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Preface

Because of rapid development of ICT (Information and Communication

Technologies) and progress of globalization, the current societies have

linked together in a complex manner at various levels, and there arose

various difficult problems in economy, environment, health, safety, etc.

Therefore, the elucidation, prediction, and control of such dynamic com-

plex systems are very important subjects. On the other hand, in the statis-

tical science, as a result of the development of the information criterion

AIC, various methods of statistical modeling, in particular Bayes model-

ing, have been developed. Further, with the advent of massive large-scale

database and fast parallel processors, many statistical models were de-

veloped and became in practical use.

This book aims at introducing and explaining basic methods of build-

ing models for time series. In time series modeling, we try to express the

behavior of a certain phenomenon in relation to the past values of it-

self and other covariates. Since many important phenomena in statistical

analysis are actually time series and the identification of conditional dis-

tribution of the phenomenon is an essential part of the statistical model-

ing, it is very important and useful to learn basic methods of time series

modeling. In this book, many time series models and various tools for

handling them are introduced.

The main feature of this book is to use the state space model as a

generic tool for time series modeling. Three types of recursive filtering

and smoothing methods, the Kalman filter, the non-Gaussian filter, and

the sequential Monte Carlo filter, are presented as convenient tools for

the state space models. Further, in this book, a unified approach to model

evaluation is introduced based on the entropy maximization principle ad-

vocated by Dr. Akaike. Based on this unified approach, various methods

of parameter estimation, such as the least squares method, the maximum

likelihood method, the recursive estimation for the state space models,

and the model selection by the information criterion AIC, are derived.

After introducing standard stationary time series models, such as AR

model and ARMA model, we present various nonstationary time series

ix



x

models, such as the locally stationary AR model, the trend model, the

seasonal adjustment model, and the time-varying coefficient AR model

and nonlinear non-Gaussian models. The simulation methods are also

shown. The principal aim of the author will be achieved when readers

succeed in building models for their own real-world problems.

This book is basically the translation of the book published in

Japanese in 2005 from Iwanami Publishing Company. The first version

was published in 1993 as a volume in Iwanami Computer Science Series.

I would like to thank the Iwanami Publishing Company, in particular Mr.

U. Yoshida, for allowing me to translate and publish in English.

I would like to acknowledge the many people who contributed to

this book through collaborative research with the author. In particular,

I would like to acknowledge with sincere thanks to Hirotugu Akaike and

Will Gersch, from whom I have learned so many ideas and basis of time

series modeling. Some of the models and estimation methods are de-

veloped during the process of cooperative research with Kohei Ohtsu,

Tetsuo Takanami, and Norio Matsumoto. They also provided me with

some of the data used in this book. I have greatly influenced through

discussions with S. Konishi, D. F. Findley, H. Tong, K. Tanabe, Y.

Sakamoto, M. Ishiguro, Y. Ogata, Y. Tamura, T. Higuchi, Y. Kawasaki,

and S. Sato.

I am grateful to Prof. Subba Rao and two anonymous reviewers for

their comments and suggestions that improved the original manuscript.

I am also thankful to M. Oda for her help in preparing the manuscript of

the English version. David Grubbs patiently encouraged and supported

me throughout the preparation of this book. I express my sincere thanks

to all of these people.

Genshiro Kitagawa

Tokyo, September 2009
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Chapter 1

Introduction and Preparatory Analysis

In this chapter, various aspects of the classification of time series and the

objectives of time series modeling considered in this book are discussed.

There are various types of time series, and it is very important to find out

the characteristics of a time series by carefully looking at graphs of the

data before proceeding to the modeling and analysis phase. In the second

half of the chapter, we shall consider various ways of pre-processing time

series that will be applied before proceeding to time series modeling.

Finally, the organization of the book is described.

1.1 Time Series Data

A record of phenomenon irregularly varying with time is called time

series. As examples of time series, we may consider meteorological data

such as atmospheric pressure, temperature, rainfall and the records of

seismic waves; economic data such as stock prices and exchange rates;

medical data such as electroencephalogram and electrocardiograms, and

records of controlling cars, ships and aircraft.

As a first step in the analysis of a time series, it is important to care-

fully examine graphs of the data. These suggest various possibilities for

the next step in the analysis, together with appropriate strategies for sta-

tistical modeling.

Figure 1.1 shows several typical time series that will be analyzed

in subsequent chapters as numerical examples. The followings are the

features of the time series depicted in Figures 1.1 (a)–(i).

Plot (a) shows a time series of the yaw rate of a ship under navigation

in the Pacific Ocean, observed every second. The yaw rate fluctuates

around 0 degrees per second, because the ship is under the control of

course keeping system (offered by Prof. K. Ohtsu of Tokyo University

of Marine Science and Technology).

Plot (b) shows a series of annual sunspot number (Wolfer sunspot

number). Similar patterns of increase and decrease have been observed

over a cycle approximately ten years in length.

1
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Figure 1.1: Examples of various time series.
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Figure 1.1: Examples of various time series (continued).

Plot (c) shows the daily maximum temperatures for Tokyo recorded

for 16 months. Irregular fluctuations around the predominant annual pe-

riod (trend) are seen (source: Tokyo District Meteorological Observa-

tory).

Plot (d) shows the monthly time series of the number of workers en-

gaged in food industries in the United States, called the BLSALLFOOD

data. The data reveal typical features of economic time series that con-
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Figure 1.1: Examples of various time series (continued).

sists of trend and seasonal components. The trend component gradu-

ally varies and the seasonal component repeats a similar annual pattern

(source: the U.S. Bureau of Labor Statistics (BLS)).

Plot (e) shows the monthly record of wholesale hardware data, called

WHARD data. This time series reveals typical characteristics of eco-

nomic data that increase at an almost fixed rate every year, such that

the fluctuations around the trend gradually increase in magnitude over

time (source: U.S. Bureau of Labor Statistics).

Plot (f) shows the time series of East-West components of seismic

waves, recorded every 0.02 seconds. Because of the arrival of the P-wave

(primary wave) and the S-wave (secondary wave), the variance of the

series changed significantly. Moreover, it can be seen that not only the

amplitude but also the frequency of the wave vary with time (Takanami

(1991)).

Plot (g) depicts the daily closing values of the Japanese stock price

index, Nikkei 225, quoted from January 4, 1988, to December 30, 1993.

It reveals a monotone increase in values until the end of 1989, followed

by a gradual decrease with large repetitive fluctuations after the Bubble

crash in Japan in the 1990s. In the analysis of stock price data, we often
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Figure 1.1: Examples of various time series (continued).

apply various analysis methods after taking the difference of the log-

transformed data.

Plot (h) shows a bivariate time series of the groundwater level and

the atmospheric pressure that were observed at 10-minute intervals at

the observatory of the Tokai region, Japan, where a big earthquake was

predicted to occur. A part of the time series that takes values on the

horizontal axis, indicates missing observations, and some observations

that significantly deviate upward might be considered as outliers that oc-

curred due to malfunction of the observation device. To utilize the entire

information contained in time series with many missing and outlying ob-

servations recorded over many years, it is necessary to develop a method
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that can be applied to data with such missing and outlying observations

(offered by Dr. M. Takahashi and Dr. N. Matsumoto of National Institute

of Advanced Industrial Science and Technology).

Plot (i) shows a multivariate time series of a ship’s rolling, pitching

and rudder angles recorded every second while navigating across the Pa-

cific Ocean. As for the rolling and the rudder angles, both data show fluc-

tuations over a cycle of approximately 16 seconds. On the other hand, the

pitching angle varies over a shorter cycle of 10 seconds or less (offered

by Prof. K. Ohtsu of Tokyo University of Marine Science and Technol-

ogy).

1.2 Classification of Time Series

As has been shown in Figure 1.1, there is a wide variety of time series

that can be classified into several categories from various viewpoints.

Continuous time series and discrete time series

Data continuously recorded, for example, by an analog device, are

called continuous time series. On the other hand, data observed at certain

intervals of time, such as the atmospheric pressure measured hourly, are

called discrete time series.

There are two types of discrete time series; one where data observa-

tions are at equally spaced intervals and the other, where data observa-

tions are at unequally spaced intervals. Although the time series shown

in Figure 1.1 are connected continuously by solid lines, they are all dis-

crete time series. Hereafter in this book, we consider only discrete time

series recorded at equally spaced intervals, because time series that we

analyze on digital computers are usually discrete time series.

Univariate and multivariate time series

Time series consisting of a single observation at each time point as

shown in Figures 1.1(a)–1.1(g) are called univariate time series. On the

other hand, time series that are obtained by simultaneously recording

two or more phenomena as the examples depicted in Figures 1.1(h)–

1.1(i) are called multivariate time series. However, it may be difficult

to distinguish between univariate and multivariate time series from their

nature; rather the distinction is made from the analyst’s viewpoint and by

various other factors such as the measurement restriction and empirical

or theoretical knowledge about the subject. From a statistical modeling

point of view, variable selection itself is an important problem in time

series analysis.
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Stationary and nonstationary time series

A time series is a record of a phenomenon irregularly varying over

time. In time series analysis, irregularly varying time series are generally

expressed by stochastic models. In some cases, a random phenomenon

can be considered as a realization of a stochastic model with a time-

invariant structure. Such a time series is called a stationary time series.

Figure 1.1(a) is a typical example of a stationary time series.

On the other hand, if the stochastic structure of a time series itself

changes over time, it is called a nonstationary time series. As typical ex-

amples of nonstationary time series, consider the series in Figures 1.1(c),

(d), (e) and 1.1(g). It can be seen that mean values change over time in

Figures 1.1(c), (d), (e) and 1.1(g) and the fluctuation around the mean

value changes over time in Figure 1.1(f).

Gaussian and non-Gaussian time series

When a distribution of a time series follows a normal distribution,

the time series is called a Gaussian time series; otherwise, it is called a

non-Gaussian time series. Most of the models considered in this book

are Gaussian models, under the assumption that the time series follow

Gaussian distributions.

As in the case of Figure 1.1(b), the pattern of the time series is occa-

sionally asymmetric so that the marginal distribution cannot be consid-

ered as Gaussian. Even in such a situation, we may obtain an approxi-

mately Gaussian time series by an appropriate data transformation. This

method will be introduced in Section 1.4 and Section 4.5.

Linear and nonlinear time series

A time series that is expressible as the output of a linear model is

called a linear time series. In contrast, the output from a nonlinear model

is called a nonlinear time series.

Missing observations and outliers

In time series modeling of real-world problems, we sometimes need

to deal with missing observations and outliers. Some values of time se-

ries that have not been recorded for some reasons are called missing

observations in the time series; see Figure 1.1(h). Outliers (outlying ob-

servations) might occur due to extraordinary behavior of the object, mal-

function of the observation device or errors in recording. In the ground-

water level data shown in Figure 1.1(h), some data jumping upward are

considered to be outliers.
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1.3 Objectives of Time Series Analysis

This book presents statistical modeling methods for time series. The ob-

jectives of time series analysis considered in this book are classified into

four categories; description, modeling, prediction and signal extraction.

Description: This includes methods that effectively express or sum-

marize the characteristics of time series. By drawing figures of time

series or by computing basic descriptive statistics, such as sample

autocorrelation functions, sample autocovariance functions and peri-

odograms, we may capture essential characteristics of the time series

and get a hint for time series modeling.

Modeling: In time series modeling, we capture the stochastic struc-

ture of time series by identifying an appropriate model. Since there

are various types of time series, it is necessary to select an adequate

model class and to estimate parameters included in the model, de-

pending on the characteristics of the time series and the objective of

the time series analysis.

Prediction: In the prediction of time series, based on the correlations

over time and among the variables, we can estimate the future behav-

ior of time series by using various information extracted from current

and past observations. In particular, in this book, we shall consider

methods of prediction and simulation based on the estimated time se-

ries models.

Signal extraction: In signal extraction problems, we extract essential

signals or useful information from time series corresponding to the

objective of the analysis. To achieve that purpose, it is important to

build models based on the salient characteristics of the object and the

purpose of the analysis.

1.4 Pre-processing of Time Series

For nonstationary time series, we sometimes perform pre-processing of

the data before applying the analysis methods that are introduced later in

this book. This section treats some methods of transforming nonstation-

ary time series into approximately stationary time series. In Chapter 11

and thereinafter, however, we shall introduce various methods for mod-

eling and analyzing nonstationary time series without pre-processing or

stationalization.
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1.4.1 Transformation of variables

Some types of time series obtained by counting numbers or by measur-

ing a positive-valued process, such as the prices of goods and numbers of

people illustrated in Figures 1.1(e) and 1.1(g), share the common charac-

teristic that the variance of the series increases as the level of the series

increases. For such a situation, we may construct a new series whose

variance is almost time-invariant and whose noise distribution is closer

to the normal distribution by using the log-transformation zn = logyn

instead of the original series yn.

A more general Box-Cox transformation (Box and Cox (1964)) in-

cludes the log-transformation as a special case and the automatic deter-

mination of its parameter will be considered later in Section 4.8. For

time series yn that take values in (0,1) like probabilities or ratios of the

occurrence of a certain phenomenon, we can obtain a time series zn that

takes a value in (−∞,∞) by the logit transformation

zn = log

(

yn

1− yn

)

. (1.1)

In many cases, the distribution of the transformed time series zn is

less distorted than the original time series yn, thus the modeling of the

transformed series might be more tractable.

1.4.2 Differencing

When a time series yn contains a trend as seen in Figures 1.1(c), (e) and

(g), we might study the differenced series zn defined by (Box and Jenkins

(1970))

zn = ∆yn = yn− yn−1. (1.2)

This is motivated by the fact that, when yn is a straight line expressed as

yn = a + bn, then the differenced series zn becomes a constant as

zn = ∆yn = b, (1.3)

and the slope of the straight line can be removed.

Moreover, if yn is a parabola and expressed by yn = a + bn + cn2,

then the difference of zn becomes a constant and a and b are removed as

follows

∆zn = zn− zn−1
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Figure 1.2: Difference of the logarithm of the Nikkei 225 data.

= ∆yn−∆yn−1

= (b + 2cn)− (b + 2c(n−1))

= 2c. (1.4)

When an annual cycle is observed in time series as shown in Figure

1.1(e), we might use the difference between the time series at the present

time and one cycle before defined by

∆pyn = yn− yn−p. (1.5)

Figure 1.2 shows the difference of the logarithm rn = logyn −
logyn−1 of the Nikkei 225 data depicted in Figure 1.1(g), which is fre-

quently utilized in the analysis of financial data in Japan. From Fig-

ure 1.2, it can be seen that the dispersion of the variation has changed

abruptly around n = 500. We shall discuss this phenomenon in detail

later in Sections 13.1 and 14.5.

1.4.3 Change from the previous month (quarter) and annual change

For economic time series as shown in Figure 1.1(e), we often consider

a change from the previous month (or quarter) and an annual change of

the original series yn defined by

zn =
yn

yn−1

, xn =
yn

yn−p

. (1.6)

If the time series yn is represented as the product of the trend Tn and

the noise wn as

yn = Tnwn, (1.7)
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Figure 1.3 Change from previous month and year-over-year change of WHARD

data.

and Tn evolves as Tn = (1+α)Tn−1, where α is the growth rate, then the

change from the previous month can be expressed by

zn =
yn

yn−1

=
Tnwn

Tn−1wn−1

= (1 + α)
wn

wn−1

. (1.8)

This means that, if the noise can be disregarded, the growth rate α can

be determined by this transformation.

On the other hand, if yn is represented as the product of a periodic

function sn with the cycle p and the noise wn,

yn = sn ·wn, sn = sn−p (1.9)

then the annual changes xn can be expressed by

xn =
yn

yn−p

=
snwn

sn−pwn−p

=
wn

wn−p

. (1.10)

This suggests that the periodic function is removed by this transforma-

tion.

Figure 1.3 shows the change from the previous month and the annual

change of the WHARD data shown in Figure 1.1(e). The trend compo-

nent is removed by the change from the previous month. On the other

hand, the annual periodic component is removed by the annual change.

By means of this transformation, significant drops are revealed in the

vicinity of n = 40 and n = 100.

1.4.4 Moving average

Constructing a moving average is a simple method for smoothing time

series with random fluctuations. For a time series yn, the (2k+1)-th term
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moving average of yn is defined by

Tn =
1

2k + 1

k

∑
j=−k

yn+ j. (1.11)

When the original time series is represented by the sum of the straight

line tn and the noise wn as

yn = tn + wn, tn = a + bn, (1.12)

where wn is an independent noise with mean 0 and variance σ2, then the

moving average is given by

Tn = tn +
1

2k + 1

k

∑
j=−k

wn+ j. (1.13)

Here, since the sum of the independent noises satisfies

E

[

k

∑
j=−k

wn+ j

]

=
k

∑
j=−k

E[wn+ j] = 0,

E

[(

k

∑
j=−k

wn+ j

)2]

=
k

∑
j=−k

E
[

(wn+ j)
2
]

= (2k + 1)σ2. (1.14)

Hence

Var

(

1

2k + 1

k

∑
j=−k

wn+ j

)

=
σ2

2k + 1
. (1.15)

This shows that the mean of the moving average Tn is the same as that

of tn, and the variance is reduced to 1/(2k + 1) of the variance of noise

term wn.

Figure 1.4 shows the original maximum temperature data in Figure

1.1(c) and its moving averages for k = 5,17 and 29. It can be seen that

the moving averages yield smoother curves as k becomes larger.

In general, the weighted moving average is defined by

Tn =
k

∑
j=−k

w jyn− j, (1.16)

where the weights satisfy
k

∑
j=−k

w j = 1 and w j ≥ 0.
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Figure 1.4 Maximum temperature data and its moving average. Top left: original

data, top right: moving average with k = 5, bottom left: k = 17, bottom right:

k = 29.

If we modify the definition of a moving average by using the median

instead of the average, we obtain the (2k + 1)-th term moving median

that is defined by

Tn = median {Tn−k, · · · ,Tn, · · · ,Tn+k}. (1.17)

The moving median can detect a change in the trend more quickly than

can the moving average.

1.5 Organization of This Book

The main aim of this book is to provide basic tools for modeling vari-

ous time series that arise for real-world problems. Chapters 2 and 3 are

basic chapters and introduce two descriptive approaches. In chapter 2,

the autocovariance and autocorrelation functions are introduced as basic

tools to describe univariate stationary time series. The cross-covariance

and cross-correlation functions are also introduced for multivariate time

series. In Chapter 3, the spectrum and the periodogram are introduced as

basic tools for the frequency domain analysis of stationary time series.

For the multivariate case, the cross spectrum and the power contribution

are also introduced.

Chapters 4 and 5 discuss the basic methods for statistical model-

ing. In Chapter 4, typical probability distributions are introduced. Then,
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based on the entropy maximization principle, the likelihood function, the

maximum likelihood method and the AIC criterion are derived. In Chap-

ter 5, under the assumption of linearity and normality of the noise, the

least squares method is derived as a convenient method for fitting various

statistical models.

Chapters 6 to 8 are concerned with ARMA and AR models. In Chap-

ter 6, the ARMA model is introduced and the impulse response func-

tion, the autocovariance function, partial autocorrelation coefficients, the

power spectrum and characteristic roots are derived from the ARMA

model. The multivariate AR model is also considered in this chapter and

the cross-spectrum and power contribution are derived. The Yule-Walker

method and the least squares method for fitting an AR model are shown

in Chapter 7. In Chapter 8, the AR model is extended to the case where

the time series is piecewise stationary and an application of the model to

the automatic determination of the change point of a time series is given.

Chapter 9 introduces the state-space model as a unified way of ex-

pressing stationary and nonstationary time series models. The Kalman

filter and smoother are shown to provide the conditional mean and vari-

ance of the unknown state vector, given the observations. It is also shown

that we can get a unified method for prediction, interpolation and param-

eter estimation by using the state-space model and the Kalman filter.

Chapters 10 to 13 show examples of the application of the state-

space model. In Chapter 10, the exact maximum likelihood method for

the ARMA model is shown. The trend models are introduced in Chapter

11. In Chapter 12, the seasonal adjustment model is introduced to de-

compose seasonal time series into several components such as the trend

and seasonal components. Chapter 13 is concerned with the modeling of

nonstationarity in the variance and covariance. Time-varying coefficient

AR models are introduced and applied to the estimation of a changing

spectrum.

Chapters 14 and 15 are concerned with nonlinear non-Gaussian state-

space models. In Chapter 14, the non-Gaussian state-space model is in-

troduced and a non-Gaussian filter and smoother are derived for state

estimation. Applications to the detection of sudden changes of the trend

component and other examples are presented. In Chapter 15, the Monte

Carlo filter and smoother are introduced as a very flexible method of fil-

tering and smoothing for very general nonlinear non-Gaussian models.

Chapter 16 shows methods for generating various random numbers

and time series that follow an arbitrarily specified time series model.

Algorithms for nonlinear optimization and the Monte Calro fil-



ORGANIZATION OF THIS BOOK 15

ter/smoother and the derivations of the Levinson’s algorithm and the

Kalman filter are shown in Appendices.

Problems

1. What is necessary to consider when discretizing a continuous time

series?

2. Give an example of a non-Gaussian time series and describe its char-

acteristics.

3.(1) Obtain the inverse transformation of the logit transformation (1.1).

(2) Find a transformation from (a,b) to (−∞,∞) and find its inverse.

4. Describe the problem in constructing a stationary time series from a

nonstationary time series by differencing.

5. Describe the problem in removing cyclic components by annual

changes.

6.(1) Show that if the true trend is a straight line, then the mean value

does not change for the three-term moving average, and that the

variance becomes 1/3 of the observed data variance.

(2) Discuss the differences between the characteristics of the moving

average filter and the moving median filter.





Chapter 2

The Covariance Function

In this chapter, the covariance and correlation functions are presented

as basic methods to represent stationary time series. The autocovariance

function is a tool to represent the relation between past and present val-

ues of time series and the cross-covariance function is to express the

relation between two time series. These covariance functions are used to

capture features of time series to estimate the spectrum and to build time

series models.

2.1 The Distribution of Time Series and Stationarity

The mean and the variance of data are frequently used as basic statistics

to capture characteristics of random phenomena. A histogram is used to

represent rough features of the data distribution. Therefore, by obtaining

the mean, the variance and the histogram, it is expected to capture some

aspects or features of the data.

Accordingly, we shall investigate whether these statistics are useful

for the analysis of time series. The upper plots (a) and (b) in Figure 2.1

illustrate the histograms of the two time series (a) a ship’s yaw rate and

(i) the ship’s rolling as shown in Figure 1.1. However, although the time

series in plot (a) of Figure 1.1 is apparently different from that in plot

(i) of Figure 1.1, the histogram shown in Figure 2.1 (a) is quite similar

to that shown in (b) of Figure 2.1. This means that histograms cannot

capture some aspects of the characteristics of the time series that are

visually apparent.

Figures 2.1 (c) and (d) are scatterplots obtained by putting yn−2 on

the horizontal axis and yn on the vertical axis, for the yaw rate and the

ship’s roll data, respectively. Similarly, Figures 2.1(e) and (f) show scat-

terplots obtained by putting yn−4 on the horizontal axis, again with the

time series as before. The scatterplot in (c) shows that the data are dis-

tributed evenly within a circle in the vicinity of the origin and this indi-

cates that, in the case of the yaw rate, there is little correlation between

yn and yn−2.

17
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Figure 2.1: Histograms and scatterplots of the yaw rate and rolling of a ship.
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On the other hand, the scatterplot shown in (d) are concentrated in

a neighborhood of a straight line with positive slope, indicating that yn

has significant positive correlation with yn−2. However, for the scatter-

plot (e), a negative linear relation is seen, and that indicates a negative

correlation between yn and yn−4 such a correlation is not evident at all

for the plot (f).

These examples show that, in the analysis of time series, it is not

possible to capture the essential features of time series by the marginal

distribution of yn that is obtained by ignoring the time series structure.

Consequently, it is necessary to consider not only the distribution of yn

but also the joint distribution of yn and yn−1, yn and yn−2, and in general

yn and yn−k. The properties of these joint distributions can be concisely

expressed by the use of covariance and correlation coefficients of yn and

yn−k.

Given a time series y1, · · · ,yN , the expectation of the time series yn is

defined by

µn = E(yn) (2.1)

and is called the mean value function. Here E(y) denotes the expectation

with respect to the distribution of y. The covariance of a time series at

two different times yn and yn−k is defined by

Cov(yn,yn−k) = E{(yn− µn)(yn−k− µn−k)} (2.2)

and is called the autocovariance of the time series yn (Box and Jenkins

(1970), Brockwell and Davis (1991)). For k = 0, we obtain the variance

of the time series at time n, Var(yn).
In this chapter, we consider the case when the mean, the variance,

and the covariance do not change over time n. That is, we assume that

for an arbitrary integer ℓ, it holds that

E(yn) = E(yn−ℓ) (2.3)

Var(yn) = Var(yn−ℓ)

Cov(yn,ym) = Cov(yn−ℓ,ym−ℓ).

A time series with these properties is called weakly stationary or covari-

ance stationary. In Chapter 8 and later, sophisticated models are intro-

duced for the analysis of general nonstationary time series for which the

mean and the covariance change with time.

If the data are distributed as a normal (Gaussian) distribution, the

characteristics of the distribution are completely determined by the

mean, the variance and the covariance. However, such an assumption
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does not hold for many actual data. In such a situation, it is recommended

to draw a histogram of the data. The histogram might reveal a difference

in the distributions even though the two sets of data have the same mean

and variance.

Therefore, the features of a time series cannot always be captured

completely only by the mean, the variance and the covariance function.

In general, it is necessary to examine the joint probability density func-

tion of the time series y1, · · · ,yN , i.e., f (y1, · · · ,yN). For that purpose, it is

sufficient to specify the joint probability density function f (yi1 , · · · ,yik )
of yi1 , · · · ,yik for arbitrary integers k and arbitrary time points satisfying

i1 < i2 < · · ·< ik.

In particular, when this joint distribution is a k-variate normal distri-

bution, the time series is called a Gaussian time series. The features of a

Gaussian time series can be completely captured by the mean vector and

the variance-covariance matrix.

When the distribution of a certain time series is invariant with re-

spect to a time shift and the probability distribution does not change

with time, the time series is called strongly stationary. Namely, a time

series is called strongly stationary, if its distribution function satisfies the

following relation

f (yi1 , · · · ,yik ) = f (yi1−ℓ, · · · ,yik−ℓ), (2.4)

for an arbitrary time shift ℓ and arbitrary time points i1, · · · , ik.

As noted above, the properties of Gaussian distributions are com-

pletely specified by the mean, the variance and the covariance. There-

fore, for Gaussian time series, weak stationarity is equivalent to strong

stationarity.

2.2 The Autocovariance Function of Stationary Time Series

Under the assumption of stationarity, the mean value function µn of a

time series becomes a constant and does not depend on time n. Therefore,

for a stationary time series, it can be expressed as

µ = E(yn), (2.5)

where µ is called the mean of the time series yn. Further, the covariance

of yn and yn−k, Cov(yn,yn−k), becomes a value that depends only on the

time difference k . Therefore, it can be expressed as

Ck = Cov(yn,yn−k) = E{(yn− µ)(yn−k− µ)}, (2.6)
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and it is called the autocovariance function of the stationary time series

(Box and Jenkins (1970), Brockwell and Davis (1991), Shumway and

Stoffer (2000)). Here, k is called the lag or the time lag. When k = 0,

the autocovariance function is equal to the variance of yn. The autoco-

variance function is an even function, i.e., Cℓ = C−ℓ, and it satisfies the

inequality |Ck| ≤C0.

The correlation coefficient between yn and yn−k is given by

Rk =
Cov(yn,yn−k)

√

Var(yn)Var(yn−k)
, (2.7)

and by regarding it as a function of lag k, it is called the autocorrelation

function.

For a stationary time series, since it is the case that

Var(yn) = Var(yn−k) = C0, (2.8)

the autocorrelation function is easily obtained from the autocovariance

function as

Rk =
Ck

C0

. (2.9)

Example (White noise) When a time series yn is a realization of an

uncorrelated random variable with autocovariance function

Ck =

{

σ2 k = 0

0 k 6= 0,
(2.10)

it is called a white noise with variance σ2. Obviously, the autocorrelation

function of a white noise is given by R0 = 1, Rk = 0 for k =±1,±2 . . ..

2.3 Estimation of the Autocovariance and Autocorrelation

Functions

When a stationary time series {y1, · · · ,yN} is given, the mean µ , the auto-

covariance function Ck and the autocorrelation function Rk are estimated

by

µ̂ =
1

N

N

∑
n=1

yn (2.11)

Ĉk =
1

N

N

∑
n=k+1

(yn− µ̂)(yn−k− µ̂) (2.12)

R̂k =
Ĉk

Ĉ0

, (2.13)
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respectively. Here µ̂ is called the sample mean, Ĉk is the sample autoco-

variance function, and R̂k is the sample autocorrelation function.

For Gaussian process, the variance of the sample autocorrelation R̂k

is given approximately by (Bartlett (1948), Box and Jenkins (1970))

var(R̂k)∼
1

N

∞
∑

j=−∞

{

R2
j + R j−kR j+k−4RkR jR j−k + 2R2

jR
2
k

}

. (2.14)

Therefore, for time series for which all the autocorrelations R j are zero

for j > m for some m, the variance of R̂k, k > m is given by

var(R̂k)∼
1

N

∞
∑

j=−∞
R2

j =
1

N

(

1 + 2
∞
∑
j=1

R2
j

)

. (2.15)

In particular, for a white noise sequence with Rk = 0 for k > 0, the

approximate expression is simply given by

var(R̂k)∼
1

N
. (2.16)

This can be used for the test of whiteness of the time series. For example,

the standard error of R̂k is 0.1, 0.032 and 0.01 for N = 100, 1000 and

10,000, respectively.

Example (Autocorrelation functions of time series) Figure 2.2

shows the sample autocorrelation functions of the time series shown in

the Figure 1.1 (a) – (f). In the case of the stationary time series of plot (a)

of Figure 2.2, the peaks of the sample autocorrelation function rapidly

decay to 0 with a cyclic fluctuation of period 8 or 9 as the lag increases.

In the plot (b), the autocorrelation function of the log-transformed se-

ries is illustrated, because the original data reveal significant asymmetry.

The peaks of the sample autocorrelation function repeatedly appear at

an almost 10-year cycle corresponding to the approximate 10-year cy-

cle of the sunspot data, and the amplitude of the sample autocorrelation

gradually decreases as the lag increases. The amplitude of the sample au-

tocorrelation function in plot (c) shows extremely slow decay, because a

smooth annual trend is seen in Figure 1 (c). These distinct features are

common to most nonstationary time series with a drifting mean value.

For the economic time series of plot (d), a one-year cycle in the sam-

ple autocorrelation function is seen corresponding to the annual cycle

of the time series. However, the amplitude of the sample autocorrelation

function decreases more slowly than those of (b) because of the presence

of a trend in the time series. For the economic time series of plot (e), the
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Figure 2.2: Sample autocorrelation functions.

value of the data increases over time and the amplitude grows along with

it. Therefore, the data have been log-transformed prior to computing the

sample autocorrelation function. For the earthquake data of plot (f), the

fluctuation of the sample autocorrelation function continues for a con-

siderably long time with an approximate 10-second cycle after a sudden

reduction in the amplitude.
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Figure 2.3: Histograms and scatterplots of ship’s data.

2.4 Multivariate Time Series and Scatterplots

Simultaneous records of random phenomena fluctuating over time are

called multivariate time series. An ℓ-variate time series is expressed as

yn = (yn(1), · · · ,yn(ℓ))
T , where yn( j), j = 1, · · · , ℓ, is the j-th time series

at time n. Here vT denotes the transpose of the vector v.

The characteristics of a univariate time series are expressed by the

autocovariance function and the autocorrelation function. For multivari-

ate time series, it is necessary to consider the relation between different

variables.

As stated in the previous chapter, the first approach to time series

analysis is illustrating them with graphs. In the case of a multivariate

time series yn = (yn(1), · · · ,yn(ℓ))
T , the relation among the variables can

be understood by examining the scatterplot. The scatterplot of the time
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series yn(i) versus yn( j) is obtained by plotting the point (yn(i), yn( j))
on the 2-dimensional plane with yn(i) shown on the horizontal axis and

yn( j) on the vertical axis.

Example In Figure 2.3, off-diagonal plots show the scatterplots of the

3-variate ship’s data (roll rate, pitch rate and rudder angle) that are shown

in Figure 1.1 (i), and the diagonal plots show histograms of the time

series yn(1),yn(2) and yn(3).

Negative relations between two variables can be seen in the scatter-

plots of the roll rate and the pitch rate and also of the roll rate and the

rudder angle. On the other hand, the scatterplot of the roll rate and the

rudder angle are scattered over the whole region, which indicates that the

simultaneous correlation is negligible between these two variables.

Figure 2.4 shows the histograms and the scatterplot of the ground-

water level data and the barometric pressure shown in Figure 1.1 (h).

In the scatterplot, we see that the data points are concentrated near the

diagonal of negative inclination. From the figures, we can see that the

variation in the groundwater level corresponds closely to the variation in

the barometric pressure.

Figure 2.4 Histograms and scatterplot of the groundwater level and barometric

pressure data.
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As shown in the above examples, the relationships between two vari-

ables can be observed in the scatterplots. As was the situation with uni-

variate time series, the relationship is not limited to the simultaneous

case. For multivariate time series, we have to consider the relations be-

tween variables of yn and yn−k, i.e., yn(i) and yn−k( j).
Therefore, to consider the relations among the multivariate time se-

ries, it is necessary to examine the scatterplots of yn(i) and yn−k( j) for

all combinations of i, j, and k. To express such relations between vari-

ables with time delay, we use the cross-covariance and cross-correlation

functions that will be introduced in Section 2.5.

2.5 Cross-Covariance Function and Cross-Correlation Function

Univariate time series are characterized by the basic statistics, i.e., the

mean, the autocovariance function and the autocorrelation function. Sim-

ilarly, the mean vector, the cross-covariance function, and the cross-

correlation function are used to characterize the multivariate time series

yn = (yn(1), · · · ,yn(ℓ))
T .

The mean of the i-th time series yn(i) is defined by

µ(i) = E{yn(i)} , (2.17)

where µ = (µ(1), · · · ,µ(ℓ))T is called the mean vector of the multivari-

ate time series yn.

The covariance between the time series, yn(i), and the time series

with time lag k, yn−k( j) is defined by

Ck(i, j) = Cov
(

yn(i),yn−k( j)
)

= E
{

(

yn(i)− µ(i)
)(

yn−k( j)− µ( j)
)T
}

, (2.18)

where the ℓ× ℓ matrix

Ck =







Ck(1,1) · · · Ck(1, ℓ)
...

. . .
...

Ck(ℓ,1) · · · Ck(ℓ,ℓ)






(2.19)

is called the cross-covariance matrix of lag k (Box and Jenkins (1970),

Akaike and Nakagawa (1989), Brockwell and Davis (1991)).

Considering Ck, k = 0,1,2, · · ·, as a function of lag k, it is called

a cross-covariance function. Here, the diagonal element Ck(i, i) of the

cross-covariance function is the autocovariance function of the i-th time

series yn(i).
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The correlation coefficient between yn(i) and yn−k( j) is defined by

Rk(i, j) = Cor(yn(i),yn−k( j))

=
Ck(i, j)

√

C0(i, i)C0( j, j)
, (2.20)

and the ℓ× ℓ matrix

Rk =







Rk(1,1) · · · Rk(1, ℓ)
...

. . .
...

Rk(ℓ,1) · · · Rk(ℓ,ℓ)






(2.21)

is called the cross-correlation function.

The autocovariance function and the autocorrelation function are

even functions and satisfy C−k = Ck and R−k = Rk. For the multivari-

ate time series, however, the cross-covariance function and the cross-

correlation function do not have these symmetries in general. However,

the relations

C−k = CT
k , R−k = RT

k (2.22)

do hold, so that it is sufficient to consider Ck and Rk only for k≥ 0.

When the multivariate time series {y1( j), · · · ,yN( j)}, j = 1, · · · , ℓ, of

length N are considered, estimates of the mean µ(i), the cross-covariance

function Ck(i, j), and the cross-correlation function Rk(i, j) are obtained

by

µ̂(i) =
1

N

N

∑
n=1

yn(i) (2.23)

Ĉk(i, j) =
1

N

N

∑
n=k+1

(yn(i)− µ̂(i))(yn−k( j)− µ̂( j)) (2.24)

R̂k(i, j) =
Ĉk(i, j)

√

Ĉ0(i, i)Ĉ0( j, j)
. (2.25)

Here, the ℓ-dimensional vector µ̂ =
(

µ̂(1), . . . µ̂(ℓ)
)T

is called the sam-

ple mean vector, the ℓ×ℓ matrix Ĉk =
(

Ĉk(i, j)
)

and R̂k =
(

R̂k(i, j)
)

, k =
0,1, . . . , i = 1, . . . ℓ, j = 1, . . . ℓ, are called the sample cross-covariance

function and the sample cross-correlation function, respectively.

Example (Ship data) Figure 2.5 shows the sample cross-correlation
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Figure 2.5 Autocorrelation functions and cross-correlation functions of ship’s

data.

function of the ship’s data consisting of roll rate, pitch rate and rud-

der angle as shown in Figure 1.1 (i). The graph in the i-th row and the

j-th column shows the correlation function Rk(i, j), k = 0, · · · ,50. There-

fore, the three plots with bold frames on the diagonal of Figure 2.5 show

the autocorrelation function Rk(i, i) and other six plots show the cross-

correlation function Rk(i, j).

From these figures, it can be seen that the roll rate and the rudder

angle fluctuate somewhat periodically. On the other hand, the autocorre-

lation function of the pitch rate is complicated. Furthermore, the figures

indicate a strong correlation between the roll rate and the rudder angle,

because the autocorrelation function of the roll rate is similar to that of

the rudder angle and the cross-correlation Rk(1,3) between the rudder

angle and the roll rate is very high.
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Figure 2.6 Autocorrelation functions and cross-correlation functions of the

groundwater level and barometric pressure data.

Example (Grandwater level data) Figure 2.6 shows the cross-

correlation function between the groundwater level data and the baro-

metric pressure data illustrated in Figure 1.1(h). A very strong correla-

tion between the two variables is seen.

Problems

1. Show that a weakly stationary Gaussian time series is strongly sta-

tionary.

2. Is a strongly stationary time series weakly stationary?

3. Show that the autocovariance function of a stationary time series is an

even function.

4. Obtain the autocovariance function of a time series that satisfies yn =
vn− cvn−1, where |c| < 1 and vn is a white noise with mean 0 and

variance 1.

5. Assuming that C0,C1, . . . , is the autocovariance function of a station-
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ary time series, show that the matrix

C =













C0 C1 · · · Ck−1

C1 C0

. . .
...

...
. . .

. . . C1

Ck−1 · · · C1 C0













is positive semi-definite.

6.(1) What is the expected value of the sample autocovariance function

Ĉk?

(2) Discuss the reason that the sum is divided by N, not by N− k, in

the definition of the sample autocovariance function.

7.(1) Assuming that the time series is a Gaussian white noise, obtain the

distributions of Ĉk and R̂k.

(2) Using the results of (1), consider a method for checking whether

or not a time series is white.



Chapter 3

The Power Spectrum and the
Periodogram

In this section, the spectral analysis method is introduced as a basic tool

for stationary time series analysis. By means of spectral analysis, we

can capture the characteristics of time series by decomposing time se-

ries into trigonometric functions at each frequency and by representing

the features with the strength of each periodic component. The subjects

discussed here will lead to the definition of the power spectrum and the

periodogram of time series, computational methods, variance reduction

and smoothing methods. Moreover, an efficient method of computing pe-

riodograms is presented using fast Fourier transforms (FFT). The readers

interested in the spectral analysis of time series are referred to Brillinger

(1974), Bloomfied (1976), Akaike and Nakagawa (1989) and Brockwell

and Davis (1991).

3.1 The Power Spectrum

If the autocovariance function Ck rapidly decreases as the lag k increases

and satisfies
∞
∑

k=−∞
|Ck|<∞,

we can define the Fourier transform of Ck.

The function defined on the frequency−1/2≤ f ≤ 1/2,

p( f ) =
∞
∑

k=−∞
Cke−2π ik f , (3.1)

is called the power spectral density function or simply the power spec-

trum.

Since the autocovariance function is an even function and satisfies

Ck = C−k, the power spectrum can also be expressed as

31
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Figure 3.1 Autocorrelation function, power spectrum, and realization of a white

noise with variance σ2 = 1.

p( f ) =
∞
∑

k=−∞
Ck cos(2πk f )− i

∞
∑

k=−∞
Ck sin(2πk f )

=
∞
∑

k=−∞
Ck cos2πk f = C0 + 2

∞
∑
k=1

Ck cos2πk f . (3.2)

The power spectrum represents a time series in terms of trigonomet-

ric functions with various frequencies and expresses the characteristics

of a time series by the magnitudes of these cyclic components. On the

other hand, if a power spectrum is given, then the autocovariance func-

tion can be obtained via the inverse Fourier transform

Ck =

∫ 1
2

− 1
2

p( f )e2π ik f df =

∫ 1
2

− 1
2

p( f )cos2πk f df . (3.3)
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Figure 3.2 Autocorrelation function, power spectrum, and realization of a first-

order AR model with a = 0.9.

Example (The power spectrum of white noise) The autocovariance

function of a white noise is given by C0 = σ2 and Ck = 0 for k 6= 0.

Therefore, the power spectrum of a white noise becomes

p( f ) =
∞
∑

k=−∞
Ck cos2πk f = C0 = σ2, (3.4)

taking a constant value for any frequency f . It means that a white noise

contains cyclic components of various frequencies with the same mag-

nitude. Plots (a), (b) and (c) in Figure 3.1 show the autocorrelation func-

tion and the power spectrum of a white noise with variance σ2 = 1 and

realizations of white noise generated by the simulation. The simulation

method for a time series from an assumed model will be introduced later

in Chapter 16.

Example (Power spectrum of an AR model) Assume that wn is a
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Figure 3.3 Autocorrelation function, power spectrum, and realization of a first-

order AR model with a =−0.9.

white noise with variance σ2. If a time series is generated by a first-

order autoregressive model yn = ayn−1 +wn, the autocovariance function

is given by Ck = σ2(1− a2)−1a|k| and then the power spectrum of this

time series can be evaluated as

p( f ) =
σ2

|1−ae−2π i f |2 =
σ2

1−2acos2π f + a2
. (3.5)

Plots (a), (b) and (c) of Figure 3.2 show the autocorrelation func-

tion, the power spectrum and the realization, which were generated by

the simulation for a first autoregressive model with a = 0.9. Similarly,

Figure 3.3 shows the case of a first-order autoregressive model with a

negative coefficient a =−0.9. The autocorrelation function is very wig-

gly, and unlike the case of positive coefficient, the power spectrum is an

increasing function of the frequency f .

If a time series follows a second-order AR model yn = a1yn−1 +
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Figure 3.4 Autocorrelation function, power spectrum, and realization of a

second-order AR model with a1 = 0.9
√

3 and a2 =−0.81.

a2yn−2 + wn, the autocorrelation function satisfies

R1 =
a1

1−a2

, Rk = a1Rk−1 + a2Rk−2, (3.6)

and the power spectrum can be evaluated as

p( f ) =
σ2

|1−a1e−2π i f −a2e−4π i f |2

=
σ2

1−2a1(1−a2)cos2π f −2a2 cos4π f + a2
1 + a2

2

. (3.7)

Figure 3.4 shows (a) the autocorrelation function, (b) the power spec-

trum and (c) a realization, which were generated by the simulation for

a second-order AR model with a1 = 0.9
√

3 and a2 = −0.81. The auto-

correlation function is oscillatory, and the power spectrum has a peak

around at f = 0.1.
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3.2 The Periodogram

Given a time series y1, · · · ,yN , the periodogram is defined by

p j =
N−1

∑
k=−N+1

Ĉke−2π ik f j = Ĉ0 + 2
N−1

∑
k=1

Ĉk cos2πk f j, (3.8)

where the sample autocovariance function Ĉk is substituted for the auto-

covariance function Ck of equations (3.1) and (3.2).
In the definition of the periodogram, we consider only the natural

frequencies defined by f j = j/N, j = 0, · · · , [N/2]. Here [N/2] denotes

the maximum integer, which does not exceed N/2. An extension of the

periodogram

p̂( f ) =
N−1

∑
k=−N+1

Ĉke−2π ik f , −0.5≤ f ≤ 0.5, (3.9)

obtained by extending the domain to the continuous interval [0,1/2] is

called the sample spectrum.

In other words, the periodogram is obtained from the sample spec-

trum by restricting its domain to the natural frequencies. Corresponding

to the relations of (3.3), the following relation holds between the sample

spectrum and the sample autocovariance function,

Ĉk =

∫ 1
2

− 1
2

p̂( f )e2π ik f df , k = 0, · · · ,N−1. (3.10)

Example (Periodograms) Figure 3.5 shows the periodograms of the

univariate time series corresponding to Figures 1.1 (a)–(f). Note that the

vertical axis here has a logarithmic scale.

Plot (a) shows the periodogram of the ship’s yaw rate. A fairly strong

periodic component with an approximate 10-second period, i.e., f = 0.1,

is observed.

Plot (b) shows the periodogram of the annual sunspot number series.

A strong periodic component with an approximate 10-year period ( f =
0.1) is shown. However, because of the strong variation, other periodic

components cannot be clearly seen.

In the periodogram of the maximum temperature data shown in plot

(c), there is no apparent periodicity.

In the periodogram of the BLSALLFOOD data shown in plot (d),

a sharp peak is seen at the frequency f = 1/12 corresponding to the
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Figure 3.5: Periodograms of the data of Figure 1.1 (on a logarithmic scale).
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seasonal components. The frequencies of the other four peaks are integer

multiples of the frequency of the main peak and are considered to be the

higher harmonics of the nonlinear waveform.

Similar peaks can be seen in the WHARD data shown in plot (e), but

they are not as significant as the ones shown in plot (d).

The periodogram of seismic wave data of plot (f) shows two plateaus

around f = 0.1 and f = 0.25, and sharp peaks are seen at f = 0.07 and

f = 0.1.

We note the properties of the periodogram hereafter. The peri-

odogram and the sample spectrum are asymptotically unbiased and sat-

isfy

lim
N→∞

E{p̂( f )} = p( f ) =
∞
∑

k=−∞
Ck cos2πk f . (3.11)

This means that at each frequency f , the expectation of the sample spec-

trum converges to the true spectrum as the number of data points in-

creases. However, it does not imply the consistency of p̂( f ), that is, the

sample spectrum p̂( f ) does not necessarily converge to p( f ) as the num-

ber of data points increases. Actually,

2 p̂( f1)

p( f1)
, · · · ,

2 p̂( f[ N
2
]−1)

p( f[ N
2
]−1)

, (3.12)

independently follow the χ2 distribution with two degrees of freedom,

and p̂(0)/p(0) and p̂(0.5)/p(0.5) follow the χ2 distribution with one

degree of freedom. Therefore, the variance of the periodogram is con-

stant, independent of the sample size N. Thus the periodogram cannot

be a consistent estimator.

Example (Sample autocorrelation functions and periodograms)

Figures 3.6 (a) and (b) show the sample autocorrelation function and

the periodogram, respectively, of the realizations of white noise with a

sample size N = 200, which are generated similarly to Figure 3.1(c).

Sample autocorrelations are close to zero and are almost contained in

the confidence interval [−200−1/2,200−1/2] ≃ [−0.07,0.07]. The theo-

retical spectrum of the white noise is a constant, log p( f )≡ 0 in this case.

However, the periodogram fluctuates sharply, indicating that it cannot be

a good estimate of the spectrum.

Figures 3.6 (c)–(f) show the sample autocorrelation functions and

the periodogram of realizations of white noise with sample sizes 800 and

3200. The sample autocorrelations Ĉk converge to the true value Ck as the
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Figure 3.6 Sample autocorrelation functions and periodograms in a logarithmic

scale: sample sizes n = 200,800,3200.
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Figure 3.7: Raw spectra of a white noise.

data length increases. On the other hand, the amount of variation in the

periodogram does not decrease even when the data length increases and

the frequency of the variation increases in proportion to N. This suggests

that the sample spectrum will never converge to the true spectrum, even

if the data length increases without limit. This reflects the fact that the

sample spectrum is not a consistent estimator of the spectrum.

3.3 Averaging and Smoothing of the Periodogram

In this section, we shall consider a method of obtaining an estimator that

converges to the true spectrum as n increases. Instead of (3.8), define p j

by

p j = Ĉ0 + 2
L−1

∑
k=1

Ĉk cos2πk f j, (3.13)

for the frequencies f j = j/2L for j = 0, · · · ,L, where L is an arbitrary

integer.

