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PREFACE

This book provides a comprehensive, precise, and up-to-date descrip-
tion of Non-Axiomatic Logic, abbreviated as NAL.

This logic is designed for the creation of general-purpose Artificial
Intelligence (AI) systems, by formulating the fundamental regularity
of human thinking at a general level. Therefore, this work also
belongs to Cognitive Science (CogSci), the interdisciplinary study of
“mind” and “cognition”. This book directly addresses many topics
in logic, psychology, linguistics, philosophy, and computer science.

The distinctive feature of NAL is the “relative rationality” it
exhibits when guiding the adaptation process of a system that has
to work with insufficient knowledge and resources. NAL differs from
ordinary logic systems in all of its major components: it uses subject–
predicate (rather than predicate–argument) sentences, experience-
grounded (rather than model-theoretic) semantics, and syllogistic
(rather than truth-functional) inference rules. In fact, NAL is so
different from the other logics that some logicians are reluctant to
consider it a “logic”. Though this reaction is understandable, and
this system indeed can be described using other terminologies (such
as a conceptual graph), in this book it is still presented as a logic
system. Technically, this presentation is selected because NAL can be
accurately specified as consisting of a formal language, a set of formal
inference rules, and a semantic theory; conceptually, it is because that
NAL is an attempt to capture the “laws of thought”, that is, the
patterns of valid inference in human thinking. For the latter reason,
NAL is arguably closer to the general and original sense of “logic”
than mathematical logic is.

NAL is the logical part of the AI system NARS (Non-Axiomatic
Reasoning System). Since this book focuses on the logic, the other

xi
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aspects of the system (such as memory and control) are mentioned
only when necessary. Since NARS aims at a general-purpose “think-
ing machine”, this project is related to almost all previous works
in AI and CogSci. However, restricted by its length and focus, this
book cannot compare my approach to all of the others, but only to
the most relevant ones. Many of the aspects of NARS have been
discussed in my previous publications, such as Wang (1995, 2006b),
as well as many journal articles and conference papers that are cited
in this book.

This book is written for readers with college-level knowledge of
AI, computer science, and mathematical logic. It can be used as the
textbook for a one-semester graduate or upper-level undergraduate
course. The chapters should be read in the given order, with the
appendices as references on the formal content of NAL.

NARS is an on-going project. For its latest development, docu-
mentations, demonstrations, and source code, see the project website
(Currently at http://sites.google.com/site/narswang/, which
is mostly mirrored at http://www.cis.temple.edu/∼wangp/).



April 4, 2013 12:24 9in x 6in Non-Axiomatic Logic b1497-fm

ACKNOWLEDGMENTS

It was the invitation of Dr. K. K. Phua, the Chairman and Editor-
in-Chief of World Scientific, that initiated this writing project. His
suggestion of presenting the materials as lecture notes is also very
valuable.

Thanks to Temple University for rewarding me a sabbatical leave
in the 2011–2012 academic year, which has given me the time to
finish this book. Drafts of the book were used as teaching materials
at Peking University (in Spring 2012) and Reykjavik University
(in Summer 2012), and I thank the attendants of my lectures for
their helpful feedback.

The comments and English corrections by Selmer Bringsjord, Ben
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CHAPTER 1

INTRODUCTION

This chapter explains the theoretical considerations behind the logic
to be described in this book.

1.1. Intelligence

This new logic is proposed as part of a normative theory of what
we usually call “intelligence”, “cognition”, or “thinking”. Its direct
objective is to serve as a formal model to be implemented in computer
systems to achieve “Artificial Intelligence” (AI). For that purpose, it
must also specify the “laws of thought” followed by the human beings.

Like many basic concepts, “intelligence” has many different inter-
pretations and understandings. In the context of AI, the majority
opinion is to consider it as the ability to solve problems that are
solvable by human beings only [McCarthy et al. (1955); Russell and
Norvig (2010)]. Though this approach has contributed greatly to
computer science and technology, it has not made much progress
toward the original and ultimate objective of AI, that is, the building
of “thinking machines” that have intellectual power comparable to
that of human beings. Instead, the research results focus on special
aspects of intelligence, and are hard to be either generalized to
other tasks, or to be integrated together [Brachman (2006)]. On the
contrary, the research project described in this book belongs to the
emerging field of “Artificial General Intelligence” (AGI), which differs
from the mainstream AI by emphasizing the general and holistic
nature of intelligence [Goertzel and Pennachin (2007); Wang and
Goertzel (2007)].

1
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On the other hand, the study of intelligence in the context of
Cognitive Science (CogSci) focuses on descriptive theories of the
human mind and brain, where the objective of computer models is to
simulate the human structure, activities, and behaviors as accurately
as possible [Newell (1990)]. Though such research contributes greatly
to neuroscience and psychology, it is not necessarily the best
approach for AI. After all, a computer system is very different from
the human brain at the low (hardware/wetware) level, so it may be
neither necessary nor possible for a computer to work like a brain
in all the details. In a sense, the very idea of AI is based on the
assumption that what we call “intelligence” can be reproduced in
artifacts that have different origins and details when compared to
the human brain.

Therefore, though all AI projects aim at the common goal of
building computer systems that are “similar to the human mind”
in certain aspects, they are nevertheless very different from each
other in where this similarity is or should be, which corresponds to
different working definition of intelligence [Wang (2008)]. My working
definition is:

Intelligence is the ability for a system to adapt to its envi-
ronment and to work with insufficient knowledge and resources
[Wang (1994c, 2008)].

In this context, to adapt requires the system to decide on its
actions according to its experience, so as to better achieve its goals
when the environment is relatively stable. It can be considered as a
principle of “relative rationality”. Compared to the other theories of
rationality, the most significant feature of this relative rationality is
the Assumption of Insufficient Knowledge and Resources, or AIKR
[Wang (1994c, 2011)], which is with respect to the problems to be
solved by the system, and it demands the following three features of
the system:

Finite: The system can work with constant information-processing
capacity, in terms of processor speed and storage space.

Real-time: The system has to deal with problems that may appear
at any moment and demand immediate response.



April 4, 2013 12:22 9in x 6in Non-Axiomatic Logic b1497-ch01

Introduction 3

Open: The system must face input data and problems of any
content, as far as they can be expressed in a format recognizable
to the system.

It follows from AIKR that the system’s behaviors are not
absolutely optimal — for a given problem, usually the system could
do better if it had more knowledge and resources. However, AIKR
does not endorse arbitrary actions. The future is probably not
identical to the past, but when we need to make predictions, we
have nothing else to depend on but past experience. When facing
a problem, we usually cannot consider all possibilities, but only
consider the most important and relevant ones, judged according
to our past experience, and we consider as many of them as allowed
by the current resource supply.

Such an understanding of “intelligence” is in agreement with the
opinions of some cognitive scientists. For instance, Piaget (1960)
took intelligence as “the most highly developed form of mental
adaptation”; Medin and Ross (1992) wrote that “Much of intelligent
behavior can be understood in terms of strategies for coping with
too little information and too many possibilities”; and my “relative
rationality” is similar to Simon’s “bounded rationality” [Simon
(1957)]. Even so, in current AI research, few projects are aimed at
such a goal [Russell and Norvig (2010)], or are designed under the
restriction of AIKR.

Compared to the alternatives, my approach toward AI has the
following major advantages [Wang (2008)]:

• It gives “intelligence” a coherent and compact description, from
which all the concrete conclusions are implied. It is a preferred
form of theorization, both in science and in engineering.

• It is less anthropocentric. Though human intelligence is indeed
the best-known form of intelligence, the notion of “artificial
intelligence” presumes a concept of “intelligence” that is more
general than “human intelligence”. Consequently, a computer
system can be considered as intelligent without being similar to
the human mind in all the details.
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• It provides an explanation for why the conventional computer
systems are not intelligent yet. That is, though such a system
may have remarkable capability in dealing with certain practical
problems, this capability comes from its design, and consequently
it usually lacks creativity and flexibility.

• It gives the field of AI a proper identity, while the other approaches
have the risk of reducing AI into an existing branch of science and
engineering (such as neuroscience, cognitive psychology, computer
science, or computer technology).

For these reasons, my research goal is to design and build a
computer system that can adapt to its environment while working
with insufficient knowledge and resources. The system may have other
properties and applications, but they are derivative and secondary.

Since the above research goal is different from the goals of
the mainstream AI systems, this research should not be evaluated
according to the common standard of the AI field, i.e., in terms of a
system’s practical problem-solving ability. This research is not aimed
at a system with given (domain-specific) problem-solving skills, but a
system with a given (meta-level and general-purpose) learning ability
that allows the system to acquire various problem-solving skills from
its experience.

1.2. Reasoning System

Since the objective of this research is to identify the “laws of
thought”, it is quite natural for the system to be designed in the
framework of a reasoning system, following a formal logic. After all,
in the general sense, logic is about the laws (or rules) of valid inference
(or reasoning).1

At the conceptual level, a reasoning system consists of the
following major components:

Grammar rules: These rules define the format of the representa-
tion language used in the system, by specifying how a legitimate
sentence can be composed from words and phrases.

1In this book, reasoning and inference are treated as synonyms.
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Inference rules: These rules define the pattern of valid reasoning
in each inference step, where certain sentences are derived (as
conclusions) from some given sentences (as premises).

Semantic theory: This theory specifies how the words and sen-
tences of the language get their meaning, and explains why the
inference rules are valid.

Memory structure: This structure is responsible for the storage
and retrieval of the sentences involved in the inference processes
of the system.

Control mechanism: This mechanism is responsible for the selec-
tion of premises and inference rules of each step in the inference
processes.

Usually, the first three components are referred to as the “logic”
implemented in the reasoning system.

At the present time, the study of reasoning systems is dominated
by the tradition of “mathematical logic”, which mainly consists of
propositional calculus, predicate calculus, model theory, set theory,
and computation theory. This tradition started as an attempt
to provide a logical foundation for mathematics [Frege (1999);
Whitehead and Russell (1910)], but it has been widely used in
many other domains outside mathematics, including cognitive science
[Allwood et al. (1977); Braine and O’Brien (1998)] and computer
science [Halpern et al. (2001)]. To create AI as reasoning systems is
not a new idea, and it has been promoted in theory by the “logicist
AI” school [Hayes (1977); McCarthy (1988); Nilsson (1991)], and
explored in practice by various “knowledge-based systems” [Lenat
and Feigenbaum (1991)].

From the very beginning, it has been very clear that mathemati-
cal logic is not designed to be a descriptive model of human reasoning.
However, even when considered as a normative model of reasoning, it
is still quite limited. In the “classical” form (i.e., first-order predicate
calculus), this type of logic only covers binary deduction in closed
(axiomatic) systems. There have been many attempts (in logic, AI,
and other related fields) to extend or revise it to get logic systems
with certain properties that are considered as necessary for various
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reasons:

Uncertainty: In natural languages, a statement is usually neither
absolutely true nor absolutely false, but somewhere in between.
Furthermore, since an intelligent system should be able to compare
different possibilities, a three-valued logic is not enough, and some
type of numerical measurement is often needed. Proposed solutions
to this issue include various forms of probabilistic logic [Nilsson
(1986); Adams (1998)] and fuzzy logic [Zadeh (1983)].

Openness: In realistic situations, the system cannot evaluate the
truth-value of statements according to a constant set of axioms,
but has to depend on assumptions, and to be open to new evidence.
To work in these situations, it is necessary to reason by “default
rules”, and to revise the tentative conclusions when counter-
evidence show up. This is what non-monotonic logics attempt to
handle [McCarthy (1989); Reiter (1987)].

Ampliation: Classical logic only covers deduction, but there are
also induction, abduction, analogy, and other types of inference
that play crucial roles in human thinking. These types of inference
are often called “ampliative”, since their conclusions seem to
include knowledge that is not in the premises. Consequently, they
are not “truth-preserving” in the traditional sense. The validity of
these types of inference has been a controversial topic, and many
different solutions have been proposed, including various forms of
inductive logic [Kyburg (1970); Flach and Kakas (2000)].

Relevance: Classical logic suffers from the notorious “paradoxes
of material implication” — the “implication” defined in the logic
does not match the intuitive meaning of “if–then”, and it leads to
various “logically correct” but intuitively problematic inference,
where the premises and conclusions are unrelated in content. This
issue triggered the development of relevance logic [Anderson and
Belnap (1975)], and is also important for AI, because no system can
afford resources to generate many “true-but-useless” conclusions.

In both logic and AI, the above issues are usually addressed
separately, and a new logic is typically built by extending or
revising a single aspect of classical logic, while leaving the other
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aspects unchanged [Haack (1996); Gabbay (2007); Russell and Norvig
(2010)]. Though each non-classical logic has its applicable situations,
and can be used to solve some practical problems, none of them
is powerful enough to support a general-purpose reasoning system.
Furthermore, it looks implausible to “integrate” these non-classical
logics together into a coherent logic, since they are based on quite
different assumptions.

What makes my approach different is the belief that the above
issues have a common root at a deeper level, so may be resolved
together in a new system that fundamentally differs from the classical
logic.

When designing or selecting a reasoning system, two types of
situation can be distinguished:

Idealized, where the system has sufficient knowledge and resources,
with respect to the problems to be solved. All the knowledge
needed is available to the system at the very beginning with
guaranteed correctness and consistency, and all the required con-
clusions are implied by them. The system has enough processing
time and storage space to carry out the required inference activity,
so the resource expense can be ignored.

Realistic, where the system has insufficient knowledge and
resources, with respect to the problems to be solved. The knowl-
edge comes to the system from time to time, without guaranteed
correctness and consistency. New problems may show up at any
moment, with required response time. The solution of a problem
often requires knowledge that is not available to the system at the
moment, and the system cannot simply reject the problem without
a try. The system usually cannot afford the time–space resource
to consider all possibilities when solving a given problem.

It is not hard to recognize that classical logic is designed for
reasoning in this idealized situation, while the human mind and many
(if not all) AI systems need to work in this realistic situation. Even
so, the traditional opinion is that a “logic” must be designed for
the idealized situation. When reasoning activities have to be carried
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out in the realistic situation, idealized situation is approximated as
closely as possible.

I have been advocating the opinion that these two types of
situations require two types of logic:

Axiomatic logic is suitable for an idealized situation. The initial
knowledge is represented as axioms, and all solutions to the
problems are provided by the theorems derived by deduction.
Since all the inference rules are truth-preserving, the truth of the
theorems is guaranteed by the truth of the axioms.2

Non-axiomatic logic is suitable for a realistic situation. Since
all knowledge may be challenged by new evidence, there is no
axiom in the system that has guaranteed truth. Since the problem
may fall outside the current knowledge scope of the system,
ampliative reasoning becomes necessary, although it does not have
the traditional validity. Since the computational resources are in
short supply, a conclusion may not be based on all the relevant
knowledge in the system, but only on part of it.

From this description, it is obvious that these two types of logic
are fundamentally different, and we cannot use one to approximate
the other. As analyzed in Wang (2006b), the problems in logic-
based AI are not caused by notions like “reasoning”, “logic”, or
“formalization”, but by the type of logic and reasoning system that
has been used in AI. Especially, the root of the problems is in
the notion of “axiomatization”. Though such a reasoning system is
favored in mathematics, it is improper for AI, since it disobeys the
previously introduced AIKR.

For the purpose of AI, what is needed is a reasoning system
that is adaptive to its environment, and works under AIKR. Such
a system is still a “reasoning system”, since it consists of the same

2In logic literature, “axiomatic logic” is sometimes used to refer to a logic system
whose inference rules can be derived from a set of axioms. This is not how this
name (as well as its opposite, non-axiomatic logic) is used in this book. Here
the “axiomatic versus non-axiomatic” difference is at the object-level (where
domain knowledge is represented), not the meta-level (where the inference rules
are represented), of the reasoning system.
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five major components listed above; however, it is not “axiomatic”,
since none of the beliefs in the system can be considered as axioms
or theorems. Instead, they are merely summarized past experience,
and can be modified by future experience or further deliberation.
Similarly, the inference rules are “valid” not in the sense of “deriving
truth from truth”, but “faithfully summarizing experience”. It is in
this sense that the reasoning system and its logic to be introduced in
this book are referred to as “non-axiomatic”. Such a system can still
have fixed grammar and inference rules that cannot be modified by
the system itself, but they are not axioms among the system’s beliefs,
since they are at the meta-level of the system, while the beliefs are
on the object-level.

1.3. NAL Overview

Now the objective of this book can be clearly specified as: to define
a logic named NAL, short for Non-Axiomatic Logic.

NAL is a logic since it includes a set of symbolic grammar rules
specifying the system’s representation language, a set of symbolic
inference rules specifying the system’s reasoning competence, and a
semantic theory containing the definitions of “meaning” (so as to
explain the usage of the representation language) and “truth” (so as
to justify the validity of the inference rules).

NAL is “non-axiomatic” in the sense that it is based on AIKR, so
that the truth-value of a conclusion in the system does not indicate
how much the sentence agrees with the “state of affair” in the world,
or with a constant set of assumptions (the axioms), but how much it
is supported by the evidence provided by the past experience of the
system. Therefore, no sentence in its representation language can be
taken as an “axiom” (or a “theorem”) with a truth-value that will
never be challenged by the future experience. Similarly, the meaning
of words in the representation language does not denote “objects”
in the world, but stable patterns in the system’s experience. The
inference rules are valid , not because their conclusions are guaranteed
to agree with future experience, but that they properly summarized
past experience, so can be used to predict the future by an adaptive
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system, even though the predictions can be wrong when compared
with future experience.

For such a logic to be used by a reasoning system, the rules
need to be coded in a programming language, and the system
also needs a memory–control part. NARS is such a non-axiomatic
reasoning system, which, in its various stages of development, has
been described in Wang (1995, 2006b) and many other publications.
Since this book focuses on NAL, the other components and aspects
of NARS are only mentioned briefly.

The representation language of NARS is called “Narsese”, which
serves both the roles of internal representation and external commu-
nication for NARS. That is, the language is used to represent beliefs
and tasks within the system, as well as to exchange knowledge and
problems with other (computer or human) systems in the outside
world. It is important to distinguish Narsese from the other two
languages used in the NARS project. As far as NARS is considered
as an inference system, Narsese is on the object-level and is used
to represent the system’s knowledge about its environment and
itself. When we talk about the design of NARS and NAL in this
book, the language (English for this book) is at the meta-level
and used to represent our knowledge about the system. Finally,
when NARS is implemented in a computer system, it is coded in
a programming language (currently Java and Prolog). These three
types of language have different properties, and do not include one
another as subsets.

To provide a more accurate description of the system, the meta-
level description of NAL also uses other formal theories, including
set theory, first-order predicate logic, the theory of formal languages,
etc., but once again, these theories are parts of our knowledge about
NARS, rather than part of the knowledge of NARS.

In the following, NAL will be introduced in multiple “layers”.
Each of them extends the sets of grammar and inference rules of the
“lower” layers, so as to increase the expressive and inferential powers
of the system, and consequently to make it more intelligent. The
semantic theory and the memory–control parts also become more
complicated with more layers in the system. Since the current design
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include nine layers, in the following chapters the corresponding logic
will be named as NAL-1 to NAL-9, respectively. Additionally, there is
a chapter that provides an introduction, and another one a summary.
Given this arrangement, the chapters should be read in the given
order.
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CHAPTER 2

IL-1: IDEALIZED SITUATION

Since the existing logic systems are mostly designed for axiomatic
systems, establishing NAL on AIKR is not a trivial job. We will see
in the following that none of the major components of classical logic
can be accepted into NAL in its current form. To simplify the design
and analysis of NAL, we start from an idealized situation, where
AIKR can be temporarily ignored.

In this chapter, we introduce an Inheritance Logic, or IL [Wang
(1994b)]. IL is an idealized version of NAL, in the sense that it is
similar to NAL in grammar, semantics, and inference rules, though
it assumes sufficient knowledge and resources. Therefore, IL is not
a “non-axiomatic” logic, but a step in building such a logic. Just
like NAL, IL is also built with layers. For each layer i (1 ≤ i ≤ 9),
the corresponding IL-i is defined first, then the effect of insufficient
knowledge and resources is introduced, to turn IL-i into NAL-i. This
chapter defines IL-1, the simplest inheritance logic.1

In the history of logic, there are two major traditions: a “term
logic” tradition exemplified by Aristotle (1882) and Sommers (1982),
and a “predicate logic” tradition exemplified by Frege (1999) and
Whitehead and Russell (1910). Though at the present time the latter
is the dominating paradigm, NAL and IL belong to the former. The
reasons of this important decision will be gradually explained in the
following chapters.

1IL-1 was called “IL” in Wang (1994b), and “NAL-0” in Wang (2006b).

13
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2.1. Categorical Language

The simplest sentence in a predicate logic has a “predicate–
arguments” format, such as P (a1, . . . , an), where P is the predicate
symbol, while each ai (1≤ i≤n) is an argument of the predicate. On
the contrary, the simplest sentence in a term logic has a “subject–
copula–predicate” format, which is often called a “categorical sen-
tence”, and a language consisting of such sentences is called a
“categorical language”. Since term logic uses this type of language,
it is sometimes called “categorical logic” [Smith (2012)].

Narsese is a categorical language, and IL uses a version of it. The
smallest component of the language is a “term”, which, in its simpest
form, is an identifier used in the logic.2

Definition 2.1. The basic form of a term is a word, that is, a string
of characters from a finite alphabet.

There is no additional requirement on the alphabet. In this book,
the alphabet includes English letters, digits 0 to 9, and a few special
signs, such as hyphen (‘-’). In the examples, we often use common
English nouns for terms, such as bird and animal, just to make the
examples easy to understand. There is no problem to do the same in
a different natural language, such as Chinese. On the other hand, it
is also fine to use terms that are meaningless to human beings, such
as drib and aminal.

Definition 2.2. The basic form of a statement is an inheritance
statement , “S → P”, where S is the subject term, P is the predicate
term, and ‘→’ is the inheritance copula, defined as being a reflexive
and transitive relation from one term to another term.

Graphically, an inheritance statement can be represented as
two vertices connected by a directed edge. Its direction is purely
conventional, though usually it is taken to be from the subject to the
predicate.

2In NARS, a (normal) term is the name of a concept. See [Wang (2006b)].
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The intuitive meaning of “S → P” is “S is a special case of P”
or “P is a general case of S”. For example, “Bird is a type of animal”
can be represented in Narsese as

bird → animal .

Now we begin to see the difference between IL, as a term logic,
and a predicate logic, like FOPL (First-Order Predicate Logic). The
same example is typically represented in FOPL as a proposition

(∀x)(Bird(x) =⇒ Animal(x)),

where predicates Bird and Animal both take variable x as argument,
and ‘=⇒’ is the implication operator defined in propositional logic.3

Though the IL statement and the FOPL proposition have similar
meanings, they are based on different ontological presumptions.
FOPL presumes objects (represented by arguments) with proper-
ties and relations (represented by predicates), while IL presumes
categories (represented by terms) within a generalization hierarchy
(established by inheritance). One consequence of this difference is
that in FOPL “predicates” and “arguments” are disjoint sets, while
in IL (and NAL) “subject term” and “predicate term” are defined
relatively, with respect to a certain statement, in the sense that the
subject term of a statement (like the “bird” in “bird → animal”) can
be the predicate term of another statement (like “dove → bird”),
which is also the case in other term logics, such as Aristotle’s
Syllogistic. Therefore, the “predicate symbol” in FOPL and the
“predicate term” in IL are not the same, though they are intuitively
related to each other.

We can also compare IL with set theory, where the above example
can be represented as “Bird ⊆ Animal” with Bird and Animal

being sets. Since the subset relation is both reflexive and transitive,

3In this book, we use a short single arrow ‘→’ for the inheritance relation in
NAL, and a long double arrow ‘=⇒’ for the implication relation in FOPL. They
are related in meaning, though should not be confused with each other.
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Table 2.1. The grammar rules of IL-1.

〈statement〉 ::= 〈term〉 〈copula〉 〈term〉
〈copula〉 ::= →
〈term〉 ::= 〈word〉

it is just like the inheritance relation. Here the difference is that
inheritance is defined between two terms, which are not sets in
general. For example, “Water is a type of liquid” that can be similarly
represented in IL as “water → liquid”, though the two terms cannot
be naturally considered as sets. More differences between term and
set will be introduced later.

The representation language used in IL-1 contains inheritance
statements as sentences, as defined by the grammar rules in Table 2.1.
All grammar rules in this book are represented using a variant of the
Backus Naur Form (BNF) specified in Appendix A.

2.2. Experience-Grounded Semantics

The semantic theory of IL-1 defines the truth-value of a statement,
as well as the meaning of a term.

Definition 2.3. The truth-value of a statement in IL is either true
or false.

Therefore, IL is a binary logic, like most of the existing logic systems.
From the relevant definitions, some theorems can be proved, as

conclusions about IL.4 The proofs of the theorems in this book are
collected in Appendix D. The following theorems directly come from
the reflexivity and transitivity of the inheritance copula.

Theorem 2.1. For any term X, statement “X → X” is true.

Following the tradition of logic, such a statement is called a tautology.

4Since NAL is non-axiomatic, there is no “theorem”, but its ideal version, IL, is
still binary and axiomatic. We can prove theorems in IL, though not in NAL.
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Theorem 2.2. For any term X, Y, and Z, if both “X → Y ” and
“Y → Z” are true, so is “X → Z”.

Treating an IL statement as a proposition, the above theorems
can be expressed in FOPL as

(∀x)Inheritance(x, x)

(∀x)(∀y)(∀z)((Inheritance(x, y) ∧ Inheritance(y, z))

=⇒ Inheritance(x, z)).

The inheritance relation is neither symmetric nor anti-symmetric.
That is, for different X and Y , given “X → Y ” alone, the truth-
value of “Y → X” cannot be determined.

An inference process needs to start from some initial knowledge.
In IL, the initial knowledge of the system is defined as its “ideal
experience”.

Definition 2.4. For a reasoning system implementing IL-1, its ideal
experience, K, is a non-empty and finite set of statements in IL-1,
which does not include any tautology.

For example, K can be {robin → bird , bird → animal ,water → liquid}.
Definition 2.5. Given ideal experience K, the system’s knowledge,
K∗, is the transitive closure of K, excluding any tautology.

Therefore, K∗ is also a non-empty and finite set of sentences in IL-1,
which includes K, as well as the sentences derived from K according
to the transitivity of the inheritance relation. For example, given
the above K, K∗ = {robin → bird , bird → animal , robin → animal ,
water → liquid}. In the following, K∗ is also referred to as the
“beliefs” of the system.

Graphically, both K and K∗ can be represented as directed
graphs, with terms as vertices and statements as edges.

Definition 2.6. Given ideal experience K, the truth-value of a
statement is true if it is in K∗, or it is a tautology, otherwise it
is false.
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Therefore IL-1 can represent two types of true statement: empir-
ical and literal, or synthetic and analytic, respectively. The former is
“true according to experience”, and the latter is “true by definition”.
Similar distinctions are often made in the literature [Haack (1978)].
Statements in these two categories have no overlap, since K∗ contains
no tautology.

When X and Y are different terms, “X → Y ” is a statement
in the language of IL-1, but “X → Y is true” and “X → Y is
false” are not — they are sentences in the meta-language of IL-1.
These sentences may be either positive (on what is true) or negative
(on what is false). Within IL-1, negative sentences are implicitly
represented: they are the statements that are not known to be true.
They are not represented by statements in IL-1, but sentences in
its meta-language. In this way, IL-1 accepts the “Closed-World
Assumption” [Russell and Norvig (2010)], by treating “unknown”
as “false”.

Therefore, in IL-1 the truth-values of empirical statements are
decided with respect to a given experience, which is a set of empirical
statements themselves. The meanings of terms are decided similarly,
as explained in the following definitions.

Definition 2.7. Given ideal experience K, the set of all terms
appearing in K is the vocabulary of the system, VK .

When K is represented as a graph, VK is the set of its vertices. For
the previous K, VK = {robin , bird , animal ,water , liquid}.

Definition 2.8. Given ideal experience K, the extension of a term
T is the set of terms TE = {x | (x ∈ VK) ∧ (x → T )}. The intension
of T is the set of terms T I = {x | (x ∈ VK) ∧ (T → x)}.

Obviously, both TE and T I are determined with respect to K, so
they should be written as TE

K and T I
K . In the following, the simpler

notions are used, with the experience K implicitly assumed.
Intuitively, the extension of a term in VK contains its known

specializations (plus itself); the intension of a term contains its
known generalizations (plus itself). When the system’s knowledge
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is represented as a graph, the extension of a term is given by its
incoming edges, and the intension its outgoing edges.

The above definition is different from the common usage of
the two words in most of the current logic literature, where the
“extension” of a term is taken to be the set of concrete instances
denoted by the term, while its “intension” to be the abstract
properties connoted by the term. In the history of logic, “extension”
and “intension” have been given different definitions, though the
intuitive meaning remains, that is, they are for “instances” and
“properties”, respectively [Stebbing (1950)]. In IL (and NAL), the
above intuitive properties are kept, though these notions are not
assumed to be about something outside the language, but inside the
language. The significance of this difference will be explained later.

Since “extension” and “intension” are defined in a symmetric way
in IL, for any result about one of them, there is a dual result about
the other. Each statement in the knowledge of the system reveals
part of the intension for the subject term and part of the extension
for the predicate term.

Theorem 2.3. For any term T ∈ VK , T ∈ (TE ∩ T I). If T is not
in VK , TE = T I = {}.
Here {} is the empty set, somethimes written as ∅. So the extension
and intension of a term are not empty, if and only if the term appears
in the system’s experience.

Definition 2.9. Given experience K, the meaning of a term T

consists of TE and T I .

Therefore, the meaning of a term is its relation with other terms,
according to the experience of the system. A term T is “meaningless”
to the system, if it has never got into the experience of the system,
otherwise it is “meaningful”. The larger the extension and intension
of a term are, the “richer” its meaning is.5

5The richness of a concept named by a term will be taken into consideration by
the inference control mechanism of NARS.
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For the above example, there are only five meaningful terms to
the system, whose meaning is specified in the following:

Term Extension Intension

robin {robin} {robin , bird , animal}
bird {bird , robin} {bird , animal}

animal {animal , robin , bird} {animal}
water {water} {water , liquid}
liquid {water , liquid} {liquid}

According to the above definitions, the meaning of a term
is defined by its relations with other terms, rather than reduced
into the meaning of other terms, so this practice should not be
considered as giving circular definitions. Furthermore, these relations
come from the system’s experience, which is the only perceivable
information exchange between the system and its environment, so
this practice should not be considered as “dictionary-go-round”
[Harnad (1990)].6

Theorem 2.4. If both S and P are in VK , then

(S → P ) ⇐⇒ (SE ⊆ PE) ⇐⇒ (P I ⊆ SI).

Here “⇐⇒” is the “equivalence” (“if and only if”) connective in
propositional logic.

The above theorem says that there is an inheritance relation from
S to P , if and only if the extension of S is inherited by P , and,
equivalently, the intension of P is inherited by S. This is why the
copula is named “inheritance”.

If “S → P” is false, it means that the inheritance is incomplete —
either (SE − PE) or (P I − SI) is not empty. However, it does not
mean that S and P share no extension or intension.

Theorem 2.5. (SE = PE) ⇐⇒ (SI = P I).

6In the following chapters, we will see how to extend this definition to include
other contents, such as those provided by sensorimotor mechanisms.
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This means that in IL-1, terms with the same extension have the
same intension, and vice versa. Therefore, the extension and intension
of a term are mutually determined, and one of the two uniquely
determines the meaning of a term. This result partially explains why
in a binary logic like IL it is usually enough to process extension
alone. However, it will not be the case in NAL, as we will see in the
coming chapters.

In summary, IL-1 has an “Experience-Grounded Semantics”, or
EGS [Wang (2005)], since the truth-values of its statements and the
meanings of its terms are all determined by the experience of the
system, except in trivial cases (such as analytical statements and
meaningless terms).

EGS is similar to approaches like “Proof-Theoretic Semantics”
and “Inferentializing Semantics” [Peregrin (2010)], while is funda-
mentally different from the “Model-Theoretic Semantics”, or MTS,
used by most of the logic systems at the current time. MTS assumes
the existence of a “model”, consisting of entities with properties
and relations described in a meta-language, and an “interpretation”
mapping the terms and statements (or call them other names) onto
the entities, properties, and relations. Then, the meaning of a term
is the entity it mapped onto, and the truth-value of a statement
indicates whether it is mapped into an existing relation in the model
[Barwise and Etchemendy (1989)]. A detailed comparison between
these two types of semantics can be found in Wang (2005), and here
it is enough to remember that for terms to get meaning and for
statements to get truth-value, in IL (and NAL) what is required is
experience, rather than interpretation. Other related issues will be
gradually addressed later.

2.3. Syllogistic Inference Rules

IL-1 has a single inference rule that derives knowledge from experi-
ence, justified by the transitivity of the inheritance copula. It is a
special type of “deduction”, in the common sense of the notion.

The rule is shown in Table 2.2, where the premises are the
inheritance statements from M to P , and from S to M , respectively.
The derivable conclusion is an inheritance statement from S to P .
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Table 2.2. The inference rules of IL-1.

premise1 premise2 conclusion

M → P S → M S → P

The inference rule in Table 2.2 can also be written as:

{M → P, S → M} � S → P.

This rule is “syllogistic”, in the sense that the two premises
share one common term, and the rule derives a conclusion between
the other two terms. Here the word “syllogistic” is used in a broad
sense, with Aristotle’s Syllogistic [Aristotle (1882)] as a special case.
The usage of syllogistic inference rules is another character that
distinguishes a term logic from a predicate logic, so a term logic
is called a “syllogistic logic” [Smith (2012)].

Inference rules in predicate logic are not syllogistic, since their
premises are not categorical sentences, and there is no requirement
for the premises to contain common terms. Though it is possible
to represent the inheritance copula of IL as a predicate name in
FOPL, this predicate is not directly recognized and processed by the
inference rules of FOPL, which are “truth-functional only”, that is,
depending on the truth-values of the premises, rather than on the
nature of their conceptual relations.

In IL (and NAL), inference in general is seen as the process
in which one term “is used as”, or “is replaced by”, another one.
For example, the rule in Table 2.2 says that for a given inheritance
statement, the subject term can be replaced by another term in its
extension, and the predicate term can be replaced by another term
in its intension. Such a term (concept) substitution naturally cor-
responds to the conceptual hierarchy observed in human cognition,
and is considered by some researchers as playing a central role in
intelligence and cognition [Hofstadter (1995)].

The syllogistic rules in IL also have the desired property that in
every inference step, the two premises are semantically related , and
so do the conclusion and each premise, guaranteed by the shared
term. On the contrary, there is no such requirement in propositional
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and predicate logic, and that is the root of the “paradoxes of material
implication” — “P =⇒ Q” is true if P is false or Q is true, even when
the two are semantically irrelevant. Various “relevance logics” have
been proposed to solve this problem [Read (1989)], though they are
almost all in the propositional and predicate logic framework. Few
people have noticed that such paradox does not appear in syllogistic
logics.

Though the inference rules in IL-1 are very simple when com-
pared to the inference rules of FOPL, all inference rules in IL
(and NAL), to be introduced in the following chapters, require
the semantical relevance between the premises, and guarantee the
semantical relevance between every conclusion and the promises that
produce it.

Given ideal experience K, knowledge K∗ can be produced
by repeatedly applying the above rule on every possible pair of
premises. This rule only derives positive conclusions directly, since
from positive knowledge “S → M is true” and negative knowledge
“M → P is false”, the truth-value of “S → P” cannot be decided —
it can be either true or false. Instead, negative conclusions are derived
implicitly, as statements that cannot be proved to be true.

Beside deriving new knowledge, IL-1 also has a matching rule to
answer questions according to available knowledge.

Definition 2.10. For different terms S and P , knowledge “S → P”
is an answer to any question that has one of the following three forms:
(1) “S → P?”, (2) “S → ?”, and (3) “? → P”, where the ‘?’ in the
last two is a “query variable” to be instantiated. If no such answer
can be found in K∗, “NO” is answered.

The first form of question asks for an evaluation of a given
statement, while the other two ask for a selection of a term for a
given relation with another term. If there are multiple answers to (2)
and (3), they are considered as equally good. Tautology “X → X”
is a trivial answer to such a question, so it is not allowed.

The matching rule is shown in Table 2.3.
Similar to negative knowledge, in IL-1 questions are not repre-

sented as sentences in the object language, but in the meta-language
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Table 2.3. The matching rules of IL-1.

Knowledge Matching questions

S → P S → P ? S →? ? → P

only. Also, IL-1 does not accept the question “What is not T ?”, since
an arbitrary term outside VK can be used to answer such a question.

It is easy to prove that IL-1 has several desired properties of
reasoning system, including consistency, soundness, completeness,
and decidability.
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CHAPTER 3

NAL-1: BASIC SYNTAX AND SEMANTICS

IL-1 has included the simplest form of the major components of
NAL: a categorical language, an experience-grounded semantics, and
a syllogistic rule. However, these components are defined in IL-1
under the assumption of sufficient knowledge and resources. It is
assumed in IL that

• all object-level knowledge is summarized in the system’s idealized
experience K, which is given to the system at the beginning and
remains unchanged;

• the system has the time and space resources to generate K∗, the
transitive closure of K;

• the system can answer all questions by searching K∗ for a matching
statement.

NAL-1 is the simplest non-axiomatic logic. It moves the compo-
nents defined in IL-1 onto a new foundation, that is, under AIKR.
Consequently, all the above three assumptions cannot be made
anymore, and the components need to be modified accordingly.

NAL-1 is described in two chapters. This chapter covers its
language and semantics, and leaves the inference rules to the next
chapter.

3.1. Evidence and its Measurement

IL-1 is still an axiomatic logic, with the ideal experience in set K

as “axioms”, the derived knowledge in set (K∗ − K) as “theorems”,
and the resource restriction is ignored. Each piece of knowledge is an

25
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inheritance statement from one term to another, which is “perfect”
in the sense that there is no, and will not be any, counter-evidence
for the stated relation between the two terms.

As soon as AIKR is accepted, the relationship between a
statement and an experience cannot be properly captured by a binary
truth-value anymore. Since the system has to open to novel questions,
it cannot just remember the statements in its past experience or
only derive their deductive conclusions. Instead, it has to generalize
and summarize the experienced statements, so as to efficiently apply
them to novel situations. In this process, it cannot simply reject
the conclusions that have counterevidence, as suggested by Popper
(1959), since plausible, heuristic, and statistical knowledge all have
great value in adaptation. After all, the system’s ultimate objective
is not “to describe the world as it is” but “to achieve its goals as
much as possible”. We could hardly do anything in the real world by
only following knowledge that is absolutely true.

Not only are binary truth-values not enough, even a multi-
value logic may not be enough for adaptation if the truth-values
are qualitative, rather than quantitative. Since the system is open
to unexpected future events, many predictions are “possibly true”,
and if their truth-values only tell the system that, there will not
be any general rule for the choices among competing answers. To
be “adaptive” means the system should be able to quantitatively
compare different predictions, to see how much each of them is
supported by available evidence.

Therefore, the first task in designing NAL-1 is to define and
measure evidence for a statement, given the system’s experience.
Here “evidence” refers to the information that contributes to the
truth-value of a statement, even though it cannot decide the truth-
value once for all, under AIKR — the system does not have all the
relevant information at once, and nor can it afford the resources to
consider all available information.

In IL-1, the (binary) truth-value of the statement “S → P” is
determined by whether the statement is included in, or can be derived
from, the system’s experience K. Now we want this inheritance
relation to be “true to a degree”, but what does that mean exactly?
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As shown by Theorem 2.4, inheritance relation “S → P” is
equivalent to subset relations “SE ⊆ PE” and “P I ⊆ SI”, so when
the former becomes a matter of degree, so does the latter, and the
other way around. It is not hard to extend the subset relation from
binary into graded, and to distinguish positive and negative evidence:
If A and B are sets, for the subset relation “A ⊆ B”, the elements in
set (A∩B) are positive evidence, and the elements in set (A−B) are
negative evidence. Here ‘∩’ and ‘−’ are the intersection and difference
of sets, respectively, as defined in set theory.

Definition 3.1. For an inheritance statement “S → P”, its evi-
dence are terms in its evidential scope, SE and P I . Among them,
terms in (SE ∩ PE) and (P I ∩ SI) are positive evidence, and terms
in (SE − PE) and (P I − SI) are negative evidence.

In other words, as far as a term in positive evidence is concerned,
the inheritance statement is correct; as far as a term in negative
evidence is concerned, the inheritance statement is incorrect. For
example, to decide to what extent the statement “bird → animal”
is correct, we can check the instances of bird and the properties of
animal. If a (known) instance of bird, say robin, is also known to be
an instance of animal, it is positive evidence for “bird → animal”,
otherwise it is negative evidence. Similarly, if a (known) property
of animal, say being an organism, is also known to be a property
of bird, it is positive evidence for “bird → animal”, otherwise it
is negative evidence. At this stage, the experience of the system
is still defined as containing binary statements (as in IL-1). It is
the conclusions derived from them that have positive and negative
evidence, provided by the experience.

For each statement, if we only need to qualitatively distin-
guish situations like “all evidences are positive”, “all evidences are
negative”, “some evidences are positive”, and “some evidences are
negative”, as well as to concentrate on extension, we can get an
extension of IL-1 that is functionally equivalent to Aristotle’s logic
[Aristotle (1882)], as shown in Wang (1994b). However, as argued
previously, for the purpose of AI, a quantitative measurement is
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required. Since evidence is defined by sets, its “amount” can be
naturally measured by the size (cardinality) of the corresponding sets.

Definition 3.2. For statement “S → P”, the amount of positive,
negative, and total evidence is, respectively,

w+ = |SE ∩ PE | + |P I ∩ SI |,
w− = |SE − PE | + |P I − SI |,
w = w+ + w−

= |SE | + |P I |.

An important design decision made here is not to distinguish the
“extensional” factor and the “intensional” factor in the above mea-
surements. As argued in Wang (2006b), it is often either impossible
to clearly separate the two factors, or necessary to mix them. Human
beings routinely use extensional information to make intensional
judgments, and vice versa. For instance, “representativeness” (which
is intensional) is often used as “probability” (which is usually used
as extensional) [Tversky and Kahneman (1974)], and this practice is
defended in Wang (1996a, 2006b).1

A major reason for NAL to be designed within the term logic
framework is the relative naturalness for the notion of “evidence”
to be introduced. For a proposition in FOPL in the form of
P (a1, . . . , an), it is not easy to say what should be counted as its
positive or negative evidence. Wang (2009d) contains a detailed
discussion about the formalization of evidence in NAL, and as well
as a comparison between this approach and some other approaches.

3.2. Two-Dimensional Truth-Value

In principle, the evidential support for a statement can be measured
by any two of the three amounts introduced above: w+, w−, and

1When necessary, it is still possible to separately represent and process extensional
evidence and intensional evidence in NAL. The method will be introduced in
NAL-6, covered in Chapter 10.
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w, each of which is a non-negative integer, and the range can be
extended into real numbers in [0, ∞) to include partial evidence.

Even so, when comparing competing beliefs and deriving new
conclusions, relative measurements are usually preferred over absolute
measurements, because the evidence of a premise normally cannot be
directly used as evidence for the conclusion. Also, it is often more
convenient for the measurements to take values from a finite range,
while the amount of evidence has no upper bound. Finally, it is
desired to use the binary truth-values, traditionally represented as 0
and 1, as limits of the continuous truth-value. These considerations
lead to the following definition of truth-value in NAL.

Definition 3.3. The truth-value of a statement consists of a pair of
real numbers in [0, 1]. One of the two is called frequency, defined as
f = w+/w; the other is called confidence, defined as c = w/(w + k),
where k is a positive constant, which is the system parameter for
“evidential horizon”.

In this definition, frequency is the proportion (percentage) of
positive evidence among all evidences, which is the most common
measurement of uncertainty used in everyday life. It is closely related
to the probability defined in probability theory and statistics [Dekking
et al. (2007)]. In the context of NAL, we can associate each statement
S to the event ES that the statement is confirmed when it is checked.
In that way, the corresponding probability P (ES) = limw→∞(w+/w),
that is, the frequency of a statement will converge to the probability
of the corresponding event, if the latter exists. However, under AIKR,
the system does not know if a given frequency has a limit or not, not
to mention where the limit is. Therefore, in general the frequency in
NAL should not be taken as a probability, nor even as an estimation
or approximation of it.

Since frequency is defined by amounts of evidence in the system’s
experience, it changes as the experience unfolds in time. Therefore, as
a measurement of uncertainty, frequency is uncertain in itself. While
the uncertainty within frequency is caused by negative evidence,
the uncertainty about frequency is caused by future evidence. The
second measurement, confidence, is introduced for the latter. Here
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the issue is that if the finite amount of past evidence is compared
to the infinite amount of future evidence, the ratio will be zero.
On the other hand, to limit the future by setting a fixed lifespan
for the system sounds arbitrary. The solution used in NAL is to
compare the evidence in the past to that of a near future, defined by a
constant evidential horizon. Since in competing conclusions the same
evidential horizon is used, the ones supported by more evidence will
have higher confidence value, which is consistent with the everyday
usage of the word “confidence”, though this definition makes the
measurement completely different from the definition of “confidence
interval” in statistics [Dekking et al. (2007)].

This evidential horizon k is a “personality parameter” of the
system, in the sense that though it is a constant in a system,
in different NAL-based systems it can take different values, and
in general it is hard (if not impossible) to find an optimal value.
A natural choice is k = 1, which means to compare the available
evidence with new evidence of a unit amount. This parameter value
will be used in the examples given in this book. The impact of this
parameter on the system will be discussed later in the book.

NAL needs a “two-dimensional” truth-value, because the two val-
ues represent different types of uncertainty. Frequency indicates the
system’s “degree of belief” on the statement, which can be “belief”
or “disbelief” to various degrees, and confidence indicates how strong
or stable this degree of belief is, that is, how easy it is for the system
to change its mind on this matter. Defined as above, the frequency
value and the confidence value of a statement are independent of each
other, in the sense that given the value of one, the value of the other
cannot be determined, or even bounded, except the trivial case that
frequency is undefined if and only if confidence is zero.

NAL needs to consider future evidence, exactly because of AIKR.
Though similar problems are analyzed in probability theory and
statistics, the usual assumptions are that (1) all relevant evidences
are available to the system at the same time, and (2) the system can
afford the time to take all of them into consideration when evaluating
the certainty of a statement. Therefore, it is unnecessary to indicate
the amount of evidence behind each individual statement. On the
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contrary, in NAL neither of the two assumptions can be made, and
each statement has its own evidential basis, so it is necessary to be
measured one by one.

A higher confidence value does not mean that the frequency
is closer to the “objective probability”, but that the frequency is
harder to be changed by new evidence. Though confidence is about
the stability of frequency, so is at a higher-order than the latter,
it should not be considered as a “higher-order probability”. Under
AIKR, frequency is neither a probability, nor a random variable. The
frequency of a statement may change its value when new evidence is
taken into consideration, though its possible values do not necessarily
follow a fixed probability distribution. Furthermore, when confidence
is near its minimum value, it does not mean that the current
frequency value is improbable, but that the system actually knows
little about this matter to have an opinion at all. The definition
of confidence is one of the most unique features of NAL. For more
detailed discussions about it, as well as comparisons with other
approaches, see Wang (2001b).

