ηn j+1,i | >
3

5
. (1.33)
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Now, define

αi = sgn ηn j ,i for i ∈ A j := {k j−1 + 1, . . . , k j }
where k0 := 0, and let f be a continuous linear functional on l1 related to this
bounded sequence. Then, by (1.33),

f (yn j ) =
∑
i∈A j

αiηn j ,i +
∑
i �∈A j

αiηn j ,i =
∑
i∈A j

|ηn j ,i | +
∑
n �∈Ai

αiηn j ,i

≥
∑
i∈A j

|ηn j ,i | −
∑
n �∈Ai

|ηn j ,i | = 2
∑
i∈A j

|ηn j ,i | − 1 >
1

5
,

for all j , contradicting the fact that lim j→∞ f (yn j ) = 0. This contradiction
completes the proof.

An interesting consequence of this theorem will be discussed in 5.1.4.

1.7 Notes

The theory of semigroups of operators is described in many monographs,
including [3,14,24,25,32,34,36–39,47,51,53,55,58,66,67,73,83,90,91,95],
and each of these books covers slightly different aspects of the theory. Conver-
gence and approximation theory for semigroups can be found in my own [16].
J. van Neerven’s monograph [87] is a treasury of results on sun-dual semi-
groups (see also his subsequent papers); our Section 1.5 contains only basic
facts needed to understand later chapters. A different proof of Schur’s Theo-
rem may be found in [32], p. 295 and [95], p. 122; see also, for example, [19]
and [20].

Concerning usefulness of semigroups in the theory of stochastic processes
alluded to at the beginning of this chapter: Over 50 years ago, D.G. Kendall has
conjectured, with certain probabilistic applications in mind, that all Markov
semigroups in l1 that can be extended to groups are generated by bounded oper-
ators. Subsequently, after a joint effort and partial positive results of several
mathematicians, a possible way to a counterexample to this conjecture was out-
lined and discussed in a couple of influential papers by J.F.C. Kingman. It was
only recently that J. Glück, using semigroup-theoretic techniques, has proved
an elegant theorem showing that this way is a dead end (see J. Glück’s ‘On
the decoupled Markov group conjecture’ arXiv:2004.05995 [math.FA] and the
references given there).
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Generators versus Intensity Matrices

In this chapter, we take up the main subject of the book: illustrating the
fact that generators describe Markov chains in a more complete way than
intensity matrices do. After defining the latter in Section 2.2 we show in
Section 2.3 that in the uniform case the generators may be identified with
intensity matrices. Then, in Section 2.4 we discuss the general case and the
Hille–Yosida Theorem for Markov semigroups in l1, thus characterizing gen-
erators of Markov chains. This theorem is exemplified with two examples due
to Kolmogorov, Kendall and Reuter; besides well illustrating the main idea
of the book, these examples are really beautiful applications of the Hille–
Yosida Theorem. Moreover, we introduce the generator of a certain birth and
death process which will later, in the next chapter, be of particular interest.
Section 2.5 is devoted to infinitesimal, local, description of Markov chains,
providing an intuitive meaning to the elements of intensity matrices. Infor-
mation gathered in this section allows then a more detailed description of
the Kolmogorov–Kendall–Reuter examples, presented in Sections 2.6 and 2.7.
The latter sections discuss the vital information on the Kolmogorov–Kendall–
Reuter processes that is contained in their generators but is missing in the
corresponding intensity matrices. The chapter is concluded with Section 2.8
where Blackwell’s example of a Markov chain is presented in which all states
are instantaneous.

2.1 Transition Matrices and Markov Operators in l1

Intuitively, a Markov chain X (t), t ≥ 0 where X (t) are random variables
with values in N, or, more generally, in a finite or countable state-space I,
is a stochastic process ‘without memory.’ More precisely, for each t ≥ 0 the

39
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information on values of X (s), s ≤ t , that is, ‘the past,’ influences the future,
that is, values of X (s), s ≥ t merely through the present, that is, through X (t).

Such processes are conveniently described by transition probabilities

pi, j (t, s) = P(X (t) = j |X (s) = i),

where the right-hand side is the conditional probability that at time t the pro-
cess is in the state j given that at time s ≤ t it is in i . In this book we will
deal merely with time-homogeneous Markov chains, that is, the chains with
transition probabilities that do not change in time: for any h > 0,

pi, j (t + h, s + h) = pi, j (t, s).

For such processes, it suffices to consider the transition probabilities pi, j (t, 0)
denoted simply pi, j (t), t ≥ 0. For future reference we note that∑

j∈I

pi, j (t) = 1, t ≥ 0. (2.1)

This formula simply says that the process is honest: the probability that the
process starting at an i will be somewhere in I at time t ≥ 0 is 1.

Transition probabilities are customarily gathered in transition matrices

P(t) = (pi, j (t)
)

i, j∈I
, t ≥ 0,

and an analytical treatment of Markov chains is based on the fact that transition
matrices satisfy the Chapman–Kolmogorov equation,

P(s + t) = P(s)P(t), s, t ≥ 0, (2.2)

where the right-hand side denotes the matrix product of two matrices. To prove
this all-important relation, consider s, t ≥ 0 and states i, j ∈ I. Given that
X (0) = i , the probability that X (s + t) = j is clearly pi, j (s + t). On the other
hand, X (s) attains one of the values in I and so P(X (s + t) = j |X (0) = i)
equals (see Figure 2.1)∑

k∈I

P(X (s + t) = j |X (0) = i and X (s) = k)P(X (s) = k|X (0) = i)

which, by the Markovian nature of the process, and its time-homogeneity, is∑
k∈I

P(X (s + t) = j |X (s) = k)pi,k(s) =
∑
k∈N

pi,k(s)pk, j (t).

It follows that pi, j (s + t) is the product of the i th row of the matrix P(s) and
of the j th column of the matrix P(t), thus establishing (2.2).
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time 0 time s time t+s

X(0) = i X(s+t) = j

X(s) = k

X(s) = k′′

X(s) = k′

Figure 2.1 An illustration of the Chapman–Kolmogorov equation.

For instance, if α, β ≥ 0 are such that α + β > 0, then

P(t) = 1

α + β

(
β + αe−(α+β)t α − αe−(α+β)t
β − βe−(α+β)t α + βe−(α+β)t

)
(2.3)

is a semigroup of transition matrices (here, #I = 2). The matrices of Section
1.1.6 also form such a semigroup (here, #I = 3). In yet another example, which
is of interest in itself, usually referred to as Speakman’s example (see [82]
or [45], [p. 271]), there are two transition semigroups: The first of them is

P(t) =
⎛⎝p1(t) p2(t) p3(t)

p3(t) p1(t) p2(t)
p2(t) p3(t) p1(t)

⎞⎠
where

p1(t) = 1

3
+ 2

3
e− 3

2 t cos

(√
3

2
t

)
,

p2(t) = 1

3
+ 2

3
e− 3

2 t cos

(√
3

2
t − 2

3
π

)
,

p3(t) = 1

3
+ 2

3
e− 3

2 t cos

(√
3

2
t + 2

3
π

)
.
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The second is

P�(t) =
⎛⎝p�

1 (t) p�
2 (t) p�

2 (t)
p�

2 (t) p�
1 (t) p�

2 (t)
p�

2 (t) p�
2 (t) p�

1 (t)

⎞⎠ ,
where p�

1 (t) = 1
3 + 2

3 e− 3
2 t and p�

2 (t) = 1
3 − 1

3 e− 3
2 t .

The main interest in this example comes from the fact that, although these
two semigroups are clearly different, we have P(nc) = P�(nc) for all natural
n and c = 4π√

3
. Indeed, a bit of elementary trigonometry shows that p1(nc) =

p�
1 (nc) and p2(nc) = p3(nc) = p�

2 (nc).

2.1.1 Transition matrices as Markov operators in l1

Suppose that at time t = 0, our Markov chain {X (t), t ≥ 0} is at state i ∈ I

with probability pi . The total probability formula shows then that

P(X (t) = j) =
∑
i∈I

pi pi, j (t).

In matrix notation, this may be expressed by saying that the distribution at time
t is the matrix product of the distribution at time 0, treated as a row-vector
x = (pi )i∈I, and of the transition matrix P(t):

y = x · P(t). (2.4)

(Here, y is a row-vector, as well.) Yet in other words, the j th coordinate in y
is the scalar product of x and of the j th column in P(t).

Let l1 be the space of absolutely summable sequences x = (ξi )i∈I, that is,
such (ξi )i∈I that

∑
i∈I

|ξi | < ∞. It is useful to think of formula (2.4) as of a
map assigning to any x ∈ l1, not necessarily being a distribution, the product of
x and P(t). Clearly, such a multiplication is possible here even if I is infinite,
because x is absolutely summable, and all pi, j (t) ≥ 0 do not exceed 1. Also,
because of (2.1), for x = (ξi )i∈I ∈ l1,

‖y‖ =
∑
j∈I

∣∣∣∣∣∑
i∈I

ξi pi, j (t)

∣∣∣∣∣ ≤∑
i∈I

|ξi |
∑
j∈I

pi, j (t) =
∑
i∈N

|ξi | = ‖x‖, (2.5)

so that y indeed belongs to l1.

The map described above will in what follows be denoted by P(t) (and thus
will not be distinguished from the transition matrix) and, to comply with the
customs regarding linear operators, we will write P(t)x instead of x · P(t):

y = P(t)x . (2.6)
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This should not lead to misunderstandings: whereas (2.4) stresses the fact that
y is obtained as a result of multiplication of a vector and a matrix, in writing
(2.6) we stress that the manipulations we are performing are linear.

Equation (2.4) makes it clear that P(t) maps nonnegative x into non-
negative y. Moreover, for such x , inequalities in (2.5) become equalities. This
shows that P(t) is a Markov operator.

2.1.2 Strong continuity

As seen in the previous section, transition matrices of a Markov chain may
be identified with a family {P(t), t ≥ 0} of Markov operators in l1. Since
pi,i (0) = 1 and pi, j (0) = 0 for j �= i , we have

P(0) = I, (2.7)

and the Chapman–Kolmogorov equation says that these operators form a
semigroup.

The so-obtained semigroup, however, need not a priori be strongly contin-
uous. We claim that a semigroup of Markov operators P(t) = (pi, j (t))i, j∈I,

t ≥ 0 is strongly continuous iff

lim
t→0+ pi,i (t) = 1, i ∈ I. (2.8)

This condition is necessary, since strong continuity implies in particular that
limt→0 P(t)ei = ei , where

ei = (δi, j
)

j∈I
, (2.9)

and the i th coordinate of P(t)ei is pi,i (t). To prove the converse, we take an
arbitrary x = (ξi )i≥1 ∈ l1 to calculate

‖P(t)x − x‖ =
∑
j∈I

∣∣∣∣∣∑
i∈I

ξi pi, j (t)− ξ j

∣∣∣∣∣
≤
∑
j∈I

[1 − p j, j (t)]|ξ j | +
∑
j∈I

∑
i∈I,i �= j

|ξi |pi, j (t)

=
∑
j∈I

[1 − p j, j (t)]|ξ j | +
∑
i∈I

|ξi |
∑

j∈I, j �=i

pi, j (t)

= 2
∑
j∈I

[1 − p j, j (t)]|ξ j |, (2.10)

with the last equality following by
∑

j∈I, j �=i pi, j (t) = 1 − pi,i (t). Since (2.8)
implies limt→0

∑
j∈I

[1 − p j, j (t)]|ξ j | = 0 by the Dominated Convergence
Theorem, we are done.
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In the remainder of this chapter we assume that (2.8) is satisfied. In
other words, all semigroups in this chapter are strongly continuous. Note
that this condition implies continuity of all t �→ pi, j (t). In particular,
limt→0+ pi, j (t) = 0, i �= j.

2.1.3 Exercise

If the second condition in (2.1) is replaced by∑
j∈I

pi, j (t) ≤ 1, t ≥ 0,

the resulting semigroup is not Markov but sub-Markov in that ‖P(t)x‖ ≤ ‖x‖
for all positive x . Check the details of the proof in the previous subsection to
see that also in this case (2.8) is necessary and sufficient for the semigroup to
be strongly continuous.

2.2 The Matrix of Intensities

2.2.1 Infinitesimal description

It is probably clear to the reader that explicit formulae for transition matrices
are usually not available, especially for more complicated Markov chains. Nei-
ther are they very informative, even if available. Let us look, for example, at
the upper left corner of transition matrix (2.3). It tells us that the probability
that a chain starting at a certain state (call it 1 to distinguish it from the other
state, say, 2) will after time t ≥ 0 be back there is

β + αe−(α+β)t

α + β
.

Well, should I say ‘back there’ or ‘still there’? In fact, it is both. The process
might have stayed at 1 all the time, but could have also jumped back and forth
between 1 and 2 to land at state 1 at time t ; the probability given above com-
bines all such events together. In particular, without further analysis we cannot
tell from this exact formula how long the process stays at 1 before jumping to
2. (As we shall see later, the probability that the process is ‘still there’ is e−αt .)

Such insight may be gained from infinitesimal description. We are already
familiar with one description of this type – the one furnished by the notion of
the generator of a semigroup. Remarkably, Markov chains rarely are described
by their generators; more often, Q-matrices, called also Kolmogorov matrices
or intensity matrices, are used for this purpose. As we shall see, these two
notions are closely related but obviously not identical. In what follows we will
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have much to say on the interrelations between infinitesimal generators and
Q-matrices. Below, step by step we prove existence of Q-matrices for Markov
chains.

2.2.2 A theorem on subadditive functions

Let φ : [0,∞) → [0,∞) be subadditive, that is, let φ(s + t) ≤ φ(s) +
φ(t), s, t ≥ 0, and assume that limt→0+ φ(t) = 0. Then,

lim
t→0+

φ(t)

t
(2.11)

exists (but may be infinite) and equals supt>0
φ(t)

t .

Proof Let tn > 0 be such that limn→∞ tn = 0 and lim inft→0+ φ(t)
t =

limn→∞ φ(tn)
tn
. Next, fix s > 0 and for each n choose a natural number kn

and an hn ∈ [0, tn) so that s = kntn + hn . Since φ is subadditive,

φ(s)

s
≤ knφ(tn)

s
+ φ(hn)

s
≤ φ(tn)

tn
+ φ(hn)

s
.

Because of 0 ≤ hn < tn , we have limn→∞ φ(hn) = 0. Thus, letting
n → ∞, we see that φ(s)

s ≤ lim inft→0+ φ(t)
t . It follows that supt>0

φ(t)
t ≤

lim inft→0+ φ(t)
t . Since by definition lim supt→0+

φ(t)
t ≤ supt>0

φ(t)
t , this

proves that the limit (2.11) exists and equals supt>0
φ(t)

t .

2.2.3 Existence of qi ’s

Let {P(t), t ≥ 0} be a strongly continuous semigroup of sub-Markov operators
in l1. Then, for each i ∈ I, the limit

qi := lim
t→0+

1 − pi,i (t)

t

exists, is nonnegative but may be infinite.

Proof Since limx→1
x−1
ln x = 1 and, by assumption, limt→0+ pi,i (t) = 1,

it suffices to show existence of the limit limt→0+ − ln pi,i (t)
t ; then both limits

will be the same. On the other hand, pi,i (s + t) = ∑
j∈I

pi, j (s)p j,i (t) ≥
pi,i (s)pi,i (t), proving that φ(t) = − ln pi,i (t) is subadditive: φ(s + t) ≤
φ(s) + φ(t). Since limt→0+ φ(t) = 0 and φ(t) ≥ 0, assumptions of 2.2.2
are satisfied, and so we see that

qi := lim
t→0+

1 − pi,i (t)

t
= lim

t→0+
− ln pi,i (t)

t
= sup

t>0

− ln pi,i (t)

t
.
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2.2.4 Definition

qi is the intensity of jump from i . If qi < ∞, the state i ∈ I is said to be stable.
Otherwise, it is called instantaneous.

2.2.5 Notation

It will become useful to define:

qi,i = −qi , i ∈ I.

2.2.6 Corollary

Let i be a stable state. Then pi,i (t) ≥ e−qi t , t ≥ 0. For, the last line of the
proof presented in Section 2.2.3 reveals that

− ln pi,i (t) ≤ qi t, for all t > 0.

This is equivalent to our statement. (The case t = 0 is trivial.)

2.2.7 Existence of qi, j ’s

Let i �= j . The limit

qi, j := lim
t→0+

pi, j (t)

t
≥ 0

exists and is finite; qi, j is the intensity of jump from i to j .

Proof Let qi, j := lim supt→0+ t−1 pi, j (t), and let tn > 0 be such that
limn→∞ tn = 0 and limn→∞ t−1

n pi, j (tn) = qi, j . (Clearly, qi, j ≥ 0 but we
do not exclude the possibility qi, j = ∞ yet.)

Let t > 0 and an integer k be fixed, and let X0, X1, . . . , Xk be a discrete-
parameter, finite Markov chain with initial state i and transition matrix P =
P(t), that is, suppose that for each states i1, . . . , ik ∈ I,

P(X0 = i, X1 = i1, . . . , Xk = ik) = pi,i1(t)pi2,i3(t) · · · pik−1,ik (t).

We define τ = τ(ω) as the smallest integer α ∈ {1, . . . , k} such that Xα = j ;
if no such α exists, we agree that τ = k + 1. We claim that

pi, j (kt) ≥
k−1∑
�=1

P(X� = i, τ > �)pi, j (t)p j, j ((k − �− 1)t) . (2.12)

Indeed, the �th term on the right-hand side is the probability that a path starting
at i is at i again at � ≥ 1, visits j for the first time at time � + 1, and then
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(possibly leaves and) returns to j after the final k − �− 1 steps. Clearly, such
path leads from i to j , but not all paths leading from i to j have this form.
Moreover, the probabilities corresponding to different � in the sum come from
pairwise disjoint events: hence the claim.

On the other hand, for each � ∈ {1, . . . , k − 1},

pi,i (�t) = P(X� = i, τ > �)+
�−1∑
m=1

P(τ = m)p j,i ((�− m)t) .

Indeed, each path starting and ending at i after � steps, either never goes
through j , or there is the first time it visits j and then the path leads from
j to i in the remaining time. Since

∑�−1
m=1 P(τ = m) = 1 − P(τ ≥ �) ≤ 1, this

relation implies

P(X� = i, τ > �) ≥ pi,i (�t)− max
m=1,...,�−1

p j,i (mt). (2.13)

Armed with (2.12) and (2.13), we can complete the proof: Given ε ∈ (0, 1),
we find h = h(ε) such that

p j,i (s) <
ε

2
, pi,i (s) > 1 − ε

2
and p j, j (s) > 1 − ε,

provided s ∈ (0, h). Fix such s’s. Then kn’s defined as integral parts of st−1
n are

integers such that limn→∞ kntn = s. Thus, kntn < h provided n is sufficiently
large, and each of these kn’s may play the role of k in the analysis leading to
(2.12) and (2.13). Therefore, since m and � in (2.13) satisfy m < � < kn , using
this relation with t replaced by tn , we obtain

P(X� = i, τ > �) ≥ pi,i (�tn)− ε

2
> 1 − ε.

Also, p j, j ((kn − 1 − �)tn) > 1 − ε, for each � ∈ {1, . . . , kn − 1}. Inequality
(2.12) now shows that

pi, j (kntn) ≥ (1 − ε)2(kn − 1)pi, j (tn).

It follows that
pi, j (s)

s
= lim

n→∞
pi, j (kntn)

kntn
≥ (1 − ε)2 lim

n→∞
kn − 1

kn

pi, j (tn)

tn
= (1 − ε)2qi, j .

As a first consequence of this inequality, qi, j < ∞. Furthermore, since s ∈
(0, h) has been chosen arbitrarily

lim inf
s→0+

pi, j (s)

s
≥ (1 − ε)2qi, j ,

and then lim inft→0+
pi, j (t)

t ≥ lim supt→0+
pi, j (t)

t , ε ∈ (0, 1) being arbitrary

as well. Hence, limt→0+
pi, j (t)

t exists and is finite.
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2.2.8 Definition

A matrix (qi, j )i, j∈I is termed a Kolmogorov matrix (or a Q-matrix) if

●
∑

j∈I
qi, j = 0 for all i ∈ I,

● qi, j ≥ 0, i �= j .

It often happens that the first condition here is replaced by a weaker one:∑
j∈I

qi, j ≤ 0. It will be convenient to refer to such a matrix as an intensity
matrix (although in the literature, the terms Kolmogorov matrix, Q-matrix,
and intensity matrix are often used interchangeably).

2.2.9 Corollary

If all states of a sub-Markov transition matrix are stable, then (qi, j )i, j∈I defined
in Sections 2.2.3, 2.2.5, and 2.2.7 is an intensity matrix.

Proof Since t−1∑
j �=i pi, j (t) ≤ t−1(1 − pi,i (t)), Fatou’s lemma implies∑

j �=i qi, j ≤ qi .

Hence, to any semigroup of Markov or sub-Markov operators one can assign
an intensity matrix: the qi appearing in it (with the minus sign) as a diag-
onal element is the infinitesimal intensity with which the probability mass
escapes from a state i to other states, whereas the off-diagonal element qi, j

is the infinitesimal intensity with which the probability mass escapes from the
state i to the state j . In Section 2.5 we will be able to interpret the elements of
(qi, j )i, j∈I in terms of times the Markov chain involved spends at a given state
and probabilities of jumps to other states after the chain leaves this state.

The reader should note that our analysis in no way proves that different semi-
groups must have different intensity matrices. In fact, some intensity matrices,
and even Kolmogorov matrices, correspond to many different semigroups. Of
course, this is not the case with the generator: there is a one-to-one correspon-
dence between generators and semigroups. Our main question in this chapter
becomes thus even more clear: how are the generator and the intensity matrix
related? In the next section we treat the case where these two objects may be
identified.

2.2.10 Exercise

Probabilistically, why

β

α + β
+ α

α + β
e−(α+β)t ≥ e−αt
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for all t ≥ 0 and nonnegative α, β such that α + β > 0? Give a calculus proof
of this relation.

2.3 The Uniform Case

2.3.1 A criterion for continuity in operator norm

The following are equivalent.

(i) The generator of a strongly continuous semigroup of sub-Markov opera-
tors in l1 is bounded.

(ii) All states i ∈ I are stable, and

sup
i∈I

qi < ∞. (2.14)

(iii) The limit (2.8) is uniform in i ∈ I.

Proof
(i) =⇒ (ii) If P(t) = et A for a bounded operator A, then∥∥∥t−1 (P(t)− Il1

)∥∥∥ ≤ t−1
(

et‖A‖ − 1
)

−→
t→0

‖A‖.

Hence, there exists a constant C > 0 such that∥∥∥t−1 (P(t)x − x)
∥∥∥ ≤ C‖x‖, x ∈ l1, t ∈ (0, 1].

Taking ei defined in (2.9), and noting that the i th coordinate of P(t)ei − ei is
pi,i (t)− 1 we conclude that

t−1 (1 − pi,i (t)
) ≤ t−1‖P(t)ei − ei‖ ≤ C, t ∈ (0, 1], i ∈ I.

This implies (ii).
(ii) =⇒ (iii) By Corollary 2.2.6, 1 − pi,i (t) ≤ 1 − e−qi t ≤ 1 − e−qt , where

q = supi∈I qi .
(iii) =⇒ (i) By (2.10),

‖P(t)x − x‖ ≤ 2
∑
j∈I

[1 − p j, j (t)]|ξ j | ≤ 2 sup
i∈I

(1 − pi,i (t))
∑
j∈I

|ξ j |

= 2 sup
i∈I

(1 − pi,i (t)) ‖x‖, x = (ξi )i∈I ∈ l1.

Hence, ‖P(t)− Il1‖ ≤ 2 supi∈I(1− pi,i (t)), implying limt→0+ ‖P(t)− Il1‖ =
0 and thus completing the proof (see Section 1.1.11).
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2.3.2 Bounded linear operators in l1 as matrices

Each bounded linear operator in l1 may be identified with a matrix (ai, j )i, j∈I

such that supi∈I

∑
j∈I

|ai, j | < ∞. In this identification,

‖A‖ = sup
i∈I

∑
j∈I

|ai, j |. (2.15)

To see this, let A be a bounded linear operator in l1 and let(
ai, j
)

j∈I
:= Aei , i ∈ I

where ei is defined in (2.9). For the matrix
(
ai, j
)

i, j∈I
we have then

A(ξi )i∈I = A
∑
i∈I

ξi ei =
∑
i∈I

ξi Aei =
∑
i∈I

ξi
(
ai, j
)

j∈I
=
(∑

i∈I

ξi ai, j

)
j∈I

(since convergence in norm of l1 implies convergence in coordinates), which
may be written as

A(ξi )i∈I = (ξi )i∈I · (ai, j
)

i, j∈I
, (2.16)

where the right-hand side is the product of a row-vector (ξi )i∈I and the matrix(
ai, j
)

i, j∈I
.

We note that, for each i ,∑
j∈I

|ai, j | =
∥∥∥(ai, j

)
j∈I

∥∥∥ = ‖Aei‖ ≤ ‖A‖ ‖ei‖ = ‖A‖, (2.17)

and, on the other hand, for any x = (ξi )i∈I ∈ l1,

‖Ax‖ =
∥∥∥∥∥∥
(∑

i∈I

ξi ai, j

)
j∈I

∥∥∥∥∥∥ =
∑
j∈I

∣∣∣∣∣∑
i∈I

ξi ai, j

∣∣∣∣∣ ≤∑
j∈I

∑
i∈I

|ξi | |ai, j |

=
∑
i∈I

|ξi |
∑
j∈I

|ai, j | ≤
⎛⎝sup

i∈I

∑
j∈I

|ai, j |
⎞⎠∑

i∈I

|ξi |

=
⎛⎝sup

i∈I

∑
j∈I

|ai, j |
⎞⎠ ‖x‖.

Combining this with (2.17) we obtain (2.15).
Conversely, if (ai, j )i, j∈I is a matrix such that supi∈I

∑
j∈I

|ai, j | is finite,
then formula (2.16) defines a bounded linear operator such that (2.15) holds.
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2.3.3 Generator is a Q-matrix

As we have seen, condition (2.14) implies norm-continuity of the semigroup
and so, see Section 1.1.11 (details may be found, e.g., in [14], Sections 7.4.19
and 7.4.20) existence of the bounded linear operator

Q = lim
t→0+

P(t)− Il1

t
; (2.18)

this operator is the generator of the semigroup. By 2.3.2, Q may be identified
with a matrix (qi, j )i, j∈I. The entries in this matrix coincide with the limits
obtained in Sections 2.2.3, 2.2.5, and 2.2.7. In fact, (2.18) shows that in this
case these limits are uniform in the following sense (see 2.3.2 again):

lim
t→0+ sup

i∈I

∑
j∈I

∣∣∣∣ pi, j (t)− δi, j

t
− qi, j

∣∣∣∣ = 0. (2.19)

Moreover, (qi, j )i, j∈I is a Kolmogorov matrix (and not just an intensity matrix):
the first condition in Definition 2.2.8 is a consequence of (2.19) combined with∑

j∈I
(pi, j (t)− δi, j ) = 0.

Hence, in the uniform case, the notions of the generator and of the Q-matrix
coincide. As we shall see later, in general the generator is quite a bit more than
the Q-matrix.

2.4 The Generator

To be able to see how the Kolmogorov matrices and generators differ, we
need to characterize the latter first. Therefore, the main goal of this section
is the Hille–Yosida Theorem for Markov semigroups in l1. The key role in our
analysis is played by the linear functional Σ ∈ (l1)∗ defined by

Σ(ξi )i∈I =
∑
i∈I

ξi .

In terms of this functional, an operator P is a Markov operator if Px is
nonnegative and ΣPx = Σx provided x is nonnegative.

2.4.1 A criterion for the resolvent to be a Markov operator

Let A be an operator in l1 (think of A as a candidate for the generator), and
suppose that for λ > 0 and nonnegative y ∈ l1 there exists a unique solution
x to the resolvent equation λx − Ax = y, and this solution is nonnegative. By
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linearity it follows that the resolvent equation has a unique solution for every
y ∈ l1. When is the map y �→ λx a Markov operator?

For nonnegative y ∈ l1,

λΣx = ΣAx + Σy.

Hence, the map in question is a Markov operator provided for all nonnegative
x ∈ D(A), ΣAx = 0. (This map is a sub-Markov operator provided that
ΣAx ≤ 0.)

Conversely, if A is the generator of a Markov semigroup {P(t), t ≥ 0}, then
for all nonnegative x ∈ D(A),

ΣAx = Σ lim
t→0+

P(t)x − x

t
= lim

t→0+
ΣP(t)x − Σx

t
= 0,

Σ being continuous. (For sub-Markov semigroups, ΣAx ≤ 0.)

2.4.2 Example

Suppose A = a(P − I ) where a > 0 and P is a Markov operator. For λ > 0
and y ∈ l1, the solution to λx − Ax = y is the solution to (λ+a)x −a Px = y,
and thus is given by the Neumann series:

x = 1

λ+ a

∞∑
n=0

(
a

λ+ a

)n

Pn y.

Since for all nonnegative x , Σa(Px − x) = 0, the map y �→ λx is a Markov
operator.

2.4.3 Theorem

(Hille–Yosida Theorem for Markov and sub-Markov semigroups in l1) An
operator A is the generator of a Markov semigroup in l1 iff

(i) A is densely defined,
(ii) for any λ > 0 and nonnegative y ∈ l1, the resolvent equation λx−Ax = y

has precisely one solution x ∈ D(A), and this solution is nonnegative,
(iii) for nonnegative x ∈ D(A), ΣAx = 0.

If (iii) is replaced by the weaker condition, that is, for nonnegative x ∈ D(A),
ΣAx ≤ 0, the semigroup is composed of sub-Markov operators.

Proof Necessity of (i) is clear. It is easy to check that if {P(t), t ≥ 0} is a
Markov semigroup then λRλ := λ (λ− A)−1 = λ

∫∞
0 e−λt P(t) dt are Markov

operators. Hence, (ii) and (iii) are consequences of 2.4.1.
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Conversely, if (ii) and (iii) hold, then, by 2.4.1, the map y �→ λx , where
x is the solution to the resolvent equation, is a Markov operator. In particular
λ − A is invertible with a bounded inverse, implying that A is closed. Hence,
A satisfies all the conditions of the Hille-Yosida Theorem and thus generates a
contraction semigroup in l1.

We need to show that this semigroup is a Markov semigroup. We already
know that λRλ is a Markov operator. Hence, so are the semigroups generated
by the Yosida approximation Aλ = λ2 Rλ − λIl1 . For,

Σe−λt etλ2 Rλx = e−λt
∞∑

n=0

tnλn

n! Σ(λRλ)
n x = e−λt

∞∑
n=0

tnλn

n! Σx = Σx,

provided x ≥ 0. Since the strong limit of Markov operators is a Markov
operator, we are done. The case of sub-Markov operators is analogous.

In what follows instead of ‘generator of a (sub-)Markov semigroup’ we will
often simply say ‘(sub-)Markov generator.’

We turn to two important examples of Kolmogorov [59], described in the
context of Markov semigroups by Kendall and Reuter [57] (see also [56] and
Section II.20 in [21]). In these two examples I is the set of natural numbers,
and so l1 is the space of absolutely summable x = (ξi )i≥1. Similarly to (2.9)
we will use the vectors

en = (δi,n
)

i≥1 , n ≥ 1. (2.20)

2.4.4 First Kolmogorov–Kendall–Reuter semigroup

Given positive numbers ai , i ≥ 2 such that

∞∑
i=2

a−1
i < ∞, (2.21)

we define the following operator, denoted A, in l1: its domain D(A) is the set
of x = (ξi )i≥1 such that

∞∑
i=2

|aiξi − ξ1| < ∞, (2.22)

and for x in D(A) we agree that Ax = (ηi )i≥1 where

η1 =
∞∑
j=2

(a jξ j − ξ1) and ηi = ξ1 − aiξi , i ≥ 2. (2.23)
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Note that (2.22) implies limi→∞ aiξi = ξ1 and thus existence of a constant
K such that |ξi | ≤ K ai

−1, i ≥ 2. It follows that D(A) ⊂ l1. Also, en ∈
D(A), n ≥ 2 and e1 �∈ D(A), but

(1, a−1
2 , a−1

3 , . . . ) ∈ D(A);
(note assumption (2.21)). It is not hard to deduce from these relations that
D(A) is dense in l1. Moreover, it is clear by definition of A that Σ (ηi )i≥1 =∑

i≥1 ηi = 0 for any x whether positive or not.
Hence, to prove that A is a Markov generator it remains to show condition

(ii) in 2.4.3. This we do in the following lemma.

2.4.5 Lemma

The resolvent equation λx−Ax = y has precisely one solution for nonnegative
y, and this solution is nonnegative.

Proof We write the resolvent equation in coordinates:

λξ1 −
∞∑
j=2

(a jξ j − ξ1) = η1, (2.24)

(λ+ ai )ξi − ξ1 = ηi , i ≥ 2. (2.25)

Here λ > 0 and y = (ηi )i≥1 ∈ l1 are given, and x = (ξi )i≥1 ∈ D(A) is
searched-for. Conditions (2.25) are met if

ξi = ξ1 + ηi

λ+ ai
, i ≥ 2, (2.26)

and so it is clear that all we need to do to solve (2.24)–(2.25) is to make
sure that ξ1 satisfies (2.24), and that so constructed (ξi )i≥1 belongs to D(A).
Plugging (2.26) into (2.24) and noting that

a jξ j − ξ1 = a jη j − λξ1

λ+ a j
, (2.27)

we find that (2.24) is satisfied iff

λC(λ)ξ1 = η1 +
∞∑
j=2

a jη j

λ+ a j
, (2.28)

where C(λ) := 1 + ∑∞
j=2(λ + a j )

−1 �= 0. Since
∑∞

j=2(λ + a j )
−1 <∑∞

j=2 a−1
j < ∞ and

∑∞
j=2

∣∣∣ a jη j
λ+a j

∣∣∣ < ∑∞
j=2

∣∣η j
∣∣ < ∞, both series featur-

ing here are absolutely convergent, and so ξ1 is well defined by (2.28). By the
same token, (2.27) shows that

∑∞
i=2 |aiξi − ξi | < ∞, that is, (ξi )i≥1 ∈ D(A).
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We have proved that the resolvent equation has precisely one solution. Since
relations (2.26) and (2.28) make it clear that ξi ’s are nonnegative provided so
are ηi ’s, this completes the proof.

2.4.6 A criterion for existence of an infinite product

For the analysis of the second Kolmogorov–Kendall–Reuter semigroup we
need the following criterion of classical analysis (see, e.g., Theorem 118 in
[80]):

The product
∏∞

n=1 an, where an ∈ (0, 1], converges (to a nonzero limit) iff
so does the series

∑∞
n=1(1 − an).

Proof Without loss of generality we assume that an �= 1 for all n ≥ 1. Let
bn > 0 be chosen so that an = e−bn . Then existence of the product

∏∞
n=1 an

(recall once again that by convention this implies
∏∞

n=1 an > 0) is equivalent
to convergence of the series

∑∞
n=1 bn . On the other hand, limn→∞ bn

1−an
=

limn→∞ ln an
an−1 = limx→1

ln x
x−1 = 1 implies that this series converges iff so does∑∞

n=1(1 − an).

2.4.7 Second Kolmogorov–Kendall–Reuter semigroup

We start with a sequence (an)n≥1 of positive numbers such that a1 = 1, a2 = 0
and

∞∑
n=3

a−1
n < ∞. (2.29)

The domain of A is defined as the set of all x = (ξi )i≥1 satisfying

∞∑
i=1

|ai+1ξi+1 − aiξi | < ∞ and lim
i→∞ aiξi = ξ1, (2.30)

and we define Ax = (ηi )i≥1 where

ηi = ai+1ξi+1 − aiξi , i ≥ 1. (2.31)

(Note that the existence of the limit in the second part of (2.30) is a conse-
quence of the first part since absolutely convergent series converge; it is the
fact that the limit is to be equal to ξ1 that is an additional assumption.) As
in the previous example we see that the domain of A is a subset of l1, and
en ∈ D(A), n ≥ 2. Also, e1 �∈ D(A) (because the second condition in (2.30)
fails) but

(1, 0, a−1
3 , a−1

4 , . . . ) ∈ D(A)
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(note assumption (2.29)). It follows that A is densely defined. Also, by
definition, ΣAx = 0 for any x ∈ D(A) (the second condition in (2.30) is
used here).

Hence, to prove that A is a Markov generator we need to check the second
condition in 2.4.3. This will be done in the following two lemmas.

2.4.8 Lemma

For a nonnegative y the resolvent equation λx − Ax = y has a nonnegative
solution.

Proof We write the resolvent equation in coordinates:

(λ+ 1)ξ1 = η1,

λξ2 − a3ξ3 = η2, (2.32)

(λ+ ai )ξi − ai+1ξi+1 = ηi , i ≥ 3.

Then, given λ > 0 and a nonnegative (ηi )i≥1 ∈ l1, we define

ξ1 = η1

λ+ 1
, (2.33)

ξi = πiη1 + 1

λ+ ai
ζi , i ≥ 2,

where

πi = πi (λ) = 1

(λ+ ai )(λ+ 1)

∞∏
j=i+1

a j

λ+ a j
, i ≥ 2,

ζi =
∞∑
j=i

⎛⎝ ∏
i<k≤ j

ak

λ+ ak

⎞⎠ η j , i ≥ 2,

and, by convention, the product over the empty set is 1. Using Criterion 2.4.6
and assumption (2.29) we see that the infinite product

∏∞
j=3

a j
λ+a j

converges
(to a nonzero limit), and thus πi , i ≥ 2 are well defined. Moreover, since∏

i<k≤ j

ak

λ+ ak
≤ 1 (2.34)

for all i ≥ 3 and j ≥ i + 1, the series that define ζi ’s converge absolutely and
so ξi ’s are well defined also.

Since ζi − ai+1
λ+ai+1

ζi+1 = ηi , i ≥ 2, we have

λξ2 − a3ξ3 = (λπ2 − a3π3)η1 + ζ2 − a3

λ+ a3
ζ3 = η2,
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and

(λ+ ai )ξi − ai+1ξi+1 = ((λ+ ai )πi − ai+1πi+1)η1 + ζi − ai+1

λ+ ai+1
ζi+1

= ηi , i ≥ 3.

This proves that (ξi )i≥1 satisfies (2.32), but we still need to make sure that
(ξi )i≥1 ∈ D(A).

In view of (2.34), limi→∞ ζi = 0. Since by assumption limi→∞ ai = ∞,

lim
i→∞ aiξi = η1 lim

i→∞ aiπi = η1

λ+ 1
= ξ1.

Thus, we are left with showing the first condition in (2.30). Moreover, because
of (2.32) and the fact that (ηi )i≥1 ∈ l1, all we need to prove is that

∑∞
i=1 ξi is

finite (ξi ’s are nonnegative since so are ηi ’s). To this end, we note first that
∞∑

i=3

πi ≤ 1

λ+ 1

∞∑
i=3

1

λ+ ai
< ∞.

Therefore
∑∞

i=3 ξi is finite iff so is
∑∞

i=3
1

λ+ai
ζi . The sum of the latter series,

however, does not exceed
∞∑

i=3

1

λ+ ai

∞∑
j=i

η j ≤ ‖ (ηi )i≥1 ‖
∞∑

i=3

1

λ+ ai
< ∞,

completing the proof.

2.4.9 Lemma

The solutions to the resolvent equation are unique.

Proof By linearity, it suffices to show that the equation λx − Ax = 0 has only
trivial solution x = 0. Hence, assume that in (2.32) all η’s are zero. It follows
that

ξ1 = 0, ξ3 = λa−1
3 ξ2, and ξi+1 = (λ+ ai )a

−1
i+1ξi , i ≥ 3.

By induction,

ξi = λξ2

ai
∏i−1

j=3
a j
λ+a j

, i ≥ 3.

If this sequence is to belong to D(A), the second requirement in (2.30) must
be met. Recalling that ξ1 = 0, we see that this holds iff

0 = λξ2∏∞
j=3

a j
λ+a j

.
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It follows that ξ2 = 0 and thus all the ξi ’s are zero.

We complete this section with a study of a generator which later will be seen
to be related to a birth and death process, and will be used to illustrate one of
the points of Kato’s Theorem (see, in particular, Example 3.2.7 and Section
3.4). We start with the description of the generator of a pure birth process
with large intensities of jumps (see also Example 3.2.2).

2.4.10 A pure birth process generator

Let (an)n≥1 be a sequence of positive numbers such that
∑∞

n=1 a−1
n < ∞.

Consider the operator A in l1 defined on the domain

D(A) =
{
(ξi )i≥1 ;

∑
i≥1

|ai−1ξi−1 − aiξi | < ∞
}

by the formula

A (ξi )i≥1 = (ai−1ξi−1 − aiξi )i≥1 ,

where, for simplicity of definition, we agree that a0ξ0 is 0. As in Section 2.4.4,
we note that for (ξi )i≥1 ∈ D(A), the limit limn→∞ anξn exists, and from this
we deduce that D(A) ⊂ l1. We claim that A is a sub-Markov generator.

Since all ei , i ≥ 1 belong to D(A), A is densely defined. Moreover, for
nonnegative (ξi )i≥1 ∈ D(A), ΣA (ξi )i≥1 = − limn→∞ anξn ≤ 0. Turning to
(remaining) point (ii) of the Hille–Yosida Theorem, we note first that for λ > 0
and (ηi )i≥1 ∈ l1, the resolvent equation for A:

λ (ξi )i≥1 − (ai−1ξi−1 − aiξi )i≥1 = (ηi )i≥1 (2.35)

may be written in coordinates as

ξ1 = 1

λ+ a1
η1,

ξi = ai−1

λ+ ai
ξi−1 + 1

λ+ ai
ηi .

Solving this recurrence we see that a solution to the resolvent equation must
be of the form

ξi = πi−1

λ+ ai

i∑
j=1

η j

π j−1
, (2.36)

where π j =∏ j
k=1

ak
λ+ak

, j ≥ 1 and π0 = 1. Since, as it is easy to check,

πi−1 − πi = λπi−1

λ+ ai
, i ≥ 1,
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we have
∑∞

i= j
πi−1
λ+ai

= λ−1(π j−1 − π∞) < λ−1π j−1, where the infinite prod-
uct π∞ := limi→∞ πi > 0 exists by 2.4.6 and assumption on (an)n≥1 . It
follows that (ξi )i≥1 is a member of l1:

∞∑
i=1

|ξi | ≤
∞∑

i=1

πi−1

λ+ ai

i∑
j=1

|η j |
π j−1

≤
∞∑
j=1

|η j |
π j−1

∞∑
i= j

πi−1

λ+ ai
≤ λ−1

∞∑
j=1

|η j |.

Equation (2.35) shows now that (ai−1ξi−1 − aiξi )i≥1 belongs to l1, too, that
is, that (ξi )i≥1 belongs to D(A) and is a true solution to the resolvent equation.
Since it is clear, by (2.36), that this solution is nonnegative as long as (ηi )i≥1

is, we are done.
So prepared we turn to the following example of a birth and death chain

generator with birth chain part described by an = 2 · 3n, n ≥ 1.

2.4.11 A birth and death process generator

Let D(A) be the set of (ξi )i≥1 such that

∞∑
i=1

3i |3ξi − ξi−1| < ∞ (2.37)

with convention ξ0 = 0, and let A (ξi )i≥1 = (ηi )i≥1 where

η1 = 9ξ2 − 6ξ1,

ηi = 3i−1(9ξi+1 − 9ξi + 2ξi−1), i ≥ 2.

We note that

ηi = 3i−1(3(3ξi+1 − ξi )− 2(3ξi − ξi−1)), i ≥ 2, (2.38)

and so convergence of the series (2.37) implies that (ηi )i≥1 belongs to l1. Also,
for (ξi )i≥1 ∈ D(A), the limit limn→∞ 3nξn exists; this implies that D(A) is
contained in l1.

Our aim is to show that A is a sub-Markov generator. It is clear that A is
densely defined because all ei ’s belong to D(A). Moreover, it can be checked
that if (ξi )i≥1 ∈ D(A) is nonnegative, then ΣA (ξi )i≥1 = − limn→∞ 3nξn ≤ 0
(see Exercise 2.4.18). Unfortunately, a frontal assault at the resolvent equation
for A may result in heavy losses of confidence in linear algebra skills, and we
resort to a less obvious way, expounded in the following sections (Sections
2.4.12–2.4.16).

More specifically, we use a combination of perturbation (cf., e.g., [47], p.
39) and approximation arguments. To this end, first of all, we split A into two
parts:
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A = B + D

where (‘b’ for ‘birth’)

B (ξi )i≥1 = 2
(

3i−1ξi−1 − 3iξi

)
i≥1

,

and (‘d’ for ‘death’) D (ξi )i≥1 = (ηi )i≥1 where

η1 = 9ξ2,

ηi = 3i+1ξi+1 − 3iξi , i ≥ 2,

for (ξi )i≥1 ∈ D(D) := D(B) := D(A). To recall, in the previous section we
have proved that B is a sub-Markov generator.

2.4.12 Solutions to the resolvent equation for Ar

We start our investigations by proving that for each r ∈ [0, 1) (but not yet for
r = 1), the resolvent equation for

Ar := B + r D

has a unique solution, as long as λ > 18r
1−r .

To this end, we note that, for x = (ξi )i≥1 ∈ D(A),

‖Dx‖ =
∞∑

i=2

|3i+1ξi+1 − 3iξi | + 9|ξ2| ≤ 1

2
‖Bx‖ + 9‖x‖. (2.39)

It follows that (recall that ‖λ (λ− B)−1 ‖ ≤ 1)

‖r D (λ− B)−1 y‖ ≤ r

2
‖B (λ− B)−1 y‖ + 9r‖ (λ− B)−1 y‖

= r

2
‖λ (λ− B)−1 y − y‖ + 9r‖ (λ− B)−1 y‖

≤ r‖y‖ + 9r

λ
‖y‖

≤ 1 + r

2
‖y‖, y ∈ l1, (2.40)

provided that λ > 18r
1−r .

Now, suppose an x ∈ D(A) solves the resolvent equation for Ar :

λx − Bx − r Dx = y (2.41)

for a given λ > 18r
1−r and a y ∈ l1. Applying (λ− B)−1 to both sides of this

equation yields

x = r (λ− B)−1 Dx + (λ− B)−1 y,
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and so, by induction, for any n ≥ 1,

x = (λ− B)−1 [r D (λ− B)−1]n Dx + (λ− B)−1
n∑

k=0

[r D (λ− B)−1]k y.

Since, by (2.40), the first term here converges to 0, as n → ∞, and∑∞
k=0 ‖r D (λ− B)−1 ‖k < ∞, we must have

x = (λ− B)−1
∞∑

k=0

[r D (λ− B)−1]k y.

On the other hand, a simple calculation shows that the x defined by the formula
above is a true solution to (2.41).

2.4.13 An approximation

The formula for the solution to the resolvent equation obtained in the previous
section does not allow to check easily that x ≥ 0 as long as y ≥ 0. Therefore,
to prove that Ar , r ∈ [0, 1) are sub-Markov generators (see Section 2.4.14) we
resort to the following approximation.

For n ≥ 3 and r ∈ [0, 1] (r = 1 included), let Bn,r with D(Bn,r ) = D(A)
be given by Bn,r (ξi )i≥1 = (ηi )i≥1 where

ηi = 2(3i−1ξi−1 − 3iξi ), 1 ≤ i ≤ n − 1,

ηn = 2 · 3n−1ξn−1 − (2 − r)3nξn,

ηi = (2 − r)(3i−1ξi−1 − 3iξi ), i ≥ n + 1.

Also, let the operator Dn,r with domain equal to the entire l1 be given by
Dn,r (ξi )i≥1 = (ηi )i≥1 where

η1 = 9rξ2,

ηi = r(3i+1ξi+1 − 3iξi ), 2 ≤ i ≤ n − 1,

ηn = −r3nξn,

ηi = 0, i ≥ n + 1.

We claim that, for each r ∈ [0, 1] and x = (ξi )i≥1 ∈ D(A),
lim

n→∞ An,r x = Bx + r Dx, (2.42)

where

An,r := Bn,r + Dn,r .
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For, (a) the first n − 1 coordinates of Bx + r Dx and An,r x are the same, (b)
the nth coordinates differ by

r(3n+1ξn+1 − 3nξn)

and (c) the remaining coordinates differ by

r(3i+1ξi+1 − 3iξi )+ r(3i−1ξi−1 − 3iξi ), i ≥ n + 1.

It follows that

‖Bx + r Dx − An,r x‖ ≤ r |3n+1ξn+1 − 3nξn|

+ r
∞∑

i=n+1

[
|3i+1ξi+1 − 3iξi | + |3i−1ξi−1 − 3iξi |

]
.

This implies (2.42) by the definition of D(A).

2.4.14 Operators Ar , r ∈ [0, 1) are sub-Markov generators

Since we know from Section 2.4.11 that, for each n and r , Bn,r is a sub-Markov
generator, and Dn,r is bounded, An,r is a generator also (by the Phillips Per-
turbation Theorem). Furthermore, the operator Dn,r is related to a bounded
Kolmogorov matrix. Thus, arguing as in Example 1.3.3 we find that Dn,r is a
Markov generator. Hence, by Trotter’s Product Formula, An,r is a sub-Markov
operator, as well.

Now, (2.42) says that the extended limit of the operators An,r , n ≥ 1 con-
tains the operator Ar . Since, by 2.4.12, for sufficiently large λ the resolvent
equation for Ar has a solution, the limit limn→∞

(
λ− An,r

)−1 exists by the
Sova–Kurtz Convergence Theorem. Also, Ar being densely defined, the regu-
larity space for the semigroups {et An,r , t ≥ 0} is the entire l1. This means that
the limit

Tr (t)x := lim
n→∞ et An,r x

exists for all x ∈ l1 and {Tr (t), t ≥ 0} is a strongly continuous semigroup in l1.
Since {et An,r , t ≥ 0}, n ≥ 1 are sub-Markov semigroups, so is {Tr (t), t ≥ 0}.

Condition (2.42) also shows that the generator, say, Gr , of the latter
semigroup extends Ar . Our goal will be reached once we prove that

Gr = Ar , (2.43)

that is, that Gr is not a proper extension of Ar .
To this end, suppose x belongs to D(Gr ) \ D(Ar ), and take λ > 18r

1−r . Then
y := λx − Gr x belongs to l1 and, since the resolvent equation for Ar has a
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solution (see Section 2.4.12), there is an x0 ∈ D(Ar ) such that λx0−Ar x0 = y.
Thus λ(x − x0)− Gr (x − x0) = 0, because Gr extends Ar . Since x − x0 �= 0,
this contradicts the fact that Gr is a sub-Markov generator. This contradiction
establishes (2.43), completing our proof.

2.4.15 Solutions to the resolvent equation for A

We are finally ready to show that solutions to the resolvent equation for A exist
and are unique for large λ > 0. To this end, we consider r ∈ (0, 1). By (2.39),

‖Ar x‖ = ‖Bx + r Dx‖ ≥ ‖Bx‖ − r‖Dx‖ ≥ ‖Bx‖ − r

2
‖Bx‖ − 9r‖x‖

and thus

‖Bx‖ ≤ 2

2 − r
‖Ar x‖ + 18r

2 − r
‖x‖, x ∈ D(A).

Therefore,

‖(1 − r)Dx‖ ≤ 1 − r

2
‖Bx‖ + 9(1 − r)‖x‖

≤ 1 − r

2 − r
‖Ar x‖ + 9r(1 − r)

2 − r
‖x‖ + 9(1 − r)‖x‖

≤ 1 − r

2 − r
‖Ar x‖ + 12‖x‖, x ∈ D(A).

Since Ar is a sub-Markov generator, arguing as in (2.40) we obtain

‖(1 − r)D (λ− Ar )
−1 y‖ ≤ 2 − 2r

2 − r
‖y‖ + 12

λ
‖y‖,

≤ r ′ + 1

2
‖y‖, y ∈ l1,

provided that λ > 24
1−r ′ , where r ′ := 2−2r

2−r is strictly smaller than 1 and so is
r ′+1

2 .

This allows repeating the argument from the latter part of Section (2.4.12):
writing the resolvent equation for A as

λx − Ar x − (1 − r)Dx = y,

we conclude that x = (λ− Ar )
−1∑∞

k=0[(1−r)D (λ− Ar )
−1]k y is the unique

solution to this equation.
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2.4.16 A is a sub-Markov generator

When combined with the result just obtained, relation (2.42) with r = 1 shows,
as in Section 2.4.14, that the sub-Markov semigroups {et An,1 , t ≥ 0} converge,
as n → ∞, to a strongly continuous sub-Markov semigroup. By the same
relation, the generator, say, G, of the limit semigroup extends A. Arguing as in
the latter part of 2.4.14 we see, however, that G cannot be a proper extension
of A because for large λ > 0 the resolvent equation for A has a solution: we
must have A = G. This completes the proof that A is a sub-Markov generator.

2.4.17 Exercise

In the definition of the domain of the second Kolmogorov–Kendall–Reuter
generator (see (2.30)), change limi→∞ aiξi = ξ1 to limi→∞ aiξi = αξ1,
where α ∈ (0, 1) is a given parameter. By modifying the proofs of Lemmas
2.4.8 and 2.4.9, check that this new operator is a generator of a sub-Markov
semigroup.

2.4.18 Exercise

Check that if a nonnegative (ξi )i≥1 is a member of the domain of the operator
of Section 2.4.11, then ΣA (ξi )i≥1 = − limn→∞ 3nξn ≤ 0.

2.5 Intensities, Generators, and Infinitesimal Description

Up to this point, the presentation of the examples of the previous section may
seem to be somewhat ‘raw.’ Without some knowledge on the way the related
Markov chains behave, all calculations seem a bit abstract, and the definition of
the generator – mysterious. In this section we will get some insight into the way
the generators and local behavior of the process are connected. Armed with
this insight, and with some additional tools, we will come back to a detailed
description of the Kolmogorov–Kendall–Reuter examples in Sections 2.6 and
2.7. We will come back to the birth and death process generator in Chapter 3.

Our first result, contained in Section 2.5.1, says roughly that, if en ∈ D(A),
then the nth row of the intensity matrix may be recovered from the genera-
tor; Section 2.5.5 extends this result to the sub-Markovian case. Moreover, in
Sections 2.5.7 and 2.5.8 we will see how the local (in time) behavior of the
process can be reconstructed from the intensity matrix: a chain starting at i
stays there for an exponential time with parameter qi and then jumps to a state
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j �= i with probability
qi, j
qi
. In the meantime, in Section 2.5.6, we will see that

the condition ei ∈ D(A), i ∈ I is equivalent to the all-important Kolmogorov
differential equations.

2.5.1 qi, j ’s and the generator

Suppose {P(t), t ≥ 0} is a Markov semigroup with generator A, and let i ∈ I

be fixed. The following are equivalent.

(1) qi < ∞ and
∑

j∈I
qi, j = 0,

(2) ei ∈ D(A).
If any of these conditions hold,

Aei = (qi, j
)

j∈I
. (2.44)

Proof (2) =⇒ (1) The i th coordinate of the vector

v(t) := t−1(P(t)ei − ei )

is t−1(pi,i (t) − 1). Since limt→0+ v(t) = Aei and strong convergence in l1

implies coordinate-wise convergence, −qi = limt→0+ t−1(pi,i (t) − 1) is the
i th coordinate of Aei , and in particular, it is finite.

Similarly, qi, j is the j th coordinate of Aei (this, by the way, proves the
final claim). Moreover, Σ(v(t)) = 0, for each t ≥ 0, since P(t) is a Markov
operator. Therefore,

∑
j∈I

qi, j = ΣAei = limt→0+ Σv(t) = 0, Σ being
continuous.