The p j defined in this way is called the raw spectrum. Figures 3.7 (a)

and (b) show the raw spectrum p j for the data shown in Figures 3.6 (c)

and (e), respectively, setting L = 200. In this case, the range of vertical

variation decreases as the number of data points increases. This suggests

that, by using a fixed lag L, the raw spectrum p j defined by (3.13) con-

verges to the true spectrum.

In the definition of the periodogram (3.8), the sample autocovari-

ances are necessary up to the lag N− 1. However, by just using a fixed

number, L− 1, of autocovariances, the raw spectrum converges to the
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Table 3.1 Variances of the periodogram and the logarithm of the periodogram

obtained from (3.8) and (3.14).

Data length N 200 800 3200

p j by (3.8) 1.006 0.998 1.010

p j by (3.14) 1.006 0.250 0.061

log p j by (3.8) 0.318 0.309 0.315

log p j by (3.14) 0.318 0.053 0.012

true spectrum as the number of data points (i.e., N) increases. On the as-

sumption that the number of data points N increases according to N = ℓL,

ℓ = 1,2, · · ·, computing the raw spectrum with the maximum lag L−1 is

equivalent to applying the following procedures.

Firstly, divide the time series y1, · · · ,yn into N/L sub-series of length

L, y
(i)
j , · · · ,y(i)

L , i = 1, · · · ,N/L, namely, y
(i)
j ≡ y(i−1)L+ j, and a peri-

odogram p
(i)
j , j = 0, · · · , [L/2] is obtained from each sub-series for i =

1, · · · ,N/L. After calculating the periodogram p
(i)
j , j = 0, · · · , [L/2]; i =

1, · · · ,N/L, the averaged periodogram is obtained by averaging the N/L

estimates for each j = 0, · · · , [L/2],

p j =
L

N

N/L

∑
i=1

p
(i)
j . (3.14)

By this procedure, the variance of p
(i)
j does not change, even if the

number of data points, N, increases as ℓ,2ℓ, · · · ,Lℓ. However, since p j is

obtained as the mean of ℓ periodograms, p
(i)
j , i = 1, · · · , ℓ, the variance

of p j becomes 1/ℓ of the variance of p
(i)
j . Therefore, the variance of p j

converges to 0 as the number of data points N, or ℓ increases to infinity.

Table 3.1 shows the variances of the periodogram and the logarithm

of the periodogram obtained using Eqs. (3.8) and (3.14), respectively.

The variances of the periodogram obtained by Eq. (3.8) do not change as

the number of data points increases. Note that the theoretical variances

of the periodogram and the log-periodogram are 1 and π2/6(log10)2, re-

spectively. However, those obtained by (3.14) are inversely proportional

to the data length. The reduction in the variances is also seen for the log-

arithm of the periodogram. In this case, the variances are reduced even

faster.
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Table 3.2: Hanning and Hamming windows.

Window m W0 W1

Hanning 1 0.50 0.25

Hamming 1 0.54 0.23

Summarizing the above argument, although the periodogram does

not converge to the true spectrum with the increase in the number of data

points, we can obtain an estimate of the spectrum that converges to the

true spectrum by fixing the maximum lag, L, in computing the Fourier

transform (3.13).

Here, note that the raw spectrum of (3.13) does not exactly agree

with the averaged periodogram (3.14), and sometimes it might happen

that p j < 0. To prevent this situation and to guarantee the positivity of

p j, we need to compute p j by (3.14). However, in actual computation,

the raw spectrum is smoothed by using the spectral window. That is,

for a given spectral window Wi, i = 0,±1, · · · ,±m, an estimate of the

spectrum is obtained by

p̂ j =
m

∑
i=−m

Wi p j−i, j = 0,1, · · · , [L/2], (3.15)

where p− j = p j and p[L/2]+i = p[L/2]−i. By properly selecting a spectral

window, we can obtain an optimal estimate of the spectrum that is always

positive and with smaller variance. Table 3.2 shows some typical spectral

windows. Note that they are symmetric, W−i = Wi, and also satisfy Wi >
0 to guarantee that p̂ j > 0.

Example (Smoothed periodograms) Figure 3.8 shows the smoothed

periodograms obtained by putting L = 2
√

N and applying the Hanning

window to the data shown in Figure 3.5. When the number of data points

is large, as occurs in Figures 3.8 (a) and (f), the fluctuations become

fairly small, so that reasonable estimates of the spectrum are obtained.

However, in Figures 3.8 (d) and (e), the line spectra corresponding to the

annual cycle become unclear due to the smoothing operation, although

they can be clearly detected by the original periodogram as shown in

Figure 3.5. We need to make a compromise between the smoothness of

the estimate and sensitivity to the presence of significant peaks. This

problem can be solved by efficient use of time series models as will be

shown in Chapter 6.



AVERAGING AND SMOOTHING OF THE PERIODOGRAM 43

Figure 3.8 Smoothed periodograms of the data shown in Figure 1.1. Horizontal

axis: frequency f , vertical axis: periodogram on a logarithmic scale, log p( f ).
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3.4 Computational Method of Periodogram

The Görtzel method is known to be an effective method of calculat-

ing Fourier transforms exactly. If the Fourier cosine transform and the

Fourier sine transform of the series x0, · · · ,xL−1 are computed directly,

Xc( f ) =
L−1

∑
n=0

xn cos(2πn f ), Xs( f ) =
L−1

∑
n=0

xn sin(2πn f ),

L additions and multiplications and L evaluations of trigonometric func-

tions are necessary for each calculation.

However, by adopting the Görtzel method, based on the additive

theorem for trigonometric functions, to compute the Fourier transform

Xc( f ) and Xs( f ), we only need to evaluate the trigonometric functions

twice, i.e., cos2π f and sin2π f . This algorithm is based on the following

properties of the trigonometric functions. If we put a0 = 0, a1 = 1 and

generate a2, · · · ,aL−1 by an = 2an−1 cos2π f − an−2, then sin2πn f and

cos2πn f can be obtained by

sin2πn f = an sin2π f , cos2πn f = an cos2π f −an−1,

respectively.

3.5 Computation of the Periodogram by Fast Fourier Transform

As noted in the last section, the periodogram is obtained from the dis-

crete Fourier transform of the sample autocovariance function. In gen-

eral, N2 addition and multiplication operations are necessary to calculate

the discrete Fourier transform of a series of length N. Consequently, it

takes a long time to compute the discrete Fourier transform when N is

very large.

On the other hand, the fast Fourier transform (FFT) provides us with

a very efficient algorithm. If the number of data points is of the form

N = pℓ, then this method requires approximately N pℓ necessary opera-

tions, thus reducing the number of necessary operations by a factor of

N pℓ/N2 = pℓ/N. For instance, when N = 1024 = 210 (or N = 4096 =
212), the number of necessary operations is reduced by a factor of ap-

proximately 1/50 (or 1/170).

However, if we calculate the periodogram by the formula (3.8), i.e.,

the Fourier transform of the sample autocovariance function, N2/2 op-

erations are required to obtain the sample autocovariance function Ĉk,

k = 0, · · · ,N−1. Therefore, it might be more efficient to apply the FFT
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algorithm directly to the time series to obtain the periodogram. The

Fourier transform, X j, of a time series y1, · · · ,yN is obtained by

X j =
N

∑
n=1

yne−2π i(n−1) j/N

=
N

∑
n=1

yn cos
2π(n−1) j

N
− i

N

∑
n=1

yn sin
2π(n−1) j

N

≡ FC j− i FS j, (3.16)

for j = 0, · · · ,N/L.

Then the periodogram is obtained by

p j =
|X j|2

N
=

1

N

∣

∣

∣

∣

∣

N

∑
n=1

yne−2π i(n−1) j/N

∣

∣

∣

∣

∣

2

=
FC2

j + FS2
j

N
. (3.17)

It can be easily confirmed that the periodogram (3.17) agrees with the

periodogram obtained using the original definition (3.8). In particular,

when the length of the time series is N = 2ℓ for some integer ℓ, the FFT

is readily calculable.

For a time series of general length, i.e., not expressible in the form

of N = 2ℓ, we might use the prime number factorization: N = p
ℓ1
1 ×·· ·×

pℓm
m . An alternative simple way of computing the periodogram by means

of the FFT algorithm is to apply the FFT after modifying the time series

by adding (2ℓ−N) zeros behind the data, to make it of length N′ = 2ℓ.

By this method, we can obtain the same value for the sample spectrum

that is calculated by equation (3.13) for the frequencies f j = j/N′, j =
0, · · · ,N′/2.

It should be noted here that we can compute the Fourier transform for

arbitrary frequencies f by using the original definition (3.13). However,

if the data length is N, the frequencies of the periodogram obtained by

the FFT algorithm are limited to fk = k/N.

Therefore, if N 6= 2ℓ, the periodogram obtained using the FFT is eval-

uated at different frequencies from those of the periodogram obtained di-

rectly, using the definition in Section 3.2. These differences are not very

crucial when the true spectrum is continuous. However, if the true spec-

trum contains line spectra or sharp peaks, the two methods might yield

quite different results.

Figure 3.9 (a) shows the realizations of the model that has two line
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Figure 3.9 Data with line spectrum and its periodograms obtained by (3.8) and

by FFT after adding 112 zeros.

spectra defined by

yn = cos
2πn

10
+ cos

2πn

4
+ wn, (3.18)

where N = 400 and wn ∼ N(0,0.01). Figure 3.9 (b) shows the peri-

odogram obtained from the data y1, · · · ,y400 for which two line spectra

are seen at the frequencies f = 0.05 and f = 0.0125 corresponding to

the two trigonometric functions of (3.18). For other frequencies that cor-

respond to the white noise wn, the periodogram fluctuates around at a

certain level.

On the other hand, Figure 3.9 (c) shows the periodogram obtained by

using the FFT after generating the data with N′ = 512 = 29 by adding

112 zeros behind y1, · · · ,y400. In this case, the periodogram (c) looks

quite different from the periodogram (b), because the frequencies to be

calculated for the periodogram (c) have deviated from the position of the

line spectrum.
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Figure 3.10: Yaw rate data, periodogram and FFT spectrum.

Figure 3.10 (a) duplicates the ship’s yaw rate data shown in Figure

1.1 (a). Plots (b) and (c) show the periodograms obtained using the orig-

inal definition and the FFT, respectively. This example shows that, if the

spectrum is continuous and does not contain any line spectra, the peri-

odogram obtained by using FFT after adding zeros behind the data is

similar to the periodogram obtained using the original definition.

Problems

1. Verify equation (3.2), that the power spectrum can be expressed using

a cosine function.

2. Using the results of Equation 4 of Chapter 2, obtain the power spec-

trum of the time series yn = vn− cvn−1, when vn is a white noise with

mean 0 and variance 1.
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3. If the autocovariance function is given by Ck = σ2(1−a2)−1a|k|, ver-

ify that the power spectrum can be obtained using equation (3.5).

4. Show that the power spectrum of the time series (3.8) is given by

(3.17).

5. Show the asymptotic unbiasedness of the sample spectrum, i.e., that

lim
n→∞

E [ p̂( f ) ] = p( f ).



Chapter 4

Statistical Modeling

In the statistical analysis of time series, measurements of a phenomenon

with uncertainty are considered to be the realization of a random vari-

able that follows a certain probability distribution. Time series models

and statistical models, in general, are built to specify this probability dis-

tribution based on data. In this chapter, a basic criterion is introduced

for evaluating the closeness between the true probability distribution and

the probability distribution specified by a model. Based on this criterion,

we can derive a unified approach for building statistical models includ-

ing the maximum likelihood method and the information criterion, AIC

(Akaike (1973,1974), Sakamoto et al. (1986) and Konishi and Kitagawa

(2008)).

4.1 Probability Distributions and Statistical Models

Given a random variable Y , the probability that the event Y ≤ y occurs,

Prob(Y ≤ y) can be defined for all real numbers y ∈ R. Considering this

to be a function of y, the function of y defined by

G(y) = Prob(Y ≤ y) (4.1)

is called the probability distribution function (or distribution function) of

the random variable Y .

Random variables used in time series analysis are usually continu-

ous, and their distribution functions are expressible in integral form

G(y) =

∫ y

−∞
g(t)dt, (4.2)

with a function that satisfies g(t) ≥ 0 for −∞ < t <∞. Here, g(x) is

called a density function. On the other hand, if the distribution function

or the density function is given, the probability that the random variable

Y satisfies a < Y ≤ b for arbitrary a < b is obtained by

G(b)−G(a) =

∫ b

a
g(x)dx. (4.3)

49
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In statistical analysis, various distributions are used to model charac-

teristics of the data. Typical density functions are as follows:

(a) Normal distribution (Gaussian distribution). The distribution with

density function

g(x) =
1√

2πσ2
exp

{

− (x− µ)2

2σ2

}

, −∞< x <∞ (4.4)

is called a normal distribution, or a Gaussian distribution, and is de-

noted by N(µ ,σ2). The mean and variance are given by µ and σ2,

respectively. N(0,1) is called the standard normal distribution.

(b) Cauchy distribution. The distribution with density function

g(x) =
τ

π{(x− µ)2 + τ2} , −∞< x <∞ (4.5)

is called a Cauchy distribution. µ and τ2 are called the location

parameter and the dispersion parameter, respectively. Note that the

square root of dispersion parameter, τ , is called the scale parameter.

(c) Pearson family of distributions. The distribution with density func-

tion

g(x) =
c

{(x− µ)2 + τ2}b
, −∞< x <∞ (4.6)

is called the Pearson family of distributions with central parameter

µ , dispersion parameter τ2 and shape parameter b. The value c is a

normalizing constant given by c = τ2b−1Γ(b)/(Γ(b− 1
2
)Γ( 1

2
)). This

distribution agrees with the Cauchy distribution for b = 1. Moreover,

if b = (k +1)/2 with a positive integer k, it is called the t-distribution

with k degrees of freedom.

(d) Exponential distribution. The distribution with density function

g(x) =

{

λ e−λ x for x≥ 0

0 for x < 0
(4.7)

is called the exponential distribution. The mean and variance are given

by λ−1 and λ−2, respectively.

(e) χ2 distribution (chi-square distribution).

The distribution with density function

g(x) =







1

2k/2Γ( k
2
)

e−
x
2 x

k
2
−1 for x≥ 0

0 for x < 0

(4.8)
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is called the χ2 distribution with k degrees of freedom. Especially, for

k = 2, it becomes an exponential distribution. The sum of the square

of k Gaussian random variables follows the χ2 distribution with k

degrees of freedom.

(f) Double exponential distribution. The distribution with density func-

tion

g(x) = ex−ex

(4.9)

is called the double exponential distribution. The logarithm of the

exponential random variable follows the double exponential distribu-

tion.

(g) Uniform distribution. The distribution with density function

g(x) =

{

(b−a)−1, for a≤ x < b

0, otherwise
(4.10)

is called the uniform distribution over [a,b).

Example Figure 4.1 shows the density functions defined in (a)–(f)

above. By the simulation methods to be discussed in Chapter 16, data

y1, · · · ,yN can be generated that take various values according to the den-

sity function. The generated data are called realizations of the random

variable. Figure 4.2 shows examples of realizations with the sample size

N = 20 for the distributions of (a)–(c) and (f) above.

If a probability distribution or a density function is given, we can

generate data that follow the distribution. On the other hand, in statis-

tical analysis, when data y1, · · · ,yN have been obtained, they are con-

sidered to be realizations of a random variable Y . That is, we assume

a random variable Y underlying the data, and when we obtain the data,

we consider them as realizations of that random variable. Here, the den-

sity function g(y) defining the random variable is called the true model.

Since this true model is usually unknown for us, given a set of data, it is

necessary to estimate the probability distribution that generates the data.

For example, we estimate the density function shown in Figure 4.1 from

the data shown in Figure 4.2. Here, the density function estimated from

data is called a statistical model and is denoted by f (y).
In ordinary statistical analysis, the probability distribution is suffi-

cient to characterize the data, whereas for time series data, we have to

consider the joint distribution f (y1, · · · ,yN) as shown in Chapter 2. In
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Figure 4.1: Density functions of various probability distributions.

Chapter 2, we characterized the time series y1, · · · ,yN using the sample

mean µ̂ and the sample autocovariance function Ĉk. The implicit as-

sumption behind this is that the N dimensional vector y = (y1, · · · ,yN)T

follows a multidimensional normal distribution with mean vector µ̂ =
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Figure 4.2: Realizations of various probability distributions.

(µ̂ , · · · , µ̂)T and variance covariance matrix

Ĉ =











Ĉ0 Ĉ1 · · · ĈN−1

Ĉ1 Ĉ0 · · · ĈN−2

...
...

. . .
...

ĈN−1 ĈN−2 · · · Ĉ0











. (4.11)

This model can express an arbitrary Gaussian stationary time series

very flexibly. However, it does not achieve an efficient compression of

the information contained in the data since it requires the estimation of

N + 1 unknown parameters, Ĉ0, · · · ,ĈN−1 and µ̂ , from N observations.

On the other hand, stationary time series models that will be discussed
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in Chapter 5 and later can express the covariance matrix of (4.11) using

only a small number of parameters.

4.2 K-L Information and the Entropy Maximization Principle

It is assumed that a true model generating the data is g(y) and that f (y)
is an approximating statistical model. In statistical modeling, we aim at

building a model f (y) that is “close” to the true model g(x). To achieve

this, it is necessary to define a criterion to evaluate the goodness of the

model f (y) objectively.

In this book, we use the Kullback-Leibler information (hereinafter,

abbreviated as K-L information (Kullback and Leibler (1951)))

I(g; f ) = EY log

{

g(Y )

f (Y )

}

=

∫ ∞

−∞
log

{

g(y)

f (y)

}

g(y)dy (4.12)

as a criterion. Here, EY denotes the expectation with respect to the true

density function g(y) and the last expression in (4.12) applies to a model

with a continuous probability distribution. This K-L information has the

following properties:

(i) I(g; f ) ≥ 0
(ii) I(g; f ) = 0 ⇐⇒ g(y) = f (y). (4.13)

The negative of the K-L information, B(g; f ) = −I(g; f ), is called

the generalized (or Boltzmann) entropy. When n realizations are ob-

tained from the model distribution f (y), the entropy is approximately

1/N of the logarithm of the probability that the relative frequency dis-

tribution coincides with the true distribution g(y). Therefore, we can say

that the smaller the value of the K-L information, the closer the prob-

ability distribution f (y) is to the true distribution g(y). Statistical mod-

els approximate the true distribution g(y) based on the data y1, · · · ,yN ,

whose goodness of approximation can be evaluated by the K-L informa-

tion, I(g; f ). In statistical modeling, the strategy of constructing a model

so as to maximize the entropy B(g; f ) = −I(g; f ) is referred to as the

entropy maximization principle (Akaike (1977)).

Example (Kullback-Leibler information of a normal distribution

model) Consider the case where both the true model, g(y), and the

approximate model, f (y), are normal distributions defined by

g(y|µ ,σ2) =
1√

2πσ2
exp

{

− (y− µ)2

2σ2

}
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f (y|ξ ,τ2) =
1√

2πτ2
exp

{

− (y− ξ )2

2τ2

}

. (4.14)

In this case, since the following holds:

log

{

g(y)

f (y)

}

=
1

2

{

log
τ2

σ2
− (y− µ)2

σ2
+

(y− ξ )2

τ2

}

, (4.15)

the K-L information is

I(g; f ) = EY log

{

g(Y )

f (Y )

}

=
1

2

{

log
τ2

σ2
− EY (Y − µ)2

σ2
+

EY (Y − ξ )2

τ2

}

=
1

2

{

log
τ2

σ2
−1 +

σ2 +(µ− ξ )2

τ2

}

. (4.16)

If the true distribution g(y) is the standard normal distribution,

N(0,1), and the model f (x) is N(0.1,1.5), then the K-L information can

be easily evaluated as I(g; f ) = (log1.5−1 + 1.01/1.5)/2 = 0.03940.

Similar to the above example, the K-L information I(g; f ) is easily

calculated, if both g and f are normal distributions. However, for the

combination of general distributions g and f , it is not always possible

to compute I(g; f ) analytically. Therefore, in general, to obtain the K-L

information, we need to resort to numerical computation. To illustrate

the accuracy of numerical computation, Table 4.1 shows the K-L infor-

mation with respect to two density functions g(y) and f (y) obtained by

numerical integration over [x0,xk] using the trapezoidal rule

Î(g ; f ) =
∆x

2

k

∑
i=1

{h(xi)+ h(xi−1)}, (4.17)

where k is the number of nodes and

x0 = −xk,

xi = x0 +(xk− x0)
i

k
(4.18)

h(x) = g(x) log
g(x)

f (x)
(4.19)

∆x =
xk− x0

k
.
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Table 4.1 K-L information for various values of xn and k. (g: normal distribution

and f : normal distribution)

xk k ∆x Î(g ; f ) Ĝ(xk)

4.0 8 1.000 0.03974041 0.99986319

4.0 16 0.500 0.03962097 0.99991550

4.0 32 0.250 0.03958692 0.99993116

4.0 64 0.125 0.03957812 0.99993527

6.0 12 1.000 0.03939929 1.00000000

6.0 24 0.500 0.03939924 1.00000000

6.0 48 0.250 0.03939924 1.00000000

6.0 96 0.125 0.03939923 1.00000000

8.0 16 1.000 0.03939926 1.00000000

8.0 32 0.500 0.03939922 1.00000000

8.0 64 0.250 0.03939922 1.00000000

8.0 128 0.125 0.03939922 1.00000000

Table 4.1 shows the numerically obtained K-L information Î(g f )
and the Ĝ(xk), obtained by integrating the density function g(y) from

−xk to xk, for x0 = 4, 6 and 8, and k = 8, 16, 32 and 64. It can be seen

from Table 4.1 that if x0 is set sufficiently large, a surprisingly good ap-

proximation is obtained even with such small values of k as k = 16 or

∆x = 0.5. This is because we assume that g(y) follows a normal distri-

bution, and it vanishes to 0 very rapidly as |x| becomes large. When a

density function is used for g(y) whose convergence is slower than that

of the normal distribution, the accuracy of numerical integration can be

judged by checking whether Ĝ(xk) is close to one.

Table 4.2 shows the K-L information obtained by the numerical in-

tegration when g(y) is assumed to be the standard normal distribution,

and f (y) is assumed to be the standard Cauchy distribution with µ = 0

and τ2 = 1. It can be seen that even with a large ∆x, such as 0.5, we can

get very good approximations of Î(g; f ), obtained by using a smaller ∆x,

and Ĝ(xk) is 1 even for ∆x = 0.5.

4.3 Estimation of the K-L Information and Log-Likelihood

Though the K-L information was introduced as a criterion for the good-

ness of fit of a statistical model in the previous section, it is rarely used
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Table 4.2 Numerical integration for K-L information with various values of k

when g(y) is the standard normal distribution and f (y) is a Cauchy distribution.

xk k ∆x Î(g , f ) Ĝ(xk)

8.0 16 1.000 0.25620181 1.00000001

8.0 32 0.500 0.25924202 1.00000000

8.0 64 0.250 0.25924453 1.00000000

8.0 128 0.125 0.25924453 1.00000000

directly to evaluate an actual statistical model except for the case of a

Monte Carlo experiment for which the true distribution is known. In ac-

tual statistical analysis, the true distribution is unknown and thus the

K-L information cannot be calculated. In an actual situation, the data

y1, · · · ,yN are obtained instead of the true distribution g(y). Hereinafter

we consider the method of estimating the K-L information of the model

f (y) by assuming that the data y1, · · · ,yN are independently observed

from g(y) (Sakamoto et al. (1986) and Konishi and Kitagawa (2008)).

According to the entropy maximization principle, the best model can

be obtained by finding the model that maximizes B(g; f ) or minimizes

I(g; f ). As a first step, the K-L information can be decomposed into two

terms as

I(g; f ) = EY logg(Y )−EY log f (Y ). (4.20)

Although the first term on the right-hand side of equation (4.20) cannot

be computed unless the true distribution g(y) is given, it can be ignored

because it is a constant, independent of the model f (y). Therefore, a

model that maximizes the second term on the right-hand side signifies

a good model. This second term is called expected log-likelihood. For a

continuous model with density function f (y), it is expressible as

EY log f (Y ) =

∫

log f (y)g(y)dy. (4.21)

The expected log-likelihood also cannot be directly calculated when

the true model g(y) is unknown. However, because data yn is generated

according to the density function g(y), due to the law of large numbers,

it is the case that

1

N

N

∑
n=1

log f (yn)−→ EY log f (Y ), (4.22)
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as the number of data points goes to infinity, i.e., N→∞.

Therefore, by maximizing the left term, ∑N
n=1 log f (yn), instead of

the original criterion I(g; f ), we can approximately maximize the en-

tropy. When the observations are obtained independently, N times the

term on the left-hand side of (4.22) is called the log-likelihood, and it is

given by

ℓ =
N

∑
n=1

log f (yn). (4.23)

The quantity obtained by taking the exponential of ℓ,

L =
N

∏
n=1

f (yn) (4.24)

is called the likelihood.

For models used in time series analysis, the assumption that the ob-

servations are obtained independently, does not usually hold. For such a

general situation, the likelihood is defined by using the joint distribution

of y1, · · · ,yN as

L = f (y1, · · · ,yN). (4.25)

Equation (4.25) is a natural extension of (4.24), because it reduces to

(4.24) when independence of the observations is assumed. In this case,

the log-likelihood is obtained by

ℓ = logL = log f (y1, · · · ,yN). (4.26)

4.4 Estimation of Parameters by the Maximum Likelihood

Method

If a model contains a parameter θ and its distribution can be expressed

as f (y) = f (y|θ ), the log-likelihood ℓ can be considered as a function

of the parameter θ . Therefore, by expressing the parameter θ explicitly,

ℓ(θ ) =







N

∑
n=1

log f (yn|θ ), for independent data

log f (y1, · · · ,yN |θ ), otherwise

(4.27)

is called the log-likelihood function of θ .

Since the log-likelihood function ℓ(θ ) evaluates the goodness of fit

of the model specified by the parameter θ , by selecting θ so as to max-

imize ℓ(θ ), we can determine the optimal value of the parameter of the
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parametric model, f (y|θ ). The parameter estimation method derived by

maximizing the likelihood function or the log-likelihood function is re-

ferred to as the maximum likelihood method. The parameter estimated

by the method of maximum likelihood is called the maximum likelihood

estimate and is denoted by θ̂ .

Under some regularity conditions, the maximum likelihood estimate

has the following properties (Huber (1967) and Konishi and Kitagawa

(2008)):

(i) The maximum likelihood estimator θ̂ converges in probability to θ0

as sample size N→∞.

(ii) (Central limit theorem) The distribution of
√

N(θ̂−θ0) converges in

law to the normal distribution with the mean vector 0 and the variance

covariance matrix J−1IJ as N→∞, i.e.,

√
N(θ̂ −θ0)→ N(0,J−1IJ), (4.28)

where I and J are the Fisher information matrix and the negative of

the expected Hessian with respect to θ̂ defined by

I ≡ EY

{

∂

∂θ
log f (Y |θ0)

}{

∂

∂θ
log f (Y |θ0)

}T

, (4.29)

J ≡ −EY

{

∂ 2

∂θ∂θ T
log f (Y |θ0)

}

. (4.30)

Example (Maximum likelihood estimate of the mean of the nor-

mal distribution model) Consider a normal distribution model with

mean µ and variance 1

f (y|µ) =
1√
2π

exp

{

− (y− µ)2

2

}

, (4.31)

and estimate the mean parameter µ by the maximum likelihood method.

Given N observations, y1, · · · ,yN , the log-likelihood function is given by

ℓ(µ) =−N

2
log2π− 1

2

N

∑
n=1

(yn− µ)2. (4.32)

To maximize the log-likelihood ℓ(µ), it suffices to find µ that mini-

mizes

S(µ) =
N

∑
n=1

(yn− µ)2. (4.33)
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By equating the first derivative of S(µ) to zero, we obtain

µ̂ =
1

N

N

∑
n=1

yn. (4.34)

A method of estimating the parameters of a model by minimizing the

sum of squares such as (4.30) is called the least squares method.

A general method of solving the least squares problem will be de-

scribed in Chapter 5. For a normal distribution model, the maximum like-

lihood estimates of the parameters often coincide with the least squares

estimates and can be solved analytically. However, the likelihood or the

log-likelihood functions of a time series model is very complicated in

general, and it is not possible to obtain maximum likelihood estimates or

even their approximate values analytically except for some models such

as the AR model in Chapter 7 and the polynomial trend model in Chapter

11.

In general, the maximum likelihood estimate of the parameter θ of

a time series model is obtained by using a numerical optimization al-

gorithm based on the quasi-Newton method described in Appendix A.

According to this method, using the value ℓ(θ ) of the log-likelihood and

the first derivative ∂ℓ/∂θ for a given parameter θ , the maximizer of ℓ(θ )
is automatically estimated by repeating

θk = θk−1 + λkH−1
k−1

∂ℓ

∂θ
, (4.35)

where θ0 is an initial estimate of the parameter. The step width λk and

the inverse matrix H−1
k−1 of the Hessian matrix are automatically obtained

by the algorithm.

Example (Maximum likelihood estimate of the Cauchy distribution

model) Assume that ten observations are given as follows.

−1.10 −0.40 −0.20 −0.02 0.02

0.71 1.35 1.46 1.74 3.89

The log-likelihood of the Cauchy distribution model

f (y|µ ,τ2) =
1

π

τ

(y− µ)2 + τ2,
(4.36)

is obtained by

ℓ(µ ,τ2) = 5logτ2−10logπ−
10

∑
n=1

log{(yn− µ)2 + τ2}. (4.37)
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Table 4.3 Estimation of the parameters of the Cauchy distribution by the quasi-

Newton method.

k µ τ2 log-likelihood ∂ℓ/∂ µ ∂ℓ/∂τ2

0 0.00000 1.00000 −19.1901 2.10968 −0.92404

1 0.38588 0.83098 −18.7140 −0.21335 −0.48655

2 0.34795 0.62966 −18.6536 −0.35810 0.06627

3 0.26819 0.60826 −18.6396 0.00320 −0.01210

4 0.26752 0.60521 −18.6395 0.00000 −0.00002

5 0.26752 0.60520 −18.6395 0.00000 0.00000

The first derivatives of the log-likelihood with respect to the parameter

θ = (µ ,τ2)T are given by

∂ℓ

∂ µ
= 2

10

∑
n=1

yn− µ

(yn− µ)2 + τ2
(4.38)

∂ℓ

∂τ2
=

5

τ2
−

10

∑
n=1

1

(yn− µ)2 + τ2
. (4.39)

Table 4.3 summarizes the optimization process for obtaining the

maximum likelihood estimate of the parameters of the Cauchy distri-

bution when the initial vector is set to θ0 = (0,1)T . The absolute values

of ∂ℓ/∂ µ and ∂ℓ/∂τ2 decrease rapidly, and the maximum likelihood

estimate is obtained with five recursions.

As noted in the above example, when the log-likelihood and the first

derivatives are obtained analytically, the maximum likelihood estimate

of the parameter of the model can be obtained by using a numerical op-

timization method. However, in time series modeling, it is difficult to

obtain the first derivative of the log-likelihood, because for many time

series models, the log-likelihood function is in a very complicated form.

For many time series models, the log-likelihood is evaluated numerically,

using a Kalman filter. Even in such cases, the maximum likelihood esti-

mate can be obtained by using the first derivative computed by numerical

differentiation of the log-likelihood. Table 4.4 shows the result of opti-

mization by this method using the log-likelihood only. The results are

almost identical with Table 4.2, and the recursion terminates in a smaller

number of iterations.



62 STATISTICAL MODELING

Table 4.4 Estimation of the parameters of the Cauchy distribution by a quasi-

Newton method that uses numerical differentiation.

k µ τ2 log-likelihood ∂ℓ/∂ µ ∂ℓ/∂τ2

0 0.00000 1.00000 −19.1901 2.10967 −0.92404

1 0.38588 0.83098 −18.7140 −0.21335 −0.48655

2 0.34795 0.62966 −18.6536 −0.35810 0.06627

3 0.26819 0.60826 −18.6396 0.00320 −0.01210

4 0.26752 0.60521 −18.6395 0.00000 −0.00000

4.5 AIC (Akaike Information Criterion)

It has been established that the log-likelihood is a natural estimator of the

expected log-likelihood and that the maximum likelihood method can be

used for estimation of the parameters of the model. Similarly, if there

are several candidate parametric models, it seems natural to estimate the

parameters by the maximum likelihood method, and then find the best

model by comparing the values of the maximum log-likelihood ℓ(θ̂ ).
However, the maximum log-likelihood is not directly available for com-

parisons among several parametric models, because of bias. That is, for

the model with the maximum likelihood estimate θ̂ , the maximum log-

likelihood (N−1ℓ(θ̂ ) has a positive bias as an estimator of EY log f (Y |θ̂ )
(see Figure 4.3 and Konishi and Kitagawa (2008)).

This bias is caused by using the same data twice for the estimation of

the parameters of the model and also for the estimation of the expected

log-likelihood for evaluation of the model.

The bias of N−1ℓ(θ̂ ) ≡ N−1 ∑N
n=1 log f (yn|θ̂ ) as an estimate of

EY log f (Y |θ̂) is given by

C ≡ EX

{

EY log f (Y |θ̂)−N−1
N

∑
n=1

log f (yn|θ̂ )

}

. (4.40)

Note here that the maximum likelihood estimate θ̂ depends on the sam-

ple X and can be expressed as θ̂ (X). And the expectation EX is taken

with respect to X .

Then, correcting the maximum log-likelihood ℓ(θ̂ ) for the bias

C, N−1ℓ(θ̂ ) + C becomes an unbiased estimate of the expected log-

likelihood EY log f (Y |θ̂ ). Here, as will be shown later, since the bias

is evaluated as C =−N−1k, we obtain the Akaike Information Criterion
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Figure 4.3 Difference between the expected log-likelihood and the log-likeli-

hood.

(AIC)

AIC = −2 ℓ(θ̂)+ 2 k

= −2 (maximum log-likelihood)

+ 2 (number of parameters). (4.41)

In this book, AIC is used as a criterion for model selection (Akaike

(1973,1974), Sakamoto et al. (1986) and Konishi and Kitagawa (2008)).

Hereinafter, a brief derivation of the AIC will be shown in this sec-

tion. Readers who are not interested in the model selection criterion itself

may skip this part. For more details and other criteria, such as BIC and

GIC, the readers are referred to Konishi and Kitagawa (2008).

Here, it is assumed that the true distribution is f (y), the model dis-

tribution is g(y) and the maximum likelihood estimate of the parame-

ter θ based on data X = (x1, · · · ,xN) is denoted by θ̂ ≡ θ̂(X). On the

other hand, the parameter θ0 that maximizes the expected log-likelihood
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EY log f (Y |θ ) is called the true parameter. Then, θ0 satisfies

∂

∂θ
EY log f (Y |θ0) = 0.

On the other hand, since θ̂ maximizes the log-likelihood function

ℓ(θ ) = ∑
N
n=1 log f (xn|θ ), the following equation holds.

∂

∂θ

N

∑
n=1

log f (xn|θ̂ ) = 0.

Here, the terms in (4.37) can be decomposed into three terms (see Figure

4.3).

C = EX

{

EY log f (Y |θ̂ )−EY log f (Y |θ0)
}

+ EX

{

EY log f (Y |θ0)−N−1
N

∑
n=1

log f (xn|θ0)

}

+ EX

{

N−1
N

∑
n=1

log f (xn|θ0)−N−1
N

∑
n=1

log f (xn|θ̂ )

}

≡ C1 +C2 +C3. (4.42)

4.5.1 Evaluation of C1

Consider the Taylor series expansion around θ0 of the expected log-

likelihood EY log f (Y |θ̂ ) of the model specified by the maximum like-

lihood estimate up to the second order. Exchanging the order of the dif-

ferentiation and the expectation, we have

EY log f (Y |θ̂) ≈ EY log f (Y |θ0)+

{

∂

∂θ
EY log f (Y |θ0)

}

(θ̂ −θ0)

+
1

2
(θ̂ −θ0)

T

{

∂ 2

∂θ∂θ T
EY log f (Y |θ0)

}

(θ̂ −θ0)

= EY log f (Y |θ0)−
1

2
(θ̂ −θ0)

T J(θ̂ −θ0).

Here, I and J are the Fisher information matrix and the negative of the

expected Hessian defined by (4.29) and (4.30), respectively.

Then, according to the central limit theorem (4.28),
√

N
(

(θ̂ −θ0

)

follows a normal distribution with mean 0 and the variance-covariance



AIC (AKAIKE INFORMATION CRITERION) 65

matrix J−1IJ−1. Therefore, by taking the expectation with respect to X ,

it follows that

EX(θ̂ −θ0)
T J(θ̂ −θ0) =

1

N
trace

{

IJ−1
}

≈ k

N
(4.43)

where k is the dimension of the matrix I. Note that, if there exists θ0 such

that g(y) = f (y|θ0), it follows that J = I, and trace
{

IJ−1
}

= k (Konishi

and Kitagawa (2008)). Thus, we have an approximation to C1 :

C1 ≡ EX

{

EY log f (Y |θ̂ )−EY log f (Y |θ0)
}

≈ − k

2N
. (4.44)

4.5.2 Evaluation of C3

By the Taylor series expansion of N−1 ∑N
n=1 log f (xn|θ0) around θ̂ , it

follows that

1

N

N

∑
n=1

log f (xn|θ0)

≈ 1

N

N

∑
n=1

log f (xn|θ̂ )+
1

N

N

∑
n=1

∂

∂θ
log f (xn|θ̂ )(θ0− θ̂)

+
1

2
(θ0− θ̂)T

{

1

N

N

∑
n=1

∂ 2

∂θ∂θ T
log f (xn|θ̂ )

}

(θ0− θ̂).(4.45)

Since θ̂ is the maximum likelihood estimate, the second term on the

right-hand side becomes 0. Moreover, according to the law of large num-

bers, if N→∞, it is the case that

1

N

N

∑
n=1

∂ 2

∂θ∂θ T
log f (xn|θ̂ )−→ EY

{

∂ 2

∂θ∂θ T
log f (Y |θ0)

}

=−J,

(4.46)

and we have

1

N

N

∑
n=1

log f (xn|θ0)≈
1

N

N

∑
n=1

log f (xn|θ̂ )− 1

2
(θ0− θ̂)T J(θ0− θ̂).

Therefore, similarly to (4.44), by taking the expectation of both

sides, we have the approximation

C3 = EX

{

1

N

N

∑
n=1

log f (xn|θ0)−
1

N

N

∑
n=1

log f (xn|θ̂ )

}

≈ − k

2N
. (4.47)
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4.5.3 Evaluation of C2

Since the expectation of log f (xn|θ0) becomes the expected log-

likelihood for any fixed θ0, we have

C2 = EX

{

EY log f (Y |θ0)−
1

N

N

∑
n=1

log f (xn|θ0)

}

= 0. (4.48)

4.5.4 Evaluation of C and AIC

By summing up the three expressions (4.44), (4.47) and (4.48), we have

the approximation

C = EX

{

EY log f (Y |θ̂ )− 1

N

N

∑
n=1

log f (xn|θ̂ )

}

≈− k

N
, (4.49)

and this shows that N−1ℓ(θ̂ ) is larger than EY log f (Y |θ̂ ) by k/N on av-

erage.

Therefore, it can be seen that

N−1ℓ(θ̂ )+C ≈ N−1
(

ℓ(θ̂)− k
)

(4.50)

is an approximately unbiased estimator of the expected log-likelihood

EY log f (Y |θ̂) of the maximum likelihood model. The AIC is defined by

multiplying (4.46) by −2N, i.e.,

AIC = −2 ℓ(θ̂) + 2 k

= −2 (maximum log-likelihood)

+ 2 (number of parameters). (4.51)

Because minimizing the AIC is approximately equivalent to mini-

mizing the K-L information, an approximately optimal model is obtained

by selecting the model that minimizes AIC. A reasonable and automatic

model selection thus becomes possible by using this AIC.

4.6 Transformation of Data

When we draw graphs of positive valued processes, such as the number

of occurrences of a certain event, the number of people or the amount of

sales, we may find that the variance increases together with an increase

in the mean value or the distribution is highly skewed. It is difficult to
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Figure 4.4 Log-transformation of the sunspot number data and the WHARD

data.

analyze such data using a simple model since the characteristics of the

data change with its level and the distribution is significantly different

from the normal distribution, unless we use the nonstationary models

described in Chapters 11, 12 and 13, or the non-Gaussian models in

Chapters 14 and 15.

Even in those cases, the variance of the log-transformed series zn =
logyn might become almost uniform and its marginal distribution might

be reasonably approximated by a normal distribution. In Figure 4.4, it

can be seen that the highly skewed sunspot number data shown in plot

(b) of Figure 1.1 become almost symmetric after log-transformation.

Moreover, the WHARD data shown in the plot (e) of Figure 1.1 can be

transformed to a series with approximately constant variance after log-

transformation, though the variance of the original time series increases

gradually with time.

The Box-Cox transformation is well known as a generic data trans-
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formation (Box and Cox (1964)), which includes the log-transformation

as a special case

zn =

{

λ−1(yλ
n −1), if λ 6= 0

logyn, if λ = 0.
(4.52)

Ignoring a constant term, the Box-Cox transformation yields the loga-

rithm of the original series for λ = 0, the inverse for λ = −1 and the

square root for λ = 0.5. In addition, it agrees with the original data for

λ = 1. Applying the information criterion AIC to the Box-Cox transfor-

mation, we can determine the best parameter λ of the Box-Cox trans-

formation (Konishi and Kitagawa (2008)). On the assumption that the

density function of the data zn = h(yn) obtained by the Box-Cox trans-

formation of data yn is given by f (z), then the density function of yn is

obtained by

g(y) =

∣

∣

∣

∣

dh

dy

∣

∣

∣

∣

f (h(y)). (4.53)

Here, |dh/dy| is called the Jacobian of the transform. The equation

(4.53) implies that a model for the transformed series automatically de-

termines a model for the original data. For instance, assume that the val-

ues of AICs of the normal distribution models fitted to the original data

yn and transformed data zn are evaluated as AICy and AICz, respectively.

Then, it can be judged which, the original data or the transformed data,

is closer to a normal distribution by comparing the values of

AIC′
z = AICz−2

N

∑
i=1

log

∣

∣

∣

∣

dh

dy

∣

∣

∣

∣

y=yi

(4.54)

with AICy.

Namely, it will be considered that the original data are better than the

transformed data, if AICy < AIC′
z, and the transformed data are better, if

AICy > AIC′
z. Further, by finding a value that minimizes AIC′

z, the opti-

mal value λ of the Box-Cox transformation can be selected. However, in

actual time series modeling, we usually fit various time series models to

the Box-Cox transformation of the data. Therefore, in such a situation, it

is necessary to correct the AIC of the time series model with the Jacobian

of the Box-Cox transformation.
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Table 4.5: Various Box-Cox transforms and their AICs.

λ AIC λ AIC λ AIC

−1.0 2365.12 −0.2 2355.45 0.6 2370.74

−0.8 2360.46 0.0 2356.89 0.8 2378.55

−0.6 2357.27 0.2 2359.90 1.0 2387.94

−0.4 2355.59 0.4 2364.52

Example (Box-Cox transformation of the sunspot number data)

Table 4.5 shows the results of applying the Box-Cox transformation

with various values of λ to the sunspot number data of Figure 1.1(b).

In this case, it can be seen that the transformation with λ =−0.2, that is,

zn = y
−1/5
n is the best Box-Cox transformation.

Problems

1. Given n integers {m1, . . . ,mn}, obtain the maximum likelihood esti-

mate λ̂ of the Poisson distribution model f (m|λ ) = e−λ λ m/m!.

2. Given two sets of data {x1, . . . ,xn} and {y1, . . . ,ym} that follow nor-

mal distributions,

(1) Assuming that the variances are the same, show a method of check-

ing whether the means are identical by using the AIC.

(2) Assuming that the means are the same, show a method of checking

whether the variances are identical by using the AIC.

3. Given data {y1, . . . ,yn}, consider a method of deciding whether a

Gaussian model or a Cauchy model is better by using the AIC.

4. In tossing a coin n times, a head occurred m times.

(1) Obtain the probability of the occurrence of a head.

(2) Consider a method of deciding whether this is a fair coin, based on

the AIC.

5. Assume that the true density function is g(y) and the model is f (y|θ ).
If there exists θ0 such that g(y) = f (y|θ0), show that J = I.

6. Obtain the density function of y when z = logy follows a Gaussian

distribution N(µ ,σ2).





Chapter 5

The Least Squares Method

For many regression models and time series models that assume nor-

mality of the noise distribution, least squares estimates may often coin-

cide with or provide good approximations to the maximum likelihood

estimates of the unknown parameters. This chapter explains the House-

holder transformation as a convenient method to obtain least squares es-

timates of regression models (Golub (1965), Sakamoto et al. (1986)).

With this method, we can obtain precise estimates of the coefficients of

the model and perform order selection or variable selection based on the

information criterion AIC quite efficiently.

5.1 Regression Models and the Least Squares Method

On the assumption that yn is the objective variable and xn1, · · · ,xnm are

the explanatory variables, a model that expresses the variation of yn by

the linear combination of the explanatory variables

yn =
m

∑
i=1

aixni + εn, (5.1)

is called a regression model. Here, ai is called the regression coefficient

of the explanatory variable xni and the number of explanatory variables

m is called the order of the model. Moreover, εn, a portion of the vari-

ation of yn that cannot be explained by the variation of the explanatory

variables is called the residual, and it is assumed to be an independent

random variable that follows a normal distribution with mean 0 and vari-

ance σ2.

Defining the N dimensional vector y and the N×m matrix Z as

y =











y1

y2

...

yN











, Z =











x11 · · · x1m

x21 · · · x2m

...
...

xN1 · · · xNm











, (5.2)
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the regression model can be concisely expressed by the matrix-vector

representation

y = Za + ε. (5.3)

The vector y and the matrix Z are called the vector of objective vari-

ables and the matrix of explanatory variables (or design matrix), re-

spectively. a = (a1, · · · ,am)T is a vector of regression coefficients, and

ε = (ε1, · · · ,εN)T is a vector of residuals. The regression model (5.1)

contains the regression coefficients a1, · · · ,am, and the variance σ2 as

parameters, and we can combine these as a vector of parameters, θ =
(a1, · · · ,am,σ2)T .

When N independent observations {yn,xn1, · · · ,xnm}, n = 1, · · · ,N,

are given, the likelihood and log-likelihood of the regression model be-

come functions of θ , and are given by

L(θ ) =
N

∏
n=1

p(yn|θ ,xn1, · · · ,xnm) (5.4)

ℓ(θ ) =
N

∑
n=1

log p(yn|θ ,xn1, · · · ,xnm), (5.5)

respectively. Here, from equation (5.1), each term of the right-hand side

of the above equations can be expressed as

p(yn|θ ,xn1, · · · ,xnm) =
1√

2πσ2
exp

{

− 1

2σ2

(

yn−
m

∑
i=1

aixni

)2}

, (5.6)

log p(yn|θ ,xn1, · · · ,xnm) =−1

2
log2πσ2− 1

2σ2

(

yn−
m

∑
i=1

aixni

)2

, (5.7)

and the log-likelihood function is given by

ℓ(θ ) =−N

2
log2πσ2− 1

2σ2

N

∑
n=1

(

yn−
m

∑
i=1

aixni

)2

. (5.8)

The maximum likelihood estimate θ̂ = (â1, · · · , âm, σ̂2)T of the pa-

rameter θ can be obtained by finding the value of θ that maximizes

the log-likelihood function ℓ(θ ). Given any set of regression coefficients

a1, · · · ,am, the maximum likelihood estimate of σ2 can be obtained by

solving the normal equation

∂ℓ(θ )

∂σ2
=− N

2σ2
+

1

2(σ2)2

N

∑
n=1

(

yn−
m

∑
i=1

aixni

)2

= 0. (5.9)
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Therefore, σ2 can be easily obtained as

σ̂2 =
1

N

N

∑
n=1

(

yn−
m

∑
i=1

aixni

)2

. (5.10)

Then, substituting this into (5.8), the log-likelihood becomes a func-

tion of the regression coefficients a1, · · · ,am and is given by

ℓ(a1, · · · ,am) =−N

2
log2πσ̂2− N

2
. (5.11)

Since the logarithm is a monotone increasing function, the regression

coefficients a1, · · · ,am that maximize the log-likelihood (5.11) are ob-

tained by minimizing the variance σ̂2 in (5.10). Thus, it can be seen that

the maximum likelihood estimates with respect to the parameters of the

regression model could be obtained by the least squares method.