Fuzzy logic also treats categorical relations and truth as matters
of degree [Zadeh (1965, 1975)]. Even though it has similar intuitions
and motivations as NAL, fuzzy logic does not define its “grade of
membership” as a function of available evidence, nor does it specify
how the grades should be changed. In NAL, fuzziness typically
comes from the diversity in the intension of a term. For example,
“Penguins are birds” is true to a degree, because penguins do not
have all the common properties of birds, but only some of them.
On the other hand, randomness typically comes from the diversity
in the extension of a term. For example, “birds fly” is true to a
degree, because some birds fly, and some do not. These two types
of uncertainty are uniformly represented and processed in NAL. For
further comparisons between fuzzy logic and NAL, see Wang (1996b).

3.3. Representations of Uncertainty

Beside amount of evidence and truth-value, the uncertainty of a
statement can be represented in a few other ways in NAL.
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Within a fixed evidential horizon (i.e., until the amount of new
evidence reaches a constant k), the frequency value of a statement
will be restricted in an interval.

Definition 3.4. The frequency interval [l, u] of a statement contains
its frequency value from the current moment to the moment when
the new evidence has amount k. The two end-points of the interval
are called lower frequency and upper frequency, respectively.

The lower frequency l equals w+/(w + k), and the upper frequency
u equals (w+ +k)/(w +k). It is the case because the current amount
of evidence is w, including positive evidence of amount w+. For the
new evidence of amount k, if it is pure positive, the new frequency
will be (w+ + k)/(w + k); if it is pure negative, the new frequency
will be w+/(w + k); and all the other situation will be in between
these two extreme values.

Definition 3.5. The ignorance of a statement is measured by the
width of the frequency interval, i.e., i = u − l.

Here the “ignorance” is not about the “true value” of frequency,
but about “where it will be” in the near future. For a statement,
its confidence and ignorance are complement to each other, that is,
c + i = 1. This result is in agreement with the everyday usage of the
two words.

This frequency interval is not the lower/upper bound of fre-
quency, which can be obtained only at the infinite future, while the
interval only holds for the near future. In NARS, frequency does
not necessarily converge to a limit. Even if it does, the limit is not
necessarily in the frequency interval at every previous moment. No
matter where a frequency value is in (0, 1) at a given moment, it
can be anywhere in that range after a unspecified period of time,
given proper future evidence. When frequency values have limited
accuracy, the above conclusion also applies to the range of [0, 1].

For comparisons between frequency interval and other “interval”
measurements of uncertainty, such as Dempster–Shafer Theory
[Dempster (1967); Shafer (1976)] and Walley’s theory on Imprecise
Probabilities [Walley (1991)], see Wang (1994a, 2001b, 2009d).



April 4, 2013 12:22 9in x 6in Non-Axiomatic Logic b1497-ch03

NAL-1: Basic Syntax and Semantics 33

The interval representation of uncertainty also provides a map-
ping between the above “continuous representations” and certain
“discrete representations” of uncertainty, because “discrete” corre-
sponds to a willingness to change a value within a certain range.

If in a situation there are only N words that can be used to
specify the uncertainty of a statement, and the uncertainty can be
anywhere in [0, 1] with the same chance, the most informative way
to communicate is to evenly divide the [0, 1] range into N intervals:
[0, 1/N ], (1/N, 2/N ], . . . , ((N − 1)/N, 1], and to use a label for each
section.2

For instance, if we have to use three labels (such as “wrong”,
“unsure”, and “right”) to roughly indicate the correctness of state-
ments, they can be mapped into [0, 1/3], (1/3, 2/3], and (2/3, 1],
respectively. Since the width of the intervals is 1/N , the larger N

is, the smaller the ignorance is (and the higher the confidence is).
On the other hand, to distinguish N different situations, the amount
of evidence should be at least w = N − 1 (so w+, if restricted into
integers, has N possible values from 0 to N − 1), which leads to the
same frequency interval assignments to the situations (with k = 1).

A variation of this approach is to use a single number, with its
accuracy, to represent uncertainty. For example, if the uncertainty
of a statement is represented by a single number 0.6, it will be
mapped into frequency interval [0.55, 0.65), while another statement
with uncertainty 0.60 will be mapped into [0.595, 0.605). These two
statements have similar frequency, but very different confidence. Here
a higher accuracy corresponds to a lower ignorance (and therefore a
higher confidence).

In summary, NAL uses three functionally equivalent representa-
tions for the uncertainty (or degree of belief) of a statement:

Amounts of evidence: {w+, w}, where 0 ≤ w+ ≤ w, or using
w− = w − w+ to replace one of the two;

2When the numerical value is continuous, whether to include a boundary value
into its left-side interval or its right-side interval does not matter much, as far as a
consistent convention is followed. For example, we can change the above intervals
into frequency intervals [0, 1/N), [1/N, 2/N), . . . , [(N − 1)/N, 1], respectively.
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Truth-value: 〈f, c〉, where both f and c are real numbers in [0, 1],
and are independent of each other;

Frequency interval: [l, u], where 0 ≤ l ≤ u ≤ 1, or using i = u − l

to replace one of the two.

The last one has variants where a single label (from a given sequence
of labels) or number (with accuracy) is taken as an interval.

When necessary, these representations can be used together in a
mixture. As discussed in Wang (2006b), to allow multiple represen-
tations of uncertainty makes the design and usage easier. This will
become more clear in the following chapters.

Among all possible values of the measurements, there are normal
cases that actually happen in NAL, and two extreme cases that only
appear in the meta-level descriptions of NAL:

Normal evidence: This is indicated by w ∈ (0,∞), c ∈ (0, 1), or
i ∈ (0, 1). It means the statement is supported by finite amount
of evidence, which is the case for every statement that is actually
involved in inference in NAL.

Null evidence: This is indicated by w = 0, c = 0, or i = 1. It
means the system knows nothing at all about the statement, so
the statement does not need to be actually stored or processed in
the system.

Full evidence: This is indicated by w → ∞, c = 1, or i = 0. It
means the system already knows everything about the statement,
which cannot occur in a NAL.

In an implementation of NARS, if an input or derived sentence has
a truth-value corresponding to null or full evidence, the sentence is
simply ignored, and will not be accepted into the system.

Though the extreme cases never appear in the sentences to be
processed, they can be discussed in the meta-language of NAL as
limit cases, and play important roles in system design. This is why
IL can be considered as an idealized version of NAL, while still being
a meta-logic of it. In IL, the ideal experience provides all evidence
the system can have — the system is not open to new evidence,
and accepts Closed World Assumption (whatever cannot be proved
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Table 3.1. The mappings among measurements of uncertainty.

to\from {w+, w} 〈f, c〉 [l, u] (and i)

{w+, w} w+ = k × f × c/(1 − c) w+ = k × l/i
w = k × c/(1 − c) w = k × (1 − i)/i

〈f, c〉 f = w+/w f = l/(1 − i)
c = w/(w + k) c = 1 − i

[l, u] l = w+/(w + k) l = f × c
u = (w+ + k)/(w + k) u = 1 − c × (1 − f)

to be true is considered false). Given the definition of evidence and
Theorem 2.4 (which states that “inheritance” means subset relation
between extensions and intensions), every empirical belief in IL is
absolutely true, because there is no negative evidence, nor will there
be future evidence.

On the other hand, in NAL each belief may have both positive
and negative evidence, and the impact of future evidence must be
considered, too. In this case, “absolutely true” is mapped into truth-
value 〈1, 1〉 of NAL, since there is neither negative evidence (so
frequency is 1) nor future evidence (so confidence is 1). Similarly, if
the probability of a statement is p, it can be seen as an extreme case
of the truth-value of NAL, 〈p, 1〉, where the statement has infinite
amount of evidence (i.e., w → ∞). In other words, the probability of
a statement is the limit of its frequency, if such a limit exists. With
insufficient knowledge, in NAL it is not assumed that the frequency
of every statement has a limit, and nor is the truth-value handled as
an approximation of such a limit.

For the normal case, formulas for inter-conversion among the
three forms of uncertainty are summarized in Table 3.1, which can
be extended to include w− = w − w+ and i = u − l.

3.4. Experience and Belief

The grammar rules of Narsese used in NAL-1, given in Table 3.2,
are the same as for IL-1, except that a binary “statement” plus a
truth-value becomes a multi-valued “judgment”. In communications
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Table 3.2. The grammar rules of NAL-1.

〈sentence〉 ::= 〈judgment〉 | 〈question〉
〈judgment〉 ::= 〈statement〉 〈truth-value〉
〈question〉 ::= 〈statement〉 | ? 〈copula〉 〈term〉 | 〈term〉 〈copula〉 ?

〈statement〉 ::= 〈term〉 〈copula〉 〈term〉
〈copula〉 ::= →
〈term〉 ::= 〈word〉

between the system and its environment, the other two types of
uncertainty representation can also be used instead of the truth-value
of a judgment, though within the system they will be translated to
(or from) truth-value. Also, a “question” is included in the object-
level of the language, as a statement (without a truth-value), and
may contain a variable to be instantiated.

In NAL-1 the truth-value of a statement, as well as the other
uncertainty measurements, are defined with respect to K, an ideal
experience consisting of binary inheritance statements. However,
NARS cannot know such a K, nor can it afford the resources to
produce a K∗, so as to calculate the truth-values of all the relevant
statements — in NAL-1, we have to accept AIKR.

Definition 3.6. The actual experience of a system implementing
NAL-1 is a stream of Narsese sentences, as defined in Table 3.2.

What differs ideal experience from actual experience is:

(1) The former contains true statements only, while the latter
contains questions and multi-valued judgments.

(2) The former is a set (without internal order or duplicated
elements), while the latter is a stream (where order matters, and
duplicate elements are possible).

(3) The former is available to the system at the very beginning, and
remains unchanged (that is why the Closed-World Assumption
can be made in IL — whatever unknown at a moment cannot
become true in the future), while the latter comes one piece at a
time, and there is always future experience.
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In summary, all these differences come from the common root
that ideal experience is used in an axiomatic system that assumes
the sufficiency of knowledge and resources, while actual experience
is used in a non-axiomatic system that assumes the opposite.
Nevertheless, since the binary truth-value true corresponds to a limit
of normal truth-value 〈f, c〉, it is possible to take the former as an
idealized version of the latter.

To introduce NAL-1, IL-1 is established first, then it is used
to define the uncertainty measurements in NAL-1, so as to break
an apparent “circular definition” in experience-grounded semantics.
According to EGS, the truth-value of a statement is determined
according to the system’s experience, but if the experience is
nothing but a stream of statements, each with a truth-value of
its own, is it not a circular definition? The NAL solution of this
problem is an example of “bootstrapping”: to define the semantic
notions (truth-value, meaning, etc.) in NAL according to an ideal
experience, then use this semantic theory to guide the system design
and usage.

For example, if there is a judgment “penguin → bird 〈0.75, 0.80〉”
in the memory of the system, then according to the relation between
truth-value and amount of evidence, we see that it corresponds to
w = 4 and w+ = 3, which means the system believes the statement
to the extent as if it has four pieces of perfect evidence, and three of
them are positive, and one negative. However, we know that it is not
how the truth-value is actually produced — under AIKR, the system
cannot get such perfect evidence. It may have tested the statement
more than four times, but in imperfect situations so each result
cannot be counted as having a unit amount; or maybe the system has
not directly tested the statement at all (by comparing the extension
or intension of the two terms), but reached the conclusion using an
inference rule from other beliefs. Later, we will see that in NAL
there are infinite numbers of ways for “penguin → bird 〈0.75, 0.80〉”
to come into existence, though we can always understand a truth-
value as if it comes from an ideal experience. In this way, when
we communicate with a NAL-based system, we can decide the truth-
value of an input judgment and interpret that of an output judgment
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according to the “equivalent ideal experience”; when we design and
verify an inference rule, we can focus on the extreme situations, where
the related measurements take special values — we will see that in
the next chapter.

In AI history, a major objection to numerical truth-value (or
degree of belief) is “where are the numbers coming from?” [McCarthy
and Hayes (1969)]. Indeed, in most situations human knowledge
is expressed as qualitative judgments, without numerical truth-
values. However, it does not mean that numerical measurements are
impossible or undesired. The NAL approach takes the position that:

• For internal representation, the system uses a numerical truth-
value (which consists of two numbers) for every judgment, so as to
use generally applicable rules for inference, decision making, and
so on.

• For external communication, the system allows multiple approa-
ches for uncertainty representation, as well as the usage of various
verbal labels or default values.

For example, in the current implementation, the truth-value of
an input judgment is optional. When no truth-value is specified, the
system will assign 〈1.0, 0.9〉 to it. Here the default confidence value
0.9 is a system parameter, which reflects the system’s “habit” in
communication. As other such parameters, there is no “correct” or
“optimal” value for it, so different systems can have different values
(which lead to different “personality”). However, in a system the
value should remain constant (for the system to have a coherent
semantics), and it should be within a rough range (for the system to
behave “normally” in communication).

Here, the advantage of numerical truth-value is not its accuracy,
but its generality. As far as a proper semantic definition is provided,
a numerical measurement can also be natural to the human users.

Now we have defined the actual experience in NAL-1 on the basis
of the ideal experience in IL, by treating each judgment in the former
as equivalent to a set of statements in the latter. In the following,
we will continue to refer to the experience of a system as K, to cover
both cases.
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In IL, the system’s knowledge, or beliefs, is K∗, the transitive
closure of K. In other words, it is derived from K by exhaustively
applying its single inference rule. In NAL-1, the same cannot be done,
under the restriction of AIKR. Therefore, the system’s belief set K∗

starts from the judgments in the actual experience K, then the set
is modified by the inference rules of NAL-1 (to be introduced in the
next chapter), under the restriction of available resources. We can
still represent either K or K∗ as a directed graph, as in IL-1, except
that in NAL-1 the graph is weighted, and the weight is measured by
a pair of numbers. Furthermore, K∗ changes over time, and does not
include all conclusions derivable from K, but just some of them.

Definition 3.7. A belief in the system is a judgment in its memory
that is either an element of experience K, or derived from some
elements of K. At a given moment, the collection of all beliefs is
called the system’s knowledge K∗. The evidential base of a belief B

is the set of beliefs in K from which B is derived.

An evidential base records the reasons for the statement to have its
current truth-value, similar to a truth maintenance system [Doyle
(1979)]. In NARS, the evidential base of an input judgment is a set
containing itself, while the evidential base of a derived conclusion is
the union of the evidential bases of the premises deriving the con-
clusion. If the same judgment appears multiple times in experience,
each occurrence corresponds to a separate evidential base.

This definition reveals another important difference between
NAL and other probabilistic logics. In reasoning systems based on
probability theory, the system’s degree of belief is usually represented
by a (consistent) probability distribution defined on the belief space
[Pearl (1988)]. Here all the degrees of belief are based on the same
evidence, usually called background knowledge. When the Bayesian
Rule is used to carry out conditioning, all the degrees of belief are
reevaluated (in theory, though not necessarily in implementation)
to take the effect of new evidence into account. On the contrary,
in NAL each belief has its own evidential base, which usually does
not include all relevant evidence in the experience. This result is
directly implied by AIKR, and is a major reason for NAL to stay
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outside of probability theory — NAL does not even obey the axioms
of probability theory [Kolmogorov (1950)], which, when applied to
reasoning systems, would require each statement to have a unique
probability, as well as a consistent probability distribution among the
statements. Neither of the two requirements can be satisfied under
AIKR, so in this situation probability theory is inapplicable.3

Similar to “truth-value”, the definition of “meaning” of NAL-1
is also extended from that of IL-1. While the meaning of a term
still consists of its extension and intension, these two are no longer
classical sets, but sets with graded membership, like fuzzy sets [Zadeh
(1965)].

Definition 3.8. A belief “S → P 〈f, c〉” indicates that S is in the
extension of P and that P is in the intension of S, with the truth-
value of the judgment specifying their grades of membership.

In other words, whether a term has a generalization (property) or
specialization (instance) is a matter of degree, measured by the
two-dimensional truth-value of NAL. Even with this extension, the
principle of the semantics of NAL is still “experience-grounded” as
in IL, and the meaning of a term is fully determined by its empirical
relations with other terms. However, some conclusions on IL do
not hold in NAL anymore. For example, in NAL the extension and
intension of a term do not fully determine each other. Also, a term is
no longer in its own extension and intension. Some other implications
of this semantics are discussed in Wang (2005).

3This is the root of the differences between NAL and Probabilistic Logic Network
(PLN) [Goertzel et al. (2008)], which is partially based on NAL and partially
based on probability theory. Such a mixture is a meta-level inconsistency not
allowed in NAL — to me, it is invalid to treat a measurement as probability in
some places of the system, while in other places to process the same measurement
using methods that violate the axioms of probability theory.
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CHAPTER 4

NAL-1: BASIC INFERENCE RULES

In this chapter, the inference rules of NAL-1 are described and
justified based on the grammar rules and semantic theory introduced
in Chapter 3.

In terms of the content of conclusion, there are three types of
inference rules in NAL-1:

• Local rules that do not produce new statement,
• Forward rules that produce new statements as judgments,
• Backward rules that produce new statements as questions,

and they will be introduced in that order.

4.1. Local Inference Rules

In NAL, “local” inference rules are the rules whose conclusions
have the same content as a premise; therefore, no new statement
is introduced into the system in such an inference step. In NAL-1,
there are two such rules: the revision rule merges its premises into
its conclusion, and the choice rule picks one of its premises as its
conclusion.

Revision

One direct implication of AIKR is the existence of inconsistent
beliefs, in the sense that at a given moment, there may be two
(or more) beliefs that have the same content (i.e., statement), but
different truth-values. This happens because the system is open to
new experience of any content, including incoming judgments that

41
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are inconsistent with the existing ones. Furthermore, since each
belief is derived from a certain evidential base, beliefs with different
evidential bases may also be inconsistent. Consequently, this type of
inconsistency is inevitable in an open system.

Given the binary truth-value in traditional propositional logic,
an “inconsistency” or “contradiction” means the coexistence of a
proposition P and its negation ¬P . Following the widely accepted
Principle of Contradiction, inconsistency is strictly prohibited in
traditional logics. According to the definition of material implication,
(P ∧ (¬P )) =⇒ Q is always true for arbitrary propositions P and Q.
Therefore, as soon as the system’s beliefs contain an inconsistency,
the system may derive any proposition as conclusion, which is clearly
unacceptable. In certain situations, it is desired for a logic system
to have some tolerance to inconsistency, which leads to the study
of “paraconsistent logic” [Priest et al. (1989)] and “belief revision”
[Alchourrón et al. (1985)], which are still carried out in the binary
logic framework.

In a multi-valued logic, such as probabilistic logic and fuzzy
logic, inconsistency means a statement gets two or more truth-values
(probability or degree of membership), even though the values are
merely different, not necessarily opposite. Such a situation is usually
prohibited, since the truth-value (or whatever it is called in the logic)
is supposed to be a property of the statement, so should have a unique
value.

For example, in a probabilistic logic, the probability of a given
hypothesis H cannot be both 0.91 and 0.92, though the two values
are close, so do not really form a contradiction. This requirement
is implied by the axioms of probability theory, where each event or
statement can only have a single probability value, no matter how
this value is determined. It is fine for H to have different conditional
probabilities P (H|C1) and P (H|C2), under different conditions that
are explicitly specified in the statements. The requirement for
probabilistic consistency or coherence is often justified by the “Dutch
Book argument”, that is, if a system’s degrees of belief do not form
a (consistent) probability distribution, then it may face sure loss in
certain betting situations [Ramsey (1926)].
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According to the semantics of NAL, for a statement st, an incon-
sistency happens between judgment J1: “st 〈f1, c1〉” and judgment
J2: “st 〈f2, c2〉”, and it is caused by their different evidential bases
or derivation paths.1 A “contradiction” is the extreme case of an
inconsistency, where the two truth-values approach 〈1, 1〉 and 〈0, 1〉,
respectively.

At the meta-level of NAL, the inconsistent beliefs correspond to
meta-statements “According to evidential base B1, the truth-value
of statement st is 〈f1, c1〉” and “According to evidential base B2, the
truth-value of statement st is 〈f2, c2〉”, respectively. Here, both meta-
statements can be correct, and there is no inconsistency between the
two, since they have different (meta-level) contents. At the object-
level, when the system has to decide the truth-value of statement st,
the situation cannot be handled by treating J1 and J2 as conditional
statements (like in probability theory), since the evidential bases are
implicitly represented, rather than explicitly included as part of the
statement. The fundamental difference between these two situations
has been analyzed in detail in Wang (1993, 2004b).

The consequence of an inconsistency in NAL is also very different
from that in a binary logic. Since in NAL every conclusion is
semantically related to the premises, an inconsistency in the system
is a “local” issue that only has an impact on the beliefs that are
semantically related to the inconsistency, rather than a “global” issue
that implies an arbitrary conclusion. For example, if a system finds
contradicting evidence on whether birds can swim, it may not be able
to decide whether robin, as a special kind of bird, can swim or not.
However, this problem should have no effect on the system’s belief
on whether water is liquid, which has no semantic relation with bird
or swimming, as far as the system knows.

Since the existence of inconsistent judgments is inevitable for
systems working under AIKR, NAL must have some tolerance to it.
An inconsistency may indeed lead to sure loss when the system faces a

1In NAL-1, judgments have no temporal attribute, so an inconsistency is not
caused by a change in the environment. Time-related belief change is handled in
NAL-7, to be introduced in Chapter 11.
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betting situation, but the Dutch Book argument only shows that the
consistency among beliefs is highly desired, not that it can always
be achieved. In a system completely open to novel and surprising
observations, it is quite common for the beliefs coming from different
sources to conflict with each other.

However, it does not mean that the system does not need to
do anything when an inconsistency is found. Since each judgment
is supported by some evidence, to resolve an inconsistency does not
mean to remove one of the judgments involved, as in Alchourrón
et al. (1985). Instead, an adaptive system like NARS should take all
available evidence into consideration when judging the truth-value
of a statement. Therefore, whenever distinct evidential bases for the
same statement are found, the system should try to poll the evidence
bases B1 and B2, and form a judgment based on the merged evidence
B1 ∪ B2.2

When B1 and B2 are disjoint sets, the amount of positive and
total evidence of the conclusion are simply the sums of those of the
premises ({w+

1 , w1} and {w+
2 , w2}), respectively:

w+ = w+
1 + w+

2 ,

w = w1 + w2.

This inference is formalized as the revision rule of NAL, given in
Table 4.1. The truth-value of the conclusion of revision, in the form
of 〈f, c〉, is calculated by the truth-value function, Frev, from the
truth-values of the two premises. The function is derived from the
additivity of amount of evidence, and its relationship with truth-
value.

Table 4.1. The revision rule with truth-value function.

{st 〈f1, c1〉, st 〈f2, c2〉} � st 〈Frev〉
f = [f1c1(1 − c2) + f2c2(1 − c1)] / [c1(1 − c2) + c2(1 − c1)]

c = [c1(1 − c2) + c2(1 − c1)] / [c1(1 − c2) + c2(1 − c1) + (1 − c1)(1 − c2)]

2This understanding of belief revision and evidence combination is different from
the one proposed in Dempster–Shafer Theory [Dempster (1967); Shafer (1976)].
For detailed discussion on this topic, see Wang (1994a); Dezert et al. (2012).
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The truth-value function shows that in revision the frequency
value of the conclusion is a weighted average of the frequency values
of the premises; the confidence value of the conclusion is higher than
the confidence values of both premises. In practical applications, this
rule can either accumulate evidence of the same (positive or negative)
nature, or weigh evidence of opposite nature against each other.3

As mentioned above, this rule is applicable only when the two
premises have distinct evidential bases. Since the evidential base of
a conclusion is the union of those of the premises, it will contain
more elements than that of either premise. Under AIKR, the storage
space used by a statement and the processing time of an inference
step must be limited to a constant, so the maximum size of evidential
bases is fixed (as a system parameter). When a new evidential base
is created, it is formed by merging those of its “parents” (i.e.,
the two premises used in the inference step), then removing some
elements if its size exceeds the maximum size. Consequently, it is
possible for the revision rule to be used to merge two premises
that should not be merged, since their actual evidential bases were
not fully remembered. However, this type of error will happen only
when the common ancestor of the two premises is many generations
away from them, because all recent ancestors are remembered in the
evidential bases. Restricted by AIKR, we cannot expect the system
to remember and process all relevant information on every issue, but
the most important and relevant information.

Choice

For two inconsistent judgments J1 and J2, if their evidential bases
B1 and B2 overlap, i.e., have common elements, some evidence has
been involved in the evaluation of both judgments. If the above
revision rule were still used with J1 and J2 as premises, there may

3After a pair of judgments are used by the revision rule to get a summary
of evidence as conclusion, the premises are not immediately removed, because
they are still valid, with respect to their evidential bases. However, due to its
higher confidence value, the conclusion usually has a higher priority, which will
be explained in the next chapter.
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be evidence that is counted more than once. As a special case,
this situation happens between the conclusion of the revision rule
and one of the premises that produces this conclusion. Unless some
restrictions are applied to the revision rule, the conclusion would be
merged again and again with its premises, causing an infinite loop of
“self-strengthening” of a belief.

On the other hand, it is difficult (if possible) to accurately
separate the contribution of every element in the evidential base of
a judgment to its truth-value, without additional information about
its derivation history. This is especially true when the evidential base
only contains some, but not all, input judgments that have made the
contribution, due to the resource constraint mentioned previously.

Therefore, if NARS faces two inconsistent judgments J1 and J2

and their evidential bases B1 and B2 have common elements, they
are not merged using the revision rule. Instead, the judgment with
the higher confidence value is chosen, by the choice rule of NAL.4

Therefore the choice rule can be used to resolve an inconsistency
when the two judgments cannot be merged, and the solution is
to use the one with higher confidence value. This rule is justified
by the semantics of NAL, because when an adaptive system faces
inconsistent beliefs, the one supported by more evidence should be
preferred.

Later we will see that even from the same given experience,
different derivation paths may lead to different truth-values to be
given to a statement. Obviously, such conclusions cannot be merged.
Instead, the conclusion with the highest confidence will be chosen
when they are compared to each other.

A major function of the choice rule is to choose between
competing answers to a given question. Here it can be seen as an
extension of the matching rule of IL-1 (defined in Table 2.3). As in
IL-1, judgment “S → P 〈f, c〉” provides a matching answer, as a

4This simple solution does not necessarily lead to a loss in the inferential power of
the system. When B1 ∩ B2 is not empty, the statement st may get a truth-value
from evidential base B1 − B2 (or B2 −B1), then merge with B2 (or B1) to get a
conclusion based on B1 ∪ B2.
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candidate, to evaluative question “S → P”, as well as to selective
questions “S → ?” and “? → P”. However, unlike the situation
of IL-1, in NAL-1 all candidates are not equally good anymore.
The choice rule of NAL chooses the better answer between two
candidates, and if there are more than two candidates, the rule is
repeatedly applied to choose the best.

For an evaluative question “S → P”, both candidate answers
contain the same statement “S → P”, though have different truth-
values. The quantitative property used to choose the best one is the
confidence value, as explained above.

For a selective question “S → ?” or “? → P”, if two candidate
answers suggest different instantiations T1 and T2 for the query
variable in the question, in NAL-1 the choice only depends on
the truth-values of the two candidates, and does not consider the
properties of the terms involved.5 Ideally, the question should be
answered by a perfect element in the intension of S or the extension
of P , respectively. However, in NAL there is no such perfect answer,
so what the system looks for is an answer that is “as true as possible”.
Since a truth-value contains two factors, here we need a way to
combine them into a single number, so as to put all candidates into
a total order with respect to their truthfulness.

For example, question “? → bird” asks the system to find a (best)
special case for the term bird, and the system at the moment only
knows two candidates, robin and penguin, with beliefs “robin →
bird 〈1.0, 0.8〉” and “penguin → bird 〈0.9, 0.9〉”. The former has a
higher frequency value, but the latter has a higher confidence value,
so the choice is not trivial.

Some people might say that the two simply cannot and should not
be compared, because frequency and confidence are defined in NAL
as different dimensions. However, under AIKR, the system has to
make a choice between the two, even when they are “incomparable”
in the strict sense. This requirement may not sound that strange if

5Those properties, such as the simplicity of a term, will be taken into considera-
tion in a higher layer of NAL.
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Table 4.2. The expectation function.

frequency-interval version: e = (l + u)/2

evidence-amount version: e = (w+ + k/2)/(w + k)

truth-value version: e = c × (f − 1/2) + 1/2

we consider the decisions we make on a daily basis, many of which
ask us to compare values on different dimensions.

In NAL, the choice rule, when used in this situation, chooses the
candidate with the highest expectation value, which is a prediction of
the frequency for the statement to be confirmed in the near future.
According to the analysis in the previous chapter, we know for sure
that it will be in the interval [l, u]. Under the openness assumption,
all values in the interval are equally probable, so the expected value
will be the middle point of the interval. This function can also be
given in the truth-value form and the amount of evidence form, as
listed in Table 4.2.

Therefore, e normally takes its value in (0, 1). When using this
function to predict, a strong positive prediction (i.e., close to 1)
will be made when the system has a lot of positive evidence and
little negative evidence, a strong negative prediction (i.e., close to 0)
will be made when the system has a lot of negative evidence and
little positive evidence. When the system either has “balanced”
evidence, or knows very little about the statement, the prediction
will be indecisive (i.e., close to 0.5). From the expectation value alone,
the frequency factor and the confidence factor cannot be accurately
separated, because the mapping from truth-value to expectation is
many-to-one.

According to this function, “robin → bird 〈1.0, 0.8〉” is taken
as a better answer to question “? → bird” than “penguin →
bird 〈0.9, 0.9〉”.

The expectation function, especially its evidence-amount ver-
sion, is related to several important previous results, including
Laplace’s “Rule of succession” [Jaynes (2003)] (when k = 2) and the
“λ-continuum” in Carnap (1952). What makes this function different
from the previous works is that it is fully based on AIKR. For more
discussions, see Wang (2006b).
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Table 4.3. The choice rule.

{st1 〈f1, c1〉, st2 〈f2, c2〉} � st 〈Fcho〉

Let us take this chance to see the impact of the parameter k.
Assume there are two competing answers for the same question,
where the first one has been tested 20 times, with 19 success and
1 failure, and the second one has been tested n times without any
failure yet. Which one is more likely to be true in the next testing?
Intuitively, people will prefer the first answer when n is small, but
switch to the second one when n becomes large enough. However,
different people may “switch” at different values of n. For NAL, if
k = 1, then the second answer catches up with the first one when
n reaches 6; if k = 2, that happens when n reaches 9. Without
any assumption about the distribution of future experience, it is
hard to say which value is optimal. The systems show different
“personalities” when predicting the future, and larger k corresponds
to more conservative and risk-averse behavior.

In summary, the choice rule of NAL is formally defined in
Table 4.3, where “st1 〈f1, c1〉” and “st2 〈f2, c2〉” are two candidate
answers to a question (according to the matching rule of IL), and
“st 〈Fcho〉” is the chosen answer. When st1 and st2 are the same
statement, the candidate with a higher confidence value is chosen,
otherwise the one with a higher expectation value is chosen.

4.2. Forward Inference Rules

Forward inference is a process that derives judgments from given
judgments. A typical forward inference rule in NAL takes two
judgments as premise, and derives a judgment as conclusion. An
example of a forward inference looks like:

{premise1〈f1, c1〉, premise2〈f2, c2〉} � conclusion〈f, c〉,

where 〈f, c〉 is calculated from 〈f1, c1〉 and 〈f2, c2〉 by a truth-value
function associated with the rule.

Unlike the local rules, in a forward inference rule the two premises
and the conclusion each has a different statement, and therefore a



April 4, 2013 12:22 9in x 6in Non-Axiomatic Logic b1497-ch04

50 Non-Axiomatic Logic: A Model of Intelligent Reasoning

different evidential scope (as defined by the extension of its subject
and the intension of its predicate). Consequently, the evidence of a
premise cannot be directly used as evidence of the conclusion. On
the other hand, the evidence of the conclusion comes from nowhere
but the premises. To establish the truth-value functions in such a
situation, we need a new calculus of uncertainty. This calculus is
different from the existing theories (like probability theory and fuzzy
set theory), because the measurements of uncertainty in NAL cannot
be defined in those theories (though may be similar to them here or
there), as explained in the previous chapter.

To solve this problem, in NAL the involved uncertainty mea-
surements are taken to be extended Boolean variables, so the truth-
value functions are defined as extended Boolean functions. To define
a truth-value function, the involved variables are first treated as
binary, and their relationships are established as Boolean functions,
according to the semantic theory of NAL. If there are multiple
functions satisfying the semantic condition, the mathematically and
conceptually simplest function is used. After that, the variables
and the functions are extended from binary to real-number [Wang
(2006b)].

Definition 4.1. An extended Boolean variable takes its value in
[0, 1]. Extended Boolean variables x1, . . . , xn are mutually indepen-
dent if the value of any of them cannot been bounded to a subrange of
[0, 1] according to the values of the others. There are three extended
Boolean operators defined among independent extended Boolean
variables:

not(x) = 1 − x

and(x1, . . . , xn) = x1 × · · · × xn

or(x1, . . . , xn) = 1 − (1 − x1) × · · · × (1 − xn).

Clearly, the traditional Boolean variables and the three logical
operators defined among them are extreme cases of the above
definition. In literatures, the and and or operators satisfying this
condition are called “Triangular Norm” (“T-norm”) and “Triangular
Conorm” (“T-conorm”), respectively [Bonissone (1987)]. In the
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context of NAL, they are used for functions that are conjunctively
and disjunctively determined by the variables, respectively, and the
above definition is chosen for its simplicity and smoothness [Wang
(2006b)]. Though this definition is in agreement with probability
theory, it is not derived from the theory, and nor are the variables
interpreted as probability values.

According to the definitions of uncertainty measurements in
Chapter 3, the two components in truth-value (frequency and con-
fidence) and those in frequency interval (lower frequency and upper
frequency) are extended Boolean variables, and so are the amounts
of evidence when w ≤ 1. The mutual independence requirement of
the and and or operators is satisfied by measurements in different
judgments, as far as they have distinct evidential bases. As for the
measurements of the same judgments, they need to be analyzed
pair by pair. For instance, frequency and confidence are mutually
independent, but lower frequency and upper frequency are not.

Therefore, in every forward inference step of NAL-1, the premises
must have distinct evidential bases, so as to avoid circular reasoning
and repeated usage of evidence, as well as to allow the extended
Boolean operators to be applied.

In the context of NAL, the word “syllogistic” is used in a broad
sense, to mean rules where the two premises share exactly one
common term, and the conclusion is between the other two terms.
In the following, let us assume that the shared term is M , the first
premise J1 is between M and term P , and the second premise J2

is between M and term S. Like in IL-1, all these syllogistic rules
are about the transitivity of the inheritance copula, except that in
NAL-1 the statements are not binary, but multi-valued, and the two
terms may be in either order. There are four possible combinations of
J1 and J2, and each combination can produce a pair of conclusions,
as listed in Table 4.4. In each case, the subscript x of the truth-value
function Fx indicates the inference type, and F ′

x is Fx with the order
of the two premises switched.

In the following, we are going to analyze the four rules one-
by-one, where the first three inference types are named using the
categories introduced in Peirce (1931).
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Table 4.4. The basic syllogistic rules.

J2\J1 M → P 〈f1, c1〉 P → M 〈f1, c1〉

S → M 〈f2, c2〉 S → P 〈Fded〉 S → P 〈Fabd〉
P → S 〈F ′

exe〉 P → S 〈F ′
abd〉

M → S 〈f2, c2〉 S → P 〈Find〉 S → P 〈Fexe〉
P → S 〈F ′

ind〉 P → S 〈F ′
ded〉

Deduction

In NAL-1, the deduction rule has the following form:

{M → P 〈f1, c1〉, S → M 〈f2, c2〉} � S → P 〈Fded〉.
Obviously, this rule is an extended version of the inference rule in
IL-1, justified by the transitivity of the inheritance copula.

Here the frequency and confidence in all the truth-values (of
the premises and the conclusion) are treated as extended Boolean
variables. As analyzed in IL-1, this rule derives positive conclusion
when both premises are positive. This means that the frequency of
the conclusion, f , is conjunctively determined by f1 and f2, and
do not depend on c1 and c2. This is because whether the premise
is confident or not has no impact on the ratio between positive
and negative evidences of the conclusion. On the other hand, the
confidence of the conclusion, c, is conjunctively determined by c1

and c2, as well as f , since this rule only derives positive conclusion.
Therefore, the truth-value function Fded is uniquely determined by
the following extended Boolean equations:

f = and(f1, f2),

c = and(f1, f2, c1, c2).

For example, from two judgments with the default truth-value,
a conclusion can be derived, which is positive, though has a slightly
lower confidence value (compared to the premises):

{bird→ animal 〈1, 0.9〉, robin→ bird 〈1, 0.9〉} �
robin→ animal 〈1, 0.81〉.
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On the contrary, if a premise is purely negative, no conclusion can
be derived by this rule6:

{bird→ animal 〈1, 0.9〉, tiger→ bird 〈0, 0.9〉} �
tiger→ animal 〈0, 0〉.

A chain of deduction can be formed by more than two judgments.
For example, from given premises {a→ b 〈f1, c1〉, b→ c 〈f2, c2〉, c →
d 〈f3, c3〉}, a judgment on “a → d” can be formed by applying the
deduction rule twice. Here, like in many other places in NAL, the
order of inference matters — the final conclusion may have different
confidence (though the same frequency for this case), depending on
weither “a → c” or “b → d” is derived as the intermediate conclusion.
When both paths are followed, the choice rule will pick the more
confident conclusion whenever the statement is queried.

This deduction rule captures one of the several inference patterns
that are often labeled as “deduction”, and the other forms of
deduction will be introduced in the upper layers of NAL. It is
important to remember that the variables in the truth-value function
are not probability values, and the truth-value function is not
established according to probability theory, though it shows some
similarity with certain probabilistic calculations.

Induction

In NAL-1, the induction rule has the following form:

{M → P 〈f1, c1〉, M → S 〈f2, c2〉} � S → P 〈Find〉
In this inference step, the common term M is the subject of both
premises, so it cannot be directly associated with the transitivity of
the inheritance copula. Instead, M can be used as a piece of potential
evidence. According to the definition of (extensional) evidence given
in the previous chapter, M is a piece of purely positive evidence
for “S → P” if it is fully in (SE ∩ PE), and a piece of purely
negative evidence for the statement if it is fully in (SE − PE).

6How to derive a negative conclusion deductively is covered in NAL-5 (Chapter 9).
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Expressed as equations among extended Boolean variables, the truth-
value function Find is uniquely determined by

w+ = and(f2, c2, f1, c1),

w− = and(f2, c2, not(f1), c1).

It follows that w = and(f2, c2, c1), and from the amount of evidence,
the truth-value of the conclusion can be calculated according to the
relations given in Table 3.1.

For example, given a common instance of animal and bird, an
inheritance statement will be made from one to the other:

{robin→ animal 〈1, 0.9〉, robin→ bird 〈1, 0.9〉} �
bird→ animal 〈1, 0.45〉.

Switching the order of the premises, the same rule produces the sym-
metric conclusion “animal→ bird 〈1, 0.45〉”, since positive evidence
supports inheritance in both directions. On the contrary, negative
evidence only supports inductive conclusion in one direction, not the
other:

{tiger → animal 〈1, 0.9〉, tiger→ bird 〈0, 0.9〉} �
animal→ bird 〈0, 0.45〉

bird→ animal 〈1, 0〉.
Since the amount of evidence for a conclusion produced by the
induction rule is at most 1 (a unit amount), the confidence has an
upper bound 1/(1 + k), which is 0.5 when the evidential-horizon
parameter k equals to 1.

It is crucial to remember that in this inference step, the common
term (robin and tiger in the above examples) is taken as one piece of
evidence, rather than as a set of pieces of evidence. This is the case,
because a term is not a set in general, and the truth-values of the
premises are not necessarily determined extensionally. A conclusion
like “bird→ animal 〈1, 0.45〉” should be understood as indicating the
extent to which the subject term is a special case of the predicate term
(as well as the extent to which the predicate term is a general case of the
subject term), rather than the percent of birds that are also animals
(otherwise the amount of evidence may be more than one).
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Like the deduction rule, the rule above only handles one form
of induction, and NAL contains other rules for induction to be
introduced later. We will see that all these forms have something in
common, which is why they are classified as belonging to the same
inference type.

The treatment of induction (and other non-deductive inference)
is one of the most unique and distinguishing feature of NAL. Since
“induction” is usually associated with “generalization”, where the
conclusion covers situations that are not covered by the premises, the
validity of induction cannot be justified in the same way as deduction,
as concluded by Hume (1748) and Popper (1959). Consequently, most
of the “inductive logics” have been based on probability theory, with
the hope that though inductive conclusions cannot be “true” in the
traditional logical sense, their probability values can be evaluated,
according to certain assumptions about the environment [Kyburg
(1983)].

Because NAL is designed under AIKR, it cannot assume that the
events or statements in the environment follow a (known or unknown)
probability distribution. Instead, the truth-value of a judgment is
defined as a function of the evidence collected from the (past)
experience of the system. Such a truth-value is used by the system
to make decisions in the present situation and predictions about the
future, not because the system believes that the present and the
future are the same as the past (that is, a “Uniformity Principle”
embedded in object-level beliefs and postulates), but because the
system is adaptive. Adaptation means to behave as if the present and
the future are the same as the past (that is, a “Uniformity Principle”
embedded in meta-level rules and procedures), even though such
behaviors may lead to mistakes from time to time, and the system
knows that in general the future is different from the past.

A forward inference rule in NAL is valid , as far as the
conclusion correctly summarizes the information provided by the
premises alone, without considering the other information not
available at the moment (though such information will be taken into
account later when it becomes available). Therefore, the judgment
“bird→ animal 〈1, 0.45〉” is not about how much “bird→ animal”
is the case in the real world, but how much it is the case as far
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as the system knows. In this way, “non-deductive” inference and
“deductive” inference are justified in NAL according to the same
semantics, though it is not the justification expected by people who
still believe in objective truth [Wang (2005)].

Non-deductive rules, including the induction just introduced, is
“truth-preserving” in the sense that the truth-value of the conclusion
claims no more “truth” than what is actually provided by the
premises. If the uncertainty of the premises is ignored, then from
“Robin is a type of animal” and “Robin is a type of bird”, it is invalid
to derive “Bird is a type of animal”, but valid to derive “There is a
piece of evidence supporting that bird is a type of animal”, which is
exactly what the induction rule provides.

Abduction

In NAL-1, the abduction rule has the following form:

{P → M 〈f1, c1〉, S → M 〈f2, c2〉} � S → P 〈Fabd〉.

This rule is symmetric to the induction rule, just like how intension
is to extension — while induction is based on extensional evidence,
abduction is based on intensional evidence. As defined in IL-1, for a
term M in the intension of P , if it is also in the intension of S, it
is positive evidence, otherwise it is negative evidence. Expressed as
Boolean equations, it means

w+ = and(f1, c1, f2, c2)

w− = and(f1, c1, not(f2), c2).

It follows that w = and(f1, c1, c2). The symmetry between abduction
and induction also holds for the truth-value functions — Fabd is the
same as F ′

ind, and Find as F ′
abd.

For example, given a common property of robin and bird, an
inheritance will be made from one to the other:

{bird→ animal 〈1, 0.9〉, robin→ animal 〈1, 0.9〉} �
robin→ bird 〈1, 0.45〉.
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Table 4.5. Deduction–abduction–induction in NAL (1).

Deduction Abduction Induction

bird→ animal bird→animal robin→ animal
robin→ bird robin→ animal robin→ bird

robin→animal robin→ bird bird→ animal

The same holds for abduction as for induction, in abduction positive
evidence supports inheritance in both directions, while negative
evidence only supports the conclusion in a single direction.

It was Peirce who suggested that induction and abduction can
both be obtained from deduction by switching a (different) premise
and the conclusion [Peirce (1931)], as shown in Table 4.5 (in Narsese,
truth-values omitted):

However, in his later works, Peirce moved away from the
formal features of the three types of inference, and emphasized
their functions, for demonstration, explanation, and generalization,
respectively [Peirce (1931)]. Since then, there have been different
descriptions and formalization of the three types of inference. In
the current AI research, these types are usually defined by their
functions, and formalized in the framework of propositional or
predicate logic [Flach and Kakas (2000)], which looks different from
the form above.

In NAL, all three types of inference are formalized in an extended
syllogistic form, so it is closer to the “early Peirce”. This treatment
has the advantage of clarity and elegance, as argued in Wang
(2001a).7

Conversion

When M and S are the same term, the abduction rule takes the
following special form:

{P → S 〈f1, c1〉, S → S 〈f2, c2〉} � S → P 〈Fabd〉.

7In NAL, the trio of deduction–induction–abduction appears in several related
forms. The other forms will be introduced in later chapters.
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Table 4.6. The conversion rule of NAL-1.

{P → S 〈f1, c1〉} � S → P 〈Fcvn〉
Fcvn : f = 1, c = f1 × c1/(f1 × c1 + k)

Here the second premise is a tautology, which, according to the
previous chapter, has truth-value 〈1, 1〉, so the truth-value func-
tion restrictions are simplified into w+ = w = and(f1, c1). Since the
tautology is always true, it can be omitted from the premises,
and the inference is from a single premise to a conclusion, which is
traditionally called “immediate inference”. In the current situation,
the conclusion is obtained from the premise by switching the subject
term and the predicate term, which is an inference traditionally called
“conversion” [Stebbing (1950)]. In NAL, this rule has the form as
given in Table 4.6, which also includes the definition of the truth-
value function Fcvn.

The same rule and function can be derived from the induction
rule by letting M be P .

Since only one premise is used, in any rule of immediate inference
the evidential base of the conclusion is the same as that of the
premise.

According to the definition of evidence given in Chapter 3, state-
ments “S →P” and “P →S” have the same positive evidence, but
different negative evidence. However, to directly use this definition in
the conversion rule would lead to the truth-value function restriction
w+ = w = w+

1 , which means when the frequency of the premise is 1,
the conclusion will have the same confidence as the premise, so as a
limit, “S → P 〈1, 1〉” would be derived from “P → S 〈1, 1〉” alone,
which could not be allowed.

To prevent this type of problem, in the immediate inference rules
of NAL, the evidence of a premise cannot be used directly as the
evidence of the conclusion, which is the same as in syllogistic rules,
as discussed before. Therefore, the positive evidence of “P → S” is
still counted as positive evidence “S → P”, though it is the term
P (or S) that is counted as a single piece of evidence, rather than



April 4, 2013 12:22 9in x 6in Non-Axiomatic Logic b1497-ch04

NAL-1: Basic Inference Rules 59

as a set of evidences. Consequently, Fcvn corresponds to the Boolean
equation w+ =w = and(f1, c1), which is equivalent to the above Fcvn.

Since the conversion rule switches the order of the two terms in
a statement, it seems that we can replace the induction rule and the
abduction rule by a conversion followed by a deduction. For example,
instead of directly using the induction rule on M → P 〈f1, c1〉 and
M → S 〈f2, c2〉 to get S → P 〈f1,

f2×c1×c2
f2×c1×c2+k 〉, we first apply

the conversion rule to the second premise to turn it into S → M

〈1, f2×c2
f2×c2+k 〉. Then this intermediate result and the first premise can

be used by the deduction rule to derive S → P 〈f1,
f1×f2×c1×c2

f2×c2+k 〉,
which has the same frequency as the inductive conclusion, but cannot
have a higher confidence value. Therefore, though this is a valid
inference path, its result will not be chosen by the choice rule when
competing with the inductive conclusion, nor to be merged with it
by the revision rule, since they have the same evidential base. The
same is true for abduction: though it can be replaced by conversion-
then-deduction, there will be a confidence loss.