To prove the converse, consider first the case where qi = 0. Then, since
P(t)ei is the i th ‘row’ in the matrix P(t),

‖t−1(P(t)ei − ei )‖ = t−1
∑
j �=i

pi, j (t)+ t−1[1 − pi,i (t)]

= 2t−1(1 − pi,i (t)).

As t → 0+, this converges to 2qi = 0. It follows that ei ∈ D(A) and Aei = 0.
For qi > 0, let u(t) be the vector with i th coordinate equal 0, and j th

coordinate equal to 1
t pi, j (t), j �= i . The claim reduces to showing that u(t)

converges, as t → 0, to u := (qi, j (1−δi, j )) j∈I (u is obtained from (qi, j ) j∈I by
replacing its i th coordinate by 0). Clearly, it suffices to show that t

1−pi,i (t)
u(t)

converges to 1
qi

u. This, however, follows by Schéffe’s Theorem 1.6.1 since
all the vectors involved here are distributions (we use the second part of
assumption (1)), and they converge coordinate-wise.
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2.5.2 Absorbing states

The result obtained as a by-product of the analysis of the case qi = 0 is worth
noting. We proved that in this case Aei = 0. It follows (use, e.g., Corollary
7.4.26 in [14]) that P(t)ei = ei , that is, pi,i (t) = 1 for all t ≥ 0. This means
that i is an absorbing state: the process reaching this state stays there for ever.

2.5.3 Corollary

An intensity matrix is a Kolmogorov matrix iff ei ∈ D(A) for all i ∈ I.

2.5.4 Relation between the generator and the intensity matrix

Suppose conditions of Section 2.5.1 are satisfied for all i ∈ I. Then all finite
combinations x of basic vectors are members of D(A) and (2.44) becomes

Ax = x · Q,

where on the right-hand side we have the product of a row-vector with a matrix.
However, as we shall see in Sections 3.3 and 3.5, this equality need not hold
for all x ∈ D(A) (e.g., see equations (3.35), (3.36) and (3.39)).

2.5.5 qi, j ’s and the generator (continued)

The case where {P(t), t ≥ 0} is a semigroup of sub-Markov operators may be
reduced to that considered in 2.5.1. More specifically: Suppose {P(t), t ≥ 0}
is a sub-Markov semigroup with generator A, and let i ∈ I be fixed. Then,
defining ‘dishonesty function’ di (t) := 1 −∑ j∈I pi, j (t), we have

(A) d ′
i (0) := limt→0+ di (t)

t exists and is finite,
(B) the following are equivalent:

(1) qi < ∞ and
∑

j∈I
qi, j + d ′(0) = 0,

(2) ei ∈ D(A).
If any of these conditions hold,

Aei = (qi, j
)

j∈I
. (2.45)

Sketch of proof Let a (‘a’ for ‘additional’) be such that a �∈ I, and consider an
extended state-space Ĩ = I ∪ {a}. Then
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p̃i, j (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pi, j (t), i, j ∈ I,

di (t), i ∈ I, j = a,

1, i = j = a,

0, i = a, j ∈ I

are transition probabilities in Ĩ such that∑
j ∈̃I

p̃i, j (t) = 1 and lim
t→0+ p̃i,i (t) = 1, i ∈ Ĩ.

Hence, (A) is a direct consequence of 2.2.7 and (B) be is a consequence of
2.5.1. Details of this reasoning may be found in Section 4.2.1. �

2.5.6 Kolmogorov backward equations

Let {P(t), t ≥ 0} be a semigroup of sub-Markov operators with generator A,
and suppose ei ∈ D(A) for all i ∈ I. Then, by 1.1.15, the vector-valued
functions t �→ P(t)ei are differentiable on the entire half-line with (see (2.45))

d

dt
(P(t)ei ) = P(t)Aei = P(t)

(
qi, j
)

j∈I
, t ≥ 0.

Since convergence in the sense of l1 norm implies convergence in coordinates,
the real-valued functions t �→ pi, j (t), i, j ∈ I are differentiable at all t ≥ 0
also, and we obtain

p′
i, j (t) =

∑
k∈I

qi,k pk, j (t), i, j ∈ I. (2.46)

These are the celebrated Kolmogorov backward equations.
Conversely, suppose all states are stable, and the Kolmogorov backward

equations are satisfied. I claim that then all ei ’s are members of D(A). To see
this, for λ > 0, let

(
ri, j (λ)

)
i, j∈I

be the matrix representing (λ− A)−1. Since
the resolvent is the Laplace transform of the semigroup and convergence in the
sense of l1 norm implies convergence in coordinates, we have

ri, j (λ) =
∫ ∞

0
e−λt pi, j (t) dt, i, j ∈ I.

The functions featuring on the right-hand side of the Kolmogorov equations
(2.46) are bounded and continuous, and the series converges uniformly in
t ≥ 0. Also, on the left-hand side we have the derivative of a differentiable,
bounded function with continuous, bounded derivative. Thus, calculating the
Laplace transform yields
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λri, j (λ)− δi, j =
∑
k∈I

qi,krk, j (λ). (2.47)

Now, fix i and think of
(
qi, j
)

j∈I
∈ l1. The quantity on the right-hand side of

(2.47) is the j th coordinate of (λ− A)−1 (qi, j
)

j∈I
. Hence, this equation says

that

ei = λ (λ− A)−1 ei − (λ− A)−1 (qi, j
)

j∈I
.

This implies that ei ∈ D(A).

2.5.7 Exponential time spent at state i

Suppose sample paths of a Markov chain corresponding to a Markov semi-
group {P(t), t ≥ 0} are right-continuous1 and that i is a stable state. Then, the
time spent at i is exponential with parameter qi . More specifically, if X (0) = i ,
then the time to the first moment when X (t) �= i is a random variable with
specified exponential distribution.

Proof For n ≥ 1, let τn be the smallest of times of the form t = k2−n such
that X (t) �= i . It is clear that τ is a random variable, since

{τn = k2−n} = {X (�2−n) = i, � = 1, . . . , k − 1 and X (k2−n) �= i}.
Since the set of times to choose from for n + 1 is larger than that for n, τn+1 ≤
τn , and right continuity of paths implies that limn→∞ τn = τ (monotonically),
where τ is the smallest of t > 0 such that X (t) �= i . In particular, τ is a random
variable.

Using {τ ≥ t} =⋂n≥1{τn ≥ t} (with {τn+1 ≥ t} ⊂ {τn ≥ t}),
P(τ ≥ t) = lim

n→∞ P(τn ≥ t) = lim
n→∞ P

(
X (k2−n) = i, k = 1, . . . , [2nt])

= lim
n→∞

(
pi,i (2

−n)
)[2n t] = lim

n→∞ exp

( [2nt]
2n

ln pi,i (2−n)

2−n

)
.

Since limn→∞ [2n t]
2n = t and, by limx→1

x−1
ln x = 1, limh→0+ ln pi,i (h)

h =
limh→0+ pi,i (h)−1

h = −qi ,

P(τ ≥ t) = e−tqi ,

completing the proof.

1 For a construction of a Markov chain with paths that are right-continuous and have left-hand
limits see, for example, [72], pp. 88–90.



2.5 Intensities, Generators, and Infinitesimal Description 69

2.5.8 Probabilities of jumps from state i

Suppose sample paths of a Markov chain corresponding to a Markov semi-
group {P(t), t ≥ 0} are right-continuous, ei belongs to D(A), and qi > 0.
(See Corollary 2.5.2 for the case qi = 0.) Then, the process starting at i stays
there for an exponential time with parameter qi and after this time elapses the
process jumps to j �= i with probability

qi, j

qi
.

Proof Let τn be defined as in the previous subsection. Since

{X (τn) = j} =
⋃
k≥1

{τn = k2−n, X (k2−n) = j},

X (τn) is a random variable (note importance of the fact that τn has countably
many values). Right continuity of paths implies that X (τ ) = limn→∞ X (τn).
Thus, X (τ ) is a random variable, and we are to show that

P(X (τ ) = j) = qi, j

qi
.

We have

P(X (τn) = j) =
∞∑

k=1

P(τn = k2−n, X (k2−n) = j)

=
∞∑

k=1

P
(
X (m2−n) = i,m = 1, . . . , k − 1, X (k2−n) = j

)
.

The kth summand in the last series is
(

pi,i (2−n)
)k−1

pi, j (2−n) implying

P(X (τn) = j) = pi, j (2−n)

1 − pi,i (2−n)
= pi, j (2−n)

2−n

2−n

1 − pi,i (2−n)
.

Thus limn→∞ P(X (τn) = j) = qi, j
qi

, and we are left with showing that
P(X (τ ) = j) = limn→∞ P(X (τn) = j). However, by right continuity of
paths, X (τ (ω)) = j iff X (τn(ω)) = j for almost all n ≥ 1, and so the claim
follows for example by the Lebesgue Dominated Convergence Theorem (write
P(X (τ ) = j) = E 1{X (τ )= j}).

2.5.9 Remark

By the second condition in (1) of Section 2.5.1, our proposition shows that the
probability that the process jumps from i to one of the states j �= i equals
1. If the semigroup is composed of sub-Markov operators, ei ∈ D(A) does
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not imply the condition just mentioned, and then with nonzero probability the
process may jump ‘nowhere,’ that is, simply disappear. (This is what dishonest
Markov chains do by their evil nature and wicked character.)

It may of course happen also that condition (1) is not satisfied even if qi <

∞ and the semigroup is composed of Markov operators (see, e.g., Section
2.7.1). Interestingly, the proof of Proposition 2.5.8 still works in this case. The
difference is that then the proposition does not tell the whole story of a particle
leaving the state i ; the particle may do something else than jumping to one of
the states j �= i .

2.6 Back to the First Kolmogorov–Kendall–Reuter Example

2.6.1 In the first Kolmogorov–Kendall–Reuter semigroup i = 1 is an
instantaneous state

In the first example of Kolmogorov, Kendall and Reuter, e1 �∈ D(A), so that
one of the conditions listed in (1) of Section 2.5.1 fails. As we will see, q1 = ∞
so that the state i = 1 is instantaneous.

Here is a proof. Suppose q1 < ∞. Then, there is a t0 > 0 such that 1 −
p1,1(t) ≤ 2q1t, for 0 ≤ t < t0. For t ≥ t0, on the other hand, 1 − p1,1(t) ≤
t−1
0 t. Thus, there is an integer n0 such that

1 − p1,1(t) ≤ n0t, t ≥ 0,

and so

λ2
∫ ∞

0
e−λt (1 − p1,1(t)

)
dt ≤ n0, λ > 0. (2.48)

However, (2.28) reveals in particular that the Laplace transform of p1,1 is

the inverse of λ
(

1 +∑∞
j=2(λ+ a j )

−1
)
. It follows that the left-hand side of

(2.48) equals

λ
∑∞

j=2(λ+ a j )
−1

1 +∑∞
j=2(λ+ a j )−1

≥ λ
∑n0+2

j=2 (λ+ a j )
−1

1 +∑∞
j=2(λ+ a j )−1

.

Therefore, the limit, as λ → ∞, of the left-hand side in (2.48) is no smaller
than n0 + 1 (since limλ→∞

∑∞
j=2(λ + a j )

−1 = 0 by assumption (2.21)), a
contradiction proving our claim that q1 = ∞.
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2.6.2 Approximation of the first Kolmogorov–Kendall–Reuter
semigroup

Some further insight into the first Kolmogorov–Kendall–Reuter semigroup
may be gained by the following analysis. For n ≥ 1, let An be the bounded
operator in l1 represented by a matrix with all entries outside the upper-left
corner of size (n + 1)× (n + 1) equal zero, and the remaining ones given by

⎛⎜⎜⎜⎜⎜⎝
−n 1 1 · · · 1 1
a2 −a2 0 · · · 0 0
a3 0 −a3 0 · · · 0
...

...
. . .

. . .
. . . 0

an+1 0 0 · · · 0 −an+1

⎞⎟⎟⎟⎟⎟⎠ .

We will see that the semigroups generated by An’s converge to the first
Kolmogorov–Kendall–Reuter semigroup.

To this end, one may repeat calculations of Lemma 2.4.5 with minor changes
to see that An are generators of Markov semigroups, and in doing this to
find an explicit form of the resolvent of An . This allows finding the limit
limn→∞ (λ− An)

−1 and checking that it coincides with the resolvent of the
first Kolmogorov–Kendall–Reuter semigroup calculated in Lemma 2.4.5, so
that the claim follows by the Trotter–Kato Convergence Theorem.

The same result may, however, be obtained with almost no algebra. For, An

is a bounded linear operator, and so for λ > ‖An‖ its resolvent equation has
a unique solution. Moreover, since the rows of the An matrix add up to zero,
ΣAn x = 0 for all x ∈ l1. It follows (see 2.4.1) that the resolvent of An is
a Markov operator. Thus, the Yosida approximation is composed of Markov
operators (for sufficiently large λ) and, a fortiori, so must be {et An , t ≥ 0}.
(For yet another proof, see Exercise 2.7.7.)

Finally, for x = (ξi )i≥1 ∈ D(A), An x = (ηi )i≥1, where

η1 =
n+1∑
j=2

(a jξ j − ξ1),

ηi = ξ1 − aiξi , i = 2, . . . , n + 1,

ηi = 0, i ≥ n + 2.

Since for x ∈ D(A), condition (2.22) is met, it is clear that as n → ∞,
An x converge to Ax given by formula (2.23) (we have ‖An x − Ax‖ =
2
∑∞

j=n+2

∣∣a jξ j − ξ1
∣∣). Hence, the claim follows by the Sova–Kurtz Theorem.
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2.6.3 Some probabilistic intuition

A Markov chain described by An of Section 2.6.2 behaves as follows: All states
i ≥ n + 2 are absorbing. Starting at a state 2 ≤ i ≤ n + 1 the process spends
an exponential time with parameter ai there, and then jumps immediately to
i = 1. Here, the exponential distribution parameter is n, and after the visit at
i = 1 is over, the process jumps to one of the states i = 2, . . . , n + 1, all states
being equally probable.

As n → ∞, the set of absorbing states becomes smaller and smaller but the
most important, though gradual, change occurs at i = 1: the expected time of
the visit converges to zero, and we know that in the limit the state becomes
instantaneous. Since all positions after a jump from i = 1 are equally probable
for each n, it is natural to expect that in the limit all states should also ‘have
equal rights.’ In fact, as Kendall and Reuter show [57], q1,i = 1 for all i ≥ 2;
this also agrees with the intuitions gained in the previous section.

A question of interest arises therefore of how these equal rights are claimed
[74]. This can be figuratively explained as follows (a naive approach that after
a jump each state is chosen with equal probability will not work: since there
are infinitely many states to jump to, this ‘equal probability’ would need to be
zero).

Imagine that there is an alarm clock assigned to each state i ≥ 2 (a clock-
maker paradise!), that each of them goes off after an exponential time with
parameter 1, and that all these clocks are independent of each other. The pro-
cess starting at the state 1 waits for the first of the clocks to signal (see the next
section), and if it is the i th clock that goes off, the process jumps to the state
i . Since the infimum of infinitely many exponential times, all with the same
parameter equal 1, is a.s. zero, the jump occurs ‘immediately.’ During the pro-
cess’s visit to i th state, which is of course exponential with parameter ai , all
clocks are switched off. They start to compete again once the process returns
to 1, and so the procedure continues.

Remarkably, ‘equal rights’ are expressed in the fact that all clocks go off
after exponential times with the same parameter. In particular, one should not
think that expected durations of visits to the states i ≥ 2 are the same. On the
contrary, the states with smaller ai will be visited for longer times if as often
as other states.

2.6.4 Some probabilistic intuition, continued

A curious reader may wonder where the idea of infinitely many clocks of the
previous section comes from. Here is a hint.
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Suppose we are given n independent, exponentially distributed random vari-
ables τ2, . . . , τn+1, each with parameter 1. I claim that a process related to An

of Section 2.6.2, starting at the state 1, may be described as follows: the process
waits at i for the random time

τ = min
i=2,...,n+1

τi

and then jumps to an i ∈ {2, . . . , n + 1} iff

τ = τi . (2.49)

For, τ so defined is exponentially distributed with parameter n, being the
minimum of n independent, exponentially distributed random variables, each
with parameter 1. Moreover, the probability of event (2.49) is n−1. Since this
description agrees with that of Section 2.5.8 we are done.

An advantage of this construction is that, whereas, as we have seen, in
the limit as n → ∞, it is impossible to describe the process in terms of
probabilities of jumps after sojourn in the state 1, the description in terms
of random variables τn is still possible: in the limit, instead of finitely many
clocks (random variables τn), we have infinitely many of them.

Possibly beguiled by (2.49), the reader should however refrain himself from
thinking that for the first Kolmogorov–Kendall–Reuter process starting at 1
there is ‘a first clock to go off.’ The phrase ‘the first of the clocks,’ used in the
previous section, was merely a convenient figure of speech, poorly designed to
convey an underlying intuition. As a matter of fact, as we will see in the next
section, for any i ≥ 2, before the i th clock goes off and the state i is visited
for the first time, infinitely many other clocks go off and corresponding states
are visited, and they are visited many times!

2.6.5 Kendall–Reuter’s construction

This complex, curious, convoluted, confusing, exciting, extraordinary, fas-
cinating, intriguing, intricate, puzzling and perhaps somewhat perplexing
situation may be modeled as follows (following, of course, Kendall and Reuter
[57]). Suppose we are given independent, exponentially distributed random
variables

Xi,n,Yi,n n ∈ N, i = 2, 3, . . . , (2.50)

such that

E Xi,n = 1 and E Yi,n = a−1
n .
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Si,nSi′′,n′′ Si′,n′

Yi,n

Yi′′,n′′

Yi′,n′

Figure 2.2 Time spent at state 1 (the axis) and visits to other states (the peaks).

Leaving the Yi,n’s temporarily aside, let

Si,0 = 0 and Si,n = Xi,1 + Xi,2 + · · · + Xi,n, n ≥ 1, i = 2, 3, . . . .

Disregarding a set of probability zero, we may safely assume that Si,n < Si,n+1

for all i and n. Thus, with each elementary event ω we have an increasing
sequence of numbers Si,0(ω) = 0 < Si,1(ω) < Si,2(ω) < . . . . Think of Si,n as
the time when the i th clock goes off for the nth time, and put all these times, for
all states, at one time axis, modeling the time spent at the state 1. We imagine
that at time Si,n, n ≥ 1 (n = 0 is excluded) the process leaves the state 1 to
visit the state i for the nth time, and when its visit there is over, it comes back
to 1. While the process is away from the state 1, all clocks are switched off
(see Figure 2.2): time is not running at 1.

Suppose now that such a process has already been defined, fix a state i and a
moment n: we would like to describe the total time Ti,n the process starting at 1
has wandered here and there and lingered at 1 before the i th clock has gone off
for the nth time. To this end, think of another state, say, j �= i , and of the related
sequence

(
S j,n
)

n≥0. It is clear that there is precisely one m ∈ {0, 1, 2, . . . },
depending on i, j, n, and ω, such that

S j,m < Si,n ≤ S j,m+1.

In fact, disregarding yet another set of probability zero, we may be sure that

S j,m < Si,n < S j,m+1.

This simply says that before the i th clock signaled for the nth time, clock
number j signaled precisely m times. Therefore, since a visit to a state j ≥ 2
is of exponential distribution with parameter a j , Ti,n is the sum of the following
components:

(a) Si,n itself; this is the time spent at the state 1,
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(b) Yi,1 + · · · + Yi,n−1; these are n − 1 visits to the state i ,
(c)
∑

j �=i (Y j,1 + · · · + Y j,m); the sum Y j,1 + · · · + Y j,m describes a random
number of exponential visits to the state j , each exponentially distributed
with parameter a j .

In other words,

Ti,n = Si,n + (Yi,1 + · · · + Yi,n−1)+
∑
j �=i

(Y j,1 + · · · + Y j,m) (2.51)

with m depending on i, j, n and ω.
It is a fundamental fact that with probability 1, Ti,n’s are finite (see

our Lemma 2.6.6). It follows that we can turn things right side up and
define our process with the help of Ti,n’s: since at Si,n the i th clock has
gone off for the nth time, it is natural to define the process in the interval
[Ti,n, Ti,n + Yi,n), where Yi,n is the variable introduced in (2.50), as staying in
the state i ; apart from the union of these time-intervals, the process is at the
state 1.

For this definition to be consistent, however, we need to make sure that Ti,n+
Yi,n ≤ Ti ′,n′ as long as Si,n < Si ′,n′ . To this end, given i, n and ω, think
of all pairs (i ′′, n′′) such that Si ′′,n′′(ω) < Si,n(ω) (the case i ′′ = i is not
excluded), and attach the random variable Yi ′′,n′′ to each such pair. Then Ti,n is
the sum of Si,n and all these variables. Now, if Si,n < Si ′,n′ , then the sum Ti ′,n′
contains

(a) Si ′,n′ , which is larger than Si,n ,
(b) Yi,n ,
(c) all the variables composing Ti,n (excluding Si,n which, however, is handled

by (a)), and
(d) possibly many other (nonnegative) variables.

This shows our claim.
For the proof that the process defined above is really related to the

first Kolmogorov–Kendall–Reuter semigroup, the reader should consult
[57]. But the main point in our analysis is that, as we claimed before,
and as formula (2.51) now clearly reveals, in the process considered,
before the first visit to the state i there are usually many, many visits
to infinitely many other states. For any i and any infinite subsequence
of X j,1, j �= i , conditional on any positive value of Xi,1, the prob-
ability that all variables from the subsequence are larger than X1,i is
zero.
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2.6.6 Lemma

For all i and n, P(Ti,n < ∞) = 1.

Proof Since Si,n and Yi,1 + · · · + Yi,n are both almost surely finite by
definition, it suffices to show that Ri,n :=∑ j �=i (Y j,1 +· · ·+ Y j,m) is finite. To
this end, we claim that for λ > 0,

E e−λRi,n = E e
−λSi,n

∑
j �=i

1
λ+a j . (2.52)

If m is given, then for any j , we have that E e−λ(Y j,1+···+Y j,m), being the Laplace
transform of the sum of m independent identically distributed random vari-

ables, equals
(

a j
λ+a j

)m
. Next, if Si,n is given, then m is Poisson distributed

with parameter Si,n (see Section 7.5.5 in [14]) for any j �= i . Thus,

E

[
e−λ(Y j,1+···+Y j,m)|Si,n

]
= e

Si,n(
a j
λ+a j

−1) = e
−Si,n

λ
λ+a j .

By independence,

E

[
e−λ∑ j �=i (Y j,1+···+Y j,m)|Si,n

]
= e

−Si,n
∑

j �=i
λ

λ+a j ,

and this implies (2.52).
Finally, limλ→0+ Si,n(ω)

∑
j �=i

1
λ+a j

= Si,n(ω)
∑

j �=i a−1
j for all ω, and the

last series converges by assumption. Therefore, by the Lebesgue Dominated
Convergence Theorem, the right-hand side of (2.52) converges to 1, because
Si,n is finite. On the other hand, e−λRi,n(ω) converges to 1 iff Ri,n(ω) < ∞, and
is zero otherwise. Hence, the left-hand side converges to P(Ri,n(ω) < ∞).

2.7 Back to the Second Kolmogorov–Kendall–Reuter
Example

2.7.1 The curious state i = 1 in the second
Kolmogorov–Kendall–Reuter example

There are (at least) two points of interest in the second Kolmogorov–Kendall–
Reuter example. To begin with, we look at the following intensity matrix:

Q =

⎛⎜⎜⎜⎜⎜⎝
−1 0 0 0 0 0 · · ·
0 0 0 0 0 0 · · ·
0 a3 −a3 0 0 0 · · ·
0 0 a4 −a4 0 0 · · ·
...

...
...

...
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎠ . (2.53)
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If we would like to define the related operator (say, A0, to distinguish it from
A of (2.31)) as in (2.16),

A0 (ξi )i≥1 = (ξi )i≥1 · (qi, j
)

i, j≥1 ,

then

● the definition of A0 would coincide with that of A in (2.31), and
● the natural domain would be composed of (ξi )i≥1 satisfying the first

condition in (2.30).

The second condition in the latter equation thus makes it clear that A is a
restriction of A0, and a natural question arises: What is the role of this con-
dition? The first answer is that A0 is too large to be a generator, and so it
must be restricted to a smaller domain. But, what does this condition mean
probabilistically, that is, what does it command the related process to do?

The second curious point is the first line in the intensity matrix (2.53). To
repeat the comment from Section 2.5.9: the description of the fate of a particle
leaving the state i = 1 given in Proposition 2.5.8 is still valid, but does not
tell the whole story. Here, it means that after spending an exponential time at
i = 1 the particle jumps to any i ≥ 2 with probability equal to . . . zero. On the
other hand, the second Kolmogorov–Kendall–Reuter semigroup is composed
of Markov operators, and the particle cannot simply disappear. So, what does
it really do?

As we shall see now, there is one answer to both of these questions.

2.7.2 An intuition

It will be convenient to think of the second Kolmogorov–Kendall–Reuter pro-
cess as similar to climbing an infinite ladder with the top at i = 2: The process
starting at i ≥ 3, that is, at the (i − 1)st rung from the top, goes one rung
up after an exponential time with parameter ai . After reaching the top, it stays
there for ever. We will argue that the second condition in (2.30) shows how
after leaving the state 1 it should go to the bottom of the ladder, that is, to
infinity, from where it is to climb up to the top at i = 2. Interestingly, the
climb is done in finite time.

2.7.3 Approximation of the second Kolmogorov–Kendall–Reuter
semigroup

To substantiate our claim, we consider the following sequence of approximat-
ing Markov semigroups and their Markov processes. For n ≥ 3, let An be the
(bounded) Q-matrix whose upper left corner is
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Figure 2.3 A finite chain approximating the second Kolmogorov–Kendall–Reuter
example.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 · · · 1
0 0 0 0 0 · · · 0

0 a3 −a3 0 0 · · · ...

0 0 a4 −a4 0 · · · ...
...

...
...

...
. . .

. . .
...

0 0 0 0 0 an −an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.54)

and the remaining entries are zero. The proof that An’s generate Markov
semigroups is the same as in Section 2.6.2.

In the process related to An , ‘the ladder’ (or ‘the staircase’ if we want to
use Figure 2.3) is finite and it is clear what happens with the process leaving
i = 1: it jumps to i = n where it starts to climb up to i = 2, and finishes the
climb in a finite time. So, if we will show that the semigroups generated by
An’s converge to the second Kolmogorov–Kendall–Reuter semigroup, it will
become intuitively clear that in the limit process, the particle leaving the state
i = 1 should jump to an additional state, ‘the infinity,’ or ‘the bottom of the
infinite ladder.’

To this end, suppose x = (ξi )i≥1 is a member of D(A), so that (2.30) holds.
By definition, the first n − 1 coordinates of An x and Ax are the same, and
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‖An x − Ax‖ = |an+1ξn+1 − ξ1| +
∞∑

i=n+1

|ai+1ξi+1 − aiξi |.

This, by (2.30) converges to 0, as n → ∞, completing the proof (by the Sova–
Kurtz Theorem). Remarkably, both conditions listed in (2.30) are needed for
this result, revealing that appropriate characterization of the domain of A is a
rather delicate matter.

2.7.4 Remark

Assumption (2.29) was undoubtedly crucial in the proof that the second
Kolmogorov–Kendall–Reuter operator (defined by (2.30) and (2.31)) gener-
ates a Markov semigroup. The analysis performed above allows interpreting
this assumption in probabilistic terms. To this end, first let τn’s be exponential
random variables with parameters an , respectively. Since

E

∞∑
n=3

τn =
∞∑

n=3

E τn =
∞∑

n=3

a−1
n < ∞,

the sum
∑∞

n=3 τn is a.s. finite. Intuitively, this means that the time needed for
the second Kolmogorov–Kendall–Reuter process to climb even from the very
bottom of the ladder to its top is a.s. finite. This makes the process honest –
if (2.29) is not met, the climb started at the bottom may not finalize in a finite
time. For the matter of the fact, the climb would never reach any of the rungs.
Hence, with nonzero probability the process after jumping from i = 1 ‘to
infinity’ would never come back, that is, would simply disappear.

For completeness, before we close this section, we need to clarify the rela-
tion between Q defined in (2.53) and the second Kolmogorov–Kendall–Reuter
semigroup.

2.7.5 Q of (2.53) is the intensity matrix of the second
Kolmogorov–Kendall–Reuter semigroup

To be sure, the analysis presented in the previous section does by no means
prove that Q of (2.53) is the intensity matrix of the second Kolmogorov–
Kendall–Reuter semigroup, call it Q0. It merely suggests this fact.

For a formal proof we recall that all ei , i ≥ 2 belong to D(A). Moreover,
a short calculation shows that Aei is precisely the i th row of the Q-matrix of
(2.53). Thus, by 2.5.1, Q and Q0 may differ only in the the first row.
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Now, (2.33) reveals that the first row of the matrix related to the operator
(λ− A)−1 is (

1

λ+ 1
, π2, π3, π4, . . .

)
. (2.55)

Since (λ− A)−1 is the Laplace transform of the semigroup,

1

λ+ 1
=
∫ ∞

0
e−λt p1,1(t) dt and πi =

∫ ∞

0
e−λt p1,i (t) dt, i ≥ 2.

It follows that p1,1(t) = e−t and so q1,1 = −1. By the way, since – as the
other rows of the intensity matrix make it clear – a process starting at i ≥ 2
will never return to i = 1, p1,1(t) = e−t is the probability that a process
starting at i = 1 is still there (and not ‘back there’) after time t , proving that
the time spent in i = 1 is indeed exponential with parameter 1 (as suggested
in 2.7.1).

We are left with showing that q1,i = 0, i ≥ 2. (See also Exercise 2.7.9.) To
this end, first we rewrite the definition of πi as follows:

π2 = λ−1π̃2, πi = λ−1(π̃i − π̃i−1), i ≥ 3, (2.56)

where π̃i = 1
λ+1

∏∞
j=i+1

a j
λ+a j

. (Since limi→∞ π̃i = 1
λ+1 , this representation

shows that the sum of coordinates in (2.55) is λ−1, as it should.) Next, let Ti ,

i = 1, 3, 4, 5, . . . be independent, exponentially distributed random variables
such that E Ti = a−1

i . We claim that

λ−1π̃i =
∫ ∞

0
e−λt

P(T1 +
∞∑

j=i+1

Tj ≤ t) dt, i ≥ 2. (2.57)

If this is the case, since two different functions, one of them continuous, the
other right-continuous, cannot have the same Laplace transform, we have

p1,2(t) = P(T1 +
∞∑
j=3

Tj ≤ t)

and

p1,i (t) = P(T1 +
∞∑

j=i+1

Tj ≤ t)− P(T1 +
∞∑
j=i

Tj ≤ t)

≤ P(T1 +
∞∑

j=i+1

Tj ≤ t), i ≥ 3.

(The formula for p1,i (t), i ≥ 3 says that p1,i (t) is the probability that there
was enough time to climb up to the i th rung, but not enough time to jump from
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that rung to i − 1.) However, P(T1 +∑∞
j=i+1 Tj ≤ t) ≤ P(T1 + Ti+1 ≤ t) =∫ t

0 gi (s) ds, where gi is the probability density function of T1 + Ti+1. Since

gi (s) = ai+1
∫ s

0 e−(s−u)e−ai+1u du ≤ ai+1s, we obtain p1,i (t) ≤ ai+1
t2

2 , and

this forces q1,i = limt→0+ p1,i (t)
t = 0.

It remains to show (2.57). Since, for fixed i and t ≥ 0,

{T1 +
n∑

j=i+1

Tj ≤ t}, n ≥ i + 1

is a decreasing sequence of events with intersection {T1 +∑∞
j=i+1 Tj ≤ t}, by

the Lebesgue Dominated Convergence Theorem,

lim
n→∞

∫ ∞

0
e−λt

P(T1 +
n∑

j=i+1

Tj ≤ t) dt =
∫ ∞

0
e−λt

P(T1 +
∞∑

j=i+1

Tj ≤ t) dt.

(2.58)
On the other hand,

∫∞
0 e−λt

P(T1 +∑n
j=i+1 Tj ≤ t) dt equals∫ ∞

0
e−λt

∫ t

0
gi,n(s) ds dt = λ−1

∫ ∞

0
e−λt gi,n(t) dt,

where gi,n is the probability density function of the random variable T1 +∑n
j=i+1 Tj . Since Tj ’s are independent and exponentially distributed with

E Tj = a−1
j , the right-hand side in (2.58) is

lim
n→∞

1

λ

1

λ+ 1

n∏
j=i+1

a j

λ+ a j
.

This completes the proof.

2.7.6 Remark

Formulae for p1,i reveal that ∞ works as a ‘transport hub’: a process going
through this point is distributed across the entire state-space according to the
law (0, p1,1(t), p1,2(t), . . . ). In other words, we are dealing with the first
example of an entrance law here.

2.7.7 Exercise

Show that the An’s of Sections 2.6.2 and 2.7.1 are generators of Markov semi-
groups by representing them in the form An = cn

(
Bn − Il1

)
where cn > 0

and Bn is a Markov operator.
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2.7.8 Exercise

Consider the following modification of the second Kolmogorov–Kendall–
Reuter operator: in (2.31) let η2 = pξ1 + a3ξ3, where p ∈ (0, 1). By finding
appropriate approximation argue that in this case the process after spending at
i = 1 an exponential time with parameter 1 jumps to the absorbing state i = 2
(with probability p) or to the ‘bottom of the ladder’ with probability 1 − p.
Check that for this operator the second condition in (2.30) must be replaced by
limi→∞ aiξi = (1 − p)ξ1.

2.7.9 Exercise

An appropriately extended argument of Section 2.2.7 shows ( [21], p. 9) that
if a state i is stable then the functions t �→ pi, j (t), j ∈ I are differentiable
(thus in particular qi, j = p′

i, j (0)), and their derivatives are bounded and con-
tinuous. Recall also that for a bounded continuous function f : R

+ → R,
f (0) = limλ→∞ λ

∫∞
0 e−λt f (t) dt. Use these facts to check that, since in

the second Kolmogorov–Kendall–Reuter example the state i = 1 is stable,
q1,i = limλ→∞ λ2πi , i ≥ 2, and conclude that q1,i = 0, i ≥ 2.

2.8 Blackwell’s Example

In the first Kolmogorov–Kendall–Reuter example, the state i = 1 is instanta-
neous. As it transpires there are, honest!, Markov chains with countably many
states all of which are instantaneous. Such examples were presented first by
Dobrushin [28] and Feller and McKean [44]. This section is devoted to the
discussion of an example of Blackwell (see the original paper [13] or, e.g.,
p. 297 in [45] or p. 65 in [64]).

2.8.1 Building blocks

Let I be the set of functions i : N → {0, 1} admitting value 1 finitely many
times. Since for any n ≥ 1 there is only a finite number of functions i : N →
{0, 1} admitting value 0 from the nth coordinate onward, I is countable, as
a countable union of finite sets. We will find it convenient to write elements
x = (ξi )i∈I of l1 := l1(I), as x = ∑i∈I

ξi ei (see (2.9)). In fact, the series on
the right converges to x in the norm of l1.

Given positive numbers αn, βn, n ≥ 1 we construct a sequence of Markov
semigroups in l1. To this end, we need some notation. For n ≥ 1 let Fn be the
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map Fn : I → I changing the nth coordinate of an i from 0 to 1 and vice versa.
Also, for a finite set E = {n1, . . . , nk} ⊂ N, let

FE := Fn1 ◦ · · · ◦ Fnk

be the map that changes an i ∈ I at its coordinates n1, . . . , nk . Finally, let
Gn : I → {0, 1} assign to an i its nth coordinate.

For n ≥ 1, let Bn be the bounded linear operator determined by its values
on ei as follows:

Bnei =
{

−βnei + βneFn(i), if Gn(i) = 0,

−αnei + αneFn(i), if Gn(i) = 1.
(2.59)

Bn is the generator of a Markov chain on I in which the nth coordinate of an
i ∈ I jumps between 0 and 1, the intensity of the ‘forward’ jump being βn and
that of the ‘backward’ jump being αn . In other words, Bn is the generator of
the Markov semigroup in l1 determined by (cf. (2.3))

et Bn ei =
{

pn(t)ei + (1 − pn(t))eFn(i), if Gn(i) = 0,

qn(t)ei + (1 − qn(t))eFn(i), if Gn(i) = 1,

where

pn(t) = αn

αn + βn
+ βn

αn + βn
e−(αn+βn)t ,

qn(t) = βn

αn + βn
+ αn

αn + βn
e−(αn+βn)t .

2.8.2 Approximating semigroups

The operators Bn commute. It follows that

Tn(t) =
n∏

k=1

et Bk

defines a strongly continuous semigroup {Tn(t), t ≥ 0} with generator An =∑n
k=1 Bk . This semigroup describes n combined independent Markov chains,

each changing one of the first n coordinates of i as described above, and is
determined by

Tn(t)ei =
∑

E⊂{1,...,n}
pE,n(t, i)eFE (i), (2.60)
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with summation over 2n subsets E of {1, . . . , n} and

pE,n(t, i) =
n∏

k=1

rk(t, i, E)

where

rk(t, i, E) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pk(t), if Gk(i) = 0 and k �∈ E,

1 − pk(t), if Gk(i) = 0 and k ∈ E,

qk(t), if Gk(i) = 1 and k �∈ E,

1 − qk(t), if Gk(s) = 1 and k ∈ E .

(2.61)

This formula simply says that, if the initial state of the Markov chain related
to An is given, its state at time t ≥ 0 may be characterized by listing the
coordinates which are different from the original ones – this is the role of the
set E . Since each coordinate evolves independently from the other ones, the
probability of such a change is the product of probabilities of change or no
change on the first, second, third, and remaining coordinates.

2.8.3 Preparation for the main theorem

Assume now that
∞∑

n=1

βn

αn + βn
< ∞, (2.62)

and fix i and a finite subset E of N. Then, for n large enough, E ⊂ {1, . . . , n}.
Also, since i has finitely many coordinates different from 0, for sufficiently
large n and k > n, rk(t, i, E) describes the probability of no change from
initial 0 in the kth coordinate of i (after perhaps many changes back and forth
in the meantime), that is, rk(t, i, E) = pk(t). By Criterion 2.4.6, the limit

pE (t, i) := lim
n→∞ pE,n(t, i) (2.63)

exists, because the finite number of terms in the product does not influence
convergence, whereas

∞∑
n=1

(1 − pn(t)) =
∞∑

n=1

βn

αn + βn
(1 − e−(αn+βn)t ) ≤

∞∑
n=1

βn

αn + βn
< ∞,

by assumption.
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2.8.4 Lemma

As n → ∞, the right-hand side of (2.60) converges to

T (t)ei :=
∑

E

pE (t, i)eFE (i),

where the sum is over all finite subsets E of N.

Proof Clearly,
∑

E⊂{1,...,n} pE,n(t, i) = 1 for i ∈ I, t ≥ 0 and n ≥ 1, and the
summands are nonnegative. Therefore, by (2.63) and Scheffé’s Theorem 1.6.1,
all we need to show is that∑

E

pE (t, i) = 1, for t ≥ 0, i ∈ I. (2.64)

The proof of this relation will be more transparent if we assume i = (0, 0, . . .);
this we do without loss of generality. Also, for simplicity of notation, we sup-
press dependence on t and i , and write pn and pE instead of pn(t) and pE (t, i),
respectively. Thus

pE =
∏
n∈E

(1 − pn)
∏
n �∈E

pn .

For a (finite) E ⊂ N, let

E1 =
{

E \ {1}, if 1 ∈ E,

E ∪ {1}, if 1 �∈ E .

Then

pE + pE1 =
∏

n∈E,n �=1

(1 − pn)
∏

n �∈E,n �=1

pn .

Therefore, letting L =∑finite E⊂{1,2,... } pE , we have

L =
∑

finite E⊂{2,3,... }

∏
n∈E

(1 − pn)
∏

n �∈E,n �=1

pn .

Repeating this argument k times, we see that

L =
∑

E

∏
n∈E

(1 − pn)
∏

n∈(N\{1,...,k})\E

pn,

where E ⊂ {k + 1, k + 2, . . . } are finite sets. Since the sum includes the
component corresponding to E = ∅, L ≥ ∏∞

n=k+1 pn . On the other hand, the
last product may be chosen as close to 1 as we wish by taking k large enough.
This completes the proof.
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2.8.5 Theorem

The semigroups {Tn(t), t ≥ 0} converge to the semigroup {T (t), t ≥ 0};
T (t)x =

∑
i∈I

ξi T (t)ei

where T (t)ei is defined in Lemma 2.8.4, and x = ∑
i∈I
ξi ei . The limit

semigroup is strongly continuous and is composed of Markov operators.

Proof The statement concerning convergence is clear by Lemma 2.8.4. Also,
{T (t), t ≥ 0} is a semigroup, being a limit of semigroups, and as direct con-
sequence of (2.64), it is composed of Markov operators. Hence, we are left
with showing that {T (t), t ≥ 0} is strongly continuous, and for this it suffices
to show that for all i ∈ I, pi,i (t) = p∅(t, i) converges to 1 as t → 0 (see
Section 2.1.2). Let i ∈ I, and let m be so large that all coordinates of i with
indices larger than m are zeros. Then

p∅(t, i) =
n∏

k=1

rk(t, i,∅)
∞∏

k=n+1

pk(t) ≥
n∏

k=1

rk(t, i,∅)
∞∏

k=n+1

αk

αk + βk
(2.65)

for n ≥ m, where (see (2.61))

rk(t, i,∅) =
{

pk(t), if Gk(i) = 0,

qk(t), if Gk(i) = 1.

We have limt→0 pk(t) = limt→0 qk(t) = 1 for all k ≥ 1. Therefore,

lim inf
t→0

p∅(t, i) ≥
∞∏

k=n+1

αk

αk + βk
,

and the latter product may be chosen as close to 1 as desired. This shows that
limt→0 p∅(t, i) = 1.

2.8.6 Corollary

Suppose

∞∑
n=1

βn = ∞; (2.66)

this assumption does not contradict (2.62). Then in the limit Markov semi-
group, the Blackwell’s semigroup, all states i ∈ I are instantaneous.
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Proof Fix i ∈ I. Let m be so large that all coordinates of i with indices n > m
are zero. Then, as in (2.65),

pi,i (t) = p∅(t, i) =
n1∏

k=1

rk(t, i,∅)
∞∏

k=n1+1

pk(t) ≤
n2∏

k=n1+1

pk(t),

for all n2 > n1 > m. It follows that

qi = lim
t→0+ t−1 (1 − pi,i (t)

) ≥ lim
t→0+ t−1

⎛⎝1 −
n2∏

k=n1+1

pk(t)

⎞⎠
= − lim

t→0+

n2∑
k=n1+1

p′
k(t)
∏
j �= k

n1 < j ≤ n2

p j (t) =
n2∑

k=n1+1

βk,

where in the previous-to-last equality we used de l’Hospital’s rule. Letting
n2 → ∞, we obtain qi = ∞.

2.8.7 What is Blackwell’s process like?

Starting in a state i , Blackwell’s process communicates with infinitely many
neighbors of i differing from i in one coordinate. Again we may think of
infinitely many alarm clocks going off after exponential times, but in this case
each exponential distribution may have a different parameter: the clock related
to the nth coordinate has expected time to going off equal β−1

n or α−1
n depend-

ing on whether the nth coordinate of i is 0 or 1. And again (this time because
of assumption (2.66)) the minimum of these exponential times is 0, so that
the process at i immediately hears one of the clocks go off and duly changes
appropriate coordinate of i . At the new state i ′ it has a new collection of clocks
representing new neighbors (including one calling it to come back to the old
state i), and before any time is spent at i ′ one of them goes off. Hence, the
poor guy must change another coordinate (or the same one again), to hear yet
another clock go off . . . . A clockmaker’s paradise may be an obedient’s man
hell, and a spectacle to a mathematician.

2.9 Notes

Exhaustive treatments of the theory of Markov chains may be found in Chung’s
[21] and Freedman’s [45]. A very readable but more brief account is Nor-
ris’s [72]; the short Markov chain chapter in Liggett’s [64] is commendable as
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much as the whole book. There are of course other excellent texts with long
and interesting chapters on Markov chains, like Feller’s [40] and Grimmett
and Stirzaker’s [48]. One should also note Anderson’s thorough exposition of
continuous Markov chains given in [2]

Existence of qi ’s and qi, j ’s (see 2.2.3 and 2.2.7) is due to Doob [30]. Both
Kolmogorov–Kendall–Reuter examples were first devised by Kolmogorov, and
then analysed in the functional-analytic setting by Kendall and Reuter [57].
Along Blackwell’s example, which (surprise, surprise!) is due to Blackwell,
they constitute remarkable counterexamples to the so-called Stigler’s law of
eponymy: ‘No law, theorem, or discovery is named after its originator’ ( [48],
p. 19).

If you find it hard to imagine what the Blackwell chain is ‘really’ like, be
encouraged: you are not the only one. In Freedman’s own words, the entire [46]
‘is a monograph explaining one way to think about chains with instantaneous
states’ ( [46], p. v).



3

Boundary Theory: Core Results

Before continuing, let us try to summarize.1 Except for the uniform case in
which the notions of the Q-matrix and of the generator coincide, Q-matrices,
despite their popularity, seem to be less useful than generators. First of all, as
the first Kolmogorov–Kendall–Reuter example reveals there may be instanta-
neous states in I and then the Q-matrix is improper in that some of its entries
are infinite. In fact, as Blackwell’s example makes amply clear, the main diag-
onal of (an improper) Q-matrix may be composed solely of −∞’s. Also, from
the second Kolmogorov–Kendall–Reuter example we learn that a Q-matrix
does not tell the whole story of the related process. It is in the generator or,
more precisely, in the domain of the generator that the missing information is
skilfully hidden. (See also Section 3.4.)

With this background, the reader is not surprised to hear that with one
(proper) Q-matrix there may be related (infinitely!) many Markov and sub-
Markov semigroups. In fact, Exercise 2.4.17 nearly furnishes such a family
of semigroups for the Q-matrix of the second Kolmogorov–Kendall–Reuter
example. I have to say ‘nearly’ because these semigroups are not composed
of Markov operators but rather of sub-Markov operators. Moreover, there, the
Q-matrix is not proper.

The first main theorem of this chapter, due to T. Kato [51, 54], says that
among all those semigroups there is one that is in a sense minimal (Section
3.1): we split Kato’s Theorem into a series of chunks of information, but the
main statement is Proposition 3.1.5. In Section 3.2 we give criteria for the
minimal semigroup of Kato’s Theorem to be composed of Markov operators,
and study in detail six specific examples. In Section 3.3, we illustrate a dif-
ferent aspect of Kato’s Theorem: taking an explosive pure birth process as a

1 Some readers may perhaps prefer to summerize, though. Or, be lazing on a sunny afternoon,
with or without The Kinks, but definitely with the Haley Reinhart cover featuring Scott
Bradlee on piano.

89
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case study, we construct explicitly two semigroups dominating the minimal
semigroup: the first of them governs the process which after explosion returns
to the state 1, the second – the process which returns to the state 2. Section
3.4 is devoted to a discussion of the position of the domain of the minimal
semigroup generator between the domains of two other natural operators. In
Section 3.5, using the intuitions gained in Section 3.3, we show how semi-
groups dominating the minimal one may be defined for a general explosive
matrix. The main abstract result is Section 3.5.5 containing the formula for the
generator of a postexplosion process, but the rest of this section suggests that,
since explosion can come about in many ways, this formula should be further
refined.

These results form an introduction to boundary theory for Markov chains:
in Section 3.6 we study the lattice of certain functionals on l1 which in the
previous sections were revealed to be instrumental in defining postexplosion
processes. In particular, the lattice is divided into two classes: the class of pas-
sive and that of active functionals, which are duly characterized. In Section 3.7,
minimal elements of the active part of the lattice are then shown to describe
different ways explosion may come about; these functionals can be seen as
additional points of the state-space of the process, and form the discrete exit
boundary (see Chapter 4 and Section 4.2 in particular).

The second main result of this chapter is formula (3.92), providing quite
a general form of the generator of a postexplosion process (if merely dis-
crete exit boundary needs to be accounted for). Section 3.8 gathers additional
information on extremal and minimal functionals.

3.1 Kato’s Theorem

3.1.1 Some notation

For simplicity of notation in this and the following chapter (with the exception
of Sections 4.3 and 4.4) we assume that I has been ordered so that we may
think that I = N; in the case #I < ∞ there is only one semigroup related to
a Q-matrix, that is, the exponent of this matrix, and Kato’s Theorem is trivial.
We recall that (ξi )i≥1 ∈ l1 is said to be a distribution (or a density) if it is
nonnegative, that is, ξi ≥ 0, i ≥ 1, and Σ (ξi )i≥1 = 1. A linear, not necessarily
bounded operator A in l1 is said to be nonnegative if it maps D(A) ∩ (l1)+
into (l1)+, where (l1)+ is the nonnegative cone, that is, the set of nonnegative
(ξi )i≥1 ∈ l1. For x and y in l1 we write x ≤ y or y ≥ x if y − x ∈ (l1)+.
For two operators, A and B, in l1 we write A ≤ B or B ≥ A iff B − A is
nonnegative. An operator A (defined on the whole of l1) is said to be Markov
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if it leaves the set of densities invariant (this definition is equivalent to that
given in Section 1.2.6); it is said to be sub-Markov iff it is nonnegative and
ΣAx ≤ Σx for any density x .

3.1.2 Definition

Let Q = (
qi, j
)

i, j≥1 be an intensity matrix (recall that this means that∑
j �=i qi, j may be smaller than qi ). We define the domain of an operator A0

to be the linear span of ei , i ≥ 0, and put A0ei = (qi, j
)

j≥1. Furthermore, the
operator D (‘D’ for ‘diagonal’) with domain

D(D) = {(ξi )i≥1 ∈ l1| (qiξi )i≥1 ∈ l1}
is defined by D (ξi )i≥1 = (−qiξi )i≥1 ; note that −D is nonnegative.

3.1.3 Approximating semigroups

The operator O (‘O’ for ‘off diagonal’) given by O (ξi )i≥1 =(∑
j≥1, j �=i ξ j q j,i

)
i≥1

is well defined on D(D) and

‖Ox‖ ≤ ‖Dx‖, x ∈ D(D). (3.1)

Also,

‖Ox‖ = ‖Dx‖, x ∈ D(D) (3.2)

provided x ≥ 0 and Q is a Kolmogorov matrix. Moreover, for any 0 ≤ r < 1,
the operator D + r O with domain D(D) is the generator of a strongly
continuous semigroup of sub-Markov operators in l1, say, {Sr (t), t ≥ 0}.

Proof For x ∈ D(D),∑∞
i=1

∣∣∣∑ j≥1, j �=i ξ j q j,i

∣∣∣ does not exceed

∞∑
i=1

∑
j≥1, j �=i

|ξ j q j,i | =
∞∑
j=1

|ξ j |
∞∑

i≥1,i �= j

q j,i ≤
∞∑
j=1

q j |ξ j | = ‖Dx‖, (3.3)

with equality iff (ξi )i≥1 is nonnegative and
∑

i≥1,i �= j q j,i = q j for all j ∈ N.
This proves the first claim.

As to the rest, we note first that for λ > 0 we have (λ − D)−1 (ξi )i≥1 =(
1

λ+qi
ξi

)
i≥1

and that

Bλ := O(λ− D)−1 (3.4)
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is well defined. Moreover, by (3.1),

‖Bλx‖ ≤ ‖D(λ− D)−1x‖ =
∑
j≥1

q j

λ+ q j
|ξ j | ≤

∑
j≥1

|ξ j | = ‖x‖.

Hence, Bλ is a contraction and for any 0 ≤ r < 1 the series
∑∞

n=0 rn Bn
λ (which

equals (I − r Bλ)−1) converges in the operator norm. Let

Rλ,r = (λ− D)−1
∞∑

n=0

rn Bn
λ .

By definition Rλ,r x belongs to D(D) and (λ− D)Rλ,r x =∑∞
n=0 rn Bn

λ x , and
r O Rλ,r x = r Bλ

∑∞
n=0 rn Bn

λ x =∑∞
n=1 rn Bn

λ x .Hence, (λ− D−r O)Rλ,r x =
x, x ∈ l1. Similarly, Rλ,r (λ − D − r O)x = x, x ∈ D(D). This shows that
Rλ,r = (λ−D−r O)−1. Moreover, if x ≥ 0 then y = Rλ,r x is nonnegative too;
indeed, (λ− D)−1 ≥ 0 and O ≥ 0 and so Bλ ≥ 0. Since D + r O is obviously
densely defined and �(D + r O) (ξi )i≥1 = (r − 1)

∑∞
i=1 qiξi ≤ 0 provided

(ξi )i≥1 is a nonnegative member of D(D), we are done by the Hille–Yosida
Theorem 2.4.3.

3.1.4 Convergence of the approximation

As r ↑ 1, the semigroups {Sr (t), t ≥ 0} converge strongly to a strongly con-
tinuous semigroup {S(t), t ≥ 0} of sub-Markov operators generated by an
extension of D + O (hence, an extension of A0 as well).

Proof We have Rλ,r ≤ Rλ,r ′ for r ≤ r ′, and ‖Rλ,r‖ ≤ λ−1. Hence, by 1.6.3,
there exists the strong limit Rλ = limr↑1 Rλ,r . We would like to know that the
closure of the range of Rλ is the entire l1. Our first step in this direction is the
explicit formula for Rλ given in (3.5).

Clearly, for any N ∈ N,

N∑
n=0

(λ− D)−1rn Bn
λ ≤ Rλ,r ≤ Rλ.

Hence, letting r ↑ 1, we obtain
∑N

n=0(λ− D)−1 Bn
λ ≤ Rλ. Using 1.6.3 again,

we see that the series
∑∞

n=0(λ− D)−1 Bn
λ converges and

∑∞
n=0(λ− D)−1 Bn

λ ≤
Rλ. On the other hand, Rλ,r ≤ ∑∞

n=0(λ − D)−1 Bn
λ and so, letting r ↑ 1,

Rλ ≤∑∞
n=0(λ− D)−1 Bn

λ , proving that

Rλ =
∞∑

n=0

(λ− D)−1 Bn
λ . (3.5)
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(Note that we do not claim that Rλ = (λ − D)−1∑∞
n=0 Bn

λ ; in fact, the series∑∞
n=0 Bn

λ in general diverges. Operators Bn
λ converge to zero as n → ∞ iff

the minimal semigroup is composed of Markov operators; see 3.2.1.)
Next, for x ∈ D(D) and N ∈ N,

N+1∑
n=0

(λ− D)−1 Bn
λ(λ− D)x = x +

N+1∑
n=1

(λ− D)−1 Bn−1
λ Ox

= x +
N∑

n=0

(λ− D)−1 Bn
λOx . (3.6)

Letting N → ∞, we obtain Rλ(λ − D)x = x + RλOx, that is, Rλ(λ − D −
O)x = x . In particular, the range of Rλ contains D(D) and so cl(RangeRλ) =
l1. Therefore, by the Trotter–Kato Theorem, the semigroups {Sr (t), t ≥ 0}
converge as r ↑ 1 to a strongly continuous semigroup:

S(t) = lim
r→1− Sr (t).

The limit semigroup is composed of sub-Markov operators, the operators
Sr (t), t ≥ 0, 0 ≤ r < 1, being sub-Markov. Finally, for x ∈ D(D),
limr↑1 Dx + r Ox = Dx + Ox , proving that the extended limit of D + r O ,
which is the generator of the limit semigroup, is an extension of D + O.