5.2 The Least Squares Method Based on the Householder

Transformation

As shown in the previous section, the maximum likelihood estimates of

the regression coefficients of linear regression models can be obtained by

the least squares method that minimizes (5.10). Here, using the matrix-

vector notation of (5.2) and (5.3), the residual sum of squares can be

simply expressed as

N

∑
n=1

(

yn−
m

∑
i=1

aixni

)2

= ‖y−Za‖2
N = ‖ε‖2

N , (5.12)

where ‖y‖N denotes the Euclidean norm of the N dimensional vector

y. The well-known derivation of the least squares method is to set the

partial derivative of ||y−Za‖2
N in (5.12) with respect to the parameter a

equal to zero, which results in the normal equation ZT y = ZT Za. Then,

solving this equation, we obtain the least squares estimates of a by â =
(ZT Z)−1ZT y.

However, in actual computation, it is convenient to use the following

method based on orthogonal transformation, since it can yield accurate

estimates and it is suited for various kinds of modeling operations (Golub

(1965), Sakamoto et al. (1986)).

For any N×N orthogonal matrix U , the norm of the vector y−Za is

unchanged, even if it is transformed by U . Namely, we have that

||y−Za ||2N = ‖U(y−Za)‖2
N = ‖Uy−UZa‖2

N, (5.13)
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and this implies that the vector a that minimizes ||Uy−UZa||2N is iden-

tical to the one that minimizes ||y−Za||2N . Therefore, to obtain the least

squares estimates of a, we can first apply an orthogonal transformation

to make UZ an adequate form and then find a vector a that minimizes

(5.13).

The least squares method based on (5.13) can be realized very effi-

ciently by using a Householder transformation as follows (Golub (1965),

Sakamoto et al. (1986)). First, define an N× (m+ 1) matrix

X = [ Z| y ] , (5.14)

by augmenting with the vector of objective variables y to the right of the

matrix of the explanatory variables Z.

Applying a suitable Householder transformation U to the matrix X ,

it can be transformed to an upper triangular matrix S as

UX = S =















s11 · · · s1m s1,m+1

. . .
...

...

smm sm,m+1

sm+1,m+1

O















. (5.15)

Here, since the first m rows and the (m + 1)-th rows of S correspond to

UZ and Uy in equation (5.13), respectively, we have that

‖Uy−UZa‖2
N =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥



















s1,m+1

...
sm,m+1

sm+1,m+1
0
...
0



















−



















s11 · · · s1m

. . .
...

smm

O

























a1

...

am







∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

N

=

∥

∥

∥

∥

∥

∥

∥







s1,m+1

...

sm,m+1






−







s11 · · · s1m

. . .
...

O smm













a1

...

am







∥

∥

∥

∥

∥

∥

∥

2

m

+ s2
m+1,m+1

(5.16)

It should be noted that the second term s2
m+1,m+1 on the right-hand

side of (5.16) does not depend on the value of a and takes a constant

value. Therefore, the least squares estimate is obtained by finding the
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vector a = (a1, · · · ,am)T that attains the minimum of the first term,

namely 0. This shows that the least squares estimate of a is obtained

as the solution to the linear equation







s11 · · · s1m

. . .
...

O smm













a1

...

am






=







s1,m+1

...

sm,m+1






. (5.17)

The linear equation (5.17) can be easily solved by backward substitution,

because the matrix on the left-hand side is in upper triangular form. That

is, we can obtain a = (a1, · · · ,am)T by

âm =
sm,m+1

smm

(5.18)

âi =
(si,m+1− si,i+1âi+1−·· ·− si,mâm)

sii

, i = m−1, · · · ,1.

Further, since s2
m+1,m+1 is the sum of squares of the residual vector,

the least squares estimate of the residual variance σ2 of the regression

model with order m is obtained by

σ̂2
m =

s2
m+1,m+1

N
. (5.19)

5.3 Selection of Order by AIC

By substituting the estimate of the residual variance obtained from (5.19)

into (5.11), the maximum log-likelihood becomes

ℓ(θ̂) =−N

2
log
(

2πσ̂2
m

)

− N

2
. (5.20)

The regression model with order m has m+1 parameters, a1, · · · ,am and

σ2. Therefore, the AIC of the regression model with order m is given by

AICm = −2 ℓ(θ̂) + 2 (number of parameters)

= N(log
(

2πσ̂2
m

)

+ 1) + 2 (m+ 1). (5.21)

If the upper triangular matrix S in (5.15) is given, not only the regres-

sion model with order m, but also all regression models with order less

than m can be obtained. That is, for j ≤ m, the estimate of the residual
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variance and the AIC of the regression model with j explanatory vari-

ables, xn1, · · · ,xn j,

yn =
j

∑
i=1

aixni + εn, (5.22)

are obtained by (Sakamoto et al. (1986))

σ̂2
j =

1

N

m+1

∑
i= j+1

s2
i,m+1

AIC j = N(log2πσ̂2
j + 1)+ 2 ( j + 1). (5.23)

The least squares estimates of the regression coefficients can be obtained

by solving the linear equation by backward substitution,







s11 · · · s1 j

. . .
...

s j j













a1

...

a j






=







s1,m+1

...

s j,m+1






. (5.24)

To perform order selection using the AIC, we need to compute

AIC0, · · · ,AICm by (5.23), and to look for the order that achieves the

smallest value. Here we note that once the upper triangular matrix S is

obtained, the AICs of the regression models of all orders can be immedi-

ately computed by (5.23) without estimating the regression coefficients.

Therefore, the estimation of the regression coefficients by (5.24) is nec-

essary only for the model with the order that attains the minimum value

of the AIC.

Example (Trigonometric regression model) Table 5.1 summarizes

the residual variances and the AICs when trigonometric regression mod-

els with various orders

yn = a +
m

∑
j=1

b j sin( jωn)+
ℓ

∑
j=1

c j cos( jωn)+ εn, (5.25)

are fitted to the maximum temperature data shown in Figure 1.1(c).

Here, ℓ is either m or m− 1. The numbers in the right-most column

in the Table 5.1 show the differences of the AICs from the minimum

AIC value. The explanatory variables were assumed to be adopted in

the order of {1, sinωn, cosωn, · · · , sinkωn, coskωn}. Therefore, the

parameter vector of the model with the highest order becomes θ =
(a, b1, c1, · · · ,bk, ck)

T . The number of regression coefficients is p = 2m
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Table 5.1 Residual variances and AICs of regression models of various orders.

p: number of regression coefficients of the model, σ̂2
p : residual variance, D-AIC:

difference of AIC

p σ̂2
p AIC D-AIC p σ̂2

p AIC D-AIC

0 402.62 4298.23 1861.17 11 9.04 2475.06 38.00

1 60.09 3375.76 938.69 12 8.71 2459.04 21.98

2 44.54 3232.23 795.17 13 8.70 2460.84 23.78

3 9.29 2475.54 35.48 14 8.64 2459.36 22.30

4 9.29 2474.31 37.25 15 8.64 2461.00 23.94

5 9.28 2476.14 39.08 16 8.42 2450.71 13.65

6 9.28 2477.94 40.87 17 8.40 2451.57 14.51

7 9.27 2479.23 42.16 18 8.24 2443.98 6.92

8 9.27 2481.22 44.16 19 8.10 2437.80 0.74

9 9.26 2483.08 46.02 20 8.05 2437.06 0.00

10 9.04 2473.11 36.05 21 8.05 2438.65 1.58

for ℓ = m−1 and p = 2m+ 1 for ℓ = m. The model with the highest or-

der k = 10 has 21 explanatory variables. Since a strong annual cycle was

seen in this data, it was assumed that ω = 2π/365. Table 5.1 shows the

AIC of the model with 20 explanatory variables, that is, composed of a

constant term, 10 sine components and 9 cosine components attains the

minimum. Figure 5.1 shows the original data and the regression curve

obtained using this model.

Figure 5.1 Original data and the minimum AIC regression curve for the maxi-

mum temperature data.
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5.4 Addition of Data and Successive Householder Reduction

Utilizing the properties of orthogonal transformations, it is easily pos-

sible to update the model by addition of data (Kitagawa and Akaike

(1978)). In the case of fitting a regression model to a huge data set, if

we try to store the matrix of (5.14), then the memory of the computer

might become overloaded, thus making execution impossible.

Even in this case, repeated application of the method introduced in

this section yields the upper triangular matrix in (5.13). That is, if our

computer has a memory sufficient to store the area of the L× (m + 1)
matrix (here, L > m + 1), then the upper triangular matrix S can be ob-

tained by dividing the data into several sub-data-sets with data length

less than or equal to L−m−1.

Assuming that an upper triangular matrix S has already been obtained

from N sets of data {yn,xn1, · · · ,xnm}, n = 1, · · · ,N, we could effectively

obtain a regression model from the matrix S, as shown in section (5.15).

Here, we assume that M new sets of data {yn,xn1, · · · ,xnm}, n = N +
1, · · · ,N +M, are obtained. Then, in order to fit a regression model to the

entire N + M sets of data, we have to construct the (N + M)× (m + 1)
matrix

X1 =







x11 · · · x1m y1

...
. . .

...
...

xN+M,1 · · · xN+M,m yN+M






(5.26)

instead of (5.14) and then transform this into an upper triangular matrix

by a Householder transformation S′ =U ′X1. Inconveniently, this method

cannot utilize the results of the computation for the previous data sets,

and we need a large storage area for preparing the (N + M)× (m + 1)
matrix X1.

Since the Householder transformation is an orthogonal transforma-

tion, it can be shown that the same matrix as S′ can be obtained by build-

ing an (M + m + 1)× (m + 1) matrix by argumenting an M× (m + 1)
matrix under the triangular matrix (5.15), thus:

X2 =

























s11 · · · s1m s1,m+1

. . .
...

...

smm sm,m+1

O sm+1,m+1

xN+1,1 · · · xN+1,m yN+1

...
. . .

...
...

xN+M,1 · · · xN+M,m yN+M

























, (5.27)
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and reducing it to an upper triangular matrix by a Householder transfor-

mation.

Therefore, to perform a Householder transformation of data length

longer than L, we first obtain an upper triangular matrix S by putting

N = L, and then repeat the update of S by adding M = L−m− 1 data

elements.

On the other hand, if the upper triangular matrix S2 has already been

obtained from a new data set {yn,xn1, · · · ,xnm}, n = N + 1, · · · ,N + M,

then we define a 2(m+ 1)× (m+ 1) matrix by

X3 =

[

S1

S2

]

, (5.28)

and by reducing it to upper triangular form, we can obtain the same ma-

trix as S′.
For M ≫ m, since the number of rows of the matrix X3 is smaller

than the number of rows of X1 and X2, the amount of computation for the

Householder transformation of X3 is significantly less than that required

for the other methods. This method will be used in Chapter 8 to fit a

locally stationary AR model.

5.5 Variable Selection by AIC

In Section 5.3, the method of selection of the order for the model by AIC

was explained. However, in that section, it was implicitly assumed that

the order of adopting the explanatory variables was provided beforehand,

and only a model of the form

yn =
j

∑
i=1

aixni + εn (5.29)

was considered.

This method of selecting variables is quite natural for the autoregres-

sive model shown in Section 6.1 and the polynomial regression model

shown in Section 11.1. However, with respect to a multivariate regres-

sion model and multivariate time series models, the order of adopting

variables as explanatory variables is not generally provided beforehand.

Assuming that (ℓ1, · · · , ℓm) is an index vector that indicates the order of

adopting the explanatory variables, the optimal model could be selected

among models of the form

yn =
j

∑
i=1

aℓi
xn,ℓi

+ εn. (5.30)
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In this case, even if the order j is provided, there are mC j different

models, depending on the index vector. Such a model is called a subset

regression model. To fit subset regression models with explanatory vari-

ables in the order of (ℓ1, · · · , ℓm), transform the upper triangular matrix S

to the matrix T that consists of m+1 column vectors with the numbers of

non-zero elements given by j1, · · · , jm, respectively, by the Householder

transformation. Here, j1, · · · , jm is the inverse function of the index vec-

tor (ℓ1, · · · , ℓm), satisfying ℓ ji = i.

Example For the case of m = 4 and (ℓ1, ℓ2, ℓ3, ℓ4) = (2,4,3,1), it

becomes ( j1, · · · , jm) = (4,1,3,2) and the matrix T is given by

T =













t11 t12 t13 t14 t15

t21 0 t23 t24 t25

t31 0 t33 0 t35

t41 0 0 0 t45

0 0 0 0 t55













. (5.31)

Then, the residual variance and the AIC of the model that uses the j

explanatory variables {xnl1 , · · · ,xnl j
} are given by

σ̂2(ℓ1, · · · , ℓ j) =
1

N

m+1

∑
i= j+1

t2
i,m+1

AIC(ℓ1, · · · , ℓ j) = N log2πσ̂2(ℓ1, · · · , ℓ j)+ N + 2 ( j + 1).

(5.32)

Regression coefficients are then obtained by solving the linear equation







t1,ℓ1
· · · t1,ℓ j

. . .
...

O t j,ℓ j













aℓ1

...

aℓ j






=







t1,m+1

...

t j,m+1






(5.33)

by backward substitution.

However, in actual computation, it is not necessary to exchange the

order of explanatory variables and reduce the matrix to upper triangular

form. We can easily obtain them from the upper triangular matrix T of

(5.31) by the following backward substitution:

âℓ j
= t−1

j,ℓ j
t j,m+1 (5.34)

âℓi
= t−1

i,ℓi
(ti,m+1− ti,ℓi+1âℓi+1−·· ·− ti,ℓ j

âℓ j
), i = j−1, · · · ,1.
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Problems

1. Obtain the AIC when the variance σ2 is known in the regression

model in (5.1).

2. Assume that N pairs of data {x1,y1}, . . . ,{xN ,yN} are given.

(1) Obtain the least squares estimates â and b̂ of the second-order

polynomial regression model yn = ax2
n + bxn + εn that passes

through the origin.

(2) Obtain a second-order polynomial regression model that passes

through the origin and the point (c,0), and consider how to ob-

tain the least squares estimate of the model.





Chapter 6

Analysis of Time Series Using
ARMA Models

The features of time series can be concisely described using time series

models. In this chapter, we consider methods for obtaining the impulse

response function, the autocovariance function, the partial autocorrela-

tion (PARCOR), the power spectrum and the roots of the characteristic

equation from the univariate ARMA model (Box and Jenkins (1970),

Brockwell and Davis (1991), Shumway and Stoffer (2000)). The rela-

tions between the AR coefficients and the PARCORs are also shown.

Further, methods of obtaining the cross spectrum and the relative power

contribution based on the multivariate AR model are presented.

6.1 ARMA Model

A model that expresses a time series yn as a linear combination of past

observations yn−i and white noise vn−i is called an autoregressive mov-

ing average model (ARMA model),

yn =
m

∑
i=1

aiyn−i + vn−
ℓ

∑
i=1

bivn−i. (6.1)

Here, m and ai are called the autoregressive order and the autoregres-

sive coefficient (AR coefficient), respectively. Similarly, ℓ and bi denote

the moving average order and the moving average coefficient (MA co-

efficient), respectively. The AR order and the MA order (m, ℓ) taken to-

gether are called the ARMA order. Further, we assume that vn is a white

noise that follows a normal distribution with mean 0 and variance σ2 and

is independent of the past time series yn−i. That is, vn satisfies

E(vn) = 0,
E(v2

n) = σ2,
E(vnvm) = 0, for n 6= m

E(vnym) = 0, for n > m.

(6.2)

83
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A time series yn that follows an ARMA model is called an ARMA

process. In practical terms, the most important model is an AR model

(autoregressive model) of order m that expresses the time series as a

linear combination of the past values yn−i and the white noise vn and is

obtained by putting ℓ = 0,

yn =
m

∑
i=1

aiyn−i + vn. (6.3)

On the other hand, the model obtained by putting m = 0,

yn = vn−
ℓ

∑
i=1

bivn−i, (6.4)

is called the moving average model (MA model) of order ℓ.

It should be noted that almost all analysis of stationary time series

can be achieved by the use of AR models.

6.2 The Impulse Response Function

Using the time shift operator (or lag operator) B defined by Byn ≡ yn−1,

the ARMA model can be expressed as

(

1−
m

∑
i=1

aiB
i

)

yn =

(

1−
ℓ

∑
i=1

biB
i

)

vn. (6.5)

Here, let the AR operator and the MA operator be defined, respectively,

by

a(B)≡
(

1−
m

∑
i=1

aiB
i

)

, b(B)≡
(

1−
ℓ

∑
i=1

biB
i

)

,

then the ARMA model can be concisely expressed as

a(B)yn = b(B)vn. (6.6)

Dividing both sides of (6.6) by a(B), the ARMA model can be ex-

pressed as yn = a(B)−1b(B)vn. Therefore, if we define g(B) as a formal

infinite series

g(B)≡ a(B)−1b(B) =
∞
∑
i=0

giB
i, (6.7)
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the time series yn that follows the ARMA model can be expressed by a

moving average model with infinite order

yn = g(B)vn =
∞
∑
i=0

givn−i, (6.8)

i.e., a linear combination of present and past realizations of white noise

vn.

The coefficients gi; i = 0,1, · · ·, correspond to the influence of the

noise at time n = 0 to the time series at time i, and gi is called the impulse

response function of the ARMA model. Here, the impulse response gi is

obtained by the following recursive formula:

g0 = 1

gi =
i

∑
j=1

a jgi− j−bi, i = 1,2, · · · , (6.9)

where a j = 0 for j > m and b j = 0 for j > ℓ.

Example Consider the following four models:

(a) The first order AR model: yn = 0.9yn−1 + vn

(b) The second order AR model: yn = 0.9
√

3yn−1−0.81yn−2 + vn

(c) The second order MA model: yn = vn−0.9
√

2vn−1 + 0.81vn−2

(d) The ARMA model with order (2,2):

yn = 0.9
√

3yn−1−0.81yn−2 + vn−0.9
√

2vn−1 + 0.81vn−2

The plots (a), (b), (c) and (d) of Figure 6.1 show the impulse response

functions obtained from (6.9) for the four models. The impulse response

function of the MA model is non-zero only for the initial ℓ points. On the

other hand, if the model contains AR part, the impulse response function

has non-zero values although it gradually decays.

6.3 The Autocovariance Function

Taking the expectation after multiplying by yn−k on both sides of (6.1),

yields

E(ynyn−k) =
m

∑
i=1

aiE(yn−iyn−k)+E(vnyn−k)−
ℓ

∑
i=1

biE(vn−iyn−k). (6.10)

Here, from the expression of the ARMA model using the impulse re-

sponse given in (6.7), the covariance between the time series ym and the
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Figure 6.1: Impulse response functions of four models.

white noise vn is given by

E(vnym) =
∞
∑
i=0

giE(vnvm−i) =

{

0 n > m

σ2gm−n n≤ m
. (6.11)

We obtain the following equation with respect to the autocovariance

function Ck ≡ E(ynyn−k):

C0 =
m

∑
i=1

aiCi + σ2

{

1−
ℓ

∑
i=1

bigi

}

(6.12)

Ck =
m

∑
i=1

aiCk−i−σ2
ℓ

∑
i=1

bigi−k, k = 1,2, · · · .

Therefore, if the orders m and ℓ, the autoregressive and moving

average coefficients ai and bi, and the innovation variance σ2 of the

ARMA model are given, we first compute the impulse response function

g1, · · · ,gℓ by (6.9) and then obtain the autocovariance function C0,C1, · · ·
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Figure 6.2: Autocovariance functions of the four models.

by solving (6.13). In particular, the following equation for the AR model

obtained by putting ℓ = 0 is called the Yule-Walker equation

C0 =
m

∑
i=1

aiCi + σ2

Ck =
m

∑
i=1

aiCk−i. (6.13)

Note that, since for univariate time series, the autocovariance function

satisfies C−k = Ck, the backward model satifies the same equation.

Example Figure 6.2 shows the autocovariance functions of the four

models (a), (b), (c) and (d) shown in Figure 6.1. The autocovariance

functions of (b) and (d) indicate a damped oscillation. On the other hand,

for the MA model shown in (c), the autocovariance function becomes

Ck = 0 for k > 2.
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6.4 The Relation Between AR Coefficients and the PARCOR

As shown in Appendix B in this book, the following relation holds be-

tween the coefficients of the AR model with order m−1, am−1
i , and the

coefficient am
i of the AR model with order m

am
i = am−1

i −am
mam−1

m−i , i = 1, · · · ,m−1. (6.14)

The coefficient am
m is called the m-th PARCOR (partial autocorre-

lation coefficient). If the M PARCORs, a1
1, · · · ,aM

M, are given, repeated

application of Eq. (6.14) yields the entire set of coefficients of the AR

models with orders 2 through M. On the other hand, it can be seen from

(6.14) that, if the coefficients am
1 , · · · ,am

m of the AR model of the highest

order are given, by solving the equations

am
j = am−1

j −am
m

(

am
m− j + am

mam−1
j

)

(6.15)

for j = i and m− i, the coefficients of the AR model with order m−1 are

obtained by

am−1
i =

am
i + am

mam
m−i

1− (am
m)

2
. (6.16)

The PARCORs a1
1, · · · ,am

m can be obtained by repeating the above

computation. This argument reveals that estimation of the coefficients

am
1 , · · · ,am

m of the AR model of order m is equivalent to estimation of the

PARCORs up to the order m, a1
1, · · · ,am

m.

Example Figure 6.3 shows the PARCORs of the four models (a), (b),

(c) and (d). Contrary to the autocovariance function, we have ai
i = 0 for

i > m for the AR model with order m, and they gradually decay in the

cases of the MA model and the ARMA model.

6.5 The Power Spectrum of the ARMA Process

If an ARMA model of a time series is given, the power spectrum, as

well as the autocovariance function, can be obtained. Actually, the power

spectrum of the ARMA process (6.1) can be obtained from (6.8) as

p( f ) =
∞
∑

k=−∞
Cke−2π ik f (6.17)

=
∞
∑

k=−∞
E(ynyn−k)e

−2π ik f
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Figure 6.3: PARCORs of the four models.

=
∞
∑

k=−∞
E

{( ∞
∑
j=0

g jvn− j

)( ∞
∑
p=0

gpvn−k−p

)}

e−2π ik f

=
∞
∑

k=−∞

∞
∑
j=0

∞
∑
p=0

g jgpE
(

vn− jvn−k−p

)

e−2π ik f .

Here, using gp = 0 for p < 0, from (6.2), the power spectrum is ex-

pressed as

p( f ) = σ2
∞
∑

k=−∞

∞
∑
j=0

g jg j−ke−2π ik f

= σ2
∞
∑
j=0

j

∑
k=−∞

g je
−2π i j f g j−ke−2π i(k− j) f

= σ2
∞
∑
j=0

∞
∑
p=0

g je
−2π i j f gpe2π ip f

= σ2

∣

∣

∣

∣

∞
∑
j=0

g je
−2π i j f

∣

∣

∣

∣

2

, (6.18)
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Figure 6.4: Logarithm of the power spectra of the four models.

where ∑
∞
j=0 g je

−2π i j f is the Fourier transform of the impulse response

function and is called the frequency response function. On the other hand,

putting B = e−2π i f in (6.7), it can be expressed as

∞
∑
j=0

g je
−2π i j f =

{

1−
m

∑
j=1

a je
−2π i j f

}−1{

1−
ℓ

∑
j=1

b je
−2π i j f

}

. (6.19)

Therefore, substituting the above frequency response function into

(6.18), the power spectrum of the ARMA model is given by

p( f ) = σ2

∣

∣

∣

∣

1−
ℓ

∑
j=1

b je
−2π i j f

∣

∣

∣

∣

2

∣

∣

∣

∣

1−
m

∑
j=1

a je
−2π i j f

∣

∣

∣

∣

2
. (6.20)

Example. Figure 6.4 shows the logarithm of the power spectra of

the four models. The power spectrum of the AR model with order one
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Figure 6.5: Line-like spectrum of ARMA(2.2).

does not have any peak or trough. A peak is seen in the plot (b) of the

spectrum of the second order AR model and one trough is seen in the

plot (c) of the second order MA model. On the other hand, the spectrum

of the ARMA model of order (2.2) shown in the plot (d) has both one

peak and one trough.

These examples indicate that there must be close relations between

the AR and MA orders and the number of peaks and troughs in the spec-

tra. The logarithm of the spectrum, log p( f ) shown in Figure 6.4, is ex-

pressible as

log p( f ) = logσ2−2log

∣

∣

∣

∣

1−
m

∑
j=1

a je
−2π i j f

∣

∣

∣

∣

+ 2log

∣

∣

∣

∣

1−
ℓ

∑
j=1

b je
−2π i j f

∣

∣

∣

∣

.

(6.21)

Therefore, the peak and the trough of the spectrum appear at the

local minimum of |1−∑
m
j=1 a je

−2π i j f | and at the local minimum of

|1−∑
l
j=1 b je

−2π i j f |, respectively. The number of peaks and troughs, re-

spectively, correspond to the number of roots of the AR operator and the

MA operator as will be explained in the next subsection. To express k

peaks or k troughs, the AR order or the MA order must be higher than

or equal to 2k, respectively. Moreover, the locations and the heights of

the peaks or the troughs are determined by the angles and the absolute

values of the complex roots of the characteristic equation.

In particular, when the angles of the complex roots of the AR opera-

tor coincide with those of the MA operator, a line spectrum appears. For

example, if the AR and MA coefficients of the ARMA (2.2) model are

given by

m = 2, a1 = 0.99
√

2, a2 =−0.992

ℓ = 2, b1 = 0.95
√

2, b2 =−0.952,
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both characteristic equations have roots at f = 0.125 ( = 45 degrees), and

log p( f ) has a line-like spectral peak as shown in Figure 6.5.

6.6 The Characteristic Equation

The characteristics of an ARMA model are determined by the roots of

the following two polynomial equations:

a(B) = 1−
m

∑
j=1

a jB
j = 0 (6.22)

b(B) = 1−
ℓ

∑
j=1

b jB
j = 0. (6.23)

Equations (6.22) and (6.23) are called the characteristic equation associ-

ated with the AR operator, and the MA operator, respectively. The roots

of these equations are called the characteristic roots. If the roots of the

characteristic equation a(B) = 0 of the AR operator all lie outside the

unit circle, the influence of noise turbulence at a certain time decays as

time progresses, and then the ARMA model becomes stationary.

On the other hand, if all roots of the characteristic equation b(B) = 0

of the MA operator lie outside the unit circle, the coefficient of hi of

b(B)−1 = ∑∞
i=0 hiB

i converges and the ARMA model can be expressed

by an AR model of infinite order as

yn =−
∞
∑
i=1

hiyn−i + vn. (6.24)

In this case, the time series is called invertible.

As mentioned in the previous section, the positions of the roots of the

two characteristic polynomials have a close relation to the shape of the

spectrum. The peak of the spectrum (or trough) appears at f = θ/2π , if

the complex root of AR (or MA) operator is expressed in the form

z = α + iβ = reiθ . (6.25)

Further, the closer the root r approaches to 1, the sharper the peak

and trough of the spectrum become. Figure 6.6 shows the positions of

the characteristic roots of the four models that have been used for the

examples in this chapter. The symbols ∗ and + denote the roots of the AR

operator and the roots of the MA operator, respectively. For convenience

in illustration, the position of z−1 = r−1e−iθ is displayed in Figure 6.6

instead of z.
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Figure 6.6 Characteristic roots. (a) AR model of order 1, (b) AR model of order

2, (c) MA model with order 2 and (d) ARMA model with order (2,2).

6.7 The Multivariate AR Model

For multivariate time series, yn = (yn(1), · · · ,yn(ℓ))
T , similar to the case

of univariate time series, the model that expresses a present value of the

time series as a linear combination of past values yn−1, · · · ,yn−M and

white noise is called a multivariate autoregressive model (MAR model)

yn =
M

∑
m=1

Amyn−m + vn, (6.26)
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where Am is the autoregressive coefficient matrix whose (i, j)-th element

is given by am(i, j), and vn is an ℓ dimensional white noise that satisfies

E(vn) =







0
...

0






, E(vnvT

n ) =







σ11 · · · σ1ℓ
...

. . .
...

σℓ1 · · · σℓℓ






= W

E(vnvT
m) = O, for n 6= m (6.27)

E(vnyT
m) = O, for n > m.

Here, O denotes the ℓ× ℓ matrix with 0 elements, and W is an ℓ× ℓ
symmetric matrix satisfying σi j = σ ji. The cross-covariance function of

yn(i) and yn( j) is defined by Ck(i, j) = E
{

yn(i)yn−k( j)
}

. Then, the ℓ× ℓ
matrix Ck = E(ynyT

n−k), the (i, j)-th component of which is Ck(i, j), is

called the cross-covariance function. Similar to the case of the univariate

time series, for the multivariate AR model, Ck satisfies the Yule-Walker

equation

C0 =
M

∑
j=1

A jC− j +W (6.28)

Ck =
M

∑
j=1

A jCk− j (k = 1,2, · · ·). (6.29)

As noted in Chapter 2, the cross-covariance function is not symmetric.

Therefore, for multivariate time series, the Yule-Walker equations for the

the backward AR model and the forward AR model are different.

The Fourier transform of the cross-covariance function Ck(s, j) is

called the cross spectral density function

ps j( f ) =
∞
∑

k=−∞
Ck(s, j)e−2π ik f

=
∞
∑

k=−∞
Ck(s, j)cos(2πk f )− i

∞
∑

k=−∞
Ck(s, j)sin(2πk f ).

(6.30)

Since the cross-covariance function is not an even function, the cross-

spectrum given by (6.30) has an imaginary part and is a complex number.

If the ℓ× ℓ matrix P( f ) is defined by

P( f ) =







p11( f ) · · · p1ℓ( f )
...

. . .
...

pℓ1( f ) · · · pℓℓ( f )






, (6.31)
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then the relations between the cross-spectrum matrix P( f ) and the cross-

covariance matrix Ck are given by

P( f ) =
∞
∑

k=−∞
Cke−2π ik f (6.32)

Ck =

∫ 1
2

− 1
2

P( f )e2π ik f df . (6.33)

For time series that follow the multivariate AR model, the cross-

spectrum can be obtained by (Whittle (1963))

P( f ) = A( f )−1W (A( f )−1)∗, (6.34)

where A∗ denotes the complex conjugate of the matrix A, and A( f ) de-

notes the ℓ× ℓ matrix whose ( j,k)-th component is defined by

A jk( f ) =
M

∑
m=0

am( j,k)e−2π im f . (6.35)

Here, it is assumed that a0( j, j) =−1 and a0( j,k) = 0 for j 6= k. Given

a frequency f , the cross spectrum is a complex number and can be ex-

pressed as

p jk( f ) = α jk( f )eiφ jk( f ), (6.36)

where

α jk( f ) =
√

(ℜ{p jk( f )})2 +(ℑ{p jk( f )})2

φ jk( f ) = arctan

{ℑ{p jk( f )}
ℜ{p jk( f )}

}

.

ℜ and ℑ denote the real and imaginary parts of the complex number,

respectively. Then, α jk( f ) is called the amplitude spectrum and φ jk( f )
is the phase spectrum. Moreover,

coh jk( f ) =
α jk( f )2

p j j( f )pkk( f )
(6.37)

denotes the square of the correlation coefficient between frequency com-

ponents of time series yn( j) and yn(k) at frequency f and is called the

coherency.

For convenience, A( f )−1 will be denoted as B( f ) =
(

b jk( f )
)

in the
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following. If the components of the white noise vn are mutually uncor-

related and the variance-covariance matrix becomes the diagonal matrix

W = diag{σ2
1 , · · · ,σ2

ℓ }, then the power spectrum of the i-th component

of the time series can be expressed as

pii( f ) =
ℓ

∑
j=1

bi j( f )σ2
j bi j( f )∗ ≡

ℓ

∑
j=1

|bi j( f )|2σ2
j . (6.38)

This indicates that the power of the fluctuation of the component

i at frequency f can be decomposed into the effects of ℓ noises, i.e.,

|bi j( f )|2σ2
j . Therefore, if we define ri j( f ) by

ri j( f ) =
|bi j( f )|2σ2

j

pii( f )
, (6.39)

it represents the ratio of the effect of vn( j) in the fluctuation of yn(i) at

frequency f .

The ri j( f ) is called the relative power contribution, which is appli-

cable to the analysis of a feedback system (Akaike (1968), Akaike and

Nakagawa (1989)). However, for convenience in drawing figures, a cu-

mulative power contribution is an effective tool, which is defined by

si j( f ) =
j

∑
k=1

rik( f ) =

j

∑
k=1

|bik( f )|2σ2
k

pii( f )
. (6.40)

Example Figure 6.7 shows the cross spectra obtained by using a

three-variate AR model for the three-variate time series composed of

the yaw rate, the pitch rate and the rudder angle shown in (a) and (h) of

Figure 1.1 (N = 500 and △t = 2 second) that were originally sampled

every second. Three of nine plots on the diagonal in the figure show the

logarithm of the power spectra of the yaw rate, the pitch rate and the

rudder angle, respectively. As for the power spectra of the yaw rate, the

maximum peak is seen in the vicinity of f = 0.25 (8 seconds cycle) and

for the pitch rate and the rudder angle in the vicinity of f = 0.125 (16

seconds cycle). On the other hand, three plots above the diagonal show

the absolute values of the amplitude spectra of the cross spectra, that is,

the logarithm of the amplitude spectra and three plots below the diagonal

show the phase spectra where some discontinuous jumps are seen. The

reason for this is that the phase spectra are displayed within the range

[−π ,π ].
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Figure 6.7 Spectra (diagonal), amplitude spectra (above diagonal) and phase

spectra (below diagonal) for the ship data.

Figure 6.8 shows the power spectra and the coherencies. Three plots

on the diagonal show the power spectra similarly to Figure 6.7. Three

other plots above the diagonal show the coherencies. Yaw rate and pitch-

ing both have two significant peaks at the same frequencies. The peak

of the rudder angle has slightly smaller frequency than those of yaw rate

and pitching.

On the other hand, Figure 6.9 shows the power contributions. In Fig-

ure 6.9, the two plots on top, respectively, show the absolute and the

relative power contributions of the yaw rate. Here, the plots in the left

column show the absolute cumulative power contribution and the plots

in the right column show the cumulative relative power contribution. All

plots in both columns of Figure 6.9 show the contribution of the yaw rate,
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Figure 6.8: Power spectra (3 in diagonal) and coherencies.

the pitch rate and the rudder angle from the bottom to the top in each

plot, respectively. The influence of the rudder angle is clearly visible for

f < 0.13. However, the influence of the rudder angle is barely noticeable

in the vicinity of f = 0.14 and 0.23, where the dominant power of the

yaw rate is found. This is probably explained by noting that this data set

has been observed under the control of a conventional PID autopilot sys-

tem that is designed to suppress the power of variation in the frequency

area f < 0.13.

Two plots in the second row show the power contribution of the

pitching. The contribution of the rudder angle is almost 50 percent in the

vicinity of f = 0.1, where the power spectrum is strong. This is thought

to be a side effect of the steering to suppress the variation of the yaw
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Figure 6.9: Power contributions.

rate. On the other hand, actual power is very small for f > 0.14 though

a strong influence of the yaw rate is seen.

Two figures in the third row show the power contribution to the rud-

der angle. It can be seen that the influence of the yaw rate is extremely

strong in the vicinity of f = 0.12, where the main power is located.
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Moreover, it can also be seen that, in the range of f < 0.08, the con-

tribution of the yaw rate becomes greater as the frequency decreases.

Problems

1.(1) Show the stationarity condition for AR(1).

(2) Show the stationarity condition for AR(2).

2. For an AR(1), yn = ayn−1 + vn, vn ∼ N(0,σ2):

(1) Obtain the one-step-ahead prediction error variance.

(2) Obtain the two-step-ahead prediction error variance.

(3) Obtain the k-step-ahead prediction error variance.

3. Assuming that the time series follows the models shown below and

that vn follows a white noise with mean 0 and variance σ2, obtain the

autocovariance function Ck.

(1) AR model of order 1: yn =−0.9yn−1 + vn

(2) AR model of order 2: yn = 1.2yn−1−0.6yn−2 + vn

(3) MA model of order 1: yn = vn−bvn−1

(4) ARMA model of order (1,1): yn = ayn−1 + vn−bvn−1

4. Assume that a time series follows an AR model of order 1, yn =
ayn−1 + vn, vn ∼ N(0,1).

(1) When the noise term vn is not a white noise but follows an autore-

gressive process of order 1, vn = bvn−1 +wn, show that yn follows

an AR model of order 2.

(2) Obtain the autocovariance function Ck, k = 0,1,2,3 of the contam-

inated series xn, defined by xn = yn + wn,wn ∼ N(0,0.1).

5.(1) Using the result of Problem 3 for Chapter 3 and the definition of

the power spectrum, show that the power spectrum of MA model

with order 1 can be expressed as p( f ) = |1−be−2π i f |2, where the

right-hand side can be expressed as 1 + b2−2bcos(2π f ).

(2) Using the fact that if σ2 = 1, the spectrum of an AR model of order

1, yn = ayn−1 +vn, can be expressed as p( f ) = (1−2acos(2π f )+
a2)−1, and show that the maximum and the minimum of the spec-

trum occurs at f = 0 or f = 0.5. Also, consider where the spectrum

p( f ) attains its maximum.

6. For an AR model of order 2, yn = a1yn−1 + a2yn−2 + vn, vn ∼
N(0,σ2):
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(1) Show the formula to obtain the autocovariance functionC0,C1, . . . .

(2) Show the expression to obtain the power spectrum p( f ), 0 ≤ f ≤
1/2.

(3) Obtain C0, C1, C2 when a1 = 0.8, a2 =−0.6 and σ2 = 1.

(4) For the same case, obtain the expression for the power spectrum

p( f ). Investigate for which frequency f , p( f ) attains its maxi-

mum.

7. Assume that a time series yn follows an MA model of order 1; yn =
vn−bvn−1, vn ∼ N(0,1).

(1) Obtain the autocovariance function Ck, k = 0,1,2,3.

(2) Express the time series by an AR model.

8.(1) Obtain the variance of the k-step-ahead prediction error εn+k|n for

an MA model of order 1; yn = vn−bvn−1, vn ∼ N(0,1).

(2) Express an AR model of order 1, yn = ayn−1 + vn, using an MA

model of infinite order and obtain the variance of the k-step-ahead

prediction error variance.

(3) Using the formal expansion of the random walk model yn = yn−1 +
vn, obtain the MA model of infinite order. Using that expression,

obtain the k-step-ahead prediction error variance of the random

walk model.





Chapter 7

Estimation of an AR Model

Among the stationary time series models discussed in the preceding

chapter, very efficient estimation methods can be derived for AR mod-

els. This chapter presents methods for estimating the parameters of the

AR model by the Yule-Walker method, the least squares method and the

PARCOR method. A method of determining the order of the AR model

using the AIC is also shown. In addition, the Yule-Walker method and

the least squares method for parameter estimation of the multivariate AR

model are shown.

7.1 Fitting an AR Model

Assuming that a time series y1, · · · ,yN is given, we consider the problem

of fitting an autoregressive model (AR model)

yn =
m

∑
i=1

aiyn−i + vn, (7.1)

where m denotes the order of the autoregression, ai is the autoregressive

coefficient and vn is white noise that follows a normal distribution with

mean 0 and variance σ2 (Akaike (1969), Box and Jenkins (1970), Akaike

and Nakagawa (1989), Brockwell and Davis (1991)). σ2 is sometimes

called the innovation variance.

To identify an AR model, it is necessary to determine the order m

and estimate the autoregressive coefficients a1, · · · ,am and the variance

σ2 based on the data. In the following, these parameters will be denoted

by θ = (a1, · · · ,am,σ2)T .

Under the assumption that the order m is given, consider the estima-

tion of the parameter θ by the maximum likelihood method. The joint

distribution of time series y = (y1, · · · ,yN)T , following the AR model, be-

comes a multivariate normal distribution. When the model (7.1) is given,

the mean vector of the autoregressive process y is 0 and the variance-
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covariance matrix is given by

Σ =











C0 C1 · · · CN−1

C1 C0 · · · CN−2

...
...

. . .
...

CN−1 CN−2 · · · C0











, (7.2)

where the autocovariance function Ck is defined by (6.12). Therefore, the

likelihood of the AR model is obtained by

L(θ ) = p(y1, · · · ,yN |θ )

= (2π)−
N
2 |Σ|− 1

2 exp

{

−1

2
yT Σ−1y

}

. (7.3)

However, when the number N of data is large, the computation of the

likelihood by this method becomes difficult because it involves the inver-

sion and computation of the determinant of the N×N matrix Σ. To obtain

the maximum likelihood estimate of θ that maximizes (7.3), it is neces-

sary to apply a numerical optimization method, since the likelihood is a

complicated function of the parameter θ . In general, however, the likeli-

hood of a time series model can be efficiently calculated by expressing

it as a product of conditional distributions

L(θ ) = p(y1, · · · ,yN |θ )

= p(y1, · · · ,yN−1|θ )p(yN |y1, · · · ,yN−1,θ )

...

=
N

∏
n=1

p(yn|y1, · · · ,yn−1,θ ). (7.4)

Using a Kalman filter, each term in the right hand side of (7.4) can be

efficiently and exactly evaluated, which makes it possible to compute the

exact likelihood of the ARMA model and other time series models. Such

a method will be treated in Chapter 9. When the maximum likelihood

estimate θ̂ of the AR model has been obtained, the AIC for the model is

defined by

AIC = −2 (maximum log-likelihood)+ 2 (number of parameters)

= −2 log L(θ̂ )+ 2(m+ 1). (7.5)

To select the AR order m by the minimum AIC method, we calculate

the AICs of the AR models with orders up to M, that is, AIC0, · · · ,AICM ,

and select the order that results in the minimum AIC value (Akaike

(1973, 1974), Sakamoto et al. (1986), Konishi and Kitagawa (2008)).
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7.2 Yule-Walker Method and Levinson’s Algorithm

As shown in Chapter 6, the autocovariance function of the AR model

(7.1) of order m satisfies the Yule-Walker equation (Akaike (1969), Box

and Jenkins (1970))

C0 =
m

∑
i=1

aiCi + σ2 (7.6)

C j =
m

∑
i=1

aiC j−i. (7.7)

On the other hand, once the time series has been obtained, by com-

puting the sample autocovariance functions Ĉk and substituting them into

(7.7), we obtain a system of linear equations for the unknown autoregres-

sive coefficients a1, · · · ,am,











Ĉ0 Ĉ1 · · · Ĉm−1

Ĉ1 Ĉ0 · · · Ĉm−2

...
...

. . .
...

Ĉm−1 Ĉm−2 · · · Ĉ0





















a1

a2

...

am











=











Ĉ1

Ĉ2

...

Ĉm











. (7.8)

By solving this equation, the estimates âi of the AR coefficients are ob-

tained. Then, from (7.6), an estimate of the variance σ2 is obtained by

σ̂2 = Ĉ0−
m

∑
i=1

âiĈi. (7.9)

The estimates â1, · · · , âm, and σ̂2 obtained by this method are called

the Yule-Walker estimates. Since the variance of the prediction errors of

the AR model with coefficients ai is given by

E
(

v2
n

)

= E

(

yn−
m

∑
i=1

aiyn−i

)2

= C0−2
m

∑
i=1

aiCi +
m

∑
i=1

m

∑
j=1

aia jCi− j, (7.10)

we obtain equation (7.7) from

∂E(v2
n)

∂ai

=−2Ci + 2
m

∑
j=1

a jCi− j = 0. (7.11)
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Therefore, we can consider that the Yule-Walker estimates obtained

by solving (7.8) after substituting Ĉi for Ci in (7.11) approximately min-

imize the variance of prediction errors. To obtain the Yule-Walker esti-

mates for an AR model of order m, it is necessary to solve a system of

linear equations with m unknowns. In addition, to select the order of the

AR model by the minimum AIC method, we need to evaluate the AIC

values of the models with orders up to M, the maximum order. Namely,

we have to estimate the coefficients by solving systems of linear equa-

tions with one unknown, . . . , M unknowns.

However, with Levinson’s algorithm, these solutions can be obtained

quite efficiently. Hereinafter, the AR coefficients and the innovation vari-

ance of the AR model of order m are denoted as am
j and σ2

m, respectively.

Then Levinson’s algorithm is defined as follows:

1. Set σ̂2
0 = Ĉ0 and AIC0 = N(log2πσ̂2

0 + 1)+ 2

2. For m = 1, · · · ,M, repeat the following steps

(a) âm
m =

(

Ĉm−
m−1

∑
j=1

âm−1
j Ĉm− j

)

(

σ̂2
m−1

)−1
,

(b) âm
i = âm−1

i − âm
mâm−1

m−i for i = 1, . . . ,m−1,

(c) σ̂2
m = σ̂2

m−1{1− (âm
m)2},

(d) AICm = N(log2πσ̂2
m + 1) + 2(m+ 1).

In Levinson’s algorithm, the PARCOR âm
m introduced in Chapter 6

plays an important role. This algorithm will be explained in detail later

in Appendix B.

7.3 Estimation of an AR Model by the Least Squares Method

In this section, the least squares method explained in Chapter 5 will be

applied to the estimation of the AR model. Putting θ = (a1, · · · ,am,σ2)T ,

from (7.4), the log-likelihood of the AR model becomes

ℓ(θ ) =
N

∑
n=1

log p(yn|y1, · · · ,yn−1). (7.12)

Here, for the AR model of order m, since the distribution of yn is spec-

ified by the values of yn−1, · · · ,yn−m for n > m, each term in (7.12) is

given by

p(yn|y1, · · · ,yn−1) = p(yn|yn−m, · · · ,yn−1)
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= − 1√
2πσ2

exp

{

− 1

2σ2

(

yn−
m

∑
i=1

aiyn−i

)2}

log p(yn|y1, · · · ,yn−1) = −1

2
log2πσ2− 1

2σ2

(

yn−
m

∑
i=1

aiyn−i

)2

.

(7.13)

Therefore, by ignoring the initial M (M ≥ m) terms of (7.12), the log-

likelihood of the AR model is obtained as

ℓ(θ ) =−N−M

2
log2πσ2− 1

2σ2

N

∑
n=M+1

(

yn−
m

∑
i=1

aiyn−i

)2

(7.14)

(Kitagawa and Akaike (1978), Sakamoto et al. (1986), Kitagawa and

Gersch (1996)).

Similar to the case of the regression model, for arbitrarily given au-

toregressive coefficients a1, · · · ,am, the maximum likelihood estimate of

the variance σ2 maximizing (7.14) satisfies

∂ℓ(θ )

∂σ2
=−N−M

2σ2
+

1

2(σ2)2

N

∑
n=M+1

(

yn−
m

∑
i=1

aiyn−i

)2

= 0, (7.15)

and is obtained as

σ̂2 =
1

N−M

N

∑
n=M+1

(

yn−
m

∑
i=1

aiyn−i

)2

. (7.16)

Substituting this into (7.14), the log-likelihood becomes a function

of the autoregressive coefficients a1, · · · ,am

ℓ(a1, · · · ,am) =−N−M

2
log2πσ̂2− N−M

2
. (7.17)

Here, since the logarithm is a monotone increasing function, maximiza-

tion of the approximate log-likelihood (7.17) can be achieved by mini-

mizing the variance σ̂2. This means that the approximate maximum like-

lihood estimates of the AR model can be obtained by the least squares

method. To obtain the least squares estimates of the AR models with or-

ders up to M by the Householder transformation discussed in Chapter 5,

define the matrix Z and the vector y by

Z =











yM yM−1 · · · y1

yM+1 yM · · · y2

...
...

. . .
...

yN−1 yN−2 · · · yN−M











, y =











yM+1

yM+2

...

yN











. (7.18)
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For actual computation, construct the (N−M)× (M + 1) matrix

X = [Z | y ] =











yM · · · y1 yM+1

yM+1 · · · y2 yM+2

...
. . .

...
...

yN−1 · · · yN−M yN











, (7.19)

and transform it to an upper triangular matrix

HX =

[

S

O

]

=















s11 · · · s1M s1,M+1

. . .
...

...

sMM sM,M+1

sM+1,M+1

O















, (7.20)

by Householder transformation.