The above example shows a form of inconsistency in NAL: even
from the same evidential base, different inference paths may lead
to conclusions of the same content but different truth-values. This
type of inconsistency is “milder” than the one caused by different
evidence, since here the frequency values are usually the same, and
the difference is in the confidence values. Since the choice rule always
picks the most confident one (which is usually produced by the
shortest inference path), and the revision rule will not merge them,
this situation does not require special treatment.

Exemplification

In NAL-1, the exemplification rule has the following form:

{P → M 〈f1, c1〉, M → S 〈f2, c2〉} � S → P 〈Fexe〉.

This rule uses the same premises as the deduction rule, but derives an
inheritance judgment in the opposite direction of deduction, so it can
also be considered as a “reversed deduction”, though in a different
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sense than induction and abduction. It is called “exemplification”
in NAL, because it uses the most specific term of the three in the
premises as a generalization of the most general term in the premises,
for example:

{robin→ bird 〈1, 0.9〉, bird→ animal 〈1, 0.9〉} �
animal→ robin 〈1, 0.45〉.

Here, the premises provide some (though not much) evidence for
robin to be considered as an “example” of animal, so that in the
following reasoning processes the properties of the former will be
used as the properties of the latter. Similar to conversion, here only
the positive evidence of the premises will be used as positive evidence
for the conclusion, within a unit amount. In the spirit of induction
and abduction, the following restrictions are put in the truth-value
function Fexe:

w+ = and(f1, c1, f2, c2),

w− = 0.

It follows that w = and(f1, c1, f2, c2).
The exemplification rule can also be replaced by certain combi-

nations of deduction and conversion, but all of them will lead to a
conclusion of the same frequency and a lower (or equal) confidence
when k ≥ 1. Therefore, since direct conclusions should be favored
over indirect conclusions, this result suggests that k should be at
least 1.

From the above analysis of each syllogistic rule, as well as
the relations between amounts of evidence and truth-value given
in Table 3.1, the truth-value functions of the syllogistic rules are
summarized in Table 4.7.

In the four truth-value functions, the frequency of the conclusion
only depends on the frequency of the premises, but not on their
confidence, because it is about the ratio between positive and neg-
ative evidence. On the other hand, the confidence of the conclusion
depends on all the four values in the premises, and is always lower
than the confidence of either premise.
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Table 4.7. The truth-value functions of the syllogistic rules.

Function name Boolean version Truth-value version

Fded f = and(f1, f2) f = f1 × f2

(deduction) c = and(f1, c1, f2, c2) c = f1 × c1 × f2 × c2

Fabd w+ = and(f1, c1, f2, c2) f = f2

(abduction) w = and(f1, c1, c2) c = f1×c1×c2
f1×c1×c2+k

Find w+ = and(f2, c2, f1, c1) f = f1

(induction) w = and(f2, c1, c2) c = f2×c1×c2
f2×c1×c2+k

Fexe w+ = and(f1, c1, f2, c2) f = 1

(exemplification) w = and(f1, c1, f2, c2) c = f1×c1×f2×c2
f1×c1×f2×c2+k

Beside the above common properties, the truth-value functions
fall into two groups, according to the maximum confidence of the
conclusions:

Strong Inference: The upper bound of the confidence is 1. Such
an inference rule has a binary version in IL. In NAL-1, only the
deduction rule belongs to this group.

Weak Inference: The upper bound of the confidence is 1/(1+k) ≤
1/2. Such an inference rule has no binary version in IL, but cor-
responds to a “reversed” version of a strong inference. In NAL-1,
the abduction rule, the induction rule, and the exemplification rule
belong to this group.

This distinction also applies to immediate inference rules. In NAL-1,
there is only one immediate inference rule, the conversion rule, which
is weak. Here we can also explain the role k plays in a more general
way: It indicates the relative contributions the weak inference rules
make, compared to the strong inference rules — the larger the k is,
the less the system depends on them.

This “strong versus weak” distinction is similar to the “deductive
versus inductive” and the “explicative versus ampliative” made in



April 4, 2013 12:22 9in x 6in Non-Axiomatic Logic b1497-ch04

62 Non-Axiomatic Logic: A Model of Intelligent Reasoning

the literature of logic [Flach and Kakas (2000)]. Here I use two new
words, because to call the weak rules “inductive” would blur the
differences among the rules in that group — it is better to define
“induction” by its formal features.

On the other hand, to call this group “ampliative” may be
misleading. As analyzed previously, when the truth-value of such
a conclusion is taken into account, it does not really say more than
the premises. What is “ampliative” is the binary version of the rule,
without the proper restriction of a truth-value. Actually, it is the
choice rule that is the ampliative part of NAL, since it uses an
imperfect (though the best it can find) belief to answer a request
for a perfect relation.

Though “deduction” in NAL can also produce tentative conclu-
sions that are revisable by new evidence (so it is not the “deduction”
in the “infallible” sense), it is still different from the other types of
forward inference introduced so far, and the difference is in how high
its confidence can be.

A more comprehensive discussion about induction and abduction
in NAL can be found in Wang (1999, 2001a), respectively.

4.3. Backward Inference Rules

As shown in Table 3.2, NAL-1 can process two types of Narsese
sentences: judgments and questions. When the system is given a
question Q, the choice rule can select the best answer among the
candidate answers provided by the system’s existing beliefs. At the
same time, some other candidate answers can be derived by inference
rules, guided by Q.

The second possibility does not exist in IL-1, where a question
is answered by simply searching the beliefs of the system. Such a
strategy cannot be used in NAL-1, since under AIKR, new sentences
(both judgments and questions) may show up at any moment, and
the system must make real-time responses to the questions, without
assuming that all the implications of the given judgments have been
exhaustively listed in the knowledge base K∗. Instead, the system
must selectively carry out some inference processes among all the
possible ones.
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In this situation, one important way (though not the only way)
for the system to make the selection is by backward inference, where
a question Q produces a derived question Q′. Like forward inference,
backward inference may also happen in two forms:

Syllogistic Inference: A question Q and belief J (a judgment)
produce question Q′, if and only if an answer for Q can be derived
from the J and an answer for question Q′, by a forward syllogistic
inference rule.

Immediate Inference: A question Q produces question Q′, if and
only if an answer for Q can be derived from an answer for question
Q′, by a forward immediate inference rule.

For example, if the question is “robin → animal”, and the system
already has the belief “robin → bird 〈1, 0.9〉”, backward inference
will produce a question “bird → animal”, since from its answer and
the existing belief, an answer to the original question can be provided
by the deduction rule. Similarly, another question “animal → robin”
is produced via backward inference, since from its answer, an answer
to the original question can be provided by the conversion rule.

Therefore, the function of backward inference is not to directly
answer a question, but to “activate” the relevant beliefs so as to
realize certain forward inference to produce the answer. It is called
“backward” because it starts at where the system wants to reach
(the question), and moves “backward” to the relevant beliefs that
will eventually derive the required answer. Therefore, the “forward/
backward inference” in NAL is similar to the “forward/backward
chaining” in some AI systems [Russell and Norvig (2010)].

As a term logic, the inference rules in NAL are reversible, in the
following sense:

Syllogistic Inference: If there is a forward inference rule that takes
two judgments as premises, and produces a third judgment as a
conclusion, then from one premise and the conclusion, the other
premise can be derived by a forward inference rule (though its
truth-value will be different). We have seen this reversibility in the
relation among deduction–abduction–induction. Therefore, if in a
forward inference rule one premise and the conclusion drop their
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Table 4.8. The backward syllogistic
rules of NAL-1.

J\Q M → P P → M

S → M 〈f, c〉 S → P S → P
P → S P → S

M → S 〈f, c〉 S → P S → P
P → S P → S

truth-values to become questions, the rule becomes a valid one for
backward inference.

Immediate Inference: If there is a forward inference rule that
takes one judgment as a premise, and produces another judgment
as a conclusion, then from the conclusion, the premise can be
derived by a forward inference rule (though its truth-value will
be different). Therefore, if in a forward inference rule the premise
and the conclusion drop their truth-values to become questions,
the rule becomes a valid one for backward inference.

Because of this property, the backward syllogistic rules of NAL-1,
listed in Table 4.8, can be obtained from Table 4.4, by letting the
first premise and the conclusion be questions, and the term P can
be either a normal term, or a question mark to be instantiated.

NAL-1 has only one immediate inference rule: conversion. Its
backward form is the same as its forward form, except no truth-value
involved.

This reversibility of inference is not limited to NAL-1, but also
holds in the higher layers of NAL. To simplify the description, in the
following chapters, only the forward inference rules are listed, though
they can all be used for backward inference, by dropping the truth-
values from one premise and the conclusion, so as to turn them from
judgments into questions.
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CHAPTER 5

NARS: BASIC MEMORY AND CONTROL

As mentioned in Chapter 1, a reasoning system has two parts: a
“logic” part specifying what sentences can be expressed and what
inference steps can be carried out, and a “control” part specifying
how the steps are organized into inference processes, so as to
accomplish certain overall functions. Since this book is about NAL,
the logic part of NARS, it will not describe the control part of
the system in detail. On the other hand, since the two parts are
closely related, it is impossible to fully understand NAL without
understanding the basics of the control part. For this reason, this
chapter describes how NAL-1 is implemented in a computer system
to become NARS (in its simplest form). The control parts for the
upper layers of NAL are based on similar ideas.

5.1. Inference Tasks

When NARS only implements NAL-1, an input sentence (in Narsese)
is either a judgment or a question (as specified in Table 3.2), and the
system’s overall function is to answer the given questions according
to the beliefs derived from the given judgments. For this purpose,
the system treats each input or derived sentence as an inference task
to be processed.

Each task is processed in two stages: the initial processing which
happens only once when the task is accepted into the system, and
the continued processing may happen any number of times. What

65
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the system does is:

Judgment - initial: using the local inference rules

• turn it into a belief of the system,
• revise it using existing beliefs on the same statement,
• answer pending questions that match its content.

Judgment - continued: using the forward inference rules to derive
new judgments.

Question - initial: using the local inference rules to answer it with
the best matching beliefs.

Question - continued: using the backward inference rules to
derive new questions.

Here the initial processing part functions like a database, and the
continued processing part is what makes a reasoning system more
powerful than an information retrieval system, such as a database.

As mentioned in the previous chapter, NARS carries out both
forward inference and backward inference, because the system cannot
afford the resources to only reason forward exhaustively to reach
the answers, nor can it only reason backward, since all the truth-
value functions are associated with forward rules. Backward inference
is used to activate the relevant beliefs, and forward inference is
used to produce answers from the activated beliefs, as well as to
spontaneously derive the implications of new knowledge, so as to
adapt the system’s beliefs to its experience.

Therefore, a Narsese sentence in NARS can be a task which is
actively processed, a belief (if it is a judgment) which is passively used
to process tasks, or both. At any moment, the system typically has
a large number of tasks, and a even larger number of beliefs. Since
NARS is open and works in real time, it cannot process the tasks
sequentially, one after another, but has to process them in parallel
by dynamically allocating its computational resources among the
tasks. In this context, “parallel processing” does not mean multiple
processors or threads, but that the processing periods of tasks overlap
in time.

Using this terminology, what NARS does is nothing but task
processing, and a task is processed by interacting with beliefs. In each
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inference step, a task and a belief are selected as premises, and their
formal properties fully determine the applicable inference rules, then
the conclusions will be handled as derived tasks. Consequently, how
a task is processed is determined by the beliefs it interacts with, and
what the control mechanism does is to select the task and the belief
in each inference step.

Due to insufficient resources, the system cannot allow every task
to interact with all relevant beliefs exhaustively; due to insufficient
knowledge, the system does not know the optimal way to distribute
its resources. Again, here the solution is adaptation, that is, to
allocate the resources among the tasks and the beliefs, so as to achieve
the highest overall efficiency in resource usage, under the implicit
assumption that the future will be similar to the past.

The above analysis means that tasks in NARS are with different
processing “speeds”, and beliefs are at different accessing “depths”.
Their ranks depend on multiple factors, and some of them change
constantly. This “controlled concurrency” [Wang (1995, 1996c)] is
unique to NARS, though it is inspired by many other ideas, including
heuristic search [Newell and Simon (1976)], time sharing [McCarthy
(1992)], anytime algorithm [Dean and Boddy (1988)], genetic algo-
rithm [Holland (1986)], spreading activation [Smolensky (1988)], and
parallel terraced scan [Rehling and Hostadter (1997)].

5.2. Bag-Based Storage

The problem of insufficient resources is not a new problem to AI
at all. In many situations, a system has to stop a process before
reaching its “logical end”, due to the shortage of processor time.
Various situations have been discussed in other AI projects, where
a common solution is to do a “meta-level planning” in advance to
decide how far (or deep) each process should go to achieve the highest
overall efficiency of resource usage [Boddy and Dean (1994); Russell
and Wefald (1991); Horvitz (1989)].

This approach cannot be used in NARS, which works in real
time, and is always open to new input. If the system makes a
resource allocation plan at one moment, there may be a new task
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showing up in the next moment that renders the plan useless.
Consequently, NARS has to allocate its resources dynamically, that
is, to adjust the allocation plan while using it to arrange the inference
process.

The problem can be abstractly described as this: in the system
there are some data “items” to be processed, and the processing
can be sliced into smaller steps. An item can be processed for any
number of steps, though the more, the better. With insufficient
resources, few items can be processed to the end, so here we do
not even need to specify what this “to the end” means, but simply
continue the processing if there are still resources available for this
item. Obviously, the processing time an item got is proportional to
the number of times it was selected for processing. However, given
the dynamic nature of the situation, the number of times cannot be
predetermined, but has to be adjusted from time to time. Therefore,
the system does not assign an absolute time budget to each item
(as the number of times the item gets selected for processing), but
a relative one, indicating the chance for the item to be selected for
processing in the next moment.

Since dynamic resource allocation happens in several places in
NARS, a data structure called “bag” is specially designed to provide
this functionality [Wang (1995, 1996c)]. A bag can contain items
up to a constant maximum number. Each item has a unique key, a
priority in [0, 1], and some other fields. Three major operations are
defined on a bag:

put(item): The given item is put into the bag. If there is already
an item with the same key, the two are merged; if the bag already
reaches its full maximum capacity, an item with the lowest priority
is taken out of the bag to make space for the new item.

get(): A selected item is taken out of the bag, and the probability
for an item to be selected is propositional to its priority value.

get(key): The item with the given key, if it exists, is taken out of
the bag.

Though the last operation is ordinary, the first two are different from
the common “insertion” and “deletion” operations defined on data
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structures, since they are designed under AIKR — the first operation
admits the limited storage space, and the second admits the limited
processing time.

Conceptually, a bag is a probabilistic priority-queue. It differs
from the ordinary priority-queues in that the items are not removed
exactly according to the order of their priority, but probabilistically,
with their priority values used to decide their chances in each
removal. The reason to use it is to distribute the resources unevenly
according to the system’s experience, while still giving low-priority
items some opportunity to be processed. It can be considered as an
approach to achieve a tradeoff between exploitation and exploration
[Russell and Norvig (2010)].

It is important to realize that “priority” is a relative measure-
ment. To know the priority value of an item alone tells us little
about how much resources it will get, because that depends on
what priority values the other items in the same bag have. Like
evolutionary systems, items in a bag compete for resources, and a
priority value indicates the level of competitiveness of the item.

A bag can be implemented with an array of buckets (for the first
two operations) combined with a hash table (for the last operation).
The “put” operation registers the item in the hash table by its key,
and stores it in a bucket by its priority (as in bucket sort). The “get”
operation visits each bucket at a frequency that is propositional to the
rank of the bucket, and the “get by key” operation directly gets the
item via the hash table. Therefore, each operation can be finished in a
(small) constant time, independent of the number of items in the bag.
Of course, the access frequency is only approximately propositional
to the priority values, but accuracy is not important here, since the
priority values are rough estimations themselves.

5.3. Concept as a Unit

As mentioned before, a feature that distinguishes a term logic like
NAL from propositional/predicate logic is the use of syllogistic
inference rules, which requires the premises to have a shared term in
each inference step. An important implication of this requirement is
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that the beliefs that can be directly used for a task “S → P” must
have S or P in it.

In NARS, a “concept” is an object that is uniquely named by
a term, and it contains the tasks and beliefs with that term as
subject or predicate.1 In this way, a concept is a data structure,
or object (as in object-oriented programming), that is both a unit
of storage and a unit of processing. All inference steps happen
“locally” within concepts. This feature greatly reduces the range of
beliefs to be considered for a given task, and also makes distributed
implementation of NARS possible. It is perfectly fine to run different
concepts on different hardware devices, and let them cooperate by
exchanging tasks.

Since inference happens locally within concepts, so does the
resource competition among tasks and beliefs within a concept. Now
we can specify a concept Ct as a data structure that is named by
term t, and consists of a bag of tasks and a bag of beliefs, where the
items in both bags are Narsese sentences that have t as subject or
predicate.

For example, the belief “robin → bird 〈1, 0.9〉” is stored in
concepts Crobin and Cbird only. When question “robin → animal” is
processed, it only directly interacts with beliefs in Crobin and Canimal,
but not with beliefs in other concepts, such as Cwater or Cbird, though
the latter concept will probably be involved indirectly, via a derived
question like “bird → animal”.

We can talk about “the meaning of a concept” in a way that is
parallel to “the meaning of a term” — just like the meaning of term
robin is determined by its experienced relations with other terms
(including bird), the meaning of concept Crobin is determined by
its experienced relations with other concepts (including Cbird). The
difference is just that a term is an identifier, while a concept is a data
structure named by a term.

Under AIKR, resource competition not only happens within con-
cepts, but also among concepts, that is, the system must dynamically

1This is true for NAL-1, though not exactly the case for the upper layers of NAL.
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allocate time–space resources among concepts. Using the same data
structure at a larger scale, the concepts are contained in a bag, and
form the system’s “memory” or “mental space”. This memory is more
than a collection of beliefs (like the K∗ defined in Chapter 2), because
it also contains the tasks under processing, plus the “structural
knowledge” about the priority among the concepts, as well as among
the tasks and beliefs within each concept.

The concept-level space competition causes some low-priority
concepts to lose space, while their correspondent terms may still exist
in the tasks and beliefs stored in other concepts. Consequently, while
each concept is still named by a term, some terms may no longer
name any existing concept.

In NARS, concepts provide an important intermediate unit
between the overall memory and the individual tasks and beliefs.
In AI research, the need for structured knowledge representation
has been realized long ago, and various approaches have been used,
including frame, semantic network, description logic, etc. [Russell and
Norvig (2010)]. The knowledge representation in NARS are similar
to them here or there.

5.4. Inference Cycle

As a reasoning system, the running process of NARS consists of
an unlimited number of inference steps, each of which carries out
following routine:

(1) get a concept from the memory,
(2) get a task from the concept,
(3) get a belief from the concept,
(4) derive new tasks from the selected task and belief,
(5) put the involved items back into the corresponding bags,
(6) put the new tasks into the corresponding bags.

This routine is referred to as the inference cycle of the system.
In it, the first two steps are straightforward, carried out by the
“probabilistic retrieval” operation “get” on the whole memory and
the task-bag of the selected concept, respectively. The third step is
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similar, but with the additional requirements that the belief cannot
have overlapping evidential basis with the task, nor has already
interacted with the task recently (the implementation details are
omitted here).

Step four is where inference actually happens. In NARS, inference
is fully “data driven”, in the sense that it is the selected premises
that decide which inference rules are applied in each step. If the
task is a judgment, then the inference is either forward or revision;
if the task is a question, then the inference is either backward
or choice. In this way, the system usually does not decide on an
inference type (deduction, induction, etc.) and search for premises
to do it, but lets the selected premises lead the direction of the
inference. It is possible to have multiple applicable rules for a given
task/belief pair, and they will be applied in parallel to get multiple
conclusions. After the inference rule decides the content and truth-
value of a derived task, other functions will be used to decide its
other attributes, including its initial priority value, which depends
on the priority values of its “parents” (the task/belief pair), the
type of inference, etc. For example, in backward inference, if the
corresponding forward rule is strong (like deduction), the priority of
the derived question will be higher than the cases where the forward
rule is weak (like induction).

In the fifth step, each item (belief, task, and concept) is returned
to the bag it came from, with an adjusted priority value. The
adjustment is made according to several factors:

• All priority values “decay” over time, though at different rates.
Each item is given a “durability” factor in (0, 1) to specify the
percentage of priority level left after each reevaluation [Wang
(1995, 1996c)]. In this way, there is both relative and absolute
forgetting in memory: an item has a tendency to become less and
less accessible over time, which may eventually lead to its removal
from the memory.

• A task or belief is activated if it is relevant to the current context,
judged by the current priority of the other term (not the one of its
“hosting” concept). Partly because of this, and partly because of
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the effect of derived tasks, activation spreads through the memory,
similar to that in a neural network [Smolensky (1988)].

• The result of the current inference step is used as feedback. For
example, if the task is a question, and the belief provides an answer
that is better than the current best, then the priority of the belief is
increased (as a reward), while the priority of the task is decreased
(since the problem has been partially solved). Furthermore, this
belief is “activated” to become a task, so as to carry out forward
inference.

Since there is no “perfect answer” to a question, and there are always
more beliefs to be taken into account, no task is removed because its
processing has been completed. Instead, a task is removed only when
its priority value has become the lowest in the corresponding bag. On
the other hand, a question can get any number of answers, each of
which is better than the previous ones, though none of them should
be considered as “the final answer” when it is found, since there is
always a possibility for the system to find a better one later.

In the last (sixth) step, the “new tasks” include the ones just
produced and the ones arrived from the outside in the previous
cycle, and they are all accumulated in a task buffer. For most
purposes, these two types of tasks will be processed in the same way.
Especially, a derived task is not explicitly linked to its parent task,
so it can still exist in the system when its parent has been forgot.
This treatment produces effects that are similar to the functional
autonomy of motives studied in psychology [Allport (1937)]. While
the priority of the derived tasks are determined by the system, those
of the input tasks can be specified by the users or other systems,
or take the default values associated with its type (for example,
questions have higher priority than judgments). When a task is added
into a concept, the priority of the latter is increased (which is how
a concept becomes activated). After a new task is put into a bag, it
goes immediately through the initial inference process mentioned at
the beginning of this chapter.

Since each of the above steps can be finished in a constant time,
so is the inference cycle as a whole.
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5.5. Properties of NARS

As a reasoning system, NARS has the following properties:

• For each input judgment, the system will reveal some of its
implications (by letting it interact with some beliefs), but not all
of them.

• For each input question, the system will provide the best answer(s)
when it is found, then continues to look for better ones.

• Each belief of the system is based on the evidence collected from
the system’s experience, though there is no guarantee that all
evidence has been taken into consideration.

• A task-processing process consists of multiple inference steps, each
carried out according to a predetermined rule, though the process
as a whole is formed at run time according to many ever-changing
factors. The system processes each task in a “case by case” manner,
without following a predetermined algorithm [Wang (2009b)].

• When a concept is used in the processing of a task, only part of its
meaning (i.e., its relations with other terms) is used. Therefore,
the “current meaning” of a concept depends not only on what
the system knows about a term, but also on which pieces of that
knowledge are recalled at the moment.

• Since the system’s knowledge consists of a network of beliefs and
tasks, and the system’s reasoning activity constantly modifies the
network by adding new edges and nodes as well as removing some
old ones, “learning” and “reasoning” are carried out by the same
process [Wang (2000)].

For different purposes, the running process of NARS can be
described with different focuses and time scopes.

For each inference step, if the task and the belief are taken as the
input, and the conclusion as output, what the system does is still
deterministic, except that the priority values involved may depend
on factors elsewhere in the system.

However, if we move to a wider scope to consider the processing of
tasks, the situation is very different. In question-answering systems,
it is conventional to take the question as the input, and the answer
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as the output, of a computation that follows an algorithm. It means
that the same question always gets the same answer, and the process
takes the same path and spends the same amount of resources.

As described previously, NARS does not work in this way. For
a given task at a certain moment, the processing path and result
depends on many factors, including the existence of relevant beliefs,
the order for them to be accessed, as well as the processing time
the task gets, which in turn depends on the priority values of other
competing tasks. When the system becomes complicated enough,
the processing context of a task becomes unrepeatable. Since the
system is open to new tasks with arbitrary content and timing,
the future context for the processing of a task becomes practically
unpredictable. Therefore, the processing of a task in NARS cannot
be described as following an algorithm that takes the task as input,
and nor does it make sense to talk about the computability and
computational complexity at the task-processing level.

Finally, if we move further to the scope of whole life cycle of
NARS, starting from the state when its memory is empty, with its
life-long input as a “problem”, and its life-long output as a “solution”,
then the system is still a Turing Machine doing computation, and
the problem-solving process is both repeatable and predictable in
principle.

NARS shows a different nature when “observed from a different
distance”, because as an adaptive system, it does not repeat its
internal states in a life cycle. On the contrary, the traditional theory
of computation and algorithm focuses on repeatable processes in a
system that returns to its initial states at the end of each problem-
solving process. This type of theory is suitable for the design and
analysis of systems that has sufficient knowledge and resources with
respect to the problems to be solved, but cannot be applied to analyze
the processing of a task in NARS.

In principle, the initial state of NARS does not include any
empirical knowledge, and the system starts with an empty memory.
However, for practical reasons, it is perfectly fine for the system to
start from a preloaded memory, which may come as a copy of another
system’s memory, or the result of some manual editing. Even in such
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cases, the acquired (object-level) knowledge and innate (meta-level)
knowledge of NARS are still clearly separated from each other. While
everything in the former can be modified by the system’s experience,
the latter remains fixed.2

2The topic of self-control and meta-cognition will be addressed in Chapter 13.
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CHAPTER 6

NAL-2: DERIVATIVE COPULAS

Though NAL-1 is fully based on AIKR and therefore provides a
logical foundation for AI, its expressive and inferential powers are
still far below what is expected from a general-purpose AI system.
Therefore, higher layers of NAL will be added one by one, each of
which expands the grammar and inference rules of the logic in a
certain way, and makes related adjustments in the semantics (as well
as in the memory structure and control mechanism, though those
parts are only mentioned briefly in this book). As in NAL-1, in each
layer we start by adding new grammar and inference rules into IL.
Then, AIKR is acknowledged and the logic is extended from binary to
multi-valued to become NAL, with the NAL-specific inference rules
added.

For inference rules, the dependence on copula is the key aspect
distinguishing term logics from propositional/predicate logics. In
NAL-1, inheritance is the only copula. In NAL-2, several derivative
copulas are introduced, as variants of inheritance.

6.1. Similarity Copula

The essence of the inheritance copula is the generalization/speciali-
zation relationship between concepts, which allows one concept to
be used as another. It is natural to add a symmetric variant of
inheritance into IL.

Definition 6.1. For any terms S and P , similarity ‘↔’ is a copula
defined by (S ↔ P ) ⇐⇒ ((S → P ) ∧ (P → S)).

77
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Since ‘⇐⇒’ and ‘∧’ are the equivalence and conjunction connectives
in propositional logic, respectively, the expression in the definition is
not a statement in IL, but in its meta-language, though it introduces
similarity statement ‘S ↔ P ’ into IL.

Theorem 6.1. Similarity is a reflexive, symmetric, and transitive
relation between two terms.

So for any term T , “T ↔ T” is true, a tautology.
In all the following definitions and theorems, symbols like S, P ,

M , and T are used for arbitrary terms, so they will not be explicitly
declared as so.

Theorem 6.2. (S ↔ P ) =⇒ (S → P ).

So in their binary form inheritance is a special case of similarity. On
the other hand, in general inheritance does not imply similarity.

Theorem 6.3. (S ↔ P ) ⇐⇒ (S ∈ (PE∩P I)) ⇐⇒ (P ∈ (SE∩SI)).

If two terms are similar to each other, they are in the extension and
intension of each other.

Theorem 6.4. (S ↔ P ) ⇐⇒ (SE = PE) ⇐⇒ (SI = P I).

In its binary form, “S ↔ P” means the two terms have the same
meaning, or are identical to each other.

The above definitions and theorems lead to the new inference
rules in IL-2 listed in Table 6.1 (the transitivity-based rule of IL-1 is

Table 6.1. The inference rules of IL-2.

premise1 premise2 conclusion

S ↔ P S → P
S ↔ P P ↔ S
S → P P → S S ↔ P
M → P S ↔ M S → P
M ↔ P S ↔ M S ↔ P
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still valid). To simplify the description, here different types of rules,
such as immediate and syllogistic, are listed together.

Redundancies in IL inference rules are allowed. For example, the
last two rules in Table 6.1 can be replaced by certain combinations
of the other rules.

To extend the binary similarity statement in IL-2 to the multi-
valued similarity judgment in NAL-2, the evidence of a similarity
statement is defined, alike the evidence of an inheritance statement.

Definition 6.2. For similarity statement “S ↔ P”, its positive
evidence is in (SE ∩PE) and (P I ∩ SI), and its negative evidence is
in (SE − PE), (PE − SE), (P I − SI), and (SI − P I).

That is, the common extension and intension of the two terms
are positive evidence, and their differences are negative evidence.
Formally, the evidence of “S ↔ P” is the union of the evidence of
“S → P” and “P → S”.

In NAL-2 a similarity statement is true to a degree, where the
amount of evidence and truth-value are defined in the same way as in
NAL-1. In the following, the word “identical” will be reserved for the
binary relation “S ↔ P” in IL, which is an extreme case of “similar”
in NAL, though we can also use the latter word in IL for the same
relation.

Corresponding to the basic syllogistic rules in NAL-1, in NAL-2
there are three possible combinations of inheritance and similarity,
and are referred to as comparison, analogy, and resemblance, respec-
tively, listed in Table 6.2. The three rules are discussed one by one
in the following.

Table 6.2. The similarity-related syllogistic rules.

J2\J1 M → P 〈f1, c1〉 P → M 〈f1, c1〉 M ↔ P 〈f1, c1〉

S → M 〈f2, c2〉 S ↔ P 〈Fcom〉 S → P 〈F ′
ana〉

M → S 〈f2, c2〉 S ↔ P 〈Fcom〉 P → S 〈F ′
ana〉

S ↔ M 〈f2, c2〉 S → P 〈Fana〉 P → S 〈Fana〉 S ↔ P 〈Fres〉
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Comparison

The comparison rule of NAL-2 has an extensional version and an
intensional version, with the same premises as the induction rule and
the abduction rule respectively, and derives a similarity statement as
conclusion. Here is the extensional version:

{M → P 〈f1, c1〉, M → S 〈f2, c2〉} 
 S ↔ P 〈Fcom〉.
Just as with induction and abduction, such an inference step
provides at most the evidence of a unit amount, except that for a
similarity statement, the negative evidence comes from both terms
symmetrically. That is, any shared property or instance is positive
evidence, and any property or instance of only one term is negative
evidence, for the two term to be similar to each other. Consequently,
the truth-value function can be derived from the following Boolean
equations:

w+ = and(f1, c1, f2, c2),

w = and(or(f1, f2), c1, c2).

Unlike induction and abduction, the comparison function is symmet-
ric with respect to the two premises, and the same function is used
in the intensional version of the rule.

For example, given a common instance of animal and bird, a
similarity statement will be made between the two:

{robin→animal 〈1, 0.9〉, robin→bird 〈1, 0.9〉} 

bird↔animal 〈1, 0.45〉.

Analogy

The analogy rule of NAL-2 is similar to the deduction rule of NAL-1,
except that one premise is a similarity judgment. This rule has four
versions, each for a different position of the shared term, as listed in
Table 6.2. The following is one of them, where the shared term is the
subject of the first premise (which is the inheritance judgment):

{M → P 〈f1, c1〉, S ↔ M 〈f2, c2〉} 
 S → P 〈Fana〉.
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Intuitively, this rule is about an inference step, in which a term (M)
is replaced by a similar term (S) in its relation with a third term (P ).

Unlike the deduction rule, which only derives confident positive
conclusion, this rule also derives confident negative conclusion —
if M and S are very similar to each other, then premise “There
is no inheritance relation from M to P” should lead to conclusion
“There is no inheritance relation from S to P”. On the other hand,
if the similarity judgment is negative, i.e., M and S are not similar,
no confident conclusion can be reached — whether there is an
inheritance relation from M to P does not tell us much about whether
there is an inheritance relation from S to P .1

This analysis suggest the following Boolean restrictions for the
truth-value function Fana:

f = and(f1, f2),

c = and(f2, c1, c2),

which is just like Fded, except that the confidence of the conclusion
does not depend on the frequency of the inheritance premise.

For example, if robin and lark are known to be quite similar,
then a description for one can be transformed into a description of
the other, with a relatively high confidence:

{robin→bird 〈1, 0.9〉, robin↔ lark 〈0.9, 0.9〉} 

lark→bird 〈0.9, 0.73〉.

As a limit case, when the similarity is perfect (i.e., f2 = c2 = 1),
the conclusion has the truth-value of the inheritance premise (i.e.,
f = f1, c = c1). This covers the case of perfect substitution between
terms.

In the everyday usage of the word, “analogy” is used for several
different types of inference. The analogy rule of NAL only captures
the simplest usage among them, that is, “Similar terms have similar
relations with other terms”. However, when used together with other

1Here “M and S are not similar” is not the same as “M and S have nothing in
common”, which will be handled in a higher layer, using explicit negation.
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rules, various types of analogy can still be carried out by NAL, though
not by the analogy rule alone. For more detailed discussions on this
topic, see Wang (2009a).

Resemblance

The resemblance rule of NAL-2 takes two similarity judgments as
premise, and produces a similarity judgment as conclusion:

{M ↔ P 〈f1, c1〉, S ↔ M 〈f2, c2〉} 
 S ↔ P 〈Fres〉.
This rule is the multi-valued form of the transitivity of the

similarity copula. It is also similar to the deduction rule, except it
can still get a confident conclusion when one of the two premises is
negative (and the other positive). Please note that if M is similar
to neither S nor P , it does not provide a reason for S and P to be
considered as similar to each other. For anything to be derived by
this rule, at least one premise should be positive. Therefore, Boolean
restrictions for the truth-value function Fres:

f = and(f1, f2),

c = and(or(f1, f2), c1, c2).

For example, if robin is similar to both swallow and lark, then
swallow and lark can be judged as similar to each other to a degree:

{robin↔swallow 〈1, 0.9〉, lark↔robin 〈1, 0.9〉} 

lark↔swallow 〈1, 0.81〉.

The three new truth-value functions are summarized in Table 6.3.
Using the terminology introduced in NAL-1, we say that comparison
is weak inference (like induction and abduction), while analogy and
resemblance are strong inferences (like deduction), and correspond
to the last two binary rules in Table 6.1, respectively.2 Furthermore,
comparison is reversed analogy.

2How to extend the other IL rules in Table 6.1 to NAL will be discussed in
Chapter 9.
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Table 6.3. The truth-value functions of the similarity-related rules.

Function name Boolean version Truth-value version

Fcom w+ = and(f1, f2, c1, c2) f = f1×f2
f1+f2−f1×f2

(comparison) w = and(or(f1, f2), c1, c2) c = (f1+f2−f1×f2)×c1×c2
(f1+f2−f1×f2)×c1×c2+k

Fana f = and(f1, f2) f = f1 × f2

(analogy) c = and(f2, c1, c2) c = f2 × c1 × c2

Fres f = and(f1, f2) f = f1 × f2

(resemblance) c = and(or(f1, f2), c1, c2) c = (f1 + f2 − f1 × f2) × c1 × c2

6.2. Instance Copula

Informally speaking, the inheritance copula is similar to the subset
relation, ‘⊆’, in set theory, which is reflexive and transitive, and can
be used to form a generalization hierarchy among sets. In set theory,
the subset relation is defined using the membership relation, ‘∈’,
which is neither reflexive nor transitive, but serves as the foundation
of the generalization hierarchy among sets, in the sense that all
sets correspond to various levels of generalization over individual
“elements” or “instances”.

In term logic, there is a need for something similar. It has
been pointed out long ago, that in Aristotle’s Syllogistic the terms
correspond to generic nouns in a natural language, such as “robin”
and “bird”, rather than proper names like “Tweety” and “Aristotle”,
since the logical relationships in “Robin is a type of bird” and
“Tweety is a bird” are different.

In NAL, these two relationships are represented by two different
copulas, inheritance and instance, respectively. Here inheritance is
defined first, because of its logical simplicity and generality. A term
in NAL does not have to represent a set — uncountable nouns (mass
nouns and abstract nouns) cannot be naturally seen as sets, but they
pose no problem to be handled as terms. For example, “Water is a
type of liquid” can be easily represented as “water → liquid”, while
the corresponding set-theoretic representation “water ⊆ liquid” has
the trouble of explaining what are the elements of these two “sets”.
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Therefore, in this set-theory analogy, what happened in NAL
is like to take “subset” as fundamental, and to use it to define
“membership”. Here set theory provides another inspiration: a
variant of the relationship can be treated as a variant of the terms
involved in the relationship. In set theory, proposition “i ∈ S” is
equivalent to proposition “{i} ⊆ S”, therefore, in principle, it is
possible to use the latter to replace the former, so as to eliminate the
need for the ‘∈’ relation, without losing any expressing power. In this
treatment, the notation ‘{}’ can be seen as a marker or operator that
changes the nature of the term it is applied upon: the term “{i}” as
a whole is taken to be a term defined by its sole instance, i.

Definition 6.3. If T is a term, the extensional set with T as the only
component, {T}, is defined by (∀x)((x → {T}) ⇐⇒ (x ↔ {T})).
That is, a term with such a form is “the most specialized” in the
sense that all terms in its extension are identical to it, just like that
a set defined by a sole element has no non-empty proper subset. The
extension of such a term is minimized to only contain terms identical
to it, and all these terms are in its intension, too, by definition. Such a
statement is like a singular statement in Aristotle’s Syllogistic, where
“the subject term is the name of an individual that cannot itself be
predicated by anything else” [Kneale and Kneale (1962)].

Theorem 6.5. For any term T, {T}E ⊆ {T}I .

On the other hand, {T}I is not necessarily included in {T}E.
For the naturalness of the representation, the specialty of an

extensional set can be equivalently represented by a special copula.

Definition 6.4. The instance statement “S ◦→ P” is defined by
the inheritance statement “{S} → P”, where ‘◦→’ is the “instance”
copula.

Therefore, “Tweety is a bird” can be represented in Narsese
either as “{Tweety} → bird” or as “Tweety ◦→ bird”, and there
is no semantic difference between the two. In both representations,
the subject term corresponds to a “source vertex” in the graphical
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representation of the beliefs — as defined in graph theory, such a
vertex has no incoming edge.

The properties of this new copula can be easily derived from the
above definition.

Theorem 6.6. ((S ◦→ M) ∧ (M → P )) =⇒ (S ◦→ P ).

However, “S → M” and “M ◦→ P” does not imply “S ◦→ P”,
nor does “S ◦→ M” and “M ◦→ P”. This instance relation is not
transitive, so no inference rules can be defined on it by itself, which
is a major reason for inheritance to be taken as the primary copula
in NAL, with instance as a variant or derivative.

6.3. Property Copula

According to the duality between extension and intension, another
special type of term and the corresponding copula are defined.

Definition 6.5. If T is a term, the intensional set with T as the
only component, [T ], is defined by (∀x)(([T ] → x) ⇐⇒ ([T ] ↔ x)).

That is, a term with such a form is like a set defined by a sole
attribute or property. In the notation of set theory, T is taken as
a predicate name, which defines a set {x|T (x)}. In Narsese, on the
contrary, both T and [T ] are taken as terms, with different, though
related, meanings.

Term [T ] corresponds to a concept defined by its sole property.
In a natural language, examples of these concepts include adjectives
and adverbs. For example, “Apples are red” can be represented in
Narsese as “apple → [red]”, where the predicate term represents
“red things”, which is not the same as the concept “red” but closely
related to it.

The duality between extension and intension leads to the fol-
lowing conclusions, which have correspondence in the description of
extensional set.

The intensional set has a special property: all terms in the
intension of [T ] must be identical to it, and no term can be more
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general than it (though it is possible for some terms to be more
general than T ).

Theorem 6.7. For any term T, [T ]I ⊆ [T ]E.

On the other hand, [T ]E is not necessarily included in [T ]I .

Definition 6.6. The property statement “S →◦ P” is defined by
the inheritance statement “S → [P ]”, where ‘→◦’ is the “property”
copula.

So “Apples are red” can also be represented as “apple→◦ red”. In
graphical representations, terms with the form of [T ] correspond to
“sink vertices” that have no outgoing edge.

Theorem 6.8. (S → M) ∧ (M →◦ P ) =⇒ (S →◦ P ).

However, “S →◦ M” and “M → P” do not imply “S →◦ P”, and
nor do “S →◦ M” and “M →◦ P”.

We can easily get another variant of inheritance by combining
an instance copula and a property copula.

Definition 6.7. The instance-property statement “S ◦→◦ P” is
defined by the inheritance statement “{S} → [P ]”, where ‘◦→◦’ is
the “instance-property” copula.

The above statement states that an instance S has a property
P , so “Tweety is yellow” can be represented in Narsese either as
“Tweety ◦→◦ yellow” or as “{Tweety} → [yellow]”.

Theorem 6.9. For any term S and P

(S ◦→◦ P ) ⇐⇒ ({S} →◦ P ) ⇐⇒ (S ◦→ [P ]).

In summary, while all the grammar rules of NAL-1 are still valid
in NAL-2, there are additional grammar rules as listed in Table 6.4.3

These grammar rules do not replace the rules defining term and
copula in NAL-1 (Table 3.2), but add alternative substitutions.

3In Table 6.4, symbols ‘{’, ‘}’, ‘[’, and ‘]’ are written within quotation marks,
to indicate that here they are used literally, not as special symbols used in the
grammar rules.
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Table 6.4. The new grammar rules of
NAL-2.

〈copula〉 ::=↔ | ◦→ | →◦ | ◦→◦
〈term〉 ::= ‘{’〈term〉‘}’ | ‘[’〈term〉‘]’

Table 6.5. The copula mapping rules.

external statement ⇐⇒ internal statement

S ◦→ P {S} → P
S →◦ P S → [P ]
S ◦→◦ P {S} → [P ]

As far as IL-2 and NAL-2 are concerned, the function of
extensional and intensional sets is equivalent to the function of the
derived copulas instance, property, and instance-property, in the sense
that the implemented system can either only use the sets without
the copulas, or only use the copulas without the sets. A system can
support both groups at the interface, and only use one of the two
within the system. However, since all the inference rules on NAL-1
are defined on the inheritance copula, it is simpler to use the sets,
not the new copulas.4 As a result, no new inference rule is introduced
for the derived copulas instance, property, and instance-property.

The same thing cannot be said to the copula similarity, since
the same similarity judgment summarizes many different pairs of
inheritance judgments, and therefore cannot be uniquely reduced
into the latter. Consequently, similarity has its own inference rules,
as listed in Tables 6.1 and 6.2. Therefore, NAL-2 actually uses
two copulas in internal inferences, though can use three additional
copulas for external communication, as listed in Table 6.5.

The semantics of NAL-2 remains the same as that of NAL-1,
except that terms in experience can be sets. The idealized experience
still only uses the inheritance copula, not the derivative copulas.

4We will see more reasons for this decision in the next layer, NAL-3, where the
sets become necessary.
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Table 6.6. The equivalence
rules on sets.

statement1 ⇐⇒ statement2

S → {P} S ↔ {P}
[S] → P [S] ↔ P

The extensional/intensional sets can be used as normal terms by
the inference rules of IL and NAL. The only special inference rules
that directly recognize their structure are the two “equivalence rules”
in Table 6.6. These rules derive one statement from the other, in
either direction, without changing the truth-value of the statement,
in both IL and NAL, since the two statements are defined as having
the same meaning. Obviously, the second rule in Table 6.1 (coming
from the symmetry of similarity) belongs to this type, too.
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CHAPTER 7

NAL-3: SET-THEORETIC TERMS

Even with five copulas, the expressive and inferential powers of
NAL-2 is still quite limited. To express more complicated content,
compound terms are introduced in NAL-3. Especially, compound
terms can be composed by combining or restricting the extension
or intension of existing terms.

7.1. Compound Term

An obvious shortage of NAL-2 (as well as many term logics) is that a
statement consists of a subject term and a predicate term, and each
of the two is either an atomic identifier or a single-component set.
A natural way to overcome this limitation is to use “compound”
or “structured” terms. It is similar to natural languages, where
a sentence often takes the “subject–predicate” format, with the
“subject” and “predicate” being phrases.1

Definition 7.1. A compound term (con C1 . . . Cn) is a term formed
by a term connector, con, that connects one or more terms
C1, . . . , Cn (n ≥ 1), called the component(s) of the compound.

By default, the order of the components matters, and the components
are not necessarily different from each other. Otherwise it will be
explicitly mentioned when a type of compound term is defined.

1The “subject/predicate phrase” distinction in natural languages is not the same
as the “subject/predicate term” distinction in term logics, though the two are
closely related.

89
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A term connector is a logical constant without internal structure.
All the connectors are predefined as part of NAL, rather than
learned from the system’s experience. Consequently, the “meaning”
of a connector is given by its definition, and realized in the related
inference rules.

Now we can treat the extensional set and intensional set defined
in NAL-2 as compound terms, each with a single component, even
though they are not written in the above default format of compound
terms, but represent their connectors using special delimiters (‘{}’
and ‘[]’).

Since a component of a compound term can be a compound term
itself, a syntactic hierarchy of terms can be formed.

Definition 7.2. Each term in NAL has a syntactic complexity. The
syntactic complexity of an atomic term (i.e., word) is 1. The syntactic
complexity of a compound term is 1 plus the sum of the syntactic
complexity of its components.

Usually, the syntactic complexity of a compound is just the number
of symbols (words and connectors) in its structure (including the sub-
structures). Using this measurement, in the following discussions we
can meaningfully say that one term is “syntactically simpler” than
another term.

In some types of compound term, the “infix” format is more
natural than the “prefix” format, so (con C1 . . . Cn) can be rewritten
as (C1 con . . . con Cn), and the syntactic complexity of the two forms
are defined to be the same (so the repeated connectors are counted
as one).

For term connectors with two or more components, they are
usually only defined with two components, and the general case
(for both the prefix format and the infix format) is translated into
the two-component case by the following definition.

Definition 7.3. If C1 . . . Cn (n > 2) are terms, and con is a term
connector defined as taking two or more arguments, then both
(con C1 . . . Cn) and (C1 con . . . con Cn) are defined recursively as
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(con (con C1 . . . Cn−1) Cn), though the latter form has a higher
syntactic complexity.

Please note that among terms this syntactic hierarchy (where
terms are related by a relationship between a component and a
compound) and the semantic hierarchy (where terms are related by
a copula) are not the same.

In ideal situation, the meaning of a compound term and the
meaning of its components are related by the following definition.

Definition 7.4. In IL, two compound terms are identical if they
have the same term connector and pairwise identical components,
that is, for arbitrary term connector con and terms C1 . . . Cn and
D1 . . . Dn,

((C1 ↔ D1) ∧ . . . ∧ (Cn ↔ Dn)) =⇒
((con C1 . . . Cn) ↔ (con D1 . . . Dn)).