3.1.5 Properties of the limit semigroup

Let {S(t), t ≥ 0} be the semigroup defined in 3.1.4 and suppose that the gener-
ator A of a strongly continuous semigroup {P(t), t ≥ 0} is an extension of the
operator A0. Then A is also an extension of D + O and, if P(t) ≥ 0, t ≥ 0,
then S(t) ≤ P(t), t ≥ 0. We say that {S(t), t ≥ 0} is the minimal semigroup
related to Q.

Proof Suppose that x =∑∞
n=1 ξnen belongs to D(D).By definition of D(D),

so do xN := ∑N
n=1 ξnen, N ≥ 1, and since Aen = A0en = (D + O)en,

we have AxN = (D + O)xN . Moreover, limn→∞ DxN = Dx and so, by
‖O(xN −x)‖ ≤ ‖D(xN −x)‖, limN→∞ OxN = Ox . Therefore limN→∞ AxN

exists and equals (D + O)x and, obviously, limN→∞ xN = x . Since A is
closed, being the generator of a semigroup, x belongs to D(A) and Ax =
(D + O)x, proving the first claim.

Next, we note that (λ − A)−1 exists for sufficiently large λ > 0. For y ∈
D(D), we may write

(λ− D − r O)y − (λ− A)y = Ay − Dy − r Oy = (1 − r)Oy.
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Taking y = (λ− D − r O)−1x, x ∈ l1, and applying (λ− A)−1 to the leftmost
and rightmost sides of the above equality,

(1 − r)(λ− A)−1 O(λ− D − r O)−1x = (λ− A)−1x − (λ− D − r O)−1x .

Since all operators on the left-hand side are nonnegative, for large λ > 0 we
have (λ−D−r O)−1 ≤ (λ−A)−1.As we have seen in the previous subsection,
(λ− D − r O)−1 converges to (λ− G)−1 where

G is the generator of {S(t), t ≥ 0}.
Hence, (λ − G)−1 ≤ (λ − A)−1 and then [(λ − G)−1]n ≤ [(λ − A)−1]n for
all n ≥ 1 (see Exercise 3.1.9). Making use of the Yosida approximation as
follows:

S(t) = lim
λ→∞ e−λt eλ

2(λ−G)−1t ≤ lim
λ→∞ e−λt eλ

2(λ−A)−1t = P(t),

we complete the proof.

3.1.6 Remark

If the minimal semigroup {S(t), t ≥ 0} is composed of Markov operators, there
is no other semigroup of Markov or sub-Markov operators generated by an
extension of A0. For such a semigroup, say, {P(t), t ≥ 0}, would need to dom-
inate the minimal one, and since it would be different from {S(t), t ≥ 0} there
would exist an x ≥ 0 and a t > 0 such that P(t)x �= S(t)x , that is, at least
one coordinate of P(t)x would be strictly larger than the corresponding coor-
dinate of S(t)x . As a result, we would have ΣP(t)x > ΣS(t)x = Σx , which
is impossible for a Markov or sub-Markov operator. Hence, in such cases it is
right to speak of the Markov generator related to the intensity matrix. In gen-
eral, however, there are many Markov and sub-Markov generators that extend
A0.

3.1.7 D + O and G

The results just established are more mysterious than they appear to be, and so
is the relation between D + O and the generator G of the minimal semigroup.
In distinction to many semigroup-theoretical constructions, when the minimal
semigroup is not a Markov semigroup, G, although it extends D+O, is not the
closure of D + O . This is to say that D(D + O) = D(D) is not a core for G:
there are x’s in D(G) such that for no sequence (xn)n≥1 of elements of D(D)
can we have simultaneously limn→∞ xn = x and limn→∞ Gxn = Gx . (See
Sections 1.1.13 and 1.1.14 for necessary definitions; in particular, D + O is
closable because its graph is contained in the graph of the closed operator G.)
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Before seeing this, observe that for nonnegative x ∈ D(D),
ΣGx = 0, (3.7)

as long as Q is a Kolmogorov matrix. This is what (3.2) says once we note that
(a) for nonnegative x, ‖Ox‖ = ΣOx and ‖Dx‖ = −ΣDx , and (b) for x ∈
D(D), Gx = Dx + Ox . Moreover, D(D) is a lattice: if x = (ξi )i≥1 belongs to
D(D) then so does |x | := (|ξi |)i≥1 . Thus, any x ∈ D(D) may be written as a
difference of two nonnegative elements: x+ = 1

2 (x +|x |) and x− = 1
2 (|x |−x).

It follows that, for any x ∈ D(D), ΣGx = Σ(D + O)x+ −Σ(D + O)x− = 0.
This means that (3.7) extends to all x ∈ D(D). Since we will use this fact in
the later sections as well (see 3.5.4), we record it here as follows:

ΣGx = 0, x ∈ D(D). (3.8)

Coming back to the main subject of this section, (3.8) reveals that, given
x ∈ D(G), it is impossible to have limn→∞ Gxn = Gx for a sequence (xn)n≥1

of elements of D(D), unless ΣGx = 0. In other words,

D(D + O) ⊂ {x ∈ D(G);ΣGx = 0} ⊂ D(G), (3.9)

and, as we shall see in the next section, if the minimal semigroup is not a
Markov semigroup, the second inclusion in (3.9) is proper. See Section 3.4
for examples of such a proper inclusion. In fact, it is precisely existence of
x ∈ D(G) with ΣGx �= 0 that allows construction of post-explosion processes
(see Section 3.5.5).

3.1.8 Exercise

Check directly that the operator D of Definition 3.1.2 generates the semigroup
given by T (t) (ξi )i≥1 = (e−qi tξi

)
i≥1 .

3.1.9 Exercise

Let A and B be positive operators. Show that A ≥ B implies An ≥ Bn .

3.2 The Question of Explosiveness

In this section we discuss the question of when the minimal semigroup is
composed of Markov operators, that is, of when a Kolmogorov matrix is
nonexplosive. We start with criteria for nonexplosiveness and next study six
concrete Kolmogorov matrices. The second, the third, and the fourth of these
matrices are shown to be nonexplosive, and the fifth and the sixth to be
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explosive. In the first two examples we use point (b) of Section 3.2.1 as a test
for explosiveness. In the next three examples, point (f) is used; this criterion is
quite handy and therefore often found in the literature. In the sixth example,
we take a yet different path.

3.2.1 Criteria for the minimal semigroup to be Markov

Let {S(t), t ≥ 0} be the minimal semigroup related to a Kolmogorov matrix
Q. The following are equivalent:

(a) {S(t), t ≥ 0} is a semigroup of Markov operators;
(b) for any λ > 0, limn→∞ Bn

λ = 0 strongly;
(c) for any λ > 0, Range(λ− D − O) is dense in l1;
(d) for any λ > 0, Range(λ− A0) is dense in l1;
(e) for any λ > 0, Range(I − Bλ) is dense in l1;
(f) if for some λ > 0 and a = (αi )i≥1 ∈ l∞ we have Qa = λa (where Qa is

the product of the matrix Q and the column-vector a), then a = 0;
(g) D + O = G;
(h) for x ∈ D(G), ΣGx = 0.

If one and hence all of these conditions hold, the matrix Q is said to be
nonexplosive.

Proof Our plan is to show

1. (a) ⇔ (b);
2. (b) ⇒ (c)⇒ (d) ⇒ (e) ⇒ (b);
3. (d) ⇔ (f);
4. (b) ⇒ (g)⇒ (h) ⇒ (a).

Clearly, condition (a) implies that λRλ is a Markov operator for all λ > 0, and
the reverse implication can be proved using the Yosida approximation. On the
other hand, for n ≥ 1,

I + O
n∑

k=0

(λ− D)−1 Bk
λ = (λ− D)

n∑
k=0

(λ− D)−1 Bk
λ + Bn+1

λ . (3.10)

Therefore, for x ≥ 0,

‖x‖ + ‖O
n∑

k=0

(λ− D)−1 Bk
λx‖

= ‖λ
n∑

k=0

(λ− D)−1 Bk
λx‖ + ‖D

n∑
k=0

(λ− D)−1 Bk
λx‖ + ‖Bn+1

λ x‖,
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since −D ≥ 0. By (3.2) this gives, ‖x‖ = ‖λ∑n
k=0(λ − D)−1 Bk

λx‖ +
‖Bn+1

λ x‖. Letting n → ∞ we see that ‖x‖ = ‖λRλx‖ if and only if
limn→∞ ‖Bn

λ x‖ = 0 (see (3.5)) for all x ≥ 0. Of course, the latter condition is
equivalent to limn→∞ ‖Bn

λ x‖ = 0, x ∈ l1. This shows (a) ⇔ (b).
(b) ⇒ (c) To prove this, we rewrite (3.10) as

(λ− D − O)
n∑

k=0

(λ− D)−1 Bk
λx = x − Bn+1

λ x, x ∈ l1; (3.11)

this relation shows that if (b) holds, any x may be approximated by elements
of Range(λ− D − O), as desired.

(c) ⇒ (d) Recall that for any x ∈ D(D) there exist xn ∈ D(A0) such that
limn→∞ xn = x and limn→∞ A0xn = limn→∞(D + O)xn = (D + O)x (see
the beginning of the proof of 3.1.5); hence the range of λ− D − O is contained
in the closure of the range of λ− A0.

(d) ⇒ (e) This becomes clear once we write

I − Bλ = (λ− D)(λ− D)−1 − O(λ− D)−1 = (λ− D − O)(λ− D)−1

and note that all elements x of D(D) are of the form x = (λ− D)−1 y for some
y ∈ l1. Indeed, this shows that the range of λ− D − O is equal to the range of
I − Bλ and we know that λ− D − O is an extension of λ− A0.

(e) ⇒ (b) Calculating as in (3.3) one may show that Bλ is sub-Markov.
Hence, ‖Bn

λ x‖ ≤ ‖Bk
λx‖ for x ≥ 0 and k = 0, 1, . . . , n. Therefore, for such x,

‖Bn
λ x‖ ≤ ‖Cn x‖ where Cn = Cn(λ) = 1

n+1

∑n
k=0 Bk

λ. Writing x = x+ − x−
as in Section 3.1.7, we see that

‖Bn
λ x‖ ≤ ‖Bn

λ x+‖ + ‖Bn
λ x−‖ ≤ ‖Cn x+‖ + ‖Cn x−‖.

Hence, it suffices to show that Cn converges strongly to 0, as n → ∞. If
x = y − Bλy for some y ∈ l1, we have Cn x = 1

n+1

∑n
k=0 Bk

λ(I − Bλ)y =
1

n+1 (y − Bn+1
λ y). Therefore, for x ∈ Range(I − Bλ), limn→∞ Cn x = 0. If (e)

holds, the same is true for all x ∈ l1 since ‖Cn‖ ≤ 1.
To show (d) ⇔ (f), we note that (d) holds iff, for any functional F

on l1, the relation F(λx − A0x) = 0 for all x ∈ D(A0) implies F =
0. By definition of D(A0), F(λx − A0x) = 0 for all x ∈ D(A0) iff
F(λei − A0ei ) = 0 for all i ≥ 1. On the other hand, any F may be
identified with an a = (

α j
)

j≥1 ∈ l∞ and we have F(λei − A0ei ) =
λαi −∑∞

j=1 qi, jα j . The system λαi =∑∞
j=1 qi, jα j , i ≥ 1 may be written as

λa = Qa.
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(b) ⇒ (g) Since G extends D + O and is closed, D + O is closable. For any
x ∈ l1 and λ > 0, the vectors

xn :=
n∑

k=0

(λ− D)−1 Bk
λx

belong to D(D) and we have that limn→∞ xn = Rλx = (λ− G)−1 x (see
(3.5)). Looking back at (3.11) we see that if (b) holds, the limit limn→∞(D +
O)xn exists and equals λRλx − x . It follows that Rλx belongs to D(D + O)
and D + O Rλx = λRλx − x . Since we know that G Rλx = λRλx − x , this
leads to the conclusion that D + O extends G. However, G extends D + O
and, being closed, extends D + O , as well. This shows (g).

Implication (g) ⇒ (h) is clear from (3.9).
Finally, if (h) holds, condition (iii) in the Hille–Yosida Theorem 2.4.3 is

satisfied, and so G is a Markov generator, proving (a).

3.2.2 Example

Let (an)n≥1 be a sequence of positive numbers. A Markov chain with intensity
matrix Q = (qi, j

)
i, j≥1 where

qi, j =

⎧⎪⎪⎨⎪⎪⎩
−ai , j = i,

ai , j = i + 1,

0, otherwise,

(3.12)

is said to be a pure birth process with rates an, n ≥ 1. (In particular, the
Poisson process is a pure birth process with a constant rate.) We imagine a
population where, provided that the population size is i ≥ 1, a new member is
born after an exponential time with parameter ai ; no deaths are possible.

For such a Q, we have (λ − D)−1 (ξi )i≥1 =
(

ξi
λ+ai

)
i≥1

and in particular

(λ− D)−1ei = 1
λ+ai

ei . Also Oei = ai ei+1. Hence, Bλei = ai
λ+ai

ei+1 and so

Bn
λei =

(
i+n−1∏

k=i

ak

λ+ ak

)
en+i (3.13)

and ‖Bn
λei‖ = ∏i+n−1

k=i
ak
λ+ak

. Since ei , i ≥ 1, are linearly dense in l1 and
‖Bλ‖ ≤ 1, Bn

λ converges strongly to 0 as n → ∞ iff
∏∞

n=1
an
λ+an

= 0. By 2.4.6,

this last condition is equivalent to divergence of
∑∞

n=1
1

λ+an
for all λ > 0. In

particular,
∑∞

n=1 a−1
n < ∞ implies convergence of all these series and thus

explosiveness of Q. See Exercise 3.2.10 for a different proof of this result.
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3.2.3 Example

Let Q be the intensity matrix (2.53) of the second Kolmogorov–Kendall–
Reuter chain with −1 in the first row replaced by 0. The related chain may
be thought of as an example of a pure death-process: if we imagine that the
chain describes the size of a population, then the number of individuals in this
population cannot increase. Rather, given that the population size is i ≥ 3, after
an exponential time with parameter ai one individual dies. The states i = 1 and
i = 2 are absorbing.

We will show that this Q is nonexplosive and that the generator G of the
minimal semigroup is given by

G (ξi )i≥1 = (ai+1ξi+1 − aiξi )i≥1 , (3.14)

where, to recall, a2 = 0 and we agree, for simplicity of notations, that also
a1 = 0, on the domain

D(G) = {(ξi )i≥1 ∈ l1; (ai+1ξi+1 − aiξi )i≥1 ∈ l1 and lim
i→∞ aiξi = 0}.

(3.15)

For the first task, we note that (λ− D)−1 (ξi )i≥1 =
(

ξi
λ+ai

)
i≥1

, and that

Oe1 = Oe2 = 0 and Oei = ai ei−1, i ≥ 3. Therefore,

Bλe1 = Bλe2 = 0 and Bλei = ai

λ+ ai
ei−1, i ≥ 3.

It follows that Bn
λe1 = Bn

λe2 = 0, n ≥ 1 and Bn
λei = 0 for i ≥ 3 provided

that n ≥ i − 2. Since ei ’s are linearly dense, condition (b) of 3.2.1 is met: Q is
nonexplosive.

For the sake of the proof of the second part, let G ′ be the operator defined
by (3.14) and (3.15). We note that for x = (ξi )i≥1 ∈ D(G ′),

ΣG ′x = lim
i→∞

i−1∑
j=1

(a j+1ξ j+1 − a jξ j ) = lim
i→∞ aiξi = 0.

This can be used to show that G ′ is closed. For, suppose that xn ∈ D(G ′)
are such that the limits x := limn→∞ xn and y := limn→∞ G ′xn exist, and
let x = (ξi )i≥1. Since convergence in the norm of l1 implies convergence of
coordinates, we must have y = (ai+1ξi+1 − aiξi )i≥1, implying that the first
condition characterizing members of D(G ′) is satisfied by (ξi )i≥1 . Also, as
we have just seen, ΣG ′xn = 0, and thus

lim
i→∞ aiξi = lim

i→∞

i−1∑
j=1

(a j+1ξ j+1 − a jξ j ) = Σy = Σ lim
n→∞ G ′xn = 0,
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because Σ is a continuous functional. It follows that the second condition is
satisfied also, and so x belongs to D(G ′) and G ′x = y. We have proved that
G ′ is closed.

Moreover, G ′ extends D + O , the latter operator being defined by the same
formula on the domain where

∑∞
i=1 |aiξi | < ∞. Hence, G ′ ⊃ D + O. On the

other hand, since Q is nonexplosive, G = D + O (see point (g) in 3.2.1).
Since we set out to prove that G = G ′, we are left with showing that for any

x = (ξi )i≥1 ∈ D(G ′), there are xn ∈ D(D + O) such that limn→∞ xn = x and
limn→∞(D + O)xn = G ′x . To this end, let xn = (ξ1, ξ2, . . . , ξn, 0, 0, . . . ).
Clearly, limn→∞ xn = x . Also, (D + O)xn and G ′x differ by an+1ξn+1 on
the nth coordinate and by ai+1ξi+1 − aiξi on the i th coordinate where i ≥
n + 1. Hence, ‖G ′x − (D + O)xn‖ = |an+1ξn+1| +∑∞

i=n+1 |ai+1ξi+1 − aiξi |
converges to 0, as n → ∞.

Notably, we have checked that G is a generator without checking the range
condition, that is, the second condition in the Hille–Yosida Theorem. This was
possible, because Kato’s Theorem is a kind of generation theorem.

3.2.4 Example

(See [77, 85].) Let d, r > 0. Consider the Kolmogorov matrix Q = (qi, j
)

i, j≥1
given by

qi, j =

⎧⎪⎪⎨⎪⎪⎩
(i − 1)r, j = i − 1, i ≥ 2,

−(i − 1)r − (i + 1)d, j = i, i ≥ 1,

(i + 1)d, j = i + 1, i ≥ 1,

and 0 otherwise. To show that Q is nonexplosive, we check that condition (f)
of Section 3.2.1 is satisfied. The equation Q (αi )i≥1 = λ (αi )i≥1 considered
there may be rewritten as

(i − 1)rαi−1 − [(i − 1)r + (i + 1)d]αi + (i + 1)dαi+1 = λαi , i ≥ 1,

where we put α0 = 0. Then αi+1 =
[
1 + (i−1)r+λ

(i+1)d

]
αi − i−1

i+1
r
d αi−1, or

αi+1 − αi = (i − 1)r + λ

(i + 1)d
αi − i − 1

i + 1

r

d
αi−1. (3.16)

Note that, if αi > 0 for some i ≥ 1, then αi+1 − αi >
i−1
i+1

r
d (αi − αi−1) .

Hence, by induction argument, if α1 > 0 then αi+1 − αi > 0 and αi > 0
for all i ≥ 1. Therefore, by (3.16) again, αi+1 − αi ≥ λ

(i+1)d αi or αi+1 ≥[
1 + λ

(i+1)d

]
αi resulting in αn ≥ α1

∏n
i=2

(
1 + λ

id

)
, n ≥ 1.
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Hence, if α1 > 0, the limit limn→∞ αn exists and is no smaller than∏∞
i=2

(
1 + λ

id

)
α1 =

(∏∞
i=2

id
id+λ
)−1 = ∞ (see Criterion 2.4.6). Since this

contradicts (αi )i≥1 ∈ l∞, we must have α1 ≤ 0. But, we may not have α1 < 0
for then (βi )i≥1 = − (αi )i≥1 ∈ l∞ would satisfy Q (βi )i≥1 = λ (βi )i≥1 while
having its first coordinate positive, which we know is impossible. Thus, α1 = 0
and an induction argument based on (3.16) shows that αi = 0 for all i ≥ 1.

3.2.5 Example

Given a, b > 0, consider the following Kolmogorov matrix:

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 · · ·
a + b −d b 0 0 0 · · ·

a a + 2b −2d 2b 0 0 · · ·
a a a + 3b −3d 3b 0 · · ·
a a a a + 4b −4d 4b · · ·
...

...
...

. . .
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.17)

where d = a+2b. This matrix describes a particular case of a chain used by R.
Durrett and S. Kruglyak in [33] to model life history of so-called microsatel-
lites, that is, sequences of DNA, which involve periodic repetition of motifs
of length of two to six DNA base pairs: the state of the chain is the number
of such repeats. (For reasons explained in [18], we have, however, slightly
modified the first row of Q.) The part of Q built with b is a reflection of pos-
sibility of polymerase slippage during replication which results in shortening
or extending the number of repeats in the microsatellite by 1; in a microsatel-
lite with i repeats such slippage may occur at i − 1 sites. The part of Q built
with a corresponds to breakdown events that can occur between any repeats,
cutting the microsatellite into two parts; one randomly chosen fragment is then
considered the continuation of the microsatellite.

We will check that Q is nonexplosive. To see this, given λ > 0, consider
a solution (αi )i≥1 to the system λ (αi )i≥1 = Q (αi )i≥1 , which in coordinates
reads:

λαi = a
i−1∑
j=1

α j +(i −1)bαi−1−(i −1)dαi +(i −1)bαi+1, i ≥ 1, (3.18)

where, by convention,
∑0

j=1 = 0. In particular, α1 = 0. We will use induction
argument to show that, if α2 ≥ 0, then

αi ≥
(

1 + μ

i − 1

)
αi−1, i ≥ 3, (3.19)
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where μ = λ/b. For i = 3 this is clear, because the second equation in (3.18)
says that bα3 = (d + λ)α2. Also, if (3.19) is true for all indices up to some i ,
then we have also α j ≤ αi for j = 1, . . . , i and thus the i th equation in (3.18)
says that λαi ≤ (a + b)(i − 1)αi − (i − 1)dαi + (i − 1)bαi+1 implying (3.19)
with i replaced by i + 1, and completing the proof.

Relation (3.19) in turn shows that

αi ≥ α2∏i−2
j=2(1 − μ

i−1 )
, i ≥ 2.

Now, by 2.4.6, limi→∞
∏i−2

j=2(1 − μ
i−1 ) = 0 because

∑∞
i=2

μ
i−1 = ∞. Thus,

(αi )i≥1 is unbounded if α2 > 0, and arguing as in the previous example, we
see that α2 < 0 is also impossible. Thus α2 = 0, and the induction argument
based on (3.18) shows that (αi )i≥1 = 0.

3.2.6 Example

We will show that Q given by2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 . . .

1 −(1 + 14) 14 0 0 0 0 0 . . .

2 1 −(3 + 24) 24 0 0 0 0 . . .

3 2 1 −(6 + 34) 34 0 0 0 . . .
...

...
...

...
. . .

. . .
...

...

i (i − 1) (i − 2) . . . 1 −
(

i(i+1)
2 + i4

)
i4 0 . . .

...
...

...
...

...
...

...
...

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
is explosive: there is an a = (αi )i≥1 ∈ l∞ such that Qa = a. Indeed, the latter
equation is satisfied iff α1 = 0 and

i−1∑
j=1

(i − j)α j −
(

i(i − 1)

2
+ (i − 1)4

)
αi + (i − 1)4αi+1 = αi , i ≥ 2;

we will show that choosing α2 > 0 and defining the rest of the sequence by
the recursion

(i − 1)4αi+1 =
(

1 + i(i − 1)

2
+ (i − 1)4

)
αi −

i−1∑
j=1

(i − j)α j , i ≥ 2,

(3.20)
leads to a bounded and nondecreasing solution to this system.

2 I am grateful to R. Rudnicki for his help in constructing this example.
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If α1 ≤ α2 ≤ · · · ≤ αi , then
(

since
∑i−1

j=1(i − j) =∑i−1
j=1 j = i(i−1)

2

)
(i − 1)4αi+1 ≥ (1 + (i − 1)4)αi ,

proving that αi+1 > αi . It follows that (αi )i≥1 is nondecreasing and in
particular positive. Now (3.20) shows that

(i − 1)4αi+1 ≤
(

1 + i(i − 1)

2
+ (i − 1)4

)
αi ≤

(
2(i − 1)2 + (i − 1)4

)
αi

and thus αi+1 ≤
(

1 + 2
(i−1)2

)
αi , i ≥ 2, implying

lim
i→∞αi ≤ α2

∞∏
i=2

βi ,

where βi = 1 + 2
(i−1)2

. Since β−1
i ∈ (0, 1) and

∞∑
i=2

(1 − β−1
i ) =

∞∑
i=2

2
(i−1)2

1 + 2
(i−1)2

≤
∞∑

i=2

2

(i − 1)2
< ∞,

by Criterion 2.4.6,
∏∞

i=2 β
−1
i exists and is nonzero. Hence,

∏∞
i=2 βi is finite,

and we are done.

3.2.7 Example

Let Q be the intensity matrix with the first row equal to (−6, 6, 0, . . . ) and the
i th row of the form

(0, . . . , 3i ,−3 · 3i , 2 · 3i , 0, . . . ), i ≥ 2.

The related chain is an example of a birth and death process: we imagine that
the chain describes the number of individuals in a population where both deaths
and births are possible. If the population size is i ≥ 2, the time to the next
birth/death event is exponential with parameter 3 · 3i : when this time is over,
one member of the population dies, with probability 1

3 , or a new member is
born, with probability 2/3. If there is only one member in the population, death
is impossible, and a birth occurs after an exponential time with parameter 6.

In this example, the operator D + O is given by (D + O) (ξi )i≥1 = (ηi )i≥1,
where

η1 = 9ξ2 − 6ξ1,

ηi = 3i−1(9ξi+1 − 9ξi + 2ξi−1), i ≥ 2,

on the domain D(D) equal to the set of all (ξi )i≥1 such that
∑∞

i=1 3i |ξi | <
∞. As the reader might recall, in Sections 2.4.12–2.4.16 we have proved that
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the operator A formally given by the same formula, but defined on the larger
domain where

∑∞
i=1 3i |3ξi − ξi−1| < ∞, is a sub-Markov generator. By 3.1.5,

the semigroup generated by A dominates the minimal semigroup:3

S(t) ≤ et A.

But (see Section 2.4.11 and Exercise 2.4.18) there are nonnegative x’s in D(A)
such that ΣAx < 0 and this implies that Σλ (λ− A)−1 x < Σx . This in turn
implies that we cannot have Σet Ax = Σx, t ≥ 0. Since et A dominates S(t), for
such x neither can we have ΣS(t)x = Σx, t ≥ 0. This shows that {S(t), t ≥ 0}
is not a Markov semigroup; the matrix Q is explosive.

3.2.8 Exercise

For a sequence (an)n≥1 of positive numbers such that limn→∞ an = ∞, let Q
be the Kolmogorov matrix which

● in the first row has zeros,
● in the i th row: has ai in the first and (i + 1)st columns, and −2ai in the i th

column.

The related Markov chain after appropriate exponential time spent at a state
i ≥ 2, jumps either to i + 1 or to 1, both jump probabilities being equal. Show
that Q is nonexplosive even if

∑∞
i=1 a−1

i < ∞.

3.2.9 Exercise

Arguing as in 2.4.8 and 2.4.9 show that the resolvent of the generator G of
(3.14) and (3.15) is given by (λ− G)−1 (ηi )i≥1 = (ξi )i≥1 where ξ1 = λ−1η1

and ξi = 1
λ+ai

∑∞
j=i

(∏
i<k≤ j

ak
λ+ak

)
η j , i ≥ 2. Note also that (a) this formula

agrees with (λ− G)−1 =∑∞
n=0(λ− D)−1 Bn

λ (see (3.5)), and (b) in agreement
with our intuition, the factor 1

λ+ai

∏
i<k≤ j

ak
λ+ak

is the Laplace transform of the
probability that a population of size j has decreased to the size of i (cf. Section
2.7.5).

3.2.10 Exercise

Using the fact that the operator A of Section 2.4.10 is a sub-Markov genera-
tor, and arguing as in the latter part of Example 3.2.7, prove that a pure birth
Markov chain with

∑∞
n=1 a−1

n < ∞ is explosive.

3 In Section 3.4.4, we will see that {et A, t ≥ 0} in fact coincides with {S(t), t ≥ 0}.
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Figure 3.1 Zeno’s paradox by Radek Bobrowski.

3.3 Pure Birth Process Example

Probabilistically, the reason why there are in general many semigroups related
to a given Q-matrix may be explained as follows. Let us recall from Section
2.5 that if X (t), t ≥ 0 is a Markov chain, with right-continuous paths, related
to Q, then given that X (t) = i , the chain waits in this state for an exponential
time with parameter qi = −qi,i and then jumps to one of the other states, the
probability of jumping to j �= i being qi, j/qi (if qi = 0 the process stays at
i for ever). It is important to note that in general such a procedure defines the
process only locally in time. In other words, the process may be left undefined
after a certain random time τ, called explosion. This process, undefined after
explosion, is termed minimal, and the minimal semigroup of Kato’s Theorem
describes this process.

The situation is quite analogous to the description of Achilles (A) chasing
a Tortoise (T ) in Zeno’s paradox. A runs after T , who escapes with speed
vT = qvA, where q ∈ (0, 1), and vA is the speed of Achilles. Before, however,
A reaches T , he must pass through the point where T had been initially. If the
initial distance was d, then in the meantime, T has moved an extra distance
dq away. So, the procedure must be repeated with new, though smaller, initial
distance between the competitors, and so on, ad infinitum, forevermore. If we
believe that this procedure defines the chase for all times t ≥ 0, we need also
to admit that A will never catch T . This is of course not the case: at time
τ = d

vA(1−q) the chase will be over.
This situation is also well illustrated by the pure birth process of Section

3.2.2. If the process starts at 1, then after exponential time T1 with parameter
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a1 it will be at 2, and after exponential time T2 with parameter a2 it will be at
3, and so on. Let

τ =
∞∑

n=1

Tn . (3.21)

Is τ finite or infinite? If
∑∞

n=1 a−1
n = ∞, then P{τ = ∞} = 1, and in

the other case, P{τ < ∞} = 1. Indeed, if the series converges, we may
not have P{τ = ∞} > 0, as this would imply E τ = ∞, while we have
E τ =∑∞

n=1 E Tn =∑∞
n=1 a−1

n < ∞. Conversely, if the series diverges, then
so do the series

∑∞
n=1(λ + an)

−1, and, as we have seen in 3.2.2, we have, for
any λ > 0,

∏∞
n=1

an
λ+an

= 0. Hence,

E e−λτ =
∞∏

n=1

E e−λTn =
∞∏

n=1

an

λ+ an
= 0,

showing that P{τ = ∞} = 1.
This means that, provided

∑∞
n=1 a−1

n < ∞, after the (random) time τ, the
process is left undefined. In other words, at any time t > 0 some paths of
the process may no longer be defined (namely, the paths X (t, ω) such that
τ(ω) < t), and we observe only some of them – hence the probability that
the process is somewhere in N may be (and is) strictly less than 1. The transi-
tion probabilities of the process described above form the minimal semigroup
defined in 3.1.4.

Now, we may introduce an additional rule for the behavior of the process
after τ ; for example, we may require that at τ it jumps back to 1 and does the
same for all subsequent explosions. Or, we could require that at τ the process
starts at a random point of N with a priori prescribed distribution. All choices
of distributions lead then to different processes and different semigroups – all
of them, however, have transition semigroups dominating the minimal tran-
sition semigroup. Similarly, in Zeno’s paradox, Achilles’s strategy to run as
swiftly as he can to the place where he saw the Tortoise last, may be supple-
mented with a rule telling him for example, to stay back, after catching the
Tortoise, wait until the Tortoise is at the distance d away, and then start the
chase again. Such a race would last forevermore, indeed.

The main goal of this section is constructing two different semigroups
related to the explosive Kolmogorov matrix of the pure birth process; in the first
of them, after the explosion the process returns to i = 1 (see Sections 3.3.3–
3.3.6), and in the second it returns to i = 2 (Sections 3.3.7–3.3.8). We will
be able to describe the generators of the related semigroups quite explicitly,
and thus illustrate the fact that D + O of Kato’s Theorem may have different
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Figure 3.2 Postexplosion process by Daniel Lipiński.

extensions being generators of Markov semigroups. In fact, we will be able
to derive the form of these generators from an intuitive approximation. The
intuitions gathered here will then be used in Section 3.5, where an infinity of
semigroups dominating the minimal one will be explicitly constructed.

In what follows we always assume that

∞∑
n=1

a−1
n < ∞. (3.22)

3.3.1 Remark

Condition (f) of 3.2.1 has a nice probabilistic interpretation related to τ of
(3.21): the vector a = (αn)n≥1, where

αn = E {e−λτ |X (0) = n}
solves the equation Qa = λa. Moreover, it is maximal in the sense that if
Q
(
α′

n

)
n≥1 = λ

(
α′

n

)
n≥1 for some

(
α′

n

)
n≥1 ∈ l∞ with ‖ (α′

n

)
n≥1 ‖l∞ ≤ 1, then

α′
n ≤ αn – see, for example, [72], p. 91. Certainly a �= 0 iff τ �= ∞.

In the pure birth chain’s case, equation Qa = λa reads in coordinates:

(λ+ ai )αi = aiαi+1,
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and it is easy to see that all its solutions are of the form

αi =
⎛⎝i−1∏

j=1

λ+ a j

a j

⎞⎠α1 =
⎛⎝i−1∏

j=1

a j

λ+ a j

⎞⎠−1

α1, i ≥ 2, (3.23)

where α1 is arbitrary. These solutions are bounded since the infinite product∏∞
j=1

a j
λ+a j

exists and differs from 0. On the other hand, for the process starting
at 1, since Tn’s are independent, and the series (3.21) converges,

E e−λτ =
∞∏
j=1

∫ ∞

0
a j e

−(λ+a j )t dt =
∞∏
j=1

a j

λ+ a j
.

Similarly, for the process starting at i ,

E e−λτ =
∞∏
j=i

∫ ∞

0
a j e

−(λ+a j )t dt =
∞∏
j=i

a j

λ+ a j
.

Thus, the maximal solution is of the form (3.23) with α1 =∏∞
j=1

a j
λ+a j

.

3.3.2 The generator of the minimal semigroup

In the pure birth process example, the generator of the minimal semigroup of
Kato’s Theorem may be described explicitly. To recall, the resolvent of this
generator is given by formula (3.5), which we expand here as follows:

Rλ =
∞∑

n=0

(λ− D)−1
[

O (λ− D)−1
]n
.

Now, (3.13) implies (recall notation (3.4)) that, for any (ηi )i≥1 ∈ l1, the i th
coordinate of Rλ (ηi )i≥1 equals

ξi = 1

λ+ ai

(
ηi + ai−1

λ+ ai−1
ηi−1 + · · · + πi−1η1

)
= πi−1

λ+ ai

i∑
j=1

η j

π j−1
, (3.24)

where π j =∏ j
k=1

ak
λ+ak

, j ≥ 1 and π0 = 1.

We note in passing that 1
λ+ai

is the Laplace transform of t �→ e−ai t and
e−ai t is the probability that the pure birth process starting at i has not left this
state before time t ; similarly, 1

λ+ai

ai−1
λ+ai−1

is the Laplace transform of

t �→ ai−1

∫ t

0
e−ai (t−s)e−ai−1s ds,
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and the last integral is the probability that in the time interval [0, t], the process
starting at i − 1 has jumped from this state to i , but has not left i yet, and so
on. Hence, (3.24) is the Laplace transform of the probability that the minimal
pure birth chain starting at a random position j with probability η j will be at i
at time t .

On the other hand, formula (3.24) is identical to (2.36). This means that
Rλ = (λ− A)−1 where A is the operator defined at the beginning of Section
2.4.10, and this is possible only if G coincides with that operator. In other
words,

D(G) = {(ξi )i≥1 ;
∑
i≥1

|ai−1ξi−1 − aiξi | < ∞} (3.25)

and

G (ξi )i≥1 = (ai−1ξi−1 − aiξi )i≥1 ,

where, as before, we agree that a0ξ0 is 0.
In the rest of this section we take a closer look at two modifications of G

that generate Markov semigroups in l1. G describes the process which is left
undefined after explosion; in our first example below we will deal with the
process which after explosion returns immediately to i = 1.

3.3.3 Return to i = 1 after explosion: Intuition

For n ≥ 2, let An be the bounded linear operator represented by the
Kolmogorov matrix whose upper left corner is⎛⎜⎜⎜⎜⎜⎜⎜⎝

−a1 a1 0 0 · · · 0 0

0 −a2 a2 0 · · · 0 0
...

...
. . .

. . . · · · an−2 0

0 0 0 0 · · · −an−1 an−1

an 0 0 0 · · · 0 −an

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (3.26)

and has remaining entries equal to 0. The related (right-continuous-paths)
Markov chain starting at i = 1 goes gradually ‘down the ladder’ to jump from
its lowest rung i = n back to i = 1; all the states i ≥ n + 1 are absorbing. In
the limit, as n → ∞, the number of rungs in the ladder increases, but because
of (3.22) the limit process should be able to reach the very bottom in finite time
(which is the time of explosion) and then immediately come back to i = 1. In
what follows we will formally prove convergence of the related semigroups
and show that the generator of the limit Markov semigroup extends D + O
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(cf. Section 3.1.5), and is a modification of G, the generator of the minimal
semigroup.

3.3.4 Return to i = 1 after explosion: Approximating resolvents

As in Section 2.6.2, we come to the conclusion that An is a Markov generator.
In coordinates, the resolvent equation

λ (ξi )i≥1 − An (ξi )i≥1 = (ηi )i≥1

reads

(λ+ a1)ξ1 − anξn = η1,

(λ+ ai )ξi − ai−1ξi−1 = ηi , i = 2, . . . , n, (3.27)

λξi = ηi , i ≥ n + 1,

and, as some amount of linear algebra shows (see Exercise 3.3.10), its unique
solution is

ξ1 = 1

λ+ a1

⎡⎣η1 + πn

1 − πn

n∑
j=1

η j

π j−1

⎤⎦ ,
ξi = λ−1ηi , i ≥ n + 1, (3.28)

where, as before, πi =∏i
j=1

a j
λ+a j

, with the remaining ξi ’s given recursively:

ξi = ai−1

λ+ ai
ξi−1 + 1

λ+ ai
ηi , i = 2, . . . , n. (3.29)

3.3.5 Return to i = 1 after explosion: The limit resolvent

As n tends to infinity, ξ1 of (3.28) (which is in fact ξ1(n)) converges to

ξ1 = 1

λ+ a1

⎡⎣η1 + π∞
1 − π∞

∞∑
j=1

η j

π j−1

⎤⎦ , (3.30)

where π∞ = limn→∞ πn = ∏∞
j=1

a j
λ+a j

. (Because πi → π∞ �= 0, the series

featuring here converges since so does
∑∞

i=1 |ηi |.) An induction argument then
shows that the remaining coordinates converge to ξi ’s given recursively as
follows:

ξi = ai−1

λ+ ai
ξi−1 + 1

λ+ ai
ηi , i ≥ 2 (3.31)
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(note that this formula differs from (3.29) in the range of i’s to which it
applies), so that

ξi = (λ+ a1)
πi−1

λ+ ai
ξ1 + πi−1

λ+ ai

i∑
j=2

η j

π j−1
,

= πi−1

λ+ ai

⎡⎣ i∑
j=1

η j

π j−1
+ π∞

1 − π∞

∞∑
j=1

η j

π j−1

⎤⎦ , i ≥ 2. (3.32)

What we have just established is but a mere coordinate-wise convergence.
By Scheffé’s Theorem 1.6.1, to prove strong convergence we need to check
that the limiting (ξi )i≥1 when multiplied by λ is a density, provided

(
η j
)

j≥1
is a density. (It is clear that ξi ’s are nonnegative if so are the ηi ’s.) For this we
note the following relation which may be checked by induction argument (see
also Exercise 3.3.11),

λ

n∑
i=1

πi−1

λ+ ai
= 1 − πn, (3.33)

and its two immediate consequences: λ
∑n

i= j
πi−1
λ+ai

= π j−1 − πn and

λ

∞∑
i= j

πi−1

λ+ ai
= π j−1 − π∞, j ≥ 1. (3.34)

Therefore, noting that (3.30) extends (3.32) to i = 1, summing over i ≥ 1 and
changing the order of summation in the resulting double sums, we see that

λ

∞∑
i=1

ξi =
∞∑
j=1

η j

π j−1
λ

∞∑
i= j

πi−1

λ+ ai
+ π∞

1 − π∞

∞∑
j=1

η j

π j−1
λ

∞∑
i=1

πi−1

λ+ ai

=
∞∑
j=1

η j

π j−1
(π j−1 − π∞)+ π∞

1 − π∞

∞∑
j=1

η j

π j−1
(1 − π∞) =

∞∑
i=1

ηi .

This establishes convergence of the resolvents (λ− An)
−1 , n ≥ 1.

3.3.6 Return to i = 1 after explosion: The limit semigroup

By the Trotter–Kato Theorem 1.4.2, our analysis shows that the semigroups
generated by An’s converge to a limit semigroup, defined perhaps on a sub-
space of l1. We will show that this semigroup is in fact defined on the entire l1

and that its generator extends D + O .
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Let G1 be the operator defined on the domain D(G1) equal to D(G) of
(3.25) by the formula G1 (ξi )i≥1 = (ηi )i≥1, where

η1 = −a1ξ1 + h, ηi = −aiξi + ai−1ξi−1, i ≥ 2. (3.35)

Here h := limn→∞ anξn exists since absolute convergence of the series from
the definition of D(G1) implies this series’s convergence.

This definition implies that An (ξi )i≥1 differs from G1 (ξi )i≥1 by anξn − h
in the first coordinate, and is the same at coordinates i = 2, . . . , n. It follows
that

‖An (ξi )i≥1 − G1 (ξi )i≥1 ‖ = |anξn − h| +
∞∑

i=n+1

|aiξi − ai−1ξi−1|.

Since this converges to 0, as n → ∞, the extended limit of An’s extends G1.
Moreover, D(G1) is dense in l1, implying that so is the domain of the extended
limit. Therefore, by the Sova–Kurtz version of the Trotter–Kato Theorem 1.4.3,
the limit semigroup is defined on the whole of l1. Moreover, its generator,
being equal to the extended limit of An’s, extends G1. On the other hand, by
(1.25), each member of the domain of the generator is of the form (3.30)–
(3.31) for some (ηi )i≥1 ∈ l1. Then, (3.31) implies that (aiξi − ai−1ξi−1)i≥1 is
the difference of two members of l1: (ηi )n≥1 and λ (ξi )i≥1. Thus, it is a member
of l1 and (ξi )i≥1 is a member of D(G1). This proves that the generator of the
limit semigroup is G1.

Finally, the domain of D + O is

D(D + O) = D(D) = {(ξi )i≥1 ∈ l1; (aiξi )i≥1 ∈ l1},
and for (ξi )i≥1 in D(D + O),

(D + O) (ξi )i≥1 = (−aiξi + ai−1ξi−1)i≥1 ,

where for notational convenience we agree that a0ξ0 = 0. Clearly, D(D +
O) ⊂ D(G1). Moreover, G1 (ξi )i≥1 and (D + O) (ξi )i≥1 differ only in the
first coordinate, the first coordinate of G1 (ξi )i≥1 being −a1ξ1 + h and the first
coordinate of (D+O) (ξi )i≥1 being −a1ξ1. However, for (ξi )i≥1 ∈ D(D+O),
h = limn→∞ anξn = 0. It follows that G1 extends D + O . In particular,
the semigroup generated by G1 dominates the minimal semigroup of Kato’s
Theorem.

To summarize, the operator G1 defined in (3.25)–(3.35) is the generator of
a Markov semigroup related to the process in which a pure birth Markov chain
after each explosion returns to the state i = 1. In agreement with Kato’s The-
orem, G1 was shown to extend D + O. We also note the following relation
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between G, the generator of the minimal semigroup, and G1: their domains
coincide, and for x = (ξi )i≥1 ∈ D(G) = D(G1),

G1x = Gx + h(x)e1, (3.36)

where

h(x) = lim
n→∞ anξn

is well defined on D(G).

3.3.7 Return to i = 2 after explosion: Construction

The semigroup describing the pure birth Markov process returning to i = 1
after explosion, constructed in the previous sections, can be used as a building
block for the semigroup describing this chain’s return to i = 2. Here are the
steps one needs to take.

(i) First, we construct the semigroup describing return to i = 1 for the shifted
sequence an, n ≥ 1, that is, for a′

n := an+1. We call this semigroup
{T (t), t ≥ 0} and denote its generator G ′

1.
(ii) The subspace l� ⊂ l1 composed of (ξi )i≥1 with ξ1 = 0 is isometrically

isomorphic to l1 with isomorphism I : l� → l1 being the shift to the
left: I (ξi )i≥1 = (ξi+1)i≥1 . The formula T �(t) = I −1T (t)I defines the
isomorphic image of {T (t), t ≥ 0} in l�. The generator of this semigroup
is G�

1 = I −1G ′
1 I with domain I −1D(G ′

1); see Section 1.1.10.
(iii) Let G2 be the operator in l1 with domain composed of vectors of the form

ξ1e1 + x where ξ1 ∈ R and x ∈ D(G�
1) ⊂ l�, defined as

G2(ξ1e1 + x) = −a1ξ1e1 + a1ξ1e2 + G�
1 x .

G2 is the generator of the semigroup we wanted to construct.

Intuitively, the semigroup {T (t), t ≥ 0} describes the process returning to i =
1, but the intensity of escaping from i ≥ 2 is that belonging to the state i + 1.
By shifting in step (ii) we make intensities right and at the same time force
the process to return to i = 2 after explosion. However, this does not provide
the rules of behavior for the process starting at i = 1, so we fill this gap in
step (iii).
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3.3.8 Return to i = 2 after explosion: Analysis

First of all, G2 is a Markov generator. For, in solving its resolvent equation we
are searching for ξ1 ∈ R and x ∈ D(G�

1) ⊂ l� such that

λ(ξ1e1 + x)+ a1ξ1e1 − a1ξ1e2 − G�
1 x = y

where λ > 0 and y = (ηi )i≥1 ∈ l1 are given. Since G�
1 x ∈ l�, this task comes

down to solving

(λ+ a1)ξ1e1 = η1e1 and λx − G�
1 x = y� + a1ξ1e2,

where y� := y − η1e1 ∈ l�. This system has the unique solution:

ξ1 = η1

λ+ a1
and x = (λ− G�

1

)−1
(y� + a1ξ1e2), (3.37)

and it is clear that this solution is nonnegative provided y is nonnegative (since(
λ− G�

1

)−1 is a positive operator). Since D(G2) is clearly dense in l1 and
ΣG2(ξ1e1 + x) = 0 +ΣG�

1 x = 0, all conditions of the Hille–Yosida Theorem
2.4.3 are satisfied, proving the claim.

Here is a more detailed description of G2: we have

G ′
1 (ξi )i≥1 = (−a2ξ1 + lim

n→∞ an+1ξn, a2ξ1 − a3ξ2, a3ξ2 − a4ξ3, . . . )

provided
∑∞

i=1 |aiξi−1 − ai+1ξi | < ∞; (ξ0 := 0). Hence, under the same
condition,

G�
1(0, ξ2, ξ3, . . . ) = I −1G ′

1(ξ2, ξ3, . . . )

= I −1 (−a2ξ2 + h, a2ξ2 − a3ξ3, a3ξ3 − a4ξ4, . . . )

= (0,−a2ξ2 + h, a2ξ2 − a3ξ3, a3ξ3 − a4ξ4, . . . )

where, as before, h = h (ξi )i≥1 = limn→∞ anξn . It follows that D(G2) =
D(G) and

G2(ξ1, ξ2, . . . ) = −a1ξ1e1 + a1ξ1e2 + G�
1(0, ξ2, ξ3, . . . )

= (−a1ξ1, a1ξ1 − a2ξ2 + h, a2ξ2 − a3ξ3, . . . ) . (3.38)

In other words,

G2x = Gx + h(x)e2, x ∈ D(G). (3.39)

As in 3.3.6, we argue that G2 extends D + O . The definitions of G2x and
(D + O)x differ in the second coordinate. The domain of D + O is a subset
of D(G2) = D(G) and on this subset the term h = h(x), by which these
coordinates differ is 0.



3.3 Pure Birth Process Example 115

Finally, the semigroups generated by G1 (of Section 3.3.6) and by G2

do not coincide. This is clear since they have different generators, but may
also be seen from (3.30) and (3.37). Indeed, (3.30) shows that the upper
left entry in the matrix representing the resolvent of the former semigroup
is 1

1−π∞
1

λ+a1
, whereas the same entry in the matrix representing the resol-

vent of G2 is, by (3.37), equal to 1
λ+a1

. The former is larger than the latter.
This is because in 3.3.6, with nonzero probability the process after leaving
i = 1 returns there. This possibility is ruled out in the process governed by G2,
and 1

λ+a1
is the Laplace transform of the probability that the process is ‘still

at i = 1.’

3.3.9 Exercise

Given sequences (cn)n≥1 , (dn)n≥1, and (ηn)n≥1, consider the recurrence

ξn+1 = cnξn + dnηn, n ≥ 1.

Check to see that this recurrence has infinitely many solutions, each of them
of the form ξ1 = p,

ξn =
(

n−1∏
i=1

ci

)
p +

n−1∑
i=1

⎛⎝ n−1∏
j=i+1

c j

⎞⎠ diηi , n ≥ 2,

where p is a parameter.

3.3.10 Exercise

Check that equations in the second line of (3.27) imply that

ξi = (λ+ a1)
πi−1

λ+ ai
ξ1 + πi−1

λ+ ai

i∑
j=2

η j

π j−1
, i = 2, . . . , n, (3.40)

and then deduce the formula for ξ1 given in (3.28) from the first line in
(3.27).

3.3.11 Exercise

(a) Prove (3.33) by direct induction argument. (b) The operator An from Sec-
tion 3.3.4 generates a Markov semigroup. Hence, Σλ (λ− An)

−1 e1 = 1. Use
this to deduce (3.33) from (3.40) and (3.28) .
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3.3.12 Exercise

Check to see that the norm of the operator (ηi )i≥1 �→ (ξi )i≥1 given by (3.24)
is (1 − π∞)λ−1.

3.3.13 Exercise

By modifying the construction of Sections 3.3.7 and 3.3.8, show that, for any
i ≥ 3, the operator

Gi x = Gx + h(x)ei , x ∈ D(G)
is a Markov generator; the related process after explosion starts all over again
from the state i .

3.4 On the Domain of the Minimal Semigroup Generator

Besides the issues already discussed, the examples of generators presented in
Section 3.3 clarify another important matter. To explain, given an intensity
matrix Q = (qi, j

)
i, j∈I

, let us define the domain of the related operator, say,

Q, to be the set of (ξi )i≥1 ∈ l1 such that the series
∑

j∈I
ξ j q j,i , i ∈ I converge

absolutely and

∑
i∈I

∣∣∣∣∣∣
∑
j∈I

ξ j qi, j

∣∣∣∣∣∣ < ∞,

and let Q be defined by the formula

Q(ξi )i∈I =
⎛⎝∑

j∈I

ξ j q j,i

⎞⎠
i∈I

. (3.41)

Intuitively, this operator is in a sense maximal, and Theorem 6.20 in [6] con-
firms this intuition. However, one may be tempted to think that Q is maximal
because it extends generators of all possible postexplosion processes or, put
otherwise, that to describe a particular postexplosion process, that is, to obtain
a generator, one needs to restrict this maximal operator to a smaller domain, as
was the case in the second Kolmogorov–Kendall–Reuter semigroup. In reality,
the situation is more complex.4

4 Interestingly, in the dual perspective of l∞, postexplosion processes are described precisely by
such restrictions of domains. See Sections 5.7 and 5.8.
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For, in the case of the pure birth process, D(Q) is composed of (ξi )i≥1 such
that
∑∞

i=1 |aiξi − ai−1ξi−1| < ∞, and thus coincides with the domain D(G)
of the generator of the minimal semigroup of Section 3.3.2; in fact Q is G.
Moreover, neither G1 or G2 are obtained by restricting the domain of Q = G,
but rather by modifying values of G on D(G) \ {x ∈ D(G);ΣGx = 0}.

As we will see later, the general rule is that discrete exit boundary does
not change the domain of Q but rather modifies the way this operator acts;
its points are expressed as additional terms accompanying the generator of
the minimal semigroup (see (3.92)). It is the entrance boundary that indeed
does restrict the domain of Q (see Section 4.4), and the second Kolmogorov–
Kendall–Reuter process involves an entrance boundary. Hence, when both an
entrance and exit boundary are faced, both the domain of Q and the way it acts
may be altered.

Needless to say, in general, the generator G of the minimal semigroup
need not coincide with Q. Our main goal in this section is to establish that
in the birth and death process example of Sections 2.4.11 and 3.2.7 all three
inclusions in the chain

D(D + O) ⊂ D(D + O) ⊂ D(G) ⊂ D(Q) (3.42)

are simultaneously proper. Before doing that, however, we note that the
pure birth process exemplifies the fact that the first two inclusions may be
simultaneously proper.

3.4.1 Inclusions (3.42) in the pure birth process

Since the pure birth process example is explosive, D + O �= G (see 3.2.1),
that is, the second inclusion in (3.42) is proper. We will make this statement
even more explicit by recalling that

D(D + O) = {(ξi )i≥1 ∈ l1;
∞∑

i=1

ai |ξi | < ∞} (3.43)

and showing that

D(D + O) = {(ξi )i≥1 ∈ D(G); lim
i→∞ aiξi = 0}, (3.44)

where D(G) is given by (3.25). The fact that D(D + O) is contained in the
set, say, D, on the right-hand side of (3.44) is a special case of (3.9) because,
by (3.25),

ΣGx = − lim
n→∞ anξn, x ∈ D(G). (3.45)



118 Boundary Theory: Core Results

To check the reverse inclusion, consider an x := (ξi )i≥1 ∈ D and let xn :=
(ξ1, . . . , ξn, 0, 0, . . . ), n ≥ 1. Then xn ∈ D(D + O) and limn→∞ xn = x .
Moreover, Gx and (D + O)xn differ by −an+1ξn+1 on the (n + 1)st coordi-
nate, and by ai−1ξi−1 − aiξi on the i th coordinate, where i ≥ n + 2. Thus
‖Gx − (D + O)xn‖ = |an+1ξn+1| + ∑∞

i=n+2 |ai−1ξi−1 − aiξi | converges
to zero, as n → ∞. This shows that x ∈ D(D + O), completing the proof
of (3.44).

It is now clear that D(D + O) is a proper subset of D(D + O) because∑
i≥1 |aiξi | < ∞ implies

∑
i≥1 |ai−1ξi−1 − aiξi | < ∞ and limi→∞ aiξi =

0, but not vice versa (take, e.g., ξi = 1
iai

). Similarly, D(D + O) is a proper
subset of D(G) because the functional defined on D(G) by (3.45) is non-zero:
condition

∑
i≥1 |ai−1ξi−1 −aiξi | < ∞ does not imply limi→∞ aiξi = 0 (take,

e.g., ξi := a−1
i

∑i
k=1

1
k2 ).

We turn to the case of the birth and death process of Sections 2.4.11 and
3.2.7. Our key to proving that all inclusions in (3.42) are proper in this case is
the fact that the generator A of Section 2.4.11 coincides with the generator of
the minimal semigroup. We establish this fact in Section 3.4.4; Sections 3.4.2
and 3.4.3 prepare a way for this proof.5

3.4.2 Q extends G

In the case of the birth and death process under consideration, it is rather clear
that Q extends G. For, here the domain D(D + O) = D(D) is composed of
(ξi )i≥1 such that

∞∑
i=1

3i |ξi | < ∞, (3.46)

and the i th coordinate of (D + r O) (ξi )i≥1 , where (ξi )i≥1 ∈ D(D), is 9rξ2 −
6ξ1 or 3i−1(9rξi+1 − 9ξi + 2rξi−1) depending on whether i = 1 or i ≥ 2.
Also, given any x ∈ D(G) and any sequence (rn)n≥1 converging to 1 from the
left, we may find xn ∈ D(D) such that limn→∞ xn = x and limn→∞(D +
rn O)xn = Gx . Combining this with the fact that convergence in norm implies
convergence of coordinates, we obtain that the i th coordinate of Gx is either
9ξ2 −6ξ1 (for i = 1) or 3i−1(9ξi+1 −9ξi +2ξi−1) (for i ≥ 2). This means that
Gx coincides with Qx for x ∈ D(G).