Then, for 0≤ j ≤M, the innovation variance and the AIC of the AR

model of order j are obtained by

σ̂2
j =

1

N−M

M+1

∑
i= j+1

s2
i,M+1

AIC j = (N−M)(log2πσ̂2
j + 1)+ 2( j + 1). (7.21)

Moreover, the least squares estimates of the autoregressive coefficients

that are the solutions of the linear equations







s11 · · · s1 j

. . .
...

s j j













a1

...

a j






=







s1,M+1

...

s j,M+1






, (7.22)

can be easily obtained by backward substitution as follows:

â j =
s j,M+1

s j j

âi =
si,M+1− si,i+1âi+1−·· ·− si, jâ j

sii

, i = j−1, · · · ,1.

7.4 Estimation of an AR Model by the PARCOR Method

Assuming that the autocovariance functions C0,C1, · · · are given, Levin-

son’s algorithm of Section 7.2 can be executed by using the following
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relation between the coefficients of the AR model of order m−1 and the

coefficients of the AR model of order m:

am
j = am−1

j −am
mam−1

m− j . (7.23)

Therefore, if we can estimate the PARCOR am
m, the other coefficients

can be automatically determined by using the above relation. In Levin-

son’s algorithm, we used the following formula for the estimation of

am
m that is obtained by substituting the sample autocovariance functions

Ĉ0, · · · ,Ĉm into (B.8) in the Appendix B:

âm
m =

{

Ĉ0−
m−1

∑
j=1

âm−1
j Ĉ j

}−1{

Ĉm−
m−1

∑
j=1

âm−1
j Ĉm− j

}

=
(

σ̂2
m−1

)−1
{

Ĉm−
m−1

∑
j=1

âm−1
j Ĉm− j

}

. (7.24)

In this section, we present another method of estimating PARCOR

am
m directly from the time series y1, · · · ,yN without using the sample au-

tocovariance functions. First of all, let wm−1
n denote the prediction error

of the backward AR model with order m−1:

yn =
m−1

∑
j=1

am−1
j yn+ j + wm−1

n . (7.25)

In the case of univariate time series, since the autocovariance func-

tion is an even function, the AR coefficients of the forward model coin-

cide with those of the backward model. Using this property, from Ap-

pendix (B.2), we have the expression

Cm−
m−1

∑
j=1

am−1
j Cm− j = E

{(

yn−
m−1

∑
j=1

am−1
j yn− j

)

yn−m

}

= E
(

vm−1
n yn−m

)

= E
(

vm−1
n wm−1

n−m

)

. (7.26)

Therefore, the left-hand side of Equation (7.26) can be approximated by

1

N−m

N

∑
n=m+1

vm−1
n wm−1

n−m. (7.27)
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On the other hand, from (B.4), we have

C0−
m−1

∑
j=1

am−1
j C j = E

{(

yn−m−
m−1

∑
j=1

am−1
j yn−m+ j

)

yn−m

}

= E
(

wm−1
n−m yn−m

)

= E
(

wm−1
n−m

)2
. (7.28)

Using the equality E
(

wm−1
n−m

)2
= E

(

vm−1
n

)2
, various estimates of (7.26)

can be obtained corresponding to (7.28) as follows,

1

N−m

N

∑
n=m+1

(

wm−1
n−m

)2
(7.29)

1

N−m

{

N

∑
n=m+1

(

wm−1
n−m

)2
N

∑
n=m+1

(

vm−1
n

)2
}

1
2

(7.30)

1

2(N−m)

{

N

∑
n=m+1

(

wm−1
n−m

)2
+

N

∑
n=m+1

(

vm−1
n

)2
}

. (7.31)

Based on these estimates, we obtain the following three estimators

of PARCOR

âm
m =

N

∑
n=m+1

vm−1
n wm−1

n−m

{

N

∑
n=m+1

(

wm−1
n−m

)2
}−1

(7.32)

âm
m =

N

∑
n=m+1

vm−1
n wm−1

n−m

{

N

∑
n=m+1

(

wm−1
n−m

)2
N

∑
n=m+1

(

vm−1
n

)2
}− 1

2

(7.33)

âm
m = 2

N

∑
n=m+1

vm−1
n wm−1

n−m

{

N

∑
n=m+1

(

wm−1
n−m

)2
+

N

∑
n=m+1

(

vm−1
n

)2
}−1

.

(7.34)

In addition to these estimators, we can define another estimator that

could be obtained by replacing
(

wm−1
n−m

)2
with

(

vm−1
n

)2
in (7.32). The

estimate of PARCOR obtained by (7.32) is a regression coefficient when

the prediction error vm−1
n of the forward model is regressed on the pre-

diction error wm−1
n−m of the backward model. Moreover, the estimate of

(7.33) corresponds to the definition of PARCOR, since it is the correla-

tion coefficient of vm−1
n and wm−1

n−m. The estimate of (7.34) minimizes the

mean of the variances of the forward prediction errors and the backward
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prediction errors, and consequently Burg’s algorithm based on the maxi-

mum entropy method (MEM) is obtained (Burg (1967)). The procedures

to estimate the AR model from the time series y1, · · · ,yN using the PAR-

COR method are described below. Here, for simplicity, the mean value

of the time series yn is assumed to be 0.

1. Set v0
n = w0

n = yn, for n = 1, · · · ,N. In addition, for the AR

model of order 0, compute σ̂2
0 = N−1∑N

n=1y2
n, and AIC0 =

N(log2πσ̂2
0 + 1)+ 2.

2. For m = 1, · · · ,M, repeat the following steps (a)–(f).

(a) Estimate the PARCOR âm
m by any of the formulae (7.32),

(7.33) or (7.34).

(b) Obtain the AR coefficients âm
1 , · · · , âm

m−1 by (7.23).

(c) For n = m+ 1, · · · ,N, obtain the forward prediction error as

vm
n = vm−1

n − âm
mwm−1

n−m.

(d) For n = m + 1, · · · ,N, obtain the backward prediction error

as wm
n−m = wm−1

n−m− âm
mvm−1

n .

(e) Estimate the innovation variance of the AR model of order

m by σ̂2
m = σ̂2

m−1

{

1− (âm
m)2
}

.

(f) Obtain AIC by AICm = N(log 2πσ̂2
m + 1)+ 2(m+ 1).

7.5 Large Sample Distribution of the Estimates

On the assumption that the time series is generated by an AR model of

order m, for large sample size n, the distribution of the estimates of the

AR parameters is approximately given by

â j ∼ N
(

a j,n
−1σ2Σ

)

, (7.35)

where Σ is the Toepliz matrix (7.2) generated from the autocovariance

function and σ2 is the innovation variance (Brockwell and Davis (1991),

Shumway and Stoffer (2000).

On the other hand, if the time series follows AR model of order m,

and if j is larger than m, the estimated PARCOR a
j
j, i.e., the j-th au-

toregressive coefficient of the AR model of order j ( j > m), are approxi-

mately distributed independently with varaince 1/n (Quenouille (1948),

Box and Jenkins (1970), Shumway and Stoffer (2000)), i.e.,

Var
{

â
j
j

}

≃ 1

n
for j > m. (7.36)

This property can be used to check the adequacy of the estimated order
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Table 7.1 Innovation variances and AIC values of the AR models of various

orders fitted to the sunspot number data.

m σ2
m AICm m σ2

m AICm m σ2
m AICm

0 0.22900 317.05 7 0.06694 46.95 14 0.05766 26.45

1 0.09204 108.49 8 0.06573 44.73 15 0.05716 26.47

2 0.07058 49.17 9 0.05984 25.02 16 0.05701 27.84

3 0.06959 47.90 10 0.05829 20.96 17 0.05701 29.84

4 0.06868 46.85 11 0.05793 21.52 18 0.05669 30.53

5 0.06815 47.08 12 0.05780 23.02 19 0.05661 32.21

6 0.06805 48.72 13 0.05766 24.47 20 0.05615 32.32

of the model. The relation between AIC and the estimated PARCOR is

considered in Problem 1 of this Chapter.

Example (AR modeling for sunspot number data) Table 7.1 sum-

marizes the results of fitting AR models of orders up to 20 by the Yule-

Walker method to the logarithm of the sunspot number data shown in

Figure 1.1(b). Figure 7.1(a) shows the estimated PARCORs for orders

1, . . . ,20. From Figure 7.1(b) that shows the change in AIC values as m

varies, it can be seen that AIC is minimized at m = 10, and for larger m

it gradually increases.

Since the sample size of the sunspot number data is n = 231, from

(7.36), the large sample standard error of the estimated PARCOR is

(231)−1/2 ≃ 0.066. It can be seen that the PARCORs for m = 11,. . . ,16

are very small compared with this standarad error that supports the order

selected by AIC.

On the other hand, plot (c) shows the spectrum obtained by the AR

model of order m = 10 that minimizes the AIC. A strong peak is seen

in the vicinity of the frequency f = 0.1, corresponding to a cycle of

approximately 10 years.

Example (AR modeling and power spectra estimated through AR

models) Figure 7.2 (a)–(f) shows the changes of AIC, when AR mod-

els with orders 1 to 20 are fitted to the time series shown in Figure 1.1

(a)–(f) by the Yule-Walker method. Figure 7.3 shows the power spectra

of the time series obtained by the method presented in Chapter 6 using

the AIC best AR model among the orders up to 20.
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Figure 7.1 Changes of PARCOR and AIC and estimated spectrum by the AIC

best AR model for the sunspot number data.

7.6 Estimation of a Multivariate AR Model by the Yule-Walker

Method

In this section, estimation methods for multivariate AR models are

shown. Hereinafter k denotes the number of variables (or dimensions) of

a multivariate time series. The parameters of the multivariate AR model

of order m

yn =
m

∑
i=1

Am
i yn−i + vn, vn ∼ N(0,Vm), (7.37)

are the variance-covariance matrix Vm of the innovation vn and the AR

coefficient matrices Am
1 , · · · ,Am

m (Akaike and Nakagawa (1989)).

When a multivariate AR model is given, the cross-covariance func-

tion is obtained from (6.28) and (6.29). On the other hand, using these

equations, the estimates of the parameters of the multivariate AR model

can be obtained through the sample cross-covariance function. For actual

computation, similarly to the univariate AR model, they can be deter-
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Figure 7.2: Change in AIC values, as the order varies.
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Figure 7.3: Estimated spectra by AR models with minimum AIC orders.
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mined efficiently by the following algorithms. However, for a multivari-

ate time series, the backward model is different from the forward model.

In the case of a univariate time series, the forward AR model coincides

with the backward AR model, because the autocovariance function is an

even function. But this property is not satisfied by multivariate time se-

ries. Therefore, in order to derive an efficient algorithm similar to Levin-

son’s algorithm, in addition to (7.37), we have to consider the backward

multivariate AR model

yn =
m

∑
i=1

Bm
i yn+i + un, un ∼ N(0,Um), (7.38)

and we need to estimate the variance-covariance matrix Um and the co-

efficients Bm
i , as well as Am

i and Vm, simultaneously (Whittle (1963)).

1. Set V̂0 = Û0 = C0 and compute the AIC of the AR model of

order 0 as

AIC0 = N(k log2π + log |V̂0|+ k)+ k(k + 1).

2. For m = 1, · · · ,M, repeat the following steps (a)–(e).

(a) Wm = Cm−∑m−1
i=1 Am−1

i Cm−i.
(b) Obtain the PARCOR matrices of the forward and backward

AR models by Am
m = WmU−1

m−1 and Bm
m = W T

m V−1
m−1.

(c) Compute the AR coefficients of the forward and backward

AR models by Am
i = Am−1

i − Am
mBm−1

m−i and Bm
i = Bm−1

i −
Bm

mAm−1
m−i for i = 1, . . . ,m−1.

(d) Compute the innovation variance-covariance matrices by

Vm = C0−∑m
i=1Am

i CT
i and Um = C0−∑m

i=1Bm
i Ci.

(e) Compute the AIC value of the AR model of order m by

AICm = N(k log2π + log |V̂m|+ k)+ k(k + 1)+ 2k2m.

By the above-mentioned algorithm, we compute AIC0, · · · ,AICM ,

and select the m that results in the minimum AIC value as the best order

of the multivariate AR model. In this method, it is assumed that the au-

toregressive coefficients am(i, j) have common orders for all i and j.

Example Table 7.2 shows the results of fitting three-variate AR mod-

els of orders up to 20 by the Yule-Walker method for the ship’s data

shown in Figure 1.1. The AIC is minimized at m = 10, and increases

gradually afterward. The power spectra, the cross spectra, the coherency,

and the noise contribution, etc., that are shown in Chapter 6 are obtained

from the multivariate AR model of order m =10, which attains the min-

imum AIC value.
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Table 7.2: AICs of multivariate AR models fitted to ship’s data.

m AICm m AICm m AICm

0 7091.71 7 5105.83 14 5100.98

1 6238.80 8 5096.35 15 5113.05

2 5275.36 9 5087.91 16 5116.52

3 5173.02 10 5083.79 17 5129.42

4 5135.20 11 5093.79 18 5136.06

5 5136.63 12 5091.42 19 5143.56

6 5121.02 13 5097.98 20 5157.37

7.7 Estimation of a Multivariate AR Model by the Least Squares

Method

To obtain the least squares estimates of the parameters of a multivariate

AR model by the Householder method, we first transform the model

(7.37) to the following expression with instantaneous response:

yn = B0yn +
m

∑
i=1

Biyn−i + wn, wn ∼ N(0,W ). (7.39)

(Takanami and Kitagawa (1991), Kitagawa and Gersch (1996)). Here,

B0 is a lower triangular matrix whose components on and above the di-

agonal are zero, thus

B0 =











0 0 · · · 0

b0(2,1) 0 · · · 0
...

. . .
. . .

...

b0(k,1) · · · b0(k,k−1) 0











. (7.40)

The variance-covariance matrix W is assumed to be a diagonal matrix

W =













σ2
1 0 · · · 0

0 σ2
2

. . .
...

...
. . .

. . . 0

0 · · · 0 σ2
k













. (7.41)

Since the model (7.39) can be expressed as

yn = (I−B0)
−1

m

∑
i=1

Biyn−i +(I−B0)
−1wn, (7.42)



118 ESTIMATION OF AN AR MODEL

by putting

Ai = (I−B0)
−1Bi

V = (I−B0)
−1W (I−B0)

−T , (7.43)

there is a one-to-one correspondence between the multivariate AR model

(7.38) and the multivariate model with instantaneous response given in

(7.39). Therefore, if the coefficient matrices B0,B1, · · · ,Bm and the vari-

ances σ2
1 , · · · ,σ2

k of the model (7.39) are estimated, the multivariate AR

model will also be obtained by (7.43).

The advantage of this method is that we do not need to estimate all

of the coefficients simultaneously, since the variance-covariance matrix

W is a diagonal matrix. Namely, if we denote the coefficient matrix Bi as

Bi =







bi(1,1) · · · bi(1,k)
...

. . .
...

bi(k,1) · · · bi(k,k)






, (7.44)

the coefficients of the k models, that is, {bi(p,q), i = 1, · · · ,m, q =
1, · · · , k, σ2

p} for p = 1, · · · ,k can be estimated independently.

This method is far more computationally efficient than the method

that estimates all of the coefficients at once. To realize the above estima-

tion by the Householder method, firstly we construct an (N−m)×(km+
k) matrix

X =













yT
m · · · yT

1 yT
m+1

yT
m+1 · · · yT

2 yT
m+2

...
. . .

...
...

yT
N−1 · · · yT

N−m yT
N













, (7.45)

and transform it to an upper triangular matrix by the Householder trans-

formation,

S =











s11 · · · s1,km+k

. . .
...

skm+k,km+k

O











. (7.46)

It should be noted here that the (km + 1)× (km + 1) upper-left sub-

matrix has all the necessary information to estimate the following model

for the first component:

yn(1) =
j

∑
i=1

bi(1,1)yn−i(1)+ · · ·+
j

∑
i=1

bi(1,k)yn−i(k)+ wn. (7.47)
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That is, for j ≤ m, the residual variance and the AIC of the j-th order

model are obtained by

σ̂2
j (1) =

1

N−m

km+1

∑
i=k j+1

s2
i,km+1,

AIC j(1) = (N−m)(log2πσ̂2
j (1)+ 1)+ 2(k j + 1). (7.48)

The regression coefficients c = (c11, · · · ,c1k, · · · ,c j1, · · · ,c jk)= (b1(1,1),
· · · ,b1(1,k), · · · ,b j(1,1),· · · ,b j(1,k))T are obtained as the solutions of

the linear equations






s11 · · · s1,k j

. . .
...

O sk j,k j













c11

...

ck j






=







s1,km+1

...

sk j,km+1






. (7.49)

The solutions are easily obtained by the following backward substitution:

ĉk j = sk j,km+1/sk j,k j ,

ĉℓi = (sℓi,km+1− sℓi,ℓi+1ĉℓi+1−·· ·− sℓi,k jĉk j)/sℓi,ℓi

for i = 1, · · · ,k and j = 1, · · · ,k. (7.50)

Secondly, to estimate the model for the second component of the

time series, transform the matrix (7.46) to the following form

S =





























s11 · · · s1,km s1,km+1 s1,km+2 · · · s1,km+k

s21 · · · s2,km s2,km+2 · · · s2,km+k

. . .
...

...
...

skm+1,km skm+1,km+2 · · · skm+1,km+k

skm+2,km+2 · · · skm+2,km+k

. . .
...

skm+k,km+k

O





























,

(7.51)

by an appropriate Householder transformation. Then the upper-left

(km + 2)× (km + 2) sub-matrix of this matrix contains all the informa-

tion necessary for the estimation of the model for the second component.

For j ≤ m, the innovation variance and the AIC of the j-th order

model for the second component are obtained by

σ̂2
j (2) =

1

N−m

km+2

∑
i=k j+2

s2
i,km+2

AIC j(2) = (N−m)(log2πσ̂2
j (2)+ 1)+ 2(k j + 2). (7.52)
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To obtain the regression coefficients, we define the (k j+1)-dimensional

vector c by c = (b1(2,1), · · · ,b1(2,k), · · · ,b j(2,1), · · · ,b j(2,k),b0(2,1))T

and then solve the following system of linear equations:











s11 · · · s1,k j s1,km+1

s21 · · · s2,k j

. . .
...

sk j+1,k j





















c1

c2

...

ck j+1











=











s1,km+2

s2,km+2

...

sk j+1,km+2











.

(7.53)

Repeating this procedure up to the k-th component of the time series,

we obtain the matrix

S =



























s11 · · · s1,km s1,km+1 · · · s1,km+k−1 s1,km+k

...
...

. . .
...

...

sk−1,1 · · · sk−1,km sk−1,km+k−1 sk−1,km+k

sk1 · · · sk,km sk,km+k

. . .
...

...

skm+k−1,km skm+k−1,km+k

skm+k,km+k

O



























(7.54)

by an appropriate Householder transformation.

For j ≤ m, the innovation variance and the AIC of the j-th order

model are obtained by

σ̂2
j (k) =

1

N−m

km+k

∑
i=k j+k

s2
i,km+k

AIC j(k) = (N−m)(log2πσ̂2
j (k)+ 1)+ 2(k j + k). (7.55)

The regression coefficients of this model can be obtained by solving the

system of linear equations



















s11 · · · s1,k j s1,km+1 · · · s1,q−1

...
...

. . .
...

sk−1,1 · · · sk−1,k j sk−1,q−1

sk1 · · · sk,k j

. . .
.
..

sr,k j





































c1

...

ck−1

ck

.

..

cr



















=



















s1,q
...

sk−1,q

sk,q
.
..

sr,q



















,

(7.56)
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where the vector c is defined by c = (b1(k,1), · · · ,b1(k,k),· · · ,b j(k,1), · · · ,
b j(k,k),b0(k,1), · · · ,b0(k,k−1))T . Here, q = km+k and r = k j+k−1.

This least square method has a significant advantage in that we can

select a different order for each variable to enable more flexible modeling

than the Yule-Walker method. In addition, it is also possible to specify

a time-lag for a variable with respect to other variables or to specify

a particular coefficient to be zero. A computer program for estimating

such a sophisticated model can be found in Akaike et al. (1979).

Problems

1. Consider an AR model of order m: yn = am
1 yn−1 + · · ·+am

myn−m + vn,

vn ∼ N(0,σ2
m).

(1) Using the relation σ2
m = (1−(am

m)2)σ2
m−1, show a criterion to judge

whether AR(m) is better than AR(m−1).

(2) The PARCOR coefficients (a
j
j of AR( j)) are estimated by using

100 observations and are given by a1
1 = 0.9, a2

2 = −0.6, a3
3 = 0.3,

a4
4 = −0.1, a5

5 = 0.15. Assuming that C0 = 1, compute σ2
m, for

m = 1, . . . ,5.

(3) Assuming the situation of (2), compute AICm for m = 1, · · · ,5 and

determine the best order.

2. State the differences in the properties of the Yule-Walker method, the

least squares method and the PARCOR method.

3. Show a method, based on AR models, of judging whether two time

series xn and yn are independent.





Chapter 8

The Locally Stationary AR Model

Records of real-world phenomena can mostly be categorized as nonsta-

tionary time series. The simplest approach to modeling nonstationary

time series is, firstly, to partition the time interval into several subin-

tervals of appropriate size, on the assumption that the time series are

stationary on each subinterval. Secondly, by fitting an AR model to each

subinterval, we can obtain a series of models that approximate nonsta-

tionary time series. In this chapter, two modeling methods are shown for

analysis of nonstationary time series, namely, a model for roughly de-

ciding on the number of subintervals and the locations of their endpoints

and a model for precisely estimating a change point. A more sophisti-

cated time-varying coefficient AR model will be considered in Chapter

13.

8.1 Locally Stationary AR Model

It is assumed that the given time series y1, · · · ,yN is nonstationary as a

whole, but that we can consider it to be stationary on each subinterval

of an appropriately constructed partition. Such a time series that satisfies

piecewise stationarity is called a locally stationary time series (Ozaki

and Tong (1975), Kitagawa and Akaike (1978), Kitagawa and Gersch

(1996)). To be specific, k and Ni are assumed to denote the number of

subintervals, and the number of observations in the i-th subinterval (N1 +
· · ·+ Nk = N), respectively. Actually, k and Ni are unknown in practical

modeling. Therefore, in the analysis of locally stationary time series, it

is necessary to estimate the number of subintervals, k, the locations of

the dividing points and appropriate models for subintervals.

A locally stationary AR model is a nonstationary time series model,

which has the property that, on each appropriately constructed sub-

interval, it is stationary and can be modeled by an AR model on each of

these subintervals. More precisely, consider the i-th subinterval, [ni0,ni1]

123
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where

ni0 =
i−1

∑
j=1

N j + 1, ni1 =
i

∑
j=1

N j.

For a locally stationary AR model, the time series yn follows an AR

model

yn =

m j

∑
i=1

a jiyn−i + vn j, (8.1)

on the j-th subinterval, where vn j is assumed to be white noise that satis-

fies E(vn j) = 0, E(v2
n j) = σ2

j and E(vn jyn−m) = 0 for m = 1,2, · · ·. The

likelihood of the locally stationary AR model is given by

L = p(y1, · · · ,yN) =
k

∏
j=1

n j1

∏
n=n j0

p(yn|y1, · · · ,yn−1). (8.2)

Therefore, similar to the case of the least square method of the AR

model for stationary time series, ignoring the distributions of the first m1

data points to replace N1 by N1−m1 and n10 with m1 +1, the likelihood

of this model can be approximated by

k

∏
j=1

(

1

2πσ2
j

)

Nj
2

exp

{

− 1

2σ2
j

n j1

∑
n=n j0

(

yn−
m j

∑
i=1

a jiyn−i

)2}

. (8.3)

Here, if we consider this likelihood as a function of the number of subin-

tervals: k, the length of the j-th interval: N j, the autoregressive order: m j,

the autoregressive coefficients: a j = (a j1, · · · ,a jm j
)T and the variance of

the white noise: σ2
j , then the log-likelihood function can be expressed as

ℓ (k,N j,m j,a j,σ
2
j ; j = 1, · · · ,k)

=−1

2

k

∑
j=1

{

N j log2πσ2
j +

1

σ2
j

n j1

∑
n=n j0

(

yn−
m j

∑
i=1

a jiyn−i

)2}

.(8.4)

For arbitrarily given autoregressive coefficients a j, by equating the

first derivative of the log-likelihood with respect to σ2
j to 0, we obtain

the maximum likelihood estimate of the variance σ2
j as

σ̂2
j =

1

N j

n j1

∑
n=n j0

(

yn−
m j

∑
i=1

a jiyn−i

)2

. (8.5)
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From the above, substituting this into (8.4), the log-likelihood becomes

ℓ (k,N j,m j,a j, σ̂
2
j ; j = 1, · · · ,k)

=−1

2

k

∑
j=1

(

N j log
(

2πσ̂2
j

)

+ N j

)

=−N−m1

2
(log2π + 1)− 1

2

k

∑
j=1

N j log σ̂2
j . (8.6)

Therefore, the maximum likelihood estimate of a j1, · · · ,a jm j
is ob-

tained by minimizing σ2
j using the least squares method that was de-

scribed in Chapter 5. Since the AR model on the j-th interval has m j AR

coefficients and its variance as parameters, the AIC value for the locally

stationary AR model is given by

AIC = (N−m1)(log2π + 1)+
k

∑
j=1

N j log σ̂2
j + 2

k

∑
j=1

(m j + 1). (8.7)

The number of subintervals k, the length of the j-th subinterval N j

and the order of the AR model for the j-th interval m j are obtained by

finding the combinations that achieve the minimum AIC value among

possible candidates.

8.2 Automatic Partitioning of the Time Interval into an Arbitrary

Number of Subintervals

As shown in the previous section, the best locally stationary AR model

can, in principle, be obtained by the least squares method and AIC. How-

ever, practically speaking, it would require an enormous amount of com-

putation to find the model that minimizes the AIC by fitting locally sta-

tionary AR models for all possible combinations of numbers of subinter-

vals, k, and data lengths, N1, · · · ,Nk. In terms of practice, the following

procedure was developed to determine the dividing points of the locally

stationary AR model (Ozaki and Tong (1975)). Accordingly, only the

points ni = iL are considered as candidates for dividing points, while the

minimum unit L of division has been set beforehand. Then, the dividing

points of the locally stationary AR model can automatically be decided

by the following procedure.

1. Determine the basic span L and the highest order m of the AR model

that is fitted to the subinterval of the length L. Here L is set to an
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appropriate length so that an AR model of order m can be fitted on an

interval of length L.

2. Fit AR models of orders up to m to the time series y1, · · · ,yL, and com-

pute AIC0(0), · · · ,AIC0(m) to find AIC0 = min j AIC0( j). Further, set

k = 1, n10 = m+ 1, n11 = L and N1 = L−m.

3. Fit AR models with orders up to m to the time series ynk1+1, · · · ,ynk1+L

and compute AIC1(0), · · ·, AIC1(m) to set AIC1 = min j AIC1( j).
AIC1 is the AIC of a new model that was obtained under the assump-

tion that the model changed at time nk1 + 1. The AIC of the locally

stationary AR model that divides the interval [nk0, nk1 + L] into two

subintervals, [nko, nk1] and [nk1 + 1, nk1 + L], is given by

AICD = AIC0 + AIC1.

This model is called a divided model.

4. Considering ynk0
, · · · ,ynk1+L to be a stationary interval, fit AR models

of orders up to m to compute AICP(0), · · · ,AICP(m), and then put

AICP = min j AICP( j). On the assumption that the time series on the

entire interval [nk0,nk1 +L] is stationary, the model is called a pooled

model.

5. To judge the homogeneity of the two subintervals, compare the AICD

value of the model of step 3 above and the AICP value of the model

of step 4 above.

(a) If AICD < AICP, it is judged that a divided model is better. In this

case, nk1 + 1 becomes the initial point of the current subinterval;

we put k ≡ k + 1, nk0 ≡ nk−1,1 + 1, nk1 = nk−1,1 + L, Nk = L and

AIC0 = AICD.

(b) If AICD ≥ AICP, a pooled model is adopted. In this case, the new

subinterval [nk1 +1,nk1 +L] is merged with the former subinterval,

and [nk0,nk1 + L] becomes the new current subinterval. Therefore,

we put nk1 ≡ nk1 + L, Nk = Nk + L, and AIC0 = AICP.

6. If we have at least L remaining additional data points, we have to

go back to step (3). Otherwise, the number of subintervals is k and

[1,n11], [n20,n21], · · · , [nk0,N] are the stationary subintervals.

In our approach, we fit two types of AR models whenever an addi-

tional time series of length L remains to be modeled. The process can

be efficiently carried out by the method of data augmentation shown in

Section 5.4 (Kitagawa and Akaike (1978)). In step 2, we firstly construct
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an (L−m)× (m+ 1) matrix from the initial time series; y1, · · · ,yL,

X0 =







ym · · · y1 ym+1

...
. . .

...
...

yL−1 · · · yL−m yL






, (8.8)

and then reduce it to upper triangular form by an appropriate House-

holder transformation H0,

H0X0 =

[

S

O

]

=















s11 · · · s1m s1,m+1

. . .
...

...

smm sm,m+1

sm+1,m+1

O















. (8.9)

Then, the AIC of the AR model of order j fitted to y1, · · · ,yL is ob-

tained by

σ̂2
0 ( j) =

1

L−m

m+1

∑
i= j+1

s2
i,m+1 (8.10)

AIC0( j) = (L−m) log σ̂2
0 ( j)+ 2( j + 1). (8.11)

Here, and hereinafter in this chapter, we omit the term (L−m)(log2π +
1) from AIC, since this term is a constant term, irrelevant for model

selection. To execute step 3, we construct an L× (m + 1) matrix from

ynk1+1, · · · ,ynk1+L

X1 =







ynk1
· · · ynk1−m+1 ynk1+1

...
. . .

...
...

ynk1+L−1 · · · ynk1+L−m ynk1+L






, (8.12)

and reduce it to an upper triangular matrix by a Householder transforma-

tion H1,

H1X1 =

[

R

O

]

=















r11 · · · r1m r1,m+1

. . .
...

...

rmm rm,m+1

rm+1,m+1

O















. (8.13)
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Here, similar to step 2, the AIC of the AR model of order j fitted to

the new time series of length L is obtained by

σ̂2
1 ( j) =

1

L

m+1

∑
i= j+1

r2
i,m+1 (8.14)

AIC1( j) = L log σ̂2
1 ( j)+ 2( j + 1). (8.15)

Then,

AICD ≡min
j

AIC0( j)+ min
j

AIC1( j) (8.16)

becomes the AIC value for the locally stationary AR model. It is assumed

that there was structural change at time nk1 + 1.

Next, in order to fit an AR model to the pooled data ynk0
, · · · ,ynk1+L in

step 4, we construct the following 2(m+1)×(m+1) matrix by augment-

ing the upper triangular matrix S obtained from the data ynk0
, · · · ,ynk1

with the upper triangular matrix R obtained in step 3,

X2 =

[

S

R

]

=





























s11 · · · s1m s1,m+1

. . .
...

...

smm sm,m+1

O sm+1,m+1

r11 · · · r1m r1,m+1

. . .
...

...

rmm rm,m+1

O rm+1,m+1





























, (8.17)

and reduce it to upper triangular form by a Householder transformation:

H2X2 =

[

T

O

]

=















t11 · · · t1m t1,m+1

. . .
...

...

tmm tm,m+1

tm+1,m+1

O















. (8.18)

Then the AIC value for the AR model of order j is obtained by

σ̂2
P( j) =

1

Nk + L

m+1

∑
i= j+1

t2
i,m+1, (8.19)

AICP( j) = (Nk + L) log σ̂2
P( j)+ 2( j + 1). (8.20)
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Figure 8.1 The east-west component record of seismic wave and estimated spec-

tra obtained by a locally stationary AR model.

Therefore, by finding the minimum (over j) of AICP( j), thus,

AICP ≡min
j

AICP( j), (8.21)

we obtain the AIC value for the AR model, which was obtained under

the assumption that the structural change did not occur at time nk1 + 1.

In step 5, replace the matrix S with the matrix T if AICD < AICP or

with the matrix R if AICD ≥ AICP. Then go back to step 3.

Example (Locally stationary modeling of seismic data) Figure 8.1

shows the results of fitting a locally stationary AR model to the east-

west component of a seismogram (N = 2600) with L = 100 and m = 10

(Takanami and Kitagawa (1991)). The record involves microtremors as

the noise and two types of seismic wave; the P-wave and the S-wave. The

power spectra shown in the figures are obtained from AR models esti-

mated on the decided stationary subintervals. Structural changes have

been detected at nine points, n =410, 510, 610, 710, 1010, 1110, 1410,

1710 and 2010. The change around n = 600 corresponds to a change in

the spectrum and the variance caused by the arrival of the P-wave. The

section n = 600− 1000 corresponds to the P-wave. Whereas the spec-

trum during n = 600−700 contains a single strong periodic component,
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various periodic components with different periods are intermingled dur-

ing the latter half of the P-wave, n = 700− 1000. The S-wave appears

after n = 1000. We can see not only a decrease in power due to the re-

duction of the amplitude but also that the main peak shifts from the low

frequency range to the high frequency range. After n = 2000, no signifi-

cant change in the spectrum could be detected.

8.3 Precise Estimation of a Change Point

In the previous sections, we have presented a method of automatically

dividing the time interval of a nonstationary time series into several

subintervals in which the time series could be regarded as stationary.

Here, we consider a method of detecting the precise time of a structural

change by assuming that a structural change of the time series yn oc-

curred within the time interval [n0,n1]. A multivariate extension of this

method is shown in Takanami and Kitagawa (1991).

Assuming that the structural change occurred at time n; n0 ≤ n≤ n1,

a different AR model is fitted to each subinterval [1,n− 1] and [n,N],
respectively. Then the sum of the two AIC values of the AR models fitted

to these time series yields the AIC value of a locally stationary AR model

with a structural change at time n. To obtain a precise estimate of the time

of structural change based on the locally stationary AR models, we could

compute the AICs for all n such that n0 ≤ n ≤ n1 to find the minimum

value. With this method, because we have to estimate AR models for all

n, a huge amount of computation is required. However, we can derive

a computationally very efficient procedure for obtaining the AIC values

for all the locally stationary AR models by using the method of data

augmentation shown in Section 5.4.

According to this procedure, from the time series y1, · · · ,yn0
, we first

construct an (n0−m)× (m+ 1) matrix

X0 =







ym · · · y1 ym+1

...
. . .

...
...

yn0−1 · · · yn0−m yn0






, (8.22)

and reduce it to upper triangular form by a Householder transformation:

H0X0 =

[

S

O

]

=















s11 · · · s1m s1,m+1

. . .
...

...

smm sm,m+1

sm+1,m+1

O















. (8.23)
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Then, the AIC value for the AR model of order j fitted to the time

series y1, · · · ,yn0
is obtained by

σ̂2
0 ( j) =

1

n0−m

m+1

∑
i= j+1

s2
i,m+1, (8.24)

AIC0( j) = (n0−m) logσ̂2
0 ( j)+ 2( j + 1). (8.25)

Therefore, on the assumption that a structural change occurred at time

n0 + 1, the AIC value for the best AR model on the first part of the

interval is given by

AIC1
0 ≡ min

j
AIC0( j). (8.26)

To obtain the AIC value for the AR model fitted to the augmented

data y1, · · · ,yn0+p, where p is the number of additional data points (p ≥
1), we construct an (m+ p + 1)× (m+ 1) matrix X1 by augmenting the

upper triangular matrix obtained in the previous step with the new data

X1 =

























s11 · · · s1m s1,m+1

. . .
...

...

smm sm,m+1

sm+1,m+1

yn0
· · · yn0−m+1 yn0+1

...
...

...

yn0+p−1 · · · yn0−m+p yn0+p

























, (8.27)

and reduce it to upper triangular form by an appropriately defined House-

holder transformation H1:

H1X1 =

[

R

O

]

=















r11 · · · r1m r1,m+1

. . .
...

...

rmm rm,m+1

rm+1,m+1

O















. (8.28)

The AIC value for the AR model of order j fitted to the augmented

data y1, · · · ,yn0+p is obtained by

σ̂2
1 ( j) =

1

n0−m+ p

m+1

∑
i= j+1

r2
i,m+1,

AIC1( j) = (n0−m+ p) logσ̂2
1 ( j)+ 2( j + 1). (8.29)
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Therefore, under the assumption that the structural change occurred at

time n0 + p + 1, the AIC value for the best AR model for the first-half

interval is obtained by

AIC1
1 ≡min

j
AIC1( j). (8.30)

Repeating this procedure, the AIC values for the AR models fitted

to the time series {y1, · · · ,yn0
}, {y1, · · · ,yn0+p}, · · · ,{y1, · · · ,yn1

}; i.e.,

AIC1
0, AIC1

1, · · · ,AIC1
ℓ can be obtained.

The AIC values for the AR models after the structural change

can similarly be obtained. With respect to the AICs of the latter-half

AR models, we first fit AR models to the data yn1+1, · · · ,yN and then

augment with p observations successively; i.e., we fit AR models to

{yn1+1, · · · ,yN},{yn1−p+1, · · · ,yN},{yn1−2p+1, · · · ,yN}, · · · ,{yn0+1, · · · ,yN}
and compute the AIC values for the models, AIC2

ℓ , AIC2
ℓ−1, · · · ,AIC2

0.

Then,

AIC j = AIC1
j + AIC2

j (8.31)

yields the AIC value for the locally stationary AR model on the assump-

tion that the structural change occurred at time n0 + jp + 1. Therefore,

we can estimate the time point of structural change by finding the j for

which the minimum of AIC0, · · · ,AICℓ is attained.

Example (Estimation of the arrival times of P-wave and S-wave)

Figure 8.2 shows the results of precisely examining the change points

around n = 600 and n = 1000, where the substantial changes are seen

in Figure 8.1. Plot (b) shows the enlarged part of n = 400− 800 where

the first half might be considered as the microtremors and the latter half

might be the P-wave. In plot (a), the value of AIC obtained by (8.31)

is shown and the minimum value 3364 attained at n = 630. Accord-

ingly, it can be inferred that the P-wave arrived at a time corresponding

to n = 630.

Plot (d) shows the enlarged part of n = 800−1200 and the first and

the latter half of the plot are the P-wave and the S-wave, respectively.

From the value of AIC shown in plot (c), we can infer that the S-wave

arrived at a time corresponding to n = 1026. In plot (a), the AIC has

a clear minimum and the estimate of the arrival time is very accurate,

whereas plot (c) shows a gradual change in the AIC and the detection of

the arrival time of S-wave is correspondingly rather more difficult than

that of the P-wave.
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Figure 8.2: Estimation of the arrival times of the P-wave and the S-wave.
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Problems

1. In locally stationary AR modeling, what kind of model should we use

if the mean of the time series changes over time. State the expression

of the AIC for that model.

2. Corresponding to the time series shown in Figure 1.2, consider a lo-

cally stationary AR model for the situation where only the variance

of the time series changes over time.

3. Referring to the polynomial regression model introduced in Chapter

11, obtain the AIC of the model in which the polynomial changes

over time.

4. In Problem 2, consider models that reflect the continuity or the

smoothness of the trend.

5. Assuming that the Householder transformations for (8.22) and (8.27)

need
1

2
n0m2 and

1

2
(p + 1)m2 computations, compare the amount of

computation required for an ordinary AR model and the locally sta-

tionary AR model presented in Section 8.3.



Chapter 9

Analysis of Time Series with a
State-Space Model

Various models used in time series analysis can be treated entirely within

the state-space model framework. Many problems of time series analysis

can be formulated in terms of the state estimation of a state-space model.

This chapter presents algorithms for the Kalman filter and a smoothing

algorithm for efficient state estimation. In addition, applications to the

increasing horizon prediction, interpolation and parameter estimation of

a time series are dealt with.

9.1 The State-Space Model

It is assumed that yn is an ℓ-variate time series. The following model for

the time series is called a state-space model.

xn = Fnxn−1 + Gnvn, (system model) (9.1)

yn = Hnxn + wn, (observation model), (9.2)

where xn is a k-dimensional unobservable vector, referred to as the state

(Anderson and Moore (1979)). vn is a system noise or a state noise, that

is, an m-dimensional white noise with mean vector zero and variance-

covariance matrix Qn. On the other hand, wn is called observation noise;

it is assumed to be an ℓ-dimensional Gaussian white noise with mean

vector zero and the variance-covariance matrix Rn. Fn, Gn and Hn are

k×k, k×m and ℓ×k matrices, respectively. Many linear models used in

time series analysis are expressible in terms of state-space models.

With respect to the concept of the state-space model, it has the fol-

lowing two interpretations. First, if we consider the observation model

of (9.2) as a regression model that expresses a mechanism for obtaining

the time series yn, then the state xn corresponds to the regression coeffi-

cients. In this case, the system model (9.1) expresses the time-change of

the regression coefficients.

On the other hand, on the assumption that xn is considered as the un-

135
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known signal, the system model expresses the generation mechanism of

the signal, and the observation model expresses the structure of the actu-

ally observed signal, which was obtained by constructing a transformed

signal, contaminated by an additive noise.

Example (State-space representation of an AR model) Here, we

shall consider an AR model for the time series yn

yn =
m

∑
i=1

aiyn−i + vn, (9.3)

where ai is the AR coefficient and vn is a Gaussian white noise with

mean zero and variance σ2.

Then, if the state vector is defined as xn = (yn,yn−1, · · · ,yn−m+1)
T , it

can easily be verified that there is a relation between the two states, xn

and xn−1:

xn = Fxn−1 + Gvn. (9.4)

Here, F and G are the m×m matrix and the m dimensional vector defined

by

F =











a1 a2 · · · am

1

. . .

1 0











, G =











1

0
...

0











, (9.5)

respectively.

On the other hand, since the first component of the state xn is the

observation yn, by putting H = [ 1 0 · · · 0 ], we obtain the observation

model

yn = Hxn. (9.6)

Furthermore, assigning Q = σ2 and R = 0 to the variances of the sys-

tem noise and the observation noise, respectively, a state-space model

representation of the AR model can be obtained. Thus, the AR model

is a special form of the state-space model, in that the state vector xn is

completely determined by the observations until time n, and then the ob-

servation noise becomes zero.

It should be noted here that representation in terms of the state-space

model is not unique. For example, given the state-space models (9.1)

and (9.2), for any non-singular matrix T , by defining a new state zn, the

matrix F ′
n and the vectors G′

n and H ′
n by

zn = T xn, F ′
n = T FnT−1, G′

n = T Gn, H ′
n = HnT−1, (9.7)
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we obtain a state-space model equivalent to the models (9.1) and (9.2):

zn = F ′
nzn−1 + G′

nvn

yn = H ′
nzn + wn.

Next, we define the state as

xn = (yn, ỹn+1|n−1, · · · , ỹn+m−1|n−1)
T ,

where ỹn+i|n−1 = ∑
m
j=i+1 a jyn+i− j expresses the part of the one-step-

ahead predictor yn+i|n−i+1 = ∑
m
j=1 a jyn+i− j of yn+i, that can be deter-

mined by the observations up to time n−1. Here, we define F , G and H

by

F =













a1 1

a2

. . .

... 1

am 0













, G =











1

0
...

0











, H = [1 0 · · · 0 ], (9.8)

and, consequently, we obtain another expression of the AR model.

In general, many of the models treated in this book, such as the

ARMA model, the trend component model and the seasonal component

model, can be expressed in the form

Fi =













a1i 1

a2i

. . .

... 1

ami 0













, Gi =











1

b1i

...

bm−1,i











, (9.9)

Hi = [ c1i c2i · · · cm,i ].

In actual time series analysis, a synthetic model that consists of

p components may be used. If the dimensions of the p states are

m1, · · · ,mp, respectively, with m = m1 + · · ·+ mp, then by defining an

m×m matrix, an m× p matrix and an m vector

F =







F1

. . .

Fp






, G =







G1

. . .

Gp






, H = [H1 · · · Hp ],

(9.10)

a state-space model of the time series is obtained. In this book, this state-

space model is used as the standard form.
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9.2 State Estimation via the Kalman Filter

A particularly important problem in state-space modeling is to estimate

the state xn based on the observations of the time series yn. The reason

is that tasks such as prediction, interpolation and likelihood computa-

tion for the time series can be systematically analyzed by using the state

estimation.

In this section, we shall consider the problem of estimating the state

xn at time n based on the set of observations Yj = {y1, · · · ,y j}. In particu-

lar, for j < n, the state estimation problem is equivalent to estimation of

the future state based on the present and past observations and is called

prediction. For j = n, the problem is to estimate the current state, which

is called a filter. On the other hand, for j > n, the problem is to estimate

a past state x j based on the observations until the present time and this is

called smoothing.

A general approach to these state estimation problems is to obtain

the conditional distribution p(xn|Yj) of the state xn. Then, as the state-

space model defined by (9.1) and (9.2) is a linear model, and moreover

the noises vn and wn, and the initial state x0 follow normal distributions,

all these conditional distributions become normal distributions. There-

fore, to solve the problem of state estimation of the state-space model, it

is sufficient to obtain the mean vectors and the variance-covariance ma-

trices of the conditional distributions. In general, in order to obtain the

conditional joint distribution of states x1, · · · ,xn given the observations

y1, · · · ,yn, a huge amount of computation is necessary.

However, for the state-space model, a very computationally efficient

procedure for obtaining the joint conditional distribution of the state

has been developed by means of a recursive computational algorithm.

This algorithm is known as the Kalman filter (Kalman (1960), Anderson

and Moore (1976)). In the following, the conditional expectation and the

variance-covariance matrix of the state xn are denoted by

xn| j ≡ E
(

xn|Yj

)

Vn| j ≡ E
[

(xn− xn| j)(xn− xn| j)
T
]

. (9.11)

It is noted that only the conditional distributions with j = n−1 (one-

step-ahead prediction) and j = n (filter) are treated in the Kalman filter

algorithm. As shown in Figure 9.1, the Kalman filter could be realized by

repeating the one-step-ahead prediction and the filter with the following

algorithm. The derivation of the Kalman filter is shown in Appendix C.
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x1|0 → x2|0 → x3|0 → x4|0 → x5|0 →
⇓

x1|1 ⇒ x2|1 → x3|1 → x4|1 → x5|1 →
⇓

x1|2 ← x2|2 ⇒ x3|2 → x4|2 → x5|2 →
⇓

x1|3 ← x2|3 ← x3|3 ⇒ x4|3 → x5|3 →
⇓

x1|4 ← x2|4 ← x3|4 ← x4|4 ⇒ x5|4 →
⇓

Figure 9.1 Recursive computation by the Kalman filter and smoothing algo-

rithm.⇒: prediction, ⇓: filter,←: smoothing,→: increasing horizon prediction.

[One-step-ahead prediction]

xn|n−1 = Fnxn−1|n−1

Vn|n−1 = FnVn−1|n−1FT
n + GnQnGT

n . (9.12)

[Filter]

Kn = Vn|n−1HT
n (HnVn∗n−1HT

n + Rn)
−1

xn|n = xn|n−1 + Kn(yn−Hnxn|n−1) (9.13)

Vn|n = (I−KnHn)Vn|n−1.

In the algorithm for one-step-ahead prediction, the predictor (or

mean) vector xn|n−1 of xn is obtained simply by multiplying the tran-

sition matrix Fn by the filter of xn−1, xn−1|n−1. Moreover, the variance-

covariance matrix Vn|n−1 consists of two terms; the first term expresses

the influence of the transformation by Fn, and the second shows the influ-

ence of the system noise vn. In the filter algorithm, the Kalman gain Kn is

initially obtained. The prediction error of yn and its variance-covariance

matrices are obtained as yn−Hnxn|n−1 and HnVn|n−1HT
n + Rn, respec-

tively. Here, the mean vector of the filter of xn can be obtained as the

sum of the prediction vector xn|n−1 and the prediction error multiplied

by the Kalman gain. Then, since xn|n can be re-expressed as

xn|n = Knyn +(I−KnHn)xn|n−1,

it can be seen that xn|n is a weighted sum of the new observation yn and

the predictor, xn|n−1.
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Next, Vn|n can be written as

Vn|n = Vn|n−1−KnHnVn|n−1.

Here, the second term of the right-hand side shows the improvement in

accuracy of the state estimation of xn, resulting from the information

added by the new observation yn.

9.3 Smoothing Algorithms

The problem of smoothing is to estimate the state vector xn based on the

time series Ym = y1, · · · ,ym for m > n. There are three types of smoothing

algorithm. If m = N, the smoothing algorithm estimates the state based

on the entire set of observations and is called fixed-interval smoothing. If

n = m−k, it always estimates the state k steps before, and is called fixed-

lag smoothing. If n is set to a fixed time point, e.g., n = 1, it estimates a

specific point, such as the initial state, and is called fixed-point smooth-

ing. Compared with the filtering algorithm that uses the observations up

to time n for estimation of the state xn, fixed-interval smoothing yields a

more accurate estimate of the state xn, by using all available data.