The ‘ =⇒ ’ in the above theorem cannot be replaced by ‘ ⇐⇒ ’,
since the interrelations among components influence the meaning of
a compound, so identical compound terms do not necessarily have
identical pairwise components. Exceptions are the compounds with
a sole component.

Definition 7.5. In IL, two compound terms with sole component
are identical if and only if they have the same term connector and
identical components, that is, (C ↔ D) ⇐⇒ ((con C) ↔ (con D)).

Since the extensional/intensional sets defined in NAL-2 are
compound terms with sole component, the meaning of the compound
and that of the component mutually determine each other.

Theorem 7.1. (S ↔ P ) ⇐⇒ ({S} ↔ {P}) ⇐⇒ ([S] ↔ [P ]).

Based on the above results and the definitions of derived copulas, we
can get the following results.

Theorem 7.2. (S ↔ P ) ⇐⇒ (S ◦→ {P}) ⇐⇒ ([S] →◦ P ).
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“T ◦→ {T}” and “[T ] →◦ T” follow as a special cases. On the other
hand, neither “T ◦→ T” nor “T →◦ T” is an analytical truth in
IL, though either of the two can be an empirical truth for a given
term T . Therefore, some form of self-reference is allowed in IL and
NAL.

After compound terms are introduced into NAL, the meaning
of a term is no longer completely determined by its empirical
(i.e., experienced) relations with other terms (as defined in NAL-1),
but also by the literal meaning of the compound terms that are in
the vocabulary of the system at the moment.

The existence of a compound term (con C1 C2) in the system’s
memory will contribute to the meaning of C1, C2, and the compound
term itself. In the graphical representation of the system’s memory,
we can use a special type of edge between C1 and (con C1 C2) to
indicate that the former is a syntactic part of the latter (and the same
for C2), though this edge is not stored explicitly as a belief — instead,
it is part of the innate knowledge of the system that is implicitly
embedded in the inference rules. In this way, the meaning of a term
is still represented by all the edges coming into and going out of the
corresponding vertex, except that now an edge can be either syntactic
(literal knowledge) or semantic (empirical knowledge).

Consequently, in NAL the meaning of a compound term is not
completely reducible to the meanings of its components plus the
meaning of the term connector — the compound terms are “semi-
compositional”. When initially created, the meaning of a compound
term is fully determined by its connector and components, as speci-
fied in its definition. However, as the system gets experience involving
a compound term as a whole, this experience is not necessarily deriv-
able from the components. For example, the meaning of “blackboard”
cannot be fully derived from the meaning of “black” and “board”,
though is still related to them, especially at the beginning.

7.2. Intersections

According to the experience-grounded semantics of NAL, the
system’s beliefs are summaries of its experience, and, its concepts,
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named by terms, are constituents and their patterns in the
experience. Under AIKR, a major function of concepts is to efficiently
organize the experience. Consequently, compound terms are widely
used to summarize the meaning of other terms in a more compact
way, without losing too much information.

Since the empirical meaning of a term consists of its extension
and intension, which are (classical) sets in IL, it is natural to
introduce compound terms into IL-3 by set operations, such as to
“merge” or “split” existing concepts to get new ones.

Definition 7.6. Given terms T1 and T2, their extensional intersec-
tion is a compound term (T1 ∩ T2) defined by

(∀x)((x → (T1 ∩ T2)) ⇐⇒ ((x → T1) ∧ (x → T2))).

From right to left, the equivalence expression defines the extension of
the compound, since “(x → T1)∧ (x → T2)” implies “x → (T1∩T2)”;
from left to right, it defines the intension of the compound, since the
tautology “(T1 ∩ T2) → (T1 ∩ T2)” implies “(T1 ∩ T2) → T1” and
“(T1 ∩ T2) → T2”, and there is nothing else in this intension, so any
M satisfying “(T1 ∩ T2) → M” must satisfy either “T1 → M” or
“T2 → M”, except the trivial case when M is the compound itself.2

Graphically, the above definition means that if a vertex has an
(inheritance) edge going into (T1 ∩ T2), then it must have edges into
T1 and T2; if a vertex has an (inheritance) edge coming from (T1∩T2),
then it must have an edge from T1 or T2. Therefore, (T1∩T2) is more
specific than T1 and T2. This result is given by the following theorem,
which can also be taken as an equivalent definition of the compound
term (T1 ∩ T2).

Theorem 7.3. (T1 ∩ T2)E = TE
1 ∩ TE

2 , (T1 ∩ T2)I = T I
1 ∪ T I

2 ∪
{(T1 ∩ T2)}.
In the above expressions, the ‘∩’ sign is used in two different senses.
On the right-side of the first expression, it indicates the intersection

2The intension part of the definition should not be interpreted in set theory by
treating “inheritance” as “subset”, because if T1 and T2 are sets, “(T1 ∩T2) ⊆ x”
does not imply “(T1 ⊆ x) ∨ (T2 ⊆ x)”.



April 4, 2013 12:22 9in x 6in Non-Axiomatic Logic b1497-ch07

94 Non-Axiomatic Logic: A Model of Intelligent Reasoning

of sets, but on the left-side of the two expressions, it is the term
connector of extensional intersection.

For example, ([yellow] ∩ bird) represents “yellow bird”, whose
instances belong to both “yellow thing” and “bird”, and whose
properties include those of “yellow thing” plus those of “bird”. If
the system’s experience contains many occurrences of yellow birds,
the compound term can be used to represent them, which is more
efficient, both in processing time and in storage space, than using
two terms for “yellow” and “bird”, separately.

Like an atomic term, the meaning of a compound term is also
determined by both its extension and intension, rather than by its
extension alone, as in most traditional models of categorization. Some
long-standing issues can be resolved in this way. As argued in Wang
(2011), the well-known Conjunction Fallacy [Tversky and Kahneman
(1983)], also known as the “Linda Problem”, can be explained as
application of intensional evidence.

Similarly, a compound term can be formed to generalize two given
terms.

Definition 7.7. Given terms T1 and T2, their intensional intersec-
tion is a compound term (T1 ∪ T2) defined by

(∀x)(((T1 ∪ T2) → x) ⇐⇒ ((T1 → x) ∧ (T2 → x))).

From right to left, the equivalence expression defines the intension of
the compound, since “(T1 → x)∧ (T2 → x)” implies “(T1∪T2) → x”;
from left to right, it defines the extension of the compound, since
the tautology “(T1 ∪ T2) → (T1 ∪ T2)” implies “T1 → (T1 ∪ T2)” and
“T2 → (T1 ∪ T2)”, and there is nothing else in this extension, so any
M satisfying “M → (T1 ∪ T2)” must satisfy either “M → T1” or
“M → T2”, except the case when M is the compound itself.

Theorem 7.4. (T1 ∪ T2)I = T I
1 ∩ T I

2 , (T1 ∪ T2)E = TE
1 ∪ TE

2 ∪
{(T1 ∪ T2)}.

For example, (dog ∪ cat) is a term that covers all kinds of dogs
and cats as its instances, while the properties of the term consist of
the common properties of dogs and cats.
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The above definition and theorem show that the duality of
extension and intension in NAL corresponds to the duality of
intersection and union in set theory — intensional intersection
corresponds to extensional union, and extensional intersection cor-
responds to intensional union. Since set theory is purely extensional,
the ‘∪’ operator is associated to union only. To stress the symmetry
between extension and intension in NAL, here it is called “intensional
intersection”, rather than “extensional union”, though the latter is
also correct, and sounds more natural to people familiar with set
theory.

Both term connectors ‘∩’ and ‘∪’ can be extended to take more
than two components. Since they are both associative and symmetric,
the order of their components does not matter. Consequently, they
are isomorphic to the corresponding set operators, and all the
following NAL theorems map into theorems in set theory, if the
terms are interpreted as sets, inheritance copula as subset relation,
similarity copula as equal-set relation, and the term connectors as
the corresponding set operators.

Theorem 7.5.

(T1 ∩ T2) ↔ (T2 ∩ T1),
(T1 ∪ T2) ↔ (T2 ∪ T1).

Theorem 7.6.

(T1 ∩ T2) → T1,

T1 → (T1 ∪ T2).

As mentioned previously, even though the above statements are true
in IL, in NAL they are not remembered as beliefs, which are purely
empirical.3

The following theorem can be used to reduce a term into a
syntactically simpler but semantically equivalent term.

3Instead, this analytical knowledge is embedded in the relevant inference rules,
to be introduced in NAL-5.
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Theorem 7.7.

(T ∩ T ) ↔ T,

(T ∪ T ) ↔ T.

The definitions of the intersections can also be used to decompose
a compound term. According to propositional logic, for any proposi-
tions P , Q, and R, “(P ∧ Q) =⇒ R” is equivalent to “(P ∧ ¬R) =⇒
¬Q”, and “P =⇒ (Q ∨ R)” is equivalent to “(¬R ∧ P ) =⇒ Q”, so
the following theorems are true.

Theorem 7.8.

M → T1 ∧ ¬(M → (T1 ∩ T2)) =⇒ ¬(M → T2),
¬(T1 → M) ∧ (T1 ∩ T2) → M =⇒ T2 → M,

T1 → M ∧ ¬((T1 ∪ T2) → M) =⇒ ¬(T2 → M),
¬(M → T1) ∧ M → (T1 ∪ T2) =⇒ M → T2.

Finally, an arbitrary term M in the system’s vocabulary VK can
be added to both sides of a copula by a term connector, if needed.

Theorem 7.9.

S → P =⇒ (S ∩ M) → (P ∩ M),
S → P =⇒ (S ∪ M) → (P ∪ M),
S ↔ P =⇒ (S ∩ M) ↔ (P ∩ M),
S ↔ P =⇒ (S ∪ M) ↔ (P ∪ M).

The ‘=⇒ ’ in the above theorems cannot be replaced by ‘⇐⇒ ’.

7.3. Differences

To specialize a given term means to reduce its extension. In
extensional intersection, this is achieved by selecting the elements
that are also in the extension of another term. Clearly, a similar
effect can be achieved by selecting the elements that are not in the
extension of another term.
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Definition 7.8. If T1 and T2 are different terms, their extensional
difference is a compound term (T1 − T2) defined by

(∀x)((x → (T1 − T2)) ⇐⇒ ((x → T1) ∧ ¬(x → T2))).

From right to left, the equivalence expression defines the extension of
the compound, since “(x → T1)∧¬(x → T2)” implies “x → (T1−T2)”;
from left to right, it defines the intension of the compound, since the
tautology “(T1−T2) → (T1−T2)” implies “(T1−T2) → T1”, and there
is nothing else in this intension, so any M satisfying “(T1−T2) → M”
must satisfy “T1 → M”, except being the compound itself.

Obviously, (T2 − T1) can also be defined, but it will be different
from (T1 − T2). For example, ([yellow] − bird) means “yellow thing
that is not bird”, while (bird − [yellow]) means “bird that is not
yellow”. Here T1 and T2 are required to be different, otherwise their
difference will have an empty extension, and therefore cannot be
a meaningful term. This case is different from (T ∩ T ), which is
meaningful, though it can be reduced to a simpler term.

Since the extension of (T1−T2) is obtained from that of T1, using
negative restriction provided by T2, its intension cannot be increased
from that of T1 by adding something from T2 (as in (T1 ∩ T2)).
For example, the properties of “bird that is not yellow” are merely
the properties of “bird”, since “not yellow” does not provide any
(positively defined) property.

Theorem 7.10. (T1−T2)E = TE
1 −TE

2 , (T1−T2)I =T I
1 ∪{(T1−T2)}.

Similarly, according to the duality between extension and inten-
sion, a term can be generalized by selecting part of its intension
(properties). To do it with positive criteria has produced intensional
intersection, and now we will do that with negative criteria.

Definition 7.9. If T1 and T2 are different terms, their intensional
difference is a compound term (T1 � T2) defined by

(∀x)(((T1 � T2) → x) ⇐⇒ ((T1 → x) ∧ ¬(T2 → x))).
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From right to left, the equivalence expression defines the intension of
the compound, since “(T1 → x)∧¬(T2 → x)” implies “(T1�T2) → x”;
from left to right, it defines the extension of the compound, since the
tautology “(T1�T2) → (T1�T2)” implies “T1 → (T1�T2)”, and there
is nothing else in this extension, so any M satisfying “M → (T1�T2)”
must satisfy “M → T1”, except being the compound itself.

Theorem 7.11. (T1�T2)I = T I
1 −T I

2 , (T1�T2)E = TE
1 ∪{(T1�T2)}.

For example, (bird�animal) is a term defined by those properties
of bird that are not shared by other types of animal, or “Whatever
that differ bird from other animal” (a form of “bird-ness”). This
term is more general than bird, since it requires less properties than
the latter, though from the definition alone its instances are still the
same as bird. This intensional difference is obviously different from
the extensional difference of the same terms, (bird− animal), which
means “birds that are not animals”.

These difference connectors have many properties that are in
parallel to those of the intersection, though the difference connectors
cannot take more than two components. Also, neither (T − T ) nor
(T � T ) is a meaningful term.

Theorem 7.12.

(T1 − T2) → T1,

T1 → (T1 � T2).

Theorem 7.13.

M → (T1 − T2) =⇒ ¬(M → T2),
(T1 � T2) → M =⇒ ¬(T2 → M).

Theorem 7.14.

M → T1 ∧ ¬(M → (T1 − T2)) =⇒ M → T2,

¬(M → T1) ∧ ¬(M → (T2 − T1)) =⇒ ¬(M → T2),
T1 → M ∧ ¬((T1 � T2) → M) =⇒ T2 → M,

¬(T1 → M) ∧ ¬((T2 � T1) → M) =⇒ ¬(T2 → M).
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Theorem 7.15.

S → P =⇒ (S − M) → (P − M),
S → P =⇒ (M − P ) → (M − S),
S → P =⇒ (S � M) → (P � M),
S → P =⇒ (M � P ) → (M � S),
S ↔ P =⇒ (S − M) ↔ (P − M),
S ↔ P =⇒ (M − P ) ↔ (M − S),
S ↔ P =⇒ (S � M) ↔ (P � M),
S ↔ P =⇒ (M � P ) ↔ (M � S).

As in set theory, the intersections and differences connectors can
cancel out each other in certain ways:

Theorem 7.16.

T ↔ ((T ∩ M) ∪ (T − M)),
T ↔ ((T ∪ M) ∩ (T � M)).

Theorem 7.17.

((T ∪ M) − M) → T,

((T � M) ∩ M) → T,

T → ((T − M) ∪ M),
T → ((T ∩ M) � M).

7.4. Multi-Component Sets

Now we can extend the definitions of extensional set and intensional
set from containing one component (as defined in NAL-2) to
containing any number of components.

Definition 7.10. Given different terms T1, . . . , Tn (n ≥ 2), an
extensional set {T1, . . . , Tn} is defined as (∪{T1} . . . {Tn}); an inten-
sional set [T1, . . . , Tn] is defined as (∩[T1] . . . [Tn]). The new format
has a lower syntactic complexity, so should be used whenever
possible.

In this way, an extensional set is defined by enumerating its instances,
and an intensional set is defined by enumerating its properties. The
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order of the components does not matter, and duplicate components
are not allowed.

It is important to remember that in IL the extension of an
extensional set not only include the singleton sets of its instances,
but also its subsets. For example, the extension of term {a, b, c}
includes {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, and {a, b, c}. The
same is true for intensional sets.

These multi-component sets no longer have certain properties of
single-component sets such as the minimum extension or intension.
On the other hand, they have properties that are not there in single-
component sets.

Theorem 7.18.

((M ◦→ {T1, . . . , Tn}) ⇐⇒ ((M ↔ T1) ∨ . . . ∨ (M ↔ Tn))),
(([T1, . . . , Tn] →◦M) ⇐⇒ ((T1 ↔ M) ∨ . . . ∨ (Tn ↔ M))).

Theorem 7.19.

({T1, . . . , Tn} − {Tn}) ↔ {T1, . . . , Tn−1},
([T1, . . . , Tn] � [Tn]) ↔ [T1, . . . , Tn−1].

Now we see that IL can represent and process a set, which
is defined either by instances or by properties, similar to the
“set” defined in set theory. The intersection and difference con-
nectors can be applied to them just like how the corresponding
operators are applied to sets. For example, if the given term
T1 is {Mars, P luto, V enus} and T2 is {Pluto, Saturn}, then the
compound term (T1∪T2) is {Mars, P luto, Saturn, V enus}, (T1∩T2)
is {Pluto}, (T1 − T2) is {Mars, V enus}, and (T2 − T1) is {Saturn}.
Intensional sets are handled in the same way.

A set is a special type of term, but a term in general is not
necessarily identical to any set. Even though the extension and
intension of a term are defined as sets in the meta-level, in the
object-level it is usually impossible to decide their cardinality in a
meaningful way. On the contrary, the cardinality of an extensional
or intensional set is a syntactic feature, so can be decided effectively.
Therefore, as in mathematics, in NAL sets provide the foundation
for counting and other mathematical operations and notions.
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Table 7.1. The new grammar rules of NAL-3.

〈term〉 ::= ‘{’〈term〉+‘}’ | ‘[’〈term〉+‘]’

|(∩〈term〉〈term〉+)

|(∪〈term〉〈term〉+)

|(−〈term〉〈term〉)
|(�〈term〉〈term〉)

Given the necessity of sets in NAL, its functional equivalence
with the derivative copulas instance, property, and instance-property
no longer exists in NAL-3 and the higher layers. Consequently,
NAL should be implemented to use sets for internal representation
and external communication, while only to use the three derivative
copulas for communication, so as to reduce the redundancy in the
internal representation and processing.

In summary, the above definitions introduce the new forms for
term in Table 7.1.

The grammar rule in Table 6.4 for extensional and intensional
sets becomes a special case of the new rule in Table 7.1. Following
the common convention, comma (‘,’) can be used to separate the
components in a compound term (especially, a set), though its
usage is optional. Narsese does not allow a compound term without
component, so an “empty set” cannot be represented as ‘{ }’ or ‘[ ]’,
but as an atomic term, like “empty-set” or “nothing”. This is another
difference between IL/NAL and set theory in the representation and
processing of sets.

7.5. Inference on Compound Terms

In the previous sections, the syntax and semantics of compound
terms in general, and intersections and differences in particular, are
described. The description applies to both IL-3 and NAL-3, and the
latter also needs to handle numerical truth-value. In the following
the inference rules of NAL-3 are introduced.

Almost all of the inference rules introduced in the lower layers can
be directly applied to compound terms, by treating them as atomic
(i.e., non-compound) terms. In that situation, a compound term is
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used as a whole, and its internal structure and literal meaning are
all ignored.

Choice

To handle compound terms in NAL-3, the only change in the existing
rules happens in the choice rule, when used to compare competing
answers T1 and T2 for a selective question “S → ?” (or “? → P”).
In NAL-1, the system compares the truth-values of “S → T1” and
“S →T2”, and chooses the one with a higher expectation value.
In NAL-3, however, the syntactic complexity , or its opposite, the
syntactic simplicity , of the answer is also taken into account.

Definition 7.11. If the syntactic complexity of a term is n, then its
syntactic simplicity is s = 1/nr, where r > 0 is a system parameter.

Since n ≥ 1, s is in (0, 1]. Atomic terms have the highest simpli-
city, 1.0.

For a selective question, when the candidate answers have the
same expectation value, NAL prefers the simplest answer, because it
usually costs less resources than the others to process. It is a form
of “Occam’s Razor” that favors simplicity when the other factors
are the same. When the candidates have different expectation values,
however, expectation e and (syntactic) simplicity s must be combined
together, so as to make the candidates comparable in general. Since
a good answer should have high values on both dimensions, the and

operator is used, and as a result, the preferred answer is the one that
has a large e× s, that is, a larger e/nr. By adjusting the value of the
“razor parameter” r, we can control the relative weights of the two
factors in the choice rule. To simplify the discussion, in the following
we assume r = 1. Clearly, the choice rule defined in NAL-1 becomes
a special case of the above rule, with s = n = 1 for atomic terms.

After expended to handle compound terms, the choice rule can
serve additional functions, such as pattern recognition or (high-level)
perception: when S is a compound term, question “S → ?” asks the
system to find a simple term T that covers S as a special case.
Again, here the simplicity of T and its “fitness” with the “pattern”
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(measured by the expectation of “S → T”) are balanced against each
other when multiple candidates exist.4

Various forms of “Occam’s Razor” have been widely used in
AGI systems [Baum (2004); Hutter (2005)]. The major differences
between the above treatment in NAL and the other approaches are:

• “Occam’s Razor” is not accepted as a postulate for its own sake,
but as an implication of AIKR. For this reason, it is only accepted
in NAL, but not in IL.

• Though high simplicity and high expectation are both preferred,
they are not taken to be correlated, as assumed by Solomonoff
(1964). Instead, they are treated as measurements that are defined
independently, though can be combined to make choices.

Composition

New compound terms can be either introduced in the (idealized or
actual) experience of the system, or composed by inference rules from
the existing terms.

To compose intersections and differences in NAL-3, the inference
rules in Table 7.2 use the same premises as the rules in Table 4.4
(though the terms are named differently). However, this time the
conclusions are not between the two terms unshared in the premises,
but between the shared term and a compound term composed by
the other two. Therefore they are not syllogistic, but compositional ,
though the truth-values of conclusions are still calculated from those
of the premises, as before. Such a rule is applicable only when T1 and
T2 are different, and do not have each other as component. Also, the
two premises cannot have overlapping evidential bases.

Each of the three truth-value functions appearing in Table 7.2
is used at least in two compositional rules, one extensional and

4More factors can be taken into account when answering this question, such as
the relevance of T to the current context, or the usefulness of T in the history
of the system. However, these factors are not contributed by the logic part of
NARS, but the control part, as mentioned in Chapter 5 — candidates with those
properties have higher accessibility. This issue will not be discussed in detail in
the book.
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Table 7.2. The compositional rules of NAL-3.

J2\J1 M → T1〈f1, c1〉 T1 → M〈f1, c1〉

T2 → M〈f2, c2〉 (T1 ∪ T2) → M〈Fint〉
(T1 ∩ T2) → M〈Funi〉
(T1 � T2) → M〈Fdif〉
(T2 � T1) → M〈F ′

dif〉
M → T2〈f2, c2〉 M → (T1 ∩ T2)〈Fint〉

M → (T1 ∪ T2)〈Funi〉
M → (T1 − T2)〈Fdif〉
M → (T2 − T1)〈F ′

dif〉

Table 7.3. The truth-value functions of the composition rules.

Name Inference Frequency Confidence

Fint intersection f = and(f1, f2) c = and(c1, c2)

Funi union f = or(f1, f2) c = and(c1, c2)

Fdif difference f = and(f1, not(f2)) c = and(c1, c2)

another intensional, and the difference rule is also used for both
orders between the two terms. The three truth-value functions are
listed in Table 7.3.

In these functions, the frequency of the conclusion is determined
by the frequency of the premises with the same Boolean operator
that defines the extension or intension of the compound, while the
confidence of the conclusion is determined conjunctively by the
confidence of the premises. All these three functions are strong, so
have binary versions in IL.5

As in binary logic, here a conclusion may be derived from a single
premise. Since T1 → (T1 ∪ T2) is an analytical truth, if M → T1 has
a high frequency and a high confidence, the system should be able

5How to represent negative statements in IL will be introduced in Chapter 9.
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to assign a similar truth-value to M → (T1 ∪ T2), without evidence
about M → T2.6

Equipped with these compositional rules, NAL-3 not only can
derive new tasks and beliefs among the existing terms (as in the
lower layers), but can also derive new compound terms, using the
existing terms as components. In other words, a system using NAL
can not only learn new knowledge about existing concept, but also
“learn new concepts”, in several senses:

• The system is open to input sentences containing novel (atomic or
compound) terms that are not in the system’s current vocabulary.

• The compositional rules may create compound terms that are not
in the system’s current vocabulary.

• Even when a conclusion only contains existing terms, it may more
or less change the meaning of the terms by adding new relations
into them.

• Since each time a concept is used with its “current meaning”,
which is influenced by the priority distribution among the beliefs
in the concept (as explained in Chapter 5), concept learning also
happens when this priority distribution is adjusted.

Clearly, in NAL-3 the system’s vocabulary does not only contain
terms obtained from the system’s experience (as in the lower layers),
but also the compound terms that have been composed from them.

Some people may think that since the “new concepts” in NAL
are all composed from existing concepts, they are not really “new”.
This opinion is incorrect, because as soon as a compound term is
formed, its meaning will no longer be fully determined by its “literal
meaning” (which links it to the meaning of its components), but also
depends on the conceptual relation between the concept as a whole
and the other concepts, and this part of meaning usually cannot be

6This type of immediate inference will be introduced in NAL-5. In the previous
versions of NARS [Wang (2006b)], this type of inference is also carried out by
the composition rules. Now they are covered separately to simplify the design.
The overall results are similar, since when the composition rules and the single-
premise rules produce conflicting conclusions, the choice rule will pick the high
confident one to use.
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reduced into that of its components. This aspect of concept learning
is discussed in Wang and Hofstadter (2006).

One important nature of NARS is that it is not a reasoning
system in the traditional sense, but an attempt to build an “Artificial
General Intelligence” (AGI) [Wang and Goertzel (2007)] in the frame-
work of a reasoning system. It follows that the notion of “reasoning”
is greatly expended to include other cognitive processes. Here we
have seen that “reasoning” and “learning” are two aspects of the
same underlying process, rather than two separate (though related)
processes, as assumed by many other AGI projects, especially various
“Cognitive Architectures” [Newell (1990); Chong et al. (2007)].

When learning new concepts, NARS does not exhaustively search
a “vision space”, and evaluate every possible concept according to
a fixed criterion, like some traditional AI systems. For example,
though it is syntactically legitimate to pick two arbitrary terms
in the system’s vocabulary, then to evaluate their intersections
and differences, NARS does not try that. Instead, an intersection
(or difference) is composed only when it can be used to summarize
some experience obtained in the system. This is why no new term is
composed from “M → T1〈f1, c1〉” and “T2 → M〈f2, c2〉” in Table 7.2.

Furthermore, whether a concept is valuable or fruitful is not a
decision made when the concept is created, but after it is created, in
the process in which all existing concepts compete for resources.

All these properties make the concept learning process in
NARS different from that in traditional machine learning algorithms
[Mitchell (1997); Russell and Norvig (2010)].
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CHAPTER 8

NAL-4: RELATIONAL TERMS

An often claimed advantage of predicate logic over term logic is that
the former can represent any conceptual relation (as function over
arguments), while the latter can only represent a small number of
relations (as copulas between terms) [Frege (1999)]. Though this
criticism is valid toward traditional term logics, like that of Aristotle
(1882), it is an issue that can be resolved within term logic, using
compound terms.

NAL-4 has the capability of representing and processing arbitrary
relations among terms.

8.1. Product and Acquired Relation

The approach taken in IL/NAL to represent relation is similar to the
approach used in set theory, where a “relation” is defined as a set of
ordered pairs or tuples.

Definition 8.1. The product connector ‘×’ takes two or more terms
as components, and forms a compound term that satisfies

((×S1 · · ·Sn) → (×P1 · · ·Pn))

⇐⇒ ((S1 → P1) ∧ · · · ∧ (Sn → Pn)).

Therefore, this compound term is simply a way to put two or more
terms into a sequence, and to extend the inheritance relation from
the components to the compounds. Intuitively, a product represents
an anonymous relation among the components, and the role played
by each of them is indicated only by their relative order. As usual,

107
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the connector can be used both in the prefix format and the infix
format. To simplify the description, in the following products of two
terms are used, though the results can be easily extended to products
of more than two terms.

Theorem 8.1. ((S1 × S2) ↔ (P1 × P2)) ⇐⇒ ((S1 ↔ P1) ∧
(S2 ↔ P2)).

Theorem 8.2.

(S → P ) ⇐⇒ ((M × S) → (M × P )) ⇐⇒ ((S × M) → (P × M)),
(S ↔ P ) ⇐⇒ ((M × S) ↔ (M × P )) ⇐⇒ ((S × M) ↔ (P × M)).

The above result intuitively says that a term can be “multiplied” to
both sides of a copula.

The definition of product in NAL is like how Cartesian product
is defined in set theory, except that here all the involved items are
terms, not sets or their elements. Furthermore, the definition in set
theory is purely extensional (defining a product by enumerating its
elements), while the NAL definition is both extensional and and
intensional — the above definition specifies the extension of (P1×P2)
and the intension of (S1 × S2) at the same time.

When S1 and S2 are singleton sets, this definition can be
rewritten as

(({T1} × {T2}) → (P1 × P2)) ⇐⇒ ((T1◦→ P1) ∧ (T2◦→ P2)).

With the following definition, the above result can be mapped into
the set theory definition perfectly.

Definition 8.2. A product of singleton extensional sets ({T1} ×
{T2}) is identical to a singleton extensional set of a product
{(T1 × T2)}, and the latter format has a lower syntactic complexity.
The same is true for intensional sets, that is, ([T1]×[T2]) ↔ [(T1×T2)].
The two can be further simplified into {T1 × T2} and [T1 × T2],
respectively, without changing their syntactic complexity.

Now we can see the product of NAL as an extension of the Cartesian
product in set theory. Once again, while the membership relation is
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fundamental in set theory, in NAL it is the inheritance relation that
is used to define the other constituents of the logic.

The ‘×’ operator is used, because in set theory a Cartesian
product between a set of cardinality m and a set of cardinality n

has a cardinality m × n. This result only holds in special cases in
NAL, though the intuition remains, as shown by the following meta-
level result.

Theorem 8.3.

{(x × y)|x ∈ TE
1 , y ∈ TE

2 } ⊆ (T1 × T2)E ,

{(x × y)|x ∈ T I
1 , y ∈ T I

2 } ⊆ (T1 × T2)I .

In the above theorem, the ‘⊆’ relation cannot be replaced by ‘=’,
because (T1 × T2)E and (T1 × T2)I may contain other terms that are
not products.

Unlike a set, a product may have duplicate components, and the
order of components matters. As a special case of the definition of
product, when the terms involved are products with common compo-
nents, the system can “concatenate” them into longer products:

Theorem 8.4.

(((× S1 S2) → (× P1 P2)) ∧ ((× S1 S3) → (× P1 P3)))

⇐⇒ ((× S1 S2 S3) → (× P1 P2 P3)).

Now “relation” can be formally defined in IL-4 as a term that
has a product in its extension or intension. Once again, this definition
covers the “relation” in set theory as a special case.

Definition 8.3. A relational term, or a relation, is a term R such
that in K∗ there is a product (T1 × T2) satisfying “(T1 × T2) → R”
or “R → (T1 × T2)”.

Since “(T1 × T2) → (T1 × T2)” is true by definition, a product is a
relation, though a relation is not necessarily a product — a relation
can be an atomic term. Therefore, a relation may not be a compound
term, nor is it marked syntactically. A term is referred to as a
“relation” when it is related to a product by a copula.
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For example, “Water dissolves salt” can be represented as
“(water × salt) → dissolve”, so dissolve is a relation in NAL.
Similarly, “Dissolving is between a liquid and a solid” can be
represented as “dissolve → (liquid × solid)”, which also shows
that dissolve is a relation. Clearly, the last statement is different
from “(liquid × solid) → dissolve”, which means “Liquid dissolves
solid”. Like other terms, the extension of a relational term includes
more specific relational terms, while its intension includes more
general relational terms. In this way, relations also form a conceptual
hierarchy.

8.2. Types of Conceptual Relation

In summary, a “conceptual relation” is a relation between terms,
therefore it is also a relation between the concepts named by the
terms. Conceptual relations in NAL are divided into three types:

Syntactic relation: A syntactic relation is between a compound
term and its components, like the relation between raven and
(raven − [black]). These relations are indicated by the term
connector of the compound (‘−’ here), and, optionally, by the
location of the component in the compound (‘raven’ is the first
component in the compound).

Semantic relation: A semantic relation is between the subject
term and the predicate term of a statement, like the relation
between raven and bird in “raven → bird”. These relations are
indicated by the copula of the statement (‘→’ here).

Acquired relation: An acquired relation is among components of
a product, like the relation between raven and worm in “(raven×
worm) → food”. These relations are indicated by terms.

In NAL, the first type of relation is binary and literal, while the
latter two are multi-valued and empirical. Furthermore, the meanings
of “relations” of the first two types above are defined at the meta-
level (as in this book) and embedded in the grammar and inference
rules. That is, the meaning of such a relation to the system is fixed,
though it may be only gradually revealed to an observer by how
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it is treated by the system. On the contrary, the meaning of a
“relation” of the last type is completely determined by what the
system has experienced about it, and therefore changes over time.
Even if the system has acquired concepts like “part of”, “component
of”, “inheritance”, and “is a”, which have similar meanings with
certain innate relations, they will not become identical to the innate
ones.1

In a predicate logic, the above three types of relations are
represented uniformly by predicate names, which have no innate
meaning recognized by the inference rules. On the contrary, a
key feature of term logic is to give the relations represented by
copulas a special status. All inference rules in term logic are justified
according to the defining properties of copulas, as exemplified by
Aristotle’s Syllogistic. Though such a treatment seems unnecessary in
theorem-proving (which is binary deduction), limitations of predicate
logic have been well known when commonsense reasoning is under
consideration.

In study on knowledge representation and reasoning, AI re-
searchers have recognized the special function of the “is-a” relation
(which is similar to the inheritance in NAL), and treated it differently
(both in representation and inference) from other relations in
techniques including frame, semantic network, and description logic
[Woods (1975); Brachman (1983); Donini et al. (1996); Russell and
Norvig (2010)]. Compared to them, what makes NAL special is that
the whole logic (rather than parts of it) is built on a few copulas,
which are used to represent the other (acquired) relations, with the
help of compound terms.

Copulas are special in that each of them is defined on all
terms with the same meaning (substitutability), while an acquired
relation is meaningful only on certain terms, and its meaning changes
according to experience and context [Wang (2006b)]. As to be
discussed in the following chapters, many major issues in predicate
logics disappear in term logics, due to the use of copulas.

1This issue is related to the topic of “self-knowledge”, to be addressed in NAL-9.



April 4, 2013 12:22 9in x 6in Non-Axiomatic Logic b1497-ch08

112 Non-Axiomatic Logic: A Model of Intelligent Reasoning

8.3. Image and Structural Transformation

Though any conceptual relation can be represented as one of
the three types listed previously, it does not mean that such a
representation is good enough for the system’s inference need. For
example, we expect knowledge “Water dissolves salt” and “Rain is
water” can be used as premises to derive “Rain dissolves salt” by
deduction, but “(water × salt) → dissolve” and “rain → water”
do not fit into the pattern of the deduction rule defined in NAL-1
(or any NAL inference rule defined so far), because the common term
water is neither the subject nor the predicate of the first premise,
but a component of its subject.

In principle, this issue can be resolved by defining another version
of deduction rule, where the premises have such a pattern. However,
that would lead to too many versions of each rule. The solution used
in NAL is to use inference rules for “structural transformation”,
by which the same statement is equivalently rewritten into other
formats, so as to allow a component of the subject term or predicate
term of the original statement to be treated as the subject term
or predicate term of the new statement, which has the same truth-
value as the original. This is similar to the case in natural language,
where a statement can be expressed in either “active voice” or
“passive voice”, which have different grammatical structures (and dif-
ferent subject phrases), but similar (if not equivalent) semantic
content.2

Definition 8.4. For a relation R and a product (×T1 T2), the
extensional image connector, ‘/’, and intensional image connector,
‘\’, are defined as the following, respectively:

((×T1 T2) → R) ⇐⇒ (T1 → (/R 	 T2)) ⇐⇒ (T2 → (/R T1	)),
(R → (×T1 T2)) ⇐⇒ ((\R 	 T2) → T1) ⇐⇒ ((\R T1	) → T2),

where ‘	’ is a special symbol indicating the location of T1 or T2 in
the product, and in the component list it can appear in any place,

2Different structures also influence inference control, which will not be discussed
here.
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except the first (which is reserved for the relational term). When it
appears at the second place, the image can also be written in infix
format as (R /T2) or (R \T2).

The above definition can be extended to include products with more
than two components, where the image can only be written in the
prefix format.

The notion of “image” also comes from set theory, though in NAL
it is not restricted to sets, nor is it defined only on the extension of
relations.

For the previous example, now the conceptual relationship among
water, salt, and dissolve can be equivalently expressed in three
statements:

• (water × salt) → dissolve

• water → (/ dissolve 	 salt)
• salt → (/ dissolve water 	)

Roughly speaking, (/dissolve 	 salt) is “whatever dissolves salt”,
and (/ dissolve water	) is “whatever dissolved by water”. Now the
deduction rule can be applied in the following form:

{water → (/ dissolve 	 salt), rain → water} 

rain → (/ dissolve 	 salt)

and the conclusion can be transformed into “(rain × salt) →
dissolve”, which is the expected result. To simplify the description,
truth-value calculation is omitted in this example, as well as in similar
examples in the following.

In general, (R /T ) and (R \T ) are different, since the former is
defined extensionally, while the latter intensionally. Even so, there
are special cases where they get the same result.

Theorem 8.5.

((T1 × T2) /T2) ↔ T1,

((T1 × T2) \T2) ↔ T1.
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Here (extensional or intensional) image serves as the reverse
operation of product , by canceling its effect.3

However, when an image connector is followed by a product
connector, with the same component, the two cancel each other only
in one direction of inheritance.

Theorem 8.6.

((R / T ) × T ) → R,

R → ((R \ T ) × T ).

The inheritance copula in the above result cannot be replaced by
the similarity copula, because the extension and intension of the
relational term R may contain terms that are not in the form of
(M × T ), and information about those terms will not be kept in the
image, so cannot be recovered by the product.

It follows from the above results that in IL the image connectors
can be applied to both sides of an inheritance copula, and in certain
cases the order of the terms in the conclusion is switched.

Theorem 8.7.

S → P =⇒ (S / M) → (P / M),
S → P =⇒ (M / P ) → (M / S),
S → P =⇒ (S \ M) → (P \ M),
S → P =⇒ (M \ P ) → (M \ S).

In summary, NAL-4 introduces the new grammar rules in
Table 8.1.

There are additional restrictions in the grammar rules for the
images that cannot be easily expressed in the grammar notations: the
two “〈term〉∗” expressions on both sides of ‘	’ cannot both be empty,
that is, an image must contain at least two terms as components,

3Intuitively, with respect to the size of the involved extensions or intensions,
intersection and difference correspond to “addition” and “subtraction”, product
to “multiplication”, and image to “division”. This is the reason for image to be
named quotient in Wang (1995). The current name is used to be consistent with
set theory.
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Table 8.1. The new grammar rules of NAL-4.

〈term〉 ::= (×〈term〉〈term〉+)

|(/〈term〉〈term〉∗ � 〈term〉∗)
|(\〈term〉〈term〉∗ � 〈term〉∗)

and the first one is taken to be a relation. As mentioned previously,
a “relational term” is not defined by Narsese grammar rules as a
type of compound term, but refers to any term that is semantically
related with a product in the system’s experience.

As for semantics, the situation in NAL-4 is the same as that
in NAL-3. The meaning of a compound term, such as a product
or an image, is partially determined by its syntactic relations
with its components, and partially determined by its semantic and
acquired relations with other terms. For example, literally speaking,
(/ dissolve	 salt) is “whatever dissolves salt”, but at the same time,
the system’s knowledge on whether various liquids have this property
also forms an important part of the meaning of this compound term,
and this kind of meaning cannot be fully derived from the meaning of
dissolve and salt. Now it is more clear why it has been said several
times that “The meaning of a term (either atomic or compound)
depends on all the relations between the term and other terms”.

There is no new inference rule directly defined in NAL-4. Obvi-
ously, the equivalence and implication propositions in the definitions
and theorems of IL-4 can be used in inference, which is a topic to be
addressed in the next chapter.
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CHAPTER 9

NAL-5: STATEMENTS AS TERMS

In a natural language, there are compound and complex sentences
that contain other sentences as parts. Similarly, in Narsese a
statement can be used as a (compound) term to form “statements on
statements”, or “higher-order statements”, and the inference on such
statements is “higher-order inference”. This chapter introduces the
basic grammar rules of higher-order statement and inference rules of
higher-order inference in NAL. Compared to them, the statements
in the previous layers of NAL, as well as the inference on them,
are “first-order”, where a statement only relates terms that are not
statements themselves.

9.1. Higher-Order Statement

Syntactically, it is easy to extend Narsese to cover higher-order
statements — it is enough to allow a statement, as defined previously,
to be used as a term. To avoid ambiguity, such a statement is enclosed
by a pair of parentheses, and it can be used in inference like other
(first-order) terms.

Many conceptual relations between a human and a statement,
including the “propositional attitudes” [McKay and Nelson (2010)],
can be represented in Narsese as higher-order relations. For example,
“John knows that the Earth is round” can be represented as

{John × ({Earth} → [round])} → know,

where know is a relation between a cognitive system (John) and
a statement ({Earth} → [round]), and its meaning is determined

117
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like the other acquired relations in the system. All the previously
defined inference rules can be used on this type of higher-order
statements, by simply treating statements as terms. Except their
syntactic forms, there is nothing special about this type of higher-
order statements.

Obviously, this structure can be used recursively, such as “Mary
believes that John knows that the Earth is round”, and there is
no logical reason to restrict the number of recursions. Though it
is possible to further classify higher-order statements into “second-
order”, “third-order”, etc., such distinctions are not made in NAL,
since they make no difference in the grammar and inference rules.
Therefore in NAL they are called “higher-order” all together.

From the above description, it becomes very clear that the “first-
order versus higher-order” distinction in NAL, which is a term logic,
is completely different from the distinction under the same name in a
predicate logic — in the former, “higher-order” means “statements on
statements”, while in the latter it means “predicates on predicates”
[Enderton (2009)].

In other approaches, propositional attitudes like “know” and
“believe” are usually formalized in a special type of modal logic,
known as “epistemic logic”, where the meaning of the propositional
attitudes are captured by special logical constants [Hendricks and
Symons (2009)]. On the contrary, in NAL these propositional atti-
tudes are represented as acquired relations with experience-grounded
meaning.1

Not only can a statement be treated as a term, a term can also be
treated as a statement , even though it is not in the “subject–copula–
predicate” format. For example, if to the system “Columbus’ belief”
means “the Earth is round”, then the former can be used as the
latter in many beliefs, and is effectively a statement. Furthermore,

1In NAL, propositional attitudes are still different from other acquired relational
terms, because they are associated with the system’s internal operations, which
will be introduced in NAL-9. Even so, their meaning nevertheless depends on the
system’s experience with these relations, which is not the case in an epistemic
logic.
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a statement in NAL can be identified by an atomic term, such as
“round-Earth ↔ ({Earth} → [round])”.

Therefore, in NAL the real difference between a “term” and a
“statement” is not syntactic (even though they are listed as separate
items in the grammar rules) but semantic, since a statement has
both a truth-value and a meaning, while the other (non-statement)
terms only have meanings, but no truth-value — “Columbus’ belief”
can be true to an extent, but “Columbus’ ship” cannot. Therefore, in
NAL a statement is a term with truth-value, while a non-statement
term is a term that has not got any truth-value yet.2

9.2. Implication and Inheritance

In IL-1, the inheritance copula is defined to express that one term is
related to another in meaning in such a way that one can be used as
the other; similarly, in IL-5 another copula is defined to express that
one statement is related to another in truth-value in such a way that
one can be used as the other.

Definition 9.1. If S1 and S2 are statements, “S1 ⇒ S2” is true if
and only if in IL S2 can be derived from S1 in a finite number of
inference steps. Formally, it means (S1 ⇒ S2) ⇐⇒ {S1} � S2. Here
‘⇒’ is the implication copula.

Though at the meta-level we can say that “S1 ⇒ S2” if and only if
“{S1} � S2”, the two are not the same at the object-level: the former
is a statement, while the latter is a process.3

Since implication is defined between statements, it is a “higher-
order copula” involved in higher-order inference, in the sense clarified
previously. Intuitively speaking, “S1 ⇒ S2” means “If S1, then S2”,
or “S1 implies S2”. It is different from the “material implication” in
propositional logic (written as ‘=⇒’ in this book), which is defined as
“¬S1 ∨ S2”, and does not requires S1 to be related to S2 in content.

2It is put in this way because a term may initially enter the system’s experience
without a truth-value, but then get it at a later time.
3To confuse the two will cause conceptual confusions, as revealed by Carroll’s
“What the Tortoise Said to Achilles” [Carroll (1895)].
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Since IL is a term logic, it is impossible for S2 to be derived from S1

if the two are not related in content.

Theorem 9.1. The implication copula is a reflexive and transitive
relation from one statement to another statement.

Since the above theorem on implication is parallel to the
definition of inheritance in IL-1, higher-order inference in IL-5 can
be defined as partially isomorphic to first-order inference, as shown
in the following definitions.

Definition 9.2. An implication statement consists of two state-
ments related by the implication copula. In implication statement
“A ⇒ C”, A is the antecedent statement, and C is the consequent
statement.

Definition 9.3. Given idealized experience K expressed in the
formal language of IL-5, the sufficient conditions of a statement T

is the set of statements T S = {x|x ∈ VK ∧ x ⇒ T}; the necessary
conditions of T is the set of statements TN = {x, |x ∈ VK ∧ T ⇒ x}.
Theorem 9.2. If both A and C are statements in VK , then

(A ⇒ C) ⇐⇒ (AS ⊆ CS) ⇐⇒ (CN ⊆ AN ).

To extend the usage of implication from IL to NAL, its evidence
can be defined in a similar way as that of inheritance.

Definition 9.4. For an implication statement “A ⇒ C”, its evi-
dence are statements in AS and CN . Among them, statements in
(AS ∩CS) and (CN ∩AN ) are positive evidence, while statements in
(AS − CS) and (CN − AN ) are negative evidence.

The amounts of evidence and the truth-value for a higher-order
statement are defined in the same way from evidence as for a first-
order statement. Therefore, the semantics of NAL-5 is similar to that
of NAL-1.

In IL-2, similarity is defined as symmetric inheritance, while in
IL-5, equivalence is defined as symmetric implication.
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Definition 9.5. The equivalence copula, ‘⇔’, is defined by

(A ⇔ C) ⇐⇒ ((A ⇒ C) ∧ (C ⇒ A)).

As a special type of compound terms, compound statements can
be used to summarize existing statements.

Definition 9.6. When S1 and S2 are different statements, their
conjunction, (S1 ∧ S2), is a compound statement defined by

(∀x)((x ⇒ (S1 ∧ S2)) ⇐⇒ ((x ⇒ S1) ∧ (x ⇒ S2))).

Their disjunction, (S1 ∨ S2), is a compound statement defined by

(∀x)(((S1 ∨ S2) ⇒ x) ⇐⇒ ((S1 ⇒ x) ∧ (S2 ⇒ x))).

These two statement connectors are symmetric, and can be extended
to take more than two arguments. In the definition, the symbol ‘∧’ is
used in two different meanings: in (S1 ∧ S2), it is the new statement
connector to be defined; in the right-hand side of the definitions,
it is the conjunction operator of propositional logic, used as a meta-
language in IL and NAL. The disjunction connector is defined by the
conjunction of necessary conditions of its two components, though it
can be equivalently defined by the disjunction of sufficient conditions
of its two components, that is, as:

(∀x)((x ⇒ (S1 ∨ S2)) ⇐⇒ ((x ⇒ S1) ∨ (x ⇒ S2)))

which may look more natural to some readers. Even so, the previous
definition is preferred, since it gives sufficient and necessary condi-
tions a symmetric treatment.