5 Sections 3.4.3–3.4.4 are based on the idea I owe to Jacek Banasiak; see also Lemma 7.16
in [6].
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3.4.3 Eigenvectors of Q

Let λ > 0. For every p ∈ R, there is precisely one solution (ρi )i≥1 to the
system

λρ1 = 9ρ2 − 6ρ1,

λρi = 3i+1ρi+1 − 3i+1ρi + 2 · 3i−1ρi−1, i ≥ 2, (3.47)

such that ρ1 = p. (This solution may, but need not be a member of l1.) For
p = 0 the solution is trivial. Also, if p ≥ 0 then

ρi >

(
4

9

)i−1

ρ1, i ≥ 1. (3.48)

The first two claims are clear: if ρ1 = p is given, then the first relation in
(3.47) determines ρ2, and the second implies that two consecutive coordinates
of (ρi )i≥1 determine the next coordinate. Also, for p = 0 all these coordinates
are seen to be zeros.

To show (3.48), it suffices to establish that

ρi >
4

9
ρi−1, i ≥ 2, (3.49)

and to this end, we use an induction argument. First of all, by the first equa-
tion in (3.47) it is obvious that (3.49) is true for i = 2. Next, suppose that this
inequality is true for all indices up to some i . Since this implies ρi > 0, the
second relation in (3.47) says that 9ρi+1 > 9ρi −2ρi−1. Thus, by the induction
assumption,

9ρi+1 > 9ρi − 2ρi−1 > 9ρi − 9

2
ρi > 4ρi .

It follows that (3.49) is true also when i is replaced by i + 1. This completes
our proof.

3.4.4 A = G

To establish that the operator A of Section 2.4.11 coincides with the mini-
mal semigroup generator, it suffices to show that for any λ > 0 and any
nonnegative y ∈ l1,

(ρi )i≥1 := (λ− A)−1 y − (λ− G)−1 y

is zero. From 3.2.7 we know that this vector is nonnegative. Moreover, since
(λ− A)−1 y and (λ− G)−1 y are solutions to the resolvent equations for A
and G, respectively, with the same right-hand side (equaling y), and since both
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A and G are restrictions of Q (for G this was proven above, for A it is obvious
by definition: cf. (3.50) and (2.37)), (ρi )i≥1 is a solution to the system (3.47).

Suppose that ρ1 > 0, and let (ξi )i≥1 = (λ− A)−1. Then (ξi )i≥1 =
(λ− G)−1 y + (ρi )i≥1 ≥ (ρi )i≥1, and, by (3.48),

3iξi > 3

(
4

3

)i−1

ρ1.

This, however, contradicts that fact that for (ξi )i≥1 ∈ D(A) the limit
limi→∞ 3iξi exists. It follows that the only choice we have is ρ1 = 0 and
this implies (ρi )i≥1 = 0, as desired.

3.4.5 All inclusions are proper

It is finally easy to see that in the birth and death example of Sections 2.4.11
and 3.2.7 all inclusions in (3.42) are proper. Indeed, the domain D(Q) of
the maximal operator Q related to the intensity matrix of the birth and death
process of Section 3.2.7 is the set of all (ξi )i≥1 such that

∞∑
i=2

3i−1|3(3ξi+1 − ξi )− 2(3ξi − ξi−1)| < ∞, (3.50)

and we have just proved that the domain D(G) of the generator of the minimal
semigroup is the set of all (ξi )i≥1 such that

∞∑
i=2

3i |3ξi − ξi−1| < ∞. (3.51)

Hence, D(G) is a proper subset of D(Q), because (3.51) implies (3.50) but not
vice versa. Indeed, for the sequence (ξi )i≥1 defined by the recurrence

ξi+1 = 1

3
ξi + 1

3i+1

(
2i − 1

2i

)
, i ≥ 1

with arbitrary ξ1, we have
∑∞

i=1 |3i+1ξi+1 − 3iξi | = ∑∞
i=1

(
2i − 1

2i

)
= ∞,

whereas

∞∑
i=1

|(3i+1ξi+1 − 3iξi )− 2(3iξi − 3i−1ξi−1)| =
∞∑

i=1

(
1

2i−2
− 1

2i

)
< ∞.

(The reader who, rightly, wonders if the (ξi )i≥1 considered here is a member
of l1, should consult Section 3.4.6.)
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To see that the other two inclusions in (3.42) are proper, it suffices to recall
that D(D + O) = D(D) is the set of (ξi )i≥1 satisfying (3.46), and prove that

D(D + O) = {(ξi )i≥1 ; (3.51) holds and lim
i→∞ 3iξi = 0}. (3.52)

Examples of elements of D(G)\D(D + O) and D(D + O)\D(D + O)may
be constructed as in 3.4.1.

The proof of (3.52) also follows the lines of 3.4.1. Since, as shown in 2.4.11,
ΣG (ξi )i≥1 = − limi→∞ 3iξi , (ξi )i≥1 ∈ D(G), the fact that D(D + O) is
contained in the right-hand side of (3.52) is a special case of inclusion (3.9).
Conversely, given any x = (ξi )i≥1 satisfying (3.51) and limi→∞ 3iξi = 0,
there are xn ∈ D(D) such that limn→∞ xn = x and limn→∞(D+ O)xn = Gx .
Indeed, take xn = (ξ1, . . . , ξn, 0, 0, . . . ), n ≥ 1. Clearly, xn ∈ D(D + O) and
limn→∞ xn = x . Moreover, for n ≥ 2, (D + O)xn and Gx are the same at the
first n − 1 coordinates, and differ by (a) 3n+1ξn+1 on the nth coordinate (b)
3n+2ξn+2 −3n+2ξn+1 on the (n +1)-st coordinate, and (c) 3k−1(9ξk+1 −9ξk +
2ξk−1) on the kth coordinate as long as k ≥ n + 2. It follows that

‖(D + O)xn − Gx‖ ≤ 3n+1|ξn+1| + 3n+2|ξn+2| + 3 · 3n+1|ξn+1|

+
∞∑

k=n+2

3k−1|9ξk+1 − 9ξk + 2ξk−1|.

Since the right-hand side here converges to 0, as n → ∞, we are done.

3.4.6 A clarification on D(Q)
Is it clear that the set of (ξi )i≥1 satisfying (3.50) coincides with D(Q)? By
definition, D(Q) is the set of (ξi )i≥1 ∈ l1 satisfying (3.50). Hence, the question
is, does (3.50) imply (ξi )i≥1 ∈ l1?

Here is an argument showing that the answer is in the affirmative. Let
(ξi )i≥1 ∈ D(Q). Calculating as in our solution to Exercise 2.4.18, we check
that the limit limi→∞ 3i (3ξi+1 − 2ξi ) exists. It follows that there is a positive
constant c such that

|3ξi+1 − 2ξi | ≤ c

3i
, i ≥ 1. (3.53)

Next, take an α ∈ ( 2
3 , 1). Since 3α > 2, there is an integer i0 such that

(3α − 2)(3α)i ≥ c for i ≥ i0. Let d be the maximum of the numbers 1, c
and α−i |ξi |, i = 1, . . . , i0. I claim that

|ξi | ≤ αi d, i ≥ 1; (3.54)

this condition clearly implies (ξi )i≥1 ∈ l1.
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To prove (3.54), we proceed by induction. For i = 1, . . . , i0, (3.54) is true
by the definition of d. Also, assuming that (3.54) holds for some i ≥ i0, we
see, by (3.53), that

|ξi+1| ≤
∣∣∣∣ξi+1 − 2

3
ξi

∣∣∣∣+ 2

3
|ξi | ≤ c

3i+1
+ 2

3
αi d.

Moreover, since d ≥ 1 and i ≥ i0, we have c
3i+1 ≤ (α − 2

3 )α
i d. It follows that

|ξi+1| does not exceed dαi+1, that is, that (3.54) holds with i replaced by i +1.
This completes the proof.

3.5 Beyond Kato’s Theorem

We come back to the results established in Section 3.3. Formulae (3.36) and
(3.39) show an interesting way the information on return of the process after
explosion is contained in the generator. They suggest that if we want the pro-
cess to return to i ≥ 1 then we add h(x)ei to the minimal semigroup generator
G; this claim may be proved by modifying the argument of Sections 3.3.7 and
3.3.8 (see Exercise 3.3.13).

Here is a bolder hypothesis:6 let 0 �= u = (υi )i≥1 ∈ l1 be nonnegative with
Σu ≤ 1. Then the operator H = Hu with domain D(H) = D(G) given by

H x = Gx + h(x)u (3.55)

is the generator of a sub-Markov semigroup related to the process which after
explosion starts all over again at i with probability υi . If Σu = 1, that is, if u
is a density, H generates a Markov semigroup.

We prove this hypothesis in the next two sections.

3.5.1 H is a sub-Markov generator

For x = (ξi )i≥1 ∈ D(G),

ΣGx = lim
n→∞

n∑
i=1

(ai−1ξi−1 − aiξi ) = − lim
n→∞ anξn = −h(x). (3.56)

Thus, ΣH x = ΣGx + h(x)Σu ≤ 0 (with equality if Σu = 1). Since D(G)
is dense in l1, in view of the Hille–Yosida Theorem 2.4.3, we are left with

6 For a different motivation for (3.55), see Section 4.2 and formula (4.14) in particular.
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proving that for any nonnegative y and any λ > 0 there is a unique solution x
of the resolvent equation

λx − Gx − h(x)u = y, (3.57)

and that this solution is nonnegative.
First, we will show that y and λ determine h(x). For, applying ΣG Rλ (recall

that Rλ = (λ− G)−1) to both sides of the equation and using (3.56), we obtain

h(x)[1 − h(Rλu)] = h(Rλy).

Moreover, since G Rλu = λRλu − u,

1 − h(Rλu) = 1 + ΣG Rλu = 1 + ΣλRλu − Σu ≥ ΣλRλu > 0,

because ΣRλu = 0 would imply ‖Rλu‖ = 0, that is, u = 0. Thus h(x) =
h(Rλy)

1 − h(Rλu)
. It follows that the solution of (3.57) must be of the form

x = Rλy + h(Rλy)

1 − h(Rλu)
Rλu. (3.58)

To see that this x is a true solution to (3.57), we check first that h(x) =
h(Rλy)

1 − h(Rλu)
and then that

(λ− G)x − h(x)u = y + h(Rλy)

1 − h(Rλu)
u − h(x)u = y.

This completes the proof, because it is obvious that x is nonnegative if y is.

3.5.2

To support the intuition that the process related to H returns, after explosion,
to i with probability υi , we proceed analogously as in Section 3.3.3. Given
u one may construct nonnegative un = (υn,i

)
i≥1 such that limn→∞ un = u,

υn,i = 0 for i ≥ n, and, if u is a density, then so are un . Then one may modify
the operators An of Section 3.3.3 by replacing the last row in (3.26) by

(anυn,1, anυn,2, . . . , anυn,n−1,−an).

Let Bn be the so-modified An . The process related to Bn goes down the ladder,
spends an exponential time with parameter an at the lowest rung i = n, and
then jumps to j ∈ {1, . . . , n − 1} with probability υn, j . If Σun = 1, n ≥ 2, the
related semigroups are composed of Markov operators.

Now, An and Bn are related by the formula

Bn x = An x + anξn(un − e1), x = (ξi )i≥1 ∈ l1.
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Moreover, we know from Section 3.3.6 that

lim
n→∞ An x = G1x = Gx + h(x)e1, x ∈ D(G).

It follows that

lim
n→∞ Bn x = Gx + h(x)u, x ∈ D(G).

By the Sova–Kurtz Theorem (see Section 1.4.1) this proves that the semigroups
generated by Bn converge to that generated by H , thus supporting our claim.

3.5.3 Mea culpa

I admit, the results just proved are much more elegant and general than those
of Section 3.3, and the proof is much simpler here. So, why did we bother
going through all those tiresome and troublesome calculations of resolvents
and stuff? Well, if we start from an abstract theorem like that, how do we build
our intuition?

3.5.4 An abstract version of 3.5.1: The key functional

The main idea of 3.5.1 goes far beyond the context of pure birth process and
may be applied to any Kolmogorov matrix. This, however, requires defining an
abstract functional on D(G), playing the role of h (ξi )i≥1 = limn→∞ anξn , the
leading actor of Section 3.3.

Let G be the generator of Kato’s minimal semigroup for a given Kol-
mogorov matrix. On D(G) we define:

h(x) = −ΣGx,

and note that h(x) ≥ 0 provided x ≥ 0 (formula (3.56) reveals that in the case
of the pure birth process, h coincides with our old friend).

In what follows the following property of h will turn out to be crucial:

h|D(D) = 0. (3.59)

We have encountered this fact in Section 3.1.7 (as formula (3.8)), where it has
been laboriously derived from (3.2). For a slightly more direct proof (yet using
the same calculation that lies behind (3.2)), let x = (ξi )i≥1 ∈ D(D). We have

∞∑
i=1

∑
j �=i

|ξ j q j,i | =
∞∑
j=1

|ξ j |
∑
i �= j

q j,i =
∞∑
j=1

|ξ j |q j = ‖Dx‖,
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and so
∞∑

i=1

∞∑
j=1

|ξ j q j,i | =
∞∑

i=1

∑
j �=i

|ξ j q j,i | +
∞∑

i=1

|ξi |qi = 2‖Dx‖ < ∞.

It follows that changing the order of summation in the following calculation is
justified:

−h(x) = ΣGx =
∞∑

i=1

∞∑
j=1

ξ j q j,i =
∞∑
j=1

ξ j

∞∑
i=1

q j,i = 0.

This completes the proof.
We recall, finally, that if Q is explosive, the functional h, despite (3.59), is

not zero on the entire D(G) (see 3.2.1, point (h)). It follows that the generator
H considered below does not coincide with G.

3.5.5 An abstract version of 3.5.1

Let G be the generator of Kato’s minimal semigroup for a Kolmogorov matrix,
and let h be the functional defined on D(G) in the previous section. For any
nonnegative u �= 0 in l1 such that Σu ≤ 1, the operator

H x = Gx + h(x)u

defined on D(G) is a sub-Markov generator. If u is a density, H is a Markov
generator. H coincides with G and D + O on D(D), but G �= H.

Proof We argue as in 3.5.1; all the preparatory work has been done in the
previous section; for instance, H = G = D + O on D(D) because of (3.59).

(a) D(G) is dense in l1, G being the generator.
(b) For x ≥ 0, x ∈ D(G), we have

ΣH x = ΣGx + h(x)Σu ≤ 0

since h is a nonnegative functional.
(c) In the resolvent equation λx − Gx − h(x)u = y, h(x) is determined by

y and λ: we must have h(x)[1 − h(Rλu)] = h(Rλy), and since

1 − h(Rλu) = 1 + ΣλRλu − Σu ≥ ΣλRλu > 0,

this implies h(x) = h(Rλy)
1−h(Rλu) . This in turn yields

x = Rλy + h(Rλy)

1 − h(Rλu)
Rλu, (3.60)
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and such x is the only true solution to the resolvent equation. This solution is
nonnegative if y is nonnegative, because h is a nonnegative functional.

Finally, H �= G, since h is nonzero.

3.5.6 Is this all?

Is this all one can do? Are the operators H of the previous section the only pos-
sible extensions of D + O that generate sub-Markov or Markov semigroups?
Absolutely not (at least not in the general case). To explain, after explosion,
the process described by an H = Hu starts all over again at a state i with
probability being equal to the i th coordinate of u, and this does not depend on
how explosion came about. Sometimes one may but introduce different rules
for ‘different explosions.’

The last sentence may seem peculiar. Are there different types of explosion?
In a sense, yes. If we think again of the pure birth process as going down a
ladder, then there might be many different, so to say, disjoint, ladders, and to
each of them one may attach a different set of rules of starting over again.
So, one may construct Markov and sub-Markov semigroups that command the
process to start all over again after explosion, but depending on the type of
explosion to provide different starting distributions. In the next sections we
construct such a family of semigroups for two birth processes going down two
different ladders.

3.5.7 Two infinite ladders: The generator of the minimal semigroup

Let (an)n≥1 satisfy (3.22). We consider a process which, starting at i waits
at this state for an exponential time with parameter ai and then jumps to i +
2; thus we go down a ladder either using only even-numbered rungs or only
odd-numbered rungs. Then

D(D) = {(ξi )i≥1 ; (aiξi )i≥1 ∈ l1},
(λ− D)−1 ei = 1

λ+ai
ei and Oei = ai ei+2, i ≥ 1 so that

Bn
λei =

(
n−1∏
k=0

ai+2k

λ+ ai+2k

)
ei+2n, n ≥ 0.

Let l1
e and l1

o be the subspaces of l1 composed of vectors with all odd (even)
coordinates vanishing, respectively. The space l1 is a direct sum of l1

e and l1
o :

l1 = l1
e ⊕ l1

o .
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1 2 3 4 5 6 7 8 9
2∞+ 1
2∞

Figure 3.3 An example of ‘two infinite ladders’: here, the process after reaching
infinity via the odd ladder returns to i = 2; after reaching infinity via the even
ladder, it returns to i = 1.

This means that each x ∈ l1 may be uniquely represented as x = xe +xo where
xe ∈ l1

e and xo ∈ l1
o ; the uniqueness of representation is a consequence of the

fact that l1
e ∩ l1

o = {0}. Moreover, Bλ leaves both these subspaces invariant: if
x ∈ l1

e (x ∈ l1
o) then Bλx ∈ l1

e (Bλx ∈ l1
o), and so does (λ− D)−1. Since l1

e
and l1

o are closed, for Rλ of (3.5), we obtain

Rλx = Rλxe + Rλxo

with Rλxe ∈ l1
e and Rλxo ∈ l1

o .
Now, Ie : l1

e → l1 given by

Ie(0, ξ2, 0, ξ4, 0, ξ6, . . . ) = (ξ2, ξ4, ξ6, . . . )

establishes an isometric isomorphism of l1
e and l1. Therefore, restrictions of

Rλ, (λ− D)−1 and Bλ to l1
e have their isomorphic images in l1. Denoting by

B e
λ the image of Bλ we have, for instance,

(B e
λ )

nei = Ie Bn
λ I −1

e ei = Ie Bn
λe2i = Ie

(
n−1∏
k=0

a2i+2k

λ+ a2i+2k

)
e2i+2n

=
(

n−1∏
k=0

a′
i+k

λ+ a′
i+k

)
ei+n

where a′
i = a2i . The last expression here is identical to the right-hand side

of (3.13) with (an)n≥1 replaced by
(
a′

n

)
n≥1. Consulting 3.3.2 we come to the

conclusion that R e
λ , the image of the restriction of Rλ to l1

e , is the resolvent
of the operator given by (3.25) and the formula following it, with (an)n≥1
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replaced by
(
a′

n

)
n≥1. Coming back to the original space we see that for x ∈ l1

e ,

Rλx = (λ− Ge)
−1 x where

D(Ge) = {(ξi )i≥1 ∈ l1
e ;

∞∑
i=1

|a2i−2ξ2i−2 − a2iξ2i | < ∞},

Ge (ξi )i≥1 = I −1
e (a2i−2ξ2i−2 − a2iξ2i )i≥1 .

Similarly one argues that for x ∈ l1
o , Rλx = (λ− Go)

−1 x where

D(Go) = {(ξi )i≥1 ∈ l1
o;

∞∑
i=1

|a2i−3ξ2i−3 − a2i−1ξ2i−1| < ∞},

Go (ξi )i≥1 = I −1
o (a2i−3ξ2i−3 − a2i−1ξ2i−1)i≥1 .

Here, by convention, a−1ξ−1 = 0, and Io is the isomorphism of l1
o and l1

defined as follows:

Io(ξ1, 0, ξ3, 0, ξ5, . . . ) = (ξ1, ξ3, ξ5, . . . ).

Combining these results we conclude that Rλ = (λ− G)−1, where D(G) is
composed of x ∈ l1 such that xe ∈ D(Ge) and xo ∈ D(Go), and

Gx = Gexe + Goxo.

In other words, G thus defined is the generator of Kato’s minimal semigroup.

3.5.8 Two infinite ladders: Many possible (happy) returns

Armed with the information of the previous section, we may construct a semi-
group related to a process which features two different types of explosion and,
consequently, two different types of behavior after explosions. To this end, let
nonzero u and v be nonnegative elements of l1 such that Σu,Σv ≤ 1. For
(ξi )i≥1 ∈ D(G) we define

he (ξi )i≥1 = −ΣGe
[
(ξi )i≥1

]
e = lim

n→∞ a2nξ2n,

ho (ξi )i≥1 = −ΣGo
[
(ξi )i≥1

]
o = lim

n→∞ a2n−1ξ2n−1, (3.61)

and claim that H = Hu,v defined by

H x = Gx + he(x)u + ho(x)v, x ∈ D(G)
extends D + O and is a sub-Markov generator. If u and v are densities, H is a
Markov generator.
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Proof 7 The domain D(H) = D(G) is dense in l1 and

ΣH x = ΣGexe + ΣGoxo + he(x)Σu + ho(x)Σv

= he(x)(Σu − 1)+ ho(x)(Σv − 1) ≤ 0, x ∈ D(G)
(with equality if u and v are densities), since he and ho are nonnegative func-
tionals. Hence, our task reduces to studying properties of solution(s) to the
resolvent equation for H :

λx − H x = y

where y ≥ 0 and λ > 0 are given. Since l1 = l1
e ⊕l1

o , this equation is equivalent
to the system

λxe − Gexe − he(x)ue − ho(x)ve = ye,

λxo − Goxo − he(x)uo − ho(x)vo = yo. (3.62)

Applying, as in 3.5.1, Rλ and then he to both sides of the first equation, and
proceeding similarly with the second, we see that the unknown he(x) and ho(x)
satisfy

[1 − he(Rλue)]he(x) − he(Rλve) ho(x) = he(Rλye),

− ho(Rλuo) he(x)+ [1 − ho(Rλvo)]ho(x) = ho(Rλyo). (3.63)

Noting that

he(Rλue)+ ho(Rλuo) = he(Rλu)+ ho(Rλu) = −ΣG Rλu

= Σu − λΣRλu =: c ∈ [0, 1), (3.64)

and, similarly, he(Rλve) + ho(Rλvo) =: d ∈ [0, 1), we estimate the value of
the main determinant of (3.63) as follows:

W : = [1 − he(Rλue)] [1 − ho(Rλvo)] − [c − he(Rλue)] [d − ho(Rλvo)]
≥ (1 − c)[1 − ho(Rλvo)].

This last expression is positive because 1 − ho(Rλvo) = 1 − Σvo + ΣλRλvo

is nonnegative and could be zero only if 1 − ‖vo‖ and ‖λRλvo‖ were equal
to zero simulataneously, but the last case is impossible. Also, both coefficient
determinants, say, W1 and W2, are nonnegative: for example,

W1 : =
∣∣∣∣he(Rλye) −he(Rλve)

ho(Rλyo) 1 − ho(Rλvo)

∣∣∣∣
= he(Rλye)[1 − ho(Rλvo)] + ho(Rλyo)he(Rλve) ≥ 0.

7 In 3.7.9, we prove a more general theorem using a reasoning that requires a slightly smaller
number of calculations.
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It follows that he(x) and ho(x) are determined by u, v, y and λ > 0: he(x) =
W1W −1 and ho(x) = W2W −1, and are nonnegative. Moreover, the only
possible solution of (3.62) is

xe = W1

W
Rλue + W2

W
Rλve + Rλye,

xo = W1

W
Rλuo + W2

W
Rλvo + Rλyo

or, simply,

x = W1

W
Rλu + W2

W
Rλv + Rλy. (3.65)

We claim that this x is a true solution of the resolvent equation. To show this,
we note first that for this x :

he(x) = W1

W
he(Rλu)+ W2

W
he(Rλv)+ he(Rλy) = W1

W
.

Here, in the second step we used the fact that replacing the unknowns: he(x)
and ho(x) in (3.63) by W1W −1 and W2W −1, respectively, results in two
equalities. For the same reason ho(x) = W2W −1. This in turn shows that

(λ− H)x = (λ− G)x − he(x)u − ho(x)v

= W1

W
u + W2

W
v + y − he(x)u − ho(x)v = y,

as claimed. We note that x of (3.65) is nonnegative since y is and, as we have
seen, W1W −1,W2W −1 ≥ 0.

To complete the proof, we note that on D(D) the functionals he and ho

vanish; thus H|D(D) = G|D(D) = D + O.

3.5.9 Some intuition

Let us compare 3.5.8 with 3.5.5. In the case of two infinite ladders,

h(x) = −ΣGx = he(x)+ ho(x), x ∈ D(G).
Therefore, in this case, the result of the previous section may be deduced from
3.5.5 iff u = v.

To explain the difference between the two results in question, it might be
useful to think of the two ladders example of Section 3.5.8 as follows. There
are two additional states for the related Markov chain: one is the bottom of
the ‘even’ ladder and the other is the bottom of the ‘odd’ ladder. The pro-
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cess spends no time there since both states are instantaneous, but each of them
‘distributes’ paths going through it differently: one uses u, the other uses v.
Theorem 3.5.5 does not allow for such a discrimination: whether the process
reaches the bottom of the ‘even’ ladder or the bottom of the ‘odd’ ladder, its
distribution right after that is u.

As it transpires, these additional states are in no way imaginary. We will be
able to say more about them in the following sections.

3.5.10 Exercise

Check that c of (3.64) is in fact nonzero. To this end, look at (3.24) and use
(3.34).

3.5.11 Exercise

Assume that, in addition to (an)n≥1, we are given another sequence (bn)n≥1 of
nonnegative numbers. A Markov chain with intensity matrix

⎛⎜⎜⎜⎝
−a1 a1 0 0 0 . . .

b2 −a2 − b2 a2 0 0 . . .

0 b3 −a3 − b3 a3 0 . . .
...

...
. . .

. . .
. . . . . .

⎞⎟⎟⎟⎠
is a birth and death process. Assuming that (bn)n≥1 is bounded, check to see
that in this case h (ξi )i≥1 = limi→∞(aiξi − bi+1ξi+1) = limi→∞ aiξi .

3.5.12 Exercise

Persuade yourself (or another good mathematician) that (3.32) (together with
(3.30)) is a particular case of (3.60).

3.6 Close to the Edge: Lattice B

The example of two infinite ladders, discussed in the previous section, hinges
on constructing the functionals ho and he. Each of these functionals describes
one ladder, and each ladder involves its bottom, a curious place down below
which distributes paths going through it as if it were a part of the state-space.
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This is a simple, but illustrative, example of an (exit) boundary point for a
Markov chain.

It was the idea of Feller [41, 42] to construct the (exit) boundary for a
Markov chain governed by a Kolmogorov matrix Q = (qi, j

)
i, j≥1 by means of

functionals f ∈ l∞ = (l1)∗ such that

�∗ f = f and 0 ≤ f ≤ Σ, (3.66)

where � ∈ L(l1) is the Markov operator related to the so-called jump chain
matrix (

(1 − δi, j )
qi, j

qi

)
i, j≥1

(3.67)

(hence, �∗ f is the product of the matrix � and of the column-vector f ). We
note that (1−δi, j )

qi, j
qi

(where, as always, δi, j = 1 is 1 if i = j and 0 otherwise)
is the probability of jumping to state j after sojourn in the state i .

This section is devoted to the description of the set B of functionals satisfy-
ing (3.66). Here and in what follows, to avoid unnecessary complications, we
always assume that

qi > 0, i ∈ N;
that is to say that we assume that no state is absorbing.

Before proceeding, it is perhaps worth noting that bounded linear functionals
satisfying (3.66) were in fact involved in our analysis of two infinite ladders
example. For, the definition of the unbounded functionals ho and he given in
(3.61) may be equivalently written as

he (ξi )i≥1 = −ΣeG (ξi )i≥1, (3.68)

ho (ξi )i≥1 = −ΣoG (ξi )i≥1 , (ξi )i≥1 ∈ D(G),
where the functionals Σe and Σo are represented by the following two bounded
sequences:

(0, 1, 0, 1, . . . ) (1, 0, 1, 0, . . . ). (3.69)

In other words, the unbounded functionals ho and he are constructed by means
of the generator G and two bounded functionals just defined (as we will see
later, in (3.89), this is a typical way such functionals are constructed). It is also
easy to see that both Σe and Σo satisfy (3.66), for the action of �∗ amounts to
a shift by two coordinates to the left:

(�∗ f )(i) = f (i + 2), i ∈ N

(consult 3.6.1, below, if you find this notation mysterious).



3.6 Close to the Edge: Lattice B 133

I hasten to add that not all functionals satisfying (3.66) are useful in con-
structing semigroups dominating Kato’s minimal semigroup. For instance, if
the example of two infinite ladders is modified so that

a2i = i, i ∈ N (3.70)

(yet still
∑∞

i=1 a−1
2i−1 < ∞), then it will take an infinite time for a minimal

process to go down the ‘even ladder.’ Thus, the bottom of this ladder will never
be reached, and it can play no role in constructing a postexplosion process.
Nevertheless, the operator � is not affected by such a change and so Σe still
satisfies (3.66). As we shall see later, in this modified example, Σe is a member
of the so-called passive boundary (see Section 3.7.4). It is one of the aims
of the following analysis to distinguish such passive functionals from those
forming the ‘real’ boundary.

3.6.1 Notation

Elements of the space l1 will continue to be denoted (ξi )i≥1 , (ηi )i≥1, and
so on, whereas elements of l∞ will be denoted f, g, and so on, and seen as
bounded functions on the set of natural numbers. When needed, f ∈ l∞ will
be identified with the sequence ( f (i))i≥1 where, of course, f (i) is the value
of f at i ∈ N. As often as not, though, we will rightfully see f as a functional
on l1 and write f (x) to denote

∑∞
i=1 f (i)ξi for x = (ξi )i≥1. In particular,

f (i) = f (ei ). However, since double parentheses do not look right, instead of
f ((ξi )i≥1) we will prefer to write f (ξi )i≥1. By f ≥ g for f, g ∈ l∞ we mean
that f (x) ≥ g(x) for all nonnegative x ∈ l1.

3.6.2 B as a lattice

Let B denote the set of functionals satisfying (3.66).

(a) For all f, g ∈ B, there exist the largest member of the set of h ∈ B

satisfying h ≤ f and h ≤ g. This unique element (which may be equal 0)
is denoted f ∩ g.

(b) For all f, g ∈ B, there exist the smallest member of the set of h ∈ B

satisfying h ≥ f and h ≥ g. This unique element (which may be equal to
Σ) is denoted f ∪ g.

(c) Suppose that for some f, g ∈ B, f + g ∈ B, that is, suppose that f + g ≤
Σ. Then

f + g = f ∩ g + f ∪ g. (3.71)
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Proof
(a) Let h0(i) = min( f (i), g(i)), i ∈ N (note that in general h0 �∈ B). Since,

for any nonnegative x ∈ l1,

h0(�x) ≤ f (�x) = (�∗ f )(x) = f (x), and

h0(�x) ≤ g(�x) = (�∗g)(x) = g(x),

we have h0(�x) ≤ h0(x). Thus, the sequence (h0(�
n x))n≥1, being non-

increasing and bounded by 0, converges to a nonnegative limit. Since any
x ∈ l1 may be written as a difference of two nonnegative elements of l1, the
limit h1(x) = limn→∞ h0(�

n x) exists for all x ∈ l1, and defines a nonnegative
functional satisfying h1 ≤ h0 ≤ Σ. The calculation

h1(�x) = lim
n→∞ h0(�

n+1x) = lim
n→∞ h0(�

n x) = h1(x),

shows that �∗h1 = h1, that is, h1 ∈ B. It is clear that h1 ≤ f and h1 ≤ g.
Moreover, if for a certain h ∈ B we have h ≤ f and h ≤ g, then for any
nonnegative x ∈ l1 and any n ≥ 1,

h(x) = ((�∗)nh)(x) = h(�n x) ≤ f (�n x)

and, similarly, h(x) ≤ g(�n x). Thus, h(x) ≤ h0(�
n x) and letting n → ∞ we

conclude that h(x) ≤ h1(x). Uniqueness is clear and we may define f ∩ g :=
h1.

(b) Let k ∈ B be such that k ≥ f and k ≥ g. Since� is a stochastic matrix,
Σ ∈ B and we may thus take, for example, k = Σ. Then, it makes sense to
define

f ∪ g := k − (k − f ) ∩ (k − g), (3.72)

because all the operations needed to calculate the right-hand side are well
defined, and the resulting functional belongs to B. Since k − f ≤ k and
k − g ≤ k,

f ∪ g ≥ k − k ∩ (k − g) = k − (k − g) = g.

Similarly, f ∪ g ≥ f. On the other hand, suppose f ≤ h ≤ Σ and g ≤ h ≤ Σ.
Then h′ := h∩k satisfies f ≤ h′ ≤ k and g ≤ h′ ≤ k and so 0 ≤ k−h′ ≤ k− f
and 0 ≤ k − h′ ≤ k − g. It follows that

f ∪ g ≤ k − (k − h′) ∩ (k − h′) = k − (k − h′) = h′ ≤ h.

This shows that the functional defined by (3.72) possesses all the required
properties stated in (b). In particular, since f ∪ g is defined uniquely, the
definition (3.72) does not depend on the choice of k.
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(c) Under the assumptions stated, one may take k = f + g in (3.72). The
latter equation then becomes f ∪ g = f + g − g ∩ f. Since f ∩ g = g ∩ f ,
this completes the proof.

3.6.3 Remark

In what follows it will be desirable to be able to calculate the minima and
maxima not only for functionals in B but also those which, besides being
nonnegative and satisfying �∗ f = f are merely bounded. (In other words,
we relax condition 0 ≤ f ≤ Σ, and assume instead that f ∈ l∞ and f ≥ 0.)
One way to do that is by

f ∩ g = c( fc ∩ gc) and f ∪ g = c( fc ∪ gc),

where fc = c−1 f, gc = c−1g and c > 0 is chosen so that fc, gc ∈ B. It
is easy to see that this definition does not depend on c, is consistent with the
previous one, and that with this extended definition basic properties of minima
and maxima remain unchanged. In particular, f ∩ g is the largest element of
the set of h such that h ≤ f, h ≤ g and�∗h = h. Also, formula (3.71) remains
true, and the assumption on f + g belonging to B is now redundant.

3.6.4 Remark

As a by-product of the proof of (a) in 3.6.2,

( f ∩ g)(i) ≤ min( f (i), g(i)), i ∈ N.

Using (3.71) and the obvious equality f (i) + g(i) = min( f (i), g(i)) +
max( f (i), g(i)), we obtain also

max( f (i), g(i)) ≤ ( f ∪ g)(i), i ∈ N. (3.73)

3.6.5 Remark

It should perhaps be stressed here that both B itself and the lattice structure
in B depend on � (i.e., on Q). In particular, if f and g belong to two sets B

related to two�’s, f ∩ g in one of these sets may be different than in the other.

3.6.6 A dual characterization of (3.66)

Suppose f satisfies (3.66). Then (cf. (3.8))

f (Ox) = f (−Dx) (3.74)
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for all x ∈ D(D) (see Sections 3.1.2 and 3.1.3 for appropriate definitions).

Proof In coordinates, (3.66) reads∑
j �=i

qi, j f ( j) = qi f (i), i ∈ N,

and for x = (ξi )i≥1 ∈ D(D) we have (qi |ξi |)i≥1 ∈ l1. Therefore,

∞∑
i=1

∑
j �=i

|q j,iξ j f (i)| =
∞∑
j=1

|ξ j |
∑
i �= j

q j,i f (i) =
∞∑
j=1

|ξ j |q j f ( j)

= f (qi |ξi |)i≥1 < ∞.

It follows that the change of the order of summation in the following
calculation is justifiable:

f (Ox) =
∞∑

i=1

∑
j �=i

q j,iξ j f (i) =
∞∑
j=1

ξ j

∑
i �= j

q j,i f (i) =
∞∑
j=1

ξ j q j f ( j)

= f (qiξi )i≥1 = f (−Dx),

completing the proof.

The interplay between f ∈ B and the functional fλ introduced in the next
section is of crucial importance for the entire analysis.

3.6.7 f and fλ

Let f belong to B and let λ > 0. The limit

fλ(y) = lim
n→∞ f (Bn

λ y), y ∈ l1

exists and defines a nonnegative bounded linear functional such that

f = λR∗
λ f + fλ, (3.75)

where Rλ, λ > 0 is the resolvent of Kato’s minimal semigroup. (See (3.4) for
the definition of Bλ.)

Proof Let y ∈ l1. Then

xn :=
n∑

k=0

(λ− D)−1 Bk
λ y
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is a member of D(D) and so, by (3.74), f (Oxn) = f (−Dxn). Equation (3.10),
on the other hand, shows that f (y)+ f (Oxn) = f (λxn − Dxn)+ f (Bn+1

λ y),
or

f (y) = λ f (xn)+ f (Bn+1
λ y).

Since limn→∞ xn = Rλy (see (3.5)), it follows that limn→∞ f (Bn
λ y) exists,

and (3.75) is true.

3.6.8 Characterization of fλ

Let Bλ, f be the set of g ∈ l∞ such that B∗
λg = g and 0 ≤ g ≤ f . Then

fλ is the largest element of Bλ, f : fλ belongs to Bλ, f , and g ∈ Bλ, f implies
g ≤ fλ.

Proof Formula (3.75) shows that fλ ≤ f. Moreover, for any x ∈ l1,

B∗
λ fλ(x) = fλ(Bλx) = lim

n→∞ f (Bn+1
λ x) = lim

n→∞ f (Bn
λ x) = fλ(x),

proving that fλ belongs to Bλ, f . Finally, for a g ∈ Bλ, f and a nonnegative
x ∈ l1,

g(x) = (B∗
λ)

ng(x) = g(Bn
λ x) ≤ f (Bn

λ x).

Thus, letting n → ∞, we obtain g ≤ fλ. This completes the proof.

3.6.9 Example

Formula (3.75) for f = Σ takes the form

λR∗
λΣ = Σ − Σλ (3.76)

and reveals that the functional Σλ measures how far λRλ is away from being a
Markov operator, that is, how much probability mass is lost in λRλ because of
explosion. The larger is the probability mass loss, the larger is Σλ. In particular
Σλ = 0 iff λRλ is a Markov operator.

Let’s see what Σλ is like in the pure birth Markov chain example. Being
a bounded linear functional, Σλ is determined by its values on ei , i ≥ 1. By
(3.13),

Σλ(ei ) = lim
n→∞ Σ(Bn

λei ) = lim
n→∞

(
i+n−1∏

k=i

ak

λ+ ak

)
= π∞
πi−1

,

where πi =∏i
k=1

ak
λ+ak

. In other words, Σλ =
(
π∞
πi−1

)
i≥1

.
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3.6.10 A functional relation for fλ, λ > 0

The functionals fλ, λ > 0 are not unrelated: for λ,μ > 0, applying R∗
μ to

(3.75) and using the Hilbert equation, we obtain

(λ− μ)R∗
μ fλ = (λ− μ)R∗

μ f − λ(λ− μ)R∗
μR∗

λ f

= (λ− μ)R∗
μ f − λ(R∗

μ − R∗
λ) f

= λR∗
λ f − μR∗

μ f = ( f − fλ)− ( f − fμ)

= fμ − fλ.

Combining this with an analogous calculation of (λ − μ)R∗
λ fμ yields the

following formula

fμ − fλ = (λ− μ)R∗
μ fλ = (λ− μ)R∗

λ fμ. (3.77)

3.6.11 The canonical mapping

In Section 3.6.7 we have seen a path leading from an f ∈ B to the fλ ∈ Bλ, f .
Is there a path leading back? Yes, to some extent, as we shall soon explain.

Let

Bλ := B
λ,Σ.

For f ∈ Bλ the limit

f �(x) = lim
n→∞ f (�n x), x ∈ l1 (3.78)

exists and defines a bounded linear functional f �. Moreover, f � is the smallest
of all g satisfying the following two conditions

f ≤ g ≤ Σ and �∗g = g. (3.79)

Proof Note that the entries of the matrix
(
(1 − δi, j )

qi, j
λ+qi

)
i, j≥1

representing

the operator Bλ do not exceed those of the matrix representing �. Hence, for
any nonnegative x ∈ l1 and any natural n,

f (x) = (B∗
λ f )(x) = f (Bλx) ≤ f (�x) ≤ Σ(�x) = Σ(x).

Thus, the sequence ( f (�n x))n≥1, being nondecreasing and bounded by Σ(x),
converges to an f �(x) such that

f (x) ≤ f �(x) ≤ Σ(x).

A standard argument allows us now to prove the existence of the limit (3.78)
for all x ∈ l1. As in 3.6.8 we also see that �∗ f � = f �. Thus, f � belongs to
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the set of g satisfying (3.79). Finally, suppose g satisfies (3.79). Then, for all
nonnegative x ∈ l1,

g(x) = ((�∗)ng)(x) = g(�n x) ≥ f (�n x).

Letting n → ∞, we obtain g ≥ f �.

3.6.12 Definition

Following W. Feller,

f �→ f �

is termed the canonical mapping8 from Bλ to B. We note that

f � ≥ f. (3.80)

3.6.13 Theorem

For f ∈ Bλ,

( f �)λ = f. (3.81)

Proof By 3.6.8, ( f �)λ is the largest element in Bλ, f � . Since f ∈ Bλ and
f ≤ f �, we have

f ≤ ( f �)λ ≤ f �.

It follows that, for nonnegative x ∈ l1 and n ≥ 1,

f (�n x) ≤ ( f �)λ(�n x) ≤ f �(�n x) = f �(x).

Letting n → ∞, we conclude that

f �(x) ≤ (( f �)λ
)�
(x) ≤ f �(x).

This reveals that
(
( f �)λ

)� = f � or that the value of the canonical mapping
on the nonnegative functional ( f �)λ − f is zero. However, by (3.80), this is
impossible unless ( f �)λ = f.

8 Strictly speaking, there are many canonical mappings: there is one canonical mapping
Bλ → B associated to each λ > 0.
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f

fλ

(fλ)�

fλ = (fλ)�

Figure 3.4 Relation between the maps f �→ fλ and f �→ f �.

3.6.14 Remark

The theorem of the previous section does not say that ( fλ)� = f for f ∈ B.

All we can claim is that

f ≥ ( fλ)
� (3.82)

(see Exercise 3.6.19). The nonnegative functional

Σpass := Σ − (Σλ)
� = Σ − Σmax, (3.83)

where Σmax := (Σλ)
� ≤ Σ, will play an important role in what follows. (We

will see in particular that its definition does not depend on the choice of λ. )

3.6.15 Active and passive functionals

A functional f ∈ B is said to be passive if for some λ > 0, fλ = 0. Relation
(3.77) makes it clear that f is passive iff fλ = 0 for all λ > 0. For such f ,
(3.75) takes the form

f = λR∗
λ f (3.84)

and reveals that passive functionals ‘do not see’ the loss of probability mass
caused by explosion(s) (see also Exercise 3.6.21).

A functional f ∈ B is said to be active if f = ( fλ)� for some λ > 0.
Thus, for active functionals, fλ is ‘so large’ that f can be recovered from fλ
by means of �. The proof of following theorem shows in particular that f is
active iff f = ( fλ)� for all λ > 0.

3.6.16 Maximal properties of Σmax

Let f ∈ B. The following conditions are equivalent:
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(a) f is active.
(b) There is no nontrivial passive h such that h ≤ f.
(c) f belongs to the range of the canonical mapping.9

(d) f ≤ Σmax.

Moreover, the definition of Σmax does not depend on λ.

Proof Suppose f �= ( fλ)� for some λ > 0. Then h := f − ( fλ)� ≤ f is
nontrivial, nonnegative, and passive, since by (3.81)

hλ = fλ − (( fλ)
�)λ = fλ − fλ = 0.

Conversely, if there is a nontrivial, nonnegative, passive vector h ≤ f , then,
by (3.82),

f − h ≥ (( f − h)λ)
� = ( fλ)

�,

showing that f = ( fλ)� for no λ > 0. This proves that f is active iff ( fλ)� =
f for all λ > 0, and iff (b) holds.

Next, we show that (a) is equivalent to (c). An active f belongs to the range
of the canonical mapping, being equal to ( fλ)�. For the proof of the converse,
note that, in view of 3.6.13, each member of Bλ is of the form gλ for some
g ∈ B. Thus, if f is in the range of the canonical mapping, there exists a g ∈ B

such that f = (gλ)�. By 3.6.13, it follows that fλ = gλ and so f = ( fλ)�.
Before proving that (d) is equivalent to the remaining conditions, we show

that the definition of Σmax does not depend on λ. To this end, we note that Σλ

is the largest element of Bλ. Thus, Σmax = (Σλ)
� is the largest element in

the image of Bλ via the canonical map. However, by the already established
equivalence of (b) and (c), this range does not depend on λ. Therefore, neither
the largest element in this range depends on λ.

We are left with showing that (a) implies (d), and (d) implies (b). Since
f ≤ Σ, (a) implies that f = ( fλ)� ≤ (Σλ)

� = Σmax. For the proof of the
other implication, we note that, by 3.6.13, Σmax is active. Therefore, if (b) is
violated and there is a nontrivial passive h ≤ f , f cannot be ≤ Σmax, for
this would imply h ≤ Σmax, which is impossible by the equivalence of (a)
and (b).

3.6.17 Maximal properties of Σpass

(a) The definition of Σpass does not depend on λ.
(b) A functional f ∈ B is passive iff f ≤ Σpass.
(c) An intensity matrix is explosive iff Σpass �= Σ.

9 As we shall see in the proof, the range of all canonical maps Bλ → B is the same; it is this
common range that we have in mind here.
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Proof (a) is clear: in the previous section we showed that the definition of
Σmax does not depend on λ.

Next we prove (b). First of all, Σpass itself is passive since, by 3.6.13,
(Σmax)λ = Σλ. Therefore, if 0 ≤ f ≤ Σpass, then 0 ≤ fλ ≤ (Σpass)λ = 0
implying fλ = 0. Conversely, suppose f is passive. Since Σmax is active,
there is no nontrivial passive h ≤ Σmax. But any h ≤ f is passive. Hence,
f ∩ Σmax = 0 and so, by (3.71) extended in Remark 3.6.3,

f + Σmax = f ∩ Σmax + f ∪ Σmax = f ∪ Σmax ≤ Σ.

This implies f ≤ Σ − Σmax = Σpass.

To prove (c), suppoose Σ = Σpass. Then Σ is passive and so, by (3.84),
Σ = λR∗

λΣ for all λ > 0. It follows that ΣλRλx = Σx for all x ∈ l1, and
this means that Σ is preserved by λRλ and thus Q is not explosive (by Section
3.2.1). Conversely, since Σpass ≤ Σ, condition Σpass �= Σ implies (by (b)) that
Σ is not passive. Hence, for some (and, in fact, for any) λ > 0 the functional
Σλ is nonzero and we have ΣλR∗

λ = Σ − Σλ. Thus, ΣλRλx < Σx for some
nonnegative x ≥ 0, implying that λRλ is not a Markov operator and thus Q is
explosive.

Sections 3.6.16 and 3.6.17 reveal crucial roles played by Σmax and Σpass.
Hence, we complete this section by the following example, where these func-
tionals can be computed explicitly. Before reading it, however, the reader
should solve by himself Exercise 3.6.20.

3.6.18 Example

Let us calculate Σpass and Σmax for the following Markov chain. Starting at
i = 1, the chain spends an exponential time with parameter 1 there, and then
jumps either to i = 2 with probability p or to i = 3 with probability p′ = 1−p.
At i = 2 it spends another, independent, exponential time with parameter 1
and then jumps either to i = 1 with probability q or to i = 4 with probability
q ′ = 1−q. To avoid trivialities, we assume pq �= 1. At i ≥ 3 the chain spends
an exponential time with parameter ai before jumping to i + 2, and we assume
that

∞∑
k=1

a−1
2k+1 < ∞ whereas

∞∑
k=1

a−1
2k = ∞. (3.85)

Since Σmax = (Σλ)
�, we begin by calculating Σλ. We have Bλei =

ai
λ+ai

ei+2, i ≥ 3. This implies
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Bn
λe2k+1 =

n−1∏
i=0

a2(k+i)+1

λ+ a2(k+i)+1
e2k+1+2n =

k+n−1∏
j=k

a2 j+1

λ+ a2 j+1
e2k+1+2n,

which in turn yields, for k ≥ 1,

Σλ(2k + 1) = Σλ(e2k+1) = lim
n→∞ Σ(Bn

λe2k+1) =
∞∏
j=k

a2k+1

λ+ a2 j+1
, (3.86)

with the last product, by (3.85), different from 0. A similar calculation shows
that

Σλ(2k + 2) = 0, k ≥ 1,

because the second series in (3.85) diverges.
Since, as we shall see soon, the values of Σλ at i = 1 and i = 2 do not

matter in the calculation of Σmax, we simply state that

Σλ(1) = p′
λ

1 − pλqλ
Σλ(3) and Σλ(2) = p′

λqλ
1 − pλqλ

Σλ(3) (3.87)

where

pλ = p

λ+ 1
, p′

λ = 1 − p

λ+ 1
, qλ = q

λ+ 1
, q ′

λ = 1 − q

λ+ 1
,

leaving verification of these formulae as an exercise for the reader (see Exercise
3.6.22).

Section 3.6.11 reveals that

Σmax(i) = lim
n→∞(�

∗)nΣλ(i).

We note that the first two rows of the matrix representing �∗ are

(0, p, p′, 0, 0, . . . ) and (q, 0, 0, q ′, 0, 0, . . . ),

and that for i ≥ 3, the i th row is ei+2. Therefore,

(�∗ f )(1) = p f (2)+ p′ f (3),

(�∗ f )(2) = q f (1)+ q ′ f (4),

(�∗ f )(i) = f (i + 2), i ≥ 3. (3.88)

Combining this with (3.86) we conclude that

Σmax(2k + 1) = lim
n→∞(�

∗)nΣλ(2k + 1) = lim
n→∞ Σλ(2k + 1 + 2n) = 1
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since the product in (3.86) converges. Analogously, Σmax(2k + 2) =
limn→∞ Σλ(2k + 2n) = 0, for k ≥ 1. Finally, using the first two equations in
(3.88) we find that

(�∗)2 f (1) = pq f (1)+ pq ′ f (4)+ p′ f (5)

and, substituting here (�∗)nΣ for f , that

(�∗)n+2Σλ(1) = pq(�∗)nΣλ(1)+ pq ′(�∗)nΣλ(4)+ p′(�∗)nΣλ(5).

Letting n → ∞ results in

Σmax(1) = pqΣmax(1)+ pq ′Σmax(4)+ p′Σmax(5)

and, since Σmax(4) = 0 and Σmax(5) = 1, this shows that Σmax(1) = 1−p
1−pq .

Using the second equation in (3.88) again, we furthermore obtain Σmax(2) =
(1−p)q
1−pq .

Summarizing,

Σmax(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1−p

1−pq , i = 1,
(1−p)q
1−pq , i = 2,

1, i = 2k + 1, k ≥ 1,

0, i = 2k + 2, k ≥ 1.

By the way, for p = q = 0 this solves Exercise 3.6.20, which, however, the
reader was supposed to solve by himself. We note that Σmax(i) is thus revealed
to be the probability that the minimal process starting at i will explode. Had
we known this, we could have calculated these quantities directly – explosion
occurs iff the process ever touches one of the rungs of the odd ladder (except
for i = 1). See Section 4.1 for more on this subject.

3.6.19 Exercise

Show that for f ∈ B, ( fλ)� ≤ f.

3.6.20 Exercise

Show that in the example of two infinite ladders modified according to (3.70),

Σpass = Σe, Σmax = Σo,

where Σe and Σo are represented in (3.69).
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3.6.21 Exercise

Let f be a passive functional. Show that f (S(t)x) = f (x) for all x ∈ l1, t ≥ 0.

3.6.22 Exercise

Show (3.87).

3.7 The (Discrete, Exit) Boundary

As 3.6.17 (c) reveals, if Q is explosive, there is at least one nonpassive f ∈ B

(namely, f = Σ). In many cases, there are more nonpassive functionals in
B, and the following theorem clarifies the way in which such functionals
can be used to construct new sub-Markov generators from the generator of
Kato’s minimal semigroup. This theorem differs from that of Section 3.5.4 in
that, whereas the latter theorem lumps all types of explosion together, here
we choose one of them (which, however, may be ‘compound,’ that is, com-
posed of several other, more basic ways) and command the process to continue
after explosion from distribution u only after this particular type of explosion
occurs. If there are many infinite ladders for the process to descend, only after
reaching the bottom of a particular one of them (or a couple of them) the
process is continued (see also Section 3.8.4).

3.7.1 Theorem

Given f ∈ B, let h given by

h(x) = − f (Gx), x ∈ D(G), (3.89)

be an (unbounded) functional with domain equal D(G).
(a) h(x) = 0 for x ∈ D(D).
(b) h is nonzero iff f is not passive.
(c) h ≥ 0.
(d) For any λ > 0, the functionals h related to f and ( fλ)� coincide.
(e) For any nonzero, nonnegative u such that Σu ≤ 1, the operator H defined

by

H x = Gx + h(x)u, x ∈ D(H) = D(G) (3.90)

is a sub-Markov generator. (By (a), H coincides with G on D(D), and thus
H extends D + O . By (b), H and G differ iff f is not passive.)
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We do not claim that H is a Markov generator if u is a density, see Section
3.8.4 for an explanation.

Proof
(a) See (3.74).
(b) Fix λ > 0. A y belongs to D(G) if there is an x ∈ l1 such that y = Rλx ,

and then

h(y) = h(Rλx) = − f (G Rλx) = f (x)− f (λRλx) = fλ(x). (3.91)

Hence, h = 0 iff fλ = 0, that is, iff f is passive.
(c) For y of the form y = Rλx with nonnegative x , we have h(y) ≥ 0 by

(3.91). Furthermore, h is clearly continuous in the graph norm of D(G):
‖x‖D(G) = ‖x‖ + ‖Gx‖.

Also, since G is a generator, x = limλ→∞ λRλx , for any x ∈ l1. It fol-
lows that for x ∈ D(G), limλ→∞ GλRλx = limλ→∞ λRλGx = Gx ,
and so limλ→∞ ‖λRλx − x‖D(G) = 0. Thus we conclude that h(x) =
limλ→∞ h(λRλx) ≥ 0 provided x ∈ D(G) is nonnegative.

(d) The functional f − ( fλ)� is passive: by 3.6.13, ( f − ( fλ)�)λ = fλ −
(( fλ)�)λ = 0.

(e) Assume f is not passive, for otherwise H coincides with G and there is
nothing to prove. The argument presented in 3.5.5, showing that, given λ > 0
and a nonnegative y ∈ l1, there is precisely one x ∈ D(H) satisfying the
resolvent equation λx − H x = y, can be repeated with f playing the role of
Σ, provided we can show that h(Rλu) �= 1. But (3.91) makes it clear that 0 ≤
h(Rλu) ≤ 1, and that h(Rλu) = 1 iff fλ(u) = 1.Moreover, the latter condition
implies Σλu = 1, which in turn yields ‖λRλu‖ = ΣλRλu = Σu − Σλu ≤
0, which is impossible, because Rλ, λ > 0 is the resolvent of a generator.
Therefore, (3.60) is the unique solution to the resolvent equation, and – since
we have seen that 0 ≤ h(Rλu) < 1 and (3.91) shows that h(Rλy) ≥ 0 – this
solution is nonnegative.