Fixed-interval smoothing

An = Vn|nFT
n+1V

−1
n+1|n

xn|N = xn|n + An(xn+1|N− xn+1|n) (9.14)

Vn|N = Vn|n + An(Vn+1|N−Vn+1|n)A
T
n .

As shown in this algorithm, the fixed-interval smoothing estimates,

xn|N and Vn|N , can be derived from results obtained by the Kalman fil-

ter, i.e., xn|n−1, xn|n, Vn|n−1 and Vn|n. Therefore, to perform fixed-interval

smoothing, we initially obtain xn|n−1,xn|n,Vn|n−1,Vn|n, n = 1, · · · ,N by

the Kalman filter and compute xN−1|N , Vn−1|N through x1|N , V1|N back-

ward in time (see Figure 9.1). It should be noted that the initial values

xN|N and VN|N necessary to perform the fixed-interval smoothing algo-

rithm can be obtained by the Kalman filter.

9.4 Increasing Horizon Prediction of the State

It will be shown that by repeating one-step-ahead prediction by means of

the Kalman filter, we can perform increasing horizon prediction, that is,

to obtain xn+k|n and Vn+k|n for k = 1,2, · · ·. Let us consider the problem

of estimating the increasing horizon prediction, i.e., estimating the state
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xn+ j for j > 1 based on the time series Yn = y1, · · · ,yn. Firstly, the mean

vector xn+1|n and the variance-covariance matrix Vn+1|n of the one-step-

ahead predictor of xn+1 are obtained by the Kalman filter. Here, since the

future observation yn+1 is unavailable, it is assumed that Yn+1 = Yn. In

this case, we have that xn+1|n+1 = xn+1|n and Vn+1|n+1 = Vn+1|n. There-

fore, from the one-step-ahead prediction algorithm of the Kalman filter

for the period n + 1, we have

xn+2|n = Fn+2xn+1|n

Vn+2|n = Fn+2Vn+1|nFT
n+2 + Gn+2Qn+2GT

n+2. (9.15)

This means that two-step-ahead prediction can be realized by repeat-

ing the prediction step of the Kalman filter twice without the filtering

step. In general, j-step-ahead prediction based on Yn can be performed

using the relation that Yn = Yn+1 = · · · = Yn+ j, by repeating the predic-

tion step j times. Summarizing the above, the algorithm for the increas-

ing horizon prediction xn+1, · · · ,xn+ j based on the observation Yn can be

given as follows:

The increasing horizon prediction

For i = 1, · · · , j, repeat

xn+i|n = Fn+ixn+i−1|n

Vn+i|n = Fn+iVn+i−1|nFT
n+i + Gn+iQn+iG

T
n+i. (9.16)

9.5 Prediction of Time Series

Future values of time series can be immediately predicted by using the

predicted state xn obtained as shown above. When Yn is given, from

the relation between the state xn and the time series yn, which is ex-

pressed by the observation model (9.2), the mean and the variance-

covariance matrix of yn+ j are denoted by yn+ j|n ≡ E(yn+ j|Yn) and

dn+ j|n ≡ Cov(yn+ j|Yn), respectively. Then, we can obtain the mean and

the variance-covariance matrix of the j-step-ahead predictor of the time

series yn+ j by

yn+ j|n = E(Hn+ jxn+ j + wn+ j|Yn)

= Hn+ jxn+ j|n (9.17)

dn+ j|n = Cov(Hn+ jxn+ j + wn+ j|Yn)

= Hn+ jCov(xn+ j|Yn)H
T
n+ j + Hn+ jCov(xn+ j,wn+ j|Yn)

+ Cov(wn+ j,xn+ j|Yn)H
T
n+ j + Cov(wn+ j|Yn)

= Hn+ jVn+ j|nHT
n+ j + Rn+ j. (9.18)
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As indicated previously, the predictive distribution of yn+ j based on

the observation Yn of the time series becomes a normal distribution with

mean yn+ j|n and variance-covariance matrix dn+ j|n. These are easily ob-

tained by (9.17) and (9.18). That is, the mean of the predictor of yn+ j is

given by yn+ j|n and the standard error is given by (dn+ j|n)
1/2. It should

be noted that the one-step-ahead predictor yn|n−1 and dn|n−1 of the time

series yn have already been obtained and were applied in the algorithm

for the Kalman filter (9.13).

Example (Increasing horizon prediction of BLSALLFOOD data)

Figure 9.2 shows the results of the increasing horizon prediction of the

BLSALLFOOD data, N = 156. In this prediction, the AR model was

fitted to the initial 120 observations and the estimated AR model was

used for increasing horizon prediction of the succeeding 36 observations,

y121, · · · ,y156. In the estimation of the AR model, we firstly obtain a time

series with mean zero, y∗n by deleting the sample mean, ȳ of the time

series,

y∗n = yn− ȳ,

and then the parameters of the AR model are obtained by applying the

Yule-Walker method to the time series y∗1 , · · · ,y∗N .

The increasing horizon prediction of the time series y∗n+ j|n is obtained

by applying the Kalman filter to the state-space representation of the AR

model; the increasing horizon prediction value of the time series yn+ j is

then obtained by

yn+ j|n = y∗n+ j|n + ȳ.

Figure 9.2 shows the mean y120+ j|120, j = 1, · · · ,36, and its ±1 stan-

dard error interval y120+ j|120±
√

d120+ j|120 of the predictive distribution

obtained by this method. The actual time series is indicated by a solid

curve for n≤ 120 and by the symbol ◦ for n > 120.

Plots (a), (b), (c) and (d) show the results of the increasing horizon

prediction obtained by AR models of orders m = 1, 5, 10 and 15, re-

spectively. In the case of the first order AR model shown in plot (a),

the increasing horizon prediction value rapidly attenuates exponentially,

which indicates that the information on the periodic behavior of this data

is not effectively used for the prediction. In the case of m = 5 shown in

plot (b), the predictor reasonably reproduced the cyclic behavior for the

first year, but after one year passed, the predicted value rapidly decayed.

The predictors for the AR model with m = 10 reproduce the actual be-

havior of the time series relatively well. Finally, the predictors for the AR

model with m = 15 accurately reproduce the details of the wave form of
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Figure 9.2 Increasing horizon predictive distributions (bold line: mean, thin

line: ± (standard deviation) and ◦: observed value). Orders of the AR models

are 1, 5, 10 and 15, respectively.
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the actual time series. In contrast to the one-step-ahead prediction, the

increasing horizon prediction may lead to significant differences among

the results from AR models of different assumed orders. These results

indicate that prediction by a model of improper order may yield such an

inappropriate prediction that appropriate model selection is extremely

important for the increasing horizon prediction.

9.6 Likelihood Computation and Parameter Estimation for a

Time Series Model

Assume that the state-space representation for a time series model spec-

ified by a parameter θ is given. When the time series y1, · · · ,yN of length

N is given, the N dimensional joint density function of y1, · · · ,yN speci-

fied by this time series model is denoted by fN(y1, · · · ,yN |θ ). Then, the

likelihood of this model is defined by

L(θ ) = fN(y1, · · · ,yN |θ ). (9.19)

By repeatedly applying the relation

fn(y1, · · · ,yn|θ ) = fn−1(y1, · · · ,yn−1|θ )gn(yn|y1, · · · ,yn−1,θ ),

for n = N, N− 1, · · · ,2, the likelihood of the time series model can be

expressed as a product of conditional density functions:

L(θ ) =
N

∏
n=1

gn(yn|y1, · · · ,yn−1,θ ) =
N

∏
n=1

gn(yn|Yn−1,θ ). (9.20)

For simplicity of notation here, we let Y0 = ∅ (empty set) and then

f1(y1|θ ) ≡ g1(y1|Y0,θ ). By taking the logarithm of L(θ ), the log-

likelihood of the model is obtained as

ℓ(θ ) = logL(θ ) =
N

∑
n=1

loggn(yn|Yn−1,θ ). (9.21)

As shown in (9.17) and (9.18), since gn(yn|Yn−1,θ ) is the conditional

distribution of yn given the observation Yn−1 and it is, in fact, a normal

distribution with mean yn|n−1 and variance-covariance matrix dn|n−1, it

can be expressed as (Kitagawa and Gersch (1996))

gn(yn|Yn−1,θ ) =

(

1√
2π

)ℓ

|dn|n−1|−
1
2

×exp

{

−1

2
(yn− yn|n−1)

T d−1
n|n−1

(yn− yn|n−1)

}

. (9.22)
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Therefore, by substituting this density function into (9.21), the log-

likelihood of this state-space model is obtained as

ℓ(θ ) = −1

2

{

ℓN log2π +
N

∑
n=1

log |dn|n−1|

+
N

∑
n=1

(yn− yn|n−1)
T d−1

n|n−1
(yn− yn|n−1)

}

. (9.23)

Stationary time series models such as the AR models, the ARMA

models and many other nonstationary time series models such as trend

and seasonal adjustment models can be expressed in the form of linear

Gaussian state-space models. Accordingly, for such time series models,

a unified algorithm for computing the log-likelihood can be obtained by

using the Kalman filter and (9.23). The maximum likelihood estimates

of the parameters of the time series model can be obtained by maximiz-

ing this log-likelihood by a numerical optimization method, which will

be described later in Appendix C. Examples of parameter estimation for

state-space models are described in Chapter 10 to Chapter 15.

In this way, the parameters contained in the state-space model can

be estimated by numerical maximization of the log-likelihood of (9.23),

but this generally requires considerable computation. Therefore, if the

maximum likelihood estimate or a good approximation can be obtained

analytically, this method should be used for efficient estimation. For in-

stance, on the assumption that there is no missing observation in esti-

mating an AR model, we should use the Yule-Walker method, the least

squares method or the PARCOR method, which have been shown in

Chapter 7, rather than the above method. Furthermore, whenever an ex-

act maximum likelihood estimate is necessary, we should use these ap-

proximations as an initial estimate of the numerical optimization.

When maximization of the log-likelihood is necessary but there is

not such an approximation method available, we may reduce the dimen-

sion of the parameter vector to be estimated by numerical optimization.

In the state-space models (9.1) and (9.2), it is assumed that the dimen-

sion of the time series is ℓ = 1 and the variance of wn is constant with

Rn = σ2. Then, if Ṽn|n, Ṽn|n−1, Q̃n, and R̃ are defined by

Vn|n−1 = σ2Ṽn|n−1, Vn|n = σ2Ṽn|n,

Qn = σ2Q̃n, R̃ = 1, (9.24)

then it follows that the Kalman filters (9.12) and (9.13) yield identical

results, even if those parameters are used.
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In one-step-ahead prediction, it is obvious that we can obtain iden-

tical results, even if we replace Vn−1|n−1 and Vn|n−1 by Ṽn−1|n−1 and

Ṽn|n−1, respectively. In the filtering step, we have

Kn = Vn|n−1HT
n (HnVn|n−1HT

n + Rn)
−1

= σ2Ṽn|n−1HT
n σ−2(HnṼn|n−1HT

n + 1)−1

= Ṽn|n−1HT
n (HnṼn|n−1HT

n + R̃)−1

= K̃n. (9.25)

Assuming that R̃ = 1, the obtained Kalman gain K̃n is identical to

Kn. Therefore, in the filtering step, we may use Ṽn|n and Ṽn|n−1 instead of

Vn|n and Vn|n−1. Furthermore, it can be seen that the vectors xn|n−1 and

xn|n of the state do not change under these modifications. In summary, if

Rn is time-invariant and R = σ2 is an unknown parameter, we may apply

the Kalman filter by setting R = 1. Since we then have dn|n−1 = σ2d̃n|n−1

from (9.18), this yields

ℓ(θ ) =−1

2

{

N log2πσ2 +
N

∑
n=1

log d̃n|n−1 +
1

σ2

N

∑
n=1

(yn− yn|n−1)
2

d̃n|n−1

}

.

(9.26)

From the likelihood equation

∂ℓ

∂σ2
=−1

2

{

N

σ2
− 1

(σ2)2

N

∑
n=1

(yn− yn|n−1)
2

d̃n|n−1

}

= 0, (9.27)

the maximum likelihood estimate of σ2 is obtained by

σ̂2 =
1

N

N

∑
n=1

(yn− yn|n−1)
2

d̃n|n−1

. (9.28)

Furthermore, denoting the parameters in θ except for the variance σ2 by

θ∗, by substituting (9.28) for (9.26), we have

ℓ(θ∗) =−1

2

{

N log2πσ̂2 +
N

∑
n=1

log d̃n|n−1 + N

}

. (9.29)

By this method, it is possible to reduce the dimension of the parame-

ter vector by one. Summarizing the above, the procedure used here is as

follows:
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1. Apply the Kalman filter by putting R = 1.

2. Obtain an estimate of the variance σ̂2 by (9.28).

3. Obtain the log-likelihood ℓ(θ∗) by (9.29).

4. Repeating the above steps (1)–(3), obtain the maximum likeli-

hood estimate θ̂∗ by maximizing the log-likelihood ℓ(θ∗) by

means of numerical optimization.

9.7 Interpolation of Missing Observations

In observing time series, a part of the time series might not be able to

be obtained because of unexpected factors, such as the breakdown of

the observational devices, physical constraints of the observed objects

or the observation systems. In such cases, the actual unobserved data

are called missing observations, or missing values. Even when only a

few percent of the observations are missing, the length of continuously

observed data that can be used for the analysis might become very short.

In such a situation, sometimes we may fill the missing observations with

zeros, the mean value of the time series or by linear interpolation. As can

be seen in the numerical examples following, such ad hoc interpolation

for missing observations may cause a large bias in the analysis, since it

is equivalent to arbitrarily assuming a particular model.

In this section, we shall explain a method of computing the likelihood

of the time series model and interpolating the missing observations using

the state-space model and the Kalman filter (Jones (1980), Kohn and

Ansley (1986), Kitagawa and Gersch (1996)). Applying the state-space

model of time series, it is possible to compute an exact likelihood even

when there are missing observations in the data. Thus, we can obtain

maximum likelihood estimates of unknown parameters.

Let I(n) be the set of time instances at which the time series was

actually observed. If there are no missing observations, it is obvious that

I(n) = {1, · · · ,n}. Then, for the observations Yn ≡ {yi| i ∈ I(n)}, the log-

likelihood of the time series is given by

ℓ(θ ) = log p(YN |θ )

= ∑
n∈I(N)

log p(yn|Yn−1,θ ). (9.30)

Since Yn ≡ Yn−1 holds when the observation yn is missing, as in the

case of increasing horizon prediction, the Kalman filter algorithm can

be performed by just skipping the filtering step. Namely, the predictive

distribution p(xn|Yn−1) of the state, or equivalently, the mean xn|n−1 and
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the variance-covariance matrix Vn|n−1, can be obtained by repeating the

prediction step for all n and the filtering step for n such that n ∈ I(N).
Therefore, after computing yn|n−1 and dn|n−1 by equations (9.17) and

(9.18), similarly to the preceding section, the log-likelihood of the time

series model is defined as

ℓ(θ ) = −1

2
∑

n∈I(N)

{

ℓ log2π + log |dn|n−1|

+ (yn− yn|n−1)
T d−1

n|n−1
(yn− yn|n−1)

}

. (9.31)

If a time series model is already given, the model can be used for

interpolation of missing observations. Similar to the likelihood com-

putation, firstly, we obtain the predictive distributions {xn|n−1, Vn|n−1}
and the filter distributions {xn|n, Vn|n} using the Kalman filter and skip-

ping the filtering steps. Then, we can obtain the smoothed estimates of

the missing observations by applying the fixed-interval smoothing algo-

rithm (9.14). The variance-covariance matrix of the estimate is obtained

by dn|N = HnVn|NHT
n +Rn. Consequently, an estimate of the missing ob-

servation yn is obtained as yn|N = Hnxn|N .

Thus, the results of interpolation by optimal models are significantly

different from conventional interpolations, which are generated by re-

placing missing observations with the mean or by straight-line interpo-

lation. As can be seen from this example, interpolation of the missing

observations by a particular algorithm corresponds to assuming a partic-

ular time series model, different from the true model generating the data.

Therefore, if we perform interpolation without carefully selecting the

model, it may cause significant bad effects in the subsequent analysis.
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Example (Interpolation of missing observations in BLSALLFOOD

data) Figure 9.3 shows the results of a numerical interpolation ex-

periment for the BLSALLFOOD data. Within 156 observations of data,

in total 50 observations are assumed to be missing: y41, · · · ,y70 and

y101, · · · ,y120. They are interpolated by AR models of orders 0, 1, 5, 10

and 15, respectively. It should be noted that order 15 is the AIC best

order. AR coefficients are obtained by maximizing the log-likelihood

defined by (9.31). Interpolation by the AR model of order 0 is equiva-

lent to replacing the missing observations with the mean of the whole

time series. Since the interpolations with the first or the 5th order AR

model cannot capture the wave pattern of the time series well, interpola-

tion with these models cannot reproduce the actual observations shown

by the symbol ◦. On the other hand, by using the AR model of order 10,

the cyclic behavior of the data is reproduced well. Furthermore, it can be

seen from plot (e) that the AIC best model of order 15 can reproduce the

details of the data remarkably well.

Problems

1. Show that, using the transformation (9.7), we can obtain a state-space

model, which is equivalent to the one given in (9.1) and (9.2).

2. Assume that the state-space model xn = xn−1 + vn, yn = xn + wn for

the 1-dimensional state xn is given, where vn∼N(0,τ2), wn ∼N(0,1)
and x0 ∼ N(0,102).

(1) Show the Kalman filter algorithm for this model.

(2) Show the relation between Vn+1|n and Vn|n−1.

(3) If Vn|n−1→ V as n→∞, show that V satisfies the equation V 2−
τ2V − τ2 = 0.

(4) Consider the Kalman filter algorithm as n → ∞ (stationary

Kalman filter).

3. Let the solution of the equation V 2− τ2V − τ2 = 0 be denoted by

V . Obtain the variance of the one-step-ahead predictor, filter and

smoother in the steady state. For τ2 = 1,0.1,0.01,0.001, evaluate

these variances.
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Figure 9.3 Interpolation of missing values (bold line: mean, thin line: ± (stan-

dard deviation) and ◦: observed value). Orders of the AR models are 0, 1, 5, 10

and 15.



Chapter 10

Estimation of the ARMA Model

In this chapter, a method for efficiently computing the log-likelihood of

the ARMA model is explained based on the state-space representation

and the Kalman filter technique. Applying the numerical optimization

method shown in Chapter 4, it is possible to maximize the log-likelihood.

By this procedure, the maximum likelihood estimates of the parameters

of the ARMA model can be obtained.

10.1 State-Space Representation of the ARMA Model

Assume that a stationary ARMA model (autoregressive moving average

model) of order (m, ℓ) (Box and Jenkins (1970), Brockwell and Davis

(1981))

yn =
m

∑
j=1

a jyn− j + vn−
ℓ

∑
j=1

b jvn− j (10.1)

is given. Here, vn is a Gaussian white noise with mean zero and variance

σ2 and ỹn+i|n−1 is defined as

ỹn+i|n−1 =
m

∑
j=i+1

a jyn+i− j−
ℓ

∑
j=i

b jvn+i− j, (10.2)

where ỹn+i|n−1 is a part of yn+i that can be directly expressed by the

observations until time n− 1, yn−1, yn−2, · · ·, and the noise inputs until

time n, vn, vn−1, · · ·. Then, the following relations hold:

yn = a1yn−1 + ỹn|n−2 + vn.

ỹn+i|n−1 = ai+1yn−1 + ỹn+i|n−2−bivn.

ỹn+k−1|n−1 = akyn−1−bk−1vn. (10.3)

Therefore, setting k = max(m, ℓ+ 1) and defining the k-dimensional

state vector xn as

xn = (yn, ỹn+1|n−1, · · · , ỹn+k−1|n−1)
T , (10.4)

151
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the ARMA model can be expressed in the form of a state-space model:

xn = Fxn−1 + Gvn

yn = Hxn. (10.5)

Here the k × k matrix F and the k-dimensional vectors G and H are

defined as

F =













a1 1

a2

. . .

... 1

ak













, G =













1

−b1

...

−bk−1













(10.6)

H = [ 1 0 · · · 0 ],

respectively, where ai = 0 for i > m and bi = 0 for i > ℓ.

In summary, an ARMA model can be expressed by a state-space

model where the coefficient matrices F , G and H are time-invariant and

the observation noise is zero.

10.2 Initial State of an ARMA Model

In order to apply the Kalman filter to the state-space representation of the

ARMA model, it is necessary to specify the mean x0|0 and the variance-

covariance matrix V0|0 of the initial state. Since x0|0 and V0|0 express

the distribution of the filter without any observations of the time se-

ries yn, they can be evaluated by computing the mean and the variance-

covariance matrix of x0 in the stationary state. Firstly, since E(vn) = 0, it

is obvious that E(yn) = 0 and E(ỹn+i|n−1) = 0. Since the expected value

of xn becomes 0, the initial state vector is defined as x0|0 = (0, · · · ,0)T .

Next, if the (i, j)-th element of the variance-covariance matrix V0|0 is

denoted by Vi j, it can be obtained as

V11 = E(y0y0) = C0

V1i = Vi1 = E
(

y0ỹi−1|−1

)

= E

{

y0

(

m

∑
j=i

a jyi−1− j −
ℓ

∑
j=i−1

b jvi−1− j

)}

=
m

∑
j=i

a jC j+1−i −
ℓ

∑
j=i−1

b jg j+1−iσ
2

Vi j = E
(

ỹi−1|−1ỹ j−1|−1

)
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=
m

∑
p=i

m

∑
q= j

apaqE(yi−1−py j−1−q) −
m

∑
p=i

ℓ

∑
q= j−1

apbqE(yi−1−pv j−1−q)

−
ℓ

∑
p=i−1

m

∑
q= j

bpaqE(vi−1−py j−1−q)+
ℓ

∑
p=i−1

ℓ

∑
q= j−1

bpbqE(vi−1−pv j−1−q)

=
m

∑
p=i

m

∑
q= j

apaqCq− j−p+i −
m

∑
p=i

ℓ

∑
q= j−1

apbqgq− j−p+iσ
2

−
ℓ

∑
p=i−1

m

∑
q= j

bpaqgp−i−q+ jσ
2 +

ℓ

∑
p=i−1

bpbp+ j−iσ
2. (10.7)

Here, we note that Ci and gi are the autocovariance function and the

impulse response function, respectively, of the ARMA model, which we

can obtain by the method shown in Chapter 6.

10.3 Maximum Likelihood Estimate of an ARMA Model

Using the above results for the state-space representation of the ARMA

model, we can compute the log-likelihood for the ARMA model speci-

fied by the parameter θ = (σ2,a1, · · · ,am,b1,· · · ,bℓ)
T . Firstly, the initial

state x0|0 and its variance-covariance matrix V0|0 are provided by the

method specified in the preceding section. Next, the one-step-ahead pre-

diction of the state xn|n−1 and its variance-covariance matrix Vn|n−1 can

be computed by the Kalman filter for n = 1, · · · ,N. Then, using (9.23),

the log-likelihood of the ARMA model can be obtained as

ℓ(θ ) =−N

2
log2π− 1

2

N

∑
n=1

logdn|n−1−
1

2

N

∑
n=1

(yn− yn|n−1)
2

dn|n−1

, (10.8)

where dn|n−1 = HVn|n−1HT and yn|n−1 = Hxn|n−1 (Jones (1980), Brock-

well and Davis (1981)).

The maximum likelihood estimate of the parameter vector θ can be

obtained by maximizing the log-likelihood ℓ(θ ) using a numerical opti-

mization method. It is noted that the variance σ2 can easily be obtained

without applying a numerical optimization method by the following pro-

cedure, which is similar to the method shown in Section 9.6.

1. Apply the Kalman filter after setting σ2 = 1 and obtain dn|n−1

and yn|n−1 for n = 1, · · · ,N.

2. Obtain the maximum likelihood estimate of σ2 by σ̂2 =
N−1∑

N
n=1(yn− yn|n−1)

2/dn|n−1.
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3. Obtain the log-likelihood function for the AR coefficients

a1, · · · ,am, and the MA coefficients b1, · · · ,bℓ by ℓ′(a1, · · · ,am,b1,
· · · ,bℓ)≡ ℓ(σ̂2,a1, · · · ,am,b1, · · · ,bℓ).

The maximum likelihood estimate of θ ′ = (a1, · · · ,am,b1, · · · ,bℓ)
T

can be obtained by applying a numerical optimization method to the

log-likelihood function obtained by the above-mentioned procedure. In

actual computation, however, to satisfy the stationarity and invertibility

conditions, we often apply the following transformations of the parame-

ters.

For the condition of stationarity for the AR coefficients a1, · · · ,am,

PARCORs c1, · · · ,cm should satisfy−1 < ci < 1 for all i = 1, · · · ,m. It can

be seen that this condition is guaranteed, if the transformed coefficients

αi defined by

αi = log

(

1 + ci

1− ci

)

, (10.9)

satisfy −∞< αi <∞ for all i = 1, · · · ,m.

Conversely, for arbitrary (α1, · · · ,αm)T ∈ Rm, if ci is defined by

ci =
eαi−1

eαi + 1
, (10.10)

then it always satisfies |ci| < 1 and the corresponding AR coefficients

satisfy the stationarity condition.

On the other hand, to guarantee the invertibility condition for any

(β1, · · · ,βℓ)
T ∈ Rℓ, let di be defined as

di =
eβi−1

eβi + 1
, (10.11)

and formally obtain the corresponding MA coefficients b1, · · · ,bℓ by con-

sidering d1, · · · ,dℓ to be the PARCORs.

Then, for arbitrary θ ′′ = (α1, · · · ,αm,β1, · · · ,βℓ)
T ∈ Rm+ℓ, the corre-

sponding ARMA model will always satisfy the stationarity and invert-

ibility conditions.

10.4 Initial Estimates of Parameters

The initial values of the AR and MA coefficients are necessary for nu-

merical optimization procedures to obtain the maximum likelihood esti-

mates of the parameters of the ARMA model. For AR models obtained

by setting ℓ = 0, the initial estimates of the AR coefficients can be rather
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Table 10.1: AIC values for ARMA models with various orders.

ℓ

0 1 2 3 4 5

0 141.1 73.3 58.5 377.0 54.1

1 105.3 64.6 138.9 55.7 62.4 58.0

2 43.0 39.2 41.0 228.7 23.7 25.0

m 3 41.3 41.1 92.5 14.8 25.4 21.1

4 40.5 41.9 27.0 16.7 14.0 22.9

5 40.9 42.8 18.6 14.3 13.9 16.8

Table 10.2: Log-likelihood values for ARMA models with various order.

ℓ

0 1 2 3 4 5

0 −68.6 −33.7 −25.2 −183.5 −21.0

1 −50.7 −29.3 −65.4 −22.9 −22.2 −22.0

2 −18.5 −15.6 −15.5 −108.4 −4.8 −4.5

m 3 −16.6 −15.5 −40.2 −0.4 −4.7 −1.5

4 −15.2 −15.0 −6.5 −0.4 2.0 −1.5

5 −14.5 −14.5 −1.3 1.9 3.1 2.6

easily obtained by fitting AR models by the Yule-Walker or least squares

method. However, for ℓ > 0, we should carefully select initial values,

since the log-likelihood may have several local maxima, which accord-

ingly yield different estimates, depending on the choice of initial values.

Therefore, it should be noted that we cannot always obtain the best esti-

mates using the default initial values, which are automatically set by the

time series analysis software.

Example (Sunspot number data) Table 10.1 shows the AIC values

when ARMA models are fitted to the logarithm of the sunspot number

data within the range 0 ≤ m, ℓ ≤ 5. From Table 10.1, it can be seen

that the best model is the ARMA model with m = 5 and ℓ = 4. On the

other hand, Table 10.2 summarizes the values of the log-likelihoods of

the fitted ARMA models ℓ(i, j), 0 ≤ i, j ≤ 5. From Table 10.2, the log-

likelihood values for the ARMA models denoted in boldface, such as

ℓ(1,2), ℓ(3,2) and ℓ(2,3), etc., are apparently too small compared with
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Table 10.3: Estimation of ARMA models with modified initial values.

order log-likelihood AIC

(0,4) −22.5 55.0

(1,2) −23.8 55.5

(2,3) −12.2 36.4

(3,2) −15.4 42.8

(3,4) −0.4 16.3

(4,5) 2.0 16.0

(5,5) 3.7 14.5

the values for other surrounding models. Note that the maximum log-

likelihood of the ARMA (i, j) should be larger than or equal to those

of AR (i− 1, j) and AR (i, j− 1), i.e., ℓ(i, j) ≥ ℓ(i− 1, j) and ℓ(i, j) ≥
ℓ(i, j−1). Therefore, this means that the log-likelihood for these models

did not converge to the global maximum from the default initial values

of the parameters.

By assuming that a3 = 0 in the ARMA (3,2) model, we can obtain

the ARMA (2,2) model. Therefore, it is expected that the maximum log-

likelihood value for the ARMA (3,2) model is larger than that of the

ARMA (2,2) model. Accordingly, the AIC values for the ARMA (i, j)
model in Table 10.1 do not increase by more than 2 compared with those

of the ARMA (i, j−1) and ARMA (i−1, j) models.

Therefore, if the log-likelihood value for the ARMA(i, j) violates

either ℓ(i, j) ≥ ℓ(i−1, j) or ℓ(i, j)≥ ℓ(i, j−1), then it indicates that we

could not obtain the global maximum of the log-likelihood function in

estimating the parameters of ARMA(i, j). Such log-likelihood values are

highlighted in boldface in Table 10.2.

In these cases, a better model can be always obtained by using the

coefficients of a model with a larger log-likelihood among the left and

above models in Table 10.2 as the initial values for numerical optimiza-

tion. Table 10.3 shows the log-likelihoods and the AICs of the models

obtained by using these modified initial values. It can be seen that those

initial values certainly satisfy the conditions that ℓ(i, j)≥ ℓ(i−1, j) and

ℓ(i, j)≥ ℓ(i, j−1) for all i and j.

In the maximum likelihood estimation of the parameters of the

ARMA models, it is certain to increase the AR and MA orders gradually

by using the estimators of the lower order models. However, it should
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be also noted that even if the above-mentioned conditions are satisfied,

it is not guaranteed that the estimated parameters actually converge to

the global maxima. We often see that since the ARMA model is very

flexible and versatile, if we fit an ARMA model with large AR and MA

orders, it has a tendency to adjust itself to a small peak or trough of the

periodogram. Thus the log-likelihood has many local maxima. To avoid

using those inappropriate models in estimating ARMA models, it is rec-

ommended that the power spectrum of the estimated ARMA model be

drawn, to ensure that the estimated model converges to the global maxi-

mum.

Problems

1. Using the expression of equation (9.5), obtain the initial variance-

covariance matrix for the maximum likelihood estimates of the AR

model of order m.

2. Describe what we should check to apply the transformation (10.9) to

parameter estimation for the ARMA model.





Chapter 11

Estimation of Trends

In economic time series, we frequently face long-lasting increasing or

decreasing trends. In this chapter, we initially consider a polynomial re-

gression model to analyze time series with such tendencies. Secondly,

we shall introduce a trend model to estimate a complicated trend that we

cannot express in terms of a simple parametric model such as a poly-

nomial or trigonometric regression model. The trend component model

treated in this chapter, representing stochastic changes of parameters,

forms a framework for modeling various types of nonstationary time se-

ries that will be introduced in succeeding chapters.

11.1 The Polynomial Trend Model

The WHARD data in Figure 1.1(e) show a tendency to increase over

the entire time domain. Such a long-term tendency often seen in eco-

nomic time series such as the one depicted in Figure 1.1(e) is called

trend. Needless to say, estimating the trend of such a time series is a very

natural way of capturing the tendency of the time series and predicting

its future behavior. However, even in the case of analyzing short-term

behavior of a time series with a trend, we often analyze the time series

after removing the trend, because it is not appropriate to directly apply a

stationary time series model such as the AR model to the original series.

In this section, we shall explain the polynomial regression model as a

simple tool to estimate the trend of a time series.

For the polynomial regression model, the time series yn is expressed

as the sum of the trend tn and a residual wn

yn = tn + wn, (11.1)

where wn follows a Gaussian distribution with mean 0 and variance σ2.

It is assumed that the trend component can be expressed as a polynomial

tn = a0 + a1xn + · · ·+ amxm
n . (11.2)

159
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Since the above polynomial regression model is a special case of the

regression model, we can easily estimate the model by the method shown

in Chapter 5. That is, to fit a polynomial trend model, it suffices to define

the j-th explanatory variable as xn j = x
j−1
n , and construct the matrix X

as

X =







1 x1 · · · xm
1 y1

...
...

...
...

1 xN · · · xm
N yN






(11.3)

Then, by reducing the matrix X to upper triangular form by an ap-

propriate Householder transformation U ,

UX =

[

S

O

]

=











s11 · · · s1,m+2

. . .
...

sm+2,m+2

O











, (11.4)

the residual variance of the polynomial regression model of order j is

obtained as

σ̂2
j =

1

N

m+2

∑
i= j+2

s2
i,m+2. (11.5)

Since the j-th order model has j+2 parameters, i.e., j+1 regression

coefficients and the variance, the AIC is obtained as

AIC j = N log2πσ̂2
j + N + 2( j + 2). (11.6)

The AIC best order is then obtained by finding the minimum of the AIC j.

Given the AIC best order j, the maximum likelihood estimates â0, · · · , â j

of the regression coefficients are obtained by solving the system of linear

equations







s11 · · · s1, j+1

. . .
...

s j+1, j+1













a0

...

a j






=







s1,m+2

...

s j+1,m+2






. (11.7)

Here, since the matrix S is in upper triangular form, this system of linear

equations can be easily solved by backward substitution.

Example (Maximum temperature data) Table 11.1 summarizes the

residual variance σ̂2
j and the AIC j values of the polynomial regression

models fitted to the maximum temperature data shown in Figure 1.1(c).
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Table 11.1 Maximum temperature data: The residual variances and AIC values

of the polynomial regression models.

j σ̂2
j AIC j j σ̂2

j AIC j

0 60.09 1996.55 4 10.18 1141.74

1 58.89 1988.81 5 9.64 1117.51

2 33.61 1718.14 6 8.97 1084.22

3 23.74 1551.26 7 8.96 1085.90

Table 11.2 (Log) WHARD data: The residual variances and AIC values of the

polynomial regression models.

j σ̂2
j AIC j j σ̂2

j AIC j

0 0.02752 −550.91 8 0.00115 −1027.44

1 0.00163 −986.60 9 0.00112 −1029.21

2 0.00150 −998.22 10 0.00107 −1033.60

3 0.00149 −996.98 11 0.00107 −1031.65

4 0.00147 −997.43 12 0.00106 −1031.51

5 0.00142 −1000.63 13 0.00106 −1029.62

6 0.00123 −1021.24 14 0.00105 −1029.76

7 0.00122 −1019.98 15 0.00102 −1032.34

As shown in Table 11.1, the AIC was minimized at order 6, although the

residual variance σ̂2
j decreases monotonically.

Similarly, Table 11.2 shows the results for the logarithm of the

WHARD data. In this example, although the residual variance decreases

as the order increases, the AIC was minimized at order 10.

Plots (a) and (b) of Figure 11.1 show the original time series and the

trends estimated using the AIC best polynomial regression models. In

plot (a) of the maximum temperature data, a gradual and smooth change

of temperature is reasonably captured by the estimated trend. Also in the

case of the logarithm of the WHARD data, plot (b) shows a generally

smoothly changing trend. In this case, however, we see that the estimated

trend changes too rapidly at the start of the series. Moreover, the abrupt

drop in sales in 1974 and 1975, which corresponds to n around 95 in plot

(b), is not clearly detected. We shall consider a method to solve these

problems later in Section 11.3.
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Figure 11.1 Trends of maximum temperature data and WHARD data estimated

by the polynomial regression model.

11.2 Trend Component Model–Model for Probabilistic Structural

Changes

The polynomial trend model treated in the previous section can be ex-

pressed as

yn ∼ N(tn,σ
2). (11.8)

For this model, it is assumed that the time series is distributed as a nor-

mal distribution with mean value given by the polynomial tn and constant

variance σ2.

This type of parametric model can yield a good estimate of the trend,

when the actual trend is a polynomial or can be closely approximated

by a polynomial. However, in other cases, a parametric model may not

reasonably capture the characteristics of the trend or it may become too

sensitive to random noise.
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Consider a polynomial of the first order, i.e., a straight line, given by

tn = an + b. (11.9)

Here, if we define the time shift operator ∆ by ∆tn ≡ tn− tn−1, then we

have

∆tn = a, ∆2tn = 0. (11.10)

This means that the first order polynomial is the solution of the initial

value problem for the second order difference equation

∆2tn = 0, ∆t0 = a, t0 = b. (11.11)

In general, a polynomial of order k− 1 can be considered a solution of

the difference equation of order k,

∆ktn = 0. (11.12)

In order to make the polynomial more flexible, we assume that ∆ktn≈
0 instead of using the exact difference equation (11.12). This can be

achieved by introducing a stochastic difference equation of order k,

∆ktn = vn, (11.13)

where vn is assumed to be a white noise that follows a normal distribu-

tion with mean 0 and variance τ2,N(0,τ2). In the following, we call the

model (11.13) a trend component model (Kitagawa and Gersch (1984,

1996). Because the solution of the difference equation ∆ktn = 0 is a

polynomial of order k− 1, the trend component model of order k can

be considered as an extension of a polynomial of order k−1. When the

variance τ2 of the noise is small, the realization of a trend component

model locally becomes a smooth function that resembles the polyno-

mial. However, a remarkable difference from the polynomial is that the

trend component model can express a very flexible function globally.

Example (Random walk model) For k = 1, this model becomes a

random walk model which can be defined by

tn = tn−1 + vn, vn ∼ N(0,τ2). (11.14)

This model expresses that the trend is locally constant and can be ex-

pressed as tn ≈ tn−1.

For k = 2, the trend component model becomes

tn = 2tn−1− tn−2 + vn (11.15)



164 ESTIMATION OF TRENDS

for which it is assumed that the trend is locally a linear function and sat-

isfies tn−2tn−1 + tn−2 ≈ 0. In general, the k-th order difference operator

of the trend component model (11.13) is given by

∆k = (1−B)k =
k

∑
i=0

kCi(−B)i. (11.16)

Therefore, using the binomial coefficient ci = (−1)i+1
kCi, the trend

component model of order k can be expressed as

tn =
k

∑
i=1

citn−i + vn. (11.17)

Note that c1 = 1 for k = 1 and c1 = 2 and c2 =−1 for k = 2. Although

these models are not stationary, they can formally be considered as AR

models of order k, by defining the state vector xn and F , G and H as

xn =











tn
tn−1

...

tn−k+1











, F =











c1 c2 · · · ck

1

. . .

1











, G =











1

0
...

0











H = [ 1 0 · · · 0 ], (11.18)

thus leading to a state-space representation of the trend model,

xn = Fxn−1 + Gvn

tn = Hxn. (11.19)

Example (State-space representation of trend models) For k = 1,

the state-space model is obtained by putting

xn = tn, F = G = H = 1. (11.20)

For k = 2, the state-space models of the trend models are obtained by

xn =

[

tn
tn−1

]

, F =

[

2 −1

1 0

]

, G =

[

1

0

]

, H = [1 0 ]

(11.21)

or

xn =

[

tn
−tn−1

]

, F =

[

2 1

−1 0

]

, G =

[

1

0

]

, H = [1 0 ].

(11.22)
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Note that the model (11.22) yields the canonical representation of the

trend model treated in Chapter 9. Moreover, for k = 2, the state vector

may alternatively be defined as xn = (tn,δ tn)
T

F =

[

1 1

0 1

]

, G =

[

1

1

]

, H = [1 0 ]. (11.23)

Since δ tn ≡ ∆tn holds for this model, we can easily confirm that it is

equivalent to the model (11.21). The advantage of using this representa-

tion is that it can easily be generalized (Harvey (1989)); we can extend

the trend component model by setting

vn =

[

vn1

vn2

]

, F =

[

1 1

0 1

]

, G =

[

1 1

0 1

]

, H = [1 0 ]. (11.24)

Here, the trend component satisfies

δ tn = δ tn−1 + vn2

tn = tn−1 + δ tn−1 + vn1 + vn2 (11.25)

= tn−1 + δ tn + vn1.

In contrast to the ordinary trend model with one-dimensional system

noise, in this case, we have ∆tn = δ tn + vn1. This extended trend model

has the characteristic of allowing both level and slope to have indepen-

dent noises, thus expressing a more flexible trend component.

11.3 Trend Model

A trend in a time series expresses a rough tendency of the phenomenon.

In other words, an actually observed time series represents a superposi-

tion of a trend and various variations around it. Here, we consider the

simplest case where the time series is expressed as

yn = tn + wn, (11.26)

where wn is a white noise. This is the simplest model that expresses a

generating mechanism for observations; it can be considered as a special

form of the observation model given in Chapter 9.

To estimate the trend component tn from the time series yn, we con-

sider the following trend model that consists of the trend component

model and the above observation model,

∆ktn = vn (11.27)

yn = tn + wn. (11.28)
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Here, vn is similar to (11.13), a Gaussian white noise with mean 0 and

variance τ2, and wn is a Gaussian white noise with mean 0 and variance

σ2.

The observation model in equation (11.28), yn = tn +wn, is assumed

to express the condition that the time series yn is obtained by adding an

independent noise to the trend. On the other hand, the trend component

model (11.27) expresses the change in the trend. Actual time series are

usually not as simple as this; they often require more sophisticated mod-

eling and this will be treated in the next chapter. Based on the state-space

representation of the trend component model, the state-space represen-

tation of the trend model is as follows:

xn = Fxn−1 + Gvn

yn = Hxn + wn, (11.29)

where the state vector xn is an appropriately defined k-dimensional vec-

tor, and F , G and H are the k×k matrix, the k-dimensional column vector

and the k-dimensional row vector determined by (11.27) and (11.28), re-

spectively. This model differs from the trend component model (11.18)

only in that it contains an additional observation noise. As an example,

for k = 2, the matrices and vectors above are defined by

xn =

[

tn
tn−1

]

, F =

[

2 −1

1 0

]

, G =

[

1

0

]

(11.30)

H = [ 1 0 ].

Once the order k of the trend model and the variances τ2 and σ2 have

been specified, the smoothed estimates x1|N , · · · ,xN|N are obtained by the

Kalman filter and the fixed-interval smoothing algorithm presented in

Chapter 9. Since the first component of the state vector is tn, the first

component of xn|N , namely, Hxn|N , is the smoothed estimate of the trend

tn|N .

Example (Trend of maximum temperature data) Figure 11.2

shows various estimates of the trend of the maximum temperature data

obtained by changing the variance of the system noise τ2 for the first

order trend model, k = 1. The variance of the observation noise σ2 is

estimated by the maximum likelihood method. Plot (a) shows the case of

τ2 = 0.223×10−2. The estimated trend reasonablly captures the annual

cycles of the temperature data. In plot (b) where the model is k = 1 and
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Figure 11.2 Trend of the temperature data obtained by the first order trend mod-

els.

τ2 = 0.223, the estimated trend reveals more detailed changes in tem-

perature. Plot (c) shows the case of k = 1 and τ2 = 0.223× 102. The

estimated trend just follows the observed time series.

On the other hand, Figure 11.3 shows the estimated trends ob-

tained by the models with k = 2. The estimated trend in (a) obtained

by τ2 = 0.321× 10−5 is too smooth and the estimated trend in (c) ob-

tained by τ2 = 0.0321 becomes an undulating curve. But in plot (b), it is

evident that the estimate obtained by τ2 = 0.321×10−3 yields a reason-

able trend. Comparing Figures 11.2 (a) and (b) with Figure 11.3 (b), we
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Figure 11.3 Trend of temperature data obtained by the second order trend mod-

els.

can see that the second order trend model yields a considerably smoother

trend. As shown in the above examples, the trend model contains the or-

der k and the variances τ2 and σ2 as parameters, which yield a variety of

trend estimates. To obtain a good estimate of the trend, it is necessary to

select appropriate parameters.

The estimates of the variances τ2 and σ2 are obtained by the max-

imum likelihood method. Using the method shown in Subsection 9.6,

however, if the ratio λ = τ2/σ2 is specified, the estimate of σ2 is auto-

matically obtained. Therefore, the estimate of the trend is controlled by
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the variance ratio of the system noise and the observation noise. Here λ
is called a trade-off parameter. The order of the trend model k can be

determined by the information criterion AIC. Often for analysis, k = 2 is

used. However, for situations where the trend is variable, k = 1 may be

used instead.

Table 11.3: AIC values for trend models.

k = 1 k = 2

τ2 AIC τ2 AIC

0.223×10−2 2690 0.321×10−5 2556

0.223 2448 0.321×10−3 2506

0.223×102 2528 0.0321 2562

Table 11.3 summarizes the values of τ2 and AIC for the models used

for Figure 11.2. AIC is minimized at τ2 = 0.223 for k = 1 and at τ2 =
0.321×10−3 for k = 2. Incidentally, these estimates are obtained by the

maximum likelihood method. Comparison of the AIC values for k = 1

and k = 2 reveals that the AIC for k = 1 is significantly smaller. It should

be noted that according to the AIC, the wiggly trend obtained using k = 1

is preferable to the nicely smooth trend obtained with k = 2. This is

probably because the noise wn is assumed to be a white noise; thus, the

trend model is inappropriate for the maximum temperature data.

Figure 11.4 shows the observations, the estimated trend and the

residuals when the time series is decomposed by the model, k = 2 and

τ2 = 0.321×10−3. Obviously, the residuals reveal strong correlation and

does not seem to be a white noise sequence.

As shown in the next chapter, we can obtain a smoother trend that fits

the data better using a seasonal adjustment model by decomposing the

time series into three components; trend, AR component and observation

noise. Using a seasonal adjustment model, we can obtain a smoother

trend that better fits the data.
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Figure 11.4 Temperature data and the trend and residuals obtained by the trend

model with k = 2 and τ2 = 0.321× 10−3.

Problems

1. According to the random walk hypothesis for stock prices, a stock

price yn follows a random walk model yn = yn−1 + vn, vn ∼ N(0,σ2).

(1) Assume that yn = 17,000 and σ2 = 40,000 on a certain day. Obtain

the k-days ahead prediction of the stock price and its prediction

error variance for k = 1, . . . ,5.

(2) Obtain the probability that the stock price exceeds 17,000 Yen after

4 days have passed.

(3) Do actual stock prices satisfy the random walk hypothesis? If not,

consider a modification of the model.
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(4) Estimate the trend of actual stock price data (Nikkei 225 Japanese

stock price data and software for estimating the trend is given at

the web site http://www.ism.ac.jp/˜sato.)

2. Give an example of a parametric trend model other than the polyno-

mial trend model.





Chapter 12

The Seasonal Adjustment Model

The seasonal adjustment model is treated in this chapter as an example

of extensions of the trend model. Many economic time series repeat-

edly show similar patterns in the vicinity of the same season of every

year. In judging a tendency or prediction of such time series, we should

carefully take into account these characteristics to avoid misleading re-

sults. A seasonal adjustment method is developed for analyzing time se-

ries that repeat similar patterns of variation at constant intervals (Shiskin

(1976), Akaike (1980ab), Cleveland et al. (1982), Kitagawa and Gersch

(1984)). Seasonal adjustment models decompose a time series yn into

three components of trend tn, seasonal component sn and white noise wn

to represent it as yn = tn + sn + wn.

12.1 Seasonal Component Model

In time series, a patterned variation sn that appears repeatedly every year

is called a seasonal component. In the following, p denotes the period

length of the seasonal component. Here, we put p = 12 for monthly data

and p = 4 for quarterly data, respectively. Then, the seasonal component

sn approximately satisfies

sn = sn−p. (12.1)

Using the lag operator B, since sn−p is denoted as Bpsn, the seasonal

component approximately satisfies

(1−Bp)sn = 0. (12.2)

Similar to the stochastic trend component model introduced in Chap-

ter 11, a model for the seasonal component that gradually changes with

time, is given by (Kitagawa and Gersch (1984, 1996))

(1−Bp)ℓsn = vn2, vn2 ∼ N(0,τ2
2 ). (12.3)

In particular, setting ℓ = 1, we can obtain a random walk model for the

173
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seasonal component by

sn = sn−p + vn2. (12.4)

In this model, it is assumed that spn+i, n = 1,2, . . . is a random walk for

any i = 1, . . . , p.

Therefore, assuming that the time series consists of the trend compo-

nent tn, the seasonal component sn and the observation noise wn, we can

obtain a basic model for seasonal adjustment as

yn = tn + sn + wn, (12.5)

with the trend component model (11.15) in the previous chapter and the

above seasonal component model (12.3).