Theorem 9.3.

(S1 ∧ S2) ⇒ S1,

S1 ⇒ (S1 ∨ S2).

The isomorphism between first-order IL and higher-order IL is
summarized in Table 9.1.

The isomorphism given in Table 9.1 is not completely unnoticed
in the previous works, even though it is not presented explicitly in
this way. In FOPL, categorical sentences (which are represented as
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Table 9.1. Isomorphism between first-order and higher-order IL.

First-order IL Higher-order IL

term statement
inheritance implication
similarity equivalence
subject antecedent
predicate consequent
extension sufficient condition
intension necessary condition
extensional intersection conjunction
intensional intersection disjunction

Table 9.2. The copulas of NAL.

First-order Higher-order

asymmetric inheritance (→) implication (⇒)
symmetric similarity (↔) equivalence (⇔)

first-order statements in Narsese) are all expressed as conditional
sentences (which are represented as higher-order statements in
Narsese). For example, the English sentence “Robin is a type of bird”
is not directly represented as a relation between concepts “robin” and
“bird”, but between sentences “x is a robin” and “x is a bird”, where
x is a universally quantified variable. Later we will see that these two
representations do not have the same meaning exactly.

Though implication and equivalence are isomorphic to inheri-
tance and similarity, respectively, they are not the same. The higher-
order copulas indicate the substitutability between statements in
truth-value, while the first-order copulas indicate the substitutability
between terms in meaning. They both specify the extent to which
one item can be used as another, though in different ways.

For this reason, in NAL both first-order copulas and higher-order
copulas are recognized and processed by the inference rules. Overall,
there are only four copulas to be implemented in NARS, as listed in
Table 9.2.
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Table 9.3. The new grammar rules of NAL-5.

〈term〉 ::= (〈statement〉)
〈statement〉 ::= 〈term〉

| (¬ 〈statement〉)
| (∧ 〈statement〉〈statement〉+)
| (∨ 〈statement〉〈statement〉+)

〈copula〉 ::=⇒ | ⇔

There are three derivative copulas that are used in the system
interface only: instance (◦→), property (→◦), and instance-property
(◦→◦). They do not have higher-order correspondence.

The new grammar rules of IL-5 and NAL-5 are listed in Table 9.3,
where the new copulas and term connectors have been defined
previously, except the negation connector ‘¬’, which will be discussed
separately in a following section.

Because of the isomorphism in definitions, there are isomorphic
inference rules in NAL-5 (with the same truth-value function) for the
following rules defined previously4:

• The NAL-1 rules for deduction, abduction, induction, exemplifi-
cation, and conversion.

• The NAL-2 rules for comparison, analogy, and resemblance.
• The NAL-3 rules for the composition and decomposition of

intersections.
• The backward inference rules corresponding to the above forward

inference rules.

The term connectors for (extensional/intensional) sets, product,
and (extensional/intensional) images are not involved in the iso-
morphism between first-order and higher-order terms. They are still
defined using the inheritance copula, and treat higher-order terms
just like first-order terms, so there is no special rule added. Similarly,
the revision rule and the choice rule work the same way on first-order
and higher-order statements.

4Some of the inference rules in the list have been studied in the existing literature
under different names. For example, the higher-order deduction rule of IL is
traditionally called “hypothetical syllogism”.
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9.3. Implication as Conditional

Higher-order inference includes more than the above isomorphism
with first-order inference. Beside being reflexive and transitive, the
implication copula is also defined to correspond to an inference
process, that is, the implication statement “S1 ⇒ S2” is true if and
only if the inference process {S1} � S2 can happen in IL. This result
is similar to the Deduction Theorem in propositional logic [Kleene
(2002)].

According to the experience-grounded semantics of IL, this
relation between implication and derivation can be extended to any
true statement S. By definition, S is true if and only if it can be
derived from the experience of the system, K, that is, K � S. We can
use E to represent the conjunction of all statements in K, so the
above derivation is represented as {E} � S, which is equivalent to
implication statement “E ⇒ S”.

When this equivalence is extended into NAL, both the truth-
value of the implication statement and the validity of the
inference process becomes a matter of degree, though the two
should still be measured as the same. By definition, in NAL a
judgment “S〈f, c〉” states that “The degree of belief the system
has on statement S, according to available evidence, is measured
by 〈f, c〉”. Assume that the available evidence currently used on
the evaluation of S can be written as a compound statement E,
then the same meaning can be represented as “{E} � S 〈f, c〉”,
that is, “E ⇒ S 〈f, c〉”, which states that “The degree of belief the
system has on statement ‘If E is true, then S is true’ is measured
by 〈f, c〉”. In this way, a statement “S” is equivalently translated
into a conditional statement “E ⇒ S”, by explicitly mentioning its
evidence as its condition .

This translation is a conceptual one, not an actual one, since
there is no need to actually spell out E in Narsese. Nevertheless,
the translation provides an important insight that every judgment
is conditional, or based on implicitly represented evidence. Further-
more, the truth-value of the judgment is also the truth-value of the
corresponding conditional judgment, if the condition is explicitly
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Table 9.4. The conditional syllogistic rules.

(1) Premises (2) Condition added (3) Conclusion (4) Condition dropped

M ⇒ P, M M ⇒ P, E ⇒ M E ⇒ P 〈Fded〉 P 〈Fded〉
P ⇒ M, M P ⇒ M, E ⇒ M E ⇒ P 〈Fabd〉 P 〈Fabd〉
M ⇔ P, M M ⇔ P, E ⇒ M E ⇒ P 〈F ′

ana〉 P 〈F ′
ana〉

spelled out. This insight, as well as the conceptual translation, can be
used to establish a group of inference rules. In such a rule, the implicit
condition E is made explicit in the premises, so as to change the
premise combination into one for which NAL already has inference
rules. Finally, the condition is turned implicit in the conclusion.
Table 9.4 contains three rules obtained in this way, where the truth-
values of the premises are omitted.

The inference rules in Table 9.4 are called “Conditional Syllogistic
Rules”, because they are variants of the higher-order syllogistic rules,
obtained by treating one of the premises as a conditional statement.
When used in inference, the two middle-columns in the table are
omitted, and the rules are taken as directly from the first column
(as premises) to the last column (as conclusions).

Let us discuss the first case as an example. This inference rule is
the NAL version of modus ponens, a well-known form of deduction
[Kleene (2002)]:

{M ⇒ P 〈f1, c1〉, M 〈f2, c2〉} � P 〈Fded〉.
This rule is a variant of the higher-order deduction rule (its binary
form is traditionally called “hypothetical syllogism”):

{M ⇒ P 〈f1, c1〉, S ⇒ M 〈f2, c2〉} � S ⇒ P 〈Fded〉,
where the statement S is replaced by the implicit condition E, which
is added into the second premise before the inference, then dropped
from the conclusion.

Similarly, when two judgments can be seen as based on the
same implicit condition, conclusions can be derived according to the
existing rules, as in Table 9.5.
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Table 9.5. The conditional compositional rules.

(1) Premises (2) Condition added (3) Conclusion (4) Condition dropped

P, S E ⇒ P, E ⇒ S S ⇒ P 〈Find〉 S ⇒ P 〈Find〉
P, S E ⇒ P, E ⇒ S S ⇔ P 〈Fcom〉 S ⇔ P 〈Fcom〉
P, S E ⇒ P, E ⇒ S E ⇒ (P ∧ S) 〈Fint〉 (P ∧ S) 〈Fint〉
P, S E ⇒ P, E ⇒ S E ⇒ (P ∨ S) 〈Funi〉 (P ∨ S) 〈Funi〉

The rules in Table 9.5 are not syllogistic, but compositional, since
the statements in the conclusions are compound terms composed
by the terms in the premises. Because they are applicable only when
the premises “can be seen as based on the same implicit condition”,
NAL does not take two arbitrary judgments as premises and apply
these rules on them.5

As limit cases of Fint and Funi, respectively, in IL conjunction and
disjunction correspond to the same truth tables as in propositional
logic, even though the two are not defined by their truth tables in IL,
and such a compound statement is formed only when its components
are related in content. Also different from propositional/predicate
logic, in IL the truth-values of “S ⇒P” and “S ⇔P” cannot be
decided according to the truth-values of S and P . In NAL, in certain
situations these truth-values can be derived from those of their
component statements by a “weak” rule (induction or comparison),
so the conclusions are inconclusive (i.e., with relatively low confidence
values).

Now we see that the notion of “syllogistic rules” has been
extended from its traditional sense into multi-valued and multi-
copula in NAL. However, these rules still follow the basic request that
each takes two premises that share a common term, and produces
a conclusion between the other two terms, though one of the terms
may be implicitly represented.

So far, NAL has included three different (though related) forms of
the deduction–abduction–induction trio, as summarized in Table 9.6.
They share the same group of truth-value functions.

5The applicable situations of these rules are introduced in the following chapters.
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Table 9.6. Deduction–abduction–induction in NAL (2).

First-order Higher-order Conditional

{M → P, S → M} 	 S → P {M ⇒ P, S ⇒ M} 	 S ⇒ P {S ⇒ P, S} 	 P
{P → M, S → M} 	 S → P {P ⇒ M, S ⇒ M} 	 S ⇒ P {P ⇒ S, S} 	 P
{M → P, M → S} 	 S → P {M ⇒ P, M ⇒ S} 	 S ⇒ P {P, S} 	 S ⇒ P

Table 9.7. Deduction–abduction–induction in NAL (3).

{(S ∧ M) ⇒ P, M} 	 S ⇒ P {(C ∧ M) ⇒ P, S ⇒ M} 	 (C ∧ S) ⇒ P
{(S ∧ P ) ⇒ M, S ⇒ M} 	 P {(C ∧ P ) ⇒ M, (C ∧ S) ⇒ M} 	 S ⇒ P
{M ⇒ P, S} 	 (S ∧ M) ⇒ P {(C ∧ M) ⇒ P, M ⇒ S} 	 (C ∧ S) ⇒ P

A conditional statement can have conditions itself, and such a
statement can be equivalently transformed into a statement with a
conjunctive condition.6

Theorem 9.4. For any statements S1, S2, and S3,

(S1 ⇒ (S2 ⇒ S3)) ⇐⇒ ((S1 ∧ S2) ⇒ S3).

Based on this relation, two more variant forms of the deduction–
abduction–induction rules can be established, as listed in Table 9.7.

In each of the five forms of syllogisms listed in Tables 9.6 and
9.7, the deduction rule corresponds to a valid inference rule in IL,
from which the abduction rule is obtained by exchanging the second
premise and the conclusion (plus proper renaming of the terms), and
the induction rule is obtained by exchanging the first premise and
the conclusion (plus proper renaming of the terms). This “reversing”
relationship among the three types of inference is exactly what Peirce
proposed, though the syntax and semantics of the rules are not the
same as his rules [Peirce (1931)].

6Implication statements with conjunctive conditions play an important role in
inference, as to be shown in the later layers of NAL. This structure also corre-
sponds to Horn clauses, a form of proposition widely used in logic programming
[Kowalski (1979)].
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We can image the two premises and one conclusion in each
first-order or higher-order syllogistic rule as forming a triangle, with
the three terms involved as vertices, and the three statements as
edges. In this triangle, from any two sides the third one can be
derived.

When all three edges of the above triangle are asymmetric
statements (i.e., inheritance or implication), the deduction rule is
an extended version (from binary to multi-valued) of the transitivity
of the asymmetric copula, while in the other two rules one copula in
the premises is used in the reverse direction, which is why the rule is
“weak” and produces only low-confidence conclusions. This reversion
is possible, because the evidence supporting the original statement
also provides some information for the reversed statement, though
not as strongly.

When the triangle is formed by two asymmetric statements
(inheritance or implication) and a symmetric statement (similarity
or equivalence), in the three possible premise–conclusion combi-
nations, two of them are strong inference (with the symmetric
statement as a premise, using the analogy rule), and the other is
weak (with the symmetric statement as the conclusion, using the
comparison rule). Here the symmetric statement can be used in either
directions to get a confident conclusion.

Finally, if all the three statements are symmetric statements
(similarity or equivalence), the inference uses the resemblance rule,
and is strong in all cases.

The above discussion provides a more clear picture about the
relationship among different types of syllogistic inference, which
are unified in NAL, in syntax, semantics, and pragmatics. Further-
more, it suggests a procedure to extend NAL into a higher layer:

(1) Add new grammar rules into Narsese to increase the expressing
power of the language,

(2) Add new inference rules into IL, so as to process and generate
the new sentences,

(3) Extend the new IL rules into strong rules of NAL,
(4) Get weak rules of NAL by reversing the strong rules.
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In the following chapters, we will see the applications of this “NAL
expansion procedure”.

9.4. Negation

Since the negation connector in NAL-5 takes exactly one argument,
it is not isomorphic to the (extensional/intensional) difference con-
nectors defined in NAL-3, though still related to them.

Definition 9.7. Compound statement (¬S) is the negation of
statement S. In IL the truth-value of (¬S) is the opposite that of S.
In NAL the truth-value of (¬S) is obtained by switching the positive
and negative evidence of S.

As explained before, if a statement has truth-value true in
IL, then it has truth value 〈1, 1〉 in NAL (though not explicitly
represented there as a belief). However, its negation in IL (which
has a truth-value false) and in NAL (which has a truth-value 〈0, 1〉)
do not exactly map into each other — any statement in NAL
not supported by “full positive evidence” will be considered as
false in IL. It is not really a problem (since a binary logic and a
multi-valued logic cannot have one-to-one mappings between their
truth-values), though we need to be careful when moving between
these two systems. For example, after negation is introduced into
IL, we cannot simply say that true in IL is always mapped into
〈1, 1〉 in NAL anymore, since if “S → P” has truth-value false
in IL, “(¬(S → P ))” will be true there, but the latter statement
should not be given the truth-value 〈1, 1〉 in NAL, because it may
have both positive and negative evidence. Therefore, the mapping
from true to 〈1, 1〉 will be restricted to statements that have the
“〈term〉 〈copula〉 〈term〉” format, and not applied to compound
statements.

As far as the truth-values of statements are concerned, in IL the
three statement-connectors (conjunction, disjunction, and negation)
are handled as in propositional logic, that is, the two logics have the
same truth tables for them, as well as the same theorems like double
negations and De Morgan’s laws.
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Theorem 9.5. (¬(¬S)) ⇐⇒ S.

Theorem 9.6.

¬(S1 ∧ S2) ⇐⇒ (¬S1) ∨ (¬S2),

¬(S1 ∨ S2) ⇐⇒ (¬S1) ∧ (¬S2).

Theorem 9.7.

(S1 ∧ (¬(S1 ∧ S2))) =⇒ (¬S2),

((¬S1) ∧ (S1 ∨ S2)) =⇒ S2.

As mentioned previously, the implication and equivalence in IL
are defined differently from propositional logic. Even so, the two
logics still have some common results here, though they are not
proved in the same way.

Theorem 9.8. (S1 ⇔ S2) ⇐⇒ ((¬S1) ⇔ (¬S2)).

When the discussion moves into NAL where a statement is multi-
valued, the definition of negation connector directly leads to the
negation rule of NAL-5, as specified in Table 9.8.

The negation rule is a type of immediate inference, since it derives
a conclusion from a single premise. Another such rule in Table 9.8,
the conversion rule, has been introduced by its isomorphism with
the conversion rule in NAL-1. In the following we can get the same
result in another way.

In NAL, the truth-values of “S ⇒P” and “P ⇒S” can be
obtained in many different ways. To analyze their relationship,
we focus on a “normal case” in higher-order inference where all
implication statements get their truth-values from the truth-values

Table 9.8. The immediate inference rules in NAL-5.

Type Premise Conclusion Truth-function

negation S (¬S) Fneg : f = 1 − f1, c = c1

conversion S ⇒ P P ⇒ S Fcvn : w = w+ = f1 × c1

contraposition S ⇒ P (¬P ) ⇒ (¬S) Fcnt : w = w− = (1 − f1) × c1
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of their components. Here the only applicable inference rule in NAL
is the induction rule in Table 9.5, which has the following form:

{P 〈f1, c1〉, S 〈f2, c2〉} � S ⇒ P 〈Find〉.

Therefore, in the extreme (binary) situations, the conclusion gets
positive evidence when (P ∧ S) is true, negative evidence when
((¬P ) ∧ S) is true, and no evidence when (¬S) is true.

Comparing “S ⇒P” and “P ⇒S”, we see that they have the
same positive evidence (P ∧ S), but distinct negative evidence
(((¬P ) ∧ S) and ((¬S) ∧ P ), respectively). Since it has been
established in NAL-1 that when a conclusion is derived from a single
premise with a different evidence scope, the amount of evidence for
the conclusion is at most 1, for the conversion rule in NAL-5 we
get the truth-function in Table 9.8, which gives the truth-value f = 1
and c = f1 × c1/(f1 × c1 + k) ≤ 1/(1 + k), exactly the same as the
conversion rule in NAL-1.

Now we can establish the contraposition rule in Table 9.8 in
the same way. According to the previous analysis, “S ⇒ P” and
“(¬P ) ⇒ (¬S)” have the same negative evidence, ((¬P ) ∧ S), but
distinct positive evidence ((P ∧ S) and ((¬S)∧ (¬P )), respectively).
Consequently, the truth-function is the one defined in Table 9.8,
which gives the truth-value f = 0 and c = (1 − f1) × c1/((1 − f1) ×
c1 + k) ≤ 1/(1 + k) — Like the conversion rule, the contraposition
rule is also weak inference.

This result is very different from the corresponding one in
propositional logic, where propositions “S =⇒ P” and “(¬P ) =⇒
(¬S)” are equivalent to each other, meaning that they have the same
truth-value. This difference between propositional logic and NAL is
caused by the fact that in propositional logic the (binary) truth-
value of a proposition depends only on whether there is negative
evidence, while in NAL the (non-binary) truth-value of a statement
depends on the amount of both positive and negative evidence.
Consequently, in NAL “S ⇒ P” and “(¬P ) ⇒ (¬S)” usually have
different truth-values, though the negative evidence for one is also
counted as negative evidence for the other.
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The above discussion is directly related to the well-known
“Confirmation Paradox” [Hempel (1965)], and the solution provided
by NAL is explained in detail in Wang (2009d).

9.5. Analytic Truth in Inference

So far, three logic systems have been involved in this discussion:

Non-Axiomatic Logic (NAL). As the subject matter of this
book, this logic is based on AIKR.

Inheritance Logic (IL). This logic is introduced as an idealized
version of NAL. It is not based on AIKR, though share many
other properties with NAL.

Propositional Logic (PL). Together with predicate logic, PL is
used as a meta-logic of IL to express definitions and theorems
involving IL statements. It does not obey AIKR, neither.

The relationship between NAL and IL can be summarized as the
following:

• The two logic systems are defined on the same categorical
language, Narsese, except that IL uses binary truth-values, while
NAL uses (two-dimensional) numerical truth-values.

• Both IL and NAL use an experience-grounded semantics, in
which truth-value and meaning in Narsese are defined using ideal
experience expressed as IL statements. However, NAL depends on
actual experience (consisting of NAL judgments) in inference.

• Both IL and NAL use syllogistic inference rules. The strong rules of
NAL (deduction, analogy, resemblance, intersection, union, differ-
ence, and negation) have corresponding rules in IL, while the weak
rules of NAL (abduction, induction, exemplification, comparison,
conversion, and contraposition) do not, but correspond to certain
reversed versions of IL rules.

On the other hand, IL and PL have some important similarity
and difference, too:

• The operators conjunction (‘∧’), disjunction (‘∨’), and negation
(‘¬’) are basically used in the same way in IL and PL, except that
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in IL a compound statement is formed only when its components
are semantically related.

• Both the IL implication statement “S ⇒P” and the PL implica-
tion proposition “S =⇒ P” correspond to the derivation relation
“{S} � P” in the logic, and the equivalence (‘⇔’ and ‘⇐⇒’,
respectively) relation is defined as symmetric implication.

• The most important difference between IL and PL is that in
the former the truth-value of “S ⇒P” and “S ⇔P” cannot be
determined by the truth-values of S and P alone. Especially,
“S ⇒ P” is not equivalent to “(¬S) ∨ P”.

Therefore, the implication in IL is not the “material implication” in
PL, but more like the “strict implication” in some non-classical logic
[Mares (2011)].

Because of the above relations, every definition and theorem in
IL corresponds to a true proposition in PL, but not the other way
around when implication and equivalence are involved. Consequently,
the definitions and theorems introduced in the meta-level usually can
be used in the inference of NAL in the following way:

(1) Re-interpret a definition or theorem (originally expressed as a
PL proposition) as an analytic truth in IL whenever possible.7

(2) If the analytic truth has the “〈term〉 〈copula〉 〈term〉” format,
use it in a strong rule of NAL as a judgment with a truth-value
〈1, 1〉.
As a result, each strong rule in NAL has several variants, each

of them takes an explicit premise (a belief in NAL) and an implicit
premise (an analytic truth in IL), and derives a conclusion that is
a derived belief. For example, since “P1 → (P1 ∪ P2)” is true in
IL, “P1 → (P1 ∪ P2) 〈1, 1〉” and “S → P1 〈f1, c1〉” can be used as
premises by the deduction rule defined in NAL-1 to derive “S →
(P1 ∪ P2) 〈f1, f1c1〉”. Since analytical truths in IL are not actually
stored as beliefs in NAL, in this step the inference is carried out by

7As analyzed before, not all true propositions in PL can be used in NAL, but when
introducing the definitions and theorems, the related issues have been taken into
consideration, so the improper ones have been avoided.
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the following single-premise rule:

{S → P1 〈f1, c1〉} � S → (P1 ∪ P2) 〈f1, f1c1〉.
This rule is used only when the compound term (P1 ∪ P2) already
exists in the system, rather than to create such a compound term
with an arbitrary P2 from the single premise alone.

Similarly, the definition “((× T1 T2) → R) ⇐⇒ (T1 → (/R�T2))”
provides an inference rule

{(× T1 T2) → R 〈f1, c1〉} � T1 → (/ R � T2) 〈f1, c1〉.
Therefore, every meta-level equivalence statement corresponds to a
NAL rule where the conclusion and the single premise have the same
truth-value.

The inference rules derived in this way are called “structural
rules” in NAL, because they all come from definitions of the syntactic
structures (as compound terms) in Narsese. Structural inference is a
special case of immediate inference, where only one premise is needed.
Conceptually, there is a second premise, which is an analytical truth,
so does not need to be mentioned. Such a rule can be seen as an
extension of a rule in IL, where the conclusion is true to a degree,
because a premise is true to a degree itself.

However, the weak rules (induction, abduction, etc.) of NAL
cannot use IL truths in this way, because these rules are invalid in IL.
Otherwise, for every (T1 ∩T2) in the system, “T1 → T2 〈1, 1/(1+k)〉”
would be derived from the analytical truths “(T1 ∩ T2) → T1” and
“(T1 ∩ T2) → T2” by the induction rule, without any empirical
evidence. Similarly, after deriving a belief on “S → (P1 ∪ P2)”
from truth “P1 → (P1 ∪ P2)” and a belief on “S → P1” by
deduction, the conclusion would be used by the abduction rule with
“P2 → (P1 ∪ P2)” to derive a belief on “S → P2”. To avoid these
consequences, analytical truths are not allowed to be used by the
weak inference rules.

Consequently, the reversibility among inference rules is not
maintained among structural rules. An asymmetric analytical truth
cannot be used in the “reverse direction”, while an empirical belief
can, though the different directions may have different “strengths”,
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in terms of the confidence of the conclusions derived along that
path. A strong inference rule follows all the copulas in the indicated
direction, while a weak inference rule uses some copula in the reverse
direction, which is allowed only when the judgment has empirical
evidence.

In this way, many (though not all) analytical truths in Narsese,
that is, the definitions and theorems of IL, are embedded in the struc-
tural inference rules of NAL, and are implicitly used in the inference
process of NARS. However, the system does not explicitly store them
among its beliefs, nor accept them as absolute truth in experience,
which only contains empirical truths with confidence lower than 1.
As its name suggests, NARS does not accept any axiom at the object-
level, nor is the system built as a theorem prover in IL. The system is
equipped with a logic for which it has no explicit knowledge, though
can use it to process tasks.8

8It is possible for the system to learn about its own native logic via self-
monitoring, a function to be introduced in NAL-9. Even after that, it does not
necessarily become a perfect theorem prover in IL, nor an “expert” on NAL.
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CHAPTER 10

NAL-6: VARIABLE TERMS

NAL-6 adds variable terms into the system, so as to support several
advanced types of inference.

10.1. Variable Terms Defined

The terms introduced so far are all constant terms, in the sense that
each of them names a specific concept. Therefore, when such a term
appears in multiple sentences, all the occurrences refer to the same
concept. On the contrary, a variable term, or simply a variable, is
used as a symbol that represents another term, and the same variable
may refer to different concepts in different sentences.1

Variable terms are similar to pronouns in natural languages.
In NAL, they serve several functions, some of which have been
touched before.

At the meta-level, all the definitions and theorems of IL and NAL,
as well as the grammar and inference rules, contain symbols (such as
the T , S, P , and M) that can be replaced by arbitrary terms, though
they are not part of Narsese, but its meta-language.

In NAL-1 (Table 3.2), the question mark ‘?’ in questions is
effectively a variable term, though it is not defined in that way in
NAL-1, but treated as a special sign in the language. To express

1Here the “constant versus variable” distinction is not about whether the meaning
of a term changes over time. With an experience-grounded semantics, the meaning
of a constant term may change over time, though such changes are usually gradual
and continuous. On the contrary, when a variable changes its reference, the change
in meaning is sudden and discontinuous.

137
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more complicated questions, a special symbol is not enough, since it
cannot represent multiple variable terms in a sentence, nor variable
terms that do not appear as a subject or predicate term in a sentence,
but as a component of a compound term. The following definition
provides a more general form for this type of variable term.

Definition 10.1. A query variable is a variable term in a question
that represents a constant term to be found to answer the question,
and it is named by ‘?’, optionally followed by a word or a number.

Therefore, in Narsese, query variables may take the form of “?x”,
“?y”, “?1”, or simply “?”, and in general they play the same role as
words like “what” in English.

The expressive power of Narsese can be extended by using vari-
able terms, not only in questions, but also in judgments. As defined in
IL-1, the inheritance statement “S → P” states that the extension of
S is included in the extension of P , and the intension of P is included
in the intension of S. When its truth-value is defined in NAL-1, the
extensional evidence and intensional evidence are mixed together.
Such a uniform treatment of extension and intension is necessary for
NAL [Wang (2006b)], though in some situations it is also desired to
separate the extensional relation and the intensional relation between
two terms.

In IL, the extension and intension of terms are classical sets.
Between any two sets, there are two basic binary relations: whether
the two include each other, and whether the two have common
elements. These two relations between the extensions of S and P

can be expressed as “If a term is in the extension of S, then it is
also in the extension of P” and “There is a term that is both in the
extension of S and the extension of P .” Obviously, they correspond
to compound statements formed by implication and conjunction,
respectively, with an unspecified term that links S and P .2

2Though it is not hard to introduce new copulas, as in Wang (1994b), or to treat
them as different types of sentences, as in Aristotle (1882), NAL uses variable
terms to express them, which is an approach that fits better with the other aspects
of the logic.
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Though both statements above contain variable terms, they are
different: in the former, the variable represents an arbitrary term in
the extension of S, while in the latter, it only represents a certain
anonymous term. Therefore, two types of variables are defined.

Definition 10.2. An independent variable represents any unspeci-
fied term under a given restriction, and it is named by a word pre-
ceded by ‘#’. A dependent variable represents a certain unspecified
term under a given restriction, and it is named as an independent
variable with a dependency list consisting of independent variables it
depends on, which can be empty.

Using variable terms, the previously mentioned extensional and
intensional statements can be naturally represented as the following
in IL:

independent variable dependent variable

extensional (#x → S) ⇒ (#x → P ) ((#x() → S)∧
(#x() → P ))

intensional (P → #x) ⇒ (S → #x) ((P → #x())∧
(S → #x()))

According to the definitions of the related copulas and term
connectors introduced previously, there are variants of the above
statements in Narsese:

independent variable dependent variable

extensional (#x → S) ⇔ (#x → P ) #x() → (S ∩ P )

intensional (P → #x) ⇔ (S → #x) (P ∪ S) → #x()

On the other hand, if we focus on extensional statements, and
also include negative statements on the P part, we get four Narsese
statements that correspond to the four types of sentences (that
are traditionally marked as A, E, I, and O) in Aristotle’s logic,
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respectively [Smith (2012)]:

independent variable dependent variable

affirmation (#x → S) ⇒ (#x → P ) ((#x() → S)∧
(#x() → P ))

denial (#x → S) ⇒ (¬(#x → P )) ((#x() → S)∧
(¬(#x() → P )))

Obviously, the two types of variable terms in IL roughly
correspond to the universally quantified variable and existentially
quantified variable in FOPL, especially under the “substitution
interpretation” [Haack (1996)]. The two extensional statements in
the first table roughly corresponds to propositions “(∀x)(S(x) =⇒
P (x))” and “(∃x)(S(x) ∧ P (x))”, respectively. However, the two
treatments of variables are still different in the following aspects:

• In IL, a variable can represent either an instance (in the extension)
or a property (in the intension) of a given term, while in FOPL
a variable can only represent an instance. To talk about “every
property” or “an existing property”, a higher-order predicate logic
is needed.

• In IL, a variable represents a term under a given restriction
(i.e., in the extension or intension of a given term), while in
FOPL a variable represents an object in the whole domain. For
this reason, statement “(#x → S) ⇒ (#x → P )” and proposition
“(∀x)(S(x) =⇒ P (x))” do not have exactly the same meaning.3

• In IL, variables are used to relate two (or more) terms, so each
variable appears more than once in the statement, either at
both sides of an implication or equivalence statement (for an
independent variable), or within two or more components of a

3This subtle difference is important for the definition of evidence. To decide the
truth-values of the two samples, in FOPL every object in the domain needs to be
taken into account. On the contrary, in NAL only the terms in the extension of
S are relevant.
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Table 10.1. The new grammar rules of NAL-6.

〈term〉 ::= 〈variable〉
〈variable〉 ::= 〈independent-variable〉

| 〈dependent-variable〉
| 〈query-variable〉

〈independent-variable〉 ::= #〈word〉
〈dependent-variable〉 ::= #[〈word〉(〈independent-variable〉∗)]

〈query-variable〉 ::= ?[〈word〉]

conjunction or intersection term (for a dependent variable). There
is no sentence in Narsese that directly corresponds to “(∀x)P (x)”
or “(∃x)P (x)”.

A dependent variable can refer to a term without naming it (so as
to use it only as a place holder). Such an anonymous term is simply
marked as ‘#’. Please note that when multiple ‘#’s appear in a
sentence, they do not necessarily refer to the same constant term.
A similar treatment is given to query variables, so the ‘?’ used in the
previous layers are now considered an anonymous variable term. An
independent variable must appear more than once in a statement, so
cannot be anonymous.

The variable-related grammar rules introduced in NAL-6 are
summarized in Table 10.1.

Clearly, the grammar rules only specify the necessary condition
for a sentence to be meaningful in NAL, rather than the sufficient
condition, since it does not include the additional requirements
mentioned previously, which exclude “#x → P” and “(#x → S) ⇒
(P → #x())” from acceptable statements, even though they satisfy
the grammar. The same thing happens in other places of NAL, too.

Definition 10.3. In a sentence, the scope of a variable is the
smallest statement that contains all occurrences of the variable.4

4According to this definition, in IL statement “(¬((#x → S) ⇒ (#x → P )))”
the negation is beyond the scope of the variable, so its corresponding proposition
in FOPL is “¬((∀x)(S(x) =⇒ P (x)))”, not “(∀x)¬(S(x) =⇒ P (x))”. The latter
corresponds to “(#x → S) ⇒ (¬(#x → P ))” in IL.
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In a sentence with multiple variables, as far as each of them
uses a different name, their scopes do not need to be explicitly
specified. The scope of a variable can be embedded in that of another
variable. Especially, if the scope of a dependent variable is included
in the scope of an independent variable, the latter appears in the
dependency list of the former.

For two variables, there are four meaningful combinations
(though the grammar allows more). For example, in Narsese the
following beliefs can be represented:

• (({#x} → key) ∧ ({#y} → lock)) ⇒ ({#x × #y} → open)
[“Every key opens every lock.”]

• (({#x()} → key) ∧ (({#y} → lock) ⇒ ({#x() × #y} → open)))
[“There is a key that opens every lock.”]

• ({#x} → key) ⇒ (({#y(#x)} → lock) ∧ ({#x × #y(#x)} →
open)) [“Every key opens some lock (that depends on the key).”]

• (({#x()} → key) ∧ ({#y()} → lock) ∧ ({#x() × #y()} → open))
[“There is a key that opens a lock.”]

Definition 10.4. A variable is open in a compound term if its scope
goes beyond the compound, otherwise it is closed in the compound
term. If a compound term contains open variables, it is also a
variable.

For example, in statement “(#x → S) ⇒ (#x → P )”, the statement
as a whole is closed, though its two components “#x→S” and
“#x→P” are both open. Only a closed compound term names a
concept, while an open compound term does not. Similarly, only
closed statements have truth-values.

Definition 10.5. The meaning of a variable term is determined
locally by its relations with the other terms within its scope.

As defined previously, the meaning of a constant term is global,
in the sense that at any given moment, its occurrences in the
whole system have the same meaning, determined by its (empirical
and analytical) relations with the other term in the whole system.
Therefore, the name of a variable term is unique in a sentence, while
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the name of a constant term is unique in a system. For example,
in two statements “(#x→ dog)⇒ (#x→mammal)” and “(#x →
mammal) ⇒ (#x → animal)”, the two occurrences of “mammal”
refer to the same concept named by that term. On the contrary, the
four occurrences of “#x” refer to no concept at all. Among them,
the first two occurrences belong to one variable, whose meaning is
determined by its relation with “dog” and “mammal” in the first
statement, while the last two occurrences belong to another variable,
whose meaning is determined by its relation with “mammal” and
“animal” in the second statement.

When extended from IL to NAL, the truth-value of a statement
can be determined by instantiating its closed variables by constant
terms. As will be explained in detail in the following, the truth-
value of “(#x → S) ⇒ (#x → P )” is determined just like that of
“(S → P )”, except that only the extensional evidence of the latter
is considered.

In this way, the truth-value of “(#x → S) ⇒ (#x → P )” in
NAL is more similar to (though not identical with) the probability
value Pr(P (x)|S(x)), rather than to Pr((∀x)(S(x) =⇒ P (x))) — If
some instances of S are in P but some are not, the latter value
will be 0, while the former will not be. As in the case of “S →P”,
negative evidence will decrease the frequency, but not completely
“falsify” it. This is another fundamental difference between FOPL
and NAL: a piece of “general knowledge” is represented in the
former as a proposition with universally quantified variables, and
corresponds to a conjunction of the same proposition on every object
in the domain; on the latter, however, the “general knowledge” is
statistical by nature, and a statement with an independent variable
does not correspond to a conjunction anymore. Formally, in FOPL,
if the domain consists of individuals a1, . . . , an, then “(∀x)P (x)⇐⇒
P (a1)∧. . .∧P (an)” and “(∃x)P (x)⇐⇒P (a1)∨. . .∨P (an)”. In NAL,
the variable terms do not satisfy such an equivalence.

10.2. Variable Elimination and Introduction

Since a variable represents another term, one common operation in
variable-related inference is “substitution”, as defined in symbolic
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logic [Kleene (2002)] and its computer implementation [Russell and
Norvig (2010)], except that a substitution in NAL can go in both
directions: not only substituting a variable by a constant (variable
elimination), but also substituting a constant by a variable (variable
introduction).

Definition 10.6. For given terms R, S, T , a substitution R{S/T}
produces a new term by replacing all occurrences of S by T in R,
under the condition that S does not occur in T .

A valid substitution in a statement does not change the truth-
value of the statement. When reasoning on judgments, it is valid
to substitute an independent variable by an arbitrary term, or
to substitute an arbitrary term by a dependent variable. When
a question is matched to a judgment, it is valid to substitute a
query variable by a constant term. This result directly comes from
the definitions of the variable terms: an “independent variable”
represents an arbitrary term, a “dependent variable” represents
a specific (though unnamed) term in a judgment, and a “query
variable” represents a specific term that needs to be found.

The procedure of finding a possible substitution is called
“unification”, which has been specified in the study of reasoning
systems [Russell and Norvig (2010)]. Two terms R and S can be
unified if and only if there is a substitution θ such that Rθ and Sθ

are identical.
Most of the inference rules defined in NAL can be extended

to take statements with variables as premises or conclusions, by
applying a proper substitution on the premises (before the inference)
or on the conclusion (after the inference). Consequently, most of the
new inference rules introduced in IL-6 and NAL-6 are obtained by
adding unification and substitution to the existing rules.

For example, some independent-variable elimination rules are
given in Table 10.2, and each of them can be seen as carrying a substi-
tution {#x/M}, followed by an inference defined in NAL-5. Almost
all the syllogistic and compositional rules defined previously can be
used in this way, where the previous request on a “common term”
in the two premises is replaced by “two terms that can be unified”.
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Table 10.2. Sample independent-variable elimination
rules.

{(#x → M) ⇒ (#x → P ), S → M} � S → P 〈Fded〉
{(#x → P ) ⇒ (#x → M), S → M} � S → P 〈Fabd〉
{(#x → M) ⇔ (#x → P ), S → M} � S → P 〈F ′

ana〉

Table 10.3. Sample independent-variable introduc-
tion rules.

{M → P, M → S} � (#x → S) ⇒ (#x → P )〈Find〉
{M → P, M → S} � (#x → S) ⇔ (#x → P )〈Fcom〉

Table 10.4. Sample dependent-variable introduction rule.

{M → T1, M → T2} � (#x() → T1) ∧ (#x() → T2) 〈Fint〉

These rules are referred to as “independent-variable elimination”,
because, conceptually speaking, an independent variable in a premise
is substituted by a constant first, then a previously defined rule is
applied to the premises.

The reversibility among inference rules is maintained in NAL-6,
that is, whenever there is a rule eliminating a variable from a premise,
there is another rule introducing a variable into its conclusion. The
reverse of independent-variable elimination is independent-variable
introduction, as given in Table 10.3.

The rules in Table 10.3 can be seen as concrete cases of the first
two rules in Table 9.5, followed by a substitution {M/#x}. When
these rules are introduced in NAL-5, it is mentioned that they can
be applied only when the premises “can be seen as based on the
same implicit condition”. In Table 10.3 the condition is satisfied,
since the premises contain a common term M . On the other hand,
these rules can be justified in the same way as the corresponding rules
in NAL-1 and NAL-2, except that here the “extensional inheritance”
and “intensional inheritance” between S and P are separated, due
to the using of independent variables.

The rule in Table 10.4 introduces a dependent variable into
conjunction, which can be seen as the intersection-composition
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Table 10.5. Sample dependent-variable elimination rule.

{M → T1, (#x() → T1) ∧ (#x() → T2)} � M → T2〈Fana−cvn〉

rule defined in Table 7.2 (with the statement in the conclusion
equivalently rewritten as a conjunction), followed by a substitution
{M/#x()}.

The reverse of the rule in Table 10.4 is given in Table 10.5.
Conceptually, the inference rule in Table 10.5 is an implicit

comparison followed by an analogy. First, in “(#x()→ T1) ∧
(#x()→ T2) 〈f2, c2〉” the anonymous term provides positive evidence
for a similarity statement “T1 ↔T2”. However, the truth-value
function is not Fcom (which expects two premises) but Fcvn (which
expects one premise and only provides positive evidence, up to one
unit amount, as required here):

f ′
2 = 1, c′2 = f2 × c2/(f2 × c2 + k).

Then, “M →T1 〈f1, c1〉” and “T1 ↔T2 〈f ′
2, c

′
2〉”are used by the

analogy rule to derive “M → T2 〈Fana〉”. Therefore, the truth-value
function Fana−cvn is just the analogy function Fana, except that
the second premise’s truth-value is processed by function Fcvn first.
This inference is a weak one, since the confidence of the conclusion
is lower than 1/(1 + k).

The rules in Tables 10.2 to 10.5 are only about the extensions
of S, P , T1 and T2, and that is why the previous four tables are
named as “sample rules” — they are incomplete. Similarly, there are
rules that only process the intensions of the terms involved. In all
these rules a dependent variable is only introduced into a conjunction
or intersection, and an independent variable into (both sides of) an
implication or equivalence.

Now we see that NAL can derive “(#x → bird) ⇒ (#x →
animal)”, “(animal→#x) ⇒ (bird→#x)”, and “bird → animal”.
The first statement is purely extensional, the second is purely
intensional, and the last a mixture of the two. The system needs all of
them. Usually, the “pure” ones provide more specialized information,
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Table 10.6. Sample multi-variable introduction rules.

{(#x → P ) ⇒ (M → (/ R #x 	)), M → S}
� ((#y → S) ∧ (#x → P )) ⇒ (#y → (/ R #x 	)) 〈Find〉
{(#x → P ) ⇒ (M → (/ R #x 	)), M → S}

� (#y() → S) ∧ ((#x → P ) ⇒ (#y() → (/ R #x 	))) 〈Fint〉
{(#x() → P ) ∧ (M → (/R #x()	)), M → S}

� ((#y → S) ⇒ ((#x(#y) → P ) ∧ (#y → (/ R #x(#y) 	))) 〈Find〉
{(#x() → P ) ∧ (M → (/ R #x() 	)), M → S}

� ((#y() → S) ∧ (#x() → P ) ∧ (#y() → (/ R #x() 	)) 〈Fint〉

while the “mixed” one is more general, and helps to keep the
coherence between the extension and intension of a term.

All the above variable introduction/elimination rules can be
extended to the situations where a variable appears more than
twice in a statement, as well as to situations where more than
one variable appears in a statement. Most of such extensions are
straightforward.

For example, variables can be introduced into statements where
other variables exist. When an independent variable is introduced,
the existing dependent variables in its scope become its functions.
The four rules for variable introduction in Table 10.6 are extended
version of the rules in Tables 10.3 and 10.4, and they are responsible
for producing the four sentences in the “key–lock” example in the
previous section, respectively.

There are variable-related rules that neither eliminate nor intro-
duce variables, but merely unify them. for example, a version of
deduction derives “(#x → S) ⇒ (#x → P )” from “(#x → M) ⇒
(#x → P )” and “(#x → S) ⇒ (#x → M)” by unifying the two
variables in the premises — which are indeed different terms, by
definition, despite of the shared name.

The revision rule is also extended to unify independent
variables. For example, statements “(#x→S)⇒ (#x→P )” and
“(#y →S)⇒ (#y→P )” can be merged together, since an indepen-
dent variable can be substituted by another one. On the contrary, the
revision rule cannot be applied to two judgments containing depen-
dent variables, such as two copies of “((#x()→ S)∧ (#x()→P ))”
even if they have different evidential bases, since the dependent
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variables in them do not necessarily correspond to the same
(constant) term, even though they share the same variable name.
Consequently, there may be more than one such judgments that have
the same statement, but different evidential bases. When a question
is raised on this statement, the choice rule will pick the answer with
the highest expectation value.

In logic programming languages like Prolog, “existential variables
in queries” and “query variables” are the same thing, which is
not the case in NAL. For example, the question “?x → (S ∩ P )”
asks for a constant term T that gives “T → (S ∩ P )” the highest
expectation value; on the other hand, the question “#x()→ (S ∩P )”
only asks for a truth-value to be assigned to the statement (with the
highest expectation value among all candidates), without knowing
the constant term.

10.3. Symbolic Reasoning

Beside separating extension and intension, variable terms also allow
the system to infer on symbols and abstract concepts.

Semantically, variable terms in Narsese (such as #x and #y)
and variables in the meta-language of Narsese (such as S and P )
are like the “symbols” in traditional “symbolic systems” [Newell
and Simon (1976)], in the sense that they represent other (constant)
terms, which provide concrete interpretation or “grounding” for the
symbols. On the contrary, the constant terms in NARS (such as
robin and bird) are not “symbols” in that sense, since their meaning
is already grounded, or determined, by the system’s experience, so
cannot be freely interpreted anymore.

Consequently, statement “({#x}→P )⇒ ({#x}→Q)” can rep-
resent the knowledge “If an object is an instance of P , then it is also
an instance of Q”, without demanding any direct experience on P and
Q. In this way, the system can have hypothetical concepts that are
not directly grounded in the system’s empirical experience, but can
be applied to very different contexts to derive valid conclusions.

Moving further in this direction, we get abstract terms. Syntac-
tically, these terms look just like ordinary constant terms, and they
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name concepts in the system. They are however semantically similar
to variable terms, since they are not generalized from the system’s
sensorimotor experience, but abstracted from them via idealization
and simplification, to such an extent that they are applicable to very
different situations in experience.

Abstract terms are often introduced using definitions, so as
to get a fixed or stable meaning to regulate its future usage. For
example, in Narsese a term natural -number can be defined by another
term (integer − [negative]), and a subset relation between P and
Q can be defined by statement “({#x}→P )⇒ ({#x}→Q)”. To
represent this conceptual relation in Narsese, a term define can be
used, so the above examples can be represented as “{(integer −
[negative]) × natural-number}→ define” and “{(({#x}→#p) ⇒
({#x}→#q)) × ({#p × #q}→ subset)}→ define”, respectively.

The meaning of define in this two examples is like the similarity
copula and the equivalence copula, respectively, except that it
is an acquired relation, with experience-grounded meaning, which
indicates that the system should follow the convention established
by a definition. While “S ↔ P” means the two terms are observed
to be exchangeable, “{S × P}→ define” means the two terms are
required to be exchangeable.

In NAL a definition itself is true as a binary statement, though
the judgment “{(integer−[negative])×natural-number}→ define”
still has a numerical truth-value like the others, indicating the
system’s degree of belief that this statement is indeed a definition.
In this way, NAL can embed an axiomatic subsystem, call it a
“theory”, with its definitions, axioms, and theorems. They are not
represented in Narsese as judgments with truth-value 〈1, 1〉, but using
terms like define, axiom , theorem , and prove . It is often necessary
to indicate the theory they belong to by using longer words or
compound terms.

For example, the system can have a belief “{((#x(#y) →
axiom)∧({#x(#y)×#y}→ prove))× (#y→ theorem)}→ define”,
which defines a theorem as something that can be proved from an
axiom. In this way, NARS can carry out binary deduction within this
theory, only using special inference rules represented as implication
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or equivalence statements in Narsese. At the same time, NARS can
still carry out various types of inference outside the theory, using
NAL inference rules, to form hypothetical or heuristic knowledge
about the system. The ability of reasoning both inside and outside a
theory plays important roles in thinking, as pointed out in Hofstadter
(1979).

The above description shows that NAL can handle two types of
“truth”: beside the native truth-value (which is experience-grounded,
multi-valued, and system-wide), it also allows “theory-specific” truth
to be used, like “true in number theory” or “true in Euclidean
geometry”, which is binary, axiom-based, and restricted within a
theory. These two types of truth are related, but cannot replace each
other. For example, if a mathematical hypothesis has passed many
testing cases, its truth-value will be 〈1, c〉 with a c near 1, but it will
still not be considered as a theorem until a proof is found.