It remains to show that −ΣH x ≥ 0 provided x ≥ 0. By (c),

−ΣH x = −ΣGx − h(x)Σu ≥ −ΣGx − h(x) = −ΣGx + f (Gx)

= −(Σ − f )(Gx).

The last expression is nonnegative since it is the value of the functional h
corresponding to Σ − f.

It is an important consequence of Theorem 3.7.1 that if we want to construct
new sub-Markov semigroups from Kato’s minimal semigroup by means of for-
mulae (3.89) and (3.90), we must work with nonpassive functionals (which, to
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repeat, exist provided Q is explosive). Moreover, given a nonpassive f we may
throw away its ‘passive part’ fpass := f − ( fλ)� and work with ( fλ)� instead.
This reduces our possibilities to the members of the range of the canonical
mapping, that is, to active f ’s.

On the other hand, as suggested by the example of two infinite ladders, our
aim should be to prove a generation theorem for an operator H of the form

H x = Gx +
k∑

i=1

hi (x)ui , (3.92)

where k is a certain integer, hi ’s come from different active functionals f i , and
ui are also possibly different.10 However, since we want our theorem to be as
general as possible, whereas an active f may lump together a number of types
of explosion, we need to work with functionals that are in a sense minimal and,
at the same time, to have the sum as large as possible (but not too large): the
best would be to have

k∑
i=1

hi (x) = −ΣGx = −ΣmaxGx, x ∈ D(G). (3.93)

A natural procedure thus would be to look first for an active f 1 ≤ Σmax

that is in a sense minimal, then a minimal f 2 ≤ Σmax − f 1 and so on, until
equality in (3.93) is reached. Unfortunately, in general existence of such mini-
mal functionals is neither granted nor obvious. Moreover, even if existence of
minimal functionals is granted, we need to be sure that the procedure described
above produces distinct minimal functionals. These considerations lead us to
the following definitions.

3.7.2 Definition

An f ∈ B is said to be extremal iff f ∩ (Σ− f ) = 0. For example, both Σpass

and Σmax are extremal. For, any h ≤ Σpass is necessarily passive, but, since
Σmax is active, there is no nontrivial passive h ≤ Σmax.

A nonzero extremal f is said to be minimal if there is no other extremal
g ≤ f other than g = f and g = 0. An extremal f is said to be continuous if
there is no minimal extremal g ≤ f.

These definitions are due to W. Feller. However, Feller used the adjec-
tive continuous in reference to a part of a boundary and not as a description

10 Here, and in what follows, for extremals f I use superscripts rather than subscripts lest the i th
f , denoted fi , be mistaken with fi defined in Section 3.6.7.
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of a property of a functional. Since the phrase continuous functional has an
established meaning in mathematics and in functional analysis in particular,
in what follows instead of continuous extremal/functional I will say a singu-
lar extremal/functional. Thus, to repeat, an extremal functional is said to be
singular if there is no minimal extremal smaller than this functional.

3.7.3 Assumption

W. Feller proved that there are at most denumerably many minimal functionals
(see Lemma 12.1 in [41]). To make things more manageable (and following
the example of Feller [41] and Chung [22]), in what follows we assume that

(1) there is only a finite number of minimal functionals f ≤ Σmax, and
(2) there are no singular functionals f ≤ Σmax.

We do not need to assume there are finitely many minimal f ≤ Σpass.

3.7.4 Definition

The set B of minimal functionals f ≤ Σmax (which is finite in our case)
is called the discrete (exit) boundary for an intensity matrix Q or for a
related Markov chain. Extremal functionals f ≤ Σpass form the passive
boundary.

This definition slightly differs from Feller’s. In the Feller’s definition, all
minimal functionals are members of B. As explained above, passive function-
als introduce no additional possibilities to continue a minimal process after
explosion, and I decided to exclude them from the boundary.

3.7.5 Possibility of decomposition (3.93)

Under assumptions stated above, there are finitely many minimal functionals
summing to Σmax: for some k ,

Σmax =
k∑

i=1

f i .

(This implies that for the corresponding hi ’s equality (3.93) holds.)

For the proof of this result we need the following lemmas.
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3.7.6 Lemma

Suppose g1, g2, f ∈ B. Then

f ∩ (g1 + g2) ≤ f ∩ g1 + f ∩ g2.

Proof Since

f ∩ (g1 + g2)− g1 ≤ g1 + g2 − g1 = g2, and

f ∩ (g1 + g2)− g1 ≤ f − g1 ≤ f,

we have f ∩(g1 +g2)−g1 ≤ f ∩g2. Combining this with f ∩(g1 +g2)− f ≤
0 ≤ f ∩ g2, we obtain

f ∩ (g1 + g2)− f ∩ g2 ≤ f ∩ g1,

completing the proof.

3.7.7 Lemma

(a) If f ≤ Σmax is extremal, then so is g = Σmax − f .
(b) If f and g are extremal and such that f + g ≤ Σ, then their sum is also

extremal.

Proof
(a) By 3.7.6,

g ∩ (Σ − g) = (Σmax − f ) ∩ (Σpass + f )

≤ (Σmax − f ) ∩ Σpass + (Σmax − f ) ∩ f

≤ Σmax ∩ Σpass + (Σ − f ) ∩ f = 0.

Since g ∩ (Σ − g) ≥ 0, this completes the proof.
(b) By 3.7.6,

(Σ − ( f + g)) ∩ ( f + g) ≤ (Σ − ( f + g)) ∩ f + (Σ − ( f + g)) ∩ g

≤ (Σ − f ) ∩ f + (Σ − g) ∩ g = 0,

and thus the proof is completed as in (a).

Proof of 3.7.5 Since Σmax is extremal and there are no singular functionals,
there is a minimal f 1 ≤ Σmax. If f 1 = Σmax, there is nothing to prove,
hence we assume f 1 �= Σmax.11 Then Σmax − f 1 is nonzero and extremal

11 The lazy part of me, which is the dominant part, of course, whispers quietly, ‘This sentence is
a nonsense. This should read, If f 1 = Σmax, there is nothing to prove, hence we do assume
f 1 = Σmax.’



150 Boundary Theory: Core Results

by Lemma 3.7.7 (a). Arguing as above we conclude that there is a minimal
f 2 ≤ Σmax − f 1. This f 2 is different from f 1: the relation

f 1 ∩ f 2 ≤ f 1 ∩ (Σmax − f 1) ≤ f 1 ∩ (Σ − f 1) = 0 (3.94)

rules out the possibility of f 1 = f 2. Again, if f 2 = Σmax − f 1, we are done.
Otherwise, f 1+ f 2 is extremal by Lemma 3.7.7 (b), and thus Σmax− f 1− f 2 is
nontrivial and extremal, by Lemma 3.7.7 (a). Estimating as in (3.94) we check
that a minimal f 3 ≤ Σmax − f 1 − f 2 is distinct from f 1 and f 2. Since, by
assumption, there are finitely many minimal functionals, this procedure cannot
continue indefinitely: there is a k such that for the k th minimal functional we
have f k = Σmax − ( f 1 + · · · + f k −1).

3.7.8 Remark

There are no other nonzero minimal functionals f ≤ Σmax but those featuring
in the sum

∑k
i=1 f i . For, if f and g are minimal functionals then necessarily

f ∩ g = 0 or f ∩ g = f = g (see Exercise 3.8.5 in the next section). On
the other hand, if a nonzero f ≤ Σmax is minimal, then by 3.7.6 and induction
argument

f = f ∩ Σmax = f ∩
k∑

i=1

f i ≤
k∑

i=1

( f ∩ f i )

and the last sum cannot be zero, since this would imply f = 0. Therefore,
precisely one term in the sum is nonzero, and this means that f is one of the
f i ’s.

We are now ready to state our main theorem in the second part of this chap-
ter. In this theorem there are precisely k ways explosion may come about and
to each of them a possibly different distribution after explosion is assigned.

3.7.9 Theorem

Let f 1, . . . , f k be the minimal functionals constructed in the proof of 3.7.5 so
that f i ’s are distinct and

∑k
i=1 f i = Σmax, and let hi be the related functionals

on D(G):
hi (x) = − f i (Gx), x ∈ D(G). (3.95)

Also, assume ui , i = 1, . . . , k are nonnegative elements of l1 satisfying Σui ≤
1. Then, formula (3.92) defines a sub-Markov generator such that

(a) H x = Gx for x ∈ D(D),
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(b) H �= G provided at least one ui is nonzero,
(c) H is a Markov operator if all ui ’s are densities.

We still need a lemma.

3.7.10 Lemma

Suppose γi, j , i, j = 1, . . . , k are nonnegative numbers such that

k∑
j=1

γi, j < 1 for all i = 1, . . . , k .

Then, for any η1, . . . , ηk ∈ R, the system

ξ j −
k∑

i=1

γi, jξi = η j for all j = 1, . . . , k (3.96)

has precisely one solution x = (ξ1, . . . , ξk ) ∈ R
k . Moreover, x ≥ 0 provided

y = (η1, . . . , ηk ) ≥ 0.

Proof Let R
k be equipped with the norm ‖x‖ = ∑k

i=1 |ξi | and let M ∈
L(Rk ) be the operator given by

M(ξi )i=1,...,k =
⎛⎝ k∑

i=1

γi, jξi

⎞⎠
j=1,...,k

.

(This is multiplying the matrix M = (γi, j )i, j=1,...k by a row-vector from the
left.) Then

‖M‖ ≤ sup
‖x‖=1

k∑
j=1

k∑
i=1

γi, j |ξi | = sup
‖x‖=1

k∑
i=1

|ξi |
k∑

j=1

γi, j

≤ γ := max
i=1,...,k

.

Since, by assumption, γ < 1, the series
∑∞

n=0 Mn converges in the operator
norm. Moreover, equation (3.96) may be written as x − Mx = y. Therefore,
its solution is unique and given by x = ∑∞

n=0 Mn y. The rest is clear since
M ≥ 0.

Proof of 3.7.9 Interestingly, only minor modifications of the proof of 3.7.1
are needed. We are apparently well prepared by now, and we have Lemma
3.7.10 at our disposal.
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Without loss of generality, in what follows we assume that all ui �= 0. If
this is not the case, several terms in (3.92) vanish, and the argument must be
modified by solving (3.97) with smaller k .

Let us check that H is a sub-Markov generator. In solving the resolvent
equation for H ,

λx − Gx −
k∑

i=1

hi (x)ui = y, (3.97)

we argue first that hi (x)’s are determined by λ, y and ui ’s, via a system of
linear equations (and thus may be calculated without prior knowledge of x).
To this end, we apply Rλ and then h j to both sides of (3.97), obtaining

h j (x)−
k∑

i=1

h j (Rλui )hi (x) = h j (Rλy), for all j = 1, . . . , k . (3.98)

In this system, h j (Rλui )’s and h j (Rλy)’s are treated as known and h j (x)’s are
unknowns. Since (see (3.91))

k∑
j=1

h j (Rλui ) =
k∑

j=1

f j
λ (ui ) = (Σmax)λ(ui ) = Σλ(ui ) ∈ [0, 1)

(we cannot have Σλ(ui ) = 1 for this would imply ΣλRλui = 0, i.e., ui = 0),
conditions of Lemma 3.7.10 are satisfied and there is precisely one vector

(ξ1, . . . , ξk ) = (h1(x), . . . , hk (x)) ∈ R
k

solving (3.98). To repeat, this vector depends merely on λ, u j ’s and y. Hence,
a solution of (3.97) must be of the form

x = Rλy +
k∑

j=1

ξ j Rλu j . (3.99)

To check that this x is a true solution to (3.97), we apply h j to both sides of
the definition of x . Since replacing h j (x)’s by ξ j ’s in (3.98) gives k identities,
this results in the expected equality

h j (x) = h j (Rλy)+
k∑

i=1

ξi h j (Rλui ) = ξ j ,

and thus λx − Gx = y + ∑k
i=1 hi (x)ui , that is, (3.97) holds. If y ≥ 0,

then h j (Rλy) = f j
λ (y) ≥ 0, and Lemma 3.7.10 guarantees that then ξ j =

h j (x), j = 1, . . . , k are nonnegative also, and so is x given in (3.99).
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Finally, let x ∈ D(G) be nonnegative. Since in such a case all hi (x)’s are
nonnegative,

ΣH x ≤ ΣGx +
k∑

i=1

hi (x) = ΣGx −
k∑

i=1

f i (Gx)

= ΣGx − ΣmaxGx = ΣpassGx = 0.

The first inequality here may be replaced by equality iff Σui = 1 for all i =
1, . . . , k . Hence, in the latter case, H is a Markov generator; this proves (c).
Since properties (a) and (b) are clear, we are done.

3.8 More on Extremal and Minimal Functionals

Since our main goal in the previous section was Theorem 3.7.9, immedi-
ately after the definition of extremal and minimal elements we proceeded to
Assumption 3.7.3 leading to the possibility of decomposition (3.93). Now, that
the main theorem is proved, let us pause for a moment and characterize the
extremal and minimal elements. This characterization will reveal in particular
that Theorem 3.7.1 is in fact contained in Theorem 3.7.9.

3.8.1 A characterization of extremal functionals

The following are equivalent.

(1) f is extremal.
(2) If f ≥ αg for a g ∈ B and some α ∈ (0, 1), then f ≥ g.
(3) If

f = αg1 + (1 − α)g2 (3.100)

for g1, g2 ∈ B and α ∈ (0, 1), then f = g1 = g2.

Proof
(1) =⇒ (2) If f is extremal and f ≥ αg, then (by Lemma 3.7.6)

g = g ∩ ( f + Σ − f ) ≤ g ∩ f + g ∩ (Σ − f )

≤ g ∩ f + (α−1 f ) ∩ (Σ − f ).

Since (α−1 f )∩ (Σ− f ) ≤ (α−1 f )∩ (α−1(Σ− f )) = α−1( f ∩ (Σ− f )) = 0,
we see that g ≤ g ∩ f , that is, g ≤ f.

(2) =⇒ (3) If (3.100) holds, αg1 ≤ f . By assumption it follows that g1 ≤
f . Thus, using (3.100) again, we see that (1 − α)g2 = f − αg1 ≥ (1 − α)g1,
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that is, g2 ≥ g1. Since the roles of g1 and g2 in (3.100) are symmetric, g1 ≥ g2,
implying g1 = g2. Hence, f = g1 = g2.

(3) =⇒ (1) Suppose f ∩ (Σ − f ) = g is nonzero. Then 0 ≤ f + g ≤
f + Σ − f = Σ and 0 ≤ f − g ≤ f . Hence, g1 := f + g and g2 := f − g
are elements of B and f = 1

2 g1 + 1
2 g2, even though g1 �= g2.

3.8.2 A characterization of minimal elements

(a) Suppose f is minimal and g ∈ B \ {0, f } is ≤ f . Then, g = α f for some
α ∈ (0, 1).

(b) Conversely, if all g ≤ f other than 0 and f are of the form g = α f for
some α ∈ (0, 1), then a nonzero extremal f is minimal.

Proof The argument for (a) involves techniques that are developed in Section
4.1. Therefore, I postpone the proof till the end of Section 4.1.

(b) For a nonzero f and α ∈ (0, 1), α f is not extremal:

(α f ) ∩ (Σ − α f ) ≥ (α f ) ∩ ((1 − α) f ) ≥ min(α, 1 − α) f �= 0.

Thus, the assumption implies that all g ≤ f other than g = 0 and g = f are
nonextremal.

3.8.3 An f ∈ B is active iff it is of the form f = ∑k
i=1 αi f i where

αi ∈ [0, 1]
For, each f of this form is clearly ≤ Σmax, and thus is active. Conversely,
suppose f ≤ Σmax, and take an i = 1, . . . , k . Since f ∩ f i ≤ f i and f i is
minimal, there is an αi ∈ [0, 1] such that f ∩ f i = αi f i . Hence, by a repeated
application of Lemma 3.7.6,

f = f ∩ Σmax = f ∩
k∑

i=1

f i ≤
k∑

i=1

( f ∩ f i ) =
k∑

i=1

αi f i .

We will argue that, since ( f ∩ f i ) ∩ ( f ∩ f j ) ≤ f i ∩ f j = 0 (for i �= j), the
inequality here can be replaced by equality. To this end, by induction argument,
it suffices to show that g1 ∩ g2 = 0 implies that the inequality in Lemma 3.7.6
may be replaced by equality: f ∩ (g1 + g2) = f ∩ g1 + f ∩ g2. Hence, we
need to show that

f ∩ (g1 + g2) ≥ f ∩ g1 + f ∩ g2, (3.101)

provided g1 ∩ g2 = 0. By (3.71), the right-hand side equals ( f ∩ g1) ∪ ( f ∩
g2)+ ( f ∩ g1) ∩ ( f ∩ g2) and the second term here is clearly 0. Also, since



3.9 Notes 155

f ∩ (g1 ∪ g2) ≥ f ∩ g1 and f ∩ (g1 ∪ g2) ≥ f ∩ g2,

and ( f ∩ g1) ∪ ( f ∩ g2) is the smallest of elements of B that are larger than
both f ∩g1 and f ∩g2, the right-hand side of (3.101) is ≤ f ∩(g1 ∪g2). Using
(3.71) again, we see that g1 ∪ g2 = g1 + g2, completing the proof.

3.8.4 Theorem 3.7.1 is a special case of Theorem 3.7.9

By 3.8.3, the functional f of Theorem 3.7.1 may be represented as f =∑k
i=1 αi f i . (Recall that, by Theorem 3.7.1 (d), we may restrict ourselves to

the case where f is active.) Given u of Theorem 3.7.1, let ui ’s in (3.92) be
defined by ui = αi u. Then

k∑
i=1

hi (x)ui =
k∑

i=1

αi hi (x)u = −
k∑

i=1

αi f i (Gx)u = h(x)u,

proving that (3.92) reduces to (3.90).
In particular, even if u is a density the process governed by H of Theorem

3.7.9 may be sub-Markov: if the i th type of explosion occurs the process is
continued (according to distribution u) with probability αi ≤ 1.

3.8.5 Exercise

Use the characterization of 3.8.2 to show that if f and g are minimal
functionals then necessarily f ∩ g = 0 or f ∩ g = f = g.

3.9 Notes

With the exception of the proof of 3.1.4, Section 3.1 follows Kato’s argument
presented in [51,54] closely. Feller [42] gives an apparently simpler reasoning,
by avoiding the use of the Hille–Yosida Theorem and using instead the clas-
sical Widder’s Theorem on inverting the Laplace transform. Kato’s argument,
however, has the advantage of being applicable to more general situations:
Voigt [88] uses it to extend Kato’s Theorem to L1 spaces, whereas Banasiak
and Lachowicz [7] use it to extend the theorem to Kantorovič–Banach spaces
(see also [6, 16]); yet further generalizations may be found in [84] and [93].
Notably, Arlotti & Banasiak [6] (see also [5]) also have a nice chapter on birth
and death processes as seen from the perspective of Kato’s Theorem.
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A thorough probabilistic description of what may happen with a chain after
explosion can be found in Chung’s little book [22]. The equally intriguing orig-
inal papers by Feller [41] and [42] possess an additional functional-analytic
flavor, and we borrowed a handful of arguments from those papers. How-
ever, whereas Feller focuses his attention on the resolvents of the nonminimal
processes, we try to work with generators.

The example of a birth and death chain for which all inclusions in (3.42)
are proper is due to J. Banasiak (see [6] Proposition 7.22, p. 195). Our argu-
ment, however, differs from the one given in [6]: Whereas in [6] the fact that
these inclusions are proper is deduced from certain general criteria developed
earlier in that book, we focus on this particular example alone, and are able to
characterize the domains of D + O, D + O , G and Q quite explicitly.

Functionals h of the type introduced in Section 3.5.4 are used to measure
mass loss not only in probabilistic context. For instance, in the framework of
fragmentation processes with growth and decay, they were originally studied
in [8] and [4]. Intuitions developed in these papers led later to a quite satisfying
abstract theory in [6] and [68] (see also [9]). In fact, in the general setting of
the latter works, the role of h is played by the difference of two functionals,
say, h� and h�, where

h�(x) = −ΣGx,

h�λ(x) =
∞∑

n=0

h�((λ− D)−1 Bn
λ(λ− G)x) (3.102)

and the definition of h�λ is proved to be independent of λ > 0. The case of Kol-
mogorov matrices, considered in this book, is simpler, because (3.59) implies
that all the terms defining h� in (3.102) are zero, resulting in h� = 0, and so
h = h�. The theorem of Section 3.5.5 is due to Chin Pin Wong [92,93] (see the
proof of Theorem 2.3.4 in [92] or Theorem 2.3 in [93], cf. Theorem 4.10.28
in [9]), and this result is true in the framework much more general than that
provided by Kolmogorov matrices. On the other hand, in the latter framework,
results presented by W. Feller in Section 8 of [42] are more general than Chin
Pin Wong’s (see in particular equation (8.1) and the equation on the top of page
547 in [42], and compare them with our formula (3.60)), and even more so are
those of his Section 13. Our Theorem 3.7.9 is a version of these latter results.

The title of Section 3.6 alludes, of course, to the fifth studio album by the
English progressive rock band Yes, with Bill Bruford on drums (later in King
Crimson). The second part of the Close to the Edge suite contained in that
album is Total Mass Retain.



4

Boundary Theory Continued

With formula (3.92) and Theorem 3.7.9 our exposition of boundary theory for
Markov chains has reached its climax: we know that extremal functionals pro-
vide a way for a Markov chain to start afresh after explosion in various ways,
and the formula just mentioned shows how such information of postexplosion
process is hidden in its generator. There is, however, still much we can learn.
In the first section of this chapter, Section 4.1, extremal functionals, some-
what abstract beings, are revealed to be sojourn sets for the minimal Markov
chain involved. Hence, in agreement with our intuition, each functional is sim-
ply a way to reach infinity in finite time. Next, in Section 4.2, these extremal
functionals, that is, sojourn sets, are finally seen as proper elements of the state-
space. We will argue that from the perspective of such an extended state-space,
phenomena discovered before are even more transparent.

And then, when everything seems to be finally clear and properly explained,
in Section 4.3, we come to the example of a Markov chain that shatters our
confidence into pieces: that is, P. Lévy’s flash. In this example, the informa-
tion on postexplosion process is encrypted in the domain of the generator; this
is in contrast to formula (3.92), where this information is expressed as extra
terms accompanying the generator of the minimal chain. But, as is the case
with many apparent paradoxes, we will finally learn from this chain some-
thing new and precious:1 besides exit boundary for a Markov chain, there is
also its entrance boundary. We will also see, by examining examples, how
the information about postexplosion processes involving entrance boundary is
reflected in the domain of the generator. We will learn that, if both entrance and
exit boundary is present, the generator of a chain which after explosion starts
afresh through a so-called entrance law or from a randomly distributed position

1 As quoted in [1], p. 289, Niels Bohr supposedly said: ‘How wonderful that we have met with a
paradox. Now we have some hope of making progress.’
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in the state-space may differ from the generator of the minimal process both
by additional terms and in the domain.

4.1 Sojourn Sets and Sojourn Solutions

Our main goal in this section is, guided by Example 3.6.18, to identify extremal
functionals as sojourn solutions, that is, vectors of probabilities of sojourning
in certain sets.

In analyzing sojourn solutions, it is convenient to refer to the so-called jump
chain. To explain, let {X (t), t ≥ 0} be a Markov chain with intensity matrix Q.
Think of the value, say, Y1, of the process at the moment of its first jump (this
moment is random and different for different elementary events); then think of
the value, say, Yn , of the process at the time of its nth jump. A look at (3.67)
shows that � gathers all transition probabilities of the discrete Markov chain
Y1,Y2, . . . :

P[Yn+1 = j |Yn = i] = πi, j := (1 − δi, j )
qi, j

qi
; n ≥ 1, i, j ∈ N.

It is this chain that is known as the jump chain.

4.1.1 Notational convention

Let A ⊂ N be a set. The spaces l1(A) and l∞(A) may be naturally identified
with subspaces of l1(N) and l∞(N): for (ξ)i∈A ∈ l1(A) and f ∈ l∞(A) it
suffices to agree that ξi = 0 and f (i) = 0 for i �∈ A.

Furthermore, if �̃ = (
π̃i, j
)

i, j∈N
is a sub-Markov operator in l1(N) and

B ⊃ A is another subset of N, then the matrix composed of

π̃i, j (A) =
{
π̃i, j , i, j ∈ A,

0, otherwise
(4.1)

induces a sub-Markov operator, say, �̃A, in the space l1(B), by

�̃A (ξi )i∈B =
⎛⎝∑

j∈B

π̃ j,i (A)ξ j

⎞⎠
i∈B

∈ l1(B).

Figuratively speaking, �̃A represents a chain in which only jumps between
elements of A are possible: the remaining elements of B are ‘frozen’ and jumps
from A to B \ A are also disallowed.
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With such a notation, it might be unclear whether for x ∈ l1(B), �̃Ax is a
member of l1(B) or of l1(N), but the elements in question may be identified
(as above).

4.1.2 Sojourn sets

Let A be an arbitrary subset of N, � be the jump chain matrix (3.67), and
ΣA ∈ l∞(A) be the functional (playing the role of Σ in l1(A)) given by

ΣA (ξi )i∈A =
∑
i∈A

ξi .

For the operator �A acting in l1(A), defined in (4.1), we have �∗
AΣA ≤ ΣA.

Therefore, we may argue as in, for example, Section 3.6.2 to see that the limit

σA(x) := lim
n→∞ ΣA(�

n
Ax)

exists for all x ∈ l1(A), and defines a member of BA, the latter set being
composed of functionals f ∈ l∞(A) such that 0 ≤ f ≤ ΣA and �∗

A f = f.
Since �n

Aei is the i th row of the matrix �n
A, it is clear that ΣA(�

n
Aei ) is

the probability of the event that the jump chain starting at i ∈ A will be in A
after n jumps without ever leaving A in the meantime. Since such events form
a decreasing sequence, σA(i) = limn→∞ ΣA(�

n
Aei ) is the probability that the

chain starting at i ∈ A will never leave this set: A is termed a sojourn set if
σA �= 0.

4.1.3 Construction of sojourn solutions

Let A ⊂ N be a set. Since �x ≥ �Ax for nonnegative x ∈ l1(N), extending
σA as in 4.1.1, we have

�∗σA(x) = σA(�x) ≥ σA(�Ax) = σA(x).

Arguing as in Section 3.6.2 again, we conclude that

sA(x) = lim
n→∞ σA(�

n x)

exists for all x ∈ l1(N) and defines a member of B.
To interpret sA, we note first that if x ∈ l1(N) is a distribution, then σA(x)

is the probability that the jump chain starting at a randomly selected point in
N according to the distribution x starts in fact in A and never leaves this set
afterward. Therefore, σA(�

nei ) is the probability of the event that the jump
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chain starting at i lands in A after n steps and from that time on stays in A for
ever. Since such events form an increasing sequence,

sA(i) = lim
n→∞ σA(�

nei )

is the probability that the jump chain starting at i will eventually hit A to never
leave A afterward.

The functional sA is termed sojourn solution. Clearly,

sA ≥ σA. (4.2)

To recall, our main goal in this section is to show that all extremal functionals
are sojourn solutions and vice versa. We start with three lemmas. Sections 4.1.8
and 4.1.9, following them, are stepping stones for our main results contained in
4.1.10 and 4.1.11. Section 4.1.11 is also of its own importance to be revealed
in Chapter 5.

4.1.4 Lemma

Suppose A, B ⊂ N are disjoint sets. Then

sA + sB = sA ∪ sB ≤ sA∪B .

Proof Both sA and sB are smaller than sA∪B . Thus, by definition of ∪, sA ∪
sB ≤ sA∪B . Similarly, sA ∪ sB ≤ sA + sB , whether A and B are disjoint or not:
it is the reverse inequality that we really need to prove.

Functionals σA and σB are defined as elements of l∞(A) and l∞(B),
respectively, and then extended to elements of l∞(N), as in Section 4.1.1, by
supplying zeros on appropriate coordinates. Since A ∩ B = ∅,

(σA + σB)(i) =

⎧⎪⎪⎨⎪⎪⎩
σA(i), i ∈ A,

σB(i), i ∈ B,

0, otherwise,

≤ max[sA(i), sB(i)] ≤ (sA ∪ sB)(i),

with the last inequality being a special case of (3.73). Therefore, for any
nonnegative x ∈ l1(N),

(σA + σB)(�
n x) ≤ (sA ∪ sB)(�

n x),

and letting n → ∞, yields sA + sB ≤ sA ∪ sB , as desired.
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4.1.5 An auxiliary inequality

Suppose A is a nonempty subset of N, �̃ = (π̃i, j
)

i, j∈A is a sub-Markov oper-

ator in l1(A), a nonnegative, non-zero f ∈ l∞(A) satisfies f ≥ �̃∗ f , and B
is a nonempty subset of A. Then, for any i ∈ A,

f (i) ≥
∑
j∈B

π̃i, j f ( j)+
∑

k∈A\B

π̃i,k f (k). (4.3)

If i belongs to B, and π̃i, j (B) is defined as in (4.1), this may be written as

f (i) ≥
∑
j∈B

π̃i, j (B) f ( j)+
∑
j∈B

π̃0
i, j (B)

∑
k∈A\B

π̃ j,k f (k), (4.4)

because π̃0
i, j (B) = 1 only if i = j , and is zero otherwise. I claim that this

formula may be generalized as follows: for any n ≥ 1 and i ∈ B,

f (i) ≥
∑
j∈B

π̃n
i, j (B) f ( j)+

n−1∑
�=0

∑
j∈B

π̃ �i, j (B)
∑

k∈A\B

π̃ j,k f (k), (4.5)

where
(
π̃ �i, j (B)

)
i, j∈B

is the matrix representing (�̃B)
�. Since for n = 1, (4.5)

reduces to (4.4), for an induction argument it suffices to show the induction
step. If (4.5) is true for a certain n, and Sn denotes the second sum on the
right-hand side of this inequality, then replacing f ( j) in (4.5) according to
(4.3),

f (i) ≥
∑
j∈B

π̃n
i, j (B)

∑
k∈B

π̃ j,k f (k)+
∑
j∈B

π̃n
i, j (B)

∑
k∈A\B

π̃ j,k f (k)+ Sn .

Here, the first sum on the right equals
∑

j∈B π̃
n+1
i, j (B) f ( j) and the remaining

two add up to Sn+1. This shows that (4.5) with n replaced by n +1 is true, thus
completing the induction step, and the entire argument. It is also clear that if
�̃∗ f = f , inequality in (4.5) may be replaced by equality.

Let now, for a set C ⊂ B(⊂ A),

π̃n
i,C (B) =

∑
j∈C

π̃n
i, j (B)

be the probability that the jump chain starting at i is in the set C after n steps
and in the meantime has never left B. Instead of π̃n

i,C (A) we simply write π̃n
i,C .

With this notation, applying (4.5) to f = ΣA (we have �∗ΣA ≤ ΣA, so
that using ΣA in place of f is legitimate) yields

1 ≥ π̃n
i,B(B)+

n−1∑
�=0

∑
j∈B

π̃ �i, j (B)π̃ j,A\B, i ∈ A. (4.6)
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We note that the second term here is the sum of probabilities of disjoint events
E0, . . . , En−1, where E� holds if the chain related to �̃ starting at i stays in B
for (precisely) � steps and then, in the (�+ 1)st step, leaves B; the summation
index, j , is the last position of the chain in B, before jumping out of B.

4.1.6 The crucial lemma

Let A and �̃ be as in the previous section. Suppose a nonzero f ≥ 0 satisfies
�̃∗ f = f. For δ ∈ (0, ‖ f ‖), let

F(δ) = {i ∈ A; f (i) > δ},
and let δ′ ∈ (δ, ‖ f ‖). Then

π̃n
i,F(δ)(F(δ)) >

δ′ − δ

‖ f ‖ − δ
(4.7)

for all n ≥ 1 and i such that f (i) > δ′.

Proof Look at equality (!) (4.5) with B = F(δ). The first term on the right-
hand side does not exceed

‖ f ‖
∑

j∈F(δ)

π̃n
i, j (F(δ)) = ‖ f ‖π̃n

i,F(δ)(F(δ)).

Since the k’s in the second term are not members of F(δ), the second term
does not exceed

δ

n−1∑
�=0

∑
j∈F(δ)

π̃ �i, j (F(δ))π̃ j,A\F(δ),

which, by (4.6), does not exceed δ(1− π̃n
i,F(δ)(F(δ))). Thus, if f (i) > δ′, (4.5)

renders

δ′ < ‖ f ‖π̃n
i,F(δ)(F(δ))+ δ(1 − π̃n

i,F(δ)(F(δ))).

This inequality is equivalent to (4.7).

4.1.7 F(δ) is a sojourn set; nonzero sojourn solutions have norm 1

Let� be the jump chain matrix. Suppose that for a set A and �̃ = �A there is
a nonzero f ∈ BA. Then πn

i,F(δ)(F(δ)) in (4.7) is just another notation for the
probability ΣF(δ)(�

n
F(δ)ei ) (see Section 4.1.2). It follows that for i such that

f (i) > δ′ (and such i does exist in F(δ))

σF(δ)(i) ≥ δ′ − δ

‖ f ‖ − δ
> 0. (4.8)
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Hence, F(δ) is a sojourn set. Moreover, since an i with f (i) > δ′ may be
found in F(δ) for any δ′ ∈ (δ, ‖ f ‖), (4.8) shows that

‖σF(δ)‖l∞(F(δ)) = 1.

In particular, if A is a sojourn set, Lemma 4.1.6 applies to �̃ = �A and
f = σA. Similarly, since ΣA ≥ ΣF(δ), we see that σA ≥ σF(δ) and conclude
that

‖σA‖l∞(A) = 1 (4.9)

(which automatically implies ‖sA‖l∞(N) = 1).

4.1.8 A and A(δ) are equivalent

Let A be a sojourn set and, for a given δ ∈ (0, 1), let

A(δ) = {i ∈ A; σA(i) > δ}.
Then

sA = sA(δ),

which is to say that the sets A and A(δ) are equivalent.

Proof
(i) We are to show that

lim
n→∞ σA(�

n x) = lim
n→∞ σA(δ)(�

n x), x ∈ l1(N). (4.10)

The following considerations reduce this task to proving an equality of certain
functionals on l1(A).

Since, for any nonnegative x ∈ l1(A),

ΣA(x) ≥ σA(x) = σA(�Ax) ≥ σA(δ)(�Ax) ≥ σA(δ)(�A(δ)x) = σA(δ)(x),

the sequence
(
σA(δ)(�

n
Ax)
)

n≥1 increases and is bounded from above by
ΣA(x). Therefore, the limit

σ A
A(δ)(x) := lim

n→∞ σA(δ)(�
n
Ax)

exists for all x ∈ l1(A) and defines a member of BA such that

σ A
A(δ) ≥ σA(δ).

On the other hand, for nonnegative x ∈ l1(N) and n ≥ 1,

σA(δ)(�
n
Ax) ≤ σA(δ)(�

n x) ≤ sA(δ)(x),
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showing that

σ A
A(δ) ≤ sA(δ).

Combining these two inequalities, we conclude that, for any n ≥ 1 and
nonnegative x ∈ l1(N),

σA(δ)(�
n x) ≤ σ A

A(δ)(�
n x) ≤ sA(δ)(�

n x) = sA(δ)(x).

It follows that sA(δ)(x) = limn→∞ σ A
A(δ)(�

n x), x ∈ l1(N). Thus, instead of
(4.10), it suffices to show that

σA = σ A
A(δ).

(ii) It is clear that σA ≥ σ A
A(δ), and that f := σA − σ A

A(δ) belongs to BA

(since σA and σ A
A(δ) do). We need to show that ‖ f ‖ = 0.

Suppose that this is not so and consider a γ ∈ (0, ‖ f ‖). Then, by 4.1.7,

F(γ ) = {i ∈ A; f (i) > γ }
is a sojourn set contained in A. Also, let δ′ ∈ (δ, 1) be so close to 1 that
γ + δ′−δ

1−δ > 1.
For i ∈ A(δ′) ⊂ A(δ), by (4.8),

σ A
A(δ)(i) ≥ σA(δ)(i) >

δ′ − δ

1 − δ
.

Therefore, such an i cannot belong to F(γ ) for this would imply σA(i) =
f (i)+ σ A

A(δ)(i) > 1. Hence, F(γ ) ⊂ A \ A(δ′), that is,

σA(i) ≤ δ′, i ∈ F(δ).

Since σF(γ ) ≤ σA, this contradicts the fact that ‖σF(γ )‖l∞(F(γ )) = 1. The
proof is complete.

4.1.9 Lemma

Let ε > 0 be given and let A be a sojourn set such that

sA(i) > ε, i ∈ A. (4.11)

Then

sA + sA� = Σ,

where A� = N \ A. (See also Section 4.1.13.)
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Proof For simplicity of notation, let B = A�. We need to show that

f := Σ − sA − sB

is zero. By Section 4.1.4, 0 ≤ f ≤ Σ.
Suppose ‖ f ‖ > 0. There are numbers δ ∈ (0, 1) and γ ∈ (0, ‖ f ‖) such that

2δ > 1 and γ + δ > 1. Then the sets

A(δ) = {i ∈ A; sA(i) > δ},
B(δ) = {i ∈ B; sB(i) > δ},
F(γ ) = {i ∈ N; f (i) > γ }

are pairwise disjoint, because for an i in the intersection of any two of these
sets Σ(i) would exceed 1. Hence, by 4.1.4,

sA(δ) + sB(δ) + sF(γ ) ≤ Σ.

Next, we claim that sA(δ) = sA and sB = sB(δ). For the proof of the first
equality, let A′(δ) = {i ∈ A; σA(i) > δ}. We have A′(δ) ⊂ A(δ) ⊂ A.
Therefore, sA′(δ) ≤ sA(δ) ≤ sA. However, sA′(δ) = sA by Section 4.1.8. This
proves the first claim. Also, the other claim is true if B is a sojourn set. In the
other case, sB = 0 and so B(δ) is empty, implying sB(δ) = 0 = sB .

Therefore,

sA + sB + sF(γ ) ≤ Σ. (4.12)

It follows by the definition of f that f ≥ sF(γ ) and, since ‖sF(γ )‖ = 1, that
‖ f ‖ = 1.

Thus γ can be chosen as close to 1 as we wish and in particular it can be so
large that γ > 1 − ε for the ε featuring in our assumption. For such γ , F(γ )
and A must be disjoint, because for i in the intersection of these two sets we
would have Σ(i) = f (i) + sA(i) + sB(i) > γ + ε > 1. Thus, F(γ ) ⊂ B.
But then (4.12) shows that Σ ≥ sB + sF(γ ) ≥ 2sF(γ ). This is impossible, since
‖Σ‖ = ‖sF(γ )‖ = 1.

4.1.10 Any sojourn solution is an extremal functional

Proof Let A be a sojourn set. Take any ε ∈ (0, 1). For A′ := A(ε)where A(ε)
is defined in 4.1.8, sA = sA′ and, on the other hand, conditions of Lemma 4.1.9
are satisfied. Therefore,

sA ∩ (Σ − sA) = sA′ ∩ (Σ − sA′) = sA′ ∩ sN\A′ .

Moreover, by Lemma 4.1.4,

sA′ + sN\A′ = sA′ ∪ sN\A′ .
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Hence, by (3.71), sA′ ∩ sN\A′ = 0, that is,

sA ∩ (Σ − sA) = 0,

proving that sA is an extremal functional.

4.1.11 Any extremal functional is a sojourn solution

Proof Let nonzero f be extremal. Take δ ∈ (0, ‖ f ‖). Then

F(δ) = {i ∈ N; f (i) > δ}
is a sojourn set. We aim at showing that f = sF(δ).

By definition of F(δ), f > δΣF(δ) ≥ δσF(δ). Therefore, f ≥ δsF(δ) and
Section 3.8.1 (2) yields f ≥ sF(δ). Our task thus reduces to showing that

g := f − sF(δ) ≥ 0 (4.13)

is in fact zero.
If g �= 0,

A :=
{

i ∈ N; g(i) >
‖g‖

2

}
is a sojourn set and so is

A(δ) := {i ∈ A; sA(i) > δ}.
Moreover, see the proof of 4.1.9, f ≥ g ≥ ‖g‖

2 sA which in turn implies f ≥
sA. Thus, for i ∈ A(δ), we have f (i) ≥ sA(i) > δ, showing that A(δ) ⊂ F(δ).
But then, by (4.13),

f ≥ ‖g‖
2

sA + sF(δ) ≥
(‖g‖

2
+ 1

)
sA(δ).

This is impossible, because ‖sA(δ)‖ = 1 and f ∈ B. This contradiction shows
that g = 0, completing the proof.

We complete this section by providing the missing part of the proof of
characterization of minimal elements.

4.1.12 Proof of 3.8.2(a)

Suppose g ≤ f for a nonzero g ∈ B. Then,

A(δ) = {i ∈ N; g(i) > δ}
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is a sojourn set for any δ ∈ (0, ‖g‖). By the definition of A(δ), f ≥ g ≥
δΣA(δ) ≥ δσA(δ). Hence, f ≥ g ≥ δsA(δ) and so, by 3.8.1 (2), f ≥ sA(δ).
Since sA(δ) is extremal and f is minimal, f = sA(δ). Thus, g ≥ δ f for any
δ ∈ (0, ‖g‖). It follows that

g ≥ ‖g‖ f.

The same reasoning applied to f − g instead of g renders

f − g ≥ ‖ f − g‖ f ≥ (1 − ‖g‖) f,

because any extremal functional, being a sojourn solution, has norm 1. These
two inequalities result in g = ‖g‖ f . Since 0 ≤ g ≤ f , we have ‖g‖ ∈
[0, ‖ f ‖], but extremal values are disqualified by assumption.

4.1.13 Two warnings

(i) The seemingly superfluous assumption (4.11) of Lemma 4.1.9 is in fact
quite crucial. Feller refers to sojourn sets satisfying (4.11) as representative,
and notes that for nonrepresentative sojourn sets Lemma 4.1.9 need not be true.
Here is an example.

Suppose natural numbers are arranged in four infinite rows as in Figure 4.1.
For instance, the first row counted from above, denoted R1, may be composed
of natural numbers divisible by 4, the second, R2, of those that are divisible
by four with remainder 1, and so on. Suppose also that when in the first or
fourth row, the jump chain always moves one unit to the right, so that it never
leaves this row. Suppose further that when in the kth column and second row it
moves either to the first or third row in the (k + 1)st column with probabilities

1
k2+1

and k2

k2+1
, respectively. Similarly when in the kth column and third row

Figure 4.1 Nonrepresentative sojourn sets. The chain jumps from the inner rows
to the outer (representative) rows with smaller and smaller probabilities as it
moves further to the right. The probability of oscillating between the second and
third rows is then nonzero.
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it moves either to the fourth or the second row in the (k + 1)st column with
probabilities 1

k2+1
and k2

k2+1
, respectively.

Then, R1 and R4 are sojourn sets (they are in fact representative), and so are
A = R1 ∪ R2 and B = R3 ∪ R4. Moreover, for any point p, sA(p) = sR1(p) is
the probability that the chain starting at p will after finitely many steps reach
the first row; hence, if p is in the kth column and second row, sA(p) does not
exceed

∑∞
j=0

1
(k+2 j)2+1

<
∑∞

j=k
1

j2+1
, and the latter quantity is as small as

we wish provided k is large enough. It follows that A is not representative, and
the same applies to B. We will show that the conclusion of Lemma 4.1.9 is not
valid.

It suffices to show that sA(p)+ sB(p) < 1 for the point p in the second row
and first column. We note that this sum is the probability that a chain starting
at this point will after finitely many steps reach either the first or the fourth

row (and then stay there for ever). However, with probability
∏∞

k=1
k2

k2+1
, the

process starting there will for ever oscillate between the second and third rows
(this infinite product is nonzero by Criterion 2.4.6), showing that the former
probability is smaller than 1.

(ii) Sojourn solutions (even those that are representative) may correspond
to passive functionals and thus be useless in constructing post-explosion pro-
cesses. For instance, if in the example presented above all sojourn times are
exponential with parameter 1, all sojourn sets are passive. If, on the other
hand, sojourn times in the kth column are exponential with parameter k−2,
all sojourn solutions are active. We are simply repeating the obvious fact that
the jump chain matrix can be derived from an intensity matrix (if no states are
instantaneous) but not vice versa.

4.2 A Broader Perspective

Now that we have constructed the discrete (exit) boundary for a Markov chain
and have been able to identify elements of this boundary as sojourn sets for
the chain, we are ready to see a panoramic view from a larger space. From
this perspective the semigroups considered before transpire to be shadows, or
should I say, spectra, of certain other quite natural semigroups.

4.2.1 Stopped process

Let’s start by looking again at the minimal semigroup {S(t), t ≥ 0} for a given
Kolmogorov matrix Q. The related process is defined only up to a random
time of explosion, and as a result, {S(t), t ≥ 0} is composed of sub-Markov
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operators. A simple way to make a Markov semigroup out of {S(t), t ≥ 0} is
to think of an additional state, say, a, for the minimal process and agree that
after explosion the minimal process goes to this state and stays there for ever.2

We stress that this new process is clearly not identical to the minimal process:
the former has a larger state-space and stays in the extra point of this space
whereas the latter is undefined.

The new semigroup, let us denote it {Sa(t), t ≥ 0}, is defined in the space
l1
a of absolutely summable sequences indexed by elements of Na := N ∪ {a}.

The original space l1 = l1(N) may be identified with the subspace of x =
(ξa, ξ1, ξ2, . . . ) ∈ l1

a such that ξa = 0, and it will be convenient to grant the
latter elements dual citizenship, and treat them as members of both l1 and l1

a .

With this agreement, Sa(t) can be written explicitly:

Sa(t)x = (ξa + ΣLx − ΣS(t)Lx)ea + S(t)Lx, x ∈ l1
a ,

where

● x = (ξa, ξ1, ξ2, . . . ),
● Lx = (0, ξ1, ξ2, . . . ),

● ea = (1, 0, 0, . . . ) ∈ l1
a ,

● and Lx is treated as an element of l1 so that S(t)Lx makes sense, whereas
S(t)Lx is seen as a member of l1

a .

This formula says what it is supposed to say: if merely the states 1, 2, 3, . . .
are observed, the process is identical to the minimal one:

L Sa(t)x = S(t)x, x ∈ l1.

However, the probability mass lost in the minimal process (if x is a distribution,
ΣLx − ΣS(t)Lx is this probability mass), is now being accumulated at the
state a.

The generator, say, Ga , of the semigroup {Sa(t), t ≥ 0} can also be calcu-
lated explicitly: the difference quotients (note that ξaea = x − Lx)

Sa(t)x − x

t
= ΣLx − ΣS(t)Lx

t
ea + S(t)Lx − Lx

t

converge as t → 0+ iff Lx belongs to D(G), where G is the generator of
{S(t), t ≥ 0}; this is because the terms in this formula are linearly independent.
For such x ,

Ga x := lim
t→0+

Sa(t)x − x

t
= −(ΣGLx)ea + GLx

= h(Lx)ea + GLx . (4.14)

2 Many a witty author refers to this state as the cemetery.
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This form of the generator, in fact, does not surprise us a bit, because we
remember Section 3.5.5 (we also borrowed notation for h from the latter sec-
tion). Didn’t we here, as in 3.5.5, command the process to start all over again
after explosion? The only difference is that now we have commanded it to start
at a newly created state a, which is absorbing and its connections with the
other states in Na can hardly be called bilateral, and so talking about a new
beginning is a bit of an exaggeration.

And vice versa, looking back at the labour pains of Chapter 3, we realize
that the little calculation we have made here could have helped us in guessing
the form of the generator of a postexplosion process we discovered in (3.36),
(3.39), and (3.55).

4.2.2 A better bookkeeping

The approach presented in the previous section is an example of a rather poor
accounting of lost probability mass. If we know that there are k extremal
sojourn sets (boundary points), we could accumulate the probability mass lost
in the minimal process in k containers, using one container (boundary point)
for one sojourn set.

Here are the details. First, we identify the k elements f 1, . . . , f k of the
discrete boundary B with integers −1,−2, . . . ,−k . Next, we consider the
space l1(I) of absolutely summable sequences indexed by

i ∈ I := N ∪B = N ∪ {−1, . . . ,−k };
members of l1(I) are thus of the form

x = (ξ−k , . . . , ξ−1, ξ1, . . . ). (4.15)

Again, elements of the original space l1 = l1(N) can be identified with
(ξi )i∈I ∈ l1(I) such that ξ−1 = ξ−2 = · · · = ξ−k = 0. We also need a
new version of L:

L(ξ−k , . . . , ξ−1, ξ1, ξ2, . . . ) = (0, . . . , 0, ξ1, ξ2, . . . ).

Then, the generator of the searched-for semigroup has the following form (cf.
(3.92)):

Gstopx =
k∑

i=1

hi (Lx)e−i + GLx, x ∈ D(Gstop), (4.16)

where hi is given by (3.95), e−i ∈ l1(I) is given by (2.9), and D(Gstop) is
composed of x ∈ l1(I) such that Lx ∈ D(G). Although, formally speaking,
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the fact that Gstop is a Markov generator in l1(I) is not a direct consequence of
Theorem 3.7.9, the proof of this fact differs from the proof of Theorem 3.7.9
only in insignificant details. (See also our solution to Exercise 4.2.6.)

In the Markov chain governed by Gstop a particle ‘reaching infinity’ through
the sojourn set related to the i th extremal functional, is commanded to land at
the integer −i and from that moment onward to stay there for ever. By con-
trast, in the chain governed by Ga of the previous section, after explosion, all
particles, regardless of the way they ‘reached infinity,’ land at the ‘aggregate’
state a.

4.2.3 Processes in N ∪B and their shadows

Formula (4.16) significantly changes the role of boundary points f 1, . . . , f k .

In (3.92) they are merely transit hubs, distributing paths after explosion to
various states with various probabilities. In (4.16) they gain the status of
true state-space points; newcomers, undoubtedly, but occupying their right-
ful places. These new points differ from other, original, states only by the fact
that they cannot be reached by a simple jump from an i ∈ N; to reach them an
infinity of (very particular) jumps is needed.

In the enlarged state-space N ∪ B new, more general rules of behavior for
a chain may be introduced, by expanding the original matrix Q. We may, for
example, allow direct jumps from an i ∈ N to a j ∈ B and vice versa. We
may also allow direct communication between points of B. In devising such
rules, however, we need to be careful, if we want to have processes that are
meaningful from the perspective of the original space. For, if we observe only
the states contained in N, we will see particles disappearing after explosion and
then after some random time spent at the boundary reappearing again; we need
to make sure that such returns do not violate Markovian nature of the process
(cf. [72], p. 6).

For example, given densities u1, . . . , uk ∈ l1(N) and positive numbers
r1, . . . , rk (playing the role of escape rates), we may think of the operator

Gerx = Gstopx +
k∑

i=1

ξ−i ri (ui − e−i ), x ∈ D(Ger), (4.17)

where D(Ger) is composed of x’s such that Lx ∈ D(G). Here ‘er’ stands for
‘elementary return.’ In the related process a particle reaching, after explosion,
a boundary point i ∈ B neither stays there for ever (as in the process described
by (4.16)) nor leaves it immediately (as in the process described by (3.92)): it
stays there for an exponential time with parameter ri , and then returns to one of
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P (τ ≥ t) = e−r2t

P (τ ≥ t) = e−r1t

Figure 4.2 An example of elementary return from two (exit) boundary points; τ is
the time spent at the boundary. Points at the boundary cannot be reached directly
but only via an infinite number of jumps through the regular points.

the states in N, the probability of choosing j ∈ N being equal to the j th coordi-
nate in ui . From the perspective of N, after explosion, a particle disappears for
an exponential time (with parameter depending on how explosion came about)
and then reappears at a random point according to the rules described above.

That fact that Ger is a Markov generator will be proved in the next section.

4.2.4 Ger is a Markov generator

Let

T (t)x = Lx +
k∑

i=1

ξ−i (e
−ri t e−i + (1 − e−ri t )ui ), x ∈ l1(I), t ≥ 0. (4.18)

It is clear that this formula defines a strongly continuous semigroup
{T (t), t ≥ 0} of Markov operators in l1(I). In the related process, a particle
starting at −i ∈ B stays there for an exponential time with parameter ri and
then jumps to a j ∈ N with probability equal to the j th coordinate of ui ; all
the states j ∈ N are absorbing.

It is easy to see that the limit limt→0+ t−1(T (t)x − x) exists for all x ∈ l1(I)

and equals
∑k

i=1 ξ−i ri (ui − e−i ). It follows that the bounded linear operator

Rx =
k∑

i=1

ξ−i ri (ui − e−i ) (4.19)

is the generator of {T (t), t ≥ 0}.
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On the other hand, Ger = Gstop + R. Therefore, since Gstop is a generator
and R is bounded, Ger is a generator by the Phillips Perturbation Theorem.
Since Gstop and R are Markov generators, Trotter’s Product Formula implies
that Ger is a Markov generator as well.

4.2.5 Instantaneous return from the boundary

In our discussion of the chain related to (3.92) we frequently described bound-
ary points as, somewhat imaginary, instantaneous states working as transit hubs
by distributing particles passing through them to ‘true’ points of the state-
space. The following approximation procedure provides arguments for such
a description.

Let (rn)n≥1 be a sequence of positive rates with limn→∞ rn = ∞, and let
for any n ≥ 1 an operator An be given by

An x = Gstopx + rn

k∑
i=1

ξ−i (ui − e−i ), (4.20)

on the common domain composed of x’s such that Lx ∈ D(G); as before ui ’s
are fixed densities in l1(N). Hence, An, n ≥ 1 are Markov generators in l1(I),
and the related Markov chains feature elementary return from the boundary.
For a fixed n, return rates of the chain are the same for all boundary points,
but generally increase with n. At the same time, distributions after return are
different for different boundary points but do not change with n. We will find
the limit of {et An , t ≥ 0}.

Formula (4.20) is of the form (1.26) with A0 = Gstop and B given by (cf.
(4.19))

Bx =
k∑

i=1

ξ−i (ui − e−i ). (4.21)

Recalling that the operator in (4.19) is the generator of the semigroup (4.18),
we also see that

lim
t→∞ et R x = Px, where Px = Lx +

k∑
i=1

ξ−i ui .

The definition of P given above implies in particular Px = x for x ∈ l1(N)

and Pe−i = ui , i = 1, . . . , k . It follows that

PGstopx = H x, x ∈ D(H) = D(G) = D(Gstop) ∩ l1(N),

where H is given by (3.92).
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Thus, since we know that H is a Markov generator in l1(N), Kurtz’s Singular
Perturbation Theorem 1.4.4 is in force, and we conclude that

lim
n→∞ et An x = et H Px, t > 0. (4.22)

This formula says that the semigroups {et An , t ≥ 0} converge, in a sense, to
{et H , t ≥ 0} (I need to add ‘in a sense’ because {et An , t ≥ 0} are defined in a
different space than {et H , t ≥ 0}) allowing us to infer properties of the process
related to H from those of the processes related to An’s.