However, the apparently most natural model (12.4) for seasonal ad-

justment may not work well in practice, because the trend component

model and the seasonal component model both contain the common fac-

tor (1−B)q, (q ≥ 1). This can be seen by comparing the back-shift op-

erator expression of the trend model (11.18) to the seasonal component

model (12.3) with the decomposition

(1−Bp)ℓ = (1−B)ℓ(1 + B + · · ·+ Bp−1)ℓ.

Here, assume that en is an arbitrary solution of the difference equation

(1−B)qen = 0. (12.6)

For q = 1, en is an arbitrary constant. If we define new components t ′n
and s′n as

t ′n = tn + en

s′n = sn− en,

then they satisfy (11.15), (12.3) and

yn = t ′n + s′n + wn. (12.7)

Therefore, we have infinitely many ways to decompose the time series

yielding the same noise inputs vn1, vn2 and wn. Moreover, since the likeli-

hood of the model corresponding to those decompositions is determined

only by vn1, vn2 and wn, it is impossible to discriminate between the

goodness of the decompositions by the likelihood. Once we use compo-

nent models with common factors, we lose uniqueness of the decompo-

sition.



SEASONAL COMPONENT MODEL 175

A simple method to guarantee uniqueness of decomposition is to

ensure that none of the component models share any common factors.

Since 1−Bp = (1−B)(1 + B + · · ·+ Bp−1) and the sufficient condition

for (1−Bp)ℓ = 0 is

(1 + B + · · ·+ Bp−1)ℓ = 0, (12.8)

Sn ≈ Sn−p is attained, if
p−1

∑
i=0

Bisn ≈ 0 (12.9)

is satisfied. Therefore, as a stochastic model of a seasonal component

that gradually changes with time, we may use the following model:

(p−1

∑
i=0

Bi

)ℓ

sn = vn2, vn2 ∼ N
(

0,τ2
2

)

. (12.10)

In this book, the above model is called a seasonal component model

with period p and order ℓ. In actual analysis, except for situations where

the seasonal component shows a significant trend in its changes, the first

order model
p−1

∑
i=0

sn−i = vn2, vn2 ∼ N
(

0,τ2
2

)

(12.11)

is usually used.

To obtain a state-space representation of the seasonal component

model, initially we expand the operator in (12.9) as follows:

(p−1

∑
i=0

Bi

)ℓ

= 1−
ℓ(p−1)

∑
i=1

diB
i. (12.12)

The coefficient di is given by di =−1, i = 1, . . . , p−1 for ℓ = 1 and di =
−i−1, i≤ p−1, and di = i+1−2p, p≤ i≤ 2(p−1) for ℓ = 2. Since the

seasonal component model given in (12.12) is formally a special case of

an autoregressive model, the state-space representation of the seasonal

component model can be given as

xn =











sn

sn−1

...

sn−ℓ(p−1)+1











, F =











d1 d2 · · · dℓ(p−1)

1

. . .

1











, G =











1

0
...

0











H = [ 1, 0, . . . , 0 ]. (12.13)
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12.2 Standard Seasonal Adjustment Model

For standard seasonal adjustment, the time series yn is decomposed into

the following three components

yn = tn + sn + wn, (12.14)

where tn, sn and wn are the trend component, the seasonal component and

the observation noise, respectively. Combining the basic model (12.12)

with the trend component model and the seasonal component model, we

obtain the following standard seasonal adjustment models,

yn = tn + sn + wn (observation model) (12.15)

△ktn = vn1 (trend component model) (12.16)
(p−1

∑
i=0

Bi

)ℓ

sn = vn2 (seasonal component model)(12.17)

where wn ∼ N(0,σ2), vn1 ∼ N(0,τ2
1 ) and vn2 ∼ N(0,τ2

2 ).
The above model is called the standard seasonal adjustment model.

For a seasonal adjustment model with trend order k, period p and

seasonal order ℓ = 1, let the (k + p− 1) dimensional state vector be

defined by xn = (tn, · · · ,tn−k+1,sn,sn−1, · · · ,sn−p+2)
T , and define a 2-

dimensional noise vector as vn = (vn1,vn2)
T , and the matrices F , G and

H by

F =

[

F1 O

O F2

]

, G =

[

G1 O

O G2

]

, H = [H1 H2], (12.18)

then the state-space representation of the seasonal adjustment model is

obtained as

xn = Fxn−1 + Gvn

yn = Hxn + wn. (12.19)

Here, F1, G1 and H1 are the matrices and vectors used for the state-

space representation of the trend component model, and similarly, F2,

G2 and H2 are the matrices and vectors used for the representation of the

seasonal component model. For instance, if k = 2, ℓ = 1 and p = 4, then

F , G and H are defined by

F =













2 −1

1 0

−1 −1 −1

1

1













, G =













1 0

0 0

0 1

0 0

0 0












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Figure 12.1 Seasonal adjustment of WHARD data by a standard seasonal ad-

justment model.
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H = [ 1 0 1 0 0 ]. (12.20)

Example (Seasonal adjustment of WHARD data) Figure 12.1

shows the estimates of the trend, the seasonal and the noise components

of the logarithm of WHARD data using the standard seasonal adjust-

ment model. The maximum likelihood estimates of the parameters are

τ̂2
1 = 0.0248, τ̂2

2 = 0.11×10−7, σ̂2 = 0.156×10−3, and AIC =−728.50.

Plot (b) in Figure 12.1 shows the estimated trend component tn|N and

±1 standard error interval. A very smooth upward trend is evident, ex-

cept for the years 1974 and 1975 where a rapid decrease in the trend is

detected, and the estimated seasonal component is very stable over the

whole interval.

Using the seasonal adjustment model, we can predict time series with

seasonal variation. Figure 12.2 shows the increasing horizon prediction

over two years, i.e., 24 observations using the initial 132 observations

by the method shown in Chapter 9. In the figure, the mean of the pre-

dictive distribution y132+ j|132 and the ±1 standard error interval, i.e.,

±√d132+ j|132 for j = 1, . . . ,24 are plotted. The actual observations are

denoted by the symbol ◦. In this case, very good increasing horizon pre-

diction can be attained, because the estimated trend and seasonal com-

ponents are steady. However, it should be noted that ±1 standard error

interval is very wide.

Figure 12.2: Increasing horizon prediction using a seasonal adjustment model.
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12.3 Decomposition Including a Stationary AR Component

In this section, we consider an extension of the standard seasonal adjust-

ment method (Kitagawa and Gersch (1984)). In the standard seasonal

adjustment method, the time series is decomposed into three compo-

nents, i.e., the trend component, the seasonal component and the ob-

servation noise. These components are assumed to follow the models

given in (12.15) and (12.16), and the observation noise is assumed to

be a white noise. Therefore, if a significant deviation from that assump-

tion is present, then the decomposition obtained by the standard seasonal

adjustment method might become inappropriate. Figure 12.3 shows the

decomposition of the BLSALLFOOD data of Figure 1.1(d) that was ob-

tained by the seasonal adjustment method for the model with k = 2, ℓ = 1

and p = 12. In this case, different from the case shown in the previous

section, the estimated trend shows a wiggle, particularly in the latter part

of the data.

Let us consider the problems when the above-mentioned wiggly

trend is obtained. Similarly to the Figure 12.2, Figure 12.4 shows the

increasing horizon prediction for the latter two years (24 observations)

of the BLSALLFOOD data based on the former 132 observations. In

this case, apparently the predicted mean y132+ j|132 provides a reasonable

prediction of the actual time series y132+ j. However, it is evident that

prediction by this model is not reliable, because an explosive increase in

the size of the confidence interval is observed.

Figure 12.5 shows the overlay of 13 increasing horizon predictions

that are obtained by assuming the starting point to be n = 126, . . . ,138,

respectively. The increasing horizon predictions starting at and before

n = 130 have significant downward bias. On the other hand, the increas-

ing horizon predictions starting at and after n = 135 have significant up-

ward bias. This is the reason that the explosive increase in the width of

the confidence interval of the increasing horizon predictions has occurred

as the lead time has increased. The stochastic trend component model

in the seasonal adjustment model can flexibly express a complex trend

component. But in the increasing horizon prediction with this model, the

predicted mean tn+ j|n can simply be obtained by using the difference

equation

∆ktn+ j|n = 0. (12.21)

Therefore, whether the predicted values may go up or down is de-

cided by the starting point of the trend. From these results, we see that

if the estimated trend is wiggly, it is not appropriate to use the standard
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Figure 12.3 Seasonal adjustment of BLSALLFOOD data by the standard sea-

sonal adjustment model.
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Figure 12.4 Increasing horizon prediction of BLSALLFOOD data (prediction

starting point: n = 132).

Figure 12.5 Increasing horizon prediction of BLSALLFOOD data with floating

starting points (prediction starting point: n =126, . . . , 138).

seasonal adjustment model for increasing horizon prediction.

In predicting one year or two years ahead, it is possible to obtain a

better prediction with a smoother curve by using a smaller value than the

maximum likelihood estimate for the system noise variance of the trend

component, τ2
1 . However, this method suffers from the following prob-

lems; it is difficult to reasonably determine τ2
1 and, moreover, prediction
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with a small lead time such as one-step-ahead prediction becomes sig-

nificantly worse than that obtained by the maximum likelihood model.

To achieve good prediction for both short and long lead times, we

consider an extension of the standard seasonal adjustment model by in-

cluding a new component pn as

yn = tn + sn + pn + wn. (12.22)

Here, pn is a stationary AR component model that is assumed to follow

an AR model

pn =
m3

∑
i=1

ai pn−i + vn3, (12.23)

where vn3 is assumed to be a Gaussian white noise with mean 0 and

variance τ2
3 . This model expresses a short-term variation, for instance,

the cycle of an economic time series, not a long-term tendency like the

trend component. In the model (12.22), the trend component obtained by

the standard seasonal adjustment model is further decomposed into the

smoother trend component tn and the short-term variation pn. As shown

in Chapter 9, the state-space representation of the AR model (12.22) is

obtained by defining the state vector xn = (pn, pn−1, . . . , pn−m3+1)
T and

F3 =











a1 a2 · · · am3

1

. . .

1











, G3 =











1

0
...

0











, (12.24)

H3 = [ 1 0 · · · 0 ], Q3 = τ2
3 .

Therefore, using the state-space representation for the composite

model shown in Chapter 9, the state-space model for the decomposition

of (12.22) is obtained by defining

F =





F1

F2

F3



 , G =





G1 0 0

0 G2 0

0 0 G3



 ,

H = [ H1 H2 H3 ], Q =





τ2
1 0 0

0 τ2
2 0

0 0 τ2
3



 . (12.25)
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Figure 12.6 Seasonal adjustment of BLSALLFOOD data by the model, including

stationary AR components.
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Example (Seasonal adjustment with stationary AR component)

Figure 12.6 shows the decomposition of BLSALLFOOD data into

trend, seasonal, stationary AR and observation noise components by this

model. The estimated trend expresses a very smooth curve similar to

Figure 12.1. On the other hand, a short-term variation is detected as

the stationary AR component and the (trend component) + (stationary

AR component) resemble the trend component of Figure 12.3. The AIC

value for this model is 1336.54, which is significantly smaller than that

of the standard seasonal adjustment model, 1369.30.

Figure 12.7 shows the increasing horizon prediction with this model

starting from n = 132. It can be seen that a good prediction was achieved

with both short and long lead times.

Figure 12.7 Increasing horizon prediction of the BLSALLFOOD data by the

model, including stationary AR components.

12.4 Decomposition Including a Trading-Day Effect

Monthly economic time series, such as the amount of sales at a depart-

ment store, may strongly depend on the number of the days of the week

in each month, because there are marked differences in sales depending

on the days of the week. For example, a department store may have more

customers on Saturdays and Sundays or may regularly close on a specific

day of a week. A similar phenomenon can often be seen in environmental

data, for example, the daily amounts of NOx and CO2 recorded.

A trading-day adjustment has been developed to remove such

trading-day effects that depend on the number of the days of the

week (Cleveland and Devlin (1980), Hillmer (1982)). To develop a
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model-based method for trading-day adjustment, we have to develop a

proper model for the trading-day effect component (Akaike and Ishiguro

(1983), Kitagawa and Gersch (1984, 1996)). Hereinafter, the numbers

from Sunday to Saturday in the n-th data, yn, are denoted as d∗
n1, · · · ,d∗

n7.

Note that each d∗
ni takes a value 4 or 5 for monthly data. Then the

effect of the trading-day is expressed as

tdn =
7

∑
i=1

βnid
∗
ni. (12.26)

The coefficient βni expresses the effect of the number of the i-th day

of the week on the value of yn. Here, to guarantee uniqueness of the

decomposition of the time series, we impose the restriction on it that the

sum of all coefficients amounts to 0, that is,

βn1 + · · ·+ βn7 = 0. (12.27)

Since the last coefficient is defined by βn7 = −(βn1 + · · ·+ βn6), the

trading-day effect can be expressed by using βn1, . . . ,βn6 as

tdn =
6

∑
i=1

βni(d
∗
ni−d∗

n7)

≡
6

∑
i=1

βnidni, (12.28)

where dni ≡ d∗
ni− d∗

n7 is the difference in the number of the i-th day of

the week and the number of Saturdays in the n-th month corresponding

to yn.

On the assumption that these coefficients gradually change, follow-

ing the first order trend model

∆βni = v
(i)
n4 , v

(i)
n4 ∼ N(0,τ2

4 ), i = 1, . . . ,6, (12.29)

the state-space representation of the trading-day effect model is obtained

by

Fn4 = Gn4 = I6, Hn4 = [dn1, . . . ,dn6]

xn4 =







βn1

...

βn6






, Q =







τ2
4

. . .

τ2
4






. (12.30)
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In this representation, Hn4 becomes a time-dependent vector. For sim-

plicity, the variance-covariance matrix Q is assumed to be a diagonal

matrix with equal diagonal elements. In actual analysis, however, we of-

ten assume that the coefficients are time-invariant, i.e.,

βni ≡ βi, (12.31)

where we may put either τ2
4 = 0 or G = 0 for the state-space representa-

tion of this model.

The state-space model for the decomposition of the time series

yn = tn + sn + pn + tdn + wn (12.32)

can be obtained by using

xn =









xn1

xn2

xn3

xn4









, F =









F1

F2

F3

F4









, G =









G1 0 0

0 G2 0

0 0 G3

0 0 0









,

H = [ H1 H2 H3 Hn4 ], Q =





τ2
1 0 0

0 τ2
2 0

0 0 τ2
3



 . (12.33)

Example (Seasonal adjustment with trading-day effect) Figure

12.8 shows the results of the logarithm of the WHARD data, the de-

composition into the trend, the seasonal, the trading-day effect and the

noise components by the seasonal adjustment model with trading-day

effect. The estimated trend and seasonal components are similar to the

decomposition by the standard seasonal adjustment model shown in Fig-

ure 12.1. Although the extracted trading-day effect component is appar-

ently minuscule, it can be seen that the plot of seasonal component plus

trading-day effect component reproduces the details of the observed time

series. The AIC value for this model is −778.18, which is significantly

smaller than that for the standard seasonal adjustment model, −728.50.

Once the time-invariant coefficients of trading-day effects βi are esti-

mated, this can contribute to a significant increase in the accuracy of

prediction, because dn1, · · · ,dn6 are known, even for the future.
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Figure 12.8: Trading-day adjustment for WHARD data.
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Problems

1. Describe what we should check when decomposing a time series us-

ing a seasonal adjustment model with a stationary AR component.

2. Consider a different seasonal component model from that given in

12.1.

3. In trading day adjustments, consider a model that takes into account

the following components:

(1) The effects of the weekend (Saturday and Sunday) and weekdays

are different.

(2) There are three different effects, i.e., Saturday, Sunday and the

weekdays.

4. Consider any other possible effects related to seasonal adjustments

that are not considered in this book.

5. Try seasonal adjustment of an actual time series. You may use the

WebDecomp software at website http://www.ism.ac.jp/˜sato.



Chapter 13

Time-Varying Coefficient AR Model

There are two types of nonstationary time series, one with a drifting

mean value and another which has a structure that varies around the mean

value over time. In the latter type of nonstationary time series, the vari-

ance, the autocovariance function, and the power spectrum of the time

series change over time.

In this chapter, two methods are presented for the analysis of such

nonstationary time series. One is an estimation method for time-varying

variance and the other is a method for modeling the time-varying coeffi-

cient AR model. Estimation of the time-varying variance is equivalent to

the estimation of the stochastic volatility in financial time series analysis.

Early treatment of AR model with time-varying coefficients are reported

in Whittle (1965), Subba Rao (1970) and Bohlin (1976). A state-space

modeling for the time-varying AR model was introduced in Kitagawa

(1983) and Kitagawa and Gersch (1985,1996). Extension of the state-

space modeling to multivariate time series was shown in Jiang and Kita-

gawa (1993).

13.1 Time-Varying Variance Model

The time series yn, n = 1, . . . ,N is assumed to be a Gaussian white noise

with mean 0 and time-varying variance σ2
n . Assuming that σ2

2m−1 = σ2
2m,

if we define a transformed series s1, . . . ,sN/2 by

sm = y2
2m−1 + y2

2m, (13.1)

sm is distributed as a χ2-distribution with 2 degrees of freedom, i.e., an

exponential distribution. Therefore, the probability density function of

sm is given by

f (s) =
1

2σ2
e−s/2σ 2

. (13.2)

189
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The probability density function of the random variable zm defined by

the transformation

zm = log
( sm

2

)

, (13.3)

may be expressed as

g(z) =
1

σ2
exp

{

z− ez

σ2

}

= exp
{

(z− logσ2)− e(z−logσ 2)
}

. (13.4)

This means that the transformed series zm can be written as

zm = logσ2 + wm, (13.5)

where wm follows a double exponential distribution with probability den-

sity function

h(w) = exp{w− ew} . (13.6)

Therefore, an independent time series with time-varying variance is

expressed by the state-space model for the trend of the logarithm of the

variance,

∆ktm = vm

zm = tm + wm, (13.7)

and the logarithm of the variance of the original time series yn is esti-

mated by obtaining the trend of the transformed series zm.

It should be noted that the distribution of the noise wm is not Gaus-

sian. However, since the mean and the variance of the double exponential

distribution are given by −ζ = 0.57722 (Euler constant) and π2/6, re-

spectively, we can approximate it with a Gaussian distribution as follows:

wm ∼ N

(

−ζ ,
π2

6

)

. (13.8)

(Wahba (1980) used this property in smoothing the log periodogram with

a cross-validated smoothing spline.) We can estimate the trend tm with

the Kalman filter. Then tm|M + γ with M = N/2 yields a smoothed esti-

mate of logσ2
m. In Chapter 14, an exact method of estimating the loga-

rithm of the variance will be given, by using the exact probability distri-

bution (13.6) and a non-Gaussian filter and a smoother.

So far, the transformed series defined as the mean of two consecutive

squared time series shown in equation (13.1) has been used in estimating
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Figure 13.1 Estimation of time-varying variance and standardized time series.

From top to bottom: transformed data, estimated time-varying log-variance and

the normalized time series.

the variance of the time series. This is just to make the noise distribution

g(z) closer to a Gaussian distribution, and it is not essential in estimating

the variance of the time series. In fact, if we use a non-Gaussian filter

for trend estimation, we may use the transformed series sn = y2
n, n =

1, . . . ,N, and with this transformation, it is not necessary to assume that

σ2
2m−1 = σ2

2m.

Example (Time-varying variance of a seismic data) Figure 13.1

depicts the transformed time series sm obtained using the equation (13.3)
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for the seismic data shown in Figure 1.1, which are estimates of the

logarithm of the variance, log σ̂2
m, and the normalized time series ỹn =

yn/σ̂n/2. The parameters of the trend model used for the estimation are

the order of the trend k, with a value of 2 and the system noise variance

τ̂2, with a value of 0.66×10−5. By this method, we can obtain a time se-

ries with a variance roughly equal to 1, although the actual seismic data

are not a white noise.

13.2 Time-Varying Coefficient AR Model

The characteristics of stationary time series can be expressed by an au-

tocovariance function or a power spectrum. Therefore, for nonstationary

time series with a time-varying stochastic structure, it is natural to con-

sider that its autocovariance function and power spectrum change over

time. For a stationary time series, its autocovariance function and power

spectrum are characterized by selecting the orders and coefficients of

an AR model or ARMA model. Therefore, for a nonstationary time se-

ries with a time-varying stochastic structure, it is natural to consider that

these coefficients and the order of the model change with time.

In this section, an autoregressive model with time-varying coeffi-

cients for the nonstationary time series yn is modeled as

yn =
m

∑
j=1

an jyn− j + wn, (13.9)

where wn is a Gaussian white noise with mean 0 and variance σ2 (Kozin

and Nakajima (1980), Kitagawa (1983)).

This model is called the time-varying coefficients AR model of order

m and an j is called the time-varying AR coefficient with time lag j at

time n. Given the time series y1, . . . ,yN , this time-varying coefficients AR

model contains at least mN unknown coefficients. The difficulty with this

type of model is, therefore, that we cannot obtain meaningful estimates

by applying the maximum likelihood method or the least squares method

to the model (13.9).

To circumvent this difficulty, we apply a stochastic trend component

model to represent time-varying parameters of the AR model, similar to

the treatment of the trend model and the seasonal adjustment model. For

a trend component model, the trend component tn was assumed to be an

unknown parameter of the model; we then introduced a model for time-

change of the parameter. Since the AR coefficient an j changes over time
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n, a constraint model

∆kan j = vn j, j = 1, . . . ,m (13.10)

is used where ∆ is the difference operator with respect to the time n,

defined as ∆an j = an j− an−1, j (Kitagawa (1983), Kitagawa and Gersch

(1985, 1996)).

In (13.10), k is assumed to be 1 or 2. The vector vn = (vn1, . . . ,vnm)T

is an m-dimensional Gaussian white noise with mean vector 0 and

variance-covariance matrix Q. Since vni and vn j are usually assumed to

be independent for i 6= j, Q becomes a diagonal matrix with diagonal el-

ements τ2
11, . . . ,τ

2
mm; thus, it can be expressed as Q = diag{τ2

11, . . . ,τ
2
mm}.

It is assumed further in this section that τ2
11 = · · ·= τ2

mm = τ2. The ratio-

nale for the above assumption will be discussed later in Section 13.4.

Next, to estimate the AR coefficients of the time-varying AR model

(13.9) associated with the component model (13.10), we develop a cor-

responding state-space representation. For k = 1 and k = 2, the state vec-

tors are defined by xn j = an j and xn j = (an j,an−1, j)
T , respectively. Then

the time-varying coefficient AR model in equation (13.10) can be ex-

pressed as

xn j = F (k)xn−1, j + G(k)vn j, (13.11)

where F (1), F(2), G(1) and G(2) are defined as

F (1) = G(1) = 1

F (2) =

[

2 −1

1 0

]

, G(2) =

[

1

0

]

. (13.12)

Here, assuming the j-th term of equation (13.9) to be the j-th component

of this model, it can be expressed as

an jyn− j = H
(k j)
n xn j, (13.13)

where H
(1 j)
n = yn− j and H

(2 j)
n = (yn− j,0). Then the j-th component of

the time-varying coefficient AR model is given by a state-space model

with F (k), G(k) and H
(k j)
n as follows:

xn j = F (k)xn−1, j + G(k)vn j

an jyn− j = H
(k j)
n xn j. (13.14)

Moreover, noting that H(1) = 1 and H(2) = (1,0), H
(k j)
n is given by

H
(k j)
n = yn− jH

(k). (13.15)
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Using the above component model, a state-space representation of

the time-varying coefficients AR model is obtained as

xn = Fxn−1 + Gvn

yn = Hnxn + wn, (13.16)

where, the km × km matrix F , the km × m matrix G and the km-

dimensional vectors Hn and xn are defined by

F =







F (k)

. . .

F (k)






= Im⊗F(k)

G =







G(k)

. . .

G(k)






= Im⊗G(k)

Hn = [H
(k1)
n , . . . ,H

(km)
n ] = (yn−1, . . . ,yn−m)⊗H(k)

xn =

{

(an1, . . . ,anm)T , for k = 1

(an1,an−1,1, . . . ,anm,an−1,m)T , for k = 2

Q =







τ2

. . .

τ2






, R = σ2. (13.17)

Here, Im is the m×m unit matrix and ⊗ denotes the Kronecker prod-

uct of the matrices A and B, i.e., for the k× ℓ matrix A and the m× n

matrix B, A⊗B is the km× ℓn matrix whose (i, j) component is given

by ap+1,r+1bq+1,s+1 for i−1 = pm+ q, j−1 = rℓ+ s. Hence, the time-

varying coefficients AR model (13.9) and the component model for the

time-varying coefficients are expressible in the form of a state-space

model.

For instance, for m = 2 and k = 2, the state-space model is defined

as









an1

an−1,1

an2

an−1,2









=









2 −1 0 0

1 0 0 0

0 0 2 −1

0 0 1 0

















an−1,1

an−2,1

an−1,2

an−2,2









+









1 0

0 0

0 1

0 0









[

vn1

vn2

]
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yn = (yn−1, 0, yn−2, 0)









an1

an−1,1

an2

an−1,2









+ wn (13.18)

[

vn,1

vn,2

]

∼ N

([

0

0

]

,

[

τ2 0

0 τ2

])

, wn ∼ N(0,σ2).

The above state-space model contains several unknown parameters.

For these parameters, since the log-likelihood function can be computed

by the method presented in Chapter 9, the variance σ2 of the observation

noise wn and the variance τ2 of the system noise vn can be estimated by

the maximum likelihood method. The AR order m and the order k of the

smoothness can be determined by minimizing the information criterion

AIC. Given the orders m and k and the estimated variances σ̂2 and τ̂2,

the smoothed estimate of the state vector xn|N is obtained by the fixed

interval smoothing algorithm. Then, the (( j− 1)k + 1)th element of the

estimated state gives the smoothed estimate of the unknown time-varying

AR coefficient ân, j|N .

Storage of size mk×mk×N is necessary to obtain the smoothed esti-

mates of these time-varying AR coefficients simultaneously. If either the

AR order m or the series length N is large, the necessary memory size

may exceed the memory of the computer and may make the computa-

tion impossible. Making an assumption that the AR coefficients change

only once every r time-steps for some integer r > 1 may be the simplest

method of mitigating such memory problems of the computing facilities.

For example, if r = 20, the necessary memory size is obviously reduced

by a factor of 20. If the AR coefficients change slowly and gradually,

such an approximation has only a slight effect on the estimation of coef-

ficients. To execute the Kalman filter and smoother for r > 1, we repeat

the filtering step r times at each step of the one-step-ahead prediction.

Example (Time-varying coefficient AR models for seismic data)

Table 13.1 summarizes the AIC’s of time-varying coefficient AR models

fitted to the normalized seismic data shown in Figure 13.1, with various

orders obtained by putting r = 20.

Since the observation noise variance σ2 is assumed to be a constant

in the TVCAR modeling, if the variance of the time series significantly

changes as can be observed in Figure 1.1(f), it is better to fit the model to

a transformed time series. For instance, Figure 13.1 shows that the vari-

ance of the time series is approximately homoscedastic. For this data, the

AIC was minimized at m = 8 for k = 1 and m = 4 for k = 2.
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Table 13.1 AIC’s of time-varying coefficients AR models fitted to normalized

seismic data.

m k = 1 k = 2 m k = 1 k = 2

1 6492.5 6520.4 6 4831.9 4873.8

2 5527.7 5643.2 7 4821.6 4878.7

3 5070.0 5134.5 8 4805.1 4866.9

4 4820.0 4853.9 9 4813.4 4884.9

5 4846.0 4886.0 10 4827.1 4911.9

Figure 13.2 Estimated time-varying PARCOR for the normalized seismic data.

Only the first four PARCOR’s are shown. Left plots: k = 1, right plots: k = 2.

Horizontal axis: time point, vertical axis: value of PARCOR.

Figure 13.2 shows the time-varying coefficients in the case of the

TVCAR models with the AIC best fit orders m for k = 1 and k = 2. Note

that the figure depicts the time-varying PARCORs bni for i = 1,2,3,4,

instead of the AR coefficients. The plots on the left-hand side are for

the case of k = 1 and on the right-hand side are for the case of k = 2.

From the figure, we see that the estimated coefficients vary with time

corresponding to the arrivals of the P-wave and the S-wave at n = 630

and n = 1026, respectively, which were estimated by using the locally

stationary AR model. In Figure 13.2, the estimates using k = 2 are very
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smooth. However, as is apparent in the figure, the estimates with k = 2

do not appropriately correspond to the abrupt changes of the time series

that correspond to the arrival of the P-wave and the S-wave. Compared

with this, the estimates obtained from the TVCAR model with k = 1 are

variable. According to the AIC criterion, the TVCAR model with k = 1

is considered to be a better model than that with k = 2. In Section 13.5,

we shall consider a method for obtaining smooth estimates that has the

capacity to adapt to abrupt structural changes.

13.3 Estimation of the Time-Varying Spectrum

For a stationary AR model, the power spectrum is given by

p( f ) =
σ2

∣

∣

∣
1−∑

m
j=1 a je−2π i j f

∣

∣

∣

2
, −1

2
≤ f ≤ 1

2
. (13.19)

Therefore, in the case that the AR coefficients at time n are given by

an j for the time-varying coefficient AR model (13.9), the instantaneous

spectrum at time n can be defined by

pn( f ) =
σ2

∣

∣

∣
1−

m

∑
j=1

an je
−2π i j f

∣

∣

∣

2
, −1

2
≤ f ≤ 1

2
. (13.20)

Using the time-varying AR coefficients an j introduced in the pre-

vious section, we can estimate the time-varying power spectrum as a

function of time, which is called the time-varying spectrum.

Example (Time-varying spectrum of a seismic data) Figure 13.3

illustrates the time-varying spectrum obtained from the equation (13.20).

The left plot shows the case for k = 1, and the right plot shows the case

for k = 2. In the plots of Figure 13.3, the horizontal and the vertical

axes indicate the frequency and the logarithm of the spectra, respectively,

and the slanted axis indicates time. From the figures, it can be seen that

the power of the spectrum around f = 0.25 increases with the arrival of

the P-wave. Subsequently, the power around f = 0.1 increases with the

arrival of the S-wave. After that, the peaks of the spectra gradually shift

to the right, and the spectrum eventually converges to that of the original

background motions.
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Figure 13.3: Time-varying spectra of a seismic data.

13.4 The Assumption on System Noise for the Time-Varying

Coefficient AR Model

As stated in Section 13.2, the time-varying AR coefficients can be es-

timated by approximating the time-change of AR coefficients using the

trend component models and then the TVCAR model can be expressed

in a state-space form. In the state-space model (13.17), the variance-

covariance matrix for the system noise is assumed to be a diagonal form

given by Q = diag
{

τ2, · · · ,τ2
}

. This seems to be a very strong assump-

tion; however, in this section, it will be shown that it arises naturally,

by considering the smoothness of the frequency response function of the

AR operator.

Firstly, we consider the Fourier transform of the AR coefficients of

the TVCAR model,

A( f ,n) = 1−
m

∑
j=1

an je
−2π i j f , −1

2
≤ f ≤ 1

2
. (13.21)

This is the frequency response function of the AR model considered as

a whitening filter. Then the time-varying spectrum of (13.20) can be ex-
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pressed as

pn( f ) =
σ2

|A( f ,n)|2 . (13.22)

Since the characteristics of the power spectrum are determined by

the frequency response function A( f ,n), we can obtain good estimates of

the time-varying spectrum by controlling the smoothness of A( f ,n). By

considering the smoothness of A( f ,n) with respect to n, we can obtain

the following models for the change over time of the AR coefficients.

Considering the k-th difference of the A( f ,n) to evaluate the smoothness

of the change over time of the AR coefficients, we obtain

∆kA( f ,n) =
m

∑
j=1

∆kan je
−2π i j f . (13.23)

Then, taking the integral of the square of ∆kA( f ,n), we obtain

∫ 1
2

− 1
2

|∆kA( f ,n)|2d f =
m

∑
j=1

(∆ka jn)
2. (13.24)

Therefore, it is possible to curtail the change over time of the power

spectrum, by reducing the sum of the squares of the k-th differences

of the AR coefficients. Since the squares of the k-th differences of the

AR coefficients add up with the same weights to each term in equation

(13.24), this is equivalent to making the natural assumption that in equa-

tion (13.10),

τ2
11 = · · ·= τ2

mm = τ2, (13.25)

and that

∆k
na jn = vn j, vn j ∼ N(0,τ2), j = 1, · · · ,m. (13.26)

13.5 Abrupt Changes of Coefficients

For the seismic data shown in Figure 13.1, it can be seen that the behavior

of the wave form changes abruptly as a new signal arrives at a certain

time. In this case, the estimated time-varying coefficients often become

too variable or too smooth to capture the change of the characteristics as

seen in Figure 13.2.

In such a case, by applying the locally stationary AR model shown

in Chapter 8, we can obtain estimates of the change points. By using the

estimates of arrival times of a new signal, we may obtain better estimates
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of the time-varying AR coefficients. Abrupt changes are assumed to be

detected at times n = n1, . . . ,np. Corresponding to these points, the noise

term vn j of (13.10) takes a large negative or positive value. This indicates

that it is necessary to increase the variance τ2 at the time points n =
n1, . . . ,np.

Precisely, when τ2 is increased in this way, the absolute value of the

k-th time-difference of an j also becomes larger. Thus, for k = 1, the co-

efficient an j shows a stepwise behavior and produces a discontinuous

point. On the other hand, for k = 2, the slope of an j changes abruptly

and yields a bending point. To yield a jump for a model with k ≥ 2, it is

necessary to add noise to each component of the state vector. Therefore,

we can realize the jump either by initializing the state and the variance-

covariance matrix xn|n−1 and Vn|n−1 or by adding a large positive value

to all diagonal elements of Vn|n−1 for n = n1, . . . ,np. This method is ap-

plicable to trend estimation as well as for the time-varying coefficient

modeling.

Figure 13.4 Time-varying spectrum estimated by assuming discontinuities in the

parameters.
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Example (Time-varying spectrum with abrupt structural changes)

Figure 13.4 shows the time-varying AR coefficients and the time-varying

spectrum estimated by the model with k = 2 and m = 4 and by assuming

that sudden jumps occur at n = 630 and at n = 1026, that correspond to

the arrivals of the P-wave and the S-wave, respectively. The estimated

coefficients jump twice at those two points but change very smoothly

elsewhere.

Moreover, from Figure 13.4, we can observe two characteristics

of the series, firstly, that the dominant frequencies gradually shift to

the right after the S-wave arrives, and secondly, that the direct current

( f = 0) component increases towards its value in the spectrum of the

background microtremors.

Problems

1. Give an example of a heteroscedastic (variance changing over time)

time series other than earthquake data.

2. Consider a method of estimating a regression model whose coeffi-

cients change over time.





Chapter 14

Non-Gaussian State-Space Model

In this chapter, we extend the state-space model to cases where the

system noise and/or the observation noise are non-Gaussian. This non-

Gaussian model is applicable when there are sudden changes in the pa-

rameters caused by structural changes of the system or by outliers in the

time series. For the general non-Gaussian models we consider here, it

may often be the case that we do not obtain good estimates of the state

by using Kalman filtering and the smoothing algorithms. Even in such

cases, however, we can derive a similar exact sequential formula to real-

ize filtering and smoothing algorithms using numerical integration.

14.1 Necessity of Non-Gaussian Models

As shown in the previous chapters, various types of time series models

can be expressed in terms of the linear-Gaussian state-space model

xn = Fxn−1 + Gvn

yn = Hxn + wn, (14.1)

where yn is the time series, xn is the unknown state vector, and vn and wn

are Gaussian white noises.

The state-space model is a very useful tool for time series modeling,

since it is a natural representation of a time series model and provides us

with very efficient computational methods, such as Kalman filtering and

smoothing algorithms. Although many important time series models are

expressible as linear-Gaussian state-space models, there are some other

situations where extensions of the model are necessary, such as the case

of a nonstationary time series with time-varying stochastic structure that

sometimes contains both smooth and abrupt changes. Although a linear-

Gaussian state-space model can reasonably express gradual structural

changes of nonstationary time series, it is necessary to build a complex

model to properly address abrupt changes. To remove the influence of

outliers in the data, development of an automatic detection method for

203
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the outliers and a robust estimation procedure is necessary (West (1981),

Meinhold and Singpurwalla (1989) and Carlin et al. (1992)). In addition,

nonlinear systems and discrete processes cannot be adequately modeled

by standard linear Gaussian state-space models.

Let us consider possible solutions to these problems. In state-space

modeling, changes in the stochastic structure are often reflected by

changes in the state. Assuming a heavy-tailed distribution such as the

Cauchy distribution for the system noise vn, both smooth changes that

occur with high probability and abrupt changes that occur with low prob-

ability can be expressed by a single noise distribution.

Similarly, it is reasonable to deal with outliers in time series by us-

ing a heavy-tailed distribution for the observation noise wn. On the other

hand, if the system contains nonlinearity or if the observations are dis-

crete values, the distribution of the state vector inevitably becomes non-

Gaussian.

Therefore, as a key to the solution of problems that occur with

standard state-space modeling, a treatment of non-Gaussian state dis-

tributions is essential. In the following sections, the recursive filter and

smoothing algorithms for the estimation of the unknown states of non-

Gaussian state-space models and their applications are presented.

14.2 Non-Gaussian State-Space Models and State Estimation

Consider the following state-space model

xn = Fxn−1 + Gvn (system model) (14.2)

yn = Hxn + wn (observation model) (14.3)

where the system noise vn and the observation noise wn are white noises

that follow the density functions q(v) and r(w), respectively. In contrast

to the state-space models presented in the previous chapters, these distri-

butions are not necessarily Gaussian.

In this case, the distribution of the state vector xn generally becomes

non-Gaussian. Consequently, the state-space model of equations (14.2)

and (14.3) is called a non-Gaussian state-space model. Clearly, this non-

Gaussian state-space model is an extension of the standard state-space

model.

As in Chapter 9, the information from the time series obtained by

time j is denoted as Yj ≡ {y1, . . . ,y j}. Similarly, the set of realizations

of the state xn up to time j is denoted as X j ≡ {x1, . . . ,x j}. Further, the

initial state vector x0 is assumed to be distributed according to the prob-

ability density function p(x0|Y0). Here, the state estimation problem is
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to obtain the conditional distribution of the state vector xn, given the in-

formation Ym. There are three versions of the state estimation problem,

depending on the relation between n and m. Specifically, for n > m, n = m

and n < m, it is called the prediction problem, the filtering problem and

the smoothing problem, respectively.

For the linear-Gaussian state-space model, the Kalman filter provides

a recursive algorithm for obtaining the conditional mean and the condi-

tional variance-covariance matrix of the state vector. On the other hand,

with the general non-Gaussian state-space model, it is necessary to ob-

tain the conditional densities for state estimation.

However, for the state-space models defined by (14.2) and (14.3), by

using the relations p(xn|xn−1,Yn−1) = p(xn|xn−1) and p(yn|xn,Yn−1) =
p(yn|xn), we can derive recursive formulas for obtaining the one-step-

ahead predictive distribution p(xn|Yn−1) and the filtering distribution

p(xn|Yn) as follows (Kitagawa (1987)). Note that the following algorithm

can be applied to general nonlinear state-space model (Kitagawa (1991),

Kitagawa and Gersch (1996)).

[ One-step-ahead prediction ]

p(xn|Yn−1) =

∫ ∞

−∞
p(xn,xn−1|Yn−1)dxn−1

=

∫ ∞

−∞
p(xn|xn−1,Yn−1)p(xn−1|Yn−1)dxn−1

=
∫ ∞

−∞
p(xn|xn−1)p(xn−1|Yn−1)dxn−1, (14.4)

[ Filtering ]

p(xn|Yn) = p(xn|yn,Yn−1)

=
p(yn|xn,Yn−1)p(xn|Yn−1)

p(yn|Yn−1)

=
p(yn|xn)p(xn|Yn−1)

p(yn|Yn−1)
, (14.5)

where p(yn|Yn−1) is obtained as

∫

p(yn|xn)p(xn|Yn−1)dxn. The one-step-

ahead prediction formula (14.4) is an extension of the one-step-ahead

prediction of the Kalman filter. Here, p(xn|xn−1) is the density function

of the state xn when the previous state xn−1 is given, which is deter-

mined by the system model (14.2). Therefore, if the filter p(xn−1|Yn−1)
of xn−1 is given, the one-step-ahead predictor p(xn|Yn−1) can be evalu-

ated. On the other hand, the filter formula (14.5) is an extension of the
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filtering step of the Kalman filter. p(yn|xn) is the conditional distribu-

tion of the observation yn, when the state xn is given. It is determined by

the observation model of (14.3). Therefore, if the predictive distribution

p(xn|Yn−1) of xn is given, then the filter density p(xn|Yn) is computable.

Next, we consider the smoothing problem. Using the equation

p(xn|xn+1,YN) = p(xn|xn+1,Yn) that holds for the state-space models of

(14.2) and (14.3), we obtain

p(xn,xn+1|YN) = p(xn+1|YN)p(xn|xn+1,YN)

= p(xn+1|YN)p(xn|xn+1,Yn)

= p(xn+1|YN)
p(xn|Yn)p(xn+1|xn,Yn)

p(xn+1|Yn)

= p(xn+1|YN)
p(xn|Yn)p(xn+1|xn)

p(xn+1|Yn)
. (14.6)

Integration of both sides of (14.6) yields the following sequential for-

mula for the smoothing problem:

[ Smoothing formula ]

p(xn|YN) =

∫ ∞

−∞
p(xn,xn+1|YN)dxn+1

= p(xn|Yn)

∫ ∞

−∞

p(xn+1|YN)p(xn+1|xn)

p(xn+1|Yn)
dxn+1. (14.7)

In the right-hand side of the formula (14.7), p(xn+1|xn) is determined by

the system model (14.2). On the other hand, p(xn|Yn) and p(xn+1|Yn) are

obtained by equations (14.4) and (14.5), respectively. Thus, the smooth-

ing formula (14.7) indicates that if p(xn+1|YN) is given, we can compute

p(xn|YN).
Since p(xN |YN) can be obtained by filtering (14.5), by repeating the

smoothing formula (14.7) for n = N − 1, . . . ,1 in a similar way as for

the fixed interval smoothing presented in Chapter 9, we can obtain the

smoothing distributions p(xN−1|YN), . . . , p(x1|YN), successively.

14.3 Numerical Computation of the State Estimation Formula

As shown in the previous section, we can derive recursive estimation

formulas for the non-Gaussian state-space model that are natural exten-

sions of the Kalman filter. Adopting this comprehensive algorithm, we

can extensively treat various types of time series models. However, in
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the practical application of the algorithm, difficulties often arise in cal-

culating the formulas of the filter and smoother.

For a linear Gaussian state-space model, all the conditional dis-

tributions p(xn|Yn−1), p(xn|Yn) and p(xn|YN) become normal distribu-

tions. Therefore, in that case, only the mean vectors and the variance-

covariance matrices need to be evaluated, and correspondingly (14.4),

(14.5) and (14.7) become equivalent to the ordinary Kalman filter and

the smoothing algorithms. However, since the conditional distribution

p(xn|Yj) of the state generally becomes a non-Gaussian distribution,

it cannot be specified using only the mean vector and the variance-

covariance matrix. Various algorithms have been presented, for instance,

the extended Kalman filter (Anderson and Moore (1979)) and the sec-

ond order filter, to approximate the non-Gaussian distribution by a sin-

gle Gaussian distribution with properly determined mean vector and

variance-covariance matrix. In general, however, they do not perform

well.

This section deals with the method of realizing the non-Gaussian fil-

ter and the non-Gaussian smoothing algorithm by numerically approx-

imating the non-Gaussian distributions (Kitagawa (1987)). In this ap-

proach, a non-Gaussian state density function is approximated numer-

ically using functions such as a step function, a piecewise linear func-

tion or a spline. Then, the formulas (14.4)–(14.7) can be evaluated by

numerical computation. Since this approach requires a huge amount of

computation, it used to be considered an impractical method. Nowadays,

with the development of high-speed computers, those numerical meth-

ods have become practical, at least for the low-dimensional systems.

In this section, we approximate the density functions that appeared in

(14.4), (14.5) and (14.7) by simple step functions (Kitagawa and Gersch

(1996)).

To be specific, the density function f (t) to be approximated is de-

fined on a line: −∞ < t <∞. To approximate this density function by

a step function, the domain of the density function is firstly restricted

to a finite interval [t0,td ], which is then divided into d sub-intervals

t0 < t1 < · · · < td . Here, t0 and td are assumed to be sufficiently small

and large numbers, respectively, and for simplicity, the width of the

sub-intervals is assumed to be identical. Then the i-th point is given by

ti = t0 + i∆t with ∆t = (td− t0)/d. In the actual programming of the ends

of the sub-intervals, however, t0 and ti change, adapting to changes in

the location of the density function. For simplicity, however, ends of the

sub-intervals are assumed to be fixed in the following.

In a step-function approximation, the function f (t) is approximated
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Table 14.1: Approximation of density functions.

density function approximation denotation

p(xn|Yn−1) {d;t0, · · · ,td ; p1, · · · , pd} p̃(t)
p(xn|Yn) {d;t0, · · · ,td ; f1, · · · , fd} f̃ (t)
p(xn|YN) {d;t0, · · · ,td ;s1, · · · ,sd} s̃(t)

q(v) {2d + 1;t−d, · · · ,td ;q−d , · · · ,qd} q̃(v)

by fi on the sub-interval [ti−1,ti]. If the function f (t) is actually a step-

function, it is given by fi = f (ti). But in general, it may be defined by

fi = ∆t

∫ ti

ti−1

f (t)dt. (14.8)

Using those values, the step-function approximation of the function

f (t) is specified by {d;t0, . . . ,td ; f1, . . . , fd}. In the following, the ap-

proximated function is denoted by f̃ (t). For the numerical implemen-

tation of the non-Gaussian filter and the smoothing formula, it is neces-

sary to approximate the density functions p(xn|Yn−1), p(xn|Yn), p(xn|YN)
and the system noise density q(v) as shown in Table 14.1. Here, it is

clear that we should use the observation noise density r(v) directly,

without discretizing it. Alternative approaches for numerical integrations

are Gauss-Hermite polynomial integration (Schnatter (1992)), a random

replacement of knots spline function approximation (Tanizaki (1993))

and Monte Carlo integration (Carlin et al. (1992), Frühwirth-Schnatter

(1994), Carter and Kohn (1993)).

In the following, we show a procedure for numerical evaluation of

the simplest one-dimensional trend model:

xn = xn−1 + vn,

yn = xn + wn. (14.9)

[ One-step-ahead prediction ]

For i = 1, . . . ,d, compute

pi = p̃(ti) =
∫ td

t0

q̃(ti− s) f̃ (s)ds

=
d

∑
j=1

∫ t j

t j−1

q̃(ti− s) f̃ (s)ds
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= ∆t
d

∑
j=1

qi− j f j. (14.10)

[ Filtering ]

For i = 1, . . . ,d, compute

fi = f̃ (ti) =
r(yn− ti)p̃(ti)

C
=

r(yn− ti)pi

C
, (14.11)

where the normalizing constant C is obtained by

C =

∫ td

t0

r(yn− t)p̃(t)dt =
d

∑
j=1

∫ t j

t j−1

r(yn− t)p̃(t)dt

= ∆t
d

∑
j=1

r(yn− t j)p j. (14.12)

[ Smoothing ]

For i = 1, . . . ,d, compute

si = s̃(ti) = f̃ (ti)

∫ td

t0

q̃(ti−u)s̃(u)

p̃(u)
du

= f̃ (ti)
d

∑
j=1

∫ t j

t j−1

q̃(ti−u)s̃(u)

p̃(u)
du

= ∆t · f (ti)
d

∑
j=1

qi− js j

p j

. (14.13)

It should be noted that, in practical computation, even after the pre-

diction step (14.10) and the smoothing (14.13), the density functions

should be normalized so that the value of the integral over the whole

interval becomes 1. This can be achieved, for example, by modifying fi

to fi/I( f ), where I( f ) is defined by

I( f ) =

∫ td

t0

f (t)dt = ∆t ( f1 + · · ·+ fd) . (14.14)

14.4 Non-Gaussian Trend Model

In the trend model considered in Chapter 11, in cases where the distribu-

tion of the system noise vn or the observation noise wn is non-Gaussian,
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Figure 14.1: Data generated by the model of (14.15).

we obtain a non-Gaussian trend model. In this section, numerical ex-

amples are given in order to explain the features of the non-Gaussian

model.