By allowing terms to be numbers, NAL can carry out various
types of numerical calculations. For example, it can compute proba-
bility values according to probability theory and statistics, without
confusing it with the truth-value calculations performed by the truth-
value functions, which do not follow probability theory.

When an abstract theory is applied to a concrete situation, an
object is proximately treated as an instance of an abstract concept, so
as to get concrete implications in the domain. That is, if the system
believes that P is a subset of Q and “{Tweety}→P”, then from
them and the theory-specific truth “({#x}→P )⇒ ({#x}→Q)”, by
deduction the system can get “{Tweety}→Q”, which is no longer
in the theory, so has an empirical truth-value.

When the theory to be embedded is not represented in Narsese,
but a different language L, a translation process will be needed
between the two, which maps the terms in Narsese into and from
words, phases, and sentences in L, mainly using a relation represent,
which is similar to the above define relation, though is between a
term in Narsese and whatever represents it in another language.

For example, to represent set theory in Narsese, we can have:

• “{‘⊂’ × subset}→ represent”, which means “Symbol ‘⊂’ (in set
theory) represents term subset (in Narsese)”;
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• “({×#x ‘ ⊂’ #y} × {(#x × #y) → subset}) → represent”,
which means “Sequence ‘#x ⊂ #y’ (in set theory) represents term
‘(#x × #y)→ subset ’ (in Narsese)”.

In the two examples, the represent relation is similar to the similarity
copula and the equivalence copula, respectively, except that it is an
acquired relation, and it uses words, phrases, or sentences in other
language to represent terms.

Using this approach, to understand a given sentence S in L means
to answer the question “{S × ?}→ represent”, and to generate
sentences in L to express statement T means to answer the question
“{? × T}→ represent”, both under some additional requirements.

The same approach can also be applied to the situation where the
external language L is a natural language, like English or Chinese.
This book does not discuss natural language processing, but only
makes the following position statements about the process in NARS:

• Natural language is processed in the same way as other types
of symbols, that is, as external representations, or “symbols”,
of the internal concepts of the system. The processing is carried
out by the same logic and control mechanism. The specialty of
this process mainly comes from the special nature of linguistic
knowledge.

• In both understanding and generating, syntactic, semantic, and
pragmatic processing happen in parallel: the overall process is
driven by pragmatic goals, the represent relation is built using
semantic knowledge, and syntactic knowledge helps to map a long
sequence of words (in L) into the structure of compound terms
(in Narsese).

• Like other types of knowledge, linguistic knowledge is learned by
the system from its experience, in an incremental and interactive
process. Given linguistic notions and grammar rules will improve
the system’s performance, though they are not absolutely neces-
sary for language learning and usage.

In general, the natural language processing in NARS will be more
similar to the “cognitive linguistics” school [Lakoff (1988); Langacker
(1999)] than to the other competing approaches in linguistics.
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Narsese is the “native language” of NARS, while all the other
languages used by the system are “foreign languages” acquired
with Narsese as the meta-language. Consequently, the semantics of
the other languages is similar to model-theoretic semantics, since
“truth” and “meaning” in them are defined with respect to the
“model” specified in Narsese, while the semantics of Narsese cannot
be established in this way, since it does not have a meta-language
within the system to refer to. On the other hand, the experience-
grounded semantics of NARS can be uniformly applied to both types
of language.

The major issue that makes natural languages harder than
artificial languages to learn and use, as well as for model-theoretic
semantics to be less proper, is that the represent relation (similar
to the interpretation in model-theoretic semantics) is no longer
a static one-to-one mapping with a binary truth-value, but a
dynamic many-to-many mapping with a graded truth-value. How-
ever, since NAL is already a logic that can handle this type of
mappings, there is little to add at the meta-level, though there is
still a lot to be learned at the object-level for each new language.
Even so, it is unnecessary to train the systems one by one. After
one system is properly trained, its memory can be copied, and used
as the starting point of other systems, which will have “inherited”
(though still modifiable) knowledge about the language.

Given its ability to learn another language, NAL can be used to
emulate an arbitrary logic. For example, though NAL is fundamen-
tally different from FOPL, it can serve as the meta-logic of FOPL
and emulate the inference process in the latter. All the notions of
FOPL can be introduced in Narsese as terms, including “proposi-
tion”, “true”, “false”, “valid inference rule”, “axiom”, “theorem”,
“conjunction”, “implication”, and so on. A proposition in FOPL is
represented as a term in Narsese, and its (binary) truth-value is
represented as a property. The grammar rules and inference rules
in FOPL are normally represented as implication or equivalence
statements with variable terms in Narsese. As a result, NAL can
carry out inference in FOPL.
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Even so, in NARS inference in NAL and inference in FOPL are
carried out at deferent levels: the former at the meta-level, and the
latter at the object-level. The NAL rules are innate to the system, and
they are represented procedurally in the programming language (such
as Java or Prolog) and (normally) cannot be modified or violated by
the system. On the contrary, the FOPL rules are learned by the
system from its experience, and they are represented declaratively in
Narsese and can be modified or violated by the system.

Therefore, the relation between NAL and the traditional models
of reasoning (such as binary logic, probability theory, set theory, etc.)
can be summarized as the following:

• Conceptually and semantically, the traditional models correspond
to extreme and idealized situations, where the insufficiency of
knowledge and resources can be ignored.

• The grammar and inference rules of NAL are not derived from
the traditional models, though are similar to them in certain
situations, under certain interpretations.

• NARS can learn and emulate the traditional models (among other
things), though does not have them implanted as part of the
system’s innate knowledge.

Since NAL can emulate an arbitrary logic at object-level, it can
do so for its meta-logic, IL, or even NAL itself. This means that
the inference rules of IL and NAL can be expressed as Narsese
statements, to be used by the related rules (such as deduction) to
emulate its own inference steps.5

The ability of emulating other logics or theories is not a property
possessed only by NAL. Since NAL can be implemented in Prolog,
which is based on FOPL, in a sense NAL can be emulated by FOPL.
Here it is important to understand that if a logic can be emulated
(or implemented) by another in this way, it does not mean that the

5This type of self-reference directly leads to the system’s self-monitor and self-
control ability, to be introduced in Chapter 13.
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former is reduced into the latter as part of it, nor that the two have
identical properties.

For example, though NAL is non-axiomatic and based on AIKR,
it can emulate an axiomatic logic assuming sufficient knowledge
and resources, that is, it can be “locally axiomatized”. Here the
situation is just like the notion of “virtual machine” in computer
science — when described at different levels of abstraction, the same
system can show different, even opposite, properties. For example,
decimal calculations are implemented by binary calculations, and
declarative programming languages are implemented by procedural
programming languages. There is nothing magical or contradictory
for an axiomatic system to implement a non-axiomatic system, or
the other way around.

In the history of AI, there have been many debates between the
supporters of general-purpose approaches (in representation, algo-
rithm, architecture, etc.) and those of special-purpose approaches.
Usually, special-purpose solutions are simpler and more efficient,
while a general-purpose solution covers a wider range of problems
[Wang and Goertzel (2007)]. The approach taken in NARS is to
design the system as general-purpose and uniform at the meta-
level, but to allow it to learn various special-purpose representations
and solutions from experience at the object-level. The capability of
symbolic reasoning plays a central role in this approach, since it
allows the system to move among different representations, rather
than to be restricted by the built-in representation or the direct
experience of the system.
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CHAPTER 11

NAL-7: EVENTS AS STATEMENTS

NAL-7 introduces time into the logic. In the lower layers of NAL,
time influences the inference process in an implicit way, mainly in the
control part of the system. In NAL-7, however, temporal information
is explicitly represented in the grammar rules and the inference rules.
Furthermore, the reasoning process happens in real time, and takes
the changes in the environment into account.

11.1. Time and Events

As mentioned previously, NAL is the logic implemented in a rea-
soning system NARS. As all other physical systems, NARS exists in
time, which primarily appears as an order among the events inside
and outside the system.

Definition 11.1. An event is a statement with a time-dependent
truth-value, that is, the evidential support summarized in its
truth-value is valid only in its duration, which is a certain period
of time between the moment the event starts and the moment it
ends.

To be exact, almost all empirical statements are time depen-
dent, and few statements are about eternal relations [Vila (1994)].
However, for practical purposes, it is not always necessary for the
temporal attributes of a statement to be taken into consideration.
Therefore, whether a statement should be treated as an event may
change from context to context, and events are just the statements

155
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whose temporal attributes are specified. On the contrary, the time
interval of a “non-event” statement is unspecified, except that it
includes all the moments as far as the system is concerned.

For example, “The Earth revolves around the Sun” is usually
taken as a statement rather than an event, even though its truth-
value (which is true to most people living in the present age) does
not hold before the Earth was formed. On the other hand, whether
“Beijing is the capital of China” should be treated as an event or
a statement depends on the context of the description — it may
be treated as an event in a history textbook, but a statement in
travel guides. For this reason, “event” is not defined as a Narsese
grammatical category, but refers to certain statements that have
temporal information associated.

Therefore, an event is a statement whose truth-value may change,
and this type of belief change is different from the changes caused
by the accumulation of evidence. Instead, when an event begins or
ends, the evidence collected about the statement during the previous
period becomes outdated, and should not be taken into account when
the current situation is under consideration.

An event often can be considered as a point in the time dimension
when its duration is irrelevant to the current reasoning task, and
this point is referred to as when the corresponding event “happens”.
In this way, the temporal relation between two atomic events E1

and E2 has the following three basic cases:

• E1 happens before E2 happens,
• E1 happens after E2 happens,
• E1 happens when E2 happens.

Obviously, “before” and “after” are the opposite directions of the
same temporal relation.

Definition 11.2. In IL, there are two basic temporal relations
between two events: “before” (which is irreflexive, antisymmetric,
and transitive) and “when” (which is reflexive, symmetric, and
transitive).
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This selection of the basic temporal relations is supported by the
related results in linguistics and psychology [Wierzbicka (1996); Lu
and Graesser (2004)].

If the temporal relation between two events is more complicated
than these cases, like the ones listed in Allen (1984), it is always
possible to divide an event into sub-events (by talking about “the
end of E1” and “the beginning E2”), then to describe their temporal
relations.

If event E1 is represented as “before” event E2, the time interval
between “E1 ends” and “E2 starts” is omitted as negligible, even
if the duration of this interval is not zero. When the interval is
not negligible, it can be represented as an event E3, which happens
after E1 and before E2. Similarly, when two events are described
as happening at the same time, it does not mean that their time
intervals perfectly coincide, but that their difference in timing is
negligible.

While most AI systems represent time absolutely, either as a
point or an interval on a time dimension [Vila (1994)], NAL takes a
relational approach and allows different granularity and accuracy, so
can be applied to fields where phrases like “at the same time” and
“immediately after” are used with very different scales, scopes, and
accuracies (such as descriptions in astronomy and electronics).

In NARS, though we can intuitively talk about the time interval
of an event (as above), it is not assumed that such an accurately
specified interval is known as in Allen (1984), or even well defined,
for every event — just like many concepts in NARS do not have
a sharp boundary around its instances, many events, such as “the
Renaissance” and “the wind last evening”, do not have a sharp
boundary for their duration. Very often, the system does not need a
high accuracy here, otherwise it can use a more accurate concept.

This treatment of time is consistent with the general principle
of NARS in perception and categorization, that is, instead of
attempting to describe the world as it is, what the system does is
to summarize the experience as it needs.

Since events have time-dependent truth-values, the related terms
and concepts will have time-dependent meaning. For example,
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the term expressing “the President of the USA” may change its
extension after each presidential election, though part of its intension
remains stable. This is basically what Goodman’s “New Riddle”
[Goodman (1955)] is really about — after a concept changes parts of
its meaning, old judgments about it need to be reevaluated to decide
whether the previous evidence is still valid. In NARS, one solution
to this type of problem is to explicitly use time-dependent concepts,
such as “the President of the USA during WWII” and “the President
of the USA after Barack Obama”.

As a real-time system, NARS not only needs to reason “about
time”, but also to reason “in time”, which demands a “personal
sense of time” [Ismail and Shapiro (2000)], measured in NARS by
the system’s “internal clock” defined by its own working cycle.

Definition 11.3. Some temporal properties of an event within
NARS can be specified with respect to the events defined by an
internal clock , with the system’s inference cycle as unit.

For this definition to make sense, it is necessary for the internal
activity to roughly take a constant time (measured in the conven-
tional way), which can be achieved by the current NARS design,
as briefly described in Chapter 5 and explained with more details
in Wang (1996c, 2009b). Such a time measurement is relative to the
system’s internal activity, so different copies of NARS implemented in
different hardware/software platforms may associate different “sub-
jective time” to an event in their common environment. Therefore, in
the following, “NARS” refers to such a concrete system, with its own
internal clock, which is neither “universal” nor “absolutely accurate”.
For this reason, this “personal time” is not explicitly referred to in
Narsese, though it can be used to describe the system’s interaction
with its environment.

Definition 11.4. The real-time experience of a NARS is a sequence
of Narsese sentences, separated by non-negative numbers indicating
the interval between the arriving time of subsequent sentences,
measured by the system’s internal clock.

That is, for i from 1 to n, let Si be a Narsese sentence and Ni a
non-negative integer, a section of real-time experience of NARS can
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be expressed as:

S1, N1, S2, N2, S3, N3, . . . .

It means that sentence S1 is received at a certain initial moment,
then, after N1 moments (each has the length of a working cycle),
sentence S2 is received, and then after N2 moments, S3 comes, and
so on. When Ni is 0, Si and Si+1 are considered as accepted at the
same moment.

The interval represented by Ni is between the arrival times of
sentences Si and Si+1, which is not necessarily the same as the
interval between their occurring times, if both Si and Si+1 describe
events. For example, it is possible for Si to be perceived before Si+1

by the system, though it knows that Si happened after Si+1 in the
environment.

So far, there have been three notions of experience used in
NAL:

• In IL-1, ideal experience is defined as a (constant) set of (true)
statements. The order of statements in this type of experience does
not matter.

• In NAL-1, actual experience is defined as a stream of sentences.
The timing in the stream is omitted in the language, and ignored
by the inference rules, though it matters for the inference control
mechanism.

• In IL-7, real-time experience explicitly indicates time in the input
stream, using the internal clock. It covers the previous notions
of experience as special cases: actual experience corresponds to
the situation where there is one input per moment, and idealized
experience is where all inputs arrive at the very beginning.

11.2. Temporal Connectors and Copulas

In NAL, since temporal attributes are optional in statements, the two
temporal relations are never used by themselves, without mentioning
any logical relations between the events. Instead, they are used in
combination with certain copulas and connectors between statements
that have been introduced in NAL-5.
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First, “E1 happens before E2 happens” and “E1 happens when
E2 happens” both assume “E1 and E2 happen (at some time)”, which
is “E1 ∧ E2” plus temporal information.

Definition 11.5. The conjunction connector (‘∧’) has two temporal
variants: “sequential conjunction” (‘,’) and “parallel conjunction”
(‘;’). “(E1, E2)” represents the compound event consisting of E1

followed by E2, and “(E1;E2)” represents the compound event
consisting of E1 accompanied by E2.

Like ordinary conjunctions, both temporal conjunction connectors
can take more than two components, and are associative. The order
of the components matters in a sequential conjunction, but not in a
parallel conjunction.

Similarly, there are temporal variants of copulas implication and
equivalence.

Definition 11.6. For an implication statement “S ⇒ T” between
events S and T , three different temporal relations can be specified:

(1) If S happens before T happens, the statement is called “pre-
dictive implication”, and is rewritten as “S /⇒ T”, where S

is called a sufficient precondition of T , and T a necessary
postcondition of S.

(2) If S happens after T happens, the statement is called “ret-
rospective implication”, and is rewritten as “S \⇒ T”, where
S is called a sufficient postcondition of T , and T a necessary
precondition of S.

(3) If S happens when T happens, the statement is called “con-
current implication”, and is rewritten as “S |⇒ T”, where S

is called a sufficient co-condition of T , and T a necessary co-
condition of S.

Definition 11.7. Three “temporal equivalence” (predictive, retro-
spective, and concurrent) relations are defined as the following:

(1) “S /⇔ T” (or equivalently, “T \⇔ S”) means that S is an
equivalent precondition of T , and T an equivalent postcondition
of S.
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(2) “S |⇔ T” means that S and T are equivalent co-conditions of
each other.

(3) To simplify the language, “T \⇔ S” is always represented as
“S /⇔ T”, so the copula “ \⇔” is not actually included in the
grammar of Narsese.

As explained in NAL-5, judgment “S〈f, c〉” can be equivalently
rewritten as “E ⇒ S 〈f, c〉”, where E is a virtual compound
statement summarizing the currently available evidence. Now if
statement S is an event, its temporal attribute can be specified
relative to E, taken as an event that is currently occurring. Since
in Narsese E is implicitly assumed, the temporal implication copulas
serve here as “tenses”, which indicate the temporal nature of truth-
values. In this way, adjectives like “past”, “present”, and “future”
can be represented in Narsese.

Definition 11.8. The tense of a sentence indicates the occurring
time of an event with respect to “the event happening now”, a
special event that is implicitly represented. The temporal implication
symbols ‘\⇒’, ‘|⇒’, and ‘/⇒’ are also used in a sentence to indicate
“past tense”, “present tense”, and “future tense”, respectively.

For example, sentences “It rained”, “It is raining”, and “It will
rain” can be represented in Narsese as “\⇒rain-1”, “|⇒rain-1”, and
“/⇒rain-1”, respectively, where the event rain-1 is further specified
by the statement “{rain-1} → rain” with a proper truth-value.

What makes the situation complicated in real-time reasoning
systems is that “now” changes constantly [Elgot-Drapkin and Perlis
(1990); Ismail and Shapiro (2000)], so “future” gradually becomes
“present”, then “past”. Furthermore, while “now” is unique, the
moments referred to as “past” and “future” are not. Multiple
judgments may associate different truth-values to the same event
that has a “past” or “future” tense, and each of them is actually
about a different moment. For example, “It will rain” and “It will not
rain” may not form a contradiction if they are talking about different
future times. Here the situation is similar to that of statements
containing dependent variables (discussed in the previous chapter),
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where the “same content” expressed in Narsese may have different
meanings.

To allow the “now” to be a moving reference, each sentence in
NARS is given a time stamp to record the moment (according to
the internal clock) when the sentence is formed, either from outside
(experience) or inside (inference). If the content of the sentence is an
event, the time stamp also contains a tense defined above, to indicate
the happening time of the event with respect to the moment recorded
in the time stamp. If the content of a sentence is not treated as an
event, then its time stamp only contains its creation time, while its
happening time is taken to be eternal.

Since time stamps are defined with respect to the internal clock
of the system, they are not included in Narsese. When a sentence is
expressed (in Narsese) for communication, the temporal information
in its time stamp may be translated into (and from) a tense with
respect to the current time when the communication happens, which
can be different from the recorded tense in the time stamp.

The grammar rules introduced in IL-7 are listed in Table 11.1.
In summary, NARS has three alternative ways to represent

temporal information:

Relative representation. Some compound terms (implication,
equivalence, and conjunction) may have temporal order specified
among its components.

Numerical representation. A sentence has a time stamp to indi-
cate its “creation time”, plus an optional “tense” for its truth-
value, with respect to this time.

Table 11.1. The new grammar rules of NAL-7.

〈judgment〉 ::= [〈tense〉]〈statement〉〈truth-value〉
〈question〉 ::= [〈tense〉]〈statement〉

〈statement〉 ::= ( , 〈statement〉〈statement〉+)

| ( ; 〈statement〉〈statement〉+)

〈copula〉 ::= /⇒ | \⇒ | |⇒ | /⇔ | |⇔
〈tense〉 ::= /⇒ | \⇒ | |⇒
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Explicit representation. When the above representations cannot
satisfy the accuracy requirement when temporal information is
needed, it is always possible to introduce terms to explicitly
represent an event or a temporal relation.

Each of the three has its intended uses. The first is generally
applicable to all events; the second is useful in dealing with short-
term events in perception and action; the last approach can meet
the requirement of arbitrary temporal concepts (such as using an
external clock or calendar) and temporal relations (such as the ones
discussed by Allen (1991)). On the other hand, the last one is the least
efficient, since it does not get any special treatment from the temporal
inference rules (to be introduced in the following), but depends on
the atemporal rules that treat a temporal concept just as other
concepts.

In other AI systems, the time-dependency of knowledge is
usually represented by adding an explicit argument to indicate the
“situation” or “moment” for a statement to be true [McCarthy and
Hayes (1969); Elgot-Drapkin and Perlis (1990); Ismail and Shapiro
(2000)]. In NAL, such indicators can be used (as a form of explicit
representation), though they are optional, not required, for the
representation of temporal information.

11.3. Temporal Inference

The temporal inference rules in NAL-7 are variants of the rules
introduced in the previous layers. Here the basic idea is to process the
logical information and the temporal information in the premises in
parallel, then combine them in the conclusion, if possible.

Let us see a concrete example. The following is a deduction rule
introduced in IL-5,

{(C ∧ M) ⇒ P, S ⇒ M} � (C ∧ S) ⇒ P.

This rule can be extended into several valid inferences rules in IL-7,
including the following one:

{(M, C) /⇒ P, S /⇒ M} � (S, C) /⇒ P.
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Table 11.2. Sample temporal inference rules.

{(M, C) /⇒ P, S /⇒ M} � (S, C) /⇒ P 〈Fded〉
{(P, C) /⇒ M, (S, C) /⇒ M} � S /⇒ P 〈Fabd〉
{(M, C) /⇒ P, M /⇒ S} � (S, C) /⇒ P 〈Find〉

This rule is valid, because its logical aspect is the same as the IL-5
rule, and for the temporal aspect, the conclusion keeps the same
temporal order among the events as the premises, that is, S,M,C,P .

This rule is the temporal variant of a deduction rule listed
in Table 9.7.Using the relations among deduction, abduction, and
induction displayed in that table, the temporal variants of the other
two rules can be obtained by switching the conclusion of deduction
with the premise, respectively, and the corresponding NAL-7 rules
are listed in Table 11.2.

Please note that the temporal order of events in the conclusion of
a weak rule is not necessarily implied by their order in the premises,
given the hypothetical nature of such a rule.

Of course, not all combination of premises can derive valid
conclusions in this way. For example, no conclusion can be derived
from “M /⇒ P” and “S \⇒ M” by deduction, because the temporal
order between S and P cannot be deduced from the premises.

Now we can generalize the previous examples into a procedure, by
which the inference rules of NAL-7 are established. This procedure is
a special case of the “NAL expansion procedure” proposed in Sec. 9.3:

(1) Each inference rule of IL-6 is extended by using the temporal
copulas and connectors to replace the atemporal ones in the
premises, then identifying the conclusions where both the logical
and the temporal relations can be derived, so as to get valid
inference rules for IL-7.

(2) Each inference rule of IL-7 is extended into a strong inference
rule in NAL-7, using the same truth-value function as the
corresponding rule in NAL-6.

(3) Each strong inference rule of NAL-7 suggests one or more weak
inference rules according to the reversibility relationship among
the types of inference.
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Since the logical aspect and the temporal aspect are processed in
parallel, the temporal copulas do not really need to be implemented.
Instead, the temporal order among the events in a compound term
can be stored separately. Then, beside the ordinary inference as in
NAL-6, the temporal orders of the premises are checked, and if the
temporal order of events in the conclusion can be decided, a temporal
conclusion is formed from the atemporal one. In this way, temporal
inference is not carried out by the individual inference rules, but by
a “meta-rule” that derives conclusions from the premises and other
inference rules. This approach is conceptually equivalent to the above
approach, though implemented differently.

In the above discussion, it is assumed that the involved truth-
values are eternal themselves. Otherwise, if the premises have tenses,
the situation becomes more complicated, though the processing
principle remains the same, that is, a valid conclusion should be valid
both in the logical aspect and the temporal aspect. For example, if
all the tenses are expressed with respect to the current time, then
from “|⇒ (M /⇒ P )” and “|⇒ (S /⇒ M)” the system can derive
“|⇒ (S /⇒ P )” by deduction, but cannot do so if the premises are
“/⇒ (M⇒ P )” and “\⇒ (S /⇒ M)”, because the two have different
tenses.

When a question comes with a tense, the choice rule will look
for a belief with a matching tense as the answer. When the question
is about the “current situation” and the system does not have a
matching answer, the most recent past situation will be provided.

Explaining the past and predicting the future are among the
major features of temporal inference [Vila (1994)]. In NARS, the
simplest forms of them are invoked by questions “(?x /⇒ E)” and
“(E /⇒?x)”, respectively, where E is an event whose cause or effect
needs to be found. As in other layers of NAL, multiple paths can be
followed when answering such a question, with the candidate answers
merged by the revision rule and selected by the choice rule.

Prediction and retrospective explanation are concrete forms
of causal inference. In AI, it is widely assumed that there is a domain-
independent “causal relation” that can be captured using logic or
probability theory [Halpern and Pearl (2005); Goodman et al.
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(2009)]. In NAL, “causal relation” is not defined as a copula, but
treated as an acquired relation, with different definitions and inter-
pretations in different domains and contexts. In NARS, “causation”
can be represented by a (relational) concept, with an experience-
grounded meaning. Together with the built-in mechanism for tem-
poral inference, various forms of causal inference can be carried out.
However, there is no inference rule that is specially designed for such
a causation relation.

Closely related to prediction, another group of NAL-7 rules are
variants of the following inference rules defined in NAL-5:

{P, S} � S ⇒ P 〈Find〉,
{P, S} � S ⇔ P 〈Fcom〉.

Though these rules do not apply to arbitrary P and S, they are
applicable when the two are temporally related events. When P and
S are events happening at the same time, the conclusions are “S |⇒
P 〈Find〉” and “S |⇔ P 〈Fcom〉”; when S happens right before P , the
conclusions are “S /⇒ P 〈Find〉” and “S /⇔ P 〈Fcom〉”. Here the
situation is different from the previous temporal meta-rule in that
without a temporal relation, these rules will not be applied.

The above temporal induction rule behaves like classical (Pavlo-
vian) conditioning. Each time event S is followed by event P ,
the observation will provide positive evidence for the conclusion
“S /⇒ P”, which will in turn be used by the system to predict the
happening of P when S occurs again. Similarly, an observation of P

will be explained by a hypothesized occurrence of S. Traditionally,
classical conditioning is modeled in the dynamical system framework,
and as a stand-alone process [Sutton and Barto (1990)], which in
NARS it is captured as a type of inference, carried out together with
the other types of inference.

From the observed succession of events, the system also automat-
ically composes compound events to simplify its description of the
experience, just like how it produces other compound terms. Among
the competing candidates, only the repeated patterns will grow into
stable concepts in the system. Such a process is responsible for the
self-organization of perceptual concepts.
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Due to the difficulty of deciding the valid time period for a
judgment with a temporal truth-value, such a judgment can produce
a variant with an eternal truth-value, since the latter can be seen as a
summary of truth-values of the judgment in each moment of interest.
Each tensed truth-value 〈f1, c1〉 provides a piece of evidence for the
eternal truth-value 〈f, c〉, in an “induction on moments” — “If it is
the case in this moment, it may be always the case”. The frequency
of the conclusion, f , is the same as that of the premise, f1, and the
confidence of the conclusion, c, is determined by using the confidence
of the premise as the amount of evidence, so c = c1/(c1 + k). In this
way, if the same truth-value is obtained at many moments for a given
statement, it gradually becomes eternal, which is how stable beliefs
come from temporary observations.
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CHAPTER 12

NAL-8: OPERATIONS AND GOALS AS EVENTS

In lower layers, sentences in Narsese are judgments and questions, so
the system can only interact with its environment by communicating
in Narsese. NAL-8 extends the logic by allowing other forms of
interactions, as operations executed by the system to achieve goals.

12.1. Operations as Executable Events

Certain interactions between NARS and its environment can be
abstractly represented as a sequence of operations executed by the
system.

Definition 12.1. An operation of NARS is an event that the system
can actualize by executing a corresponding procedure.

While statements are declarative knowledge and events are
episodic knowledge, operations are procedural knowledge, in the sense
that the meaning of an operation is not only revealed by how it is
related to the other terms in Narsese, but also by what it does to the
system and to the environment.

The notion of “procedural interpretation” is used here as in logic
programming [Kowalski (1979)], except that in NARS the meaning
of an operator is not fully defined by its procedural implementation.
As other terms in the system, the meaning of an operation still
depends on its experienced relations with other terms, though part of
its meaning is innate and bound to the associated procedure, which
may not be specified in Narsese, but implemented in the responsible
software/hardware.

169
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Definition 12.2. An atomic operation is represented as an operator
(an identifier with the prefix ‘⇑’) followed by an argument list
(a sequence of terms, though can be empty), like “(⇑op a1 . . . an)”.
It is treated as statement “(× self a1 . . . an) → ⇑op”, where ⇑op

belongs to a special type of term that has a procedural interpretation,
and self is a special term referring to the system itself.

For a system implementing NAL-8, its list of atomic operators usually
remains constant.

For example, NARS may have a built-in procedure to multiply
numbers, which is named by the operator “⇑multiply”. Equipped
with such an operator, the system does not need to learn how to
do multiplication via addition, but can simply invoke the procedure
using the operator, though it may not be able to fully explain
the process in Narsese, nor to know when the operator should be
applied — that part of the meaning of the operator is normally
acquired from experience.

Therefore operation is system-dependent: an operation of a
system will be observed as an event by other systems, and different
systems may have different operations. For example, when John
walks, to himself it is just an execution of the operator “⇑walk”
with certain arguments (such as speed, direction, etc.), while to an
observer Mary, it is an event “John walks” with certain properties.
The operation and the event have many common properties, though
the former has a procedure interpretation and the latter does not,
and the latter has one more argument to indicate the actor of the
event, which does not need to be mentioned in the former, since it
is always the system itself who executes the operations. Like the
other statements, both the operation and the event can be further
specialized (e.g., to “hike”) or generalized (e.g., to “move”) using the
inheritance statements. They can also be related to other operations
and events by similarity statements.

An operation usually distinguishes input and output among its
arguments. When an operation is described abstractly, its input
arguments are typically independent variables, and its output are
dependent variables (with the inputs in their dependency lists).
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Such an operation corresponds to a function that maps certain
input values into output values. When an operation is executed,
its input arguments are instantiated by some given values, and its
output arguments will be instantiated at the end of the execution
by the results. Optionally, an operation may bring the system some
Narsese sentences as feedback.

Since the main purpose of operations is for the system to achieve
various consequences, their meaning , or the system’s beliefs about
them, usually include some implication or equivalence statements
(temporal or not), which indicate the conditions, causes, and effects
of an operation. Typically, such a “procedural belief” takes the
following form:

(condition , operation) /⇒ consequence,

where condition and consequence are both events. This form is
common, because it is a simplified version of

condition /⇒ (operation /⇒ consequence)

so the condition is not really applied on the operation, but on
its relation with the consequence. In complicated situations, the
condition is typically a conjunction formed by simpler statements
as components, and as a result, the implication statement looks like
a Horn clause, which plays a central role in logic programming and
theorem proving [Russell and Norvig (2010)].

For an operation to be useful for the system, it needs to have some
consequence that is eventually observable, so as to provide feedback
for the operation in the system’s experience. However, the feedback
may not be immediately available, and nor is it necessarily in the form
of a reward signal, as assumed in reinforcement learning [Sutton and
Barto (1998); Hutter (2005)].

As other beliefs, the truth-value of a procedural belief indicates
the evidential support for the stated relationship. The system usually
has multiple such beliefs for each operation, with different conditions
and conclusions included, and each with its truth-value. Under
AIKR, in NAL the conditions and consequences of an operation are
never exhaustively specified in each belief about it. Instead, each
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belief only records its (limited) experience on the relation between
the operation and the stated events.

Such a “statement-based” specification is very different from the
“state-based” specification of operations in traditional AI systems,
such as General Problem Solver [Newell and Simon (1963)] and
various Markov Models studied in reinforcement learning [Sutton and
Barto (1998)]. In such a system, a “state” is a complete description
of (all the the relevant parts of) the environment, and the meaning of
an operation is effectively defined as a (deterministic or probabilistic)
state transformation function. Though in NARS it is still meaningful
to talk about the “state” of the environment or the system, such
a complete description is never actually used in the design or the
operating of NARS. One of the consequence is that the Frame
Problem [McCarthy and Hayes (1969)] does not appear in NARS,
since there is no requirement for the consequence of an operation to
be fully specified [Xu and Wang (2012)].

As a special type of compound statement, compound operations
work in NARS like “programs”, which organize primitive operations
into control structures. The basic compound operations include:

Sequential operation, formed by the sequential conjunction
connector on operations;

Parallel operation, formed by the parallel conjunction connector
on operations;

Conditional operation, formed by the implication copula from an
event and an operation.

Using these control structures repeatedly or recursively, more
complicated operations can be specified, such as various types of
loop.

Furthermore, the equivalence copula allows a compound opera-
tion to be identified by an atomic operation, so as to reduce the syn-
tactic complexity of the description. It is just like in a programming
language (such as C), where a “function header” (which specifies the
abstract relation among the input/output arguments) is associated
with a “function body” (which specifies the concrete procedure to get
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the output from the input). Here a “function” roughly corresponds
to a compound operation in Narsese.

These control structures give Narsese the capability of a general-
purpose programming language (with the atomic operations as
instructions and compound operations as programs). In this aspect,
Narsese, when used in IL-8, is similar to a logic programming
language, such as Prolog, except that it is not based on a predicate
logic, and nor does it always use the same program to solve a given
problem. Instead, the problem-solving process is usually formed by
multiple programs at run-time in a context-sensitive manner, as
explained in Chapter 5.

12.2. Goals as Desired Events

At any moment in the system, there usually are many operations
whose conditions have been satisfied. Which one is actually executed
mainly depends on the system’s goals.

Definition 12.3. A goal is a sentence containing an event that the
system wants to realize.

Here “to realize a goal” actually means “to make the statement
in it as close to absolute truth as possible by executing certain
operations”, since the confidence value of the statement cannot reach
its upper bound 1.

Like an operation, in NARS a goal is specified by a “statement”,
not by a “state”. Consequently, a goal is usually specified without
revealing all of its presumptions and implications.

Normally the system has multiple goals, and they often conflict
with one another (in the sense that the realizing of a goal makes
another one harder to be realized), as well as compete for the system’s
resources (which are insufficient to realize all of them in time). For the
system to deal with these conflicts and competitions, a numerical
measurement of “desire” is defined on events.

Definition 12.4. The desire-value of an event measures the extent
to which a desired state is implied by the event, that is, the



April 4, 2013 12:22 9in x 6in Non-Axiomatic Logic b1497-ch12

174 Non-Axiomatic Logic: A Model of Intelligent Reasoning

desire-value of event S is the truth-value of the implication statement
“S ⇒ D”, where D is a virtual statement describing the desired state
of the system, a summary of its current goals.

Here D is “virtual” in the sense that it is not a concrete statement
in Narsese, but a conceptual one in the meta-language, used in the
design of the system. By it, the desire-values of the events involved
are reduced to truth-values, whose calculations have been specified
by the truth-value functions. Here the situation is like in NAL-5
where a “virtual evidence” is introduced so that the truth-value of
a statement can be taken as the truth-value for the statement to be
implied by the available evidence. In both situations, an evaluation
of a statement is interpreted as an evaluation of its relation with
a virtual statement, which is coherent with the semantic principle
of NARS that the meaning of an item is revealed by its relations
with other items, rather than being an intrinsic property of the item
itself.1

In NARS, a desire-value is not only attached to every goal, but to
every event , because an event may become a goal in the future (if it
is not already a goal). This value shows the system’s current attitude
toward the situations in which the statement is true. In the input
sentences of the system, the desire-value of a goal can be explicitly
expressed by the user or other system providing the goal as a task
to NARS, otherwise a default value is assumed.

In this way, operations and goals are integrated into the term
logic framework. In summary, there is the following hierarchy among
terms in NARS:

• a term is an internal identifier of the system for a concept;
• a statement is a special type of term that has a truth-value;
• an event is a special type of statement that has temporal attributes

and a desire-value;

1Intuitively speaking, the truth-value of a statement evaluates its relation with
its “source” (where it came from), and the desire-value its “destination” (where
it should lead to).
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Table 12.1. The new grammar rules of NAL-8.

〈sentence〉 ::= 〈judgment〉 | 〈goal〉 | 〈question〉
〈judgment〉 ::= [〈tense〉]〈statement〉. 〈truth-value〉

〈goal〉 ::= 〈statement〉! 〈desire-value〉
〈question〉 ::= [〈tense〉]〈statement〉?

|〈statement〉¿
〈statement〉 ::= (〈operator〉 〈term〉∗)
〈operator〉 ::= ⇑〈word〉

• an operation is a special type of event that is realizable by the
system;

• a goal is a special type of event to be realized by the system.

Now a question in NAL can be either about the truth-value of a
statement, or about its desire-value (if it is an event).

To separate different types of sentence more clearly, in NAL-8 a
punctuation mark is added at the end of each sentence of Narsese:
‘.’ for judgment, ‘!’ for goal, ‘?’ for question on truth-value, and ‘¿’
for quest, that is, question on desire-value. The new grammar rules
introduced in NAL-8 are summarized in Table 12.1.

A desire-value looks the same as a truth-value, though it is
interpreted differently, as explained above. A goal does not have
a tense attached, because it is assumed to be realized as soon as
possible. If a goal should be achieved in a specific future time, then
it should be expressed in Narsese as a conditional statement with the
timing requirement as the condition.

12.3. Practical Reasoning

Reasoning on actions is traditionally refereed to as “practical
reasoning”, which is considered as different from conventional or
“theoretical” reasoning, because it is not about “what to believe”,
but “what to do” [Bratman et al. (1988)]. In NAL-8, since operations
and goals are events, the previously defined inference rules on events
work on them, too, so the system uniformly processes declarative,
episodic, and procedural knowledge.
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Inference on knowledge about an operation can derive new
beliefs about its preconditions and postconditions. For example, the
compositional induction rule introduced in Table 9.5 can be applied
here to carry out classical conditioning with operations [Medin and
Ross (1992)]. As mentioned in the previous chapter, if events S1

and S2 are observed in succession, “S1 /⇒ S2” will be derived, and
repeated observations of this relation will increase the confidence
of the conclusion. After that, any observation of S1 will trigger an
expectation of S2, as a statement with future tense, “/⇒ S2”. When
the expectation is confirmed by a following observation, the habit is
further strengthened, otherwise (if S2 does not occur as expected) the
habit is weakened (i.e., its frequency is decreased by the revision rule).
When S1 is an operation, this process reveals one of its consequences;
When S2 is the form of “oper /⇒ cons”, this process reveals one of
its conditions. This is one way for the system’s procedural knowledge
to be created.

Compound operations are selectively formed from useful combi-
nations of operations, and become “skills” or “routines” of the system
that can be executed efficiently, without step-by-step deliberation.
For example, if the system has the following beliefs (truth-values
omitted):

• (cond1, oper 1) /⇒ cons1

• (cond2, oper 2) /⇒ cons2

• cond2 ⇔ cons1

then from them the system can derive “(cond1, oper1, oper2) /⇒
cons2”, which is effectively a belief about compound operation
(oper1, oper2) as a whole. Obviously, this step can be repeated to
build more complicated operations.

To recursively build “compound” or “macro” operations from
simpler ones is an idea that has been used in various forms in AI
study. What makes the NAL approach different are:

• The system does not search a program space for all possible
combinations [Kaiser (2007)], nor tries random combinations
[Koza (1992)]. Instead, it selectively forms compound operations
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in a data-driven manner. In the above example, (oper1, oper2)
is built, because its two components are both related to a common
term, and the related beliefs happen to be remembered at the time.

• The system does not learn the effect of a compound operation
exclusively from rewards and punishments after its execution, as
in reinforcement learning [Sutton and Barto (1998)], but uses its
reasoning ability to estimate what may happen first, and only
executes the promising ones.

• The system can acquire knowledge about (atomic or compound)
operations via multiple types of reasoning, and can handle various
types of uncertainty in the process. On the contrary, inductive
logic programming learns by one type of induction, and does not
allow any counter-evidence [Muggleton (1991)].

Inference on knowledge about a goal also derives new beliefs
about how it can be realized, as well as reveals its by-products and
side-effects. Especially, for a given goal G, the inference engine can
find a plan, which is a compound operation P that achieves the
goal (i.e., “P ⇒ G” has a high expectation value). By executing
the plan, and adjusting it when necessary, the internal or external
environment is changed to turn the goal into reality. When repeatedly
appearing compound operations are memorized, repeated planning is
avoided, and the system learns a new skill. When Narsese is taken as a
programming language with atomic operations as instructions, what
NARS does in the process can be considered as “self-programming”
that produces executable plans, or “programs”, for future usage.2

When a goal is an operation, it can be directly realized by
executing the operator on the arguments. If a goal cannot be directly
satisfied in this way, by backward inference it can increase the
desire-values of certain events. For a given event, the desire-values
coming from different goals are merged together using the revision
rule, just like how truth-values from different evidential bases are

2Please note that NARS does not self-program by modifying its own source code,
which remains unchanged at the meta-level, while all the changes happen in the
object-level, where “programs” are in Narsese.
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merged. Consequently, the desire-value of an event usually depends
on multiple existing goals that have be taken into account, rather
than a single one.

The decision-making rule will turn candidate goals with high
desire-value and plausibility into goals being actually pursued by the
system. They are “derived goals”, but not “subgoals”, since a derived
goal is not treated as a means for a single goal.

Definition 12.5. The plausibility of candidate goal G is the truth-
value of “# /⇒ G” where the variable ‘#’ stands for an anonymous
operation.

Intuitively speaking, the plausibility of G is the truth-value of “There
is a way to achieve G”.

As mentioned previously, the system’s procedural knowledge
often has the form of “(condition, operation) /⇒ consequence”.
From such a piece of knowledge and a belief about the condition,
the truth-value of statement “operation /⇒ consequence” can be
decided, which lead to a version of “# /⇒ consequence” after
a variable introduction. When there are multiple versions of this
statement, the choice rule will pick one that has high expectation and
low complexity to provide the plausibility for the event consequence.

Decision-making Rule. A candidate goal is actually pursued by
the system, when its expected desirability d and expected plausibility
p satisfy condition p(d − 0.5) > t, where t is a positive constant.

When 0.5 is added to both sides of the formula, the above
“decision-making function” has the same form as the expectation
function defined in Table 4.2, with desirability as frequency and
plausibility as confidence. Here the “expected desirability” and
“expected plausibility” are the output of the expectation function
with the desirability and the plausibility of the goal as input,
respectively. The threshold t is another “personality parameter” of
the system, and measures the system’s cautiousness.

The above decision-making rule can be compared with the
Maximum Expected Utility Principle of decision theory, which asks
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the system to always choose the alternative that has the largest
expected utility value [Savage (1954)]. The NAL decision-making
rule is built according to the same intuition, where the expected
desirability is similar to the utility of an event, while the expected
plausibility is similar to its probability. Their differences are that:

• In NAL, it is not assumed that the system knows all the possible
alternatives, so can select one of them after comparing with the
others. On the contrary, in each decision NAL focuses on whether
to realize one event, so the only alternative is not to realize it.

• In NAL, the event’s desire-value and plausibility value are usually
derived by the system itself, rather than given as constants.
Therefore, to make a decision demands more than merely calcu-
lating the above function, but often include explorations to decide
the desire-value and plausibility values involved. Furthermore,
these values can be changed by new experience and further
consideration. Therefore, even on the same topic, the decision may
change from situation to situation.

If a goal G has been decided to be actively pursued, the system
will first check if the desired event has already realized. If there is
a matching judgment, the desire-value of the goal will be reduced
accordingly, unless something needs to be done to keep the goal
satisfied.

Decision making is where the multi-valued beliefs and tasks are
turned into the binary decisions. Though the system usually believes
or desires a statement to a degree, it normally cannot execute an
operation “to a degree” — it is a matter of “to do or not to do”.
However, this demand of binary decision cannot be used to justify
the usage of binary beliefs and tasks. Due to AIKR, it is preferred
to postpone the “binarization” moment of the thinking process to
the last moment, that is, right to the point of deciding to actually
pursue a goal, which includes the execution of an operation as a
special case.

NARS differs from the Belief-Desire-Intention (BDI) model of
agents [Rao and Georgeff (1995)] in several key aspects, including
its abilities in learning and adaptation, reasoning under uncertainty,
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real-time decision making, and dealing with the inconsistency among
beliefs and goals. All these differences can be traced back to AIKR.

12.4. Sensorimotor Interface

In NAL-8, an atomic operation is defined as a special form of
statement such that when it becomes a goal, its satisfaction is
achieved by the execution of the operation, rather than through an
inference process. Depending on who is responsible for the execution,
the operations can be divided into two types: the ones that are
executed outside NARS and the ones inside NARS.

If an operation is executed outside NARS, it is a black-box
to the system, and the system can use it as a “tool” that has
certain consequences when executed under certain conditions. Such
an operator in NARS is similar to a “built-in predicate” in Prolog,
except that NARS is not designed with a fixed set of operators, but
allow them to be used in a “plug-and-play” manner.

From the viewpoint of NARS, each tool is defined by a set of
executable operations in the format of (⇑op a1 . . . an), with all the
arguments represented as terms in NARS. The system’s beliefs about
the tool mainly take the form of procedural knowledge, as specified
earlier. The feedback of the operations becomes input in the system’s
experience in two forms:

• Immediate feedback of an operation is represented by output
values among the arguments, which will be reported to the system
right after the execution. It is mainly for sensors. For example, the
execution of a touch operation will immediately report back the
sensory data.

• Delayed feedback of an operation is represented by Narsese
sentences, which come into the system’s experience like other
input sentences. They are not explicitly associated with the
operation, though the system can learn their causal relations
with the responsible operations from experience. It is mainly for
actuators. For example, the action of throwing a ball is followed
by observations of the ball moving in the air, and movement of the
ball is related to the parameters of the throwing operation.



April 4, 2013 12:22 9in x 6in Non-Axiomatic Logic b1497-ch12

NAL-8: Operations and Goals as Events 181

As a reasoning system, NARS communicates with its environ-
ments in Narsese, a formal language. In addition to it, NAL-8
introduces an interface between NARS and external devices and
programs, each of which can carry out certain operations for NARS.
Conceptually speaking, such a device or program can be considered
as an “organ” that provides sensorimotor function for NARS to
directly interact with the outside world.

In NARS, both sensors and actuators are represented by opera-
tions, so sensation and perception are treated as active, rather than
passive, processes, as suggested by Noë (2004). Since operation is a
special type of term in Narsese, the system’s sensorimotor experience
is also described in Narsese, though the vocabulary corresponding
to the operators have procedural meaning, which cannot be fully
described in the language. Even so, their presence in Narsese allows
the concepts of the system to be grounded on these sensorimotor
ingredients.

NARS makes no requirements on the granularity or level of
description of the terms that go through the sensorimotor interface,
and it even allows a device to communicate with it at several levels
of description. For example, if NARS is equipped with a visual
device, then a term on the interface may correspond to a pixel, a
line segment, a surface, and all the way up to a recognized object.

In this way, the meaning of terms in the system becomes richer,
since some of them will have “procedural meanings” beyond what can
be expressed in Narsese. However, it does not change the semantic
principle of NARS. Even when a term corresponds to a mental image,
its meaning is not fully determined by the image, but also by its
relations with other terms. The mental image only provides partial
meaning to the term, like all the other relations of the term. This is
the solution of NARS to the “symbol grounding” problem [Harnad
(1990)].