To this end, think of a boundary point −i ∈ B. In the process related to An ,
the time spent at −i is exponential with parameter rn , and the distribution of
the process after that time is ui . As n → ∞, the time spent at −i is shorter
and shorter but the distribution ui remains the same. Hence, we expect that in
the limit the process ‘spends no time at −i’ but immediately jumps from there
to a random point in N, according to the distribution ui . (In this respect, −i
differs from the instantaneous state of the first Kolmogorov–Kendall–Reuter
example.) In fact, (4.22) reveals that the time spent at the boundary is so short
that the limit process does not see the boundary points as ‘true’ elements of
the state-space (this was also our point of view initially); its state-space is N

not I. We see from our formula that a common initial distribution x ∈ l1(I)

of the approximating chains must in the limit be replaced by Px ∈ l1(N). In
particular, e−i must be replaced by ui ; all the probability mass concentrated at
the boundary point −i must be immediately distributed across N. This supports
our intuition of −i as a transit hub in a process related to H .

4.2.6 Exercise

Show that Gstop is a Markov generator.

4.2.7 Exercise

Find an explicit formula for {etGstop , t ≥ 0}.

4.3 P. Lévy’s Flash

As we are coming to the end of this chapter, the reader might be led to believe
that the general picture has already been drawn, and it is perhaps only details
that are missing. If this is the case, the next, simple example may come as
a shock: the generator of the semigroup considered there is not of the form
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(3.92), even though the underlying process seems not to differ much from those
considered before. In order to understand what is going on we need to change
our point of view on the state-space I: whereas in the preceding sections seeing
I as no different from N worked well, here the basic example for I is Z, the set
of integers, which has two natural ‘infinities’; each of them will turn out to
play a significantly different role.

4.3.1 P. Lévy’s flash

Let l1 = l1(Z) be the space of absolutely summable sequences (ξi )i∈Z and let
ai , i ∈ Z be positive numbers such that∑

i∈Z

a−1
i < ∞. (4.23)

Also, let Q be the operator in l1 given by

Q (ξi )i∈Z = (ai−1ξi−1 − aiξi )i∈Z ,

on the domain composed of (ξi )i∈Z such that (ai−1ξi−1 − aiξi )i∈Z belongs to
l1. (This is a particular case of the operator Q of Section 3.4.) We note that
convergence of the series

∑
i∈Z

|ai−1ξi−1 − aiξi | implies existence of

l+ (ξi )i∈Z := lim
i→∞ aiξi and l− (ξi )i∈Z := lim

i→∞ a−iξ−i .

In particular, it implies, by assumption (4.23), that (ξi )i∈Z ∈ l1, that is, that the
domain of Q is contained in l1. We also have

ΣQx = l−x − l+x . (4.24)

With these preparations out of the way, I claim that the operator A defined
as the restriction of Q to the domain D(A) of x ∈ D(Q) such that

l+x = l−x, (4.25)

is a Markov generator: It is easy to see, using (4.24), that two conditions of
the Hille–Yosida Theorem are satisfied, and in Section 4.3.4 we will prove the
third of them. Here I would like to explain how the Markov chain related to A
behaves.

To this end, let us consider the following sequence of approximating chains
(see Figure 4.33). The nth chain is ‘active’ only in the range of {−n, . . . , n};
the remaining states are absorbing. At i ∈ {−n, . . . , n − 1}, the chain stays for

3 Sources I would rather not reveal claim that this figure depicts a cloud from which the flash of
Lévy comes.
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a−n a−n+1 an−2 an−1

an

Figure 4.3 A chain approximating P. Lévy’s flash.

an exponential time with parameter ai before jumping to i + 1, and after an
exponential time with parameter an spent at n, it jumps back to −n.

To see that the semigroups describing these chains converge to the semi-
group generated by A, think of the generator An of the nth semigroup. For
any x = (ξi )i∈Z ∈ D(A), the i th coordinate of An x is the same as that of
Ax provided i ∈ {−n + 1, . . . , n}. Moreover, the (−n)th coordinate of An x
is anξn − a−nξ−n whereas that of Ax is a−n−1ξ−n−1 − a−nξ−n . Since all the
remaining coordinates of An x are zero,

‖An x − Ax‖ = |anξn − a−n−1ξ−n−1| +
∑

i �∈{−n,...,n}
|ai−1ξi−1 − aiξi |.

Thus, because of the boundary condition (4.25), limn→∞ An x = Ax, x ∈
D(A), proving convergence of the semigroups by the Sova–Kurtz Theorem.

Hence, the chain related to A runs through all integers, spending exponential
time with parameter ai at the state i and, because of assumption (4.23) the
voyage through Z is completed in a flash; the boundary condition (4.25) then
commands the chain to start all over again from −∞. This chain is called P.
Lévy’s flash.

4.3.2 Entrance points versus exit points

The difference between the chain of the previous section and those described
by (3.92) is that, whereas in (3.92) the chain is commanded to start afresh from
a randomly selected but regular point of the state-space, here the chain starts
afresh from −∞, which is an example of a point of an entrance boundary.
(Of course, +∞ is an exit boundary.) It is intriguing that, as exemplified by
the boundary condition (4.25), for a description of an entrance boundary a
perturbation of the domain of the generator is needed. This is in contrast to
exit boundary: formula (3.92) says that an exit boundary introduces additional
terms in the generator, but does not change its domain. An entrance boundary
does not change the way the generator acts but rather its domain.
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Before we study this difference between entrance and exit points in more
detail, let us have a closer look at the minimal chain corresponding to P. Lévy’s
flash.

4.3.3 The minimal chain and its generator

The minimal chain described by the intensity matrix hidden in the generator of
P. Lévy’s flash is a pure birth chain which runs through all integers and after
reaching infinity is left undefined. Let us find its generator, G.

As in 3.3.2, we will use (3.5) which is a formula for the resolvent of the gen-
erator. We note that (3.13) is still in force but, because there are now infinitely
many indices smaller than a given i , formula (3.24) giving the i th coordinate
of Rλ (ηi )i∈Z, must be replaced by

ξi = πi−1

λ+ ai

i∑
j=−∞

η j

π j−1
, (4.26)

where this time π j = ∏ j
k=−∞

ak
λ+ak

�= 0; the infinite product converges to a
nonzero limit because of assumption (4.23), and the series converges because
the numbers π j , j ∈ Z are bounded away from 0.

It is a direct consequence of (4.26) that

lim
i→−∞ aiξi = lim

i→−∞πi

i∑
j=−∞

η j

π j−1
= 1 × 0 = 0.

Since Rλ maps l1 onto D(G), we obtain that

l−x = 0, x ∈ D(G).
We will show that the latter is also a sufficient condition for an x ∈ D(Q) to
belong to D(G). In other words (see Section 4.3.1),

G is Q restricted to the kernel of l−.

To this end, it suffices to show that Q restricted to the kernel of l− has the
resolvent given by (4.26). Now, in coordinates, the resolvent equation for Q

reads

(λ+ ai )ξi − ai−1ξi−1 = ηi , i ∈ Z. (4.27)

Rewriting this as ξi = 1
λ+ai

(ηi + ai−1ξi−1) and using induction argument, we
obtain that for all k ≥ 1,
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ξi = πi−1

λ+ ai

⎛⎝ i∑
j=i+1−k

η j

π j−1
+ ai−kξi−k

πi−k

⎞⎠ . (4.28)

Therefore, letting k → ∞ and using l−x = 0, we see that ξi is given by the
right-hand side of (4.26). This completes the proof.

4.3.4 Operator A is a Markov generator

Let us complete the proof that A of Section 4.3.1 is a Markov generator, by
showing condition (ii) in the Hille–Yosida Theorem. In coordinates the resol-
vent equation for A is precisely the same as the resolvent equation for Q, and
as we have seen this forces coordinates of its solution to satisfy (4.28). Letting
k → ∞, yields thus

ξi = πi−1

λ+ ai

⎛⎝ i∑
j=−∞

η j

π j−1
+ l−x

⎞⎠ , (4.29)

and this in turn forces

l+x = π∞

⎛⎝ ∞∑
j=−∞

η j

π j−1
+ l−x

⎞⎠ ,
where, of course, π∞ = limi→∞ πi = ∏∞

i=−∞
ai
λ+ai

. It follows that (ξi )i∈Z

given by (4.29) belongs to D(A) iff

l−x = π∞
1 − π∞

∞∑
j=−∞

η j

π j−1
,

that is, iff

ξi = πi−1

λ+ ai

⎛⎝ i∑
j=−∞

η j

π j−1
+ π∞

1 − π∞

∞∑
j=−∞

η j

π j−1

⎞⎠ . (4.30)

It is perhaps still unclear, though, that the so-defined (ξi )i∈Z belongs to
D(Q), that is, that (ai−1ξi−1 − aiξi )i∈Z belongs to l1. Fortunately, it is easy to
see that (ξi )i∈Z satisfies (4.27). Therefore, it suffices to show that (ξi )i∈Z ∈ l1

(because (ηi )i∈Z belongs to l1 by assumption) and a look at (4.30) reduces our
problem to showing that

∑
i∈Z

πi−1

λ+ ai

i∑
j=−∞

|η j |
π j−1

< ∞.
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Indeed, the second summand in the parentheses does not depend on i , and∑
i∈Z

πi−1
λ+ai

< ∞. Finally, because of

πi−1

λ+ ai
= πi−1 − πi

λ
, (4.31)

the sum in question equals∑
j∈Z

|η j |
π j−1

∞∑
i= j

πi−1

λ+ ai
=
∑
j∈Z

|η j |
π j−1

π j−1 − π∞
λ

<
1 − π∞
λ

∑
j∈Z

|η j |
π j−1

< ∞,

completing the proof.

4.3.5 An entrance law

Let us rewrite (4.30) as follows:

(λ− A)−1 y = Rλy +
⎛⎝ π∞

1 − π∞

∞∑
j=−∞

η j

π j−1

⎞⎠ zλ,

where

zλ :=
(
πi−1

λ+ ai

)
i∈Z

= λ−1 (πi−1 − πi )i∈Z

is independent of y (recall that πi , on the other hand, does depend on λ > 0).
Noting that π∞

∑∞
j=−∞

η j
π j−1

is, by (4.26), l+(Rλy), we obtain (cf. (3.60))

(λ− A)−1 y = Rλy + l+(Rλy)

1 − π∞
zλ. (4.32)

The map λ �→ zλ is a crucial player here, and we need to devote some time
to its description. First, as it is easy to see, zλ belongs to D(Q) and

Qzλ = λzλ. (4.33)

It follows that

(λ− Q)(zλ − zμ) = −(λ− Q)zμ = (μ− λ)zμ, λ, μ > 0.

Moreover, since l−zλ = limi→−∞ πi = 1, we have zλ − zμ ∈ D(G). Thus, Q

above may be replaced by G, and we obtain

zλ − zμ = (μ− λ)Rλzμ, λ, μ > 0. (4.34)

A look back at (3.77) now reveals that zλ’s play a dual role to fλ’s of Section
3.6.7 (compare also (4.33) to (5.63)). Moreover, by definition, this equation
tells us that λ �→ zλ is the Laplace transform of an entrance law. Instead
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of going back to the definition (see, e.g., [70], [42], Section XV or Exercise
4.4.8), however, let us look at the determining function of λ �→ zλ.

To this end, let Ti , i ∈ Z be independent, exponentially distributed random
variables such that E Ti = a−1

i . Then, as in 2.7.5, we check that∫ ∞

0
e−λt

P

⎡⎣ i∑
j=−∞

Tj ≤ t

⎤⎦ dt = λ−1πi ,

and thus

zλ =
∫ ∞

0
e−λtwt dt,

where

wt =
⎛⎝P

⎡⎣ i−1∑
j=−∞

Tj ≤ t

⎤⎦− P

⎡⎣ i∑
j=−∞

Tj ≤ t

⎤⎦⎞⎠
i∈Z

∈ l1. (4.35)

(Here,
∫∞

0 e−λtwt dt is not a Riemann integral as in Sections 1.1.11 and 1.2.1;
rather it is calculated coordinate by coordinate.) It is clear that the i th coordi-
nate of wt is the probability that a chain ‘starting at −∞’ has reached the state
i before time t , but has not left it. Hence, the map t �→ wt fully deserves the
name of ‘entrance law’: it describes the way the process enters the regular part
of the state-space ‘through −∞’ (see also (4.37)). Remarkably, all coordinates
of wt are nonzero, showing that before any, however small, time elapses, the
particle may reach any point, though perhaps with small probability.4

4.3.6 Probabilistic interpretation of (4.32)

The first summand in formula (4.32) comes from the minimal chain, and
its meaning is rather clear. Interestingly, the second term can also be nicely
interpreted in probabilistic terms. To this end, we note that its i th coordinate
equals

λ−1

⎛⎝ ∞∑
j=−∞

π∞η j

π j−1

⎞⎠ ∞∑
n=0

πn∞(πi−1 − πi ).

Here, λ−1∑∞
j=−∞

π∞η j
π j−1

is the Laplace transform of

t �→
∞∑

j=−∞
η j P[Tj + Tj+1 + · · · ≤ t],

4 The reader might remember that a simliar effect was observed in the second
Kolmogorov–Kendall–Reuter example.
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which, if y is a density, is the probability that the chain starting at i with
probability ηi has exploded before time t . This term, when multiplied by
πn∞(πi−1 − πi ), speaks of the probability that before time t , P. Lévy’s flash,
which after the first explosion restarted at −∞, managed to race through all
the integers n times, and then to reach the state i but did not manage to jump
to i + 1.

4.3.7 Reconciliation of generators

From Section 3.5.5 we know that the generator of the process which after
explosion returns to one of randomly chosen states distributed according to
a u ∈ l1 is of the form

H y = Gy + h(y)u

on the domain equal to D(G). Now, the generator of P. Lévy’s flash is

Ay = Qy

and is defined on the domain composed of y ∈ D(Q) such that l+y = l−y.
Can these two, apparently different types of generators describing apparently
similar phenomena, be reconciled? The answer is positive: we will show that
the resolvent of the operator A is the limit of the resolvents of operators of
type H , that is, that A is the extended limit of the operators of type H . (Of
course, by the Trotter–Kato Theorem this also implies convergence of the
related semigroups, but this is not the main point here.)

More specifically, for n ≥1 let An be the generator of the process which
after explosion starts afresh at the state −n, so that

An y = Gy + h(y)e−n, y ∈ D(G).
We aim to show that

lim
n→∞ (λ− An)

−1 = (λ− A)−1 .

To this end, we recall that, by (3.60),

(λ− An)
−1 y = Rλy + h(Rλy)

1 − h(Rλe−n)
Rλe−n .

It is thus clear that to establish convergence of (λ− An)
−1 one needs to study

limn→∞ 1
1−h(Rλe−n)

Rλe−n . I claim that

lim
n→∞ h(Rλe−n) = π∞ (4.36)
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and

lim
n→∞ Rλe−n = zλ. (4.37)

(Incidentally, the latter formula confirms the fact that zλ is the Laplace
transform of the law ruling the way probability mass enters through −∞.)

Let Rλe−n = (ξi,n
)

i∈Z
, n ≥ 1. Then, by (4.26),

ξi,n =
⎧⎨⎩
πi−1
λ+ai

1
π−n−1

, i ≥ −n,

0, i < −n.
(4.38)

Since, by (4.24), h(y) = −ΣGy = l+y for y ∈ D(G), it follows that

h(Rλe−n) = l+(Rλe−n) = lim
i→∞

πi

π−n−1
= π∞
π−n−1

.

This establishes the first claim, because limn→∞ π−n−1 = 1.
As for the second claim, combining (4.38) with (4.31), we obtain

‖Rλe−n‖ = π−n−1−π∞
λπ−n−1

, resulting in limn→∞ ‖Rλe−n‖ = λ−1(1 − π∞). On

the other hand, by the definition of zλ, ‖zλ‖ = λ−1(1 − π∞). Therefore,
because of Scheffé’s Theorem, it suffices to check that Rλe−n converges to
zλ in coordinates. This, however, is clear from (4.38).

We have established that

lim
n→∞ (λ− An)

−1 y = Rλy + h(Rλy)

1 − π∞
zλ, y ∈ l1;

the right-hand side here is (λ− A)−1 y (given in (4.32)), because, as we have
seen, h(y) = l+y, y ∈ D(G).

4.4 The Joy of Entrance Laws

The study of entrance laws involves families of vectors, say, as in the previous
section, zλ, such that (see (4.33))

Qzλ = λzλ, λ > 0.

The theory is to some extent analogous, or dual (but not quite analogous) to
that presented in Section 3.6 (see Section 10 in [42]) – look again at equations
(3.77) and (4.34). Instead of going into details of this theory, in this section we
intend to play a bit with entrance laws to see how they influence the generators.
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4.4.1 A combination of returns

Starting a process afresh after explosion through −∞ according to an entrance
law may of course be combined with starting at regular state-space points: this
leads to generators that are characterized by both (a) a domain differing from
that of the generator of the minimal chain, and (b) an extra term in the generator
itself. For example, we claim that for any p ∈ [0, 1] and density u ∈ l1, the
operator

Ax = Qx + (1 − p)l+(x)u, x ∈ D(A) (4.39)

with D(A) composed of x ∈ D(Q) such that

l−x = pl+x,

is a Markov generator.
The chain related to A after explosion chooses one of two options: with

probability p it starts afresh from −∞ and with probability 1 − p it starts
afresh from one of the regular points of the state-space; conditional on choos-
ing the other option, the probability of starting at i is the i th coordinate of u. In
particular, for p = 1, A is the generator of P. Lévy’s flash, and for p = 0, the
domain of A coincides with D(G) and A is of the form considered in 3.5.5.

For the proof that A is a generator, we note first that its domain is dense in
l1 since all ei ’s belong to D(A). Moreover, because of the boundary condition
and (4.24), ΣQx = l−x − l+x = (p − 1)l+x, for x ∈ D(A). It follows that

ΣAx = ΣQx + (1 − p)l+(x)Σu = (p − 1)l+(x)+ (1 − p)l+(x) = 0

for all x ∈ D(A). Therefore, we are left with showing condition (ii) in the
Hille–Yosida Theorem of Section 2.4.3.

By (4.33), the resolvent equation for A (i.e., the equation λx − Ax = y) may
equivalently be written as

(λ− Q)(x − l−(x)zλ)− (1 − p)l+(x)u = y.

Since, as we have seen in 4.3.5, l−zλ = 1, the vector x−l−(x)zλ is a member of
D(G) and thus Q in this equation may be replaced by G. Therefore, applying
Rλ to both sides yields

x − l−(x)zλ − (1 − p)l+(x)Rλu = Rλy.

Recalling that l+zλ = π∞(= π∞(λ)) and using the boundary condition we
obtain

l+(x)(1 − pπ∞ − (1 − p)l+(Rλu)) = l+(Rλy).
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Writing the expression in parentheses as p(1 − π∞)+ (1 − p)(1 − l+(Rλu))
and recalling that (a) l+(x) = h(x) for x ∈ D(G), and Rλu belongs to D(G),
and (b) from Section 3.5.5 we know that 1 − h(Rλu) > 0, we conclude that
this expression is positive regardless of the choice of p. Therefore,

l+(x) = l+(Rλy)

1 − pπ∞ − (1 − p)l+(Rλu)
,

showing that l+(x) in the resolvent equation is determined by u, y, p and λ. It
follows that the only possible solution to this equation is

x = Rλy + l+(Rλy)

1 − pπ∞ − (1 − p)l+(Rλu)
(pzλ + (1 − p)Rλu), (4.40)

and it is clear that x ≥ 0 provided y ≥ 0. Since checking that this x is a true
solution to the resolvent equation is straightforward, we are done.

4.4.2 Remark

Formula (4.40) is worth comparing to (3.99). In the terminology introduced in
Exercise 4.4.8 (see the end of this chapter) the latter involves Laplace trans-
forms of trivial entrance laws, that is, functions λ �→ Rλu j , whereas in the
former we have a combination of two laws: one trivial (λ �→ Rλu) and one
nontrivial (λ �→ zλ). In (4.42) we will have a combination of two trivial and
two nontrivial laws. The pattern for further generalizations is clear.

4.4.3 A combination of returns (continued)

The probabilistic description of the process related to A, given in the previous
section, is confirmed by the following approximation. Given p and u as above,
let An, n ≥ 1 be defined by

An x = Gx + h(x)[pe−n + (1 − p)u], x ∈ D(G).

These are Markov generators of the type considered in 3.5.5. Since pe−n +
(1 − p)u is the distribution of the process right after explosion, it is intuitively
clear that, if the semigroups {et An , t ≥ 0} converge, the limit process should
behave as explained in 4.4.1. We will show that

lim
n→∞ et An = et A.

To this end, by the Trotter–Kato Theorem, it suffices to show that
limn→∞ (λ− An)

−1 = (λ− A)−1, and an explicit formula for (λ− A)−1 is
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given in (4.40). On the other hand, recalling (3.60) and the fact that l+(Rλy) =
h(Rλy) for y ∈ l1, we see that (λ− An)

−1 y equals

Rλy + l+(Rλy)

1 − l+(pRλe−n + (1 − p)Rλu)
Rλ(pe−n + (1 − p)u).

Since in Section 4.3.7 we have established that limn→∞ l+(Rλe−n) = π∞, the
denominator here converges to the denominator in (4.40), and (4.37) completes
the proof.

4.4.4 Two entrance laws: Chain’s description

It is probably amply clear that there could be many entrance laws. Each (non-
trivial) entrance law, very much like elements of the exit boundary, may be
seen as an additional point of the state-space (cf. Section 4.2) and such an
entrance law forces a boundary condition on the operator Q of Section 3.4. We
will look at an example with two entrance laws, leading to two boundary con-
ditions: see, for example, [56] (flash of flashes) for an example with infinitely
many entrance laws.

The chain we have in mind is composed of two flashes on two copies of Z,
communicating through two minus infinities. For its construction, along with
the sequence ai , i ∈ Z of (4.23) we need an analogous one,∑

i∈Z

(a′
i )

−1 < ∞,

to rule the chain’s behavior on the second copy of Z: When on the first copy
of Z, our process is a pure birth chain with intensities ai , i ∈ Z; when on the
second copy, denoted Z

′, it is a pure birth chain with intensities a′
i , i ∈ Z

′.
Our chain differs from the minimal chain in that after exploding through Z

it has three possibilities: (a) with probability p it may enter Z through −∞
as in the preceding sections, (b) with probability q it may start afresh at one
of the points of Z (conditionally on choosing this option, the probability of
starting at an i ∈ Z is the i th coordinate of a given density u), or (c) with
probability 1 − p − q ≥ 0 it may enter Z

′ with entrance law defined as in
(4.35), but with ai , i ∈ Z replaced by a′

i , i ∈ Z
′. (It would not harm to allow

the density u to have nonzero entries on Z
′, but it is more fun to restrict the

roads of communication between Z and Z
′ to those that are ‘indirect,’ that is,

lead through boundaries.) Analogously, after explosion through Z
′ the process

may either (with probability p′) return to Z
′ via −∞ with entrance law just

described, return to Z
′ with the help of density u′ (with probability q ′), or

(with probability 1 − p′ − q ′) enter Z via −∞ according to wt of (4.35).



186 Boundary Theory Continued

4.4.5 Two entrance laws: The minimal chain

The description given in the previous section, fully characterizes the matrix
of intensities, and the operator Q of Section 3.4: the i th coordinate of
Q (ξi )i∈Z∪Z′ is either ai−1ξi−1 − aiξi (if i ∈ Z) or a′

i−1ξi−1 − a′
iξi (if i ∈ Z

′).
It follows that for x = (ξi )i∈Z∪Z′ ∈ D(Q) the following four limits exist:

l+(x) := lim
i∈Z,i→∞ aiξi , l−(x) := lim

i∈Z,i→∞ a−iξ−i ,

and

l′+(x) := lim
i∈Z′,i→∞

a′
iξi , l′−(x) := lim

i∈Z′,i→∞
a′−iξ−i .

There are obviously two sojourn sets here: Z and Z
′, with corresponding

functionals h, h′ (see Theorem 3.7.1) given by

h(x) = −
∑
i∈Z

(ai−1ξi−1 − aiξi ) = l+(x)− l−(x)

and

h′(x) = −
∑
i∈Z′

(a′
i−1ξi−1 − a′

iξi ) = l′+(x)− l′−(x).

Moreover, the domain of the generator G of Kato’s minimal semigroup is
characterized by

l−x = l′−x = 0, x ∈ D(G). (4.41)

In particular,

h(x) = l+(x) and h′(x) = l′+(x), x ∈ D(G).

4.4.6 Two entrance laws: Approximation

Let us look at the following approximation. For each n ≥ 1, let An be the
Markov generator of type (3.92):

An x = Gx + h(x)un + h′(x)u′
n, x ∈ D(G)

where

un := pe−n + qu + (1 − p − q)e−n′ ,

u′
n := p′e−n′ + q ′u′ + (1 − p′ − q ′)e−n,

and −n′ is −n, seen as a member of Z
′. This chain differs from the one

described in Section 4.4.4 in that, after explosion, instead of going directly
to a distributing hub at one of two minus infinities, it starts afresh at −n or
−n′. Of course, we hope that as n → ∞ the chains related to An’s converge to
our chain.
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From the proof of Theorem 3.7.9 we know that the resolvent of An is given
by

(λ− An)
−1 y = Rλy + αn Rλun + α′

n Rλu′
n

where

(αn, α
′
n) = (h(Rλy), h′(Rλy)) · (I − Mn)

−1

and Mn is the 2 × 2 matrix

Mn :=
(

h(Rλun) h′(Rλun)

h(Rλu′
n) h′(Rλu′

n)

)
.

Using (4.37) and arguing similarly for limn→∞ Rλe−n′ we see that

lim
n→∞ Rλun = pzλ + q Rλu + (1 − p − q)z′

λ,

lim
n→∞ Rλu′

n = p′z′
λ + q ′ Rλu′ + (1 − p′ − q ′)zλ

where, not surprisingly,

z′
λ :=

(
π ′

i−1

λ+ a′
i

)
i∈Z′

and π ′
i =

i∏
j=−∞

a′
j

λ+ a′
j
.

Hence, it is clear that convergence of (λ− An)
−1 hinges on convergence of

αn’s.
On the other hand, using (4.36), arguing similarly to see that

lim
n→∞ h′(Rλe−n′) = π ′∞(:= lim

n→∞π
′
n),

and noting that h′(Rλe−n) = h(Rλe−n′) = 0, we conclude that the matrices
Mn converge to

M =
(

pπ∞ + qh(Rλu) qh′(Rλu)+ (1 − p − q)π ′∞
q ′h(Rλu′)+ (1 − p′ − q ′)π∞ p′π ′∞ + q ′h′(Rλu′)

)
.

From the proof of Theorem 3.7.9 we know also that h(Rλu) + h′(Rλu) < 1.
Since π∞ and π ′∞ are smaller than 1, the sum of elements in the first row here
is < p + q + (1 − p − q) = 1, and analogously we show that also the sum of
elements of the second row is smaller than 1. Hence, as in the proof of Lemma
3.7.10, M can be thought of as a sub-Markov operator in R

2 with norm smaller
than 1. In particular, (I − M)−1 exists, and continuity of taking inverse implies
that limn→∞ αn and limn→∞ α′

n converge to α and α′, respectively, where

(α, α′) = (h(Rλy), h′(Rλy)) · (I − M)−1.
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We have thus established that limn→∞ (λ− An)
−1 y exists, and equals

Rλy +α(pzλ+q Rλu + (1− p −q)z′
λ)+α′(p′z′

λ+q ′ Rλu′ + (1− p′ −q ′)zλ).

Rearranging yields

lim
n→∞ (λ− An)

−1 y = Rλy + qαRλu + q ′α′ Rλu′

+ (pα + (1 − p′ − q ′)α′)zλ
+ (p′α′ + (1 − p − q)α)z′

λ. (4.42)

4.4.7 Two entrance laws: The generator

The limit formula (4.42) probably does not look very informative, not at a first
glance anyway, especially if we realize that α and α′ are given implicitly: It
is clear that, since zλ and z′

λ do not belong do D(G), in the range of the limit
pseudo-resolvent (we have not yet proved that in fact it is a resolvent!) relations
(4.41) hold no longer, and that perhaps some other relations between l+, l−, l′+
and l′− can be discovered. Nevertheless, it is difficult to guess these relations
from (4.42).

Fortunately, probabilistic intuition tells us that they should read

l−(x) = pl+(x)+ (1 − p′ − q ′)l′+(x),
l′−(x) = (1 − p − q)l+(x)+ p′l′+(x) (4.43)

(think of l− and l′− as of the ‘probabilities’ that the process starts afresh at
−∞ and −∞′, and l+ and l′+ as of the probabilities that the process explodes
through ∞ and ∞′, respectively). Therefore, we venture to claim that the
resolvents (λ− An)

−1 , n ≥ 1 converge to (λ− A)−1 where

Ax = Qx + ql+(x)u + q ′l′+(x)u′,

and the domain of A is composed of x ∈ D(Q) satisfying these two conditions.
Even if q, q ′ < 1, this operator is a Markov generator in contrast to the operator
given by the same formula, but defined on D(G). A chain related to the latter,
as we know from Section 3.7.9, may lose some probability mass while going
through explosion, its probability of starting afresh being q or q ′ depending on
which way explosion came about.

For the proof we note first that A is densely defined, because all ei , i ∈ Z∪Z
′

belong to D(A). Moreover, for x ∈ D(A),
ΣAx = ΣQx + ql+(x)+ q ′l′+(x)

= l−(x)− l+(x)+ l′−(x)− l′+(x)+ ql+(x)+ q ′l′+(x),
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which, because of the boundary conditions, reduces to zero. Thus, we are left
with studying the resolvent equation

λx − Qx − ql+(x)u − q ′l′+(x)u′ = y.

As in the previous proofs of this type, we aim to show that l+(x) and l−(x)
are determined by y, u, u′, λ, q and q ′ only. To this end, we recall that l−(zλ) =
l′−(z′

λ) = 1, l′−(zλ) = l−(z′
λ) = 0, and Qzλ = λzλ and Qz′

λ = λz′
λ. Therefore,

the resolvent equation can be rewritten as

(λ− Q)(x − l−(x)zλ − l′−(x)z′
λ)− ql+(x)u − q ′l′+(x)u′ = y,

or, since x − l−(x)zλ − l′−(x)z′
λ belongs to D(G), as

x − l−(x)zλ − l′−(x)z′
λ − ql+(x)Rλu − q ′l′+(x)Rλu′ = Rλy. (4.44)

Applying l+ to both sides of this equality, using l+(zλ) = π∞, l+(z′
λ) = π ′∞,

the first of the relations following (4.41) and the boundary conditions, we see
that

(1− pπ∞ −qh(Rλu))l+(x)−(q ′h(Rλu′)+(1− p′ −q ′)π∞)l′+(x) = h(Rλy).

Analogously, applying l′+(x), we obtain

(1− p′π ′∞−q ′h′(Rλu′))l′+(x)−(qh′(Rλu)+(1− p−q)π ′∞)l+(x) = h′(Rλy).

These two relations show that l+(x) and l′+(x) satisfy the system

(l+(x), l′+(x)) · (I − M) = (h(Rλy), h′(Rλy))

for the matrix M of the previous section. Since it was established there that
I − M is invertible, these two quantities may indeed be determined without
prior knowledge of x , and in fact are identical to α and α′ considered there.
Hence, by (4.44), the only possible solution to the resolvent equation is

x = Rλy + qαRλu + q ′α′ Rλu′ + l−(x)zλ + l′−(x)z′
λ,

where unknown l−(x) and l′−(x) must be replaced by linear combinations of
the known l+(x) = α and l′+(x) = α′, according to the prescription of the
boundary conditions:

l−(x) = pα + (1 − p′ − q ′)α′,
l′−(x) = (1 − p − q)α + p′α′.

This shows that x is identical to the vector of equation (4.42). Checking
that x belongs to D(A) and is a true solution to the resolvent equation is
straightforward if perhaps tedious.
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4.4.8 Exercise

Let {S(t), t ≥ 0} be a minimal semigroup for a given Kolmogorov matrix. A
bounded function (0,∞) � t �→ wt ∈ (l1)+ taking nonnegative values is
called an entrance law if S(s)wt = ws+t , s, t ∈ (0,∞).

(a) Check that if u ∈ l1 is nonnegative, then wt = S(t)u is an entrance law.
(Such laws are sometimes referred to as trivial.)

(b) It may be proved that any entrance law is continuous in t ∈ (0,∞) and
the limit limt→0+wt in the sense of convergence of coordinates exists
(see [71]). This allows thinking of the Laplace transform of wt (with the
integral in the sense of coordinate convergence). Check that the Laplace
transform zλ of an entrance law satisfies (4.34).

4.4.9 Exercise

Let Q be the operator of Section 3.4 related to the intensity matrix (2.53).
Check that

zλ := (0, π2, π3, . . . ), λ > 0,

where πi , i ≥ 2 are defined below (2.33), satisfies Qzλ = λzλ. This means
that zλ, λ > 0 is the Laplace transform of an entrance law.

4.4.10 Exercise

Prove convergence of the semigroups considered in 4.4.3 using the Sova–Kurtz
Theorem (and not the Trotter–Kato Theorem). More precisely, without allud-
ing to explicit forms of (λ− An)

−1, given x ∈ D(A) find xn ∈ D(An) such
that limn→∞ xn = x and limn→∞ An xn = Ax . Can you do the same for the
semigroups of Sections 4.4.6 and 4.4.7?

4.5 Notes

Section 4.1 is a variation of the material presented in [41]. The flash of Section
4.3.1 comes from P. Lévy’s paper [63] (p. 366, example 3o); in the context of
semigroups of operators it has been analyzed in [56].



5

The Dual Perspective

Up until now, we focused on the analysis of the family of operators

x �→ x · P(t), t ≥ 0, (5.1)

where x ∈ l1(I) is thought of as a row-vector, and P(t) is the matrix of tran-
sition probabilities of a given chain. Since nonnegative x’s in l1(I) can be
identified with measures on I, we were thus studying dynamics of distribu-
tions of the Markov chain in time. Under a mild assumption on continuity of
P(·), that is, under assumption (2.8), the family in question is a strongly con-
tinuous semigroup, and thus we were able to describe it by means of a single
closed operator in l1, that is, its generator. We have also learned quite a bit
on how the information on the process is encrypted in this generator. In this
chapter, we would like to look at this dynamics from a dual perspective.

More specifically, we will study the operators

f �→ P(t) · f, t ≥ 0 (5.2)

where f is a bounded column-vector, that is, a member of l∞(I). Analytically,
the map (5.2) is dual to (5.1); probabilistically, it gives dynamics of expected
values (see Section 5.1.2). In distinction to (5.1), however, the operators (5.2)
rarely form a strongly continuous semigroup in l∞(I): D. Williams’s Theorem
says that this happens under very restrictive assumptions on the related matrix
of intensities.

Fortunately, the sun-dual space X
� ⊂ l∞(I) for the underlying semigroup

is often sufficiently large, and thus we are able to recover the map (5.1) from
(5.2) restricted to X

�. Therefore, we are again able to describe the process
by means of a single operator; this time this operator is the generator of the
sun-dual semigroup (see our Sections 5.6–5.8, for instance). Interestingly, the
information on the process which in l1 was expressed in additional terms of
the generator (like in (3.92)) in l∞(I) quite often impacts the domain of the
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dual of the generator rather than the way the latter operator acts, and through
its domain – the ‘shape’ of the sun-dual space (cf. Theorem 1.5.6). In other
words, the ‘shape’ of the sun-dual space may contain information on the
process.

A successful analysis with semigroup-analytic tools is also possible if the
sun-dual space is not fully known. Namely, it suffices to find a sufficiently
large subspace of X

� where the formula (5.2) leads to a strongly continu-
ous semigroup – then the dynamics is again encrypted in a single operator,
that is, the generator of the semigroup defined in this subspace. (This sub-
space must be sufficiently large so that (5.1) can be recovered from (5.2).) It
was the idea of W. Feller that the role of this subspace may be successfully
played by c0, the space of sequences converging to zero. This fundamental
idea was crucial for studying Markov processes with state-space more compli-
cated than a countable set I, that is, with a state-space that is locally compact.
In fact, in the latter spaces studying directly dynamics of distributions (i.e.,
studying an analogue of (5.2)) by means of semigroups of operators is quite
impossible: even the simplest processes do not lead to strongly continuous
semigroups in the space of measures (see, e.g., Section 1.5.2) – the norm
in this space is usually too strong to be compatible with delicate stochastic
phenomena. (See, however, e.g., [23, 29, 49, 62, 94] and the references given
there for nontrivial examples of stochastic processes that can be treated in this
norm.)

After a short discussion of Williams’s Theorem (in Section 5.1), we com-
mence this chapter with a study of semigroups of Markov chains with Feller
property (Sections 5.2 – 5.4). As it transpires, the requirement that c0 be an
invariant subspace for {P∗(t), t ≥ 0} and that {P∗(t), t ≥ 0}, as restricted to
c0, be strongly continuous is not too limiting: a rather large class of Markov
chains possesses the Feller property. Such chains are more regular than other
chains; in particular, no state in a chain with Feller property is instantaneous,
and the entire chain may be described by a natural operator built by means
of the corresponding intensity matrix. These chains are in fact so regular that
restarting after explosion is too strange a phenomenon for them: all a Feller
semigroup may describe is the minimal chain. Manipulating the generators
of Feller semigroups is also comparatively simple: we discuss a version of the
Hille–Yosida Theorem for such semigroups, and – in Section 5.5 – explicit for-
mulae for two types of perturbed Feller semigroups, devised by R. Feynman
and M. Kac and by V. A. Volkonskii.

Next, in Section 5.6, we come back to the examples of Kolmogorov, Kendall
and Reuter. The related chains do not have the Feller property, but we are able
to explicitly characterize their sun-dual semigroups. We discuss how the basic



5.1 Preliminaries 193

information on the chains is hidden in the shape of the sun-dual space and in
the domain of generator of the sun-dual semigroup.

The same theme is developed in Sections 5.7–5.9, devoted to sun-duals of
the semigroups dominating Kato’s minimal semigroup. In particular, we dis-
cuss in detail the curious fact that a discrete exit boundary point, expressed
as an additional term in the generator of a Markov semigroup (see (3.92)),
in the dual space does not affect the way the generator acts but rather the
domain of the master operator Q, introduced in Section 5.7.1. Therefore, an
additive perturbation of the operator in l1, in the dual space l∞ becomes a per-
turbation of the domain, thus influencing the shape of the sun-dual space.
Perhaps even more surprisingly, entrance boundary points, which in l1 affect
the domain, here modify the domain as well: in a fully symmetrical world
one could expect that a perturbation of the boundary would become an addi-
tive perturbation of the generator (as, e.g., in [17]; see also [16], Chapter 50).
This seems indeed to be the case, as exemplified by the second Kolmogorov–
Kendall–Reuter semigroup (see Section 5.6.5), if an entrance boundary is not
coupled with an exit boundary. If both types of boundary are present, however,
all sun-dual semigroups of the semigroups dominating the minimal semigroup
are obtained as suitable restrictions of Q. This is in contrast to the situation
observed in l1: there, to describe nonminimal semigroups one needs to either
modify the way the ‘master operator’ Q of Section 3.4 acts (as in (3.92)),
or modify its domain (as in P. Lévy’s flash), or both at the same time (as in
Section 4.4.7).

5.1 Preliminaries

5.1.1 Reminder of notational conventions

As in the previous chapter, we focus on the case where the Markov chain’s
state-space is N. By the Steinhaus Theorem (see, e.g., [14], Sections 5.2.3 and
5.2.16), the dual space to l1 := l1(N) is l∞ = l∞(N). As before, elements
of the former space will be denoted (ξi )i≥1 , (ηi )i≥1, and so on, whereas ele-
ments of the latter space will be denoted f, g, and so on, and seen as bounded
functions on the set of natural numbers. When needed, f ∈ l∞ will be iden-
tified with the sequence ( f (i))i≥1 where, of course, f (i) is the value of f at
i ∈ N. As often as not, though, we will rightfully see f as a functional on l1

and write f (x) to denote
∑∞

i=1 f (i)ξi for x = (ξi )i≥1. However, since double
parenthesis does not look right, instead of f ((ξi )i≥1) we will prefer to write
f (ξi )i≥1.
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The spaces c and c0 of convergent sequences, and of sequences converging
to 0, respectively, are seen as natural subspaces of l∞. For f ∈ c, we will write
f (∞) to denote limi→∞ f (i):

f (∞) = lim
i→∞ f (i).

The functional Σ, playing so important a role in the previous chapters, as seen
as an element of c is simply a constant function equal to 1 for all i . In this new
context it will sometimes be more natural to denote it 1. So, remember that

1 = Σ .

5.1.2 Dual dynamics

A semigroup {P(t), t ≥ 0} of Markov operators in l1 describes dynamics of
distributions of the underlying Markov chain X (t), t ≥ 0: if x is the initial
distribution of the chain then P(t)x is its distribution at time t ≥ 0. In the
theory of stochastic processes, along with dynamics of distributions, it is cus-
tomary to consider dynamics of expected values; in fact, if the state-space of
the process is not discrete, the latter approach is more common and useful. To
explain, think of a bounded function f : N → R and of the expected value

g(i) = E ( f (X (t))|X (0) = i). (5.3)

If f (i) is the cost of staying at i (or the prize for being at i), then this quantity
is an expected cost (expected prize) at time t provided we started at i .

What is the relation of the map f �→ g to the Markov operators
{P(t), t ≥ 0}? In terms of transition probabilities,

g(i) =
∞∑
j=1

pi, j (t) f ( j).

It follows that, treating g as a functional on l1, for any x = (ξi )i≥1 ∈ l1,

g(x) =
∞∑

i=1

g(i)ξi =
∞∑

i=1

∞∑
j=1

pi, j (t) f ( j)ξi =
∞∑
j=1

f ( j)
∞∑

i=1

pi, j (t)ξi

= f (P(t)x),

which simply means that g = P∗(t) f := [P(t)]∗ f. Thus, dynamics (5.3) is
governed by the dual semigroup:

P∗(t) f (i) = E ( f (X (t))|X (0) = i) =
∞∑
j=1

pi, j (t) f ( j). (5.4)
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5.1.3 A note

Here and in what follows we write P∗(t) f (i) instead of more appropriate but
less readable ([P(t)]∗ f )(i) or (P∗(t) f )(i), but it should be clear to the reader
that the argument of P∗(t) is the function f and not the number f (i).

5.1.4 Williams’s Theorem

From Section 1.5 we know that in general the dual of a strongly continu-
ous semigroup need not be strongly continuous. As noted by D. Williams
(see [75], Section 6; his remark was later greatly generalized by H.P. Lotz
[65]), in the context of sub-Markov semigroups in l1 this statement may
be made more specific: condition limt→0+ P∗(t) f = f, f ∈ l∞ implies
limt→0+ ‖P∗(t) − I‖ = 0. In other words, by assuming that the dual semi-
group is strongly continuous in l∞ we in fact rule out all semigroups with
unbounded generators.

As we shall see now, this result is a consequence of Schur’s Theorem dis-
cussed in Section 1.6.4. Suppose An, n ≥ 1 are bounded linear operators in
a Banach space X such that for all x ∈ X,

lim
n→∞ An x = 0. (5.5)

(Think of An = P∗(tn)− Il∞ , where limn→∞ tn = 0.) In general this condition
does not imply

lim
n→∞ ‖An‖ = 0, (5.6)

even if X is the dual of a Banach space Y (X = Y
∗) and An’s are duals of

operators in Y. For example, if Y = c0 and B is the shift to the right, then
A = B∗ is the shift to the left in l1 = (c0)

∗, and it is easy to see that for
An := An = (Bn)∗ condition (5.5) holds whereas ‖An‖ = 1.

However, if Y = l1 and An = B∗
n for certain Bn ∈ L(l1) (in the case

of interest to us, Bn = P(tn) − Il1 ), then due to the curious property of l1

described in Section 1.6.4, (5.5) implies (5.6).
For, if (5.6) does not hold, there is a c > 0 and infinitely many n ∈ N such

that ‖Bn‖ ≥ c. Therefore, there are yn ∈ l1 with ‖yn‖ = 1 such that

‖Bn yn‖ ≥ c

2
for infinitely many n. (5.7)

On the other hand, since

| f (Bn yn)| = |(An f )(yn)| ≤ ‖An f ‖,
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for any f ∈ l∞, assumption (5.5) (the role of x is now played by f ) implies
that (Bn yn)n≥1, which is a sequence of elements of l1, converges weakly to
zero. By 1.6.4, it follows that limn→∞ ‖Bn yn‖ = 0, which clearly contradicts
(5.7). This shows that (5.6) is true.

In the case of interest to us we obtain that limt→0+ P∗(t) f = f, f ∈ l∞
implies

lim
t→0+ ‖P∗(t)− I‖ = 0,

as claimed (or, which is the same limt→0+ ‖P(t)− I‖ = 0).

5.1.5 Remark

Williams’s Theorem should not be thought of as negative. This result simply
reflects the somewhat strange nature of the space l∞, inherited from l1 (see
also, e.g., Chapter 6 in [20]). In fact, Williams’s Theorem opens new oppor-
tunities for us: in general, the dual dynamics is governed by a semigroup that
is strongly continuous on a subspace of l∞, which is the sun-dual X

� for the
original semigroup {P(t), t ≥ 0} in l1, and, as we shall see, along with the
information on the process contained in the generator of the sun dual semi-
group, some information may be hidden in the ‘size’ and ‘shape’ of X

�. Thus,
in a sense, working with l∞ is like learning a new, mysterious language. We
will be able to say about it more when commenting on particular cases of
Markov chains, see in particular Sections 5.6–5.8.

5.2 Markov Chains with Feller Property

We start with Markov chains that possess Feller property: Let c0 be the sub-
space of l∞ composed of f such that limi→∞ f (i) = 0. A strongly continuous
semigroup {P(t), t ≥ 0} of sub-Markov operators in l1 is said to have the
Feller property1 if the dual semigroup maps c0 into itself, and as restricted
to c0 is a strongly continuous semigroup there. In other words, we require that

P∗(t) f ∈ c0 whenever f ∈ c0 (5.8)

and that

lim
t→0+ P∗(t) f = f, for all f ∈ c0, (5.9)

in the supremum norm of c0.

1 We will also say that the related chain has Feller property or that its transition probabilities
have Feller property.
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It is clear that these two conditions speak something about X
�: the second

requires that c0 ⊂ X
� and the first says that c0 is invariant for {P∗(t), t ≥ 0}

(as is X
�). It is perhaps as clear that c0 may be a subspace of X

� without being
its invariant subspace. Nevertheless, we note that an appropriate example is
furnished in Section 5.6.2.

In the next two (sub-)sections we characterize (5.8) and (5.9) in terms of
transition probabilities of the underlying Markov chain. In this analysis we
will use the fact that the vectors e j , j ≥ 1 defined in (2.20) (now treated as
elements of c0) form a linearly dense subset of c0: any element of c0 can be
approximated with arbitrary accuracy by (finite) linear combinations of e j , j ≥
1. Indeed, for any f ∈ c0, the distance between f and

fn :=
n∑

i=1

f (i)ei (5.10)

does not exceed supi≥n+1 | f (i)|, which can be made as small as we wish by
choosing n large enough.

5.2.1 Strong continuity

Condition (5.9) says that c0 ⊂ X
�, that is, that the sun dual space is appro-

priately ‘large.’ What does this mean for the transition probabilities of the
underlying Markov chain? Taking f = e j in (5.9), we see that it implies that

lim
t→0+ sup

i �= j
pi, j (t) = 0 for all j ∈ N. (5.11)

Conversely, combined with (2.8) (which is a necessary and sufficient condition
for {P(t), t ≥ 0} to be strongly continuous), (5.11) implies that (5.9) holds for
all e j , j ≥ 1. Therefore, a three epsilon argument shows that (5.11) com-
bined with (2.8) implies (5.9): given f and ε > 0 we choose n so large that
‖ fn − f ‖ < ε (see (5.10)), and then t so small that ‖P∗(t) fn − fn‖ < ε.
Then,

‖P∗(t) f − f ‖ ≤ ‖P∗(t)( f − fn)‖ + ‖P∗(t) fn − fn‖ + ‖ fn − f ‖
≤ 2‖ fn − f ‖ + ‖P∗(t) fn − fn‖ ≤ 3ε;

the norm of P∗(t) (even as an operator in l∞) does not exceed one (since
neither does the norm of P(t)). A take home message is thus:

X
� contains c0 iff (2.8) and (5.11) are satisfied.
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5.2.2 Invariance of c0

Condition (5.8), in turn, says that c0 is invariant for {P∗(t), t ≥ 0}. Aiming at
characterizing this condition in terms of transition probabilities we note that
for each i (and fixed t),

xi := (pi, j (t)
)

j∈N

(the i th row in the matrix representing P(t)) is a member of l1, and the latter
space is the dual space for c0: c∗

0 = l1. From this perspective, by (5.4), the
requirement that limi→∞ P∗(t) f (i) = limi→∞ xi ( f ) = 0 for all f ∈ c0 is
the requirement that limi→∞ xi = 0 in the weak∗ topology. For a yet simpler
and more practical characterization, taking f = ek we see that (5.8) implies
that

lim
i→∞ pi,k(t) = 0 (5.12)

for all t ≥ 0 and k ∈ N. (This is the limit along the ‘columns’ of the matrix
representing P(t).) Hence, arguing as in the previous section (i.e., utilizing
fn’s) we conclude that (5.12) is necessary and sufficient for c0 to be invariant
for {P∗(t), t ≥ 0}.

5.2.3 Corollary: A criterion for the Feller property

Suppose that {P(t), t ≥ 0} and
{

P̃(t), t ≥ 0
}

are two strongly continuous
sub-Markov semigroups in l1 such that

P̃(t) ≤ P(t), t ≥ 0.

If {P(t), t ≥ 0} has the Feller property, then so does
{

P̃(t), t ≥ 0
}
.

Proof In terms of the related transition probabilities, say, pi, j (t) and p̃i, j (t),
respectively, our assumption says that

p̃i, j (t) ≤ pi, j (t), i, j ∈ N, t ≥ 0.

It follows that, if transition probabilities pi, j (t) satisfy (5.11) and (5.12), then
so do the probabilities p̃i, j (t).

5.2.4 Feller semigroups

If {P(t), t ≥ 0} has the Feller property, that is, if the transition probabili-
ties satisfy conditions (2.8), (5.11) and (5.12), the semigroup of operators
{T (t), t ≥ 0} in c0, where T (t) is P∗(t) restricted to c0, is called the cor-
responding Feller semigroup. Any Feller semigroup {T (t), t ≥ 0} is thus
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a strongly continuous semigroup of contractions in c0 such that T (t) f ≥ 0
whenever f ≥ 0. (Many authors add the requirement of honesty, but in this
book it will be convenient to omit this condition.)

Since the space c0 is sufficiently rich, we can reverse this procedure and
build a strongly continuous semigroup {P(t), t ≥ 0} of sub-Markov operators
from {T (t), t ≥ 0}. To see this, suppose that {T (t), t ≥ 0} is a strongly contin-
uous semigroup in c0 satisfying the two conditions just given. Then, for each
t ≥ 0 and i ∈ N, the formula Fi ( f ) = T (t) f (i) defines a bounded linear
functional on c0. Therefore (see (5.10)),

T (t) f (i) = lim
n→∞ Fi ( fn) = lim

n→∞

n∑
j=1

f ( j)Fi (e j ) =
∞∑
j=1

f ( j)Fi (e j ).

Since Fi ( f ) ≥ 0 provided f ≥ 0, numbers Fi (e j ) are nonnegative. More-
over, the norm of Fi not exceeding 1, we have for all n,

∑n
j=1 Fi (e j ) =

Fi (
∑n

j=1 e j ) ≤ 1 (since ‖∑n
j=1 e j‖ = 1) and this implies

∞∑
j=1

Fi (e j ) ≤ 1

(we are simply rediscovering parts of the rich statement that the space of
functionals on c0 may be identified with l1). Thus, for each i and t , defin-
ing pi, j (t) := Fi (e j ), we obtain nonnegative numbers with sum over j not
exceeding 1 such that, for any f ∈ c0,

T (t) f (i) =
∞∑
j=1

pi, j (t) f ( j). (5.13)

Since the dual of c0 is l1, along with {T (t), t ≥ 0} we also have the
semigroup {T ∗(t), t ≥ 0} of operators in l1. Using (5.13) we easily see that
T ∗(t) (ξi )i≥1 = (ηi )i≥1 where ηi = ∑∞

j=1 p j,i (t)ξ j , that is, that T ∗(t) is the
sub-Markov operator represented by the matrix

(
pi, j (t)

)
i, j∈N

. Moreover, since
{T (t), t ≥ 0} is a strongly continuous semigroup in c0, representation formula
(5.13) shows (on considering f = e j ) that conditions (2.8) and (5.11) are
satisfied. Similarly, we conclude that so is condition (5.12). Thus, as before,
we may think of {T (t), t ≥ 0} as of (a part of) the sun-dual semigroup for
a strongly continuous semigroup of sub-Markov operators in l1 (possessing
the special properties (5.11) and (5.12)). See also our Section 5.4 and Section
5.4.6 in particular.
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5.2.5 A comment

Summarizing: if we restrict ourselves to transition probabilities satisfying
(2.8), (5.11), and (5.12), there are two canonical descriptions of the underly-
ing Markov chain: the description in l1 through the semigroup of sub-Markov
operators, and the description in c0, through the Feller semigroup. In the gen-
eral theory of Markov processes the situation is quite different. For example,
if the state-space of the process is not countable but forms a compact metric
space, say, S, constructing Markov semigroups in the space of signed mea-
sures on S is rather difficult. On the other hand, Feller semigroups in the space
C(S) of continuous functions on S can be constructed by classical means (see,
e.g., [34, 43, 52, 53, 60, 86] and many other monographs).

Hence, while studying ‘general’ process in a more general state-space is
quite difficult, Feller semigroups provide handy tools for studying Feller
processes, that is, processes that satisfy certain additional regularity assump-
tions. Needless to say, Feller processes possess nicer properties than ‘general’
Markov processes.

We complete this section with a necessary and sufficient condition for the
Feller property in terms of the resolvent.

5.2.6 Another criterion for the Feller property

Let {P(t), t ≥ 0} be a strongly continuous semigroup of sub-Markov opera-
tors, and let A be its generator. The semigroup {P(t), t ≥ 0} has the Feller
property iff c0 is invariant for R∗

λ, λ > 0:

R∗
λ f ∈ c0 whenever f ∈ c0.

Proof
(Necessity) Let X

� be the sun-dual space for {P(t), t ≥ 0}, and let A∗
p be

the generator of
{

P∗(t)|X�, t ≥ 0
}

(see Section 1.5). In Sections 1.5.5 and

1.5.6 we have proved that
(
λ− A∗

p

)−1
f = R∗

λ f, f ∈ X
�. By assumption,

c0 ⊂ X
�, and thus for f ∈ c0 the vector

R∗
λ f =

(
λ− A∗

p

)−1
f =
∫ ∞

0
e−λt et A∗

p f dt

belongs to c0, because the Feller property ensures that et A∗
p f ∈ c0 for all t ≥ 0.

(Sufficiency) Let Uλ := (R∗
λ)|c0 , and let A0 be the part of A∗ in c0, that is,

let A0 be A∗ restricted to the set of all f ∈ D(A∗) ∩ c0 such that A∗ f ∈ c0.
I claim that Uλ, λ > 0 is the resolvent of A0. Indeed, for f ∈ D(A0) and
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λ > 0, the vector λ f − A0 f belongs to c0 and thus it makes sense to calculate
Uλ(λ f − A0 f ) = R∗

λ(λ f − A∗ f ) = f . Similarly, for any λ > 0 and f ∈ c0,
we have A∗Uλ f = A∗ R∗

λ f = λR∗
λ f − f = λUλ f − f , and λUλ f − f

belongs to c0 by assumption. It follows that Uλ f belongs to D(A0) and we
have (λ− A0)Uλ f = f, completing the proof of the first claim.