Example (Non-Gaussian trend estimation) Figure 14.1 shows the

data generated by the following models:

yn ∼ N(µn,1), µn =















0, 1≤ n≤ 100

1, 101≤ n≤ 200

−1, 201≤ n≤ 300

0, 301≤ n≤ 400

. (14.15)

In the plot, it can be seen that the mean value function, µn, abruptly

changes three times. For estimation of a changing mean value function

with the structural changes shown in Figure 14.1, we consider the fol-

lowing first order trend model:

tn = tn−1 + vn

yn = tn + wn, (14.16)

where the observation noise wn is assumed to be Gaussian and the system

noise vn follows the type IV Pearson family of distributions:

q(vn) =
c

(τ2 + v2
n)

b
,

1

2
< b <∞. (14.17)

Here, b and τ2 denote the shape parameter and the dispersion parameter,
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Table 14.2 Non-Gaussian model with Pearson family of distributions with vari-

ous values of shape parameter b.

b τ2 σ2 log-likelihood AIC

0.60 0.211×10−9 1.042 −597.19 1198.38

0.75 0.299×10−7 1.043 −597.39 1198.78

1.00 0.353×10−4 1.045 −597.99 1198.98

1.50 0.303×10−2 1.045 −599.13 1202.26

3.00 0.406×10−1 1.046 −600.40 1204.80

∞ 0.140×10−1 1.048 −600.69 1205.38

respectively, and c is a normalizing constant, which makes the value of

the integral of q(v) over the whole interval equal to 1 and is given by

c = τ2b−1Γ(b)/Γ( 1
2
)Γ(b− 1

2
) (Johnson and Kotz (1970)). The Pearson

family of distributions can express various symmetric probability density

functions with heavier-tailed distributions than the normal distributions.

Here, the Pearson family of distributions yields the Cauchy distribution

for b = 1, the t distribution with k degrees of freedom for b = (k + 1)/2

and the normal distribution as b→∞.

Table 14.2 summarizes the values of the maximum likelihoods and

the AICs of the Pearson family of distributions with b = 3/k, (k =
0, . . . ,5). Here, it is shown that the AIC is minimized at b = 0.60, and

the AIC of the normal distribution model (b =∞) is the maximum.

The plot on the left-hand side of Figure 14.2 depicts the change over

time of the smoothed distribution of the trend p(tn|YN), obtained from

the Gaussian model (for b =∞), and the corresponding plot obtained

from the non-Gaussian model with b = 1.0 is shown on the right-hand

side. The left plot (a) shows that the distribution of the trend estimated

by the Gaussian model gradually shifts left or right with the progress of

time n. On the other hand, for the case of the non-Gaussian model shown

in the right plot (b), the estimated density is seen to be very stable with

abrupt changes at only three time points.

In Figure 14.3, the plot on the left-hand side shows the mean and the

±1,2,3 standard deviation intervals of the estimated distribution at each

time point for the Gaussian model. On the other hand, the plot on the

right-hand side shows the 0.13,2.27,15.87,50.0,84.13,97.73 and 99.87

percentile points of the estimated trend distribution that correspond to

the mean and ±1,2,3 intervals of the Gaussian distribution. Comparing
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plot (a) with (b) of Figure 14.3, it can be seen that the non-Gaussian

model yields a smoother estimate than the Gaussian model and clearly

detects jumps in the trend.

Figure 14.2 Changes over time of the smoothed distribution of the trend. Left:

Gaussian model, right: non-Gaussian model.

Figure 14.3 Estimation of trend by Gaussian (left plot) and non-Gaussian (right

plot) models.
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14.5 Non-Symmetric Distribution–A Time-Varying Variance

Model

The distribution of data observed from the real world sometimes reveals

non-symmetry. This might be due to certain characteristics or nonlin-

earity of the data generating mechanism. If we apply the least squares

method to such a data set, we may obtain a biased estimate of the trend.

Thus, if the distribution of the observations is known, we may obtain a

better estimates by using a non-Gaussian distribution r(w) for filtering

and smoothing. In this section, for the estimation of the time-varying

variance, we reconsider the model treated in Section 13.1;

tm = tm−1 + vm,

ym = tm + wm. (14.18)

Example In Chapter 13, the double exponential distribution for

the observation noise wn is approximated by a Gaussian distribution

N(−ζ , π2/6). Here, we shall compare the distribution obtained by the

Gaussian approximation with the exact distribution obtained by nu-

merical computation. Figure 14.4 shows the transformed seismic data

that are derived from the original data of Figure 1.1(f). The plotted

data set was obtained by sampling every two points after filtering by

ỹn = yn− 0.5yn−1 and transformed by the method discussed in Section

13.1. In this chapter, since it is assumed that the time series is a white

noise, this transformation was applied in order to weaken the strong au-

tocorrelation that can be observed in the first part of the data.

Fitting the Gaussian model with σ2 = π2/6 to the data, we obtain the

maximum likelihood estimate τ̂2 = 0.04909 and AIC = 2165.10. Figure

14.5 shows the wiggly trend estimated by this model. This is due to the

outliers in Figure 14.4, creating a large deviation that strongly affects the

estimated trend.

On the other hand, the maximum likelihood estimates of the non-

Gaussian model with a Cauchy distribution for the system noise and a

double exponential distribution for the observation noise

q(x) =
1

π

τ

τ2 + x2
(14.19)

r(x) = exp{x− ex}

are τ̂2 = 0.000260 and AIC = 2056.97, respectively.

From the big differences between the AIC values of the two mod-

els, it is evident that the non-Gaussian model is much better than the
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Figure 14.4: Transformed seismic data.

Figure 14.5: Estimated trend (log-variance) by Gaussian model.

Gaussian model. Actually, as shown in Figure 14.6, the trend obtained

with the non-Gaussian model is smoother by far than the one obtained

by the Gaussian model and clearly detected sudden increases in the vari-

ance due to the arrivals of the P-wave and the S-wave. Moreover, the

plot of this model depicts that the observations with a large deviation

downward influence only the curve of 0.13 percent points but not that

of the 50 percent points. In summary, by non-Gaussian smoothing with

an appropriate model, we can obtain an estimate of the trend which is
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Figure 14.6: Estimated trend (log-variance) by a non-Gaussian model.

able to automatically detect a jump of the parameter but is not unduly

influenced by a non-symmetric distribution. This estimation method of

a time-varying variance can be used for the estimation of the stochastic

volatility of a financial time series.

Example (Stock price index data) Figure 14.7 (a) shows the series

obtained by applying the method shown in Section 13.1 to the difference

of the logarithm of Nikkei 225 stock price index data. On the other hand,

Figure 14.7(b) shows the posterior distribution of the estimate of log σ2
n

obtained as the trend of this series estimated by the non-Gaussian model

of (14.18). In addition, an estimate of the volatility is obtained from the

exponent of 1/2 of the central curve (the 50 percent curve) in plot (b),

i.e., by

exp
(

log σ̂2
n /2
)

=
√

σ̂2
n = σ̂n.

This method of estimating time-varying variance can be immediately

applied to the smoothing of the periodogram. Since the periodogram fol-

lows the χ2 distribution with 2 degrees of freedom, the series obtained

by taking the logarithm of the periodogram thus follows distributions,

which are approximately equivalent to (14.19). Therefore, the method

treated in this chapter can be applied to smoothing of the logarithm of

the periodogram as well. Moreover, using a non-Gaussian model, it is
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Figure 14.7 (a) Transformed Nikkei 225 stock price index data, (b) posterior

distribution of logσ2
n , (c) estimates of volatility.

possible to estimate the time-varying variance from the transformed data

zn = log y2
n. (14.20)

In this case, for the density function of the observation noise, we use

the density function obtained as the logarithm of the χ2 distribution with

1 degree of freedom, i.e.,

r(w) =
1√
2π

exp

{

w− ew

2

}

. (14.21)

Here the time-varying variance can be estimated without making the as-

sumption that logσ2
2m−1 = logσ2

2m. Figure 14.8 shows the estimate of

logσ2
n obtained by applying this method to the logarithm of the differ-

ences of the Nikkei 225 stock price index data.
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Figure 14.8 The smoothed distribution obtained by the model of (14.21) for the

Nikkei 225 stock price index data.

14.6 Applications of the Non-Gaussian State-Space Model

In this section, several applications of non-Gaussian state-space model

are presented. Certain typical cases for the non-Gaussian state-space

model are dealt with in detail in this section.

14.6.1 Processing of the outliers by a mixture of Gaussian

distributions

Here, we consider outliers to follow a distribution different from the

usual noise distribution of observations. To process the outliers using

a time series, assuming that the outliers appear with probability α ≪ 1,

we may use a mixture of Gaussian distributions for the observation noise

wn,

r(w) = (1−α)ϕ(w; µ ,σ2)+ αϕ(w;ξ ,δ 2). (14.22)

The Gaussian-sum filter and smoother for this Gaussian-mixture noise

model is given in Alspach and Sorenson (1972) and Kitagawa (1989,

1994). Here ϕ(x; µ ,σ2) denotes the density function of the normal dis-

tribution with mean µ and variance σ2. The first and second terms on

the right-hand side express the distribution of the normal observations,

and the distribution of the outliers, respectively. In particular, by putting

ξ = µ = 0 and δ 2≫ σ2, the observation noise of the outliers is assumed

to have zero mean but possess a large variance. The Cauchy distribution

may be considered as an approximation of the above-mentioned mixture

distribution. Therefore, the outliers can be treated for example using the

Cauchy distribution or the Pearson family of distributions, which can

be used to generate a density function of the observation noise. On the
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other hand, if outliers always appear on the positive side of the time se-

ries, as shown in Figure 1.1(h) of the groundwater data, we can estimate

the trend ignoring the outliers by setting ξ ≫ µ and δ 2 = σ2.

14.6.2 A nonstationary discrete process

Non-Gaussian models can also be applied to the smoothing of discrete

processes, for instance, nonstationary binomial distributions and Poisson

distributions. Consider the time series m1, . . . ,mN that takes integer val-

ues. Assume that the probability of taking value mn at time n is given by

the Poisson distribution

P(mn|pn) =
e−pn pn

mn

mn!
. (14.23)

Here, pn denotes the expected frequency of the occurrences of a certain

event at a unit time. The mean of the Poisson distribution is not a constant

and gradually changes with time. Such a model is called a nonstationary

Poisson process model. As a model for the change over time of the Pois-

son mean, pn, we may use the trend component model pn = pn−1 + vn.

Here, since pn is required to be positive, 0 < pn <∞, we define a new

variable θn = log pn and assume a trend component model. Therefore,

the model for smoothing the nonstationary Poisson process becomes

θn = θn−1 + vn, (14.24)

P(mn|θn) =
e−pn pn

mn

mn!
, (14.25)

where pn is defined by pn = eθn . The first and second models correspond

to the system model and the observation model and yield conditional

distributions of θn and mn, respectively. Therefore, the non-Gaussian fil-

tering method presented in this chapter can be applied to the discrete

process, and we can estimate the time-varying Poisson mean value from

the data.

Similarly, the non-Gaussian state-space model can be applied to the

smoothing of an inhomogeneous binary process. Assume that the proba-

bility of a certain event occurring mn times in the ℓn observations at time

n is given by the binomial distribution

P(mn|pn, ℓn) =

(

ℓn

mn

)

pn
mn(1− pn)

ℓn−mn . (14.26)

Here, pn is called the binomial probability and expresses the expected

number of occurrences of a certain event. In this case, if pn varies with
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time, this model is called the inhomogeneous binary process model. pn

can be estimated by the following model:

θn = θn−1 + vn,

P(mn|θn, ℓn) =

(

ℓn

mn

)

pmn
n (1− pn)

ℓn−mn , (14.27)

where pn = eθn/(1 + eθn).

14.6.3 A direct method of estimating the time-varying variance

In Section 14.5, the time-varying variance was estimated by smoothing

the logarithm of the square of the original time series. However, it is also

possible to estimate the time-varying variance directly using the follow-

ing model:

tn = tn−1 + vn,

yn ∼ N(0,etn). (14.28)

Since the variance always takes a positive value in this model, the

state tn can be taken as the logarithm of the variance. Here, exp(tn) be-

comes an estimate of the variance at time n. From the estimation of the

time-varying variance of the Nikkei 225 stock price index data, we can

obtain equivalent results to Figure 4.8. Here the obtained log-likelihood

values for each model are different. This is because the transformed data

are quite different in each case. As shown in Chapter 4.6, we can confirm

that these two models have exactly the same AIC values by compensat-

ing for the effect of data transformation by evaluating the Jacobian of the

transformation.

Problems

1. Discuss the advantages of using the Cauchy distribution or the two-

sided exponential (Laplace) distribution in time series modeling.

2. Verify that when yn follows a normal distribution with mean 0 and

variance 1, the distribution of vn = logy2
n is given by (14.21).

3. Consider a model for which the trend follows a Gaussian distribution

with probability α and is constant with probability 1−α .





Chapter 15

The Sequential Monte Carlo Filter

In this chapter, we consider a sequential Monte Carlo filter and smoother,

which is also called a particle filter or bootstrap filter. Distinct in charac-

ter from other numerical approximation methods, the sequential Monte

Carlo filter has been developed as a practical method for filtering and

smoothing high-dimensional nonlinear non-Gaussian state-space mod-

els. In the sequential Monte Carlo filter, an arbitrary non-Gaussian distri-

bution is approximated by many particles that can be considered to be in-

dependent realizations of the distribution. Then, a recursive filtering and

smoothing are realized by two simple manipulations of particles, namely,

the time-evolution of each particle and re-sampling, in other words, sam-

pling with replacement (Gordon et al. (1993), Kitagawa (1996), Doucet

et al. (2001)).

15.1 The Nonlinear Non-Gaussian State-Space Model and

Approximations of Distributions

In this section, we consider the following nonlinear non-Gaussian state-

space model

xn = F(xn−1,vn) (15.1)

yn = H(xn,wn), (15.2)

where yn is a time series, xn is the k-dimensional state vector, and the

models of (15.1) and (15.2) are called the system model and the obser-

vation model, respectively (Kitagawa and Gersch (1996)).

These models are generalizations of the state-space models that have

been treated in the previous chapters. The system noise vn and the ob-

servation noise wn are assumed to be ℓ dimensional and one-dimensional

white noises that follow the density functions q(v) and r(w), respectively.

The initial state vector x0 is assumed to follow the density function p0(x).
In general, the functions F and H are assumed to be nonlinear func-

tions. For the function y = H(x,w), assuming that x and y are given, w is

221
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Figure 15.1 Various approximation methods for a non-Gaussian distribution:

(a) assumed true distribution, (b) normal approximation, (c) piecewise linear

function approximation, (d) step function approximation, (e) Gaussian mixture

approximation and (f) particle realizations.

uniquely determined as w = G(y,x), where G is a differentiable function

with respect to y (Kitagawa (1996)).

As examples of nonlinear functions H(x,w) that satisfy the above-

mentioned requirements, we may consider H(x,w) = H1(x) + w and

H(x,w) = exw, and in these cases G(y,x) are given by G(y,x) = y−H1(x)
and G(y,x) = e−xy, respectively. For simplicity, yn and wn are assumed

to be one-dimensional models here. However, we can consider the natu-

ral extensions of these models to the multi-dimensional versions.

In this chapter, we consider the problem of state estimation for

the nonlinear non-Gaussian state-space model. As stated in the previ-

ous chapter, the set of observations obtained by time t is denoted as

Yt ≡ {y1, . . . ,yt}, and we consider a method of obtaining the distri-

butions based on particle approximations of the predictive distribution

p(xn|Yn−1), the filter distribution p(xn|Yn) and the smoothing distribu-

tion p(xn|YN).

Figure 15.1 shows the effects of different methods of approximating

a non-Gaussian distribution. Plot (a) depicts the assumed true distribu-

tion that has two peaks. Plot (b) shows the approximation by a single

Gaussian distribution, which corresponds to the model approximation

by linear-Gaussian state-space models and the extended Kalman filter.
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From plot (b), it is obvious that if the true distribution has two or more

peaks or the distribution is highly skewed, a good approximation cannot

be obtained. Plots (c) and (d) show the approximation by a piecewise

linear function with 40 nodes, and by a step function with 40 nodes, re-

spectively. In the previous chapter, these approximations were applied

to the non-Gaussian filter and the smoother. In practical use, however,

we usually set the number of nodes to several hundred or more. Conse-

quently, very precise approximations to any types of distributions can be

obtained by these methods.

Plot (e) shows the Gaussian mixture approximations with five Gaus-

sian components. The faint curves depict the contributions of Gaussian

components and the bold curve depicts the Gaussian-mixture approxima-

tion obtained by summing up these Gaussian components. The Gaussian-

sum filter and the smoother can be easily obtained by this approximation.

In this chapter, distinct from the approximations discussed above,

the true distribution can be represented by using many particles in the

sequential Monte Carlo method. Each particle is considered as a realiza-

tion generated from the true distribution. Plot (f) shows 100 realizations

generated from the assumed true distribution shown in plot (a). In plot

(f), many short vertical lines above the horizontal axis are seen, which

express the location of the particles. Comparing plot (a) with plot (f), the

peaks of the density function in plot (a) correspond to the concentrated

particles in plot (f).

Figure 15.2 compares the empirical distribution functions obtained

from the realizations and the true cumulative distribution functions. Plots

(a)–(c) depict the cases of m = 10, m = 100 and m = 1000, respectively.

The true distribution function and the empirical distribution function are

illustrated with the bold curve and the fainter curve, respectively. For

m = 10, the appearance of the empirical distribution function differs

from the true distribution function; however, as the number of particles

increases to m = 100 and m = 1000, we can obtain closer approxima-

tions.

With the sequential Monte Carlo filter, the predictive distribution, the

filter distribution and the smoothing distribution are approximated by m

particles as shown in Table 15.1. The number of particles m is usually set

between 1000 and 100,000, the actual number chosen depending on the

complexity of the distribution and the required accuracy. This process is

equivalent to approximating a true cumulative distribution function by

an empirical distribution function defined using m particles.
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Figure 15.2 Comparison between the empirical distribution functions and the

true cumulative distribution functions for various numbers of particles: (a) m =
10, (b) m = 100 and (c) m = 1000.

Table 15.1 Approximations of distributions used in the sequential Monte Carlo

filter and the smoother.

Distributions Density functions
Approximations

by particles

Predictive distribution p(xn|Yn−1) {p
(1)
n , . . . , p

(m)
n }

Filter distribution p(xn|Yn) { f
(1)
n , . . . , f

(m)
n }

Smoothing distribution p(xn|YN) {s(1)
n|N , . . . ,s

(m)
n|N}

Distribution of system noise p(vn) {v(1)
n , . . . ,v

(m)
n }
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15.2 Monte Carlo Filter

The Monte Carlo filter algorithm that is presented in this section is par-

ticularly useful to recursively generate the particles by approximating

the one-step-ahead predictive distribution and the filter distribution.

In Monte Carlo filtering, the particles {p
(1)
n , . . . , p

(m)
n } that follow the

predictive distribution, are generated from the particles { f
(1)
n , . . . , f

(m)
n−1}

used for the approximation of the filter distribution of the previous state.

Then, the realizations { f
(1)
n , . . . , f

(m)
n } of the filter can be generated by

re-sampling the realizations {p
(1)
n , . . . , p

(m)
n } of the predictive distribution

(Gordon et al. (1993), Kitagawa (1996)).

15.2.1 One-step-ahead prediction

For the one-step-ahead predictive step, we assume that m particles

{ f
(1)
n−1, . . . , f

(m)
n−1} can be considered as the realizations generated from

the filter distribution p(xn−1|Yn−1) of the previous step xn−1, and the

particles v
(1)
n , . . . ,v

(m)
n can be considered as independent realizations of

the system noise vn.

That is, for j = 1, . . . ,m, it is the case that

f
( j)
n−1 ∼ p(xn−1|Yn−1), v

( j)
n ∼ q(v). (15.3)

Then, the particle p
( j)
n is defined by

p
( j)
n = F( f

( j)
n−1,v

( j)
n ), (15.4)

where p
( j)
n is assumed to be a particle generated from the one-step-ahead

predictive distribution of the state xn. (See Appendix D.)

15.2.2 Filtering

In the next step of filtering, we compute α
( j)
n , the Bayes factor (or likeli-

hood) of the particle p
( j)
n with respect to the observation yn. That is, for

j = 1, . . . ,m,

α
( j)
n = p(yn|p( j)

n ) = r(G(yn, p
( j)
n ))

∣

∣

∣

∣

∂G

∂yn

∣

∣

∣

∣

, (15.5)

where G is the inverse function of H in the observation model, and

r is the probability density function of the observation noise w. Here,
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α
( j)
n can be considered as a weighting factor representing the impor-

tance of the particle p
( j)
n . Then, we obtain m particles f

(1)
n , . . . , f

(m)
n ,

by re-sampling p
(1)
n , . . . , p

(m)
n with probabilities proportional to the

“likelihoods” α
(1)
n , . . . ,α

(m)
n . Namely, a new particle f

( j)
n is obtained ac-

cording to

f
( j)
n =















p
(1)
n probability α

(1)
n /(α

(1)
n + · · ·+ α

(m)
n )

...
...

p
(m)
n probability α

(m)
n /(α

(1)
n + · · ·+ α

(m)
n ).

(15.6)

Then, { f
(1)
n , . . . , f

(m)
n } can be considered as the realizations generated

from the filter distribution p(xn|Yn). (See Appendix D.)

15.2.3 Algorithm for the Monte Carlo filter

In summary, the following algorithm for the Monte Carlo filter is ob-

tained:

1. Generate k-dimensional random numbers f
( j)
0 ∼ p0(x) for j =

1, . . . ,m.

2. Repeat the following steps for n = 1, . . . ,N.

(i) For j = 1, . . . ,m,

• Generate ℓ-dimensional random numbers v
( j)
n ∼ q(v).

• Obtain the new particle p
( j)
n = F( f

( j)
n−1,v

( j)
n ).

• Evaluate the Bayes factor α
( j)
n = r(G(yn, p

( j)
n ))

∣

∣

∣

∂G
∂yn

∣

∣

∣
.

(ii) Generate { f
(1)
n , . . . , f

(m)
n } by repeated re-sampling (sampling

with replacement) m times from {p
(1)
n , . . . , p

(m)
n } with prob-

abilities proportional to {α(1)
n , . . . ,α

(m)
n }.

15.2.4 Likelihood of a model

The state-space models defined by (15.1) and (15.2) usually contain

some unknown parameters θ , such as the variance of the noise and the

coefficients of the nonlinear functions F and H. When the observations

y1, . . . ,yN are given from (9.21), the log-likelihood of the model specified

by the parameter θ is given by

ℓ(θ ) =
N

∑
n=1

log p(yn|Yn−1), (15.7)
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where p(y1|Y0) is taken as p0(y1). Here, using the Monte Carlo approxi-

mation of the predictive distribution,

p(yn|Yn−1) =

∫

p(yn|xn)p(xn|Yn−1)dxn

∼= 1

m

m

∑
j=1

p(yn|p( j)
n ) =

1

m

m

∑
j=1

α
( j)
n , (15.8)

the log-likelihood can be approximated by

ℓ(θ ) =
N

∑
n=1

log p(yn|Yn−1)∼=
N

∑
n=1

log

(

m

∑
j=1

α
( j)
n

)

−N logm. (15.9)

The maximum likelihood estimate θ̂ of the parameter θ is obtained

by numerically maximizing the above log-likelihood function. However,

it should be noted that the log-likelihood, which was obtained by the

Monte Carlo filter contains an inherent error due to the Monte Carlo

approximation, which consequently makes maximum likelihood estima-

tion difficult. To solve this problem, a self-organizing state-space model

is proposed, in which the unknown parameter θ is included in the state

vector (Kitagawa (1998)). Accordingly, we can estimate the state and the

parameter simultaneously.

15.2.5 Re-sampling method

Here we consider the re-sampling method, which is indispensable to the

filtering step. The basic algorithm of the re-sampling method based on

random sampling is as follows (Kitagawa (1996)):

For j = 1, ...,m, repeat the following steps (a)–(c).

(a) Generate uniform random number u
( j)
n ∈U [0,1].

(b) Search for i that satisfies C−1
i−1

∑
ℓ=1

α
(ℓ)
n < u

( j)
n ≤C−1

i

∑
ℓ=1

α
(ℓ)
n ,

where C =
m

∑
ℓ=1

α
(ℓ)
n .

(c) Obtain a particle that approximates the filter by setting f
( j)
n =

p
(i)
n .

It should be noted here that, the objective of resampling is

to re-express the distribution function determined by the particles
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{

p
(1)
n , . . . , p

(m)
n

}

with weights
{

α
(1)
n , . . . ,α

(m)
n

}

by representing the em-

pirical distribution function defined by re-sampled particles with equal

weights. Accordingly, it is not essential to perform exact random sam-

pling.

Considering the above, we can develop various modifications of the

re-sampling method with regard to sorting and random number genera-

tion. One considerable modification involves stratified sampling, that is,

dividing the interval [0, 1) into m sub-intervals and then obtaining one

particle u
( j)
n from each sub-interval. In this case, the step (a) is replaced

by one of the following two steps:

(a-S) Generate a uniform random number u
( j)
n ∼U (( j−1)/m, j/m],

(a-D) For fixed α ∈ (0,1], set u
( j)
n = ( j−α)/m.

α may be an arbitrarily fixed real number 0 ≤ α < 1, e.g., 1/2, or a

uniform random number. To perform the stratified sampling rigorously,

it is necessary to take the above-mentioned steps based on the sorted

particles after sorting p
(1)
n , . . . , p

(m)
n and α

(1)
n , . . . ,α

(m)
n according to the

magnitude of p
(1)
n , . . . , p

(m)
n . However, when the number of particles, m,

is large, the sorting algorithm becomes the most time-consuming step in

the Monte Carlo filtering algorithm.

Furthermore, since the objective of stratified sampling is to obtain

exactly one particle from each group of particles with total weight 1/m,

it is not necessary to sort the stratified sample. From the results of the

numerical experiment, it is evident that more accurate approximations

were obtained by stratified re-sampling than with the original random

sampling. Moreover, the numerical experiment suggests that between the

two choices (a-S) and (a-D) of stratified re-sampling algorithms, (a-D)

performs better.

15.2.6 Numerical examples

In order to exemplify how the one-step-ahead predictive distribution and

the filter distribution are approximated by particles, we consider the re-

sult of one cycle of the Monte Carlo filter, i.e., n = 1. Assume that the fol-

lowing one-dimensional linear non-Gaussian state-space model is given:

xn = xn−1 + vn,

yn = xn + wn, (15.10)

where vn and wn are white noises that follow the Cauchy distribution

with probability density function q(v) =
√

0.1π−1(v2 + 0.1)−1, and the
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standard normal distribution N(0,1), respectively. The initial state dis-

tribution p0(x0) is assumed to follow the standard normal distribution.

However, it is evident that normality of the distribution is not essential

for the Monte Carlo filtering method.

Under the above-mentioned assumptions, the one-step-ahead predic-

tive distribution p(x1|Y0) and the filter p(x1|Y1) were obtained. Here, a

small number of particles was used, that is, m was set to m = 100, in or-

der to make features of the illustrations clearly visible. In actual compu-

tations, however, we use a large number of particles for approximation.

The curve in Figure 15.3(a) shows the assumed distribution of the

initial state p0(x0). The vertical lines show the locations of 100 real-

izations generated from p0(x0), and the histogram, which was obtained

from these particles, approximates the probability density function. The

bold curve in plot (b) depicts the true distribution function of the initial

state and the fainter curve shows the empirical distribution function ob-

tained from the particles shown in plot (a). Similar to these plots, plots

(c) and (d) depict the probability density function, the realizations and

the cumulative distribution, together with its empirical counterpart of

the system noise.

Plots (e) and (f) illustrate the predictive distribution, p(x1|Y0). The

curve in plot (e) shows the “true” probability function obtained by nu-

merical integration of the two density functions of plots (a) and (c). Plot

(f) shows the “true” cumulative distribution function obtained by inte-

grating the density function in plot (e). On the other hand, the vertical

lines in plot (e) indicate the location of the particles p
( j)
1 obtained by sub-

stituting a pair of particles shown in plots (a) and (c) into the equation

(D.4). The histogram defined by the particles p
(1)
1 , . . . , p

(m)
1 approximates

the true density function shown in plot (e). The empirical distribution

function and the true distribution function are shown in plot (f).

The curve in plot (g) shows the filter density function obtained from

the non-Gaussian filter using the equation (14.5), when the observation

y1 = 2 is given. With respect to plot (g), the particles are located in the

same place as plot (e); however, the heights of the lines are proportional

to the likelihood of the particle α
( j)
n . Different from plot (f), the cumula-

tive distribution function in plot (h) approximates the filter distribution,

although the steps of plot (h) are located identically to those of plot (f).

Plot (i) shows the locations of the particles, the histogram and the exact

filter distribution after re-sampling. Further it can be seen that the den-

sity function and the cumulative distribution function in plots (i) and (j)

are reasonable approximations to plots (g) and (h), respectively.
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Figure 15.3 One step of the Monte Carlo filter. The figures in the left-hand col-

umn illustrate the probability density functions, 100 realizations and the his-

togram, respectively, and the figures in the right-hand column depict the dis-

tribution functions and the empirical distribution functions obtained from the

realizations, respectively. (a) and (b): the initial state distributions. (c) and (d):

the system noise distribution. (e) and (f): the one-step-ahead predictive distribu-

tions. (g) and (h): the filter distributions. (i) and (j): the filter distributions after

re-sampling.
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15.3 Monte Carlo Smoothing Method

The Monte Carlo filter method presented in the previous section, can

be further extended to create a smoothing algorithm by preserving past

particles. In the following, the vector of the particles (s
( j)
1|n, . . . ,s

( j)
n|n)

T de-

notes the j-th realization from the n-dimensional joint distribution func-

tion p(x1, . . . ,xn|Yn).
To achieve the objective of smoothing, it is necessary only to modify

Step 2(d) of the algorithm discussed in Section 15.2 as follows.

(d-S) For i = 1, . . . ,m, by re-sampling the n-dimensional vector

(s
( j)
1|n−1

, . . . ,s
( j)
n−1|n−1

, p
( j)
n )T , generate (s

( j)
1|n, . . . ,s

( j)
n−1|n,s

( j)
n|n)

T .

In this modification, by re-sampling {(s j

1|n−1
, . . . ,s

( j)
n−1|n−1

, p
( j)
n )T ,

j = 1, . . . ,m} with the same weights as used in step (2)(ii) of subsec-

tion 15.2.3, fixed-interval smoothing for a nonlinear non-Gaussian state-

space model can be achieved (Kitagawa (1996)).

In actual computation, however, since a finite number of particles

(m particles) is repeatedly re-sampled, the number of different parti-

cles gradually decreases and then the weights become concentrated on

a small number of particles, thus causing the shape of the distribution

to finally collapse. Consequently, in terms of the smoothing algorithm, a

modification for Step (d-S) should be carried out as follows:

(d-L) For j = 1, . . . ,m, generate (s
( j)
n−L|n, . . . ,s

( j)
n−1|n,s

( j)
n|n). Here, L is

assumed to be a fixed integer, usually less than 30, and f
( j)
n =

s
( j)
n|n by re-sampling (s

( j)
n−L|n−1

, . . . ,s
( j)
n−1|n−1

, p
( j)
n ).

Then, it is interesting that this modified algorithm turns out to corre-

spond to the L-lag fixed-lag smoothing algorithm. If L is fixed too large,

the fixed-lag smoother p(xn|Yn+L) precisely approximates the fixed-

interval smoother p(xn|YN). On the other hand, the distribution deter-

mined by x
(1)
n|n+L

, . . . ,x
(m)
n|n+L

is rather remote from p(xn|Yn+L). Therefore,

L should be taken not so large, i.e., L = 20 or 30.

The following example shows the results of state estimation by the

Monte Carlo filter for the artificially generated time series shown in Fig-

ure 14.1. The estimation is carried out by applying a first order trend

model;

xn = xn−1 + vn,

yn = xn + wn, (15.11)
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Figure 15.4 The results of the Monte Carlo filter: (a) the exact filter distribution

using a Kalman filter. (b) – (d) the fixed-lag (L = 20) smoothed densities ((b)

m = 100, (c) m = 1000, (d) m = 10,000) with a Monte Carlo filter.

where wn is a Gaussian white noise with mean 0 and variance σ2. For

the system noise, two models are considered, namely, a Gaussian distri-

bution and a Cauchy distribution.

Figure 15.4 (a) depicts the exact filter distribution obtained by the

Kalman filter when the system noise is Gaussian. The bold curve in the

middle shows the mean of the distribution and the three gray areas illus-

trate ±1σ , ±2σ and ±3σ confidence intervals.

On the other hand, plots (b), (c) and (d) show the fixed-lag (L =
20) smoothed densities obtained by using m = 100,1000 and 10,000

particles, respectively. The dark gray area shows the ±1σ interval and

the light gray area shows the±2σ intervals. In plot (d), the±3σ interval

is also shown.

For m = 100 in plot (b), although general tendencies of the distribu-

tional change of plot (a) are captured, large variation is seen which indi-

cates that the estimate is not particularly good. However, as the number

of particles increases, more accurate approximations to the “true” dis-

tribution are obtained. In particular, for m = 10,000 shown in plot (d),
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Figure 15.5 Smoothing with Cauchy distribution model: (a) The exact distribu-

tion obtained from the non-Gaussian smoothing algorithm. (b) The results of

Monte Carlo smoothing (m = 10,000).

a very good approximation of the curves are obtained except the ±3σ
interval of which curves are slightly variable.

Figure 15.5 shows the results when the system noise is assumed to

be a Cauchy distribution. The figure on the left-hand side depicts the

“exact” results obtained using the non-Gaussian smoothing algorithm,

which was treated in Chapter 14. On the other hand, the figure on the

right-hand side depicts the results obtained by Monte Carlo smoothing

with m = 10,000 and L = 20. Although the curves are more variable

in comparison with the figure on the left-hand side, the abrupt changes

around n = 100,200 and 300 are captured in a reasonable way. Moreover,

the ±3σ interval is also well approximated.

15.4 Nonlinear Smoothing

The Monte Carlo filtering and smoothing algorithms can also be used for

filtering and smoothing for the nonlinear state-space model (Kitagawa

(1991)). Figures 15.6 (a) and (b) depict examples of series xn and yn

generated by the nonlinear state-space model

xn =
1

2
xn−1 +

25xn−1

x2
n−1 + 1

+ 8cos(1.2n)+ vn,

yn =
x2

n

10
+ wn, (15.12)

where vn ∼ N(0,1), wn ∼ N(0,10), v0 ∼ N(0,5). Here, we consider the

problem of estimating the unknown state xn based on 100 observations,

yn, n = 1, . . . ,100. Because of the nonlinearity and the sinusoidal input
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Figure 15.6 Nonlinear smoothing: (a) Data yn. (b) Unknown State xn. (c)

Smoothed distribution of xn obtained by the Monte Carlo smoother.

in the system model in equation (15.12), the state xn occasionally shifts

between the positive and negative regions. However, since in the obser-

vation model, the state xn is squared, and x2
n contaminated with an obser-

vation noise wn is observed, it is quite difficult to discriminate between

positivity and negativity of the true state.

It is well known that the extended Kalman filter occasionally diverges

for this model. Figure 15.6 (c) shows the smoothed posterior distribu-

tion p(xn|YN) obtained by the Monte Calro filter and smoother. It can be

seen that a quite reasonable estimate of the state xn is obtained with this

method.

The key to the success of the nonlinear filtering and smoothing is

that the Monte Carlo filter can reasonably express the non-Gaussian state

densities. Figure 15.7 (a) and (b), respectively, show the marginal pos-

terior state distributions p(xt |Yt+ j), j = −1,0,1,2, for t = 30 and 48.
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Figure 15.7 Fixed-point smoothing for t = 30 (left) and t = 48 (right). From top

to bottom, predictive distributions, filter distributions, 1-lag smoothers and 2-lag

smoothers.

For both t = 30 and 48, the predictive distribution p(xt |Yt−1) and the fil-

ter distribution p(xt |Yt) are bimodal. However, in the 2-lag smoother for

t = 30, p(x30|Y32), the left-half of the distribution disappeared and the

distribution becomes unimodal. The same phenomenon can be seen for

t = 48. In this case, the right peak is higher than the left one in the predic-

tive distribution. However, in the smoother distributions, the peak in the

right half domain disappears. In such a situation, the extended Kalman

filter is very likely to yield an estimate with reverse sign.

Problems

1. Consider a model for the Nikkei 225 data shown in Figure 1.1(g) that

takes into account changes in the trend and the volatility simultane-

ously.

2. In Monte Carlo filtering, how many particles should we use to in-

crease the accuracy of the estimate 10-fold.

3. For the Monte Carlo filter, if we do not restrict every particle to have

the same weight but allow some to have different weights, is it possi-

ble to develop a procedure without re-sampling?

4. Compare the amount of information required to be stored to carry out

fixed-interval smoothing and fixed-lag smoothing.





Chapter 16

Simulation

In this chapter, we first explain methods for generating random numbers

that follow various distributions. A unified method for simulating time

series is obtained by using the state-space model. Namely, a realization

of white noise can be obtain by generating random numbers that follow

a specified distribution. In modeling, a time series model is generally

considered an output of a system with a white noise input. Therefore,

if a time series model is given, we can obtain realizations of the sys-

tem by generating a time series that follows the model by using random

numbers.

16.1 Generation of Uniform Random Numbers

A sequence of independently generated numbers that follows a certain

distribution is called a sequence of random numbers or simply random

numbers. In other words, the random numbers are realizations of white

noises. A time series model represents a time series as a sequence of

realizations of a system with white noise input. Therefore, we can gen-

erate a time series by properly specifying the time series model and the

random numbers, and this method is called a simulation of a time series

model. In actual computation for simulating a time series, we usually

use pseudo-random numbers generated using an appropriate algorithm.

Normal random numbers, i.e., random numbers that follow a normal dis-

tribution, are frequently necessary for simulating time series. Such a se-

quence of random numbers is obtained by generating uniform random

numbers, and then transforming them to the specified distribution.

A well-known conventional method for generating uniform random

numbers is the linear congruence method. With this method, a sequence

of integers I1, I2, · · · is generated from

Ik ≡ aIk−1 + c (mod m), (16.1)

starting from an initial integer I0.

237
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In particular, for c = 0, this method is called the multiplicative con-

gruence method. The generated integer Ik takes a value in [0,m). There-

fore, Ik/m is distributed on [0,1).
However, we note here that since the period of the series generated

by this method is at most m, it is not possible to generate a sequence

of random numbers longer than m. The constants a, c and m have to be

selected carefully, and examples of the combination of constants are

a =1229 c =351750 m =1664501

a =1103515245 c =12345 m = 231

(Knuth (1997)). The latter combination were used in C language until

1990-th. It is known that if m = 2p, a = 5 (mod m) and c is an odd num-

ber, then the period of the sequence generated by this algorithm attains

the possible maximum period of m, i.e., it contains all of the numbers

between 0 and m−1 once each.

By the lagged Fibonacci method, the sequence of integers In is gen-

erated by

In+p = In+q + In (mod m), (16.2)

where m is usually set to 2k (k ia the bit length). Then the generated

series has the period at largest 2k−1(2p− 1). In the current C language,

p = 31, q = 3, m = 231 are used to attain the period of about 260.

In the generalize feedback shift register (GFSR) algorithm (Lewis

and Payne (1973)), k-dimensional vector of binary sequence is generated

by

In+p = In+q⊕ In, (16.3)

where p > q and ⊕ denotes the excusive OR operation. The integers p

and q are determined so that the polynomial X p + Xq + 1 is irreducible.

Then, the period of the sequence becomes at largest 2p−1. Some exam-

ples of p and q are p = 521, q = 158 (period 2521−1), p = 521, q = 32

(period 2521−1) and p = 607, q = 273 (period 2607−1).

Twisted GFSR algorithm (Matsumoto and Kurita (1994)) generates

a k-dimensional binary sequence by

In+p = In+q⊕ InA, (16.4)

where A is a k× k regular matrix such as the companion matrix. In

the frequently used TT800 algorithm, p = 25 and q = 7 are used. This

sequnce has the period of 2pk− 1. Further, Matsumoto and Nishimura

(1998) developed the Mersenne twister algorithm

In+p = In+q⊕ In+1B⊕ InA. (16.5)
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They showed that for p = 624, by taking A and B appropriately, the gen-

erated series has a period of length 219937− 1 and are distributed uni-

formly on the 623 dimensional space.

Different from these families of pseudo-random numbers that are

generated in software using certain algorithms, hardware for generat-

ing physical (hardware) random numbers has also been developed. Such

hardware can be used when more precise random numbers are neces-

sary in a simulation, because random numbers generated in this way are

supposed to be free from any cycles or correlations.

16.2 Generation of Gaussian White Noise

A realization of Gaussian white noise is obtained by generating a se-

quence of random numbers that follows a normal distribution, namely,

normal random numbers. The Box-Muller transform (Box and Muller

(1958)) for generating normal random numbers is well known. This

method applies the fact that, given two independent uniform random

numbers U1 and U2 on [0,1],

X1 =
√

−2logU1 cos2πU2,

X2 =
√

−2logU1 sin2πU2 (16.6)

independently follow the standard normal distribution N(0,1).

In practice, however, Marsaglia’s algorithm that follows can avoid

the explicit evaluation of sine and cosine functions and thus can generate

normal random numbers more efficiently.

1. Generate the uniform random numbers U1 and U2.

2. Put V1 = 2U1−1 and V2 = 2U2−1.

3. Put S2 = V 2
1 +V 2

2 .

4. Return to Step (1), if S2 ≥ 1.

5. Put X1 = V1

√

−2 logS
S

and X2 = V2

√

−2 logS
S

.

Figure 16.1 (a) shows 200 uniform random numbers generated by

the multiplicative congruence method of (16.1) with the initial value

I0 = 1990103011. On the other hand, plot (b) shows normal random

numbers (white noise) obtained with Marsaglia’s algorithm using these

uniform random numbers. Plot (c) depicts the histogram and the sample

autocorrelation function computed from those random numbers, where

the histogram looks somewhat different from the density of the normal
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Figure 16.1 Realizations, histograms and autocorrelation functions of uniform

random numbers and white noise.
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distribution. Plot (d) shows the histogram and the sample autocorrela-

tion function, respectively, when the number of realizations is increased

to 2000. It can be seen that the histogram resembles the normal density

and that the sample autocorrelation function approaches zero.

16.3 Simulation Using a State-Space Model

Using the realizations of white noise introduced in the previous subsec-

tion, we can generate a time series that follows a given time series model.

This is called the simulation of the time series. Assume that the time se-

ries model is represented in the form of the state-space model :

xn = Fxn−1 + Gvn, (16.7)

yn = Hxn + wn. (16.8)

Based on this state-space model, if the initial state vector x0, and

N realizations of k-dimensional Gaussian white noise with mean 0 and

variance-covariance matrix Q, v1, . . . ,vN , are given, the realizations of

the state vectors, x1, . . . ,xN can be easily obtained by repeatedly substi-

tuting them into the system model of (16.7). Further, if the realizations

of ℓ-dimensional Gaussian white noise with mean 0 and the variance-

covariance matrix R, w1, . . . ,wN , are given, the time series y1, . . . ,yN can

be generated by the observation model of (16.8).

A k-dimensional Gaussian white noise with mean 0 and variance-

covariance matrix Q can be obtained from k one-dimensional Gaussian

white noises generated by the method shown in the previous subsec-

tion. Define a k-dimensional vector un = (u
(1)
n , · · · ,u(k)

n )T , where u
( j)
n is a

one-dimensional Gaussian white noise, then un becomes a k-dimensional

Gaussian white noise with mean vector 0 and unit variance-covariance

matrix Ik. Here, we assume that a k× k lower triangular matrix L such

that Q = LLT can be obtained by the Cholesky decomposition of the

positive-definite symmetric matrix Q. Then, the k-dimensional vector vn

defined by

vn = Lun (16.9)

satisfies

E(vnvT
n ) = E(LunuT

n LT ) = LE(unuT
n )LT = LIkLT = Q, (16.10)

showing that vn becomes a normal white noise with mean vector 0 and

the variance-covariance matrix Q.
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Figure 16.2: Simulation of a random walk model.

Figure 16.3: Simulation of an AR model.

Example (Simulation of a random walk model) Figure 16.2 shows

the results of the simulation for the random walk model

xn = xn−1 + vn,

yn = xn + wn, (16.11)

where the system noise vn follows the normal distribution N(0,π2/6)
and the observation noise wn is the standard Gaussian white noise that

follows N(0,1) and the initial state is x0 = 0.

Example (Simulation of an AR model) Figure 16.3 shows the re-

sults of the simulation for the AR model with order 10 fitted to the log-

arithms of the sunspot number data. Since the state-space representation

for the AR model does not have any observation noise, we set R = 0.

Here, the initial state is set to x0 = (0, . . . ,0)T and 400 time series are

generated. To remove the effects of the 0 initial state, the first 200 ob-

servations are discarded and Figure 16.3 shows only the latter half of the

data.
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Figure 16.4: Simulation of a seasonal adjustment model.

Example (Simulation of a seasonal adjustment model) Figure 16.4

shows the results of a simulation for the seasonal adjustment model.

The model is shown in Figure 12.6 with the stationary AR component

(m1 = 2, m2 = 1, m3 = 2 and p = 12). As the initial state vector x0, the

vector x0|N is used for the smoothed estimate of the initial vector, which

is obtained from the actual seasonal data. Although the simulation of

the seasonal adjustment model resembles the actual time series shown

in Figure 1.1(d), it is evident that the trend component of Figure 16.4 is

considerably different from that of Figure 1.1(d).

16.4 Simulation with the Non-Gaussian State-Space Model

The method of simulation for the state-space model presented in the pre-

vious section can be easily extended to the simulation of a non-Gaussian

time series model. Consider a non-Gaussian state-space model,

xn = Fxn−1 + Gvn, (16.12)

yn = Hxn + wn, (16.13)

where vn and wn are not necessarily Gaussian and are distributed accord-

ing to the density functions q(v) and r(w), respectively.

For simplicity, it is assumed that the k components of vn and the ℓ
components of wn are mutually independent. To simulate the above non-

Gaussian state-space model, it is necessary to develop a method of gen-

erating realizations of white noise that follow an arbitrarily defined den-

sity function p(x). For some specific distributions, such as the Cauchy

distribution, the χ2 distribution and the two-sided exponential (Laplace)

distribution, they can be generated by a transformation of the uniform
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random numbers or the normal random numbers. In the following sub-

section, some examples are given.

16.4.1 χ2 distribution

The χ2 distribution with j degrees of freedom can be expressed as

χ2
j = X2

1 + · · ·+ X2
j , (16.14)

where X1, · · · ,X j are normal random variables. Therefore, to generate

random numbers that follow the χ2 distribution, we initially generate j

normal random numbers and then obtain χ2
j using equation (16.14). In

particular, exponential random numbers are obtained by putting j = 2.

Further, by defining Z = log χ2
2 , we obtain the double exponential ran-

dom numbers. Note that an exponential random number can be obtained

from a uniform random number directly by setting

v =− logu, (16.15)

given the uniform random number u. Then, the double exponential ran-

dom number is efficiently obtained by

v = log(− logu). (16.16)

16.4.2 Cauchy distribution

The density function of the Cauchy distribution that was used for the

non-Gaussian model in Chapter 14 is given by

p(x) =
1

π(x2 + 1)
. (16.17)

To generate Cauchy random numbers, we generate a uniform random

number on [0,1), and for u 6= 0.5, define v by

v = tanπu. (16.18)

16.4.3 Arbitrary distribution

In general, random numbers that follow an arbitrary density function

f (x) can be generated by using the inverse function of the distribution

function. The distribution function is a monotone increasing function

defined by

F(x) =

∫ x

−∞
f (t)dt, (16.19)
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Figure 16.5: Density functions of system noise and the results of the simulation.

which satisfies 0 ≤ F(x) ≤ 1, F(−∞) = 0, and F(∞) = 1. Here, if

we obtain an inverse function G(y) ≡ F−1(y), 0 ≤ y ≤ 1, that satisfies

F(G(y)) = y, then G is a function from (0,1) to (−∞,∞). Therefore,

if u is a uniform random number on [0,1), v = G(u) becomes a random

number that follows the density function f (v). Applying this method, we

can generate random numbers that follow various distributions by using

the density functions discussed in Chapter 4.

Example (Trend model with double-exponential noise) Figure

16.5 shows the results of the simulation, which were obtained by re-

placing the system noise of the random walk model in Figure 16.2 by

vn = rn + ζ , where rn denotes a double exponential random number and

ζ = 0.57722 denotes the Euler constant.