This treatment of sensation and perception is a natural extension
of the experience-grounded semantics. Unlike in mainstream AI,
where perception is taken to be the process through which a “world
model” is built within the system, and there is an objective standard
for the accuracy of the model [Russell and Norvig (2010)], in NARS
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perception is taken to be the process for the system to organize its
physical (and chemical, etc.) experience, and “objects and events in
the world” are nothing but invariant patterns in the experience that
are useful in achieving the system’s goals. It is further conjectured
that “the logic of perception” is basically the same as “the logic
of cognition”, so that NAL can handle sensorimotor concepts and
abstract concepts similarly.

NARS, as a general-purpose “mind”, can be embedded within,
or connected with, various “bodies”, that is, host systems or devices
with different sensorimotor mechanisms, either in a physical world
or in a virtual world (which also exists in a physical world, though is
described abstractly). We will call such a system “NARS+” (NARS
plus host/device). For a given host, a special interface module needs
to be built, which registers all the relevant commands in the host
that are exposed to the control of NARS, so that whenever NARS
decides to execute an operation, the corresponding command is sent
to the responsible actuator in the host system.

Similarly, the sensors in the host are also formalized as operators,
invoked by NARS, and the result of the operations will be received as
new experience (input knowledge) to the system. Driven by goals, the
system’s observation is not a merely passive process which accepts
whatever signals coming from the environment, but an active process
directed by the system’s goal-achieving activities.

NARS leaves the low-level sensorimotor management to host
systems or peripheral devices, while still contribute to the perception
and action processes, by allowing operations to be defined on multiple
levels of abstraction (with different granularity and scope), as well
as using anticipations and goals to selectively process incoming
information. With a sensorimotor mechanism connected to NARS,
the effect of an operation can be anticipated, checked, and confirmed,
and the feedback will provide information for various types of
learning.

Though a NARS+ as a whole can have experience with multiple
modalities, the NARS part of the system remains amodal in design.
In this way, the content of the system’s beliefs and concepts will
depend on its “body” (which decides what experience is possible),
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though the inference process does not (which decide how the
experience is processed). NARS is “general-purpose” in the sense
that the system allows any software and hardware to be plugged
in, though after equipped with a certain body, its experience, and
therefore beliefs and concepts, all depend on its body.

One implication of this design is that since a NARS+ normally
has a body different from a human body, its beliefs and concepts will
not be identical to that of a human being. However, its beliefs and
concepts are related to the system’s experience in the same way as in
a human being. It is in this sense that AI is comparable with human
intelligence — in the general principles and functions, rather than
in the particular thoughts, behaviors, and capabilities [Wang (2008,
2009c)].
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CHAPTER 13

NAL-9: SELF-MONITORING AND
SELF-CONTROL

In a sense, NAL-9 is optional to NAL, since it does not add any new
grammar rule or inference rule into the logic, nor does it modify the
semantic notions introduced previously. What is added at this layer
is a group of operations to be implemented within NARS. These
operations enable the system to monitor and control its own internal
activities.

13.1. Mental Operations

In NAL-8, an interface is provided for NAL to achieve a goal
by invoking an operation registered in the system, though the
implementation and execution are not the responsibility of NARS,
but that of some other system or device. However, there is nothing
to prevent NARS from serving this role itself.

As described in Chapter 5, the working process of NARS consists
of a routine of predetermined actions. If some of these actions are
represented in Narsese and registered in NARS as operations, then
the result will be another sensorimotor mechanism, though it is not
interacting with the external environment of the system, but the
internal environment of the system. It means a NARS equipped
with sensors and actuators that perceive and modify the internal
state of the system. These sensors and actuators are invoked by
commands issued in NARS, and their results are fedback to the
system, represented as Narsese sentences.

185
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Consequently, such a NARS has both an “external experience”
and an “internal experience”, and the two are represented and
processed in similar ways. Like its knowledge of the world, the
system’s knowledge of itself is also a summary of its experience, and
restricted by its sensorimotor and information-processing capability.
However, there is an important difference: while its external expe-
rience must go through a complicated sensation/perception process
to reach the conceptual level, its internal experience is often directly
expressed at the conceptual level, so can be processed according to
NAL. To stress this difference, the internally implemented operations
in NARS are referred to as “mental operations”.

Designed as a general-purpose system, NARS does not have a
predetermined set of external sensors and actuators, but allows arbi-
trary hardware and software to be “plugged in” to get various forms
of NARS+. On the contrary, the basic mental operations remain the
same in all NARS+, so it makes sense to define them as a layer of
the logic.

For a given NARS+ (NARS plus sensors and actuators), the
sensors and actuators that work on the system itself can be roughly
divided into two types, those that are mostly about its “body” and
those that are mostly about its “mind”. When NARS is implemented
in a robot, there will be various sensors to monitor its energy
level, status of organs, etc., which do not change the nature of the
reasoning/learning process, but provide goals to be achieved and
means to achieve them. Though these sensors work on the body of
the system, they are not that different from the sensors that work on
the outside environment, in that they all need a sensation–perception
process to categorize physical signals into internal concepts.

On the other hand, there are also sensors on the reasoning/
learning process, which express information about the state of the
system in a format (Narsese sentences) that can be directly processed
by the system. These sensors are different from the “physical”
ones, since they directly produce conceptual-level results, without
a perceivable categorization process. Similarly, there are “physical”
actuators and “mental” actuators. Though the latter are inevitably
carried out by physical processes, they are known to the system only
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at an abstract level, without their physical details. They are the
mental operations we are discussing.

Though the notion of “mental operation” has a long history
in psychology, and played a central role in Piaget’s theory on
intelligence [Piaget (1963)], self-monitoring and self-control only
began to get attention in AI research [Anderson and Oates (2007);
Cox (2005)], and the results are highly system-specific [Marshall
(2006); Shapiro and Bona (2010)]. In this book, I only describe the
related ideas accepted in NAL and NARS, and leave the general
discussion and comparison to future publications.

Though in principle every internal activity of NARS, no matter
at which level and scope it is described, could be treated as an
operation in NAL, to actually do that is not a good idea. Not
only that it would make the self-monitoring and self-control process
too complicated for the system to handle, it is also dangerous —
self-modification is not always beneficial to the system, and under
AIKR, there is no way for NARS to only carry out the beneficial
ones, as assumed in some other models [Schmidhuber (2007)]. Like
the situation in the human mind, an intelligent system should
have some voluntary processes within itself, while leaving most
of the jobs to the autonomic processes, which do not require
deliberation.

Consequently, a major design issue in NAL-9 is to choose the
mental operations, that is, to identify certain internal activities, and
express them in the required format, so that they can be reasoned on,
and invoked by, the inference mechanism. Given this context, what
activity should be considered as a “mental operation” in NARS is
not decided in the same way as in psychology.

In the current design, the operations are chosen in two main
ways. First, the global inference and control routine (introduced in
Chapter 5) is divided into major steps, each has a relatively clear and
natural function to be treated as an operation. Second, meaningful
deviations of the normal routine are added as operations to satisfy
special needs. Either way, the obtained mental operations usually
resemble certain mental actions in the human mind, though not
necessarily in all details.
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Table 13.1. Mental operations.

Operator Function

observe get an active task from the task buffer
expect check the input for a given statement
know find the truth-value of a statement
assess find the desire-value of a statement
believe turn a statement into a task containing a judgment
want turn a statement into a task containing a goal
wonder turn a statement into a task containing a question
remember turn a statement into a belief
consider do inference on a concept
remind activate a concept
doubt decrease the confidence of a belief
hesitate decrease the confidence of a goal
assume temporarily take a statement as a belief
compile create a simple internal name for a compound term
wait pause the system’s action for a given number of cycles
repeat execute an action repeatedly under a given condition
tell produce an outgoing task containing a judgment
demand produce an outgoing task containing a goal
ask produce an outgoing task containing a question
check produce an outgoing task containing a query
register let a term be used as an operator

Table 13.1 contains some mental operations that are under
consideration. This list is by no means final or complete, since the
research on this layer is still going on. Furthermore, each operation
does not attempt to capture the full meaning of the English word
that names it. Even so, we can still see that many remaining issues
in the lower layers can be resolved with certain mental operations in
the list:

• The revision rule only increases the confidence of a judgment
with new evidence. To disqualify an existing conclusion, a doubt
operation is needed.

• All direct observations only provide affirmative conclusions. To
get denials, it is necessary to compare an observation with an
expectation expressed using an expect operation — otherwise
how can you see “no book” on a table?
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• A future goal can be represented as an implication statement with
a want operation in the consequent.

• As explained previously, the “closed-world assumption” is accep-
ted in IL, but not in NAL. However, there are special situations
where “I don’t know” does imply “it is not true” with a high
confidence level. For example, “Since I don’t know I have a brother,
I must not” [Elgot-Drapkin and Perlis (1990)]. Such a belief can
be established using a believe operation, according to the return
value of a know operation.

Beside the above “reasoning-related” operations, the system can
also be equipped with “calculation-related” operations, such as:

• count the number of terms in an extensional or intensional set,
• compare two numbers to decide their relative rank,
• calculate the value of a simple arithmetic expression.

To guarantee that all atomic operations will be finished within a
(short) constant time, there are restrictions on the argument range
of the above mental operations. More complicated calculations must
be carried out by compound operations or external devices under the
command of NARS.

The implementation of all these operations is straightforward.
Since each mental operation only takes a small constant amount of
time to finish, to embed them in Narsese statements does not violate
the restriction of AIKR. The meaning of, and the knowledge about,
the operations will be mainly acquired from experience, like the other
operations, though for efficiency considerations, it will be convenient
to “implant” some innate knowledge into the system about their
preconditions and consequences.

Before such a self-control mechanism is implemented, the infer-
ence control in NARS is purely autonomic. In each inference step,
the task to be carried out and the belief to be used are selected
according to several factors to achieve the highest overall efficiency,
as described briefly in Chapter 5, as well as in Wang (2006b). This
process is governed by algorithms that are coded in the programming
language of the system, and is beyond the reach of the inference
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rules. With the above self-control mechanism, however, the system
can think about its own thinking process, and adjust it as allowed
by its internal sensorimotor mechanism. This introduces voluntary
control (according to knowledge represented declaratively in Narsese)
that supplement (though does not replace) the autonomic control
mechanism.

13.2. Feeling and Emotion

So far, the system’s mental operations are discussed mainly with
respect to concrete goals. Beside that it is also important for an
intelligent system to appraise its overall status, and to take prompt
pervasive responses accordingly. This leads to the issue of feeling and
emotion.

For NARS, a desire-value of a situation or status for the system
as a whole can be measured by a global variable happy, which can be
considered as a degree of happiness or pleasure. It is directly related
to the virtual statement D, according to which the desire-values of
statements are defined. This variable takes values in [0, 1], with 0 for
“unhappy”, 0.5 for “neutral”, and 1 for “happy”, though usually the
two extreme values do not occur.

The degree of happiness is adjusted each time a goal is com-
pared with the corresponding belief on the reality. When a goal is
(relatively) satisfied, the system becomes happier; when the reality is
different from what a goal requires, the system becomes less happy.
Of course, the amount of adjustment also depends on the priority of
the goal and the difference between the desire and the reality, and
the effects of adjustments may last for different durations.

The current value of happy can be perceived by a feel operation,
so as to be expressed as a Narsese judgment, added into the system’s
beliefs about itself. In this way, the system has a basic feeling , which
can be positive or negative, reflecting the system’s overall evaluation
of the current situation.

More complicated feelings can be obtained by further distinguish-
ing this basic feeling into types, along various dimensions: such as
self/other, past/present/future, event/entity, cause/effect, and so on.
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For example, “joy” and “sorrow” are usually related to the feelings
about past positive and negative events, respectively; “fear” and
“anger” are both related to opponent attacks, and the difference is
that the former indicates a more powerful opponent, and the latter
a less powerful one. These compound feelings can be represented in
NARS by compound terms, with the basic feeling and other terms
as components. In a complicated situation, different feelings can
be mixed — the system may feel “joy” and “sorrow” at the same
moment, for different reasons.

Beside the overall situation, feelings can be associated with
objects and things. To do that, the definition domain of desire-
value is extended from events (as in NAL-8) to all terms, to
summarize the desire-values of the related events whenever that term
is under consideration. Consequently, if a term usually associates
with pleasant events for the system, it will be “liked” by the system; if
a term usually associates with unpleasant events, it will be “disliked”.
Obviously, the system will have “neutral feeling” about some terms,
and “mixed feeling” about some others. It will be more natural to say
that the system has different feelings for “objects and things”, though
accurately speaking, the feelings are about the concepts representing
the “objects and things”.

In this way, feeling can be intergated into the experience-
grounded semantics of NARS — similar to the “meaning” of a
term, the “feeling” associated with a term is also determined by
the system’s relevant experience about it.

In addition to sensing how much are the goals satisfied, the
system may also have self-monitoring sensors on other aspects and
processes. For example, for a robot, there can be sensors on the well-
being of various parts that can produce feelings that resemble “pain”,
as well as sensors on the battery or other energy storage that can
produce feelings that resemble “hungry”. Unlike the mental opera-
tions that are mostly universal among NARS implementations, these
somatic feelings may change from NARS+ to NARS+, and more
or less similar to the external sensorimotor mechanism discussed
in the previous chapter, so they will not be considered as part
of NARS.
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The primary function of different feelings is to provoke emotions,
which are system states that have implications in the behaviors:

• Different emotional states correspond to different (computational)
resource allocation policies. For example, when the system is
excited, bored, or tired, its attention distribution is very different.

• Changes in emotions lead to adjustments in certain system
parameters, such as the threshold for a decision to be made.

• Different emotions prepare the system for different actions, such
as “anger” for attack and “fear” for flee.

• By showing different emotions, an intelligent system can influence
the behaviors of other systems in various ways, so as to improve
cooperation efficiency.

As other concepts in NARS, whether the system is in a certain
emotional state is a matter of degree, and different emotions can mix.

Traditionally, “rationality” and “emotion” were widely perceived
as opposite of each other, and emotion as a major irrational factor
in human thinking, so it is neither necessary nor desired in AI
systems. However, in recent years, more and more researchers in AI
and cognitive science began to challenge this dogma, and argued
for the necessity of emotion in intelligence and cognition [Picard
(1997); Fellous and Arbib (2005)]. For example, Ganjoo (2005)
wrote that “Behavioral responses to environmental stimuli can be
categorized as reflexive, emotional or cognitive. Reflexive responses
do not require much analysis or brain power, but are made quickly.
Cognitive responses require the most amount of brain power, but are
made relatively slowly. Emotional responses fall somewhere between
these two in response time and the required brain power.”

So “rationality” and “emotion” do not have to be taken as
opposite. As argued in Wang (2011), there are different models
of rationality, each prescribes “the right thing to do”, but under
different assumptions. Traditional models of rationality, such as clas-
sical logic and probability theory, make highly idealized assumptions
about the environment and the system. Especially, they assume the
system has consistent goals and sufficient resources to achieve the
goals. Since a major effect of emotion is for the system to focus on
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certain goals and beliefs while ignoring the others, it is considered as
unnecessary and undesired in the traditional models.

On the contrary, under AIKR the system does not have the
knowledge and resources to behave “rationally” in the traditional
sense. However, as has been repeatedly argued in this book, it is
still possible to be rational under AIKR, though with a different
criterion, which is relative to available knowledge and resources. Now
we can add that the advanced form of this relative rationality includes
emotions in it as a necessary aspect. With insufficient knowledge and
resources, the system needs the ability of taking actions based on
rough evaluations of the overall situation, as well as giving unequal
attention to different objects and events.

It does not mean that emotion is always a good thing in thinking.
Though overall it is absolutely necessary for an adaptive system
working in a complicated environment, in each individual situations
its contributions are different. Especially, for a certain task the
system’s knowledge and resources may be relatively sufficient, so in
that case, the system should take its time to carefully consider what
is the desired result and what is the best way to get there, rather
than be driven by its emotions to rush responses. That means the
system should learn to control its own emotions, by properly carrying
out certain operations.

Of course, “systems with emotion” is different from “systems with
human emotion”. Since computers are electronic, not biological, they
are not going to have the biochemical and physiological aspects of
human emotion. Nevertheless, there will be analogous processes and
phenomena that deserve the name of “emotion”, since it plays the
same functions for the AI systems as emotions for human beings.

13.3. Consciousness

When a thinking system thinks about its own thinking process, many
interesting and challenging issues will inevitably appear [Hofstadter
(1979)].

Equipped with external and internal sensorimotor mechanisms,
NARS (at the layer of NAL-9) can interact with its external and
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internal environment. Part of the interactions are expressed as
Narsese sentences that come into and out of the system, as the
system’s experience and behavior, respectively.

However, not all the experience and behavior can be considered
as conscious. Consciousness is a notion that has many different
interpretations, and to survey the theories is beyond the scope of
this book. Here we use the following working definition: NARS is
conscious of a concept when and only when in a working cycle
(as defined in Chapter 5) the concept is selected and processed.
Therefore, in any period when the system is running, its train of
thought can be partially described as a “stream of consciousness”
[James (1890)], in the form of a sequence of terms. This stream can
be recorded by, and accessible to, the system itself within a certain
period of time. In this sense, the system knows what it is thinking
about, and can reason and communicate about it.

This stream of consciousness provides a window for the system
to its own thinking process. However, this self-awareness is limited,
in the following senses:

Subjective: Since some of the sensors are about the internal
situation of the system, no other system can get the experience but
the system itself. Even the external sensors may produce something
unique, due to the system’s idiosyncratic position and perspective,
so systems in the same environment may not have an identical
experience, but similar ones.

Discontinuous: Since the system is working on multiple tasks at
the same time, the attention focus of the system will move from
concept to concept, and the adjacent concepts in the “stream of
consciousness” are not necessarily related to each other in meaning.

Incomplete: Under AIKR, the system’s self-knowledge is highly
restricted, and at any moment most of its beliefs, goals, feelings,
etc. remain unconscious. However, certain parts of the unconscious
thought can become conscious, and vice versa. The conscious part
of NARS is just the part that is expressed in Narsese and is getting
enough attention, though it often contains information about the
unconscious part.
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Because of the above features, in any nontrivial situation, where
will the system’s stream of consciousness flow is practically unpre-
dictable by an observer or the system itself, even though the system
is deterministic by design, without any “purely random” factor.

The system has a concept of self, which, like all other concepts in
NARS, consists of empirical conceptual relations, such as “who I am”,
“what I can do”, “what I want”, and so on. This concept starts with
the operations of the system (as mentioned in the previous chapter,
every operation implicitly has self as an argument), and evolves as
the system “lives its life”, rather than remaining constant or being
fully specified by the designer.

Such a system will surely have various forms of self-reference as
discussed by Hofstadter (1979), though it will not be bothered too
much by paradoxical statements like “This sentence is false”, since
it does not have to assign a binary truth-value to each statement.

The existence of self-consciousness plays important roles in the
system’s cognition and intelligence. For complicated problems, the
system needs the ability of introspection, such as to tell itself that
“I have spent enough time on that approach, so now is the time to
try something different” or to ask itself “Where did that assumption
made by me come from?” Systems with or without subjective
experience will behave differently, and there is no reason to believe
the possibility of having a “zombie” that has no consciousness but
shows no difference in behavior [Chalmers (1996)].

After NAL-9 is fully implemented, the system will have two
disjoint sets of operations, “mental operations” and “physical opera-
tions”, that work on its internal and external environments, respec-
tively. Since the operations cannot replace each other, the system will
develop two vocabularies for its internal and external experiences,
with a “mind-body gap” in between — as far as the system can tell,
its mental operations (described using the internal vocabulary) cause
physical effects (described using the external vocabulary). My theory
accepts this “dualism in description”, and does not attempt to reduce
one description into another (under the assumption that the latter
is “real” or “more accurate”, while the former is “approximate” or
“illusory”). However, this dualism is not the product of two separate
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underlying processes (either parallel or interactive), but a single
existence and process, which is described in two languages that are
not fully reducible to each other.

For the same reason, to consider NARS as having “free will”
does not contradict with the claim that it has a “deterministic”
design. For an omniscient and omnipotent observer, the behavior
of NARS is accurately predictable from its initial design and
its lifelong experience; however, since all concrete systems have
limited knowledge and experience, NARS (or any similar system) is
practically unpredictable, except in trivial situations. Especially, to
the system itself, it is its own choices, or free will, that causes most of
its behaviors. This is indeed what the system experiences, so cannot
be called “an illusion”. It is impossible to describe the system “as it
is”, rather it has to be done from the view point of a certain observer,
and different view points lead to different conclusions.
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CHAPTER 14

SUMMARY AND BEYOND

The previous chapters have provided a comprehensive description
of NAL, with its grammar, semantics, and inference rules. At the
current time, a prototype of NARS has implemented all the rules of
NAL-1 to NAL-6, plus some rules of NAL-7 to NAL-9, with a highly
simplified memory structure and control mechanism. The source code
and demonstrating examples can be found at my website.1 Many of
the properties of the system described previously have been verified
in the implementation.

In this last chapter, the logic system is discussed as a whole.

14.1. The Nature of NAL

NAL is not designed by following the common practice in the current
field of logic, and it is so different from the other logic systems that
some researchers have expressed their disagreement on considering it
a “logic”.

I still consider it a logic, though of a very different type. First,
it is because that NAL consists of a symbolic language, a semantics
defining meaning and truth, and a set of formally defined inference
rules that can be used in various domains, so technically it meets
the basic requirements of being a logic. Furthermore, NAL is an
attempt to formalize valid inference observed in human thinking

1Currently at http://sites.google.com/site/narswang/, which is mostly mir-
rored at http://www.cis.temple.edu/∼wangp/.

197
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process. In this sense, I believe it is an even better instance of the
category “logic” than mathematical logic, since the latter is primarily
about theorem proving in mathematics, rather than about ordinary
reasoning in everyday situations.

The fundamental difference between NAL and the other logics is
at the definition of validity . Since this notion is traditionally defined
as “deriving truth from truth”, there are two major desired qualities
for any logic:

Soundness: All the derived conclusions are true.
Completeness: All the truths can be derived as conclusions.

Together, these two properties guarantee that from a given set of
truth as axioms in a certain domain, what the system derives as
theorems precisely coincide with all the truths in the domain, no
more and no less.

In these two properties, “truth” is traditionally defined according
to model-theoretic semantics, as “corresponding to a fact”. Under
this definition, NAL is neither sound nor complete. As a logic based
on past experience, NAL’s conclusions may be revised by new
evidence (so the system is not sound in the traditional sense). As an
open system, there is always knowledge that the system does not have
at a moment (so the system is not complete in the traditional sense).
This result directly follows from AIKR. According to the theory of
intelligence on which NAL is based [Wang (2010)], no intelligent
system can, or should, be sound or complete, in the traditional sense
of the notions.

However, the above argument does not mean that soundness and
completeness cannot be desired in any sense in logics like NAL. For an
axiomatic logic, soundness and completeness are requirements both
on its object-level knowledge (such as its axioms) and its meta-level
knowledge (such as its inference rules). Since NAL by definition has
no predetermined object-level knowledge at all, no request can be
made there. However, intuitively we can still expect the system to be
able to represent and to derive the desired knowledge, no more and
no less. Therefore, the qualities can be applied to the meta-level, not
the object-level, of NAL.
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Since NAL uses an experience-grounded semantics, in which
“truth-value” is defined as “degree of evidential support”, the desired
qualities should be interpreted accordingly:

Soundness: The truth-value of every belief correctly measures the
evidential support according to the system’s experience.

Completeness: Every possible way of evidential support needed for
intelligence is captured by some inference process.

Unlike the situation in axiomatic logics, whether NAL has the
above qualities cannot be formally proved, because the system’s
beliefs cannot be checked against a well-specified model, even though
the issue can still be meaningfully analyzed.

The soundness of NAL is argued as the following: each belief in
the system is either an input judgment or a derived judgment. For an
input judgment, its truth-value is provided by a sensor-actuator or by
another system, according to the definition of truth-value in NAL; for
a derived judgment, its truth-value is calculated by the truth-value
function associated with the inference rule from the truth-values
of the premises, which are determined recursively, eventually from
some input judgments. As far as all the truth-value functions are
designed according to the experience-grounded semantics of NAL,
the soundness of the whole system is achieved.

This soundness of NAL does not mean that the system never
makes mistakes. Since all the conclusions are based on past expe-
rience, and the system is open to all kinds of future experience,
it is quite possible for a prediction it makes turns out to be
wrong. Instead, what this soundness means is that the system is
reasonable, in the sense that every conclusion is indeed based on
available evidence, rather than obtained randomly or arbitrarily.
Even the wrong conclusions have their reasons when produced.

The completeness of NAL is a more complicated topic. How do
we know there are no missing inference rules in the NAL specified so
far? To put it in a more general form: even if all the rules of NAL are
properly designed, how can we know that they are powerful enough
to carry out what we intuitively call “intelligent reasoning”? This
is similar to the Church-Turing Thesis on “computability” — since
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“intelligent reasoning” is not formally defined, there is no proof
that can show its achievability by NAL, or any logic. Even so, the
discussion is still important.

The completeness question can be answered by evaluating the
expressing power of the language and the inferential power of the
inference rules, separately. It is necessary to take the language into
consideration, because if the language is poor, the system will not
be very powerful even if the inference rules are “complete” with
respect to the language. For instance, the inference rules of NAL-1
are arguably complete, since they cover all possible ways to make
new inheritance statements from given inheritance statements among
existing terms. However, with the introduction of compound terms
in the higher layers of NAL, such arguments become less obvious.

Whether Narsese has complete expressing capability is a tricky
question. As far as a language can express arbitrary relations among
its concepts and relations, it can be considered as “complete”,
because in principle all knowledge can be expressed recursively as
relations among concepts. In this sense, all natural languages have
the same expressive power, and so are all programming languages.
The difference between languages is that certain knowledge may be
easier to express in one language, compared to another. Compared
to the language used in FOPL (the most popular language in
reasoning systems), Narsese is more convenient in expressing com-
pound concepts, ill-defined concepts, uncertain beliefs, temporal and
procedural knowledge, etc., though may be inferior in expressing well-
defined relations among well-defined entities, such as mathematical
statements.

As explained in Sec. 10.3, NAL can emulate an arbitrary logic,
by representing its inference rules as implication or equivalence
statements, and carrying out its inference steps as deductions with
those statements. In this sense, NARS is a universal reasoning
system, like a “universal Turing Machine” that can emulate any
Turing Machine [Hopcroft and Ullman (1979)].

If Narsese is complete in its expressing capability, the complete-
ness of inference rules in NAL can be considered with respect to
Narsese. If there is a type of sentence that can be expressed in
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Narsese, but cannot be derived by any inference rule, the system
is clearly incomplete, because knowledge in certain form can be
given to the system, but cannot be produced by the system itself
via reasoning. In this way, completeness in open systems like NARS
is no longer defined as the coinciding between “what can be derived”
and “what is true”, but between “what can be derived” and “what
can be expressed”. Though different from the traditional notion, this
interpretation of completeness still keeps the intuitive meaning of the
word, that is, a system is complete if its inferential power matches
its expressing power, and is sufficient for the purpose of the system.

In NAL, the completeness of its inference rules to a large extent
is provided by the reversibility of the rules, especially between the
strong inference rules and weak inference rules. In every layer of
the logic, each new syntactic structure can be produced by some
inference rules, usually in more than one way. Therefore, NAL can
be considered as complete, in the sense that every sentence expressible
in Narsese can be derived by the inference rules of NAL, given proper
experience.

Since the semantics of NAL must provide interpretation for every
item in the language, as well as justification for every inference rule,
its completeness does not need to be addressed separately.

In summary, NAL is sound and complete according to a reinter-
pretation of the notions under AIKR, though not according to the
conventional interpretation of them in mathematical logic.

Even so, NAL is not claimed to be “perfect” or “fully accom-
plished” in the sense that no inference rule can be added or modified.
We may find that certain inference process happens very often, so
it will be more efficient to “compile” the involved rules into a new
inference rule. Modifications of the existing rules are also possible
after future considerations. After all, the designing of NAL is not
carried out within an axiomatic system, so its conclusions are not
“final”.

14.2. Comparison with other Logics

In this section, NAL is briefly compared to some other logic systems.
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Classical logics

The current logic study is dominated by First-Order Predicate
Logic (FOPL) established by Frege (1999) and Whitehead and
Russell (1910), which is usually referred to as “classical logic”. The
differences between NAL and FOPL have been discussed in several
previous chapters, and are summarized here:

• NAL is based on AIKR, while FOPL is not.
• NAL uses an experience-grounded semantics, while FOPL is

usually used with a model-theoretic semantics.
• NAL has a categorical (subject–predicate) language, while FOPL

has a predicate–argument language.
• NAL depends on syllogistic inference rules, while FOPL depends

on truth-functional inference rules.
• NAL is multi-valued and allows various types of uncertainty, while

FOPL is binary and intolerant to uncertainty.
• NAL has non-deductive rules, while FOPL has deductive rules

only.

Many minor differences follow from the above, so as a whole, NAL
is very different from FOPL. Even so, the two logics are still related
to each other:

• many statements in IL and propositions in FOPL can be mapped
into each other approximately;

• in many situations, the inference processes in IL and FOPL draw
similar conclusions from similar premises;

• NAL and FOPL can serve as a meta-logic of each other.

In spite of the above relationship, the soundness and completeness
of NAL cannot be judged by comparing to FOPL, because the
two systems are based on different theoretical foundations, and are
suitable for different situations.

As a term logic, NAL is more similar to the Syllogistic of Aristotle
(1882) than to FOPL, though Aristotle’s logic is also only about
binary deduction. Aristotle’s Syllogistic was the dominating logic
system before FOPL was established, and then was widely judged
as inferior to FOPL in expressing and inferential power.
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In recent decades, the only noticeable work in the term logic
tradition is Sommers’ “Term Functor Logic” (TFL) [Sommers (1982);
Sommers and Englebretsen (2000)], which shows that a term logic
can be as powerful as FOPL. TFL extended Aristotle’s Syllogistic
in several ways, some of which are similar to the approach taken by
NAL, though it remains to be a binary deductive logic.

The practice of TFL and NAL shows that when properly
designed, a term logic can have expressing and inferential power
comparable to those of predicate logics. With subject–predicate
sentences and syllogistic rules, a term logic is closer to natural
languages and commonsense reasoning; on the other hand, with
predicate–argument sentences and truth-functional rules, a predicate
logic is closer to mathematical languages and theorem proving
process.

It is obvious that certain key ideas of NAL come from set theory,
especially in the representation of compound terms in IL-2, IL-3, and
IL-4. Here the key difference is that, while set theory defines a set
purely by its extension, in IL (and NAL) a term is defined both by
its extension and intension. Furthermore, membership in NAL is not
a Yes/No issue.

In NAL, the part that corresponds to Propositional Logic (PL) is
mainly in IL-5, which defines the notions of conjunction, disjunction,
negation, implication, and equivalence. Here the difference is that in
PL, all the five are defined in the same way (that is, using truth
table), while in IL the first three are statement connectors, and the
latter two are copulas. In IL and NAL, only negation is purely truth-
functional, while the others are used only when the components
connected are semantically related. Furthermore, the compositional
rules for the copulas only produce weak conclusions.

Overall, the differences between NAL and classical logics can all
be traced back to AIKR, and they agree on extreme situations where
the assumption can be ignored.

Non-classical logics

A non-classical logic is a logic system that extends or modifies a
classical logic [Haack (1996)]. Usually, it is an attempt to capture an
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aspect or property of human reasoning that is desirable, but missing
in the classical logic [McCarthy (1988); Gabbay and Woods (2001)].

In this sense, NAL can also be considered as a non-classical logic.
Aimed at fully formalizing human reasoning, NAL is related to many
existing non-classical logics. Here I only briefly compare it with some
of them:

Multi-valued logic. Such a logic rejects the Law of Excluded
Middle, and introduces truth-values beyond “true” and “false”
[Haack (1996)]. There are many multi-valued logics, each with its
own truth-value range and interpretation. NAL belongs to this
category since it uses two-dimensional truth-values in [0, 1]× [0, 1],
which is defined according to an experience-grounded semantics.

Fuzzy logic. It can be seen as a special type of multi-valued logic,
where truth is taken to be a matter of degree, and comes from
the graded membership of concepts [Zadeh (1965, 1979)]. NAL
is based on similar assumptions, though it explicitly defines the
membership measurement as a degree of evidential support, and
uses two numbers to measure it [Wang (1996b)].

Modal logic. Modal logics use modals, such as “necessarily true”
and “possibly true”, to qualify a statement, and define them
according to a possible worlds semantics [Kleene (2002)]. In NAL,
descriptions and qualifications of statements are usually expressed
as higher-order statements. In general, statements in NAL are
empirical truth (similar to “possibly true”), though NAL-6 has
introduced ways to express some statements as “true in a theory”
(similar to “necessarily true”). Furthermore, meta-level definitions
and theorems of IL also correspond to “necessary truth” in IL,
though they are embedded in the inference rules of NAL, rather
than explicitly represented as beliefs in the memory of NARS.

Relevance Logic. This type of logic is proposed to solve the “Para-
doxes of Material Implication”, that is, the counterintuitive results
coming from the truth-functional definition of the implication
relation, where the premises and conclusions lack semantic
relevance. It usually takes the form of a modal logic [Anderson
and Belnap (1975); Read (1989)]. NAL solves the paradoxes by
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replacing the truth-functional definition of implication by directly
linking it to the derivability of a conclusion. Since NAL is a term
logic using syllogistic rules, in each inference rule the premises and
the conclusion contain shared terms, so they are guaranteed to be
semantically related to each other. Here the idea is similar to the
“variable sharing principle” of relevance logic, but more general,
since the shared term is not limited to propositional variables.

Paraconsistent logic. A paraconsistent logic rejects the Law of
Non-contradiction by allowing a proposition and its negation to
co-existent in the system without deriving an arbitrary conclusion
(as a paradox caused by material implication). Paraconsistent
logics come in different forms, and some of them are related to
relevance logic and modal logic [Priest et al. (1989)]. As an open
system, NAL allows contradicting beliefs to co-exist, and uses
the revision rule and the choice rule to manage them. Though
undesired, a contradiction is a local issue among the beliefs, and
cannot cause global problems (i.e., by deriving a semantically
unrelated conclusion from them), due to the semantic relevance
within the syllogistic rules.

Non-monotonic logic. A non-monotonic logic derives tentative
conclusions according to default rules, and can change its mind
in light of new evidence, as a form of commonsense reasoning
[Ginsberg (1987)]. In the broad sense, NAL also belongs to this
category. However, most of the non-monotonic logics proposed
so far are still binary. Furthermore, though the truth-value of
a tentative conclusion can be modified by new evidence in such
a system, it cannot modify its “default rules”, no matter what
evidence has shown up. On the contrary, NAL is “non-axiomatic”
in the sense that all of its beliefs (expressed as judgments in
Narsese) are multi-values, and revisable by new evidence.

Inductive logic. There have been many attempts to establish
formal rules for non-deductive inference, especially induction, both
in logic and in AI [Kyburg (1983); Flach and Kakas (2000)]. Such
a logic usually treats induction either as “weakened deduction”
in the framework of probability theory, or as “reverse deduction”
in the framework of classical logic. In NAL, induction is reverse
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deduction in a sense (and so is abduction, in another sense), though
it is formalized in the framework of a multi-valued term logic
[Wang (1999)].

Logic programming. By interpreting certain propositions as pro-
cedures, logic programming extends the application scope of logic
from theorem proving to problem solving [Kowalski (1979)]. A
similar approach is taken in NAL-8, though the inference is not
limited to binary deduction.

In summary, NAL can be seen as a radical instance of non-
classical logic — while almost all of the other non-classical logics are
designed conservatively to only make minimum change in a classical
logic to remedy a single issue, NAL is logic rebuilt on the basis of
AIKR, as an attempt to provide consistent solutions to many issues
that are traditionally perceived as independent of each other. Though
this attempt sounds bold, there is a possibility that many of the
issues in classical logic happen when a logic designed for mathematics
(where AIKR is usually not accepted) is applied outside mathematics
(so AIKR has to be accepted) [Wang (2004a)].

Probabilistic models

Probability theory is another widely accepted normative model of
valid inference. In recent years, various probabilistic models have
becoming more and more popular in AI and CogSci. Though some
probabilistic models of reasoning can be considered as non-classical
logics [Nilsson (1986)], some others are not presented as a logic [Pearl
(1988)]. Either way, probability theory is a major competitor of NAL
in modeling valid inference.

NAL and probabilistic models have been compared in several
previous publications [Wang (1996a, 2001b, 2004b, 2009d)]. In the
following, the major points are summarized.

• The truth-value in NAL is interpreted as a measurement of eviden-
tial support, so it is similar to probability under logical interpreta-
tion, as proposed by Keynes (1921), Carnap (1950), and Kyburg
(1994), while different from probability under the frequency
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interpretation or subjective interpretation [Kyburg (1970)], though
still related to them.

• An evidential probability representation requires the evidence for
each statement to be either explicitly specified as the condition
of the statement, or implicitly assumed as part of a common
background knowledge [Carnap (1950); Kyburg (1994)]. In NAL
each statement has its own evidential base, which is neither
expressed as the condition of the statement, nor shared by every
statement, so as to be taken as part of a common background
knowledge.

• Because of the above reasons, the truth-values of beliefs in NARS
do not necessarily form a consistent probability distribution. It is
possible for the system to assign different truth-values to the same
statement with different evidential bases. Unlike in probability
theory, such an (object-level) inconsistency does not invalidate the
system’s conclusions, and can be handled by the related inference
rules (such as revision and choice). Though consistency in beliefs is
highly desired and actively pursued, it cannot be always achieved
or maintained in an open system with insufficient resources.

• In NAL, two numbers (frequency and confidence) are used to
represent a truth-value, by indicating the uncertainty caused by
negative evidence and future evidence, respectively. Though it is
possible to combine them into a single measurement (expectation)
when predicting the future, the two numbers are needed for other
types of inferences, specially in revision, where the two plays
different roles. On the contrary, in usual applications of probability
theory, conclusions are based on the same chunk of evidence, and
“incremental assimilation of evidence” is not required, so a single
number suffices.

• The above conclusion implies that probability does not clearly
separate the uncertainty from observed negative evidence and
that from future evidence, so cannot be properly used when such
a separation is required. Since NAL is based on AIKR, it can
assume neither that the system has collected all the relevant
evidence, nor that future evidence can be handled by recalculating
all truth-values in the system from the raw input data.
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• Since the truth-values in NARS do not form a consistent prob-
ability distribution, they cannot be legitimately processed using
formulas provided by probability theory. Even so, some NAL
functions are similar to probabilistic functions. For example,
the Triangular norm and co-norm introduced in Sec. 4.2 assign
frequency values to conjunctive and disjunctive events in the same
way as probability theory under the assumption of independence,
though the interpretation and justification are different.

• Probability calculations are normally carried out on a closed
sample (or belief) space. On the contrary, the belief space of NAL
is open, so the input sentences can contain terms and statements
that the system never saw before. Though each input judgment
comes with an initial truth-value, it is not the same as a prior
probability, which must belong to a consistent distribution defined
on a closed space.

Some extensions of probability theory have moved in similar direc-
tions as NAL by extending a probability value from a point to an
interval, which solved some problems mentioned above, though there
are other issues remaining. For example, see the comparison between
NAL and Shafer’s Mathematical Theory of Evidence [Shafer (1976)],
as well as Walley’s Imprecise Probability Theory [Walley (1991)], in
[Wang (2009d)].

Once again, the differences between NAL and probabilistic
models of reasoning come from AIKR — while NAL is fully based on
the assumption, probability theory only partially accepts it. Russell
and Norvig (2010) criticized “rule-based methods for uncertain
reasoning”, which are characterized by the properties of “locality,
detachment, and truth-functionality”. In certain sense NAL also has
these properties. Though some of the issues they raised indeed exist
in NAL, these issues have been addressed in the previous chapters,
and none of them is fatal. What is important is to realize that if
AIKR must be obeyed, this approach becomes inevitable. Russell
and Norvig (2010) admits that “we have no idea what BO [Bounded
Optimality] programs are like for large, general-purpose computers
in complex environments”, and a major reason for this, at least to
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me, is that mainstream AI still has not recognized the fundamental
difference between conventional “computational systems” and truly
“intelligent systems”, but considers the latter as a more advanced
form of the former.

14.3. NAL and AI

As stated at the beginning of the book, NAL is designed to serve
as a common “logical core” of intelligent systems [Wang (2004c)].
To conclude the book, the role of NAL in AI is further clarified here.

Logic-based AGI

Defined as “adaptation under AIKR”, the “intelligence” pursued
by this research is general-purpose and domain-independent by
nature, and the label “Artificial General Intelligence” stresses this
nature in a redundant style, merely because the current mainstream
AI community has favored domain-specific and problem-specific
approaches for decades, and indefinitely postponed the pursue of its
original goal on “thinking machines”.

A logic-based approach toward AGI guarantees the general
nature of the system. Since the system’s knowledge is represented in a
language specified by a formal grammar, it is normally not restricted
to any specific domains or problems. Furthermore, the knowledge and
problems of the system are represented as sentences, each of which
can be interpreted and processed independently, so their usage is
modular, versatile, and flexible.

In a reasoning system, a problem-solving process consists of
multiple inference steps, each of which follows an inference rule. An
inference rule is defined, justified, and applied independently (though
consistently), so as to provide sound conclusions no matter how
they are combined. On the other hand, different combinations of the
rules can handle various situations, even those unanticipated by the
designer or the system itself. Especially, in a finite system working in
real time, the rules can be used in a “data-driven” manner, triggered
by the current goals and available knowledge, without following a
predefined order or a problem-specific algorithm [Wang (2009b)].
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A logic-based system provides a clear distinction between object
language and meta-language. For NAL, the former is Narsese, and
the latter is a natural language (in this book, English) with various
formal languages embedded. Similarly, in its computer implementa-
tion, there is a clear distinction between the system’s representation
language (which corresponds to the object language of the logic) and
programming language (such as Java, which is used in the current
NARS implementation). Such a distinction provides a natural answer
to the “nature versus nurture” problem. Obviously, an AI system
cannot have all of its knowledge hard-wired, nor can it starts with a
tabula rasa. In NARS, everything in Narsese are acquired by the
system itself from its experience (though “implanted knowledge”
is allowed, for practical purposes). On the contrary, the meta-
level knowledge is programmed into the system, and cannot be
modified by the system, except in some minor ways. It is the meta-
level knowledge that determines the system’s “intelligence”, though
it needs to be displayed in the system’s behaviors and capabilities,
which are directly produced by is object-level knowledge.

As shown in the previous chapters, the notion of “reasoning”
can be extended from its traditional usage to cover many cognitive
functions that are commonly treated as separated from reasoning,
such as learning, categorizing, perceiving, planning, decision making,
problem solving, and so on. In a general sense (which is accepted
in NARS), “reasoning” includes various forms of rule-governed
operations on relations among “concepts” that represent stable
patterns in the system’s experience. In this sense, the reasoning
system framework is powerful enough for AGI.

As for the previous criticisms on logic-based AI, most of them
can be explained as criticisms on the specific types of logic used in
traditional AI research. As discussed in several places previously,
usually the issues can be traced back to violations of AIKR, and can
be resolved within the reasoning system framework.

Memory and control

NAL, as a logic, specifies what knowledge and problems can be
represented in a reasoning system, and how to derive new knowledge
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and problems from given ones. When implemented in a computer,
the grammar rules and inference rules become programs that parse
the input data and produce new data, respectively.

For a reasoning system to work, the above “logic part” must be
accompanied by a “control part” that manages the storage space, and
picks premises and rules for each inference step. This relationship is
summarized by Kowalski (1979) in the equation “algorithm = logic +
control”. In the literature, the control part of a reasoning system is
related to the study of knowledge base, control algorithm, decision
procedure, and inference methodology, in various forms.

The control part of NARS has been introduced briefly in
Chapter 5, as well as described with much details in Wang (1995,
1996c, 2006b). Since this book is about NAL, we do not need to
evaluate the memory and control mechanism of NARS here, but its
fundamental principles, and what it means for the logic.

From a theoretical point of view, what the control part faces is
an optimization problem: with insufficient resources, how to allocate
them among the tasks and beliefs of the system to achieve the highest
(expected) overall efficiency of the system.

Based on AIKR, the memory of NARS is not designed to be able
to remember everything the system has been told and has derived
by itself, nor is the control strategy designed to explore all possible
inference paths. As in heuristic search, NARS usually starts on paths
that look promising, according to some evaluation criteria. However,
unlike in heuristic search, the evaluation criteria are not formulated in
a predetermined heuristic function, but depend on many factors that
can only be determined at run time. Consequently, how the system
handles an inference task becomes context-sensitive, and the solution
and expense cannot be analyzed using notions like “computability”
and “computational complexity” [Wang (2009b)].

Consequently, the logic part of NARS (that is, NAL), specifies
what is possible, while the control part selectively turns some of the
possibilities into reality. Therefore, in the design of NARS, there
is a “one-way” dependency between the two parts: NAL can be
designed and evaluated without the details of the control part,
while the control part must be structed to fully support NAL. This
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is especially true after NAL-9 introduces self-monitoring and self-
control into the system, since certain memory and control operations
need to be expressed in Narsese and manipulated by the inference
rules. As a result of the self-referential ability of NAL and NARS,
the memory and control process of the system is determined both
by some innate knowledge (that is represented in a programming
language and independent of the system’s experience) and some
acquired knowledge (that is represented in Narsese and dependent
of the system’s experience). The system can learn skills in memory
control, attention allocation, problem-solving strategy, and so on,
though it cannot fully determine its own reasoning process — there
are “built-in routines” that it cannot always control deliberately.

Physical experience

Even after NARS is fully implemented as planned, the system still
cannot solve any practical problem, because initially its memory
may be empty. The programs that implement NARS only provides
meta-level knowledge, and its object-level knowledge all comes from
the system’s experience, that is, the interaction between the system
and its environment. For practical purposes (such as efficiency and
safety), it is possible to implant certain object-level knowledge into
the system when it is “born”, but in principle such knowledge still
correspond to certain possible experience of the system.

As described previously, in layers NAL-1 to NAL-7, the expe-
rience of the system consists of a stream of Narsese sentences as
input, and produce another stream of Narsese sentences as output.
For practical purposes, it is possible to have multiple input/output
channels, though that does not make much fundamental difference.

In NAL-8, the introduction of operation into Narsese gives the
system the ability to have “physical experience” that is directly
provided by sensors and actuators, rather than by another system
(human or computer) in Narsese. Such an addition gives the
system a set of plug-in operators, which will be used to compose
more complicated terms to represent more complex experience of
the system, though it does not change the semantic principles of
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the system [Wang (2005, 2009c)]. The meaning of other terms cannot
be completely reduced into the meaning of the operators, though the
latter does contribute to the former.

One major conjecture made in NARS is that “the logic of
thinking” is basically the same as “the logic of perceiving” and “the
logic of acting”. Since a term in NARS is not understood as a symbol
that denotes an “object” in the outside world, but an identifier that
names a stable pattern in the system’s experience, it can either
correspond to a “high-level” concept, or a “low-level” percept or
action. The perception process is often modeled using a conceptual
hierarchy, with concepts at each level summarizing patterns of a
lower level [Hawkins and Blakeslee (2004); Arel et al. (2010)]. Such
a hierarchy can be naturally expressed in Narsese, with copulas
representing the substitutability among terms, and compound terms
representing perceived patterns in experience. Since inference rules in
NAL capture the transitivity of substitutability among terms, they
are also applicable to percepts and actions.