Next, I claim that A0 is densely defined. For, if this is not the case, there
is a nonzero x ∈ l1 = (c0)

∗ such that f (Rλx) = x(R∗
λ f ) = x(Uλ f ) = 0

for f ∈ c0. Taking f = ei , i ≥ 1 we see, however, that this implies
Rλx = 0, and this is impossible if x �= 0. This contradiction proves the
claim.

Since ‖λRλ‖ ≤ 1, we have also ‖λUλ‖ ≤ 1. Hence, A0 satisfies all the con-
ditions of the Hille–Yosida Theorem and thus is the generator of a contraction
semigroup in c0.

Since∫ ∞

0
e−λt et A0 f dt = (λ− A0)

−1 f = R∗
λ f, λ > 0, f ∈ c0,

we have∫ ∞

0
e−λt et A0 f (x) dt = R∗

λ f (x), λ > 0, f ∈ c0, x ∈ l1.

On the other hand, t �→ P∗(t) f (x) = f (P(t)x) is continuous with Laplace
transform equal to, for λ > 0,∫ ∞

0
e−λt P∗(t) f (x) dt = f

(∫ ∞

0
e−λt P(t)x dt

)
= f (Rλx) = R∗

λ f (x).

The function t �→ et A0 f (x) being continuous as well, we infer that

P∗(t) f (x) = et A0 f (x), f ∈ c0, t ≥ 0, x ∈ l1,

and this implies

P∗(t) f = et A0 f, f ∈ c0, t ≥ 0.

This, however, shows that P∗(t) maps c0 into c0, because et A0 does. By the
same token, limt→0+ P∗(t) f = f, f ∈ c0.

5.2.7 Example

We will check that the minimal pure birth chain of Sections 2.4.10 and 3.3.2
has the Feller property. To prove this, we recall formula (3.24) for the resolvent
Rλ of the generator of the pure birth chain and, given (ηi )i≥1 ∈ l1 and g ∈ l∞,
calculate as follows:
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g(Rλ (ηi )n≥1) =
∞∑

i=1

g(i)
πi−1

λ+ ai

i∑
j=1

η j

π j−1
=

∞∑
j=1

η j
1

π j−1

∞∑
i= j

πi−1

λ+ ai
g(i).

It follows that

R∗
λg(i) = 1

πi−1

∞∑
j=i

π j−1

λ+ a j
g( j). (5.14)

Since g ∈ l∞ and the series
∑∞

j=1
π j−1
λ+a j

converges (for a direct proof, see

Section 2.4.10), so does the series
∑∞

j=i
π j−1
λ+a j

g( j). Therefore its remain-
der converges to 0, and since limi→∞ πi is nonzero, we conclude that
limi→∞ R∗

λg(i) = 0, regardless of whether g is a member of c0 or not. Since
this is more than we need, the claim is proved.

5.3 Generators of Feller Semigroups

In the light of the preceding discussion, Feller semigroups in c0 describe
Markov chains that possess special, additional properties ((5.11) and (5.12)).
This class of Markov chains is still rather large; hence, it is profitable to know
the form of generators of Feller semigroups. In the analysis of Feller gener-
ators, as these generators are termed, the key role is played by the positive
maximum principle.

5.3.1 The positive maximum principle

An operator A : c0 ⊃ D(A) → c0 is said to satisfy this principle if for any
f ∈ D(A) and i ∈ N, condition f (i) = sup j≥1 f ( j) (which forces f (i) ≥ 0)
implies A f (i) ≤ 0.

It is clear that Feller generators satisfy the positive maximum principle: if
at a certain i , f (i) = sup j≥1 f ( j), then by (5.13), T (t) f (i) ≤ f (i) implying
that A f (i) = limt→0+ t−1(T (t) f (i)− f (i)) ≤ 0.

5.3.2 The positive maximum principle: Examples

Let an, n ≥ 1 be positive numbers such that

∞∑
n=1

a−1
n < ∞. (5.15)
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1. In the first example, the domain D(A) of our operator is composed of f
such that f (1) = 0 and limn→∞ an f (n) = 0. By (5.15) it follows that for f ∈
D(A) the series

∑∞
n=1 | f (n)| converges, and in particular limn→∞ f (n) = 0,

proving that D(A) ⊂ c0. We define A as follows:

A f (1) =
∞∑

n=2

f (n), A f (i) = −ai f (i), i ≥ 2.

It is easy to see that A satisfies the positive maximum principle since a
maximum of an f ∈ D(A) is attained at i = 1 iff f (n) ≤ 0 for n ≥ 2.

2. In the second example, the domain D(A) is composed of f ∈ c0 such that
limn→∞ an( f (n − 1)− f (n)) = 0. Operator A is then defined as follows:

A f (1) = − f (1),

A f (2) = 0,

A f (i) = ai [ f (i − 1)− f (i)], i ≥ 3.

Here it is also clear that the maximum principle is satisfied.

5.3.3 Generators of Feller semigroups

For Feller semigroups the Hille–Yosida Theorem takes the following form. An
operator A is a Feller generator (i.e., the generator of a Feller semigroup) in c0

iff the following three conditions are satisfied:

(a) A is densely defined,
(b) A satisfies the positive maximum principle,
(c) for any λ > 0 and g ∈ c0, there is precisely one solution f ∈ D(A) to the

resolvent equation λ f − A f = g.

Proof We need to check that for any λ > 0, g �→ λ f where f is the solution
to the resolvent equation and g is its right-hand side, is a positive contraction in
c0, for positivity of the resolvent operator implies positivity of the semigroup
(by Yosida’s or Hille’s approximations).

Let, for given λ > 0 and g ∈ c0, an f be such that λ f − A f = g. By
the nature of c0 there is an i ∈ N such that ‖ f ‖ = | f (i)|, and without loss
of generality we may assume that f (i) ≥ 0 (otherwise consider − f and −g
instead of f and g). Then, by the positive maximum principle,

‖g‖ ≥ g(i) = λ f (i)− A f (i) ≥ λ f (i) = λ‖ f ‖. (5.16)

This shows that g �→ λ f is a contraction.
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Now suppose that for some λ > 0 and a nonnegative g ∈ c0, the solution
f to the resolvent equation is not nonnegative. Then, there is an i such that
f (i) ≤ f ( j), j ∈ N and f (i) < 0. Hence, − f attains a positive maximum at
i , and thus we have A f (i) ≥ 0. It follows that

g(i) = λ f (i)− A f (i) ≤ λ f (i) < 0,

a contradiction. This shows that g �→ λ f is a positive contraction, completing
the entire proof.

5.3.4 Remark

As already remarked, a closer look at the proof of the (general form of the)
Hille–Yosida Theorem reveals that to prove that A is a generator of a contrac-
tion semigroup it suffices to show (besides density of D(A)) that the operators
λ (λ− A)−1 are contractions for all sufficiently large λ (and not for all λ > 0).
Moreover, if A satisfies the positive maximum principle, it is in fact sufficient
to check condition (c) from Section 5.3.3 for just one λ > 0 (see, e.g., [14,39]).
We will not, however, use this result in what follows: usually (but not always)
an argument establishing condition (c) is the same for all λ > 0 or at least for
all sufficiently large λ > 0.

Moreover, we remark that, as we have seen in the proof of 5.3.3, the positive
maximum principle implies condition (5.16) which says that

‖λ f − A f ‖ ≥ λ‖ f ‖ for all λ > 0, f ∈ D(A). (5.17)

It follows that there are no solutions of λ f − A f = 0 except for f = 0 and
thus, by linearity, there is at most one solution to λ f − A f = g for a g ∈ c0.
Hence, condition (c) of Section 5.3.3 may be modified as follows:

(c’) for all (or all sufficiently large) λ > 0 and g ∈ c0 there is a solution
f ∈ D(A) to the resolvent equation λ f − A f = g.

The reader will also find that in many (but not all; see, e.g., our Example
5.4.10) cases the fact that f in the resolvent equation is nonnegative provided
g is (shown above to be a consequence of the positive maximum principle) is
clear from the argument establishing (c). Experience teaches that it is on (c)
or (c’) that the entire argument hinges and this is where usually the largest
analytical difficulties are hidden (cf. the examples presented in Section 2.4). In
particular, the reader should not be misled by the simplicity of Example 5.3.5,
where (c) is checked almost directly. Two other examples of application of the
Hille–Yosida Theorem (namely, the perturbations that lead to the Feynman–
Kac and Volkonskii Formulae) will be discussed in Section 5.5.
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5.3.5 Example

Let a, b > 0. We will show that the formula

A f (1) = a[ f (2)− f (1)],
A f (i) = ai[ f (i + 1)− f (i)] + b[ f (i − 1)− f (i)], i ≥ 2,

defines a Feller generator in c0; the domain of A is composed of f such that
limi→∞ i[ f (i + 1)− f (i)] = 0. (The related birth and death process starting
at a state i ≥ 2 jumps, after an exponential time with parameter ai + b, either
to i − 1, with probability b

ai+b , or to i + 1, with probability ai
ai+b . From i = 1

the chain jumps after an exponential time to 2.)
To this end, we write A as a sum of two operators: A = A0 + B, where

A0 f (i) = ai[ f (i + 1)− f (i)] i ≥ 1,

(on D(A0) = D(A)) and

B f (1) = 0, B f (i) = b[ f (i − 1)− f (i)], i ≥ 2.

The domain of B is equal to the entire c0: in fact, B is a bounded linear
operator.

We claim first that B is a Feller generator. Since it is clear that B satisfies
the positive maximum principle, we need to check condition (c). To this end,
we write B as B = bR − bIc0 where R defined by R f (i) = f (i − 1), i ≥ 1
(with the proviso that f (0) = 0) is the shift to the right. Then, an f satisfies
λ f − B f = g for given λ > 0 and g ∈ c0, iff (λ+ b) f − bR f = g. Since R
has norm 1, however, the solution to the latter equation is unique and given by

the Neumann series f = 1
λ+b

∑∞
n=0

(
b
λ+b

)n
Rng, completing the proof of the

claim (cf. Example 2.4.2).
Next, we claim that A0 is also a Feller generator. By Exercise 1.1.17, we

may, without loss of generality, assume that a = 1. It is clear that all ek, k ≥
1 belong to D(A0) = D(A) and thus A0 is densely defined. Moreover, the
positive maximum principle is obviously satisfied. Hence, we only need to
check condition (c).

In coordinates, the resolvent equation for A0 (with a = 1) reads

(λ+ i) f (i)− i f (i + 1) = g(i), i ≥ 1

and thus renders the following recursion formula for ( f (i))i≥1:

f (i + 1) = λ+ i

i
f (i)− g(i)

i
, i ≥ 1.
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It follows that

f (i) = πi−1

⎡⎣ f (1)−
i−1∑
j=1

g( j)

jπ j

⎤⎦ , i ≥ 1

where πi = ∏i
j=1

λ+ j
j , i ≥ 1 and by convention π0 = 1. By Criterion 2.4.6,

limi→∞ πi = ∞. Moreover, noting that λ
jπ j

= 1
π j−1

− 1
π j
, j ≥ 1, we see

that the series
∑∞

j=1
1

jπ j
converges (to λ−1) and so does the series

∑∞
j=1

g( j)
jπ j

(possibly to a different sum). Hence, if f is to belong to c0, we must have
f (1) =∑∞

j=1
g( j)
jπ j

, and this in turn leads to

f (i) = πi−1

∞∑
j=i

g( j)

jπ j
, i ≥ 1. (5.18)

It remains to check that f defined here belongs to D(A0) and solves the
resolvent equation. (By the way, it is clear that f ≥ 0 provided g ≥ 0; see
Remark 5.3.4, above.) Given ε > 0 we may find an i0 such that |g(i)| ≤ ελ

for all i ≥ i0. For such i ,

| f (i)| ≤ πi−1

∞∑
j=i

ελ

jπ j
= πi−1ε lim

n→∞(π
−1
i−1 − π−1

n ) = ε.

Hence, f ∈ c0. Moreover, since (λ + i)πi−1 = iπi , we have (λ + i) f (i) −
i f (i + 1) = iπi

g(i)
iπi

= g(i). This shows that f ∈ D(A0) (because f and
g belong to c0) and that f solves the resolvent equation, thus completing the
proof of the fact that A0 is a Feller generator.

Finally, by Trotter’s Product Formula, A = A0 + B is a Feller generator
because both A0 and B are Feller generators.

5.3.6 Exercise

Prove that
∑∞

i=1 π
−1
i < ∞ (for πi ’s of Section 5.3.5), as long as λ > 1, using

Raabe’s criterion of series convergence (see [69], p. 120).

5.4 More on Feller Semigroups

As mentioned before, Markov chains with Feller property are more regular
than other chains. At the beginning of this section we discuss three results
illustrating this rule. First of all, we show that in a chain with Feller property
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all states are stable. Next, we show that the generator of a Feller semigroup is
a rather natural operator: the generator may in a sense be identified with the
matrix of intensities. The third result is ‘negative’: restarting an explosive pro-
cess after explosion is not a ‘regular’ procedure, and thus cannot be described
within the framework of Feller semigroups. In other words, transition probabil-
ities inscribed on a Feller semigroup are those of the minimal Markov chain.
The section is completed with a result saying that in certain cases we may
deduce that a chain has Feller property just by looking at its intensity matrix
(Section 5.4.7).

5.4.1 In a Markov chain with Feller property all states are stable

As mentioned above, we start by showing that, in a chain with Feller property,
qi < ∞ for all i ∈ N. To this end, let us fix i ∈ N and let q(t) = 1− pi,i (t), t ≥
0. We claim that there is a t > 0 such that

q(h + ks) ≥ q(h)+ k

2
q(s) (5.19)

provided h, s ≥ 0 and a natural number k are chosen so that h + ks ≤ t .
If this property is established, the proof of the theorem is completed as fol-

lows: let (sn)n≥1 be a sequence of positive numbers converging to zero. For
kn := [t/sn

]
and hn := t −knsn ≥ 0 we have t = snkn +hn . Then, since q ≥ 0,

(5.19) shows that q(sn)
sn

≤ 2q(t)
snkn

. Therefore, because of limn→∞ snkn = t ,

qi = lim
n→∞

q(sn)

sn
≤ 2q(t)

t
< ∞,

as desired.
To prove (5.19), it suffices to show that there is a t > 0 such that

q(h + s) ≥ q(h)+ 1

2
q(s)

as long as s, h ≥ 0 and s +h ≤ t ; this implies (5.19) by an induction argument.
Equivalently, in terms of pi,i , it suffices to show that

pi,i (h + s) ≤ pi,i (h)− 1

2
(1 − pi,i (s)). (5.20)

For t , we choose a number so small that pi,i (h) ≥ 3
4 and p j,i (h) ≤ 1

4 for
0 ≤ h ≤ t and j �= i ; such a t exists because for Feller semigroups condition
(5.11) is satisfied. Then
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pi,i (h + s) = pi,i (s)pi,i (h)+
∑
j �=i

pi, j (s)p j,i (h)

≤ pi,i (s)pi,i (h)+ 1

4

∑
j �=i

pi, j (s)

≤ pi,i (s)pi,i (h)+ 1

4
(1 − pi,i (s)).

This completes the proof because, by pi,i (h) ≥ 3
4 , the last expression here is

no greater than the right-hand side in (5.20).

5.4.2 The form of a Feller generator

Let’s begin by recalling that, as we have seen in Section 5.2.4, a Feller
semigroup {T (t), t ≥ 0} in c0 contains information on certain transition prob-
abilities pi, j (t), i, j ∈ N. By 5.4.1, all intensities on the diagonal in the related
matrix of intensities are finite. Therefore, given f ∈ c0, it is meaningful to
consider the sequence g defined by

g(i) =
∞∑
j=1

qi, j f ( j) = −qi f (i)+
∑
j �=i

qi, j f ( j), i ∈ N;

the series on the right converging absolutely because f is bounded and∑
j �=i qi, j ≤ qi . It is then tempting to think (see also Section 5.7.1) that, if

defined on a proper domain, an operator Q0 mapping f to g is a good candi-
date for the generator of {T (t), t ≥ 0}, and what domain could be more natural
than that composed of all f ∈ c0 such that g belongs to c0?

As we shall now see, these hopes are not in vain. Formally, let Q0 be defined
by

Q0 f (i) =
∞∑
j=1

qi, j f ( j), (5.21)

on the domain composed of f ∈ c0 such that Q0 f ∈ c0. Then:

The generator of {T (t), t ≥ 0} is Q0. (5.22)

For the proof we need the following result of independent interest.

5.4.3 Lemma

Transition probabilities pi, j (t), t ≥ 0, i, j ∈ N of a chain with Feller prop-
erty are continuously differentiable in t ≥ 0 and satisfy the Kolmogorov
backward equations
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p′
i, j (t) =

∞∑
k=1

qi,k pk, j (t), i, j ∈ N. (5.23)

Proof Given i, j ∈ N, t ≥ 0 and s > 0, consider the difference quotient
s−1(pi, j (t + s)− pi, j (t)). Since (by the Chapman–Kolmogorov equation)

pi, j (t + s) =
∞∑

k=1

pi,k(s)pk, j (t),

the absolute value, say, ψ(s), of the difference between this quotient and the
right-hand side of (5.23) does not exceed

∞∑
k=1

∣∣∣∣ pi,k(s)− δi,k

s
− qi,k

∣∣∣∣ pk, j (t)

≤
n∑

k=1

∣∣∣∣ pi,k(s)− δi,k

s
− qi,k

∣∣∣∣+ ∞∑
k=n+1

(
pi,k(s)

s
+ qi,k

)
sup

k≥n+1
pk, j (t)

≤
n∑

k=1

∣∣∣∣ pi,k(s)− δi,k

s
− qi,k

∣∣∣∣+ (1 − pi,i (s)

s
+ qi

)
sup

k≥n+1
pk, j (t),

provided n ≥ i . Therefore, lim sups→0+ ψ(s) ≤ 2qi supk≥n+1 pk, j (t).
On the other hand, by (5.12), supk≥n+1 pk, j (t) can be made arbitrarily small

by choosing n large enough. It follows that t �→ pi, j (t) has the right derivative
at any t , and this derivative is

∑∞
k=1 qi,k pk, j (t). We note that the functions t �→

pk, j (t) are continuous, and the series
∑∞

k=1 qi,k pk, j (t) converges uniformly in
t ≥ 0. Hence, t �→∑∞

k=1 qi,k pk, j (t) is a continuous function, too.
Invoking the well-known fact of real analysis saying that a continuous func-

tion x : [0,∞) → R which has the right-hand derivative x ′+(t) at all t ≥ 0
with t �→ x ′+(t) continuous, is necessarily (continuously) differentiable, we
complete the proof.

Proof of (5.22) Consider {P(t), t ≥ 0} := {T ∗(t), t ≥ 0} in l1. As explained
in 5.2.4, this is a strongly continuous semigroup of sub-Markov operators. Let
A be its generator. We know, by Lemma 5.4.3, that the Kolmogorov backward
differential equations are satisfied. Hence, see 2.5.6, all ei ’s belong to D(A).

Let f belong to D(A∗) ⊂ l∞. Then, f (Ax) = (A∗ f )(x) for all x ∈ D(A).
In particular, in view of (2.45),

A∗ f (i) = A∗ f (ei ) = f (Aei ) = f
(
qi, j
)

j≥1 =
∞∑
j=1

qi, j f ( j). (5.24)
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The fact that {T (t), t ≥ 0} is a Feller semigroup implies that the sun-dual space
for {P(t), t ≥ 0} contains c0 and that c0 is an invariant subspace for the sun-
dual semigroup. It follows that the generator of {T (t), t ≥ 0} is a part of the
generator of the sun-dual semigroup, which in turn, as we know from Section
1.5, is a part of A∗. Hence, Q0 is the part of A∗ in c0. In particular, its domain
is composed of f ∈ c0 such that Q0 f (= A∗ f ) belongs to c0. A glance at
(5.21) and (5.24) completes the proof.

5.4.4 Example

In 5.2.7 we have seen that the pure birth process of Section 2.4.10 has the
Feller property. Therefore, the generator of the related Feller semigroup is Q0

defined by

Q0 f (1) = ai ( f (i + 1)− f (i)),

with domain composed of f such that limi→∞ ai ( f (i + 1)− f (i)) = 0.

5.4.5 A Feller semigroup describes the minimal chain

Let us think again of the transition probabilities pi, j (t), i, j ∈ N, t ≥ 0
inscribed on a Feller semigroup {T (t), t ≥ 0}, and recall again that, by 5.4.1,
the related intensity matrix has no infinities on the main diagonal. Hence, by
Kato’s Theorem, there is the minimal semigroup {S(t), t ≥ 0} in l1, related to
this intensity matrix. Let p̃i, j (t), i, j ∈ N, t ≥ 0 be the transition probabilities
of the minimal chain. We claim that

pi, j (t) = p̃i, j (t).

Proof Let {P(t), t ≥ 0} := {T ∗(t), t ≥ 0} be the adjoint semigroup for
{T (t), t ≥ 0}; recall that the matrix

(
pi, j (t)

)
i, j≥1 represents both T (t) and

P(t). Since {P(t), t ≥ 0} is a strongly continuous semigroup, the sun-dual
space for {T (t), t ≥ 0} is the entire l1 and it follows that the generator of
{P(t), t ≥ 0} is the dual Q∗

0 to Q0, the generator of {T (t), t ≥ 0}.
Consider ek ∈ l1 for a k ∈ N, and think of this element as of a functional on

c0. Then

ek(Q0 f ) = (Q0 f )(k) =
∞∑
j=1

qk, j f ( j), for all f ∈ D(Q0).

Since
(
qk, j
)

j∈N
is a member of l1, the map D(Q0) � f �→ ek(Q0 f ) can be

extended to a continuous functional on l1, represented by
(
qk, j
)

j∈N
. It follows
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that ek belongs to D(Q∗
0) and that Q∗

0ek = (
qk, j
)

j∈N
. But this means that

the generator of {P(t), t ≥ 0} is an extension of the operator which in Section
3.1.5 was denoted A0. Since P(t) ≥ 0, the latter section shows that S(t) ≤
P(t), t ≥ 0. This in turn, by the criterion of 5.2.3, implies that the minimal
semigroup {S(t), t ≥ 0} possesses the Feller property.

Let
{
T̃ (t), t ≥ 0

}
be the related strongly continuous semigroup in c0, that

is, let T̃ (t) be the restriction of S∗(t) to c0:

T̃ (t) = [S∗(t)]|c0, (5.25)

and let p̃i, j (t) be the related transition probabilities. Since transition prob-
abilities pi, j (t) and p̃i, j (t) lead to the same Q-matrix, the generators of{
T̃ (t), t ≥ 0

}
and {T (t), t ≥ 0} coincide (by (5.22)). This, however, implies

that so do the semigroups, and this leads to the conclusion that pi, j (t) =
p̃i, j (t).

5.4.6 Corollary

In the proof presented above we have seen that the semigroup {P(t), t ≥ 0} :=
{T ∗(t), t ≥ 0} coincides in fact with the minimal semigroup {S(t), t ≥ 0}. We
have also seen that

{
T̃ (t), t ≥ 0

}
of (5.25) coincides with T (t). Hence, if a

Markov chain has the Feller property, then its minimal semigroup {S(t), t ≥ 0}
is simply the dual of the Feller semigroup {T (t), t ≥ 0} defined in c0; the semi-
group {T (t), t ≥ 0} in turn may be recovered as the restriction of {S∗(t), t ≥ 0}
to c0:

S(t) = T ∗(t) and T (t) = [S∗(t)]|c0 .

Our next result is related to the following problem: given an intensity matrix
Q can we say, just by examining Q itself, whether the related chain has the
Feller property? By 5.4.5 this question makes sense only if by ‘the related
chain’ we mean ‘the minimal chain.’ Below we describe one such situation.

5.4.7 An intensity matrix leading to a Markov chain with Feller
property

Suppose Q is an intensity matrix such that

(i) limi→∞ qi, j = 0 for all j ≥ 1, and
(ii) for any λ > 0 there is no nonzero (ξi )i≥1 ∈ l1 such that λξi =∑∞

j=1 ξ j q j,i , i ≥ 1.
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Then, the minimal chain related to Q has Feller property.

Proof Our strategy is to prove that Q0 defined in (5.21) is closable and its
closure generates a Feller semigroup. Then, we will show that this semigroup
dominates the minimal semigroup: as in 5.4.5 this will allow us to deduce the
Feller property for the minimal chain.

1. (Q0 is closable.)
Since Q0 satisfies the positive maximum principle, we have (see (5.16) or

(5.17))

‖λ f − Q0 f ‖ ≥ λ‖ f ‖, for all f ∈ D(Q0). (5.26)

Suppose ( fn)n≥1 is a sequence of elements of D(Q0) such that limn→∞ fn =
0 and limn→∞ Q0 fn = g ∈ c0. Then, for any h ∈ D(Q0) and λ > 0,

‖(λ− Q0)(λ fn + h)‖ ≥ λ‖λ fn + h‖.
Letting n → ∞, we obtain

‖λh − λg − Q0h‖ ≥ λ‖h‖.
Dividing by λ and letting λ → ∞ yields ‖h − g‖ ≥ ‖h‖. Now, assumption
(i) says that e j ∈ D(Q0) for all j ∈ N. Therefore, D(Q0) is a dense subset
of c0. Taking h = hn where limn→∞ hn = g and letting n → ∞, we obtain
‖g‖ ≤ 0, which is possible only if g = 0. This, by definition, means that Q0 is
closable.

2. (Definition of Q0.)
If, for an f ∈ c0, there is a sequence ( fn)n≥1 of elements of D(Q0) such that

limn→∞ fn = f and limn→∞ Q0 fn = g, it makes sense to define Q0 f = g
because this definition does not depend on the choice of ( fn)n≥1. Taking as the

domain of D(Q0) the set of f with the property described above, we obtain
a linear operator in c0. It is easy to check that Q0 extends Q0 and is closed.

3. (The range of λ− Q0 is c0.)
Fix λ > 0. First, we claim that the range of λ−Q0 is dense in c0. If this is not

the case, there is a nonzero bounded linear functional on c0, that is, a member
x = (ξi )i≥1 of l1, such that x(λ f − Q0 f ) = 0 for all f ∈ D(Q0). Taking
f = ei , we obtain that this implies λξi =∑∞

j=1 ξ j q j,i , i ≥ 1. (By assumption
(i), ei ’s belong to D(Q0) and Q0ei ( j) = q j,i .) By assumption (ii), therefore, x
cannot be nonzero. This contradiction proves the claim.

Next, we claim that the range of λ−Q0 is closed. To this end, we first deduce
from (5.26) that

‖λ f − Q0 f ‖ ≥ λ‖ f ‖, for all f ∈ D(Q0). (5.27)
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Suppose now that g belongs to the the closure of the range of λ − Q0: there
are fn ∈ D(Q0) such that limn→∞(λ fn − Q0 fn) = g. By (5.27), ( fn)n≥1

is then a Cauchy sequence in c0. Let f = limn→∞ fn . Then limn→∞ Q0 fn

exists and equals λ f − g. Since Q0 is closed this means that f ∈ D(Q0) and
Q0 f = λ f − g. Thus, g = λ f − Q0 f , showing that g belongs to the range of
λ− Q0.

Since the range of λ − Q0 contains the range of λ − Q0, it follows that the
former set is the entire c0.

4. (Q0 generates a Feller semigroup.)
In point 3. we have shown that the resolvent equation λ f − Q0 f = g has

a solution f ∈ D(Q0) for all λ > 0 and g ∈ c0. Inequality (5.27) on the
other hand, shows that such a solution is unique, and that the map g �→ λ f
is a contraction. Since Q0 is densely defined, the Hille–Yosida Theorem tells
us that Q0 is the generator of a contraction semigroup, say {T (t), t ≥ 0} in c0,
but we still need to show that T (t) ≥ 0.

It suffices to prove that f ≥ 0 provided g ≥ 0. To this end, suppose that
f ( j) > 0 for some j . Then there is an i such that f (i) = supk≥1 f (k).

Since f ∈ D(Q0), there are fn ∈ D(Q0) such that limn→∞ fn = f
and limn→∞ Q0 fn = Q0 f. Then, defining gn = λ fn − Q0 fn we have
limn→∞ gn = g. Also, for sufficiently large n, fn(i) > 0, implying that
there are in ∈ N such that fn(in) = supk≥1 fn(k) > 0. By the posi-
tive maximum principle, Q0 fn(in) ≤ 0, and by Exercise 5.4.11, we have
limn→∞ fn(in) = f (i). Then, for sufficiently large n,

‖gn − g‖ < λ f (i)

4
and fn(in) >

3

4
f (i).

Therefore,

g(in)+ λ f (i)

4
> gn(in) = λ fn(in)− Q0 fn(in) ≥ λ fn(in) ≥ λ

3

4
f (i),

that is, g(in) >
λ
2 f (i) > 0. It follows that g ≤ 0 implies f ≤ 0 or, which is

the same, that g ≥ 0 implies f ≥ 0.
5. ({T ∗(t), t ≥ 0} dominates in l1 the minimal semigroup for Q.)
Let {T (t), t ≥ 0} be the semigroup generated by Q0. Its dual semi-

group {T ∗(t), t ≥ 0} is strongly continuous in l1 and thus the generator of
{T ∗(t), t ≥ 0} is (Q0)

∗. As in 5.4.5, consider ek ∈ l1 for a k ∈ N, and think of
this element as of a functional on c0. Then

ek(Q0 f ) = (Q0 f )(k) =
∞∑
j=1

qk, j f ( j), for all f ∈ D(Q0). (5.28)
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For f ∈ D(Q0) there are fn ∈ D(Q0) such that limn→∞ fn = f and
limn→∞ Q0 fn = Q0 f ; without loss of generality we may assume that ‖ fn‖ ≤
2‖ f ‖, n ≥ 1. Then, by (5.28),

|ek(Q0 f )| = | lim
n→∞ ek(Q0 fn)| ≤ 2qk‖ fn‖ ≤ 4qk‖ f ‖, for all f ∈ D(Q0).

This shows that ek ∈ D((Q0)
∗). Moreover, by (5.28), the only possible value

for (Q0)
∗ek is

(
qk,i
)

i≥1 .

It follows that {T ∗(t), t ≥ 0} may play the role of {P(t), t ≥ 0} of Section
3.1.5. Therefore, for the minimal semigroup {S(t), t ≥ 0} we have S(t) ≤
T ∗(t) and thus, by 5.2.3, the minimal chain has the Feller property.

5A. Here is another way the proof may be completed, communicated to me
by E. Ratajczyk. Since {T (t), t ≥ 0} is a Feller semigroup, there is an intensity
matrix

(
q̃i, j
)

i, j≥1 such that (a) transition probabilities of the related minimal

chain possess the Feller property and (b) Q0 f (i) =∑∞
k=1 q̃i,k f (k) for f in the

domain of Q0 (see Sections 5.4.2 and 5.4.5). However, e j , j ≥ 1 are members
of D(Q0) ⊂ D(Q0) and (Q0e j )(i) = qi, j . It follows that qi, j = q̃i, j , that is,
that the minimal chain related to

(
qi, j
)

i, j≥1 has the Feller property.

5.4.8 Remark

In the proof presented above we have shown that Q0 is closable and Q0 is
a Feller generator. This leads us to the conclusion that the related minimal
chain has Feller property. This, however, when combined with 5.4.2, shows
that Q0 itself is a generator (see also part 5A in the proof above), and as such
is closed. A direct proof of the fact that Q0 is closed eludes me.

5.4.9 Corollary

As a by-product of the proof presented above we see that if, for a given inten-
sity matrix Q, the operator Q0 of (5.21) is a Feller generator, and ei ∈ D(Q0)

for i ≥ 1, then the minimal chain related to Q has the Feller property.

5.4.10 Example

Consider the Kolmogorov matrix with the first row equal (−24, 24, 0, 0, . . . )
and the i th row equal

(0, . . . , 0, 3i ,−9 · 3i , 8 · 3i , 0, . . . ), i ≥ 2.
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In this case, Q0 is given by

Q0 f (1) = 24 f (2)− 24 f (1),

Q0 f (i) = 3i ( f (i − 1)− 9 f (i)+ 8 f (i + 1)), i ≥ 2,

on the domain composed of f such that limi→∞ 3i ( f (i + 1) − f (i)) = 0
(this condition may be checked to be equivalent to limi→∞ Q0 f (i) = 0). It is
clear that all ei , i ≥ 1 belong to this domain. We aim at proving that Q0 is a
Feller generator, and thus that the birth and death process related to Q has the
Feller property. Since Q0 clearly satisfies the positive maximum principle and
is densely defined, it suffices to check that condition (c’) of the Hille–Yosida
Theorem is fulfilled. To this end, we introduce operators B (for ‘birth’) and D
(for ‘death’) with D(B) = D(D) = D(Q0), given by

B f (i) = 8 · 3i [ f (i + 1)− f (i)], i ≥ 1,

D f (i) = 3i [ f (i − 1)− f (i)], i ≥ 2 and D f (1) = 0.

We have Q0 = B + D and from Example 5.4.4 we know that B is a Feller
generator. Also, for f ∈ D(B) = D(D),

‖D f ‖ = sup
i≥2

3i | f (i − 1)− f (i)| = 3 sup
i≥1

3i | f (i + 1)− f (i)| = 3

8
‖B f ‖.

It follows that, for g ∈ c0,

‖D (λ− B)−1 g‖ ≤ 3

8
‖B (λ− B)−1 g‖ = 3

8
‖λ (λ− B)−1 g − g‖ ≤ 3

4
‖g‖.

Therefore, the series (λ− B)−1∑∞
k=0

[
D (λ− B)−1]k g converges. It is easy

to check that its sum is a solution to the resolvent equation for Q0. This shows
that condition (c’) of the Hille–Yosida Theorem is satisfied, and our proof that
Q0 is a Feller generator is completed.

5.4.11 Exercise

Suppose for f, g ∈ c0 there are i, j ∈ N such that f (i) = supk≥1 f (k) and
g( j) = supk≥1 g(k). Then | f (i)− g( j)| ≤ ‖ f − g‖.

5.5 The Feynman–Kac and the Volkonskii Formulae

This section is devoted to two famous formulae for specifically perturbed Feller
semigroups: the Feynman–Kac Formula and the (perhaps a bit less known)
Volkonskii Formula.
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5.5.1 Increasing intensities on the main diagonal

Let A be a Feller generator and b ∈ l∞ be a nonnegative sequence. Consider
B ∈ L(c0) given by

(B f )(i) = b(i) f (i), f ∈ c0, i ∈ N. (5.29)

We claim that A − B with domain equal to D(A) is a Feller generator as well.
Indeed, it is clear that this operator is densely defined and satisfies the positive
maximum principle (nonnegativity of b is used here). Moreover (for the same
reason), for β := ‖b‖ the norm of the operator B ′ given by B ′ f = β f − B f
does not exceed β. Hence, we have ‖B ′(λ + β − A)−1‖ ≤ β

λ+β < 1, and so
the series

Sλ = (λ+ β − A)−1
∞∑

n=0

[
B ′(λ+ β − A)−1

]n
converges in the operator norm for all λ > 0. Writing the resolvent equation
λ f − A f + B f = g for the operator A − B as

(λ+ β) f − A f = B ′ f + g,

we easily check that f := Sλg solves this equation. This shows that condition
(c’) in Remark 5.3.4 is satisfied, and thus completes the proof. (Alternatively,
we could use the Phillips Perturbation Theorem and the result discussed in the
first part of Remark 5.3.4.)

5.5.2 Increasing intensities on the main diagonal: Intuition

How do the processes related to A and A − B differ? The intensity with which
the probability mass escapes from a state i in the first process is no greater than
that intensity in the second process: if the first intensity is qi then the second is
qi + b(i). On the other hand, intensities qi, j with which the probability mass
from the state i is collected at states j are in both cases the same. As a result,
the process related to A − B is dishonest even if the process related to A is
honest (unless b = 0); in the former process after an exponential time spent at
i a particle may jump to one of the other states or disappear (see Sections 2.5.8
and 2.5.9).

5.5.3 The Feynman–Kac Formula

As we shall see now, the information provided in the previous section can be
made much more specific. Let X (t), t ≥ 0 be a Markov chain related to A so
that
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et A f (i) = Ei f (X (t)), f ∈ c0, i ∈ N, t ≥ 0,

where Ei f (X (t)) is the expected value of f (X (t)) conditional on X (0) = i
(this notation will turn out to be more convenient than that used in (5.3)), and
assume for safety’s sake that the paths of the chain are right-continuous with
left limits. Then the Riemann integral

∫ t
0 b(X (s)) ds is well defined for all ω in

the underlying probability space and for all t ≥ 0, and thus the right-hand side
in

et (A−B) f (i) = Ei e− ∫ t
0 b(X (s)) ds f (X (t)) (5.30)

makes sense. Relation (5.30), which holds for all f ∈ c0, i ∈ N and t ≥ 0
is (a special case of) the famous Feynman–Kac Formula; we will prove it in
Sections 5.5.4 and 5.5.5.

For now, we comment that this formula is a more quantitative version of the
remarks made in Section 5.5.2. For, the difference between et A and et (A−B)

lies of course in e− ∫ t
0 b(X (s)) ds . This factor gathers the information on how a

particle might have disappeared along the path leading from a state at time 0
to a potential state at t > 0. Roughly speaking, the probability that the process
related to A − B is at a certain state at time t is that of the process related to A
modified by that factor, but it should be kept in mind that this factor varies from
path to path, and so we are effectively summing all such modified probabilities.

5.5.4 Proof of the the Feynman–Kac Formula: Part I

Turning to the proof of (5.30), we note that −B is bounded and thus is a
generator itself, and we have

e−t B f (i) = e−b(i)t f (i), f ∈ c0, i ∈ N, t ≥ 0.

(Here, e−t B := et (−B).) This shows that −B is in fact a Feller generator. It
follows that the semigroup generated by A− B may be obtained from Trotter’s
Product Formula.

This leads us to consider H(t) = et Ae−t B, t ≥ 0; we note that

H(t) f (i) = Ei e−tb(X (t)) f (X (t)), f ∈ c0, i ∈ N, t ≥ 0. (5.31)

We claim, and this is the actual key to the proof of (5.30), that for any
t1, . . . , tn > 0, f ∈ c0 and i ∈ N,

H(t1)H(t2) · · · H(tn) f (i) = Ei e−∑n
k=1 tk b(X (sk )) f (X (sn)), (5.32)

where sk = t1 + . . . tk . When expanded, the right-hand side here equals∑
i1,...,in

e−∑n
k=1 tk b(ik) f (in)Pi,i1,...,in (t1, . . . , tn),
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where summation is over all i1, . . . , in ∈ N, and Pi,i1,...,in (t1, . . . , tn) is the
probability of a path leading from X (0) = i to X (t1+· · ·+tn) = in via X (t1) =
i1, X (t1 + t2) = i2, and so on (provided we start at i). More specifically, that
probability is

pi,i1(t1)
n∏

k=2

P[X (t1 + · · · + tk) = ik |X (t1 + · · · + tk−1) = ik−1].

To show (5.32), we use induction argument. For n = 1, (5.32) reduces to
(5.31). Next, assuming that (5.32) holds for any n-tuple of times, we see that

h := H(t1)H(t2) · · · H(tn+1) f

is H(t1)g where

g( j) =
∑

i2,...,in+1

e−∑n
k=1 tk+1b(ik+1) f (in+1)Pj,i2,...,in+1(t2, . . . , tn+1).

Therefore,

h(i) =
∑

i1

e−t1b(i1)g(i1)pi,i1(t1) (5.33)

=
∑

i1,...,in+1

e−∑n+1
k=1 tk b(ik ) f (in+1)Pi1,i2,...,in+1(t2, . . . , tn+1)pi,i1(t1).

Since X (t), t ≥ 0 is time-homogeneous, the probability

P[X (t2 + · · · + tk) = ik |X (t2 + · · · + tk−1) = ik−1]
is the same as

P[X (t1 + · · · + tk) = ik |X (t1 + · · · + tk−1) = ik−1].
It follows that

Pi1,i2,...,in+1(t2, . . . , tn+1)pi,i1(t1) = Pi,i1,i2,...,in+1(t1, . . . , tn+1).

This combined with (5.33) completes the induction step, and the entire proof
of (5.32).

5.5.5 Proof of the the Feynman–Kac Formula: Part II

Having established (5.32) we specialize to the case where all tk’s are the same
and equal t/n where t > 0 is fixed. Formula (5.32) then renders

[H(t/n)]n f (i) = Ei e
−∑n

k=1
t
n b
(

X
(

kt
n

))
f (X (t)),
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and we note that
∑n

k=1
t
n b
(
X
( kt

n

))
is a partial sum of the Riemann integral∫ t

0 b(X (s)) ds. As n → ∞ this sum tends to the integral for all ω in the under-
lying probability space. By the Lebesgue Dominated Convergence Theorem(

since

∣∣∣∣e−∑n
k=1

t
n b
(

X
(

kt
n

))∣∣∣∣ ≤ 1

)
, [H(t/n)]n f (i) converges to the right-hand

side of (5.30).
The convergence just established is point-wise: for all i ∈ N, the

limit limn→∞[H(t/n)]n f (i) exists and equals to the right-hand side of
(5.30). On the other hand, Trotter’s Product Formula states that the limit
limn→∞[H(t/n)]n f exists in the norm of c0 and equals et (A−B) f . Since these
two limits must coincide, we are done.

Our second subject in this section is the Volkonskii Formula. The Feynman–
Kac Formula gives an explicit form of the semigroup generated by a (quite
specific) additive perturbation of a generator of a given semigroup. The Vol-
konskii Formula plays a similar role for a multiplicative perturbation.

5.5.6 A multiplicative perturbation of a generator

Let A be a Feller generator, and let b ∈ l∞ be a positive sequence. We stress
that in contrast to Section 5.5.1 we do assume that all b(i) are positive (and not
just nonnegative). In fact, we assume quite a bit more:

inf
i∈N

b(i) =: β0 > 0. (5.34)

We claim that, under this assumption, the operator

B A

with domain equal to D(A) is a Feller generator; B featuring here is defined
by (5.29).

As in Section 5.5.1, it is clear that B A is densely defined and satisfies
the positive maximum principle. We are therefore left with showing that the
resolvent equation

λ f − B A f = g (5.35)

has a solution for all λ > 0 and g ∈ c0 (see Remark 5.3.4, condition (c’)).
To this end, consider cλ = λ

β−b
b ≥ 0 (i.e., cλ(i) = λ

β−b(i)
b(i) , i ∈ N) where

β := ‖b‖. By assumption (5.34), supi∈N cλ(i) ≤ λ(β/β0 − 1). Hence, cλ
belongs to l∞ and, by 5.5.1, βA − Cλ where Cλ is defined by Cλ f (i) =
cλ(i) f (i), f ∈ c0, i ∈ N, is a Feller generator. It follows that (μ−βA+Cλ)−1

exists for all μ > 0, and in particular we may use μ = λ.
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So prepared, we take

f := β(λ− βA + Cλ)
−1 B−1g. (5.36)

Then f is a member of D(βA − Cλ) = D(βA) = D(A), and λ f − βA f +
Cλ f = βB−1g. On the other hand, λ f + Cλ f = λβB−1 f . Therefore,
λβB−1 f − βA f = βB−1g, showing that this f ∈ D(B A) solves (5.35),
and thus completing the proof.

5.5.7 A multiplicative perturbation of a generator: Intuition

From the perspective of intensity matrices, the multiplicative perturbation by
the operator B amounts to multiplying the i th row of the intensity matrix
related to A by b(i). Thus, if b(i) > 1, the modified process stays at i for
a shorter time, and if b(i) < 1 it stays there for a longer time. Since, on the
other hand, the entire row is multiplied by the same quantity, the probabilities
of jumps from i to the other states are left intact. Therefore, we expect the
process related to B A to be quite similar to that related to A: it merely runs
faster through the states where b(i) > 1 and slows down at the states where
b(i) < 1.

These intuitions are expressed more quantitatively in the Volkonskii For-
mula ( [89] or [76], p. 278), presented in the next section. As we shall see the
goal is achieved by modifying the time the process runs through its paths.

5.5.8 The Volkonskii Formula

Assume, as in Section 5.5.1 that the chain X (t), t ≥ 0 related to A has right-
continuous paths with left-hand limits, and consider (see Figure 5.1)

θ(t) =
∫ t

0

ds

b(X (s))
, t ≥ 0.

(More precisely, θ(t, ω) = ∫ t
0

ds
b(X (s,ω)) , t ≥ 0 for all ω in the underlying

probability space.) This is a piece-wise linear, increasing function (for each ω).
Its inverse τ , therefore, exists and is likewise piece-wise linear and increasing.
In the time interval the chain is at a state i with b(i) < 1 the slope of θ is > 1,
and the corresponding slope of τ is < 1. As a result, τ , which is designed as
a modification of time, runs slower at such a state; at a state where b(i) > 1,
τ runs faster. The Volkonskii Formula says that the chain related to B A is
X (τ (t)), t ≥ 0:

et B A f (i) = Ei f (X (τ (t))), f ∈ c0, i ∈ N, t ≥ 0.
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t0 = 0 t1 t2 t3

θ(t)

Figure 5.1 Function θ(t) for a path leading through states i1, i2, and i3: between
tk and tk+1 the slope is 1/b(ik+1). The modified time τ runs though the ordinate
axis.

5.5.9 Proof of the Volkonskii Formula

In Section 5.5.6, we have proved that (λ−B A)−1 = β(λ−βA+Cλ)−1 B−1 (see
(5.36)). Therefore, by the Feynman–Kac Formula and because convergence in
c0 implies convergence of coordinates, for any f ∈ c0, λ > 0 and i ∈ N,

(λ− B A)−1 f (i) = β

∫ ∞

0
e−λt et (βA−Cλ)B−1 f (i) dt

= β

∫ ∞

0
e−λt

Ei e−λ ∫ t
0
(β−b(X (βs)))

b(X (βs)) ds f (X (βt))

b(X (βt))
dt

= Ei β

∫ ∞

0
e−λθ(βt) f (X (βt))

b(X (βt))
dt

= Ei

∫ ∞

0
e−λθ(t) f (X (t))

b(X (t))
dt.

To evaluate the inner integral, think of an ω in the underlying probability space
and of a time interval [t1, t2] in which X (t, ω) = j for some j ∈ N. In this
interval f (X (t)) = f ( j), b(X (t)) = b( j) and θ is differentiable with θ ′(t) =
1/b( j). Therefore,∫ t2

t1
e−λθ(t) f (X (t))

b(X (t))
dt =

∫ τ(t2)

τ (t1)
e−λs f ( j) ds =

∫ τ(t2)

τ (t1)
e−λs f (X (τ (s))) ds.

Dividing the time half-axis into such intervals (which do depend on ω)
and summing, we obtain that the entire integral is

∫∞
0 e−λt f (X (τ (t))) dt . It

follows that

(λ− B A)−1 f (i) =
∫ ∞

0
e−λt

Ei f (X (τ (t))) dt.
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On the other hand, using again the fact that convergence in c0 implies
convergence of coordinates, we see that

(λ− B A)−1 f (i) =
∫ ∞

0
e−λt et B A f (i) dt.

Since the Laplace transform of a measurable function is identically zero iff this
function is zero almost everywhere, we conclude that the Volkonskii Formula
holds for each f and i save perhaps on a set of t of measure zero (depending
on f and i). But t �→ Ei f (X (τ (t))) is right-continuous, because the paths of
X (t), t ≥ 0 are right-continuous, and t �→ et B A f (i) is continuous since the
semigroup {et B A, t ≥ 0} is strongly continuous. This shows that the formula
holds for all t ≥ 0.

5.6 Kolmogorov, Kendall, and Reuter Revisited

Having gained some experience by learning about Feller semigroups, let us
come back to the Kolmogorov–Kendall–Reuter examples. In this section we
will find their sun-duals to see how differently the same information on these
process is encrypted in l1 and in l∞ spaces. We start with the second example.

5.6.1 Sun-dual of the second Kolmogorov–Kendall–Reuter
semigroup

Our aim is to characterize the dual of the operator A defined in Section 2.4.7.
What do we need to assume about f ∈ l∞ to make sure that there is a constant
C = C( f ) such that∣∣∣∣∣

∞∑
i=1

(ai+1ξi+1 − aiξi ) f (i)

∣∣∣∣∣ ≤ C( f )‖x‖ (5.37)

for all x = (ξi )i≥1 ∈ D(A) ⊂ l1? The left-hand side here is the limit, as
n → ∞, of∣∣∣∣∣

n∑
i=3

aiξi ( f (i − 1)− f (i))+ an+1ξn+1 f (n)− ξ1 f (1)

∣∣∣∣∣ (5.38)

(recall that a1 = 1 and a2 = 0). Since each ek, k ≥ 3 has norm 1 and belongs
do D(A), and since for x = ek and n ≥ k the expression in (5.38) reduces to
|ak( f (k − 1)− f (k))|, a necessary condition for (5.37) is

sup
k≥3

ak | f (k − 1)− f (k)| ≤ C. (5.39)
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Conversely, if this condition is satisfied, the series
∑∞

k=2( f (k − 1) −
f (k)) converges absolutely. In particular, there exists the limit f (∞) :=
limk→∞ f (k). It follows that the expression under the absolute value sign in
(5.38) converges to

∞∑
i=3

aiξi ( f (i − 1)− f (i))+ ( f (∞)− f (1))ξ1

(recall that limi→∞ aiξi = ξ1 for (ξi )i≥1 ∈ D(A)), with the series converging
absolutely. Also, the absolute value of the limit does not exceed (C +| f (∞)−
f (1)|)‖x‖.

We have thus proved that D(A∗) is composed of f ∈ l∞ such that (5.39)
holds and, for such f ,

A∗ f (1) = f (∞)− f (1),

A∗ f (2) = 0,

A∗ f (i) = ai ( f (i − 1)− f (i)), i ≥ 3.

In particular, as already remarked, D(A∗) is contained in c. In fact, D(A∗)
is dense in c, because all linear combinations of 1 and ek, k ≥ 1 belong to
D(A∗). Thus, for the second Kolmogorov–Kendall–Reuter semigroup

X
� = c. (5.40)

It follows also that A∗
p is A∗ restricted to the domain composed of f such that

limi→∞ ai ( f (i − 1)− f (i)) exists (and is finite).

5.6.2 Feller property?

In spite of the fact that, by (5.40), c0 is a subspace of X
�, the second

Kolmogorov–Kendall–Reuter semigroup does not possess the Feller property.
For, recalling the formula for (λ− A)−1 (see (2.33)) we check that

(
λ− A∗)−1

f (i) =
i∑

j=2

1

λ+ a j

⎛⎝ ∏
j<k≤i

ak

λ+ ak

⎞⎠ f ( j)

= π̃i

i∑
j=2

1

λ+ a j

f ( j)

π̃ j
, i ≥ 3,

where π̃i = ∏i
k=3

ak
λ+ak

, i ≥ 3. Since π̃i decreases when i increases, and

π̃∞ := limi→∞ π̃i exists and differs from 0, the series
∑∞

j=2
1

λ+a j

f ( j)
π̃ j

converges, being dominated by
∑∞

j=2
1

λ+a j

‖ f ‖
π̃∞ . Therefore,
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lim
i→∞

(
λ− A∗)−1

f (i) = π̃∞
∞∑
j=2

1

λ+ a j

f ( j)

π̃ j
,

and this quantity need not be zero for f ∈ c0.

5.6.3 Learning new language

Let’s try to decipher the information just obtained. First of all, since c0 ⊂
c, we see that transition probabilities of the second Kolmogorov–Kendall–
Reuter example (these probabilities can be recovered from {et A∗

p , t ≥ 0} by
pi, j (t) := et A∗

p e j (i)) satisfy condition (5.11), that is, are more regular than
those in general Markov chains. But can the information we possess about the
second Kolmogorov–Kendall–Reuter example be obtained from A∗

p?
The answer is in the affirmative, and, at least in this case, the message con-

veyed by A∗ seems to be more clear than that of A. The reader might recall that
we needed an approximation by simpler Markov chains to understand what is
the meaning of the second assumption in the definition of the domain of A.
Here, the situation is more transparent.

First of all, the fact that we need to work in c is an information in itself:
f (∞) is well defined here and in fact appears as a key factor in the definition
of A∗ f . This tells us that something important is going on at infinity: there
is a kind of additional point there that influences the way the chain behaves.
Similarly to the third line of the definition of A∗ f which tells us that after
an exponential time with parameter ai the chain starting at i jumps to i − 1,
the first line says that after an exponential time at the state 1 our chain jumps
to the point at infinity. Moreover, the fact that A∗ f (∞) = limi→∞ ai ( f (i −
1) − f (i)) tells us that ∞ is an instantaneous state: the chain starting at ∞
leaves this state immediately, with rate limi→∞ ai = ∞ to jump, figuratively
speaking, ‘to the first rung of the infinite ladder next to infinity.’

5.6.4 Intensity matrices versus generators

Multiplying formally the intensity matrix of the second Kolmogorov–Kendall–
Reuter chain (given by (2.53)) by an f ∈ l∞ from the right one obtains a vector
that differs from A∗ f only in the first coordinate. As we have commented
above, it is precisely this missing factor, that is, f (∞), that tells the fate of
the process starting at the state 1. Again, this information is not contained in
the intensity matrix. But what is even more intriguing here is that the same
information is conveyed by A and A∗

p in two radically different ways: it is
skillfully hidden in the domain of A, and openly displayed in the way A∗ acts.
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5.6.5 A comparison with the related minimal chain

Since this is the first example we are examining (see cartoon preceding
Preface), let’s be even more specific about it.

In Example 3.2.3 we have shown that the intensity matrix Q of the second
Kolmogorov–Kendall–Reuter process, when modified by replacing −1 in the
first row by 0, is nonexplosive, and have found an explicit form of the Markov
generator G related to this modified Q (see (3.14) and (3.15)).

Using G, let us define G� on D(G�) = D(G) by

G�x = Gx − ξ1e1 = Gx + Px − x

where x = (ξi )i≥1 and Px = (0, ξ2, ξ3, . . . ). Clearly, P is a sub-Markov
operator and thus P − Il1 is a sub-Markov generator. Therefore, by Trotter’s
Product Formula, G� is a sub-Markov generator as well. Since (a) the generator
of the minimal semigroup is an extended limit of the operators D + r O as
r → 1 (see Sections 3.1.4 and 1.4.3), (b) the off-diagonal operators O for
the modified and unmodified Q coincide, (c) the diagonal operators D for the
modified and unmodified Q have the same domain and their values on a (ξi )i≥1

are also the same except for the first coordinate where they differ by −ξ1,
and (d) G is the generator of the minimal semigroup related to the modified
Q, we may argue that G� is the generator of the minimal semigroup for the
unmodified Q.

It is perhaps worth recording explicitly that

G� (ξi )i≥1 = (ai+1ξi+1 − aiξi )i≥1

where, in contrast to (3.14), a1 is again 1, not 0. Thus, G� is defined by the
same formula as the generator A of the second Kolmogorov–Kendall–Reuter
semigroup: the difference, however, lies in the domain. For (ξi )i≥1 to belong
to D(A), we require

∞∑
i=1

|ai+1ξi+1 − aiξi | < ∞ and lim
i→∞ aiξi = ξ1,

whereas for (ξi )i≥1 to belong to D(G�) we require

∞∑
i=1

|ai+1ξi+1 − aiξi | < ∞ and lim
i→∞ aiξi = 0.