For comparison, plots (a) and (b) show the density functions of the

normal distribution used in Figure 16.2 and the double exponential dis-

tribution. Even though the two density functions have the same mean and

the same variance, they have different shapes, and so different simulation

results are obtained.

As shown in Figure 16.2, simulation with the density given in plot

(a) yields symmetric movement around the trend. On the other hand, in
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Figure 16.6 Simulation of an AR model with different noise distributions: (a)

normal distribution, (b) Cauchy distribution.

plot (c) obtained by using the density in plot (b), the behavior around

the trend shows asymmetric upward and downward tendencies. We can

observe such typical asymmetric behavior of time series frequently in

financial data.

Example (AR models with Gaussian and non-Gaussian noise) Fig-

ure 16.6 shows the simulation results for the AR model of first order:

yn = 0.9yn−1 + vn. (16.20)

Here, in plots (a) and (b), vn is assumed to be the standard normal dis-

tribution N(0,1) and the Cauchy distribution C(0,1), respectively. Even

though the AR models are of the same order and have the same AR co-

efficients, the two time series in plots (a) and (b) appear quite different,

because the distributions of the noise vn are different. In particular, in

plot (b), the time series occasionally shows big jumps, and the width of

the fluctuation is, as a whole, more than twice as large as that of plot (a).
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Problems

1. Assume that U and V are uniform random numbers defined on [0,1].
What distribution does W = U +V follow?

2. In the simulation of an AR model yn = ayn−1 + vn, vn ∼ N(0,1), we

usually generate m+n data elements and discard the initial m realiza-

tions. How large should m be?

3. Show a method of simulating future values based on observations up

to the present time.





Appendix A

Algorithms for Nonlinear
Optimization

In this appendix, we briefly discuss algorithms for nonlinear optimiza-

tion. For simplicity, we consider the case where the objective function

f (x) is approximated by its Taylor series expansion up to the second

order:

f (x) = f (x∗)+ (x− x∗)T g(x∗)+
1

2
(x− x∗)T H(x− x∗), (A.1)

where x = (x1, . . . ,xm)T and

g(x) =









∂ f (x)
∂x1

...
∂ f (x)
∂xm









, H =









∂ 2 f

∂x1∂x1
· · · ∂ 2 f

∂x1∂xm

...
. . .

...
∂ 2 f

∂xm∂x1
· · · ∂ 2 f

∂xm∂xm









. (A.2)

From (A.1), we have

g(x) = g(x∗)+ H(x− x∗) (A.3)

and if x∗ is assumed to minimize the objective function f (x), g(x∗) = 0

holds and we have

g(x) = H(x− x∗). (A.4)

Therefore, if the current approximation is x, by computing H and g(x),
the solution x∗ is obtained as

x∗ = x−H−1g(x). (A.5)

In actual problems, the objective function f (x) is rarely expressible as a

quadratic form such as that of (A.1) and the solution x∗ is not obtained

by applying (A.5) only once. Moreover, because the matrix H is not

usually constant but changes depending on x, it is necessary to repeat the

recursion

xk = xk−1−H−1
k−1g(xk−1), (A.6)
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using an appropriately determined initial value x0.

This procedure is called the Newton-Raphson method. However,

since the likelihood function of the time series model is usually a very

complex function of the parameters and it is sometimes difficult to ob-

tain Hk analytically, the following algorithm, known as the quasi-Newton

method, is used (Nocedal and Wright (2006)).

1. Put k = 1 and choose an initial value x0 and H−1
0 suitably. As a default

value, we may put H0 = I.

2. Calculate the gradient vector g(xk−1).

3. Obtain the direction vector by hk = H−1
k−1g(xk−1).

4. Put xk = xk−1−λkhk and find λk, which minimizes f (xk) by a linear

search.

5. Obtain an estimate of H−1
k using either the DFP formula or the BFGS

formula that follow.

[DFP formula] (Fletcher (1980))

H−1
k = H−1

k−1 +
∆xk∆xT

k

∆xT
k ∆gk

−
H−1

k−1∆gk∆gT
k H−1

k−1

∆gT
k H−1

k−1∆gk

, (A.7)

[BFGS formula] (Broyden (1970))

H−1
k =

(

I− ∆gk∆xT
k

∆gT
k ∆xk

)T

H−1
k−1

(

I− ∆gk∆xT
k

∆gT
k ∆xk

)

+
∆xk∆xT

k

∆xT
k ∆gk

, (A.8)

where ∆xk = xk− xk−1 and ∆gk = G(xk)−g(xk−1).

6. If the convergence condition is not satisfied, go back to step 2 after

setting k = k + 1.

This quasi-Newton method has the following two advantages. Firstly,

it is not necessary to compute the Hessian matrix Hk and its inverse H−1
k

directly. Secondly, it can usually find the minimum even when the objec-

tive function is far from being a quadratic function, since it automatically

adjusts the step width λk by a linear search. BFGS formula has an ad-

vantage the it does not require precise linear search.



Appendix B

Derivation of Levinson’s Algorithm

In this appendix, we derive the Levinson’s algorithm (Levinson (1947))

for estimating the AR coefficients for univariate time series model ef-

fectively. Whittle (1963) showed an extension of an algorithm for multi-

variate time series. However, since for multi-variate time series, the co-

efficients of the backward AR model are different from those of the for-

ward AR model, the algorithm needs to treat twice as many number of

recursions as the univariate case.

Assume that the autocovariance function Ck, k = 0,1, · · · is given and

that the Yule-Walker estimates of the AR model of order m− 1 have

already been obtained. In the following, since we consider AR models

with different orders, the AR coefficients, the prediction error and the

prediction error variance of the AR model of order m− 1 are denoted

by âm−1
1 , . . . , âm−1

m−1, vm−1
n and σ̂2

m−1, respectively. Next, we consider a

method of efficiently obtaining Yule-Walker estimates âm
1 , . . . , âm

m and σ̂2
m

for the parameters of the AR model of order m using the estimates for

the AR model of order m−1.

Since the coefficients âm−1
1 , . . . , âm−1

m−1 satisfy the following Yule-

Walker equation of order m−1, we have that

Ck =
m−1

∑
j=1

âm−1
j C j−k, k = 1, . . . ,m−1. (B.1)

This means that vm−1
n satisfies

E
{

vm−1
n yn−k

}

= E

{(

yn−
m−1

∑
j=1

âm−1
j yn− j

)

yn−k

}

= 0, (B.2)

for k = 1, . . . ,m− 1. Here, we consider a backward AR model of order

m− 1 that represents the present value of the time series yn with future

values yn+1, . . . ,yn+m−1,

yn =
m−1

∑
i=1

a jyn+i + wm−1
n . (B.3)
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Then, since C−k = Ck holds for a univariate time series, this backward

AR model also satisfies the same Yule-Walker equation (B.1). Therefore,

the backward prediction error wm−1
n satisfies

E
{

wm−1
n−myn−k

}

= E

{(

yn−m−
m−1

∑
j=1

âm−1
j yn−m+ j

)

yn−k

}

= 0, (B.4)

for k = 1, . . . ,m− 1. Here, we define the weighted sum of the forward

prediction error vm−1
n and the backward prediction error wm−1

n−m by

zn ≡ vm−1
n −β wm−1

n−m

≡ yn−
m−1

∑
j=1

âm−1
j yn− j−β

(

yn−m−
m−1

∑
j=1

âm−1
j yn−m+ j

)

= yn−
m−1

∑
j=1

(

âm−1
j −β âm−1

m− j

)

yn− j−β yn−m. (B.5)

zn is a linear combination of yn, yn−1, . . . ,yn−m and from (B.2) and (B.4),

it follows that

E{znyn−k}= 0 (B.6)

for k = 1, . . . ,m− 1. Therefore, if the value of β is determined so that

E(znyn−m) = 0 holds for k = m, the Yule-Walker equation of order m

will be satisfied. For that purpose, from

E(znyn−m)

= E

{

yn−
m−1

∑
j=1

âm−1
j yn− j−β

(

yn−m−
m−1

∑
j=1

âm−1
j yn−m+ j

)}

yn−m

= Cm−
m−1

∑
j=1

âm−1
j Cm− j−β

(

C0−
m−1

∑
j=1

âm−1
j C j

)

= 0, (B.7)

β is determined as

β =

(

C0−
m−1

∑
j=1

âm−1
j C j

)−1(

Cm−
m−1

∑
j=1

âm−1
j Cm− j

)

=
(

σ2
m−1

)−1
(

Cm−
m−1

∑
j=1

âm−1
j Cm− j

)

. (B.8)

Therefore, if we denote this β as âm
m and define am

j by

âm
j ≡ âm−1

j − âm
mâm−1

m− j , (B.9)
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then from (B.5) – (B.7), we have

E

{(

yn−
m

∑
j=1

âm
j yn− j

)

yn−k

}

= Ck−
m

∑
j=1

âm
j Ck− j = 0 (B.10)

for k = 1, . . . ,m.

In addition, the innovation variance of the AR model with order m

can be expressed as

σ̂2
m = C0−

m

∑
j=1

âm
j C j

= C0−
m−1

∑
j=1

(

âm−1
j − âm

mâm−1
m− j

)

C j− âm
mCm

= C0−
m−1

∑
j=1

âm−1
j C j− âm

m

(

Cm−
m−1

∑
j=1

âm−1
m− jC j

)

= σ̂2
m−1− âm

m

(

Cm−
m−1

∑
j=1

âm−1
m− jC j

)

. (B.11)

Using (B.8), it follows that Cm−
m−1

∑
j=1

âm−1
m− jC j = âm

mσ̂2
m−1 and then σ̂2

m is

obtained as follows:

σ̂2
m = σ̂2

m−1

(

1− (âm
m)2
)

. (B.12)





Appendix C

Derivation of the Kalman Filter
and Smoother Algorithms

In this appendix, a brief derivation of the Kalman filter (Kalman (1960))

and the fixed interval smoothing algorithm (Bierman (1977)) are given.

C.1 Kalman Filter

[ One-Step-Ahead Prediction ]

From xn = Fnxn−1 + Gnvn, we obtain

xn|n−1 = E (xn|Yn−1)

= E (Fnxn−1 + Gnvn|Yn−1)

= FnE (xn−1|Yn−1)

= Fnxn−1|n−1, (C.1)

Vn|n−1 = E (xn− xn|n−1)
2

= E (Fn(xn−1− xn−1|n−1)+ Gnvn)
2

= FnE (xn−1− xn−1|n−1)
2FT

n + GnE (v2
n)G

T
n

= FnVn−1|n−1FT
n + GnQnGT

n , (C.2)

where for simplicity of notation, xxT is abbreviated as x2.

[ Filter ]

Denote the prediction error of yn by εn; then from yn = Hnxn +wn, it

can be expressed as

εn ≡ yn−E (yn|Yn−1)

= Hnxn + wn−E (Hnxn + wn|Yn−1)

= Hnxn + wn−HnE (xn|Yn−1)

= Hn(xn− xn|n−1)+ wn. (C.3)
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Therefore, we have

Var(εn) = HnVn|n−1HT
n + Rn, (C.4)

Cov(xn,εn) = Cov(xn,Hn(xn− xn|n−1)+ wn)

= Var(xn− xn|n−1)H
T
n

= Vn|n−1HT
n . (C.5)

Using the facts that Yn = {Yn−1,yn} = Yn−1⊕ εn and that in the case

of the normal distribution, the conditional expectation of xn given Yn is

expressible by orthogonal projection, it follows that

xn|n = E(xn|Yn) = Proj(xn|Yn)

= Proj(xn|Yn−1,εn)

= Proj(xn|Yn−1)+ Proj(xn|εn). (C.6)

Because Proj(xn|εn) is obtained by regressing xn on εn, from (C.4) and

(C.5),

Proj(xn|εn) = Cov(xn,εn)Var(εn)
−1εn

= Vn|n−1HT
n (HnVn|n−1HT

n + Rn)
−1εn

≡ Knεn. (C.7)

Therefore, we have

xn|n = xn|n−1 + Knεn. (C.8)

In addition, from

Vn|n−1 = E(xn− xn|n−1)
2

= E(xn− xn|n + Knεn)
2

= Vn|n + KnVar(εn)K
T
n , (C.9)

we have

Vn|n = Vn|n−1−KnHnVn|n−1

= (I−KnHn)Vn|n−1. (C.10)

C.2 Smoothing

δn+1 ≡ xn+1−xn+1|n is assumed to be the prediction error of xn+1.

Define Zn by

Zn ≡ Yn⊕ δn+1⊕{vn+1, . . . ,vN ,wn+1, . . . ,wN}.
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Then, we have the decomposition

zn ≡ Proj(xn|Zn)

= Proj(xn|Yn)+ Proj(xn|δn+1)

+ Proj(xn|vn+1, . . . ,vN ,wn+1, . . . ,wN), (C.11)

and it follows that

Proj(xn|Yn) = xn|n

Proj(xn|δn+1) = Cov(xn,δn+1)Var(δn+1)
−1δn+1 (C.12)

Proj(xn|vn+1, . . . ,vN ,wn+1, . . . ,wN) = 0.

In addition, we have

Var(δn+1) = Vn+1|n, (C.13)

Cov(xn,δn+1) = Cov(xn,Fn+1(xn− xn|n)+ Gn+1vn+1)

= E (xn− xn|n)
2FT

n+1

= Vn|nFT
n+1. (C.14)

Therefore, by putting An = Vn|nFT
n+1V−1

n+1|n, we have

zn = xn|n + An(xn+1− xn+1|n). (C.15)

Here, considering that ZN generates YN , we obtain

xn|N = Proj(xn|YN)

= Proj(Proj(xn|ZN)|YN)

= Proj(zn|YN)

= xn|n + An(xn+1|N− xn+1|n). (C.16)

Further, using

xn− xn|N + Anxn+1|N = xn− xn|n + Anxn+1|n, (C.17)

and E
{

(xn− xn|N)xT
n+1|N

}

= E
{

(xn− xn|n)x
T
n+1|n

}

= 0, we obtain

Vn|N + AnE
{

xn+1|NxT
n+1|N

}

AT
n = Vn|n + AnE

{

xn+1|nxT
n+1|n

}

AT
n .

(C.18)
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Here, using

E
{

(xn+1− xn+1|N)xT
n+1|N

}

= 0

E
{

(xn− xn|n)x
T
n+1|n

}

= 0,

we obtain

E
{

xn+1|NxT
n+1|N

}

= E
{

(xn+1|N− xn+1 + xn+1)(xn+1|N− xn+1 + xn+1)
T
}

= Vn+1|N + E
{

xn+1xT
n+1

}

+ 2E
{

(xn+1|N− xn+1)x
T
n+1

}

= Vn+1|N + E
{

xn+1xT
n+1

}

−2E
{

(xn+1|N− xn+1)(xn+1|N− xn+1)
T
}

= E
{

xn+1xT
n+1

}

−Vn+1|N, (C.19)

and

E
{

xn+1|nxT
n+1|n

}

= E
{

xn+1xT
n+1

}

−Vn+1|n. (C.20)

Substituting this into (C.18) yields

Vn|N = Vn|n + An(Vn+1|N−Vn+1|n)A
T
n . (C.21)



Appendix D

Algorithm for the Monte Carlo Filter

This appendix presents a derivation of the Monte Carlo filter algorithm.

The readers are referred to Kitagawa (1996) and Doucet et al. (2001) for

details.

D.1 One-Step-Ahead Prediction

Assume that m particles { f
(1)
n−1, . . . , f

(m)
n−1} that can be considered as m

independent realizations from the conditional distribution p(xn−1|Yn−1)

of the state xn−1, and m particles {v(1)
n , . . . ,v

(m)
n } from the system noise

density p(v) are given. Namely, assume that

f
(i)
n−1 ∼ p(xn−1|Yn−1), v

(i)
n ∼ q(v). (D.1)

Then, it can be shown that the one-step-ahead predictive distribution

of xn is given by

p(xn|Yn−1)

=

∫ ∫

p(xn,xn−1,vn|Yn−1)dxn−1dvn (D.2)

=

∫ ∫

p(xn|xn−1,vn,Yn−1)p(vn|xn−1,Yn−1)p(xn−1|Yn−1)dxn−1dvn.

Since the system noise vn is independent of past states and ob-

servations, the conditional distribution of the system noise satisfies

p(vn|xn−1,Yn−1) = p(vn). On the other hand, since xn depends only on

xn−1 and vn, p(xn|xn−1,vn,Yn−1) = p(xn|xn−1,vn) = δ (xn−F(xn−1,vn)),
and we have

p(xn|Yn−1) =

∫ ∫

δ (xn−F(xn−1,vn))p(vn)p(xn−1|Yn−1)dxn−1dvn.

(D.3)

Therefore, when realizations {v( j)
n } of p(vn) and { f

( j)
n−1} of p(xn−1|Yn−1)

are given, realizations {p
( j)
n } of p(xn|Yn−1) are obtained by

p
( j)
n = F( f

( j)
n−1,v

( j)
n ). (D.4)

259
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D.2 Filter

When m independent realizations p
(1)
n , . . . , p

(m)
n of the distribution

p(xn|Yn−1) are given, it is equivalent to approximate the distribution

p(xn|Yn−1) by the empirical distribution function

Pn(x) =
1

m

m

∑
i=1

I(x, p
(i)
n ), (D.5)

where I(x,a) = 0 for x < a and I(x,a) = 1 otherwise. This means that

the predictive distribution p(xn|Yn−1) is approximated by the probability

function

Pr(xn = p
( j)
n |Yn−1) =

1

m
, for j = 1, . . . ,m. (D.6)

Then, given the observation yn, the posterior distribution of xn is ob-

tained by

Pr(xn = p
( j)
n |Yn) = Pr(xn = p

( j)
n |Yn−1,yn)

= lim
∆y→0

Pr(xn = p
( j)
n ,yn ≤ y≤ yn + ∆y|Yn−1)

Pr(yn ≤ y≤ yn + ∆y|Yn−1)

=
p(yn|p( j)

n )Pr(xn = p
( j)
n |Yn−1)

m

∑
i=1

p(yn|p(i)
n )Pr(xn = p

(i)
n |Yn−1)

=
α

( j)
n · 1

m
m

∑
i=1

α
(i)
n · 1

m

=
α

( j)
n

m

∑
i=1

α
(i)
n

. (D.7)

The cumulative distribution function

1
m

∑
i=1

α
(i)
n

m

∑
i=1

α
(i)
n I(x, p

(i)
n ) (D.8)

corresponding to this Pr(xn = p
( j)
n |Yn) has jumps with jump sizes pro-

portional to α
(1)
n , . . . ,α

(m)
n given by the right-hand side of the equation

(15.9) only at the m points p
(1)
n , . . . , p

(m)
n .

Although the approximation of the distribution of the filter was ob-

tained using this expression (D.8), it is convenient to re-approximate it
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by m particles f
(1)
n , . . . , f

(m)
n with equal weights to perform the compu-

tation of the prediction (D.1) in the next time step. This corresponds to

representing the distribution of (D.8) by the empirical distribution func-

tion

1

m

m

∑
i=1

I(x, f
(i)
n ). (D.9)

The m realizations { f
(1)
n , . . . , f

(m)
n } can be obtained by re-sampling

{p
(1)
n , . . . , p

(m)
n } with probabilities

Pr( f
( j)
n = p

(i)
n |Yn) =

α
(i)
n

α
(1)
n + · · ·+ α

(m)
n

, j = 1, . . . ,m. (D.10)

D.3 Smoothing

For smoothing, assume that Pr(x1 = s
( j)
1|n−1

, . . . ,xn−1 = s
( j)
n−1|n−1

|Yn−1) =

1/m and v
( j)
n ∼ q(v) and define (p

( j)
1|n−1

, . . . , p
( j)
n|n−1

) as follows:

p
( j)
i|n−1

=







s
( j)
i|n−1

, for i = 1, . . . ,n−1

F(s
( j)
n−1|n−1

,v
( j)
n ), for i = n.

(D.11)

Then, (p
( j)
1|n−1

, . . . , p
( j)
n|n−1

) can be considered as a realization from the

joint distribution of (x1, . . . ,xn) when the observation Yn−1 is given.

Next, given the observation yn, the distribution Pr(x1 ≤ p
( j)
1|n−1

, . . . ,xn ≤
p

( j)
n|n−1

|Yn−1) can be updated as follows:

Pr(x1 = p
( j)
1|n−1

, . . . ,xn = p
( j)
n|n−1

|Yn)

= Pr(x1 = p
( j)
1|n−1

, . . . ,xn = p
( j)
n|n−1

|Yn−1,yn)

=
p(yn|x1 = p

( j)
1|n−1

, . . . ,xn = p
( j)
n|n−1

)

p(yn|Yn−1)

× Pr(x1 = p
( j)
1|n−1

, . . . ,xn = p
( j)
n|n−1

|Yn−1)

=
p(yn|p( j)

n|n−1
)Pr(x1 = p

( j)
1|n−1

, . . . ,xn = p
( j)
n|n−1

|Yn−1)

p(yn|Yn−1)
.(D.12)

Since p
( j)
n|n−1

is the same as the particle p
( j)
n of the filter algorithm
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(D.5), the smoothing distribution p(x1, . . . ,xn|Yn) can be obtained by

re-sampling m n-dimensional vectors (p
( j)
1|n−1

, . . . , p
( j)
n|n−1

)T , j = 1, . . . ,m
with the same weights as the filter.
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Answers to the Problems

Chapter 1

1. It is important to select the sampling interval appropriately. If it is too

wide, it is not possible to capture the features of the continuous time

series. On the other hand, if it is too narrow, many parameters in the

modeling may be used up on nonessentials, thus preventing effective

representation of the time series. A rough rule of thumb is to set the

sampling interval as 1/5 to 1/10 of the dominant period.

2. (An example.) Time series obtained by recording the sales amount of

instant coffee at a store. Since values are non-negative, the distribu-

tion of the time series is asymmetric. Also this series may suddenly

increase due to discounting or due to promotion activities.

3.(1) By solving (1.1) with respect to y, we obtain y = ez/(1 + ez).

(2) z = log{(y− a)/(b− y)}, and the inverse transformation is given

by y = (a + bez)/(1 + ez).

4. If the time series contains observation noise and is expressed as

yn = a + bn + εn, the difference of yn becomes ∆yn = b + εn− εn−1.

Therefore, although the trend component is removed, the noise com-

ponents become more complex.

5. The corrected value of this year is affected by the change of the trend

in the previous year. For example, if the slope of the trend increased in

the middle of the previous year, the annual rate looks as if it decreased

from the middle of this year.

6.(1) Assume that yn = Tn + wn, Tn = a + bn, and wn ∼ N(0,σ2) is a

white noise, then

T̂n =
1

3
(yn−1 + yn + yn+1)

=
1

3
(Tn−1 + Tn + Tn+1)+

1

3
(wn−1 + wn + wn+1).

Here, the first term on the right-hand side is Tn. On the other

hand, the mean of the second term is 0 and from E(wn−1 + wn +
wn+1)

2 = 3σ2, the variance becomes σ2/3.

(2) By setting the number of terms large, we can get smoother esti-

mates. On the other hand, this makes it difficult to detect sudden

structural changes and estimates may become sensitive to outlying

observations. The moving median has the opposite properties.
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Chapter 2

1. A Gaussian distribution is completely specified by its mean and vari-

ance. Therefore, if the mean and the variance are time-invariant,

this also means that the distribution is time-invariant and becomes

strongly stationary.

2. Consider a time series with a standard Cauchy distribution. Then ob-

viously, it is strongly stationary. However, since the Cauchy distribu-

tion does not have a mean or variance, the series cannot be weakly

stationary.

3. Ck = E(yn − µ)(yn+k − µ) = E(yn+k − µ)(yn − µ) = E(yn −
µ)(yn−k − µ) = C−k. The third equality holds only for a stationary

time series yn.

4. C0 = Ey2
n = Ev2

n − 2cEvnvn−1 + c2Ev2
n−1 = 1 + c2, C1 = E(vn −

cvn−1)(vn−1− cvn−2) =−c, Ck = 0 (k ≥ 2).

5. For arbitrary α = (α1, . . . ,αk) with not all components zero,

αCαT =
k

∑
i=1

k

∑
j=1

αiα jCi− j =
k

∑
i=1

k

∑
j=1

αiα jE(yn−iyn− j)

= E

(

k

∑
i=1

αiyn−i

)2

≥ 0

6.(1) By taking the expectation of both sides,

E[Ĉk(i, j)] =
1

N

N

∑
n=k+1

Ck(i, j) =
N− k

N
Ck(i, j)

(2) Since the sample autocovariance function defined by (2.21) is pos-

itive semi-definite, it has the significant advantage that the esti-

mated AR models always become stationary. If N is replaced by

N− k, we can get an unbiased estimate of Ck(i− j). Instead how-

ever, we lose the advantage above of stationarity.

7.(1) When the sample size is n, Ĉ0 ∼ N(0,2σ4/n), Ĉk ∼ N(0,σ4/n),
R̂k ∼ N(0,n−1).

(2) For all k, check if |R̂k|< α√
n

holds. For example. α can be set equal

to 2.
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Chapter 3

1. From the expression e−2π ik f = cos(2πk f )− isin(2πk f ), we have

p( f ) =
∞
∑

k=−∞
Ck cos(2πk f )− i

∞
∑

k=−∞
Ck sin(2πk f ) . Here, since Ck is

an even function and sin(2πk f ) is an odd function, Ck sin(2πk f ) be-

comes an odd function and the second term on the right-hand side of

the above equation becomes 0.

2. p( f ) = 1 +C2−2C cos(2π f )

3.

p( f ) =
∞
∑

k=−∞
Cke−2π ik f =

σ2

1−a2

∞
∑

k=−∞
a|k|e−2π ik f

=
σ2

1−a2

(

1

1−ae−2π i f
+

1

1−ae2π i f
−1

)

=
σ2

1−a2

1−a2

|1−ae−2π i f |2 =
σ2

|1−ae−2π i f |2

4.

1

N

∣

∣

∣

∣

N

∑
n=1

yn exp(−2π i(n−1) j/N)

∣

∣

∣

∣

2

=
1

N

N

∑
n=1

N

∑
m=1

ynym exp(−2π i(n−1) j/N)exp(2π i(m−1) j/N)

=
1

N

{

N

∑
n=1

y2
n + 2

N−1

∑
k=1

N

∑
n=k+1

ynyn−k exp(−2π ik j/N)

}

= Ĉ0 + 2
N−1

∑
k=1

Ĉk exp(−2π ik j/N)

5. By taking the expectation of both sides of (3.9),

E[p̂( f )] =
N−1

∑
k=1−N

E[Ĉk]e
−2π ik f =

N−1

∑
k=1−N

N−|k|
N

Cke−2π ik f

=
N−1

∑
k=1−N

Cke−2π ik f − 1

N

N

∑
k=1−N

|k|Cke−2π ik f
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Chapter 4

1. The log-likelihood is given by

ℓ =
n

∑
i=1

log f (mi|λ ) =
n

∑
i=1

{−λ + mi logλ − logmi!}.
Therefore, from

∂ℓ

∂λ
=

n

∑
i=1

{

−1 +
mi

λ

}

=−n +
1

λ

n

∑
i=1

mi = 0

we have λ̂ = n−1
n

∑
i=1

mi.

2.(1)

µ̂0 =
1

n + m

(

n

∑
i=1

xi +
m

∑
i=1

yi

)

, µ̂1 =
1

n

n

∑
i=1

xi, µ̂2 =
1

m

m

∑
i=1

yi,

σ̂2
0 =

1

n + m

(

n

∑
i=1

(xi− µ̂0)
2 +

m

∑
i=1

(yi− µ̂0)
2

)

,

τ̂2
0 =

1

n + m

(

n

∑
i=1

(xi− µ̂1)
2 +

m

∑
i=1

(yi− µ̂2)
2

)

.

Then by comparing

AIC0 = (n + m)(log2πσ̂2
0 + 1)+ 2×2

AIC1 = (n + m)(log2πτ̂2
0 + 1)+ 2×3

and if AIC0 < AIC1, then this means that we can consider the two

means to be identical.

(2) σ̂2
1 =

1

n

n

∑
i=1

(xi− µ̂0)
2, σ̂2

2 =
1

m

m

∑
i=1

(yi− µ̂0)
2, AIC2 = n(log2πσ̂2

1 +

1) + m(log2πσ̂2
2 + 1) + 2 × 3. If AIC0 < AIC2, then the two

variances can be considered identical. Here, from ∑
∞
k=−∞ |Ck| <

∞, for arbitrary ε > 0, there exists an integer m that satisfies

∑
∞
k=m+1 |Ck|< ε/2. Then, we have

∣

∣

∣

∣

1

N

∞
∑

k=−∞
|k|Cke−2π ik f

∣

∣

∣

∣

≤ 2

N

∞
∑
k=1

k|Ck| ≤
2

N

m

∑
k=1

kC0 + 2
∞
∑

k=m+1

k

N
|Ck|

≤ 2

N

m(m+ 1)

2
C0 + ε
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Since by taking N sufficiently large, the first term on the right-hand

side of the equation can be made arbitrarily small, it follows that

E [ p̂( f ) ]→ p( f ).

3. Putting µ̂ =
1

n

n

∑
i=1

yi, σ̂2 =
1

n

n

∑
i=1

(yi− µ̂)2, the value of the AIC for

the Gaussian distribution model is obtained by AIC0 = n log2πσ̂2 +
n + 2×2. On the other hand, the AIC value for the Cauchy model is

obtained by AIC1 = n log τ̂2− 2n logπ −∑
n
i=1 log{(yi− µ̂)2 + τ̂2}+

2× 2, where µ̂ and τ̂2 are obtained by maximizing (4.36). Then, if

AIC0 < AIC1, the Gaussian model is considered to be better.

4.(1) For the binomial distribution model f (m|n, p) = nCm pm(1 −
p)n−m, the log-likelihood is defined by ℓ(p) = lognCm +m log p+

(n−m) log(1− p). Therefore, from
dℓ

d p
= 0,

m

p
− n−m

1− p
= 0, we

obtain p̂ = m/n.

(2) The AIC value for the model (1) is obtained by AIC1 =
−2lognCm − 2m log p̂ − 2(n− m) log(1 − p̂) + 2. On the other

hand, if we assume equal probabilities, taking p = 1/2, we ob-

tain AIC0 = −2lognCm + 2n log2. Here, if AIC0 < AIC1, we can

consider that the equal probability model is better.

5. From
d

dθ
log f (y|θ ) = f (y|θ )−1 d f (y|θ )

dθ
, we have

d2

dθ 2
log f (y|θ ) =

d

dθ

(

d

dθ
log f (y|θ )

)

=
d

dθ

(

f (y|θ )−1 d f

dθ

)

= − f (y|θ )−2

(

d f

dθ

)2

+ f (y|θ )−1 d2 f

dθ 2

= −
(

d

dθ
log f (y|θ )

)2

+ f (y|θ )−1 d2 f

dθ 2
.

Therefore,

J = −E

[

d2

dθ 2
log f (y|θ )

]

= E

(

d

dθ
log f (y|θ )

)2

−E

[

f (y|θ )−1 d2 f

dθ 2

]
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= I−
∫ ∞

−∞

d2 f

dθ 2
dy = I− d2

dθ 2

∫ ∞

−∞
f (y|θ )dy = I

6. From z = k(y) = logy, f (z) = (2πσ2)−1 exp{−(z− µ)2/2σ2},
and we have

dk

dy
= y−1. Therefore,

g(y) =
∣

∣

∣

dk
dy

∣

∣

∣
f (k(y)) = 1

y
1√

2πσ2
e
− (log y−µ)2

2σ2 .

Chapter 5

1. Let µ̂ denote the maximum likelihood estimate of µ . Since the num-

ber of parameters is 1, the AIC is obtained by

AIC = n log2πσ2− 1

σ2

n

∑
i=1

(yi− µ̂)2 + 2.

2.(1) From S = ∑
N
n=1(yn−ax2

n−bxn)
2,

dS

da
= −2

N

∑
n=1

x2
n(yn−ax2

n−bxn)

= −2
(

N

∑
n=1

x2
nyn−a

N

∑
n=1

x2
n−b

N

∑
n=1

x3
n

)

= 0

dS

db
= −2

N

∑
n=1

xn(yn−ax2
n−bxn)

= −2
(

N

∑
n=1

xnyn−a
N

∑
n=1

x3
n−b

N

∑
n=1

x2
n

)

= 0.

Solving these, we have

â =
∑x2

nyn ∑x2
n−∑xnyn ∑x3

n

∑x4
n ∑x2

n− (∑x3
n)

2

b̂ =
∑xnyn ∑x4

n−∑x2
nyn ∑x3

n

∑x4
n ∑x2

n− (∑x3
n)

2
.

(2) yn = axn(xn− b)+ εn. By minimizing S =
N

∑
n=1

(yn− ax2
n− abxn)

2

with respect to the two parameters a and b by a numerical opti-

mization procedure, we can obtain the least squares estimates.
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Chapter 6

1.(1) Putting m = 1 in equation (6.21), the stationarity condition is that

the root of 1−a1B = 0 lies outside the unit circle. Therefore, from

|B|= |a−1
1 |> 1, we have |a1|< 1.

(2) Putting m = 2 in equation (6.21), the roots are obtained by B =

(a1±
√

a2
1 + 4a2)/2. Therefore, the stationarity conditions are that

a2
1 + 4a2 ≥ 0, a2 < 1−a1 and a2 < 1 + a1 for a2

1 + 4a2 < 0, a2 >
−1. Therefore, the region satisfying the stationarity condition is

a triangle surrounded by three lines a2 < 1− a1, a2 < 1 + a1 and

a2 >−1.

2.(1) σ2

(2) From yn+2 = ayn+1 + vn+2 = a2yn + avn+1 + vn+2, we have

yn+2|n = a2yn. Therefore, E (yn+2−yn+2|n)
2 = a2Ev2

n+1 +Ev2
n+2 =

(1 + a2)σ2.

(3) It can be expressed as yn+k = vn+k + g1vn+k−1 + g2vn+k−2 + · · ·.
Here, from the impulse response function of AR(1), gi = ai. Then,

since we can express yn+k|n = gkvn + gk+1vn+1 + · · ·, we have

E (yn+k− yn+k|n)
2 = E (vn+k + g1vn+k−1 + · · ·+ gk−1vn+1)

2

= (1 + g2
1 + · · ·+ g2

k−1)σ
2

= (1 + a2 + · · ·+ a2(k−1))σ2 =
1−a2k

1−a2
σ2.

3.(1) From C0 = −0.9C1 + 1, C1 = −0.9C0, we have C0 = 0.81C0 + 1,

C0 = 1/0.19 = 5.26, Ck = 5.26× (−0.9)k.

(2) C0 = 25/7, C1 = 75/28, C3 = 15/14, C4 =−9/28.

(3) C0 = 1 + b2, C1 =−b, Ck = 0 (k > 1).

(4) Putting E[ynvn−k] = gk, we have g0 = 1, g1 = a− b. Therefore,

from C0 = aC1 + g0−bg1, C1 = aC0−bg0, we have

C0 =
1−2ab + b2

1−a2
, Ck =

(1−ab)(a−b)

1−a2

ak−1.

4.(1) Substituting vn = yn− ayn−1 into both sides of vn = bvn−1 + wn,

yields

yn = (a + b)yn−1−abyn−2 + wn,

and we obtain an AR model of order 2.
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(2) The autocovariance function of yn is given by ak(1− a2)−1, k =
0,1,2,3. Therefore, C0 = (1−a2)−1 + 0.01, Ck = ak(1−a2)−1.

5.(1) Substituting C0 = 1 + b2, C1 = −b, Ck = 0 and k > 1 into p( f ) =
∞
∑

k=−∞
Cke−2π ik f , we have p( f ) = (1 + b2)− be−2π i f − be2π i f =

|1−be−2π i f |2.

(2) From d p/d f =−4πasin(2π f )/{1−2acos(2π f )+ a2}2 = 0, we

have sin(2π f ) = 0. This means that the maximum (or minimum)

of the spectrum is attained either at f = 0 or 1/2. If a > 0, it has a

maximum at f = 0 and a minimum at f = 1/2. If a < 0, they are

the other way around.

6. For yn = vn−bvn−1 = (1−bB)vn, since (1−bB)−1 = 1+bB+b2B2 +
· · ·, we obtain an AR model of infinite order yn =−byn−1−b2yn−1−
·· ·+ vn.

7.(1) From yn+1|n = −bvn and yn+k|n = 0, we have Eε2
n+1|n = 1,

E(ε2
n+k|n) = 1 + b2 (k ≥ 1).

(2) yn = vnavn−1 + a2vn−2 + · · ·, E(ε2
n+k|n) = 1 + a2 + · · ·+ a2(k−1).

(3) From yn = vn + vn−1 + vn−2 + · · ·, we have E(ε2
n+k|n) = k.

8.(1) From yn+1|n = −bvn and yn+k|n = 0, it follws that E(ε2
n+1|n) = 1

and E(ε2
n+k|n) = 1 + b2 (k ≥ 1).

(2) Since yn+k = vn+k +avn+k−1 +a2vn+k−2 + · · · and yn+k|n = akvn +

an−1vn−1 + · · ·, it follows that εn+k|n = vn+k + avn+k−1 + · · ·+
ak−1vn+1. Therefore, we have E(ε2

n+k|n) = 1 + a2 + · · ·+ a2(k−1).

(3) Since yn+k = vn+k + vn+k−1 + vn+k−2 + · · · and yn+k|n = vn +
vn−1 + · · ·, we have εn+k|n = vn+k +vn+k−1 + · · ·+vn+1. Therefore,

E(ε2
n+k|n) = k.

Chapter 7

1.(1) AICm = N(log2πσ̂2
n−1 + log(1− (am

m)2)+ 2(m + 1) = AICm−1 +

N log(1− (am
m)2)+ 2. Therefore, if N log(1− (am

m)2)+ 2 < 0, i.e.,

if (am
m)2 > 1− e−2/N , then we can conclude that AR(m) is better

than AR(m−1).

(2) σ2
1 = (1− 0.92)× 1 = 0.19, σ2

2 = 0.1216, σ2
3 = 0.1107, σ2

4 =
0.1095, σ2

5 = 0.1071 (displayed up to the 4th decimal place)

(3) AIC0 = 100(log2π×1+)+ 2×1 = 285.78

AIC1 = 100(log2π×0.19 + 1)+ 2×2 = 121.71
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AIC2 = 79.09, AIC3 = 71.65, AIC4 = 72.65, AIC5 = 72.37.

Therefore, the third order model is considered best.

2. The Yule-Walker method has the advantage that it always yields a

stationary model. On the other hand, it may have large bias, espe-

cially for small sample sizes. These properties are due to the implicit

assumption that the time series takes a value 0 outside the actually

observed interval. The least squares method has the advantage that

it provides us with estimates having a small bias and that it is easy

to pool additional data and perform various manipulations for fitting

a more sophisticated model. On the other hand, it has problems in

that stationarity is not guaranteed, and with parameter estimation, the

first several observations are used only for conditioning and cannot be

directly used for parameter estimation. In AR model estimation, the

PARCOR method is very efficient in terms of computation and yields

very close estimates as maximum likelihood estimates.

3. Fit a univariate AR model to each time series xn and yn, and obtain

AICx and AICy, respectively. On the other hand, fit a 2-variate AR

model to (xn,yn)
T and compute AIC0. Then, if AICx +AICy < AIC0,

xn and yn are considered independent.

Chapter 8

1. Consider an AR model yn = µ + a1yn−1 + · · ·+ amyn−m + vn, which

has an additional parameter corresponding to the mean of the process.

2. Compare the following two models; the switched model N(0,σ1
1 ) for

n = 1, . . . ,k and N(0,σ1
2 ), and the stationary model yn ∼ N(0,σ2

0 ) for

n = 1, . . . ,N. The AIC values of the models are, respectively, given

by

AIC12 = N log2π + k logσ̂2 +(N− k) log σ̂2
2 + N + 2×2

AIC0 = N log2π + N log σ̂2
0 + N + 2.

If AIC12 < AIC0, it is considered that the variance changed at n =
k + 1.

3. Assume that yn = a0 + a1xn + · · ·+ apx
p
n + εn for n = 1, . . . ,k, and

that yn = b0 +b1xn + · · ·+aqx
q
n +δn for n = k +1, . . . ,N, where εn ∼

N(0,σ2
1 ),δn ∼ N(0,σ2

2 )

AIC = N log2π + k logσ̂2
1 +(N− k) log σ̂2

2 + N + 2× (p + q +4).

4. To ensure continuity of the trend, require the parameters to satisfy

a0 + a1k + · · ·+ apkp = b0 + b1k + · · ·+ bqkq.
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To ensure smoothness of the trend, apply the further restriction

a0 + 2a1k + · · ·+ papkp = b0 + 2b1k + · · ·+ qbqkq.

Note that in computing AIC, the number of free parameters is de-

creased by 1 and 2, respectively.

5. The amount of computation in fitting an ordinary AR model is

roughly Nm2/2. On the other hand, the two locally stationary AR

models need

1

2
n0m2 +

n1−n0

p

1

2
(p + 1)m2

1

2
(N−n1)m

2 +
n1−n0

p

1

2
(p + 1)m2,

respectively. Therefore, the total amount of computation required is

evaluated as

1

2
Nm2 +

1

2
(n1−n0)m

2 +
n1−n0

p
m2.

Even for p = 1, when the maximum of the sum of the second and

third terms is attained with a value of 3/2(n1−n0)m
2, the increase in

the amount of computation is at most three times that of the original

AR model.

Chapter 9

1. Multiplying by T from the left on both sides of (9.1), we obtain T xn =
T Fnxn + TGnvn = TFnT−1T xn + TGnvn. Then, putting zn = Txn and

using yn = Hnxn +wn = HnT−1Txn +wn, we can verify that we obtain

an equivalent representation.

2.(1)

Initial value : x0|0 = 0,V0|0 = 100

Prediction : xn|n−1 = xn−1|n−1,Vn|n−1 = Vn−1|n−1 + τ2

Filter : Gn = Vn|n−1/(Vn|n−1 + 1),

xn|n = xn|n−1 + Gn(yn− xn|n−1),

Vn|n = (1−Gn)Vn|n−1 = Gn.

(2) Vn+1|n = Vn|n−1/(Vn|n−1 + 1)+ τ2.

(3) In (2), put Vn+1|n = Vn|n−1 = V .
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(4) Denoting the solution of (3) by V , the variance of the filter is ob-

tained by V ′ = V/(V + 1), and

xn+1|n = xn|n = xn|n−1 +
V

V + 1
(yn− xn|n−1)

3. From VP = V , VF = G = V/(V + 1), A = V/(V + 1)/V = 1/(V + 1)
and VS = VF + A2(VS−VP), we obtain VS = V/(V + 2).

τ2 1 0.1 0.01 0.001

VP 1.1618 0.370 0.105 0.032

VF 0.618 0.270 0.095 0.031

VS 0.447 0.156 0.050 0.016

Chapter 10

1. From xn = (yn,yn−1, . . . ,yn−m+1)
T , the (i, j)-element of ExnxT

n is

Eyn−i+1yn− j+1 = Ci− j. Therefore, compute the autocovariance func-

tions Ck, k = 0,1, . . . of the AR model of order m and construct the

initial matrix by

V0|0 =











C0 C1 · · · Cm−1

C1 C0 · · · Cm−2

...
...

. . .
...

Cm−1 Cm−2 · · · C0











.

2. The change in the log-likelihood for the parameter transformed by

(10.9) becomes very small if the absolute value of the parameter is

large, and as a result, the optimization procedure may not work at all.

Therefore, it is suggested that the range of the transformed parameter

be restricted to some appropriately defined interval, say [−20,20].

Chapter 11

1.(1) For yn+k = yn+k−1 + vn+k = · · · = yn + vn+1 + · · ·+ vn+k, since

Evn+i = 0 and Ev2
n+i = σ2, we have yn+k|n = yn and Eε2

n+k|n = kσ2.

(2) From kσ2 = 4×40,000 = 160,000, we have
√

kσ = 400. For the

normal distribution, the probability of a value larger than 1σ is

0.16.

(3) The variance σ2 of the random walk changes over time. Therefore,

we may consider a model taking into account changes in volatility

yn = yn−1 + σnwn,

logσ2
n = a + b logσ2

n−1 + vn (or logσ2
n = logσ2

n−1 + vn).
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2. We may, for example, consider a trigonometric model.

3. Omitted.

Chapter 12

1. If a characteristic root of the AR model approaches 1, discrimination

between the AR model and the trend model becomes difficult. There-

fore, it is recommended to apply some restriction so that the absolute

value of the characteristic roots of the estimated AR model does not

approach 1.

2. A seasonal component model based on a trigonometric function is

obtained by Sn = ∑6
j=1(a j cos

π jn
6

+ b j sin
π jn

6
).

3.(1) Assuming that βn1 = βn7, βn2 = · · ·= βn6, we obtain a trading day

effect with 2 parameters. In this case, the trading day effect is ex-

pressed by tdn = βn1(d
′
n1 + d′

n7)+ βn2(d
′
n2 + · · ·+ d′

n6).

(2) Assuming that βn2 = · · · = βn6, we obtain a trading day effect

model with 3 parameters.

4. The holiday pattern of Easter or “Golden week” in Japan changes

year by year. Therefore, it is necessary to take account of these effects

carefully. The effect of a leap year may not be completely removed

by the standard trading day adjustment.

5. Omitted.

Chapter 13

1. (Example.) Stock-price data

2. In a time-varying coefficient regression model yn = β0n + β1nxn1 +
· · ·+βmnxnm +εn, consider, for example, a random walk model β jn =
β j,n−1 + vn for the coefficients β0n,β1n, . . . ,βmn. This model can be

expressed as a state-space model, so as in the case of time varying

coefficient AR model, the parameter can be estimated by the Kalman

filter.

Chapter 14

1. Compared with the Gaussian distribution, they have characteristics

that the density is concentrated in the center and at the same time,

they also have heavy tails. Therefore, they are adequate for handling

sudden structural changes or outliers that occur with small probabil-

ity.

2. For y∼N(0,1), put z = y2, x = logz. Then the probability that z takes
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a smaller value than t is given by

F(t) = Prob(y2 < t) =
2√
2π

∫

√
t

0
e−

y2

2 dy.

Differentiating with respect to t yields

f (t) =
dF

dt
=

1√
2π

t−
1
2 e−

t
2

(a χ2 distribution with 1 degree of freedom.) From (4.51), the distri-

bution of the log-transform x = h(z) is given by

g(x) =

∣

∣

∣

∣

dh−1

dx

∣

∣

∣

∣

f (ex) = ex 1√
2π

(ex)−
1
2 e−

ex

2 =
1√
2π

e
x
2
− ex

2 .

3. In the trend model, define the distribution of the system noise by

pv(x) =

{

δ (0) with probability 1−α
N(0,τ2) with probability α

,

where δ (0) is the δ function with mass at x = 0.

Chapter 15

1. Assuming that yn is a time series and tn is a trend, consider the model

tn = tn−1 + vn,

logσ2
n = logσ2

n−1 + un,

yn = tn + σnwn,

where un ∼ N(0,τ2
1 ), vn ∼ N(0,τ2

2 ), wn ∼ N(0,1). Note that in this

case, the observation model is nonlinear.

2. In Monte Carlo simulation, in general, we need 100 times as many

particles to increase the accuracy by one digit.

3. Without any re-sampling step, the weights of many particles approach

to zero and the accuracy of approximation is rapidly reduced.

4. If the number of particles is m, the number of data values is N, the

dimension of the state is k and the lag is L, the fixed-interval smoother

and the fixed-lag smoother need to store m×k×N and m×k×L data

elements, respectively. Note that N≫ L.

Chapter 16



276 ANSWERS TO THE PROBLEMS

1. Assume that f (x) is the density of a uniform distribution, f (x) = 1

for 0≤ x≤ 1, and 0 otherwise. Then since

g(x)=
∫ ∞

−∞
f (y) f (x−y)dy =

∫ 1

0
f (x−y)dy =







x 0≤ x≤ 1

2− x 1≤ x≤ 2

0 otherwise

,

the density function of W is a triangle.

2. Assume that y0 = 1, vn ≡ 0; then yn = an. Therefore, if we take m

such that am < c (for example, c = 10−3), then the effect of the initial

value can be ignored. For a = 0.9,0.5,0.1, m is given by 66, 10, 5,

respectively.

3. Using the observed time series, construct the state vector xn and

then by using random numbers, we can generate xn+1,xn+2, . . .. To

simulate an AR model using the state given in (9.5), put xn =
(yn,yn−1, . . . ,yn−m+1)

T .
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