The theory of intelligence behind NARS [Wang (2010)] does not
assume any specific type of sensorimotor mechanism. As far as a
system interacts with its environment, it has experience, and the
potential to be intelligent. Obviously, if the experience of a system
is very simple, it is unlikely to be very capable. Though there are
practical reasons for AI systems to have human-like perception (such
as vision), there is no reason to require every intelligent system to
have the same sensors or actuators. For NARS, various types of
sensors and actuators can be plugged into the system, as far as
their executable commands can be registered as operations, and their
feedback can be reported as Narsese judgments into the system.
The only common sensors and actuators in intelligent systems are
probably the mental operations used in self-monitoring and self-
control.

An implemented NARS within a host system or connected to
a group of hardware/software devices forms a NARS+ system.
Different NARS+ systems will not only have different capability
when interacting with the environment, but also different concepts,
due to the difference made by the embedded operators. They will
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be like computer systems with similar CPU, RAM, and operating
systems, but equipped with different peripheral devices and driving
programs. When such a system solves a practical problem, it may
depend on a technique that is not part of NARS. The situation here
is similar to what described in Sec. 10.3, where NAL is used as the
meta-logic of an arbitrary logic — in a NARS+ system, the NARS
part serves as an “intelligent operating system” that can use various
hardware and software as tools. Though the tools contribute to the
system’s problem-solving capability, it is the NARS part that makes
the system “intelligent”, that is, makes it possible to use the tools in
adaptive, creative, and flexible ways.

Social experience

Though in principle all types of experience are “physical” in the sense
that they are carried out by some physical process, some experience
should be described in higher levels of description, since the details
of the underlying physical processes do not matter when analyzing
the consequence of the processes. Among them, “communication” is
a process between information systems, which should be analyzed in
terms of the language used in the communication.

In the current context, “language” can be seen as a system
of syntactic, semantic, and pragmatic conventions, by which the
systems involved can exchange beliefs and tasks at conceptual level.
A message received in a system can be analyzed at the level of syntax
(how the sentences are structured), semantics (how the concepts are
related), and pragmatics (what goals will be achieved). In NARS,
the system’s linguistic knowledge at these levels are tangled together,
and the processing of a message does not follow the order of syntax,
semantics, and pragmatics, as in the common practice of natural
language processing.

NARS has a single “native language”, Narsese, and can learn
other (natural, formal, mathematical, or programming) languages,
all using the general-purpose reasoning/learning capability provided
by NAL. Once again, here we see that NARS attempts to be
“general purpose” by following a unified approach, that is, the
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system is built layer by layer around a constant core, using a single
language (which can serve as the meta-language of an arbitrary
language), a single logic (which can serve as the meta-logic of an
arbitrary logic), and a single problem-solving technique (which can
use an arbitrary device as a tool) [Wang (2006a)]. This approach
is fundamentally different from the integrative or hybrid approaches
that are popular in AI and AGI research, where a system is formed by
coordinating heterogeneous models and techniques directly [Newell
(1990); Franklin (2007)].

According to experience-grounded semantics, the meaning of a
term in a system is determined by the idiosyncratic experience of
the system, so is fundamentally subjective. However, communication
provides shared experience for the involved systems, so it also brings
objectivity of various extents to the terms used in communication,
which in turn also makes communication possible and fruitful. For
an advanced AI system, a large part of its knowledge comes from
its social experience obtained from communication. As a result, its
beliefs and goals will be strongly influenced (though not completely
determined) by its social environment consisting of the other systems
involved in the communication.

Education is a special form of communication, in which a system
is put in an environment controlled by an outside authority, so
as to get specially arranged experience, and eventually to form a
special cognitive structure, with goals, beliefs, and skills desired by
the authority. Similar to a human being, a future NARS system
also needs to go through an education process to become practically
useful, as anticipated by Turing (1950). Such a process will include
tutoring, reading, exploring, and so on, like what is experienced by a
human student. Most of the knowledge of the system will probably
be acquired from existing knowledge bases and the web, via natural
language interfaces, or special converters that convert data of various
formats into Narsese sentences.

Education is also responsible for the morality of AI systems.
Intelligent systems, being adaptive, are morally neutral by design,
since the content of its initial goals are not restricted, nor can
the initial goals fully determine the system’s behaviors. Whether
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a system will become helpful or harmful to human beings will be
mainly determined by its nurture, rather than its nature. “How to
raise a good AI” will become an important field of research, though
the basics may be the same as human education.

Putting all the above studies together, we can expect the gradual
establishing of a “science of intelligence”, and NAL is developed to
serve as a cornerstone of this enterprise.
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NARSESE GRAMMAR

The complete list of Narsese grammar rules are in Table A.1.
The grammar rules in this book are written in a variant of the

Backus-Naur Form (BNF), specified as the following:

• Each rule has the format “〈symbol〉 ::= expression”, where the
symbol is a nonterminal, and the expression consists of a sequence
of symbols, as substitution for the symbol.

• Symbols that never appear on a left side are terminals that are
specified by definitions in the book.

• Symbols without the “〈〉” are used literally. Quotation makers are
used to avoid confusion if a symbol is also used for other purpose,
as in the following.

• Expression “exp1|exp2” indicates alternative substitutions.
• Expression “[〈symbol〉]” indicates an optional symbol.
• Expression “〈symbol〉∗” indicates a symbol repeating zero or more

times.
• Expression “〈symbol〉+” indicates a symbol repeating one or more

times.

Additional notes about the Narsese grammar:

• A 〈word〉 is a string of characters of a given alphabet.
• A 〈truth-value〉 or 〈desire-value〉 is a pair of numbers from

[0, 1] × (0, 1), though in communication between the system and
its environment, it can be replaced by amounts of evidence or
frequency interval, as well as with default values.

• Most prefix operators in compound term and compound statement
can also be used in infix form.

217
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Table A.1. The complete grammar of Narsese.

〈sentence〉 ::= 〈judgment〉 | 〈goal〉 | 〈question〉
〈judgment〉 ::= [〈tense〉]〈statement〉. 〈truth-value〉

〈goal〉 ::= 〈statement〉! 〈desire-value〉
〈question〉 ::= [〈tense〉]〈statement〉? | 〈statement〉¿

〈statement〉 ::= (〈term〉 〈copula〉 〈term〉) | 〈term〉
| (¬ 〈statement〉)
| (∧ 〈statement〉 〈statement〉+)
| (∨ 〈statement〉 〈statement〉+)
| ( , 〈statement〉 〈statement〉+)
| ( ; 〈statement〉 〈statement〉+)
| (⇑〈word〉 〈term〉∗)

〈copula〉 ::= → | ↔ | ⇒ | ⇔
| ◦→ | →◦ | ◦→◦
| /⇒ | \⇒ | |⇒ | /⇔ | |⇔

〈tense〉 ::= /⇒ | \⇒ | |⇒
〈term〉 ::= 〈word〉 | 〈variable〉 | 〈statement〉

| {〈term〉+} | [〈term〉+]
| (∩ 〈term〉 〈term〉+)
| (∪ 〈term〉 〈term〉+)
| (−〈term〉 〈term〉)
| (
〈term〉 〈term〉)
| (×〈term〉 〈term〉+)
| (/ 〈term〉 〈term〉∗ � 〈term〉∗)
| (\ 〈term〉 〈term〉∗ � 〈term〉∗)

〈variable〉 ::= 〈independent-variable〉
|〈dependent-variable〉
|〈query-variable〉

〈independent-variable〉 ::= #〈word〉
〈dependent-variable〉 ::= # [〈word〉(〈independent-variable〉∗)]

〈query-variable〉 ::= ? [〈word〉]

• In an (extensional or intensional) image, the two 〈term〉∗ cannot
be both empty.

• There are additional restrictions on the meaningful usage of
variable introduced in NAL-6.

The symbols appeared in Narsese grammar are listed in
Table A.2.
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Table A.2. The symbols in Narsese grammar.

Type Symbol Name Layer

Primary copula → Inheritance NAL-1
↔ Similarity NAL-2
⇒ Implication NAL-5
⇔ Equivalence NAL-5

Secondary copula ◦→ Instance NAL-2
→◦ Property NAL-2
◦→◦ Instance-property NAL-2
/⇒ Predictive implication NAL-7
\⇒ Retrospective implication NAL-7
|⇒ Concurrent implication NAL-7
/⇔ Predictive equivalence NAL-7
|⇔ Concurrent equivalence NAL-7

Tense /⇒ Future NAL-7
\⇒ Past NAL-7
|⇒ Present NAL-7

Term connector {} Extensional set NAL-2
[ ] Intensional set NAL-2
∩ Extensional intersection NAL-3
∪ Intensional intersection NAL-3
− Extensional difference NAL-3

 Intensional difference NAL-3
× Product NAL-4
/ Extensional image NAL-4
\ Intensional image NAL-4
� Image place-holder NAL-4

Statement connector ¬ Negation NAL-5
∧ Conjunction NAL-5
∨ Disjunction NAL-5
, Sequential conjunction NAL-7
; Parallel conjunction NAL-7

Term prefix # Variable in judgment NAL-6
? Variable in question NAL-6
⇑ Operator NAL-8

Punctuation . Judgment NAL-8
! Goal NAL-8
? Question (on truth-value) NAL-8
¿ Query (on desire-value) NAL-8
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APPENDIX B

NAL INFERENCE RULES

The inference rules of NAL are classified into several categories
according to their syntactic features.

(1) Local inference rules: Each of these rules directly processes a
new inference task according to the available information stored
locally in the concept representing the content of the task. These
rules are applied before the other rules are attempted on the
task.

(1.1) Revision. When the task is a judgment and contains
neither tense nor dependent variable, the system matches
it with the existing judgments on the same statement. If a
matching judgment is found and the two judgments have
distinct evidential bases, the revision rule is applied to
produce a new judgment with the same statement and a
truth-value calculated by Frev. When the task is a goal,
the same revision process is done to its desire-value.

(1.2) Choice. When the task is a question (or a goal), the
system matches it with the existing judgments on the
same statement to find candidate answers (or solutions).
If the candidates all contain the same statement, the one
with the highest confidence is chosen; if the candidates
suggest different instantiations to the variable(s) in the
task, the one with high expectation e and low complexity
n is chosen, using the ranking formula e/nr (with r = 1
as the default).

221
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(1.3) Decision. A candidate goal is accepted by the system
as an active goal when its expected desirability d and
expected plausibility p satisfy condition p(d − 0.5) > t,
where t is a positive threshold.

(2) Two-premise inference rules: each of these rules takes two
judgments J1 and J2 as premises, and derives a judgment J as
conclusion, with a truth-value calculated by a function.

(2.1) First-order syllogism, in Table B.1, are defined on
copulas inheritance and similarity.

(2.2) Higher-order syllogism can be obtained by replacing
the copulas inheritance and similarity in Table B.1 with
implication and equivalence, respectively.

(2.3) Conditional syllogism, in Table B.2, are based on the
nature of conditional statements.

(2.4) Composition rules, in Table B.3, introduce new com-
pounds in the conclusion.

(2.5) Decomposition rules are the opposite of the composi-
tion rules. Each decomposition rule comes from a high-
level theorem of the form (S1 ∧ S2) =⇒ S (in Table B.4)
where S1 is a statement about a compound, S2 is a
statement about a component of the compound, while S

is the statement about the other component.

Table B.1. The first-order syllogistic rules.

J2\J1 M → P 〈f1, c1〉 P → M 〈f1, c1〉 M ↔ P 〈f1, c1〉

S → P 〈Fded〉 S → P 〈Fabd〉 S → P 〈F ′
ana〉

S → M 〈f2, c2〉 P → S 〈F ′
exe〉 P → S 〈F ′

abd〉
S ↔ P 〈F ′

com〉

S → P 〈Find〉 S → P 〈Fexe〉
M → S 〈f2, c2〉 P → S 〈F ′

ind〉 P → S 〈F ′
ded〉 P → S 〈F ′

ana〉
S ↔ P 〈Fcom〉

S → P 〈Fana〉
S ↔ M 〈f2, c2〉 P → S 〈Fana〉

S ↔ P 〈Fres〉
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Table B.2. The conditional syllogistic rules.

J1 〈f1, c1〉 J2 〈f2, c2〉 J F

S S ⇔ P P Fana

S P S ⇔ P Fcom

S ⇒ P S P Fded

P ⇒ S S P Fabd

P S S ⇒ P Find

(C ∧ S) ⇒ P S C ⇒ P Fded

(C ∧ S) ⇒ P C ⇒ P S Fabd

C ⇒ P S (C ∧ S) ⇒ P Find

(C ∧ S) ⇒ P M ⇒ S (C ∧ M) ⇒ P Fded

(C ∧ S) ⇒ P (C ∧ M) ⇒ P M ⇒ S Fabd

(C ∧ M) ⇒ P M ⇒ S (C ∧ S) ⇒ P Find

Table B.3. The composition rules.

J1 〈f1, c1〉 J2 〈f2, c2〉 J F

M → T1 M → T2 M → (T1 ∩ T2) Fint

M → (T1 ∪ T2) Funi

M → (T1 − T2) Fdif

M → (T2 − T1) F ′
dif

T1 → M T2 → M (T1 ∪ T2) → M Fint

(T1 ∩ T2) → M Funi

(T1 
 T2) → M Fdif

(T2 
 T1) → M F ′
dif

M ⇒ T1 M ⇒ T2 M ⇒ (T1 ∧ T2) Fint

M ⇒ (T1 ∨ T2) Funi

T1 ⇒ M T2 ⇒ M (T1 ∨ T2) ⇒ M Fint

(T1 ∧ T2) ⇒ M Funi

T1 T2 T1 ∧ T2 Fint

T1 ∨ T2 Funi

(3) One-premise inference rules: Each of these rules carries out
inference from a judgment J1 as premise to a judgment J as
conclusion, with a truth-value calculated by function F .

(3.1) Immediate inference, inTableB.5,are ruleswithatruth-
value function that only takes one truth-value as input.
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Table B.4. The decomposition rules.

S1 S2 S

¬(M → (T1 ∩ T2)) M → T1 ¬(M → T2)
M → (T1 ∪ T2) ¬(M → T1) M → T2

¬(M → (T1 − T2)) M → T1 M → T2

¬(M → (T2 − T1)) ¬(M → T1) ¬(M → T2)
¬((T1 ∪ T2) → M) T1 → M ¬(T2 → M)

(T1 ∩ T2) → M ¬(T1 → M) T2 → M
¬((T1 
 T2) → M) T1 → M T2 → M
¬((T2 
 T1) → M) ¬(T1 → M) ¬(T2 → M)

¬(T1 ∧ T2) T1 ¬T2

T1 ∨ T2 ¬T1 T2

Table B.5. The immediate inference
rules.

J1 J F

S ¬S Fneg

S → P P → S Fcnv

S ⇒ P P ⇒ S Fcnv

S ⇒ P (¬P ) ⇒ (¬S) Fcnt

Table B.6. The inheritance theorems.

term1 → term2

(T1 ∩ T2) T1

T1 (T1 ∪ T2)
(T1 − T2) T1

T1 (T1 
 T2)
((R / T ) × T ) R

R ((R \T ) × T )

(3.2) Structural inference is carried out according to the
literal meaning of compound terms. When a definition
or theorem in IL (summarized in Tables B.6–B.9) is used
as a Narsese judgment J2 with truth value 〈1, 1〉, it can be
used with an empirical judgment J1 to derive a conclusion
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Table B.7. The similarity theorems.

term1 ↔ term2

¬(¬T ) T
(∪ {T1} · · · {Tn}) {T1, . . . , Tn}

(∩ [T1] · · · [Tn]) [T1, . . . , Tn]
({T1, . . . , Tn} − {Tn}) {T1, . . . , Tn−1}

([T1, . . . , Tn] 
 [Tn]) [T1, . . . , Tn−1]
((T1 × T2) / T2) T1

((T1 × T2) \T2) T1

Table B.8. The implication theorems.

statement1 ⇒ statement2

S ↔ P S → P
S ⇔ P S ⇒ P
S1 ∧ S2 S1

S1 S1 ∨ S2

S → P (S ∪ M) → (P ∪ M)
S → P (S ∩ M) → (P ∩ M)
S ↔ P (S ∪ M) ↔ (P ∪ M)
S ↔ P (S ∩ M) ↔ (P ∩ M)
S ⇒ P (S ∨ M) ⇒ (P ∨ M)
S ⇒ P (S ∧ M) ⇒ (P ∧ M)
S ⇔ P (S ∨ M) ⇔ (P ∨ M)
S ⇔ P (S ∧ M) ⇔ (P ∧ M)
S → P (S − M) → (P − M)
S → P (M − P ) → (M − S)
S → P (S 
 M) → (P 
 M)
S → P (M 
 P ) → (M 
 S)
S ↔ P (S − M) ↔ (P − M)
S ↔ P (M − P ) ↔ (M − S)
S ↔ P (S 
 M) ↔ (P 
 M)
S ↔ P (M 
 P ) ↔ (M 
 S)

M → (T1 − T2) ¬(M → T2)
(T1 
 T2) → M ¬(T2 → M)

S → P (S / M) → (P / M)
S → P (S \ M) → (P \ M)
S → P (M / P ) → (M / S)
S → P (M \ P ) → (M \ S)
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Table B.9. The equivalence theorems.

statement1 ⇔ statement2

S ↔ P (S → P ) ∧ (P → S)
S ⇔ P (S ⇒ P ) ∧ (P ⇒ S)
S ↔ P {S} ↔ {P}
S ↔ P [S] ↔ [P ]

S → {P} S ↔ {P}
[S] → P [S] ↔ P

(S1 × S2) → (P1 × P2) (S1 → P1) ∧ (S2 → P2)
(S1 × S2) ↔ (P1 × P2) (S1 ↔ P1) ∧ (S2 ↔ P2)

S → P (M × S) → (M × P )
S → P (S × M) → (P × M)
S ↔ P (M × S) ↔ (M × P )
S ↔ P (S × M) ↔ (P × M)

(× T1 T2) → R T1 → (/ R � T2)
(× T1 T2) → R T2 → (/ R T1 �)
R → (× T1 T2) (\ R � T2) → T1

R → (× T1 T2) (\ R T1 �) → T2

S1 ⇒ (S2 ⇒ S3) (S1 ∧ S2) ⇒ S3

¬(S1 ∧ S2) (¬S1) ∨ (¬S2)
¬(S1 ∨ S2) (¬S1) ∧ (¬S2)

S1 ⇔ S2 (¬S1) ⇔ (¬S2)

J by a strong syllogistic rule. Since J2 is not explicitly
represented, this rule effectively derives J from a single
premise J1.

(4) Meta-level rules: Each of these rules specifies how to use the
other rules defined above for additional functions.

(4.1) Question derivation. A question Q and a judgment J

produce a derived question Q′, if and only if the answer
to Q′, call it J ′, can be used with J to derive an answer to
Q by a two-premise inference rule; a question Q by itself
produces a derived question Q′, if and only if the answer
to Q′, call it J ′, can be used to derive an answer to Q by
a one-premise inference rule.

(4.2) Goal derivation. A goal G and a judgment J produce
a derived goal G′, if and only if the solution to G′, call
it J ′, can be used with J to derive a solution to G by a
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two-premise inference rule; a goal G by itself produces a
derived goal G′, if and only if the solution to G′, call it
J ′, can be used to derive a solution to G by a one-premise
inference rule. In both cases, the desire-value of G′ is
derived as the truth-value of G′ ⇒ D from the desire-value
of G, as the truth-value of G ⇒ D, as well as the truth-
value of J (if it is involved). As mentioned previously, a
derived goal needs to go through the decision-making rule
to become an actual goal.

(4.3) Variable substitution. All occurrences of an indepen-
dent variable term in a statement can be substituted by
another term (constant or variable); all occurrences of a
term (constant or variable) in a statement can be sub-
stituted by a dependent variable term. The reverse cases
of these substitution are limited to the cases discussed in
NAL-6. A query variable in a question can be substituted
by a constant term in a judgment.

(4.4) Temporal inference. Temporal inference is carried out
by processing the logical factor and the temporal factor
in the premises in parallel. First, temporal variants of
IL rules are obtained by turning some statements in the
premises into events by adding temporal order among
them, and the conclusion must keep the same temporal
information. Then these rules are extended into strong
NAL rules by using the same truth-value function as in
the lower layers. The rules of weak inference are formed
as the reverse of the strong rules as in the lower layers.
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APPENDIX C

NAL TRUTH-VALUE FUNCTIONS

The relations among the three forms of uncertainty measurements are
summarized in Table C.1, which can be extended to include w− =
w − w+ and i = u − l.

For independent extended-Boolean variables in [0, 1], the
extended Boolean operators are defined in Table C.2.

All truth-value functions are summarized in Table C.3, in their
simplest form, so different types of uncertainty measurements are
mixed. The functions are classified according to the type of inference.

Table C.1. The relations among uncertainty measurements.

to\from {w+, w} 〈f, c〉 [ l, u ] (and i)

{w+, w} w+ = k × f × c / (1 − c) w+ = k × l / i
w = k × c / (1 − c) w = k × (1 − i) / i

〈f, c〉 f = w+ / w f = l / (1 − i)
c = w / (w + k) c = 1 − i

[l, u] l = w+ / (w + k) l = f × c
u = (w+ + k) / (w + k) u = 1 − c × (1 − f)

Table C.2. The extended Boolean operators.

not(x) = 1 − x
and(x1, . . . , xn) = x1 × · · · × xn

or(x1, . . . , xn) = 1 − (1 − x1) × · · · × (1 − xn)

229
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Table C.3. The truth-value functions of NAL.

Type Inference Name Function

Local inference Revision Frev w+ = w+
1 + w+

2

w− = w−
1 + w−

2

Expectation Fexp e = c(f − 0.5) + 0.5
Decision Fdec g = p(d − 0.5)

Immediate inference Negation Fneg w+ = w−
1

w− = w+
1

Conversion Fcnv w+ = and(f1, c1)
w− = 0

Contraposition Fcnt w+ = 0
w− = and((not(f1), c1)

Strong syllogism Deduction Fded f = and(f1, f2)
c = and(f1, f2, c1, c2)

Analogy Fana f = and(f1, f2)
c = and(f2, c1, c2)

Resemblance Fres f = and(f1, f2)
c = and(or(f1, f2), c1, c2)

Weak syllogism Abduction Fabd w+ = and(f1, f2, c1, c2)
w = and(f1, c1, c2)

Induction Find w+ = and(f1, f2, c1, c2)
w = and(f2, c1, c2)

Exemplification Fexe w+ = and(f1, f2, c1, c2)
w = and(f1, f2, c1, c2)

Comparison Fcom w+ = and(f1, f2, c1, c2)
w = and(or(f1, f2), c1, c2)

Term composition Intersection Fint f = and(f1, f2)
c = and(c1, c2)

Union Funi f = or(f1, f2)
c = and(c1, c2)

Difference Fdif f = and(f1, not(f2))
c = and(c1, c2)
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PROOFS OF THEOREMS

Except explicitly specified otherwise, in the following letters S, P , M ,
and T each represents an arbitrary term in the system’s vocabulary,
and the Tis are different terms.

Theorem 2.1.

By definition, the copula ‘→’ is defined among terms, and is reflexive.
Formally, it means T → T .

Theorem 2.2.

By definition, the copula ‘→’ is defined among terms, and is
transitive. Formally, it means (S → M) ∧ (M → P ) =⇒ (S → P ).

Theorem 2.3.

By definition, TE = {x | (x ∈ VK) ∧ (x → T )}. Since T → T is always
true, so as far as T ∈ VK , T ∈ TE. If T is not in VK , no x in VK can
make x → T true, so TE = {}. The T I part is parallel to the above.

Theorem 2.4.

If both S and P are in VK , then SE is not empty. For any T in SE ,
by the definition of extension, T → S is true. Since S → P and ‘→’ is
transitive, T → P is true, which means T is also in PE , and therefore
SE ⊆ PE . The other way around, from S ∈ SE and SE ⊆ PE, it
follows that S ∈ PE . Given the definition of PE , it means S → P .
The intensional part is parallel to the above.

231
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Theorem 2.5.
(SE = PE) ⇐⇒ (SE ⊆ PE) ∧ (PE ⊆ SE)

⇐⇒ (P I ⊆ SI) ∧ (SI ⊆ P I)
⇐⇒ (SI = P I).

Theorem 6.1.

Similarity is a reflexive copula, because T ↔T is defined as (T →T )∧
(T → T ), which is a conjunction of two true propositions.

Similarity is a symmetric copula, because S ↔ P is defined as
(S → P ) ∧ (P → S), which is equivalent to P ↔ S.

Similarity is a transitive copula, because (S ↔ M)∧ (M ↔ P ) is
equivalent to (S → M)∧(M → S)∧(M → P )∧(P → M). Given the
transitivity of inheritance, (S → P )∧ (P → S) follows, and therefore
S ↔ P .

Theorem 6.2.

By definition, S ↔ P is (S → P ) ∧ (P → S), therefore it implies
S → P .

Theorem 6.3.

By definition, S ↔ P is (S → P )∧ (P → S). Given the definitions of
extension and intension, it is equivalent to (S ∈ PE)∧(P ∈ SI)∧(P ∈
SE) ∧ (S ∈ P I), which is the same as (S ∈ (PE ∩ P I)) and (P ∈
(SE ∩ SI)).

Theorem 6.4.

By definition, S ↔ P is (S → P ) ∧ (P → S). Given Theorem 2.4,
it is equivalent to (SE ⊆ PE) ∧ (PE ⊆ SE), which is the same as
SE = PE. The intensional part is parallel to the above.

Theorem 6.5.

By definition, any M in {T}E is identical to {T}, which implies
{T} → M , so M is also in {T}I .
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Theorem 6.6.

By definition, S ◦→ M is equivalent to {S} → M . Given the
transitivity of inheritance, it and M → P imply {S} → P , that
is, S ◦→ P .

Theorem 6.7.

The proof of this theorem is parallel to the proof of Theorem 6.5.

Theorem 6.8.

The proof of this theorem is parallel to the proof of Theorem 6.6.

Theorem 6.9.

By the definitions of the derived copulas, all the three statements,
S ◦→◦ P , {S} →◦ P , and S ◦→ [P ], can be rewritten as {S} → [P ].

Theorem 7.1.

This theorem covers two special cases of Definition 7.5.

Theorem 7.2.
(S ↔ P ) ⇐⇒ ({S} ↔ {P})

⇐⇒ ({S} → {P})
⇐⇒ (S ◦→ {P}).

(S ↔ P ) ⇐⇒ ([S] →◦ P ) can be proved in a parallel way.

Theorem 7.3.

Extension:
(M ∈ (T1 ∩ T2)E) ⇐⇒ (M → (T1 ∩ T2))

⇐⇒ ((M → T1) ∧ (M → T2))
⇐⇒ ((M ∈ TE

1 ) ∧ (M ∈ TE
2 ))

⇐⇒ (M ∈ (TE
1 ∩ TE

2 )).
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Intension:

(M ∈ (T1 ∩ T2)I) ⇐⇒ ((T1 ∩ T2) → M)
⇐⇒ ((T1 → M) ∨ (T2 → M))
⇐⇒ ((M ∈ T I

1 ) ∨ (M ∈ T I
2 ))

⇐⇒ (M ∈ (T I
1 ∪ T I

2 )).

In both cases, the compound term is in its own extension and
intension, according to Theorem 2.3.

Theorem 7.4.

The proof of this theorem is parallel to the proof of Theorem 7.3.

Theorem 7.5.

In the definitions of extensional intersection and intensional inter-
section, the order of the two components can be switched.

Theorem 7.6.

According to Theorem 7.3, (T1 ∩ T2)E = (TE
1 ∩ TE

2 ), so (T1 ∩ T2)E ⊆
TE

1 . According to Theorem 2.4, it means (T1 ∩T2) → T1. The second
conclusion can be proved in a parallel way.

Theorem 7.7.

According to Theorem 7.3, (T ∩ T )E = (TE ∩ TE) = TE. According
to Theorem 6.4, it means (T ∩ T ) ↔ T . The second conclusion can
be proved in a parallel way.

Theorem 7.8.

According to propositional logic, implication of the definition of
extensional intersection ((M →T1)∧ (M →T2))=⇒ (M → (T1 ∩T2))
can be rewritten equivalently into ((M → T1) ∧ ¬(M → (T1 ∩
T2)))=⇒¬(M → T2), and ((T1 ∩ T2) → M)=⇒ ((T1 → M) ∨ (T2 →
M)) into (¬(T1 → M) ∧ (T1 ∩ T2) → M)=⇒ (T2 → M). The
conclusions on intensional intersection can be proved in parallel.
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Theorem 7.9.

(S → P ) =⇒ (SE ⊆ PE) (Theorem 2.4)
=⇒ ((SE ∩ ME) ⊆ (PE ∩ ME)) (set theory)
=⇒ ((S ∩ M)E ⊆ (P ∩ M)E) (Theorem 7.3)
=⇒ ((S ∩ M) → (P ∩ M)) (Theorem 2.4).

The other three conclusions can be proved in a parallel way.

Theorem 7.10.
(M ∈ (T1 − T2)E) ⇐⇒ (M → (T1 − T2))

⇐⇒ ((M → T1) ∧ ¬(M → T2))
⇐⇒ ((M ∈ TE

1 ) ∧ ¬(M ∈ TE
2 ))

⇐⇒ (M ∈ (TE
1 − TE

2 )).
(M ∈ (T1 − T2)I) ⇐⇒ ((T1 − T2) → M)

⇐⇒ (T1 → M)
⇐⇒ (M ∈ T I

1 ).

Theorem 7.11.

The proof of this theorem is parallel to the proof of Theorem 7.10.

Theorem 7.12.

This theorem corresponds to the special cases of the definitions of
extensional difference (when x is (T1−T2)) and intensional difference
(when x is (T1 � T2)), respectively.

Theorem 7.13.

This theorem corresponds to the special cases of the definitions of
extensional difference (when M is (T1−T2)) and intensional difference
(when M is (T1 � T2)), respectively.

Theorem 7.14.

According to propositional logic, implication of the definition of
extensional difference ((M →T1)∧¬(M →T2))=⇒ (M → (T1 − T2))
can be rewritten equivalently into ((M → T1)∧¬(M → (T1 −
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T2)))=⇒ (M →T2), as well as (¬(M → T2)∧¬(M → (T1−T2))) =⇒
¬(M → T1). The conclusions on intensional difference can be proved
in parallel.

Theorem 7.15.

The proof of this theorem is parallel to the proof of Theorem 7.9,
with the role of Theorem 7.3 being played by Theorem 7.10.

Theorem 7.16.

((T ∩ M) ∪ (T − M))E = (T ∩ M)E ∪ (T − M)E

= (TE ∩ ME) ∪ (TE − ME)
= TE.

((T ∩ M) ∪ (T − M))I = (T ∩ M)I ∩ (T − M)I

= (T I ∪ M I) ∩ (T I ∪ {(T − M)})
= T I .

According to Theorem 6.4, T ↔ ((T ∩ M) ∪ (T − M)).
The other result can be proved in parallel.

Theorem 7.17.

For any term x,
x → ((T ∪ M) − M) =⇒ (x → (T ∪ M)) ∧ ¬(x → M)
=⇒ ((x → T ) ∨ (x → M)) ∧ ¬(x → M) =⇒ x → T.

x → T =⇒ (x → T ) ∧ (¬(x → M) ∨ (x → M))
=⇒ ((x → T ) ∧ ¬(x → M)) ∨ ((x → T ) ∧ (x → M))
=⇒ (x → (T − M)) ∨ (x → M) =⇒ x → ((T − M) ∪ M).

The other results can be proved in parallel.

Theorem 7.18.

(M ◦→ {T1, . . . , Tn})
⇐⇒ ({M} → {T1, . . . , Tn})
⇐⇒ ({M} → ({T1} ∪ . . . ∪ {Tn}))
⇐⇒ (({M} → {T1}) ∨ . . . ∨ ({M} → {Tn}))
⇐⇒ ((M ↔ T1) ∨ . . . ∨ (M ↔ Tn)).

The conclusion on intensional set can be proved in parallel.
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Theorem 7.19.

({M} → ({T1, . . . , Tn} − {Tn}))
⇐⇒ (({M} → {T1, . . . , Tn}) ∧ ¬({M} → {Tn}))
⇐⇒ (((M ↔ T1) ∨ . . . ∨ (M ↔ Tn)) ∧ ¬(M ↔ Tn))
⇐⇒ ((M ↔ T1) ∨ . . . ∨ (M ↔ Tn−1))
⇐⇒ ({M} → {T1, . . . , Tn−1}).

Since ({T1, . . . , Tn}−{Tn}) and {T1, . . . , Tn−1} are extensional
sets defined by the same instances, the two terms are identical. The
conclusion on intensional set can be proved in parallel.

Theorem 8.1.

((S1 × S2) ↔ (P1 × P2))
⇐⇒ (((S1 × S2) → (P1 × P2)) ∧ ((P1 × P2) → (S1 × S2)))
⇐⇒ ((S1 → P1) ∧ (S2 → P2) ∧ (P1 → S1) ∧ (P2 → S2))
⇐⇒ ((S1 ↔ P1) ∧ (S2 ↔ P2)).

Theorem 8.2.

This theorem is implied by the definition of product and tautology
M → M .

Theorem 8.3.

((x ∈ TE
1 ) ∧ (y ∈ TE

2 )) =⇒ ((x → T1) ∧ (y → T2))
=⇒ ((x × y) → (T1 × T2))
=⇒ ((x × y) ∈ (T1 × T2)E)).

The conclusion on intension can be proved in parallel.

Theorem 8.4.

(((×, S1, S2) → (×, P1, P2)) ∧ ((×, S1, S3) → (×, P1, P3)))
⇐⇒ ((S1 → P1) ∧ (S2 → P2) ∧ (S3 → P3))
⇐⇒ ((×, S1, S2, S3) → (×, P1, P2, P3)).

Theorem 8.5.

((T1 × T2) → (T1 × T2)) =⇒ (T1 → ((T1 × T2) /T2))
(x → ((T1 × T2) /T2)) =⇒ ((x × T2) → (T1 × T2))

=⇒ (x → T1).
The conclusion on intensional image can be proved in parallel.
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Theorem 8.6.

((R /T ) → (R /T )) =⇒ (((R /T ) × T ) → R).

The conclusion on intensional image can be proved in parallel.

Theorem 8.7.

(((S /M) × M) → S) ∧ (S → P )
=⇒ (((S /M) × M) → P )
=⇒ ((S / M) → (P / M))

(((M /P ) × P ) → M) ∧ (S → P )
=⇒ (P → (/ M (M /P ) 
)) ∧ (S → P )
=⇒ (S → (/ M (M /P ) 
))
=⇒ (M / P ) → (M / S).

The conclusion on intensional image can be proved in parallel.

Theorem 9.1.

Since {S} � S, S ⇒ S is true. If S ⇒ M and M ⇒ P are both true,
then {S} � M and {M} � P , which means {S} � P , with M as an
intermediate result. Therefore S ⇒ P is true.

Theorem 9.2.

The proof of this theorem is parallel to the proof of Theorem 2.4.

Theorem 9.3.

The result directly follows from Definition 9.6, with x substituted by
S1 ∧ S2 and S1 ∨ S2, respectively.

Theorem 9.4.

At the meta-level, (S1 ⇒ (S2 ⇒ S3)) means ({S1} � (S2 ⇒ S3)),
therefore ({S1, S2} � S3). Rewritten in object-level, it is ((S1 ∧
S2)⇒S3).
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Theorem 9.5.

This theorem can be proved using truth table, as in propositional
logic.

Theorem 9.6.

This theorem can be proved using truth table, as in propositional
logic.

Theorem 9.7.

This theorem can be proved using truth table, as in propositional
logic.

Theorem 9.8.

(S1 ⇔ S2) if and only if S1 and S2 derive each other, which means
(¬S1) and (¬S2) also derive each other, that is, ((¬S1) ⇔ (¬S2)).
Please note that it is not enough if S1 and S2 have the same truth-
value, or the same amount of evidence.
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distinct, 45
overlapping, 45

evidential horizon, 29, 54, 61
as personality parameter, 30
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bound, 60
in choice rule, 49
near future, 30

evidential scope, 27, 50
exemplification rule, 59

as reversed deduction, 60
expectation, 188

expectation function, 48
experience, 212

actual, 36, 159
ideal, 17, 37, 159
notions, 159
physical, 212
real-time, 158, 159

social, 214, 215
experience-grounded semantics, 16,

37, 199
and feeling, 191

extended Boolean
functions, 50

operators, 50
variables, 50, 54

extension and intension, 18, 56,
138

different from traditional
usage, 19

relation, 21
symmetry, 19

feeling, 190

basic, 190
compound, 191
mixed, 191
on object, 191
somatic, 191

FOPL, see first-order predicate logic,
15

forgetting, 72
formal language, 10
frame, 71, 111
Frame Problem, 172
free will, 196
Frege, Gottlob, 13, 202

frequency, 29, 30
and probability, 29

frequency interval, 32
vs. other intervals, 32

functional autonomy, 73
fuzzy logic, 6, 204

General Problem Solver, 172

genetic algorithm, 67
goal, 173

future, 189
Goodman’s “New Riddle”, 158
grammar rules, 4
graphical representation, 14, 18,

92

happiness, 190
heuristic search, 67
Hofstadter, Douglas, 150, 195

Horn clause, 171
Hume, David, 55
hypothetical syllogism, 123

ignorance, 32
and confidence, 32

IL, 13
as idealized NAL, 13, 34, 129,

132
as meta-logic of NAL, 34
layers, 13
using Narsese, 14

vs. FOPL, 15, 22
vs. propositional logic, 132
vs. set theory, 15, 100, 101

IL-1, 13, 35
and Aristotle’s logic, 27
assumption, 25
being axiomatic, 25

meta-language, 18
types of statement, 18

IL-2, 78
IL-3, 93
IL-4, 109
IL-5, 119
IL-6, 144

IL-7, 162
IL-8, 173
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image, 112, 123
as reverse product, 114

implication, 6, 133
material, 119
strict, 133
temporal, 160

inconsistency, 41, 46, 59
meta-level, 40

induction, 6, 55, 62
on moments, 167

induction rule, 53, 56
temporal, 166

inductive logic, 55
inference

ampliative, 62
as substitution, 22
causal, 165
data driven, 72
first-order, 117
higher-order, 117
inductive, 62
path, 59
relevance, 22, 23

inference control, 5
inference cycle, 71, 73
inference rules, 5

backward, 63
bi-directional, 66
forward, 49
from meta-level theorems, 133
immediate, 58, 130
isomorphism between first-order

and higher-order, 120, 123
local, 41
meta-level, 165, 166
reversibility, 63, 64, 127, 134, 201
strong vs. weak, 61, 82, 134, 135,

164
structural, 134
structural transformation, 112
syllogistic, 22, 51, 60, 126
truth-functional, 22
types, 41, 56

inference step, 71
inference task, 65

case by case processing, 74
interact with belief, 66
processing, 65

inheritance

and subset, 27, 83
Inheritance Logic, see IL, 13
innate knowledge, 92
intelligence, 1

human, 3, 183
innate, 210
working definition, 2

internal processes

autonomic vs. voluntary, 187,
190

interpretation, 21
intersection

extensional, 93
intensional, 94

judgment, 35, 49, 65

knowledge, 23, 39
in IL, 17
types, 169

knowledge representation

structured, 71

language, 150, 214
learning, 152

native, 152, 214
natural, 151

Laplace’s Rule of succession, 48
laws of thought, 1, 4

learning, 4
as reasoning, 74

levels
object vs. meta, 55, 153

of virtual machine, 154
linguistics, 151
logic, 1, 4, 5

axiomatic, 8

different types, 8
non-axiomatic, 8
non-classical, 7, 133, 203
of perception and cognition, 182

logic programming, 148, 169
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machine learning, 106
matching rule, 23
mathematical logic, 5
Maximum Expected Utility Principle,

178
meaning, 19, 40, 115

global vs. local, 142
of a connector, 90
procedural, 181

memory, 5

membership relation, 83
mental operations

calculation-related, 189
reasoning-related, 189

model of reasoning

descriptive vs. normative, 5
model theory, 5
modus ponens, 125
morality, 216
MTS, see model-theoretic semantics,

21

NAL, 9, 13
as a non-classical logic, 204, 206

as logic, 9, 197
as the meta-logic of any logic,

152, 200
as the meta-logic of itself, 153
being non-axiomatic, 9

completeness, 199, 201
expansion procedure, 129, 164
layers, 10
meta-level, 10
soundness, 199

vs. Aristotle’s Syllogistic, 139,
202

vs. FOPL, 143, 202
vs. fuzzy logic, 31, 204
vs. Imprecise Probability

Theory, 208
vs. inductive logic, 205
vs. logic programming, 206
vs. modal logic, 204
vs. multi-valued logic, 204

vs. non-monotonic logic, 205

vs. paraconsistent logic, 205
vs. probability theory, 31, 39,

206

vs. propositional logic, 203
vs. relevance logic, 204

vs. set theory, 203
vs. Term Functor Logic, 203

NAL-1, 25

grammar rules, 35
inference rules, 41

semantics, 40
NAL-2, 77

grammar rules, 86

inference rules, 87
semantics, 87

NAL-3, 89
grammar rules, 101
inference rules, 101

semantics, 101
NAL-4, 107

grammar rules, 114
inference rules, 115
semantics, 115

NAL-5, 117
grammar rules, 123

inference rules, 123, 125, 130
semantics, 120

NAL-6, 137

grammar rules, 141
inference rules, 144

NAL-7, 155
grammar rules, 162
inference rules, 163

NAL-8, 169
grammar rules, 175

inference rules, 175
NAL-9, 185

mental operations, 188–190
NARS, 10

as a mind in a body, 182

as a Turing Machine, 75
as an intelligent operating

system, 214

being general purpose, 154, 183,
214
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being non-axiomatic, 135
implementation, 10, 197
memory and control, 65, 211
with preloaded memory, 75

NARS+, 182, 183, 191, 213
Narsese, 10, 35

as a categorical language, 14
as a programming language,

173
expressing power, 200
sentence, 66, 175

nature vs. nurture, 210, 216
negation, 129
negation rule, 130
Non-Axiomatic Logic, see NAL, 9
non-monotonic logic, 6, 205

Occam’s Razor, 102, 103
parameter, 102

openness, 6
consequences, 41

operation, 169, 185
as event, 170
as goal, 177
as tool, 180
atomic, 170

compound, 172, 176
condition and consequence, 171
feedback, 171, 180
meaning of, 171
mental, 186–188, 190
outside vs. inside, 180

operator, 170

paraconsistent logic, 42

paradox
confirmation, 132
material implication, 6, 23

parallel processing, 66
parallel terraced scan, 67
pattern recognition, 102
Peirce, Charles Sanders, 51, 57,

127

perception, 102
Piaget, Jean, 3, 187

planning, 177
meta-level, 67

plausibility, 178
pleasure, see happiness, 190
Popper, Karl, 55
predicate calculus, see predicate logic,

5
predicate logic, 13

first-order, 5, 10
higher-order, 118
ontological presumption, 15
predicate–arguments format, 14

prediction, 48
priority value, 68, 69

adjustment, 72
probabilistic logic, 6
Probabilistic Logic Network, 40
probability theory, 40, 53

and induction, 55
consistency, 42

procedural interpretation, 169
procedural knowledge, 178, 180
product, 107, 123

Cartesian, 108
Prolog, 173
propositional attitudes, 117
propositional calculus, see

propositional logic, 5
punctuation in Narsese, 175

question, 23, 36, 65, 175
derived, 63
evaluation, 23, 47
perfect answer, 73
selection, 23, 47

rationality
and emotion, 192
models, 3, 192
relative, 2, 193

reasoning
“about time” and “in time”,

158
commonsense, 111
extended, 106, 210
theoretical vs. practical, 175
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reasoning system, 4, 5, 8
axiomatic, 5, 13
control part, 65
desired properties, 24
general-purpose, 7
meta-level vs. object-level, 9, 10
non-axiomatic, 10

reinforcement learning, 171, 172
relation, 107

and product, 109
causal, 166
conceptual, 110
in predicate logic, 111
is-a, 111
temporal, 156
types, 110

relevance logic, 6, 23
representation, 151
resemblance rule, 82, 128
resource allocation, 211

dynamic, 68
resource competition, 70
revision rule, 44, 123, 147

self, 170, 195
self-awareness, 194
self-modification, 187
self-programming, 177
self-reference, 92
semantic network, 71, 111
semantics, 5

experience-grounded, 21
inferentializing, 21
model-theoretic, 21
proof-theoretic, 21

sensorimotor, 181, 182
sensors and actuators

external, 186
internal, 185

set, 123
and mathematical operations,

100
as compound, 90
extensional, 84
empty, 101

intensional, 85
multi-component, 100

set theory, 5, 10
Simon, Herbert A., 3
situation

idealized vs. realistic, 7
soundness, 198
spreading activation, 67
state vs. statement, 172, 173
statement

antecedent, 120
as term, 117
compound, 121
conditional, 124
consequent, 120
first-order, 117
higher-order, 117, 118
implication, 120
inheritance, 14
singular, 84
virtual, 190

syllogistic logic, see term logic,
22

symbol, 148
symbol grounding, 181
syntactic complexity, 102

vs. syntactic simplicity, 102

tautology, 17
temporal

inference, 163
information, 162

tense, 161
term, 14

abstract, 148
anonymous, 141
as identifier, 14
as statement, 118
as word, 14
compound, 89
compound format, 90
connector, 89
constant, 137
hierarchy, 174
identical, 78, 91
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meaning, 19, 70, 92
predicate, 14
relational, 115
semi-compositional, 92
subject, 14
syntactic complexity, 90
syntactic hierarchy, 90
variable, 137
vs. set, 100

term logic, 13, 22
higher-order, 118
ontological presumption, 15
subject–predicate format, 14
traditional, 107
vs. predicate logic, 69, 107,

111
theorem proving, 111, 198
theory, 149

descriptive, 2
normative, 1

thinking machines, 1
time, 155

internal clock, 158
interval vs. point, 156
now, 161
stamp, 162

time sharing, 67
Triangular norm and co-norm, 50

and probability theory, 208
truth-preserving, 6, 56, 198
truth-value, 26, 35, 150

as evidential support, 55
in IL, 16
in NAL, 29
quantitative vs. qualitative, 26

temporal vs. eternal, 155, 167
two-dimensional, 30, 47

uncertainty, 6
future evidence, 29

uncertainty measurements, 29, 31, 33
accuracy, 33
as extended Boolean variables,

50
definition vs. usage, 37
discrete, 33
extreme cases, 34
independent, 30
mappings, 35

unconscious thought, 194
Uniformity Principle, 55

validity, 6, 9, 198
in NAL, 55
of induction, 55

variable
query, 23

variable term, 137
dependent, 139
elimination, 144, 146
independent, 139
introduction, 144, 145, 147
open vs. closed, 142
query, 138, 148
scope, 141
substitution, 143
unification, 144
valid substitution, 144
vs. variable in FOPL, 140

vocabulary, 18, 105
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