Finding G∗
� is not difficult. In fact, the analysis we carried out in 5.6.1 may

be repeated almost verbatim to see that f ∈ D(G∗
� ) iff condition (5.39) is
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satisfied, that is, that D(G∗
� ) = D(A∗). Moreover, A∗ f and G∗

� f are the same
except for the first coordinate:

G∗
� f (1) = − f (1) whereas A∗ f (1) = f (∞)− f (1). (5.41)

Now, we know that the chains related to G� and A differ in the behavior starting
at i = 1. The minimal chain (generated by G�), conditional on starting at
i = 1, stays at i = 1 for an exponential time with parameter 1, and then is left
undefined. By contrast, the process related to A, after the exponential time is
over, jumps to ∞ (where it is immediately distributed across {i ≥ 2} according
to an entrance law; see Exercise 4.4.9, cf. (2.55)). There is probably no clearer
way of expressing this difference than by (5.41).

Intriguingly, in l1 setting, the information on the fate of the process starting
at i = 1 is hidden in the domain of the operators A and G�. The dual perspec-
tive, that is, that of l∞, is dissimilar: A∗ and G∗

� have the same domain but
act differently. A boundary perturbation has become an additive perturbation
of the generator.

5.6.6 Sun-dual of the first Kolmogorov–Kendall–Reuter semigroup

Let us turn to a characterization of the sun-dual in the first Kolmogorov–
Kendall–Reuter example. What conditions on an f ∈ l∞ guarantee existence
of a C = C( f ) such that

| f (Ax)| =
∣∣∣∣∣∣

∞∑
j=2

(a jξ j − ξ1)[ f (1)− f ( j)]
∣∣∣∣∣∣ ≤ C( f )‖x‖ (5.42)

for all x ∈ D(A), where A is defined in Section 2.4.4? Rewriting the absolute
value of the infinite series as

lim
n→∞

∣∣∣∣∣∣
n∑

j=2

a jξ j [ f (1)− f ( j)] − ξ1

n∑
j=2

[ f (1)− f ( j)]
∣∣∣∣∣∣ ,

and utilizing x = ek, k ≥ 2, we find, arguing as in Section 5.6.1, that we must
have

sup
k≥2

ak | f (1)− f (k)| ≤ C. (5.43)

Conversely, if the latter condition holds for some constant C , the series∑∞
j=2[ f (1)− f ( j)] converges absolutely, and | f (Ax)| equals
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∣∣∣ ∞∑
j=2

a jξ j [ f (1)− f ( j)] − ξ1

∞∑
j=2

[ f (1)− f ( j)]
∣∣∣

≤ C
∞∑
j=2

|ξ j | + |ξ1|
∞∑
j=2

| f (1)− f ( j)| ≤ (C +
∞∑
j=2

| f (1)− f ( j)|)‖x‖.

This analysis shows that f belongs to D(A∗) iff (5.43) holds and then

A∗ f (1) =
∞∑
j=2

[ f ( j)− f (1)],

A∗ f (i) = ai ( f (1)− f (i)), i ≥ 2. (5.44)

Since (5.43) implies that limk→∞ f (k) = f (1), D(A∗) is contained in the
subspace c1=∞ of c ⊂ l∞ composed of f ∈ c such that f (∞) = f (1).
Since linear combinations of 1 and ek, k ≥ 2 belong to D(A∗), thus showing
that D(A∗) is dense in c1=∞, we obtain that in the first Kolmogorov–Kendall–
Reuter example,

X
� = c1=∞.

Moreover, the domain of A∗
p is composed of f ∈ D(A∗) such that

∞∑
j=2

[ f ( j)− f (1)] = lim
i→∞ ai ( f (1)− f (i))

(with the series converging absolutely).

5.6.7 What does it mean?

Is this an elvish tongue or an indistinctive chatter? A glance at (5.44), espe-
cially if the series of A∗ f (1) is written as a limit of partial sums, convinces
us that A∗ tells the same story as A: A process starting at i = 1 escapes from
this point ‘immediately’ and each of the states i ≥ 2 has equal rights of being
visited. Of course, A∗ speaks in a dual language, as it describes infinitesimal
changes in expected values.

Notably, the fact that the sun-dual space involves sequences that are con-
vergent seems to point out (as in the previous example) to an additional point
at infinity, and the fact that A∗ f (∞) = limi→∞ ai ( f (1) − f (i)) indicates
that this point is instantaneous. However, c1=∞ is composed of f satisfying
f (1) = f (∞), and so this additional point is identified with 1. In other words,
this description warns us again that 1 is odd,2 as if its strange nature was not
clear from the form of A∗ f (1).
2 I am glad it does not warn us 1 is even.
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It is a matter of taste whether you find the language of (2.23) more appealing
than that of (5.44) or vice versa. In fact, I must reluctantly admit, none of
these descriptions even compares in depth to the detailed, revealing stochastic
construction of Section 2.6.5.

5.7 Sun-Duals of Nonminimal Processes: A Case Study

As we have seen in the previous sections, the perspectives of l1 and l∞,
although dual, are apparently dissimilar; the same facts are expressed in these
spaces differently. For instance (as in the second Kolmogorov–Kendall–Reuter
example), the same information on the fate of the process in the l1 setting may
be masterly hidden in the domain of the generator, and in the l∞ setting may
be displayed in the way the generator acts. Hence, by changing perspective, we
transform perturbations of domains into additive perturbations of generators.

In this and the following two sections we continue to study these differences,
by taking a closer look at nonminimal processes of Chapters 3 and 4. In par-
ticular, we will see that a reverse process to that described above is possible:
by changing perspective from l1 to l∞, we may transform additive perturba-
tions of generators into perturbations of their domains. More specifically, we
know from Chapter 3 that the fate of a postexplosion process is described by
additional terms perturbing the generator of the related minimal process. Now,
in l∞ all these generators may act in the same way, and differ only in their
domains.

Furthermore, the reader might remember my warning from Section 3.4: gen-
erators of postexplosion processes are not obtained by restricting the maximal
operator to suitable domains. Well, in l1 they are not but, as we will see soon,
in l∞ they are.

In this section, we focus on the sun-dual for the semigroup of Section 3.5.1
(describing pure birth process starting afresh after explosion). In the next sec-
tion, we will extend our result to a quite general class of explosive intensity
matrices. In Section 5.9, this result will be further extended to examples where
there is also entrance boundary.

5.7.1 The master operator

In this and in the following sections

Q = (qi, j
)

i, j≥1

is an explosive Kolmogorov matrix.
In the context of l1, the natural operator related to Q is that of multiplying

x ∈ l1, seen as a row-vector, by Q from the right (see Section 3.4), so that
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x �→ x · Q. Its counterpart in l∞ multiplies an f ∈ l∞, seen as a column-
vector, by Q from the left (see also Section 5.4.2). We will denote this map by
Q, so that3

Q f (i) =
∞∑
j=1

qi, j f ( j), i ∈ N (5.45)

whenever f is chosen so that supi≥1 |∑∞
j=1 qi, j f ( j)| < ∞; we recall that

each series involved here converges absolutely for all f ∈ l∞.
Although this may come as a surprise, because in this aspect l∞ setting

differs from the l1 setting, ei ∈ l∞ (the unit vector with all but i th coordinate
equal zero) in general belongs not to D(Q). For instance, for the Kolmogorov
matrix of Example 3.2.6,

Qei ( j) = j − i, j > i,

showing that none of the ei ’s belong to D(Q).On the other hand, the functional
Σ of Chapter 2, which, to recall, we now denote 1, lies in D(Q) and we have
Q1 = 0.

We aim to show that the domain of Q is too large for Q itself to be a gen-
erator: by restricting Q to suitable sub-domains, though, we obtain various
generators.

5.7.2 A warning

It is tempting to think that Q is the dual to Q of Section 3.4. But, as we shall
soon see in the pure birth process example, this is not the case.

5.7.3 Trial and error

To develop intuition, let us consider the case where Q is our old friend, the
pure birth process matrix of Example 3.2.2. Here,

Q f (i) = ai ( f (i + 1)− f (i)), i ≥ 1,

with domain composed of f such that (ai ( f (i + 1)− f (i)))i≥1 ∈ l∞. In
particular, ei ∈ D(Q), i ≥ 1 which considerably simplifies analysis of Q.

For λ > 0 and g ∈ l∞, the resolvent equation for the operator Q takes the
form

(λ+ ai ) f (i)− ai f (i + 1) = g(i), i ≥ 1. (5.46)

3 In this notation, Q0 of Section 5.4.2 is the part in c0 of Q just defined.
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This leads to the following recursion for the values of f :

f (i + 1) = λ+ ai

ai
f (i)− 1

ai
g(i), i ≥ 1,

with solution (see Exercise 3.3.9, cf. Example 5.3.5)

f (i) =
⎛⎝i−1∏

j=1

λ+ a j

a j

⎞⎠ f (1)+
i−1∑
j=1

⎛⎝ i−1∏
k= j+1

λ+ ak

ak

⎞⎠ −g( j)

a j

= 1

πi−1
f (1)− 1

πi−1

i−1∑
j=1

π j

a j
g( j)

= 1

πi−1
f (1)− 1

πi−1

i−1∑
j=1

π j−1

λ+ a j
g( j), i ≥ 1, (5.47)

where πi = ∏i
j=1

a j
λ+a j

and π0 = 1. Since the series
∑∞

j=1
π j−1
λ+a j

converges
(see (3.34)) and (g(i))i≥1 is bounded, ( f (i))i≥1 so defined is bounded regard-
less of the choice of f (1), which may be treated as a parameter. In fact,
( f (i))i≥1 is a member of c, because

lim
i→∞ f (i) = 1

π∞
f (1)− 1

π∞

∞∑
j=1

π j−1

λ+ a j
g( j). (5.48)

Since (5.46) shows that boundedness of ( f (i))i≥1 implies boundedness of
(ai ( f (i + 1)− f (i)))i≥1 , it follows that the resolvent equation for Q has
infinitely many solutions. Thus, as we heralded before, the domain of Q is
too large for Q to be a generator.

Let us, however, see what happens if Q is restricted to functions f with
limi→∞ f (i) = 0. This condition forces f (1) =∑∞

j=1
π j−1
λ+a j

g( j) and then, by
(5.47),

f (i) = 1

πi−1

∞∑
j=i

π j−1

λ+ a j
g( j), i ≥ 1. (5.49)

This means in particular that the resolvent equation for Q restricted to D(Q)∩
c0 has precisely one solution.

Similarly if, instead of limi→∞ f (i) = 0 we demand that limi→∞ f (i) =
f (1), formula (5.48) forces f (1) = 1

1−π∞
∑∞

j=1
π j−1
λ+a j

g( j) and then (5.47)
results in

f (i) = 1

πi−1

∞∑
j=i

π j−1

λ+ a j
g( j)+ π∞

1 − π∞

∞∑
j=1

π j−1

λ+ a j
g( j), i ≥ 1, (5.50)
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so that again the resolvent equation for Q restricted to the new domain has
precisely one solution (as required for a generator).

These calculations probably would not tell us much, though, were it not
for the following nice surprise: by (5.14), the map g �→ f given by (5.49)
coincides with the dual to the resolvent Rλ of the minimal pure birth chain of
Section 3.3.2 (see (3.24)):(

λ− Q|D(Q)∩c0

)−1 = R∗
λ. (5.51)

This reveals, by 1.5.5, that Q restricted to D(Q)∩c0 is the dual to the generator
G of the minimal pure birth process

G∗ = Q|D(Q)∩c0 . (5.52)

In particular, combining this with the fact established in Section 3.4 that in the
pure birth process Q = G, we see that Q is not the dual to Q. Also, we see
again that the minimality of the chain is reflected in the fact that the sun-dual
space is c0.

Similarly (see Exercise 5.7.6), the map g �→ f given by (5.50) is the dual
of the resolvent of the pure birth process which after explosion starts all over
again at i = 1 (see Section 3.3.5 and formulae (3.30) and (3.32) there). Thus, Q
with domain restricted to f ∈ D(Q) such that f (1) = limi→∞ f (i) coincides
with the dual of the generator G1 of Section 3.3.6 (see in particular equation
(3.36) there).

5.7.4 Light begins to shine

The discovery made at the end of the previous section may be generalized to
any operator H of the form (3.55), that is, to the generator of the pure birth
chain which after explosion starts all over again at i with probability equal to
the i th coordinate of a u �= 0 such that Σu ≤ 1; the case u = 0 was covered
in Section 5.7.3. As a preparation for the generalization we have in mind, we
introduce the following notations. First of all, we see the u ∈ l1 as a functional
on l∞, thus a member of (l∞)∗, defined by u( f ) = f (u), f ∈ l∞. Also, we
define

cH = { f ∈ c; u( f ) = �( f )}
where �( f ) := limi→∞ f (i). Since u and � are bounded linear functionals on
c, cH is a closed subspace of c, hence a Banach space itself.

We will show that Q restricted to D(Q) ∩ cH is the dual to H :

H∗ = Q|D(Q)∩cH . (5.53)
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Proof
Step 1. By (3.58) and Exercise 1.5.8, the resolvent of H∗ is given by(

λ− H∗)−1
f = R∗

λ f + f (Rλu)

1 − Σλ(u)
Σλ, f ∈ l∞, (5.54)

where Σλ ∈ (l1)∗ is the functional given by

Σλ(x) = h(Rλx) = Σx − ΣλRλx . (5.55)

Here, Rλ is the resolvent of the minimal pure birth chain, and R∗
λ is its dual,

which we know is given by (5.51).
Comparing (5.55) and (3.75) we see that Σλ is not only notationally iden-

tical with our old friend, which played so important a role in Section 3.6.
Furthermore, in Section 3.6.9 we have shown that in the pure birth process
example we are analyzing again now, Σλ may be identified with the sequence(
π∞
πi−1

)
i≥1

∈ l∞.
Step 2. The previous step reveals that Σλ may be regarded as a member of

c with �(Σλ) = limi→∞ π∞
πi−1

= 1. Since R∗
λ maps l∞ into c0, the image of

(λ− H∗)−1 is, by (5.54), contained in c. Moreover,

�(
(
λ− H∗)−1

f ) = f (Rλu)

1 − Σλ(u)
,

because, as we have already seen, �(Σλ) = 1. At the same time, equality
u(R∗

λ f ) = R∗
λ f (u) = f (Rλu) implies

u(
(
λ− H∗)−1

f ) = u(R∗
λ f )+ f (Rλu)

1 − Σλ(u)
u(Σλ)

= f (Rλu)

[
1 + Σλ(u)

1 − Σλ(u)

]
= f (Rλu)

1 − Σλ(u)
.

This shows that the domain of H∗ is contained in cH .

Next, since ai

(
1
πi

− 1
πi−1

)
= λ

πi−1
, i ≥ 1, we have Σλ ∈ D(Q)with QΣλ =

λΣλ. It follows, by (5.54), that D(H∗) ⊂ D(Q) ∩ cH and

(λ− Q)
(
λ− H∗)−1

f = (λ− Q)R∗
λ f + f (Rλu)

1 − Σλ(u)
(λ− Q)Σλ

= (λ− G∗)R∗
λ f = f.

Thus H∗ and Q coincide on D(H∗).
Step 3. We are left with showing that D(Q) ∩ cH ⊂ D(H∗). Let f belong

to D(Q) ∩ cH . Then, f := f − �( f )Σλ ∈ D(G∗) = D(Q) ∩ c0, and in
view of (5.52), Q f = G∗ f + �( f )λΣλ. Therefore, (λ − Q) f = (λ − G∗) f
and
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(
λ− H∗)−1

(λ− Q) f = (λ− H∗)−1
(λ− G∗) f

= R∗
λ(λ− G∗) f + (λ− G∗) f (Rλu)

1 − Σλ(u)
Σλ.

Also,

(λ− G∗) f (Rλu) = R∗
λ(λ− G∗) f (u) = f (u) = f (u)− �( f )Σλ(u)

= �( f )(1 − Σλ(u))

(recall that f (u) = u( f ) = �( f ) by assumption on f ), implying(
λ− H∗)−1

(λ− Q) f = f + �( f )Σλ = f.

This shows that each f ∈ D(Q) ∩ cH is a member of D(H∗), completing the
proof.

Formula (5.53) is a stepping-stone for the following theorem, the main goal
of this section.

5.7.5 Theorem

Let H be the generator defined by (3.55). Then the sun-dual space for H is cH

and the generator of the sun-dual semigroup is the part of Q in cH .

Proof By (5.53) and the sun-dual theorem 1.5.6, it suffices to show that
D(Q)∩ cH is dense in cH . Let f ∈ cH be fixed. We will find fn ∈ D(Q)∩ cH

such that limn→∞ fn = f.
Since 1 and ei ’s are members of D(Q), so are 1n := 1 −∑n

i=1 ei , n ≥ 1.
It follows that also gn := ∑n

i=1 f (i)ei + f (∞)1n, n ≥ 1 belong to D(Q).
Let j ∈ N be such that the j th coordinate of u is nonzero, ale let υ j be this
nonzero coordinate. Defining

fn := gn + u( f )− u(gn)

υ j
e j , n ≥ 1,

we see that �( fn) = �(gn) = �( f ) and u( fn) = u(gn) + u( f )−u(gn)
υ j

υ j =
u( f ). Therefore, fn ∈ cH because f ∈ cH . Moreover, since limn→∞ gn =
f , limn→∞ u(gn) = limn→∞ u( f ) and it follows that limn→∞ fn = f , as
desired.

This theorem is a pleasing example of how different are the languages of l1

and l∞. As already mentioned, in l1 to describe the fact that after explosion
the process starts again at a random point with probability being equal to the
i th coordinate of a vector u, we add an additional term, namely, h(x)u, to the
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minimal generator (see Section 3.5.5). Hence, the generator is the sum of the
minimal semigroup generator G, responsible for the walk in the interior, and
of this additional term, describing what happens after explosion, that is, on the
boundary.

As exemplified by Theorem 5.7.5, in l∞ all generators related to one inten-
sity matrix, are restrictions of the single, large, maximal operator Q. This
operator is devised to describe the walk in the interior. Moreover, the post
explosion fate of the process is expressed in the shape of the sun-dual space
X

�. First of all, the information on existence of a boundary point is hidden in
the fact that X

� ⊂ c; for f in X
�, f (∞) is well defined and so ∞ may be

seen as an additional point of the state-space. Also, the space X
� is shaped so

that if, for example, u = ei , values of f ∈ X
� are the same at i and at ∞.

This indicates that, from the viewpoint of our process, these two elements of
the state-space should be identified, or, put otherwise, for the process, being at
∞ is the same as being at i . (This is of course just a figure of speech, because it
is clear that, conversely, being at i is not the same as being at ∞; ∞ is instan-
taneous but i is not.) We are thus led to believe that right after the process
reaches ∞ it jumps to i . In the general case, ∞ is ‘identified’ with the distribu-
tion u and we analogously ‘see’ that after reaching ∞ the process immediately
is distributed according to u.

Again, this is simply a different language. Perhaps mysterious at the first
encounter. Perhaps more beautiful.

5.7.6 Exercise

For (ηi )i≥1 ∈ l1 and g ∈ l∞, let (ξi )i≥1 ∈ l1 and f ∈ l∞ be given by (3.30)
and (3.32), and (5.50), respectively. Then f (ξi )i≥1 = g (ηi )i≥1 .

5.8 Can We Generalize?

Here, we will generalize the findings of the previous section to a class of
explosive intensity matrices: for this class, we want to find the dual for the
operator defined by (3.92). Since the latter formula describes chains that may
have several, different ways of exploding, our analysis needs to involve several
‘infinities.’ Each ‘infinity’ corresponds to one way an explosion may come
about, that is, to one boundary point. Similarly as in the previous section, we
will prove that the dual to H of (3.92) is the master operator Q of Section 5.7.1
restricted to the domain of f ∈ l∞ which (a) have limits at all those infinities
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and are such that (b) the i th of these limits coincides with the value of the cor-
responding functional ui . We start by introducing the notion of convergence to
boundary points. The main result of this section is formula (5.56).

5.8.1 Topology in N ∪B
In the extended state-space N ∪B of Section 4.2.2 there is a natural topology.
Although elements of N are naturally separated from other elements of N,
and elements of B are separated from other elements of B, elements of N

may converge to elements of B. To recall, − j ∈ B is just an alias for the
minimal active functional f j ∈ B. In Section 4.1, we have discovered that
this functional corresponds to a sojourn set, say, A, for the jump chain:

f j = sA,

or rather to a class of sojourn sets for which the above formula holds; our proof
of 4.1.11 reveals that for A one can take any of the sets

A(δ) = {i ∈ N; f j (i) > δ}
where δ is a number between 0 and 1. It is these sets that form natural
neighborhoods of − j . Thus, it seems reasonable to say that a sequence of
natural numbers (in)n≥1 converges to − j iff for any δ ∈ (0, 1) all but finitely
many elements of (in)n≥1 belong to A(δ). Equivalently, limn→∞ in = − j iff
limn→∞ f j (in) = 1.

The down-side of this definition is that there are sojourn sets such that
sA(i) = 1 for a number of i (see, e.g., 3.6.18). Hence, in terms of such a def-
inition, a constant sequence in = i, n ≥ 1 would converge to − j for a certain
j . To avoid such situations, we will say that limn→∞ in = − j iff

lim
n→∞ in = ∞ and lim

n→∞ f j (in) = 1.

5.8.2 Definition of cH

An f ∈ l∞ will be said to have the limit at the boundary point − j iff for all
sequences (in)n≥1 converging to − j the limit limn→∞ f (in) exists, is finite,
and does not depend on the choice of the sequence (in)n≥1. This limit is then
denoted � j ( f ). In other words,

� j ( f ) = lim
in→− j

f (in).

The definition of the operator H defined in (3.92) involves minimal func-
tionals, or sojourn sets, f i , i = 1, . . . , k , summing to Σmax, and nonnegative
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ui , i = 1, . . . , k , members of l1 such that Σui ≤ 1. The related space
cH ⊂ l∞, is defined as

cH := { f ∈ l∞, � j ( f ) = u j ( f ), j = 1, . . . , k }.
In other words, members of cH have limits at all boundary points, that is,
� j ( f )’s are well defined, and relations prescribed above hold. It is clear that
cH is a Banach space (with supremum norm) and that � j ’s are continuous
functionals on cH .

5.8.3 The goal

We aim at proving that, as in (5.53),

H∗ = Q|D(Q)∩cH . (5.56)

This relation will be established in 5.8.7; as a preparation, we need the result
discussed in the next section.

5.8.4 A borrowed result and its consequences

Let (in)n≥1 be a sequence converging to a boundary point − j ∈ B. By def-
inition, we have then limn→∞ f j (in) = 1. We will need a stronger result
(see [42], p. 541), saying that we have also

lim
n→∞ f j

λ (in) = 1

for all λ > 0 (where f j
λ is the notation of Section 3.6.7); in terms of � j this

says that � j ( f j
λ ) = 1. Since, by (3.81), 1 = Σ ≥ (Σmax)λ = Σλ =∑k

j=1 f j
λ

and all summands are nonnegative, it follows that

lim
n→∞ f k

λ (in) = 0, k ∈ {1, . . . , k } \ { j}, (5.57)

that is, that �k( f j
λ ) = δ j,k , and this in turn shows that

lim
n→∞ Σλ(in) = 1.

In view of Σ(in) = 1, relation (3.76) proves now that limn→∞ R∗
λΣ(in) = 0.

Therefore, limn→∞ R∗
λ f (in) = 0 for all f satisfying 0 ≤ f ≤ Σ, and thus for

all nonnegative f . Finally, we obtain

lim
n→∞ R∗

λ f (in) = 0, f ∈ l∞ (5.58)
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for any (in)n≥1 converging to any boundary point. In other words,

� j (R
∗
λ f ) = 0, f ∈ l∞, j = 1, . . . , k . (5.59)

5.8.5 Remark

Formula (5.58) does not say that limn→∞ R∗
λ f (in) = 0 whenever

limn→∞ in = ∞. For instance, there can be sequences (in)n≥1 converging
to infinity which approach no point of the exit boundary (i.e., sequences that
are related to passive functionals): if the example of two infinite ladders (see
Sections 3.5.7 and 3.5.8) is modified so that a2i = 1 for all i ∈ N, then arguing
as in (5.47) we find that on the ‘even ladder’ R∗

λg must be of the form

R∗
λg(2i) = (λ+ 1)i−1

⎛⎝R∗
λg(2)−

i−1∑
j=1

g(2 j)

(λ+ 1) j

⎞⎠ , i ∈ N.

On the other hand, since Q restricted to l1
e is bounded and generates a Markov

semigroup there, the solution to the resolvent equation exists for g ∈ l1
e , and is

uniquely determined. It follows that for this solution R∗
λg(2) = ∑∞

j=1
g(2 j)
(λ+1) j ,

which in turn implies

R∗
λg(2i) = (λ+ 1)i−1

∞∑
j=i

g(2 j)

(λ+ 1) j
.

In particular, for g = (0, 1, 0, 1, . . . ),

λR∗
λg(2i) = 1, i ≥ 1,

and thus limi→∞ R∗
λg(2i) is not 0. (More generally, it may be proved that

limi→∞ λR∗
λg(2i) = limn→∞ g(2i), provided the latter limit exists.)

We are now ready to establish the first part of (5.56).

5.8.6 Proposition

Let H be given by (3.92). Then D(H∗) ⊂ cH .

Proof By 1.5.5, any element f of D(H∗) is of the form f = [(λ− H)−1]∗g
for some g ∈ l∞, where (λ− H)−1 is given by (3.99). The latter formula
involves the k × k matrix M∞ = (mi, j

)
i, j=1,...,k defined by

M∞ :=
∞∑

n=0

Mn
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where M = (h j (Rλui )
)

i, j=1,...,k (vectors u change from row to row, function-
als h change from column to column). More precisely, in terms of M∞, (3.99)
may be rewritten as

(λ− H)−1 y = Rλy +
k∑

j=1

⎛⎝ k∑
i=1

mi, j hi (Rλy)

⎞⎠ Rλu j , y ∈ l1.

Therefore,

f (y) = g((λ− H)−1 y) = g(Rλy)+
k∑

j=1

k∑
i=1

mi, j hi (Rλy)g(Rλu j ).

Since (see (3.91)), hi (Rλy) = f i
λ(y), this means that

f = R∗
λg +

k∑
i=1

⎛⎝ k∑
j=1

mi, j g(Rλu j )

⎞⎠ f i
λ. (5.60)

All k + 1 vectors in the linear combination on the right-hand side belong,
by (5.57) and (5.59), to the intersection of the domains of the functionals
�1, . . . , �k , and we have

�k( f ) =
k∑

j=1

mk, j g(Rλu j ), k = 1, . . . , k .

On the other hand, using (3.91) again, we see that

uk( f ) = g(Rλuk)+
k∑

j=1

⎛⎝ k∑
i=1

hi (Rλuk)mi, j

⎞⎠ g(Rλu j ).

Noting that M M∞ = M∞− I , we realize that the sum in parentheses is mk, j −
δk, j , and so the entire expression reduces to

∑k
j=1 mk, j g(Rλuk). This shows

that uk( f ) = �k( f ) for all f ∈ D(H∗) and k ∈ {1, . . . , k }, that is, that D(H∗)
is contained in cH .

Whereas the previous proposition is valid for all explosive matrices, the
remaining results require some extra assumptions. Since we are not striving
for generality but rather want our theorem to illustrate the idea well, in what
follows we assume that

G∗ = Q|D(Q)∩c0, (5.61)

and that (see Remark 5.8.5), for an f ∈ l∞,

conditions �i ( f ) = 0, i = 1, . . . , k imply f ∈ c0. (5.62)



5.8 Can We Generalize? 239

5.8.7 Proposition

Suppose (5.61) holds. Then, Q is an extension of H∗: D(H∗) is a subset of
D(Q), and H∗ coincides with Q on D(H∗).

Proof For an f ∈ D(H∗), let us consider representation (5.60) and take
a closer look at the summands other than R∗

λg. From Section 3.6.8 we know
that B∗

λ f i
λ = f i

λ, i = 1, . . . , k . Recalling the definition of Bλ (see equation
(3.4)) we easily see that

B∗
λ f ( j) = 1

λ+ q j

∑
k �= j

q j,k f (k), f ∈ l∞.

Therefore, the result from Section 3.6.8 just recalled says that

(λ+ q j ) f i
λ( j) =

∑
k �= j

q j,k f i
λ(k), j ∈ N.

It follows that

f i
λ ∈ D(Q) and Q f i

λ = λ f i
λ, i = 1, . . . , k . (5.63)

Hence, by (5.61), the right-hand side of (5.60) belongs to D(Q), and

(λ− Q) f = (λ− G∗)R∗
λg = g.

Since, on the other hand, (λ− H∗) f also equals g, we are done.

5.8.8 Proposition

Suppose conditions (5.61) and (5.62) are satisfied. Then D(Q)∩cH ⊂ D(H∗).

Proof Suppose f belongs to D(Q) ∩ cH , and fix λ > 0. Our task will be
completed if we succeed in proving that (λ− H∗)−1 (λ− Q) f = f.

Let f = f −∑k
k=1 �k( f ) f k

λ . By (5.57), �k( f ) = 0, k = 1, . . . , k . Hence,
by assumption (5.62), f belongs to c0. Therefore, because of (5.63) and (5.61),
(λ−Q) f = (λ−Q) f = (λ−G∗) f , and thus (λ− H∗)−1 (λ−Q) f is the right-
hand side of (5.60) with g replaced by (λ − G∗) f . Since R∗

λ(λ − G∗) f = f
and (λ− G∗) f (Rλu j ) = f (u j ), we obtain

(
λ− H∗)−1

(λ− Q) f = f +
k∑

i=1

⎛⎝ k∑
j=1

mi, j f (u j )

⎞⎠ f i
λ.
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Thus, it suffices to show that the expression in parentheses is �i ( f ) and, by
f (u j ) = f (u j )−∑k

k=1 �k( f ) f k
λ (u j ), our task reduces to showing that

k∑
j=1

mi, j [ f (u j )−
k∑

k=1

�k( f ) f k
λ (u j )] = �i ( f ), i = 1, . . . , k . (5.64)

However, recalling (3.91) and noting that M∞M = M − I (consult Section
5.8.6), we see that

k∑
j=1

mi, j f k
λ (u j ) =

k∑
j=1

mi, j hk(Rλu j ) = mi,k − δi,k .

It follows that the left-hand side of (5.64) equals

k∑
j=1

mi, j f (u j )−
k∑

k=1

�k( f )[mi,k − δi,k].

This further reduces to �i ( f ), because f belongs to cH .

Combining Propositions 5.8.6, 5.8.7 and 5.8.8 we conclude that under
assumptions (5.61) and (5.62) formula (5.56), the main subject of this sec-
tion, holds. In this formula the fact that there are several ways the chain may
explode, that is, there are several boundary exit points, is expressed in exis-
tence of limits �i ( f ), which are limits ‘through sojourn sets’ corresponding to
these boundary points. Moreover, the fact that a boundary point i distributes
paths of the process according to the distribution ui is reflected in the equality
ui ( f ) = �i ( f ), f ∈ D(H∗). Again, we note that the same information on the
fate of the process after explosion is expressed in one way in l1 and in a very
different way in l∞.

5.9 Calling on P. Lévy Again

Before completing the book, we come back to the examples involving entrance
laws. As already mentioned, it is intriguing that by introducing such laws one
changes the domain of the ‘master operator’ in the l1 setting (as seen in Sec-
tions 4.3 and 4.4) as well as in l∞ setting (as will be seen now). Put otherwise,
we will see again that duals of generators of postexplosion Markov chains are
restrictions of the operator Q of Section 5.7.1 to very characteristic domains.
It is in the shape of these domains, in the shape of the sun-dual space, that the
information on postexplosion history is hidden.
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5.9.1 The dual to P. Lévy’s flash generator

Let us calculate the dual to the operator A of Section 4.4.1 (equation (4.39));
this operator includes, as a special case (for p = 1), the generator of P. Lévy’s
flash.

An f ∈ l∞(Z) belongs to D(A∗) if there is a constant C = C( f ) such that

| f (Ax)| =
∣∣∣∣∣ lim
n→∞

n∑
i=−n

f (i)(ai−1ξi−1 − aiξi )+ (1 − p)l+(x) f (u)

∣∣∣∣∣
≤ C( f )‖x‖ (5.65)

for all x = (ξi )i∈Z ∈ D(A). The sum featuring here may be rewritten as

n∑
i=−n

ai ( f (i + 1)− f (i))ξi − anξn f (n + 1)+ f (−n)a−n−1ξ−n−1.

Moreover, ei ∈ D(A) and l+(ei ) = 0 for all i ∈ Z, and for x = ei the sum
above reduces to ai ( f (i + 1) − f (i)) provided n is sufficiently large. Hence,
a necessary condition for (5.65) is

sup
i∈Z

ai | f (i + 1)− f (i)| < ∞. (5.66)

It follows that for f ∈ D(A∗) the series
∑

i∈Z
| f (i + 1) − f (i)| converges

(recall assumption (4.23)) and, thus, the limits f (∞) := limn→∞ f (n) and
f (−∞) := limn→∞ f (−n) exist (and are finite).

However, (5.66) alone does not yet guarantee that f ∈ D(A∗); we claim
that (5.65) forces also

f (∞) = p f (−∞)+ (1 − p) f (u), (5.67)

and that (5.66) and (5.67) combined imply f ∈ D(A∗). For, if condition (5.66)
is met, f (Ax) equals (see the displayed formula following (5.65))∑
i∈Z

ai ( f (i + 1)− f (i))ξi − l+(x) f (∞)+ l−(x) f (−∞)+ (1 − p)l+(x) f (u)

or, by the boundary condition,∑
i∈Z

ai ( f (i + 1)− f (i))ξi + l+(x)[p f (−∞)+ (1 − p) f (u)− f (∞)].

Thus, (5.65) implies (via (5.66)) that there is a C ′ = C ′( f ) such that

|l+(x)[p f (−∞)+ (1 − p) f (u)− f (∞)]| ≤ C ′( f )‖x‖, x ∈ D(A).
Taking

xn = (. . . , pa−1
−n−1, pa−1−n, 0, . . . , 0, a−1

n , a−1
n+1, . . . )



242 The Dual Perspective

(nonzero elements end at the (−n)th coordinate and start again at the nth coor-
dinate), we see that xn ∈ D(Q) (for the Q defined in 4.3.1), l+(xn) = 1 and
l−(xn) = p, implying xn ∈ D(A) for all n ≥ 1. Since limn→∞ ‖xn‖ =
0, the last inequality is impossible unless the expression in brackets is
zero. Conversely, if conditions (5.66) and (5.67) are satisfied, f (Ax) equals∑

i∈Z
ai ( f (i + 1)− f (i))ξi and thus | f (Ax)| does not exceed

‖x‖ sup
i∈Z

ai | f (i + 1)− f (i)|.

This means that f ∈ D(A∗).
To summarize, f ∈ l∞(Z) is a member of D(A∗) iff conditions (5.66)

and (5.67) are satisfied and then A∗ f (i) = ai ( f (i + 1) − f (i)), i ∈ Z.

Put otherwise, A∗ is the restriction of the operator Q to the domain where
(5.67) holds; in our case, the operator Q of Section 5.7.1 is given by Q f (i) =
ai ( f (i + 1)− f (i)), i ∈ Z on the domain composed of f satisfying (5.66).

5.9.2 Sun-dual space for P. Lévy’s flash

I claim also that the sun-dual space here is identical to cu,p ⊂ l∞(Z) composed
of f such that f (∞) and f (−∞) exist, and relation (5.67) holds. To prove
this, it suffices, given f ∈ cu,p, to find a sequence ( fn)n≥1 of elements of
D(A∗) ⊂ cu,p converging to f . To this end, we note that ei ’s are members of
D(Q) and that so are

1n := (. . . , 0, 0, 0, 1, 1, 1, . . . ), n ∈ Z

(the first nonzero element is on the (n + 1)st coordinate). Therefore, also gn

defined by

gn =
n∑

i=−n

f (i)ei + f (∞)1n + f (−∞)(1 − 1−n−1), n ≥ 1

belongs to D(Q). Let j ∈ Z be such that the j th coordinate of u, denoted υ j ,
is nonzero. Then

fn = gn + u( f )− u(gn)

υ j
e j

belongs to D(Q), and

fn(∞) = gn(∞) = f (∞),

fn(−∞) = gn(−∞) = f (−∞),

u( fn) = u(gn)+ u( f )− u(gn)

υ j
υ j = u( f ),
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proving that fn ∈ D(A∗), because f belongs to cu,p. Since limn→∞ gn =
f , we have also limn→∞ u(gn) = u( f ), and this implies limn→∞ fn = f,
completing the proof.

5.9.3 The dual to the generator of Section 4.4.7

Arguing as in the previous section, one can find the dual to the genera-
tor A of Section 4.4.7, where two entrance laws were active. The analysis
in this case involves four infinities: −∞ and ∞ on Z, and −∞′ and ∞′
on Z

′. Since the calculations are analogous, we will leave them as an exer-
cise to the reader: the main result is that the dual to A is Q restricted to
the domain where limits at infinities exist and satisfy the following two
conditions

f (∞) = p f (−∞)+ q f (u)+ (1 − p − q) f (−∞′),

f (∞′) = p′ f (−∞′)+ q ′ f (u′)+ (1 − p′ − q ′) f (−∞).

It is worth noting here that, in comparison to (4.43), the matrix of coefficients
was transposed (as expected) and that new terms involving f (u) and f (u′) are
now present. But, most importantly, we see again that the shape of the domain
of A∗ contains the information on the postexplosion process: for example, the
first part of the formula says that a particle starting at ∞ will after infinitesimal
time be at −∞ with probability p, at −∞′ with probability 1 − p − q, or will
be distributed according to the density u with probability q; interpretation of
the second part is analogous.

5.10 Notes

According to Reuter and Riley [75], Sections 5.4.1, 5.4.2, and 5.4.5 are due
to W. B. Jurkat who, however, published them merely in an internal research
report and did not provide proofs. In the first of these sections I follow closely
the exposition of [75], but the argument presented in 5.4.5 slightly differs from
the original. Section 5.4.7 generalizes Theorem 8 in [75] (by removing the
assumption that Q is nonexplosive); the proof that A is a Feller generator goes
along more or less standard lines (see, e.g., [39]).

The fact that B A of Section 5.5.6 is a Feller generator is a simple case of
the multiplicative perturbation theorem due to Dorroh ( [31,37]). Remarkably,
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assumption (5.34) is heavily used in 5.5.6. Similarly, in the abstract setting, an
analogue of condition (5.34) is to much extend indispensable; see discussion
in [10, 11, 15, 26, 27].

To the best of my knowledge, Section 5.6 is new,4 and so are the sections
following it.

4 An old joke tells about a review of a certain paper that allegedly read, ‘The paper contains new
and interesting results. New results are not interesting; interesting results are not new.’



Solutions and Hints to Selected Exercises

Hint to Exercise 1.2.13 Note that et Q = e−t et P and expand et P as in (1.2).

Solution to Exercise 1.5.8 Since (A∗ f )(x) = f (Ax) = f0(x) f (x0), we see
that A∗ f = f (x0) f0.

Solution to Exercise 1.5.9 If, for a sequence ( fn)n≥1 of members of D(A∗),
there are functionals f and g such that for all x ∈ X, limn→∞ fn(x) =
f (x) and limn→∞(A∗ fn)(x) = g(x), then f (Ax) = limn→∞ fn(Ax) =
limn→∞(A∗ fn)(x) = g(x).

Hint to Exercise 2.4.17 For nonnegative x = (ξi )i≥1 ∈ D(A), ΣAx = (α −
1)ξ1 ≤ 0.

Solution to Exercise 2.4.18 For (ξi )i≥1 in D(A),

ΣA (ξi )i≥1 = η1 + lim
n→∞

n∑
i=2

ηi

= 9ξ2 − 6ξ1 + lim
n→∞

(
n+1∑
i=3

3iξi − 3
n∑

i=2

3iξi + 2
n−1∑
i=1

3iξi

)
= lim

n→∞ 3n(3ξn+1 − 2ξn).

However, condition (2.37) implies limn→∞ 3n(3ξn+1 − ξn) = 0. Thus, if
(ξi )i≥1 is nonnegative, ΣA (ξi )i≥1 = − limn→∞ 3nξn ≤ 0.

Hint to Exercise 2.7.9 Recall that p1,i (0) = 0, i ≥ 2. Note also that 0 ≤
λ2π2 ≤ λ2

(λ+ai )(λ+1)
1

λ+ai+1
.

Hint to Exercise 3.1.9 Proceeed by induction: Write A − B = An−1(A − B)+
(An−1 − Bn−1)B.
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Solution to Exercise 3.2.8 We have Bλe1 = 0 and

Bλei = ai

λ+ 2ai
e1 + ai

λ+ 2ai
ei+1, i ≥ 2.

Thus, by induction,

Bn
λei = πi+n

πi
(e1 + ei+n), i ≥ 2, n ≥ 1,

where πi = ∏i−1
j=1

a j
λ+2a j

. Since limn→∞ an
λ+2an

= 1
2 , we clearly have

limn→∞ πi+n = 0, and so limn→∞ Bn
λei = 0.

Solution to Exercise 3.3.12 By (3.34),

λ

∞∑
i=1

|ξi | = λ

∞∑
i=1

∣∣∣∣∣∣ πi−1

λ+ ai

i∑
j=1

η j

π j−1

∣∣∣∣∣∣ ≤
∞∑
j=1

|η j |
π j−1

λ

∞∑
i= j

πi−1

λ+ ai

=
∞∑
j=1

|η j |
π j−1

(π j−1 − π∞) =
∞∑
j=1

|η j |
(

1 − π∞
π j−1

)

≤ (1 − π∞)
∞∑
j=1

|η j |.

Moreover, for (ηi )i≥1 = e1, all inequalities here turn out to be equalities.

Hint to Exercise 3.5.11 Let (rn)n≥1 be a sequence of elements of [0, 1) such
that limn→∞ rn = 1. By 3.1.4 and the Sova–Kurtz version of the approxima-
tion theorem (Section 1.4.3), the generator, say, H , of the minimal semigroup
for the birth and death chain is the extended limit of the operators An defined
on the common domain D(An) = {(ξi )i≥1 ;∑i≥1(ai + bi )|ξi | < ∞} by the
formulae

An (ξi )i≥1 = − (aiξi )i≥1 − (biξi )i≥1 + rn (ai−1ξi−1)i≥1 + rn (bi+1ξi+1)i≥1 ,

where b1 is modified to be equal to 0 (note that b1 in fact does not feature in the
intensity matrix of the chain). However, since (bn)n≥1 is bounded, D(An) =
{(ξi )i≥1 ;∑i≥1 ai |ξi | < ∞}, and sequences xn, n ≥ 1 (with xn = (ξn,i

)
i≥1 ∈

D(An)) and An xn, n ≥ 1 converge simultaneously iff so do xn, n ≥ 1 and(−aiξn,i
)

i≥1 + rn
(
ai−1ξn,i−1

)
i≥1 , n ≥ 1.

By 3.3.2 and the Sova–Kurtz version of the approximation theorem, it follows
that the domain of H coincides with D(G) defined in (3.25) and that

H (ξi )i≥1 = G (ξi )i≥1 + (bi+1ξi+1 − biξi )i≥1 .



Solutions and Hints 247

Solution to Exercise 3.6.19 The functional fλ is the largest of g satisfying
B∗
λg = g and 0 ≤ g ≤ f. In particular, 0 ≤ fλ ≤ f. On the other hand, ( fλ)�

is the smallest of g satisfying fλ ≤ g ≤ Σ and �∗g = g. Since, for f ∈ B,
�∗ f = f , f is a member of the latter set and thus ( fλ)� ≤ f.

Solution to Exercise 3.6.21 By (3.84), f (λRλx) = f (x), for all x ∈ l1, λ > 0.

On the other hand, by the Hille approximation, S(t)x = limn→∞
(

n
t R n

t

)n
x .

Since f is continuous,

f (S(t)x) = lim
n→∞ f

((n

t
R n

t

)n
x
)

= f (x).

Solution to Exercise 3.6.22 We have

Bλe1 = pλe2 + p′
λe3 and Bλe2 = qλe1 + q ′

λe4.

It follows that B2
λe1 = pλqλe1 + p′

λBλe3 + pλq ′
λe4, and so

Bn+2
λ e1 = pλqλBn

λe1 + p′
λBn+1

λ e3 + pλq ′
λBn

λe4.

Thus, Σλ(1) = pλqλΣλ(1)+ p′
λΣλ(3)+ pλq ′

λΣλ(4), or

Σλ(1) = p′
λ

1 − pλqλ
Σλ(3)+ pλq ′

λ

1 − pλqλ
Σλ(4) = p′

λ

1 − pλqλ
Σλ(3),

and, similarly,

Σλ(2) = qλΣλ(1)+ q ′
λΣλ(4) = qλΣλ(1) = p′

λqλ
1 − pλqλ

Σλ(3).

Solution to Exercise 3.8.5 Suppose f ∩ g �= 0. Then, by 3.8.2, there are α, β ∈
(0, 1] such that f ∩ g = α f = βg. If α ≥ β (the other case is analogous),
g = α

β
f ≥ f . Thus, f ∩ g = f , and in particular, f ∩ g is extremal. Since g

is minimal, we must have g = f ∩ g = f.

Solution to Exercise 4.2.6 An x ∈ l1(I) is in D(Gstop) iff Lx is in D(G); since
this places no restrictions on the coordinates ξ−k , . . . , ξ−1 of x and since D(G)
is dense in l1(N), D(Gstop) is seen to be dense in l1(I). Next, for nonnegative
x ∈ D(Gstop),

ΣGstopx =
k∑

i=1

hi (Lx)+ ΣGLx = −
k∑

i=1

f i (GLx)+ ΣGLx

= −ΣmaxGLx + ΣGLx = 0
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(for the last step, see Theorem 3.7.1 (d)). Hence, it suffices to show that for
each nonnegative y ∈ l1(I), there is precisely one x ∈ D(Gstop) solving the
resolvent equation

λx − Gstopx = y,

and this x is nonnegative. Applying L to both sides of this equation and not-
ing that Le−i = 0 for i = 1, . . . , k , we see that Lx , that is, the part of x
lying in l1(N), is determined by Lx − GLx = Ly. Also, noting that the vec-
tors e−k , . . . , e−1 are linearly independent and independent of any x ∈ l1(N),
and comparing the coefficients of e−i , i = 1, . . . , k , we see that x solves the
resolvent equation if Lx = (λ− G)−1 Ly and

λξi − hi (Lx) = ηi , i = −k, . . . ,−1

(where ηi ’s are coordinates of y). Since hi ’s are nonnegative functionals, this
completes the proof.

Hint to Exercise 4.2.7 Let

T (t)x =
−1∑

i=−k

(ξi + f i Lx − f i S(t)Lx)ei + S(t)Lx .

(To guess this formula, either use probabilistic intuitions similar to those
employed in defining {Sa(t), t ≥ 0} or recall that

(
λ− Gstop

)−1 obtained
explicitly in the previous exercise is the Laplace transform of the semigroup
{etGstop , t ≥ 0}.) Check to see that this is a strongly continuous semigroup. To
show that each T (t) is a Markov operator, recall that Σmax = ∑k

i=1 f i and
use Exercise 3.6.21 with f = Σpass. Finally, check that the generator of this
semigroup is Gstop.

Hint to Exercise 4.4.10 (by A. Gregosiewicz) For n ≥ 1, let On be the operator
in l1 that changes all the coordinates of an x ∈ l1 with indices < −n to zeros
and leaves the remaining coordinates intact. Clearly, limn→∞ On x = x, x ∈
l1. For x ∈ D(A), check to see that xn := On x belongs to D(G), and Gxn =
Qxn = −a−n−1ξ−n−1e−n + OnQx .

Solution to Exercise 5.4.11 We have f (i) − g( j) ≤ f (i) − g(i) ≤ ‖ f − g‖.
By symmetry, g( j)− f (i) ≤ ‖g − f ‖.
Solution to Exercise 5.7.6 Since the first term on the right-hand side of (5.50)
is identical to the right-hand side of (5.49), and the first term defining ξi in
(3.30) and (3.32) is identical to the right-hand side of (3.24), the calculation
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presented in Example 5.2.7 reduces the task to showing that

∞∑
i=1

ηi
1

πi−1

∞∑
j=1

π j−1

λ+ a j
g( j) =

∞∑
j=1

g( j)
π j−1

λ+ a j

∞∑
i=1

ηi

πi−1
.

This, however, results from the obvious change of the order of summation.



Commonly Used Notation

Entries are arranged by topic, not alphabetically.

I ————– (countable) set of indices
P,E ————– probability and expected value

l1, l∞, c, c0 ————– the spaces of summable sequences, bounded
sequences, convergent sequences, and sequences covering
to 0, respectively

x, y, z ————– elements of a Banach space, possibly of l1

f, g, h ————– functionals, probably members of (l1)∗
fλ, f � ————– see Sections 3.6.7 and 3.6.11
ξi , ηi ————– coordinates of x = (ξi )i∈I and y = (ηi )i∈I

ei ————– the vector with 1 at the i th coordinate and zeros
on all the other coordinates, seen as a member of l1 in
Chapters 2–4 and as a member of l∞ in Chapter 5

δi, j ————– this number equals 1 iff i = j and is zero
otherwise

A, B,C, P, R, L ————– operators – P is probably a (sub)-Markov oper-
ator; however, A and B may also be sets, and C might be
a real constant

A|S ————– operator A with domain restricted to S
IX or I ————– identity operator in a Banach space X, mapping

x ∈ X to itself
A∗ ————– the dual to an operator A

D(A) ————– domain of an operator A
G ————– the generator of Kato’s minimal semigroup
H ————– the generator of a semigroup dominating Kato’s

minimal semigroup
{S(t), t ≥ 0} ————– Kato’s minimal semigroup

250
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{P(t), t ≥ 0} ————– a semigroup; probably a (sub-)Markov semi-
group in l1

{T (t), t ≥ 0} ————– a semigroup; probably a Feller semigroup in c0

{et A, t ≥ 0} ————– a semigroup generated by A
Σ,1 ————– the functional mapping (ξi )i∈I ∈ l1 to

∑
i∈I
ξi ∈

R; I tend to write Σ when I see it as a functional on l1 and
1 when I see it as a member of l∞

Σpass,Σmax ————– see Section 3.6.14
pi, j (t) ————– transition probabilities of a Markov chain
qi, j , Q ————– intensities for a Markov chain (see Section 2.2)

and the matrix of intensities; sometimes, though, Q may
denote an operator

Q,Q ————– see Sections 3.4 and 5.7.1, respectively
λ,μ ————– real, positive numbers, perhaps arguments of the

Laplace transform; also, often I write λ instead of the more
proper λIX – in the latter case, λ is an operator

l+, l−, �, � j ————– see Sections 4.3.1, 5.7.4, and 5.8.2, respectively
Rλ ————– a shorthand for (λ− A)−1 if an operator A is

clear from the context; in the latter part of Chapter 3 and
in Chapter 4, this symbol is almost exclusively reserved for
(λ− G)−1 (a rather reserved resolvent?)

B, k ————– B is the discrete part of the exit boundary, k :=
#B
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[80] W. Sierpiński, Infinite Operations (in Polish), Mathematical Monographs, Czytel-
nik, 1948. (Cited on page 55.)

[81] M. Sova, Convergence d’opérations linéaires non bornées, Rev. Roumaine Math.
Pures Appl. 12 (1967), 373–389. (Cited on page 24.)

[82] J. M. O. Speakman, Two Markov chains with a common skeleton, Z. Wahrschein-
lichkeitstheorie Verw. Gebiete 7 (1967), 224. (Cited on page 41.)

[83] K. Taira, Semigroups, Boundary Value Problems and Markov Processes, Springer
Monographs in Mathematics, Springer, 2004. (Cited on page 38.)

[84] H. R. Thieme and J. Voigt, Stochastic semigroups: Their construction by pertur-
bation and approximation, in Positivity IV—Theory and Applications, Technical
University Dresden, 2006, pp. 135–146. (Cited on page 155.)

[85] J. Tiuryn, R. Rudnicki, and D. Wójtowicz, A Case Study of Genome Evolution:
From Continuous to Discrete Time Model, Mathematical Foundations of Com-
puter Science 2004, Lecture Notes in Computer Science, 3153, Springer, 2004,
pp. 1–24. (Cited on page 100.)

[86] J. A. van Casteren, Markov Processes, Feller Semigroups and Evolution Equa-
tions, Series on Concrete and Applicable Mathematics 12, World Scientific, 2011.
(Cited on page 200.)

[87] J. van Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes
in Mathematics 1529, Springer, 1992. (Cited on page 38.)

[88] J. Voigt, On substochastic C0-semigroups and their generators, in Proceedings of
the Conference on Mathematical Methods Applied to Kinetic Equations (Paris,
1985), vol. 16, 1987, pp. 453–466. (Cited on page 155.)

[89] V. A. Volkonskiı̆, Random substitution of time in strong Markov processes, Teor.
Veroyatnost. Primenen 3 (1958), 332–350. (Cited on page 220.)



References 257

[90] I. I. Vrabie, C0-semigroups and Applications, North-Holland Mathematics Stud-
ies 191, North-Holland, 2003. (Cited on page 38.)

[91] A. D. Wentzell, A Course in the Theory of Stochastic Processes, translated from
the Russian by S. Chomet, with a foreword by K. L. Chung, McGraw-Hill. (Cited
on page 38.)

[92] Chin Pin Wong, Kato’s perturbation theorem and honesty theory, PhD thesis,
University of Oxford, 2015. (Cited on page 156.)

[93] New approaches to honesty theory and applications in quantum dynamical
semigroups, J. Oper. Th. 75, no. 2 (2016), 443–474. (Cited on pages 155 and 156.)

[94] D. Worm, Semigroups on spaces of measures, PhD thesis, Thomas Stieltjes
Institute for Mathematics, Leiden University, 2010. (Cited on page 192.)

[95] K. Yosida, Functional Analysis, Springer, 1965. (Cited on page 38.)



Index

abstract Cauchy problem, 11
approximation theorem for semigroups, 24

birth and death process, 59, 103, 131, 205
boundary

active, 140
discrete, 148
entrance, 176
exit, 148
for a Markov chain, 148
for an intensity matrix, 148
passive, 133, 148

canonical mapping, 139
Chapman–Kolmogorov equation, 40
convergence

in norm, 34
in coordinates, 34
theorem for semigroups, 24
weak, 36

density, 90
direct sum, 126
dishonesty function, 66
distribution, 34
dual

operator, 27
semigroup, 27

entrance law, 81, 179
equation

Chapman–Kolmogorov, 40
Hilbert, 14
Kolmogorov backward, 67, 208
resolvent, 12

equivalent sets, 163
example

Blackwell’s, 82
Kolmogorov–Kendall–Reuter’s, first, 53,

70, 226
Kolmogorov–Kendall–Reuter’s, second, 55,

76, 190, 222
Speakman’s, 41
two infinite ladders, 126, 132

modified, 133, 237
explosion, xvii, 105
extended limit, 25

Feller
generator, 202
property, 196

criterion for, 198, 200
semigroup, 198

Feynman–Kac Formula, 216
flash of P. Lévy, 176
formula

Feynman–Kac, 216
Trotter Product, 22
Volkonskii, 220

functional
active, 140
extremal, 147
passive, 140
singular, 148

generator, 4
(sub-)Markov, 53
Feller, 202
Markov, 16

258



Index 259

Hilbert equation, 14

infinite product, 55
instantaneous

return from the boundary, 173
state, 46

intensity matrix, 48
intensity of jump, xvi, 46
isomorphic image

of a semigroup, 8
of an operator, 8

jump chain, 132, 158
jump intensity, xvi, 46
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